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Introduction

This book is the textbook for a class I have taught every year since 2018
at Euler Circle to high-school (and younger) students. The target audience
I have in mind for this class is students who have some problem-solving
experience doing tricky numerical-answer problems, but without much ex-
posure to proofs. For students who do math competitions, this translates
roughly into being able to qualify for the American Invitational Mathe-
matics Examination. While the main goal of this class is to help students
become comfortable with reading and writing proofs, I don’t just want to
teach my students the mechanics of proofs: I also want to teach them lots
of interesting mathematics simultaneously. It takes longer to teach proofs
and also interesting mathematics than just to teach proofs, so this class is
a yearlong sequence, where we focus on proofs in number theory, combi-
natorics, and analysis in the fall, winter, and spring quarters, respectively,
and these are parts 1, 2, and 3 of the book, respectively. We do not cover
part 0 in the class, but it is there for reference for students who have not
seen that material previously.

While we cover a decent amount of each of the three main topics (num-
ber theory, combinatorics, and analysis), this book and the corresponding
class are not intended to be comprehensive studies in any of them. There
are many important topics in all of these areas that are notably absent from
this book. I was especially sorry not to be able to include quadratic reci-
procity in the number theory section, but it seemed just a little bit beyond
the scope of the class. That is okay though, I think: it won’t be the last
time students see these topics.

Students who attend Euler Circle for several years would likely take the
fundamentals of higher mathematics sequence after this class. That class
focuses on linear algebra, basic abstract algebra, real analysis, and point-set
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vi Transition to Proofs

topology. It is especially helpful for the students to see analysis again at a
slightly deeper level after completing the transition to proofs class.

For the most part, each chapter corresponds to one week of class. The
problems at the end of each chapter are the homework problems for the
week. Some of them are quite challenging, and while I want students to
be able to solve all the problems, not all of them are able to do so, and
that is okay. In my classes, each student is assigned a teaching assistant
to work with, and the students submit their problem sets to their teaching
assistant each week and discuss the problems, including how to improve
their proofwriting. Going through this book with a mentor is the ideal use
case for this book. This book can also be used for self-study, but it would
be easier to use it in conjunction with a class. But then, which textbook
wouldn’t?

I would like to thank everyone who pointed out mistakes and improve-
ments in previous versions of this book, thus helping it to improve. These
people include all the students at teaching assistants from the classes, as
well as Porter Adams, Travis Chen, Eric Gottlieb, Yunjiang Jiang, Urban
Larsson, Andrew Lin, Nitya Mani, Thomas Roybal, Lynn Sokei, Enrique
Treviño, Jonathan Webster, Roy Whelden, Mike Wills, Adeline Wong, and
the anonymous referees.

Thanks also to everyone at World Scientific for making the publication
of this book possible.
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Chapter −1

Sets and set operations

−1.1 Sets

For us, a set is a collection of objects, or elements. This is not the real
definition, and it leads to serious problems such as the infamous Russell’s
paradox, but it will serve our purposes well enough; truly valid definitions
require much more work to build up and feel less satisfactory initially.

The typical way of writing a set is by listing its elements between braces.
For example, the set containing only the two elements 1 and 5 is denoted
{1, 5}. The elements of a set can be more complicated than just numbers.
For instance, {♣, π,

√
−2, {5, {5}}} is a set, albeit one that isn’t likely to

be useful in very many contexts. Note that this set contains four elements:
these elements are named ♣, π,

√
−2, and {5, {5}}. Sometimes sets may

contain too many elements to list out conveniently, so we can use an ellipsis
(i.e. the symbol “. . .”) to represent “and so forth.” For example, we may
write {1, 2, 3, . . . , 100} to mean the set consisting of the numbers from 1 to
100. We also allow sets to contain infinitely many elements, in which case
listing them all is out of the question. In this case, we are forced to use an
ellipsis or some other method to describe all the elements in our set.

The elements in a set are not ordered and cannot appear more than once.
Thus, for instance, {1, 1} and {1} are the same set, because they contain
exactly the same elements. Similarly, {1, 2} and {2, 1} are the same.

There is also one very special set. This is the empty set , which we
denote by ∅. This is the set containing no elements at all.

Many of the sets we consider in this book are sets of numbers. There
are various special sets that are of particular importance to us. Here are

3



4 Transition to Proofs

some key ones:

• N is the set of natural numbers. This is the set

N = {1, 2, 3, . . .}.

• Z is the set of integers. This is the set

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

The reason for the letter “Z” is that it is the first letter of the
German word Zahlen, which means “number.”
• Q is the set of rational numbers. This is the set consisting of

all fractions, such as − 7
3 . It includes all the integers, because an

integer such as 7 can be written as 7
1 . The “Q” stands for “quotient.”

• R is the set of real numbers. This includes numbers such as π,
which are not in Q. Giving a precise definition of the real numbers
is an involved process and will be discussed in Part 3 of this book.
• C is the set of complex numbers. These are all numbers of the form
a + bi, where a and b are real numbers, and i is a square root of
−1.

If we have a set S with an element s, we write s ∈ S, and we read
this as “s is an element of S,” or more simply as “s is in S.” For instance,
1 ∈ {1, 5}, and 1 ∈ Z. When s is not an element of S, we write s ̸∈ S. For
instance, 1

2 ̸∈ Z.
Now that we have element notation, we can use it to describe more sets

easily. To do this, we put a description of the set in the braces. To do this,
we write the type of elements, followed by a colon, followed by the rules
they must satisfy. The general setup of a set written in this notation is

S = {variable(s) : condition(s)},

and we write this as “the set of (variables) such that (conditions).” For
example, if we wish to consider the set of even numbers, we can write

S = {n ∈ Z : n is even} = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .},

and we read this as “S is the set of integers n such that n is even,” where
the colon gets translated into “such that.” Similarly, we can write the set
of perfect squares as

S = {n2 : n ∈ Z} = {0, 1, 4, 9, 16, . . .}.

Suppose we have a set S, which contains several elements. We can form
a new set out of some of the elements of S. We call such a set a subset .
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In terms of element notation, saying that T is a subset of S is the same
as saying that whenever t ∈ T , then t ∈ S. When T is a subset of S, we
write T ⊆ S. (Another common notation is T ⊂ S.) Note that there are
two extreme cases of subsets. First, for any set S, we have ∅ ⊆ S. This is
because every element of the empty set (all zero of them!) is an element of
S. At the other extreme, for any set S, we have S ⊆ S. When T is not a
subset of S, we write T 6⊆ S. When T is a subset of S and we specifically
want to highlight that T is not all of S, we write T ( S.

Among the special sets we have highlighted, we have:

∅ ( N ( Z ( Q ( R ( C.

−1.2 Set operations

Given two or more sets, we can form several new sets out of them via
various different operations. The first of these operations is the union.
Given two sets S and T , we can form a new set S ∪ T , which consists of
all the elements of S and all the elements of T . A set never contains the
same element twice, so if we have an element that is in both S and T , it
still only appears once in S ∪T . For instance, if S = {1, 2} and T = {1, 4},
then S ∪ T = {1, 2, 4}. This is illustrated pictorially by a Venn diagram,
as shown in Figure −1.1. We can also apply the union construction to
more than two sets—even infinitely many of them. In that case, the union
consists of all the elements that are in at least one of the sets. For example,
we might have a set Sn for each n ∈ N, perhaps Sn = {n2, n3}. The union
of all of these sets is

S1 ∪ S2 ∪ S3 ∪ · · · = {1, 1, 4, 8, 9, 27, . . .} = {1, 4, 8, 9, 16, 25, 27, . . .},

and it consists of all the positive integers that are perfect squares or perfect
cubes (or both). Another way to write this is using an indexed large union
symbol:

∞⋃
n=1

Sn.

This is the union version of the Σ notation that we will see in Chapter 2.
The next set operation is the intersection. Given two sets S and T , we

can form a new set S ∩ T , which consists of all the elements that are in
both S and T . If S = {1, 2} and T = {1, 4}, then S ∩ T = {1}. Just like
with the union, we can take the intersection of more than two sets: this
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B \AA \B A ∩B

BA

Figure −1.1. A Venn diagram showing how to form new sets from old
ones. The set A ∪B consists of the stuff inside at least one of the circles.

intersection consists of all the elements that are in all the sets. We can use
a large intersection symbol to describe the intersection of many sets:

∞⋂
n=1

Sn,

for instance.
Next up is the set difference: we write S \ T for the set of elements

that are in S but not in T . Another common notation is S − T . We also
have the symmetric difference S4T , which consists of all the elements that
are in exactly one of S and T . Alternatively, we can write the symmetric
difference as the union of two set differences:

S4T = (S \ T ) ∪ (T \ S).

Next up is the complement : the complement Sc of S consists of all
elements that are not in S. This is a little misleading, because we must first
specify our underlying universe of all the elements under consideration. For
example, if S is the set of even positive integers, what exactly do we want to
consider to be in Sc? A tree, for instance, is not an even positive integer, so
should it be an element of Sc? Perhaps under some circumstances, but not
others. Thus, when talking about the complement of a set, it is important
to consider it as a subset of a universal set. If we consider S to be a subset
of the universal set U , then Sc = U \ S. In the case of the set S of even
positive integers, if we’re considering the universal set to be Z, for instance,
then

Sc = {. . . ,−4,−3,−2,−1, 0, 1, 3, 5, 7, 9, . . .},
i.e. all the nonpositive integers together with the positive odd integers.
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−1.3 Products of sets

Another way we can form a new set out of two sets S and T is to
construct the set consisting of all ordered pairs (s, t), where s ∈ S and
t ∈ T . We call this new set the product (or Cartesian product , or direct
product) of S and T , and we denote it by S × T .
Example. Let S = {a, b, c} and T = {x, y}. Then

S × T = {(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)}.

We may also take the product of more than two sets. If we have three
sets S, T , and U , then S× (T ×U) and (S×T )×U are not quite the same,
because a typical element of S× (T ×U) has the form (s, (t, u)), whereas a
typical element of (S × T ) × U has the form ((s, t), u), so the parentheses
are in different places. However, this is the only difference, and if we drop
the inner parentheses and instead write (s, t, u), then the two sets would be
the same. We write S × T × U for the set of all such ordered triples. Of
course, we can apply the same construction to the product of more than
two sets, even infinitely many of them. To take a product of many sets, we
use a Π. For instance, we write

∞∏
n=1

Sn

for a product of the sets Sn.
A special case is the product of a set with itself, possibly multiple times.

We write Sn for the n-fold product of S with itself, so that for instance

S2 = S × S, S3 = S × S × S, S4 = S × S × S × S,

and so forth. Other important special cases are S1, which formally speaking
ought to be the set consisting of all ordered 1-tuples of elements of S, so
that a typical element of S1 would be (s). However, in this instance, we
typically remove the parentheses and think of s as being a typical element
of S1. In this way, S1 = S. Similarly, S0 is formally equal to {()}, the set
with one element, which is denoted (). However, we usually just think of S0

as a set with one element without too much concern for what the element
is named.

−1.4 Functions

Let S and T be two sets. A function from S to T is a way of assigning
an element of T to each element of S. A function could be defined by a
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convenient formula, such as the function f : Z→ Z given by f(n) = n2 + 2,
so that we have (for instance) f(3) = 11 and f(−5) = 27. But a function
can also be something much more random-looking. For instance, suppose
that S = {a, b, c, d} and T = {v, w, x, y, z}. Then one example of a function
is the function f defined by

f(a) = x, f(b) = v, f(c) = x, f(d) = y.

We can picture this function graphically by drawing an arrow from s to
f(s) for each s ∈ S, as in Figure −1.2.

a

b

c

d

v

w

x

y

z

Figure −1.2. A graphical representation of a function.

The data of a function f : S → T consist of three parts. The first part is
the set S, known as the domain of the function. The second part is the set
T , known as the codomain. The third part is the rule f that tells us what
f(s) is for each s ∈ S. Changing any one of these three parts changes the
function. So, for instance, the functions f : Z→ Z defined by f(n) = n2+2

and g : Z→ N defined by g(n) = n2+2 are different functions, even though
for each n ∈ Z, we have f(n) = g(n). This is because the codomains are
different.

Remark −1.1. We can also define functions in terms of products of sets.
A function from S to T is a subset F ⊆ S × T such that for each s ∈ S,
there is exactly one element (s, t) ∈ F . The connection with the previous
definition is that t = f(s).
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Another key set associated to a function f : S → T is the image, or
range.

Definition −1.2. Let S and T be two sets, and let f : S → T be a function.
The image (or range) of f is im(f) = {t ∈ T : t = f(s) for some s ∈ S}.

In the function f shown in Figure −1.2, im(f) = {v, x, y}.

Definition −1.3. Let S and T be two sets, and let f : S → T be a
function.

• We say that f is surjective or onto if, for every t ∈ T , there is some
s ∈ S such that f(s) = t.
• We say that f is injective or one-to-one if, whenever s 6= s′, we

have f(s) 6= f(s′).
• We say that f is bijective if it is both injective and surjective.

See Figure −1.3 for pictures of surjective and injective functions.

a

b

c

x

y

a

b

x

y

z

Figure −1.3. Left: a surjective function. Right: an injective function.

If S, T , and U are sets, and f : S → T and g : T → U are functions,
then we can combine them into a single function from S to U .

Definition −1.4. Let S, T , and U be sets, and let f : S → T and
g : T → U be functions. Then there is a function g ◦ f : S → U , defined by
(g ◦ f)(s) = g(f(s)) for all s ∈ S. We call g ◦ f the composition of g and f .

Remark −1.5. Note that g ◦ f means that we apply f first, then g second,
and not the other way around!
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Chapter 0

Logic

0.1 Statements

Logic is about the analysis of statements. A statement in mathematics
is a mathematical expression or sentence that is either definitely true or
definitely false. Here are some examples of true statements:

• 8 is a positive integer.
• All positive integers are real numbers.
• If a and b are the legs of a right triangle and the hypotenuse is c,
then a2 + b2 = c2.
• There exist positive integers x and y such that x2 − 5y2 = 1.

And here are some examples of false statements:

• 1 + 2 = 6.
• If n is a positive integer, then n+ 100 < n2.
• All quadrilaterals are squares.
• Some squares are triangles.

Note that some of the false statements are true for certain inputs. For
example, there are positive integers n such that n + 100 < n2; n = 11 is
an example of this. But it isn’t true for all values of n, which is what the
statement claims.

More subtly, there are also statements for which neither I—nor anyone
else—knows whether they are true or false. Nonetheless, they are either
definitely true or definitely false; our lack of knowledge does not change
the fact that they have definitive truth values. Here are some examples of
statements with unknown truth values:

• πππ
ππ

is an integer.

11
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• There are infinitely many prime numbers p such that p+ 2 is also
prime.1

• It is possible to color every point in the plane with one of five colors
in such a way that, whenever x and y are two points at a distance
of 1 from each other, x and y have different colors.2

• 3003 occurs more times than any other number besides 1 in Pascal’s
triangle.3

Determining, with proof, whether these statements are true or false would
be extremely interesting—and probably very challenging.

Finally, there are expressions that are not statements at all, because
they do not have definitive truth values. Here are a few examples of non-
statements:

• x > 0.
• x+ y = z.
• p is a prime.

These are not statements, because they are sometimes true and sometimes
false: their truth value depends on the value of some variable. For example,
in the non-statement x > 0, this is true if x = 2, for instance, but not if
x = −3. Since it is sometimes true and sometimes false, it does not have a
definitive truth value.

0.2 Logical operations

There are various operations we can perform on statements to make
new statements. For example, if P and Q are statements, we can form a
new statement P ∧ Q, where ∧ is read as “and.” For instance, if P is the
statement “8 is a positive integer,” and Q is the statement “All positive
integers are real numbers,” then P ∧ Q is the statement “8 is a positive
integer, and all positive integers are real numbers.” In order for P ∧ Q to
be true, both P and Q must be true; if at least one of them is false, then
P ∧Q is a false statement.

Similarly, we have “or” statements. If P and Q are statements, their
“or” is P ∨ Q. With the statements P and Q as above, P ∨ Q is the
statement “8 is a positive integer, or all positive integers are real numbers.”

1This is a famous problem known as the Twin Prime Conjecture.
2This is part of the Hadwiger–Nelson problem.
3This is a version of Singmaster’s Conjecture.
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In mathematics, “or” is always inclusive, unless explicitly stated to the
contrary. Thus P ∨ Q is true if at least one of P and Q is true, and it’s
only false when both P and Q are false.

The next sorts of statements we will consider are “not” statements. We
write ¬P for the statement “Not P .” With P as above, ¬P is the statement
“It is not the case that 8 is a positive integer,” or, in less stilted language,
“8 is not a positive integer.” The statement ¬P is true exactly when P is
false.

0.3 Truth tables

It is often helpful to make tables of truth values of various templates of
statements, based on the truth values of their inputs. Let’s see an example
in the case of ∧. Recall that P ∧Q is true exactly when both P and Q are
true. We can represent this with the following truth table:

P Q P ∧Q
T T T

T F F

F T F

F F F

Here, T stands for “true,” and F stands for “false.”
Here are the truth tables for ∨ and ¬:

P Q P ∨Q
T T T

T F T

F T T

F F F

P ¬P
T F

F T

We can also make truth tables for more complicated statements. These
might combine several of ∨, ∧, and ¬, and perhaps more than two different
statements. Often, it is helpful to break down the final truth value by listing
out various intermediate results. Here is an example, illustrating the truth
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table of P ∧ (Q ∨ ¬R):

P Q R ¬R Q ∨ ¬R P ∧ (Q ∨ ¬R)

T T T F T T

T T F T T T

T F T F F F

T F F T T T

F T T F T F

F T F T T F

F F T F F F

F F F T T F

Truth tables can help us detect that certain templates of statements are
equivalent to certain other ones. For example, one of De Morgan’s Laws
says that ¬(P ∨ Q) and (¬P ) ∧ (¬Q) are equivalent, in the sense that if
we fix the truth values of P and Q, then the truth values of ¬(P ∨Q) and
(¬P )∧ (¬Q) are always the same. To check this, we can just write out the
truth tables for both of these expressions:

P Q P ∨Q ¬(P ∨Q)

T T T F

T F T F

F T T F

F F F T

P Q ¬P ¬Q (¬P ) ∧ (¬Q)

T T F F F

T F F T F

F T T F F

F F T T T

Indeed, we see that both ¬(P ∨ Q) and (¬P ) ∧ (¬Q) are true exactly
when both P and Q are false.

0.4 Conditional statements

There is another logical operation we can perform to create a new state-
ment out of two other statements. This is a statement of the form “If P
then Q.” We call P the hypothesis and Q the conclusion, and the entire
statement is called a conditional statement. A typical example is the follow-
ing: If an integer n is divisible by 4, then n is divisible by 2. The hypothesis
is that n is divisible by 4, and the conclusion is that n is divisible by 2.
Symbolically, we write P ⇒ Q for the statement “If P then Q.”

Sometimes, a conditional statement won’t be explicitly written in if–
then form. An example of a conditional statement that isn’t written in
if–then form is the statement “All perfect squares are nonnegative.” This
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statement has exactly the same meaning as the statement “If n is a perfect
square, then n ≥ 0,” which is in if–then form.

One way to think about if–then statements is that the statement “If P
then Q” is a guarantee that if P is true, then Q is automatically also true.
Using this interpretation, we can write out a truth table for implications.

P Q P ⇒ Q

T T T

T F F

F T T

F F T

Notice that the statement P ⇒ Q is true when P is false! This is
because nothing has broken in our guarantee if the hypothesis is false: the
only way to break our guarantee is if P is true but Q is false, and we see
that reflected in the truth table.

We can immediately see from the truth table that there is a type of
statement not involving the⇒ symbol that is equivalent to the statement “If
P then Q.” This is the statement ¬P ∨Q. That is, P ⇒ Q is true if at least
one of ¬P and Q is true. This shows that we never really need implications,
since we can always replace them with statements involving negations and
ors. Nonetheless, implications are extremely common, as they are very
often the most convenient way to express statements in mathematics.

One other very important type of conditional statement is one of the
form “If not Q then not P .” To see why this is important, let’s look at its
truth table.

P Q ¬Q ¬P ¬Q⇒ ¬P
T T F F T

T F T F F

F T F T T

F F T T T

Thus we find that the truth table for “If P then Q” is exactly the same
as the truth table for “If not Q then not P .” In other words, these two
statements are always equivalent. The statement “If not Q then not P ” is
called the contrapositive of the statement “If P then Q.”

Frequently, conditional statements have free variables in them, such as
the n in our first example: If an integer n is divisible by 4, then n is divisible
by 2. For any particular integer n, we get a statement about that particular
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number. For example, n could be 20, in which case the statement reads
“If 20 is divisible by 4, then 20 is divisible by 2,” which is clearly true.
If, on the other hand, n were equal to 9, then the statement would read
“If 9 is divisible by 4, then 9 is divisible by 2.” This is also true, since
the hypothesis is false! When we have a conditional statement that has a
free variable—or perhaps multiple free variables—in it, then we say that the
statement is true if it holds for all values of the free variable. This is the
case in that example: if n is any integer that is divisible by 4, then n is
divisible by 2.

There are other examples where the implication sometimes holds but
sometimes doesn’t hold. For instance, consider the statement “All integers
are perfect squares,” which can be turned into if–then form as “If n is an
integer, then n is a perfect square.” There are values of n for which this is
true, such as n = 16. But there are other values of n for which it is false,
such as −2. Since the implication does not always hold, the conditional
statement is false.

One important special case of a conditional statement is one in which
the hypothesis is always false. For example, consider the statement “If n is a
negative perfect square, then n ≥ 10.” This seems at first glance as though
it might be false: if we have a negative perfect square n, then n < 0, so
it should not be the case that n ≥ 10. However, this statement is actually
true because the hypothesis is always false: there are no negative perfect
squares. It is very important to remember that statements in which the
hypothesis can never be satisfied are always automatically true. We call
such statements vacuous statements, and we say that they are vacuously
true.
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Chapter 1

Proof by contradiction

1.1 What is a proof?

Among the aspects and objectives that set mathematics apart from
other fields of study is our insistence on proving things. It is not enough
for us to believe or suspect that something might be true. Rather, we have
to be completely certain that it is true, and to enable others to become
equally certain by means of our arguments and explanations. We do this
by means of proofs: in order to prove that some statement is true, we give
a logically sound argument leading to that conclusion.

The statements we wish to prove are usually called theorems, although
there are other terms such as corollary , lemma, and proposition that can
serve in place of theorem. There is no clear rule about when to call some-
thing a theorem versus a proposition, and so forth, but a rough guide is
this:

• A theorem is an important result. Of course, whether something is
important may depend on your perspective or standards.
• A corollary is a result that follows easily from a more difficult or
general result.
• A lemma is an intermediate result proven on the way to proving a
larger theorem.
• A proposition is a less significant version of a theorem.

In contrast with theorems and their friends, we also have definitions.
Definitions are not statements we prove; rather they introduce new termi-
nology in order to make communication easier. For instance:

Definition 1.1. A nonnegative integer n is said to be a triangular number
if n = k(k+1)

2 for some integer k.

19
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There isn’t anything we have to verify here—it’s just naming something.
In theory, we could do without definitions; but then we would need to
rewrite the entire rest of the definition every time we wished to talk about
triangular numbers. That would be inefficient and hard to understand.

Typically, the sorts of theorems (and so on) we wish to prove have the
following form: they start with a hypothesis and end with a conclusion.
Often, they will be expressed in the form “if P then Q,” where P is some
condition and Q is some other condition. For example, we can express the
celebrated Fermat’s Last Theorem in this form:

Theorem 1.2 (Fermat’s Last Theorem). If n is a positive integer greater
than 2, and x, y, and z are positive integers, then xn + yn 6= zn.

Sometimes theorems (and so forth) are not written in exactly the “If P
then Q” form, but they can generally be converted to this form, so as to
have the same content. Let’s look at an example:

Proposition 1.3. The sum of two even numbers is even.

This isn’t written in the form “if P then Q,” but we can rewrite the
statement to put it into this form:

Proposition 1.4 (Restatement of Proposition 1.3). If x and y are even
numbers, then x+ y is even.

Proposition 1.4 carries precisely the same content as Proposition 1.3,
but now it is written in a form with a hypothesis and a conclusion.

Now, let’s give a proof. We’ll actually give two versions of the same
proof: first a somewhat chatty version, and then a more concise one.

Proof 1. Recall that an even number , by definition, is a number that is two
times an integer. If x and y are even, then by definition this means that
there exist integers a and b such that x = 2a and y = 2b. We need to show
that their sum x+ y can be written as x+ y = 2c, where c is some integer.
To do this, we simply produce a suitable c: we have

x+ y = 2a+ 2b = 2(a+ b),

so we let c = a+ b. We have written x+ y as two times an integer, so that
means x+ y is even. �

Proof 2. If x and y are even, then there exist integers a and b such that
x = 2a and y = 2b. Let c = a + b. Then x + y = 2a + 2b = 2(a + b) = 2c,
so x+ y is even. �
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This is a proof because it is completely general: we have explained
that any numbers satisfying the hypothesis (the “if” part) also satisfy the
conclusion (the “then” part). It would not be a proof to give one example,
or even several examples, satisfying the hypothesis. After all, we can do
that even for false statements. Imagine, for instance, wondering if three
times an integer is always even. One can give many examples where this
is true: 3 × 2 = 6, which is even, 3 × 8 = 24, which is even, 3 × 18 = 54,
which is even, and so forth. Giving a proof means dealing with all possible
examples, rather than picking and choosing some.1

While Proposition 1.3 is obvious, note that we treat it with respect:
all theorems, propositions, and so forth, need to be proven. Use the proof
above as a model for how to write your own proofs of theorems and propo-
sitions. Since Proposition 1.3 is a proposition about even numbers, we need
to use the definition of even numbers, both in our hypothesis (x and y are
even numbers) and in our conclusion (x+ y is even).

Also, note that we ended our proof with a �. This is a common thing to
do: it signifies to the reader that the proof is finished. Some people prefer
to use a hollow square: �. Either one is fine. It is also possible to end
a proof by writing “QED,” an abbreviation of the Latin phrase quod erat
demonstrandum, meaning “which was to be demonstrated.” Other popular,
but less formal, endings include “and we’re done” and similar phrases. How
you choose to end a proof, within reason, is a matter of personal preference.

1.2 Direct proofs

The most basic type of proof is the direct proof . Let us suppose we have
a statement of the form “if P then Q” that we would like to prove. One
way of doing this is to start by assuming P , then performing a sequence
of logical deductions such that each statement follows from previous state-
ments, and eventually arriving at the conclusion Q. Assuming that all the
logical deductions are valid, this is a proof.

Let’s see a simple example of how a direct proof goes.

Proposition 1.5. If x is an odd number, then x2 is also an odd number.

To give a direct proof, we first assume that x is an odd number, then

1It would be remiss of me not to mention that, on occasion, it is actually possible to give
a general proof by means of one or a small number of examples. See for instance [PWZ96]
and [Mat19]. However, this should only be done in special cases, and only when you are
absolutely certain that you know when this approach is valid.
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follow some logical steps, then finally arrive at the conclusion that x2 is an
odd number. Let’s see how this might be written.

Proof. Suppose that x is an odd number. This means that there exists an
integer n such that x = 2n+ 1. Then

x2 = (2n+ 1)2 = 4n2 + 4n+ 1.

Letting m = 2n2 + 2n, we have

x2 = 4n2 + 4n+ 1 = 2(2n2 + 2n) + 1 = 2m+ 1.

Thus x2 is an odd number. �

Once again, we started by assuming the hypothesis (x is odd), did a
bunch of logical steps, reached the conclusion (x2 is odd), and then stopped.
That is the standard structure of a direct proof.

1.3 Proof by contradiction

A more subtle way of proving theorems is called proof by contradiction,
which also goes by other names such as reductio ad absurdum (reduction to
the absurd). When using this technique, we assume that the statement we
wish to prove is false and then show that something terrible happens. The
general form this takes is to assume we have found a counterexample, then
to perform some logical steps from there, and then to show that we violate
the hypothesis. That is, given a statement of the form “if P then Q,” we
actually end up proving “if not Q, then not P .” The two statements

If P then Q

and

If not Q then not P

are logically equivalent, as we discussed in §0.4. That is, regardless of what
P and Q are, if one of those two statements is true, then so is the other
one. Similarly, if one of them is false, then so is the other one. So, if we
wish to prove “if P then Q,” it is just as good to prove “if not Q then not
P .”

Definition 1.6. The contrapositive of the statement “if P then Q” is the
statement “if not Q then not P .”
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Why is the contrapositive always equivalent to the original statement?
We can see this with just a bit of thought. Suppose the original statement
“if P then Q” is true. Then what happens if Q is false? Well, if P is
true, then we know that Q must also be true from the original statement.
Thus if Q is false, then P must also be false. Thus we see that the original
statement “if P then Q” implies the contrapositive “if not Q then not P .”
But the contrapositive of the contrapositive is the original statement, so by
exactly the same reasoning, the statement “if not Q then not P ” implies
the statement “if P then Q.” Thus the two are equivalent.

But there’s another, perhaps easier, way of seeing that a statement and
its contrapositive must always be equivalent: they have the same truth ta-
bles! This is easier to see exactly because it doesn’t require any thinking :
it follows effortlessly from the formalism of truth tables. I generally prefer
not to think about things that don’t require thinking. Thinking is a great
tool when it is necessary, but thinking is the last resort . Don’t start think-
ing until you’ve first done all the things that don’t require thinking. It’s
amazing how often a problem will solve itself in this way, before you ever
reach the thinking stage.

In the case of Proposition 1.4 above, we can write down the contrapos-
itive as follows:

Proposition 1.7 (Equivalent form of Propositions 1.3 and 1.4). If x + y

is not even, then it is not true that both x and y are even numbers.

The phrasing here is a little awkward, because this is just a straight
translation of Proposition 1.4. We can rephrase it to make it sound more
natural. For example:

Proposition 1.8. If x+ y is not even, then either x or y is not even.

Several remarks are in order here:

Remark 1.9.

• Whenever we use the word “or” in mathematics, unless explicitly
stated otherwise, we mean “inclusive or.” For instance, when we
say that either x or y is not even, then it might be the case that
neither x nor y is even; that still counts. If we had meant to exclude
this possibility, we would have made sure to say so, e.g. “either x
is not even, or y is not even, but not both.”
• You might wonder why we insist on saying “not even” rather than
“odd.” The reason is that we haven’t stated anywhere that x and
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y are supposed to be integers. If they are, then “not even” is the
same as “odd.” But what if x is some other sort of number, like
1
2? This number is neither even nor odd, so “not even” is more
general than “odd.” Thus, the context determines how exactly we
may negate a statement, or indeed do anything with it: is some
variable supposed to be an integer? A real number? Something
else? In this case, it is reasonable to believe that we are making
the tacit assumption that x and y are integers, in which case we
could freely replace “not even” with “odd.” Ideally, the author will
make it clear where each variable lives, either by explicitly saying
so or by making it clear from context.

Now, let’s return to the topic of doing proofs by contradiction. As
mentioned above, we wish to prove a statement of the form “if P then Q”
by instead proving “if not Q, then not P .” Thus, we start by assuming that
Q is false, then we perform some logical steps from there, and we end up
showing that P is also false. Then we’re done.

Often it’s not so easy to reach the conclusion “not P ” directly, so it is
easier to start by assuming both P and not Q together, and then showing
that universe has to explode: for example, maybe by assuming both of
these, one can conclude that 1 = 0 or some other catastrophe.

Okay, let’s have a look at a simple example of proofs by contradiction.

Proposition 1.10. If 7x− 3 is even, then x is odd.

We could prove this using a direct proof, but let’s see how to do it by
contradiction for pedagogical purposes. For the purpose of this proposition,
let us assume that x is required to be an integer, so “not odd” is the same
as “even,” and “not even” is the same as “odd.”

Proof. Suppose, on the contrary, that x is even. We will show that 7x− 3

is odd, which will complete the proof of the contrapositive. Since x is even,
there exists an integer n such that x = 2n. Then

7x− 3 = 7(2n)− 3 = 2(7n− 2) + 1.

Letting m = 7n− 2, we have

7x− 3 = 2m+ 1,

so 7x− 3 is odd, as desired. �
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1.4 Irrationality of
√
2

Let us now see how to use proof by contradiction in one of the most
famous and celebrated proofs in all of mathematics. In order to state the
theorem, we need a preliminary definition:

Definition 1.11. A number x is said to be rational if there exist integers
a and b, with b 6= 0, such that x = a

b . A number that is not rational is said
to be irrational .

For example, 2
5 is a rational number, because we can let a = 2 and

b = 5. There are also other choices for a and b, like a = 8 and b = 20, but
one choice of a and b suffices.

It is not instantly obvious whether irrational numbers exist at all: might
every number be rational? This turns out not to be the case, and there are
irrational numbers, in fact lots and lots and lots of them. But it always
requires some work to prove that a number is irrational. The first example
that anyone came up with, and proved, is

√
2.

Theorem 1.12.
√

2 is irrational.

First, note that this theorem isn’t stated as an “if P then Q” statement.
We can fix this, using the definition of rational (and irrational) numbers: If
a and b are integers with b 6= 0, then a

b 6=
√

2. That is what we will prove,
by means of a contradiction.

Proof. Let us suppose, seeking a contradiction, that
√

2 is rational, with
√

2 =
a

b
, (1.1)

chosen in such a way that b is positive and as small as possible. Note that
a > b, since

√
2 > 1. We may rewrite (1.1) as 2 = a2

b2 , or

2b2 = a2. (1.2)

Now, the left side of (1.2) is an even number, and since the two sides are
equal, the right side must also be an even number. So, is a even or odd? If
we square an odd number, we get another odd number, so a must be even.

Now, since a is even, we may write a = 2c for some integer c. Substi-
tuting a = 2c into (1.2), we get

2b2 = (2c)2 = 4c2.

We may divide by 2 to get

b2 = 2c2.
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Thus 2 = b2

c2 , or
√

2 = b
c , and b > c > 0. But this means that we have writ-

ten
√

2 as a rational number whose denominator is smaller than b, contrary
to our assumption that b is as small as possible. This is a contradiction,
so our initial assumption, that

√
2 is rational, must be false. Thus

√
2 is

irrational. �

Note that we ended up assuming that b is as small as possible, and then
showing that it isn’t. At the beginning of the proof, we might not have
anticipated that that was where the contradiction was going to show up.
When proving theorems, keep an open mind, and be flexible about where
you get a contradiction: it might be in a most unexpected place!

1.5 Quantifiers

Many mathematical statements can be expressed in terms of one of two
quantifiers: “there exists” and “for all.” In fancy terms, these are known as
existential and universal quantifiers, respectively. For example, our theo-
rem that says that

√
2 is irrational is expressible using a universal quantifier:

For all integers a and b with b 6= 0, ab 6=
√

2.

In general, we can consider statements of the form

For all x, P (x).

Here P (x) is some statement about x.
When proving theorems by contradiction, we have to negate statements,

so let’s discuss how to negate existential and universal quantifiers. Let’s
suppose we have a statement

There exists an x such that P (x)

with an existential quantifier. The negation of this statement is

There does not exist an x such that P (x).

This is equivalent to saying that for every x, it is not the case that P (x) is
true, or

For all x, not P (x).
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Similarly, we can negate a universal quantifier: the negation of

For all x, P (x)

is

There exists an x such that not P (x).

A more thorough discussion on negations of statements, including a
general grammar for negating arbitrary types of statements, can be found
in the Interlude at the end of this chapter, beginning on page 35.

There is a common shorthand for much of this stuff. It shouldn’t be
used in formal writing (i.e. don’t use it when writing up your proofs), but
it is convenient for taking notes or for developing a schematic picture of
what is going on, just for your own purposes. It is also used “officially” in
mathematical logic, where it has more precise meaning.

Here is a dictionary of shorthand symbols:

Symbol Meaning
∃ There exists
∀ For all
⇒ Implies
⇐⇒ If and only if 2

¬ Not
∨ Or
∧ And

The statement “P =⇒ Q” is the same as “if P then Q.” In the future,
we will sometimes say “P implies Q” rather than “if P then Q,” which we
have avoided doing so far. The statement “P ⇐⇒ Q” is the same as “if P
then Q, and if Q then P .”

When we say P iff Q (or P ⇐⇒ Q), that means P is true if and only if
Q is true. We can unpack that into two different statements: “P if Q” and
“P only if Q.” These are somewhat awkwardly phrased. The statement
“P if Q” can be translated to “if Q then P .” The statement “P only if Q”
requires more thought to unpack: it means that P is only true if Q is, i.e.
if Q is false, then P is false, or “not Q implies not P .” As we mentioned
above when introducing proof by contradiction, this is equivalent to “if P
then Q.”

2Or iff, which is a real word in mathematics and can be used in proofs. We pronounce
“iff” as “if and only if.”
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In shorthand, it is common to write things like

∃x : P (x),

which translates to “there exists an x such that P (x).” While it is tempt-
ing to write as much as possible with symbols and few or no words, this
temptation should be avoided at all costs. No one wants to read and parse
a block full of symbols with no explanations.

Finally, let’s talk a bit about proving statements with quantifiers. The
techniques used to prove statements of the form “for all x, P (x)” (or, in
shorthand, ∀x : P (x)) and “there exists an x such that Q(x)” (∃x : Q(x))
are rather different. In the first case, we have something to prove for every
x. It isn’t enough to check one value of x, or even many values of x. Recall
how we did this when showing that

√
2 is irrational: we had to show that

for every pair of integers a and b with b 6= 0, ab 6=
√

2. It wouldn’t be good
enough to check that, say, ab 6=

√
2 when a = 7 and b = 5.

By contrast, when proving an existential statement of the form “there
exists an x such that Q(x),” we’re done as soon as we have found such an
x. (Sometimes, we might not actually be able to find an x but only show
that one must exist, somewhere, but we might not know where.) It might
not be easy to find an x, but it can be done. For instance:

Proposition 1.13. There exist positive integers x and y such that x2 −
97y2 = 1.

Proof. Let x = 62809633 and y = 6377352. Then x2 − 97y2 = 1. �

That’s a complete proof, because we only had to show that there is at
least one solution to the equation and we did it. How one finds such a
solution to begin with is a different story, but we don’t have to explain
everything we tried when writing up a proof; a logically correct sequence of
statements that leads to the statement we’re trying to prove is sufficient.3

1.6 Tips on mathematical writing

Observe that all the proofs we’ve seen above are written in complete sen-
tences. All mathematical proofs should be written in complete sentences,

3The standard way of finding such solutions uses the theory of continued fractions. An
equation of the form x2 − dy2 = 1 is called a Pell equation, and Pell equations always
have solutions in positive integers as long as d isn’t a perfect square. The smallest
solution might be quite large though! See [Len08] for a survey about Pell equations, how
to solve them, and more.
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with a subject, predicate, and proper punctuation. Proofs are meant to be
read by people, and people like reading stuff that is well-written and aligned
with the usual rules of grammar. It is worth noting, though, that some-
times mathematical symbols are the subjects or predicates of sentences.
For example, here is an example of a complete sentence:

x = 3.

The subject of this sentence is “x,” and the verb is “=.” Here are some
things you should keep in mind in your mathematical writing:

• Always end your sentences with a period or some other sentence-
ending form of punctuation (like an exclamation mark). This
includes sentences that end with equations. For example: the fol-
lowing might be a sentence in a proof: It follows that

x2 + 4 = 9y3.

Note that, even though the sentence has a displayed equation at
the end, it still ends with a period. This is always a good idea,
unless it’s typographically problematical. In those cases, it’s often
worth reworking the sentence to end differently. For example, a
sentence could conceivably end with a diagram from a grammatical
standpoint, but this tends to be a bad idea from the perspective of
typography, so don’t do that if it is conveniently possible to avoid
doing so.
• Don’t be stupid with punctuation. For example, if you are doing
something with factorials, don’t end a sentence with an exclamation
mark after a number or mathematical symbol. This may necessi-
tate strange forms of punctuation at the end of a sentence, such
as: We have

120 = 5!.

The exclamation mark is a factorial, and the period ends the sen-
tence; they have completely different grammatical roles.
• Begin sentences with capital letters. It is best to avoid beginning
a sentence with a variable, because those are case-sensitive: for
instance x2 + 5x− 3 and X2 + 5x− 3 have different meanings. One
trick to get around the issue of starting sentences with variables or
equations is to use connecting words, like “thus,” “so,” “therefore,”
“it follows that,” and so on. If you want to begin with an equation,
you can often deal with this by inserting the words “The equation.”
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For instance, instead of writing

x2 + y2 = −1 has no real solutions.

you can write

The equation x2 + y2 = −1 has no real solutions.

It is conventional in mathematics to write in first-person plural, using
“we” and “us.” In mathematics, “we” is not used royally; rather, it stands
for “the reader and I.” The reader is part of the journey too. Using the
first-person plural helps us avoid writing in the passive voice (e.g. “it is
shown that”), which is frowned upon in mathematics.

1.7 Problems

(1) Which of the following statements are equivalent to which others?

(a) If P then Q.
(b) If Q then P .
(c) P only if Q.
(d) Q only if P .
(e) P if Q.

(f) Whenever P , Q.
(g) P implies Q.
(h) Not P implies not Q.
(i) Not Q implies not P .

(2) Give an example of statements P and Q, such that P implies Q, but
Q does not imply P . Given a statement “P implies Q,” we call the
statement “Q implies P ” the converse. Statements and their converses
are not the same!

(3) Given a statement “if P then Q,” the statement “if not P then not Q”
is called the inverse. Explain why the inverse and converse are always
equivalent: if one of them is true, then so is the other; and if one of
them is false, then so is the other.

(4) Suppose that P (x, y) is a statement about two numbers x and y. Are
the following necessarily equivalent: ∀x : ∃y : P (x, y) and ∃y : ∀x :

P (x, y)? Either prove they are equivalent for all statements P , or else
give an example of a statement P such that one of them is true and
the other is false. (Make sure you understand why this problem has
content! You cannot conclude that they are equivalent just because
they contain the same symbols, albeit in a different order!)
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(5) Prove the following statements:

(a) For all integers x, x2 + 5x is even.
(b) If x is odd, then x3 − 3x2 + 5x+ 7 is even.
(c) Suppose x is an integer. If x2 + 2x+ 3 is even, then x is odd.
(d) For all integers n, either n2 or n2 − 1 is a multiple of 4.

(6) Find, with proof, the largest integer n such that, for all integers x,
x(x+ 1)(x+ 2)(x+ 3) is a multiple of n.

(7) Mimic the proof of the irrationality of
√

2 to prove that
√

3 and 3
√

4 are
irrational. What goes wrong when you try to use the same argument
to prove that

√
9 is irrational?

(8) Prove that the sum of a rational number and an irrational number is
irrational. Prove that there exist two irrational numbers whose sum
is rational.

(9) Prove that the product of a nonzero rational number and an irrational
number is irrational. Prove that there exist two irrational numbers
whose product is rational.

(10) Prove that log2(3) is irrational. (In case you haven’t seen logarithms
yet, log2(3) is the number x such that 2x = 3.)

(11) Note that (
√

2
√
2
)
√
2 = 2. Explain how to use this fact to prove that

there exist two irrational numbers x and y such that xy is rational.
(12) Prove that there are no integers x and y such that x2 − 3y2 = 2.
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Interlude: Some sample proofs

This interlude is here to give you more examples of what proofs look
like, so that you can follow their style as you write your own proofs.

Proposition 1.14. There are no integers a and b such that 6a+15b = 191.

Proof. Suppose that a and b are integers such that 6a+ 15b = 191. Then,
dividing by three,

2a+ 5b =
6a+ 15b

3

is an integer, but 191
3 is not. This is a contradiction to the assertion that a

and b are integers such that 6a+ 15b = 191. �

Theorem 1.15. There exist integers a, b, and c such that a3+b3+c3 = 42.

Proof. Let a = −80538738812075974, b = 80435758145817515, and c =

12602123297335631. Then a3 + b3 + c3 = 42. �

Definition 1.16. Let n be a positive integer. A divisor of n is a positive
integer d such that n is a multiple of d. We write d(n) for the number of
divisors of n.

Example. The divisors of 14 are 1, 2, 7, and 14, so we have d(14) = 4.

Theorem 1.17. If n is a positive integer, then d(n) is odd if and only if
n is a perfect square.

Proof. Suppose that n = α2 where α is positive, but not necessarily an
integer. For any divisor d of n other than α, the number n

d is another
divisor of n, distinct from n, and n

d > α iff d < α. Thus the number of
divisors of n that are less than α is equal to the number of divisors of n

33
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greater than α, so the total number of divisors of n that are not equal to α
is even. If n is not a perfect square, then α is not an integer, so the total
number of divisors of n is even. On the other hand, if n is a perfect square,
then α is an integer, so the total number of divisors of n is odd. �

Theorem 1.18. If a, b, and c are odd positive integers, then there is no
rational number x such that ax2 + bx+ c = 0.

Proof. Suppose that x = p
q is a rational number, where p and q are integers

and q 6= 0. By reducing to lowest terms if necessary, we may assume that
p and q are not both even. If ax2 + bx + c = 0, then we may multiply by
q2 to get

ap2 + bpq + cq2 = 0. (1.3)

The right side of (1.3) is even, so the left side must be as well. If both p
and q are odd, then all three terms on the left side of (1.3) are odd, so the
sum is odd. If one of p and q is even and the other is odd, then exactly one
of the terms on the left side of (1.3) is odd, so again the sum is odd. Thus
there is no rational x such that ax2 + bx+ c = 0. �



Interlude: Negating statements

When we prove a statement of the form “if P then Q” by contradiction,
we need to prove the contrapositive “if not P then not Q.” That means
we need to know how to negate the statements P and Q. Of course, the
statements “not P ” and “not Q” are already themselves statements, but
they typically aren’t written in a form that is conducive to saying much
about them. Fortunately, there is a grammar of logic that allows us to
negate statements in symbolic form nearly automatically. When writing an
actual proof, one typically doesn’t use these symbols. But they are helpful
for scratchwork, especially when determining the negation of a statement.

A statement is typically built out of the following ingredients:

Symbol Meaning
∧ And
∨ Or
¬ Not
⇒ Implies
∀ For all
∃ There exists

Here is how we negate each one:

Statement Negation

P ∧Q (¬P ) ∨ (¬Q)

P ∨Q (¬P ) ∧ (¬Q)

¬(¬P ) P

P =⇒ Q P ∧ (¬Q)
∀x : P (x) ∃x : ¬P (x)

∃x : P (x) ∀x : ¬P (x)

35
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Let’s see how this grammar of negation applies to concrete examples.

Example. Consider the statement S, which is “The numbers x and y are
both even.” Let P be the statement “x is even,” and Q the statement “y
is even,” so that our original statement S is P ∧ Q (read “P and Q”). Its
negation is ¬(P ∧Q), which is the same as (¬P ) ∨ (¬Q). Now, ¬P is the
statement “x is not even,” and ¬Q is the statement “y is not even,” so the
full negation ¬S is “x is not even or y is not even.” From here, it is possible
to reword the negation if desired, perhaps as “At least one of x or y is not
even.” Remember as usual that “or” in mathematics is always inclusive
unless it is explicitly stated otherwise.

Example. Consider the statement S, which is “For all numbers x, there
exists a number y such that y > x and y is a perfect square.” Let P (x, y)

be the statement “y > x,” and let Q(x, y) be the statement “y is a perfect
square.” Notice that Q really only depends on y and not x, but we can still
write it as a statement about both of them. Symbolically, S is

∀x : ∃y : (P (x, y) ∧Q(x, y)).

Its negation is

¬∀x : ∃y : (P (x, y) ∧Q(x, y)).

We need to propagate the negation throughout the statement, from the
outside in. We begin by negating the outermost part, which is the ∀, so we
get

∃x : ¬∃y : (P (x, y) ∧Q(x, y)).

Next, we need to negate the second ∃, so we get

∃x : ∀y : ¬(P (x, y) ∧Q(x, y)).

Finally, we need to negate the ∧, so we get

∃x : ∀y : (¬P (x, y) ∨ ¬Q(x, y)).

We’ve now propagated the ¬ throughout the statement, so it’s time to
convert our symbolic statement back into an English statement. In literal
form it reads “There exists a number x such that for all numbers y, either
it is not true that y > x or it is not true that y is a perfect square.” This is
awkwardly stated, so we can rephrase it as “There exists a number x such
that for all numbers y, either y ≤ x or y is not a perfect square.” Better
still is “There exists a number x such that for all numbers y > x, y is not a
perfect square.” Or, even better: “There exists a number x such that there
are no perfect squares greater than x.” Of course, this negated statement
¬S is a false statement, but that’s okay: statements are allowed to be false.
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Induction

2.1 Inductive proofs

Suppose we wish to prove that a statement P (n) is true for all positive
integers n; that is, it is true when n = 1, 2, 3, and so on. We could try to
prove them all at once, but under some circumstances that might be hard.

Another possibility is to start by proving that P (n) is true when n = 1.
Then, using the fact that P is true when n = 1, show that P is true when
n = 2. After that, use the fact that P is true when n = 2 to prove that P
is true when n = 3, and so forth. Ideally, we’ll be able to do all these steps
at once. That is, we will be able to prove that the truth of P (n) implies
the truth of P (n + 1) for all n, simultaneously. That, together with the
truth of P (1), guarantees that P (n) is true for all positive integers n. This
technique is known as proof by induction, or simply induction.

Let’s see an example of induction in action.

Theorem 2.1. For all positive integers n, we have

1 + 2 + · · ·+ n =
n(n+ 1)

2
. (2.1)

Theorem 2.1 can be proven in many ways (for instance, by contemplat-
ing Figure 2.1), but one of those ways is by induction.

Proof of Theorem 2.1. We first prove the statement when n = 1. This is
easy: both sides are equal to 1, so the statement is true when n = 1.

Next, suppose that we know the result is true for n; we then prove the
statement for n+ 1. Since it’s true for n, we have

1 + 2 + · · ·+ n+ (n+ 1) = (1 + 2 + · · ·+ n) + (n+ 1) =
n(n+ 1)

2
+ n+ 1,

37
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Figure 2.1. A pictorial “proof” of Theorem 2.1. Each half of the
rectangle contains 1 + 2 + · · ·+ n squares, and the entire rectangle
contains n(n+ 1) squares.

where in the last equality we have made use of the result for n. Now, we
have

1 + 2 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ n+ 1

=
n2

2
+
n

2
+ n+ 1

=
n2

2
+

3n

2
+ 1

=
(n+ 1)(n+ 2)

2
,

which is what we get when we plug in n+ 1 into (2.1). This completes the
proof. �

Why does this finish the proof? Well, we think of Theorem 2.1 as
stating an infinite sequence of statements, one for each n. Giving a proof
means explaining why each one of them is true. So let’s take one of these
statements, say the one with n = 292:

1 + 2 + · · ·+ 292 =
292 · 293

2
.

In our proof, we started by showing that the one with n = 1 is true. Then
we used that to prove that the statement with n = 2 is true, then we used
that to show that the one with n = 3 is true, and so forth. Eventually, this
implies that the statement with n = 291 is true, and finally we use that to
prove that the one with n = 292 is true. We accomplished our goal. We
could do the same thing for any value of n.

2.2 The structure of an inductive proof

In a typical inductive proof, we want to prove a statement of the form

For all positive integers n, P (n) is true.
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In special cases, it might look a little bit different: it might only be true for
all n ≥ 5 for instance, or for n ≥ 0, or perhaps only for even n. But these
are only minor differences.

Let us suppose we have a standard statement, like the boxed one above.
An inductive proof consists of two parts. The first part is proving the base
case: we must show that P (1) is true. Often this is straightforward: just
checking that one number is equal to another, like in the proof of Theo-
rem 2.1. On occasion, however, proving the base case might be challenging.

The other part of the proof is the inductive step. In the inductive step,
we use the truth of the statement P (n) to prove P (n+ 1). This is what we
did in the proof of Theorem 2.1: we proved that if

1 + 2 + · · ·+ n =
n(n+ 1)

2
,

then

1 + 2 + · · ·+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2
.

But we already know that the statement is true for n thanks to the base
case and previous inductive steps, so the statement for n+ 1 must also be
true.

Note that the inductive proof didn’t allow us to notice that 1 + 2 +

· · · + n = n(n+1)
2 . We had to know that in advance, either from being

told, or by having guessed it by looking at a bunch of small cases, or by
recognizing it in some other way. This is characteristic of inductive proofs:
we can typically prove that a formula is always true once we know what
we’re looking for, but it is not possible to come up with the answer without
having a guess about what it is first. There are, of course, other methods
of proof that are better suited to coming up with the correct answer from
scratch.

Okay, let’s try another example, along the lines of Theorem 2.1.

Theorem 2.2. For any positive integer n, we have

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
. (2.2)

Proof. We begin by proving the base case, n = 1. When n = 1, the left side
of (2.2) is 1, and the right side is 1·2·3

6 = 1. Thus (2.2) holds when n = 1.
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Next, we do the inductive step. We assume that (2.2) holds for n, and
we prove it for n+ 1. That is, we assume that

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
,

and we must prove that

12 + 2+ · · ·+ n2 + (n+ 1)2 =
(n+ 1)(n+ 2)(2n+ 3)

6
.

We have

12 + 22 + · · ·+ n2 + (n+ 1)2 = (12 + 22 + · · ·+ n2) + (n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
n+ 1

6
· (n(2n+ 1) + 6(n+ 1))

=
n+ 1

6
· (2n2 + 7n+ 6)

=
(n+ 1)(n+ 2)(2n+ 3)

6
,

as desired. �

2.3 Sigma notation

It is often desirable to write expressions like 1 + 2 + · · ·+n without the
use of · · · . To this end, we introduce Σ notation. Given a function f(x)

and integers a ≤ b, we write
b∑
i=a

f(i)

to mean f(a) + f(a + 1) + f(a + 2) + · · · + f(b − 1) + f(b). Hence we
can rewrite 1 + 2 + · · · + n as

∑n
i=1 i. Note that the indexing variable,

in this case i, does not matter: we can just as easily write
∑n
j=1 j, which

means exactly the same thing. However, the indexing variable should not
appear elsewhere in the statement in some other context. If we made the
unfortunate choice of n as our index variable, we would end up with the
nonsense expression

∑n
n=1 n.

In this new notation, we can rewrite the statements of the theorems we
already proved: Theorem 2.1 now says that

n∑
i=1

i =
n(n+ 1)

2
,
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and Theorem 2.2 now says that
n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

This notation is actually more flexible. The subscript and superscript
tell us which terms to include in the sum, but they can do so in more “lit-
erary” ways than just giving us the upper and lower bounds. For instance,
we could rewrite the statement of Theorem 2.1 as∑

1≤i≤n

i =
n(n+ 1)

2
.

We can also imagine that we might have a function g(x, y) of two variables,
and we want to sum over those values of g(i, j) where i and j are both
between 1 and n. To do this, we write∑

1≤i,j≤n

g(i, j),

which can also be written as the iterated pair of sums

n∑
i=1

n∑
j=1

g(i, j) =

n∑
i=1

 n∑
j=1

g(i, j)

 .

If we also want to require that i < j, then we would write∑
1≤i<j≤n

g(i, j).

If, on top of that, we require that i be odd, we can include that as part of
our subscript: ∑

1≤i<j≤n
i odd

g(i, j).

As you can see, this notation wields great power and can be used to say all
sorts of things.

Sometimes we might wish to multiply the terms, instead of adding them.
To signify this, we replace the Σ with a Π. For instance, if we wish to
multiply the numbers from 1 to n, also known as n! and read “n factorial,”
we can write

n∏
i=1

i.

As you may have imagined, we call this Π notation.
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2.4 A word on formality

You might be wondering why we need the formal proof structure that we
have seen in our inductive proofs so far, that we will continue to require in
all future induction proofs. Sometimes, it seems that an inductive proof can
be explained perfectly satisfactorily with an argument that uses the phrase
“and so on” or “et cetera” at some key moment. Consider, for instance, the
following theorem, making use of our newly introduced Σ notation.

Theorem 2.3. For every positive integer n, we have

n∑
k=1

1

k(k + 1)
= 1− 1

n+ 1
.

Let’s start with an argument that captures the right idea, but isn’t
written using the best practices for inductive proofs.

A Bad Proof. First, note that for every positive integer k, we have 1
k(k+1) =

1
k −

1
k+1 . Thus for n = 1, the left side is

1− 1

2
,

so the two sides agree. Next, for n = 2, the left side is(
1− 1

2

)
+

(
1

2
− 1

3

)
= 1− 1

3
,

so again the two sides agree. Next, for n = 3, the left side is(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
= 1− 1

4
,

so the two sides agree. For larger values of n, the same argument applies.
�

Sure, some readers will be able to understand what is going on here,
but there is an issue that make this a bad proof. What exactly is “the
same argument”? The point is that there is a lot of cancellation when the
parentheses are removed, and only the first and last terms remain. So, here
is an improved, but still not great, proof. We’ll continue using the fact that

1
k(k+1) = 1

k −
1
k+1 in the next proof, as this is a key ingredient.
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A Better, But Still Imperfect, Proof. We have
n∑
k=1

1

k(k + 1)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

2
+

1

2
− 1

3
+ · · ·+ 1

n
− 1

n+ 1

= 1− 1

n+ 1
,

because all the other terms cancel out. �

In this case, it’s clear that indeed all the other terms do cancel out, so
in this particular instance, a reader should not have trouble understanding
what is going on. However, in more complicated examples, there may be
subtleties going on that might make it harder to detect problems with this
sort of argument. So, let’s now see how to write this argument in the best
possible way, using our standard template for an inductive proof.

A Good Proof. We begin with the base case n = 1. When n = 1, the left
side is 1

1·2 = 1
2 , and the right side is 1− 1

2 = 1
2 , so the two sides are equal.

Now, suppose that n is a positive integer, and the result is true for n.
We’ll show that it is true for n+ 1 as well. Using the result for n, we have

n+1∑
k=1

1

k(k + 1)
=

n∑
k=1

1

k(k + 1)
+

1

(n+ 1)(n+ 2)

= 1− 1

n+ 1
+

1

(n+ 1)(n+ 2)

= 1− 1

n+ 1

(
1− 1

n+ 2

)
= 1− 1

n+ 1
· n+ 1

n+ 2

= 1− 1

n+ 2
,

which is the result for n + 1. This completes the inductive step and thus
the proof. �

Now there can’t possibly be any guesswork left for the reader to do. All
steps have been explained completely and thoroughly. Note that the good
proof is longer in terms of the number of lines or characters, but this is
because it takes more space to explain everything well. The proofs that
take the fewest lines are not always the best proofs: sometimes they are
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artificially short because they are missing important steps or explanations.
Note also that the middle argument has certain merits that the final, cor-
rect, proof does not: it demonstrates the crucial point that the terms cancel
out in pairs. One may even reasonably argue that it is more insightful than
the correct proof. But it is nonetheless not as good as the final argument
as a formal proof. When you solve problems, try to notice things like the
argument highlighted in the middle proof, but then write them up like the
last one.

2.5 Recurrences

One place that induction is often useful is in finding closed formulae for
sequences defined by recurrences. Let’s try an example.

Example. Consider the sequence a0, a1, a2, . . . defined by a0 = 3 and an+1 =

(an − 1)2 + 1. The first few terms are

a0 = 3, a1 = 5, a2 = 17, a3 = 257, a4 = 65537,

and so forth. With a bit of insight, we might happen to notice that it
appears that an = 22

n

+ 1, also known as the nth Fermat number.
So far, this is just a guess, and we have no guarantee that an = 22

n

+ 1

for all n, only that this is true for the small cases we have checked. However,
we can prove this formula by induction. Let’s do it!

As usual, we start with the base case, which is n = 0. This amounts to
checking that a0, which is defined to be 3, is equal to 22

0

+ 1, which is also
3. Thus the base case holds.

Next, we perform the induction step. We assume that an = 22
n

+ 1,
and we prove that this implies that an+1 = 22

n+1

+ 1. We have

an+1 = (an − 1)2 + 1

= ((22
n

+ 1)− 1)2 + 1

= (22
n

)2 + 1

= 22·2
n

+ 1

= 22
n+1

+ 1.

This completes the inductive step and the proof of the formula.

A similar argument can be used to prove many other formulae for recur-
rences. See problem 6 for a closed form for the Fibonacci numbers, known
as Binet’s formula.
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2.6 Strong induction

In the examples we have seen so far, it is possible to prove a statement
P (n + 1) directly from P (n). Sometimes, however, just using P (n) isn’t
enough, and we need to know values further back. Perhaps we need to use
P (n−1) as well, or P (n−2), or perhaps even various P (m)’s, for unknown
values of m ≤ n.

We may prove theorems in this way using the technique of strong in-
duction. In strong induction, we prove a base case, say P (0), and then we
derive the truth of P (n+ 1) from knowing P (0), P (1), . . . , P (n). The setup
of a strong induction proof is similar to that of a normal induction proof:
we prove the base case P (0), and then we prove the inductive step, which
says that if P (0), P (1), . . . , P (n) are all true, then P (n+ 1) is true as well.
This implies that P (n) is true for all nonnegative integers n.

Let’s see an example of how this works.

Theorem 2.4. Every positive integer has a binary representation. That
is, if n is a positive integer, we may write n in the form

n = a0 · 20 + a1 · 21 + · · ·+ ak · 2k (2.3)

for some nonnegative integer k, where each ai is either 0 or 1.

Remark 2.5. Using Σ notation, we can rewrite equation (2.3) as

n =

k∑
i=0

ai · 2i.

Proof. We first prove the base case, which is the case of n = 1. We must
show that the number 1 has a binary representation. Indeed, it does: let
k = 0 and a0 = 1, so that the binary representation of 1 is 1 · 20.

Next, suppose that, for all m with 1 ≤ m < n, the number m has a
binary representation. We will show that n also has a binary representation.
To do this, we split the problem into two cases, depending on whether n is
even or odd.

Case 1: n is even. Since 1 ≤ n
2 < n and n

2 is a positive integer, we may
assume that n

2 has a binary representation, say

n

2
=

k∑
i=0

ai · 2i.
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Multiplying by 2, we get

n =

k∑
i=0

ai · 2i+1 =

k+1∑
i=1

ai−1 · 2i.

This is a binary representation for n.
Case 2: n is odd. We have already done the case n = 1, so we assume

that n ≥ 3. Thus n−1
2 is an integer, and 1 ≤ n−1

2 < n. Thus, by
induction, n−12 has a binary representation, say

n− 1

2
=

k∑
i=0

ai · 2i.

If we multiply by 2, we get

n− 1 =

k+1∑
i=1

ai−1 · 2i.

Now, adding 1 (or rather 1 · 20), we get

n = 1 · 20 +

k+1∑
i=1

ai−1 · 2i,

a binary representation for n. That was the last case, so this completes
the inductive step and the proof. �

2.7 Problems

(1) We will prove that all horses are the same color. To do this, we will
show that if we have any collection of n ≥ 1 horses, then all n of these
horses are the same color.
We begin with the base case, n = 1. If we have only one horse, then
all the horses clearly have the same color.
Next, we do the inductive step. Suppose that n horses are always the
same color. We will show that n+ 1 horses are always the same color.
Let us number the horses H1, . . . ,Hn+1. Since we are assuming that
any set of n horses are the same color, then H1, . . . ,Hn are the same
color. Similarly, H2, . . . ,Hn+1 are the same color. Now, any horse in
the middle is the same color as both H1 and Hn+1, so H1 and Hn+1

are the same color. Thus all n+ 1 horses are the same color.
What is the mistake in this argument?

(2) What is the sum of the first n odd numbers? Give a proof using
induction.
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(3) Prove that

13 + 23 + · · ·+ n3 =
n2(n+ 1)2

4
= (1 + 2 + · · ·+ n)2.

Then express this statement using Σ notation, without the · · · .
(4) Prove that for every nonnegative integer n, the number n5 − n is a

multiple of 5. What about for negative integers?
(5) Prove that if x > −1 and n is a nonnegative integer, then (1 + x)n ≥

1 + nx.
(6) Let Fn be the nth Fibonacci number, defined by F0 = 0, F1 = 1, and

Fn+2 = Fn + Fn+1 for n ≥ 0. Prove that

Fn =
1√
5

((
1 +
√

5

2

)n
−

(
1−
√

5

2

)n)
.

(7) Show that every positive integer n can be written in the form

n =

k∑
i=1

ai · i!,

where k is a positive integer, each ai is a nonnegative integer, and for
all i with 1 ≤ i ≤ k, we have 0 ≤ ai ≤ i.

(8) Prove that for all nonnegative integers n, a number consisting of 3n

equal digits is divisible by 3n.
(9) Prove that for every positive integer n, there exists an n-digit number

divisible by 5n whose digits are all odd.
(10) Prove that every positive integer n ≥ 1 can be expressed as a sum

of pairwise nonconsecutive Fibonacci numbers. That is, for every
positive integer n, there is some positive integer k ≥ 2 and numbers
a2, . . . , ak which are each either 0 or 1 such that

n =

k∑
i=2

aiFi,

and if ai = 1, then ai−1 and ai+1 must both be 0. This result is known
as Zeckendorf’s Theorem.

(11) The Ackermann function A(m,n) is a function of two nonnegative
integer variables, defined by

A(m,n) =


n+ 1 m = 0,

A(m− 1, 1) m > 0 and n = 0,

A(m− 1, A(m,n− 1)) m > 0 and n > 0.

Form = 0, 1, 2, 3, 4, find and prove a formula for A(m,n). What about
when m = 5?
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(12) A graph consists of a collection of vertices, drawn as dots, together
with edges, which connect pairs of vertices. (See Figure 2.2 for an
example.) For a graph G, let CG(n) denote the number of ways of
coloring each vertex of G using one of n colors, such that if v and w
are vertices connected by an edge, then they are colored differently.
The goal of this problem is to prove some facts about the function
CG(n).

a b

cd

e

a b

cd

e

a b

ced

Figure 2.2. Left: A graph G. Middle: The deletion G \ {c, e} of the edge
{c, e} between c and e. Right: The contraction G/{c, e} of the edge {c, e}
between c and e.

(a) Let e be an edge of a graph G. We define the deletion of e to be the
graph G\e, which is the same as G except with edge e deleted. We
also define the contraction of e to be the graph G/e, which is the
same as G except that the edge e is deleted and the two endpoints
of e are glued together. Prove that CG(n) = CG\e(n)− CG/e(n).
This is known as the deletion-contraction formula. This formula
will be helpful for the later parts of this problem.

(b) Prove that, for any graph G, CG(n) is a polynomial function of n.
(Hint: Use induction on the number of vertices plus the number
of edges of G.)

(c) Prove that the degree of the polynomial CG(n) is equal to the
number of vertices of G.

(d) Suppose that CG(n) =
∑k
i=0 ain

i. Prove that the signs of the
coefficients ai alternate: if k is the degree of CG(n), then ak > 0,
ak−1 ≤ 0, ak−2 ≥ 0, ak−3 ≤ 0, and so forth.



Interlude: More proofs by induction

In this interlude, we’ll give a few more examples of proof by induction.

Definition 2.6. The Fibonacci numbers are the numbers Fn defined by
F0 = 0, F1 = 1, and Fn+2 = Fn + Fn+1 for all n ≥ 0.

The first few Fibonacci numbers, starting from F0, are 0, 1, 1, 2, 3, 5,
8, 13, 21, 34.

Theorem 2.7. For every positive integer n, we have
∑n
i=1 F

2
i = FnFn+1.

Proof. We first prove the base case, n = 1. The left side is F 2
1 = 1, and the

right side is F1F2 = 1 · 1 = 1. Thus the base case holds.
Now we do the inductive step. Suppose that n is a positive integer, and

we have
∑n
i=1 F

2
i = FnFn+1. We must prove the result for n + 1; that is,

we must show that
n+1∑
i=1

F 2
i = Fn+1Fn+2.

We have
n+1∑
i=1

F 2
i =

n∑
i=1

F 2
i + F 2

n+1

= FnFn+1 + F 2
n+1

= Fn+1(Fn + Fn+1)

= Fn+1Fn+2,

as desired. �

Proposition 2.8. If n is a positive integer greater than or equal to 8, then
there exist nonnegative integers a and b such that 3a+ 5b = n.

49
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Proof. We use three base cases: n = 8, n = 9, and n = 10. For n = 8, we
have a = 1 and b = 1. For n = 9, we have a = 3 and b = 0. For n = 10, we
have a = 0 and b = 2.

Now, suppose that n ≥ 11, and every positive integer k with 8 ≤ k < n

can be written in the form 3a+ 5b, where a and b are nonnegative integers.
Because n ≥ 11, n − 3 ≥ 8, so by the inductive hypothesis, there exist
nonnegative integers a and b such that 3a + 5b = n − 3. Thus we have
3(a+ 1) + 5b = n, so n can be written in this form as well. �

Proposition 2.9. For any positive integer n,
n∑
i=1

1√
i
≥
√
n.

Proof. The base case is n = 1, when both sides are equal to 1. Thus the
base case holds.

Now, suppose that
∑n
i=1

1√
i
≥
√
n. We must show that

∑n+1
i=1

1√
i
≥

√
n+ 1. We have

n+1∑
i=1

1√
i

=

n∑
i=1

1√
i

+
1√
n+ 1

≥
√
n+

1√
n+ 1

,

so to prove the result, it suffices to show that
√
n + 1√

n+1
≥
√
n+ 1. We

have √
n2 + n+ 1 ≥

√
n2 + 1 = n+ 1.

Dividing both sides by
√
n+ 1, we have

√
n+ 1√

n+1
≥
√
n+ 1, as claimed.

This completes the inductive step, and thus the proof. �



Chapter 3

Prime numbers

3.1 Prime numbers

In number theory, we favor certain numbers over others. Among the
numbers that number theorists are most excited by are the prime numbers.
Let’s define them.

Definition 3.1. A positive integer n > 1 is said to be prime if it is only
divisible by 1 and itself. Equivalently, n > 1 is prime if whenever we factor
n = ab as a product of two positive integers a and b, then either a = 1 or
b = 1.

Remark 3.2. Note that 1 is not considered a prime number. The reason
for this is to make the Fundamental Theorem of Arithmetic hold; we will
present this crucial theorem very shortly. The first few primes are 2, 3, 5,
7, 11, 13, 17, and 19.

Definition 3.3. A positive integer n > 1 that is not prime is said to be
composite.

Mathematicians have been studying the prime numbers for thousands
of years, and already the ancient Greeks knew a fair amount about them.
Since then, we have learned many things about primes, but there are also
many questions that we do not yet know the answer to. For example,
the famous Twin Prime Conjecture asks if there are infinitely many pairs
of primes, like 3 and 5, or 29 and 31, that differ by exactly 2. While
some progress has been made in this direction in recent years (see for in-
stance [Zha14, Pol14,May15]), the Twin Prime Conjecture remains open.
Philosophically, it’s easy to understand why problems like the Twin Prime
Conjecture are hard: primes are meant to be multiplied, not added or
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subtracted, so it’s hard to say what happens when you start adding or
subtracting them.

We will now look at some of the most important theorems about primes.
In order to prove these theorems, we will need to use the proof techniques
we have discussed so far: contradiction and induction.

3.2 The Fundamental Theorem of Arithmetic

The primes are interesting because they are the multiplicative building
blocks of all the positive integers: all positive integers can be expressed as
a product of prime numbers. This is part of the content of a theorem so
important that it is known as the Fundamental Theorem of Arithmetic.

Theorem 3.4 (Fundamental Theorem of Arithmetic). Every positive in-
teger can be expressed as a product of prime numbers. A decomposition of
an integer n as a product of primes is unique, up to changing the order of
the factors.

Before we delve into the proof, let’s discuss the ingredients that go
into the proof. The theorem has two parts: the existence of the prime
factorization, and the uniqueness. Theorems expressing the existence and
uniqueness of some object or construction are very common in mathematics.
Typically to prove these, we have to prove these two parts separately, and
that is the case here. We start with the existence, which is the easier part
in this case. To prove existence, we use strong induction: if all positive
integers less than n have a prime factorization, then we show that n has
one as well.

The uniqueness is a little more challenging here. To do this, we suppose
that there exists some positive integer that doesn’t have unique factoriza-
tion, i.e. it contains more than one such factorization. In that case, there
must be a smallest such number. We then get a contradiction by finding an
even smaller number that must still have two prime factorizations. Let’s
now see how this works in detail!

Proof. There are two things to prove here. The first is to show that every
positive integer has a prime factorization (at least one), and the second
is to show that every positive integer has at most one prime factorization
(uniqueness).

We’ll start with the existence, i.e. showing that a number n has a prime
factorization. We do this by (strong) induction. The base case is n = 1.
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Now, it doesn’t appear that we can write 1 as a product of primes. However,
we can: if we do not multiply together any numbers at all, we end up with
1, so 1 is the product of no primes at all !

Next, we perform the inductive step. For this, we use strong induction.
Suppose that every positive integer less than n has a prime factorization;
we must use this to produce a prime factorization of n. We have two cases:
n is prime and n is composite.

Case 1: n is prime. In this case, n is the product of just the single prime
n, and we’re done.

Case 2: n is composite. In this case, we can factor n as n = ab, where
a, b < n. By the inductive hypothesis, both a and b can be written as
products of primes, say a =

∏k
i=1 pi and b =

∏`
j=1 qj . Then

n = ab =

k∏
i=1

pi ·
∏̀
j=1

qj ,

and we have just written n as a product of primes.

The next part is uniqueness. We must show that if n is a product of
primes in two ways, say as

∏k
i=1 pi =

∏`
j=1 qj , then k = `, and the pi’s are

a rearrangement of the qj ’s. Again, we prove this by induction, but it is
convenient to express our induction a bit differently.

Suppose that the prime factorization is not always unique. Then there
is some smallest positive integer that has at least two prime factorizations.
Let us call this smallest integer s, and suppose that s has two distinct prime
factorizations

s =

k∏
i=1

pi =
∏̀
j=1

qj .

Note that 1 only has a single prime factorization, so s 6= 1. If s were prime,
then by definition it cannot be factored into a product of smaller primes, so
we know that s is composite. Thus k, ` ≥ 2. Furthermore, if one of the pi’s
were equal to one of the qj ’s, say pi = qj , then s/pi = s/qj would also have
two prime factorizations: just omit the pi term from the first factorization
and the qj term from the second one. Thus we may assume that for every
i and j, pi 6= qj .

Since p1 6= q1, we either have p1 < q1 or p1 > q1. Let us assume that
p1 < q1; if not, then we switch the roles of the pi’s and the qj ’s. Define t
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to be

t = (q1 − p1)
∏̀
j=2

qj .

Note that 1 < q2 ≤ t < s. We have

t = q1
∏̀
j=2

qj − p1
∏̀
j=2

qj

= s− p1
∏̀
j=2

qj

= p1

 k∏
i=2

pi −
∏̀
j=2

qj

 .

Since t < s, our assumption that s isminimal with respect to having at least
two prime factorizations guarantees that t has a unique prime factorization.
Thus p1 appears in the (unique) prime factorization of t.

On the other hand, (q1− p1)
∏`
j=2 qj is another factorization of t, so p1

must divide one of the factors. It doesn’t divide
∏`
j=2 qj , so p1 must divide

q1 − p1. Let us say that q1 − p1 = mp1. Then q1 = (m+ 1)p1. Since p1 is
prime (and hence greater than 1) and m + 1 > 1, we have a factorization
of q1 into smaller integers. This contradicts q1 being prime.

Our only assumption here was that the original number s had more
than one prime factorization, and was the smallest positive integer with this
property. The contradiction shows that this was false, so we have proven
that all positive integers have unique prime factorizations, as desired. �

3.3 The infinitude of primes

Now that we have seen that every positive integer can be expressed
uniquely as a product of primes, it is worth investigating more questions
about primes. One of the most basic questions about primes is to determine
how many there are.

Theorem 3.5 (Euclid). There are infinitely many primes.

There are many known proofs of this theorem; see [Meš12] for a his-
torical survey of proofs. But Euclid’s original proof is still a classic that
everyone needs to know. The way it works is that we’ll show that for any
finite list of primes, there must be another prime not on the list. That
implies that there must be infinitely many primes.
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Proof. Suppose that we have a finite list of primes, say p1, p2, . . . , pn. Con-
sider the number M =

∏n
i=1 pi + 1: multiply them all together and add

one.
By the Fundamental Theorem of Arithmetic, M must have a prime

factorization. Since M > 1, it must be divisible by some prime q. Can
q be one of the primes on our list? Let us suppose that it is divisible by
pi. By construction M − 1 =

∏n
i=1 pi is divisible by pi, so M must not

be divisible by pi: two consecutive integers cannot both be divisible by the
same integer > 1. Thus q must be a new prime not on our list.

We have shown that no finite list can include all the primes. Thus there
are infinitely many primes. �

Remark 3.6. At this point, it is worth clearing up a common misconception
about this proof. If we multiply the first n primes together and add one,
the resulting number is sometimes prime and sometimes composite. The
first time it is composite is

2 · 3 · 5 · 7 · 11 · 13 + 1 = 59 · 509.

We can carry out Euclid’s proof a little further to show there are in-
finitely many primes of certain types:

Theorem 3.7. There are infinitely many primes of the form 4n+ 3.

Before we prove Theorem 3.7, let’s first state and prove a lemma that
we will need for the proof.

Lemma 3.8. Let a1, a2, . . . , ak be any integers. Then the product∏k
i=1(4ai + 1) has the form 4n+ 1 for some integer n.

Proof. We prove this by induction on k. We need two base cases, namely
k = 1 and k = 2. For the first base case k = 1, the product in question is
4a1 + 1, which has the form 4n+ 1, where n = a1. For the second base case
k = 2, we note that

(4a1 + 1)(4a2 + 1) = 4(4a1a2 + a1 + a2) + 1,

which again has the form 4n+ 1 with n = 4a1a2 + a1 + a2.
Now we perform the inductive step. Suppose the result is true for k, in

that for any integers a1, . . . , ak, there exists an integer n (which depends
on a1, . . . , ak) such that

∏k
i=1(4ai + 1) = 4n + 1. We wish to prove the

result for k+ 1. Let a1, a2, . . . , ak, ak+1 be integers. We wish to prove that∏k+1
i=1 (4ai+1) has the form 4n+1 for some integer n. Because the result is
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true for k, we know that
∏k
i=1(4ai + 1) can be written as 4m+ 1 for some

integer m. Thus we have
k+1∏
i=1

(4ai + 1) =

k∏
i=1

(4ai + 1) · (4ak+1 + 1)

= (4m+ 1)(4ak+1 + 1).

In other words, this product of k + 1 numbers of the form 4n + 1 can be
written as a product of only two such numbers. By the second base case,
the product of two numbers of the form 4n+1 again has the form 4n+1, so
this implies in particular that

∏k+1
i=1 (4ai + 1) again has the same form. �

In other words, a product of several numbers of the form 4n+ 1 is still
of the form 4n + 1. Thus if we have a number not of the form 4n + 1, it
must have a factor, and even a prime factor, that isn’t of the form 4n+ 1.
Let us now return to the proof of Theorem 3.7.

Proof of Theorem 3.7. Suppose we have a finite list of primes of the form
4n+3, say p1, p2, . . . , pr. Consider the numberM = 4

∏r
i=1 pi−1. Observe

thatM has the form 4n+3, where n =
∏r
i=1 pi−1. Any factor of a number

of the form 4n + 3 must be odd, because 4n + 3 is odd. Any odd number
is of the form 4n+ 1 or 4n+ 3. So, since M is odd, either all prime factors
are of the form 4n+ 1, or else there is at least one prime factor of M of the
form 4n+3. If all the prime factors ofM had the form 4n+1, thenM would
be a product of numbers of the form 4n + 1, which again by Lemma 3.8
has the form 4n+ 1. But M has the form 4n+ 3, and not 4n+ 1. Thus it
must be the case that M has at least one prime factor of the form 4n+ 3.

Now, M must have a prime factor q of the form 4n + 3, and M is not
divisible by any of the primes p1, . . . , pr, since M + 1 is divisible by all of
them. Thus in this case q is a new prime of the form 4n+ 3 not on our list.
Thus our list did not contain all primes of the form 4n + 3, which implies
that there are infinitely many such primes. �

3.4 The sieve of Eratosthenes

Note that Euclid’s proof does not give us a lot of insight into actually
finding primes: it guarantees that there are infinitely many without actually
producing any. They exist, but the proof doesn’t tell us where they are.

There are many ways of finding primes. One of the oldest is the sieve
of Eratosthenes, which can be used to find all the primes up to some fixed
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number n, all at once. The way the sieve of Eratosthenes works is as
follows: we start by listing out all the numbers from 2 to n; here we take
n = 100 for illustrative purposes, as shown in Figure 3.1. At each stage,
starting with 2, we take the first number left. That number is prime, so
we add it to our list of primes. Then we remove that number and all its
multiples. Then we repeat the process. In Figure 3.1, we start by removing
2 and all its multiples, marked in blue. Once that is done, 3 is the next
number remaining, so we remove 3 and all its multiples that haven’t yet
been removed; those are marked in green. Next, we remove 5 and all its
multiples which haven’t been removed yet; those are marked in purple.
Next, we remove 7 and all its multiples which haven’t been removed yet;
those are marked in red. When we get to

√
n, we can stop: everything

left is prime. (See problem 1.) In Figure 3.1, all the primes are marked in
yellow.

3.5 The greatest common divisor

Definition 3.9. Given two nonzero integers a and b, their greatest common
divisor , denoted gcd(a, b), is the largest positive integer that divides both
a and b.

Example. The greatest common divisor of 12 and 18 is 6. The greatest
common divisor of 9 and 14 is 1.

There is a fairly obvious way of computing the gcd of two numbers: write
down their prime factorizations, and multiply together all the primes that
are shared in these factorizations, the number of times they both appear.
For instance, 12 = 2 × 2 × 3 and 18 = 2 × 3 × 3, so their gcd is 2 × 3, the
primes that are shared. Note that we don’t use the second 2 in 12, because
there is no corresponding second 2 in 18.

While this is an easy way of computing gcds for small numbers, it isn’t
very good for larger numbers. The reason is that, in order to use this
method, we need to be able to compute prime factorizations, which appears
to be a difficult problem. However, there is a better method for computing
gcds, which does not rely on knowing any prime factorizations. This method
is called the Euclidean algorithm. The key input to the algorithm is this
simple lemma:

Lemma 3.10. If a and b are nonzero integers and k is any integer, then
gcd(a, b) = gcd(a, b− ka).
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Figure 3.1. The sieve of Eratosthenes.

Proof. In order to show that gcd(a, b) = gcd(a, b − ka), it suffices to show
that any common divisor of a and b is also a common divisor of a and
b − ka, and vice versa. So, let us suppose that d is a common divisor of a
and b, say with a = dx and b = dy. Then b− ka = d(y − kx) is a multiple
of d, and of course a is also a multiple of d. Thus d is a common divisor of
a and b− ka.

On the other hand, if d is a common divisor of a and b − ka, then we
can write a = dx and b − ka = dz. Then we have b = (b − ka) + ka =

dz + dkx = d(z + kx), so d is a divisor of b and hence a common divisor of
a and b. �

The way the Euclidean algorithm works is that we start with two num-
bers a and b, whose gcd we would like to find. Then, using Lemma 3.10,
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we replace a and b with smaller numbers until it is obvious what the gcd
is. More precisely:

Theorem 3.11 (Euclidean Algorithm). The following algorithm produces
the gcd of two positive integers a and b:

(1) If a > b, then switch a and b. Thus we may assume that a ≤ b. Let
b0 = b and b1 = a.

(2) If, at some stage, bn = 0, then gcd(a, b) = bn−1. At this point, we
may stop running the algorithm.

(3) If bn 6= 0, then choose k such that 0 ≤ bn−1 − kbn < bn. Set bn+1 =

bn−1 − kbn.

It is also rather common to express the Euclidean algorithm in terms
of something that looks more like an algorithm we would code up in a
programming language. The idea is that we express gcd(a, b) in terms of
the gcd of other, smaller, numbers, which we can compute recursively. Let’s
see how to do that:

The Euclidean algorithm

function gcd(a,b)
if a > b then

swap a and b
if a = 0 then

return b

k ← b bac
return gcd(a, b− ak)

Here the notation bxc means the floor of x, i.e. the greatest integer ≤ x,
or equivalently “round down.” For instance, b4c = 4 and bπc = 3.

Let’s see how this algorithm works in practice.

Example. Let us compute gcd(35, 98). We have b0 = 98 and b1 = 35. We
produce b2 = 98 − 2 × 35 = 28. Then we produce b3 = 35 − 1 × 28 = 7.
Then we produce b4 = 28− 4× 7 = 0. Thus gcd(35, 98) = b3 = 7. Indeed,
this is correct: the prime factorization of 35 is 35 = 5 × 7, and the prime
factorization of 98 is 98 = 2× 7× 7. Thus they share only a 7.

There is also an extension of the Euclidean algorithm.
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Theorem 3.12 (Bézout’s Lemma). The greatest common divisor gcd(a, b)

of two positive integers is the smallest positive integer that can be expressed
in the form ax+ by, where x and y are (not necessarily positive) integers.

Example. In the example above, we have 7 = 3× 35− 1× 98.

Proof. If d = gcd(a, b), then any number of the form ax + by must be
a multiple of d because both a and b are multiples of d, so any positive
integer of the form ax + by must be ≥ d. Thus, it suffices to show that
d itself can be expressed in this form. To do that, we use the Euclidean
algorithm, slightly more carefully. We prove by induction that each bn that
the Euclidean algorithm produces can be expressed in the form ax + by,
and since d is some bn, it too can be expressed in this form. The base cases,
which in this case are n = 0 and n = 1, are clear: one of them is a and one
of them is b, so both of these numbers can clearly be expressed in the form
ax+ by by taking (x, y) = (1, 0) and (x, y) = (0, 1), respectively.

Now, we do the inductive step. Let us suppose that both bn−1 and bn
can be expressed in the form ax+ by, say

bn−1 = axn−1 + byn−1, bn = axn + byn.

Then, since bn+1 = bn−1 − kbn, we have

bn+1 = bn−1 − kbn
= (axn−1 + byn−1)− k(axn + byn)

= a(xn−1 − kxn) + b(yn−1 − kyn).

This completes the inductive step and the proof. �

While we stated this only as saying that there is some way of writing
bn+1 in this form, the proof actually tells us a bit more: it tells us exactly
how to do it.

Example. Let us compute gcd(76, 104) and write this number in the form
76x+ 104y. We just follow the algorithm. We have b0 = 104 and b1 = 76.
Then we have b2 = 104 − 76 = 28, and so we have written b2 = 28 in the
desired form. Next, we have b3 = 76− 2× 28 = 20, or

20 = 76− 2× 28 = 76− 2× (104− 76) = 3× 76− 2× 104.

Continuing on, we have b4 = 28− 20 = 8, and we have

8 = 28− 20 = (104− 76)− (3× 76− 2× 104) = 3× 104− 4× 76.

Next up, we have b5 = 20− 2× 8 = 4, and

4 = 20−2×8 = (3×76−2×104)−2(3×104−4×76) = 11×76−8×104.
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Finally, we have b6 = 8− 2× 4 = 0, so gcd(76, 104) = 4 and

4 = gcd(76, 104) = 11× 76− 8× 104.

A consequence of Bézout’s Lemma is another characterization of prime
numbers:

Corollary 3.13. Let p be a prime number. Then, if a and b are integers
such that ab is a multiple of p, then either a or b is a multiple of p.

Proof. Suppose a is not a multiple of p. Then gcd(a, p) = 1, so there exist
integers x and y such that ax+ py = 1. Multiply this equation by b to get

abx+ pby = b. (3.1)

Since ab is a multiple of p, and pby is also a multiple of p, it follows that
the left side of (3.1) is a multiple of p, and hence so too is the right side.
We have shown that if a is not a multiple of p, then b is. In other words,
it cannot be the case that neither a nor b is a multiple of p, as long as ab
is a multiple of p. �

Of course, this is false for composite numbers; for instance, neither 2
nor 6 is a multiple of 4, yet their product 2× 6 is a multiple of 4. In fact,
Corollary 3.13 characterizes primes completely; see problem 3.

3.6 Problems

(1) Prove that if n is composite, then n has a prime factor less than or
equal to

√
n.

(2) Prove that there are infinitely many primes of the form 6n+ 5.
(3) Prove that if n is a composite number, then there exist integers a and

b, neither one a multiple of n, such that ab is a multiple of n.
(4) Generalize Corollary 3.13 as follows: if a1, . . . , an are integers such

that the product
∏n
i=1 ai is a multiple of a prime number p, then at

least one of a1, . . . , an is a multiple of p.
(5) As we showed, for a pair (a, b) of integers, there exist integers x and y

such that ax+ by = 1 if and only if gcd(a, b) = 1. For which triples of
integers (a, b, c) do there exist integers x, y, z with ax + by + cz = 1?
For example, if (a, b, c) = (6, 10, 15), then we can take x = 1, y = 1,
z = −1, so that ax+ by + cz = 1, so (6, 10, 15) is an example of such
a triple. On the other hand, (a, b, c) = (2, 4, 6) is not, because for any
integers x, y, z, 2x + 4y + 6z 6= 1; the left side is always even. Prove
that your answer is correct.
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(6) Since gcd(5, 8) = 1, we know that there are integers x and y such that
5x + 8y = 1; for instance, we can take x = 5 and y = −3. Similarly,
there are integers x and y such that 5x+ 8y = 21, such as x = 1 and
y = 2. Which integers can be expressed in the form 5x+ 8y, where x
and y are nonnegative integers? (For example, 21 works, since we can
take x = 1 and y = 2.) Give a proof.

(7) Prove that if a1, a2, b1, b2 are integers with b1 + b2 6= 0 such that
a1b2 − a2b1 = ±1, then

a1 + a2
b1 + b2

is in lowest terms.
(8) Let f(x) be a nonconstant polynomial with integer coefficients. Prove

that there is some integer n such that |f(n)| is composite.
(9) Let Fn be the nth Fibonacci number, so that F0 = 0, F1 = 1, and

Fn+2 = Fn + Fn+1 for all n ≥ 0.

(a) Prove that, for all n ≥ 1, gcd(Fn, Fn+1) = 1.
(b) Prove that if m and n are positive integers, then gcd(Fm, Fn) =

Fgcd(m,n).

(10) Prove that if n is a positive integer such that 2n − 1 is prime, then n
must be a prime. (The converse is false: 211 − 1 = 23× 89 is the first
counterexample.)

(11) Prove that if n is a positive integer 2n + 1 is prime, then n must be a
power of 2. (The converse is false: 22

5

+ 1 = 641× 6700417.)



Chapter 4

The pigeonhole principle

4.1 The pigeonhole principle

The pigeonhole principle is a simple technique, often used to show that
something exists without actually finding it. It is often stated in terms of
pigeons, and we shall continue that tradition here.

Theorem 4.1 (Pigeonhole principle). Suppose there are n pigeons in m

holes. If m < n, then there must be a hole containing at least two pigeons.
More generally, if km < n, then there must be a hole containing at least
k + 1 pigeons.

This theorem is completely obvious, but let us give a proper proof of
the general version, just for practice.

Proof. Suppose that km < n, but that each hole only contains at most k
pigeons. Let us write ai for the number of pigeons in hole i, so that ai ≤ k
for all i. Thus the total number of pigeons is

m∑
i=1

ai ≤ mk < n,

i.e. there are fewer than n pigeons. But this contradicts our hypothesis that
there are n pigeons. �

Now let’s see something easy we can do with the pigeonhole principle.

Example. Suppose we have an urn1 containing balls, each of which is colored
red, blue, green, yellow, or black. If we pick any 21 balls from the urn, we
must end up with five of the same color. To show this, we use the pigeonhole

1An urn is a natural habitat for balls in mathematics.

63



64 Transition to Proofs

principle. The balls are the pigeons, and the colors are the pigeonholes. If
we have 21 pigeons in 5 holes, then we must have at least 5 pigeons in one
hole. Translating that back to colored balls, this means that we must have
at least five balls of one color.

Here are some slightly more interesting applications of the pigeonhole
principle:

Theorem 4.2. Given five points in a square of sidelength 1, there must be
two of them whose distance is at most 1√

2
.

Proof. Divide the square into four smaller squares, as shown in Figure 4.1.
Then two of the five points must lie in the same small square. For a point
on an edge, we assign it to one of the squares containing that edge. It
doesn’t matter which small squares the edges are assigned to. The farthest
distance those points could possibly be is at opposite corners of the small
square, which is distance 1√

2
. ■

Figure 4.1. A square divided into four smaller squares. If the sidelength
of the large square is 1, then the distance between two opposite corners of
one of the small squares is 1√

2
.

Let’s clarify exactly where we used the pigeonhole principle in this proof.
The pigeons are the 5 points, and the holes are the 4 little squares. Since
we have 5 pigeons in 4 holes, one of the holes must have at least 2 pigeons.

Theorem 4.3. Given any six people, there must either be three people who
all know each other, or three people none of whom know each other. We
assume that “knowing” is mutual: if person A knows person B, then person
B also knows person A.

Proof. Pick any person among the six, say person A. There are five other
people, and two possible relations to person A: knowing or not knowing
them. Thus there must either be at least three people A knows, or else at
least three people A does not know. We shall assume that there are three



The pigeonhole principle 65

people A knows, but the other case is identical. Call these three people
B, C, and D. If any of those two people know one another, then we have
found three people who all know each other; for instance, if B and D know
each other, then A, B, and D all know each other and we’re done. The
other case is that none of B, C, and D know one another. In that case, we
have just found three people none of whom know one another, and again
we’re done. �

Remark 4.4. One way of picturing this is to construct a graph whose vertices
are the people. We put a red edge between two people who know each
other, and a blue edge between two people who do not know each other.
The portion of the graph used in the proof is shown in Figure 4.2.

A

BC

D

E F

Figure 4.2. The graph associated to Theorem 4.3.

The pigeonhole principle was used in this proof to show that there must
be three people A knows or three people A doesn’t know. We think of
the remaining five people as being the pigeons, and the pigeonholes as
“knowing” and “not knowing.” Since we have 5 pigeons in 2 holes, one of
the holes must have at least 3 pigeons.

4.2 The Dirichlet Approximation Theorem

The pigeonhole principle was first introduced by Dirichlet in 1834 to
prove the following theorem in number theory. At first glance, it doesn’t
look like a pigeonhole problem. But with a bit of cleverness, we shall see
that in fact it is.
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Theorem 4.5 (Dirichlet Approximation Theorem). Let α be any real num-
ber, and let N be a positive integer. Then there exists an integer p and a
positive integer q with 1 ≤ q ≤ N such that∣∣∣∣α− p

q

∣∣∣∣ < 1

qN
.

Remark 4.6. For a real number β, we will write bβc for the floor of β,
i.e. the unique integer n such that n ≤ β < n + 1. For instance, b2c = 2,
bπc = 3, and b−1.5c = −2. In other words, the floor function means “round
down.” There is also the analogous notion of the ceiling function, denoted
dβe. If β is not an integer, then dβe = bβc+ 1, and if β is an integer, then
dβe = bβc.

Proof. Consider the N + 1 numbers ai with 0 ≤ i ≤ N , defined by ai =

iα − biαc. All the ai’s satisfy 0 ≤ ai < 1. Now, consider the N intervals
I1, . . . , IN , where Ik is the interval of x such that k−1

N ≤ x < k
N ; these

partition the interval 0 ≤ x < 1. Since there are N + 1 ai’s and only N
intervals, there must be two ai’s in the same interval; say ai and aj are in
interval Ik. It follows that

k − 1

N
≤ ai, aj <

k

N
,

so |ai − aj | < 1
N . Without loss of generality, suppose that i > j.

Now, ai = iα− biαc and aj = jα− bjαc. Thus

ai − aj = (i− j)α+ (bjαc − biαc).

Let p = biαc − bjαc, and note that p is an integer. We have

|ai − aj | = |(i− j)α− p| <
1

N
.

Now, let q = i− j. Then we have

|qα− p| < 1

N
,

or ∣∣∣∣α− p

q

∣∣∣∣ < 1

qN
,

as desired. �

That may have been a bit abstract, so let’s take a look at an example
of the proof in action.
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Example. We’ll take α = π and N = 10. We first have to compute the ai’s.
We have

0π = 0⇒ a0 = 0,

1π ≈ 3.14⇒ a1 ≈ .14,

2π ≈ 6.28⇒ a2 ≈ .28,

3π ≈ 9.42⇒ a3 ≈ .42,

4π ≈ 12.57⇒ a4 ≈ .57,

5π ≈ 15.71⇒ a5 ≈ .71,

6π ≈ 18.85⇒ a6 ≈ .85,

7π ≈ 21.99⇒ a7 ≈ .99,

8π ≈ 25.13⇒ a8 ≈ .13,

9π ≈ 28.27⇒ a9 ≈ .27,

10π ≈ 31.42⇒ a10 ≈ .42.

The Ik’s are the intervals with k−1
10 ≤ x < k

10 . There are 10 Ik’s and
11 ai’s, so there must be two in the same Ik. In fact, there are several Ik’s
with two ai’s, so let’s just pick one. Let’s pick I2, which contains a1 and
a8. We have a1 = π − 3 and a8 = 8π − 25. Then we have

a8 − a1 = (8− 1)π + (bπc − b8πc) = 7π + (3− 25) = 7π − 22.

We let p = 22, so that a8− a1 = 7π− p. Since a1 and a8 are both in I2, we
have |a1 − a8| < 1

10 , i.e. |7π − 22| < 1
10 . Dividing both sides by 7, we get∣∣∣∣π − 22

7

∣∣∣∣ < 1

7× 10
,

so q = 7 and p = 22 in our theorem.

Recall that we proved that
√

2 is irrational back in Chapter 1. The
Dirichlet Approximation Theorem gives us a criterion for detecting when
a number is irrational.

Corollary 4.7. If α is irrational, then there are infinitely many rational
numbers p

q in lowest terms such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
. (4.1)

Proof. Suppose that α is irrational, and suppose that there were only
finitely many rational numbers p

q such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
,

and call these rational numbers p1
q1
, . . . , prqr . Let p

q be the one of these that
is closest to α, and choose N such that∣∣∣∣α− p

q

∣∣∣∣ > 1

N
.



68 Transition to Proofs

For this value of N , we have∣∣∣∣α− pi
qi

∣∣∣∣ > 1

N
>

1

qiN

for each i with 1 ≤ i ≤ r, so those rational numbers do not satisfy the
Dirichlet Approximation Theorem. For any other rational number p

q with
1 ≤ q ≤ N , we have ∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

q2
≥ 1

qN
.

Thus, under the assumption that there are only finitely many rational num-
bers satisfying (4.1), we have a contradiction to the Dirichlet Approxima-
tion Theorem. Thus, this assumption must have been incorrect, and we
have completed the proof. �

This argument breaks down when α is rational, because we can take
p
q = α, so that

∣∣∣α− p
q

∣∣∣ = 0, and there is no N such that
∣∣∣α− p

q

∣∣∣ > 1
N . In

fact, the analogous statement is false when α is rational, for a very simple
reason:

Proposition 4.8. If pq and r
s are two distinct rational numbers with q, s >

0, then ∣∣∣∣pq − r

s

∣∣∣∣ ≥ 1

qs
.

Proof. We have
p

q
− r

s
=
ps− qr
qs

. (4.2)

Since p
q 6=

r
s , the numerator of the right side of (4.2) is nonzero, and hence

at least 1 in absolute value. Thus∣∣∣∣pq − r

s

∣∣∣∣ =
|ps− qr|

qs
≥ 1

qs
,

as desired. �

It then follows that for N ≥ s, there are no rational numbers p
q other

than r
s , possibly in nonreduced form, such that∣∣∣∣rs − p

q

∣∣∣∣ < 1

qN
.

Thus, there are only finitely many rational numbers such that∣∣∣∣rs − p

q

∣∣∣∣ < 1

q2
.
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Putting all of this together, we get the following result:

Theorem 4.9. A real number α is irrational if and only if, for any ε > 0,
there is a positive integer q and an integer p such that

0 < |qα− p| < ε.

For proofwriting practice, let’s give a complete and clean proof of The-
orem 4.9 here, using the results we have already proven.

Proof of Theorem 4.9. First, suppose that α is irrational. By Corollary 4.7,
we know that there are infinitely many rational numbers p

q such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

We may assume for each such rational approximation p
q that q > 0. Mul-

tiplying both sides by q, we know that there are infinitely many p
q such

that

|qα− p| < 1

q
.

Since there are infinitely many such numbers, and there can only be finitely
many of them with any fixed value of q, there must exist such rational
numbers p

q with q arbitrarily large. In particular, we can find one such that
q > 1

ε , or
1
q < ε. With such a q, we have

|qα− p| < 1

q
< ε,

as desired.
Now, suppose that α is rational, say with α = r

s . Then if p
q 6=

r
s , and

q, s > 0, then ∣∣∣∣rs − p

q

∣∣∣∣ ≥ 1

qs
.

Multiplying both sides by q, we have

|qα− p| ≥ 1

s
.

Thus if 0 < ε < 1
s , there are no rational numbers p

q such that 0 < |qα−p| <
ε, which is what we wanted to prove. �

We can actually use what we have just done to prove that the number
e is irrational. There are many possible definitions of e, but the one that
is useful to us at the moment is

e =

∞∑
k=0

1

k!
=

1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · · .
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Theorem 4.10. The number e is irrational.

Proof. We use Theorem 4.9. Pick any ε > 0, and let n be a positive integer,
depending on ε, that we will determine later. Then let

p

q
=

n∑
k=0

1

k!
=

1

0!
+

1

1!
+

1

2!
+ · · ·+ 1

n!

in lowest terms, so that q = n! and p = n!
∑n
k=0

1
k! . We have

|qe− p| =

∣∣∣∣∣n!e−
n∑
k=0

n!

k!

∣∣∣∣∣
=

∞∑
k=n+1

n!

k!

=
1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · ·

<
1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · ·

=
1/(n+ 1)

1− 1/(n+ 1)

=
1

n
.

Thus, as long as 1
n < ε, or equivalently n > 1

ε , we have |qe− p| < ε. Thus
Theorem 4.9 tells us that e is irrational. �

There is a stronger version of Corollary 4.7, due to Hurwitz.

Theorem 4.11 (Hurwitz). If α is irrational, then there are infinitely many
rational numbers p

q such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.

We will not prove Hurwitz’s Theorem here, as the proof is somewhat
difficult. If you would like to read a proof, see [BE02]. However, we can
show that 1√

5
cannot be replaced by any smaller number.

Theorem 4.12. Let α = 1+
√
5

2 , and let c < 1√
5
. Then there are only

finitely many rational numbers p
q such that∣∣∣∣α− p

q

∣∣∣∣ < c

q2
.



The pigeonhole principle 71

Proof. Let f(x) = x2 − x − 1, and note that f(α) = 0. The other root
of f(x) is 1−

√
5

2 , which is also irrational. Thus f(x) has no rational roots.

Thus if p
q is rational, then f

(
p
q

)
6= 0, and in fact

∣∣∣f (pq)∣∣∣ ≥ 1
q2 . Now,

rewrite f(x) as
f(x) =

√
5(x− α) + (x− α)2. (4.3)

If p
q is such that

∣∣∣α− p
q

∣∣∣ < c
q2 , then, by plugging p

q in for x in (4.3), we
have

1

q2
≤
∣∣∣∣f (pq

)∣∣∣∣
=

∣∣∣∣∣√5

(
p

q
− α

)
+

(
p

q
− α

)2
∣∣∣∣∣

≤
√

5

∣∣∣∣pq − α
∣∣∣∣+

∣∣∣∣pq − α
∣∣∣∣2

<

√
5c

q2
+
c2

q4
.

Solving for q, we have

q <
c√

1− c
√

5
,

so there are only finitely many values of q that work, and hence only finitely
many such rational numbers p

q . �

4.3 Further reading

We mentioned Hurwitz’s Theorem (Theorem 4.11). Hurwitz’s Theorem
guarantees that for any irrational number α, we can approximate α by
rational numbers p

q such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.

Furthermore, in Theorem 4.12, we saw that we can’t do any better for
α = 1+

√
5

2 . However, it turns out that for most irrational numbers, we can
do better.

Definition 4.13. If α is an irrational number, its Lagrange number L(α)

is the smallest number such that if C > L(α), then there are only finitely
many rational numbers p

q such that∣∣∣∣α− p

q

∣∣∣∣ < 1

Cq2
,
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assuming that such a number exists. If no such number exists, then L(α) =

∞.

Thus we have L( 1+
√
5

2 ) =
√

5. Furthermore, if we let φ = 1+
√
5

2 and

choose integers a, b, c, d such that ad − bc = ±1, then L
(
aφ+b
cφ+d

)
=
√

5 as

well. However, for any irrational number α not of this form, L(α) ≥
√

8.
The set of numbers of the form L(α) for some irrational number α is called
the Lagrange spectrum.

Good places to read more about this and related mathematics are [SS07,
Chapter 4] and [Bak19].

After that, we can wonder about increasing the exponent in the de-
nominator. What does it say about a number if it can be approximated
to within the cube of the denominator, say, or a higher power? There’s a
beautiful theorem due to Liouville on that:

Theorem 4.14 (Liouville). Let α be an irrational number that is a root of
a degree-n polynomial with integer coefficients. Then there exists a constant
C > 0 (depending on α) such that if pq is any rational number, then∣∣∣∣α− p

q

∣∣∣∣ ≥ C

qn
.

But there are some numbers that can be approximated to within C
qn

for any positive integer n. It follows, then, that such numbers cannot
be roots of any nonzero polynomial with integer coefficients, i.e. they are
transcendental . A popular example is

α =

∞∑
n=1

10−n! = .110001000000000000000001000 . . . ,

where the 1’s are in the factorial positions. Liouville’s Theorem is the
starting point of the fascinating subject of transcendental number theory.
A good place to start learning about it is [BT04].

4.4 Problems

(1) Suppose there are nine points (ai, bi, ci) with 1 ≤ i ≤ 9 in three-
dimensional Euclidean space, also known as R3, all of whose coor-
dinates are integers (i.e. ai, bi, ci are integers). Show that there are
two points among these nine such that the midpoint of the segment
connecting them has integer coordinates. For instance, if two of the
points are (1, 2, 3) and (4, 6, 8), then their midpoint is ( 5

2 , 4,
11
2 ). So
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this midpoint does not have integer coordinates, but some pair must
if there are 9 points.

(2) Let S be a set consisting of 51 positive integers from 1 to 100. Prove
that S must contain two consecutive integers.

(3) Find, with proof, the maximum number of knights one can place on a
chessboard such that no two of them attack each other. Do the same
for bishops.

(4) Prove that if S is any subset consisting of 10 distinct integers from 1
to 100, there are two nonempty disjoint subsets T,U ⊆ S, such that
the sum of the integers in T is equal to the sum of the integers in U .

(5) Prove that if n is any positive integer, there is a positive multiple of n
whose decimal expansion contains only 0’s and 1’s. For instance, 1001
is a multiple of 7 consisting of only 0’s and 1’s.

(6) Prove that among any set S of n ≥ 2 people, there are two of them
who have the same number of friends in S. We assume the friendship
is mutual: if person A is friends with person B, then person B is also
friends with person A.

(7) Prove that, given any five points on the surface of a sphere, there is
some closed hemisphere (i.e. including the boundary) that contains at
least four of them.

(8) Let a0, a1, . . . , an be any integers. Prove that∏
0≤i<j≤n

(ai − aj)

is a multiple of n!.
(9) (a) Prove that for any positive integer k, we can find k consecutive

positive integers that are all composite.
(b) Prove that the infinite sum ∑

p prime

1

2p

is an irrational number.
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Chapter 5

Equivalence relations

5.1 Relations

In mathematics, it is often crucial to specify what it means for two
things to be related to one another, or equal to each other, in a certain
sense. In the case of numbers, we might say that two numbers are related
when they are equal, or perhaps a and b are related when a < b, or when
the numbers are related based on some other sort of rule. In the case of
shapes, perhaps we say that two shapes (triangles, perhaps) are related if
they are congruent, or if they are similar, or if they have the same area.
Similarly, we might say that two quadrilaterals are related if they have
the same angles, or the same sidelengths. The point of this chapter is to
understand what sorts of properties various kinds of relatedness ought to
have.

Definition 5.1. Let X be a set. A binary relation (or simply relation) R

on X is a collection of pairs of elements of X, i.e. it consists of various pairs
(x, y) with x, y ∈ X. If (x, y) is one of these pairs, write xRy.

Example. One possible relation is the empty relation, consisting of no pairs.
Thus it is never true, in this case, that xRy.

Example. Another very simple relation is equality. This is the relation
consisting of the pairs (x, x), so that xRy if and only if x = y. Note that if
we replace the “R” with an “=,” then xRx becomes x = x. In the definition,
R is the name of the relation, but it doesn’t have to be called R: it could
just as easily be called =, in which case we recover the usual notation.

Example. Let X = Z be the set of integers. We have the relation < on Z
that means the usual thing: x < y if, well, x < y. A similar relation is ≤.

75
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Example. Let X = Z. We have the relation | on Z, where x | y means that
x divides y, i.e. that y is a multiple of x.

Example. Relations can be rather arbitrary-looking, since they can be
completely general sets of pairs of elements of X. For instance, suppose
X = {a, b, c, d}. Then we have a relation R on X, where aRc, bRb, bRd,
cRb, dRa, dRb, and dRc. This isn’t generated by any logical rule: it’s just
a random-looking collection of pairs. Generally, the relations of interest
will be more natural, but it’s important to remember that relations can be
arbitrary.

There are several properties that a relation might or might not have.

Definition 5.2. Let X be a set, and let R be a relation on X.

• We say that R is reflexive if xRx for all x ∈ X.
• We say that R is irreflexive if it is never true that xRx.
• We say that R is symmetric if whenever xRy, then yRx.
• We say that R is antisymmetric if whenever xRy and yRx, then x = y.
• We say that R is asymmetric if whenever xRy, then it is not the case
that yRx.
• We say that R is transitive if whenever xRy and yRz, then xRz.
• We say that R is trichotomous if for any x, y ∈ X, exactly one of xRy,
x = y, and yRx is true.

Let’s consider the< relation on Z. Which of those properties is satisfied?
Let’s go through them one by one.

• Reflexivity is not satisfied, because there exists an x ∈ Z such that
x 6< x. (In fact, x 6< x for all x ∈ Z.)
• On the other hand, < is irreflexive.
• < is not symmetric; for instance, 0 < 1 but 1 6< 0.
• < is antisymmetric, because the hypothesis x < y and y < x never
holds. Thus the conclusion that x = y whenever x < y and y < x is
vacuously true.
• < is asymmetric: if x < y, then y 6< x.
• < is transitive: if x < y and y < z, then x < z.
• < is trichotomous, because given any x, y, exactly one of the state-

ments x < y, x = y, and y < x is true.

There’s a term for a relation that satisfies the same sorts of structural
properties as <.
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Definition 5.3. Let X be a set and < a binary relation on X. We say
that < is a total ordering on X if < is transitive and trichotomous.

In other words, < is a total ordering if the following hold:

• If x < y and y < z, then x < z.
• Given any two elements x, y ∈ X, either x < y, x = y, or y < x.

One of the other relations we saw was |. There’s a generalization of that
one as well.

Definition 5.4. Let X be a set and ≤ a binary relation on X. We say that
≤ is a partial ordering on X if ≤ is reflexive, antisymmetric, and transitive.

In other words, ≤ is a partial ordering if the following hold:

• x ≤ x for all x ∈ X.
• If x ≤ y and y ≤ x, then x = y.
• If x ≤ y and y ≤ z, then x ≤ z.

The relation | is a partial ordering on Z because it satisfies all these
properties. It’s called a “partial” ordering because we might only be allowed
to compare some of the elements. Given certain pairs of numbers like 6 and
18, we can say that 6 | 18, so we can compare them. On the other hand,
some pairs of elements may be incomparable: with 4 and 7 for instance,
4 - 7 and 7 - 4, but 4 6= 7. If all pairs of elements are comparable, then we
end up with a total ordering again, but in its ≤ version rather than the <
version. (This is still called a “total” ordering, and people don’t fuss much
about the difference between the < version and the ≤ version.)

5.2 Equivalence relations

For our purposes, the most important type of binary relation is the
equivalence relation.

Definition 5.5. A binary relation ∼ on a set X is said to be an equivalence
relation if it satisfies the following three properties:

• Reflexivity: x ∼ x for all x ∈ X.
• Symmetry: if x ∼ y, then y ∼ x.
• Transitivity: if x ∼ y and y ∼ z, then x ∼ z.

Remark 5.6. It might seem as though reflexivity follows from symmetry and
transitivity. However, this is not the case, as you will show in problem 3.
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The simplest equivalence relation on any set X is just equality: x ∼ y

if and only if x = y. Let’s verify that this is indeed an equivalence relation:

• Reflexivity: we must check that x ∼ x, i.e. that x = x for all x ∈ X.
Well, yes. . .
• Symmetry: we must check that if x ∼ y, then y ∼ x. If x ∼ y, that
means that x = y, so y = x as well, which means that y ∼ x.
• Transitivity: we must check that if x ∼ y and y ∼ z, then x ∼ z. If
x ∼ y, that means that x = y, and if y ∼ z, that means that y = z.
Thus we have x = y = z. Thus x ∼ z.

We’ve now checked that all the properties hold, so∼ (or =) is an equivalence
relation.

Example. Let X be the set of all triangles in the plane. We say that two
triangles 4ABC and 4DEF are equivalent if they are similar; we write ∼
for this relation, and ∼ is an equivalence relation on X. The relation ∼= of
congruence (4ABC ∼= 4DEF if and only if they are congruent) is also an
equivalence relation.

Example. Let X and Y be two sets, and let f : X → Y be a function. Then
we can define an equivalence relation ∼ on X by declaring that x1 ∼ x2 if
and only if f(x1) = f(x2).

You will verify that these two are in fact examples of equivalence rela-
tions in problem 4.

5.3 Congruence modulo m

The reason we study equivalence relations as we learn number theory
is because one of the most powerful tools in number theory is a certain
equivalence relation, known as congruence modulo m. It is reminiscent of
what we do when reading a clock. If it’s currently 9:00, then in five hours
we won’t say that it’s 14:00, but rather that it’s 2:00. How do we get 2
instead of 14? After 12, we don’t continue on with 13 but rather go back
to 1. What we’re doing here is keeping track of remainders upon division
by 12.

There is a small difference between the way mathematicians usually like
to think about modular arithmetic and the way we read clocks: instead of
going from 1 to 12, mathematicians instead usually prefer to go from 0 to
11. We also don’t have to divide by 12; the same technique works if we
replace 12 with any positive integer.
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Here is how modular arithmetic works at a more formal level. We select
a modulus m, which serves the same role as 12 does in the case of clocks.
We say that two integers a and b are congruent modulo m if they leave
the same remainder upon division by m. Alternatively, and often more
conveniently, a and b are congruent modulo m if and only if a − b is a
multiple of m. When this happens, we write a ≡ b (mod m).

Example. 14 ≡ 2 (mod 12) because both 14 and 2 leave a remainder of 2
upon division by 12. Alternatively, 14 ≡ 2 (mod 12) because 14− 2 = 12,
which is a multiple of 12.

There are many important properties of congruences that get used all
the time. Let’s start with a few very basic ones.

Proposition 5.7. Let a, b, c, and m be integers.

(1) a ≡ a (mod m).
(2) If a ≡ b (mod m), then b ≡ a (mod m).
(3) If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

Proof. In all three of these, we will use the criterion that a ≡ b (mod m) if
and only if a− b is a multiple of m.

(1) a− a = 0 = 0 ·m is a multiple of m, so a ≡ a (mod m).
(2) Suppose a − b = km. Then b − a = −km, which is also a multiple of

m.
(3) Suppose a− b = km and b− c = `m. Then a− c = (a− b) + (b− c) =

km+ `m = (k + `)m, which is a multiple of m. �

If we translate back into the language of equivalence, then all that
Proposition 5.7 is saying is that ≡ (mod m) is an equivalence relation.
The relation of congruence modulo m on Z consists of all pairs (a, b), where
a and b are integers and a ≡ b (mod m).

Whenever we have an equivalence relation ∼ on a set X, we can find a
set of representatives: a subset Y ⊆ X such that every x ∈ X is equivalent
to exactly one element y ∈ Y . In the case of congruence modulo m, we
can take our set of representatives to be the integers {0, 1, . . . ,m− 1}. Of
course, there are other choices too. For instance, we could use {1, 2, . . . ,m}
or {2, 3, . . . ,m+1} or {−2,−1, 0, . . . ,m−3}, or even more exotic sets where
the representatives are not all consecutive.

Also closely related to equivalence relations are equivalence classes.
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Definition 5.8. Let X be a set and ∼ an equivalence relation on X.
If x ∈ X, then the equivalence class of x is the set of everything in X

equivalent to x: [x] = {y ∈ X : y ∼ x}. We write X/∼ for the set of all the
equivalence classes.

Example. Let X = Z and the equivalence relation be congruence modulo
7. Then [3] = {. . . ,−11,−4, 3, 10, 17, . . .}.

Note that finding a set of representatives just means picking one element
out of each equivalence class.

When X = Z and the equivalence relation is congruence modulo m, we
write Z/mZ for the set of equivalence classes. Note that each element of
Z/mZ is an infinite set of integers, all of which are congruent to each other
modulo m. In the case where the equivalence relation is ≡ (mod m), then
we call an equivalence class a congruence class or residue class; we’ll use
these two terms interchangeably.

The equivalence classes do something neat to the set X: every element
of X is contained in exactly one equivalence class. That is, we have the
following:

Theorem 5.9. Let X be a set and ∼ an equivalence relation on X. Let [x]

and [y] be two equivalence classes. Then either [x] = [y] or [x] ∩ [y] = ∅.

So, as soon as two equivalence classes [x] and [y] have a single element
in common, they are automatically forced to be identical.

Proof. Suppose that [x] ∩ [y] 6= ∅. This means that there is some element
z ∈ [x] ∩ [y]. We must now show that [x] = [y]. Suppose w ∈ [x]. Then
we have w ∼ x and x ∼ z, so by transitivity w ∼ z. Now we have w ∼ z

and z ∼ y, so w ∼ y. Thus w ∈ [y]. Since an arbitrary element w ∈ [x]

also lies in [y], this shows that [x] ⊆ [y]. The reverse direction follows by
symmetry. �

Thus, the equivalence classes partition up X into a bunch of disjoint
sets. In the case of ≡ (mod 5), for instance, on Z, this means that for
every integer n, exactly one of the following five statements holds:

n ≡ 0 (mod 5), n ≡ 1 (mod 5), n ≡ 2 (mod 5),

n ≡ 3 (mod 5), n ≡ 4 (mod 5),

because those are all the equivalence classes. Because of this, one way
to think of the set X/∼ of equivalence classes under ∼ on X is that the
elements are the same as the elements of X, except that we consider two
elements x, y ∈ X to be equal if x ∼ y.
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5.4 Problems

(1) Define a relation R on R by saying that xRy if |x − y| < 1. Is R an
equivalence relation? Which of the properties of a relation are satisfied
by R?

(2) Is the relation R on R, given by xRy if x − y ∈ Z, an equivalence
relation? What about the relation S given by xSy if x− y ∈ Q?

(3) In Definition 5.5, it seems as though reflexivity should follow from sym-
metry and transitivity: a ∼ b implies b ∼ a, so we have a ∼ b and b ∼ a
and thus a ∼ a. Why is this wrong? What is the flaw in the argument?
Also, give an example of a binary relation on a set X that satisfies
symmetry and transitivity but not reflexivity.

(4) Prove that the two examples of equivalence relations (similarity of trian-
gles and equivalence of function inputs) given right after Definition 5.5
are actually equivalence relations, by checking that they satisfy the
three properties in the definition.

(5) Suppose ∼ and ≡ are two equivalence relations on a set X. Define a
new relation R on X by saying that xRy if either x ∼ y or x ≡ y. Is R
necessarily an equivalence relation? Prove or find a counterexample.

(6) Suppose ∼ and ≡ are two equivalence relations on a set X. Define a
new relation R on X by saying that xRy if both x ∼ y and x ≡ y. Is
R necessarily an equivalence relation? Prove or find a counterexample.

(7) Suppose ∼ is an equivalence relation on a finite set X with n elements.
Suppose, furthermore, that every equivalence class has exactly k ele-
ments. How many equivalence classes are there?

(8) Suppose that R is a reflexive and symmetric relation on a set X. Define
a new relation ∼ on X by saying that x ∼ y if there exists a positive
integer n and elements x1, x2, x3, . . . , xn ∈ X such that x1 = x, xn = y,
and for 1 ≤ i ≤ n−1, we have xiRxi+1. Prove that ∼ is an equivalence
relation on X.

(9) LetX = Z×(Z\{0}) be the set of pairs of integers, where the second one
cannot be zero. Define a relation∼ onX by declaring that (a, b) ∼ (c, d)

if ad = bc. Prove that ∼ is an equivalence relation. Explain why the
equivalence classes are related to the rational numbers Q.
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Chapter 6

Congruences and modular arithmetic

6.1 Arithmetic in Z/mZ

Recall from Chapter 5 that, for each positive integer m, we put an
equivalence relation ≡ (mod m) on Z by declaring that a ≡ b (mod m)

if a − b is a multiple of m, in which case we say that a is congruent to b
modulo m. We write Z/mZ for the set of equivalence classes modulo m.

The reason that congruences are useful is that they are well-behaved
with respect to addition and multiplication. What this means is that we
can add and multiply two elements of Z/mZ. More precisely:

Proposition 6.1.

(1) Suppose that a ≡ b (mod m) and c ≡ d (mod m). Then a+ c ≡ b+ d

(mod m).
(2) Suppose that a ≡ b (mod m) and c ≡ d (mod m). Then ac ≡ bd

(mod m).

Proof. Suppose that a− b = km and c− d = `m.

(1) We have

(a+ c)− (b+ d) = (a− b) + (c− d) = km+ `m = (k + `)m,

which is a multiple of m. Thus a+ c ≡ b+ d (mod m).
(2) We have

ac− bd = ac− ad+ ad− bd
= a(c− d) + d(a− b)
= a`m+ dkm

= (a`+ dk)m,

which is also a multiple of m. �
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We can also subtract in Z/mZ; we save the proof for problem 5. How-
ever, don’t start believing that we can perform just any arithmetical oper-
ation modulo m.

Example. Exponentiation is not well-defined in Z/mZ, at least not in the
most obvious way. For instance 1 ≡ 4 (mod 3), yet 21 6≡ 24 (mod 3).
There are ways of exponentiating modulo m, but the rules are a bit more
subtle. We will return to this point in Chapter 8. However, a certain
kind of exponentiation does work in Z/mZ: If a ≡ b (mod m) and e is
any nonnegative integer, then ae ≡ be (mod m). Note that we require the
exponents to be exactly the same, rather than just the same modulo m,
which as we have just seen is not good enough.

What we have done in Proposition 6.1 is to show that addition and
multiplication are well-defined modulo m—or, if you prefer, in Z/mZ. A
function is said to be well-defined if it always gives the same answer when
handed the same inputs. More precisely:

Definition 6.2. Let S and T be two sets, and suppose f : S → T . Then
f is well-defined if, whenever s1 = s2 ∈ S, then f(s1) = f(s2) ∈ T .

This statement is a little bit unfortunate, because how could we even
define f if that weren’t the case? But let’s analyze the difference between
what happens with addition and with exponentiation in Z/mZ. In this case,
our set S will be (Z/mZ) × (Z/mZ), or ordered pairs (a, b) of elements in
Z/mZ, and T will just be Z/mZ.

We can try to define addition in Z/mZ, as follows. Let us write [a] for
the congruence class of a modulo m, i.e. the set of numbers congruent to
a (mod m). Then we can add two elements [a] and [c] of Z/mZ by setting
[a] + [c] = [a+ c]. The issue that we need to resolve, in order to make sure
that this is a well-defined definition, is to determine whether it depends
on how we write our congruence classes. If [a] = [b] and [c] = [d], i.e.
a ≡ b (mod m) and c ≡ d (mod m), is it true that [a] + [c] = [b] + [d]?
Well, [a] + [c] = [a + c] and [b] + [d] = [b + d], so we need to ensure
that [a + c] = [b + d]. But that’s exactly what we showed in part (1) of
Proposition 6.1.

By contrast, if we try to define [a][c] by setting it equal to [ac], then we
run into problems, because [24] = [1], whereas [21] = [2].

We can do all this more generally in terms of equivalence classes and
equivalence relations. Let us suppose thatX and Y are sets, and f : X → Y

is a function. Let us also suppose that ∼ is an equivalence relation on X.
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Then we can define f on X/∼ by setting f([x]) = f(x). This is a well-
defined function on X/∼ if and only if f(x1) = f(x2) whenever x1 ∼ x2.
In the setting of addition modulo m, we have X = Z× Z, Y = Z/mZ, and
f(x1, x2) = (x1 + x2) (mod m). The equivalence relation ∼ is such that
(a, b) ∼ (c, d) if a ≡ c (mod m) and b ≡ d (mod d).

Now that we have spent all this time showing that addition and multi-
plication are well-defined in Z/mZ, let’s see how to use that information to
solve some problems.

Example. Let us work out the remainder when 522000 is divided by 7. In
other words, we want to know what 522000 is modulo 7, i.e. find a representa-
tive of [522000] in {0, 1, 2, 3, 4, 5, 6}. To do this, we note that, because 52 ≡ 3

(mod 7) and multiplication is well-defined in Z/7Z, we have 522000 ≡ 32000

(mod 7). Next, let’s look at the powers of 3 modulo 7: we have

30 ≡ 1, 31 ≡ 3, 32 ≡ 2, 33 ≡ 6,

34 ≡ 4, 35 ≡ 5, 36 ≡ 1,

where all congruences are modulo 7. After that, they repeat. For instance,
37 ≡ 36 × 31 ≡ 1 × 31 ≡ 3 (mod 7), and so on. Thus we find that the re-
mainder depends only on the exponent modulo 6. Since 2000 ≡ 2 (mod 6),
we have

522000 ≡ 32000 ≡ 32 ≡ 2 (mod 7).

Now, recall that we aren’t allowed to reduce the exponent modulo 7, so we
may not say that since 2000 ≡ 5, we have 522000 ≡ 35 ≡ 5 (mod 7): we get
the wrong answer that way. Once again, that is because exponentiation is
not well-defined in Z/mZ, whereas addition and multiplication are.

Let’s try another example.

Example. Let us show that 999999 cannot be written as the sum of squares
of two integers. That is, we wish to show that for all integers x and y,
x2 +y2 6= 999999. To do this, let us suppose that there are integers x and y
such that x2 + y2 = 999999, and then we’ll see what goes wrong. The trick
here is to work modulo 4, i.e. in Z/4Z. Because addition and multiplication
are well-defined in Z/4Z, we would have [x]2+[y]2 = [999999] = [3]. So, now
we need to know what happens with squares modulo 4. Since multiplication
is well-defined modulo 4, we only have to check what happens with x2 for
x ∈ {0, 1, 2, 3}. We have

[02] = [0], [12] = [1], [22] = [0], [32] = [1].
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In other words, all squares are 0 or 1 modulo 4. Thus it is not possible to
add two squares and get a number that is 3 (mod 4), since the sum of two
elements in {0, 1} cannot be 3 (mod 4).

More generally:

Theorem 6.3. If n ≡ 3 (mod 4), then n cannot be written as a sum of
two squares.

See problem 2 for a version for sums of three squares, which can be
proven similarly. See also Chapter 10, where we will determine which num-
bers can be written as sums of two squares.

Remark 6.4. How did we know to work modulo 4? This comes from expe-
rience: squares are very nice modulo 4, and even nicer modulo 8, so these
are common moduli to try. There is much more to be said about squares
and moduli, culminating in the celebrated Quadratic Reciprocity Theorem,
which unfortunately we won’t get to in this book. For a detailed look at
quadratic reciprocity, see for instance [Sil14, Chapters 20–23].

6.2 The Chinese Remainder Theorem

One of the most useful theorems about modular arithmetic is the Chi-
nese Remainder Theorem. The Chinese Remainder Theorem allows us to
turn two (or more congruences) into a single congruence, or vice versa: if
gcd(m,n) = 1, then a congruence modulo mn is exactly the same as a
congruence modulo m together with a congruence modulo n.

Theorem 6.5 (Chinese Remainder Theorem). Let a, b,m, n be integers
with m,n > 0 and gcd(m,n) = 1. Then there exists an integer x satisfying

x ≡ a (mod m), x ≡ b (mod n). (6.1)

Furthermore, all such x’s form a congruence class modulo mn.

Proof. We begin by solving the case a = 1 and b = 0. That is, we want to
find some y such that

y ≡ 1 (mod m), y ≡ 0 (mod n). (6.2)

In order to do this, we use Bézout’s Lemma from Chapter 3. As we recall,
Bézout’s Lemma says that if m and n are relatively prime, then there
exist integers α and β such that αm + βn = 1. With these values of α
and β, we observe that y = βn satisfies (6.2): y ≡ 0 (mod n) because
y = βn is a multiple of n. On the other hand, since αm+ βn = 1, we have
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βn = 1−αm ≡ 1 (mod m). This proves that there is such a y when a = 1

and b = 0. By symmetry, there is also a z satisfying

z ≡ 0 (mod m), z ≡ 1 (mod n).

To solve the more general problem of showing that there is an x satis-
fying (6.1), we simply take x = ay + bz. Then

x ≡ ay + bz ≡ a (mod m),

and similarly x ≡ b (mod n).
Now, we must prove that if x satisfies (6.1), then any y ≡ x (mod mn)

also satisfies (6.1) and vice versa. Suppose that x ≡ y (mod mn), so that
x − y = cmn for some integer c. Then y = x − cmn, so y ≡ x ≡ a

(mod m) and y ≡ x ≡ b (mod n), so y does indeed satisfy (6.1). Finally,
if y satisfies (6.1), then x ≡ y (mod m) and x ≡ y (mod n), so x − y is a
multiple of both m and n. Since m and n are relatively prime, this means
that x− y is a multiple of mn, i.e. x ≡ y (mod mn), as desired. �

Remark 6.6. Note that this proof tells you not only that such an x exists,
but also how to find it. In order to do that, you’ll have to use the Euclidean
algorithm to give you the actual values of α and β in Bézout’s Lemma. You
will do this in problem 4.

We can also extend the Chinese Remainder Theorem to the case of more
than two moduli.

Theorem 6.7 (Chinese Remainder Theorem). Let r be a positive integer,
and let a1, a2, . . . , ar be integers and m1,m2, . . . ,mr be positive integers
such that for any distinct i, j with 1 ≤ i, j ≤ r, we have gcd(mi,mj) = 1.
Then there exists an integer x satisfying

x ≡ ai (mod mi) for all i with 1 ≤ i ≤ r.

Furthermore, all such x’s form a congruence class modulo
∏r
i=1mi.

Let’s see what we can do with the Chinese Remainder Theorem. In
practice, the way it’s usually used is to split up a congruence modulo a
number with several prime factors into a bunch of smaller congruences
with prime or prime power moduli, which may be easier to work with.

Example. Let us find the remainder when 19659 is divided by 30. Thus,
we want to know 19659 (mod 30) and express the answer as an element of
{0, 1, . . . , 29}. By the Chinese Remainder Theorem, it suffices to determine
the answer modulo 2, 3, and 5, and then put the pieces back together again.
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First, 19659 ≡ 1659 ≡ 1 (mod 2). Next, 19659 ≡ 1659 ≡ 1 (mod 3). Finally,
19659 ≡ 4659 ≡ (−1)659 ≡ −1 ≡ 4 (mod 5). To finish the problem off, we
need to find a number that is 1 (mod 2), 1 (mod 3), and 4 (mod 5). We
could do this systematically, but it’s easier not to. By inspection, 4 is a
number that is 1 (mod 3) and 4 (mod 5), and any other such number is
congruent to 4 (mod 15). That leaves 4 and 19 as possibilities. Since only
19 is 1 (mod 2), that’s the answer.

The point here is that we can solve this problem not by working modulo
a large number directly, but by working with smaller numbers, where it’s
easier to see what’s going on. In fact, we may always restrict to the case
where congruences are modulo prime powers. For instance, when working
modulo 120 = 23 × 3× 5, it suffices to work modulo 8, 3, and 5.

Here is another thing we can do with the Chinese Remainder Theorem:

Example. Find all integer solutions to x3−x+1 ≡ 0 (mod 35). Let us write
f(x) for x3−x+1. To solve this, we note that the statement y ≡ 0 (mod 35)

is equivalent to the pair of statements y ≡ 0 (mod 5) and y ≡ 0 (mod 7).
The latter two are easier. To determine those x for which f(x) ≡ 0 (mod 5),
we just try out the possibilities x = 0, 1, 2, 3, 4; we find that f(x) ≡ 0

(mod 5) if and only if x ≡ 3 (mod 5). To determine those x for which
f(x) ≡ 0 (mod 7), we try out x = 0, 1, 2, 3, 4, 5, 6; we find that f(x) ≡ 0

(mod 7) if and only if x ≡ 2 (mod 7). Thus f(x) ≡ 0 (mod 35) if and
only if both x ≡ 3 (mod 5) and x ≡ 2 (mod 7). We can use the Chinese
Remainder Theorem to see that this is equivalent to x ≡ 23 (mod 35).
Thus f(x) ≡ 0 (mod 35) if and only if x ≡ 23 (mod 35).

6.3 Problems

(1) What is

9× 99× 999× · · · × 999 · · · 9 (mod 1000),

where the last number contains 999 9’s? That is, determine the re-
mainder of the product when divided by 1000.

(2) Prove that if n ≡ 7 (mod 8), then n cannot be written as a sum of
three squares. (Hint: What are the squares modulo 8?)

(3) Prove that for any nonnegative integer n, 3n+ 13 ·10n is divisible by 7.
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(4) Describe all integers x satisfying all of the following congruences:

x ≡ 2 (mod 3),
x ≡ 3 (mod 5),

x ≡ 5 (mod 7),
x ≡ 7 (mod 11).

(The answer should be a congruence class modulo some number, such
as “all x ≡ 4 (mod 9),” although that is not the correct answer in this
case.)

(5) Prove that subtraction is well-defined in Z/mZ, i.e. if a ≡ b (mod m)

and c ≡ d (mod m), then a− c ≡ b− d (mod m).
(6) Prove that a number in base 10 is divisible by 9 if and only if the sum of

its digits is divisible by 9. Show that a number dndn−1 · · · d1 (in terms
of its digits) is divisible by 11 if and only if d1−d2+d3−· · ·+(−1)n−1dn
is divisible by 11. Devise, with proof, a (somewhat more involved) test
to determine if a number is divisible by 7 or 13.

(7) Let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be a polynomial with
integer coefficients. Show that if, for some integer m > 0, there are m
consecutive integers r, r+ 1, . . . , r+m−1 such that f(r+ i) is divisible
by m for 0 ≤ i ≤ m− 1, then f(x) is divisible by m for every integer x.

(8) A lattice point (x, y) ∈ Z2 (i.e. a point in R2 such that both of its
coordinates are integers) is said to be blocked if gcd(x, y) > 1. Show
that, for any positive integer n, there is an n × n square consisting
entirely of blocked points, i.e. there exist positive integers a and b such
that all the points (a+ i, b+ j) with 0 ≤ i, j ≤ n− 1 are blocked. For
instance, the four points (14, 20), (14, 21), (15, 20), (15, 21) form a 2× 2

square of blocked points.
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Chapter 7

Modular multiplication and division

7.1 Modular multiplication

We saw in Chapter 6 that we can multiply modulo m, in the sense that
if a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m). However,
a glance at modular addition and multiplication tables suggests that these
two operations can behave quite differently from one another. Here are the
tables for addition and multiplication in Z/9Z:

+ 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8 0
2 2 3 4 5 6 7 8 0 1
3 3 4 5 6 7 8 0 1 2
4 4 5 6 7 8 0 1 2 3
5 5 6 7 8 0 1 2 3 4
6 6 7 8 0 1 2 3 4 5
7 7 8 0 1 2 3 4 5 6
8 8 0 1 2 3 4 5 6 7

× 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 4 6 8 1 3 5 7
3 0 3 6 0 3 6 0 3 6
4 0 4 8 3 7 2 6 1 5
5 0 5 1 6 2 7 3 8 4
6 0 6 3 0 6 3 0 6 3
7 0 7 5 3 1 8 6 4 2
8 0 8 7 6 5 4 3 2 1

In the addition table, every row and column contains each residue class
exactly once. This is pretty straightforward to understand: it’s just saying
that for every a, x ∈ Z/mZ, there is a unique b ∈ Z/mZ such that a +

b ≡ x (mod m). Indeed, b ≡ x − a (mod m), which makes sense because
subtraction is a well-defined operation in Z/mZ.

On the other hand, this property is not true in the multiplication table.
There are some rows and columns in which every element of Z/mZ appears
exactly once, but then there are others where this doesn’t happen: some
elements are repeated, and some are missing. For example, in Z/9Z, every
element appears exactly once in the 2 row, but not in the 3 row. This says

91
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that for every x ∈ Z/9Z, there is a unique b ∈ Z/9Z such that 2b ≡ x

(mod 9), but not such that 3b ≡ x (mod 9). For instance, this doesn’t
work when x = 4: no multiple of 3 can ever be 4 (mod 9).

We would like to identify those rows (or columns) of the multiplication
table in Z/mZ in which every element of Z/mZ appears exactly once. Let’s
look at the a-row, i.e. the row of multiples of a. Note that there are m
entries in the a-row, and also m elements of Z/mZ. There are two ways
that the a-row can fail to have the property that every element appears
exactly once. It could be the case that some element doesn’t appear at all,
and it could also be the case that some element appears more than once.
But the pigeonhole principle says that these are exactly the same: if we are
missing some element (say x), then there are m elements to fill, using only
m − 1 elements of Z/mZ. So some element must be repeated. For much
the same reason, if some element is repeated, then we don’t have enough
space to put all m elements.

Now, note that if every element of Z/mZ appears in the a-row, then 1
appears. On the other hand, if 1 appears—say as ab ≡ 1 (mod m)—then
every x appears, because a(bx) ≡ x (mod m). So it suffices to determine
when 1 appears in the a-row.

Definition 7.1. An element a ∈ Z/mZ is said to be a unit if there is some
b such that ab ≡ 1 (mod m). We write (Z/mZ)× (pronounced “Z mod mZ
star”) for the set of units of Z/mZ.

In other words, we’re trying to identify the units in Z/mZ.

Proposition 7.2. An element a ∈ Z/mZ is a unit iff gcd(a,m) = 1.

Proof. We have two things to prove: if a is a unit, then gcd(a,m) = 1; and
if gcd(a,m) = 1, then a is a unit.

Let us begin by showing that if a is a unit, then gcd(a,m) = 1. Since
a is a unit, there is some b such that ab ≡ 1 (mod m). By the definition
of modular arithmetic, this means that there is some integer k such that
ab = 1 + km, or ab − km = 1. By Bézout’s Lemma, this means that
gcd(a,m) = 1.

For the other direction, we assume that gcd(a,m) = 1, and we must
show that a is a unit. By Bézout’s Lemma, since gcd(a,m) = 1, there are
integers b and k such that ab+ km = 1. This means that ab ≡ 1 (mod m),
so a is a unit. �
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What we have just shown is that if a ∈ (Z/mZ)×, and b and c are
such that ab ≡ ac (mod m), then b ≡ c (mod m). In other words, we may
divide by units modulo m.

One peculiar thing we can do with this modular division is to define
congruences of fractions. For example, we may say that 1

2 ≡ 5 (mod 9).
There are several possible interpretations of this. First, we can clear de-
nominators: 1

2 ≡ 5 (mod 9) should be the same as 1 ≡ 2 × 5 (mod 9),
which is indeed true. Another interpretation is to say that—while 1 isn’t
divisible by 2—we can find some number congruent to 1 (mod 9) that is di-
visible by 2, then divide that number by 2. Our previous work shows that
our choice of even number congruent to 1 (mod 9) doesn’t matter: we’ll
get the same answer after dividing by 2 regardless of which one we choose.
So, if we instead take 28 as our even number congruent to 1 (mod 9), then
1
2 ≡

28
2 ≡ 14 ≡ 5 (mod 9), the same as we get when we choose 10.

On the other hand, we may not divide by non-units modulo m. For
example, 3 × 2 ≡ 3 × 5 (mod 9), even though 2 6≡ 5 (mod 9). So we may
not divide by 3 modulo 9.

Still, it turns out that we may partially divide by 3 in Z/9Z.

Proposition 7.3. Suppose that ab ≡ ac (mod m). Let g = gcd(a,m).
Then b ≡ c (mod m

g ).

First we’ll prove a simple lemma.

Lemma 7.4. Suppose gcd(a,m) = g. Let a = ga′ and m = gm′. Then
gcd(a′,m′) = 1.

Proof. By Bézout’s Lemma, we may write g as g = as+mt for some integers
s and t. Replacing a with ga′ and m with gm′, we get

g = ga′s+ gm′t.

If we divide both sides by g, we get
1 = a′s+m′t,

which by Bézout’s Lemma again implies that gcd(a′,m′) = 1. �

Let’s now return to the proof of Proposition 7.3.

Proof of Proposition 7.3. Since ab ≡ ac (mod m), there is some integer k
such that ab = ac+ km. Let us write a = ga′ and m = gm′. Then we have
ga′b = ga′c + gkm′. Dividing by g, we have a′b = a′c + km′, so a′b ≡ a′c

(mod m). Since gcd(a′,m′) = 1, by Lemma 7.4, we may divide by a′ to
obtain b ≡ c (mod m′), or b ≡ c (mod m

g ), as desired. �
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Recall that 3 × 2 ≡ 3 × 5 (mod 9) did not imply that 2 ≡ 5 (mod 9),
but Proposition 7.3 at least allows us to say that 2 ≡ 5 (mod 3), which is
true.

7.2 The totient function

An interesting question is to determine the number of units in Z/mZ,
i.e. the size of (Z/mZ)×.

Definition 7.5. The totient of m, denoted φ(m), is the number of units in
Z/mZ. A number a with 1 ≤ a ≤ m and gcd(a,m) = 1 is called a totative
of m.

Remark 7.6. Another common notation is ϕ(m). The symbols φ and ϕ are
just different ways of writing the Greek letter phi.

By Proposition 7.2, φ(m) is the number of totatives of m.

Remark 7.7. No one knows what the word “totient” means. The word was
coined by the 19th-century English mathematician James Joseph Sylvester,
who is also responsible for many other fun names in mathematics, including
“discriminant” and “matrix,” and his motivation for choosing this particular
word is unknown. Presumably there is some connection with “quotient.”

To find a formula for φ(n), it will be helpful to introduce a preliminary
definition and proposition.

Definition 7.8. A function f : N → R (or C, or any other reasonable
collection of numbers) is called multiplicative if, whenever gcd(m,n) = 1,
we have f(mn) = f(m)f(n).

Proposition 7.9. The totient function is a multiplicative function.

Proof. Suppose that gcd(m,n) = 1. We wish to figure out how many
numbers up to mn are relatively prime to mn. Write the numbers from 1
to mn in a table, like this:

1 2 3 · · · m

m+ 1 m+ 2 m+ 3 · · · 2m

2m+ 1 2m+ 2 2m+ 3 · · · 3m
...

...
...

. . .
...

(n− 1)m+ 1 (n− 1)m+ 2 (n− 1)m+ 3 · · · nm.
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There are some columns in which there can’t be any numbers relatively
prime to mn. A typical column contains numbers of the form km+`, where
` is fixed and k is variable. By the Euclidean algorithm, gcd(km+ `,m) =

gcd(m, `), and gcd(km+ `,m) ≤ gcd(km+ `,mn). Hence, if gcd(m, `) > 1,
then there is no way that km+ ` can be relatively prime to mn.

Hence, there are φ(m) columns that could conceivably contain num-
bers relatively prime to mn. In fact, all the numbers in all these columns
are relatively prime to m, so we just have to check how many of them are
relatively prime to n. Let us do this by focusing on one such column, say
the one consisting of numbers of the form km + `. We want to show that
no two numbers in this column are congruent modulo n. Suppose, to the
contrary, that rm + ` ≡ sm + ` (mod n). Then we can subtract ` from
both sides to get rm ≡ sm (mod n). Since gcd(m,n) = 1, we can divide
by m to get r ≡ s (mod n). But 0 ≤ r, s ≤ n−1, so if r ≡ s (mod n), they
are actually equal. Hence, no two numbers in this column are congruent
modulo n, and since there are n numbers in the column, they fill up all
the residue classes modulo n. We know that, of the residue classes modulo
n, exactly φ(n) are relatively prime to n. Hence, in this column, φ(n) are
relatively prime to n. Since there are φ(m) relevant columns, we have

φ(mn) = φ(m)φ(n),

so φ is multiplicative. �

Now, if f is a multiplicative function and the prime factorization of n
is n =

∏r
i=1 p

ei
i , then we have

f(n) =

r∏
i=1

f(peii ).

Thus, in order to calculate f(n) for any n, it suffices to calculate f at all
the prime powers pe. We now do this in the case of the totient function.

Proposition 7.10. If p is a prime, then φ(pe) = (p−1)pe−1 = pe−pe−1 =(
1− 1

p

)
pe.

Proof. Suppose that 1 ≤ a ≤ pe. Since the only divisors of pe are powers
of p, it follows that gcd(a, pe) > 1 if and only if a is a multiple of p. Hence
the number of units in Z/peZ is simply the number of elements that are not
multiples of p. There are pe−1 multiples of p between 1 and pe, so pe−pe−1
non-multiples of p. Hence φ(pe) = pe − pe−1. �
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Putting all this together, we have the following theorem:

Theorem 7.11. For every positive integer n, we have

φ(n) = n
∏
p|n

p prime

(
1− 1

p

)
.

Remark 7.12. The notation p | n reads “p divides n,” and it just means
that n is a multiple of p. More generally, we write m | n to mean that n is
a multiple of m. We also write m - n when n is not a multiple of m.

Proof. Suppose that the prime factorization of n is n =
∏r
i=1 p

ei
i . Then we

have

φ(n) =

r∏
i=1

φ(peii )

=

r∏
i=1

[
peii

(
1− 1

pi

)]

=

r∏
i=1

peii ·
r∏
i=1

(
1− 1

pi

)
= n

∏
p|n

p prime

(
1− 1

p

)
,

as desired. �

Given some number a with 1 ≤ a ≤ n, it might or might not be relatively
prime to n, so it might or might not be counted by φ(n). If gcd(a, n) = g,
then gcd

(
a
g ,

n
g

)
= 1, so a

g is a totative of ng , i.e. it is counted by φ
(
n
g

)
. A

careful analysis of this line of reasoning yields the following formula.

Theorem 7.13. Let n be a positive integer. Then∑
d|n

φ(d) = n. (7.1)

Proof. Let d1, . . . , dk be the divisors of n. We partition the numbers
1, 2, . . . , n into disjoint subsets Cd1 , . . . , Cdk such that, for each i, |Cdi | =

φ(di). What this means is that every integer from 1 to n will be placed
into exactly one of the sets Cd1 , . . . , Cdk , and each Cdi has φ(di) elements.
To do this, we let

Cdi =

{
j : 1 ≤ j ≤ n, gcd(j, n) =

n

di

}
.
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If gcd(j, n) = n
di
, then k = j

n/di
is relatively prime to di and is in the range

1 ≤ k ≤ di, i.e. k is a totative of di. The number of such elements k is
φ(di), by definition, so Cdi also has φ(di) elements: take all these values
of k and multiply them by n

di
. Since every element j with 1 ≤ j ≤ n is in

exactly one Cdi , it follows that the sum of the number of elements in the
Cdi ’s is equal to n, which is simply (7.1). �

Example. Let’s do this partitioning when n = 14. The divisors of 14 are
1, 2, 7, and 14. The set C1 consists of those numbers j from 1 to 14 with
gcd(j, 14) = 14

1 = 14, so just 14. Similarly, C2 consists of those numbers j
with gcd(j, 14) = 14

2 = 7, which is just 7. Continuing on this way, we get

C1 = {14}, C2 = {7}, C7 = {2, 4, 6, 8, 10, 12},

C14 = {1, 3, 5, 9, 11, 13}.
Note that for each divisor d of 14, the number of elements in Cd is φ(d), as
claimed in the proof.

7.3 Problems

(1) Find, with proof, all integers x such that 6x ≡ 4 (mod 28).
(2) Give a good algorithm for finding multiplicative inverses modulo m,

provided they exist. That is, given a and m with gcd(a,m) = 1, ex-
plain how to compute 1

a (mod m). Use your algorithm to compute 1
14

(mod 107). (Hint: Think about the Euclidean algorithm and Bézout’s
Lemma.)

(3) Prove that if p is prime, then the only elements of (Z/pZ)× that are
congruent to their multiplicative inverses modulo p are ±1 (mod p),
i.e. these are the only x ∈ (Z/pZ)× such that x ≡ 1

x (mod p). Find an
m such that there are more than two elements of (Z/mZ)× that are
congruent to their own inverses. Show that for any positive integer n,
there is an integer m (depending on n) such that at least n elements
of (Z/mZ)× are congruent to their own inverses.

(4) Prove that if gcd(a, b) = g, then

φ(ab) =
gφ(a)φ(b)

φ(g)
.

(5) Prove that for any integer n > 1, we have∑
1≤i≤n

gcd(i,n)=1

i =
nφ(n)

2
.
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(6) Prove that if d | n, then φ(d) | φ(n).
(7) Find all numbers n such that φ(n) = 36. Prove that you found all of

them.
(8) Prove that for every positive integer k, there are only finitely many

positive integers n such that φ(n) = k.
(9) Suppose f is a multiplicative function, and let

g(n) =
∑
d|n

f(d).

Prove that g is a multiplicative function.
(10) Let ε be any positive real number. Prove that there is some positive

integer n, depending on ε, such that φ(n)
n < ε. (This is probably too

hard in general, given what we have discussed so far. But you should
be able to do it when ε = 1

5 , so do that if you can’t do the general
case. The construction for the general case isn’t significantly different
from what you’ll probably do for 1

5 , but the problem is in proving that
it gets arbitrarily small.)



Chapter 8

Fermat’s Little Theorem

8.1 Modular exponentiation

Recall that we showed in Chapter 6 that addition, subtraction, and mul-
tiplication are well-defined modulo m. This means that if a ≡ b (mod m)

and c ≡ d (mod m), then a + c ≡ b + d (mod m), and similarly for sub-
traction and multiplication. The situation for division is a bit more subtle,
as we saw in Chapter 7, but it too works in much the same way once the
hypotheses are satisfied.

Yet, we saw that nothing of the sort works for exponentiation. That is,
we can find numbers a, b, c, d such that a ≡ b (mod m) and c ≡ d (mod m),
yet ac 6≡ bd (mod m). For instance, if we take a = b = 2, c = 1, d = 6, and
m = 5, then we have ac = 21 ≡ 2 (mod 5), but bd = 26 = 64 ≡ 4 (mod 5).

Using the well-definedness of multiplication modulo m, it follows that
if a ≡ b (mod m), then ac ≡ bc (mod m). The only thing we can’t always
get away with is modifying the exponent modulo m.

Still, it turns out that there is something we can say about changing the
exponent in modular arithmetic; it just looks a bit different from the other
operations. It’s somewhat simpler in the case that m is a prime number,
so we’ll replace m with a p to remind ourselves that the modulus is prime.
The version that works for composite m is given in problem 8.

8.2 Fermat’s Little Theorem

Here is the key theorem about modular exponentiation:

Theorem 8.1 (Fermat’s Little Theorem). If p is a prime number and a is
not a multiple of p, then ap−1 ≡ 1 (mod p).

99
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Remark 8.2. An equivalent statement, which doesn’t rely on a not being
a multiple of p, is that ap ≡ a (mod p). (See problem 1.) We will present
two proofs of Fermat’s Little Theorem, one of which will prove the version
in Theorem 8.1, and one of which will prove the equivalent statement.

Proof 1. Let a and p be as in Theorem 8.1. Consider the numbers
a, 2a, 3a, . . . , (p − 1)a. We claim that no two of these numbers are con-
gruent to each other modulo p, and that none of them are congruent to
0 (mod p). First, suppose that two of them are congruent to each other
modulo p, say ar ≡ as (mod p). Since p is a prime and a is not a multiple
of p, gcd(a, p) = 1, so we may divide by a modulo p, i.e. r ≡ s (mod p).
But since 1 ≤ r, s ≤ p − 1, there isn’t enough room for r to be congruent
to s modulo p unless r = s. Thus the numbers a, 2a, 3a, . . . , (p− 1)a are all
different modulo p.

Next, we need to show that none of a, 2a, 3a, . . . , (p − 1)a can be 0

(mod p). If one of them, say ar, is 0 (mod p), then either a or r must be
a multiple of p. But we’re assuming that a isn’t a multiple of p, and since
1 ≤ r ≤ p− 1, it’s also not a multiple of p. Thus none of these numbers is
0 (mod p).

Now, we have p − 1 numbers a, 2a, 3a, . . . , (p − 1)a, and they are all
distinct and nonzero modulo p. It follows that they are congruent to
1, 2, 3, . . . , p − 1 (mod p), in some order. Now, let’s multiply them all to-
gether. We have

(a)(2a)(3a) · · · ((p− 1)a) ≡ 1 · 2 · 3 · · · (p− 1) (mod p).

Let’s rewrite the left side by grouping all the a’s and then everything else.
The other stuff is simply (p− 1)!. Thus we have

ap−1 · (p− 1)! ≡ (p− 1)! (mod p).

Since (p− 1)! is not a multiple of p, we can divide both sides by (p− 1)! to
get ap−1 ≡ 1 (mod p), which is what we were trying to prove all along. �

Let’s now give a completely different proof, this time of the alternative
version ap ≡ a (mod p).

Proof 2. Let a be a positive integer, and let S be the set of sequences of
length p whose elements are integers from 1 to a. In other words, a typical
element of S is something of the form (x1, x2, . . . , xp), where 1 ≤ xi ≤ a for
each i with 1 ≤ i ≤ p. There are a choices for each xi, so there are a total
of ap elements of S.
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Given a sequence x = (x1, x2, . . . , xp) ∈ S, consider the shift f of x,
which moves the first term to the end, i.e. f(x) = (x2, x3, . . . , xp, x1). We
can keep shifting, so f2(x) is the double shift (x3, x4, . . . , xp, x1, x2), and so
forth. Note that fp(x) = x, since if we shift p times then we’re just back
to where we started.

Now let’s divide S into several smaller sets, called orbits, based on f :
given x ∈ S, let’s define

Yx = {x, f(x), f2(x), . . . , fp−1(x)}
to be the set of all shifts of x. Note that Yx = Yf(x) = Yf2(x), and so
forth, because these just consist of the same elements—but in a different
order. Furthermore, note that each x ∈ S is contained in exactly one of
these orbits Yx, where we consider two of them to be the same if they have
exactly the same elements.

Now, note that every Yx must contain either 1 or p elements. If x is a
constant sequence of the form (b, b, . . . , b), then x = f(x) = f2(x) = · · · =
fp−1(x), so Yx consists of just the element x. But otherwise Yx has exactly
p distinct elements, because all of x, f(x), f2(x), . . . , fp−1(x) are different
from each other. The number of Yx’s with exactly 1 element is simply a,
since there are a choices of constant sequences.

Now, let’s take all the Yx’s. Some of them have 1 element, and some
have p. In fact, we know that a of them have 1 element, and let’s say that
n of them have p elements. In total, they contain ap elements. Thus we
have a + pn = ap. Reducing modulo p, we get a ≡ ap (mod p), which is
what we wanted to prove. �

See Figure 8.1 for an example of this proof when a = 2 and p = 5. For
visual purposes, we have drawn red and blue dots instead of writing 1’s and
2’s. Each row consists of one complete orbit, i.e. one of the Yx’s.

Remark 8.3. Proof 2 only works when a is a positive integer (or perhaps a
nonnegative integer, if you can figure out how to handle the case 0 appro-
priately), because it is not possible to have a sequence whose elements are
integers from 1 to some negative integer. See if you can figure out an easy
way of deducing the result for negative integers a if you already know the
result for positive integers. This can be done in several ways.

8.3 Using Fermat’s Little Theorem

How does Fermat’s Little Theorem help us to simplify modular expo-
nentiation problems? Let’s look at an example.



102 Transition to Proofs

Figure 8.1. Proof 2 of Fermat’s Little Theorem, in the case a = 2 and
p = 5. Each row consists of one of the Yx’s.

Example. Let us compute 3100 (mod 7). By Fermat’s Little Theorem, we
know that 36 ≡ 1 (mod 7). We can now write 3100 as (36)16× 34. Thus we
have

3100 = (36)16 × 34 ≡ 116 × 34 ≡ 34 ≡ 4 (mod 7).

By the same logic, it follows that if p is prime, a ≡ b (mod p), and
c ≡ d (mod p − 1), then ac ≡ bd (mod p). Note that the congruence in
the exponent is modulo p− 1, rather than modulo p. This is the initially-
surprising consequence of Fermat’s Little Theorem.

An even more surprising consequence of Fermat’s Little Theorem is that
we can use it to conclude that a number is composite, without ever finding
a factor! Let’s see how that works.

Example. Let us show that 57 is composite, without factoring it. If 57 were
prime, then Fermat’s Little Theorem would tell us that 256 ≡ 1 (mod 57).
So, in order to conclude that 57 is composite, it suffices to check, somehow,
that 256 6≡ 1 (mod 57). The easiest way of doing such computations is by
repeated squaring: we have

256 = 232 × 216 × 28,

since 56 = 32 + 16 + 8. We don’t need to know the exact values of 232, 216,
and 28 though: we only have to know congruences modulo 57. To work
those out, we just keep squaring, reducing modulo 57 whenever possible.
We have:

21 = 2, 22 = 4, 24 = 16,

28 = 162 = 256 ≡ 28 (mod 57).
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So, that’s the first reduction. Continuing on, we have

216 = (28)2 ≡ 282 ≡ 43 (mod 57).

Finally, we have

232 = (216)2 ≡ 432 ≡ 25 (mod 57).

Now, we just have to compute 256 (mod 57):

256 = 232 × 216 × 28 ≡ 28× 43× 25 ≡ 7× 25 ≡ 4 (mod 57).

Since that’s not 1, we may conclude that 57 is composite, even without ever
finding a factor.

This method doesn’t always work to conclude that a number is com-
posite. For instance, we may notice that 341 is composite, because
341 = 11 × 31. However, 2340 ≡ 1 (mod 341). But we can pick some
value of a other than 2 in Fermat’s Little Theorem for this test. For in-
stance, if we choose a = 3, then we may conclude that 341 is composite,
because 3340 ≡ 56 (mod 341).

Remark 8.4. Let us note that the easy way to check that 2340 ≡ 1

(mod 341) is to use the Chinese Remainder Theorem, at least if we al-
ready know the factorization of 341. The Chinese Remainder Theorem
tells us that x ≡ 1 (mod 341) if and only if both x ≡ 1 (mod 11) and
x ≡ 1 (mod 31). So we have to check that 2340 ≡ 1 (mod 11) and 2340 ≡ 1

(mod 31). The first of these is very easy using Fermat’s Little Theorem,
for we have

2340 = (210)34 ≡ 134 ≡ 1 (mod 11).

For the second one, we note (just by pure calculation) that 25 ≡ 1

(mod 31), so

2340 = (25)68 ≡ 168 ≡ 1 (mod 31).

Thus 2340 ≡ 1 (mod 341). Now, we can see what is special about a = 2:
for any a that isn’t a multiple of 11, we have a340 ≡ 1 (mod 11). However,
usually a340 6≡ 1 (mod 31): it was something of a coincidence that 25 ≡ 1

(mod 31).

Sometimes, however, a number n is composite even though when we
choose any a—or at least any a that is relatively prime to n—we have
an−1 ≡ 1 (mod n). Such numbers are called Carmichael numbers, and the
first one is 561.

Theorem 8.5. 561 is a Carmichael number.
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Proof. The prime factorization of 561 is 561 = 3× 11× 17. We must show
that if gcd(a, 561) = 1, then a560 ≡ 1 (mod 561). By the Chinese Remain-
der Theorem, this amounts to showing that a560 ≡ 1 (mod 3), a560 ≡ 1

(mod 11), and a560 ≡ 1 (mod 17). We have

a560 = (a2)280 ≡ 1280 ≡ 1 (mod 3),

a560 = (a10)56 ≡ 156 ≡ 1 (mod 11),

and

a560 = (a16)35 ≡ 135 ≡ 1 (mod 17).

This completes the proof. �

Remark 8.6. The first three Carmichael numbers are 561, 1105, and 1729.
There are infinitely many Carmichael numbers, as shown in [AGP94].

So, we see that Fermat’s Little Theorem can be used as a compositeness
test : given an integer n, Fermat’s Little Theorem can be used to prove
that a number is composite. It cannot be used to prove that a number is
prime, but there is a modified version called the Miller–Rabin test that can
actually be used to prove primality, more or less. This is actually one of the
main ways that primality testing is done on computers today, as it is faster
than other known primality tests. See, for instance, Chapter 10 of [Sho09]
for a detailed discussion of the Miller–Rabin test.

8.4 Wilson’s Theorem

Another theorem of a similar flavor to Fermat’s Little Theorem is Wil-
son’s Theorem.

Theorem 8.7 (Wilson). If p is a prime number, then (p − 1)! ≡ −1

(mod p).

The proof we’ll see of Wilson’s Theorem should remind you of the proofs
we gave of Fermat’s Little Theorem. Although the two proofs we saw of Fer-
mat’s Little Theorem were quite different, our proof of Wilson’s Theorem
will blend some ingredients of each.

Proof. By definition, (p− 1)! = 1× 2× 3×· · ·× (p− 2)× (p− 1). For any a
with 1 ≤ a ≤ p− 1, there is a unique b in this range with ab ≡ 1 (mod p).
Furthermore, a = b if and only if a2 ≡ 1 (mod p), meaning that a2− 1 ≡ 0

(mod p), or (a− 1)(a+ 1) ≡ 0 (mod p). Since p is prime, this means that
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either a − 1 or a + 1 is a multiple of p, i.e. a ≡ ±1 (mod p). In the range
of such a, this means that a = b if and only if a = 1 or a = p− 1.

We next divide the elements of {1, 2, . . . , p−1} into sets Sa = {a, b} such
that ab ≡ 1 (mod p). By the above analysis, we know that Sa consists of
two elements, which multiply to 1 (mod p), unless a = 1 or a = p−1. Thus,
modulo p, we can compute (p− 1)! by multiplying all the pairs modulo p,
together with the two remaining elements 1 and p− 1, which are not part
of any pair. Since each pair multiplies to 1 (mod p), we have

(p− 1)! ≡
∏

1× 1× (p− 1) ≡ −1 (mod p),

as desired. �

8.5 Further reading

Primality testing and factoring are both very important problems in
cryptography. Thanks to the Miller–Rabin test and others like it, it is pos-
sible to test whether large numbers are prime on a computer very quickly.
On the other hand, it does not appear to be possible to solve the related
problem of actually factoring a (composite) number quickly, and the diffi-
culty of factoring a number of around 1000 digits that is the product of two
primes of around 500 digits each is crucial to making one of the most pop-
ular cryptosystems (the Rivest–Shamir–Adleman, or RSA, cryptosystem)
work. It is possible to factor a large number significantly more quickly than
just dividing by one prime after another, but still not fast enough to factor
1000-digit numbers. See for instance my book [Rub18] on cryptography for
a discussion of RSA together with some of the clever methods of factoring.

8.6 Problems

(1) Explain why the two statements of Fermat’s Little Theorem, i.e. Theo-
rem 8.1 and the statement in Remark 8.2, are equivalent, by explaining
how to deduce each one of them from the other one easily.

(2) Give another proof of Fermat’s Little Theorem using induction and
the identity

(x+ 1)p = 1 +px+
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · ·+pxp−1 +xp,

which comes from the Binomial Theorem (see Chapter 17).
(3) Let p1, . . . , pk be distinct primes, and let d be the least common mul-

tiple of p1−1, p2−1, . . . , pk−1. Prove that for any integer a, ad+1 ≡ a
(mod p1p2 · · · pk).
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(4) Prove that if p is prime, then

(p− 1)! ≡ (p− 1)

(
mod

p−1∑
i=1

i

)
.

(5) State and prove the converse of Wilson’s Theorem.
(6) Let p be a prime. Prove that p is the smallest prime dividing (p−1)!+1.
(7) Prove that if p is a prime and a is not a multiple of p, then a(p−1)p

n−1 ≡
1 (mod pn).

(8) Prove Euler’s generalization of Fermat’s Little Theorem, which says
that if gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n), where φ(n) is the
totient function of n.

(9) Prove that if 6k + 1, 12k + 1, and 18k + 1 are all primes, then their
product n = (6k + 1)(12k + 1)(18k + 1) is a Carmichael number.

(10) For nonnegative integers n and k with n ≥ k, let
(
n
k

)
denote the

number of ways of selecting k objects from a set of size n; it is not too
hard to check that (

n

k

)
=

n!

k!(n− k)!
.

Prove that if p is a prime, then
(
2p
p

)
≡ 2 (mod p2). (Hint: Use a vari-

ant of the sequence-shifting proof we gave of Fermat’s Little Theorem.
How will you make all the orbits have size either 1 or p2?)



Chapter 9

Pythagorean triples

9.1 Parametrizing Pythagorean triples

The Pythagorean Theorem is among the earliest mathematical theorems
known to human civilization. It says that if a, b, and c are the sidelengths
of a right triangle, with c being the hypotenuse, then a2 + b2 = c2. (See
Figure 9.1 for a hint of a proof of the Pythagorean Theorem.) A natural
quest, then, is to find right triangles all of whose sides are integers, which
is equivalent to searching for positive integer solutions to a2+ b2 = c2. The
most famous example is (3, 4, 5), and indeed 32+42 = 52. Other well-known
examples are (5, 12, 13), (8, 15, 17), (7, 24, 25), and (9, 40, 41). We call such
a triple (a, b, c) a Pythagorean triple.

Figure 9.1. A pictorial proof of the Pythagorean Theorem.

Given any Pythagorean triple, there is an especially easy way to make
more: just multiply all the numbers by some positive integer. For instance,
if we start with the triple (3, 4, 5) and multiply by 3, we get (9, 12, 15), which
is another Pythagorean triple. But, in some sense, this doesn’t really feel
like a different triple: it’s just a scaled version of the original triple. For
any such scaled family of triples, there is always one minimal one: the one

107
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where gcd(a, b, c) = 1 (or gcd(a, b) = 1, which is equivalent). We say that
a Pythagorean triple (a, b, c) is primitive if gcd(a, b, c) = 1.

An interesting problem is to determine all the primitive Pythagorean
triples. What this means is that we want a function that, when we plug
something in, we get a primitive Pythagorean triple as an output, in such a
way that every primitive Pythagorean triple can be formed via this process.
This is something of a lofty goal. Ordinarily, we cannot hope to write down
all solutions to such an equation in a convenient manner. It is quite magical
that in the case of primitive Pythagorean triples, there is a simple way of
doing this.

A lot of deep mathematics from number theory and algebraic geom-
etry goes into explaining, in some sense, why we can parametrize prim-
itive Pythagorean triples—but not necessarily solutions to other sorts of
equations. Or, if we can in theory parametrize solutions to other types of
equation—because, for instance, there are only finitely many—it requires
a lot of work and clever proofs in order to guarantee that we have found
all of them. One very famous question along these lines is Hilbert’s Tenth
Problem, which asks whether there is an algorithm to determine whether
a polynomial equation in several variables has a solution in integers. We
now know (see [Mat70]) that there is no such algorithm, which can be in-
terpreted casually as saying that number theory is hard: we can’t write a
computer program to solve number theory problems for us in an automatic
manner.

Okay, so let’s see how to parametrize primitive Pythagorean triples!
Let’s start with the equation a2 + b2 = c2 and divide by c2 to get(a

c

)2
+

(
b

c

)2

= 1.

If we now let x = a
c and y = b

c , we get x2 + y2 = 1, which is the equation
of a circle. Because we obtained x and y by dividing two integers, we’re
no longer restricting to integer solutions for x and y, but rather rational
solutions. Switching from integer solutions to rational solutions might not
seem like an improvement, but on the plus side, we’ve reduced the number
of variables from 3 to 2, and we’re now working with a circle, which is a
very familiar object.

In order to find rational points on the circle, we have to start with one
rational point to get the process off the ground. It doesn’t matter which
one we choose, but the most popular choice for solving this problem is the
point (−1, 0), so that’s what we’ll use.
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Now, given any other rational point (x0, y0) on the circle, consider the
line through (−1, 0) and (x0, y0). Because both of these points are rational,
so is the slope y0

x0+1 . Thus every rational point on the circle corresponds to
a rational slope. Furthermore, because a line and a circle can only intersect
in at most two points, every rational point gives us a different rational
slope.

Now, what happens if we take an arbitrary line through (−1, 0) with
rational slope? Does this line intersect the circle at another rational point?
It does! There are two ways of seeing this. The first way—the more concep-
tual and less computational way—is to note that we’re solving a quadratic
equation with rational coefficients in order to find the x-coordinate. This
doesn’t mean that the solutions are rational, because the quadratic formula
has a square root in it. However, one of the solutions, namely x = −1, is
rational, so the other one must be as well. Then, because this point (x0, y0)

has rational x-coordinate, and the slope and x-intercept are rational, the
y-coordinate is as well.

If you didn’t like that explanation, that’s okay, because we have a second
explanation, which is that we simply find the point. We’ll need to do this
in order to parametrize primitive Pythagorean triples anyway, so let’s get
on with it. Suppose the line has slope t. Since it passes through the point
(−1, 0), this means its equation is y = t(x + 1). We’re interested in the
second point, the one other than (−1, 0), of intersection between this line
and the circle x2 + y2 = 1. That is, we need to solve the simultaneous
equations

y = t(x+ 1), x2 + y2 = 1.

To do this, substitute the first equation into the second to get

x2 + t2(x+ 1)2 = 1,

or

(1 + t2)x2 + 2t2x+ (t2 − 1) = 0.

Applying the quadratic formula to solve for x, we get

x =
−2t2 ±

√
4t4 − 4(t4 − 1)

2(1 + t2)
=
−2t2 ± 2

2(1 + t2)
= −1,

1− t2

1 + t2
.

The first solution, x = −1, corresponds to the point (−1, 0), so we’re only
interested in the second solution x = 1−t2

1+t2 . Since y = t(x + 1), the y-
coordinate of this point is

y = t

(
1− t2

1 + t2
+ 1

)
=

2t

1 + t2
.
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Thus the second point of intersection is(
1− t2

1 + t2
,

2t

1 + t2

)
.

What we have shown is that there is a one-to-one correspondence be-
tween rational numbers (slopes) on the one hand, and points on the circle
x2 + y2 = 1 with rational coordinates, if we exclude the point (−1, 0), on
the other hand. See Figure 9.2 for an illustration of this correspondence.

(−1, 0)

(
− 7

25 ,
24
25

)

slope = 4
3

Figure 9.2. Parametrizing rational points on the circle in terms of
rational slopes.

Since t is a rational number, we can write it as t = m
n , where m and n

are relatively prime integers. With this notation, our rational point on the
circle is (

1−m2/n2

1 +m2/n2
,

2m/n

1 +m2/n2

)
,

or (
n2 −m2

n2 +m2
,

2mn

n2 +m2

)
.

Now, keep in mind that this is a point on the circle x2 + y2 = 1. We
really want to know about primitive Pythagorean triples: relatively prime
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solutions to a2 + b2 = c2. To convert from a rational point on the circle to
a primitive Pythagorean triple, we can just clear denominators: if(

n2 −m2

n2 +m2

)2

+

(
2mn

n2 +m2

)2

= 1,

then

(n2 −m2)2 + (2mn)2 = (n2 +m2)2. (9.1)

We can easily check that if m and n are any integers, then (9.1) holds,
so we get a Pythagorean triple. But two questions still remain. First, is
this triple primitive? Second, do all primitive Pythagorean triples arise in
this way?

Let us answer the first question first. We want to know if the triple
(n2−m2, 2mn, n2+m2) is primitive, meaning that we want to know whether
the gcd of two of these numbers is equal to 1 or not. The easiest ones to
work with are the first and third, so let’s determine the gcd of n2−m2 and
n2 + m2. Suppose a prime p divides both n2 −m2 and n2 + m2, so that
there are integers k and ` such that

n2 −m2 = pk,

n2 +m2 = p`.

Then we have

2n2 = p(k + `), 2m2 = p(`− k).

In other words, p divides both 2n2 and 2m2. Since m and n are assumed
to be relatively prime, the only prime that can divide both 2n2 and 2m2

is 2. We check that 2 divides both n2 −m2 and n2 + m2 if and only if m
and n are either both even or both odd. The both even case can’t happen,
because we assumed that m and n are relatively prime, and hence not both
even. But the both odd case is something we have to watch out for: that
case gives us Pythagorean triples that aren’t primitive, because a, b, and
c are all even. Thus we find that this construction gives us a primitive
Pythagorean triple if and only if m and n are relatively prime, and one of
m and n is even and the other is odd.

Now, let’s answer the second question: Do all primitive Pythagorean
triples arise in this way? We know that if (a, b, c) is a (primitive)
Pythagorean triple, then

(
a
c ,

b
c

)
is a rational point on the circle x2 +y2 = 1,

so there exist m and n such that a
c = n2−m2

n2+m2 and b
c = 2mn

n2+m2 . But this
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really means that, for some nonzero integer k, we have

ka = n2 −m2

kb = 2mn

kc = n2 +m2.

It turns out that we can’t really guarantee that k = 1. For instance, consider
the Pythagorean triple (4, 3, 5) in that order. We cannot find integers m
and n such that n2 −m2 = 4, 2mn = 3, and n2 +m2 = 5, because (among
other reasons) the middle equation 2mn = 3 is problematical. But we can
avoid that particular issue. If (a, b, c) is a primitive Pythagorean triple,
then exactly one of a and b is even. Let’s make a convention that b will
always be the even one. Now, with that in mind, can we always find integers
m and n such that a = n2 −m2, b = 2mn, and c = n2 +m2?

Yes, we can! To do so, let’s just find them. Since we’re assuming b is
even, let’s write b = 2d. Since b2 = c2 − a2, we have

4d2 = c2 − a2 = (c− a)(c+ a),

and we want this to be equal to (2mn)2. Since both a and c are odd, c− a
and c+ a are both even, so let’s divide by 4 to get

d2 =
c− a

2
· c+ a

2
.

Since a and c are relatively prime, so are c−a
2 and c+a

2 . (To see this, note
that if g divides both c−a

2 and c+a
2 , then g also divides c+a

2 −
c−a
2 = a and

c+a
2 + c−a

2 = c.) Since their product is a perfect square, they must each be

perfect squares individually, so let’s set m =
√

c−a
2 and n =

√
c+a
2 . Thus

d2 = m2n2, or d = mn. Since b = 2d, we have b = 2mn, and m and n are
relatively prime.

Let’s check that this actually works. If m =
√

c−a
2 and n =

√
c+a
2 , then

n2 −m2 =
c+ a

2
− c− a

2
= a,

2mn = 2

√
c− a

2
·
√
c+ a

2
= 2

√
c2 − a2

4
= 2

√
b2

4
= b,

and

n2 +m2 =
c+ a

2
+
c− a

2
= c.
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Putting all this together, we have proven the following theorem.

Theorem 9.1. Let (a, b, c) be a primitive Pythagorean triple, where b is
even. Then there exist relatively prime positive integers m and n such that

a = n2 −m2, b = 2mn, c = n2 +m2.

Conversely, if m and n are relatively prime positive integers such that one
of m and n is even and one of them is odd, and n > m, then

(n2 −m2, 2mn, n2 +m2)

is a primitive Pythagorean triple.

9.2 Descent and Fermat’s Last Theorem for n = 4

One neat thing we can do with the parametrization of primitive
Pythagorean triples is to prove one case of Fermat’s Last Theorem.

Theorem 9.2 (Fermat’s Last Theorem). Let n be a positive integer greater
than 2. Then there are no positive integers x, y, z such that xn + yn = zn.

Of course, when n = 2, there are many solutions, because these are just
the Pythagorean triples. Fermat’s Last Theorem is one of the most famous
and difficult problems in mathematics, and it took over 350 years from the
time Fermat stated it until Andrew Wiles finally proved it. Wiles’s proof
is extremely difficult and uses much of the machinery of modern number
theory and algebraic geometry.

The only case that Fermat himself proved was the case n = 4 (and
by extension, all multiples of 4, since if x4k + y4k = z4k is a solution with
n = 4k, then (xk)4+(yk)4 = (zk)4 is a solution with n = 4). Fermat showed
that there are no triples (x, y, z) of positive integers such that x4 +y4 = z4.
In fact, he showed something a bit stronger: There are no triples of positive
integers (x, y, z) such that x4 + y4 = z2, which is better because all fourth
powers are automatically squares.

The proof uses the method of descent, which is really a special kind of
hybrid induction and contradiction. What Fermat did was to show that
if we start with a solution to x4 + y4 = z2, then we can produce another
solution, which is smaller in the sense that z is smaller. But that process
can’t go on forever: there must be a smallest one. To make this more
precise, we suppose that we start with a solution, and it’s the smallest
one possible. Then we produce a smaller one. But this contradicts our
hypothesis that we started with the smallest one. This technique can also
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be phrased in terms of induction, where the induction hypothesis is that
there are no solutions for a given value of z. Let’s see how that proof goes.

Theorem 9.3. There are no positive integers x, y, z such that x4+y4 = z2.

Proof. Suppose that positive integers x, y, z satisfy x4 + y4 = z2, and that
this solution is minimal in the sense that there is no solution with a smaller
value of z. Let us write a = x2 and b = y2, so that a2 + b2 = z2. In other
words, (a, b, z) is a Pythagorean triple. If both a and b are odd, then a2

and b2 are both 1 (mod 4), so z2 ≡ 2 (mod 4), but squares can never be 2

(mod 4). Thus a and b can’t both be odd. On the other hand, if a and b
are both even, then x and y are also even, and z is a multiple of 4, so we
can write x = 2x′, y = 2y′, and z = 4z′. Thus we have

16x′4 + 16y′4 = 16z′2,

or

x′4 + y′4 = z′2,

which means that (x′, y′, z′) is a smaller solution than (x, y, z), contradicting
our hypothesis.

Thus we may assume that one of a and b is even, and the other one is
odd, and that (a, b, z) is a primitive Pythagorean triple. Without loss of
generality, let’s say that a is odd and b is even. Thus, by the parametrization
of primitive Pythagorean triples, there are integers m and n such that

a = n2 −m2 b = 2mn z = n2 +m2.

Let us look at a = n2 −m2. Since a = x2, we have x2 = n2 −m2, so that
(x,m, n) is another Pythagorean triple. It is also primitive, so that means
there exist integers s and t such that

x = t2 − s2 m = 2st n = t2 + s2.

Recall that b = y2, so we have

y2 = b = 2mn = 4st(t2 + s2).

Now, 4st and t2 + s2 are relatively prime, so they are both perfect squares,
say 4st = u2 and t2 + s2 = v2.

Next, because 4st = u2, u is even, so we have st =
(
u
2

)2. Since s and t
are relatively prime, they are both squares, say s = k2 and t = `2. Plugging
these into the equation t2 + s2 = v2, we have

`4 + k4 = v2.
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Thus we have produced another solution to x4 + y4 = z2. It remains only
to show that v < z. To see this, note that

v ≤ v2 = t2 + s2 = n < n2 +m2 = z,

as desired. Thus we have reached a contradiction, and the proof is complete.
■

9.3 Problems

(1) Let a and b be two positive integers that differ by 2. Consider the
number 1

a+
1
b . For instance, if a and b are 4 and 6, you get 1

4+
1
6 = 5

12 .
What does this have to do with Pythagorean triples? Make a precise
statement along these lines, and prove that it is correct.

(2) Prove that if (a, b, c) is a primitive Pythagorean triple where a is odd,
then 2(c− a) is a perfect square.

(3) Find, with proof, a parametrization for all relatively prime positive
integer solutions to a2 + 2b2 = c2.

(4) For which primes p do there exist positive integers x, y, and n such
that pn = x3 + y3?

(5) Find two primitive Pythagorean triples (a, b, c) with c = 65. Find two
other values of c for which there are at least two primitive Pythagorean
triples (a, b, c) with the same value of c, like in the case of c = 65.

(6) Find a value of c for which there are at least three primitive
Pythagorean triples of the form (a, b, c).

(7) Find, with proof, all integer solutions to x3 + 2y3 = 4z3.
(8) Prove that there are no solutions in positive integers to x4 − y4 = z2.
(9) Let f : N → N be a function such that f(n + 1) > f(f(n)) for all

n ∈ N. Prove that f(n) = n for all n.
(10) Prove that it is not possible to divide a cube into a finite number of

smaller cubes, in such a way that all the small cubes have a different
sidelength.

(11) Find infinitely many triangular numbers that are also perfect squares.
(A triangular number is a number of the form n(n+1)

2 , where n is a
positive integer.)
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Chapter 10

Sums of two squares

10.1 Sums of two squares

Our main goal this chapter is to determine which integers can be rep-
resented as sums of two squares. That is:

Question 10.1. For which integers n do there exist integers x and y such
that x2 + y2 = n?

We will be able to answer this question completely, but it will take a
little while. Let us start with some observations. The first one, which is
really obvious, is that any square is nonnegative, so if n can be represented
as a sum of two squares, then n ≥ 0.

The second observation is that, if we pick a modulus m, then only some
of the residue classes a (mod m) are squares. Thus, for good choices of m,
we can learn something about which integers definitely cannot be written
as sums of two squares. For example, one can check that any square is
0, 1 (mod 4), and adding two of these numbers gives a result that is 0, 1, 2

(mod 4). Thus if n ≡ 3 (mod 4), then n cannot be written as a sum of two
squares.

Theorem 10.2. Suppose m and n are both sums of two squares. Then so
is mn.

To see this, we simply write down a representation of mn as a sum of
two squares based on the representations of m and n.

Proof. If m = a2 + b2 and n = c2 + d2, then

mn = (ac− bd)2 + (ad+ bc)2

is a sum of two squares. �

117
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That proof was rather disappointing, wasn’t it? The problem is that
it lacks insight: we can easily verify that it is correct, but how would we
think of it? Often, proofs are written in such a way as to hide the thought
process behind them. This tradition of writing proofs that are completely
correct but unenlightening goes back to Gauß.1 Gauß was criticized for
doing this, to which he responded that no architect leaves the scaffolding
after completing the building.

What we learn from this is that there is a major difference between a
correct argument and an insightful one. Sometimes correct proofs are in-
sightful, and sometimes they aren’t. When writing the solution to a home-
work problem, in which the goal is to show the reader that you understand
what is going on, you do not necessarily have to provide any insight. But
when writing a paper or book—in which the goal is to teach the reader what
is going on—if your proof is not insightful, then it ought to be accompanied
by some further remarks explaining what the insight is.

Indeed, the proof of Theorem 10.2 hides some very useful and beautiful
insight. In fact, I can never remember how to write down the squares in
the proof, so I have to rederive it every time. Here is how I derive it.

Let us suppose that m = a2 + b2 and n = c2 + d2. Then, assuming we
allow ourselves the use of i =

√
−1, we can factor m and n:

m = (a+ bi)(a− bi), n = (c+ di)(c− di).
Thus, when we multiply them together, we get

mn = (a+ bi)(c+ di)(a− bi)(c− di).
Multiplying out the first two terms on the right and the last two terms, we
get

mn = ((ac− bd) + (ad+ bc)i)((ac− bd)− (ad+ bc)i)

= (ac− bd)2 + (ad+ bc)2.

We have just written mn as a sum of two squares!
Theorem 10.2 suggests that it sensible to start with the primes when

determining which numbers can be written as a sum of two squares. That
is, which primes can be written as sums of two squares? We know that
if all the prime factors of n can be written as sums of two squares, then
so can n. The converse is not exactly true, though: 9 can be written as a
sum of two squares even though 3 cannot. However, as we will see, there is
something close to a converse available.

1The letter “ß” is called an “Eszett.” It is a German letter (or, more precisely, ligature)
used for a double-s under certain circumstances. People less pretentious than I will write
“Gauss” rather than “Gauß.”
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10.2 Primes congruent to 1 (mod 4)

We know from the above discussion that numbers congruent to 3

(mod 4) cannot be written as sums of two squares. The primes left to
be considered are 2 (which can clearly be written as a sum of two squares,
namely 2 = 12 + 12) and the primes congruent to 1 (mod 4). We will show
that if p ≡ 1 (mod 4) is prime, then p can be written as a sum of two
squares. But first, we’ll prove something weaker that will be handy later.

Lemma 10.3. If p ≡ 1 (mod 4), then there is some number x such that
x2 + 1 is a multiple of p. If p ≡ 3 (mod 4), then there is no such x.

Another way of stating this is to say that −1 is a quadratic residue
modulo p if p ≡ 1 (mod 4), but −1 is a quadratic nonresidue modulo p if
p ≡ 3 (mod 4). By definition, a number a is a quadratic residue modulo a
prime p if there is some integer x such that x2 ≡ a (mod p). Similarly, a is
a quadratic nonresidue modulo p if there is no integer x such that x2 ≡ a

(mod p). Some people add to their definition of quadratic residue that a
must not be a multiple of p; there is good reason for doing so, but it won’t
affect us here, so we’ll not dwell on this point.

Proof. Let us look at the numbers {1, 2, . . . , p − 1}, which are considered
to be the nonzero residue classes modulo p. We break these numbers up
into subsets {x,−x, x̄,−x̄}, where these numbers are taken modulo p. Here
x̄ denotes the multiplicative inverse of x, i.e. the number such that xx̄ ≡
1 (mod p). Usually, these subsets consist of four distinct numbers, but
sometimes two of them are equal. Let us investigate:

• If x ≡ −x (mod p), then 2x ≡ 0 (mod p), which means that x ≡ 0

(mod p) since p is odd. But 0 is not in our set. Thus it cannot happen
that x ≡ −x (mod p).
• If x ≡ x̄ (mod p), then x2 ≡ 1 (mod p), so that x ≡ 1 (mod p) or
x ≡ p − 1 (mod p). When either of these are true, then the subset
containing x becomes {1, p− 1} and hence has size 2.
• If x ≡ −x̄ (mod p), then x2 ≡ −1 (mod p). When this happens, then
x ≡ −x̄ and −x ≡ x̄, so the subset containing x becomes {x,−x} and
has size 2. Such a subset exists if and only if there is some x such that
x2 ≡ −1 (mod p).

So, we see that most of the subsets have size 4, and there is one subset
{1, p− 1} of size 2, and potentially one more {x,−x} of size 2, if x2 ≡ −1
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(mod p) has a solution modulo p. Since the total number of elements is
p − 1, we find that this additional subset of size 2 exists if p ≡ 1 (mod 4)

and does not exist if p ≡ 3 (mod 4). In other words, x2 ≡ −1 (mod p)

has a solution if p ≡ 1 (mod 4) and does not have a solution if p ≡ 3

(mod 4). �

Recall that in Chapter 3 we proved that there are infinitely many primes
congruent to 3 (mod 4). The technique we used there is not applicable for
primes congruent to 1 (mod 4). But with the help of Lemma 10.3, we are
now able to prove that there are also infinitely many primes congruent to
1 (mod 4).

Corollary 10.4. There are infinitely many primes congruent to 1 (mod 4).

Proof. Suppose we have any finite list of primes congruent to 1 (mod 4),
say p1, . . . , pk. Then consider the number

M = 4

(
k∏
i=1

pi

)2

+ 1.

By Lemma 10.3, if p is a prime dividing M , then p ≡ 1 (mod 4). Fur-
thermore, none of p1, . . . , pk divides M . So there must be more primes
congruent to 1 (mod 4) not among p1, . . . , pk. �

We are now ready to show that if p ≡ 1 (mod 4), then p be can be
written as a sum of two squares.

Theorem 10.5. If p ≡ 1 (mod 4) is prime, then there are integers x and
y with x2 + y2 = p.

We will present two proofs. The first uses Lemma 10.3. The second one
is a shorter “pure magic” proof.

Proof 1. Let X = {(x′, y′) : 0 ≤ x′, y′ ≤ b√pc}. Then |X| = (1 + b√pc)2 >
p. Thus by the pigeonhole principle, for any s, we can find two elements
(x′, y′) and (x′′, y′′) ∈ X such that

x′ − sy′ ≡ x′′ − sy′′ (mod p).

Rewriting this, we have

x′ − x′′ ≡ s(y′ − y′′) (mod p).

Let x = |x′ − x′′| and y = |y′ − y′′|; thus x ≡ ±sy (mod p), or x2 ≡ s2y2

(mod p). Note also that x and y are not both zero. Now, by Lemma 10.3,
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there is some s such that s2 ≡ −1 (mod p); choose one. Then x2 ≡ −y2
(mod p), or x2 + y2 ≡ 0 (mod p). Now, 0 ≤ x, y ≤ b√pc, so 0 ≤ x2, y2 < p.
It cannot be that both x2 and y2 are 0, so 0 < x2 + y2 < 2p. Since x2 + y2

is divisible by p and is strictly between 0 to 2p, it must be exactly p. So,
we have found a solution to x2 + y2 = p. �

We now give another proof of Theorem 10.5. This one, due to Zagier
in [Zag90] and based on ideas of Heath-Brown and Liouville, is just a single
sentence long and doesn’t even use Lemma 10.3.

Proof 2: Zagier’s Proof. The involution on the finite set S = {(x, y, z) ∈
N3 : x2 + 4yz = p} defined by

(x, y, z) 7→


(x+ 2z, z, y − x− z) if x < y − z
(2y − x, y, x− y + z) if y − z < x < 2y

(x− 2y, x− y + z, y) if x > 2y

has exactly one fixed point, so |S| is odd and the involution defined by
(x, y, z) 7→ (x, z, y) also has a fixed point. �

Okay, so what just happened there? Let’s take it apart slowly, defining
our terms and analyzing what is going on.

Definition 10.6. Let X be a set and f : X → X a bijection. Then f is
said to be an involution if f ◦ f = idX .

If f is an involution on a finite set X, then we can pair up the elements
of X into subsets of size 1 or 2: Px = {x, f(x)}. Note that Pf(x) =

{f(x), f(f(x))} = {x, f(x)} = Px. Furthermore, Px has size 1 if and only
if x = f(x). Let us write Fixf (X) for the subset of X that is fixed by f :
Fixf (X) = {x ∈ X : x = f(x)}. Then, since |Px| is even unless x = f(x),
we have

|X| ≡ |Fixf (X)| (mod 2).

An important consequence is that if f and g are both involutions on X,
then |Fixf (X)| ≡ |Fixg(X)| (mod 2). In particular, if f has exactly one
fixed point, then g must have at least one fixed point.

Let us investigate Zagier’s weird involution, and call it f . Suppose
x < y − z, so that f(x, y, z) = (x + 2z, z, y − x − z). Since x > 0 for all
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(x, y, z) ∈ S, x+ 2z > 2z, so f(x, y, z) is in the third case. Thus, we have

f(f(x, y, z)) = f(x+ 2z, z, y − x− z)
= (x+ 2z − 2z, x+ 2z − z + y − x− z, z)
= (x, y, z),

so that—at least in this range—f is an involution. Similar checks show that
f is a full involution: it switches the first and third cases, and it sends the
second case to itself. Thus, if f has any fixed points, they must be in the
second case. Let’s investigate.

Suppose y − z < x < 2y and f(x, y, z) = (x, y, z), so that (x, y, z) =

(2y − x, y, x− y + z). This implies that x = y, and since x2 + 4yz = p, we
have y(y+4z) = p. But p is prime, so this can only happen if x = y = 1, and
then z = p−1

4 . For these values of x, y, z, we do indeed have y−z < x < 2y.
So, f does in fact have exactly one fixed point, which means that |S| is odd.

Then, there’s the other involution g(x, y, z) = (x, z, y). Since |S| is odd,
any involution on S has an odd number of fixed points, and in particular
at least 1. Thus g has some fixed point, which is of the form (x, y, y), so
that x2 +4y2 = p. But this is a representation of p as a sum of two squares!

In fact, this proof shows even more than we bargained for: not only can
we write p = x2 + 4y2, where x and y are positive integers, but the number
of ways of doing that is odd. In fact, it turns out that there is exactly one
way of doing so. (See problem 9.) However, neither proof gives us much of
a clue about how to find x and y so that x2 + 4y2 = p. Actually finding x
and y is more challenging. One way of doing so is using the Tonelli–Shanks
algorithm; see [NZM91, §2.9].

10.3 A geometric interpretation of Zagier’s involution

The involution f in Zagier’s proof might feel unmotivated. However,
there is an elegant geometric interpretation of it due to Spivak [Spi07]. An
element (x, y, z) ∈ S can be thought of as an x × x square, together with
four y× z rectangles, one based at each corner of the square. For instance,
the element (3, 1, 8) ∈ S for p = 32 + 4× 1× 8 = 41 can be pictured as in
Figure 10.1.

Given such a pictorial representation, we can eliminate the boundary
lines of all the rectangles, as shown in Figure 10.2.

But given such a diagram, there are two ways of resolving it into a square
with four rectangles emanating from it, with the other one being shown in
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Figure 10.1. A pictorial representation of the element (3, 1, 8) ∈ S.

Figure 10.2. The representation without the boundary lines.

Figure 10.3. There is one exception, when there is only one resolution, and
this is the triple (1, 1, p−14 ).
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Figure 10.3. The other way of decomposing the figure.

What Zagier’s involution does is to swap the two representations. See
Figure 10.4 for the involution when p = 41. In this case, we have

S = {(1, 1, 10), (1, 2, 5), (1, 5, 2), (1, 10, 1), (3, 1, 8), (3, 2, 4),
(3, 4, 2), (3, 8, 1), (5, 1, 4), (5, 2, 2), (5, 4, 1)}.

10.4 Composite numbers

Now we are ready to tackle the original question: which positive integers
can be represented as the sum of two squares? And we can answer it
completely:

Theorem 10.7. A positive integer n can be written as a sum of two squares
if and only if every prime p ≡ 3 (mod 4) occurring in the prime factoriza-
tion of n occurs with even exponent.

This means the following: suppose the prime factorization of n is
pe11 pe22 · · · p

ek
k , where the pi’s are distinct primes. Then n can be written

as the sum of two squares if and only if, for each i with pi ≡ 3 (mod 4), ei
is even.
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Figure 10.4. Zagier’s involution when p = 41.

Proof. Let us show first that if every prime p ≡ 3 (mod 4) occurring in the
prime factorization of n occurs with even exponent, then n is a sum of two
squares. This is the easy direction, because of everything we have already
done. If p ≡ 1 (mod 4) is a factor of n, then we know that p can be written
as a sum of two squares. If p ≡ 3 (mod 4) is a factor of n, then certainly p2

can be written as a sum of two squares, namely as p2 + 02. Finally, 2 can



126 Transition to Proofs

be written as a sum of two squares, as 2 = 12 + 12. Thus n is a product
of numbers that can each be written as sums of two squares, and hence by
Theorem 10.2 n can be too.

Now let’s do the other direction. Suppose that n can be written as
the sum of two squares, as n = x2 + y2. It suffices to show that if p ≡ 3

(mod 4) divides n, then p must divide both x and y. This is because, if that

happens, then n
p2 is also a sum of two squares, namely n

p2 =
(
x
p

)2
+
(
y
p

)2
,

and the result follows by induction on n. In order to see why p must divide
both x and y, let us suppose otherwise: p - x. Then we can find some
x̄ such that xx̄ ≡ 1 (mod p). Let us multiply the equation n = x2 + y2

by x̄2 to obtain nx̄2 = (xx̄)2 + (yx̄)2. Now, reducing modulo p, we have
0 ≡ 1 + (yx̄)2 (mod p). But this means that (yx̄)2 ≡ −1 (mod p), and we
saw earlier in Lemma 10.3 that this cannot happen when p ≡ 3 (mod 4).
And we’re done! �

10.5 Further reading

We have seen how to determine the numbers that can be written in
the form x2 + y2, where x and y are integers. We can ask infinitely many
related questions. For instance, given an integer d, which integers can be
written in the form x2 + dy2? Indeed, it turns out that there is an entire
(excellent) book [Cox13] on the topic.

Can Zagier’s proof be generalized to these other cases? Elsholtz
in [Els10] used an argument similar to Zagier’s to determine the primes
that can be written as x2 + 2y2 and x2 + 3y2.

Another interesting approach is Conway’s topograph method. This is a
pictorial method, in which one draws a graph to determine the numbers rep-
resented by x2 + y2, or some similar expression. See Conway’s book [CF97]
to learn about it.

10.6 Problems

(1) Determine the primes p < 100 for which p can be written as a2+ab+b2

for some integers a and b. Make a reasonable conjecture (that you
expect to be true) about which primes can be written as a2 + ab+ b2

based on your data.
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(2) The number 3024961 factors as 3024961 = 29×104309, where both of
those factors are prime. You are given that 3024961 = 5192 + 16602.
Use this to find a and b such that a2 + b2 = 104309.

(3) Use the fact that a prime p ≡ 1 (mod 4) can be written as a sum of
two squares and the fact that the product of two integers that can be
written as sums of two squares can also be written as a sum of two
squares to conclude that if p ≡ 1 (mod 4), then there is a primitive
Pythagorean triple (a, b, p), i.e. relatively prime integers a and b with
a2 + b2 = p2. (For example, we have the familiar triples (3, 4, 5),
(5, 12, 13), (8, 15, 17), (20, 21, 29).)

(4) We showed that if m and n are sums of two squares, then so is mn.
Show this is not true for sums of three squares by finding m and n

that are sums of three squares, but mn is not a sum of three squares.
(5) Make a list of numbers up to 100 and determine which ones can be

written as sums of three squares. Make a reasonable conjecture (that
you expect to be true) based on your data about which numbers can
be written as a sum of three squares.

(6) Show that if n can be represented as a sum of squares of two rational
numbers, then it can also be represented as a sum of squares of two
integers.

(7) If p ≡ 1 (mod 4) is prime, then use Wilson’s Theorem to find an
integer n such that n2 ≡ −1 (mod p).

(8) Prove that a prime p ≡ 1 (mod 8) can be written in the form x2 +

2y2. (Hint: break up the numbers {1, 2, . . . , p − 1} into sets of the
form {x, x̄,−x,−x̄, ix,−ix, ix̄,−ix̄}, where i2 ≡ −1 (mod p). Then
analyze how many elements these sets have.) It turns out that primes
p ≡ 3 (mod 8) can also be written in the form x2 + 2y2, but I don’t
know of such a simple proof of this fact.

(9) We showed that a prime p ≡ 1 (mod 4) can be written as a sum
of two squares. Show that this representation is essentially unique,
by explaining how to factor n if we know two representations n =

a2 + b2 = c2 + d2 as a sum of two squares. This is known as Euler’s
factorization method. (Hint: if n = a2 +b2 = c2 +d2, then factor both
sides using

√
−1, and then take gcds of appropriate factors.) Use this

to factor 1000009 = 10002 + 32 = 9722 + 2352.
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Chapter 11

An introduction to p-adic numbers

11.1 Lifting congruences

In general, reduction modulom is a very common way to guarantee that
some equation has no integer solutions. This doesn’t always work, as there
are examples of equations that have solutions modulo m for every m, yet
still have no integer solutions. But it’s a good start. What is less clear is
whether we can use reduction to find solutions when they do exist.

Let us consider the polynomial f(x) = x2−31x−102. We can easily find
the roots of this polynomial using the quadratic formula, but in the interest
of doing something new, let us attempt to find its roots differently. Let us
pick some number m and try to find the roots of this sample polynomial
modulo m. In general, this sort of thing works best when m is a prime, so
then it’s more natural to call it p. Let’s (arbitrarily) try p = 5.

Does the equation x2−31x−102 have any solutions modulo 5? It’s easier
to tell when we reduce all the coefficients modulo 5, so we get x2 − x − 2.
The roots of this modulo 5 are 2 and −1 ≡ 4. We have two possibilities
here, so let’s choose 4. (This is not completely at random, and we’ll see why
soon.) Our next aim is to try to find a root of f congruent to 4 (mod 5),
i.e. some a such that f(a) = 0 and a ≡ 4 (mod 5). To do this, we try to
determine what this root should be modulo higher and higher powers of 5.
What happens modulo 25? Can we find a “lift” of the root 4 (mod 5) to a
root modulo 25?

Any lift of 4 (mod 5) to something modulo 25 can be written as 5a1+4,
where a1 ∈ {0, 1, 2, 3, 4}. So, let’s try plugging that into f : we want to find
an a1 such that

(5a1 + 4)2 − 31(5a1 + 4)− 102 ≡ 0 (mod 25).

129
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Reducing the coefficients modulo 25, we get

15a1 + 16− 5a1 + 1− 2 ≡ 0 (mod 25),

or

10a1 + 15 ≡ 0 (mod 25).

Dividing by 5, we get

2a1 + 3 ≡ 0 (mod 5),

which has the unique solution a1 = 1, so 5a1 + 4 = 9. Thus, we have now
lifted our solution 4 (mod 5) to 9 (mod 25).

Onward! Let us now lift to a solution modulo 53 = 125. This time, we
look for a number of the form 25a2 + 9 such that

(25a2 + 9)2 − 31(25a2 + 9)− 102 ≡ 0 (mod 125),

where a2 ∈ {0, 1, 2, 3, 4}. We find that a2 = 1, so the solution is 34

(mod 125). We can keep on going, modulo 625, 3125, and so forth, ex-
cept that 34 is actually a root of the original polynomial, so we’re done.

But remember, there’s another root, the one that’s 2 (mod 5). If we try
the same thing there, we sequentially learn that the solution is 2 (mod 5),
22 (mod 25), 122 (mod 125), 622 (mod 625), and so forth. In fact, the
solution is −3.

11.2 The p-adic numbers and their arithmetic

When we use the above method for solving an equation f(x) = 0, we
are really trying to find integers a0, a1, a2, . . . ∈ {0, 1, . . . , p− 1} such that

f

(
n−1∑
i=0

aip
i

)
≡ 0 (mod pn),

for all n. In base p, these partial solutions are the numbers
an−1an−2 · · · a2a1a0. It makes sense, then, to put together all the an’s
into one big base-p number: · · · anan−1an−2 · · · a2a1a0. If an = 0 for all
sufficiently large n, then we have a nonnegative integer in its usual base-p
expansion. If an = p− 1 for all sufficiently large n, then we have a negative
integer in an unusual form.

An especially closed-minded person would elect to restrict the sorts of
numbers we may consider to those two types: the integers that we already
know and love. But in this formulation, that seems a bit artificial: there’s no
reason why we have to place restrictions on what all but finitely many of the



An introduction to p-adic numbers 131

an’s can be, when the universe doesn’t force us to do that. We call a number
of the form · · · anan−1an−2 · · · a2a1a0, where each ai ∈ {0, 1, . . . , p − 1}, a
p-adic number or a p-adic integer . We denote the set of p-adic integers by
Zp.

Given a new system of numbers, we would like to make sure that we
can do arithmetic with it. Fortunately, we can. Addition, subtraction,
and multiplication work pretty much the same way as they do for decimal
numbers, except that we have to remember that everything is now in base
p. Let’s look at examples of addition, subtraction, and multiplication in
Z5.

Example (Addition). We have

· · · 4 1 3 2 0 1
+ · · · 2 0 3 3 4 4
· · · 1 2 2 1 0 0

As usual, we “carry” whenever a sum in a column exceeds p − 1, and all
addition is modulo p.1

Example (Subtraction). We have

· · · 3 1 2 2 0 3
− · · · 4 1 0 4 2 4
· · · 4 0 1 2 2 4

As usual, we “borrow” when computing a− b when a < b.

Note also that −1 = · · · 44444:

· · · 0 0 0 0 0 0
− · · · 0 0 0 0 0 1
· · · 4 4 4 4 4 4

1What is carrying? It turns out that it is most naturally interpreted as a cocycle, i.e.
something that represents a class in group cohomology. See Daniel Isaksen’s beautiful
paper [Isa02] for an explanation.
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Example (Multiplication). We have

· · · 3 4 2 1 0 2
× · · · 2 4 4 1 0 3
· · · 1 3 1 3 1 1
· · · 0 0 0 0 0
· · · 2 1 0 2
· · · 4 1 3
· · · 1 3
· · · 4
· · · 3 4 0 0 1 1

Division is a little bit different, because of the unfortunate algorithm
most of us learned when we were very young.2 For addition, subtraction,
and multiplication, our usual algorithms start with the least significant
(rightmost) digits and work their way up to the most significant (leftmost)
digit. But our algorithm for division works differently, starting with the
most significant digit and working down. Since numbers in Zp do not have
most significant digits—they go on to the left forever—this approach does
not work.

However, we can also perform division starting from the least significant
digit, when our numbers are written in a prime base. I don’t know how
to make a neat table for it like the way we originally get taught how to do
long division, so we’ll have to do it without the picture.

Let us compute 1
3 in Z5. This means solving the equation 3x = 1 in Z5.

First, we solve it modulo 5, and we find that the (unique) solution is x ≡ 2

(mod 5). So we write x = 2 + 5a1 + · · · . To find a1, we solve 3(2 + 5a1) ≡ 1

(mod 25), or 6 + 15a1 ≡ 1 (mod 25) or 1 + 3a1 ≡ 0 (mod 5), so a1 = 3.
Next, we find a2 such that 2 + 3× 5 + 25a2 is an inverse of 3 modulo 125,
so 3(2 + 3 × 5 + 25a2) ≡ 1 (mod 125), or 51 + 75a2 ≡ 1 (mod 125), or
2 + 3a2 ≡ 0 (mod 5), so a2 = 1. Continuing on, we find that, in base 5,

1

3
= · · · 3131313132.

Let’s check that this makes sense: if the last digit were a 1 instead of a
2, it would just be 313131 repeating forever. We should then add 1 to get

2When you are actually doing arithmetic, I recommend avoiding these algorithms when-
ever possible, as they are slow and error-prone. Instead, I recommend first trying to find
tricks specific to the numbers at hand to perform the computations more quickly and
accurately.
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1
3 . In other words,

1

3
=

∞∑
n=0

(3× 5 + 1)× 25n + 1,

which is good, because we know how to sum geometric series:
∞∑
n=0

(3× 5 + 1)× 25n + 1 =
16

1− 25
+ 1 = −16

24
+ 1 =

1

3
,

as desired.3

11.3 Qp

The division algorithm we discussed works whenever the denominator
is not a multiple of p. More precisely, if m

n is a fraction in lowest terms,
then it is in Zp as long as p - n. In fact, this works even if m,n ∈ Zp, rather
than just Z, although “lowest terms” loses at least a bit of its meaning in
that case. But what if p | n? For instance, what is 1

p in Zp?
Well, nothing, because our familiar process can’t get started. To find

the first digit, we have to solve a0p ≡ 1 (mod p), which has no solutions.
But we shouldn’t have expected that everything would be in Zp, should
we? Inspired by what we do with ordinary real numbers, we introduce a . . .
p-mal point? (It would be silly to call it a decimal point when we’re writing
our numbers in base p, wouldn’t it?) As a base-p number, 1

p is · · · 000.1.
More generally, a p-adic rational number is a base-p number of the form

· · · a3a2a1a0.a−1a−2 · · · a−k,

where there are only finitely many digits to the right of the p-mal point.
In terms of a sum, a p-adic rational number can be written as

∞∑
n=−k

anp
n.

We write Qp for the set of all p-adic rational numbers; the relationship
between Qp and Zp is the same as that between Q and Z, namely that
every element of Qp can be expressed as a

b where a, b ∈ Zp and b 6= 0, and
that every such fraction is in Qp.

3Is this okay? Should we be concerned about convergence? Yes, it is okay, and yes,
we should be concerned about convergence! Convergence in Zp means the same “sort”
of thing as it does in R, but our notion of “closeness” is different. However, we will not
develop this point further in this book.
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If a, b ∈ Zp and b 6= 0, then a
b ∈ Qp. To see this, write b = pβb′, where

b′ is not divisible by p. Then
a

b
=

a

pβb′
=

1

pβ
a

b′
,

so that a
b′ ∈ Zp and multiplication by 1

pβ
just shifts the p-mal point by β

positions.

11.4 Some p-adic irrational numbers

Now, not all p-adic numbers are rational. This is because (see problem 7)
the rational numbers have eventually periodic digits, but we can certainly
find sequences of digits which are not eventually periodic. Some of them
are irrational and algebraic: roots of polynomial equations. Let’s have a
look and try to find a root of the quadratic polynomial f(x) = x2 − x + 3

in Z5. Note that the roots in C are 1±
√
−11
2 .

We solve this equation just as we did in the introductory example: by
looking for a solution modulo 5, then trying to lift it modulo higher and
higher powers of 5. To do the first step, we just check all five possibilities
and see if any of them work:

02 − 0 + 3 = 3 6≡ 0 (mod 5)

12 − 1 + 3 = 3 6≡ 0 (mod 5)

22 − 2 + 3 = 5 ≡ 0 (mod 5)

32 − 3 + 3 = 9 6≡ 0 (mod 5)

42 − 4 + 3 = 15 ≡ 0 (mod 5).

Thus the two solutions modulo 5 are 2 and 4. Let’s work with the one that
is 2 (mod 5).

To lift it, we attempt to find an a1 such that f(5a1 + 2) ≡ 0 (mod 25).
Plugging this in, we need that

(5a1 + 2)2 − (5a1 + 2) + 3 ≡ 0 (mod 25),

or, after expanding and simplifying,

20a1 + 4− 5a1 − 2 + 3 = 15a1 + 5 ≡ 0 (mod 25).

Dividing by 5, we need that 3a1 + 1 ≡ 0 (mod 5), so a1 = 3. Thus the
solution is 3 × 5 + 2 (mod 25), or 17 (mod 25). Note that we didn’t get
stuck here. We will investigate why very shortly, after we go through just
one more step of the procedure.
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Continuing along, we need to find a2 such that f(25a2 + 17) ≡ 0

(mod 125). Plugging this into the polynomial, we get

(25a2 + 17)2 − (25a2 + 17) + 3 ≡ 0 (mod 125),

or

100a2 + 39− 25a2 − 17 + 3 ≡ 75a2 + 25 ≡ 0 (mod 125),

or 3a2 + 1 ≡ 0 (mod 5). So a2 = 3. Doing this procedure infinitely many
times, we eventually find a 5-adic root of x2 − x+ 3. Thus we have found
a quadratic irrational number in Z5.

Now, let us stop for a moment to think about why we always have a
unique way to lift a solution modulo 5n to a solution modulo 5n+1. Note
that, at each step, we only have to solve a linear equation modulo 5, i.e.
an equation of the form ca + d ≡ 0 (mod 5), where c and d are fixed.
This equation always has a unique solution, unless c = 0. So, why isn’t
c = 0? This amounts to finding the coefficient of an−1 modulo 5n in
f(an−15n−1 + · · · + a1 × 5 + a0). We can lump all the rest of the terms
together, so that we have f(5n−1a + b) ≡ 0 (mod 5n). The coefficient of
a is then 2 × 5n−1b − 5n−1; this is nonzero modulo 5n unless 2b − 1 ≡ 0

(mod 5), or b ≡ 3 (mod 5). But that is not the case: b ≡ 2 (mod 5). Thus
we can never get stuck, and in fact we will always have a unique lift. As
soon as we have a solution modulo 5, we can guarantee that we will have a
unique solution all the way up to Z5.

11.5 Hensel’s Lemma

Let us now think more generally about when we will get stuck. Let
us start with a polynomial f(x), and we are looking for a p-adic root of
f(x) = 0. Let us assume that we have found a root a0 modulo p, and we
wish to lift it all the way to a root in Zp. Can we do so?

Let us suppose that f(x) = cdx
d + cd−1c

d−1 + · · ·+ c1x+ c0, and let us
suppose that we have a root b modulo pn above a0 that we wish to lift to a
root modulo pn+1 by finding some an such that f(anp

n+b) ≡ 0 (mod pn+1).
When we expand out, we won’t be concerned about the coefficient of a2n
or higher powers of an, because those will all be divisible by pn+1; all
that matters is the coefficient of an. So, we compute it: by the Binomial
Theorem (see Chapter 17), it is

pn
(
dcdb

d−1 + (d− 1)cd−1b
d−2 + · · ·+ 2c2b+ c1

)
.
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We need to make sure that this is nonzero modulo pn+1, i.e. that(
dcdb

d−1 + (d− 1)cd−1b
d−2 + · · ·+ 2c2b+ c1

)
6≡ 0 (mod p).

If you know calculus, you will recognize this as saying that f ′(b) 6≡ 0

(mod p). We have now proven Hensel’s Lemma:

Theorem 11.1 (Hensel’s Lemma). Let f(x) be a polynomial with coeffi-
cients in Zp, and suppose a0 is such that f(a0) ≡ 0 (mod p). If f ′(a0) 6≡ 0

(mod p), then there is a unique a ∈ Zp such that a ≡ a0 (mod p) and
f(a) = 0.

Note that some of the hypotheses here can fail. One thing that can
go wrong is that we might not have a root modulo p. For example, if
f(x) = x2 + 2 and p = 5, then there is no root modulo 5, so there is
certainly no root of f in Z5. Another thing that can go wrong is that f has
a root a0 modulo p, but the derivative f ′(a0) is 0 (mod p). For example,
f(x) = x2 + 2 has no root in Z2, even though f(0) ≡ 0 (mod 2).

11.6 Further reading

The p-adic numbers are very important in modern number theory, as
important as the real and complex numbers. Thus there is a lot to be said
about them. An in-depth study of them will involve a blend of number the-
ory, analysis, and topology, and in some ways they behave quite differently
from the real and complex numbers. For instance, in the p-adic numbers,
all triangles are isosceles! A good introductory book on the p-adic numbers
is [Gou20], while a magical more advanced book is [Kob12].

11.7 Problems

(1) Compute 1
7 in Z3.

(2) Is 3 a multiple of 5 in Z11? Prove it.
(3) Prove that every nonzero element of Qp can be written uniquely in the

form pnru, where n ∈ Z, r ∈ {1, 2, . . . , p− 1}, and u ∈ 1 + pZp = {u ∈
Zp : u ≡ 1 (mod p)}. What change do you have to make to represent
only the nonzero elements of Zp?

(4) Describe the elements of Q ∩ Zp. Prove that your answer is correct.
(5) For which values of a ∈ Z does the polynomial x2 + x+ a have a root

in Q2? Prove that your answer is correct.
(6) How many roots does x4 + 3x2 + 3 have in Z7?
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(7) Show that an element of Qp (or Zp) is in Q if and only if its digits are
eventually periodic, i.e. if they eventually repeat like we saw for 1

3 in
Z5.

(8) Find a polynomial f(x) with integer coefficients such that f has a root
α ∈ Z/pZ that does not lift to a root in Zp. Find a polynomial g(x)

with integer coefficients such that g has a root β ∈ Z/pZ that lifts to
two or more distinct roots in Zp.

(9) Let p be a prime. Show that there are exactly p solutions to xp = x

in Zp. Let T denote the set of solutions. Show that T is closed under
multiplication: if x, y ∈ T , then xy ∈ T . The elements of T are called
Teichmüller representatives.

(10) Let a ∈ Zp, and let ta be the Teichmüller representative congruent
to a modulo p. Show that, for each positive integer n, ta ≡ ap

n

(mod pn+1). Thus you can approximate the Teichmüller representa-
tive in some congruence class by taking an arbitrary element of that
congruence class and raising it to some large power of p.

(11) Show that if p is an odd prime and a ≡ 1 (mod p), then a has a square
root in Zp. On the other hand, show that 3 and 5 are not squares in
Z2.
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PART 2

Combinatorics
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Chapter 12

Additive and multiplicative problems

12.1 The art of counting

Combinatorics is all about counting: determining the number of ways
to perform some task, order a list, and so forth. There are many ways of
counting. The simplest, of course, is to make a list of all the possibilities,
and then, well, count: 1, 2, 3, and so on. For very simple problems, when the
number is quite small, this is a completely satisfactory method of counting.

However, there are several issues that prevent this simple approach from
being a good general problem-solving strategy. One problem is that the
number we’re trying to count to may be quite large. A typical example of
this is Archimedes’s stomachion problem (Οστομάχιον in Greek), as shown
in Figure 12.1. The challenge here is to determine the number of ways
the displayed polygons (triangles, quadrilaterals, and pentagons) can be
arranged into a square, with no holes and no overlaps. Archimedes, the
great mathematician from ancient Greece, asked this question. Only re-
cently, Cutler determined that the number of such arrangements is exactly
17152 if we count all solutions, or 536 if we count them up to symmetry.
We don’t want to have to count that high!

Another issue with this approach is the challenge of actually making a
list. When we list out all the possibilities, we want to do so in such a way
that we can be completely sure that every possibility is on the list, exactly
once. This requires good organization; without a method for constructing
our list in an organized manner, we are likely to miss some possibilities, or
else list some possibilities twice. Try to imagine for a moment how we would
construct a list for the stomachion problem so as to be absolutely certain
that we have accounted for all possibilities, and there are no duplicates.
It’s not an easy problem at all!

141
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Figure 12.1. Archimedes’s stomachion problem: how many ways are
there to arrange the pieces to form a square?

There is one more issue with the enumerated list approach. What hap-
pens if, instead of being asked for the number of solutions to a single prob-
lem, we are asked for a function that describes the number of solutions
to a family of problems? A typical simple example, which we’ll examine
in detail very shortly, is to determine the number of subsets of the set
[n] = {1, 2, . . . , n}. We can make lists to work out small cases:

n = 1: ∅, {1}
n = 2: ∅, {1}, {2}, {1, 2}
n = 3: ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

We find that the number of subsets of [n] when n = 1, 2, 3 is f(1) = 2,
f(2) = 4, and f(3) = 8, simply by counting the lists we created. But we
can’t make a list for each n, because there are infinitely many. Instead, we
need a better strategy.

The most prized enumeration method in combinatorics is the bijective
method. We have some set S, possibly described in a complicated manner,
and we want to know how many elements it has. To do this, we find some
other set T , such that we already know how many elements T has, and then
we find a function f : S → T that is bijective. Let’s recall exactly what
that means.
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Definition 12.1. Let S and T be two sets, and let f : S → T be a function.

• We say that f is surjective or onto if, for every t ∈ T , there is some
s ∈ S such that f(s) = t.
• We say that f is injective or one-to-one if, whenever s 6= s′, we have
f(s) 6= f(s′).
• We say that f is bijective if it is both injective and surjective.

See Figure 12.2 for pictures of surjective and injective functions.

a

b

c

x

y

a

b

x

y

z

Figure 12.2. Left: a surjective function. Right: an injective function.

The key point here is that if there is a bijection between two sets S and
T , then they have the same number of elements. The challenge, of course,
is coming up with a suitable bijection, i.e. an easily countable T and a
bijective function f : S → T . Sometimes, this can be an extremely difficult
problem, depending on the nature of S.

12.2 Additive problems

Sometimes, when solving counting problems, we can break the problem
down into several sub-problems, and then add the results. Let’s start with
a typical (easy) example.

Question 12.2. You have three cats and four dogs. How many cats and
dogs total do you have?

The answer is 7, of course, but let’s delve a bit deeper and understand
exactly what’s going on, and how to interpret this in terms of bijections.
The non-bijective way of doing this would be to take the three cats and four
dogs, line them up, and count them. That’s a pretty silly idea, because they
probably won’t sit still for long enough to count them. As soon as you have
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done even something as simple as giving the animals names (or representing
them as pictures), you’ve already created a bijection.

So, let’s give them names. Instead of giving them normal cat and
dog names, let’s give them names that will be easier to work with from
a mathematical point of view. We’ll call the cats C1, C2, C3 and the dogs
D1, D2, D3, D4. Thus we have created a bijection from our set of animals
to the set A = {C1, C2, C3, D1, D2, D3, D4}. Thus the two sets have the
same number of elements. If we feel that the set A is easy enough to count,
then we can stop there. If not, we can make things even clearer. Consider
the set [7] = {1, 2, 3, 4, 5, 6, 7}. We create a bijection between A and [7] as
follows: define a function f : A → [7] by setting f(Ci) = i for 1 ≤ i ≤ 3

and f(Di) = i+ 3 for 1 ≤ i ≤ 4.
To check that f is a bijection, we show that it is both surjective and

injective. Let’s start by showing that f is surjective. This means that for
every j ∈ [7], we must show that there is some a ∈ A such that f(a) = j. If
1 ≤ j ≤ 3, then j = f(Cj), and if 4 ≤ j ≤ 7, then j = f(Dj−3). That takes
care of all cases, so f is surjective. To show that f is injective, we need to
show that if a 6= b, then f(a) 6= f(b). Up to symmetry, we have three cases:

Case 1: a and b are both cats. Say a = Ci and b = Cj . Then f(a) = i

and f(b) = j, so if f(a) = f(b), then i = j, and so they are the same
animal.

Case 2: a is a cat and b is a dog. Then f(a) ≤ 3 and f(b) ≥ 4, so
f(a) 6= f(b).

Case 3: a and b are both dogs. Say a = Di and b = Dj . Then f(a) = i+3

and f(b) = j + 3. If f(a) = f(b), then i+ 3 = j + 3, or i = j, so they
are the same animal.

This completes the proof of injectivity. Since we have shown that f is both
injective and surjective, it is bijective.

More generally, if we had c cats and d dogs, then we would have a total
of c+ d animals.

Needless to say, we won’t usually be quite that detailed with our proofs
or quite so pedantic about our bijections.

Remark 12.3. We will often use the notation [n] for the integers from 1 to
n. From now on, we will simply use that notation whenever needed, rather
than specifying what it means on each occasion.
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12.3 Multiplicative problems

Sometimes when solving counting problems, we break the problem down
into several sub-problems, then multiply the results.

Question 12.4. You have three cats and four dogs. How many ways are
there to pick one cat and one dog?

Clearly, there are three ways to pick a cat, and four ways to pick a dog,
but then what? How do we create a bijection between cat–dog pairs and
something else?

Similarly to what we did before, we have a bijection between the cats
and [3], and we have a bijection between the dogs and [4]. We therefore have
a bijection between the cat–dog pairs and the set [3] × [4], which consists
of all ordered pairs (i, j) where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4.

However, it might still not be entirely obvious how many elements [3]×
[4] has, so we’d like to describe a bijection between [3]× [4] and [n] for some
integer n. It turns out that the right integer is n = 12, so let’s write down
a bijection between [3]× [4] and [12]. One possible bijection is as follows:

f(1, 1) = 1 f(2, 1) = 5 f(3, 1) = 9

f(1, 2) = 2 f(2, 2) = 6 f(3, 2) = 10

f(1, 3) = 3 f(2, 3) = 7 f(3, 3) = 11

f(1, 4) = 4 f(2, 4) = 8 f(3, 4) = 12.

Or, if you want a “formula” for f ,

f(i, j) = 4(i− 1) + j.

Evidently, f is a bijection, so there are 12 cat–dog pairs.
More generally, of course, if we had c cats and d dogs, then we would

have cd cat–dog pairs.
How could we have expected in advance that this problem would be

a multiplicative problem, whereas the previous one would be an additive
problem? This comes from experience, but a pretty good heuristic1 is that
“or” problems (pick one of these things, or one of those things, but not
both) are additive, whereas “and” problems (pick one of these things, and
one of those things) are multiplicative.

1A heuristic is a method for making educated guesses about how to solve problems.
Heuristics aren’t proofs and aren’t acceptable substitutes for proofs, but generally when
working on a math problem, you’ll want to start with a heuristic and then turn it into
a proof later.
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Multiplicative problems are more common than additive problems, so
let’s look at some more. Recall that in §12.1 we considered the problem
of determining the number of subsets of [n]. A subset T of a set S is a
set such that all the elements of T are elements of S. In other words, it
consists of some elements from S and nothing from outside of S. A subset
can be empty, i.e. it is allowed not to have any elements.

Theorem 12.5. If S contains n elements, then S has 2n subsets.

Proof. Let us assume that S = [n], since the number of subsets of S depends
only on the number of elements of S. We construct a bijection from the
set2 P(S) of subsets of S to [2]× [2]× · · ·× [2], where there are n copies of
[2], also denoted [2]n. To do this, we construct a function f : P(S)→ [2]n,
defined by

f(T ) = (a1, a2, . . . , an),

where ai = 1 if i 6∈ T and ai = 2 if i ∈ T .
Let us show that f is a bijection. We begin by checking that it is

surjective. Let (a1, a2, . . . , an) be an arbitrary element of [2]n, where each
ai ∈ [2]. Then define T to be T = {i ∈ [n] : ai = 2}. Then f(T ) =

(a1, a2, . . . , an). Since (a1, a2, . . . , an) ∈ [2]n was arbitrary, this shows that
f is surjective.

Now let’s show that f is injective. Suppose that f(T ) = f(U), for some
T,U ⊆ S. Let us say that f(T ) and f(U) are equal to (a1, a2, . . . , an).
Then T = {i ∈ [n] : ai = 2}, and U is also equal to the same thing. Thus
T = U . This implies that f is injective.

Thus we have shown that the function f is a bijection from P(S) to
[2]n, so P(S) and [2]n have the same number of elements. Since [2]n has
2n elements, so does P(S). �

Example. Let us suppose that S = [5] and T = {1, 2, 5}. Then f(T ) =

(2, 2, 1, 1, 2). Notice that the 2’s are in positions 1, 2, and 5, exactly the
elements of T .

Remark 12.6. It’s more common to biject P(S) with {0, 1}n, i.e. n-tuples
of elements that are 0 and 1, rather than 1 and 2. However, our way works
just as well.

Let’s look at another similar multiplicative problem. We would like to
determine the number of ways of ordering the elements of [n]. For instance,

2The power set of S.
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there are 6 ways of ordering the elements of 3, namely

123 132 213 231 312 321.

Theorem 12.7. The number of ways of ordering the elements of [n] is
n! = n× (n− 1)× (n− 2)× · · · × 3× 2× 1.

One can prove Theorem 12.7 using a bijection with [n]× [n− 1]× · · · ×
[3] × [2] × [1], but it is slightly annoying to describe. So we’ll do it a bit
differently.

Proof. We have n choices for which number goes first. After we have deter-
mined that, we have n − 1 choices for which number goes second, since it
can be anything except for the number that went first. Similarly, we have
n − 2 choices for which number goes third, and so forth. Putting all this
together, there are n × (n − 1) × (n − 2) × · · · × 3 × 2 × 1 = n! ways of
arranging the numbers in [n]. �

Next up, what happens if we want to repeat some elements in the list?
For instance, perhaps we’d like to know the number of ways of arranging
the letters in the word COMBINATORICS. That’s a 13-letter word, but with
a bunch of repeated letters, so the answer isn’t just 13!.

Theorem 12.8. Let n and k be positive integers, and suppose that
a1, . . . , ak are nonnegative integers with a1 + · · · + ak = n. The number
of ways of ordering ai copies of i for each i with 1 ≤ i ≤ k is

n!

a1!a2! · · · ak!
.

Proof. Let us suppose the number of such orderings is R. Now, consider
the ai copies of i to be different, labeled as i1, i2, . . . , iai , for each i. The
number of ways of ordering these n objects is (a1 + a2 + · · · + ak)! = n!.
For each of the R orderings of the indistinguishable 1’s, 2’s, and so forth,
we can arrange the 1’s in a1! ways, the 2’s in a2! ways, and so forth. Thus
we have

a1!a2! · · · ak!R = n!,

or

R =
n!

a1!a2! · · · ak!
,

as claimed. �
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Another common type of problem is about ordering only some of the
elements of a set.

Theorem 12.9. Let n and k be positive integers, with k ≤ n. The number
of ways of ordering k of the numbers in [n] is n!

(n−k)! .

Proof. There are n ways to choose the first item in the list, then n−1 ways
to choose the second item in the list, and so forth. In general, there are
n− i+ 1 ways to choose the ith item in the list. Thus the number of ways
of ordering k of the numbers from [n] is

n× (n− 1)× (n− 2)× · · · × (n− k + 1)

=
n!

(n− k)× (n− k − 1)× · · · 3× 2× 1
=

n!

(n− k)!
,

as claimed. �

12.4 Complementary counting

Sometimes, in order to count the number |A| of elements in a set A, it is
easier to count the elements that are not in A instead. The formal setup is
that we have two finite sets A and B, with A ⊆ B, and we wish to count |A|.
Now, every element of B is in exactly one of A or B \A = {b ∈ B : b 6∈ A}.
Thus we have

|A| = |B| − |B \A|.

Thus if we can determine |B| and |B \A|, then we know what |A| is. Let’s
see an example.

Question 12.10. How many subsets of [2n] are there that contain at least
one even number?

With the notation as above, we let B be the set of subsets of [2n] and A
the set of subsets of [2n] containing at least one even number. Then B \A
is the set of subsets of [2n] not containing at least one even number, i.e.
those that only contain odd numbers. As we have already seen, we have
|B| = 22n. There are n odd numbers in [2n], so the number of subsets of
[2n] containing only odd numbers is 2n, i.e. |B \ A| = 2n. Thus we have
|A| = 22n − 2n.

A good rule of thumb for when to use complementary counting is that
it is likely to be useful if you think that |B \A| < |A|. It tends to be easier
to count the sizes of smaller sets than the sizes of larger ones. Of course,
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there are many instances where this rule of thumb fails, but this is at least
something to keep in mind when solving combinatorial problems.

12.5 Bijections and inverses

So far, in order to check that a function is a bijection, we have had to
prove that it is both injective and surjective. However, there is another way
to check that a function is a bijection.

Theorem 12.11. Let A and B be sets, and let f : A → B be a function.
Then f is a bijection if and only if there is a function g : B → A such that
g ◦ f(a) = a for all a ∈ A, and f ◦ g(b) = b for all b ∈ B.

This function g “undoes” whatever f does. For instance, in the bijection
we gave to answer Question 12.4, we have a function f from the set of cat–
dog pairs to [3]× [4], and the function g goes the other way: from [3]× [4]

to the set of cat–dog pairs. We call g the inverse function of f .

Proof. We must show two things: if f is a bijection, then it has an inverse;
and if f has an inverse, then it is a bijection.

Let’s start with the first one. Suppose f is a bijection. We must show
that f has an inverse function g. To do this, we construct g. Pick any
b ∈ B. Since f is surjective, there is some a ∈ A such that f(a) = b. Since
f is injective, if f(a) = f(a′) = b, then a = a′. It follows that there is
exactly one element a ∈ A such that f(a) = b. We define g(b) = a.

Let us now check that g is an inverse function to f . Take any element
a ∈ A. We must show that g(f(a)) = a. If f(a) = b, then g(b) = a, so
g(f(a)) = a. Similarly, if b is any element of B and g(b) = a, then f(a) = b,
so f(g(b)) = f(a) = b. Thus g is indeed an inverse function to f .

Now, suppose that f has an inverse function g. We must show that f
is a bijection, i.e. it is both surjective and injective. Let us show that f is
surjective. Take any b ∈ B; we must show that there is some a ∈ A such
that f(a) = b. If a = g(b), then we have f(a) = f(g(b)) = b, so a satisfies
the desired property. Since b was arbitrary, this shows that f is surjective.
Finally, we must show that f is injective. Suppose that f(a) = f(a′); we
must show that a = a′. Since f(a) = f(a′), we have g(f(a)) = g(f(a′)).
Since g is an inverse of f , g(f(a)) = a and g(f(a′)) = a′. Thus a = a′. This
completes the proof. �
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Often it is easier to write down an inverse function than it is to check
both injectivity and surjectivity directly, so this gives us another way to
check that functions are bijective; one that is often more convenient.

12.6 Problems

In all of these problems, write out a complete solution. Writing down
an answer without giving a full solution does not qualify as having solved
the problem.

(1) You have 20 cubes, of which 7 of them are blue, 8 of them are green,
2 are red, and 3 are yellow. How many ways are there of arranging
the cubes into a 2× 2× 5 block? Two arrangements are said to be the
same if they have the same colored cubes in every place.

(2) (a) How many subsets of [10] contain 1?
(b) How many subsets of [10] contain 1 or 2?3

(c) How many subsets of [10] contain at least one odd number?
(3) Which of the following functions are injective, surjective, and bijec-

tive?

(a) f : Z→ Z, f(n) = n.
(b) f : Z→ Z, f(n) = n2.
(c) f : N→ N, f(n) = n2.
(d) f : Z→ Z, f(n) = bn3 c.

(4) Suppose we have finite sets S1, . . . , Sk, which have n1, . . . , nk elements
in them, respectively. How many ways are there to pick at most one
element from each Si, if you have to pick an element from at least one
of the Si’s? Give the simplest bijective proof that you can.

(5) In how many ways can we place k ≤ min(m,n) identical rooks on an
m×n chessboard in such a way that no two attack each other? (That
is, no two are allowed to be in the same row (rank) or column (file).)
Your answer should be expressed in terms of k, m, and n.

(6) (a) How many functions are there from [m] to [n]?
(b) How many injective functions are there from [m] to [n]?

(7) A composition of a number n is a way of writing n = a1 +a2 + · · ·+ak
for some k, where each ai is a positive integer, called a part of the
composition. For instance, there are four compositions of 3: 3, 2 + 1,

3In mathematics, “or” is always inclusive: A or B includes the possibility of both A and
B.
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1+2, and 1+1+1. Determine, with proof, the number of compositions
of n, as a function of n. Give a bijection with some other set you
already know how to count.

(8) Determine, with proof, the number of compositions of n such that an
even number of the parts are even. For instance, when n = 3, there
are 2, namely 3 and 1 + 1 + 1.

(9) How many compositions of n are there with k parts?
(10) Let k and n be positive integers. Determine the number of k-tuples

(S1, S2, S3, . . . , Sk) of subsets of [n] such that S1 ⊆ S2 ⊆ · · · ⊆ Sk, as
a function of k and n.

(11) Let m and n be positive integers. How many ways are there to fill in
an m × n grid with 0’s and 1’s such that the number of 1’s in each
row and each column is even?

(12) Consider an equilateral triangle of sidelength n, broken down into
equilateral triangles of sidelength 1, as shown in Figure 12.3 when
n = 5. How many paths are there from the top triangle to the middle
triangle (or the left of middle in the case that n is even) in the bottom
row, such that adjacent triangles in the path share a common edge
and never go up or revisit a triangle? One such path is shown in
Figure 12.3.

Figure 12.3. An equilateral triangle of sidelength 5 broken down into
equilateral triangles of sidelength 1.
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Chapter 13

The pigeonhole principle and
matching problems

13.1 The pigeonhole principle

Let’s review the pigeonhole principle, that we initially looked at in Chap-
ter 4, with the aim of using it to help us with combinatorial problems. We
start with two versions of the pigeonhole principle. Both of them are very
simple, and the second version is a generalization of the first.

Theorem 13.1 (Pigeonhole principle, Version 1). Let n and k be positive
integers. If n > k, and we have n objects placed into k boxes, then there
must be at least two objects in some box.

Proof. We prove this by contradiction. Assume that there is no box with at
least two objects, i.e. each box has at most one object in it. Let us suppose
that m of the boxes have one object in them, and the other k −m boxes
have no objects in them. Thus the total number of objects is m ≤ k < n,
which is a contradiction because the total number of objects is n. �

And here is the more general version:

Theorem 13.2 (Pigeonhole principle, Version 2). Let n, k, and r be pos-
itive integers, with n > kr. If we have n objects placed into k boxes, then
there must be at least r + 1 objects in some box.

The proof is very similar to before.

Proof. Assume that there is no box with at least r+ 1 objects. Then every
box has at most r objects. Thus the maximum number of objects there
could be is kr ≤ n, the total number of objects. This is a contradiction. �

153
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13.2 The pigeonhole principle in graph theory

One place in combinatorics where the pigeonhole principle often comes
up is in graph theory. Let’s first explain what a graph is, in the combina-
torial sense.

Definition 13.3. A graph G consists of a set V of vertices, together with
a set E of edges, where each edge is a set containing exactly two distinct
vertices.

Frequently, we represent a graph pictorially, drawing dots for each of
the vertices, and lines (or curves) for each of the edges. See Figure 13.1 for
a drawing of a famous graph, known as the Petersen graph.

Figure 13.1. The Petersen graph.

Definition 13.4. If v and w are two vertices of V , we say that v and w
are adjacent if {v, w} ∈ E.

Definition 13.5. The degree d(v) of a vertex v is the number of edges
containing v.

Typically we will be interested in graphs that are simple and finite. A
graph is said to be simple if, whenever e1 and e2 are distinct edges, the
vertices of e1 are not both the same as the vertices of e2. That is, we do
not allow multiple edges between the same pair of vertices. A graph is said
to be finite if it has a finite number of vertices. When not specified, we will
always assume that our graphs are both simple and finite. In the case that
G is a simple graph, d(v) is the number of vertices adjacent to v.

Theorem 13.6. Let G be a graph with at least two vertices. Then there
are two vertices with the same degree.
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This is an interesting example, because at first it doesn’t appear that
the pigeonhole principle is applicable: we’re trying to fit n objects (the
vertices) into n boxes (the degrees). However, it turns out that there are
two boxes that can’t be filled simultaneously, and this is what allows us to
use the pigeonhole principle.

Proof. Suppose that G has n vertices. Then the possible degrees are
0, 1, 2, . . . , n − 1. There are n possible degrees. However, if one vertex
has degree 0, then it is not adjacent to any other vertex. In particular, this
prevents any vertex from having degree n−1. Thus we cannot have both a
vertex of degree 0, and a vertex of degree n−1. So the possible degrees are
either 0, 1, . . . , n− 2, or 1, 2, . . . , n− 1. Either way, we have n− 1 possible
degrees and n vertices, so by the pigeonhole principle, there must be two
vertices with the same degree. �

13.3 Matching problems

A classic pigeonhole problem is the mutilated chessboard problem.

Question 13.7. Take an 8×8 chessboard, and remove two opposite corners,
as shown in Figure 13.2. Is it possible to cover the remaining 62 squares
with 31 dominoes, such that every square is covered exactly once? (Each
domino covers two squares that share an edge.)

Figure 13.2. A mutilated chessboard.

The answer is no: we cannot tile the resulting board with dominoes.
The reason is that if we alternately color the squares white and black, as
shown in Figure 13.2, then there are 30 black squares and 32 white squares.
Since a domino covers one white square and one black square, we cannot
cover the board with 31 dominoes.
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This argument is reminiscent of the pigeonhole principle. We consider
the white squares to be the pigeons and the dominoes to be the pigeonholes.
Since there are 32 white squares that must be covered by 31 dominoes, one
domino must cover two white squares. But that’s impossible!

Now, we might wonder more generally when a given figure can be tiled
with dominoes. For example, can the figure in Figure 13.3 be tiled with
dominoes? Here, the black square is deleted.

Figure 13.3. The black square is removed. Can the remaining region be
tiled by dominoes?

If we were to tile the figure like a chessboard, we would have 16 black
squares and 16 white squares. (Note that the marked square isn’t a black
square; it’s just a hole in the board.) That doesn’t imply that we can
necessarily cover the figure with dominoes; it only implies that we can’t
conclude that it is impossible to do it using the same argument as for the
mutilated chessboard. But maybe there’s some other reason why we can’t
cover it.

Indeed, it is impossible to cover this figure using dominoes. To see this,
let’s color some of the squares red and blue, as shown in Figure 13.4. We
have colored 7 squares red and 6 squares blue. However, the red squares
can only share dominoes with the blue squares. Thus the red and blue
region alone cannot be covered with dominoes, which certainly implies that
the full figure cannot be so covered.

Figure 13.4. Each red square must share a domino with a blue square.
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As you can see, it requires some cleverness to come up with these ar-
guments. It would be nice if there were a streamlined way of solving these
problems. And indeed, there is a beautiful theorem that tells us exactly
which figures can be tiled with dominoes—and much more. This is the Hall
Marriage Theorem, which we will state and prove in a moment.

But before we do that, we generalize from the problem of domino tilings
to the problem of graph matchings. Given a board, we produce a graph, as
follows. Put a vertex of the graph in the center of every square of the board.
Then connect two centers if the squares share an edge, i.e. if it is possible
to put a domino on those two squares. See Figure 13.5 for an example of
this graph; the board is drawn in black, and the graph is drawn in blue.
Once we have drawn the graph, we are free to remove the underlying board,
since the graph captures all the relevant information.

Figure 13.5. A graph from a board.

Definition 13.8. Given a graph G = (V,E), a perfect matching of G is
a subset M ⊆ E of edges, such that every vertex v ∈ V is contained in
exactly one edge of M .

In the context of domino tilings, the edges in M are the edges contain-
ing dominoes. (See Figure 13.6 for an example of how this works.) Perfect
matchings are more general than domino tilings, because there are graphs
that do not come from subsets of rectangular boards. So if we can deter-
mine which graphs have a perfect matching, we can solve the problem of
determining whether it is possible to tile any board—and much more.

In fact, we don’t want to work with all graphs, but only ones that
behave a bit more like chessboards. Recall that in a domino tiling, each
domino has to cover one black square and one white square. So we want to
consider graphs that have an analogue of black squares and white squares.
These are called bipartite graphs.
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Figure 13.6. A domino tiling as a graph. The red edges correspond to
the dominoes.

Definition 13.9. A graph G = (V,E) is said to be bipartite if we can
partition the set V of vertices into two subsets A and B, with A ∩ B = ∅
and A ∪ B = V , such that every edge in E has one endpoint in A and the
other in B.

See Figure 13.7 for an example of a bipartite graph.

Figure 13.7. A bipartite graph. The red vertices are A, and the blue
vertices are B.

This is exactly what we have in the case of chessboards: we let A be the
set of black squares and B the set of white squares. We only have edges
between black squares and white squares, never between two black squares
or two white squares.

13.4 The Hall Marriage Theorem

The Hall Marriage Theorem gives us a definitive answer to when a
bipartite graph has a perfect matching. The theorem doesn’t tell us how
many perfect matchings a graph has, only if the number is at least one or
not.

Theorem 13.10 (Hall Marriage Theorem). Let G = (V,E) be a bipartite
graph, with parts A and B. For a subset W ⊆ A of vertices in A, let
N(W ) denote the set of vertices in B that share an edge with some w ∈W .
Similarly, we can define N(W ) for a subset of B. Then G has a perfect
matching if and only if for every W ⊆ A and for every W ⊆ B, we have
|N(W )| ≥ |W |.
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Here |W | and |N(W )| denote the number of vertices in W and N(W ),
respectively. Observe that this is just where we got into trouble in Fig-
ure 13.3: we had a set W (the red squares in Figure 13.4) of size 7, with
only six neighbors in N(W ) (the blue squares). The Hall Marriage Theorem
tells us that that’s the only thing that can possibly go wrong to prevent a
perfect matching.

The proof of the Hall Marriage Theorem relies on a common proof
strategy in mathematics: When we’re trying to show that something exists,
we create a partial version of it, and then show that there is some process
we can do to create a larger partial version. In this case, what we’ll do is to
assume that we can produce a partial matching, matching k of the vertices
in A with k of the vertices in B, then extend to a larger partial matching,
matching k+1 of the vertices in A with k+1 of the vertices in B. By doing
this process repeatedly, we eventually end up matching all the vertices in
A with all the vertices in B.

Proof of Theorem 13.10. We have two things to prove. First, that if there
is a perfect matching, then |N(W )| ≥ |W | for all W ⊆ A and W ⊆ B.
Second, we must prove that if |N(W )| ≥ |W | for all W ⊆ A and W ⊆ B,
then there is a perfect matching.

We start by assuming that G has a perfect matching, say with matching
M ⊆ E. This means that M consists of some of the edges of E, and every
vertex in G is in exactly one of the edges of M . Pick any subset W ⊆ A or
W ⊆ B; without loss of generality, we’ll assume that W ⊆ A. Let X ⊆ B

be the set of vertices in B that are matched with vertices in W , i.e.

X = {v ∈ B : {v, w} ∈M for some w ∈W}.
Since every v ∈ X is only matched with a single element of W , we have
|X| = |W |. But X ⊆ N(W ), so |X| ≤ |N(W )|. Thus |W | = |X| ≤ |N(W )|,
as desired.

Now we suppose that |N(W )| ≥ |W | for all W ⊆ A and W ⊆ B.
We will prove that G has a perfect matching. Note that the condition
|N(W )| ≥ |W | for all W ⊆ A and W ⊆ B implies that |A| = |B|, for
|A| ≤ |N(A)| ≤ |B|, and similarly |B| ≤ |A|.

Suppose that for some integer k with 0 ≤ k < |A|, we have a partial
matching with k edges, i.e. we have a set Mk ⊆ E with |Mk| = k, such that
Mk matches k of the vertices in A with k of the vertices in B. Since k < |A|,
there is some unmatched vertex x0 ∈ A. Since |N({x0})| ≥ |{x0}| = 1, x0
must be adjacent to some vertex, say y1, in B. If y1 is unmatched in Mk,
then we connect x0 to y1, and we have extended the matchingMk toMk+1.
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On the other hand, suppose that y1 is already matched in Mk, say to
x1. Since

|N({x0, x1})| ≥ |{x0, x1}| = 2,

we know that either x0 or x1 is adjacent to some vertex y2 of B other
than y1. Let’s write xr(2) for this vertex, so that r(2) ∈ {0, 1}. If
y2 is unmatched in Mk, then we modify Mk by connecting xr(2) to y2
and replacing any other edges as needed. On the other hand, if y2 is
matched in Mk, say to x2, then we repeat the process and find some
y3 6∈ {y1, y2} adjacent to xr(3), where r(3) ∈ {0, 1, 2}. In general, if we
have already found vertices y1, . . . , yi adjacent to x1, . . . , xi, respectively,
then |N({x0, x1, . . . , xi})| ≥ |{x0, . . . , xi}| = i+ 1, so N({x0, . . . , xi}) con-
tains more than just y1, . . . , yi. Eventually this process must terminate,
when we find an unmatched yi+1, because there are only finitely many (in
fact, k) matched vertices in B, and we find a new one at each step. Once we
find an unmatched vertex yi+1, we can produce Dk+1, as follows. We fol-
low the path yi+1, xr(i+1), yr(i+1), xr(r(i+1)), yr(r(i+1)), . . ., which terminates
with x0. Then we connect yi+1 with xr(i+1), and yr(i+1) with xr(r(i+1)),
and so forth—deleting any edges in Mk containing any of those vertices.
When this is done, we have produced Mk+1.

It follows that M|A| exists, and this is a perfect matching. �

The process is illustrated in Figures 13.8 and 13.9.

x0 x1 x2 x3 x4 x5

y1 y2 y3 y4 y5 y6

Figure 13.8. The red edges are in Mk, and we’re trying to construct
Mk+1.

13.5 Problems

(1) Give an example of a bipartite graph with 12 vertices, 6 in each part,
with a perfect matching. Show the matching. Give one where there is
no perfect matching, even though each vertex has at least two neigh-
bors.
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x0 x1 x2 x3 x4 x5

y1 y2 y3 y4 y5 y6

Figure 13.9. To construct Mk+1 from Mk, we must first match y6 to x4.
This breaks the match between y4 and x4, so we have to match y4 to x2.
Continuing on this way, breaking matches and rematching vertices as
needed, we eventually get to Mk+1.

(2) Find all triples (a, b, c) of positive integers with a ≤ b ≤ c such that
1
a + 1

b + 1
c = 1.

(3) Let S be a subset of [2n], consisting of n + 1 elements. Show that
there are two distinct elements a, b ∈ S such that a is a multiple of b.

(4) A cycle in a graph G is a sequence v0, v1, . . . , vn of vertices in G such
that v0 = vn, and for every i with 0 ≤ i ≤ n − 1, there is an edge
between vi and vi+1. We call n the length of the cycle. Prove that G
is bipartite if and only if it has no cycles of odd length.

(5) Consider an n × n grid of points. Connect every pair of points with
an edge, and color the edge red if the points are in the same row, and
blue otherwise. Show that among any n + 1 points, there is at least
one red edge between two of the points.

(6) Suppose we have mn + 1 numbers a1, a2, . . . , amn+1. Show that we
can either find integers 1 ≤ i1 < i2 < · · · < im+1 ≤ mn + 1 such
that ai1 ≤ ai2 ≤ · · · ≤ aim+1

, or we can find integers 1 ≤ j1 < j2 <

· · · < jn+1 ≤ mn + 1 such that aj1 ≥ aj2 ≥ · · · ≥ ajn+1 . That
is, we can either find an increasing subsequence of length m + 1 or
a decreasing subsequence of length n + 1. (For example, suppose
m = n = 3. The mn+ 1 = 10 numbers 3, 9, 1, 4, 2, 10, 8, 5, 7, 6 contain
an increasing subsequence of length 4, namely 1, 2, 5, 7. There are also
other increasing and decreasing subsequences of length 4.)

(7) Suppose we have an art gallery, in the shape of a not-necessarily-
convex polygon with n vertices. A guard placed at a point p in the
gallery can guard any point q in the gallery as long as the line segment
connecting p and q is contained entirely within the gallery. Show that
it is possible to place bn3 c guards, at some of the corners of the gallery
such that—among all of them—they can guard the entire gallery.
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(8) Suppose we have a 2n× 2n chessboard, and we place n rooks on each
row and each column. Prove that we can find 2n rooks such that no
two lie in the same row or column.

(9) Prove that if all the vertices of a bipartite graph have the same nonzero
degree, then it has a perfect matching.

(10) We are given two square sheets of paper with integer area n. Suppose
we divide each of these papers into n regions, each of area 1. (The
divisions for the two piece of papers may be distinct.) Then we place
the two sheets of paper directly on top of each other. Show that we
can place n pins on the pieces of paper such that the interiors of all
2n regions have been pierced.



Chapter 14

Double counting

14.1 Introduction to double counting

One very important way of proving theorems in combinatorics is to use
double counting. What this means is that we count the elements of a set S in
two ways. If, counting in the first way, we find that S contains m elements,
and counting in the second way we find that S contains n elements, then
it must be the case that m = n. Typically, S is not exactly the set we are
interested in, but rather a modification of another set T that is easier to
work with. Let’s see a simple example of this technique in action.

Theorem 14.1. If G is a graph with a finite number of vertices and edges,
then the number of vertices with odd degree is even.

Proof. We calculate the sum of the degrees of all the vertices in G in two
ways. First, we calculate the sum of degrees based on the vertices: it is
equal to ∑

v∈V
d(v).

On the other hand, we can calculate the sum of the degrees based on the
edges. Each edge contributes a count of 1 to each vertex it connects, for a
total of 2. Thus we have ∑

v∈V
d(v) =

∑
e∈E

2.

The sum on the right is obviously even, so the sum on the left must be as
well.

Furthermore, we have∑
v∈V

d(v) =
∑
v∈V

d(v) odd

d(v) +
∑
v∈V

d(v) even

d(v).
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The second sum on the right is even, so the first sum on the right must
be also. Since each summand in that sum is odd, there must be an even
number of summands, i.e. the number of vertices with an odd degree is
even. �

14.2 Incidences

Formally, what we did above was to count the pairs (v, e) where v is one
of the vertices of e, in two different ways. One way was to count by vertex:
this gives us

∑
v∈V d(v). The other way is to count by edge, which gives

us
∑
e∈E 2. More generally, what we typically do when double counting is

to take two sets A and B, where we’re interested in certain ordered pairs
(a, b) called incident pairs, where a ∈ A and b ∈ B. We can count the
incident pairs by first counting A, which gives us

∑
a∈A n(a), where n(a) is

the number of b ∈ B such that (a, b) is an incident pair. Or, we can count
by B, which gives us

∑
b∈B n(b). These may have a very different feel, as

we saw in Theorem 14.1. One of them is just a sum of a bunch of 2’s,
whereas the other is some unknown quantity we’re trying to understand.

Definition 14.2. Let A andB be two sets. Then we call a subset S ⊆ A×B
an incidence. We call the pairs (a, b) ∈ S incident pairs.

One common way of representing an incidence S is as a bipartite graph.
We make a graph whose vertex set is A ∪ B, when we connect a ∈ A and
b ∈ B with an edge if and only if (a, b) ∈ S.
Example. Suppose A = {a, b, c, d} and B = {x, y, z}, and

S = {(a, x), (a, y), (b, y), (c, x), (c, z), (d, x), (d, y), (d, z)}.
The corresponding bipartite graph is shown in Figure 14.1.

a b c d

x y z

Figure 14.1. A graph representing an incidence.

Sometimes it is fruitful to represent an incidence as a matrix, known as
the incidence matrix . Given an incidence S ⊆ A × B, we build a matrix
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whose rows correspond to the elements of A, and whose columns correspond
to the elements of B. Then we fill the matrix with 0’s and 1’s. We put
a 1 in the (a, b) entry if (a, b) ∈ S, and we put a 0 in the (a, b) entry if
(a, b) 6∈ S. For instance, the matrix representation of the incidence in the
example and Figure 14.1 is 

1 1 0

0 1 0

1 0 1

1 1 1

 ,

where the rows are a, b, c, d from top to bottom, and the columns are x, y, z
from left to right.

14.3 Sperner’s Lemma

Another famous proof involving double counting is that of Sperner’s
Lemma. Sperner’s Lemma is a result about cutting up polygons into trian-
gles and coloring the vertices of these triangles. It was first used to prove
the Brouwer Fixed-Point Theorem, one of the most famous theorems in
algebraic topology, just using combinatorics. Some interesting applications
of Sperner’s Lemma can be found in [AZ18, Chapter 28] and [Su99].

Theorem 14.3 (Sperner’s Lemma). Suppose we have a polygon in the
plane, subdivided into triangles in such a way that two triangles either don’t
intersect, intersect at a vertex of each, or intersect at an edge of each. Color
each of the vertices of the small triangles red, blue, or green. Call an edge
of a small triangle a purple edge if one of its vertices is red and the other
is blue, and call a triangle a rainbow triangle if it has a red vertex, a
blue vertex, and a green vertex. Then the number of purple edges on the
boundary of the polygon is congruent to the number of rainbow triangles
modulo 2.

See Figure 14.2 for an example of Sperner’s Lemma.

Proof. Put a dot on each side of each purple edge, whether it is on the
boundary or in the interior of the polygon. Now, let us count the number
of dots in the interior of the polygon, by looking at each edge. Each interior
purple edge contributes 2 to the count (one on each side), and each other
interior edge contributes 0. On the other hand, each boundary purple edge
contributes 1 to the count. (See Figure 14.3.) Thus, modulo 2, the number
of dots is congruent to the number of purple edges on the boundary.
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Figure 14.2. A square dissection with five purple edges on the boundary
and seven rainbow triangles. (Note that 5 ≡ 7 (mod 2).)

Now let us count the number of dots by looking at triangles. Each
rainbow triangle contains exactly one dot, and each non-rainbow triangle
contains either 0 or 2. Thus, modulo 2, the number of dots is congruent
to the number of rainbow triangles. But the number of dots is the same
as what we got counting by purple edges. Thus we find that the number
of boundary purple edges is congruent to the number of rainbow triangles
modulo 2, as desired. �

Let’s express this proof in terms of an incidence. The thing we double
counted was the number of interior dots. The interior dots correspond to
pairs (e, t), where e is a purple edge and t is a triangle containing the edge
e. For a triangle t, let n(t) denote the number of purple edges in t; and
for a purple edge e, let n(e) denote the number of triangles containing that
edge. Counting the dots in the interior of the polygon in terms of triangles,
we get

D =
∑
t

n(t) =
∑
r

1 +
∑
!r

(0 or 2),

where
∑
r denotes the sum over rainbow triangles and

∑
!r denotes the sum

over nonrainbow triangles. On the other hand, summing over the purple
edges, we have

D =
∑
pe

n(e) =
∑
bpe

1 +
∑
ipe

2,
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Figure 14.3. Put a dot on each side of a purple edge.

where
∑
bpe denotes the sum over boundary purple edges and

∑
ipe denotes

the sum over interior purple edges.
If we draw the graph version of this incidence, our vertex set consists

of all the triangles and all the purple edges. We put an edge between
the vertex corresponding to a purple edge and a vertex corresponding to a
triangle, if and only if that purple edge is one of the edges of that triangle.

14.4 Average number of divisors

Definition 14.4. Let n be a positive integer. We define the divisors func-
tion d(n) to be the number of positive integers that divide n, including
both 1 and n.

For example, d(8) = 4, since the divisors of 8 are 1, 2, 4, and 8.
There are some large numbers n for which d(n) is very small. For

instance, if n is prime, then the only divisors of n are 1 and n, so d(n) = 2.
On the other hand, d(n) can get as large as desired. But how big is it on
average?

In order to make that a more precise question, let’s fix some large num-
ber x and ask how many divisors numbers up to x have, on average. That
is, we are interested in computing

1

x

x∑
n=1

d(n). (14.1)
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We won’t be able to get a nice exact answer for this, but instead we’ll be
able to get a pretty good approximation. It isn’t the best we can do. But,
as we’ll see, it’s not bad. We’ll get the right answer to within a range of 1.

The first thing we need to know is how to express d(n) better. Each
divisor of n contributes 1 to d(n), so we have

d(n) =
∑
m|n

1.

This is the first key ingredient we need to estimate (14.1). Thus we have

1

x

x∑
n=1

d(n) =
1

x

x∑
n=1

∑
m|n

1.

The next thing we need to do here—and almost everywhere else in math-
ematics when we encounter a double sum—is to switch the order of sum-
mation. When the sums are infinite, this isn’t always legal, but with finite
sums we are always welcome to switch the order of summation.

In this case, when we switch the order of summation, we want the outer
sum to be over m and the inner sum to be over n. But now we have to
figure out what their ranges are. Initially, m can be any divisor of any
integer from 1 to x, so m can be any integer from 1 to x. Furthermore, n
has to be a multiple of m between 1 and x. This means that n = mk, where
n ≤ x, or k ≤ x

m—and that instead of summing over only the n’s that are
multiples of m, we sum over k. (See the Interlude following this chapter for
a more thorough discussion of switching the order of summation.) Thus we
have

1

x

x∑
n=1

d(n) =
1

x

x∑
m=1

x
m∑
k=1

1.

The inner sum
x
m∑
k=1

1

is easy to evaluate: it consists of b xmc terms, each of which is 1, so it’s just
b xmc. Thus we have

1

x

x∑
n=1

d(n) =
1

x

x∑
m=1

x
m∑
k=1

1 =
1

x

x∑
m=1

⌊ x
m

⌋
.
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Floor functions are often difficult to work with exactly, but at least they
are easy to bound: for any y, we have y − 1 < byc ≤ y. Thus we have

1

x

x∑
n=1

d(n) =
1

x

x∑
m=1

⌊ x
m

⌋
≤ 1

x

x∑
m=1

x

m
=

x∑
m=1

1

m
,

and similarly

1

x

x∑
n=1

d(n) =
1

x

x∑
m=1

⌊ x
m

⌋
>

1

x

x∑
m=1

( x
m
− 1
)

=

x∑
m=1

1

m
− 1.

That’s pretty good. We have bounded the answer to within just 1:

x∑
m=1

1

m
− 1 <

1

x

x∑
n=1

d(n) ≤
x∑

m=1

1

m
.

If you aren’t satisfied with the number
∑x
m=1

1
m appearing in an answer,

you might be happier knowing that there is some number γ ≈ 0.577, called
the Euler–Mascheroni constant , such that

x∑
m=1

1

m
≈ log(x) + γ,

where log is the natural logarithm, to base e.
Again, let’s explain how this proof can be expressed in terms of an

incidence. Our two sets are both the integers from 1 to x, and our incidence
consists of pairs (k, n) where k is a factor of n. If we sum first over n, we
get

x∑
n=1

d(n).

On the other hand, if we sum first over k, we get

x∑
k=1

⌊x
k

⌋
,

where bxk c is the number of n’s such that (k, n) is in the incidence.
The study of averages of arithmetic functions like d(n) is important in

analytic number theory. See [Apo76] for much more on this topic.
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Figure 14.4. A graph.

14.5 Problems

(1) Write down the incidence matrix of the graph in Figure 14.4.
(2) Let k be a positive integer. A graph is said to be k-regular if every

vertex has degree k. Given a matrix, how can you tell whether it is the
incidence matrix of a bipartite k-regular graph? Prove your answer is
correct.

(3) Suppose that P is a polyhedron, all of whose faces are triangles. Sup-
pose that P has F faces and E edges. Prove that 2E = 3F .

(4) Let G = (V,E) be a graph. Show that∑
v∈V

d(v)2 =
∑

e={v,w}∈E

(d(v) + d(w)).

(5) In a certain committee, each member belongs to exactly three subcom-
mittees, and each subcommittee has exactly three members. Prove
that the number of members equals the number of subcommittees.

(6) Suppose G = (V,E) is a bipartite graph, where X and Y are the parts
of V , and that every vertex has degree ≥ 1. Suppose that for every
edge e = {x, y}, where x ∈ X and y ∈ Y , we have d(x) ≥ d(y). Show
that |X| ≤ |Y |.

(7) A permutation of a set S is a bijection f : S → S. A fixed point of
a permutation f is some s ∈ S such that f(s) = s. Let pk(n) be the
number of permutations of [n] with exactly k fixed points. Prove that

n∑
k=0

kpk(n) = n!.

(8) There are n points in the plane such that no three of them are collinear.
Prove that the number of triangles whose vertices are chosen from
these n points and whose area is 1, is at most 2

3 (n2−n). (Hint: given
two points, how many possible third points can there be such that the
triangle they form has area 1?)
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Often in mathematics, we encounter double sums, such as the double
sum

x∑
n=1

∑
m|n

1

that we encountered in §14.4. For illustrative purposes, it will actually be
more convenient to look at a slightly more general sum, namely

x∑
n=1

∑
m|n

f(m,n),

where f is some function of two variables. If x = 10, then this sum is

f(1, 1) + f(1, 2) + f(2, 2) + f(1, 3) + f(3, 3) + f(1, 4) + f(2, 4) + f(4, 4)

+ f(1, 5) + f(5, 5) + f(1, 6) + f(2, 6) + f(3, 6) + f(6, 6) + f(1, 7) + f(7, 7)

+ f(1, 8) + f(2, 8) + f(4, 8) + f(8, 8) + f(1, 9) + f(3, 9) + f(9, 9)

+ f(1, 10) + f(2, 10) + f(5, 10) + f(10, 10).

Note the order that we do the sum in: we take n = 1 and sum over all m | 1
(i.e. just m = 1), then we move on to n = 2 and sum over all m | 2, then
n = 3, and so forth. But we can change the order of the terms without
affecting the final answer. Almost all the time when we encounter double
sums in nature, they start off being in the wrong order, and we have to
switch them. Before we look at how to switch the order of summation in
this example, let’s look at some easier cases.

The first case to consider is a double sum of the form
y∑

n=1

x∑
m=1

f(m,n).
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This means that we first take n = 1 and sum over all values of m from 1
to x. Then we move on to n = 2 and sum over all values of m from 1 to x,
and so forth. We can also sum in the other order. This means that we first
take m = 1 and sum over all values of n from 1 to y. Then we take m = 2

and sum over all values of n from 1 to y, and so forth. We write this as a
double sum as

x∑
m=1

y∑
n=1

f(m,n).

The answer is the same, but sometimes one way of doing this double sum
will be easier than the other way.

One way to think about how to switch the sum is by considering Fig-
ure 14.5. The index m denotes the x-coordinate, whereas the index n

denotes the y-coordinate. Originally, the outer sum is over n, meaning that
we look at the y-coordinate first. For each value of n (or y-coordinate),
we sum over the range of m marked by dots, which is all of them from
1 to y. When we switch the sums, we first look at each value of m (or
x-coordinate), and sum over the values of n indicated by the dots, which is∑x
m=1

∑y
n=1 f(m,n).

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Figure 14.5. The region of summation for∑10
n=1

∑10
m=1 f(m,n) =

∑10
m=1

∑10
n=1 f(m,n).
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Exchanging the double sum becomes trickier when the bound of the
inner sum depends on the index variable of the outer sum. For example,
we might consider the sum

x∑
n=1

n∑
m=1

f(m,n).

Note that the upper bound of the inner sum is n rather than x, so it varies.
For instance, if x = 3, then we get the sum

f(1, 1) + f(1, 2) + f(2, 2) + f(1, 3) + f(2, 3) + f(3, 3).

Observe that we’re summing over all pairs (m,n) where 1 ≤ m ≤ n ≤ x. If
we want the outer sum to be over m, then that means we need the possible
values of m to range from 1 to x, and then n must be ≥ m, while still
remaining ≤ x. Thus we have

x∑
n=1

n∑
m=1

f(m,n) =

x∑
m=1

x∑
n=m

f(m,n).

See Figure 14.6.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Figure 14.6. The region of summation for∑10
n=1

∑n
m=1 f(m,n) =

∑10
m=1

∑10
n=m f(m,n).
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Example. Let us evaluate the sum

S =

n∑
k=1

k2k.

This isn’t a double sum, but we can turn it into one by writing k2k as∑k
m=1 2k. Thus we have

S =

n∑
k=1

k∑
m=1

2k.

If we switch the sums, we get

S =

n∑
m=1

n∑
k=m

2k.

The inner sum can be evaluated directly: we have
n∑

k=m

2k = 2n+1 − 2m.

Thus we have

S =

n∑
m=1

(2n+1 − 2m) =

n∑
m=1

2n+1 −
n∑

m=1

2m.

Both of the sums on the right can be evaluated directly as well: we have
n∑

m=1

2n+1 = n2n+1,

whereas
n∑

m=1

2m = 2n+1 − 2.

Thus we have

S = n2n+1 − 2n+1 + 2 = (n− 1)2n+1 + 2.

Finally, we have the case that we saw in §14.4, where we have
x∑
n=1

∑
m|n

f(m,n).

Here n ranges from 1 to x, while m ranges over the divisors of n. If we
switch the sums, then m can be any number from 1 to x, so the outer
sum has to be

∑x
m=1. Now, before we switch the sums, m ranges over

divisors of n. Saying that m is a divisor of n is the same as saying that
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n is a multiple of m, so after switching the sum, n must range over the
multiples of m. However, we have an additional constraint on n, which is
n ≤ x. Thus n only ranges over those multiples of m that are ≤ x. It is
not particularly convenient to write the condition that n is a multiple of m
directly as a subscript of a summation, but fortunately, we have another
approach: saying that n is a multiple of m is the same as saying that there
exists an integer k such that n = km. Thus, summing over values of n that
are multiples of m is the same as summing over k, except that now k must
range from 1 to x

m . Thus we have

x∑
n=1

∑
m|n

f(m,n) =

x∑
m=1

x
m∑
k=1

f(m,n).

However, this last expression is not entirely satisfactory, because the ex-
pression that we’re summing, f(m,n), has an n in it, whereas n is nowhere
to be found in the indices of summation. Fortunately, we can recover it,
since n = km, so we can rewrite this last sum as

x∑
n=1

∑
m|n

f(m,n) =

x∑
m=1

x
m∑
k=1

f(m, km).

See Figure 14.7.
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Figure 14.7. The region of summation for∑10
n=1

∑
m|n f(m,n) =

∑10
m=1

∑ 10
m

k=1 f(m, km).



Chapter 15

Introduction to binomial coefficients

15.1 Forming committees

The binomial coefficients are the most important numbers in combina-
torics. They show up in a huge number of problems, in a wide range of
contexts. Let us see how they are defined.

Definition 15.1. Let n and k be nonnegative integers. The binomial
coefficient

(
n
k

)
, pronounced “n choose k,” is the number of ways of selecting

an unordered k-member committee from among n people.

Equivalently,
(
n
k

)
is the number of k-element subsets of a set of size n.

The first thing to do is to find a formula for
(
n
k

)
.

Theorem 15.2. If n ≥ k ≥ 0 are nonnegative integers, then(
n

k

)
=

n!

k!(n− k)!
.

Proof. Instead of counting committees, we’ll count the top k finishers in
a race with n people. If we have n people running in a race, there are n
people who could be the first-place winner, then n − 1 people who could
be the second-place winner, then n−2 people who could be the third-place
winner, and so forth: in general there are (n− i+ 1) people who could be
the ith-place winner. Thus the number of ways of distributing awards to
the top k finishers is

n(n− 1)(n− 2) · · · (n− k + 1) =
n!

(n− k)!
.

On the other hand, the number of ways of choosing the top k finishers
without ranking them is

(
n
k

)
, and then the number of ways of ranking them

177



178 Transition to Proofs

is k!. Thus we have
n!

(n− k)!
=

(
n

k

)
k!,

so (
n

k

)
=

n!

k!(n− k)!
,

as claimed. �

Remark 15.3. Sometimes, it will also be convenient to define
(
n
k

)
when

n < k. To do this, we simply set
(
n
k

)
= 0 when n < k. This is logical enough

by the combinatorial definition as the number of k-member committees that
we can form out of n people: there are no ways to do this.

We already have an interesting consequence:

Corollary 15.4. The number n!
k!(n−k)! is an integer.

Proof. It counts something, so it must be an integer. �

At this point, it is only fair to point out that the fact that
(
n
k

)
has a

nice formula in terms of familiar functions is more than we really deserve.
Most of the time in combinatorics, we end up with functions that cannot be
expressed in terms of more familiar functions, at least not in a convenient
way. We will see a typical example of this in Chapter 20, when we discuss
the Stirling numbers.

15.2 Fundamental binomial identities

Proposition 15.5. For each nonnegative integer n, we have
n∑
k=0

(
n

k

)
= 2n.

Proof. Consider n people. The right side counts the number of committees
we can form from those n people: each person can either be in the commit-
tee or not be in the committee, and we allow the committee to be empty.
The

(
n
k

)
term on the left side counts the number of committees with k peo-

ple. If we sum over k, then we’re counting the number of committees with
any number of people, which is the same as what the right side counts. �

Proposition 15.6.
∑n
k=0(−1)k

(
n
k

)
= 0 if n ≥ 1 is an integer.
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Proof. Move all the negative terms to the other side, so that we must show
that

bn2 c∑
k=0

(
n

2k

)
=

bn−1
2 c∑

k=0

(
n

2k + 1

)
.

The left side counts the number of committees with an even number of
members, and the right side counts the number of committees with an
odd number of members. To see that these are equal, we give a bijection
between the set of committees with an even number of members, and the
set of committees with an odd number of members. To do this, let us pick
one of the n people, whom we shall call person 1. Given a committee with
an even number of members, we produce a committee with an odd number
of members by toggling person 1’s membership: if person 1 was already in
the committee, we form a new committee without person 1; and if person
1 wasn’t in the committee, we form a new committee by adding in person
1. Either way, we end up with a committee of odd size. This operation
is invertible: we can toggle person 1’s membership again starting with an
odd-sized committee to form an even-sized committee. �

Example. Suppose n = 7. The committee consisting of people 1, 4, and
6 has an odd number of members. If we remove person 1, then we end
up with the committee with people 4 and 6, which has an even number of
members.

Theorem 15.7 (Pascal’s Identity).
(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
.

Proof. The left side counts the number of committees consisting of k people,
from among n people total. Let us again distinguish one person, named
person 1. If a committee includes person 1, then there are k− 1 spots left,
from among n − 1 people, for a total of

(
n−1
k−1
)
committees. On the other

hand, if the committee doesn’t include person 1, then there are k spots left
from among n− 1 people, for a total of

(
n−1
k

)
committees. �

Pascal’s identity highlights the connection between the binomial coeffi-
cients and Pascal’s triangle. To form Pascal’s triangle, we start with a 1,
and then we calculate further numbers in the triangle by adding the two
numbers directly above it. See Figure 15.1 for the first 8 rows of Pascal’s
triangle beginning with n = 0.

Because of Pascal’s identity, the entries in Pascal’s triangle are simply
the binomial coefficients: the kth entry in the nth row is

(
n
k

)
. This is because
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n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

n = 5: 1 5 10 10 5 1

n = 6: 1 6 15 20 15 6 1

n = 7: 1 7 21 35 35 21 7 1

Figure 15.1. Pascal’s triangle.

the entries in Pascal’s triangle and the binomial coefficients are constructed
in the same way from previous entries: they are both sums of the same two
earlier numbers, so they must be equal. This is actually a common way of
proving combinatorial theorems: show that two things are equal because
they satisfy the same recurrence (and the same initial conditions).

Here’s a more complicated binomial identity, although still one with a
simple combinatorial interpretation.

Theorem 15.8 (Vandermonde’s Identity).
r∑

k=0

(
m

k

)(
n

r − k

)
=

(
m+ n

r

)
.

Proof. Suppose we have m cats and n dogs. The right side counts the
number of ways we can choose r animals total from the m + n. The kth

term on the left counts the number of ways we can choose k cats and r− k
dogs, which is also r total. If we sum over all k, then we obtain all ways
of choosing r animals, regardless of how many are cats and how many are
dogs. Thus the two sides are counting the same thing. �

Sometimes Vandermonde’s identity is used in conjunction with the ob-
vious identity

(
n
k

)
=
(
n

n−k
)
:

Corollary 15.9.
n∑
k=0

(
n

k

)2

=

(
2n

n

)
.
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Proof. Replace
(
n
k

)2 with
(
n
k

)(
n

n−k
)
and use Vandermonde’s identity with

m = n = r. �

15.3 Stars and bars

The following problem might not look like a binomial coefficient prob-
lem, but it secretly is, thanks to a clever bijection.

Question 15.10. How many ways are there to represent n as a sum of k
positive integers, where order matters?

For instance, there are 3 ways of writing 4 as a sum of 2 positive integers:
3 + 1, 2 + 2, and 1 + 3.

To work this out in general, we set up n stars, and then we put k − 1

bars in some of the gaps between the stars. Once we have done that, we
read off the representation of n = a1 + a2 + · · · + ak, as follows: a1 is the
number of stars to the left of the first bar, then a2 is the number of stars
between the first and second bars, and so forth, until ak is the number of
stars to the right of the (k − 1)st bar. For example, if n = 15 and k = 6,
then one such stars-and-bars representation is

∗∗ | ∗ | ∗ ∗ ∗ | ∗ ∗ ∗ ∗ ∗∗ | ∗∗ | ∗,

which corresponds to 15 = 2 + 1 + 3 + 6 + 2 + 1.
In order to count the number of such representations, just note that we

select k − 1 of the n − 1 gaps to put bars in. Hence there are
(
n−1
k−1
)
such

representations, known as compositions.
Perhaps we would like to allow the parts to be 0. There are two ways

of handling this small change, and both are good to know. It doesn’t seem
so easy to modify the argument above, because we’d have to allow multiple
bars to go in the gaps (and also allow bars to go at the beginning and end).
But we can still do it, with just a bit of cleverness.

The first way is simply to increase n. We claim that the number of
nonnegative compositions of n into k parts is equal to the number of positive
compositions of n+k into k parts. Why? Given a nonnegative composition
of n into k parts, we can convert it into a positive composition of n + k

into k parts, simply by adding 1 to each part. Similarly, given a positive
composition of n + k into k parts, we can convert it into a nonnegative
composition of n into k parts by subtracting 1 from each part. These two
operations are clearly inverses: if we start with a nonnegative composition
of n into k parts, convert it into a positive composition of n+k into k parts,
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and then convert it back, we get back to the same composition we started
with, and vice versa. Thus we have just proven that our map is a bijection,
so the two sets have the same size. Thus there are

(
n+k−1
k−1

)
=
(
n+k−1
n

)
nonnegative compositions of n into k parts.

The other method, using stars and bars directly, is to start with only
bars and convert some of them into stars. Start with a row of n+k−1 bars.
Now, turn n of them into stars. Reading off the number of stars between
consecutive bars gives us a nonnegative composition of n into k parts. For
instance,

∗ || ∗ ∗ ∗∗ || ∗ | ∗∗ |

corresponds to the composition 1 + 0 + 4 + 0 + 1 + 2 + 0 of 8 into 7 parts.
One way to interpret the count of nonnegative compositions is to note

that they are in bijection with the number of ways of choosing k−1 elements
(the bars) from a set of size n+ 1 (the gaps), except that we are allowed to
choose gaps as many times as we wish.

Definition 15.11. Let n and k be nonnegative integers. The multichoose
number

((
n
k

))
is the number of ways of selecting k objects from a set of size

n, where we are allowed to choose objects as many times as desired.

Definition 15.12. A collection of unordered elements with repetition al-
lowed is called a multiset .

We have already essentially proven the following theorem, but let’s make
it more precise:

Theorem 15.13. For any nonnegative integers n and k, we have((n
k

))
=

(
n+ k − 1

k

)
.

Proof. We give a bijection between sets counted by the left and right sides.
The left side counts the number of multisets of size k from [n], whereas the
right side counts the number of sets—with no repetition allowed—of size k
from [n+ k − 1]. Let us write

((
[n]
k

))
and

(
[n+k−1]

k

)
for these two sets.

Let us start with a multiset S ∈
((

[n]
k

))
and produce a set f(S) ∈(

[n+k−1]
k

)
out of it. Write S in nondecreasing order as a1 ≤ a2 ≤ · · · ≤ ak.

Now define bi = ai + i − 1. Since bi+1 − bi = (ai+1 + i) − (ai + i − 1) =

ai+1 − ai + 1 ≥ 1, we have bi+1 > bi, so the bi’s form a strictly increasing
sequence, i.e. the bi’s are distinct. Furthermore, bi ≤ n+i−1, so the largest
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any bi can be is bk ≤ n+k− 1. Thus the bi’s form a set in
(
[n+k−1]

k

)
, which

we call f(S).
Now we have to produce an inverse map to f , which we call g: out of

a set T ∈
(
[n+k−1]

k

)
, we must produce a multiset g(T ) ∈

((
[n]
k

))
. Write T

in increasing order as b1 < b2 < · · · < bk. Then define ai = bi − i+ 1. The
multiset g(T ) is simply the set of ai’s. Since the bi’s are strictly increasing,
the ai’s are nondecreasing, and they lie in [n]. Thus g(T ) ∈

((
[n]
k

))
, as

desired.
Finally, we must show that f and g are inverses. Given S ∈

((
[n]
k

))
, we

must show that g(f(S)) = S, and similarly, if T ∈
(
[n+k−1]

k

)
, then we must

show that f(g(T )) = T . Let us take some S ∈
((

[n]
k

))
, say with S = (a1 ≤

a2 ≤ · · · ≤ ak). Then f(S) = (a1 < a2 +1 < a3 +2 < · · · < ak+k−1), and
g(f(S)) = (a1 ≤ (a2+1)−1 ≤ (a3+2)−2 ≤ · · · ≤ (ak+k−1)−(k−1)) = S,
as desired. Similarly, f(g(T )) = T for all T ∈

(
[n+k−1]

k

)
. This completes

the proof. �

Example. Let S be the multiset {1, 1, 4, 4, 6, 7, 7, 7} in
((

[8]
8

))
. The corre-

sponding subset in
(
[15]
8

)
is {1, 2, 6, 7, 10, 12, 13, 14}.

15.4 Further reading

Since the binomial coefficients are the most important numbers in com-
binatorics, there is no shortage of identities involving them. A good place
to look for far more of them is [GKP94, Chapter 5].

15.5 Problems

(1) Prove the following identities combinatorially, i.e. by explaining why
they count the same thing:

(a)
n∑
k=0

k

(
n

k

)
= n · 2n−1.

(b)
m∑
n=r

(
n

r

)
=

(
m+ 1

r + 1

)
.

(This is known as the hockey-stick identity .)
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(c) (
n

k

)
=
n

k

(
n− 1

k − 1

)
,

assuming k 6= 0.
(d) (

n

k

)(
k

m

)
=

(
n

m

)(
n−m
k −m

)
.

(e)
bn/2c∑
k=0

(
n− k
k

)
= Fn+1,

where Fr is the rth Fibonacci number, defined by F0 = 0, F1 = 1,
and Fr = Fr−1 + Fr−2 for r ≥ 2.

(2) Given nonnegative integers k and n, how many solutions are there to

a1 + a2 + · · ·+ ak ≤ n,

where each ai must be a nonnegative integer? Give your answer in
closed form, without a

∑
or · · · .

(3) (a) There are n chairs laid out in a row. In how many ways can k

people sit in the chairs, such that no two people sit in the same
chair or in adjacent chairs?

(b) Same question, but now the chairs are arranged in a circle instead
of in a row.

(4) Prove the following generalization of Vandermonde’s Identity:∑
k1+···+kd=r

(
n1
k1

)(
n2
k2

)
· · ·
(
nd
kd

)
=

(
n1 + · · ·+ nd

r

)
.

(5) Evaluate the sum ∑
0≤i≤j≤n

(
n

i

)(
n

j

)
.

(6) Prove that, for every positive integer k and every nonnegative integer
n,
(
kn
n

)
is divisible by (k − 1)n + 1. If you can, find a combinatorial

interpretation of this fact by explaining what 1
(k−1)n+1

(
kn
n

)
counts.

(7) Given nonnegative integers k, n and r, how many solutions are there
to the equation

a1 + a2 + · · ·+ ak = n,

where each ai is a nonnegative integer greater than or equal to r?
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(8) In terms of n and k, determine when
(
n
k

)
is even, and when it is

odd. (Fun aside for mathematical culture: make a very large Pascal’s
triangle, i.e. one with many rows, and shade the even entries in the
triangle to get an interesting pattern!)

(9) Give a combinatorial proof to show that
(
n
k

)2 ≥ (
n

k−1

)(
n

k+1

)
for all

n and k. This means showing that both sides count something, and
explaining why there are at least as many elements counted by the
left side as by the right side. A sequence a0, a1, . . . , an such that a2k ≥
ak−1ak+1 is said to be log-concave, so this shows that the binomial
coefficients

(
n
·
)

are log-concave.
(10) How many ways are there to write a positive integer n as the sum of

k positive integers, if an integer m can be colored with m different
colors? (Order matters, so for instance 8 = 3+ 2+ 3 is different from
8 = 2 + 3 + 3.)



This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



Chapter 16

Lattice paths

16.1 Lattice paths

One place where binomial coefficients show up is in counting lattice
paths.

Question 16.1. How many paths are there from (0, 0) to (m,n), where
each step goes one unit to the right or one unit up?

See Figure 16.1 for an example of such a path from (0, 0) to (5, 4).

Figure 16.1. A lattice path from (0, 0) to (5, 4).

It is easy to count such paths in terms of binomial coefficients. To do
this, let us write down a path as a string of letters: we write R whenever
we take a right step and U whenever we take an up step. Thus the path
shown in Figure 16.1 is RRUUURRUR.

Observe that getting from (0, 0) to (5, 4) takes 9 steps, and of those 5
of them are right steps and 4 are up steps. More generally, in order to get

187
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from (0, 0) to (m,n), we must take m+n steps. Of those, m must be right
steps and n must be up steps. Thus the number of paths is the same as
the number of ways of choosing m letters from m+n to be R’s, forcing the
rest to be U’s. This number is simply

(
m+n
m

)
.

16.2 Dyck paths and Catalan numbers

That was too easy, so let’s up the ante a bit. Let’s place a restriction
on the paths.

Question 16.2. How many paths are there from (0, 0) to (n, n), taking
steps one unit to the right or one unit up, that never cross above the diagonal
line y = x?

We call such paths Dyck paths. An example is shown in Figure 16.2.

Figure 16.2. A Dyck path.

These are more difficult to count. However, it turns out that there is
still an elegant formula for them.

Theorem 16.3. The number of paths from (0, 0) to (n, n), taking steps to
the right or up and never going above the line y = x, is equal to 1

n+1

(
2n
n

)
.

There are many proofs of Theorem 16.3. We’ll see two of them.

Proof 1. Our approach is based on the fact that 1
n+1

(
2n
n

)
=
(
2n
n

)
−
(

2n
n−1
)
,

which can be checked by straightforward computation.
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Let us consider an arbitrary path from (0, 0) to (n, n) using right and
up steps, regardless of whether it goes above the line y = x. If it never
goes above the line, then it’s one of the paths we want. If it ever does go
above the line, then it does so for the first time at some point, moving from
(k, k) to (k, k+ 1). Up to that point, the path consists of k right steps and
k + 1 up steps. After that, there are n − k right steps and n − k − 1 up
steps. Let us now modify the path, in the following way: the part of the
path from (0, 0) to (k, k+1) will be left unchanged, but after that, every up
step becomes a right step, and every right step becomes an up step. (See
Figure 16.3 for an example.) After this transformation, we have a total of
k+(n−k−1) = n−1 right steps and (k+1)+(n−k) = n+1 up steps, so the
path ends at (n−1, n+1). All paths ending at (n−1, n+1) are obtainable
in this way, and every bad path leads to a different path to (n− 1, n+ 1),
so there are

(
2n
n−1
)
such bad paths. Thus there are

(
2n
n

)
−
(

2n
n−1
)
good paths,

as desired. �

Figure 16.3. The dashed red path is the flip of the blue part of the
original path.

The numbers 1
n+1

(
2n
n

)
appear all over the place in combinatorics. They

are known as the Catalan numbers and denoted Cn.

Proof 2. Observe that Cn = 1
n+1

(
2n
n

)
= 1

2n+1

(
2n+1
n

)
, by straightforward

calculation. We will give a combinatorial interpretation for 1
2n+1

(
2n+1
n

)
.

To do this, let us consider paths from (0, 0) to (n + 1, n) that never go
above the line connecting (0, 0) and (n + 1, n); see Figure 16.4. The first
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step must be a right step, but after that we obtain a Dyck path from (1, 0)

to (n+ 1, n), never passing above the line connecting (1, 0) and (n+ 1, n).
Furthermore, any Dyck path from (0, 0) to (n, n) can be converted into one
of these new types of paths by starting with a right step and then following
the Dyck path—taking a right step whenever the Dyck path does and an
up step whenever the Dyck path does; see Figure 16.5. Thus the number
of such paths is also counted by the Catalan numbers Cn.

Figure 16.4. A good path from (0, 0) to (4, 3), never going above the
line.

Figure 16.5. Converting a Dyck path from (0, 0) to (3, 3) to a good path
from (0, 0) to (4, 3) by adding a right step at the beginning.

Now, let us suppose we have any path of up and right steps from (0, 0)

to (n + 1, n), whether or not it stays below the line. Let us write it as a
sequence a1, a2, . . . , a2n+1, where each ai is either “U” or “R” depending on
whether it is an up step or a right step. We now consider 2n + 1 paths
obtainable from this path, all going from (0, 0) to (n+ 1, n), by performing
cyclic shifts of the path. The first path is the original one. The second
path is a2, a3, a4, . . . , a2n+1, a1. The third path is a3, a4, . . . , a2n+1, a1, a2,
and so forth. Note that all these paths are necessarily different.
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We claim that exactly one of these paths stays below the line, which
then proves the theorem. To see this, let us take two copies of the original
path and concatenate them, yielding a path from (0, 0) to (2n+ 2, 2n). At
the start of each of the 2n+ 1 original steps, draw a line parallel to the line
from (0, 0) to (n + 1, n) starting at the current location. All of them end
at another point on the extended path. All of these lines are different, so
one of them is above all the rest of them. The path starting there is a good
path. See Figure 16.6 for an example. �

Figure 16.6. Starting with the path URURRRU, we obtain the good
path RRRUURU, the unique good cyclic shift of the original path.

16.3 The ubiquitous Catalan numbers

The Catalan numbers count much more than just Dyck paths. Richard
Stanley, in his famous 2-volume book [Sta12,Sta99] on enumerative combi-
natorics, has an exercise (Exercise 6.19 from Volume 2) that lists 66 com-
binatorial interpretations of the Catalan numbers; the exercise is to take
every pair of them and give an explicit bijection between them. Thus this
“exercise” is actually

(
66
2

)
exercises: quite a serious undertaking! If that

weren’t enough, he has expanded his list to 214 entries and has written an
entire book [Sta15] on the Catalan numbers and the many, many things
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they count. We won’t look at all of them, but let’s see just a handful of
them.

One of these other interpretations of the Catalan numbers is that they
are the number of parenthesizations of an expression involving n+ 1 sym-
bols into pairs. For example, if n = 3, we can look at various ways of
parenthesizing the product abcd; they are

(((ab)c)d), ((ab)(cd)), ((a(bc))d), (a((bc)d)), (a(b(cd))).

We require that each corresponding pair of parentheses contains two sym-
bols or symbol groups, where a symbol group is either a single symbol or
a parenthesized expression. For example, in (a(bc)), the outermost pair of
parentheses parenthesizes two groups, the first of which is the symbol a,
and the second of which is the parenthesized group (bc).

We claim that there are Cn ways of parenthesizing n+ 1 symbols, such
that expressions are parenthesized in pairs, as above. To see this, we give
a bijection with Dyck paths from (0, 0) to (n, n). To form the bijection,
we start with a parenthesized product, and then we delete all the right
parentheses as well as the rightmost variable, which in this case is d. We
obtain the following expressions, which may be painful to read:

(((abc, ((ab(c, ((a(bc, (a((bc, (a(b(c.

Observe that these are all different. We can always recover the fully paren-
thesized expression by putting the last variable back at the end, and then,
working from left to right, reinserting a right parenthesis whenever we have
two consecutive symbols or groups of symbols.

Example. Let’s give an example in the case of a longer string. Consider the
string

(((a(bc((de(fg.

How do we insert the remaining symbols? First, we put the last character
h back in, to get

(((a(bc((de(fgh.

Now, we work from the left. The first time we have two adjacent symbols
is bc, so we close off the parenthesis before bc and make (bc) into a group.
This gives

(((a(bc)((de(fgh.

Now that (bc) counts as a group, we have two adjacent groups: a and (bc),
so that pair needs to be correctly parenthesized. When we do so, we get

(((a(bc))((de(fgh.



Lattice paths 193

Next up is the pair (de), so we cap that off to get

(((a(bc))((de)(fgh.

Next is fg, yielding

(((a(bc))((de)(fg)h.

Now (de) and (fg) are adjacent blocks, so we pair them to get

(((a(bc))((de)(fg))h.

The next set of adjacent blocks are the blocks (a(bc)) and ((de)(fg)), so we
group them to get

(((a(bc))((de)(fg)))h.

Finally, the h gets grouped with everything else, so that the final parenthe-
sization is

(((a(bc))((de)(fg)))h).

If we go backward, deleting the h and all the right parentheses, we do indeed
get

(((a(bc((de(fg,

which is what we started with.

Now it’s easy to get a bijection with Dyck paths. Starting with a Dyck
path, replace every right step with a left parenthesis—the ( symbol—and
replace every up step with a variable. Then perform the above process to
reinsert the right parentheses and last variable. This process is invertible,
i.e. we can start with a parenthesized expression and get back a Dyck path,
inverse to the other direction, so this is a bijection.

Another thing counted by Catalan numbers is binary trees with n + 1

leaves.

Definition 16.4. A tree is a connected graph with no cycles. Alternatively,
a tree is a connected graph in which |V | = |E|+ 1. A rooted tree is a tree
together with a distinguished vertex, called the root . Given a rooted tree
and a vertex v, each neighbor of v is either closer to the root or further away
from the root than v. Ones that are further away are called children. A
binary tree is a rooted tree in which every vertex has either 0 or 2 children.
In the latter case, one of the children is called the left child, and the other
is called the right child. A leaf in a binary tree is a vertex with no child
nodes emanating from it.



194 Transition to Proofs

Figure 16.7. The five binary trees with four leaves.

It’s easier to understand what binary trees are pictorially. The five
binary trees with 4 leaves are shown in Figure 16.7.

Why are these counted by the Catalan numbers? This is because there
is a bijection with parenthesized expressions. We label the leaves from left
to right by variables x1, . . . , xn+1 (or a, b, c, d when there are four of them),
and we use the tree structure to get a parenthesization. This is best shown
by example, and we illustrate one in Figure 16.8.

a

b c

d

(bc)

(a(bc))

((a(bc))d)

Figure 16.8. Converting a tree to a parenthesization.

16.4 A recurrence for Catalan numbers

The Fibonacci numbers satisfy the familiar recurrence Fn+2 = Fn +

Fn+1. Similarly, the Catalan numbers satisfy a recurrence, albeit a slightly
more complicated one:

Theorem 16.5. For all integers n ≥ 0, we have

Cn+1 = C0Cn + C1Cn−1 + · · ·+ CnC0 =

n∑
k=0

CkCn−k.

Note that the subscript on the left side is n + 1, whereas in each term
on the right, the sum of the subscripts is only n, i.e. they are off by one.
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Proof. Given a Dyck path from (0, 0) to (n + 1, n + 1), let us look at the
first time after (0, 0) that it hits the line y = x. Suppose it next hits at
(k+1, k+1), where 0 ≤ k ≤ n. Consider the subpath of the Dyck path from
(0, 0) to (k + 1, k + 1). Clearly, this path starts with a right step and ends
with an up step. Between those, we have a path from (1, 0) to (k + 1, k).
Since we assume that (k + 1, k + 1) is the first time the path hits the line
y = x, the subpath from (1, 0) to (k+ 1, k) cannot hit the line y = x, i.e. it
stays strictly below it. In other words, it is a path from (1, 0) to (k + 1, k)

never crossing the line y = x − 1. But that’s just a shifted Dyck path of
length k, and so there are Ck such subpaths.

After the point (k + 1, k + 1), we have a path from (k + 1, k + 1) to
(n + 1, n + 1) which never crosses above the line y = x. This is a shifted
version of a path from (0, 0) to (n− k, n− k) not crossing above the y = x

line, so there are Cn−k of those. In total then, there are CkCn−k Dyck paths
from (0, 0) to (n+1, n+1) that first hit the line y = x at (k+1, k+1). (This
works even when k = n, when the path stays entirely below the diagonal
before finishing at (n+ 1, n+ 1).)

Summing from k = 0 to n now gives the desired result. �

16.5 Problems

(1) 2n (distinguishable) people are waiting to buy tickets to a show that
costs $5. n of them have only a $5 bill, and the other n of them have
only a $10 bill. The teller has no change to start with. In how many
ways can the people line up such that each person can buy a ticket and
get the correct change (if necessary) without having to switch their
order?

(2) How many lattice paths are there from (0, 0) to (n, n) that do not
touch the diagonal at (i, i) for any i with 1 ≤ i ≤ n− 1?

(3) How many paths are there in Z3 from (0, 0, 0) to (a, b, c), with steps
of the form (1, 0, 0), (0, 1, 0), and (0, 0, 1)?

(4) Suppose you start at (0, 0), and at every second, you make a random
step of the form (1, 0) or (0, 1), each with probability 1

2 . In terms of
m and n, what is the probability that you reach (m,n) at some point?

(5) Show that the number of elements in each of the following sets is Cn,
the nth Catalan number, by giving a bijection with the set of Dyck
paths or some other Catalan object you know.
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(a) Sequences of length 2n consisting of n a’s and n b’s, such that for
each 1 ≤ k ≤ 2n, the number of a’s among the first k letters is at
least as large as the number of b’s among the first k letters.

(b) Triangulations of a regular (n + 2)-gon into n triangles. (See
Figure 16.9.)

(c) Ways of filling in a 2 × n grid with numbers from 1 to 2n (each
number used exactly once), such that the rows are increasing from
left to right and the columns are increasing from top to bottom.
(See Figure 16.10.)

(d) Sequences 1 ≤ a1 ≤ a2 ≤ · · · ≤ an of integers with ai ≤ i for all i.
(e) Sequences a1 < a2 < · · · < an−1 of integers such that 1 ≤ ai ≤ 2i

for all i.

Figure 16.9. The five triangulations of a regular pentagon.

1 2 3
4 5 6

1 2 4
3 5 6

1 2 5
3 4 6

1 3 4
2 5 6

1 3 5
2 4 6

Figure 16.10. The five ways of filling a 2× n grid with numbers from 1
to 6 with increasing rows and columns.

(6) Suppose that D0, D1, D2, . . . is a sequence of numbers such that D0 =

1 and, for all n ≥ 0, we have

Dn+1 = D0Dn +D1Dn−1 + · · ·+DnD0. (16.1)

Prove that Dn is the nth Catalan number for all n. (Make sure you
understand what is being asked here: you are not being asked to
prove that the Catalan numbers satisfies this recurrence, something
we already did in Theorem 16.5.)

(7) Prove directly that the number of binary trees with n+ 1 leaves sat-
isfies the Catalan recurrence (16.1). This, together with the previous
problem, gives another proof that the number of binary trees with
n+ 1 leaves is equal to Cn.
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(8) Let a and b be two positive integers with gcd(a, b) = 1. How many
paths are there from (0, 0) to (a, b) that never go above the line con-
necting (0, 0) and (a, b)? When a = b + 1, this is a Catalan number,
as shown in proof 2. In general, this number is known as a rational
Catalan number .

(9) Prove combinatorially that if gcd(a, b) = 1, then
(
a+b
a

)
is divisible by

a+ b. Show that this is not necessarily the case if gcd(a, b) 6= 1.
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Chapter 17

The Binomial Theorem

17.1 The Binomial Theorem

The Binomial Theorem, one of the most frequently used theorems in
mathematics, concerns the expansion of an expression of the form (x+y)n,
where n is a nonnegative integer.

Theorem 17.1 (Binomial Theorem). If n is a nonnegative integer, then

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

We’ll give two proofs of the Binomial Theorem.

Proof 1. We will prove it by induction on n. Our base case is n = 0, where
we have (x+ y)0 = 1, which is indeed the case. Now, let’s do the inductive
step. Suppose that the result is true for n, i.e.

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

We must show that it is true for n+ 1, i.e.

(x+ y)n+1 =

n+1∑
k=0

(
n+ 1

k

)
xkyn+1−k.

199
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To do this, we simply calculate:

(x+ y)n+1 = (x+ y)(x+ y)n

= (x+ y)

n∑
k=0

(
n

k

)
xkyn−k

=

n∑
k=0

(
n

k

)
xk+1yn−k +

n∑
k=0

(
n

k

)
xkyn+1−k

=

n+1∑
k=1

(
n

k − 1

)
xkyn−k+1 +

n∑
k=0

(
n

k

)
xkyn+1−k

=

n+1∑
k=0

[(
n

k − 1

)
xkyn+1−k +

(
n

k

)
xkyn+1−k

]

=

n+1∑
k=0

[(
n

k − 1

)
+

(
n

k

)]
xkyn+1−k

=

n+1∑
k=0

(
n+ 1

k

)
xkyn+1−k.

In the last step, we used Pascal’s identity
(
n
k−1
)
+
(
n
k

)
, and in a previous step

we extended our sums. They were originally from k = 1 to n+ 1 and k = 0

to n. Afterwards, both went from k = 0 and n + 1. This does not change
anything, because the extra terms are zero. This completes the proof. �

And now for the second proof:

Proof 2. Let us compute the coefficient of xkyn−k in (x + y)n. When we
expand out (x + y)n, we must choose either an x or a y in each factor of
x+ y. Among the n factors, we must choose k of the x’s and n− k of the
y’s. The number of ways of doing this is

(
n
k

)
, so the coefficient of xkyn−k

in (x+ y)n is
(
n
k

)
. Summing over all k, we have

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k,

as desired. �

A simple consequence of the Binomial Theorem is the following result,
which we already saw in Chapter 15:
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Corollary 17.2. For any nonnegative integer n, we have
n∑
k=0

(
n

k

)
= 2n.

Proof. Plug in x = y = 1 into the Binomial Theorem. �

This says that the total number of subsets of a set with n elements
is 2n. Another familiar consequence of the Binomial Theorem is that, if
n ≥ 1, there are the same number of subsets of [n] with an even number of
elements as with an odd number of elements.

Corollary 17.3. For each integer n ≥ 1, we have
n∑
k=0

(−1)k
(
n

k

)
= 0.

Proof. Let x = −1 and y = 1 in the Binomial Theorem. �

17.2 Proofs using the Binomial Theorem

One thing we can do with the Binomial Theorem is to use it to prove
combinatorial identities. Let’s see how to use it to prove a familiar theorem
that we already proved in Chapter 15.

Theorem 17.4 (Vandermonde’s Identity). Let m and n be nonnegative
integers, and suppose r ≤ m+ n. Then we have

r∑
k=0

(
m

k

)(
n

r − k

)
=

(
m+ n

r

)
.

We previously proved Vandermonde’s identity using a direct combina-
torial argument, but this time we’ll prove it using the Binomial Theorem.

Proof. Since (x+ 1)m+n = (x+ 1)m(x+ 1)n, we have
m+n∑
r=0

(
m+ n

r

)
xr = (x+ 1)m+n

= (x+ 1)m(x+ 1)n

=

(
m∑
k=0

(
m

k

)
xk

)(
n∑
`=0

(
n

`

)
x`

)

=

m+n∑
r=0

(
r∑

k=0

(
m

k

)(
n

r − k

))
xr,
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where in the final step we grouped terms in the product based on their
power of x. Comparing the coefficients of xr, we get(

m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
,

as desired. �

17.3 Binomial Theorem tricks

The Binomial Theorem tells us how to handle sums of the form∑n
k=0

(
n
k

)
xk, and related things. But what happens if we don’t want all

the terms in the sum, but only some of them? For example, what happens
if we only want the even terms? That is, we’d like to evaluate the sum∑

0≤k≤n
k even

(
n

k

)
xk.

To do this, we use a classic Binomial Theorem trick. Consider the sum
(1 + x)n + (1− x)n. By the Binomial Theorem, we have

(1 + x)n + (1− x)n =

n∑
k=0

(
n

k

)
xk +

n∑
k=0

(
n

k

)
(−x)k

=

n∑
k=0

(
n

k

)(
xk + (−x)k

)
= 2

∑
0≤k≤n
k even

(
n

k

)
xk.

Dividing by 2, we get∑
0≤k≤n
k even

(
n

k

)
xk =

(1 + x)n + (1− x)n

2
.

If we want the multiples of 4, we can use a similar trick, known as the
roots-of-unity filter . In order to evaluate∑

0≤k≤n
4|k

(
n

k

)
,
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we consider the sum (1 + 1)n+ (1−1)n+ (1 + i)n+ (1− i)n, where i2 = −1.
By the Binomial Theorem, we have

(1 + 1)n + (1− 1)n

+(1 + i)n + (1− i)n =

n∑
k=0

(
n

k

)
+

n∑
k=0

(−1)k
(
n

k

)

+

n∑
k=0

ik
(
n

k

)
+

n∑
k=0

(−i)k
(
n

k

)

=

n∑
k=0

(
1 + (−1)k + ik + (−i)k

)(n
k

)
.

Now, note that depending on k (mod 4), we get the following values of 1k,
(−1)k, ik, and (−i)k:

1k (−1)k ik (−i)k
∑

0 (mod 4) 1 1 1 1 4
1 (mod 4) 1 −1 i −i 0
2 (mod 4) 1 1 −1 −1 0
3 (mod 4) 1 −1 −i i 0

Thus

1k + (−1)k + ik + (−i)k =

{
4 k ≡ 0 (mod 4),

0 k 6≡ 0 (mod 4).

Thus we have

2n + (1 + i)n + (1− i)n = 4
∑

0≤k≤n
4|k

(
n

k

)
,

or ∑
0≤k≤n

4|k

(
n

k

)
=

2n + (1 + i)n + (1− i)n

4
.

It would be a little nicer if our answer didn’t have i’s in it. To deal with
this, we’ll just assume that n is a multiple of 4 for now, since (1 + i)4 =

(1− i)4 = −4. In that case, we get the slightly simpler expression∑
0≤k≤n

4|k

(
n

k

)
=

2n + (−4)n/4 + (−4)n/4

4
= 2n−2 +

(−4)n/4

2
.

We can derive similar expressions if n is not a multiple of 4, but they are
just a little bit uglier.
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17.4 More Binomial Theorem tricks

Here’s a cute, but not very deep, application of the Binomial Theorem.
Consider the powers of 11: we have

111 = 11, 112 = 121, 113 = 1331, 114 = 14641.

Note that the digits are just the binomial coefficients—or if you prefer, the
numbers you get by reading across the rows of Pascal’s triangle. If you look
at 115 = 161051, it may seem that the pattern breaks down. But this is
because the digits start to blend together. What is going on?

This is just the Binomial Theorem in action: we have

11n = (10 + 1)n =
n∑
k=0

(
n

k

)
10k.

So, when n = 4, we get

114 = 104 + 4 · 103 + 6 · 102 + 4 · 101 + 1 · 100 = 14641.

When n = 5, we get

115 = 105 + 5 · 104 + 10 · 103 + 10 · 102 + 5 · 101 + 1 · 100.

The problem is that here the digits start to blend together. When n = 4

and we write the sum in vertical format, we have

1
4 0

6 0 0
4 0 0 0

+ 1 0 0 0 0
1 4 6 4 1

Note that we never have to carry, and each term fits into its designated
column. On the other hand, when n = 5, we get

1
5 0

1 0 0 0
1 0 0 0 0
5 0 0 0 0

+ 1 0 0 0 0 0
1 6 1 0 5 1
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Some of the terms spill over into neighboring columns (in particular,
the 10’s), leading to the apparent disruption of the pattern. It takes longer
to happen if you look at powers of 101 instead. For example, 1015 =

10510100501, and you see the 1, 5, 10, 10, 5, 1 in their rightful places,
distinguished by colors.

Let’s try another Binomial Theorem trick.

Question 17.5. What is the last digit before the decimal point in (2 +√
5)2019?

Since we have an expression of the form (x+ y)n, we’re tempted to use
the Binomial Theorem to expand. When we do this, we get

(2 +
√

5)2019 = 22019 + 2019 · 22018
√

5 +
2019 · 2018

2
22017 · 5 + · · ·

=

2019∑
k=0

(
2019

k

)
5k/222019−k.

It’s not quite clear what to do with that at the moment, but the trick is to
use 2−

√
5 as well. We have

(2−
√

5)2019 =

2019∑
k=0

(−1)k
(

2019

k

)
5k/222019−k.

When we add the two together, we get

(2 +
√

5)2019 + (2−
√

5)2019

=

2019∑
k=0

((
2019

k

)
5k/222019−k + (−1)k

(
2019

k

)
5k/222019−k

)
.

When k is odd, the stuff in parentheses is 0, and when k is even, the two
terms in parentheses are equal. Thus we have

(2 +
√

5)2019 + (2−
√

5)2019 = 2
∑

0≤k≤2019
k even

(
2019

k

)
5k/222019−k.

Observe that the right side is an integer (being a sum of a bunch of integers),
and therefore so is the left side. Since we only care about the last digit, that
means we can ignore any term divisible by both a 2 and a 5. That’s almost
all of them: the only one that isn’t is the k = 0 term, which is divisible by
2 but not by 5. Thus we have

(2 +
√

5)2019 + (2−
√

5)2019 ≡ 2× 22019 ≡ 22020 ≡ 6 (mod 10),
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where the last step comes from the Chinese Remainder Theorem. By Fer-
mat’s Little Theorem, we have 22020 ≡ 1 (mod 5), and certainly 22020 ≡ 0

(mod 2), so by combining them we end up with 22020 ≡ 6 (mod 10).
Now we’ve figured out the last digit of (2 +

√
5)2019 + (2 −

√
5)2019,

but we need to get rid of the (2 −
√

5)2019 term. To do this, we note that
−1 < 2−

√
5 < 0, so −1 < (2−

√
5)2019 < 0. Since (2+

√
5)2019+(2−

√
5)2019

is an integer ending with 6 and (2−
√

5)2019 is between −1 and 0, it follows
that the last digit before the decimal point of (2 +

√
5)2019 is a 6.

17.5 Further reading

So far, we have only considered the Binomial Theorem when n, the
power to which x + y is raised, is a nonnegative integer. However, we
can plug in other values as well, as long as we are careful. Recall that
in the Binomial Theorem, we get the binomial coefficients

(
n
k

)
appearing

as coefficients of xkyn−k. Combinatorially,
(
n
k

)
doesn’t make much sense

when n isn’t a nonnegative integer. For example, what is
(−2

3

)
supposed to

mean? The number of ways of choosing three objects from among a set of
−2 elements?

The trick is to stop thinking of binomial coefficients combinatorially,
and start thinking of them as polynomials, where we can plug in values.
For example, if k = 3, then we have(

n

3

)
=
n(n− 1)(n− 2)

6
=
n3

6
− n2

2
+
n

3
,

so we can easily plug in n = −2 to get
(−2

3

)
= −8

6 −
4
2 −

2
3 = −4.

Definition 17.6. Let k be a nonnegative integer. Set

nk = n(n− 1)(n− 2) · · · (n− k + 1) =

k−1∏
i=0

(n− i).

We call nk the falling factorial . We define the binomial coefficient
(
n
k

)
to

be (
n

k

)
=
nk

k!
.

Notice that this new definition agrees with the old one
(
n
k

)
= n!

k!(n−k)!
whenever n and k are nonnegative integers with n ≥ k, because n!

(n−k)! = nk:
all the factors in n! that are less than or equal to n − k get canceled with
the corresponding term in the denominator.
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The extension of binomial coefficients allows us to extend the Binomial
Theorem, albeit with a bit of care.

Theorem 17.7 (General Binomial Theorem). If x and y are real numbers,
with |x| < |y|, and α is a complex number, then

(x+ y)α =

∞∑
k=0

(
α

k

)
xkyα−k.

The condition |x| < |y| is needed to guarantee that the sum converges.
Letting α = 1

2 in the General Binomial Theorem, we find that

√
1 + x = 1 +

x

2
− x2

8
+
x3

16
− 5x4

128
+ 7

7x5

256
− · · · .

The General Binomial Theorem is of crucial importance in the study of
generating functions, among many other places. See for instance [Wil05]
or [FS09].

17.6 Problems

(1) What is the coefficient of x3 in (5x+ 2
x2 )24?

(2) Which coefficient of (x + y)n is the largest? What about (x + 2y)n?
Prove that your answers are correct.

(3) Find a closed-form expression for
n∑
k=0

1

k + 1

(
n

k

)
.

(4) Find a closed-form expression for∑
0≤k≤n
k odd

(
n

k

)
3k.

(5) Find a closed-form expression for the sum(
n

0

)
−
(
n

2

)
+

(
n

4

)
−
(
n

6

)
+ · · · =

bn2 c∑
k=0

(−1)k
(
n

2k

)
.

(6) Prove that for all integers n ≥ 2, we have

22n−1

n
<

(
2n

n

)
< 4n.

(7) Prove that if n ≥ 2, we can find a collection S of at least 2n

n subsets of
[n] such that no set in S contains another one.
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(8) The n-dimensional cube consists of all points

(x1, x2, . . . , xn) ∈ Rn

such that 0 ≤ xi ≤ 1 for all i with 1 ≤ i ≤ n. A 0-dimensional face
of a cube is a vertex, a 1-dimensional face is an edge, a 2-dimensional
face is a square, and so on. The entire cube does not count as a face.
Determine, as a function of n, the number of faces (of any dimension)
that the n-dimensional cube has. (For example, the 3-dimensional cube
has 8 0-dimensional faces, 12 1-dimensional faces, and 6 2-dimensional
faces, for a total of 26 faces.)

(9) A complex number α with |α| > 1 is said to be a Pisot number if there
is a polynomial f(x) with integer coefficients and leading coefficient
equal to 1 such that f(α) = 0, and all roots β of f(x) other than α

satisfy |β| < 1.

(a) Show that 1+
√
5

2 , 1 +
√

2, and 3+
√
13

2 are Pisot numbers.
(b) Suppose that α = a + b

√
d, where a, b, d are integers, and d > 0 is

not a perfect square. Prove that if α is a Pisot number, then αn

is very close to an integer for large values of n, i.e. for all ε > 0,
there is an N such that αn is within ε of an integer for all n > N .
(We say that a number x is within ε of an integer if there is some
integer n such that |x− n| < ε.)
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Inclusion-Exclusion

18.1 Inclusion-Exclusion

Suppose we have a finite set X with three subsets, A, B, and C. We
wish to find the number of elements in A ∪ B ∪ C. In order to determine
the size of A ∪ B ∪ C, we can start by estimating it as |A| + |B| + |C|.
However, this is not quite right, because an element in two of these subsets
is counted multiple times. For instance, an element in A ∩ B is counted
once in A and once in B, yet we only want to count it once. So, we
need to correct our count by subtracting off |A ∩ B|. Similarly, we need
to adjust for elements of A ∩ C and B ∩ C. So our adjusted count is
|A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|. But this is still not quite
right, because if we have an element in A ∩ B ∩ C, then we count it once
in |A|, once in |B|, and once in |C| for a total of three counts, but then we
subtract it once in |A∩B|, once in |A∩C|, and once in |B ∩C|. Thus such
elements are counted no times at all. So, we make one final adjustment, by
adding back in |A ∩B ∩ C|. Thus we have
|A ∪B ∪C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩C| − |B ∩C|+ |A ∩B ∩C|.
See Figure 18.1.

More generally, if we have n subsets, say A1, . . . , An, then we have a
very similar formula:

Theorem 18.1 (Principle of Inclusion-Exclusion). Let X be a finite set,
and let A1, . . . , An be subsets of X. Then∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =

n∑
i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |+ · · ·+ (−1)n−1

∣∣∣∣∣
n⋂
i=1

Ai

∣∣∣∣∣ .
Proof. Let’s suppose we have an element x that is in exactly k of the n
subsets A1, . . . , An. If k = 0, then we do not count it anywhere, which

209
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A

B

C

A ∩B

B ∩ C

A ∩ C

A ∩B ∩ C

Figure 18.1. The diagram of inclusion-exclusion for three sets.

is what we want, so now let’s assume that k ≥ 1. Since the formula is
symmetric in the subsets, we may assume that it is in A1, . . . , Ak, but
not in Ak+1, . . . , An. Let’s see how many times we have counted x in the
alternating sum. In the first term, taking one Ai at a time, we count it k
times. In the second sum, we count it

(
k
2

)
times, but with a negative sign,

and in general in the ith sum, we count it
(
k
i

)
times, with a sign of (−1)i−1.

Thus the total number of times x is counted is
k∑
i=1

(−1)i−1
(
k

i

)
.

If the sum started from 0 rather from 1, then we would have the full al-
ternating sum of binomial coefficients, which we know to be 0. But we’re
missing a −1 from it, so the sum is 1, which is just what we want: such an
element is counted exactly once. �

Example. Let us compute the number of positive integers less than 210
that are relatively prime to 210. We already know how to do this thanks
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to the formula for the totient function (Theorem 7.11), but we can also
do it using the inclusion-exclusion formula, as we will now see. The prime
factorization of 210 is 2×3×5×7, so we can investigate the numbers up to
210 that are divisible by each of 2, 3, 5, and 7. Let A2, A3, A5, A7 denote
the set of positive integers up to 210 that are divisible by 2, 3, 5, and 7,
respectively. We wish to count [210] \ (A2 ∪ A3 ∪ A5 ∪ A7). It suffices to
count A2 ∪A3 ∪A5 ∪A7, and then subtract the result from 210. Using the
inclusion-exclusion formula, we have

|A2 ∪A3 ∪A5 ∪A7| = (|A2|+ |A3|+ |A5|+ |A7|)
− (|A2 ∩A3|+ |A2 ∩A5|+ · · ·+ |A5 ∩A7|)
+ (|A2 ∩A3 ∩A5|+ · · ·+ |A3 ∩A5 ∩A7|)
− |A2 ∩A3 ∩A5 ∩A7|.

Since A2 is the set of multiples of 2 up to 210, we have |A2| = 210
2 = 105.

Similarly, |A3| = 210
3 = 70, |A5| = 210

5 = 42, and |A7| = 210
7 = 30. The

intersections are similar. Thus we have

|A2 ∪A3 ∪A5 ∪A7| = (105 + 70 + 42 + 30)

− (35 + 21 + 15 + 14 + 10 + 6)

+ (7 + 5 + 3 + 2)

− 1

= 162.

So the number of integers up to 210 that are relatively prime to 210 is
210− 162 = 48.

One famous problem that is hard to solve without inclusion-exclusion
but easy to solve with it is the derangement problem.

Question 18.2 (Derangement Problem). n guests arrive at a dinner party,
each wearing a hat. Each guest, upon arrival, gives eir1 hat to the host.
How many ways are there for the host to return the hats, one to each guest,
in such a way that everyone gets a wrong hat?

1This is an example of a Spivak pronoun, which is a third-person singular gender-
neutral pronoun. To form these pronouns, take the third-person plural pronouns, which
start with “th,” and then remove the “th,” producing “ey,” “em,” “eir,” and so forth. The
only exception is “themselves,” which becomes “emself.” One of my missions is to make
Spivak pronouns into a commonly used part of the English language. Please do your
part to support the cause!
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Equivalently, how may permutations2 of [n] are there, written as func-
tions f : [n]→ [n], such that f(i) 6= i for all i? We call such permutations
derangements.

To solve the derangement problem using inclusion-exclusion, let Ai de-
note the set of permutations such that f(i) = i. What we want to count is
the complement of A1 ∪ · · · ∪An. There are n! total permutations, so we’ll
count A1 ∪ · · · ∪An and then subtract our answer from n!.

To use inclusion-exclusion, we must count Ai. Since all the Ai’s are the
same size, we can count An, which consists of those f such that f(n) = n,
and the rest of f is a permutation of [n − 1]. Thus |An| = (n − 1)!.
Similarly, each |Ai| is (n−1)!. Next, we need to count An−1∩An. We have
f ∈ An−1 ∩ An if and only if f(n− 1) = n− 1 and f(n) = n, and the rest
of f is a permutation of [n − 2], so |An−1 ∩ An| = (n − 2)!. In general, if
we have k of these Ai’s, then the size of their intersection is (n− k)!.

Plugging all this into the inclusion-exclusion formula, we find that∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ = n× (n− 1)!−
(
n

2

)
× (n− 2)! +

(
n

3

)
× (n− 3)!

− · · ·+ (−1)n−1
(
n

n

)
× 0!

= n!

n∑
i=1

(−1)i−1

i!
.

Subtracting from n!, we find that the answer to our problem is

n!

n∑
i=0

(−1)i

i!
.

If you are familiar with Taylor series, you will recognize the sum as a
truncation of the Taylor series expansion of ex at x = −1, so the answer is
very close to n!

e . In fact, it is always the closest integer to n!
e , at least when

n ≥ 1.

Question 18.3. We know from stars and bars that the number of nonneg-
ative integer solutions to x1 + · · · + xn = k is

(
n+k−1
n−1

)
. But how many

solutions are there in nonnegative integers < r?

This is another great problem for inclusion-exclusion. Let us write X
for the set of all solutions in nonnegative integers, and for a subset T ⊆ [n],

2A permutation of [n] is a bijective function f : [n] → [n], or equivalently an ordering
of the elements of [n].
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let us write AT for the solutions where xi ≥ r for all i ∈ T . Our aim is to
count ∣∣∣∣∣X \

n⋃
i=1

Ai

∣∣∣∣∣ ,
where Ai is shorthand for A{i}. Note that |AT | depends only on |T |, so we
need only work out |AT | when T = [i] for some i.

In order to compute A[i], we let yj = xj for j > i and yj = xj − r

for j ≤ i; thus yj are still nonnegative integers for the elements of A[i]. A
solution to x1 + · · ·+ xn = k inside A[i] is equivalent to a solution to

y1 + · · ·+ yn = k − ir.

And we know how to count these: there are
(
n+k−ir−1

n−1
)
of them. Now, we

simply toss these answers into the inclusion-exclusion formula, and we find
that the number is

n∑
i=0

(−1)i
(
n

i

)(
n+ k − ir − 1

n− 1

)
.

There isn’t a closed-form expression for that sum, so we’ve done as well as
we can with this problem.3

In problems like the last two, we have some homogeneity in the terms
in the inclusion-exclusion formula, in that the sizes of the intersections only
depend on the number of sets we’re intersecting, not the precise choice of
sets. When that happens, it makes sense to introduce new notation: for any
subset T ⊆ [n] of size i, write N≥i for

∣∣∣⋂j∈T Aj∣∣∣, the number of elements in
all the sets in T (and possibly also others). It is also helpful to write N=i

for the number of elements in all the sets in T but in none of the others:
N=i =

∣∣∣⋂j∈T Aj ∩⋂j 6∈T Acj∣∣∣. In this new notation, we can reformulate
inclusion-exclusion as follows:

Corollary 18.4. With the notation and assumptions as above, we have

N=0 =

n∑
i=0

(−1)i
(
n

i

)
N≥i.

Remark 18.5. Note that N≥i counts the number of elements contained in
some fixed choice of i of the Aj ’s. It does not count the number of elements
in at least i of the Aj ’s overall.

3You might wonder how we can be sure that there is no closed-form expression for the
sum. A good place to learn about how to prove that certain sums have no closed-form
expressions is [PWZ96].
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Sometimes we may be interested in computing N=j for some j > 0.
This isn’t really any different: we restrict the sets under consideration to
those containing [j]. Thus we have the following:

Corollary 18.6.

N=j =

n∑
i=j

(−1)i−j
(
n− j
i− j

)
N≥i.

If we want to know how many elements are in exactly two of the sets,
but it doesn’t matter which two, we can compute that too. We can compute
it either by multiplying the right side of Corollary 18.6 with j = 2 by

(
n
2

)
in

the case that the hypotheses of Corollary 18.6 are satisfied, or else just by
thinking, along the lines of our original argument. We start by summing all
the |Ai∩Aj |’s, and that’s the first approximation. If we have an element in
three of the sets, it gets counted three times in the first approximation, but
we want to count it 0 times, so we subtract 3

∑
1≤i<j<k≤n |Ai ∩ Aj ∩ Ak|.

Next, if we have an element in four of the sets, it gets counted
(
4
2

)
= 6

times in the first approximation, then −3 ·
(
4
3

)
= −12 times in the second;

so between the first two approximations, we have counted it −6 times, and
we want to count it 0 times. So we need to add 6

∑
1≤i<j<k<`≤n |Ai ∩Aj ∩

Ak ∩A`|, and so forth.
By thinking in this way, we can solve all sorts of inclusion-exclusion

problems, even if the conditions we want to count are weird. For instance,
it is not substantially more difficult to count the number of elements that
appear in exactly a prime number of the Ai’s, or something peculiar like
that.

Let’s try another problem!

Definition 18.7. A partition of n is a way of writing n as a sum of positive
integers, where order does not matter. Each of these integers is called a
part. We let p(n) denote the number of partitions of n.

Because order does not matter, we are free to assume that the parts are
arranged in nonincreasing order: n = a1 + a2 + · · ·+ ak, where a1 ≥ a2 ≥
· · · ≥ ak. For example, there are 7 partitions of 5, namely 5, 4 + 1, 3 + 2,
3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1.

Theorem 18.8. The number of partitions of n into only odd parts is equal
to the number of partitions of n into distinct parts.



Inclusion-Exclusion 215

There are many proofs of Theorem 18.8. We will look at two proofs, the
first of which uses inclusion-exclusion, and the second of which is a purely
bijective proof.

Proof 1. We start by computing the number po(n) of partitions of n into
odd parts. The number of partitions containing a 2 is p(n−2), since we can
just take any of those and add 2 to it. Similarly, the number of partitions
containing a 4 is p(n− 4), and so forth. Thus we have

po(n) = p(n)

− p(n− 2)− p(n− 4)− p(n− 6)− · · ·
+ p(n− 2− 4) + p(n− 2− 6) + p(n− 2− 8) + · · ·
+ p(n− 4− 6) + p(n− 4− 8) + · · ·
− p(n− 2− 4− 6)− p(n− 2− 4− 8)− · · · .

On the other hand, if pd(n) denotes the number of partitions of n into
distinct parts, we have

pd(n) = p(n)

− p(n− 1− 1)− p(n− 2− 2)− p(n− 3− 3)− · · ·
+ p(n− 1− 1− 2− 2) + p(n− 1− 1− 3− 3) + · · ·
+ p(n− 2− 2− 3− 3) + p(n− 2− 2− 4− 4) + · · ·
− p(n− 1− 1− 2− 2− 3− 3)− · · · .

Since every line of the two equations agree, we have po(n) = pd(n). �

Proof 2. Let Po(n) and Pd(n) denote the set of partitions of n into odd and
distinct parts, respectively. We define inverse functions f : Po(n)→ Pd(n)

and g : Pd(n) → Po(n), which implies that there is a bijection between
Po(n) and Pd(n), and so there are the same number of each.

Let’s start by defining f . Take a partition A = (a1 ≥ a2 ≥ · · · ≥ ak)

of n into odd parts. We produce f(A), a partition into distinct parts, as
follows. Suppose we have bi parts of A equal to i. Suppose that the binary
representation of bi is

bi = 2c1 + 2c2 + · · ·+ 2cr ,

where all the ci’s are distinct. Then merge the i’s in A into parts of
2c1i, 2c2i, . . . , 2cr i in f(A). Do this for every i to obtain f(A).

Now let’s define g. Suppose we have a partition B into distinct parts.
We define g(B), a partition of n into odd parts, as follows. Suppose bi is
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a part of B. We can write bi, and indeed any positive integer, uniquely in
the form bi = 2em, where m is odd. Split the pile of size bi into 2e piles,
each of size m, and do this for every i to obtain g(B). The function f and
g are inverses. �

That was probably a bit tricky to follow, so let’s do an example. Let’s
start with the following partition of 32 into odd parts:

7 + 3 + 3 + 3 + 3 + 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

That is, we have one part equal to 7, five parts equal to 3, and ten parts
equal to 1. To deal with the 3’s, we write 5 in binary as 4+1, so we combine
4 of them and 1 of them, to get one part of 12 and one part of 3. Similarly,
10 = 8 + 2, so we combine the 1’s into 8 and 2. The final partition f(A)

is 12 + 8 + 7 + 3 + 2. We can also get that by looking for two parts that
are equal and then combining them. Keep doing that until all parts are
distinct. This process yields the same result.

To go backward, let’s start with f(A), namely 12 + 8 + 7 + 3 + 2. To
convert it into a partition g(f(A)) into odd parts, we split each pile in half
until it becomes odd. If we split 12 in half, we get 6 + 6, which isn’t odd
yet. So we do it again, converting each 6 into 3 + 3. Similarly, we split 8
into 4 + 4, then each 4 into 2 + 2, then each 2 into 1 + 1. The final result
is just A.

18.2 Problems

(1) There are 20 students participating in an after-school program offering
classes in yoga, bridge, and painting. Each student must take at least
one of these three classes, but may take two or all three. There are 10

students taking yoga, 13 taking bridge, and 9 taking painting. There
are 9 students taking at least two classes. How many students are
taking all three classes?

(2) How many functions f : [n] → [n] are there with no fixed points,
i.e. such that f(i) 6= i for all i? After you solve this problem using
inclusion-exclusion, figure out how to solve it properly!

(3) How many ways are there to choose a hand of 13 cards from a standard
deck of 52 in such a way that the hand contains at least one jack, one
queen, one king, and one ace?

(4) How many integers are there from 1 to 10000 that are divisible by
exactly two of the numbers 4, 5, 6, and 7?
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(5) Given a permutation a = a1, . . . , an of [n], we define its excedance set4

to be {i : 1 ≤ i ≤ n, ai > i}. How many permutations of [n] are there
whose excedance set contains either n− 1 or n− 2 (or both)?

(6) How many positive integers up to 100000 are not perfect powers? (A
number n is a perfect power if there are integers a and b, with b ≥ 2,
such that n = ab.)

(7) Six people of different heights are getting in line to buy donuts. Com-
pute the number of ways they can arrange themselves in line such that
no three consecutive people are in increasing order of height, from front
to back.

(8) Evaluate the sum
∑n
i=0

(
n
i

)
d(i) in closed form, where d(i) denotes the

number of derangements of [i].

4The usual spelling is “exceedance,” but the variant “excedance” is standard in combi-
natorics.
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Chapter 19

Recurrences

19.1 Why recurrences?

Suppose we wish to determine the size of some set S(n), where we have
one such set for each nonnegative integer n. It might not be easy to count
S(n) directly, but perhaps we can express the size of S(n) in terms of the
size of S(n − 1), and maybe also the sizes of S(n − 2), S(n − 3), and so
forth. Once we have done that, maybe we can use the relation we have
written down to solve for the size of S(n) in closed form. Let’s see this idea
in practice.

Question 19.1. How many binary sequences are there of length n, such
that two 1’s never appear consecutively?

Let us write an for the number of such sequences. It is not so straight-
forward to determine an directly, but we can relate different values of an.
Let us write Sn for the set of sequences enumerated by an, i.e. the binary
sequences of length n with no two consecutive 1’s. We can form a sequence
in Sn in one of two ways:

• Take a sequence in Sn−1, and put a 0 at the end.
• Take a sequence in Sn−2, and put a 01 at the end.

Conversely, starting from a sequence s in Sn, we can produce either a
sequence in Sn−1 or in Sn−2:

• If s ends with a 0, remove this final zero to produce a sequence in Sn−1.
• If s ends with a 1, then the bit immediately preceding that 1 must be
a 0, so we can remove the final 01 to produce a sequence in Sn−2.

219
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These two processes, either adding a 0 to a sequence of length n−1 or a 01

to a sequence of length n−2, and removing a final 0 or 01, are inverses. Thus
there is a bijection between Sn and Sn−1 ∪ Sn−2. The number of elements
in Sn is an, and the number of elements in Sn−1 ∪ Sn−2 is an−1 + an−2.
Thus the sequence an satisfies the recurrence

an = an−1 + an−2,

whenever n ≥ 2.
This doesn’t completely specify the values of an though, because there

are many sequences of numbers an with an = an−1 + an−2. For in-
stance, we have the sequence 1, 2, 3, 5, 8, 13, 21, 34, . . . and the sequence
3, 4, 7, 11, 18, 29, 47, . . . These are different sequences, although they satisfy
the same recurrence. In order to specify the recurrence completely, we need
to know a few values, typically the first ones. In this case, we can count
directly that a0 = 1 and a1 = 2; these are called the initial conditions of
the recurrence. Thus the actual sequence an takes on values a0 = 1, a1 = 2,
a2 = 3, a3 = 5, a4 = 8, and so forth. This is almost the Fibonacci sequence,
but indexed a little differently. In fact, we have an = Fn+2.

Let’s try another example.

Question 19.2. How many ways are there to place n identical balls into k
distinguishable boxes, such that every box gets between 3 and 6 balls?

This one has two variables, but that’s okay. Let an,k denote the number
of such ways, and let Sn,k denote the actual distributions, so that an,k =

|Sn,k|. In order to write down a recurrence, let’s look at the kth box. If it
contains r balls, then we must have filled the other k−1 boxes with a total
of n− r balls. Since r can be 3, 4, 5, or 6, we have

an,k = an−3,k−1 + an−4,k−1 + an−5,k−1 + an−6,k−1.

For the initial conditions, we’ll let k = 1: we have

an,1 =

{
1 n ∈ {3, 4, 5, 6},
0 n 6∈ {3, 4, 5, 6}.

Is this enough information to specify an,k completely? Let’s try to
determine a14,3 using the recurrence and initial conditions: we have

a14,3 = a11,2 + a10,2 + a9,2 + a8,2

= (a8,1 + a7,1 + a6,1 + a5,1) + (a7,1 + a6,1 + a5,1 + a4,1)

+ (a6,1 + a5,1 + a4,1 + a3,1) + (a5,1 + a4,1 + a3,1 + a2,1)

= 2 + 3 + 4 + 3

= 12.
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So, it worked! All we needed was the recurrence relation and the initial
conditions that we already computed. It’s clear that, using the same tech-
nique, we can compute any an,k, although the computations involved may
be rather tedious for large values of n and k.

Sometimes it’s helpful to introduce auxiliary sequences, even when they
aren’t directly part of the problem.

Question 19.3. How many ternary (i.e. base-3) sequences are there with
length n, such that the number of 0’s is a multiple of 3?

Let an, bn, and cn denote the number of ternary sequences of length
n, such that the number of zeros is 0 (mod 3), 1 (mod 3), and 2 (mod 3),
respectively. They satisfy the following recurrences:

an+1 = 2an + cn, bn+1 = 2bn + an, cn+1 = 2cn + bn.

The initial conditions are a1 = 2, b1 = 1, and c1 = 0. We only care
about an, but it would be tricky to write down a recurrence for an directly,
without the help of bn and cn. This system of three recurrences, together
with their initial conditions, is enough to describe an (and bn and cn)
entirely. However, we cannot easily compute an alone, without computing
bn and cn simultaneously. (It is possible, using linear algebra, to remove bn
and cn, but much of the time it’s not worth the trouble.)

19.2 Solving linear recurrences

The recurrences we have seen so far have a certain form. They are
known as linear recurrences.

Definition 19.4. Let a0, a1, a2, . . . be a sequence, and let k be a positive
integer. We say that this sequence satisfies a linear recurrence relation of
order k if there exist numbers c0, c1, . . . , ck−1 such that

an+k = ck−1an+k−1 + ck−2an+k−2 + · · ·+ c1an+1 + c0an

for all n ≥ 0.

For example, the Fibonacci sequence satisfies a linear recurrence relation
of order 2, by taking c0 = c1 = 1: we have

Fn+2 = Fn+1 + Fn.

There is a general method for finding closed forms for all sequences
satisfying linear recurrence relations.
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Definition 19.5. Given a linear recurrence relation

an+k = ck−1an+k−1 + ck−2an+k−2 + · · ·+ c1an+1 + c0an,

we define its characteristic polynomial to be

P (x) = xk − ck−1xk−1 − ck−2xk−2 − · · · − c1x− c0.

The characteristic polynomial is related to closed form expressions for
recurrence relations. It turns out that the situation is simpler when all of
the (complex) roots of P are distinct.

Theorem 19.6. Let a0, a1, . . . be a sequence satisfying a linear recurrence
relation

an+k = ck−1an+k−1 + ck−2an+k−2 + · · ·+ c1an+1 + c0an.

Let P (x) be the characteristic polynomial, and let r1, . . . , rk be the complex
roots of P (x). If r1, . . . , rk are distinct, then there exist complex numbers
s1, s2, . . . , sk such that

an = s1r
n
1 + s2r

n
2 + · · ·+ skr

n
k

for all n ≥ 0.

Proof. First, we determine the values of s1, . . . , sk. Letting n = 0, 1, . . . , k−
1, we find s1, . . . , sk so as to satisfy the k simultaneous equations

s1 + s2 + · · · + sk = a0
s1r1 + s2r2 + · · · + skrk = a1
s1r

2
1 + s2r

2
2 + · · · + skr

2
k = a2

...
s1r

k−1
1 + s2r

k−1
2 + · · · + skr

k−1
k = ak−1.

This is a system of k simultaneous equations in k variables; while not
all such systems of equations have solutions, or unique solutions, this one
does.1

Now, suppose we have found s1, . . . , sk so as to satisfy the above sys-
tem of equations. That means we know that Theorem 19.6 holds for
n = 0, 1, . . . , k − 1. We now prove Theorem 19.6 for all n by induction
on n. Suppose we already know that Theorem 19.6 is true for all integers

1Unfortunately, this fact, which relies on linear algebra and in particular the Vander-
monde matrix (or determinant), is beyond the scope of this book. See [Mil17, Sec-
tion 23.2.4] for an explanation of this if you’re curious. We shall accept the fact that
this system of equations has a unique solution and move on.
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less than n+ k; we will prove it for n+ k as our inductive step. Using the
recurrence, we have

an+k = ck−1an+k−1 + · · ·+ c1an+1 + c0an

= ck−1(s1r
n+k−1
1 + · · ·+ skr

n+k−1
k ) + · · ·

+ c0(s1r
n
1 + · · ·+ skr

n
k )

= s1r
n
1 (ck−1r

k−1
1 + · · ·+ c1r1 + c0) + · · ·

+ skr
n
k (ck−1r

k−1
k + · · ·+ c1rk + c0)

= s1r
n+k
1 + · · ·+ skr

n+k
k .

In the last step, we used the fact that r1, . . . , rk are roots of P (x), so that
ck−1r

k−1
i + · · ·+ c1ri + c0 = rki for 1 ≤ i ≤ k. �

Example. Consider the Fibonacci sequence Fn+2 = Fn+1 + Fn with initial
conditions F0 = 0 and F1 = 1. Its characteristic polynomial is x2 − x− 1,
whose roots are 1±

√
5

2 . Thus there exist constants s1 and s2 with

Fn = s1

(
1 +
√

5

2

)n
+ s2

(
1−
√

5

2

)n
.

In order to find them, we use the initial conditions F0 = 0 and F1 = 1.
Thus s1 and s2 satisfy the equations

s1 + s2 = 0, s1

(
1 +
√

5

2

)
+ s2

(
1−
√

5

2

)
= 1.

Probably the easiest way of solving these equations is to solve for s2 in the
first equation, since s2 = −s1, and substitute into the second equation, to
get

s1

(
1 +
√

5

2

)
− s1

(
1−
√

5

2

)
= 1,

or s1
√

5 = 1, or s1 = 1√
5
. Thus s2 = − 1√

5
, so we have

Fn =
1√
5

[(
1 +
√

5

2

)n
−

(
1−
√

5

2

)n]
,

a formula which is known as Binet’s formula.
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19.3 The Josephus problem

Question 19.7. n people stand around a circle. Every second person stand-
ing, starting with person 2, sits down, until there is only one person left
standing. In which position is the last person?

Let’s try it with n = 7. In succession, the people who sit down are
numbered 2, 4, 6, 1, 5, 3. Thus person 7 remains standing at the end.

Let us write J(n) for the last person left standing. We would like to
find a recurrence that J satisfies. It won’t be a linear recurrence, so we
can’t solve it directly using the techniques we have studied so far. But it
will be fairly easy to deal with for other reasons.

In order to get a recurrence, note that in the first sweep around the
circle, all the people in even-numbered positions have to sit down. When
we get to the beginning again, we end up with slightly different situations
if n is even versus if n is odd. If n is even, we start again with person 1
remaining standing but person 3 sitting, and so forth. Note that this is
essentially just the original problem, but now with n

2 people instead of n.
If person k is the last one standing in the n

2 game, then person 2k − 1 is
the last one standing in the n game. Thus, when n is even, we have

J(n) = 2J
(n

2

)
− 1,

or

J(2n) = 2J(n)− 1.

When n is odd, the situation is slightly different, because person n

remains standing and then person 1 has to sit down. After that, we’re left
with people in positions 3, 5, 7, . . . , n, starting with person 3. This game is
very similar to the n−1

2 game, so we have

J(n) = 2J

(
n− 1

2

)
+ 1,

or

J(2n+ 1) = 2J(n) + 1.

Putting these two cases together, we have

J(2n) = 2J(n)− 1, J(2n+ 1) = 2J(n) + 1.

Let’s use this to confirm our answer when n = 7. We have J(7) =

2J(3) + 1, so we have to compute J(3). We can do this from the recurrence
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as well: J(3) = 2J(1) + 1. Since J(1) = 1, we have J(3) = 3 and J(7) = 7,
just what we got computing it by hand.

We can compute values of J(n) for large n quite efficiently using our
recurrence. For instance, suppose we wish to compute J(494). Then we
have

J(494) = 2J(247)− 1

= 2(2J(123) + 1)− 1 = 4J(123) + 1

= 4(2J(61) + 1) + 1 = 8J(61) + 5

= 8(2J(30) + 1) + 5 = 16J(30) + 13

= 16(2J(15)− 1) + 13 = 32J(15)− 3

= 32(2J(7) + 1)− 3 = 64J(7) + 29

= 64(2J(3) + 1) + 29 = 128J(3) + 93

= 128(2J(1) + 1) + 93 = 256J(1) + 221

= 256 + 221

= 477.

So person number 477 is the last one standing.
While a recurrence of this form doesn’t come with a body of theory like

that of linear recurrences, in other ways it is preferable. Note that we didn’t
have to compute J(n) for all n < 494 in order to compute J(494): we only
had to compute a very small number of values. On the other hand, if we
want to compute the nth term of a sequence given by a linear recurrence,
we have to compute all the previous terms, rather than just a few of them.
(There are certain other benefits to linear recurrences though, such as the
fact they have closed-form expressions. Depending on context, these might
or might not be easy to work with.)

Usually, recurrences like the one for J(n) do not admit closed-form
solutions. This one does, however. Write down the first several values of
J(n) and figure out what the pattern is. Then you will prove it in problem 9.

19.4 Further reading

We have just barely scratched the surface on recurrences. A wonderful
book on combinatorics with something of a focus on recurrences is [GKP94].

Given a sequence a0, a1, a2, . . . of numbers, possibly coming from a re-
currence, one good way to try to analyze it is to put it into a generating
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function. That is, we construct the series
∞∑
n=0

anz
n,

which is known as the ordinary power series generating function. Another
possibility is the exponential generating function

∞∑
n=0

an
zn

n!
.

Depending on the sequence, it may be possible to learn interesting things
about the sequence, such as a closed form or growth rate, in terms of prop-
erties of the generating function. Two great books focusing on generating
functions are [Wil05] and [FS09].

19.5 Problems

(1) Solve the following recurrences:

(a) an+2 = 3an+1 − 2an, a0 = 1, a1 = 3.
(b) an+2 = 4an+1 − an, a0 = 2, a1 = 3.

(2) Suppose a newly born pair of rabbits, one male and one female, are
put in a field. Rabbits are able to mate at the age of one month, so
at the end of its second month a female can produce another pair of
rabbits. Suppose that our rabbits never die and that the female always
produces one new pair (one male, one female) every month from the
second month on (so, not when she is one month old, but when she
is two months old, or three months old, etc.). How many pairs will
there be in one year?

(3) You have 1×1 tiles that come in 5 different colors, and 1×2 tiles that
come in 4 different colors. Let an be the number of ways of tiling a
1×n rectangle using the 1×1 and 1×2 tiles. Write down a recurrence
for an. Then solve it.

(4) Solve the recurrence given by a1 = 7 and for n > 1, an = abn2 c + 1.
(5) Show that the derangement function d(n) satisfies the recurrences

d(n) = (n−1)(d(n−1)+d(n−2)) and d(n) = nd(n−1)+(−1)n.

(6) Write down a recurrence and initial conditions for the number of
ternary sequences of length n with no 012 in consecutive positions.
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(7) Bob throws a coin repeatedly, scoring one point if it lands heads and
two points if it lands tails, adding his score to his previous running
total. For each positive integer n, let pn be the probability that his
score is exactly n at some point. Write down a recurrence and initial
conditions for pn, and solve it.

(8) For each positive integer n, we can write (2 +
√

3)2n−1 as an + bn
√

3,
where an and bn are integers. Prove that an − 1 is a perfect square
for all positive integers n.

(9) Write down and prove a closed formula for J(n), where J is as in the
Josephus problem.

(10) Write down a recurrence for the modification of the Josephus function,
where every third person has to sit down.
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Chapter 20

Stirling numbers

20.1 Stirling numbers of the first kind

Definition 20.1. A permutation of [n] is an ordering of the numbers from
1 to n, or equivalently, a bijective function f : [n]→ [n].

There are n! permutations of [n]. There are many ways of representing
a permutation, and they are valuable for different purposes. One way is to
write out f(1), f(2), . . . , f(n) in a row. For instance, one permutation of
[6] is 216453. This means that f(1) = 2, f(2) = 1, f(3) = 6, f(4) = 4,
f(5) = 5, and f(6) = 3.

Another way of representing a permutation is as a picture. We write
down all the numbers from 1 to n, and then we draw an arrow from k

to f(k) for each k. It is generally convenient to draw them such that the
arrows do not cross, so as to make it easy to read, as shown in Figure 20.1.
This is the same permutation as above.

1

2

3

6

4 5

Figure 20.1. Cycle structure for the permutation 216453.

As we can see here, we have some loops, or cycles. We have the cycle
[1, 2], the cycle [3, 6], the cycle [4], and the cycle [5]. Thus there are four
cycles.

229
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Note that a cycle is not dependent just on the elements it contains, but
also the order they come in. For instance, if we have a cycle [1, 2, 3], meaning
that 1 → 2 → 3 → 1, that’s different from [1, 3, 2], where 1 → 3 → 2 → 1,
since these are different functions. However, [1, 2, 3] and [2, 3, 1] and [3, 1, 2]

are all the same. Thus we can freely perform cyclic shifts of the elements in
the cycle, but otherwise we may not reorder them. Given a cycle of length
k, there are k possible cyclic shifts, so it follows that there are k!

k = (k−1)!

cycles of length k: order the elements in the cycle in any of k! ways, and
there are k cyclic shifts which give the same permutation.

Definition 20.2. Let n ≥ k ≥ 0 be nonnegative integers. The Stirling
number of the first kind

[
n
k

]
, pronounced “n cycle k,” is the number of

permutations of [n] with exactly k cycles.

For instance, the permutation shown in Figure 20.1 is one of the things
counted by

[
6
4

]
.

Unlike the binomial coefficients, the Stirling numbers of the first kind
do not have a nice closed-form expression in terms of familiar functions like
factorials. (Neither do the Stirling numbers of the second kind, which we
will come to shortly.) However, for special values of n and k, we can express[
n
k

]
in terms of familiar functions.
Here are some easy ones:

•
[
n
0

]
= 0 if n ≥ 1 and

[
0
0

]
= 1.

•
[
n
n

]
= 1.

•
[
n
1

]
= (n− 1)!.

Another relatively easy one is
[
n
n−1
]

=
(
n
2

)
. Since there are n− 1 cycles,

it must be the case that two of the elements are in the same cycle, and all
the rest are in different cycles. There are

(
n
2

)
ways of choosing those two

elements, and there’s only one way of forming a cycle from them. Beyond
that, though, it is tedious to express the Stirling number of the first kind
in terms of familiar functions, although with sufficient care and patience it
can often be done.

More useful is that the Stirling numbers of the first kind satisfy a re-
currence, similar to Pascal’s identity

(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
for the binomial

coefficients.
To see this, let us imagine that we understand permutations of [n − 1]

and their cycles. How can we form a cycle of [n] containing n out of them?
One possibility is to let n be in a new cycle by itself. If we wish to end up
with k cycles, then the permutation of [n− 1] should have contained k − 1
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cycles, so we get a contribution of
[
n−1
k−1
]
. But it is also possible to append

n to an existing cycle. For any of the elements r from 1 to n − 1, we can
modify a permutation f to include n, by creating a new function g such
that g(i) = f(i) for i 6= r, and then setting g(r) = n and g(n) = f(r). (See
Figure 20.2 for a picture.) There are (n− 1)

[
n−1
k

]
ways of doing this. Thus

we find the following:

Proposition 20.3. [
n

k

]
= (n− 1)

[
n− 1

k

]
+

[
n− 1

k − 1

]
.

1

3
5

2
7

4 6

1

38

5

2 7

4 6

Figure 20.2. Inserting the new number 8 after 3.

Using this recurrence, it is easy to build the Stirling equivalent of Pas-
cal’s triangle. See Figure 20.3 for the first few rows.

One easy identity we have is the following:

Proposition 20.4.

n∑
k=0

[
n

k

]
= n!.
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n = 0: 1

n = 1: 0 1

n = 2: 0 1 1

n = 3: 0 2 3 1

n = 4: 0 6 11 6 1

n = 5: 0 24 50 35 10 1

n = 6: 0 120 274 225 85 15 1

n = 7: 0 720 1764 1624 735 175 21 1

Figure 20.3. The triangle of Stirling numbers of the first kind.

Proof. The left side counts the number of permutations with k cycles, and
then sums over k, so we are left with the total number of permutations.
And that’s what the right side counts. �

20.2 Stirling numbers of the second kind

Now let’s turn to the Stirling numbers of the second kind.

Definition 20.5. Let n ≥ k ≥ 0 be nonnegative integers. The Stirling
number of the second kind

{
n
k

}
, pronounced “n subset k,” is the number of

ways of partitioning the elements of [n] into k disjoint subsets. We call a
partition of [n] into disjoint subsets a set partition of [n].

For instance, {1, 2, 6, 8}, {3, 4, 7}, {5} is one of the things counted by{
8
3

}
. The order of the subsets does not matter, so {5}, {1, 2, 6, 8}, {3, 4, 7}

is the same as the previous one.
Note that the definitions of the Stirling numbers of the first and second

kinds are sort of similar, in that they both involve breaking up [n] into k
classes. However, for

{
n
k

}
, that’s all there is to it. In the case of

[
n
k

]
, we

can further order the elements in each class. It follows that
[
n
k

]
≥
{
n
k

}
for

all n and k.
We can explicitly work out a few special cases of the Stirling numbers

of the second kind. For instance,
{
n
0

}
is 1 if n = 0 and 0 if n > 0. Similarly,{

n
1

}
= 1 for all n ≥ 1.
Unlike in the case of Stirling numbers of the first kind,

{
n
2

}
has a nice

simple formula.



Stirling numbers 233

Proposition 20.6. {
n

2

}
= 2n−1 − 1

for all n ≥ 1.

Proof 1. We need to split [n] up into two nonempty subsets, A and B. For
each element k ∈ [n], we can place k into A or B, so there are two choices
for each, or 2n total. However, both A and B have to be nonempty, so we
must subtract off the two where all the elements end up in A and where
all the elements end up in B, yielding 2n − 2. But since the order of the
subsets does not matter, we have overcounted by a factor of 2, giving us
our final answer of 2n−1 − 1. �

Proof 2. This time, we forcibly distinguish the subsets from the beginning
by requiring that 1 gets placed in subset A. The other n− 1 elements can
go into either subset A or subset B, in 2n−1 ways. We must then remove
the case where everything goes into subset A, leaving a final answer of
2n−1 − 1. �

Furthermore, we have
{
n
n

}
= 1 and

{
n
n−1
}

=
(
n
2

)
, just as was the case

for the Stirling numbers of the first kind. This is because if all cycles have
length ≤ 2, then there is only one way of arranging them in a cyclic order.

That’s about where things end in terms of having useful explicit formu-
lae for

{
n
k

}
, although there is an expression for

{
n
k

}
as a sum of binomial

coefficients. However, like in the case of Stirling numbers of the first kind,
there is a recurrence.

Proposition 20.7. {
n

k

}
= k

{
n− 1

k

}
+

{
n− 1

k − 1

}
.

Proof. This is much the same as the proof of the recurrence for Stirling
numbers of the first kind. We start with some partition of [n − 1]. If we
have a partition of [n− 1] into k− 1 subsets, then we can create a partition
of [n] into k subsets by forming a new subset consisting of just n. If we
have a partition of [n − 1] into k subsets, then we can form a partition of
[n] into k subsets in k different ways, by letting n join any of the k existing
subsets. The result follows. �

This recurrence allows us to build a triangle of Stirling numbers of the
second kind, just like we did earlier for Stirling numbers of the first kind.
See Figure 20.4.
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n = 0: 1

n = 1: 0 1

n = 2: 0 1 1

n = 3: 0 1 3 1

n = 4: 0 1 7 6 1

n = 5: 0 1 15 25 10 1

n = 6: 0 1 31 90 65 15 1

n = 7: 0 1 63 301 350 140 21 1

Figure 20.4. The triangle of Stirling numbers of the second kind.

20.3 Rising and falling factorials

One unexpected place where Stirling numbers, of both kinds, show up
is when converting between ordinary powers and the so-called rising and
falling factorials.

Definition 20.8. Let n be a nonnegative integer. We define the falling
factorial xn to be

xn = x(x− 1)(x− 2) · · · (x− n+ 1) =

n−1∏
i=0

(x− i).

Similarly, we define the rising factorial xn to be

xn = x(x+ 1)(x+ 2) · · · (x+ n− 1) =

n−1∏
i=0

(x+ i).

When n = 0, we have x0 = x0 = 1, since that’s what we always get
when we multiply 0 numbers. Let us see how to express the rising and
falling powers in terms of ordinary powers.

Theorem 20.9.

xn =

n∑
k=0

[
n

k

]
xk,

xn =

n∑
k=0

(−1)n−k
[
n

k

]
xk.

Proof. We prove the first identity first, and then we quickly derive the
second one from it. We will give an algebraic proof, based on the recurrence
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for
[
n
k

]
and by induction on n.1 For the base case, the result is certainly

true when n = 0, since both sides are equal to 1.2

Now, let us suppose that n ≥ 1 and we know that

xn−1 =

n−1∑
k=0

[
n− 1

k

]
xk.

We have

xn = xn−1(x+ n− 1)

= x · xn−1 + (n− 1) · xn−1

= x

n−1∑
k=0

[
n− 1

k

]
xk +

n−1∑
k=0

(n− 1)

[
n− 1

k

]
xk

= x

n∑
k=1

[
n− 1

k − 1

]
xk−1 +

n−1∑
k=0

(n− 1)

[
n− 1

k

]
xk

=

n∑
k=1

[
n− 1

k − 1

]
xk +

n−1∑
k=0

(n− 1)

[
n− 1

k

]
xk

=

n∑
k=0

([
n− 1

k − 1

]
+ (n− 1)

[
n− 1

k

])
xk

=

n∑
k=0

[
n

k

]
xk,

as desired. Note that we were able to extend the sums from 0 to n (rather
than 1 to n in the first case, and 0 to n− 1 in the second case) because the
extra terms inserted are zero (since n ≥ 1).

To deduce the second identity, replace x with −x in the first identity,
to obtain

(−x)n =

n∑
k=0

[
n

k

]
(−x)k.

Now, observe that (−x)n = (−1)nxn. Thus we have

(−1)nxn =

n∑
k=0

[
n

k

]
(−1)kxk.

Multiplying by (−1)n and noting that (−1)n+k = (−1)n−k yields the second
identity. �

1It is also possible to give a combinatorial proof, but it is more complicated.
2Or, if you don’t like that, let the base case be n = 1, when both sides are equal to x.
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So, the Stirling numbers of the first kind tell us how to convert rising
factorials and falling factorials into ordinary powers. But what if we want
to go the other way around, converting ordinary powers into rising or falling
factorials? We can do that too, using Stirling numbers of the second kind.

Theorem 20.10.

xn =

n∑
k=0

{
n

k

}
xk,

xn =

n∑
k=0

{
n

k

}
(−1)n−kxk.

The proof is very similar, so we leave it as an exercise for the reader.
But there is a curious application of these two theorems in combination. If
we start with ordinary powers, express them in terms of falling factorials,
and then express those falling factorials in terms of ordinary powers, we get
a new identity. Let’s have a look:

xn =

n∑
k=0

{
n

k

}
xk

=

n∑
k=0

{
n

k

} k∑
j=0

(−1)k−j
[
k

j

]
xj

=

n∑
j=0

 n∑
k=j

(−1)k−j
{
n

k

}[
k

j

]xj .

The left and right sides are both polynomials, and they are equal. This
implies that all their coefficients are equal. Thus we have shown the follow-
ing:

Theorem 20.11.
n∑
k=j

(−1)k−j
{
n

k

}[
k

j

]
=

{
1 j = n,

0 j 6= n.

In a certain sense, then, the Stirling numbers of the first and second
kinds are inverses. For a follow-up, see problem 7.

20.4 Further reading

After the binomial coefficients, the Stirling numbers are perhaps the
next most important numbers in combinatorics. So, there aren’t quite as
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many Stirling identities as there are binomial identities, but there are still
plenty. You can find quite a few in [GKP94, §6.1].

20.5 Problems

(1) Let N be a squarefree positive integer, i.e. one such that if p is any
prime, then p2 - N . Suppose that N has exactly n prime factors. How
many ways are there to write N as a product of integers greater than
1, where order doesn’t matter? (That is, 5 × 6 is the same as 6 × 5,
but 2× 3× 5 is different.)

(2) Prove that if n ≥ 2, then

n! <

{
2n

n

}
< (2n)!.

(3) How many set partitions of [n] are there in which 1 is not in a block
of size 1?

(4) How many set partitions of [n] are there into exactly two parts, such
that the parts have different sizes?

(5) How many permutations of [n] have 1 and 2 in the same cycle? How
many have 1, 2, and 3 in the same cycle? How many have 1 and 2
in the same cycle, and 3 and 4 in the same cycle (possibly but not
necessarily the same one)?

(6) Express the rising factorials in terms of the falling factorials; i.e. iden-
tify the numbers f(n, k) defined by

xn =

n∑
k=0

f(n, k)xk.

You should be able to express these numbers in closed form, without
using any summations involving a variable number of terms.

(7) Let f be an arbitrary function defined on the nonnegative integers,
and define g by the formula

g(n) =

n∑
k=0

[
n

k

]
f(k).

Show that we can recover f from g via the formula

f(n) =

n∑
k=0

(−1)n−k
{
n

k

}
g(k).

If you are familiar with Möbius inversion in number theory, this is a
closely related phenomenon.



238 Transition to Proofs

(8) Give a combinatorial proof of the identity{
n+ 1

m+ 1

}
=

n∑
k=0

(
n

k

){
k

m

}
.



Chapter 21

The twelvefold way

21.1 Balls in boxes

How many ways are there to put n balls into k boxes? This type of
question, about placing balls into boxes, is one of the most classic combina-
torial problems. It often comes with extra rules about how many balls are
allowed in each box. Then, the problem breaks up into a bunch more sub-
problems, because it is not initially clear whether the balls and the boxes
are distinguishable or not. That is, if we put ball 1 in box 1 and ball 2 in
box 2, is that the same as putting ball 2 in box 1 and ball 1 in box 2? All
possible interpretations of this question are interesting, and we will now
answer them all.

Let us write N for the set of balls and K for the set of boxes. A way of
placing balls in boxes is a function f : N → K. It is often useful to restrict
the types of functions we are interested in. Recall the following definitions of
some particularly important types of functions we might want to consider.

Definition 21.1. Let f : A→ B be a function.

• We say that f is injective (or one-to-one) if, whenever a1, a2 ∈ A with
a1 6= a2, then f(a1) 6= f(a2).
• We say that f is surjective (or onto) if, for every b ∈ B, there is at

least one a ∈ A such that f(a) = b.
• We say that f is bijective if it is both injective and surjective.

See Figure 21.1 for pictures of injective and surjective functions.
In the case of balls in boxes, we can require that the function be injective

or surjective. It is injective if each box contains at most one ball, whereas
it is surjective if each box contains at least one ball.

239
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a

b

c

x

y

a

b

x

y

z

Figure 21.1. Left: a surjective function. Right: an injective function.

Balls Boxes f arbitrary f injective f surjective

dist dist 1. kn 2. kn 3. k!

{
n

k

}
indist dist 4.

((
k

n

))
5.

(
k

n

)
6.

((
k

n− k

))
dist indist 7.

k∑
i=0

{
n

i

}
8.

{
1 n ≤ k
0 n > k

9.

{
n

k

}

indist indist 10.

k∑
i=0

pi(n) 11.

{
1 n ≤ k
0 n > k

12. pk(n)

Table 21.2. The twelvefold way.

We now have everything we need to specify all the standard balls-in-
boxes problems. There are twelve such problems: we can specify that the
balls are distinguishable or not (2 ways), that the boxes are distinguishable
or not (2 ways), and that the function is arbitrary, injective, or surjective (3
ways). Thus we have a total of 12 = 2×2×3 problems, and we often call this
classification of problems the twelvefold way. The idea of this classification
is due to Gian-Carlo Rota, and the name is due to Joel Spencer.

The answers to all these problems are given in Table 21.2. There is a
lot of notation in this table. Most of it we have already seen, but some of
it is new.

In cell 1, we find kn. The reason that the answer is kn is that, for
each of the n balls, there are k places (boxes) to put it in. All of these
arrangements are legal.
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In cell 2, for injective f , we find the falling factorial kn, which as we
recall is equal to k(k − 1)(k − 2) · · · (k − n + 1). Let’s analyze why the
falling factorial kn is the right answer for the second cell. Remember that
we are restricting ourselves to injective functions, which means that there
can only be at most one ball per box. The first ball can go into any of the
k boxes. Now, since f is injective, the second ball only has k − 1 boxes it
can go to, since it can’t end up in the same box as the first ball. Similarly,
the third ball can go to k − 2 boxes, and so forth. Note that this number
is 0 if k < n.

In cell 3, we have two factors: k! and
{
n
k

}
. Why is the answer in the

third cell correct? We are restricting ourselves to surjective functions, which
means that we must have at least one ball per box. This means that we
need to break up the balls into k nonempty subsets, which by definition
can be done in

{
n
k

}
ways. Then we have to decide how to order the subsets

in such a way that the first subset goes into box 1, the second subset goes
into box 2, and so forth. That part can be done in k! ways. Thus the final
answer is the product of these two terms.

Cells 4 and 6 contain the notation
((
k
n

))
and

((
k

n−k

))
. Recall that((

k
n

))
denotes the number of ways of selecting n elements from a set of size

k, but we are allowed to choose the same element more than once if we
wish. For instance, one of the things that

((
5
4

))
is counting, assuming the

5 on top refers to [5], is the multiset 1,1,3,4. Since we have a formula for((
k
n

))
in terms of the more familiar binomial coefficients, we can also write

the answer to the fourth cell as
(
n+k−1
k−1

)
or
(
n+k−1
n

)
.

In cell 6, we need to ensure that each box gets at least one ball. To do
that, just place one ball in each box; then the rest of the arrangement, using
the remaining n−k balls, follows what we do for cell 4. Thus the answer is
indeed

((
k

n−k

))
. Alternatively, using the formula for multichoose numbers

in terms of binomial coefficients, we can write this answer as
(
n−1
k−1
)
.

In cell 5, we find our old friend the binomial coefficient
(
k
n

)
. Note that

this seems slightly nonstandard in that the k is on top and the n is on
the bottom. Why is this the right answer for cell 5? Well, the balls are
indistinguishable, and the function is injective, meaning that some boxes
get 1 ball, and other boxes get 0. The only noticeable feature, then, is
which n of the k boxes get a ball, which is the combinatorial interpretation
of
(
k
n

)
.
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Now let’s move on to the third row. Let’s start with cell 9, with f

surjective, since we are already familiar with the Stirling numbers of the
second kind. This answer is pretty clear: we just divide up the balls into
k sets and place them into boxes. Unlike in the case of cell 3, we don’t
have to worry about the assignment of subsets to boxes, since the boxes are
indistinguishable.

For cell 7, the situation is similar, but now we are allowed to divide
them up into fewer than k sets. Note that the

{
n
0

}
term doesn’t seem to

contribute much to the discussion, but it’s 1 when n = 0, which is needed
to get the correct answer.

Cells 8 and 11 have very simple answers. We can put all the balls into
different boxes only when there are at least as many boxes as balls. There
is no way of distinguishing any of the arrangements, so we can only have
at most one distinct arrangement.

In cells 10 and 12, we have a new piece of notation: pk(n). This denotes
the number of partitions of n into exactly k parts, i.e. the number of ways
of writing n as a sum of exactly k positive integers, where the order of the
summation does not matter. That’s exactly what we’re doing in cell 12:
we have to divide the balls up among the k boxes, and the number of balls
in the ith box is the ith summand in the partition. Since the boxes are
indistinguishable, we may arrange them such that the number of balls they
contain is nonincreasing: box 1 gets at least as many balls as box 2, and so
forth.

Cell 10 is similar, but now we don’t have to use all the boxes, so we
might use fewer than k summands. Thus the answer is

∑k
i=0 pi(n). Once

again, starting from p0 is only necessary to make the formula hold when
n = 0. (Think this through if you aren’t used to this sort of thing!)

21.2 Problems

(1) In combinatorics, a word is a sequence of letters from some alphabet,
regardless of whether or not it forms a word in some human language.
Determine the number of n-letter words from the usual a–z alphabet,
such that the letters are nondecreasing lexicographically (so for instance
an “a” can come before a “b,” but not after). The word “bccghhi” is one
such example of a permissible 7-letter word.

(2) Find the number of ordered triples (A,B,C), where A,B,C ⊆ [n],
A ∪B ∪ C = [n], and A ∩B ∩ C = ∅.
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(3) Recall that an equivalence relation on a set X is a binary relation ∼
such that

• x ∼ x for all x ∈ X,
• if x ∼ y, then y ∼ x,
• if x ∼ y and y ∼ z, then x ∼ z.

An equivalence class is a nonempty set S ⊆ X such that for all s, t ∈ S,
we have s ∼ t.

(a) Determine the number of equivalence relations on [n] consisting of
exactly k equivalence classes.

(b) Now, declare two equivalence relations ∼1 and ∼2 on [n] to be
equivalent if there is a permutation σ of [n] such that x ∼1 y if and
only if σ(x) ∼2 σ(y). Show that this is an equivalence relation on
equivalence relations. How many equivalence classes of equivalence
relations with exactly k equivalence classes are there? (Make sure
you understand exactly what this means. Try some examples until
you are confident that you get the question.)
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Chapter 22

Counting labeled trees

22.1 Labeled trees

The last thing we will do in this part of the book is to count trees. There
are many proofs of the associated theorem, but we will only look at one of
them. But consider looking into some of the others, as it is instructive to
see several notably different proofs of the same theorem. Several especially
beautiful proofs can be found in [AZ18, Chapter 33].

Definition 22.1. Let V be a set of size n. A tree on V is a connected
graph with vertex set V having n− 1 edges.

There are many other equivalent definitions of a tree, such as a con-
nected graph without cycles, or a connected graph such that removing any
edge disconnects the graph.

Let us suppose that our vertices come with labels 1, 2, . . . , n. We would
like to know how many trees there are with this vertex set. See Figure 22.1
for n = 1, 2, 3, 4.

It is not clear what the pattern is supposed to be, starting with 1, 1, 3,
16, so let us compute more examples. Instead of drawing all the pictures
(there are a lot!), let us try to work more systematically. To do that, we
first forget about the labels and look at the shape (or isomorphism type) of
the graph, and then count how many distinct labelings there are with that
shape.

To see what we mean, let us consider first the case of n = 4. There are
two basic shapes of the graph: either there can be one vertex that connects
to all the rest of them, as in the first graph for n = 4, or it can be a path
of length 4, as in the fifth graph for n = 4. For the first type, there are 4
ways of labeling the central vertex, so there are 4 graphs of this type. For

245
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Figure 22.1. 1 tree on 1 vertex, 1 tree on 2 vertices, 3 trees on 3
vertices, 16 on 4 vertices.

the second type, we have
(
4
2

)
= 6 ways of labeling the two ends, and then

we have two vertices that can go next to the “starting” vertex, for a total
of 12. Thus we have 4 + 12 = 16 labeled trees on four vertices.

What are the possible shapes for n = 5? Since 5 is a small number, it
is not so difficult to enumerate all of them: there are only 3, as shown in
Figure 22.2.

•

• • • •

• ••

•

• •

•

•

•

•

Figure 22.2. Three isomorphism types of trees on five vertices.
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Now let’s count them. For the first type, the central vertex can take on
5 different labels, and then we’re done, so there are 5 labeled trees of this
shape. For the second type, there are again 5 choices for the central vertex,
then 4 for the vertex below it, then 3 for the vertex below that, and then
we’re done, so there are 60 labelings of this tree. For the last type, there
are 5 choices for the first vertex, then 4 for the second, then 3 for the third,
then 2 for the fourth, then 1 for the last, but the graph has a symmetry:
if we label them 1,2,3,4,5, in that order, then we get the same tree as if we
had labeled them 5,4,3,2,1. So we have to divide by 2, to get 60 again. In
total, there are 5 + 60 + 60 = 125 labeled trees on 5 vertices.

It might still not be clear what the pattern is from the sequence 1, 1,
3, 16, 125, so it’s good to do one more example, with n = 6. There are six
isomorphism types of trees, as shown in Figure 22.3. There are a total of
1296 labeled trees on 6 vertices.

•
• • • • •

6

•
• • • •
•

120
•
•
•

•
••

360

• ••
•

••
90

• ••
•

•
•
360

• •
• •
• •

360

Figure 22.3. There are six isomorphism types of trees on six vertices,
and 6 + 120 + 360 + 90 + 360 + 360 = 1296 labeled trees.

It is now reasonable to note that the sequence 1, 1, 3, 16, 125, 1296
appears to be nn−2. And indeed, it is.

Theorem 22.2 (Cayley). There are nn−2 labeled trees on n vertices.

In order to give a bijective proof of Cayley’s Theorem, we need to find
a set that “obviously” has nn−2 elements. The most obvious such set is
the set of sequences (a1, . . . , an−2), where each ai ∈ [n]. So, we want to
construct such a sequence out of a labeled tree, and conversely, we want to
construct a labeled tree out of each such sequence. The sequence associated
to the tree is known as the Prüfer sequence.
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Definition 22.3. Let T be a tree. A vertex v ∈ T is said to be a leaf if it
has exactly one neighbor.

Note that if T is a tree with at least two vertices, then T has some
leaves. (At least two, in fact.)

Proof of Theorem 22.2. Starting with a labeled tree T on n vertices, we
produce its Prüfer sequence of n − 2 numbers from 1 to n—possibly with
repetition—as follows. For 1 ≤ k ≤ n − 2, we find the leaf v remaining on
the tree with the smallest label. Since v is a leaf, it has a unique neighbor
w. We let the kth element of the Prüfer sequence be the label of w. Then
we delete v from the tree and move on to the next step. See Figure 22.4
for the steps in the construction.

1 3

6

5

4

2

Sequence: 1

1 3

6

5

4

Sequence: 11

1 3

6

5

Sequence: 113

3

6

5

Sequence: 1133

Figure 22.4. Constructing the Prüfer sequence for a tree on six vertices.

Really, we shouldn’t stop the construction after the (n− 2)nd step, but
we should continue on with the (n − 1)st step. However, the label at the
(n−1)st step is always n. The reason is that, since there are always at least
two leaves in a tree with k ≥ 2 vertices, we never remove the vertex labeled
n. At the (n − 1)st step, there are exactly two vertices remaining, one of
which has label n. Thus we must remove the other one, and the next term
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in the Prüfer sequence is n. So, since the last term is always the same, we
may freely omit it without any loss of information.

So, now we know how to go from a labeled tree to a Prüfer sequence.
Next, we must explain how to go in the other direction: we need to start
with a Prüfer sequence and use it to generate a labeled tree. Let us think
about how to reverse the process. Given a sequence, what is the label of the
first vertex removed? Since it is removed, it had better not be part of the
sequence. Furthermore, since we remove leaves starting with the one with
the smallest label, the first vertex removed must be the smallest number
not in the Prüfer sequence. Furthermore, we know what it is connected
to, namely the first term of the Prüfer sequence. Now delete the first
term of the Prüfer sequence and remove the vertex just added from the
list of vertices under consideration, and continue the process, as shown in
Figure 22.5.

2

5

Sequence: 5115
Nodes left: 123456

2

5

3

1

Sequence: 115
Nodes left: 13456

2

5

3

1

4

Sequence: 15
Nodes left: 1456

2

5

3

1

4

Sequence: 5
Nodes left: 156

2

5

3

1

46

Sequence:
Nodes left: 56

Figure 22.5. Reconstructing the labeled tree from the Prüfer sequence
5115. At each stage, the red node is the leaf that would be deleted in the
construction of the Prüfer sequence, and the blue node is its neighbor.
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When doing the last step, remember that the sequence is supposed to
end with an n, but we omit it since that is automatic. However, we need
to remember it when we reconstruct the tree from the sequence, in order
to draw the final edge of the tree.

Now that we have both directions of our construction, it remains to
check that these operations are inverses: if we start with a tree, construct
its Prüfer sequence, then build a tree from the sequence, we end up with
the original tree. (It might not look the same in terms of how we draw it,
but all the vertices have the same neighbors.) Conversely, if we start with
a sequence, build a tree, then reconstruct the Prüfer sequence, we end up
with the original sequence. We leave it as an exercise to check this! �

22.2 Further reading

There are several proofs of Cayley’s Theorem, some generalizing in in-
teresting ways or connecting to seemingly different parts of combinatorics.
Several of them can be found in [AZ18].

One combinatorial object that appears to have nothing to do with la-
beled trees, but secretly does, is the class of parking functions. Suppose
there are n cars on a one-way street, and there are n parking spaces on the
street. The driver of car i prefers spot f(i), so 1 ≤ f(i) ≤ n for all i with
1 ≤ i ≤ n. The driver of car i will park in spot f(i) if it is available, and
will otherwise park in the first spot available after f(i), so driver i parks
in spot j where j is the smallest available parking spot ≥ f(i). If there are
no more available spots after spot f(i), then the driver gives up and goes
home. We call the function f a parking function if all the drivers are able
to park.

Theorem 22.4. The number of parking functions of length n is (n+1)n−1.

Proof. Let us modify the road so that it is now a circular road with n+ 1

parking spots, labeled 1 through n+1, but still only n cars. We also permit
the driver to prefer spot n+ 1. Now, because the road is circular and there
are at least as many parking spaces as drivers, everyone will always be able
to park regardless of preferences, so there are (n+ 1)n functions that allow
everyone to park.

After everyone has parked, there will always be exactly one empty spot.
A circular parking function is an ordinary parking function if and only if,
after everyone has parked, the empty space is the one labeled n + 1. But
in the case of circular parking functions, all the spots are symmetric, so
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the proportion of functions leaving the n+ 1 spot empty is 1
n+1 . Thus the

number of ordinary parking functions is 1
n+1 (n+ 1)n = (n+ 1)n−1. �

Note that the number of parking functions of length n is equal to the
number of labeled trees on n+ 1 vertices. Can you find a bijection between
these two sets? For more on parking functions, see [Sta20].

22.3 Problems

(1) How many labeled trees are there on n vertices with no edge between
vertices 1 and 2?

(2) Prüfer sequences are allowed to have repeated elements. Describe the
trees for which their Prüfer sequences have no repeated elements. (For
example, (1,3,5,2,7), but not (1,3,1,5,4).)

(3) Characterize the trees whose Prüfer sequences are constant (i.e.
(a1, a2, . . . , an−2) with a1 = a2 = · · · = an−2).

(4) A forest is a collection of disjoint trees. A rooted forest is a forest in
which one vertex in each tree is chosen to be a distinguished vertex
known as the root.

(a) Prove that the number of rooted trees on n labeled vertices is nn−1.
(b) Prove that the number of rooted forests on n labeled vertices is

(n + 1)n−1. Can you prove this using a variant on Prüfer se-
quences? What about without them, directly from Cayley’s for-
mula for trees?
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Chapter 23

Countable and uncountable sets

23.1 Sizes of sets

Given a set S with finitely many elements, we can assign it a cardinality ,
which is just a fancy term for the number of elements it contains. For
example, the set

S = {a, 50, 8π − 9,♣,4}

has cardinality 5. Two finite sets with the same number of elements have
the same cardinality. However, it’s not immediately obvious how to tell
whether two infinite sets have the same number of elements (or cardinality),
or even what that means. So the first order of business is to give a precise
definition for what it means for two sets, which might be infinite, to have
the same cardinality.

Definition 23.1. Two sets S and T are said to have the same cardinality
if there is a bijective function f : S → T .

Recall the definition of a bijective function:

Definition 23.2. Let S and T be two sets, and let f : S → T be a function.

• We say that f is surjective or onto if, for every t ∈ T , there is some
s ∈ S such that f(s) = t.
• We say that f is injective or one-to-one if, whenever s 6= s′, we have
f(s) 6= f(s′).
• We say that f is bijective if it is both injective and surjective.

See Figure 23.1 for pictures of surjective and injective functions.

255
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Figure 23.1. Left: a surjective function. Right: an injective function.

The key point here is that if there is a bijection between two sets S
and T , then they have the same number of elements. Recall also that the
existence of an inverse function is equivalent to being a bijection:

Theorem 23.3. Let S and T be sets, and let f : S → T be a function.
Then f is a bijection if and only if there is a function g : T → S such that
g ◦ f(s) = s for all s ∈ S, and f ◦ g(t) = t for all t ∈ T .

All this is pretty logical: two sets S and T have the same size (or
cardinality) if we can take the elements of S and match them up with the
elements of T , so that nothing gets skipped or repeated.

Here is another collection of basic results about bijections (and injections
and surjections) that will be helpful later on.

Proposition 23.4. Let R,S, T be three sets, and suppose that f : R → S

and g : S → T are functions.

(1) If f and g are both surjective, then so is g ◦ f : R→ T .
(2) If f and g are both injective, then so is g ◦ f .
(3) If f and g are both bijective, then so is g ◦ f .

Proof.

(1) Let t ∈ T be arbitrary. We must show that there is some r ∈ R such
that g ◦ f(r) = t. Since g is surjective, there is some s ∈ S such that
g(s) = t. Since f is surjective, there is some r ∈ R such that f(r) = s.
For this r, we have

(g ◦ f)(r) = g(f(r)) = g(s) = t.

Since t was arbitrary, this shows that g ◦ f is surjective.
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(2) Suppose that g ◦ f(r) = g ◦ f(r′). Since g is injective, we have f(r) =

f(r′). Since f is injective, we have r = r′. Thus g ◦ f is injective.
(3) Since g ◦ f is both surjective and injective, it is bijective. �

Of course, by induction, these results hold for chains of more than two
(sur/in/bi)jective functions as well.

23.2 Countable sets

A popular infinite set to compare with other sets is the set N of positive
integers, i.e. N = {1, 2, 3, . . .}. (Some people use N to mean the nonnegative
integers. We shall soon see that, for the purposes of counting, it doesn’t
matter.)

Definition 23.5. A set S is said to be countable if it is in bijection with N,
i.e. if there is a bijective function f : N → S (or equivalently g : S → N).1
An infinite set S is said to be uncountable if it is not in bijection with N.

Let’s see some examples of countable sets.

Example. The set Z≥0 of nonnegative integers is countable. To see this,
let’s define a function f : N → Z≥0 and then prove it’s a bijection. We’ll
take f(n) = n− 1, so f(1) = 0, f(2) = 1, and so forth. We claim that this
is a bijection. We can check this either by showing that it’s both injective
and surjective, or by finding an inverse. Both methods are pretty easy in
this case; we’ll do it by writing down an inverse g : Z≥0 → N. Our inverse is
g(n) = n+1. For any n ∈ N, we have g(f(n)) = g(n−1) = (n−1)+1 = n,
and similarly for any n ∈ Z≥0, we have f(g(n)) = f(n+1) = (n+1)−1 = n.
Both compositions leave us back where we started, so f and g are inverses
and thus f is a bijection. It follows that Z≥0 is countable.

This is already a little bit surprising, because Z≥0 contains N as a proper
subset. Thus we learn that adding an element to an infinite set doesn’t
necessarily make it bigger. In fact, one occasionally used definition of an
infinite set is a set S that has a bijection with one of its proper subsets.

Example. The set Z of all integers is countable. We have to define a function
f : N → Z and then show that it is bijective. Again, we’ll prove that it’s
bijective by constructing an inverse. This is easier to do by drawing a
picture than by writing down an actual formula (although the latter can be

1Some people use the term “countable” to include finite sets. We will not do that, but
be aware that that convention also exists and is quite common.
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done by anyone sufficiently committed to the cause). Here’s our bijection.
The picture makes it clear that it’s actually a bijection, since the inverse
just goes the other way.

N : 1 2 3 4 5 6 7 8 9 · · ·

Z : 0 1 −1 2 −2 3 −3 4 −4 · · ·

It’s clear that this is a bijection, because all the integers appear in the
bottom row: after 0, we alternate writing down the next positive number
and the next negative number, and we never run out of numbers on either
row. Furthermore, every positive integer in the top row is paired with some
integer in the bottom row, and vice versa. Thus this map is a bijection, so
Z is countable.

Theorem 23.6. The set Q of all rational numbers is countable.

Proof. We have to produce a bijection from N to Q. There are ways of
writing down precise formulae,2 but an easy way to see this is with a picture.
Instead of starting with all the rationals, let’s start with just the positive
ones, and then we’ll see how to modify the argument to handle all rationals.
To do this, we note that the rationals are just numbers a

b where a and b are
relatively prime, so we can identify them with some subset of the ordered
pairs (a, b) of integers. We’ll put the rational number a

b at the point (a, b)

in the plane. We need to skip the pairs like (3, 6) that represent rational
numbers we’ll already have counted. A picture of the beginning of our
bijection is shown in Figure 23.2. The bijection is given by

f(1) = 1, f(2) = 2, f(3) =
1

2
, f(4) =

1

3
, f(5) = 3,

f(6) = 4, f(7) =
3

2
, f(8) =

2

3
, f(9) =

1

4
,

and so on. In general, f(n) is what we get when we start from 1 and follow
along in the diagram for n− 1 arrows. Note that we simply skip over any
fractions that aren’t in reduced form.

To see that this map is a bijection from N to the positive rationals,
we’ll check that it’s injective and surjective. First, it’s injective because
f(m) 6= f(n) whenever m 6= n: the result of tracing m − 1 arrows is not

2I encourage you to look up the Stern–Brocot tree (see for instance [GKP94]) or the
Calkin–Wilf tree (see [CW00]) for ways of doing this. They are quite elementary, but it
would take us a bit off-topic to give an adequate treatment of either one.
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Figure 23.2. A bijection between N and Q>0.

the same as the result of tracing n− 1 arrows. Furthermore, it’s surjective
because every positive rational number m

n is at the point (m,n) in the
plane, so we eventually get to it on our diagonal sweep through the line
x+ y = m+ n that it lies on.

Now, we really want to show that Q is countable—not just that the
positive rationals are countable. One slick way of doing this is to make use
of the fact that Z is countable, so it’s just as good to produce a bijection
between Z and Q. To do this, consider our bijection f above from N to
the positive rationals. Extend it to f : Z → Q by setting f(0) = 0 and
f(−n) = −f(n). Now f is a bijection from Z to Q, by the same reasoning
as before. We have a chain of bijections

N→ Z→ Q,

and the composition of bijections is a bijection by Proposition 23.4. Thus
we have proven that Q is countable. �
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23.3 Uncountable sets

It might feel surprising that Q is countable, since it seems so much
bigger than N. At this point, one might wonder if maybe all infinite sets
have the same cardinality: if they are all in bijection with N. However,
this is not the case, as Georg Cantor, the first mathematician to study set
theory seriously, proved in one of the classic proofs in all of mathematics.

Theorem 23.7. The set R of real numbers is uncountable.

Remark 23.8. At this point, we do not yet have a formal definition of the
real numbers. In future chapters of this book, we will see two formal defini-
tions of the real numbers, constructing them out of just the integers or the
rationals. For now, we’ll think of the real numbers as decimal expansions,
noting that 0.9999 · · · = 1 and other similar things. Decimal expansions
are unique except for the caveat that a number ending with all 9’s can
be turned into a terminating decimal. That will be good enough for our
purposes at the moment.

Proof. Let (0, 1) = {x ∈ R : 0 < x < 1}. We will show that if f : N→ (0, 1)

is any function, then f fails to be surjective, hence is not a bijection. (See
problem 5 for why it is sufficient to work with (0, 1) rather than all of R.)
We begin by making a table of values of f , say

f(1) = .d11d12d13d14d15d16d17d18 . . .

f(2) = .d21d22d23d24d25d26d27d28 . . .

f(3) = .d31d32d33d34d35d36d37d38 . . .

f(4) = .d41d42d43d44d45d46d47d48 . . .

f(5) = .d51d52d53d54d55d56d57d58 . . .

f(6) = .d61d62d63d64d65d66d67d68 . . .

f(7) = .d71d72d73d74d75d76d77d78 . . .

f(8) = .d81d82d83d84d85d86d87d88 . . .
...

Here, each dij is a digit from 0 to 9. Note that i and j range over the
positive integers, so we eventually encounter digits with labels like d12,44,
where at this point we must use a comma to separate the indices for the sake
of clarity. We will now produce a real number x ∈ (0, 1) that is definitely
not f(n) for any n, from which we can conclude that f is not surjective,
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hence not bijective. To do this, consider the number y, which consists of
the first digit (after the decimal point) of the first number, followed by the
second digit of the second number, then the third digit of the third number,
and so forth; in other words, the digits marked in red in the table. That is,

y = .d11d22d33d44 . . .

Now, in order to obtain x from y, we change each digit of y to some digit
from 1–8 (so as to avoid problems with terminating decimals or numbers
that end with infinitely many 9’s) that is different from the original digit in
that position in y. The resulting number is x. Note that for every positive
integer k, the kth digits of x and y are different.

Is the number x of the form f(n) for some n? We know that x 6= f(1),
because their first digits are different. Similarly, x 6= f(2), because their
second digits are different. Likewise, x 6= f(3), because their third digits
are different. In general, x 6= f(n), because their nth digits are different.
Thus f is not surjective, hence not a bijection. �

So, the cardinality of R is not the same as the cardinality of N. It is
now time to give names to the cardinalities of the positive integers and the
real numbers:

Definition 23.9. The cardinality of N is called ℵ0 (pronounced “aleph-
zero” or “aleph-null”). The cardinality of R is called c, or “the continuum.”

Another name for c is 2ℵ0 , since it is also the cardinality of binary strings
of length ℵ0. (You will prove this in problem 8.) Note that there are 2n

binary strings of length n, so this notation makes sense.

23.4 Problems

(1) (a) Prove that the union of two countable sets is countable. More
generally, prove that any finite union of countable sets is countable.
(The sets might not be disjoint, so figure out how to deal with that
potential issue.)

(b) Is a countable union of countable sets necessarily countable? Prove
it or give a counterexample.

(2) Prove the following two infinitary analogues of the pigeonhole principle:

(a) If n is a positive integer, A1, A2, . . . , An are sets, and
⋃n
i=1Ai is an

infinite set, then there is some i with 1 ≤ i ≤ n such that Ai is an
infinite set.
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(b) If n is a positive integer, A1, A2, . . . , An are sets, and
⋃n
i=1Ai is an

uncountable set, then there is some i with 1 ≤ i ≤ n such that Ai
is an uncountable set.

(3) Let S and T be nonempty sets, and let f : S → T be a function.

(a) Prove that f is injective if and only if there is a function g : T → S

such that g ◦ f(s) = s for all s ∈ S.
(b) Prove that f is surjective if and only if there is a function g : T → S

such that f ◦ g(t) = t for all t ∈ T .
(4) What is the cardinality of Q×Q, the set of ordered pairs (a, b) where

both a and b are rational? Prove that your answer is correct.
(5) Prove that R has the same cardinality as the open interval (0, 1).
(6) Suppose we try to use the diagonalization proof that R is uncountable

to prove that Q is also uncountable. This can’t work, because Q is
countable. But where does the proof break down?

(7) Let A be an uncountable set and B ⊆ A a countable subset. Show that
A and A \ B have the same cardinality. (The set A \ B is the set of
elements of A that are not in B.)

(8) Prove that the set of binary strings of length ℵ0 (or functions from N
to {0, 1}) has cardinality c.

(9) Find an explicit bijection between binary strings of length ℵ0 and
ternary (i.e. the digits are from {0, 1, 2}) strings of length ℵ0.



Chapter 24

Set-theoretic odds and ends

24.1 The Cantor–Schröder–Bernstein Theorem

Sometimes, we would like to be able to say something about the relative
sizes of various cardinals. For example, if we have two sets S and T such
that there is a bijection between S and T , then S and T have the same
cardinality. But what happens if there is only an injection, or only a sur-
jection? It seems that if there is an injective function from S to T , then we
should be able to conclude that the cardinality of S is less than or equal to
the cardinality of T . Similarly, if there is a surjection from S to T , then we
should be able to conclude that the cardinality of S is greater than or equal
to the cardinality of T . A good sanity check, to make sure that all of this
has some sort of internal consistency, is the theorem of Cantor, Schröder,
and Bernstein (sometimes only a proper subset of those names are used).

Theorem 24.1 (Cantor–Schröder–Bernstein). Let S and T be two sets.
Suppose that there is an injective function f : S → T and another injective
function g : T → S. Then there is a bijection h : S → T .

Proof. Assume that S and T are disjoint; if not, relabel the elements of one
of them (say T ) to make them disjoint. For any s ∈ S (and similarly for
t ∈ T ), we can form a chain of elements in S ∪ T containing s, as follows:

· · · → f−1(g−1(s))→ g−1(s)→ s→ f(s)

→ g(f(s))→ f(g(f(s)))→ g(f(g(f(s))))→ · · · .

By g−1(s), for instance, we mean the unique element t ∈ T such that
g(t) = s. In the backward direction, the chain may terminate at some
point. For instance, we will not be able to continue backward from s if

263
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there is no t ∈ T such that g(t) = s. Note that every element in S ∪ T
appears in exactly one chain of this type.

In terms of these chains, we now define h(s) for each s ∈ S. We have
three possibilities:

• The chain stops at some point to the left, and the first element is in S.
In this case, define h(s) = f(s).

• The chain stops at some point to the left, and the first element is in T .
In this case, define h(s) = g−1(s). (Note that this makes sense, because
the first element in the chain is in T , so we can always go backward
from any element of S, including s itself.)

• The chain never stops to the left. This means that either it hits new
elements each time without ever getting stuck, or it goes in a loop.
Either way, we set h(s) = f(s).

We claim that this is a bijection. To see this, we’ll construct its inverse
function k : T → S, by setting k(t) = f−1(t), g(t), and f−1(t), respectively,
in the three cases. This inverse function is well-defined in the cases where
k(t) = f−1(t), because the chain either stops at an element of S or never
stops. Either way, for every such t, f−1(t) is defined. �

Since this proof is a bit complicated, let’s take a look at a simple exam-
ple.

Example. Consider the functions f : N → N and g : N → N, given by
f(n) = n + 1 and g(n) = n + 2 for all n. These are both injections, so we
can use the proof of the Cantor–Schröder–Bernstein Theorem to produce
a bijection. Of course, it is very easy to find a bijection from N to N (like
h(n) = n), but let’s find the one that the proof produces out of f and g.

Let h : N → N be the bijection produced from f and g. Let’s compute
h(12). To do this, we have to look at the chain containing 12, f(12),
g(f(12)), and so forth, as well as the preimages g−1(12), f−1(g−1(12)), and
so forth. The construction of h involves the preimages, so let’s compute
those. We’ll use red for the left N and blue for the right N, so that we don’t
get confused since both sets (S and T as in the notation of the theorem)
are the same. In the notation of the proof, the red numbers are in S and
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the blue numbers are in T ; see Figure 24.1. We have

g−1(12) = 10,

f−1(g−1(12)) = 9,

g−1(f−1(g−1(12))) = 7,

f−1(g−1(f−1(g−1(12)))) = 6,

g−1(f−1(g−1(f−1(g−1(12))))) = 4,

f−1(g−1(f−1(g−1(f−1(g−1(12)))))) = 3,

g−1(f−1(g−1(f−1(g−1(f−1(g−1(12))))))) = 1,

and at that point we have to stop, because f−1(1) does not exist. Since
the chain stops with a blue element, i.e. something in T , this means that
h(12) = g−1(12), i.e. h(12) = 10. We can use the same logic, but starting
with an arbitrary number rather than 12, to show that

h(n) =

{
n− 2 if n ≡ 0 (mod 3),

n+ 1 if n ≡ 1, 2 (mod 3).

We’ve just constructed the Cantor–Schröder–Bernstein bijection in this
case! It’s a little weirder than the identity bijection, but it’s a perfectly
good one nonetheless.

We can use the Cantor–Schröder–Bernstein Theorem to make the proof
that Q is countable a little bit easier. It was slightly complicated by the
fact that we had to skip over the rational numbers that weren’t in lowest
terms. Let’s use the Cantor–Schröder–Bernstein Theorem to explain how
to avoid doing that. As before, we’ll only prove that the positive rationals
are countable, since we can use the same trick as before to extend to the
case of all rationals.

Theorem 24.2. Q is countable.

Proof 2 of Theorem 24.2. We will construct injections f : N → Q>0 and
g : Q>0 → N. (As we discussed in Chapter 23, in order to show that Q is
countable, it suffices to show that Q>0 is countable.) First, let f(n) = n;
this is obviously injective. There are many ways of constructing a suitable
g, but here’s one that illustrates a useful point. Instead of writing rational
numbers a

b where a and b are in base 10, write them in base 9, so that a
and b contain only digits from 0 to 8. Now let g(ab ) = a9b, i.e. replace the
/ with a 9 and then read off in base 10. (For instance, g( 1

3 ) = 193.) This is
an injective function from Q>0 to N. Now that we have injective functions
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1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

Figure 24.1. A Cantor–Schröder–Bernstein bijection in action: h(n)

depends on where the chain of backward arrows staring from n ends.

both ways between N and Q>0, the Cantor–Schröder–Bernstein Theorem
guarantees that there must be a bijection! ■

The cool thing about this approach is that we didn’t have to say exactly
what the bijection is. In theory, we could unpack the proof of Cantor–
Schröder–Bernstein to figure it out, but why bother when we know that
there must be a bijection? Also worth noting is that neither of the two
injections is anywhere close to being a bijection. This is a frequent feature
of bijection proofs using Cantor–Schröder–Bernstein: there is no need to do
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the theorem’s work for it by creating a bijection or near-bijection yourself.
Instead, just find a simple injection each way and allow the theorem to do
its magic.

The Cantor–Schröder–Bernstein Theorem also allows us to define the
notion of inequality among cardinalities.

Definition 24.3. Let S and T be two sets, with cardinalities |S| and
|T |, respectively. We say that |S| ≤ |T | if there is an injective function
f : S → T .

A restatement of the Cantor–Schröder–Bernstein Theorem, then, is that
if |S| ≤ |T | and |T | ≤ |S|, then |S| = |T |. The notation makes that seem
obvious, but remember that the definitions don’t instantly imply it because
the notation ≤ means something new. It’s only after we have proven the
Cantor–Schröder–Bernstein Theorem that we can guarantee it.

24.2 Power sets

So far, we have only seen two cardinalities of infinite sets: ℵ0 and c. It is
natural to wonder whether there are others. In fact, there are many, many,
many others—a (very) infinite number of other cardinalities. One way of
proving this is by using power sets.

Definition 24.4. Let S be a set. The power set of S, denoted P(S), is
the set of all subsets of S.

Example. Suppose that S = {1, 2, 3}. Then

P(S) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Note that it contains 8 elements. More generally, if S is a finite set of
cardinality n, then P(S) is also a finite set, with cardinality 2n.

In Chapter 23, we used Cantor’s diagonalization argument to prove
that the real numbers are uncountable—and, in fact, that the cardinality
of the real numbers is greater than that of the natural numbers. A similar
argument can be used to show that, if S is any set at all, then the cardinality
of P(S) is greater than that of S. It’s clear that the cardinality of P(S)

must be at least as large as that of S, because for every s ∈ S, P(S)

contains a set {s}. Note that when S = ∅, then |S| = 0 and |P(S)| = 1,
so it’s even true of the empty set.

Theorem 24.5. For any set S, we have |P(S)| > |S|.



268 Transition to Proofs

Proof. We must show that there is no bijection f : S → P(S). Suppose
that f : S → P(S) is any function. We will show that it fails to be
surjective. To do this, we create a subset T ⊆ S that cannot be in the
image of f , and we do this by building T one element at a time: for every
s ∈ S, we will decide whether or not s ∈ T . For each s ∈ S, we have two
cases: either s ∈ f(s) or s 6∈ f(s). If s ∈ f(s), then s 6∈ T . On the other
hand, if s 6∈ f(s), then s ∈ T . In terms of a concise expression, we have

T = {s ∈ S : s 6∈ f(s)}.

We claim that T is not f(s) for any s ∈ S. For any s ∈ S, f(s) 6= T ,
because s ∈ T if and only if s 6∈ f(s), so f(s) and T differ on whether or not
they contain s. Thus T is not f(s) for any s ∈ S, so f is not surjective. �

One interesting consequence is that there is no largest cardinality. Given
any set S, we can always find some other set T such that |T | > |S|, and
indeed T = P(S) is one possibility. There are lots of other choices as well,
such as P(P(S)).

24.3 The Cantor set

Now is as good a time as any to introduce a remarkable subset of the
interval [0, 1], known as the Cantor set . Here is how we construct it: Let
C0 be the interval [0, 1]. For each n, Cn is a union of closed intervals, and
we form Cn+1 from Cn by removing the open middle third of each interval
in Cn. So, to obtain C1 from C0, we start with C0, which is [0, 1] and hence
just a single interval, and remove the middle third of it, which is ( 1

3 ,
2
3 ).

Thus we are left with C1 = [0, 13 ] ∪ [ 23 , 1]. To form C2 from C1, we remove
the middle third of each of the two intervals in C1. The middle third of
[0, 13 ] is ( 1

9 ,
2
9 ), and the middle third of [ 23 , 1] is ( 7

9 ,
8
9 ). Thus we are left with

C2 = [0, 19 ] ∪ [ 29 ,
1
3 ] ∪ [ 23 ,

7
9 ] ∪ [ 89 , 1].

We can draw a picture of what each iteration Cn looks like, as shown
in Figure 24.2.

The Cantor set is the intersection of all the Cn’s, i.e. C =
⋂∞
n=0 Cn. It is

natural to wonder whether there is anything left: every iteration, we remove
a bunch of points, so that we end up with shorter and shorter intervals, so
it might be the case that C is just the empty set. However, it is not. For
example, 0 and 1 are in the Cantor set, because they are clearly in each
Cn. Furthermore, all the endpoints of the intervals created are in C, such
as 1

3 and 2
9 .
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C0

C1

C2

C3

Figure 24.2. Iterations of the Cantor set construction.

But that’s not all! In fact, we can describe the elements of the Cantor set
very concretely. To do this, we have to use base-3 (also known as ternary)
notation instead of base-10 notation for the real numbers. For example, 2

9

in base-3 notation is 0.02.
When we remove the middle third of the full interval [0, 1] to obtain C1,

we remove all the numbers whose first base-3 digit is a 1. (Well, except
for 1

3 = .1, but we get away with this because there is another base-3
representation for 1

3 , namely 0.0222222 . . . This is the same phenomenon as
0.999999 . . . = 1 in usual base-10 notation.) So, we can say that C1 contains
all points in [0, 1] that have a base-3 representation without a 1 in the first
digit. Similarly, when passing from C1 to C2, we remove all numbers whose
base-3 expansions have a 1 in the second digit. Similarly, when passing from
Cn−1 to Cn, we remove all numbers whose base-3 expansions have a 1 in
the nth digit. Thus Cn consists of those numbers whose base-3 expansions
do not have any 1’s in the first n digits. It follows that C consists of those
numbers whose base-3 expansions do not have any 1’s at all. For example,
0.0202020202 . . . ∈ C. One can check that this number is 1

4 . There are
also irrational numbers in C, which are sequences of 0’s and 2’s that do not
eventually repeat.

Theorem 24.6. The Cantor set has cardinality c.

Proof. We’ll use the Cantor–Schröder–Bernstein Theorem, knowing that
[0, 1] has cardinality c. First, we have an injective function f : C → [0, 1]

because every point in C is already in [0, 1]; that is f(x) = x. Now, we
must construct an injective function g : [0, 1] → C. For this, we shall fix
a binary representation of each y ∈ [0, 1]. (Some numbers have more than
one; choose either one, say the one with finitely many nonzero digits.) If
y =

∑∞
n=1

bn
2n where bn ∈ {0, 1}, then we define

g(y) = g

( ∞∑
n=1

bn
2n

)
=

∞∑
n=1

2bn
3n

.
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In other words, replace each 1 with a 2 and then read the number off in
base 3. This is an injective (but not bijective!) function g : [0, 1] → C.
Since we have injective functions both ways, C and [0, 1] have the same
cardinality by the Cantor–Schröder–Bernstein Theorem. �

Example. If y = 0.10010101 in binary, then g(y) = 0.20020202, considered
as a number in base 3.

24.4 Problems

(1) (a) Prove that if S and T are two nonempty sets, then there is an
injective function f : S → T if and only if there is a surjective
function g : T → S.

(b) Prove the dual of the Cantor–Schröder–Bernstein Theorem: if S
and T are two sets such that there are surjections f : S → T and
g : T → S, then there is a bijection h : S → T .

(2) A complex number α is said to be algebraic if it is a root of a nonzero
polynomial with integer coefficients. For example, 4

√
3 is algebraic,

because it is a root of the polynomial x4 − 3. What is the cardinality
of the set of algebraic numbers? Prove that your answer is correct.

(3) Use the Cantor–Schröder–Bernstein Theorem to prove that the sets
[0, 1] and (0, 1), the closed and open intervals, have cardinality c.

(4) Describe an explicit bijection between [0, 1] and (0, 1). (You can un-
pack the proof of Cantor–Schröder–Bernstein if you’d like, after giving
injections both ways. But there are easier ways to do this.)

(5) Suppose that |S| = |T |. Prove that |P(S)| = |P(T )|. More generally,
prove that if |S| ≤ |T |, then |P(S)| ≤ |P(T )|.

(6) Prove that |P(N)| = c.
(7) Prove that the closed unit square [0, 1]× [0, 1] has cardinality c.
(8) What is the cardinality of the set of functions from the integers to the

integers?
(9) Prove that the Cantor set C does not contain any open intervals (a, b)

where a < b.
(10) (a) A figure-8 consists of a pair of circles in the plane which are

tangent, and neither one is inside the other. The circles may be
of any size. The circles consist of just the boundary curve, not
the interior. Is it possible to place uncountably many figure-8’s in
the plane such that no two of them touch? You can place them
inside each other.
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(b) It is clearly possible to place uncountably many circles in the plane
such that no two touch: just make them all concentric. Is it still
possible to place uncountably many circles in the plane such that
no two touch or are concentric?
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Chapter 25

Equivalence classes of pairs

25.1 From N to Z

The first numbers we encounter as kids are the positive integers N. We
consider those to be fundamental objects: we are given them for free.1 All
other numbers have to be defined in terms of them. Our goal, over the
course of this chapter and the next chapter, is to give a construction of the
real numbers starting only from the positive integers.2

The first step along the way is to construct all the integers from just the
positive integers. How do we get from the positive integers to all the inte-
gers? By means of subtraction: every integer—whether positive, negative,
or zero—can be written as a difference of two positive integers. So, that
will be our definition of an integer: an integer is the difference between two
positive integers.

However, there is a slight problem with this definition: we can write
an integer as a difference of two positive integers in many ways. We want
3−5 and 7−9 to be the same integer, even though it is written in different
ways. To this end, we recall from Chapter 5 the notion of an equivalence
relation.

Definition 25.1. Let X be a set, and let ∼ be a relation on X, i.e. a subset
of the set X × X = {(x, y) : x, y ∈ X}. We say that ∼ is an equivalence
relation if the following properties hold:

Reflexivity: x ∼ x for all x ∈ X.

1There are constructions of the positive integers too though, most notably using the
Peano axioms; see for instance [Fef05, Chapter 3].
2We will eventually discuss two constructions, with the second one coming in Chap-

ter 28.
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Symmetry: If x ∼ y, then y ∼ x.
Transitivity: If x ∼ y and y ∼ z, then x ∼ z.

When we have an equivalence relation ∼ on a set X, the set [x] = {y ∈
X : y ∼ x} is called an equivalence class.

In the terminology of equivalence relations and equivalence classes, what
we really want to say about integers is that they are equivalence classes
of pairs of positive integers, under a certain equivalence relation. When
talking about only positive integers, subtraction isn’t always defined, so
let’s instead phrase everything in terms of addition alone.

Consider the set N × N of pairs of positive integers, where a typical
element has the form (m,n). Put a relation ∼ on N × N by saying that
(a, b) ∼ (c, d) if a+ d = b+ c.

Proposition 25.2. ∼ is an equivalence relation.

Proof. We must check the three properties that define an equivalence rela-
tion.

Reflexivity: We must show that (a, b) ∼ (a, b). We have a+ b = b+ a, so
this is true.

Symmetry: We must show that if (a, b) ∼ (c, d), then (c, d) ∼ (a, b). Note
that (a, b) ∼ (c, d) means that a + d = b + c, whereas (c, d) ∼ (a, b)

means that c+ b = d+ a. But these are the same.
Transitivity: Suppose that (a, b) ∼ (c, d) and (c, d) ∼ (e, f). This means

that a + d = b + c and c + f = d + e. Adding these two equations
together, we get a + d + c + f = b + c + d + e; and, after canceling
the c + d on both sides, we get a + f = b + e, which means that
(a, b) ∼ (e, f). This completes the proof of transitivity and thus that
∼ is an equivalence relation. �

Let us now define the integers.

Definition 25.3. An integer is an equivalence class of N × N under the
equivalence relation ∼, as described above. We write Z for the set of all
the integers.

For instance, the integer we usually call −2 is the equivalence class of
(3, 5), which we’ll write as [3, 5] when we need to refer to it in terms of its
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equivalence class. In general, we’ll denote the equivalence class of (m,n)

by [m,n].3

So far, we have only defined the integers as a set. But usually we want
more out of the integers than just their structure as a set. For instance,
we’d like to add, subtract, and multiply them. We have to explain how to
do those things in terms of our new formalism. In case you’re wondering
why we have to do all this when we already know how to do arithmetic on
integers, keep in mind that this is practice for when we define objects that
we have a less clear understanding of. Some examples of this appear in the
problem set.

Let’s define addition of integers.

Definition 25.4. Let [a, b] and [c, d] be two integers. Their sum is defined
to be

[a, b] + [c, d] = [a+ c, b+ d].

This agrees with our usual notion, since [a, b] is supposed to mean a− b,
and [c, d] is supposed to mean c− d. So (a− b) + (c− d) = (a+ c)− (b+ d),
which is just what the definition says.

Actually, there is a problem with Definition 25.4, even though it looks
okay at a glance. The problem is that it is not immediately clear that it
is well-defined, i.e. that we always get the same answer when adding the
same two integers. How can this be? Well, suppose that [a1, b1] = [a2, b2]

and [c1, d1] = [c2, d2]. Is it necessarily the case that [a1, b1] + [c1, d1] =

[a2, b2]+[c2, d2]? It had better be, since we’re adding the same two integers,
just writing them a bit differently. However, this isn’t guaranteed anywhere
in our definition. So that’s something that we have to check by hand. Let’s
do it!

Proposition 25.5. Suppose that [a1, b1] = [a2, b2] and [c1, d1] = [c2, d2].
Then [a1 + c1, b1 + d1] = [a2 + c2, b2 + d2].

Proof. We have to check that

(a1 + c1) + (b2 + d2) = (b1 + d1) + (a2 + c2),

3Note that, if we stick to our usual notation of [x] for the equivalence class of x, then we
would have to write [(m,n)] instead. However, this is needlessly cumbersome notation,
so we’ll stick to the more nimble [m,n].
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given that a1 + b2 = b1 + a2 and c1 + d2 = d1 + c2. We have

(a1 + c1) + (b2 + d2) = (a1 + b2) + (c1 + d2)

= (b1 + a2) + (d1 + c2)

= (b1 + d1) + (a2 + c2),

as desired. �

Similarly, let us define multiplication.

Definition 25.6. Let [a, b] and [c, d] be two integers. Their product is
defined to be

[a, b][c, d] = [ac+ bd, ad+ bc].

Why is this the definition? Because

(a− b)(c− d) = ac− bc− ad+ bd = (ac+ bd)− (ad+ bc).

Once again, we have the same issue, which is that we need to check that
it is well-defined, i.e. that if [a1, b1] = [a2, b2] and [c1, d1] = [c2, d2], then
[a1, b1][c1, d1] = [a2, b2][c2, d2]. The argument here is similar to that in the
proof of Proposition 25.5 but involves a lengthier calculation.

You might think we also need to define subtraction. However, subtrac-
tion can already be defined in terms of addition and multiplication. For
integers written the usual way, we have x − y = x + (−1)y. In terms of
equivalence classes of pairs, we have [a, b]− [c, d] = [a, b] + [1, 2][c, d], since
[1, 2] is the equivalence class version of −1.

If one were being even more thorough at this point, one would check that
addition and multiplication of pairs satisfy the sort of properties that we
expect. For example, [1, 1] + [a, b] = [a, b], [1, 1][a, b] = [1, 1], [a, b] + [c, d] =

[c, d] + [a, b], [a, b]([c, d] + [e, f ]) = [a, b][c, d] + [a, b][e, f ]. In problem 1, you
will decode these properties and see which standard properties they are
referring to!

From now on, we’ll drop this annoying notation and write integers the
way we usually do, except when we need to refer directly to the elements
of the pair. For example, we’ll write 0 instead of [1, 1] and −1 instead of
[1, 2].

25.2 From Z to Q

At this point, we have the integers defined rigorously. So it’s time to take
the next step up the ladder and define the rational numbers. The rational
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numbers are just the fractions: a
b , where a and b are integers, and b 6= 0.

But, just like in the case of the integers, these things aren’t uniquely defined,
and so we need to use equivalence relations. The equivalence relation for
rationals is similar to, but not quite the same as, the one for integers.

Consider the set Z × (Z \ {0}) of pairs of integers, where the second
one is nonzero. Put a relation ≡ on it by saying that (a, b) ≡ (c, d) if
ad = bc. (Recall that the equivalence relation used to construct Z from N
was a+ d = b+ c, so this is just a multiplicative version of what we did to
construct the integers.) We think of (a, b) as being the fraction a

b .

Proposition 25.7. ≡ is an equivalence relation.

You will prove this in problem 2.

Definition 25.8. A rational number is an equivalence class of Z×(Z\{0})
under the equivalence relation ≡. We write Q for the set of all the rational
numbers.

In order to distinguish these equivalence classes from the other ones,
we’ll write 〈a, b〉 for the equivalence class of (a, b). Remember that 〈a, b〉 is
supposed to be a

b .
Just like with the integers, we want to do more with the rationals than

just consider them as a set: we want to do arithmetic. That is, we want to be
able to add, subtract, multiply, and divide them. You can probably already
predict what is coming, but here are the definitions of these operations:

Definition 25.9. Let 〈a, b〉 and 〈c, d〉 be two rational numbers.

• Their sum is

〈a, b〉+ 〈c, d〉 = 〈ad+ bc, bd〉.

• Their difference is

〈a, b〉 − 〈c, d〉 = 〈ad− bc, bd〉.

• Their product is

〈a, b〉〈c, d〉 = 〈ac, bd〉.

• Assuming that c 6= 0, their quotient is

〈a, b〉 ÷ 〈c, d〉 = 〈ad, bc〉.

Just like in the case of integers, we shouldn’t be satisfied with these
definitions until we have checked that they are well-defined, i.e. they do
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not depend on the choice of representatives of their respective equivalence
classes. The verification of this is similar to the case of the integers, but
we’ll just move on rather than spending more time on this particular tedious
issue.

25.3 The ordering on Z and Q

So far, we have discussed the arithmetic of Z and Q: how to add (and
do other operations on) integers and rational numbers, directly in terms of
their ordered pair representations. But there is another crucial aspect of
these number systems: the ordering. That is, given two integers or rational
numbers, there is a way of telling when one of them is greater than or less
than the other.

Before we explain how to do that directly in terms of the pairs, let’s make
sure we understand precisely what we expect out of an ordering relation.
Just as you would expect, we use < and ≤ as our ordering relations. They
are very similar to each other: < means ≤ but not =, i.e. a < b is equivalent
to a ≤ b and a 6= b.

Definition 25.10. A totally ordered set is a set S together with a relation
≤ (written x ≤ y) satisfying the following properties:

Reflexivity: x ≤ x for all x ∈ S.
Antisymmetry: if x ≤ y and y ≤ x, then x = y.
Transitivity: if x ≤ y and y ≤ z, then x ≤ z.
Comparability: if x, y ∈ S, then either x ≤ y or y ≤ x.4

We call ≤ an ordering or a total ordering.

To define the order on Z and Q, we must build up from the order on N,
so let’s start by defining that.

Definition 25.11. Let x, y ∈ N. We say that x < y if there exists some
z ∈ N such that x+ z = y. We say that x ≤ y if either x < y or x = y.

It’s obvious5 that this is an ordering on N. We’ll now use it to build up
an ordering on Z.

4Recall the convention on “or” in mathematics: we allow the possibility that both x ≤ y
and y ≤ x, in which case we have x = y by antisymmetry.
5Well, maybe: If we were going to do this properly, we would start with an actual

definition of N, so that we could check these properties on that construction. But since
we skipped that part, we’ll have to skip checking that this is an ordering as well.
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The ordering on Z is similar to the ordering on N. For integers x, y, we
say that x ≤ y if there is some z ∈ N ∪ {0} such that x+ z = y.

Proposition 25.12. The relation ≤ on Z is an ordering.

Proof. Let’s check that it satisfies the four properties of an ordering.

Reflexivity: x+ 0 = x, so x ≤ x.
Antisymmetry: Suppose that x+a = y and y+b = x, where a, b ∈ N∪{0}.

Then we have x+ a+ b = x, so a+ b = 0. Thus x = x.
Transitivity: Suppose x + a = y and y + b = z. Then x + a + b = z, so

x ≤ z.
Comparability: Let x, y ∈ Z. Then x−y ∈ Z, so we can write x−y = [a, b]

for some a, b ∈ N. Thus x− y = a− b. If a ≥ b, then a− b ∈ N ∪ {0},
and y + (a − b) = x, so y ≤ x. If b ≥ a, then b − a ∈ N ∪ {0},
and x + (b − a) = y, so x ≤ y. Either way, we have either x ≤ y or
y ≤ x. �

We won’t prove it right now (instead, we’ll save it for problem 3), but
the ordering is compatible with arithmetic operations. For example, if a ≤ b
and c ≤ d, then a + c ≤ b + d. Similarly, the ordering acts as you expect
with respect to the other arithmetical operations. For instance, if 0 ≤ a ≤ b
and 0 ≤ c ≤ d, then 0 ≤ ac ≤ bd. There is a lot to check, of course, but
it is all straightforward, following along the lines of what we have already
done.

Now we need to move on to define the ordering on Q. We have to do
that in terms of the ordering on Z only. Here’s one way of defining it:

Definition 25.13. Let x, y ∈ Q. We say that x ≤ y if there are integers
a ∈ N and b ∈ N ∪ {0} such that ax+ b = ay.

You will easily recognize that, in normal parlance, this is the same as
saying that y − x = b

a ≥ 0, so this is the same as the ordering relation you
are used to. But let’s check that it actually is an ordering.

Proposition 25.14. The relation ≤ is an ordering on Q.

Proof. Again, we just have to check the four properties.

Reflexivity: If y = x, then we may take a = 1 and b = 0.
Antisymmetry: Suppose ax + b = ay and cy + d = cx. Multiplying the

first equation by c and the second equation by a, we have acx+ bc =

acy and acy + ad = acx. Substituting acx + bc for acy in the second
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equation, we get acx+ bc+ad = acx. Thus bc+ad = 0. Since a, c > 0

and b, d ≥ 0, it follows that b, d = 0, so ax = ay and cy = cx. Thus
x = y.

Transitivity: Suppose x ≤ y and y ≤ z. Then we have a, c ∈ N and
b, d ∈ N∪ {0} such that ax+ b = ay and cy+ d = cz. Multiplying the
first equation by c and the second by a, we get acx + bc = acy and
acy + ad = acz. Thus we have acx + bc + ad = acz. Letting a′ = ac

and b′ = bc+ad, we have a′x+b′ = a′z, where a′ ∈ N and b′ ∈ N∪{0}.
Thus x ≤ z by definition.

Comparability: Suppose x = 〈p, q〉 and y = 〈r, s〉. We can rewrite them
as x = 〈ps, qs〉 and y = 〈qr, qs〉, where qs ∈ N. If ps ≤ qr, then we
can take a = qs and b = qr− ps, so that ax+ b = ay. If qr ≤ ps, then
we can take a = qs and b = ps− qr, so that ay + b = ax. Thus either
x ≤ y or y ≤ x. �

25.4 Problems

(1) Explain what the following statements about integers mean, in com-
mon parlance:

(a) [1, 1] + [a, b] = [a, b].
(b) [1, 1][a, b] = [1, 1].
(c) [a, b] + [c, d] = [c, d] + [a, b].
(d) [a, b]([c, d] + [e, f ]) = [a, b][c, d] + [a, b][e, f ].

(2) Prove Proposition 25.7.
(3) Prove, directly from the definitions, that if a, b, c, d ∈ Z, and a ≤ b

and c ≤ d, then a+ c ≤ b+ d.
(4) Prove, directly from the definitions, that if a and b are integers with

a, b < 0, then ab > 0.
(5) Prove that for every x ∈ Q, there is exactly one y ∈ Q such that

x+ y = 0. (Here, 0 means 〈0, 1〉.)
(6) Prove that for every x ∈ Q other than 〈0, 1〉, there is exactly one y ∈ Q

such that xy = 1, where 1 = 〈1, 1〉.
(7) The set Z[ 12 ], known as the dyadic rationals, consists of all rational

numbers whose denominator is a power of 2. So, for example, − 7
4 ∈

Z[ 12 ], but 1
3 6∈ Z[ 12 ].

(a) Explain how to construct Z[ 12 ] from Z using a similar construction
to the one used to construct Q from Z. Prove that anything you
claim to be an equivalence relation actually is one.
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(b) Can we add, subtract, multiply, and divide elements of Z[ 12 ]?
(Don’t try to divide by 0.) Which ones work, and which ones
don’t? Give definitions for these operations, and check whether
or not they work.

(8) Suppose we mimic the construction used to construct Q from Z, but
we apply it to Q instead of to Z. That is, we consider equivalence
classes of pairs (a, b) ∈ Q × (Q \ {0}), under the equivalence relation
(a, b) ∼ (c, d) if ad = bc. Which familiar structure do we end up with
in this way?

(9) Let i =
√
−1, and define Z[i] = {a + bi : a, b ∈ Z}. (The set Z[i] is

called the set of Gaussian integers.) Describe, as best you can, the
set of equivalence classes of Z[i] × (Z[i] \ {0}) under the equivalence
relation (a, b) ∼ (c, d) if ad = bc.
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Chapter 26

Dedekind cuts

26.1 Dedekind cuts

In Chapter 25, we saw a technique for constructing Z from N, and then
Q from Z. Now we want to take the next step and construct R from Q.
There are two standard ways of doing this, and we’ll discuss both of them
in this book. The way we’ll do it in this chapter uses Dedekind cuts of
rationals.

The idea of Dedekind cuts is as follows. Take the real number line,
and pick some real number α on it. Now take a pair of scissors and cut
the number line at α. We end up with two rays, one consisting of all the
numbers less than α, and the other consisting of all the numbers greater
than α. (What happens to α itself? We can make a convention for which
set it ends up in, or we can suppose that it disappears after the cut is made.
The actual convention chosen doesn’t matter, as long as we’re consistent
about it. We’ll choose to put it in the upper set.) The two sets of numbers
we have left uniquely determine α: what we’re saying is that the number α
itself carries exactly the same information as knowing which numbers are
less than α, and which ones are greater than α.

However, we want to build the real numbers out of only the rationals,
rather than using all the reals. That’s okay: we don’t need information
about all the numbers less than α (or greater than α); it’s enough to know
which rational numbers are less than α and which ones are greater than α.
That’s the basic idea of Dedekind cuts.

Now let’s do it formally.

Definition 26.1. A Dedekind cut of the rational numbers is an ordered
pair (A,B), where A and B are subsets of Q, with the following properties:

283
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• Both A and B are nonempty.
• A ∪B = Q.
• If a ∈ A and b ∈ B, then a < b.
• A contains no greatest element: if a ∈ A, then there is some c ∈ A
with a < c.

What all this is saying is that both A and B are rays in Q, with A point-
ing to the left and B pointing to the right. While A is not allowed to have
a maximal element, B is allowed to have a minimal element. Sometimes it
does, and sometimes it doesn’t.

The idea is that given a real number α, we can construct a Dedekind cut
(Aα, Bα) out of it, by letting Aα = {r ∈ Q : r < α} and Bα = {r ∈ Q : r ≥
α}. For example, from

√
2, we construct its Dedekind cut to be (A√2, B

√
2)

where A√2 = Q≤0 ∪ {r ∈ Q : r2 < 2} and B√2 = {r ∈ Q>0 : r2 > 2}. (See
Figure 26.1.) However, this sort of thing doesn’t make sense in generality
yet, because we don’t rigorously know what the real numbers are yet. So
instead, we’ll go backward: we’ll define the real numbers to be the Dedekind
cuts.

0 1 7
5

41
29

239
169 23

2
17
12

99
70

Figure 26.1. The Dedekind cut corresponding to
√

2. The set A√2 is
drawn in red, and the set B√2 is drawn in blue.

Definition 26.2. A real number is a Dedekind cut of the rationals. We
write R for the set of all real numbers.

This means that each real number is an ordered pair, where each element
in the pair is a subset of the rational numbers. This is a bit clumsy, and
eventually we’ll drop all of that, but it’s all we have to work with at the
moment, so we’ll use it to define all the structure on R.

26.2 The structure of R

The first bit of structure we’ll want to define is that of inequalities.
Given two real numbers α and β, what does it mean to say that α < β?
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Remember that we have to do this in terms of Dedekind cuts, since that’s
all we have available to us. We’ll actually define ≤ instead of <, since it’s
slightly cleaner, and then we’ll say that α < β if α ≤ β and β 6≤ α.

Definition 26.3. Let α = (Aα, Bα) and β = (Aβ , Bβ) be two real numbers.
We say that α ≤ β if Aα ⊆ Aβ . We say that α < β if α ≤ β and β 6≤ α.

This is logical: α ≤ β if every rational number x < α is also < β. But
so far it’s just a definition; we don’t know that this definition has any of
the usual good properties of inequalities, i.e. that ≤ makes R into a totally
ordered set. So we have to prove them. Let’s just do two of the properties
required of a totally ordered set: transitivity and comparability.

Proposition 26.4.

(1) If α ≤ β and β ≤ γ, then α ≤ γ.
(2) If α, β ∈ R, then either α ≤ β or β ≤ α.

Proof.

(1) Suppose α ≤ β and β ≤ γ. Then Aα ⊆ Aβ and Aβ ⊆ Aγ . Thus
Aα ⊆ Aγ , so α ≤ γ.

(2) If not, then Aα 6⊆ Aβ , and Aβ 6⊆ Aα. This means that there is some
x ∈ Aα \ Aβ , and some y ∈ Aβ \ Aα. Thus x 6= y and, by the total
ordering of Q, we either have x ≤ y or y ≤ x. Let us suppose that
x ≤ y. Since x 6∈ Aβ and Aβ ∪ Bβ = Q, we must have x ∈ Bβ . Since
y ∈ Aβ , we have y < x by Definition 26.3, contradicting our assumption
that x ≤ y. We get a similar contradiction if we instead assume that
y ≤ x. Thus it must be the case that either Aα ⊆ Aβ , i.e. α ≤ β, or
Aβ ⊆ Aα, i.e. β ≤ α. �

Next, we want to define arithmetic on R: How do we add, subtract,
multiply, and divide real numbers? Addition is easy, so we’ll start with
that.

Definition 26.5. Let α = (Aα, Bα) and β = (Aβ , Bβ) be two real numbers.
We define α + β to be the ordered pair (Aα+β ,Q \ Aα+β), where Aα+β =

{r + s : r ∈ Aα, s ∈ Aβ}.

Note the careful wording in this definition: α + β is defined to be an
ordered pair, not a real number (or a Dedekind cut). And that is because we
have not yet proven that it is always a Dedekind cut. So that’s something
we have to prove.



286 Transition to Proofs

Proposition 26.6. If α, β ∈ R, then α+ β ∈ R.

Proof. We must check all the properties in the definition.

• The first property to check is that Aα+β and Q \ Aα+β are both
nonempty. Since Aα and Aβ are both nonempty, we can find some
r ∈ Aα and s ∈ Aβ . Note that r, s ∈ Q, so we already know how to
evaluate r + s. By definition, r + s ∈ Aα+β , so Aα+β is nonempty. To
show that Q\Aα+β is nonempty, let bα ∈ Bα and bβ ∈ Bβ be arbitrary
elements. For any aα ∈ Aα and aβ ∈ Aβ , we have aα < bα and aβ < bβ ,
so aα + aβ < bα + bβ . Thus bα + bβ 6∈ Aα+β , so Q \Aα+β is nonempty.
• Next, we need to check that Aα+β ∪ (Q \ Aα+β) = Q. This is clear,
because Q \Aα+β consists exactly of those elements of Q not in Aα+β .
• The next thing to check is that if a ∈ Aα+β and b ∈ Q \ Aα+β , then
a < b. Suppose a ∈ Aα+β and b ∈ Q \ Aα+β . Let us suppose that
a = aα + aβ , where aα ∈ Aα and aβ ∈ Aβ . Since b 6∈ Aα+β , we have
b = aα+bβ for some bβ ∈ Bβ . (In this case, bβ = b−aα, which must be
in Bβ , for otherwise b would be in Aα+β .) Since (Aβ , Bβ) is a Dedekind
cut, aβ < bβ , so a = aα + aβ < aα + bβ = b, as desired.
• Finally, we must prove that Aα+β has no greatest element. Let a =

aα + aβ ∈ Aα+β , where aα ∈ Aα and aβ ∈ Aβ . Since α and β are real
numbers, Aα and Aβ have no greatest elements, so there exist cα ∈ Aα
and cβ ∈ Aβ with aα < cα and aβ < cβ . Thus we have

a = aα + aβ < cα + cβ ∈ Aα+β ,

so a is not the greatest element in Aα+β . Since a was arbitrary, we
conclude that Aα+β has no greatest element. �

We might like to define multiplication similarly: αβ = (Aαβ ,Q \ Aαβ)

where Aαβ = {rs : r ∈ Aα, s ∈ Aβ}. However, this is not a Dedekind
cut. So, we need to be more careful. The problem is that multiplication
and inequalities don’t always play nicely together: if a < a′ and b < b′, we
cannot conclude that ab < a′b′. However, if we also know that a and b are
positive, then we can conclude that ab < a′b′. Thus we start by dealing
with multiplication only of positive real numbers.

Definition 26.7. A real number α is said to be positive (resp. nonnegative)
if α > 0 (resp. α ≥ 0). A real number β is said to be negative (resp.
nonpositive) if β < 0 (resp. β ≤ 0).
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Definition 26.8. Let α = (Aα, Bα) and β = (Aβ , Bβ) be two positive real
numbers. Then we define their product αβ to be the pair (Aαβ ,Q \ Aαβ),
where

Aαβ = {r ∈ Q : r ≤ 0} ∪ {aαaβ : aα ∈ Aα, aβ ∈ Aβ , aα > 0, aβ > 0}.

As in the case of addition, we ought to check that (Aαβ ,Q \ Aαβ) is
actually a Dedekind cut. This is similar to the case of addition, so we’ll
omit the somewhat tedious details.

The full definition of multiplication is more complicated, because we
have several cases where each of α and β can be positive, negative, or zero.
One way of dealing with this to start by defining multiplication by −1.
This, at least, is easy: if α = (A,B), then −α = (C,D), where C consists
of the negatives of all elements of B, except for the smallest element of B
if there is one, and D = Q \ C. Note that if α > 0, then −α < 0. (Of
course, strictly speaking, this also needs to be checked, but we’ll omit this
verification.) With this in place, we can now define multiplication in all
cases, other than the one we’ve already done:

Definition 26.9.

• If α = 0, then αβ = 0.
• If β = 0, then αβ = 0.
• If α < 0 and β > 0, then αβ = −((−α)β).
• If α > 0 and β < 0, then αβ = −(α(−β)).
• If α < 0 and β < 0, then αβ = (−α)(−β).

Subtraction is now easy, since α− β = α+ (−β). It will still take some
work to define division using Dedekind cuts, but we will skip the definition
of division here.

26.3 The least upper bound property

Dedekind cuts are built around ordering of rational (and hence real)
numbers. Thus they tend to be helpful for proving properties of real num-
bers that have to do with ordering. One of the most important properties
of real numbers is the least upper bound property.

Definition 26.10. A subset S ⊆ R is said to be bounded above if there is
some real number N such that for all α ∈ S, α ≤ N .

In terms of the number line, that means that S doesn’t contain numbers
arbitrarily far to the right.
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Definition 26.11. Given a subset S ⊆ R, an upper bound is some real
number N such that α ≤ N for all α ∈ S.

Clearly, being bounded above is equivalent to the existence of some
upper bound. But might there be a best possible upper bound? That is, if
N is an upper bound for S and N ′ > N , then N ′ is also an upper bound,
but it’s worse. The smaller the upper bound, the better it is. Does a subset
S ⊆ R which is bounded above have a lowest upper bound?

Theorem 26.12 (Least Upper Bound Property). Let S ⊆ R be bounded
above and nonempty. Then S has a least upper bound.

Definition 26.13. If S ⊆ R is bounded above and nonempty, then its least
upper bound is called the supremum of S and is denoted sup(S). If S is
empty, then its supremum is defined to be −∞, whereas if S is not bounded
above, then its supremum is defined to be ∞.

The least upper bound property is something special about R. There is
no corresponding property in Q, for instance: the set S = {s ∈ Q : s2 < 2}
has no least upper bound in Q. That is because Q has a “gap” at

√
2. The

least upper bound property is essentially saying that R has no gaps.

Proof of Theorem 26.12. Let S ⊆ R be bounded above and nonempty. For
each s ∈ S, let us write (As, Bs) for the Dedekind cut corresponding to s.
Let us define a pair (C,D), where

C =
⋃
s∈S

As,

and D = Q \ C. Note that C consists of all rational numbers less than
some element of S, so D consists of all rational numbers that are not less
than some element of S, i.e. those rational numbers that are greater than
or equal to all elements of S. We must show the following things:

• α = (C,D) is a Dedekind cut.
• α is an upper bound for S.
• α is the least upper bound for S.

We start by showing that α is a Dedekind cut. The first thing to check
is that C is nonempty. Since S is nonempty and As is nonempty for each
s ∈ S, C is also nonempty. Next, we must check that D is nonempty. Since
we are assuming that S is bounded above, any r ∈ Q greater than every
s ∈ S is in D. Thus D is also nonempty. Next, we must show that if c ∈ C
and d ∈ D, then c < d. To do this, we note that D consists of all rational
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numbers that are greater than or equal to every element of S, whereas C
consists of all rational numbers that are less than some element of S. Thus
if c ∈ C, there is some s ∈ S such that c < s, while if d ∈ D, then d ≥ s.
Thus c < d. Finally, we must show that C has no greatest element. If
it did have a greatest element, say c, then c would lie in some As, which
would mean that As has a greatest element. But this would contradict
(As, Bs) being a Dedekind cut. Thus C has no greatest element. We have
now checked all the properties needed to guarantee that α = (C,D) is a
Dedekind cut and hence a real number.

Next, we must show that α is an upper bound for S. If d ∈ D and
s ∈ S, then s ≤ d. Thus every element of D is greater than or equal to
every element of S, so α ≥ s for every s ∈ S as well. Thus α is an upper
bound for S.

Finally, we must show that α is the least upper bound for S. Suppose
that β ∈ R is an upper bound for S, say with β = (E,F ) as a Dedekind
cut. Since we are assuming β to be an upper bound for S, this means that
for every s ∈ S, we have (As, Bs) ≤ (E,F ). Thus As ⊆ E for all s ∈ S, or⋃
s∈S As ⊆ E. But C =

⋃
s∈S As. Thus C ⊆ E, which means that α ≤ β.

Thus α is less than or equal to any upper bound for S, and is therefore the
least upper bound. �

26.4 Problems

(1) Suppose α = (A,B) is given as a Dedekind cut. In terms of A and B,
how can you tell if α is rational or irrational?

(2) Prove that there is no smallest positive real number. (Note that you
must do this directly in terms of Dedekind cuts.)

(3) Prove that if α and β are any two real numbers with α < β, then there
is a rational number r with α < r < β.

(4) Prove that if α and β are any two real numbers with α < β, then there
is an irrational number s with α < s < β.

(5) Prove that there exists a countable set that contains an uncountable
collection of nested subsets. (A collection of subsets is said to be nested
if for any two subsets A and B, either A ⊆ B or B ⊆ A.)

(6) When we defined addition of real numbers in terms of Dedekind cuts,
we defined α + β to be (Aα+β ,Q \ Aα+β) rather than (Aα+β , Bα+β),
where Bα+β = {bα + bβ : bα ∈ Bα, bβ ∈ Bβ}. Why does the latter
definition not work?



290 Transition to Proofs

(7) Prove that there is a
√

2 ∈ R, by showing directly from the definition of
multiplication that there is some cut x = (A,B) ∈ R such that x·x = 2.
(You will need to use the least upper bound property.)

(8) Prove that if x = (A,B) is a Dedekind cut, then x = sup(A).
(9) Prove the greatest lower bound property : if S ⊆ R is bounded below

and nonempty, then S has a greatest lower bound. We call this greatest
lower bound the infimum of S, and we denote it inf(S). (Note: you
can mimic the proof of the least upper bound property, making the
necessary changes, which might require a small amount of care due to
the asymmetry of A and B in the definition of a Dedekind cut. Or you
can prove this directly from the least upper bound property.)



Chapter 27

Sequences in Q

27.1 The idea of completions

We now know how to construct R in terms of Dedekind cuts: this is
one of two standard constructions of R out of Q. We’ll now move toward
the other main construction, in terms of equivalence classes of Cauchy se-
quences. Before we define Cauchy sequences formally, let’s see an example
of what the idea is.

Think of a real number, say π. How would you describe it to someone?
You can just say it’s π, but if ey is not familiar with that particular number,
then that description won’t be of much use to em. You can also explain it in
terms of its geometric properties, saying something about the circumference
and diameter of a circle. But that’s very specific to π and doesn’t work for
other numbers.

Instead, you can describe π to someone, at least approximately,
by telling em a bunch of its digits. You might tell em that π =

3.14159265358979 . . . What this means is that we have a sequence of num-
bers that gets closer and closer to π, so that by going far enough out in the
sequence, we get as close as desired to π. The sequence here consists of the
following sequence of truncations of the decimal expansion of π, namely

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . .

If someone wants to know what π is to within any error, say 10−100, then
ey can figure that out by going far enough in the sequence.

The idea, then, is that we can describe any real number by giving an
infinite sequence of rational numbers that approximate it better and better.
However, not all sequences of rational numbers describe real numbers. For
example, the sequence 1, 2, 3, 4, 5, . . . does not describe any real number,
because the terms stay far apart from each other. So the real numbers can
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only be described by sequences of rational numbers that get close together
as we go far out in the sequence.

27.2 Cauchy sequences

Definition 27.1. A sequence of rational numbers is a function f : N→ Q.
Typically if f is a sequence, we write a1, a2, a3, . . ., where an = f(n).

Example. Suppose f(n) = 1
n . Then the sequence is 1, 12 ,

1
3 ,

1
4 , . . .

Remark 27.2. Sometimes it’s convenient to start the sequence with a0 in-
stead of a1, or perhaps somewhere else. Nothing much changes when we
do that, so we’ll start with a0 or a1, or anything else, as it is convenient at
the moment.

Remark 27.3. A sequence doesn’t have to be describable by a nice formula.
For instance, there is a sequence 1, 53 ,−

81
19 ,

991
4096 , . . ., and in fact infinitely

many of them depending on what goes into the ellipsis. We’d have trouble
writing down a concise formula for an, but the definition of a sequence
doesn’t require that we be able to do so.

As mentioned above, not all sequences get close together. There are two
possible intuitive notions of what it means for terms of a sequence to get
close together, but only one of them behaves well. The first possibility is
that we could say that the sequence a1, a2, a3, . . . gets close together if, for
large enough n, |an − an+1| can be made as small as possible. However,
this is not a very good idea, as we shall see when we discuss infinite series
in Chapter 32.

A much better idea is to say that the terms of a sequence a1, a2, a3, . . .
get close together if, once we go out far enough in the sequence, all the
future terms are close to each other. That means that not only do two
consecutive terms need to be close, but any two terms far enough out need
to be close.

Somewhat more precisely, this means that if we choose any positive
number ε, then once we go sufficiently far in the sequence, any two terms
are within ε of each other. This is the notion of a Cauchy sequence. Here
is the precise definition:

Definition 27.4. Let a1, a2, a3, . . . be a sequence in Q. We say that this
sequence is a Cauchy sequence if, for every ε > 0, there is some N > 0

(depending on ε) such that if m,n > N , then |am − an| < ε.
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Example. Consider the sequence an = 1
n . Let us check that this sequence is

Cauchy. Choose some ε > 0. We must find some N such that if m,n > N ,
then |am − an| < ε. This means that we need a way of selecting an N in
terms of ε. In this case, we can write down a fairly simple formula, but this
isn’t always possible. Here, we note that

|am − an| =
∣∣∣∣ 1

m
− 1

n

∣∣∣∣ < max

(
1

m
,

1

n

)
<

1

N
,

whenever m,n > N . We need to choose N such that |am − an| < ε, so it
suffices to choose an N such that 1

N < ε, or N > 1
ε . When that happens,

we have

|am − an| =
∣∣∣∣ 1

m
− 1

n

∣∣∣∣ < max

(
1

m
,

1

n

)
<

1

N
< ε,

which is just what we want.

Example. Consider the sequence an = (−1)n, so that the sequence goes
−1, 1,−1, 1,−1, 1, . . . This sequence is not Cauchy. For instance, take ε = 1.
(In fact, even ε = 2 presents the same problem. However, there are no
bonus points for finding the largest possible ε that presents a problem.)
Then there is no N such that whenever m,n > N , we have |am − an| < ε.
The reason is that, regardless of how large N is, we can find m,n > N such
that am = 1 and an = −1, so that |am − an| = 2. Thus we can never go
far enough in the sequence so that all the terms am, an with m,n > N are
of distance less than 1 from each other.

See Figure 27.1 for a picture of a Cauchy sequence.

Figure 27.1. A Cauchy sequence. Darker points represent an for larger
values of n.

Example. Consider our sequence 3, 3.1, 3.14, 3.141, . . . approximating π, so
that a1 = 3, a2 = 3.1, a3 = 3.14, and so forth. This sequence is Cauchy.
To see this, let’s suppose that m > n. Then

|am − an| < 101−n.

Thus if we pick any ε > 0 and then choose an N such that 101−N < ε, then
whenever m,n > N , we have |am − an| < ε.



294 Transition to Proofs

27.3 Convergent sequences

Given a sequence of rational numbers a1, a2, a3, . . ., we would like to
know whether it is getting closer and closer to some number. In the case of
the sequence 3, 3.1, 3.14, 3.141, . . ., this sequence seems to be getting close to
π. But there’s a problem here: we’re trying to use this sequence to create π,
since at this point we haven’t yet defined real numbers other than rationals.
(Well, we did using Dedekind cuts, but we want to start from scratch and
not use that, since this is a second, completely independent, construction
of R.) So it does not make sense at this point to say that that sequence
converges to π. Furthermore, since π is irrational,1 it doesn’t make much
sense to say that the sequence converges to anything at all. Clearly, we
need a precise definition here to cut through some of the complications.

Definition 27.5. Let a1, a2, a3, . . . be a sequence of rational numbers, and
let s be a rational number. We say that a1, a2, a3, . . . converges to s and
write

lim
n→∞

an = s

if, for any ε > 0, there is an N > 0 such that if n > N , we have |an−s| < ε.
If there is some s ∈ Q such that limn→∞ an = s, then we say that the
sequence converges. We call this value of s the limit of the sequence.

Note that we require that s ∈ Q, because that’s all we know at the
moment. Later on, we will redo much of this to allow sequences of arbitrary
real numbers converging to a real limit, but that only makes sense once we
have defined the real numbers. So, for now, we’re stuck with sequences of
rational numbers and rational limits.

Let’s see some examples of convergent sequences.

Example. Let an = 1
n . We claim that this is a convergent sequence, and

that its limit is 0. To see this, we have to show that for every ε > 0, there
is some N > 0 such that whenever n > N , we have |an−0| = | 1n | < ε. Note
that | 1n | =

1
n < 1

N if n > N , so it suffices to choose an N ≥ 1
ε , or 1

N ≤ ε.
Indeed, when N ≥ 1

ε and n > N , we have

|an − 0| =
∣∣∣∣ 1n
∣∣∣∣ = 1

n
<

1

N
≤ ε,

which is just what we needed. Thus we have shown that

lim
n→∞

1

n
= 0.

1This is not an easy theorem at all, but one we will take for granted for the sake of this
discussion; see [Niv47] for a proof.
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Intuitively, it seems that Cauchy sequences and convergent sequences
are trying to capture a similar idea, so there ought to be some sort of
connection between them. And indeed there is!

Proposition 27.6. Convergent sequences are Cauchy.

The point is that if x and y are two numbers that are both close to
the same number s, then x and y are also close to each other. In order to
prove Proposition 27.6 by making this idea rigorous, we need the triangle
inequality.

Theorem 27.7 (Triangle Inequality). If x, y ∈ R (or perhaps just Q at the
moment), then

|x− y| ≤ |x|+ |y|.

Or, replacing x by x− z and y by y − z,

|x− y| = |x− z − y + z| ≤ |x− z|+ |y − z|.

The triangle inequality is obvious with a moment’s thought, so we won’t
bother to prove it.

Proof of Proposition 27.6. Let a1, a2, a3, . . . be a convergent sequence, with
limn→∞ an = s. We must show that this sequence is Cauchy. Pick an ε > 0.
Since limn→∞ an = s, there is some N such that whenever n > N , we have
|an − s| < ε

2 .
2 We will show that, for the same N , if m,n > N , then

|am − an| < ε. To see this, we use the triangle inequality: if m,n > N ,
then |am − s| < ε

2 and |an − s| < ε
2 , so

|am − an| ≤ |am − s|+ |an − s| <
ε

2
+
ε

2
= ε,

as desired. �

On the other hand, some Cauchy sequences are not convergent, because
while the terms of the sequence get closer and closer to each other, they
don’t get arbitrarily close to some fixed rational number. Observe:

2Why did we pick ε
2
rather than ε? This is a standard trick that we’ll see over and

over again in analysis. You’ll see shortly why that’s just what we need to make the proof
work out. Sometimes we’ll need ε

3
or ε

4
instead of ε

2
. Often, when you start working on

a proof, you won’t know what you need to divide ε by, so you can just keep everything
as ε at first, and then when you have a bound of kε at the end, just divide all the ε’s by
k.
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Example. Consider our sequence 3, 3.1, 3.14, 3.141, . . . for π. As discussed
above, this sequence is Cauchy. But it isn’t convergent in Q. If it were, it
would have to converge to some rational number s. Let’s take one and see
why it doesn’t converge to it; for illustrative purposes, let’s try s = 3. Why
doesn’t the sequence converge to 3? We have to pick a sufficiently small
ε, say ε = .1. Is it true that there is some N such that whenever n > N ,
we have |an − 3| < .1? No, because there are lots of terms of the sequence
that are ≥ 3.1. (In fact, all but the first.) If we had instead tried s = 3.14,
then we could take ε = .001, and it isn’t true that all sufficiently far out
terms in the sequence satisfy |an − 3.14| < .001, because lots of the terms
are ≥ 3.141.

Definition 27.8. A set is said to be complete if every Cauchy sequence
converges.

As the example shows, Q is not complete, because we have examples of
Cauchy sequences in Q that do not converge in Q. Our goal in the next
chapter will be to create a completion of Q: adding in numbers to make all
Cauchy sequences converge. The resulting set is R; this will be our second
construction of R from Q.

One thing that we swept under the rug—but that you might believe
especially in light of the example—is that limits, if they exist, are unique.
That is, if a1, a2, a3, . . . is a sequence and limn→∞ an = s and limn→∞ an =

t, then s = t. This isn’t built into the definition, because the definition of
convergence involved first picking the limiting value s. But the terminology
and notation strongly suggest that limits are unique. And this isn’t hard
to prove. Once again, the triangle inequality is the star of the show.

Proposition 27.9. A sequence a1, a2, a3, . . . of rational numbers has at
most one limit.

Proof. Suppose there were two limits, say s and t, such that limn→∞ an = s

and limn→∞ an = t. Suppose that s 6= t. Then let ε = |s−t|
2 , which

is positive because s 6= t. Since limn→∞ an = s, we can find some N1

such that |an − s| < ε whenever n > N1. Similarly, we can find some N2

such that |an − t| < ε whenever n > N2. Let N = max(N1, N2). This
means that whenever n > N , we have both |an − s| < ε and |an − t| < ε.
Thus for all n > N , we have

2ε = |s− t| ≤ |s− an|+ |t− an| < ε+ ε = 2ε.
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But that means we have 2ε < 2ε, which is false. Thus we have a contradic-
tion to our assumption that s 6= t. This shows that if the sequence has two
limits, then those limits are equal. In other words, there’s only at most one
limit. �

27.4 Problems

(1) Which of the following sequences in Q are Cauchy sequences? Which
ones converge in Q? For those that converge, determine their limits.
In all cases, prove that your answers are correct.

(a) an = 1− 1
n3 (b) an = 2n2

n2+1 (c) an = n2

n+6

(2) Let a ∈ Q. Prove that the sequence an = a for all n is a Cauchy
sequence. Does it converge to some rational number? If so, which one?

(3) Find an example of a sequence an in Q such that infinitely many of the
an’s are 0, but the sequence does not converge to 0.

(4) If a sequence an of rational numbers is Cauchy, and an = 0 for infinitely
many values of n, does an necessarily converge to 0? Prove or find a
counterexample.

(5) If an is a convergent sequence in Q, is bn = banc necessarily convergent?
Prove or find a counterexample.

(6) A subsequence of a sequence a1, a2, a3, . . . in Q is another sequence
an1 , an2 , an3 , . . ., where 1 ≤ n1 < n2 < n3 < · · · . If an is convergent, is
any subsequence also necessarily convergent? Prove that your answer
is correct.

(7) Find a sequence an that is not convergent, but that has a convergent
subsequence. Prove that your answer is correct.

(8) Let an be a sequence. Suppose that, for every k, there is a subsequence
of an containing ak that is convergent. Is an necessarily convergent?
Prove or find a counterexample.

(9) Let an be a sequence. Suppose that there is some rational number
r such that for every k, there is a subsequence of an containing ak
that converges to r. Is an necessarily convergent? Prove or find a
counterexample.
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Interlude: Proofs using ε

In this interlude, we’ll go through a few more examples of proofs using
ε and δ, and how to write them well. Use these proofs as models for how
to write your own.

Proposition 27.10. Let an = 2 + n2+5
n3−4 . Then limn→∞ an = 2.

Proof. Let ε > 0 be arbitrary. We have

|2− an| =
∣∣∣∣n2 + 5

n3 − 4

∣∣∣∣ .
For n ≥ 2, we have n3−4 ≥ n3

2 , and for n ≥ 3, we have n2 +5 < 2n2. Thus
for n ≥ 3, we have

|2− an| =
∣∣∣∣n2 + 5

n3 − 4

∣∣∣∣ ≤ 2n2

n3/2
=

4

n
.

Let N = max( 4
ε , 3). Then for all n > N , we have

|2− an| ≤
4

n
<

4

N
< ε.

Thus limn→∞ an = 2, as claimed. �

Proposition 27.11. Let an = 2 + n2+5
n3−4 . Then the sequence an is Cauchy.

This follows from Proposition 27.10, because all convergent sequences
are Cauchy, but let’s prove that the sequence is Cauchy directly, just to get
another example of how to write that sort of proof.

Proof. Let ε > 0 be arbitrary. Let N = max( 8
ε , 3). As in the proof of

Proposition 27.10, for n ≥ 3, we have |2−an| ≤ 4
n , so if m,n ≥ N , we have

|am−an| = |(am−2)−(an−2)| ≤ |am−2|+ |an−2| ≤ 4

m
+

4

n
<
ε

2
+
ε

2
= ε,

as desired. �
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Chapter 28

A second construction of R

28.1 Equivalence classes of Cauchy sequences

In Chapter 27, we introduced Cauchy sequences in Q and noted that
not all Cauchy sequences in Q converge. Our goal is to fill in the gaps in
Q so as to make all Cauchy sequences converge. We will get R by filling in
all these gaps.

Consider, as usual, our Cauchy sequence for π: 3, 3.1, 3.14, 3.141, . . .
This Cauchy sequence doesn’t converge in Q, so if we’re going to construct
some set where all Cauchy sequences converge, we need to add in a number
for this one. The problem is that there are other Cauchy sequences that
we also want to converge to π; for instance 3, 227 ,

333
106 ,

355
113 ,

103993
33102 , . . .

1 So we
don’t just want to add one number for each nonconvergent Cauchy sequence
in Q, or else we’ll have many different π’s, one for each Cauchy sequence
that is supposed to converge to π. Instead, we want to make sure that they
all converge to the same π.

In order to do that, we need to put an equivalence relation on the set
of all Cauchy sequences in Q. The equivalence relation is as follows:

Definition 28.1. Let a = (a1, a2, a3, . . .) and b = (b1, b2, b3, . . .) be two
Cauchy sequences in Q. We say that a and b are equivalent (and write
a ∼ b, at least for the moment) if, for every ε > 0, there is some N such
that whenever n > N , we have |an − bn| < ε.

Example. Let a = (a1, a2, a3, . . .) be the usual Cauchy sequence for π,

1Where did these come from? They are the continued fraction convergents for π. Each
of them is the best rational approximation for π with that denominator or smaller. See
for instance [NZM91, Chapter 7] for a detailed look at continued fractions and their
importance in approximations.
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namely a1 = 3, a2 = 3.1, a3 = 3.14, and so on. Let b = (b1, b2, b3, . . .) be
the Cauchy sequence that rounds up rather than down: b1 = 4, b2 = 3.2,
b3 = 3.15, b4 = 3.142, b5 = 3.1416, and so forth. Let’s check that a ∼ b.
Note that |a1 − b1| = 1, |a2 − b2| = .1, |a3 − b3| = .01, and in general,
|an− bn| = 101−n. For any ε > 0, we can find some N such that 101−n < ε

whenever n > N (and in particular, when n = N + 1). Thus a ∼ b.

There are two especially important types of equivalent Cauchy se-
quences.

Example. Suppose that a and b are eventually equal, i.e. there exists some
N such that an = bn whenever n > N . Then a ∼ b. The reason is simple:
whenever n > N , we have |an − bn| = 0, which is less than ε for any ε > 0.
Note that in this case, we can always choose the same N , regardless of the
value of ε.

Example. Suppose that a and b are shifts of each other. This means that
there is some integer k (which we’ll assume to be positive, or else we can
just switch the roles of a and b) such that bn = an+k for all n (or even all
sufficiently large n). Then a ∼ b. Let’s check. Pick some ε > 0. We must
find an N such that whenever n > N , we have |an+k − an| < ε. Now, since
a is a Cauchy sequence, there is some N such that whenever m,n > N , we
have |am−an| < ε. Now, if n > N , then both n and n+k are greater than
N , so in particular we have |an − an+k| < ε. But that’s just what we need
to conclude that a ∼ b.

There is another characterization of equivalence of Cauchy sequences
that is sometimes useful. This could serve as the definition just as easily as
the one in Definition 28.1.

Proposition 28.2. Two Cauchy sequences a = (a1, a2, a3, . . .) and b =

(b1, b2, b3, . . .) are equivalent if and only if for every ε > 0, there exists an
N such that whenever m,n > N , we have |am − bn| < ε.

This is a good opportunity to get more familiar with ε
2 tricks.

Proof. Suppose that for all ε > 0, there exists an N such that whenever
m,n > N , we have |am − bn| < ε. Then, letting m = n, we have that
whenever n > N , |an − bn| < ε, which is the definition of equivalence of a
and b.

Now let’s do the other direction. Suppose that a ∼ b. Pick an ε > 0. We
must show that there exists an N such that whenever m,n > N , we have
|am − bn| < ε. Since a ∼ b, there is some N1 such that whenever n > N1,
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we have |an − bn| < ε
2 . And since a is Cauchy, there is some N2 such that

whenever m,n > N2, we have |am − an| < ε
2 . Now, let N = max(N1, N2).

Thus whenever m,n > N , we have both |an − bn| < ε
2 and |am − an| < ε

2 .
Thus whenever m,n > N , we have

|am − bn| ≤ |am − an|+ |an − bn| <
ε

2
+
ε

2
= ε,

as desired. �

We haven’t checked that ∼ is an equivalence relation yet, so it’s time
to do that.

Proposition 28.3. ∼ is an equivalence relation.

Proof. Reflexivity: We must show that a ∼ a. This means we must check
that for every ε > 0, there is some N such that whenever n > N , we
have |an − an| < ε. Any N will do, since |an − an| = 0 < ε.

Symmetry: We must check that if a ∼ b, then b ∼ a. Suppose that
a ∼ b, and let ε > 0. There is some N such that whenever n > N , we
have |an − bn| < ε, and we must show that there is some N such that
whenever n > N , we have |bn − an| < ε. Since |an − bn| = |bn − an|,
the same N will do.

Transitivity: We must check that if a ∼ b and b ∼ c, then a ∼ c. Pick
some ε > 0. There is some N1 such that whenever n > N1, we have
|an − bn| < ε

2 . Also, there is some N2 such that whenever n > N2, we
have |bn − cn| < ε

2 . Let N = max(N1, N2). Thus whenever n > N , we
have

|an − cn| ≤ |an − bn|+ |bn − cn| <
ε

2
+
ε

2
= ε,

as desired. �

Now that we know that ∼ is an equivalence relation, we can talk about
the equivalence classes of Cauchy sequences.

Definition 28.4. A real number is an equivalence class of Cauchy se-
quences of rational numbers with respect to the equivalence relation ∼. We
write R for the set of all real numbers. Given a Cauchy sequence a in Q,
we write [a] for its equivalence class, which is a real number.

That is our second construction of R from Q. Observe the differences
between our two constructions, the one coming from Dedekind cuts and
the one coming from Cauchy sequences. The Dedekind cut construction is
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based on the fact that Q (and R) is an ordered set: we fill in the gaps in
the ordering. The Cauchy sequence construction is based on the notion of
distance.

While these two constructions may seem similar in the case of R, you
should keep in mind that there are many other structures that have a notion
of ordering but not distance, or a notion of distance but not ordering. So
it’s good to be familiar with both constructions, since they generalize in
very different ways.2

Remark 28.5. At some point, one ought to check that the two definitions
of R actually agree, in some sense. We explain how this is done in the
Interlude following this chapter. We will use properties of R coming both
from Dedekind cuts (such as the least upper bound property) as well as
properties of R coming from Cauchy sequences (especially completeness) in
the future, wherever convenient. We won’t mention whether we’re thinking
of the Dedekind cut model of R or the Cauchy sequence model of R because
they define the same object.

Note that R contains Q. Since R is made out of Q, it seems plausible
that the Q sitting inside of R is somehow noticeable. And this is true. Given
a rational number q, there is an obvious Cauchy sequence representing q,
namely the sequence (q, q, q, q, . . .): the constant sequence.

28.2 Arithmetic in R

We have now defined R as a set, but we want to do arithmetic in R.
How do we add, subtract, multiply, and divide real numbers? Given the
construction, we had better say how to do this directly in terms of Cauchy
sequences.

Definition 28.6. Let α and β be real numbers. Suppose that α = [a] and
β = [b], where a = (a1, a2, a3, . . .) and b = (b1, b2, b3, . . .).

• We define α+β to be [a+b], where a+b = (a1+b1, a2+b2, a3+b3, . . .).

2I won’t dwell on this much, but let me just say that there is a type of structure
called a partially ordered set (or poset for short), and you can perform a Dedekind
cut sort of completion, known as the Dedekind–MacNeille completion, on an arbitrary
poset; see [Mac37]. Similarly, there is a type of structure called a metric space that
admits a sort of distance, and you can perform a completion (in this case just called the
completion) of an arbitrary metric space, using equivalence classes of Cauchy sequences;
see [Pug15, §2.10]. I encourage you to look into these topics if this sort of thing excites
you.
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• We define α−β to be [a−b], where a−b = (a1−b1, a2−b2, a3−b3, . . .).
• We define αβ to be [ab], where ab = (a1b1, a2b2, a3b3, . . .).
• Suppose that bn 6= 0 for all n, and that β 6= 0. Then we define α

β to be
[ab ], where a

b = (a1b1 ,
a2
b2
, a3b3 , . . .).

Recall that when we define Z from N, and Q from Z, we did something
very similar. Also recall that there was a bit of trouble with the analogous
definition, because there were a bunch of things we needed to check. The
same is true here. For instance, we need to check that a + b is actually a
Cauchy sequence (and similarly for the others). Then we need to check that
it is well-defined. That amounts to checking that if a1 ∼ a2 and b1 ∼ b2,
then a1 + b1 ∼ a2 + b2. Then we have to do the same thing for the others.
We’ll do both of these just for addition, leaving it as an exercise for you to
do the rest on your own. (See problem 3 for multiplication.)

Proposition 28.7. If a = (a1, a2, a3, . . .) and b = (b1, b2, b3, . . .) are
Cauchy sequences, then a+ b is also a Cauchy sequence.

Proof. Let ε > 0. Since a is Cauchy, there is some N1 such that whenever
m,n > N1, we have |am − an| < ε

2 . Similarly, since b is Cauchy, there
is some N2 such that whenever m,n > N2, we have |bm − bn| < ε

2 . Let
N = max(N1, N2). Then whenever m,n > N , we have

|(am + bm)− (an + bn)| = |(am − an) + (bm − bn)|
≤ |am − an|+ |bm − bn|

<
ε

2
+
ε

2

= ε,

as desired. �

Proposition 28.8. If a ∼ c and b ∼ d, then a+ b ∼ c+ d.

Proof. Let us write a = (a1, a2, a3, . . .) and similarly for the others. Let
ε > 0. We must show that there is some N such that if n > N , then
|(an + bn) − (cn + dn)| < ε. Since a ∼ c, there is some N1 such that if
n > N1, then |an − cn| < ε

2 . Similarly, since b ∼ d, there is some N2 such
that if n > N2, then |bn − dn| < ε

2 . Let N = max(N1, N2). Then whenever
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n > N , we have

|(an + bn)− (cn + dn)| = |(an − cn) + (bn − dn)|
≤ |an − cn|+ |bn − dn|

<
ε

2
+
ε

2

= ε,

as desired. �

The last two propositions combine to show that addition of real numbers
is well-defined. Similar arguments show that subtraction, multiplication,
and division (but not by zero) are well-defined as well.

So far, our absolute value function | · | only takes rational arguments,
because we’ve only just constructed R and haven’t ported everything over
yet. So we need to define the absolute value function on all of R to make
future steps.

Definition 28.9. Let α ∈ R be represented by a Cauchy sequence a =

(a1, a2, a3, . . .). Then |α| is the real number represented by the Cauchy
sequence |a| = (|a1|, |a2|, |a3|, . . .).

Of course, just like everything else, we need to check that this definition
makes sense, i.e. that |a| is indeed a Cauchy sequence, and that |α| is
independent of the choice of Cauchy sequence that represents α. These are
similar to previous proofs, so we leave one of these checks as an exercise.
(See problem 2.)

28.3 Cauchy sequences in R

So far, we have only discussed sequences and Cauchy sequences in Q.
Now that we have defined R, we can go back and redo everything we have
done for sequences in R. Since we can add and subtract real numbers, as
well as take their absolute values, we can define Cauchy sequences in R.

Definition 28.10. Let a1, a2, a3, . . . be a sequence in R. We say that this
sequence is a Cauchy sequence if, for every ε > 0, there is some N > 0

(depending on ε) such that if m,n > N , then |am − an| < ε.

If this definition looks familiar, it should: it’s exactly the same definition
we saw in Chapter 27 for Cauchy sequences in Q, except with Q replaced
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with R. We can also talk about convergence in R:

Definition 28.11. Let a1, a2, a3, . . . be a sequence of real numbers, and
let s be a real number. We say that a1, a2, a3, . . . converges to s and write

lim
n→∞

an = s

if, for every ε > 0, there is anN > 0 such that if n > N , we have |an−s| < ε.
If there is some s ∈ R such that limn→∞ an = s, then we say that the
sequence converges. We call this value of s the limit of the sequence.

Again, this is the same definition as before, but with Q (or rational)
replaced with R (or real).

Now, recall that we constructed R by filling in the gaps formed by
sequences in Q. We might be concerned that we have to do that process
again with R. Just because all Cauchy sequences in Q converge to real
numbers, that doesn’t necessarily mean that all Cauchy sequence in R also
converge to real numbers, because suddenly we have a lot more Cauchy
sequences lying around. However, we’re in luck: all Cauchy sequences in R
also converge in R. Recall that we say that a set S is complete if all Cauchy
sequences in S converge to something in S. In other words, we are claiming
the following:

Theorem 28.12. R is complete.

Proof. We must show that every Cauchy sequence in R converges in R.
Consider a Cauchy sequence α = (α1, α2, α3, . . .) in R. We will show that
α is equivalent to a Cauchy sequence in Q. This suffices to prove that R
is complete, because we already know that every Cauchy sequence in Q
converges to a real number. Thus we need to find a sequence of rational
numbers close to the αi’s.

Each αi is an element of R, i.e. an equivalence class of Cauchy sequences
in Q. For each αi, choose a Cauchy sequence ai = (ai1, ai2, ai3, . . .) in the
equivalence class αi. For each i, the Cauchy sequence ai converges to αi
in R, so there is some N(i) > 0, depending on i, such that |ain − αi| < 1

i

whenever n ≥ N(i).
Now, consider the sequence b = (b1, b2, b3, . . .) inQ (and hence R), where

bi = ai,N(i). We claim that b is equivalent to α. By definition, this means
that for any ε > 0, there is some N > 0 such that whenever n > N , then
|αn − bn| < ε. By the construction of bn, we have

|αi − bi| = |αi − ai,N(i)| <
1

i
.
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Choose N > 1
ε , so that 1

N < ε. Then whenever n > N , we have

|αn − bn| <
1

n
< ε.

This shows that b is equivalent to α. Since b is a Cauchy sequence in Q,
it converges to a number in R. Thus α also converges to a number in R.
Since α is an arbitrary Cauchy sequence in R, this shows that all Cauchy
sequences in R converge, so R is complete. �

28.4 Further reading

We have seen two constructions of the real numbers in this book: the
one using Dedekind cuts and the one using equivalence classes of Cauchy
sequences. While these are the most popular constructions, they aren’t
the only ones. Let’s take a brief look at another construction, called the
Eudoxus reals.

Definition 28.13. A function f : Z → Z is called an almost ho-
momorphism if there is some integer C such that for all m,n ∈ Z,
|f(m+ n)− f(m)− f(n)| ≤ C.

Example. For any real number α, the function fα : Z → Z defined by
fα(n) = bαnc is an almost homomorphism.

Definition 28.14. We say that two almost homomorphisms f and g are
almost equal if there is some integer B such that |f(n)− g(n)| ≤ B for all
integers n.

Let F be the set of almost homomorphisms. The relation ∼ on F
defined by f ∼ g if f and g are almost equal is an equivalence relation. Let
R = F/∼ be the set of equivalence classes under this equivalence relation.

Definition 28.15. The set R of equivalence classes is called the set of
Eudoxus reals.

The Eudoxus reals is another construction of the real numbers, since
it turns out that for any almost homomorphism f , there is a unique real
number α such that f ∼ fα, so we identify the ∼-equivalence class of f
with the real number α.

We can define the arithmetic operations onR directly in terms of almost
homomorphisms. Given two almost homomorphisms f and g, we define
[f ] + [g] to be [f + g], where f + g is the function (f + g)(n) = f(n) + g(n),
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which can be checked to be another almost homomorphism. Similarly, we
define [f ] · [g] to be [fg], where fg is the function (fg)(n) = f(n)g(n),
which is again an almost homomorphism. We can also define the ordering:
[f ] < [g] means that there exists an integer N such that f(n) < g(n) for all
n > N .

See [Art04] for a survey of the Eudoxus reals, as well as [Wei15] for a
survey of various constructions of the real numbers.

28.5 Problems

(1) Below are several Cauchy sequences in Q. Which ones are equivalent
to which other ones? Prove that your answer is correct.

(a) an = 0.
(b) bn = 1.
(c) cn = 1

n .
(d) dn = 1

n2 .
(e) e1 = 2, en+1 = 1

2 (en + 1
en

) for n ≥ 1.
(f) fn = n3

n3−5n+9 .

(2) Check that the definition of |α| given in Definition 28.9 is well-defined,
i.e. independent of the choice of Cauchy sequence representing α.

(3) Prove that the product of two Cauchy sequences, as defined in Defini-
tion 28.6, is Cauchy.

(4) A subset S ⊆ R is said to be dense if, for every α ∈ R and every ε > 0,
there is some s ∈ S such that |α − s| < ε. Which of the following
subsets of R are dense? In each case, prove that your answer is correct.

(a) Q.
(b) The set Z[ 12 ] of dyadic rationals, i.e. rational numbers a

b where b is
a power of 2.

(c) Z.
(d) The positive real numbers.
(e) {x2 : x ∈ Q} ∪ {−x2 : x ∈ Q}.
(f) Numbers of the form qπ, where q ∈ Q.

(5) Does there exist a finite subset of R which is dense? Find such a set or
prove that none can exist.

(6) Prove that a subset S ⊆ Q is dense if and only if, for every α ∈ R,
there is a Cauchy sequence with terms in S representing α (i.e. every
Cauchy sequence in Q is equivalent to a Cauchy sequence in S).
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(7) Prove that if α ≥ 0 is a real number, then there is a real number β such
that β2 = α, using Cauchy sequences.

(8) Let Fn denote the nth Fibonacci number, and let an = Fn+1

Fn
.

(a) Prove that an is a Cauchy sequence in Q.
(b) Which real number does it correspond to, in common parlance?

Prove that your answer is correct.



Interlude: The real numbers as the
unique complete ordered field

The goal of this interlude is to explain why the various construction
of the real numbers, such as the one based on Dedekind cuts on Q and
the one based on equivalence classes of Cauchy sequences, as well as more
exotic constructions like the Eudoxus reals, all end up constructing the
same object, and even what that means.

First, let’s discuss what it means for two constructions of R to be the
same. Any construction of the real numbers involves a set of numbers, to-
gether with operations of addition and multiplication, as well as the relation
of <. Let’s say we have two such sets, namely (R,+, ·, <) and (R,⊕,�,≺).
We say that they are isomorphic if there exists a bijection f : R → R such
that for all a, b ∈ R, f(a+ b) = f(a)⊕ f(b), f(ab) = f(a)� f(b), and a < b

if and only if f(a) ≺ f(b). In other words, f is a bijection that maps all
the relevant structure of R onto analogous structure for R.

It is possible, but somewhat awkward, to describe a bijection directly
from the Dedekind cut reals to the Cauchy sequence reals. But a better
way to do this is to define certain axioms that mimic the properties of the
real numbers, and then show that, up to isomorphism, there is only one
structure satisfying all those axioms. Since the Dedekind cut reals and
the Cauchy sequence reals both satisfy all the axioms, they must then be
isomorphic.

Definition 28.16. A field is a set F together with two binary operations,
+ and ·, satisfying the following properties:

Associativity of addition: For all a, b, c ∈ F , a+ (b+ c) = (a+ b) + c.
Commutativity of addition: For all a, b ∈ F , a+ b = b+ a.
Additive identity: There is an element 0 ∈ F such that a+ 0 = a for all

a ∈ F .

311
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Additive inverses: For all a ∈ F , there exists an element −a ∈ F such
that a+ (−a) = 0.

Associativity of multiplication: For all a, b, c ∈ F , a(bc) = (ab)c.
Commutativity of multiplication: For all a, b ∈ F , ab = ba.
Multiplicative identity: There exists an element 1 ∈ F , with 1 6= 0,

such that for all a ∈ F , a · 1 = a.
Multiplicative inverses: For all a ∈ F \{0}, there exists an a−1 ∈ F \{0}

such that a · (a−1) = 1.
Distributive law: For all a, b, c ∈ F , a(b+ c) = ab+ ac.

Example. The rational numbers Q form a field under the usual operations of
addition and multiplication. The integers Z do not, because some nonzero
integers, such as 2, do not have multiplicative inverses in the integers: there
is no integer b such that 2b = 1.

Definition 28.17. An ordered field is a field (F,+, ·) together with a re-
lation < on F satisfying the following order axioms:

• < is trichotomous: For all a, b ∈ F , exactly one of a < b, a = b, and
b < a holds.
• < is transitive: If a < b and b < c, then a < c.
• If a < b, then for all c ∈ F , we have a+ c < b+ c.
• For all a, b, c ∈ F , if a < b and 0 < c, then ac < bc.

Definition 28.18. An ordered field (F,+, ·, <) is said to be complete if it
satisfies the least upper bound property: if a nonempty subset S ⊆ F is
bounded above, i.e. if there exists a B ∈ F such that a ≤ B for all a ∈ S,
then S has a least upper bound in F , i.e. there is a smallest x ∈ F such
that a ≤ x for all a ∈ S.

Theorem 28.19. Up to isomorphism, there is a unique complete ordered
field.

We’ll omit a few details in the proof below in the interest of keeping
this section reasonably short.

Proof. The existence follows from our constructions since (for instance) the
Dedekind cut reals form a complete ordered field. So, it remains to show
uniqueness.

Suppose (F,+, ·, <) and (K,⊕,�,≺) are two complete ordered fields.
Because F is a field, it contains an element 1. By adding 1 to itself re-
peatedly, we can construct any positive integer, so F contains a copy of the
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positive integers. Together with their negatives and zero, they form a copy
of all the integers inside of F . By taking quotients of two of them, we can
in fact find a copy of Q inside of F . Let us call it Q. Similarly, we have a
copy of Q inside of K, which we’ll call Q.

We now begin to define f : F → K, starting by defining it on Q. Each
element of Q corresponds to a rational number, and f sends the copy of a
rational number q in Q to the copy of the same rational number in Q. This
gives us a bijection from Q to Q.

We must now extend the bijection from all of F to all of K. Let α ∈ F
be arbitrary, and let Aα = {q ∈ Q : q < α}. Let Bα = {f(q) : q ∈ Aα}.
Then Bα is a nonempty subset of Q (hence of K). Since K is complete, Bα
has a least upper bound supBα, so we define f(α) to be supBα. Note that
f is well-defined because if α, β ∈ F with α < β, then there is a rational
number between α and β, so Aα and Aβ are not the same set.

We must now show that f is an isomorphism. To begin, we must prove
that it is a bijection. To begin, we show that if α < β, then f(α) ≺ f(β).
Find two rational numbers q, r ∈ Q with α < q < r < β. Then because
α < q, we have Bα ⊆ Bq, so f(α) � f(q), and similarly f(r) � f(β). Since
f is an order-preserving bijection on the rationals, we have f(q) ≺ f(r).
Thus f(α) ≺ f(β). Since F is ordered, this implies that f is injective.

We must now show that f is surjective. Let β ∈ K. We must find
an α ∈ F such that f(α) = β. Let Dβ = {q ∈ Q : q ≺ β}, and let
Cβ = {f−1(q) : q ∈ Dβ} ⊆ Q. Then Cβ is nonempty and bounded above,
so it has a least upper bound supCβ . One can check that f(supCβ) = β.
Thus f is an order-preserving bijection.

It remains to check that f preserves the arithmetical operations, i.e.
that f(α+β) = f(α)⊕ f(β) and f(αβ) = f(α)� f(β) for all α, β ∈ F . We
leave this as an exercise. �
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Chapter 29

Limits of sequences

29.1 Limits of sequences

Now that we have constructed R (a second time), it’s time to go back
and redo what we did with sequences in Q, only this time for sequences in
R. We start by recalling the definition of a limit of a sequence in Q.

Definition 29.1. Let a1, a2, a3, . . . be a sequence of rational numbers, and
let s be a rational number. We say that a1, a2, a3, . . . converges to s and
write

lim
n→∞

an = s

if, for any ε > 0, there is an N > 0 such that if n > N , we have |an−s| < ε.
If there is some s ∈ Q such that limn→∞ an = s, then we say that the
sequence converges. We call this value of s the limit of the sequence.

The real-number version is almost identical; we only have to replace
“rational” with “real” (and Q with R) everywhere, which gives the following
definition.

Definition 29.2. Let a1, a2, a3, . . . be a sequence of real numbers, and let
s be a real number. We say that a1, a2, a3, . . . converges to s and write

lim
n→∞

an = s

if, for any ε > 0, there is an N > 0 such that if n > N , we have |an−s| < ε.
If there is some s ∈ R such that limn→∞ an = s, then we say that the
sequence converges. We call this value of s the limit of the sequence.

While the definitions look essentially identical, there is a major differ-
ence in how we should think of these two things. In the first case, it is fairly
tricky for sequences in Q to converge in Q. Not only must the terms get

315
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close to each other, but they also have to get close to some fixed rational
number. On the other hand, in the case of R, if we have a sequence whose
terms get close to each other, they automatically get close to some fixed
real number. This is because R is complete, as we showed in Chapter 28.
We summarize this as follows:

Proposition 29.3. A sequence in R is convergent if and only if it is a
Cauchy sequence.

Example. Consider the sequence an = n−1
n , so that the sequence begins

0, 12 ,
2
3 ,

3
4 ,

4
5 , . . . We claim that this sequence converges in R. To check just

this, we don’t need to find the limit; all we need to do is to show that it is
Cauchy. So let’s do that. Let us look at |am − an|. We have

|am − an| =
∣∣∣∣m− 1

m
− n− 1

n

∣∣∣∣
=

∣∣∣∣(1− 1

m

)
−
(

1− 1

n

)∣∣∣∣
=

∣∣∣∣ 1n − 1

m

∣∣∣∣
≤ 1

n
+

1

m

by the triangle inequality. (We can get better bounds, but this one is good
enough for our purposes.) Now we must show that for any ε > 0, there is
some N such that whenever m,n > N , then |am − an| < ε. If m,n > N ,
then we have

|am − an| ≤
1

n
+

1

m
<

2

N
,

so if we select N such that 2
N ≤ ε, i.e. N ≥ 2

ε , then we’re in good shape:
we have

|am − an| <
2

N
≤ ε,

which is just what we need to conclude that the sequence is Cauchy.
Now, we can already conclude that the sequence converges to some real

number. But we might want to determine exactly what the limit is: we’d
like to compute limn→∞

n−1
n . From looking at the first few terms, we can

guess that the limit is 1, so let’s verify that. Pick an arbitrary ε > 0. We
need to explain why there is some N such that if n > N , then |n−1n −1| < ε.
In order to do this, it’s helpful to express |n−1n −1| better: this is just 1

n . So
in other words, we need to explain why there is some N such that whenever
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n > N , we have 1
n < ε. Pick N such that N ≥ 1

ε , or equivalently ε ≥ 1
N .

Then whenever n > N , we have
1

n
<

1

N
≤ ε,

as desired.

In this case, the sequence is actually a sequence of rational numbers that
converges to a rational number. But with the Cauchy sequence argument,
we weren’t able to guarantee that it would converge to a rational number,
only to a real number. In practice, most of the examples we’ll look at actu-
ally converge to rational numbers rather than irrational numbers, because
describing irrational numbers and sequences that converge to them is gen-
erally more complicated. There are, of course, plenty of sequences of reals
or rationals converging to irrational numbers, and some of them can even
be expressed in terms of relatively straightforward formulae. For instance,
consider the sequence

an =

n∑
k=1

(−1)k−1

2k − 1
,

so that a1 = 1, a2 = 1 − 1
3 , a3 = 1 − 1

3 + 1
5 , a4 = 1 − 1

3 + 1
5 −

1
7 , and

so forth. This sequence is Cauchy (can you see how to prove this?), and
it converges to π

4 . This is the celebrated Gregory–Leibniz series; see for
instance [Roy90]. But proving that directly from the definition seems like
it would be quite complicated.1 So instead we use other methods to prove
such things, rather than doing them directly using the definition.

Sometimes, we will investigate the convergence of sequences in subsets
of R rather than R itself. Let S ⊆ R, and let a1, a2, a3, . . . be a sequence
of numbers in S. It might seem that nothing changes—after all, a sequence
in S is a sequence in R, so all our rules still apply. However, we’re likely to
ask slightly different questions about sequences in S and their convergence.
In particular, if a1, a2, a3, . . . is a Cauchy sequence of numbers in S, then
we know it converges to a number in R, but does it converge to a number
in S? We have already seen this issue come up when S = Q, which is why
we had to construct R in the first place: Cauchy sequences in Q do not
necessarily converge to numbers in Q, only to numbers in R.

Similarly, if S is an open interval like (0, 1), meaning (0, 1) = {x ∈ R :

0 < x < 1}, then Cauchy sequences in S do not necessarily converge in S.

1If you want to try this, you first have to decide what the precise definition of π is,
something that is already a nontrivial task.
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For example, consider the sequence where an = 1
n+1 , so the sequence starts

1
2 ,

1
3 ,

1
4 ,

1
5 , . . . This sequence converges to 0 in R, but of course 0 6∈ (0, 1).

On the other hand, it might seem that if S is a closed interval [a, b] =

{x ∈ R : a ≤ x ≤ b}, we can’t pull off that sort of trick, and indeed that’s
right.

Theorem 29.4. Let S be a closed interval [c, d] in R. Then any Cauchy
sequence in S converges to a number in S.

Proof. Let a1, a2, a3, . . . be a Cauchy sequence in S. Thus it converges to
some number s ∈ R; we need to show that s ∈ S. Since ai ≥ c for all i,
we have limn→∞ an ≥ c as well, so s ≥ c. (We haven’t proven this yet,
but you will do so in problem 4.) Similarly, since ai ≤ d for all i, we have
limn→∞ an ≤ d, so s ≤ d. Thus s ∈ [c, d], as desired. �

29.2 Subsequences

A subsequence of a sequence is just a sequence formed out of some of the
terms of a sequence. Typically they come in the same order as they do in
the original sequence, so we’ll usually assume that without mentioning it.
For example, suppose an is a sequence. Then bn = an2 is a subsequence of
an. The subscripts of the terms chosen don’t necessarily have a convenient
formula like n2; sometimes they might be specified by properties of the
an’s rather than directly by a formula. For example, maybe bn is some ak
such that ak < 1

k . If we don’t know a precise formula for the ak’s (perhaps
because we’re trying to prove a general theorem), then we just have to
describe a subsequence in some less direct manner.

Subsequences can be useful for checking that sequences do not converge.
The reason is as follows:

Proposition 29.5. Let a = (a1, a2, a3, . . .) be a sequence in R, and let
b = (b1, b2, b3, . . .) and c = (c1, c2, c3, . . .) be two subsequences. If b and c
both converge, but

lim
n→∞

bn 6= lim
n→∞

cn,

then a does not converge.

Proof. Suppose that limn→∞ bn = s and limn→∞ cn = t, where s 6= t.
We will show that an is not a Cauchy sequence. Let ε = |s−t|

3 . Since bn
converges to s, there is some N1 such that whenever n > N1, we have
|bn − s| < ε. Similarly, there is some N2 such that whenever n > N2, we
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have |cn − t| < ε. Let N = max(N1, N2). Now, for any n > N , we have
|bn − s| < ε and |cn − t| < ε, so by the triangle inequality, we have

|s− t| ≤ |s− bn|+ |bn − cn|+ |cn − t|,

or

|bn − cn| ≥ |s− t| − |s− bn| − |cn − t|.

Since |s− t| = 3ε and |s− bn| and |cn − t| are both less than ε, we have

|bn − cn| > 3ε− ε− ε = ε.

Since bn and cn can be made to be arbitrarily far out terms of the sequence
an, we have shown that there is no N such that if m,n > N , then |am−an| <
ε. Thus an is not Cauchy and thus does not converge. ■

Note that in this proof, we didn’t have to conjure up some potential
number that an could converge to, since we sidestepped all that by showing
that the sequence isn’t Cauchy. This is often a convenient thing to do.

While sequences might or might not converge, we can often say some-
thing about the existence of subsequences that converge. This is the content
of the Bolzano–Weierstraß Theorem, one of the cornerstone results of basic
real analysis.

Definition 29.6. A subset S ⊆ R is said to be bounded if there is some
positive real number B such that |x| ≤ B for all x ∈ S.

Theorem 29.7 (Bolzano–Weierstraß). Let a = (a1, a2, a3, . . .) be a bounded
sequence in R. Then a contains a convergent subsequence.

Proof. Let us suppose that a is bounded by B, so that |an| ≤ B for all n. We
will construct a convergent subsequence. First, consider the subintervals
[−B, 0] and [0, B]. Since there are infinitely many an’s, at least one of
these two subintervals must contain infinitely many an’s; if both of them
do, choose one of them. Call this subinterval I1. From this subinterval
I1 with infinitely many an’s, choose one of them to be b1, say an1

. Now,
split I1 into two closed subintervals of equal length. Again, one of them
has infinitely many terms of the sequence; call this subinterval I2. Pick
some n2 > n1 such that an2 ∈ I2, and let b2 = an2 . Continue on this way,
bisecting In−1 and choosing one of the halves with infinitely many terms of
the sequence to be In, and then construct bn ∈ In.

We claim that b = (b1, b2, b3, . . .) is a convergent subsequence. It suffices
to prove that b is a Cauchy sequence. Note that the length of In is B

2n−1 .
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Now let ε > 0 be arbitrary. We must find some N such that whenever
m,n > N , we have |bm − bn| < ε. Choose N such that B

2N−1 < ε. Then if
m,n > N , bm and bn are both in IN , so |bm − bn| ≤ B

2N−1 < ε. Thus b is
Cauchy and hence converges in R. ■

29.3 Limit laws

One way to make it easier to compute limits is to show that they behave
well with respect to basic arithmetic operations. For example, if we have
two sequences a = (a1, a2, a3, . . .) and b = (b1, b2, b3, . . .), then we can form
a new sequence a+ b = (a1 + b1, a2 + b2, a3 + b3, . . .). We should hope that
limn→∞(an + bn) = limn→∞ an + limn→∞ bn, at least if both limits on the
right exist. This is indeed true, as are other related limit properties.

Proposition 29.8. Let a = (a1, a2, a3, . . .) and b = (b1, b2, b3, . . .) be se-
quences, and let c ∈ R. Suppose that limn→∞ an and limn→∞ bn both exist.
Then

• limn→∞(an + bn) = limn→∞ an + limn→∞ bn.
• limn→∞(can) = c · limn→∞ an.
• limn→∞(anbn) = (limn→∞ an) (limn→∞ bn).
• limn→∞

an

bn
= (limn→∞ an)/(limn→∞ bn), as long as limn→∞ bn ̸= 0.

(We may wish to exclude the case in which any bn = 0 due to an issue
with the left side, although it’s also possible to define what we mean by
a limit when a finite number of the terms involve division by zero.)

The point here is that often, we only need to know limits of certain
simple sequences (which we must compute with bare hands), and then we
can combine them in order to compute a limit that would be challenging
to compute directly from the definition. For simplicity, we’ll prove only the
first of the limit laws. The proof follows the pattern of several others we
have already seen.

Proof. Let s = limn→∞ an and t = limn→∞ bn. We will prove that
limn→∞(an + bn) = s + t. Let ε > 0. We must find an N such that
whenever n > N , we have |an + bn − s− t| < ε. Since limn→∞ an = s, we
can find an N1 such that whenever n > N1, we have |an−s| < ε

2 . Similarly,
we can find an N2 such that whenever n > N2, we have |bn − t| < ε

2 . Let
N = max(N1, N2). Then whenever n > N , we have

|an + bn − s− t| ≤ |an − s|+ |bn − t| < ε

2
+

ε

2
= ε,

as desired. ■
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Example. We have already shown that limn→∞
n−1
n = 1. By shifting by

one, it follows that limn→∞
n
n+1 = 1 as well. Thus, by our limit laws, we

can compute limn→∞
n2−1
n2 without doing any more work with ε’s:

lim
n→∞

n2 − 1

n2
= lim
n→∞

(n− 1)/n

n/(n+ 1)
=

limn→∞
n−1
n

limn→∞
n
n+1

=
1

1
= 1.

While this may not seem very exciting at first, remember that it saved
us from having to do yet another tedious calculation straight from the
definition. So, once we have built up a database of known limits, it becomes
much easier to work out future ones.

29.4 Problems

(1) Do the following sequences converge or diverge? Give a proof. If they
converge, find their limits and prove your answer is correct using the
definition of a limit.

(a) an = 3n+4
5n+7 .

(b) an = n
n2+3 .

(c) an = n2−2
n+1 .

(d) an = (−1)n
n .

(e) an = sin(n)
n .

(f) an = cos(n)
n .

(g) an = n−
√
n(n− 1).

(2) Use limit laws to help you evaluate the limits of the following sequences.
You may still need to use the definition of limits to work out some parts.

(a) an = (1 + n2

n2+3 )(3 + n
n2+6 ). (b) an = sin3(n)+cos(n)

n3+3n2+1 .

(3) Let a = (a1, a2, a3, . . .) be a sequence, and let b = (b1, b2, b3, . . .) be a
subsequence of a. Prove that if limn→∞ an = s, then limn→∞ bn = s

as well. (Part of what you need to show is that b converges. Then you
need to show that it has the same limit as a does.)

(4) Suppose that a1, a2, a3, . . . is a sequence such that limn→∞ an = s.
Suppose furthermore that, for some real number C, we have an < C

for all n. Prove that s ≤ C. Why can’t we conclude that s < C? Prove
the same result if we only assume that an ≤ C for all n.

(5) Prove that every convergent sequence is bounded. Find an example to
show that a bounded sequence need not be convergent.



322 Transition to Proofs

(6) A sequence a = (a1, a2, a3, . . .) is said to be monotonically increasing if
a1 ≤ a2 ≤ a3 ≤ · · · andmonotonically decreasing if a1 ≥ a2 ≥ a3 ≥ · · · .
We say that a is monotone if it is either monotonically increasing or
monotonically decreasing. Prove that every sequence in R contains a
monotone subsequence.

(7) Prove that a monotone sequence is convergent if and only if it is
bounded.

(8) A sequence a1, a2, a3, . . . is said to be contractive if there exists some r
with 0 < r < 1 such that |an+2 − an+1| ≤ r|an+1 − an| for all n ≥ 1.

(a) Prove that any contractive sequence is Cauchy.
(b) Let a1 = 1, and define an+1 = 1

3+an
for all n ≥ 1. Prove that

the sequence a1, a2, a3, . . . is contractive (and hence convergent).
What is its limit? Prove that your answer is correct.



Chapter 30

Functions and continuity

30.1 Limits of functions

So far, we have investigated limits of sequences. There is a parallel
notion of limits for functions. While we can consider functions more gener-
ally, we will restrict our attention to functions defined on an open interval
(a, b) ⊆ R. We will allow a to be −∞ and b to be +∞, so as to allow all of
R (or a ray in R) as a possible domain of functions. All our functions will
take values in R, i.e. f(x) ∈ R for all x ∈ (a, b).

When dealing with sequences, we said that a sequence a1, a2, a3, . . .
converges to some s ∈ R if, for large enough values of n, an is close to s.
When working with functions, we are interested in the behavior of f(x) as
x gets close to some number y, while not actually being equal to y. That is,
changing the value of f(y), but not of any other number, does not change
the limit: the limit is only concerned with nearby numbers. The statement

lim
x→y

f(x) = s

means that f(x) is always as close as desired to s, provided that x is suffi-
ciently close to y but not equal to it.

Here is the formal definition of a limit of functions:

Definition 30.1. Let f : (a, b) → R be a function, and let y ∈ (a, b). We
say that the limit of f(x) as x approaches y is s, and write

lim
x→y

f(x) = s,

if, for all ε > 0, there is a δ > 0 such that whenever 0 < |x − y| < δ, we
have |f(x)− s| < ε.

That’s a bit of a mouthful, so let’s unpack it a bit. The statement
|f(x)− s| < ε means that f(x) has to be close to s: the number ε measures

323
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how close we’re required to get. If limx→y f(x) = s, this means that,
regardless of how close we insist that f(x) is to s, we can make this happen:
just choose a small enough (positive) value of δ, and for then all values of
x within δ of y other than y itself, f(x) is within ε of s.

The definition of limits of functions is completely analogous to the case
of limits of sequences. But now we have to consider all numbers close to y,
rather than simply the terms in some sequence. Recall that the definition
of a limit of a sequence doesn’t have a δ in it, but it has an N instead.
Think of δ as being 1

N .
Let’s compute some examples directly from the definition.

Example. Consider the function f : R→ R defined by

f(x) =

{
x+ 2 x ̸= 2,

7 x = 2.

What is limx→2 f(x)? You might think it’s 7, because f(2) = 7. However,
this is wrong! Instead, limx→2 f(x) = 4, because the definition of a limit
does not see what happens at x = 2, only what happens near x = 2. So,
let’s check straight from the definition. In order to show that limx→2 f(x) =

4, we must show that, for every ε > 0, there is a δ > 0 such that whenever
0 < |x − 2| < δ, we have |f(x) − 4| < ε. For any δ > 0, whenever
0 < |x − 2| < δ, we have f(x) = x + 2, so limx→2 f(x) must be the same
as limx→2(x+ 2). In order to show that the latter is 4, we must show that
for any ε > 0, there is a δ > 0 such that whenever 0 < |x− 2| < δ, we have
|(x + 2) − 4| < ε, or |x − 2| < ε. So we can just take δ = ε, and this says
that whenever 0 < |x− 2| < ε, we have |x− 2| < ε. I think we can all agree
that that has to be true! So limx→2 f(x) = 4, as claimed.

Let’s try a slightly trickier one. Soon, we will see how to make this one
less tricky, but we’ll work from first principles now.

Example. We will show that limx→1 x
2 = 1. This means that, for every

ε > 0, we can find a δ > 0 such that whenever 0 < |x − 1| < δ, then
|x2 − 1| < ε. We get a clue for how to find δ from the factorization of
x2 − 1. Note that x2 − 1 = (x − 1)(x + 1), and the x − 1 is related to δ.
So, we can solve for |x− 1| in the inequality for ε: we have |x− 1| < ε

|x+1| .
So it would be nice to set δ = ε

|x+1| . However, this doesn’t make sense,
because δ isn’t allowed to depend on x: it’s a condition on x. One solution
to this conundrum is to cut off δ at some point: if we make δ smaller, that
makes it easier for |x2 − 1| < ε to be true. So, let us require that δ ≤ 1.
(There’s nothing special about 1, except that it’s a positive number. Any
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other positive number will do just as well.) This means that we’re only
interested in x with |x− 1| < 1. By the triangle inequality, we have

|x+ 1| = |(x− 1) + 2| ≤ |x− 1|+ 2 < 1 + 2 = 3.

Thus instead of letting δ = ε
|x+1| , which doesn’t make sense, we can say

that δ is ≤ the smallest possible value of ε
|x+1| , subject to our restriction

that |x− 1| < 1. That is, we can take δ = min
(
ε
3 , 1
)
.

So far, all of that was just reverse-engineering a good choice for δ. We
still have to go back and check that it actually works. So, let’s assume that
0 < |x − 1| < min

(
ε
3 , 1
)
, and we’ll check if it’s true that |x2 − 1| < ε. We

have

|x2 − 1| = |x− 1| · |x+ 1|
≤ 3|x− 1|

< 3 · ε
3

= ε,

as desired. So we have successfully shown that limx→1 f(x) = 1.

Remark 30.2. Sometimes we will encounter the following situation: we will
have an interval (a, b) and a number y ∈ (a, b) and a function f defined on all
of (a, b) except y. In this case, we can still determine whether limx→y f(x)

exists, because the limit does not depend on the value at y, only on the
values near y. This is useful because it allows us to determine the most
logical value to assign a function at some number where it is not a priori
defined.

30.2 Limit laws

Clearly, we don’t want to have to go through this process of evaluating
limits straight from the definition every time. Fortunately, we have a bunch
of limit laws that can save us considerable effort.

Proposition 30.3.

(1) If c ∈ R, then limx→a c = c for all a ∈ R.
(2) If limx→a f(x) and limx→a g(x) both exist, then limx→a(f(x) + g(x))

also exists, and

lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x).
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(3) If c ∈ R and limx→a f(x) exists, then limx→a cf(x) also exists, and

lim
x→a

cf(x) = c lim
x→a

f(x).

(4) If limx→a f(x) and limx→a g(x) both exist, then limx→a(f(x)g(x)) also
exists, and

lim
x→a

(f(x)g(x)) = lim
x→a

f(x) · lim
x→a

g(x).

(5) If limx→a f(x) and limx→a g(x) both exist and limx→a g(x) ̸= 0, then
limx→a

f(x)
g(x) also exists, and

lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
.

(6) If limx→a g(x) exists and is equal to b, and limx→b f(x) also exists and
is equal to f(b), then

lim
x→a

f(g(x)) = f(b).

There are others as well, but those will be enough for many purposes.
We won’t prove all of these, but let’s prove (4) as an example of how

these things work. To do this, we need to start with a lemma.

Lemma 30.4. Let f : R→ R be a function, and let a ∈ R. If limx→a f(x)

exists, then there exists some B > 0 and some ρ > 0 such that |f(x)| ≤ B

for all x with |x− a| < ρ.

Proof. Suppose that limx→a f(x) = L, but there do not exist such a B and
ρ. Then for every positive integer n, we can find some xn with |f(xn)| > n

and 0 < |xn−a| < 1
n . Choose an N such that N > L+1, so that whenever

n ≥ N , then |f(xn)| > L+ 1. Then for every δ > 0, we can find an n such
that |xn − a| < δ and |f(xn) − L| > 1. This contradicts the assumption
that limx→a f(x) = L. ■

We can now prove Proposition 30.3(4).

Proof of Proposition 30.3(4). Suppose that limx→a f(x) = L and
limx→a g(x) = M , and let ε > 0. By Lemma 30.4, there exists a B > 0 and
a ρ > 0 such that |f(x)| ≤ B whenever 0 < |x−a| < ρ. Furthermore, there
exist δ1, δ2 > 0 such that |f(x)−L| < ε

2|M | whenever 0 < |x− a| < δ1, and
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|g(x) −M | < ε
2B whenever 0 < |x − a| < δ2. Let δ = min(ρ, δ1, δ2). Then

whenever 0 < |x− a| < δ, we have

|f(x)g(x)− LM | ≤ |f(x)g(x)− f(x)M |+ |f(x)M − LM |
= |f(x)| · |g(x)−M |+ |M | · |f(x)− L|

< B · ε

2B
+ |M | · ε

2|M |
= ε.

Thus we have

lim
x→a

f(x)g(x) = LM,

as claimed. ■

For example, if we believe that limx→a x = a (which is very easy to
check, along the lines of the first example in §30.1), then we can easily see
that limx→a x

2 = a2, because

lim
x→a

x2 = lim
x→a

x · lim
x→a

x = a · a = a2.

More generally, a very similar argument shows that if f(x) is any polyno-
mial, then limx→a f(x) = f(a).

30.3 Continuity

A closely related notion to that of a limit is that of continuity . It is
often said that a function being continuous means that you can draw its
graph without lifting your pen off the paper. This is true for functions on
an interval, but it isn’t true much more generally. So, while you can use
that for insight now, it may go wrong in the future, when you learn about
continuity more generally.1

Here is the definition of continuity, easily stated in terms of limits:

Definition 30.5. Let f : (a, b) → R be a function, and let y ∈ (a, b). We
say that f is continuous at y if

lim
x→y

f(x) = f(y).

We say that f is continuous on (a, b) if it is continuous at all numbers
y ∈ (a, b).

1The notion of being able to draw something without lifting your pen is called path-
connectedness.
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Another way of expressing the same idea, by restating the limit defini-
tion, is as follows:

Definition 30.6. Let f : (a, b) → R be a function, and let y ∈ (a, b). We
say that f is continuous at y if for every ε > 0, there is a δ > 0 such
that whenever |y − x| < δ, we have |f(y) − f(x)| < ε. We say that f is
continuous on (a, b) if it is continuous at all numbers y ∈ (a, b).

As we already saw, even before we actually defined the term “continu-
ity,” all polynomials are continuous. So are many other functions that you
are friends with: rational functions (where the denominators do not van-
ish), trigonometric functions, exponential and logarithmic functions, and
compositions of all of these. So, for instance, ecos(

√
eex )+x3

is a continuous
function on all of R. It wouldn’t be much fun to check that directly with
the definition, but limit laws spare us from having to do that.

However, from time to time, we do have to use limit laws directly to
prove (or disprove) continuity. A famous and surprising example of conti-
nuity is the following function, sometimes known as the Riemann function
or the Thomae function. It is defined as

f(x) =

{
0 x 6∈ Q,
1
q x = p

q in lowest terms, with q > 0.

So, for instance, f(
√

2) = 0, but f( 8
5 ) = 1

5 . Since 0 = 0
1 , we have f(0) = 1,

and similarly f(n) = 1 for all integers n.

Theorem 30.7. The Riemann function is continuous at all irrational x
and discontinuous at all rational x.

We won’t work out all the details of this, since some of them are a bit
tiresome, but let’s go over the key points. Suppose a ∈ Q. Then f(a) > 0,
say with f(a) = 1

q . Take ε = 1
2q , say. (Even ε = 1

q works, but we must
remember that there is no prize for bravery and refrain from trying to find
the largest possible ε.) Then for any δ > 0, there are irrational numbers
x such that 0 < |x − a| < δ; and for these values of x, we have f(x) = 0,
and in particular |f(x)− f(a)| 6< ε. Thus f is discontinuous at all rational
numbers.

On the other hand, f is continuous at all the irrational numbers. This
seems more surprising. The reason is that, for any irrational number a,
we can pick a δ small enough such that whenever x is rational and 0 <

|x − a| < δ, then the denominator of x is large. So, pick some ε > 0, and
suppose that q is a positive integer such that 1

q < ε. Then pick a δ small
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enough that whenever x is rational and 0 < |x−a| < δ, the denominator of
x is at least q. Thus for all x with 0 < |x− a| < δ, we have |f(x)| ≤ 1

q < ε.
It is a bit tedious to explain exactly how to select δ such that whenever x
is rational and |x− a| < δ, then the denominator of x is at least q. But it
is pretty clear intuitively that this can be done. If we mark all the rational
numbers whose denominators are less than q, these numbers form a discrete
set, so we can choose a δ sufficiently small as to avoid them all.

Remark 30.8. On the other hand, there is no function f : R→ R that is con-
tinuous at all the rationals and discontinuous at all the irrationals. This is a
more difficult theorem that relies on a more advanced celebrated theorem in
analysis called the Baire Category Theorem. See for instance [Pug15, §4.7].
See also [GO03, I.22 and I.23].

30.4 Problems

(1) Prove directly from the definition that f(x) = x2 is continuous.
(2) Prove directly from the definition that

f(x) =

{
x+ 1 if x < 0,

2x+ 1 if x ≥ 0

is continuous.
(3) More generally, let f(x) and g(x) be two continuous functions, and

suppose that f(0) = g(0). Prove that

h(x) =

{
f(x) if x < 0,

g(x) if x ≥ 0

is a continuous function.
(4) Does the limit

lim
x→3

|x− 3|
x− 3

exist? If so, find the limit, and prove that your answer is correct. If
not, prove it using the definition of a limit.

(5) Suppose that f : R → R is a continuous function, and a1, a2, a3, . . .

is a Cauchy sequence in R. Prove that f(a1), f(a2), f(a3), . . . is also a
Cauchy sequence. What does it converge to?

(6) Suppose that f : R → R is a bounded (not necessarily continuous)
function, i.e. there is some real number B such that |f(x)| ≤ B for all
x ∈ R. Prove that

lim
x→0

xf(x) = 0.
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Conclude that

lim
x→0

x sin

(
1

x

)
= 0.

(7) Consider the function

f(x) =

{
x if x ∈ Q,
0 if x 6∈ Q.

At which numbers is f continuous? Prove that your answer is correct.
(8) Let f : R → R be a function. Prove that f is continuous at some

number a ∈ R if and only if there exists a real number b such that
for every sequence x1, x2, x3, . . . in R with limn→∞ xn = a, we have
limn→∞ f(xn) = b.



Chapter 31

The Intermediate and Extreme
Value Theorems

31.1 The Intermediate Value Theorem

If you think of a continuous function on R as one whose graph you draw
without lifting your pen off the paper (even though, as we mentioned, this is
not quite right), then you should expect the following: suppose f : R→ R
is a continuous function such that f(−1) < 0 and f(1) > 0. Then there
should be some x ∈ (−1, 1) such that f(x) = 0: the graph can’t jump from
negative to positive without passing through 0. This is something that
mathematicians have believed since ancient Greece.

A famous example of its implicit use in Euclid’s Elements [Euc02, Book
1, Proposition 1] occurs in the explanation of how to construct an equilateral
triangle with compass and straightedge, as follows. First, draw two points
A and B (which can be completely arbitrary, except that they must be
distinct). Then draw a circle centered at A passing through B, and a circle
centered at B passing through A. These circles have two intersection points,
say C and D. Then both 4ABC and 4ABD are equilateral triangles. See
Figure 31.1.

A B

C

D

Figure 31.1. Constructing an equilateral triangle.

331
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At a first glance, this seems like a good construction. However, there’s
a problem with it: how do you know that the two circles have any points
of intersection? From the picture, this is clear: after you’ve drawn the first
circle, the second circle contains some points inside the first circle, as well
as some points outside of it. So it must contain some points exactly on
the first circle, and these are the intersection points. But this is exactly
the sort of thing we need the Intermediate Value Theorem for! Here’s the
precise statement:

Theorem 31.1 (Intermediate Value Theorem). Let f : (a, b) → R be a
continuous function, and suppose that a < a1 < b1 < b. Suppose further
that y is some number such that f(a1) < y < f(b1). Then there is some
x ∈ (a1, b1) such that f(x) = y.

Of course, there’s also a version where f(a1) > y > f(b1).
The proof of the Intermediate Value Theorem relies on the least upper

bound property of R that we discussed back in Chapter 26. Let’s recall
what that says:

Theorem 31.2 (Least Upper Bound Property). Let S ⊆ R be bounded
above and nonempty. Then S has a least upper bound.

Proof of the Intermediate Value Theorem. Let S = {x ∈ [a1, b1] : f(x) ≤
y}. Since a1 ∈ S, S is nonempty. Furthermore, S is bounded above, since
x ≤ b1 for all x ∈ S. It follows that S has a least upper bound, say u. Note
that u ∈ (a1, b1), because continuity of f ensures that there exists some
x > a1 such that f(x) < y, and similarly that for all x sufficiently close to
b1, we have f(x) > y. We claim that f(u) = y.

Let ε > 0. Since f is continuous, there is some δ > 0 such that |f(x)−
f(u)| < ε whenever |x − u| < δ. (Since we can freely make δ smaller
if desired, let us ensure that δ ≤ min(u − a1, b1 − u).) It follows that
whenever u− δ < x < u+ δ, we have

f(u)− ε < f(x) < f(u) + ε.

Because u = sup(S), it follows that there is some x1 ∈ S such that
u− δ < x1 ≤ u and f(x1) ≤ y. Since x1 ∈ (u− δ, u+ δ), we have

f(u)− ε < f(x1) ≤ y.

Now, for any x2 with u < x2 < u+ δ, we have

f(x2) < f(u) + ε.
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Furthermore, f(x2) > y, since x2 6∈ S. Thus we have y < f(x2) < f(u) + ε.
Combining these inequalities, we see that

f(u)− ε < f(x1) ≤ y < f(x2) < f(u) + ε,

or

f(u)− ε < y < f(u) + ε.

This holds for all ε > 0, so y = f(u), as desired. �

Corollary 31.3. Let f(x) be a polynomial of odd degree. Then f has a
real root.

Proof. Let f(x) = anx
n+an−1x

n−1+· · ·+a0, where an 6= 0. If an > 0, then
f(x) < 0 for x sufficiently negative and f(x) > 0 for x sufficiently positive.
Thus the Intermediate Value Theorem guarantees that f has a root. If
an < 0, then replace f(x) with −f(x), which has the same roots. �

Another interesting classic application of the Intermediate Value The-
orem is to a case of a theorem known as the Avocado Sandwich Theorem.
The most famous version of the Avocado Sandwich Theorem is as follows:

Theorem 31.4 (Avocado Sandwich Theorem). Let A, B, and C be three
bounded subsets of R3.1 Then there is a plane in R3 that simultaneously
cuts A, B, and C into two pieces with equal volumes.

You should think of A as being the top slice of bread, B as being the
avocado, and C as being the bottom slice of bread in the sandwich. Then
we can make just one straight cut that slices the sandwich into two equal
half-sandwiches. There’s also a higher-dimensional version, involving n

bounded subsets of Rn.
We won’t be able to prove either the 3-dimensional version or the higher-

dimensional version of the Avocado Sandwich Theorem, because their proofs
rely on a much more complicated higher-dimensional version of the Interme-
diate Value Theorem called the Borsuk–Ulam Theorem. (See for instance
my algebraic topology book [BBR21] for a proof.) However, the Interme-
diate Value Theorem can be used to prove either of two lower -dimensional
versions of the Avocado Sandwich Theorem.

1There is a small caveat needed in this and all other versions of the Avocado Sandwich
Theorem. See Remark 31.7.
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Theorem 31.5 (2-dimensional Avocado Sandwich Theorem). Let A and
B be two bounded subsets of R2. Then there is a line in R2 that slices both
A and B into two pieces of equal area.

See Figure 31.2 for an example.

Figure 31.2. A line cutting two bounded regions into pieces of equal
areas: the red region above the line has the same area as the red region
below the line, and similarly with the blue region.

Theorem 31.6. Let A be a bounded subset of R2, and let ` be a line in R2.
Then there is a line parallel to ` that slices A into two pieces of equal area.

We’ll prove only Theorem 31.6. The proof of Theorem 31.5 relies on
Theorem 31.6 together with another application of the Intermediate Value
Theorem, plus some mild technical details that require more careful treat-
ment than we want to get into here.

Proof of Theorem 31.6. Let the area of A be [A]. Define one of the half-
planes obtained by deleting ` from R2 to be the left half-plane and one to
be the right half-plane. If t > 0, define `t to be the line parallel to ` inside
the right half-plane whose distance from ` is t. Similarly, if t < 0, define `t
to be the line parallel to ` inside the left half-plane whose distance from `

is −t; let `0 = `.
Also, for each t, let wt be the length of A ∩ `t. Since A is bounded,

the numbers wt are bounded above, say by some w > 0. Now, define a
function f : R → R by setting f(t) to be the area of A to the left of `t.
(See Figure 31.3.) We claim that f is a continuous function. To see this,
pick some t ∈ R and some ε > 0. We must show that there is some δ > 0

such that whenever |t− u| < δ, we have |f(t)− f(u)| < ε. Since the length
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of A ∩ ℓu is at most w for any u, we have |f(t)− f(u)| ≤ w|t− u|. Thus if
|t − u| < δ, then |f(t) − f(u)| ≤ w|t − u| < wδ. Thus if we choose δ = ε

w ,
then whenever |t−u| < δ, we have |f(t)−f(u)| < wδ = ε, as desired. Thus
f is continuous.

Now, note that for t sufficiently negative, all of A lies to the right of ℓt,
so f(t) = 0. Similarly, for t sufficiently positive, all of A lies to the left of
ℓt, so f(t) = [A]. Thus by the Intermediate Value Theorem, there is some
t ∈ R such that f(t) = [A]

2 . For this value of t, the line ℓt slices A into two
pieces of equal area. ■

f(t)

ℓ ℓt

t

Figure 31.3. The red area is f(t).

Remark 31.7. There is actually one small but important technical detail
that we have been completely sweeping under the rug here. There are some
extremely strange subsets of R2 for which it is not possible to assign a well-
defined area, at least with the sorts of properties you expect of areas. These
are called non-measurable sets. They cannot be explicitly described in a
reasonable way, yet they exist. None of the theorems in this chapter apply
to such sets; generally these theorems are stated with extra conditions so
that A, B, C, and so forth are forced to be measurable, and thus notions
like area and volume make sense. This isn’t something you should worry
about at all right now, but at some point later on in your mathematical
career, you will want to know that non-measurable sets exist and what some
sensible conditions are to avoid them. See for instance [Pug15, Chapter 6]
for an introduction to measure theory.
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31.2 The Extreme Value Theorem

Another classic theorem, of much the same flavor as the Intermediate
Value Theorem, is the Extreme Value Theorem. While the Intermediate
Value Theorem says that there is always some c such that f(c) is some
specific intermediate value between f(a) and f(b), the Extreme Value The-
orem instead says that there is some c such that f(c) is at least as big as
any f(x) with x ∈ [a, b].

Theorem 31.8 (Extreme Value Theorem). Let f(x) be a continuous func-
tion on some interval containing [a, b], where a and b are real numbers with
a ≤ b. (Note that we do not allow a = −∞ or b = +∞ for this theorem.)
Then there is some c ∈ [a, b] such that f(c) ≥ f(x) for all x ∈ [a, b].

Again, there is a similar version about minima: there is some d ∈ [a, b]

such that f(d) ≤ f(x) for all x ∈ [a, b].
This isn’t as intuitively obvious as the Intermediate Value Theorem.

One reason for this is that it fundamentally relies on [a, b] being a closed
interval. Before we prove the Extreme Value Theorem, let’s see some ex-
amples to show that it doesn’t work unless the interval is a finite closed
interval.

Example. Let f(x) = 1
x on the interval (0,∞). Then f does not achieve a

maximum value, because it goes off to infinity as x gets close to 0.

Example. Let f(x) = x on the interval (0, 1). There is no c ∈ (0, 1) such
that f(c) ≥ f(x) for all x ∈ (0, 1): for any c ∈ (0, 1), f(c + ε) > f(c) for
any ε > 0 such that c+ ε < 1.

In order to prove the Extreme Value Theorem, we first state and prove
a weaker version of it, which merely says that a continuous function on a
finite closed interval doesn’t go off to∞. This version will be used to prove
the full Extreme Value Theorem. So, our strategy will be first to show that
f is bounded above, then use the least upper bound property to show that
f has a least upper bound, and then finally to show that the upper bound
is actually achieved.

Lemma 31.9 (Boundedness Theorem). Let f(x) be a continuous function
on some interval containing [a, b], where a and b are real numbers with
a ≤ b. (Note that we do not allow a = −∞ or b = +∞ for this theorem.)
Then there exist constants m and M such that m ≤ f(x) ≤ M for all
x ∈ [a, b].
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Proof. We’ll just prove the upper bound; the proof of the lower bound is
symmetric. Suppose that f has no upper bound. This means that for all
positive integers n, we can find some xn ∈ [a, b] such that f(xn) > n.
Thus x1, x2, x3, . . . is a sequence on the bounded interval [a, b], so the
Bolzano–Weierstraß Theorem says that there is a convergent subsequence
xn1 , xn2 , xn3 , . . . of x1, x2, x3, . . . Let x = limk→∞ xnk

; by Theorem 29.4,
x ∈ [a, b]. Since f is continuous at x and xnk

is a Cauchy sequence con-
verging to x, f(xnk

) is also a Cauchy sequence converging to f(x), as you
proved in problem 5 in Chapter 30. However, f(xnk

) is not a Cauchy se-
quence, since the terms go off to ∞. It follows that we cannot always
find an xn ∈ [a, b] such that f(xn) > n. This completes the proof of the
Boundedness Theorem. ■

Now we’ll use the Boundedness Theorem to prove the Extreme Value
Theorem.

Proof of the Extreme Value Theorem. By the Boundedness Theorem, there
is some M such that f(x) ≤M for all x ∈ [a, b]. Thus S = {f(x) : x ∈ [a, b]}
is bounded above. It is also nonempty, because it contains f(a). Thus, by
the least upper bound property, S has a least upper bound, say M1. Since
M1 is the least upper bound, for any positive integer n, we know that
M1 − 1

n is not an upper bound, so there exists some xn ∈ [a, b] such that
f(xn) > M1 − 1

n . For each n, then, we have

M1 −
1

n
< f(xn) ≤M1,

so

lim
n→∞

f(xn) = M1.

By the Bolzano–Weierstraß Theorem, the bounded sequence xn has a con-
vergent subsequence xn1

, xn2
, xn3

, . . ., converging to some c ∈ [a, b]. Thus
by the continuity of f , we have

lim
k→∞

f(xnk
) = f(c) = M1.

Since M1 ≥ f(x) for all x ∈ [a, b] by construction, we have f(c) ≥ f(x) for
all x ∈ [a, b], as claimed in the Extreme Value Theorem. ■

31.3 Problems

(1) Prove that there is some real number x such that cos(x) = x.
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(2) Suppose that f, g : R → R are continuous functions. Suppose that
f(0) < g(0) and f(1) > g(1). Prove that there is some x ∈ (0, 1) such
that f(x) = g(x).

(3) Let f : R → R be a continuous function such that f(0) = f(1). Prove
that there is some x ∈ [0, 12 ] such that f(x) = f(x+ 1

2 ).
(4) Let f : R→ R be a continuous function, and suppose that f(x) ∈ [a, b]

for all x ∈ [a, b]. Prove that there is some c ∈ [a, b] such that f(c) = c.
(5) Let f : R→ R be a continuous function, and suppose that there is some

closed interval [a, b] such that for all x ∈ [a, b], there is some y ∈ [a, b]

with |f(y)| ≤ 1
2 |f(x)|. Prove that there is some c ∈ [a, b] such that

f(c) = 0.
(6) A set S ⊆ R2 is said to be convex if, for every two points p and q in S,

the line segment connecting p and q is entirely contained in S. Now, let
S be a closed, bounded, convex set in R2. Prove that there is a line in
R2 that divides S into two pieces that have equal perimeter and area.

(7) Let f : R→ R be a continuous function, and let [a, b] be a finite closed
interval in R. Show that the image of f on [a, b], i.e. {f(x) : x ∈ [a, b]},
is either a single number or a finite closed interval.

(8) Let f : R → R be a continuous function, and let (a, b) be a (finite or
infinite) open interval in R. What are the possible shapes for the image
of f on (a, b), i.e. {f(x) : x ∈ (a, b)}? In the case of closed intervals,
problem 7 says that the image must be a single number or a finite closed
interval, so give an analogous answer here.



Chapter 32

Infinite series

32.1 From sequences to series

Suppose we have a sequence a1, a2, a3, . . . One tempting thing to do
with it is to add up the terms. For instance, instead of considering the
sequence 1

2 ,
1
4 ,

1
8 ,

1
16 , . . ., where an = 1

2n , we might wish to sum them up, by
considering the infinite sum

1

2
+

1

4
+

1

8
+

1

16
+ · · · =

∞∑
n=1

1

2n
.

Note that at the moment, it’s not necessarily clear what this means. We
know how to add together two real numbers, and we can extend from there
to add up any finite number of real numbers. For instance, we define a+b+c

to be (a + b) + c. That is, we first add a and b to get a real number, and
then we add the resulting number to c. Continuing on in this way, we can
add together n real numbers for any positive integer n. However, this does
not tell us how to add up infinitely many real numbers.

In order to do that, we need a new definition. Instead of adding up
infinitely many terms at once, we’ll just add together a larger and larger
finite number of them. In this way, we’ll construct a sequence: the sequence
of partial sums. Given a sequence a1, a2, a3, . . ., construct a new sequence
s1, s2, s3, . . . by setting

sn =
n∑
k=1

ak = a1 + a2 + a3 + · · ·+ an.

The sum of all infinitely many of the an’s is then defined to be the limit of
the sequence s1, s2, s3, . . ., if it exists.

339
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Definition 32.1. Given a sequence a1, a2, a3, . . . of real numbers, the cor-
responding series

∑∞
n=1 an is defined to be limn→∞ sn if it exists, where

sn =

n∑
k=1

ak.

If the limit exists, then the series is said to converge, and otherwise it is
said to diverge. We call sn the nth partial sum of the series.

It will often be useful to use the following easy formulae relating the
an’s and the sn’s:

an = sn − sn−1, sn = sn−1 + an.

Using the first of these formulae, we can recover the original sequence an
from the sequence sn of partial sums.

Example. Consider the sequence an = 1
2n discussed above. We claim that

the corresponding series
∑∞
n=1

1
2n converges, with a sum of 1. One way

to do this is to derive a closed-form expression for sn. We claim that
sn = 1 − 1

2n . We can prove this by induction. The base case is n = 1,
where we have s1 = 1

2 = 1− 1
21 , as claimed. For the inductive step, suppose

that sn = 1− 1
2n . We will show that sn+1 = 1− 1

2n+1 . We have

sn+1 = sn + an+1

=

(
1− 1

2n

)
+

1

2n+1

= 1−
(

1

2n
− 1

2n+1

)
= 1− 1

2n+1
,

as claimed.
Thus to determine whether the sum converges (and to what value), we

need only investigate the limit limn→∞
(
1− 1

2n

)
. This limit is clearly equal

to 1. (As a challenge to yourself, make sure you can actually prove this
using the formal definition of the limit of a sequence.)

One thing we quickly notice about series is that if
∑∞
n=1 an is going to

converge, then the terms an must go to zero. This is indeed true:

Proposition 32.2. Suppose that
∑∞
n=1 an converges. Then limn→∞ an =

0.
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Proof. If
∑∞
n=1 an converges, then s1, s2, s3, . . .must be a Cauchy sequence.

Thus for any ε > 0, there must be some N such that whenever m,n > N ,
we have |sm − sn| < ε. In particular, taking m = n + 1, we must have
|sn+1 − sn| < ε for all n > N . But sn+1 − sn = an+1, so this means that
|an+1| < ε for all n > N . Thus limn→∞ an = 0, as desired. �

32.2 The harmonic series

It is natural to wonder about whether the converse to Proposition 32.2
is true: If the terms go to 0, does the series converge? Alas, the answer is
no, as was shown by Nicole Oresme all the way back in the 14th century. He
constructed a series whose terms go to zero, but that nonetheless diverges.
This series is the harmonic series.

Definition 32.3. The harmonic series is the series
∑∞
n=1

1
n .

Theorem 32.4. The harmonic series diverges.

There are many proofs of Theorem 32.4, and you can find many of them
in [KS06]. We’ll first look at Oresme’s justifiably famous original proof.

Proof. We show that the limit does not exist by showing that we can make
the partial sums greater than any positive number we like. To do this,
observe that

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+ · · ·+ 1

16
+ · · ·

>
1

2
+

1

2
+

1

4
+

1

4︸ ︷︷ ︸
1
2

+
1

8
+

1

8
+

1

8
+

1

8︸ ︷︷ ︸
1
2

+
1

16
+ · · ·+ 1

16︸ ︷︷ ︸
1
2

+ · · ·

=
1

2
+

1

2
+

1

2
+

1

2
+

1

2
+ · · · .

Grouping the terms in the second line by their denominators, we find that
the sum of all the 1

4 terms is 1
2 , as is the sum of all the 1

8 terms, and all the
1
16 terms, and so forth. Thus for any n, we have

2n∑
k=1

1

k
>
n+ 1

2
.
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Now, let N be any positive integer. We can find a partial sum sk of the
harmonic series such that sk > N : we have

s22N−1 =

22N−1∑
k=1

1

k
>

(2N − 1) + 1

2
= N.

Since the partial sums are unbounded, the harmonic series diverges. �

Now let’s look at another proof. This one relies on the possibility of
manipulating terms of a series. In particular, if a series whose terms are
all positive converges to some sum s, and a subsequence converges to some
other sum t, then we may remove the terms of the subsequence, and the
remaining terms converge to s− t. Another ingredient is that if we have a
series converging to s, and we divide all the terms by 2, then the resulting
series converges to s

2 . Both of these things are “obvious,” of course, but we
really ought to prove them rather than relying on our intuition. We won’t
do that though, as they are straightforward and fairly boring.

Proof 2. Suppose, on the contrary, that the harmonic series were to con-
verge, say to s. Then we would have

s = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10
+ · · · . (32.1)

Now, divide (32.1) by 2, to get

s

2
=

1

2
+

1

4
+

1

6
+

1

8
+

1

10
+

1

12
+

1

14
+

1

16
+

1

18
+

1

20
+ · · · . (32.2)

Note that in this way we end up with all the terms of the harmonic series
with even denominators. If we subtract (32.2) from (32.1), we get

s

2
= s− s

2
= 1 +

1

3
+

1

5
+

1

7
+

1

9
+

1

11
+

1

13
+

1

15
+ · · · ,

where the even-denominator terms get canceled. Since the sum of the
even-denominator and odd-denominator terms are both equal to s

2 , they
are equal to each other, so we have

1 +
1

3
+

1

5
+

1

7
+

1

9
+ · · · = 1

2
+

1

4
+

1

6
+

1

8
+

1

10
+ · · · .

However, this is absurd, since every term on the left side is greater than the
corresponding term on the right side. (Or, if you prefer, move everything
to one side, to get

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ · · · = 0.
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But then if we group each pair of terms, to get(
1− 1

2

)
+

(
1

3
− 1

4

)
+

(
1

5
− 1

6

)
+

(
1

7
− 1

8

)
+ · · · = 0,

then we end up with a sum of positive numbers equaling zero, which is im-
possible.) Thus we have contradicted our initial assertion that the harmonic
series converges. �

Remark 32.5. Remember that, when we first discussed Cauchy sequences,
we remarked that it was important to make sure that every pair of suffi-
ciently far out terms in the sequence are close together, rather than just
every consecutive pair. In terms of series, the condition that every con-
secutive pair is close together just says that limn→∞ an = 0, i.e. Proposi-
tion 32.2. As we can now see, that is not enough to conclude that every
pair of sufficiently far out terms are close together.

32.3 Geometric series

The problem of determining whether a general series converges or di-
verges can be very challenging. For instance, it is an open problem to
determine whether the series

∞∑
n=1

csc2(n)

n3

converges, and this question is related to some beautiful theorems in the
theory of Diophantine approximation and transcendental number theory.
(See [Ale11].) However, we can classify certain series that converge, and we
can determine their sums.

Definition 32.6. A sequence a0, a1, a2, a3, . . . is said to be a geometric
sequence if there is some real number r such that an+1

an
= r for all n ≥ 0. If

a0, a1, a2, a3, . . . is a geometric sequence, the corresponding series
∑∞
n=0 an

is said to be a geometric series.

It follows from the definition that if a0, a1, a2, . . . is a geometric sequence,
then there exist real numbers a, r such that an = arn. The number a is
just a0, and r = an+1

an
(which, by the definition, is independent of n).

Theorem 32.7. The geometric series
∑∞
n=0 ar

n converges if and only if
|r| < 1. When it converges, then it converges to a

1−r .
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Proof. We begin by finding the values of the partial sums. By a straight-
forward induction, we can show that sn = a(1−rn+1)

1−r . By the limit laws
for sequences, limn→∞ sn exists if and only if |r| < 1; when this happens,
limn→∞ rn+1 = 0, so limn→∞ sn = a

1−r , as claimed. �

There is a nice intuitive way to come up with the answer a
1−r . It re-

quires a proof to make it rigorous, but it’s always useful to know what the
correct answer is before we start proving something. Let us suppose that∑∞
n=0 ar

n = s. Then
∑∞
n=0 ar

n+1 = sr. Subtracting these two equations,
we have

a + ar + ar2 + ar3 + ar4 + ar5 + · · · = s

ar + ar2 + ar3 + ar4 + ar5 + · · · = sr

a = s(1− r).

Thus we have a = s(1− r), or s = a
1−r .

The problem here is that it requires some care to get the correct
conditions on r to make this work. Why doesn’t this argument give
the right answer when r = 2, for instance, so that we would have
1 + 2 + 4 + 8 + 16 + 32 + · · · = 1

1−2 = −1? That’s because this method
doesn’t see any of these analyses: there are no ε’s and no limits, so how
can it possibly detect the conditions on r? Indeed, there are other number
systems, such as the 2-adic integers Z2 that we looked at in Chapter 11, in
which it really is true that 1 + 2 + 4 + 8 + 16 + 32 + · · · = −1. But this is
certainly not the case in R!

32.4 Comparison tests

Sometimes we can determine whether a series converges or diverges
by comparing it with another series whose convergence or divergence is
already understood, such as a geometric series or the harmonic series. This
was actually already the idea in Oresme’s proof of the divergence of the
harmonic series. He compared the harmonic series to the series 1

2 + 1
2 +

1
2 + 1

2 + · · · , which clearly diverges. Then he showed that, with a suitable
grouping of terms, the harmonic series is termwise greater than that one.
In what follows, we will assume that an ≥ 0 for all n, since series with both
positive and negative terms present some additional complications.

Theorem 32.8. Let a1, a2, a3, . . . and b1, b2, b3, . . . be two sequences.

(1) If
∑∞
n=1 bn converges and 0 ≤ an ≤ bn for all n, then

∑∞
n=1 an con-

verges.
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(2) If
∑∞
n=1 bn diverges and 0 ≤ bn ≤ an for all n, then

∑∞
n=1 an diverges.

Proof.

(1) Note that a series converges if and only if its sequence of partial sums
forms a Cauchy sequence. Let sn =

∑n
k=1 ak and tn =

∑n
k=1 bk. Pick

an ε > 0. Since
∑∞
n=1 bn converges and so the sequence of tn’s is

Cauchy, there is some N such that whenever m,n > N , we have |tm −
tn| < ε. Suppose, without loss of generality, that m > n. Then

|tm − tn| = |bn+1 + bn+2 + · · ·+ bm| < ε.

Since 0 ≤ ak ≤ bk for all k, we have

|sm − sn| = |an+1 + an+2 + · · ·+ am| ≤ |bn+1 + bn+2 + · · ·+ bm| < ε

as well. Thus
∑∞
n=1 an converges.

(2) This proof is very similar: since
∑∞
n=1 bn diverges, the sequence

t1, t2, t3, . . . is not Cauchy, so there is some ε > 0 such that for any
N , there exist m,n > N such that |tm − tn| > ε. For the same values
of m,n, we have |sm − sn| ≥ |tm − tn|, so the sequence s1, s2, s3, . . . is
not Cauchy either. Therefore

∑∞
n=1 an diverges. �

Here are some examples of how to use this comparison test:

Example. The series
∑∞
n=1

1√
n
diverges, because it is termwise ≥ the har-

monic series.

Example. The series
∑∞
n=1

1
n2 converges. To see this, we first investigate

the series
∑∞
n=1

1
n(n+1) . Observe that 1

n(n+1) = 1
n −

1
n+1 , so we have

∞∑
n=1

1

n(n+ 1)
=

∞∑
n=1

(
1

n
− 1

n+ 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·

= 1,

since everything else cancels. We can’t use the comparison test yet, because
1
n2 >

1
n(n+1) . However, we can multiply by 2, to get

∞∑
n=1

2

n(n+ 1)
= 2.

Now we can use it: 1
n2 ≤ 2

n(n+1) , so we have a series which is termwise
≤ a convergent series, so it converges. Determining the actual sum is a
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more difficult problem, one that was solved by Euler. (The sum, rather
surprisingly, is π2

6 . How did the π get in there, and even more surprisingly,
since when does π2 show up anywhere?1 See [Cha03] for several proofs that
this series sums to π2

6 .)

32.5 Problems

(1) Does the series
∑∞
n=1(−1)n−1 converge or diverge? Prove that your

answer is correct.
(2) Does the series

∑∞
n=1

log(n)
n converge or diverge? Prove that your an-

swer is correct.
(3) Suppose that a1, a2, a3, . . . is a sequence of positive numbers, and

lim
n→∞

an+1

an
= r

for some r.

(a) Prove that if r < 1, then there is some r′ with r ≤ r′ < 1 and an
integer N such that an < (r′)n for all n > N . Prove that if r > 1,
then there is some r′ with r > r′ > 1 and an integer N such that
an > (r′)n for all n > N .

(b) If r < 1, then prove that
∑∞
n=1 an converges. If r > 1, then prove

that
∑∞
n=1 an diverges. This result is known as the ratio test.

(4) Does the series
∑∞
n=1

√
n

2n converge or diverge? Prove that your answer
is correct.

(5) Suppose that a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0 is a sequence of nonnegative
numbers such that limn→∞ an = 0.

(a) Prove that
∑∞
n=1(−1)n−1an = a1 − a2 + a3 − a4 + · · · converges.

(b) Conclude that
∑∞
n=1

(−1)n−1

√
n

converges.
(c) Using a computer or calculator, compute the sum to 3 digits of

accuracy by taking a sufficiently high partial sum. How can you
guarantee that you have gone far enough?

(6) Suppose that a1, a2, a3, . . . is a sequence of positive numbers, and

lim
n→∞

n
√
an = r

for some r.

1Actually, it shows up in plenty of places. For instance, the volume of a torus, or a
4-dimensional ball.
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(a) Prove that if r < 1, then there is some r′ with r ≤ r′ < 1 and an
integer N such that an < (r′)n for all n > N . Prove that if r > 1,
then there is some r′ with r > r′ > 1 and an integer N such that
an > (r′)n for all n > N .

(b) If r < 1, then prove that
∑∞
n=1 an converges. If r > 1, then prove

that
∑∞
n=1 an diverges. This result is known as the root test.

(7) Determine whether the following series converge or diverge. In each
case, prove that your answer is correct.

(a)
∞∑
n=1

nn

5n + 3
.

(b)
∞∑
n=1

nn

5n2 .

(c)
∞∑
n=1

(
3n2 + 6n+ 1

5n2 + 1

)n
.

(8) Find a series
∑∞
n=1 an that converges, but such that

∑∞
n=1 a

2
n diverges.

Prove that if an ≥ 0 for all n and
∑∞
n=1 an converges, then

∑∞
n=1 a

2
n

converges.



This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



Bibliography

[AGP94] William R. Alford, Andrew Granville, and Carl Pomerance. There
are infinitely many Carmichael numbers. Annals of Mathematics,
139(3):703–722, 1994.

[Ale11] Max A. Alekseyev. On convergence of the Flint Hills series. arXiv
preprints, 2011. arXiv:1104.5100.

[Apo76] Tom M. Apostol. Introduction to Analytic Number Theory. Undergrad-
uate Texts in Mathematics. Springer-Verlag, 1976.

[Art04] Rob D. Arthan. The Eudoxus real numbers. arXiv preprints, 2004.
arXiv:0405454.

[AZ18] Martin Aigner and Günter M. Ziegler. Proofs from The Book. Springer,
sixth edition, 2018.

[Bak19] Matt Baker. The Stern–Brocot tree, Hurwitz’s theorem, and the
Markoff uniqueness conjecture, 2019. URL: https://mattbaker.bl
og/2019/01/28/the-stern-brocot-tree-hurwitzs-theorem-and-t
he-markoff-uniqueness-conjecture/.

[BBR21] Clark Bray, Adrian Butscher, and Simon Rubinstein-Salzedo. Algebraic
Topology. Springer, 2021.

[BE02] Manuel Benito and J. Javier Escribano. An easy proof of Hurwitz’s
theorem. American Mathematical Monthly, 109(10):916–918, 2002.

[BT04] Edward B. Burger and Robert Tubbs. Making Transcendence Trans-
parent: An Intuitive Approach to Classical Transcendental Number
Theory. Springer Science & Business Media, 2004.

[CF97] John Horton Conway and Francis Y. C. Fung. The sensual (quadratic)
form. Number 26 in The Carus Mathematical Monographs. The Math-
ematical Association of America, 1997.

[Cha03] Robin Chapman. Evaluating ζ(2), 2003. URL: https://empslocal.
ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf.

[Cox13] David A. Cox. Primes of the Form x2 + ny2: Fermat, Class Field
Theory, and Complex Multiplication, volume 119. John Wiley & Sons,
second edition, 2013.

[CW00] Neil Calkin and Herbert S. Wilf. Recounting the rationals. American
Mathematical Monthly, 107(4):360–363, 2000.

349

http://arxiv.org/abs/1104.5100
http://arxiv.org/abs/0405454
https://mattbaker.blog/2019/01/28/the-stern-brocot-tree-hurwitzs-theorem-and-the-markoff-uniqueness-conjecture/
https://mattbaker.blog/2019/01/28/the-stern-brocot-tree-hurwitzs-theorem-and-the-markoff-uniqueness-conjecture/
https://mattbaker.blog/2019/01/28/the-stern-brocot-tree-hurwitzs-theorem-and-the-markoff-uniqueness-conjecture/
https://empslocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf
https://empslocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf


350 Transition to Proofs

[Els10] Christian Elsholtz. A combinatorial approach to sums of two squares
and related problems. In Additive number theory. Festschrift in honor
of the sixtieth birthday of Melvyn B. Nathanson, pages 115–140.
Springer, 2010.

[Euc02] Euclid. Euclid’s Elements. Green Lion Press, Santa Fe, NM, 2002.
All thirteen books complete in one volume, The Thomas L. Heath
translation, Edited by Dana Densmore.

[Fef05] Solomon Feferman. The Number Systems: Foundations of algebra and
analysis. American Mathematical Society, second edition, 2005.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics.
Cambridge University Press, 2009.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Mathematics. Addison–Wesley Publishing Company, second edition,
1994.

[GO03] Bernard R. Gelbaum and John M. H. Olmsted. Counterexamples in
Analysis. Dover Publications, Inc., 2003. Corrected reprint of the sec-
ond (1965) edition.
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Notation Index

(Z/mZ)×, 92
(a, b) (open interval), 317
C (Cantor set), 268
Cn (Catalan number), 189
J(n) (Josephus function), 224
X/∼, 80
[a, b] (closed interval), 318
[n] (integers from 1 to n), 144
[x] (equivalence class of x), 80
C, 4
Fixf (X), 121
N, 4
Π, 41
Q, 4
Qp, 133
R, 4
⇒, 27
Σ, 40
Z, 4
Z/mZ, 80
Zp, 131
Z≥0, 257
ℵ0, 261(
n
k

)
, 177

�, 21
∩, 5

◦ (composition), 9
∪, 5
≡ (mod m), 79
∃, 27
∀, 27[
n
k

]
, 230

γ (Euler–Mascheroni constant),
169

gcd, 57
⇐⇒ , 27
im, 9
∈, 4
dxe, 66
≤ (cardinality), 267
bxc, 59, 66
lim, 294, 315, 323
c, 261
|, 76, 96
P(S), 146, 267((
n
k

))
, 182

¬, 13
-, 77, 96
6∈, 4
6⊆, 5
φ(m) (totient function), 94
\, 6
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�, 21{
n
k

}
, 232

⊂, 5
⊆, 5
(, 5
×, 7
4, 6
∅, 3
∨, 12

∧, 12
c (complement), 6
d(n) (derangements), 217
d(n) (divisors function), 167
d(v) (degree of a vertex), 154
e, 69
p(n) (partition function), 214
xn, 234
xn, 234
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ℵ0, 261
e, 69, 70, 212
p-adic integer, 131
p-adic number, 129–134, 136

Ackermann function, 47
adjacent vertices, 154
algebraic number, 270
almost equal, 308
almost homomorphism, 308
antisymmetric relation, 76
Archimedes, 141
Archimedes’s stomachion
problem, 141, 142

asymmetric relation, 76
Avocado Sandwich Theorem,
333, 334

Bézout’s Lemma, 60
Baire Category Theorem, 329
bijection, 9, 143, 149, 239, 255,
256

binary relation, 75
binary tree, 193, 194
Binet’s formula, 44, 47, 223
binomial coefficient, 177, 178,

206
Binomial Theorem, 199–204,
206, 207

bipartite graph, 158
Bolzano–Weierstraß Theorem,
319

Borsuk–Ulam Theorem, 333
bounded above, 287
Boundedness Theorem, 336
Brouwer Fixed-Point Theorem,
165

Calkin–Wilf tree, 258
Cantor set, 268–270
Cantor, Georg, 260
Cantor–Schröder–Bernstein
Theorem, 263–267, 270

cardinality, 255, 256, 263, 268
Carmichael number, 103, 104
carrying, 131
Cartesian product, 7
Catalan number, 188–195
Cauchy sequence, 291–293, 295,
301, 302, 306, 316
equivalence, 301, 302

Cayley’s Theorem, 247, 248, 251
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characteristic polynomial, 222
child, 193
Chinese Remainder Theorem,
86, 87, 103

Chvátal Art Gallery Theorem,
161

closed interval, 318
codomain, 8
complement, 6
complete, 296, 307
complete ordered field, 311, 312
completion, 291, 296
complex number, 4
composite number, 51, 102, 104
composition, 150, 151, 181
composition of functions, 9
conditional statement, 14
congruence, 78, 83
congruence class, 80
continuous function, 323, 327,
328

continuum, 261
contractive sequence, 322
contrapositive, 15, 22
convergent sequence, 294, 295,
307, 315, 316

convergent series, 340
converse, 30
Conway topograph, 126
Conway, John Horton, 126
corollary, 19
countable set, 255, 257–259, 265
counting, 141
Cutler, Bill, 141
cycle of a permutation, 229

De Morgan’s Laws, 14
Dedekind cut, 283, 284
definition, 19

degree of a vertex, 154, 163
deletion-contraction formula, 48
dense subset, 309
derangement, 211, 212, 226
descent, 113, 114
diagonalization, 260, 262, 267
direct product, 7
direct proof, 21
Dirichlet Approximation
Theorem, 65, 67

divergent series, 340
divisor, 33, 167
divisors function, 167
domain, 8
domino tiling, 155, 156
double counting, 163
dyadic rational, 280
Dyck path, 188–191, 193

element, 3
Elsholtz, Christian, 126
empty set, 3
equivalence class, 80, 274
equivalence relation, 75, 77, 243,
273

Erdős–Szekeres Theorem, 161
Eszett, 118
Euclid’s Elements, 331
Euclidean algorithm, 57–59, 95
Eudoxus reals, 308, 309
Euler’s factorization method, 127
Euler’s Totient Theorem, 106
Euler–Mascheroni constant, 169
even number, 20
excedance set of a permutation,
217

existential quantifier, 26
Extreme Value Theorem, 331,
336, 337
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factoring, 105
falling factorial, 206, 234
Fermat number, 44, 62
Fermat’s Last Theorem, 20, 113,
114

Fermat’s Little Theorem, 99–102
Fibonacci number, 47, 49, 62,
184, 223

field, 311
fixed point, 121, 170
Flint Hills series, 343
forest, 251
function, 7
Fundamental Theorem of
Arithmetic, 52

Gauß, Carl Friedrich, 118
Gaussian integer, 281
gcd, 57
General Binomial Theorem, 207
generating function, 226
geometric sequence, 343
geometric series, 343
graph, 65, 154, 163

bipartite, 158
finite, 154
regular, 170
simple, 154

greatest common divisor, 57
greatest lower bound property,
290

Gregory–Leibniz series, 317

Hadwiger–Nelson problem, 12
Hall Marriage Theorem, 157–159
harmonic series, 341, 342
Heath-Brown, Roger, 121
Hensel’s Lemma, 135, 136
heuristic, 145

Hilbert’s Tenth Problem, 108
hockey-stick identity, 183
Hurwitz’s Theorem, 70, 71

image, 9
incidence, 164
incidence matrix, 164
incident pair, 164
induction, 37, 38, 49
infimum, 290
infinite series, 339, 340
initial conditions of a recurrence,
220

injective, 9, 143, 239, 240, 255,
256, 262, 263

integer, 4, 274
Intermediate Value Theorem,
331–333

intersection, 5
inverse function, 149, 256
inverse of a statement, 30
involution, 121
irrational number, 25, 67, 69, 70
irreflexive relation, 76
Isaksen, Daniel, 131

Josephus problem, 224, 227

labeled tree, 245
Lagrange number, 71
Lagrange spectrum, 72
lattice path, 187
leaf, 193, 248
Least Upper Bound Property,
332

least upper bound property, 287,
288

lemma, 19
limit of a function, 323
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limit of a sequence, 294, 307, 315
linear recurrence, 221
linear recurrence relation, 221,
222

Liouville’s Theorem, 72
Liouville, Joseph, 121
log-concave, 185

Möbius inversion, 237
matching, 155, 157
Mersenne number, 62
Mersenne prime, 62
method of descent, 113, 114
Miller–Rabin test, 104, 105
modular arithmetic, 78, 83, 91
modular division, 91, 93
modular exponentiation, 99, 101
modular multiplication, 91
monotone sequence, 322
monotonically decreasing, 322
monotonically increasing, 322
multichoose number, 182
multiplicative function, 94, 95
multiset, 182

natural number, 4
negative number, 286
nonnegative number, 286
nonpositive number, 286
number of divisors, 167

open interval, 317
or, 23, 150
ordered field, 311, 312
ordered pair, 7
ordered set, 304
Oresme, Nicole, 341

parenthesization, 192–194

parking function, 250
partial ordering, 77
partial sum, 340
partition, 214
partition function, 214
Pascal’s Identity, 179
Pascal’s triangle, 179, 180, 185
path-connected, 327
Peano axioms, 273
Pell equation, 28
perfect matching, 157
permutation, 170, 229

cycle structure, 229
Petersen graph, 154
pi notation, 41
pigeonhole principle, 63, 153, 154
Pisot number, 208
positive number, 286
power set, 146, 267, 268
Prüfer sequence, 247–249, 251
primality testing, 105
prime number, 51, 54
principle of inclusion-exclusion,
209, 210

product of sets, 7
proof, 19
proof by contradiction, 22
proposition, 19
Pythagorean Theorem, 107
Pythagorean triple, 107–113

QED, 21
quadratic nonresidue, 119
Quadratic Reciprocity Theorem,
86

quadratic residue, 119
quod erat demonstrandum, 21

Ramsey problem, 64
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range, 9
rational Catalan number, 197
rational number, 4, 25, 277
real number, 4, 284, 301, 303
recurrence, 44, 194, 219

initial conditions, 220
linear, 221

reductio ad absurdum, 22
reflexive relation, 76
relation, 75
residue class, 80
Riemann function, 328
rising factorial, 234
Rivest–Shamir–Adleman
cryptosystem, 105

root of a tree, 193
rooted forest, 251
roots-of-unity filter, 202
RSA cryptosystem, 105

sequence, 291, 292
series, 340
set, 3
set difference, 6
set of representatives, 79
set partition, 232
sieve of Eratosthenes, 56–58
sigma notation, 40, 45
Singmaster’s Conjecture, 12
Sperner’s Lemma, 165–167
Spivak pronoun, 211
Spivak, Alexander, 122
Stanley, Richard, 191
stars and bars technique, 181,
212

statement, 11
Stern–Brocot tree, 258
Stirling number, 229

Stirling number of the first kind,
229, 230, 232

Stirling number of the second
kind, 232, 234

stomachion problem, 141, 142
strong induction, 45
subsequence, 297, 318
subset, 4
supremum, 288
surjective, 9, 143, 239, 240, 255,
256, 262, 263

Sylvester, James Joseph, 94
symmetric difference, 6
symmetric relation, 76

Taylor series, 212
Teichmüller representative, 137
theorem, 19
thinking is the last resort, 23
Thomae function, 328
Tonelli–Shanks algorithm, 122
topograph, 126
total ordering, 77, 278
totally ordered set, 278
totative, 94
totient, 94
totient function, 94–96
transcendental number, 72
transitive relation, 76
tree, 193, 245

binary, 193
rooted, 193

triangle inequality, 295
triangular number, 19, 115
triangulation, 196
trichotomous relation, 76
truth table, 13
twelvefold way, 239, 240
Twin Prime Conjecture, 12, 51
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uncountable set, 255, 260, 261
union, 5
unit, 92
universal quantifier, 26
upper bound, 288

vacuous statement, 16
Vandermonde matrix, 222
Vandermonde’s Identity, 180,

184, 201
Venn diagram, 5, 6

well-defined, 84
Wilson’s Theorem, 104

Zagier, Don, 121, 122, 125, 126
Zeckendorf’s Theorem, 47
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