
Frameworkless
Front-End
Development

Do You Control Your Dependencies
or are They Controlling You?
—
Second Edition
—
Francesco Strazzullo

Frameworkless
Front-End

Development
Do You Control Your

Dependencies or are They
Controlling You?

Second Edition

Francesco Strazzullo

Frameworkless Front-End Development: Do You Control Your

Dependencies or are They Controlling You?

ISBN-13 (pbk): 978-1-4842-9350-8		 ISBN-13 (electronic): 978-1-4842-9351-5
https://doi.org/10.1007/978-1-4842-9351-5

Copyright © 2023 by Francesco Strazzullo

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham
Coordinating Editor: Gryffin Winkler
Copy Editor: Kezia Endsley

Cover image designed by wirestock on Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

Paper in this product is recyclable

Francesco Strazzullo
TREVISO, Treviso, Italy

https://doi.org/10.1007/978-1-4842-9351-5

To Alessandro, my son.

v

Table of Contents

About the Author��xi

About the Technical Reviewers��xiii

Acknowledgments���xv

The Frameworkless Movement���xvii

Chapter 1: ��The Definition of Framework��1

Frameworks vs Libraries���2

Comparing Frameworks to Libraries��3

Frameworks and Decisions��5

Angular’s Decisions��6

The Framework’s Way��8

Frameworks as Technical Debt��15

Technical Investment��17

Summary���17

Chapter 2: ��Brief History of Front-end Frameworks�����������������������������19

The First Age: jQuery��20

The jQuery’s Way��21

The Second Age: AngularJS, Backbone, and Ember���21

AngularJS���22

The Third Age: React, Angular, and Vue��24

Angular���24

React��26

vi

Comparing Angular and React��27

Bonus Tracks��27

Web Components���27

Svelte��28

Next.JS���29

Summary���31

Chapter 3: ��Rendering���33

The Document Object Model��33

Monitoring Rendering Performance���36

Chrome Developer Tools���36

The stats.js Widget���38

Custom Performance Widget��39

Rendering Functions��41

TodoMVC���41

Rendering Pure Functions��42

Rendering Dynamic Data���57

The Virtual DOM��58

Summary���64

Chapter 4: ��Managing DOM Events���65

The YAGNI Principle��65

The DOM Events API���66

Attach Handlers with Properties���67

Attach Handlers with addEventListener���68

The Event Object��70

The DOM Event Lifecycle��72

Using Custom Events��77

Table of Contents

vii

Adding Events to TodoMVC���78

Reviewing the Rendering Engine��80

A Basic Event-Handling Architecture��85

Event Delegation��91

Summary���93

Chapter 5: ��Web Components���95

The APIs���95

The Custom Elements API���96

Using Web Components for TodoMVC��111

Web Components vs Rendering Functions��119

Code Style��120

Testability���120

Portability���120

Community���121

Disappearing Frameworks���121

Summary���122

Chapter 6: ��HTTP Requests���123

A Bit of History: The Birth of AJAX��123

A To-Do List REST Server���124

Representational State Transfer (REST)��126

Code Examples��128

The Basic Structure��128

XMLHttpRequest���133

Fetch���140

Reviewing the Architecture��143

Summary���145

Table of Contents

viii

Chapter 7: ��Routing���147

Single Page Applications��147

Code Examples��150

Fragment Identifiers���150

The History API���166

Navigo��172

Choosing the Right Router���174

Summary���175

Chapter 8: ��State Management���177

Reviewing the TodoMVC Application��178

Model View Controller��180

Observable Model���188

Reactive Programming��195

A Reactive Model��196

Native Proxies���201

Event Bus���205

A Frameworkless Implementation��208

Redux���217

Comparing State Management Strategies���220

Model View Controller��220

Reactive Programming���221

Event Bus��222

Summary���224

Table of Contents

ix

Chapter 9: Frameworkless Refactoring: StranglerFigApplication
Pattern���225

Setting the Stage���226

The Solution���227

The Example��227

The Original Application��228

Moving Services���232

Moving Components���235

Other Conversion Strategies��238

iframes���238

Proxy���238

Summary���239

Chapter 10: ��Defending from Frameworks���241

Classify Framework Features��243

Rendering/Event Management���244

HTTP Request���245

Routing���246

State Management���246

Visualizing Your Strategy��247

Summary���249

Chapter 11: ��The Right Tool for the Right Job�������������������������������������251

JavaScript Fatigue���252

The “Right” Framework���253

The Frameworkless Manifesto���255

The First Principle��255

The Second Principle��257

Table of Contents

x

The Third Principle��258

The Fourth Principle���259

Tools���260

Matteo Vaccari’s Tool��261

Trade-off Sliders���262

Architecture Compass Chart���264

Other Tools��267

Summary���270

Index��271

Table of Contents

xi

About the Author

Francesco Strazzullo is an experienced

front-end engineer, JavaScript trainer,

developer, and chief operating officer at

Claranet Italy. He has presented at tech

conferences and meet-ups around Europe.

Francesco is a technical reviewer for multiple

tech publishers and writes technical articles

on his blog. He is always enthusiastic about

trying out new APIs, and he firmly believes that the best way to learn

something new is to explain and teach it to somebody else. With friends

and fellow developers, he founded the Frameworkless Movement, a group

interested in developing software without using frameworks and spreading

knowledge about making informed decisions about the choice and use of

frameworks in front-end software development.

xiii

About the Technical Reviewers

Giorgio Boa is a full stack developer; the

front-end ecosystem is his passion. He started

developing applications in 2006, and in 2012

he fell in love with JavaScript. He is also active

in the open-source ecosystem; he loves to learn

and study new things. He is very ambitious and

tries to improve himself every day.

Luca Del Puppo is a senior software engineer

who loves JavaScript and TypeScript. In his

free time, he enjoys studying new technologies,

improving himself, creating YouTube content,

and writing technical articles. He can’t live

without trail running and loves doing it in his

beloved Dolomites.

xv

Acknowledgments

This book was born drinking coffee with my dear friend Lorenzo Massacci.

During a coffee break in the office, he asked, “What does it take to make an

application last forever?” We never answered that question, but we started

thinking about the lifespan of applications and their relationship with

frameworks, and we started talking about the frameworkless approach.

I also need to thank Avanscoperta,1 who helped me prepare my

“Frameworkless Front-end Development” workshop and gave me

feedback about the frameworkless approach from the attendees, giving

me the courage to write down my thoughts.

The last “thank you” goes to my wife Lucia. She does not know

anything about JavaScript or frameworks, so she couldn’t actually help

me write this book. But she does a more important thing. She makes

me happy.

1 www.avanscoperta.it/en/training/

https://www.avanscoperta.it/en/training/

xvii

The Frameworkless Movement

This book is about two main topics. The first is about working without

frameworks effectively; the second is about choosing the right framework

for the right project. My friends Antonio Dell’Ava, Lorenzo Massacci,

Alessandro Violini and I created the Frameworkless Movement1 to explore

these topics better.

This movement aims to create awareness around these topics,

gathering people together in a community. Our main concern is to help

people understand that working without a framework is a real possibility

nowadays. This book is part of our group’s activities to help people

understand the importance of technical decision-making. If you’re

interested and want to be involved, contact us on GitHub.2

1 http://frameworklessmovement.org
2 https://github.com/frameworkless-movement/manifesto

http://frameworklessmovement.org
https://github.com/frameworkless-movement/manifesto

1

CHAPTER 1

The Definition
of Framework

You don't need a framework. You need a painting, not a frame.

—Klaus Kinski

If you are reading this book, you are probably interested in learning how to

develop complex applications without relying on—or without relying too

much on—front-end frameworks.

It would not be smart to start exploring frameworkless solutions

without first exploring the meaning of “framework.” Consider the first

definition of framework by the Cambridge Dictionary:1

A supporting structure around which something can be built.

This first and simple definition is consistent with the general idea of

a software framework. Think about Angular:2 it gives you, out-of-the-box,

a structure that “supports” your application and a series of elements,

1 https://dictionary.cambridge.org/dictionary/english/framework
2 https://angular.io/

© Francesco Strazzullo 2023
F. Strazzullo, Frameworkless Front-End Development,
https://doi.org/10.1007/978-1-4842-9351-5_1

https://dictionary.cambridge.org/dictionary/english/framework
https://angular.io/
https://doi.org/10.1007/978-1-4842-9351-5_1

2

like Services, Components and Pipe, that can be used to build your

applications. However, this simplistic definition is not the only possibility.

Let’s analyze the definition of framework from other points of view.

�Frameworks vs Libraries
It may seem counterintuitive, but a way to easily define frameworks

is to highlight their differences from another important part of every

codebase: libraries. Without overthinking it, it is safe to say that Angular is

a Framework while lodash is a library. You can instantly tell the difference

between the two tools because of this other definition3 of framework:

A framework calls your code, your code calls a library.

A framework could internally use one or more libraries, but that fact

is usually hidden from the developer, who sees the framework as a single

unit, or a bunch of modules if you choose a modular framework. The

relationship among application code, frameworks, and libraries can be

condensed, as shown in Figure 1-1.

Figure 1-1.  Relationship among frameworks, libraries, and
application code

3 I read this definition often in books or online, but I cannot pinpoint the original
source, if there is one.

Chapter 1 The Definition of Framework

3

�Comparing Frameworks to Libraries
This section provides several code snippets that illustrate the difference

between frameworks and libraries. This comparison uses Angular and

date-fns.4

Listings 1-1 and 1-2 are basic examples of Component and Service in

Angular.

Listing 1-1.  Angular Service Example

import { Injectable } from '@angular/core'

import { HttpClient } from '@angular/common/http'

import { Observable } from 'rxjs'

import { Order } from './model/order'

const URL = 'http://example.api.com/'

@Injectable({

 providedIn: 'root'

})

export class Orders {

 constructor(private http: HttpClient) {}

 list(): Observable<Order[]> {

 return this.http.get<Order[]>(URL)

 }

}

Listing 1-2.  Angular Component Example

import { Component, OnInit } from '@angular/core'

import { Orders } from '../orders'

import { Order } from '../model/order'

4 https://date-fns.org/

Chapter 1 The Definition of Framework

https://date-fns.org/

4

@Component({

 selector: 'app-order-list',

 templateUrl: './order-list.component.html',

 styleUrls: ['./order-list.component.css']

})

export class OrderListComponent implements OnInit {

 list: Order[] = []

 constructor(private orders: Orders) { }

 ngOnInit(): void {

 this.orders.list()

 .subscribe(_orders => this.list = _orders)

 }

}

Listing 1-3 is an example of using date-fns to format a date.

Listing 1-3.  date-fns Example

import { format } from 'date-fns'

const DATE_FORMAT = 'DD/MM/YYYY'

export const formatDate = date => {

 return format(date, DATE_FORMAT)

}

The previous definition of the difference between a framework and a

library is quite striking when you analyze Listings 1-1 to 1-3. Angular is a

framework, and Orders and OrderListComponent will stop working in a

codebase without Angular. Angular is calling the application code. If you

remove the @Injectable annotation, the service becomes invisible to the

Angular code, and the Orders class relies on the HttpClient utility to fulfil

its task.

Chapter 1 The Definition of Framework

5

On the other hand, date-fns is not opinionated on how to structure the

application’s code; you can just import it, and if you respect the public API,

you’re good to go. Table 1-1 shows a list of libraries grouped by their purpose.

Table 1-1.  Some JavaScript Libraries

Purpose Libraries

Utilities lodash, Ramda

Date manipulation date-fns, Day.js

Data visualization D3.js, highcharts, chart.js

Animation tween.js, anime.js

�Frameworks and Decisions
The Cambridge Dictionary provides another definition of framework that

is interesting to analyze:

A system of rules, ideas, or beliefs that is used to plan or decide
something.

While a “system of rules” is easy to apply to a software framework—

every API is a system of rules—the interesting part of this definition is that

a system of rules (aka a framework) could be used to decide something.

Can software frameworks be used to decide something? The short answer

is yes, but let me elaborate on a longer answer. When teams choose to

work with a framework, they are deliberately “deciding not to decide” or, to

put it in other terms, to let the framework make some decisions for them.

Delegating some decisions to another team is not a problem per se, but it

may become a problem because these decisions are hidden in plain sight.

Mindful teams should analyze these hidden decisions they are delegating

and deeply understand their consequences.

Chapter 1 The Definition of Framework

6

�Angular’s Decisions
To better explain how a framework can make decisions in place of a

development team, this section explains the decisions that a team using

Angular delegates to the framework.

�Language

Using Angular means, first of all, using TypeScript. In the past, you could

work with plain JavaScript5 in an Angular application, but that feature has

been removed. TypeScript is a typed superset of JavaScript that compiles

to plain JavaScript. Apart from type checking, it also lets you use some

features that are not present in the original language, like annotations.

TypeScript can be useful if you and your team are used to working with

strongly typed languages. But this also means that if you use Angular, all of

your code is written in a language that requires a transpiler.

�Observables

Angular is heavily designed around RxJS, a library for reactive

programming using observables; in fact, in the previous example, to get

the data from PeopleListService, you would have to use the subscribe

method of the Observable object. This is a very different approach from

the rest of the front-end frameworks, where HTTP requests are designed

like promises. Promises provide a standard way to represent the eventual

completion (or failure) of an asynchronous operation. RxJS lets you easily

transform an Observable into a promise6 and vice versa. But if you need to

integrate some promise-based library into your Angular project, you will

5 You can see the breaking change in this commit https://github.com/angular/
angular/commit/cac130eff9b9cb608f2308ae40c42c9cd1850c4d
6 “toPromise” is deprecated in favor of “lastValueFrom” https://indepth.dev/
posts/1287/rxjs-heads-up-topromise-is-being-deprecated

Chapter 1 The Definition of Framework

https://github.com/angular/angular/commit/cac130eff9b9cb608f2308ae40c42c9cd1850c4d
https://github.com/angular/angular/commit/cac130eff9b9cb608f2308ae40c42c9cd1850c4d
https://indepth.dev/posts/1287/rxjs-heads-up-topromise-is-being-deprecated
https://indepth.dev/posts/1287/rxjs-heads-up-topromise-is-being-deprecated

7

need to do some extra work. For the sake of completeness, this is a similar

example using fetch,7 a platform API used to make HTTP requests based on

promises. See Listings 1-4 and 1-5.

Listing 1-4.  Angular Service without Observables8

const URL = 'http://example.api.com/'

export class Orders {

 async list(): Promise<Order[]> {

 const response = await fetch(URL)

 const data = await response.json();

 return data;

 }

}

Listing 1-5.  Angular Component without Observables

export class OrderListComponent implements OnInit {

 list: Order[] = []

 constructor(private orders: Orders) { }

 ngOnInit(): void {

 this.orders.list()

 .then(_orders => this.list = _orders)

 }

}

Notice that both of these constraints are not bad by themselves;

TypeScript and RxJs are both fantastic tools. But the consequences of using

these tools (forced by Angular) should be clear to the whole team.

7 https://developer.mozilla.org/en-US/docs/Web/API/fetch
8 In Listings 1-4 and 1-5, I removed Angular’s decorators for the sake of brevity.

Chapter 1 The Definition of Framework

https://developer.mozilla.org/en-US/docs/Web/API/fetch

8

�The Framework’s Way
In these few pages, I have not mentioned the elephant in the room, the

most famous tool in the front-end ecosystem: React. This section aims to

explain whether React is a framework or a library. The definition of React

from the official website9 is as follows:

A JavaScript library for building user interfaces

It seems easy enough then—React is a library. But the reality is much

more complex than that. The main constraint of React is the use of the

declarative paradigm. You don’t manipulate the DOM, but you modify

the state of a component, and then React modifies the DOM for you. This

way of programming is also present in most of the libraries of the React

ecosystem. The purpose of the snippet in Listing 1-6 is to hide/show a

square with an animation. Every time the user presses the Toggle button,

using framer-motion,10 it activates an animation library for React. The

result is visible in Figure 1-2.

Listing 1-6.  framer-motion Animation Example

import { useCallback, useState } from 'react';

import { motion } from "framer-motion"

const MotionExample = () => {

 const [isVisible, setIsVisible] = useState(false);

 �const toggle = useCallback(() => setIsVisible(!isVisible),

[isVisible]);

 const opacity = isVisible ? 1 : 0;

9 https://reactjs.org/
10 www.framer.com/docs/introduction/

Chapter 1 The Definition of Framework

https://reactjs.org/
https://www.framer.com/docs/introduction/

9

 return (

 <div>

 <motion.div

 className='box'

 animate={{ opacity }}

 transition={{

 ease: 'linear',

 duration: 0.5

 }}

 />

 <button onClick={toggle}>Toggle</button>

 </div>

)

}

export default MotionExample

Figure 1-2.  Example of React animation with framed-motion

Chapter 1 The Definition of Framework

10

As you can see, you don’t directly animate the square. You just declare

how to map the state with the animation (changing the opacity), and then

you change the state. This is the core of the declarative pattern used in

React. Let’s analyze a different approach using a Web Animations API,11

a standard library used to programmatically create CSS animations. The

code shown in Listing 1-7 has the same output as the previous one.

Listing 1-7.  Web Animations API Example

import { useCallback, useState, useEffect, useRef } from 'react'

const animationTiming = {

 duration: 500,

 ease: 'linear',

 fill: 'forwards'

}

const showKeyframes = [

 { opacity: 0 },

 { opacity: 1 }

]

const hideKeyframes = [

 ...showKeyframes

].reverse()

const show = (element) => {

 element.animate(showKeyframes, animationTiming)

}

const hide = (element) => {

 element.animate(hideKeyframes, animationTiming)

}

11 https://developer.mozilla.org/en-US/docs/Web/API/Web_Animations_API

Chapter 1 The Definition of Framework

https://developer.mozilla.org/en-US/docs/Web/API/Web_Animations_API

11

const WAExample = () => {

 //using ref to skip a re-render

 const didMountRef = useRef(false);

 const box = useRef(null)

 const [isVisible, setIsVisible] = useState(false)

 const toggle = useCallback(() => {

 setIsVisible(!isVisible)

 }, [isVisible])

 useEffect(() => {

 if(!didMountRef.current) {

 didMountRef.current = true;

 return

 }

 const {

 current

 } = box

 if(isVisible){

 show(current)

 } else{

 hide(current)

 }

 }, [box, isVisible])

 return (

 <div>

 <div

 ref={box}

 className='box'

 />

Chapter 1 The Definition of Framework

12

 <button onClick={toggle}>Toggle</button>

 </div>

)

}

export default WAExample

The example in Listing 1-6 may seem out of place for a React

developer. This is because you’re moving the square with an imperative

pattern using the animate12 method of the DOM element. The second

example is less “Reacty” than the first one. In other words, when working

with React, developers need to consider also a set of unspoken rules

imposed not by the API itself but by how the community is using that

API. React community-created libraries and tools transform operations

that could be imperative in declarative components. In addition to the

animation example in Listing 1-6, there are other examples, such as React

Router13 and Apollo Client.14

These libraries contributed to creating React’s way of writing

applications. Every mainstream framework tends to create its framework’s

way. This aspect leads to the third definition of framework:

If there is a framework’s way, there is a framework.

So, following this definition, it becomes crystal clear that React is a

framework and not a library. You could use it as a library, but most of the

projects will embrace its unspoken rules, making it a framework de facto.

As for the Angular rules from the previous paragraph, React’s way

is not a bad thing per se. But when embracing its declarative way of

programming, a team needs to understand what they are gaining and

12 https://developer.mozilla.org/en-US/docs/Web/API/Element/animate
13 https://reactrouter.com/
14 www.apollographql.com/docs/react/get-started/

Chapter 1 The Definition of Framework

https://developer.mozilla.org/en-US/docs/Web/API/Element/animate
https://reactrouter.com/
https://www.apollographql.com/docs/react/get-started/

13

what they are losing. Let’s try to do that in Listings 1-6 and 1-7. Both

snippets have a similar complexity, but Listing 1-6 is more readable for a

React developer because react-motion is React-compatible. So, a team

that decides to work like in Listing 1-7 is losing readability. But what are

they gaining? To answer this question, analyze Listings 1-8 and 1-9; they

are slightly different versions of the Web Animations API example from

Listing 1-7.

Listing 1-8.  Frameworkless Animation Library

const animationTiming = {

 duration: 500,

 ease: 'linear',

 fill: 'forwards'

}

const showKeyframes = [

 { opacity: 0 },

 { opacity: 1 }

]

const hideKeyframes = [

 ...showKeyframes

].reverse()

export const show = (element) => {

 element.animate(showKeyframes, animationTiming)

}

export const hide = (element) => {

 element.animate(hideKeyframes, animationTiming)

}

Chapter 1 The Definition of Framework

14

Listing 1-9.  Web Animations API Example (Revised)

import { useCallback, useState, useEffect, useRef } from 'react'

import { show, hide } from './animations'

const WAExample = () => {

 //using ref to skip a re-render

 const didMountRef = useRef(false);

 const box = useRef(null)

 const [isVisible, setIsVisible] = useState(false)

 const toggle = useCallback(() => {

 setIsVisible(!isVisible)

 }, [isVisible])

 useEffect(() => {

 if(!didMountRef.current) {

 didMountRef.current = true;

 return

 }

 const {

 current

 } = box

 if(isVisible){

 show(current)

 } else{

 hide(current)

 }

 }, [box, isVisible])

 return (

 <div>

 <div

Chapter 1 The Definition of Framework

15

 ref={box}

 className='box'

 />

 <button onClick={toggle}>Toggle</button>

 </div>

)

}

export default WAExample

It is easy to notice that the only difference with the previous Web

Animations API example is that I moved all the animation-related code

to a different file. But the code in Listing 1-8 now has an important

characteristic: It is completely unrelated to React. It is a simple library

without dependencies. This means that it can be used in any kind of

JavaScript project without a problem. In this scenario, the team is losing

readability but gaining portability.

Tip W hen ditching the framework’s way, be sure to know why
you are doing it. The loss of readability, in the long run, could be
problematic, so be sure that it is worth it.

�Frameworks as Technical Debt
The last definition of framework that I want to share with you is surely

bold, even provocative:

Frameworks are technical debt.

Chapter 1 The Definition of Framework

16

Let me elaborate a bit on why I think that every framework is technical

debt. When you need to add a feature to a project, you always have

options. Some are quick and messy, while others are well-designed but

slower to put into production. To better understand the impact of this

kind of decision, Ward Cunningham15 created the metaphor of technical

debt. The metaphor itself is quite simple: Every time you choose a quick

solution, you incur a debt. A simple diagram of technical debt is shown in

Figure 1-3.

Figure 1-3.  Technical debt

In the medium term, using a no-design approach will lead to an

increase in the cost to add a feature or to change an existing one. This

“slowness” is the unpaid debt that a team accumulates over time.

When using frameworks, a team starts accumulating the same kind of

debt but usually, the slowness comes only in the long term, after some

years of active development. In my experience, when an application is

15 https://youtu.be/pqeJFYwnkjE

Chapter 1 The Definition of Framework

https://youtu.be/pqeJFYwnkjE

17

commercially successful, its lifespan exceeds the lifespan of frameworks

used to build that application. When this happens, the framework is

treated like “legacy code,” and developers start to struggle and start to slow

down development. Just like technical debt.

�Technical Investment
Usually, when I tell developers that one of the definitions of framework

is technical debt, they think I am an extremist. But I have nothing against

frameworks, and—even though I wrote this book—I use frameworks for

a large part of my job. My point is that technical debt is not always a bad

thing. In the financial world, debt is not automatically a bad thing. For

example, to buy a house, you usually get a loan, which is debt. But people

tend to not consider the loan a bad thing, but an investment. On the other

hand, if a friend of yours without a stable job goes to the bank to get a loan

to buy a Ferrari, you might try to stop them.

The difference is not in the debt itself but in the reason behind that

debt. Software development has the same kind of mechanism; if you use

the no-design solution for a good reason, it is not technical debt, but a

technical investment. It’s always a kind of debt, but it is not reckless. By

the same token, frameworks, when chosen for a good reason, are not costs

but assets. If you use a framework as an investment, the cost should be

eventually paid.

�Summary
In this first, introductory, chapter I analyzed four different definitions of

framework, and for each one, I tried to highlight what consequences they

bring to a developer’s daily life.

The next chapter covers a brief history of JavaScript front-end

frameworks.

Chapter 1 The Definition of Framework

19

CHAPTER 2

Brief History of
Front-end Frameworks

Misunderstanding of the present is the inevitable consequence
of ignorance of the past.

—Marc Bloch

This chapter is a very brief history of front-end frameworks. It’s not meant

to be comprehensive, but it’s an opinionated view of the most important

milestones in the front-end ecosystem. I divided this chapter into “ages”

that contain one or more frameworks. For each age, I explain the ideas

that the frameworks of that age introduced to the front-end ecosystem and

which ideas are still valid today. Figure 2-1 shows the timeline of the most

important frameworks in front-end history.

Figure 2-1.  Timeline of front-end frameworks

© Francesco Strazzullo 2023
F. Strazzullo, Frameworkless Front-End Development,
https://doi.org/10.1007/978-1-4842-9351-5_2

https://doi.org/10.1007/978-1-4842-9351-5_2

20

�The First Age: jQuery
Created by John Resig in 2006, jQuery (see Figure 2-2) the mother of all

JavaScript frameworks. It’s by far most commonly used1 in production,

with an outstanding 77 percent of the ten million most popular websites.

Figure 2-2.  The jQuery logo

The most seminal feature of jQuery2 is the selector syntax, which lets

developers select dom nodes with a CSS selector (var element = $('.my-

class')). The same selector syntax became part of the browsers’ platform3

in 2013.

It may seem strange that this feature became so groundbreaking back

then, but you have to consider that at that time, browsers were not aligned

as they are today. This is the real value that jQuery brought to the front-end

world. jQuery created a lingua franca between the browsers. It helped the

community grow around common ground. Apart from the selector syntax,

during that time a lot of features had been added to the core project, like

AJAX requests, animations, and other utilities. It rapidly became the Swiss

Army knife of front-end development. Today, developers tend to joke

about jQuery and its “ugliness,” but it is the cornerstone of modern web

development.

1 https://w3techs.com/technologies/overview/javascript_library
2 https://jquery.com/
3 https://developer.mozilla.org/en-US/docs/Web/API/Document/
querySelector

Chapter 2 Brief History of Front-end Frameworks

https://w3techs.com/technologies/overview/javascript_library
https://jquery.com/
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector

21

�The jQuery’s Way
In the previous chapter, I described the idea of the framework’s way. I

covered how React is more similar to a framework than a library. From

this point of view, jQuery is very similar to React: A library so opinionated

and used to become a framework. JQuery’s way became evident in 2007

with the advent of jQueryUI,4 an official UIKit for jQuery applications. This

toolkit was easily pluggable, giving developers ready-to-use components

for every need. Thanks to the addition of the UI part, jQuery transformed

from a utility library to a full-fledged framework. This resonated to other

frameworks like AngularJS based on jqlite.

�The Second Age: AngularJS, Backbone,
and Ember
jQuery gave developers a lot of freedom. Remember that—even if it has its

“framework’s way”—jQuery is a library that manipulates DOM elements.

In the late 2000s, web development frameworks emerged with the Single

Page Applications (SPAs) concept. The prominent examples of this era

of JavaScript development are AngularJS, Backcone.js, and Ember. All

these frameworks implemented the Model View Controller (MVC) pattern

or one of its variations. For the sake of brevity, I cover only AngularJS

because—in my opinion—it is the one that most influenced the front-end

community (see Figure 2-3).

4 https://jqueryui.com/

Chapter 2 Brief History of Front-end Frameworks

https://jqueryui.com/

22

Figure 2-3.  The AngularJS logo

�AngularJS
If jQuery can be seen as the invention of writing, AngularJS5 is probably the

equivalent of Gutenberg’s printing press. AngularJS was developed in 2009

by Miško Hevery6 as a side project; later, he became a Google employee.

Version 1.0 went live on October 20, 2010. It reached its end-of-life7 on

December 31, 2021. AngularJS had huge success and helped make SPAs

a mainstream pattern. The main—and most infamous—characteristic of

AngularJS is its two-way data binding. Every update in the model updates

the view, and every update in the view updates the model. A simple

schema of two-way data binding is shown in Figure 2-4.

5 https://angularjs.org/
6 https://en.wikipedia.org/wiki/AngularJS#Development_history
7 https://blog.angular.io/discontinued-long-term-support-for-angularjs-
cc066b82e65a

Chapter 2 Brief History of Front-end Frameworks

https://angularjs.org/
https://en.wikipedia.org/wiki/AngularJS#Development_history
https://blog.angular.io/discontinued-long-term-support-for-angularjs-cc066b82e65a
https://blog.angular.io/discontinued-long-term-support-for-angularjs-cc066b82e65a

23

Figure 2-4.  Two-way data binding

To better understand how this mechanism works, Listing 2-1 shows an

example of ngModel, the most commonly used AngularJS construct. The

example is adapted from the official AngularJS documentation.8

Listing 2-1.  AngularJS Two-Way Data Binding Example

<script>

 angular.module('inputExample', [])

.controller('ExampleController', ['$scope', function($scope) {

 $scope.val = '1';

}]);

</script>

<form ng-controller="ExampleController">

 <input ng-model="val" />

</form>

8 https://docs.angularjs.org/api/ng/directive/ngModel

Chapter 2 Brief History of Front-end Frameworks

https://docs.angularjs.org/api/ng/directive/ngModel

24

The value in the input element is bound to the value in $scope.val,

so the initial value is ‘1’. When the user changes the value in the input,

the value of $scope.val changes accordingly. When this approach was

presented, it generated quite a “wow effect” and quickly became the

reason that people chose to work with AngularJS. Nevertheless, this

approach started to feel “stale” after some time. Binding the model and the

view in this way is not a good option for large codebases, where complex

data transformation is needed because overusing this technique slows

down the application. AngularJS introduced components and one-way

data bindings in later releases, but its popularity decreased, and it has

been replaced by modern frameworks.

�The Third Age: React, Angular, and Vue
Enter the modern age of front-end development. While I'm writing this

chapter—in 2023—the front-end ecosystem is dominated by three players:

Angular, React, and Vue. In this case, I do not discuss the consequences

because these frameworks are still widely used today. In this section, I analyze

just the first two because I think that they represent two different ways of

thinking—in fact they are poles apart—about front-end development.

�Angular
Angular9 was previously known as Angular2 because the project was

intended to be the new version of AngularJS. The team behind the project

took semantic versioning very seriously, thus Angular2 was a completely

different framework, as you saw in the previous pages. Such a different

approach between the two versions caused a wave of panic around the

project. After the first release of Angular2 in September 2016, the team

decided to rename the project Angular (see Figure 2-5).

9 https://angular.io/

Chapter 2 Brief History of Front-end Frameworks

https://angular.io/

25

Figure 2-5.  The Angular logo

Thanks to a collaboration between Google and Microsoft, its

development seemed quite troubled initially. At first, Angular’s team

announced that the framework used AtScript,10 a dedicated language

created specifically for Angular. Later, the team switched to TypeScript, a

new language developed by Microsoft. Angular was built with corporate

companies in mind. With the advent of AngularJS, many companies

created SPAs thanks to the framework. But AngularJS was not ready

for huge codebases. The use of TypeScript, ideas borrowed from other

ecosystems—such as annotations for dependency injection—and stable

release planning are probably the main reasons behind the success of

Angular.

10 The name “AtScript” comes from the @ (“at”) symbol used for annotations in
many languages and frameworks, like Java Spring.

Chapter 2 Brief History of Front-end Frameworks

26

�React
React11 (see Figure 2-6) was created internally at Facebook in 2011 and

released publicly in 2013. React made the concept of the “component”

mainstream in the front-end ecosystem, probably thanks to the adoption

of JSX, which lets developers use HTML tags in JavaScript files.

Figure 2-6.  The React logo

Another React characteristic that changed the way people work with

data in front-end applications was one-way data binding, also thanks to

external libraries like Redux. This approach was revolutionary at the time

compared to AngularJS’ standard two-way data binding. Thanks to React

and its community concept, data immutability became widely used in the

front-end ecosystem.

11 https://reactjs.org/

Chapter 2 Brief History of Front-end Frameworks

https://reactjs.org/

27

�Comparing Angular and React
At the beginning of this section, I said that Angular and React are poles

apart. Nevertheless, they are constantly compared in talks, blog posts, and so

on. I usually find these comparisons quite unuseful because they don’t give

readers a complete picture. I do not compare them in this paragraph, but

I do highlight the most important difference between the two frameworks.

Angular is built “in a laboratory” with the purpose of becoming a popular

framework, while React is created and maintained mostly by Facebook to

solve its problems. This “political” aspect is reflected in the structure of

the two frameworks. On one hand, Angular may feel “too big” and almost

bloated for some scenarios, but it has a stable API and a defined roadmap.

On the other hand, React is smaller and leaner and thus easier to

integrate with custom or existent code. But React’s API is less stable

between versions compared to Angular. The advent of hooks12 completely

changed the way React applications are built; this aspect instills fear in

some companies that require stability in the tools that they use.

�Bonus Tracks
In this last section of this chapter, I briefly cover some other technologies

that did not (yet) have the same impact on the front-end ecosystem, but

that I find interesting, nevertheless.

�Web Components
Not a framework, but a significant step in front-end history, web

components are a set of native APIs that let developers build custom

HTML components without any dependencies. They were introduced

12 https://reactjs.org/docs/hooks-intro.html

Chapter 2 Brief History of Front-end Frameworks

https://reactjs.org/docs/hooks-intro.html

28

to the public by Alex Russell at the Frontiers Conference in 2011.13 In the

last period, libraries like Lit or Stencil are becoming more common in

front-end ecosystems because they improve and make it easier to build

WebComponent. Chapter 4 covers them deeply, explaining how to leverage

them to create UI components.

�Svelte
The “disappearing frameworks” way has become a recent phenomenon

in the front-end ecosystem. In this category, frameworks are reactive by

design. During the compilation process, the framework translates syntax

in vanilla JavaScript to be lightweight and fully reactive at runtime,

so the library payload effectively “disappears” apart from some core

functions. The most famous framework in this category is Svelte (see

Figure 2-7).14

13 https://fronteers.nl/congres/2011/sessions/web-components-and-model-
driven-views-alex-russell
14 https://svelte.dev/

Chapter 2 Brief History of Front-end Frameworks

https://fronteers.nl/congres/2011/sessions/web-components-and-model-driven-views-alex-russell
https://fronteers.nl/congres/2011/sessions/web-components-and-model-driven-views-alex-russell
https://svelte.dev/

29

Figure 2-7.  The Svelte logo

Apart from the fact that you don’t serve the whole library payload,

a vanilla JavaScript approach is a great way to inject Svelte into existing

applications. As you will see in Chapter 4, the main advantage of web

components is that they act exactly as standard HTML elements, making

this kind of integration frictionless.

�Next.JS
From a high-level point of view, single page applications (SPAs) are

just empty pages until the JS Framework kicks in and starts rendering

content. This approach is unsuitable for SEO because spiders can’t

Chapter 2 Brief History of Front-end Frameworks

30

grasp the content of JS-generated elements. React enabled server-side

rendering (SSR), but doing SSR with pure React on a node server is quite

cumbersome. Next.JS15 solves this problem with an all-in-one solution

that builds an SSR-ready application and the possibility to build a set of

REST APIs within the same project of the React application. Thanks to the

acquisition by Vercel,16 it is possible to deploy a working React application

(with SSR) in minutes. See Figure 2-8.

Another important concept built in to Next.JS is ISR17 (incremental

static render). This approach allows building and keeping one or more

pages in the cache for a specific time. The system rebuilds the page with

the new data at expiration, and the cycle continues until the server runs.

This approach permits you to reduce the cost of the page’s creation and the

cost of the computation on the server. It’s also possible to re-create pages

on demand if you need them before the cache expires.

Figure 2-8.  Next.JS logo

15 https://nextjs.org/
16 https://vercel.com/
17 https://nextjs.org/docs/pages/building-your-application/data-
fetching/incremental-static-regeneration

Chapter 2 Brief History of Front-end Frameworks

https://nextjs.org/
https://vercel.com/
https://nextjs.org/docs/pages/building-your-application/data-fetching/incremental-static-regeneration
https://nextjs.org/docs/pages/building-your-application/data-fetching/incremental-static-regeneration

31

�Summary
This chapter summarized a very brief history of front-end development,

highlighting the tools that I find are the most important and “seminal” in

the recent past. I also pointed out some frameworks that I think are worth

watching and analyzing for their growth.

The next chapter covers the frameworkless way to build a

rendering engine.

Chapter 2 Brief History of Front-end Frameworks

33

CHAPTER 3

Rendering
One of the most important features of any web application is the ability to

display data. On a more “close to the metal” level, displaying data means

rendering elements to the screen or another output device. The World Wide

Web Consortium defines rendering elements programmatically with the

Document Object Model, also known as the DOM. This chapter aims to

teach you how to effectively manipulate DOM without frameworks.

The Document Object Model
The Document Object Model (DOM) is how the World Wide Web

Consortium (W3C) defines how to interact with HTML documents.

Basically, the DOM is an API that lets you manipulate the elements that

compose a web application.1

To understand the DOM, return to the basics: What is an HTML page?

From a technical standpoint, every HTML page (or fragment of one) is

a tree. If you have an HTML table like the one in Listing 3-1, its DOM

representation will be the one shown in Figure 3-1.

1 You can read more about it on the official W3C specification page at www.w3.org/
TR/1998/WD-DOM-19980720/introduction.html.

© Francesco Strazzullo 2023
F. Strazzullo, Frameworkless Front-End Development,
https://doi.org/10.1007/978-1-4842-9351-5_3

https://www.w3.org/TR/1998/WD-DOM-19980720/introduction.html
https://www.w3.org/TR/1998/WD-DOM-19980720/introduction.html
https://doi.org/10.1007/978-1-4842-9351-5_3

34

Listing 3-1.  Simple HTML Table

<html>

<body>

 <table>

 <tr>

 <th>Framework</th>

 <th>GitHub Stars</th>

 </tr>

 <tr>

 <td>Vue</td>

 <td>118917</td>

 </tr>

 <tr>

 <td>React</td>

 <td>115392</td>

 </tr>

 </table>

</body>

</html>

Chapter 3 Rendering

35

Figure 3-1.  DOM representation of a table

With this example, it becomes clear that the DOM is a way to manage

the tree defined by your HTML elements. So if you want to change the

background color of a React cell, you can write something like Listing 3-2.

Listing 3-2.  Changing the Color of a React cell

const SELECTOR = 'tr:nth-child(3) > td'

const cell = document.querySelector(SELECTOR)

cell.style.backgroundColor = 'red'

Chapter 3 Rendering

36

The code is quite straightforward. You select the right cell with the

querySelector method using a standard CSS selector, and change the

style property of the cell node. The querySelector method is just one

of the methods of Node, the basic interface that represents a node in your

HTML tree.2

Monitoring Rendering Performance
When designing a rendering engine for the web, you should keep in mind

readability and maintainability. Rendering is such an important task of

any web application that, if you decide to write it from scratch, it should be

very easy to understand and change.

Another important factor for a rendering engine is performance. This

section explains tools you can use to monitor the performance of your

rendering engine.

Chrome Developer Tools
The first tool that you are going to use is the browser, more specifically

Chrome and its well-known developer tools. One of the features that

you can use to monitor rendering performances is a handy frame

per second (FPS) meter. To make it appear, press Cmd/Ctrl+Shift+P

while the Developer tools are open to show the Command menu, as

shown in Figure 3-2. There, choose the Show Frame Per Seconds (FPS)

Meter option.

2 You can read all its methods and properties on the Mozilla Developer Network
page about it at https://developer.mozilla.org/en-US/docs/Web/API/Node.

Chapter 3 Rendering

https://developer.mozilla.org/en-US/docs/Web/API/Node

37

Figure 3-2.  The Chrome Command menu

The FPS meter will appear in the upper-right corner of the screen. It

will also display the amount of memory used by the GPU, as you can see in

Figure 3-3.

Chapter 3 Rendering

38

Figure 3-3.  Chrome FPS meter

The stats.js Widget
Another way to monitor the FPS of your application is to use stats.js,3 a

library that is easy to embed into any web application. Apart from FPS, this

tool can also display the milliseconds needed to render a frame or MBytes

of allocated memory. In the Readme file in the GitHub repository, you may

also find a simple bookmarklet to attach the widget to any website, like the

one shown in Figure 3-4.

3 https://github.com/mrdoob/stats.js/

Chapter 3 Rendering

https://github.com/mrdoob/stats.js/

39

Figure 3-4.  The stats.js widget showing ms needed to render a frame

Custom Performance Widget
Creating a widget that shows the FPS of your application is quite easy. The

main concept is to use the requestAnimationFrame callback to track the

time between one render cycle and the next one and to keep track of how

many times the callback is invoked in a second. You can see an example in

Listing 3-3.

Listing 3-3.  Custom Performance Monitor Widget

let panel

let start

let frames = 0

const create = () => {

 const div = document.createElement('div')

 div.style.position = 'fixed'

Chapter 3 Rendering

40

 div.style.left = '0px'

 div.style.top = '0px'

 div.style.width = '50px'

 div.style.height = '50px'

 div.style.backgroundColor = 'black'

 div.style.color = 'white'

 return div

}

const tick = () => {

 frames++

 const now = window.performance.now()

 if (now >= start + 1000) {

 panel.innerText = frames

 frames = 0

 start = now

 }

 window.requestAnimationFrame(tick)

}

const init = (parent = document.body) => {

 panel = create()

 window.requestAnimationFrame(() => {

 start = window.performance.now()

 parent.appendChild(panel)

 tick()

 })

}

export default {

 init

}

Chapter 3 Rendering

41

After calculating the FPS, you can display the number on a widget, as

in this case, or use the console to print the data.

Rendering Functions
This section analyzes various ways to render elements to the DOM with

pure functions. Rendering elements with pure functions means that the

DOM elements depend exclusively on the application's state. To grasp this

concept from a formal point of view, consider Figure 3-5.

You will learn about the “state” of your application and how to manage

it in Chapter 8, which covers state management.

There are a lot of advantages to using pure functions, like testability

and composability. Still, as you will see later in this chapter, some

challenges need to be discussed.

TodoMVC
The example in this chapter uses a TodoMVC template as a base.

TodoMVC4 is a project that collects many implementations of the same

to-do list written with different frameworks.5 Figure 3-6 shows a standard

TodoMVC application.

4 http://todomvc.com/
5 You can see a live demo of a TodoMVC implementation at http://todomvc.com/
examples/react/#/.

Figure 3-5.  A mathematical representation of pure functions
rendering

Chapter 3 Rendering

http://todomvc.com/
http://todomvc.com/examples/react/#/
http://todomvc.com/examples/react/#/

42

Figure 3-6.  TodoMVC example

For now, you will concentrate on rendering: You will render the items

and the toolbar. In the later chapters, you will add other elements like

HTTP requests, event handling, and so on, until you can create a complete

application.

Rendering Pure Functions
In this first example, you will use strings to render elements. You can see

the skeleton of a TodoMVC application in the next snippet.6 Listing 3-4

shows the contents of the index.html file.

6 You can read the complete code of this example at https://github.com/Apress/
Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter03/01.

Chapter 3 Rendering

https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter03/01
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter03/01

43

Listing 3-4.  Basic TodoMVC App Structure

<body>

 <section class="todoapp">

 <header class="header">

 <h1>todos</h1>

 <input

 class="new-todo"

 placeholder="What needs to be done?”>

 </header>

 <section class="main">

 <input

 id="toggle-all"

 class="toggle-all"

 type="checkbox">

 <label for="toggle-all">

 Mark all as complete

 </label>

 <ul class="todo-list">

 </section>

 <footer class="footer">

 <ul class="filters">

 All

 Active

Chapter 3 Rendering

44

 Completed

 <button class="clear-completed">

 Clear completed

 </button>

 </footer>

 </section>

 <footer class="info">

 <p>Double-click to edit a todo</p>

 </footer>

</body>

To make this application dynamic, you need to grab the to-do list data

and update it:

•	 The ul with the list of filtered to-dos

•	 The span with the number of not completed to-dos

•	 The links with filter types, adding the selected class to

the right one

Listing 3-5 is the first attempt at functional rendering.

Listing 3-5.  The First Version of a TodoMVC Rendering Function

const getTodoElement = todo => {

 const {

 text,

 completed

 } = todo

Chapter 3 Rendering

45

 return `

 <li ${completed ? 'class="completed"' : ''}>

 <div class="view">

 <input

 ${completed ? 'checked' : ''}

 class="toggle"

 type="checkbox">

 <label>${text}</label>

 <button class="destroy"></button>

 </div>

 <input class="edit" value="${text}">

 `

}

const getTodoCount = todos => {

 const notCompleted = todos

 .filter(todo => !todo.completed)

 const { length } = notCompleted

 if (length === 1) {

 return '1 Item left'

 }

 return `${length} Items left`

}

export default (targetElement, state) => {

 const {

 currentFilter,

 todos

 } = state

Chapter 3 Rendering

46

 const element = targetElement.cloneNode(true)

 const list = element.querySelector('.todo-list')

 const counter = element.querySelector('.todo-count')

 const filters = element.querySelector('.filters')

 list.innerHTML = todos.map(getTodoElement).join('')

 counter.textContent = getTodoCount(todos)

 Array

 .from(filters.querySelectorAll('li a'))

 .forEach(a => {

 if (a.textContent === currentFilter) {

 a.classList.add('selected')

 } else {

 a.classList.remove('selected')

 }

 })

 return element

}

This view function takes a target DOM element as a base. It then

clones the original node and updates it using the state parameter. It then

returns the new node. Notice that these DOM modifications are virtual;

you are working with a detached element. To create a detached element,

you clone an existing node with the cloneNode method. This newly created

DOM element is an exact clone of a real DOM element but is completely

unrelated to the document's body.

So, in Listing 3-5, no real modifications to the DOM are committed.

Keep in mind that modifying a detached DOM element is quite

performant. To connect this view function to the real DOM, you can use a

simple controller like the one in Listing 3-6.

Chapter 3 Rendering

47

Listing 3-6.  Basic Controller

import getTodos from './getTodos.js'

import view from './view.js'

const state = {

 todos: getTodos(),

 currentFilter: 'All'

}

const main = document.querySelector('.todoapp')

window.requestAnimationFrame(() => {

 const newMain = view(main, state)

 main.replaceWith(newMain)

})

This simple “rendering engine” is based on requestAnimationFrame.7

Every DOM manipulation or animation should be based on this DOM

API. Making DOM operations inside this callback makes everything more

efficient; they don’t block the main thread and they are executed right

before the next repaint is scheduled in the event loop.8

This data model is a random array generated with Faker.js,9 a small

library useful for generating random data. In Figure 3-7, you can see the

schema of the first rendering example.

7 https://developer.mozilla.org/en-US/docs/Web/API/window/
requestAnimationFrame
8 To better understand how the event loop works, I suggest watching this talk by
Jake Archibald (https://vimeo.com/254947206).
9 https://fakerjs.dev/

Chapter 3 Rendering

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://vimeo.com/254947206
https://fakerjs.dev/

48

Figure 3-7.  Static rendering schema

Reviewing the Code

This rendering approach is performant enough using

requestAnimationFrame and virtual node manipulation. But this view

function is not very readable. That code10 has two major problems:

•	 It’s just a single huge function: You have a single

function to manipulate different DOM elements. The

situation can easily become messy.

•	 There are different approaches to doing the same
thing: You create list items via strings. You just add the

text to an existing element for the todo count element.

For the filters, you manage the classList.

In the next example, you see how to divide the view into smaller

functions and try to address the consistency problem.

Listing 3-7 shows the refactored version of this application, while

Listings 3-8, 3-9, and 3-10 show the new functions for the counter, the

filters, and the list, respectively.

10 You can find the complete code of this second version at https://github.com/
Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/
Chapter03/02.

Chapter 3 Rendering

https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter03/02
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter03/02
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter03/02

49

Listing 3-7.  App View Function with Smaller View Functions

import todosView from './todos.js'

import counterView from './counter.js'

import filtersView from './filters.js'

export default (targetElement, state) => {

 const element = targetElement.cloneNode(true)

 const list = element

 .querySelector('.todo-list')

 const counter = element

 .querySelector('.todo-count')

 const filters = element

 .querySelector('.filters')

 list.replaceWith(todosView(list, state))

 counter.replaceWith(counterView(counter, state))

 filters.replaceWith(filtersView(filters, state))

 return element

}

Listing 3-8.  View Function to Show the Count of Todos

const getTodoCount = todos => {

 const notCompleted = todos

 .filter(todo => !todo.completed)

 const { length } = notCompleted

 if (length === 1) {

 return '1 Item left'

 }

 return `${length} Items left`

}

Chapter 3 Rendering

50

export default (targetElement, { todos }) => {

 const newCounter = targetElement.cloneNode(true)

 newCounter.textContent = getTodoCount(todos)

 return newCounter

}

Listing 3-9.  The View Function to Render the TodoMVC Filters

export default (targetElement, { currentFilter }) => {

 const newCounter = targetElement.cloneNode(true)

 Array

 .from(newCounter.querySelectorAll('li a'))

 .forEach(a => {

 if (a.textContent === currentFilter) {

 a.classList.add('selected')

 } else {

 a.classList.remove('selected')

 }

 })

 return newCounter

}

Listing 3-10.  The View Function to Render the List

const getTodoElement = todo => {

 const {

 text,

 completed

 } = todo

 return `

 <li ${completed ? 'class="completed"' : ''}>

 <div class="view">

 <input

Chapter 3 Rendering

51

 ${completed ? 'checked' : ''}

 class="toggle"

 type="checkbox">

 <label>${text}</label>

 <button class="destroy"></button>

 </div>

 <input class="edit" value="${text}">

 `

}

export default (targetElement, { todos }) => {

 const newTodoList = targetElement.cloneNode(true)

 const todosElements = todos

 .map(getTodoElement)

 .join('')

 newTodoList.innerHTML = todosElements

 return newTodoList

}

The code is much better now; you have three separate functions with

the same signature. These functions are the first draft of a component

library.

Component Functions

If you check the code of the app view (see Listing 3-7), you need to

manually invoke the right function. If you want to create a component-

based application, you should use a declarative way of interaction between

components. The system should automatically wire all the pieces.

Chapter 3 Rendering

52

The next application11 is an example of a rendering engine with a

component registry. To achieve this goal, the first thing that you should do

is define how to declare what component should be used in a particular

use case. In this particular scenario, you have three components: todos, a

counter, and filters. Listing 3-11 defines which component should be used

by using data-attributes.12

Listing 3-11.  App Using Data Attributes to Determine

Component Use

<section class="todoapp">

 <header class="header">

 <h1>todos</h1>

 <input

 class="new-todo"

 placeholder="What needs to be done?"

 autofocus>

 </header>

 <section class="main">

 <input

 id="toggle-all"

 class="toggle-all"

 type="checkbox">

 <label for="toggle-all">

 Mark all as complete

 </label>

11 https://github.com/Apress/Frameworkless-Front-End-Development-
2nd-ed./tree/main/Chapter03/03
12 https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_
data_attributes

Chapter 3 Rendering

https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed/tree/main/Chapter03/03
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed/tree/main/Chapter03/03
https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes
https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes

53

 <ul class="todo-list" data-component="todos">

 </section>

 <footer class="footer">

 <span

 class="todo-count"

 data-component="counter">

 1 Item Left

 <ul class="filters" data-component="filters">

 All

 Active

 Completed

 <button class="clear-completed">

 Clear completed

 </button>

 </footer>

</section>

In the previous snippet, the “name” of the component is in the data-

component attribute. This attribute will replace the imperative invocation

of view functions. Another prerequisite needed to create a component

library is a registry: An index of all the components available in the

application. The simplest registry that you can implement is a plain

JavaScript object like the one shown in Listing 3-12.

Chapter 3 Rendering

54

Listing 3-12.  Simple Component Registry

const registry = {

 'todos': todosView,

 'counter': counterView,

 'filters': filtersView

}

The keys of this registry tally with the value of the data-component

attribute. This is the key mechanism of the component-based rendering

engine. This mechanism should be applied not only to the root container

(the application view function) but also to every component that you

will create. In this way, every component can be used inside other

components. This kind of reusability is required for every component-

based application. In order to accomplish this task, every component

should “inherit” from a base component that reads the values of the data-

component attribute and automatically invoke the right function. Given

that these are pure functions, you can’t really inherit from a base object.

So you need to create a high-order function that wraps these components.

You can see an example of this kind of high-order function in Listing 3-13.

Listing 3-13.  Rendering a High-Order Function

const renderWrapper = component => {

 return (targetElement, state) => {

 const element = component(targetElement, state)

 const childComponents = element

 .querySelectorAll('[data-component]')

 Array

 .from(childComponents)

 .forEach(target => {

 const name = target

Chapter 3 Rendering

55

 .dataset

 .component

 const child = registry[name]

 if (!child) {

 return

 }

 target.replaceWith(child(target, state))

 })

 return element

 }

}

This wrapper function takes the original component and returns a new

component with the same signature. To the system, the two functions are

identical. For every DOM element with the data-component attribute, the

wrapper looks for it in the registry. If it finds something, it will invoke the

child component. But also this child component is wrapped with the same

function. In this way, you can easily navigate all the way down to the last

component, just like a recursive function does.

So, to add a component to the registry, you need a simple function

that wraps a component with the previous function, like the one shown in

Listing 3-14.

Listing 3-14.  Registry Accessor Method

const add = (name, component) => {

 registry[name] = renderWrapper(component)

}

You should also provide a method to render the root of the application

to start rendering from an initial DOM element. In this application, this

method is called renderRoot, and you can see its code in Listing 3-15.

Chapter 3 Rendering

56

Listing 3-15.  Boot Function of a Component-Based Application

const renderRoot = (root, state) => {

 const cloneComponent = root => {

 return root.cloneNode(true)

 }

 return renderWrapper(cloneComponent)(root, state)

}

The add and renderRoot methods are the public interfaces of the

component registry. The last thing to do is mix all the elements in the

controller, as shown in Listing 3-16.

Listing 3-16.  A Controller That Uses a Component Registry

import getTodos from './getTodos.js'

import todosView from './view/todos.js'

import counterView from './view/counter.js'

import filtersView from './view/filters.js'

import registry from './registry.js'

registry.add('todos', todosView)

registry.add('counter', counterView)

registry.add('filters', filtersView)

const state = {

 todos: getTodos(),

 currentFilter: 'All'

}

Chapter 3 Rendering

57

window.requestAnimationFrame(() => {

 const main = document.querySelector('.todoapp')

 const newMain = registry.renderRoot(main, state)

 main.replaceWith(newMain)

})

That’s it! You just created your first frameworkless component-based

application. You can consider it a walking skeleton13 of a real component-

based application. You can see a basic schema of this application in

Figure 3-8.

Figure 3-8.  Component registry schema

Rendering Dynamic Data
In the previous examples, you used static data. But in a real-world

application, data will change over time because of an event from the user

or the system. You will learn about event listeners in the next chapter, so

for now, you can just change the state randomly every five seconds, as you

can see in Listing 3-17.

13 https://gojko.net/2014/06/09/forget-the-walking-skeleton-put-it-
on-crutches/

Chapter 3 Rendering

https://gojko.net/2014/06/09/forget-the-walking-skeleton-put-it-on-crutches/
https://gojko.net/2014/06/09/forget-the-walking-skeleton-put-it-on-crutches/

58

Listing 3-17.  Rendering Random Data Every Five Seconds

const render = () => {

 window.requestAnimationFrame(() => {

 const main = document.querySelector('.todoapp')

 const newMain = registry.renderRoot(main, state)

 main.replaceWith(newMain)

 })

}

window.setInterval(() => {

 state.todos = getTodos()

 render()

}, 5000)

render()

Every time you have new data, you just create another virtual root

element and then replace the real one with the newly created one. This

could be performant enough for a small application like this one, but in a

non-trivial project, this approach would be a performance killer.

The Virtual DOM
The virtual DOM approach, made famous by React, is a way to make a

declarative rendering engine, like the one that you created, performant.

The main idea is that the representation of the UI is kept in memory and

synced with the “real” DOM doing the minimum number of operations

possible. This process is called reconciliation. As an example, if your “old”

real DOM element is this simple list.

 First Item

Chapter 3 Rendering

59

You want to replace it with a new list with a new element like this one:

 First Item

 Second Item

With the previous algorithm, you replace the entire ul. With the virtual

DOM method, the system should dynamically understand that the only

operation that is needed on the real DOM is the addition of the last li.

The core of the virtual DOM is a diff algorithm that easily understands

the fastest way to turn the real DOM into an exact copy of the new DOM

element that is detached (in other words, virtual) from the document. A

visual explanation of this mechanism is shown in Figure 3-9.

Figure 3-9.  Virtual DOM

A Simple Virtual DOM Implementation

You can create a very simple diff algorithm to use instead of replaceWith

in the main controller, as shown in Listing 3-18.

Chapter 3 Rendering

60

Listing 3-18.  The Main Controller Built with a diff Algorithm

const render = () => {

 window.requestAnimationFrame(() => {

 const main = document.querySelector('.todoapp')

 const newMain = registry.renderRoot(main, state)

 applyDiff(document.body, main, newMain)

 })

}

The applyDiff function parameters are the parent of the current real

DOM node, the real DOM node, and the new virtual DOM node. Let’s

analyze what this function should do.

You first need to remove the real node if the new node is not defined.

if (realNode && !virtualNode) {

 realNode.remove()

}

On the other hand, if the real node is not defined but a virtual one

exists, you should add it to the parent node.

if (!realNode && virtualNode) {

 parentNode.appendChild(virtualNode)

}

If both nodes are defined, you need to determine there are differences

between them.

if (isNodeChanged(virtualNode, realNode)) {

 realNode.replaceWith(virtualNode)

}

Chapter 3 Rendering

61

You are going to analyze the code of the isNodeChanged function

in a moment. You first need to apply the same diff algorithm to every

child node.

const realChildren = Array.from(realNode.children)

const virtualChildren = Array.from(virtualNode.children)

const max = Math.max(

 realChildren.length,

 virtualChildren.length

)

for (let i = 0; i < max; i++) {

 applyDiff(

 realNode,

 realChildren[i],

 virtualChildren[i]

)

}

The complete code of the applyDiff function is shown in Listing 3-19,

while Listing 3-20 shows the code of the isNodeChanged function.

Listing 3-19.  The applyDiff Function

const applyDiff = (

 parentNode,

 realNode,

 virtualNode) => {

 if (realNode && !virtualNode) {

 realNode.remove()

 return

 }

Chapter 3 Rendering

62

 if (!realNode && virtualNode) {

 parentNode.appendChild(virtualNode)

 return

 }

 if (isNodeChanged(virtualNode, realNode)) {

 realNode.replaceWith(virtualNode)

 return

 }

 const realChildren = Array.from(realNode.children)

 const virtualChildren = Array.from(virtualNode.children)

 const max = Math.max(

 realChildren.length,

 virtualChildren.length

)

 for (let i = 0; i < max; i++) {

 applyDiff(

 realNode,

 realChildren[i],

 virtualChildren[i]

)

 }

}

Listing 3-20.  The isNodeChanged Function

const isNodeChanged = (node1, node2) => {

 const n1Attributes = node1.attributes

 const n2Attributes = node2.attributes

 if (n1Attributes.length !== n2Attributes.length) {

 return true

 }

Chapter 3 Rendering

63

 const differentAttribute = Array

 .from(n1Attributes)

 .find(attribute => {

 const { name } = attribute

 const attribute1 = node1

 .getAttribute(name)

 const attribute2 = node2

 .getAttribute(name)

 return attribute1 !== attribute2

 })

 if (differentAttribute) {

 return true

 }

 if (node1.children.length === 0 &&

 node2.children.length === 0 &&

 node1.textContent !== node2.textContent) {

 return true

 }

 return false

}

In this implementation of a diff algorithm, you perform these checks

to decide if a node has changed compared to another one:

•	 The number of attributes is different

•	 There is at least one attribute that has changed

•	 The nodes have no children and their textContent is

different

Chapter 3 Rendering

64

You can create more refined checks in order to increase performance,

but I suggest keeping the rendering engine as simple as possible. Keep an

eye on performance using one of the tools at the beginning of the chapter

and when a problem arises, try to adapt your algorithm to your use case.

Quoting Donald Knuth:14

Premature optimization is the root of all evil (or at least most
of it) in programming.

Summary
In this chapter, you learned how to create a rendering engine for a

frameworkless application. You also explored how to build a simple

component registry and how to make your engine perform well by using a

virtual DOM algorithm.

In the next chapter, you learn how to manage events from the user and

how to integrate these events into the rendering engine.

14 https://en.wikipedia.org/wiki/Donald_Knuth

Chapter 3 Rendering

https://en.wikipedia.org/wiki/Donald_Knuth

65

CHAPTER 4

Managing DOM
Events
In the last chapter, you learned about rendering or, more generally, how

to draw DOM elements that match your data. But a web application is

not a painting; its contents change over time. The cause of these changes

is events.

Events, even though they are created by the user or the system, are

a crucial aspect of the DOM API. This chapter aims to explain how to

manage these events in a frameworkless application.

The first part of the chapter is an introduction to the DOM Events

API. You will learn what an event handler is and how to attach it to

DOM elements properly. In the second part, you will add interactivity to

managing events in your TodoMVC application.

�The YAGNI Principle
In this chapter, you will modify the rendering engine from the previous

chapter to add the DOM events management. So, why did I show you an

incomplete engine, completely ignoring the events? Some of the reasons

are readability and simplicity. But I would use the same approach for a

real-world project. I would start focusing on the most important feature

and then iterate, evolving my architecture around new needs. This is one

© Francesco Strazzullo 2023
F. Strazzullo, Frameworkless Front-End Development,
https://doi.org/10.1007/978-1-4842-9351-5_4

https://doi.org/10.1007/978-1-4842-9351-5_4

66

of the principles of Extreme Programming (XP) called YAGNI (You aren't

Gonna Need It). To better explain the YAGNI principle, I often use this

quote from Ron Jeffries,1 one of the founders of XP.

Always implement things when you actually need them, never
when you just foresee that you will need them.

This principle is good for any use case, but it is crucial for a

frameworkless project. When I talk about the frameworkless approach,

one of the criticisms that I hear often is, “You will just write another

framework that no one will maintain.” This is a risk if you overengineer

your architecture. When you’re creating your own architecture, you should

apply YAGNI very strictly, solving only the problems that you have at that

moment, and not trying to foresee the future.

Look at how I wrote the code in the last chapter as a reference for the

YAGNI principle. I (tried to) write the best code possible for rendering, and

only later I added the events to the mix.

�The DOM Events API
Events are actions in a web application that the browser tells you about so that

you can react to them in some way. There is a wide variety of event types, and

you can consult the Mozilla Developer Network for a comprehensive list.2

You can react to events triggered by the use, such as mouse events

(click, double-click, etc.), keyboard events (keydown, keyup, etc.), view

events (resize, scroll, etc.), and so on. Furthermore, the system itself can

emit events. For example, it can react to changes in your network status or

when the DOM content is loaded, as shown in Figure 4-1.

1 https://ronjeffries.com/
2 https://developer.mozilla.org/en-US/docs/Web/Events

Chapter 4 Managing DOM Events

https://ronjeffries.com/
https://developer.mozilla.org/en-US/docs/Web/Events

67

Figure 4-1.  Basic click event lifecycle

To react to an event, you need to attach a special callback, called an

event handler, to the DOM element that triggered the event.

Tip  For view or system events, attach the event handler to the
window object.

�Attach Handlers with Properties
A quick and dirty way to attach an event handler to a DOM element

is using the on* properties. Every event type has a corresponding

property on the DOM elements. A button has the onclick property, but

also ondblclick, onmouseover, onblur, onfocus, and so on. It’s quite

straightforward to attach a handler to a click event using properties, as

shown in Listing 4-1. The result of this listing is visible in Figure 4-2.

Listing 4-1.  Click Handler with onclick Property

const button = document.querySelector('button')

button.onclick = () => {

 console.log('Click managed using onclick property')

}

Chapter 4 Managing DOM Events

68

Figure 4-2.  Example of an onclick property handler

I just stated that this is a quick and dirty solution. It’s easy to grasp why

it’s quick, but why is it also dirty? Even if it works, this kind of solution is

usually considered bad practice. The main reason is that you can attach

just one handler at a time with properties. So if a piece of code overwrites

your onclick handler, your original handler is lost forever. In the next

section, you see another, better, approach: the addEventListener method.

�Attach Handlers with addEventListener
Every DOM node that can handle events implements the

EventTarget interface. The most important method of this interface is

addEventListener, which is useful for adding event handlers to a DOM

node. Listing 4-2 shows how to add a simple event handler to a button

click using this technique.

Listing 4-2.  Click Handler with addEventListener

const button = document.querySelector('button')

button.addEventListener('click', () => {

 console.log('Clicked using addEventListener')

})

Chapter 4 Managing DOM Events

69

The first parameter is the event type. In the last example, you manage

the click, but you can add listeners to handle any supported event type.

The second parameter is the callback that's invoked when the event is

triggered.

In contrast to the property method, with addEventListener, you can

attach all the handlers you need, as shown in Listing 4-3.

Listing 4-3.  Multiple Click Event Handlers

const button = document.querySelector('button')

button.addEventListener('click', () => {

 console.log('First handler')

})

button.addEventListener('click', () => {

 console.log('Second handler')

})

Keep in mind that when an element is not present anymore in the

DOM, you should remove its event listeners as well in order to prevent

memory leaks. To do that, you can use the removeEventListener method,

as shown in Listing 4-4.

Listing 4-4.  Removing Event Handlers

const button = document.querySelector('button')

const firstHandler = () => {

 console.log('First handler')

}

const secondHandler = () => {

 console.log('Second handler')

}

Chapter 4 Managing DOM Events

70

button.addEventListener('click', firstHandler)

button.addEventListener('click', secondHandler)

window.setTimeout(() => {

 button.removeEventListener('click', firstHandler)

 button.removeEventListener('click', secondHandler)

 console.log('Removed Event Handlers')

}, 1000)

The most important thing to notice in the previous snippet is that, in

order to remove an event handler, you should keep a reference to it to pass

it as a parameter in the removeEventListener method.

�The Event Object
In all the code that you have analyzed so far, event handlers were created

without parameters. But the signature of an event handler can contain

a parameter that represents the event emitted by the DOM node or the

system. Listing 4-5 simply prints this event in the console.

As you can see in Figure 4-3, the event contains a lot of useful

information, like the coordinates of the pointer, the type of event, the

element that triggered the event, and so on.

Listing 4-5.  Printing the Event Object to the Console

const button = document.querySelector('button')

button.addEventListener('click', e => {

 console.log('event', e)

})

Chapter 4 Managing DOM Events

71

Figure 4-3.  Printing the event object to the console

Any event dispatched in a web application implements the Event

interface. Based on its type, the Event object can implement a more

specific interface that extends Event. A click event (but also dblclick,

mouseup, and mousedown) implements the MouseEvent interface. This

interface contains information about the coordinates or the movement

of the pointer during the event and other useful data. The MouseEvent

interface hierarchy is shown in Figure 4-4.

Chapter 4 Managing DOM Events

72

Figure 4-4.  MouseEvent interface hierarchy

For a complete reference of Event and the other interfaces, you can

read the MDN guide.3

�The DOM Event Lifecycle
When you read some code that uses the addEventListener method to add

a handler, you usually see something like this:

button.addEventListener('click', handler, false)

The third parameter is called useCapture, and its default value is

false. This parameter has not always been optional. You should include

it for the widest possible browser compatibility. But what does it mean

3 https://developer.mozilla.org/en-US/docs/Web/API/Event

Chapter 4 Managing DOM Events

https://developer.mozilla.org/en-US/docs/Web/API/Event

73

to capture an event? And what happens if you set the useCapture to

true? I'll explain it with an example. Consider the HTML structure in

Listing 4-6.

Listing 4-6.  A Simple Nested HTML Structure

<body>

 <div>

 This is a container

 <button>Click Here</button>

 </div>

</body>

In Listing 4-7, event handlers are attached to both DOM elements—the

div and the button.

Listing 4-7.  Showing the Bubble Phase Mechanism

const button = document.querySelector('button')

const div = document.querySelector('div')

div.addEventListener('click', () => {

 console.log('Div Clicked')

}, false)

button.addEventListener('click', () => {

 console.log('Button Clicked')

}, false)

What happens if you click the button? Given that the button is inside

the div, both handlers will be invoked, starting with the button one. So

the event object starts from the DOM node that triggered it (in this case,

button) and goes up to all its ancestors. This mechanism is called the

“bubble phase” or event bubbling. You can stop the bubble chain with

the stopPropagation method from the Event interface. In Listing 4-8, this

method is used in the button handler to stop the div handler.

Chapter 4 Managing DOM Events

74

Listing 4-8.  Stopping the Bubble Chain

const button = document.querySelector('button')

const div = document.querySelector('div')

div.addEventListener('click', () => {

 console.log('Div Clicked')

}, false)

button.addEventListener('click', e => {

 e.stopPropagation()

 console.log('Button Clicked')

}, false)

In this case, the div handler is not invoked. This technique could be

useful when you have a complex layout, but if you rely often on the order

of the handlers, your code could become very hard to maintain. In these

cases, the event delegation pattern could be useful. I talk more about event

delegation at the end of this chapter.

You can use the useCapture parameter to reverse the order of

execution of the handlers. In Listing 4-9, the div handler is invoked before

the button one, as shown in Figure 4-5.

Listing 4-9.  Using useCapture to Reverse the Order of the Event

Handlers

const button = document.querySelector('button')

const div = document.querySelector('div')

div.addEventListener('click', e => {

 console.log('Div Clicked')

}, true)

button.addEventListener('click', e => {

 console.log('Button Clicked')

}, true)

Chapter 4 Managing DOM Events

75

Figure 4-5.  Using the capture phase

In other words, using true for the useCapture parameter during the

invocation of addEventListener means that you want to add the event

handler to the capture phase instead of the bubble phase. While in the

bubble phase, the handlers use a bottom-up process; in the capture phase,

it’s the opposite. The system starts managing handlers from the <html>

tag and goes deeper until the event's trigger element is managed. It’s

important to remember that browsers run the capture phase (top-down)

and then the bubble phase (bottom-up) for every DOM event that is

generated. The third phase, called the target phase, occurs when the event

reaches the target element, in this case, the button. To summarize, this is

the lifecycle of most of the DOM events:

	 1.	 Capture phase: From html to the target element.

	 2.	 Target phase: The event reaches the target element.

	 3.	 Bubble phase: From the target element to html.

A more detailed version of this lifecycle is visible in Figure 4-6.

Chapter 4 Managing DOM Events

76

Figure 4-6.  Event lifecycle

These phases exist for historical reasons. In the dark days, some

browsers just managed the capture phase, and others managed only the

bubble phase. Generally, using just bubble phase handlers is okay, but

knowing about the capture phase is important for handling some complex

situations.

Chapter 4 Managing DOM Events

77

�Using Custom Events
The only event that you have handled so far is a button click. Similarly, you

can handle many different kinds of events, like the one discussed at the

beginning of the chapter. But the DOM Events API is far more powerful.

You can define custom event types and handle them like any other event.

This is an essential part of the DOM Events API, because you can

create DOM events bound to the domain based on what happened in the

system. You can create an event handler for login or logout or something

that happened to the dataset, such as creating a new record in a list.

As you can see in Listing 4-10, to create a custom event, you have to use

the constructor function called CustomEvent.

Listing 4-10.  Firing Custom Events

const EVENT_NAME = 'FiveCharInputValue'

const input = document.querySelector('input')

input.addEventListener('input', () => {

 const { length } = input.value

 console.log('input length', length)

 if (length === 5) {

 const time = (new Date()).getTime()

 const event = new CustomEvent(EVENT_NAME, {

 detail: {

 time

 }

 })

 input.dispatchEvent(event)

 }

})

Chapter 4 Managing DOM Events

78

input.addEventListener(EVENT_NAME, e => {

 console.log('handling custom event...', e.detail)

})

While managing the input event, you check for the length of

the value itself. If the length is exactly five, you fire a special event

called FiveCharInputValue. A standard event listener with the usual

addEventListener method handles the custom event. Notice how you

can use the same API for a standard event (input) and for a custom one.

You can also pass additional data to the handlers with the detail object

that you used in the constructor (in this case, a timestamp). The result of

Listing 4-10 is visible in Figure 4-7.

Figure 4-7.  Using custom events

In the next chapter about web components, I show you how to use

custom events to let components communicate with each other.

�Adding Events to TodoMVC
Now that you have learned the basic concepts of the DOM Events API, you

can add event handling to the TodoMVC application. Take another look at

a complete TodoMVC application (see Figure 4-8) in order to understand

which events need to be handled.

Chapter 4 Managing DOM Events

79

Figure 4-8.  The complete TodoMVC application

The events that you need to manage are as follows:

•	 Delete an item: Click the cross to the right of every row.

•	 Toggle a thing as complete or not: Click the circle to

the left of every row.

•	 Change the filter: Click the filter name at the bottom.

•	 Create a new item: Input a value in the top input box

and press Enter on the keyboard.

•	 Remove all completed items: Click the Clear

Completed label.

•	 Toggle all items as completed or not: Click the

chevron in the top-left corner.

•	 Edit an item: Double-click the row, then change the

value and press Enter on the keyboard.

Chapter 4 Managing DOM Events

80

�Reviewing the Rendering Engine
Before adding event handlers to the TodoMVC application, you must

change some parts of the rendering engine. The problem with the last

implementation that you developed in the last chapter is that some parts

work with strings instead of DOM elements. In Listing 4-11, you can see

the todos component from the previous chapter.4

Listing 4-11.  Todos Component

const getTodoElement = todo => {

 const {

 text,

 completed

 } = todo

 return `

 <li ${completed ? 'class="completed"' : ''}>

 <div class="view">

 <input

 ${completed ? 'checked' : ''}

 class="toggle"

 type="checkbox">

 <label>${text}</label>

 <button class="destroy"></button>

 </div>

 <input class="edit" value="${text}">

 `

}

4 You can find the complete code of this example on GitHub at https://github.
com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/
Chapter03/05.

Chapter 4 Managing DOM Events

https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter03/05
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter03/05
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter03/05

81

export default (targetElement, { todos }) => {

 const newTodoList = targetElement.cloneNode(true)

 const todosElements = todos

 .map(getTodoElement)

 .join('')

 newTodoList.innerHTML = todosElements

 return newTodoList

}

Every todo element in the list is created with a string, then joined

together and then added to the parent list with innerHTML. But you

cannot add event handlers to strings; you need DOM nodes to invoke

addEventListener.

�The Template Element

There are a bunch of different techniques to create DOM nodes

programmatically. One of them is to use document.createElement, an

API that lets developers create new empty DOM nodes. You can see an

example in Listing 4-12.

Listing 4-12.  document.createElement Examples

const newDiv = document.createElement('div')

if(!condition){

 newDiv.classList.add('disabled')

}

const newSpan = document.createElement('span')

newSpan.textContent = 'Hello World!'

newDiv.appendChild(newSpan)

Chapter 4 Managing DOM Events

82

You could use this API to create an empty li, and then add the various

div, input, and so on. But such code will be tough to read and maintain.

Another (better) option is to keep the markup of the todo element inside

a template tag in the index.html file. A template tag is just what its name

suggests: An invisible tag you can use as a “stamp” for your rendering

engine. Listing 4-13 shows a template example of the todo item.

Listing 4-13.  todo-item template Element

<template id="todo-item">

 <div class="view">

 <input class="toggle" type="checkbox">

 <label></label>

 <button class="destroy"></button>

 </div>

 <input class="edit">

</template>

In Listing 4-14, this template is used in the todos component as a

“stamp” to create a new li DOM node.

Listing 4-14.  Using the Template to Generate todo Items

let template

const createNewTodoNode = () => {

 if (!template) {

 template = document.getElementById('todo-item')

 }

 return template

 .content

Chapter 4 Managing DOM Events

83

 .firstElementChild

 .cloneNode(true)

}

const getTodoElement = todo => {

 const {

 text,

 completed

 } = todo

 const element = createNewTodoNode()

 element.querySelector('input.edit').value = text

 element.querySelector('label').textContent = text

 if (completed) {

 element

 .classList

 .add('completed')

 element

 .querySelector('input.toggle')

 .checked = true

 }

 return element

}

export default (targetElement, { todos }) => {

 const newTodoList = targetElement.cloneNode(true)

 newTodoList.innerHTML = ''

 todos

 .map(getTodoElement)

 .forEach(element => {

Chapter 4 Managing DOM Events

84

 newTodoList.appendChild(element)

 })

 return newTodoList

}

You can then extend the template technique to all the applications,

thus creating an app component. The first step is to wrap all the markup of

the todo list in a template element, as shown in Listing 4-15.

Listing 4-15.  Using the Template for the Entire App

<body>

 <template id="todo-item">

 <!-- Put here todo item content-->

 </template>

 <template id="todo-app">

 <section class="todoapp">

 <!-- Put here app content-->

 </section>

 </template>

 <div id="root">

 <div data-component="app"></div>

 </div>

</body>

In Listing 4-16, a new component called app is created. This component

utilizes the newly created template to generate its content. This is the last

part of the template portion of the TodoMVC application. This new version

of the application5 will be the base of the event handlers architecture.

5 The complete code of the application is hosted on GitHub at https://github.
com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/
Chapter04/01.1.

Chapter 4 Managing DOM Events

https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter04/01.1
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter04/01.1
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter04/01.1
https://github.com/Apress/frameworkless-front-end-development/tree/master/Chapter04/01.1

85

Listing 4-16.  App Component with Template

let template

const createAppElement = () => {

 if (!template) {

 template = document.getElementById('todo-app')

 }

 return template

 .content

 .firstElementChild

 .cloneNode(true)

}

export default (targetElement) => {

 const newApp = targetElement.cloneNode(true)

 newApp.innerHTML = ''

 newApp.appendChild(createAppElement())

 return newApp

}

�A Basic Event-Handling Architecture
Now that you have a new rendering engine that works with DOM elements

instead of strings, you can attach event handlers to the application. Let’s

start with a high-level overview and then with a working example. The

rendering engine is based on pure functions that get a state and generate a

DOM tree.

You also know that for every new state, you can generate a new

DOM tree and apply a virtual DOM algorithm. In this scenario, you can

easily inject the event handlers in this “loop.” After every event, you will

manipulate the state and invoke the main render function again with this

new state. Figure 4-9 shows a schema of this state-render-event loop.

Chapter 4 Managing DOM Events

86

Figure 4-9.  High-level architecture of event handling

You can test the state-render-event loop by just enumerating the steps

of a simple use case for your application. Imagine a user who adds and

deletes an item from the list:

•	 Initial state: Empty todo list

•	 Render: Show the user an empty list

•	 Event: The user creates a new item named

“dummy item”

•	 New state: The todo list with one item

•	 Render: Show the user a list with one item

•	 Event: The user deletes the item

•	 New State: Empty todo list

•	 Render: Show the user an empty list

Chapter 4 Managing DOM Events

87

Now that you defined the high-level architecture, it’s time to

implement it. The code in Listing 4-17 illustrates these events and the

related state modification in the controller.

Listing 4-17.  A Controller with Events

const state = {

 todos: [],

 currentFilter: 'All'

}

const events = {

 deleteItem: (index) => {

 state.todos.splice(index, 1)

 render()

 },

 addItem: text => {

 state.todos.push({

 text,

 completed: false

 })

 render()

 }

}

const render = () => {

 window.requestAnimationFrame(() => {

 const main = document.querySelector('#root')

 const newMain = registry.renderRoot(

 main,

 state,

 events)

Chapter 4 Managing DOM Events

88

 applyDiff(document.body, main, newMain)

 })

}

render()

The entry point of the rendering engine, the renderRoot function,

now takes a third parameter that contains the events. You will see in a

moment that this new parameter is accessible to all your components. The

events are straightforward functions that modify the state and manually

invoke a new render. In a real-world application, I suggest creating some

kind of “event registry” that helps developers quickly add handlers and

automatically invoke a new render cycle. For now, this implementation is

good enough.

In Listing 4-18, the addItem handler is used by the app component to

add a new item to the list

Listing 4-18.  App Component with addItem Event

let template

const getTemplate = () => {

 if (!template) {

 template = document.getElementById('todo-app')

 }

 return template.content.firstElementChild.cloneNode(true)

}

const addEvents = (targetElement, events) => {

 targetElement

 .querySelector('.new-todo')

 .addEventListener('keypress', e => {

 if (e.key === 'Enter') {

 events.addItem(e.target.value)

Chapter 4 Managing DOM Events

89

 e.target.value = ''

 }

 })

}

export default (targetElement, state, events) => {

 const newApp = targetElement.cloneNode(true)

 newApp.innerHTML = ''

 newApp.appendChild(getTemplate())

 addEvents(newApp, events)

 return newApp

}

For every render cycle, you generate a new DOM element and attach

an event handler to the input used to insert the value of the new item.

If the user presses Enter, the addItem function is fired, and the input is

cleared. However, in the previous snippet, there is something that may

seem out of place. You clear the value of the input inside the event itself.

Why is the input’s value not part of the state like the list of todos or the

current filter? I address this topic in Chapter 8 about state management, so

for now, just ignore this problem.

The other action that the user can do in this first example is delete an

item. So, the component that needs access to events to achieve this goal is

todos, as you can see in Listing 4-19.

Listing 4-19.  The todos Component with Events

const getTodoElement = (todo, index, events) => {

 const {

 text,

 completed

 } = todo

Chapter 4 Managing DOM Events

90

 const element = createNewTodoNode()

 element.querySelector('input.edit').value = text

 element.querySelector('label').textContent = text

 if (completed) {

 element.classList.add('completed')

 element

 .querySelector('input.toggle')

 .checked = true

 }

 const handler = e => events.deleteItem(index)

 element

 .querySelector('button.destroy')

 .addEventListener('click', handler)

 return element

}

export default (targetElement, { todos }, events) => {

 const newTodoList = targetElement.cloneNode(true)

 newTodoList.innerHTML = ''

 todos

 .map((todo, index) => getTodoElement(todo, index, events))

 .forEach(element => {

 newTodoList.appendChild(element)

 })

 return newTodoList

}

Chapter 4 Managing DOM Events

91

This second example is very similar to the previous one, but this time I

created a different handler for every todo item.6

�Event Delegation
One of the features provided with most front-end frameworks, and one that

is usually well hidden under the hood, is event delegation. To understand

what event delegation is, let’s continue with an example. Listing 4-20

contains a revised version of Listing 4-19 based on event delegation.

Listing 4-20.  The todos Component with Event Delegation

const getTodoElement = (todo, index) => {

 const {

 text,

 completed

 } = todo

 const element = createNewTodoNode()

 element.querySelector('input.edit').value = text

 element.querySelector('label').textContent = text

 if (completed) {

 element.classList.add('completed')

 element

 .querySelector('input.toggle')

 .checked = true

 }

6 You can read the code of the complete application with all the events on
GitHub (https://github.com/Apress/Frameworkless-Front-End-Development-
2nd-ed./tree/main/Chapter04/01.3).

Chapter 4 Managing DOM Events

https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter04/01.3
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter04/01.3

92

 element

 .querySelector('button.destroy')

 .dataset

 .index = index

 return element

}

export default (targetElement, state, events) => {

 const { todos } = state

 const { deleteItem } = events

 const newTodoList = targetElement.cloneNode(true)

 newTodoList.innerHTML = ''

 todos

 .map((todo, index) => getTodoElement(todo, index))

 .forEach(element => {

 newTodoList.appendChild(element)

 })

 newTodoList.addEventListener('click', e => {

 if (e.target.matches('button.destroy')) {

 deleteItem(e.target.dataset.index)

 }

 })

 return newTodoList

}

The difference with the previous component is that you have just one

event handler attached to the list itself and not a separate event handler for

every row. This approach can improve performance and memory usage

when you have a very long list.

Chapter 4 Managing DOM Events

93

Notice the usage of the matches API7 to check if an element is the “real”

event target. Using this approach on a larger scale, you can also achieve

just one event handler on the body of the web page. Building an event

delegation library is out of the scope of this book, but there are a bunch of

libraries you can use in your projects. One of these libraries is gator.js,8

and it’s easy to use. Listing 4-21 shows a simple example of a handler

attached using this library.

Listing 4-21.  The gator.js Example

Gator(document).on('click', 'button.destroy', e => {

 deleteItem(e.target.dataset.index)

})

I want to give you the advice I used to close the last chapter. Don’t add

any optimization like event delegation until you need it. Remember the

YAGNI principle and consider that adding an event delegation library like

gator.js to an existing project can be done iteratively just for the most

critical parts.

�Summary
This chapter covered some basic concepts of the DOM Events API. You

learned how to attach and remove event handlers, the difference between

bubble and capture phases, and how to create custom events. Then, you

updated the TodoMVC application, adding the events to add and remove

an item.

7 https://developer.mozilla.org/en-US/docs/Web/API/Element/matches
8 https://craig.is/riding/gators

Chapter 4 Managing DOM Events

https://developer.mozilla.org/en-US/docs/Web/API/Element/matches
https://craig.is/riding/gators

94

Finally, you learned about the concept of event delegation, an

important pattern to keep your frameworkless applications performant

enough for non-trivial contexts.

In the next chapter, you learn how to work effectively with web

components, which are a standard way to create components in web

applications.

Chapter 4 Managing DOM Events

95

CHAPTER 5

Web Components
All the major front-end frameworks that developers use today have

something in common. They all use components as basic blocks for

building the UI. Chapter 3 showed you how to create a component registry

based on pure functions. On (almost) all modern browsers, it’s possible to

create components for your web applications with a set of native APIs. This

suite of APIs is called Web Components.

�The APIs
Web Components consist of three main technologies that let developers

build and publish reusable UI components:

•	 HTML templates: The <template> tag is useful if you

want to keep content that is not rendered but that

can be used by JavaScript code as a “stamp” to create

dynamic content.

•	 Custom elements: This API lets developers create their

own fully-featured DOM elements.

© Francesco Strazzullo 2023
F. Strazzullo, Frameworkless Front-End Development,
https://doi.org/10.1007/978-1-4842-9351-5_5

https://doi.org/10.1007/978-1-4842-9351-5_5

96

•	 Shadow DOM:1 This technique is useful if the Web

Components should not be affected by the DOM

outside the component itself. It’s handy if you’re

creating a component library or a widget that you want

to share with the world.

�The Custom Elements API
The Custom Elements API is the core factor of the Web Components suite.
In a nutshell, it permits you to create custom HTML tags like this one:

<app-calendar/>

It is no coincidence that I used the name app-calendar. When you

create a custom tag with the Custom Elements API, you have to use at least

two words separated by a dash. Every one-word tag is for the sole use of

the World Wide Web Consortium (W3C). Listing 5-1 shows a Hello World!

label, the simplest custom element possible.

Note  A custom element is just a JavaScript class that extends
HTMLElement.

Listing 5-1.  HelloWorld Custom Element

export default class HelloWorld extends HTMLElement {

 connectedCallback () {

 window.requestAnimationFrame(() => {

1 Shadow DOM and Virtual DOM solve two completely different problems.
Shadow DOM is about encapsulation, while Virtual DOM is about performances.
For more information, I suggest reading this post: https://develoger.com/
shadow-dom-virtual-dom-889bf78ce701.

Chapter 5 Web Components

https://develoger.com/shadow-dom-virtual-dom-889bf78ce701
https://develoger.com/shadow-dom-virtual-dom-889bf78ce701

97

 this.innerHTML = '<div>Hello World!</div>'

 })

 }

}

connectedCallback is one of the lifecycle methods of a custom

element. This method is invoked when the component is attached to the

DOM. It’s very similar to the componentDidMount method from React. It’s a

good place to render the content of the component, such as to start timers

or to fetch data from the network. Similarly, the disconnectedCallback is

invoked when the component is removed from the DOM. This is a useful

method for any cleanup operation.

To actually use this newly created component, you need to add it to

the browser component registry. To achieve this goal, you need to use

the define method of the window.customElements property, as shown in

Listing 5-2.

Listing 5-2.  Adding HelloWorld to Custom Elements Registry

import HelloWorld from './components/HelloWorld.js'

window

 .customElements

 .define('hello-world', HelloWorld)

To add a component to the browser component registry means to

connect a tag name—'hello-world' in this case—to a custom element

class. After that, you can simply use the component using the custom tag

that you created:

(<hello-world/>)

Chapter 5 Web Components

98

�Managing Attributes

The most important feature of Web Components is that developers can

make new components that are compatible with any framework out there.

Not just with React or Angular, but with any web application out there,

like some legacy application built with Java Server Pages or some other

old tool. But, in order to achieve this goal, your components need to have

the same public API of any other standard HTML element. So if you want

to add an attribute to a custom element, you need to be sure that you

can manage this attribute the same as any other attribute. For a standard

element, like a <input>, you can set an attribute in three ways.

The first, and most intuitive, way is to add the attribute directly on the

HTML markup.

<input type="text" value="Frameworkless">

On the JavaScript side, you can manipulate the value attribute with

a setter.

input.value = 'Frameworkless'

Alternatively, it’s possible to use the setAttribute method.

input.setAttribute('value', 'Frameworkless')

All these methods accomplish the same result: They change the value

attribute of the input element. They are also synchronized. If you put the

value via the markup, you will read the same value with the getter or the

getAttribute method. In the same way, if you change the value with the

setter or the setAttribute method, the markup will synchronize with the

new attribute.

If you want to create an attribute for a custom element, you need

to keep in mind this characteristic of HTML elements. Listing 5-3 adds

a color attribute to the HelloWorld component, which you can use to

change the color of the label.

Chapter 5 Web Components

99

Listing 5-3.  HelloWorld with an Attribute

const DEFAULT_COLOR = 'black'

export default class HelloWorld extends HTMLElement {

 get color () {

 return this.getAttribute('color') || DEFAULT_COLOR

 }

 set color (value) {

 this.setAttribute('color', value)

 }

 connectedCallback () {

 window.requestAnimationFrame(() => {

 const div = document.createElement('div')

 div.textContent = 'Hello World!'

 div.style.color = this.color

 this.appendChild(div)

 })

 }

}

As you can see, the color getter/setter is just a wrapper around

getAttribute/setAttribute. So, the three ways to set an attribute are

automatically synchronized. To set the color of the component, you can

use the setter (or setAttribute), or you can just set the color via markup.

You can see an example of the color attribute in Listing 5-4, and the

related result is shown in Figure 5-1.

Chapter 5 Web Components

100

Listing 5-4.  Using the Color Attribute for the HelloWorld

Component

<hello-world></hello-world>

<hello-world color="red"></hello-world>

<hello-world color="green"></hello-world>

Figure 5-1.  The HelloWorld component

When you use this approach when designing attributes for a Web

Component, the component itself is very easy to release to other

developers. You just need to release the code of the component in

some kind of CDN, and then everyone can use it, without any specific

instructions. You just defined an attribute in the same way the W3C did for

standard components.

Nevertheless, this approach comes with a drawback: HTML attributes

are strings. When you're in need of an attribute that is not a string, you

need to convert the attribute before using it.

�attributeChangedCallback

In Listing 5-4, you read the value of the color attribute in the

connectedCallback method and apply that value to the DOM. But what

happens if you change the attribute after the initial render with a simple

click event handler, as shown in Listing 5-5?

Chapter 5 Web Components

101

Listing 5-5.  Changing the Color of HelloWorld Component

const changeColorTo = color => {

 document

 .querySelectorAll('hello-world')

 .forEach(helloWorld => {

 helloWorld.color = color

 })

}

document

 .querySelector('button')

 .addEventListener('click', () => {

 changeColorTo('blue')

 })

When the button is clicked, the handler changes the color attribute of

every HelloWorld component to blue. But on the screen, nothing happens.

A quick and dirty way to solve this problem is to add some kind of DOM

manipulation in the setter:

set color (value) {

 this.setAttribute('color', value)

 //Update DOM with the new color

}

But this approach is very fragile because if you use the setAttribute

method instead of the color setter, the DOM will not be updated either.

The right way to manage attributes that can change during the lifecycle of a

component is to use the attributeChangedCallback method. This method

(like its name suggests) is invoked every time some attributes change. You

can modify the code of the HelloWorld component, like in Listing 5-6, to

update the DOM every time a new color attribute is provided.

Chapter 5 Web Components

102

Listing 5-6.  Updating the Color of the Label

const DEFAULT_COLOR = 'black'

export default class HelloWorld extends HTMLElement {

 static get observedAttributes () {

 return ['color']

 }

 get color () {

 return this.getAttribute('color') || DEFAULT_COLOR

 }

 set color (value) {

 this.setAttribute('color', value)

 }

 attributeChangedCallback (name, oldValue, newValue) {

 if (!this.div) {

 return

 }

 if (name === 'color') {

 this.div.style.color = newValue

 }

 }

 connectedCallback () {

 window.requestAnimationFrame(() => {

 this.div = document.createElement('div')

 this.div.textContent = 'Hello World!'

 this.div.style.color = this.color

 this.appendChild(this.div)

 })

 }

}

Chapter 5 Web Components

103

The attributeChangedCallback method accepts three parameters—

the name of the attribute that is changed, the old value of the attribute, and

the new value.

Note N ot every attribute will trigger attributeChangedCallback,
only the attributes listed in the observedAttributes array.

�Virtual DOM Integration

The Virtual DOM algorithm from Chapter 2 is completely pluggable into

any custom element. Listing 5-7 shows a new version of the HelloWorld

component that, every time that the color changes, invokes the Virtual

DOM algorithm to modify the color of the label.2

Listing 5-7.  Using Virtual DOM in a Custom Element

import applyDiff from './applyDiff.js'

const DEFAULT_COLOR = 'black'

const createDomElement = color => {

 const div = document.createElement('div')

 div.textContent = 'Hello World!'

 div.style.color = color

 return div

}

export default class HelloWorld extends HTMLElement {

 static get observedAttributes () {

 return ['color']

 }

2 The complete code of this example is visible at https://github.com/Apress/
Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter05/00.3.

Chapter 5 Web Components

https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter05/00.3
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter05/00.3

104

 get color () {

 return this.getAttribute('color') || DEFAULT_COLOR

 }

 set color (value) {

 this.setAttribute('color', value)

 }

 attributeChangedCallback (name, oldValue, newValue) {

 if (!this.hasChildNodes()) {

 return

 }

 applyDiff(

 this,

 this.firstElementChild,

 createDomElement(newValue)

)

 }

 connectedCallback () {

 window.requestAnimationFrame(() => {

 this.appendChild(createDomElement(this.color))

 })

 }

}

For this scenario, using a Virtual DOM is clearly over-engineering. But

it can be useful when your component has a lot of attributes. In that case,

the code would be much more readable.

Chapter 5 Web Components

105

�Custom Events

For this next example, you will analyze a more complex component, called

GitHubAvatar. The purpose of this component is to show the avatar of a

GitHub user given their username. To use this component, you just need to

set the user attribute.

<github-avatar user="francesco-strazzullo"></github-avatar>

When the component is connected to the DOM, it shows a “loading”

placeholder. Then it uses the GitHub Rest APIs to fetch the avatar image

URL. If the request succeeds, the avatar is shown; otherwise, an error

placeholder is shown. Figure 5-2 explains how this component works.

Figure 5-2.  Flowchart of the GitHubAvatar component

Chapter 5 Web Components

106

You can look at the code of the GitHubAvatar component in

Listing 5-8. For the sake of simplicity, I didn’t manage changes in the user

attribute with the attributeChangedCallback.

Listing 5-8.  The GitHubAvatar Component

const ERROR_IMAGE = 'https://files-82ee7vgzc.now.sh'

const LOADING_IMAGE = 'https://files-8bga2nnt0.now.sh'

const getGitHubAvatarUrl = async user => {

 if (!user) {

 return

 }

 const url = `https://api.github.com/users/${user}`

 const response = await fetch(url)

 if (!response.ok) {

 throw new Error(response.statusText)

 }

 const data = await response.json()

 return data.avatar_url

}

export default class GitHubAvatar extends HTMLElement {

 constructor () {

 super()

 this.url = LOADING_IMAGE

 }

 get user () {

 return this.getAttribute('user')

 }

Chapter 5 Web Components

107

 set user (value) {

 this.setAttribute('user', value)

 }

 render () {

 window.requestAnimationFrame(() => {

 this.innerHTML = ''

 const img = document.createElement('img')

 img.src = this.url

 this.appendChild(img)

 })

 }

 async loadNewAvatar () {

 const { user } = this

 if (!user) {

 return

 }

 try {

 this.url = await getGitHubAvatarUrl(user)

 } catch (e) {

 this.url = ERROR_IMAGE

 }

 this.render()

 }

 connectedCallback () {

 this.render()

 this.loadNewAvatar()

 }

}

Chapter 5 Web Components

108

If you follow the previous flowchart, the code should be easy to read.

To fetch the data from the GitHub API, the code uses fetch, a native way

in modern browsers to make asynchronous HTTP requests. (You will learn

more about this topic in the next chapter.) Figure 5-3 shows the result of

various instances of the component.

Figure 5-3.  The GitHubAvatar Example

What if you want to react to the result of the HTTP request from the

outside of the component itself? Remember that, when it’s possible, a

custom element should behave exactly like a standard DOM element.

In the previous examples, you used attributes to pass information to a

component, just like any other element. Following the same reasoning to

get information from a component, you should use DOM events. Chapter 3

talked about the Custom Events API, which makes it possible to create

DOM events that are bound to the domain and not to user interaction

with the browser. Listing 5-9 shows a new version of the GitHubAvatar

component that can emit two events—the first one when the avatar is

loaded and the other one when an error occurs.

Listing 5-9.  GitHubAvatar with Custom Events

const AVATAR_LOAD_COMPLETE = 'AVATAR_LOAD_COMPLETE'

const AVATAR_LOAD_ERROR = 'AVATAR_LOAD_ERROR'

export const EVENTS = {

 AVATAR_LOAD_COMPLETE,

 AVATAR_LOAD_ERROR

}

Chapter 5 Web Components

109

export default class GitHubAvatar extends HTMLElement {

 ...

 onLoadAvatarComplete () {

 const event = new CustomEvent(AVATAR_LOAD_COMPLETE, {

 detail: {

 avatar: this.url

 }

 })

 this.dispatchEvent(event)

 }

 onLoadAvatarError (error) {

 const event = new CustomEvent(AVATAR_LOAD_ERROR, {

 detail: {

 error

 }

 })

 this.dispatchEvent(event)

 }

 async loadNewAvatar () {

 const { user } = this

 if (!user) {

 return

 }

 try {

 this.url = await getGitHubAvatarUrl(user)

 this.onLoadAvatarComplete()

 } catch (e) {

 this.url = ERROR_IMAGE

 this.onLoadAvatarError(e)

 }

Chapter 5 Web Components

110

 this.render()

 }

 ...

}

Listing 5-10 attaches event handlers for the two kinds of events. In

Figure 5-4, you can see that the right handlers are invoked.

Listing 5-10.  Attaching Event Handlers to GitHubAvatar Events

import { EVENTS } from './components/GitHubAvatar.js'

document

 .querySelectorAll('github-avatar')

 .forEach(avatar => {

 avatar

 .addEventListener(

 EVENTS.AVATAR_LOAD_COMPLETE,

 e => {

 console.log(

 'Avatar Loaded',

 e.detail.avatar

)

 })

 avatar

 .addEventListener(

 EVENTS.AVATAR_LOAD_ERROR,

 e => {

 console.log(

 'Avatar Loading error',

 e.detail.error

)

 })

 })

Chapter 5 Web Components

111

Figure 5-4.  GitHubAvatar with events

�Using Web Components for TodoMVC
It’s time to build the usual TodoMVC application. This time you are going

to use Web Components. Most of the code will be quite similar to the

previous versions based on functions. I decided to split the application

into three components—todomvc-app, todomvc-list, and todomvc-

footer—as shown in Figure 5-5.

Figure 5-5.  TodoMVC components

The first thing to analyze is the HTML part of the application. As

you can see in Listing 5-11, this example uses the <template> element

extensively.

Chapter 5 Web Components

112

Listing 5-11.  HTML for TodoMVC Application with Web

Components

<body>

 <template id="footer">

 <footer class="footer">

 <ul class="filters">

 All

 Active

 Completed

 <button class="clear-completed">

 Clear completed

 </button>

 </footer>

 </template>

 <template id="todo-item">

 <div class="view">

 <input

Chapter 5 Web Components

113

 class="toggle" type="checkbox">

 <label></label>

 <button class="destroy"></button>

 </div>

 <input class="edit">

 </template>

 <template id="todo-app">

 <section class="todoapp">

 <header class="header">

 <h1>todos</h1>

 <input class="new-todo"

 autofocus>

 </header>

 <section class="main">

 <input

 id="toggle-all"

 class="toggle-all"

 type="checkbox">

 <label for="toggle-all">

 Mark all as complete

 </label>

 <todomvc-list></todomvc-list>

 </section>

 <todomvc-footer></todomvc-footer>

 </section>

 </template>

 <todomvc-app></todomvc-app>

</body>

Chapter 5 Web Components

114

To keep the code simple, it only implements two of the many events

that are present in the complete TodoMVC: adding an item and deleting it.

This way, you can skip the code of the todomvc-footer and concentrate on

todomvc-app and todomvc-list. (If you’re interested, it’s possible to check

the complete code on GitHub.3) Let’s start with the list in Listing 5-12.

Listing 5-12.  TodoMVC List Web Component

const TEMPLATE = '<ul class="todo-list">'

export const EVENTS = {

 DELETE_ITEM: 'DELETE_ITEM'

}

export default class List extends HTMLElement {

 static get observedAttributes () {

 return [

 'todos'

]

 }

 get todos () {

 if (!this.hasAttribute('todos')) {

 return []

 }

 return JSON.parse(this.getAttribute('todos'))

 }

 set todos (value) {

 this.setAttribute('todos', JSON.stringify(value))

 }

3 https://github.com/Apress/Frameworkless-Front-End-Development-
2nd-ed./tree/main/Chapter05/01

Chapter 5 Web Components

https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed/tree/main/Chapter05/01
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed/tree/main/Chapter05/01

115

 onDeleteClick (index) {

 const event = new CustomEvent(

 EVENTS.DELETE_ITEM,

 {

 detail: {

 index

 }

 }

)

 this.dispatchEvent(event)

}

createNewTodoNode () {

 return this.itemTemplate

 .content

 .firstElementChild

 .cloneNode(true)

}

getTodoElement (todo, index) {

 const {

 text,

 completed

 } = todo

 const element = this.createNewTodoNode()

 element.querySelector('input.edit').value = text

 element.querySelector('label').textContent = text

 if (completed) {

 element.classList.add('completed')

 element

Chapter 5 Web Components

116

 .querySelector('input.toggle')

 .checked = true

 }

 element

 .querySelector('button.destroy')

 .dataset

 .index = index

 return element

}

updateList () {

 this.list.innerHTML = ''

 this.todos

 .map(this.getTodoElement)

 .forEach(element => {

 this.list.appendChild(element)

 })

 }

 connectedCallback () {

 this.innerHTML = TEMPLATE

 this.itemTemplate = document

 .getElementById('todo-item')

 this.list = this.querySelector('ul')

 this.list.addEventListener('click', e => {

 if (e.target.matches('button.destroy')) {

 this.onDeleteClick(e.target.dataset.index)

 }

 })

Chapter 5 Web Components

117

 this.updateList()

 }

 attributeChangedCallback () {

 this.updateList()

 }

}

Most of this code is similar to the code in the previous chapter. One of

the differences is that you use a custom event to tell the outer world what

is happening when the user clicks the Destroy button. The only attribute

that this component accepts as input is the list of todo items. Every time

that attribute changes, the list is rendered again. As you saw earlier in this

chapter, it’s quite easy to attach a Virtual DOM mechanism here.

Let’s continue with the code of the todomvc-app component in

Listing 5-13.

Listing 5-13.  TodoMVC Application Components

import { EVENTS } from './List.js'

export default class App extends HTMLElement {

 constructor () {

 super()

 this.state = {

 todos: [],

 filter: 'All'

 }

 this.template = document

 .getElementById('todo-app')

 }

Chapter 5 Web Components

118

 deleteItem (index) {

 this.state.todos.splice(index, 1)

 this.syncAttributes()

 }

 addItem (text) {

 this.state.todos.push({

 text,

 completed: false

 })

 this.syncAttributes()

 }

 syncAttributes () {

 this.list.todos = this.state.todos

 this.footer.todos = this.state.todos

 this.footer.filter = this.state.filter

 }

 connectedCallback () {

 window.requestAnimationFrame(() => {

 const content = this.template

 .content

 .firstElementChild

 .cloneNode(true)

 this.appendChild(content)

 this

 .querySelector('.new-todo')

 .addEventListener('keypress', e => {

 if (e.key === 'Enter') {

 this.addItem(e.target.value)

Chapter 5 Web Components

119

 e.target.value = ''

 }

 })

 this.footer = this

 .querySelector('todomvc-footer')

 this.list = this.querySelector('todomvc-list')

 this.list.addEventListener(

 EVENTS.DELETE_ITEM,

 e => {

 this.deleteItem(e.detail.index)

 }

)

 this.syncAttributes()

 })

 }

}

This component has no attributes. It has an internal state instead.

Events from the DOM (standard or custom) change this state, and then

the component syncs its state with the attributes of its children in the

syncAttributes method. You will learn more about which components

should have an internal state in Chapter 8.

�Web Components vs Rendering Functions
Now that you have seen Web Components in action, you can compare

them with the rendering functions approach that was analyzed in

Chapters 2 and 3. First consider some pros and cons of these two ways to

render DOM elements.

Chapter 5 Web Components

120

�Code Style
To create a Web Component means to extend an HTMLElement, so it

requires working with classes. If you’re a functional programming

enthusiast, you may feel some kind of itch working this way. On the other

hand, if you’re familiar with languages based on classes like Java or C# you

may feel more confident with Web Components instead of functions.

There is no real winner here; it’s really up to what you like most. As

you saw in the last TodoMVC implementation you can take your rendering

functions and wrap them with Web Components over time, so you can

adapt your design to your scenario. For example, you can start with simple

rendering functions and then wrap them in a Web Component if you need

to release them in some kind of library.

�Testability
This is an easy win for the rendering functions. To easily test rendering

functions or custom elements, you just need a test runner like Jest4

integrated into JSDom. In any case, rendering functions are easier to

test because they have less overhead: They are just plain old JavaScript

functions.

�Portability
Web Components exist to be portable. The fact that they act exactly as

any other DOM element is a killer feature if you need to use the same

component in more applications. Later in the book, you learn how

portability is a key factor when refactoring legacy projects.

4 https://jestjs.io

Chapter 5 Web Components

https://jestjs.io

121

�Community
Component classes are a standard way to create DOM UI elements in most

frameworks out there. This is a very useful thing to keep in mind if you

have a large team or a team that needs to grow quickly. The more similar

your code is to what people usually see, the more your code is readable.

�Disappearing Frameworks
A very interesting side effect of the emergence of Web Component is

the birth of a bunch of tools that are called disappearing (or invisible)

frameworks. The basic idea is to write code with any other UI framework

like React. Later, when you create the production bundle, the output will

be just standard Web Components. In other words, during “compile time,”

the framework will just dissolve. The two most famous disappearing

frameworks are Svelte5 and Stencil.js.6

Stencil.js is based on TypeScript and JSX, and at first, it seems

a strange mix between Angular and React. I consider Stencil.js

particularly interesting because it’s the tool that the team behind Ionic7

built to create a new version of the famous mobile UI Kit entirely based on

Web Components. Listing 5-14 shows how to build a simple Stencil.js

component.

Listing 5-14.  A Simple Stencil.js Component

import { Component, Prop } from '@stencil/core'

@Component({

 tag: 'hello-world'

5 https://svelte.technology
6 https://stenciljs.com
7 https://ionicframework.com

Chapter 5 Web Components

https://svelte.technology
https://stenciljs.com
https://ionicframework.com

122

})

export class HelloWorld {

 @Prop() name: string

 render() {

 return (

 <p>

 Hello {this.name}!

 </p>

)

 }

}

Once this code is compiled, you can use this component like any other

custom element.

<hello-world name="Francesco"></hello-world>

�Summary
In this chapter, you learned about the main APIs behind the Web

Component standard. You explored the main API of the suite, the Custom

Elements API. You then built a new version of the TodoMVC application

based on Web Components and evaluated the differences between

this approach and rendering functions. At last, you learned what a

“disappearing framework” is and how to create a very simple component

with Stencil.js.

The next chapter focuses on building a frameworkless HTTP client to

make asynchronous requests.

Chapter 5 Web Components

123

CHAPTER 6

HTTP Requests
In the previous chapters, you learned to render DOM elements and to

react to events from systems or users, but a front-end application feeds on

asynchronous data from a server. This chapter aims to show you how to

build an HTTP client in a frameworkless way.

�A Bit of History: The Birth of AJAX
Before the late 1990s, a complete page reload was required for every

user action that needed any kind of data from the server. For people

approaching web development (or web in general), today we use what

we call server-side rendering. Starting in 1999, a group of applications—

including Outlook, Gmail, and Google Maps—began to use a new

technique: Loading data from the server after the initial page load without

completely reloading the page. In 2005, Jesse James Garrett's famous

blog post1 named this technique AJAX, an acronym for “Asynchronous

JavaScript and XML.”

The central part of any AJAX application is the XMLHttpRequest object.

As you will see later in this chapter, with this object, you can fetch data

from the server with an HTTP request. The World Wide Web Consortium

made the first specification draft for this object in 2006.

1 https://adaptivepath.org/ideas/ajax-new-approach-web-applications/

© Francesco Strazzullo 2023
F. Strazzullo, Frameworkless Front-End Development,
https://doi.org/10.1007/978-1-4842-9351-5_6

https://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://doi.org/10.1007/978-1-4842-9351-5_6

124

As you just read, the “X” in AJAX stands for XML. When AJAX came out,

web applications received data in XML from the server. Today, however,

the more friendly (for JavaScript applications) JSON format is used. See

Figure 6-1.

Figure 6-1.  Ajax vs non-Ajax architecture

�A To-Do List REST Server
To test the clients you will develop, you need a server from which you can

fetch data. Listing 6-1 shows a straightforward REST server for Node.js with

express,2 a simple library3 that quickly creates REST servers. This dummy

server uses a temporary array to store the data related to the to-do list

instead of a real database. To generate fake IDs, the program uses a small

npm package called uuid4 that lets developers generate UUIDs.

2 https://expressjs.com/
3 There are a lot of alternatives to express, like fastify (https://www.fastify.io/)
or — if you prefer to build lambda functions — Claudia.js (https://claudiajs.
com/) or serverless frameworks (https://www.serverless.com/).
4 https://www.npmjs.com/package/uuid

Chapter 6 HTTP Requests

https://expressjs.com/
https://www.fastify.io/
https://claudiajs.com/
https://claudiajs.com/
https://www.serverless.com/
https://www.npmjs.com/package/uuid

125

Listing 6-1.  A Dummy REST Server for Node.js

const app = express()

let todos = []

app.use(express.static('public'))

app.use(bodyParser.json())

app.get('/api/todos', (req, res) => {

 res.send(todos)

})

app.post('/api/todos', (req, res) => {

 const newTodo = {

 completed: false,

 ...req.body,

 id: uuidv4()

 }

 todos.push(newTodo)

 res.status(201)

 res.send(newTodo)

})

app.patch('/api/todos/:id', (req, res) => {

 const indexToUpdate = todos.findIndex(

 t => t.id === req.params.id

)

 const oldTodo = todos[indexToUpdate]

 const newTodo = {

 ...oldTodo,

 ...req.body

 }

Chapter 6 HTTP Requests

126

 todos[indexToUpdate] = newTodo

 res.send(newTodo)

})

app.put('/api/todos/:id', (req, res) => {

 const indexToUpdate = todos.findIndex(

 t => t.id === req.params.id

)

 todos[indexToUpdate] = req.body

 res.send(req.body)

})

app.delete('/api/todos/:id', (req, res) => {

 todos = todos.filter(

 t => t.id !== req.params.id

)

 res.status(204)

 res.send()

})

app.listen(PORT)

�Representational State Transfer (REST)
This section explains the meaning of REST, the architecture behind the

dummy server you just saw. If you already know the meaning of REST, you

can skip this section.

REST is an acronym for Representational State Transfer, and it’s a way

to design and develop web services. The main abstraction of any REST

API are the resources. You need to split your domain into resources; every

Chapter 6 HTTP Requests

127

resource should be read or manipulated, accessing specific URIs (Uniform

Resource Identifiers). For example, to read the list of the users of your

domain, you use the https://api.example.com/users/ URI. To read

the data of a specific user, the URI should have this form—https://api.

example.com/users/id1—where id1 is the ID of the user you want to read.

To manipulate (add, remove, or update) users, the same URIs are used,

but with different HTTP verbs. Table 6-1 contains some examples of REST

APIs for manipulating a list of users.

Table 6-1.  REST API Cheat Sheet

Action URI HTTP Verb

Read all users https://api.example.com/

users/

GET

Read the data of the user with ID 1 https://api.example.com/

users/1

GET

Create a new user https://api.example.com/

users/

POST

Replace the data of the user with ID 1 https://api.example.com/

users/1

PUT

Update the data of the user with ID 1 https://api.example.com/

users/1

PATCH

Delete the user with ID 1 https://api.example.com/

users/1

DELETE

The actions listed in this table are quite straightforward. The only

topic that may need an explanation is the difference between “update the

data” (with PATCH) and “replace the data” (with PUT). When you use the

verb PUT, you must pass in the body of the HTTP requests to the new user,

complete in all its parts. On the other hand, when PATCH is used, the body

Chapter 6 HTTP Requests

https://api.example.com/users/
https://api.example.com/users/id1
https://api.example.com/users/id1
https://api.example.com/users/
https://api.example.com/users/
https://api.example.com/users/1
https://api.example.com/users/1
https://api.example.com/users/
https://api.example.com/users/
https://api.example.com/users/1
https://api.example.com/users/1
https://api.example.com/users/1
https://api.example.com/users/1
https://api.example.com/users/1
https://api.example.com/users/1

128

should contain only the differences from the previous state. Note that, in

the server in the previous paragraph, the newTodo object is merging the old

to-do with the request body.5

�Code Examples
In this section, you see how to create two different HTTP clients based on

two different browser APIs—XMLHttpRequest and Fetch.

�The Basic Structure
To show how HTTP clients work, I always use the same simple application

shown in Figure 6-2. To keep the focus on the HTTP client, I do not use the

TodoMVC application, but a simpler application with some buttons that

execute the HTTP requests and print the results on-screen.6

Figure 6-2.  The application used to test the HTTP clients

In Listing 6-2, you can see the index.html file of this application, while

Listing 6-3 shows the main controller.

5 To deepen the REST API topic, I suggest reading RESTful Web APIs: Services for a
Changing World by Leonard Richardson and Mike Amundsen (www.amazon.com/
gp/product/1449358063).
6 The code of this application (and of the other implementations) is available at
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./
tree/main/Chapter06.

Chapter 6 HTTP Requests

https://www.amazon.com/gp/product/1449358063
https://www.amazon.com/gp/product/1449358063
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter06
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter06

129

Listing 6-2.  HTML for the HTTP Client Application

<html>

<body>

 <button data-list>Read Todos list</button>

 <button data-add>Add Todo</button>

 <button data-update>Update todo</button>

 <button data-delete>Delete Todo</button>

 <div></div>

</body>

</html>

Listing 6-3.  Main Controller for the HTTP Client Application

import todos from './todos.js'

const NEW_TODO_TEXT = 'A simple todo Element'

const printResult = (action, result) => {

 const time = (new Date()).toTimeString()

 const node = document.createElement('p')

 �node.textContent = '${action.toUpperCase()}: ${JSON.

stringify(result)} (${time})'

 document

 .querySelector('div')

 .appendChild(node)

}

const onListClick = async () => {

 const result = await todos.list()

 printResult('list todos', result)

}

Chapter 6 HTTP Requests

130

const onAddClick = async () => {

 const result = await todos.create(NEW_TODO_TEXT)

 printResult('add todo', result)

}

const onUpdateClick = async () => {

 const list = await todos.list()

 const { id } = list[0]

 const newTodo = {

 id,

 completed: true

 }

 const result = await todos.update(newTodo)

 printResult('update todo', result)

}

const onDeleteClick = async () => {

 const list = await todos.list()

 const { id } = list[0]

 const result = await todos.delete(id)

 printResult('delete todo', result)

}

document

 .querySelector('button[data-list]')

 .addEventListener('click', onListClick)

document

 .querySelector('button[data-add]')

 .addEventListener('click', onAddClick)

Chapter 6 HTTP Requests

131

document

 .querySelector('button[data-update]')

 .addEventListener('click', onUpdateClick)

document

 .querySelector('button[data-delete]')

 .addEventListener('click', onDeleteClick)

This controller does not use the HTTP client directly. Instead, the

HTTP request is wrapped in a todos API object. This kind of encapsulation

is useful for many reasons. One of these reasons is testability: Replacing

the todos object with a mock object that returns a static set of data (also

called a fixture) is possible. This way, you can test your controller in

isolation. Another reason is readability: Using model objects makes your

code more explicit.

Tip  Never use bare HTTP clients in controllers. Try to encapsulate
these functions in API objects.

Listing 6-4 shows the todos model object.

Listing 6-4.  The todos Model Object

import http from './http.js'

const HEADERS = {

 'Content-Type': 'application/json'

}

const BASE_URL = '/api/todos'

const list = () => http.get(BASE_URL)

Chapter 6 HTTP Requests

132

const create = text => {

 const todo = {

 text,

 completed: false

 }

 return http.post(

 BASE_URL,

 todo,

 HEADERS

)

}

const update = newTodo => {

 const url = '${BASE_URL}/${newTodo.id}'

 return http.patch(

 url,

 newTodo,

 HEADERS

)

}

const deleteTodo = id => {

 const url = '${BASE_URL}/${id}'

 return http.delete(

 url,

 HEADERS

)

}

Chapter 6 HTTP Requests

133

export default {

 list,

 create,

 update,

 delete: deleteTodo

}

The signature of the HTTP client is http[verb](url, config) for

verbs that don’t need a body, like GET or DELETE. For the other verbs, you

can add the request body as a parameter with this signature: http[verb]

(url, body, config).

Another way to build this kind of REST client is to use http as a

function and not as an object, adding the verb as a parameter: http(url,

verb, body, config). Whatever you decide, try to keep it consistent.

Now that you understand the public contract of an HTTP client, it’s

time to look at the implementations.

�XMLHttpRequest
The implementation in Listing 6-5 is based on XMLHttpRequest,7 W3C's first

attempt at creating a standard way to make asynchronous HTTP requests.

Listing 6-5.  An HTTP client with XMLHttpRequest

const setHeaders = (xhr, headers) => {

 Object.entries(headers).forEach(entry => {

 const [

 name,

 value

] = entry

7 https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/
Using_XMLHttpRequest

Chapter 6 HTTP Requests

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest

134

 xhr.setRequestHeader(

 name,

 value

)

 })

}

const parseResponse = xhr => {

 const {

 status,

 responseText

 } = xhr

 let data

 if (status !== 204) {

 data = JSON.parse(responseText)

 }

 return {

 status,

 data

 }

}

const request = params => {

 return new Promise((resolve, reject) => {

 const xhr = new XMLHttpRequest()

 const {

 method = 'GET',

 url,

 headers = {},

 body

 } = params

Chapter 6 HTTP Requests

135

 xhr.open(method, url)

 setHeaders(xhr, headers)

 xhr.send(JSON.stringify(body))

 xhr.onerror = () => {

 reject(new Error('HTTP Error'))

 }

 xhr.ontimeout = () => {

 reject(new Error('Timeout Error'))

 }

 xhr.onload = () => resolve(parseResponse(xhr))

 })

}

const get = async (url, headers) => {

 const response = await request({

 url,

 headers,

 method: 'GET'

 })

 return response.data

}

const post = async (url, body, headers) => {

 const response = await request({

 url,

 headers,

 method: 'POST',

 body

 })

Chapter 6 HTTP Requests

136

 return response.data

}

const put = async (url, body, headers) => {

 const response = await request({

 url,

 headers,

 method: 'PUT',

 body

 })

 return response.data

}

const patch = async (url, body, headers) => {

 const response = await request({

 url,

 headers,

 method: 'PATCH',

 body

 })

 return response.data

}

const deleteRequest = async (url, headers) => {

 const response = await request({

 url,

 headers,

 method: 'DELETE'

 })

 return response.data

}

Chapter 6 HTTP Requests

137

export default {

 get,

 post,

 put,

 patch,

 delete: deleteRequest

}

The core part of the HTTP client is the request method.

XMLHttpRequest is an API defined in 2006, so it’s based on callbacks. You

have the onload callback for a completed request, the onerror callback

for any HTTP that ends with an error, and the ontimeout callback if the

request times out. There is no timeout by default, but you can create one

by modifying the timeout property of the xhr object.

The public API of the HTTP client is based on promises.8 So the

request method encloses the standard XMLHttpRequest request with

a new promise. The public methods get, post, put, patch, and delete

are just wrappers around the request method (passing the appropriate

parameters) to make the code more readable.

This is the flow of an HTTP request with XMLHttpRequest, also visible

in Figure 6-3:

	 1.	 Create a new XMLHttpRequest object (new

XMLHttpRequest()).

	 2.	 Initialize the request to a specific URL (xhr.

open(method, url)).

	 3.	 Configure the request (setting headers, timeout,

and so on).

8 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Promise

Chapter 6 HTTP Requests

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

138

	 4.	 Send the request (xhr.send(JSON.

stringify(body))),

	 5.	 Wait for the end of the request:

	 a.	 If the request ends successfully, invoke the

onload callback.

	 b.	 If the request ends with an error, invoke the

onerror callback.

	 c.	 If the request times out, invoke the ontimeout

callback.

Chapter 6 HTTP Requests

139

Figure 6-3.  The flow of an HTTP request with XMLHttpRequest

Chapter 6 HTTP Requests

140

�Fetch
Fetch is an API created for accessing remote resources. Its purpose is to

provide a standard definition of many network objects, like Request or

Response.

In this way, these objects are interoperable with other APIs like

ServiceWorker9 and Cache.10 In order to create a request, you need to use

the window.fetch method, as you can see in the implementation of the

HTTP client made with the Fetch API shown in Listing 6-6.

Listing 6-6.  HTTP Client Based on the Fetch API

const parseResponse = async response => {

 const { status } = response

 let data

 if (status !== 204) {

 data = await response.json()

 }

 return {

 status,

 data

 }

}

const request = async params => {

 const {

 method = 'GET',

 url,

 headers = {},

9 https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorker
10 https://developer.mozilla.org/en-US/docs/Web/API/Cache

Chapter 6 HTTP Requests

https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorker
https://developer.mozilla.org/en-US/docs/Web/API/Cache

141

 body

 } = params

 const config = {

 method,

 headers: new window.Headers(headers)

 }

 if (body) {

 config.body = JSON.stringify(body)

 }

 const response = await window.fetch(url, config)

 return parseResponse(response)

}

const get = async (url, headers) => {

 const response = await request({

 url,

 headers,

 method: 'GET'

 })

 return response.data

}

const post = async (url, body, headers) => {

 const response = await request({

 url,

 headers,

 method: 'POST',

 body

 })

 return response.data

}

Chapter 6 HTTP Requests

142

const put = async (url, body, headers) => {

 const response = await request({

 url,

 headers,

 method: 'PUT',

 body

 })

 return response.data

}

const patch = async (url, body, headers) => {

 const response = await request({

 url,

 headers,

 method: 'PATCH',

 body

 })

 return response.data

}

const deleteRequest = async (url, headers) => {

 const response = await request({

 url,

 headers,

 method: 'DELETE'

 })

 return response.data

}

export default {

 get,

 post,

 put,

Chapter 6 HTTP Requests

143

 patch,

 delete: deleteRequest

}

This HTTP client has the same public API as the one built with

XMLHttpRequest: A request function is wrapped in a method for each

HTTP verb that you want to use. The code of this second client is much

more readable because window.fetch returns a promise, so you don’t need

a lot of boilerplate code to transform the classic callback-based approach

of XMLHttpRequest into a more modern promise-based one.

The promise returned by window.fetch resolves a Response object.

You can use this object to extract the body of the response sent by

the server. Depending on the format of the data received, there are

different methods available—for example, text(), blob(), and json().

In this scenario, you always have JSON data, so it’s safe to use json().

Nevertheless, in a real-world application, you should use the right method

according to the Content-Type header. You can read the complete

reference of all the objects of the Fetch API on the Mozilla Developer

Network (https://developer.mozilla.org/en-US/docs/Web/API/Fetch_

API/Using_Fetch).

�Reviewing the Architecture
Before continuing, let’s review the architecture. The three different clients

have the same public API. This characteristic of the architecture lets you

change the library used for the HTTP requests (XMLHttpRequest or Fetch)

with minimal effort. JavaScript is a dynamically-typed language, but you

can think that all clients implement the HTTPClient interface. Figure 6-4

shows a UML diagram representing the relationship between the three

implementations.

Chapter 6 HTTP Requests

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

144

Figure 6-4.  UML diagram of the HTTP client

To build a REST client, you must apply one of the most important

principles of software design:

Program to an interface, not an implementation.

—Gang of Four

This principle, found in the book Design Patterns: Elements of Reusable

Object-Oriented Software by the Gang of Four,11 is very important when

working with libraries.

Imagine having an extensive application with dozens of model objects

needing network resources. If, in these objects, you use XMLHttpRequest

directly, without using an HTTP client, changing the implementation

to the Fetch API would be a costly (and tedious) task to accomplish.

Using XMLHttpRequest in your model objects means programming to an

implementation (the library) and not an interface (the HTTPClient).

11 https://www.amazon.com/Design-Patterns-Object-Oriented-Addison-
Wesley-Professional-ebook/dp/B000SEIBB8

Chapter 6 HTTP Requests

https://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8
https://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8

145

Caution  When using a library, always create an interface around it.
Changing the library to a new one will be easier if you need to.

�Summary
In this chapter, you learned about the rise of AJAX and how it changed web

development. Then you looked at two distinct ways to implement an HTTP

client—based on XMLHttpRequest and based on the Fetch API.

The next chapter explains how to create a frameworkless routing

system, an essential element of every SPA.

Chapter 6 HTTP Requests

147

CHAPTER 7

Routing
The last chapter discussed AJAX and how it changed web development

forever. Another essential technique that drastically changed how users

interact with web applications are Single Page Applications (SPAs).

In this chapter, you will learn what an SPA is and how to build one of

the core features of SPAs: a client-side routing system.

�Single Page Applications
A single page application (SPA), as its name implies, is a web application

that runs inside a single HTML page. When the user navigates from one

view to another, the application dynamically repaints the view, giving the

illusion of standard web navigation. This approach removes the delay that

users can experience when navigating between pages in a standard multi-

page application, thereby providing a better user experience.

This kind of application relies on AJAX to interact with the server.

Nevertheless, not every AJAX application has to be an SPA. You can see the

difference between a standard web application, a simple AJAX application,

and a single page application in Figure 7-1.

© Francesco Strazzullo 2023
F. Strazzullo, Frameworkless Front-End Development,
https://doi.org/10.1007/978-1-4842-9351-5_7

https://doi.org/10.1007/978-1-4842-9351-5_7

148

Figure 7-1.  A comparison of the web application architectures

Chapter 7 Routing

149

As explained in Chapter 2, frameworks like AngularJS and Ember

contributed to making SPAs a mainstream approach when building web

applications. These frameworks have an out-of-the-box system that

defines routes via a routing system. From an architectural point of view

(see Figure 7-2), every routing system has at least two core elements. The

first one is a registry that collects the list of the routes of the application.

In its simplest form, a route is an object that maps an URL to a DOM

component. The other important part is having listeners on the current

URL. When the URL changes, the router swaps the content of the body (or

the main container) with the component bound to the route that matches

the current URL.

Figure 7-2.  High-level architecture of a routing system

Chapter 7 Routing

150

�Code Examples
As in the last chapter, you will create three different versions of a routing

system. You will begin with two frameworkless approaches, the first one

based on fragment identifiers and the other one based on the History

API. In the final one, you will use an open-source library called Navigo.1

�Fragment Identifiers
Every URL can contain an optional part introduced by a hash, called a

fragment identifier. Its purpose is to identify a specific section of a web

page. For example, in the http://www.domain.org/foo.html#bar URL, the

fragment identifier is bar and it identifies the HTML element with id="bar".

When navigating an URL that contains a fragment identifier, browsers

will scroll the page until the element identified by the fragment is at the top

of the viewport. You will use fragment identifiers to implement your first

router object. This exercise starts with a simple example and makes it more

complete in an iterative way.

�A First Example

In this first example, you will build a very simple SPA with some links and

a main container. In Listing 7-1, you can see the HTML template of this

application.

Listing 7-1.  The Basic SPA Template

<body>

 <header>

 Go To Index

1 All the code examples are available at https://github.com/Apress/
Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter07.

Chapter 7 Routing

http://www.domain.org/foo.html#bar
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter07
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter07

151

 Go To List

 Dummy Page

 </header>

 <main>

 </main>

</body>

Using the anchors in the header, this URL will change to http://

localhost:8080/ to http://localhost:8080/#list and so on. When the

URL changes, the code will inject the current component inside the main

container. In this simple use case, the components are just plain functions

that update the contents of a DOM element, as you can see in Listing 7-2.

Listing 7-2.  Basic SPA Components

export default container => {

 const home = () => {

 container

 .textContent = 'This is Home page'

 }

 const list = () => {

 container

 .textContent = 'This is List Page'

 }

 return {

 home,

 list

 }

}

Chapter 7 Routing

152

When you’re defining routes, it’s a good practice to define a “not

found” component to show when the URL doesn’t match any component.

This component (shown in Listing 7-3) should have the same structure as

every other component.

Listing 7-3.  The “Not Found” Component

const notFound = () => {

 container

 .textContent = 'Page Not Found!'

}

To make the router work, you need to configure it, linking the

component to the right fragment. You can see how to configure the router

in Listing 7-4.

Listing 7-4.  Configuring a Basic Router

import createRouter from './router.js'

import createPages from './pages.js'

const container = document.querySelector('main')

const pages = createPages(container)

const router = createRouter()

router

 .addRoute('#/', pages.home)

 .addRoute('#/list', pages.list)

 .setNotFound(pages.notFound)

 .start()

The router has three public methods. The first one is addRoute,

which defines a new route, a configuration object formed by the

fragment, and the component. With the setNotFound method, you

Chapter 7 Routing

153

can set a generic component for any fragment that is not present in the

registry. Finally, the start method initializes the router, starting to listen

for URL changes.

Now that you analyzed the public interface of the router, it’s time to

take a look at the implementation in Listing 7-5.

Listing 7-5.  Basic Router Implementation

export default () => {

 const routes = []

 let notFound = () => {}

 const router = {}

 const checkRoutes = () => {

 const currentRoute = routes.find(route => {

 return route.fragment === window.location.hash

 })

 if (!currentRoute) {

 notFound()

 return

 }

 currentRoute.component()

 }

 router.addRoute = (fragment, component) => {

 routes.push({

 fragment,

 component

 })

 return router

 }

Chapter 7 Routing

154

 router.setNotFound = cb => {

 notFound = cb

 return router

 }

 router.start = () => {

 window

 .addEventListener('hashchange', checkRoutes)

 if (!window.location.hash) {

 window.location.hash = '#/'

 }

 checkRoutes()

 }

 return router

}

As you can see, the current fragment identifier is stored in the hash

property of the location object. There’s also a very handy hashchange

event that you can use to be notified every time the current fragment

changes.

The core method of the router is checkRoutes. It looks for the route

that matches the current fragment. If a route is found, its corresponding

component function replaces the content that is present in the main

container. Otherwise, the generic notFound function is invoked. This

method is called when the router starts and every time the hashchange

event is fired. Figure 7-3 shows a diagram of the router’s flow.

Chapter 7 Routing

155

Figure 7-3.  Router flow

�Navigating Programmatically

In the previous example, the navigation is activated by clicking an anchor.

Sometimes, you need to change the view programmatically. Think, for

example, of redirecting the user to their personal page after a successful

login. To do that, let’s change the application a bit, as shown in Listing 7-6,

swapping the links in the header with buttons.

Chapter 7 Routing

156

Listing 7-6.  Using Buttons to Navigate

<body>

 <header>

 <button data-navigate="/">

 Go To Index

 </button>

 <button data-navigate="/list">

 Go To List

 </button>

 <button data-navigate="/dummy">

 Dummy Page

 </button>

 </header>

 <main>

 </main>

</body>

Now you have to add an event handler for the buttons in the controller,

as shown in Listing 7-7.

Listing 7-7.  Adding Navigation to Buttons

const NAV_BTN_SELECTOR = 'button[data-navigate]'

document

 .body

 .addEventListener('click', e => {

 const { target } = e

 if (target.matches(NAV_BTN_SELECTOR)) {

 const { navigate } = target.dataset

 router.navigate(navigate)

 }

 })

Chapter 7 Routing

157

To navigate to another view programmatically, I created a new public

method for the router. This method gets the new fragment and replaces it

in the location object. You can see the code of the navigate method in

Listing 7-8.

Listing 7-8.  Navigating Programmatically

router.navigate = fragment => {

 window.location.hash = fragment

}

It’s quite important to wrap this line in a function to keep a standard

interface when changing the internals of the router.

�Route Parameters

The last feature that you will add to this router is reading route parameters.

A route parameter is a part of the URL that is relative to some domain

variable. For example, from the URL http://localhost:8080#/order/1,

you can get the ID of an “order” domain model from it. In this case, 1 is a

route parameter called id.

When creating a route with a parameter, to indicate that the

URL will contain a parameter, this form is normally used: http://

localhost:8080#/user/:id. I will stick to this de facto standard in this

implementation.

The first thing that you need to do is slightly modify the component, as

shown in Listing 7-9, in order to let it accept an argument. This argument

will be filled with route parameters.

Listing 7-9.  Components with Parameters

const detail = (params) => {

 const { id } = params

 container

Chapter 7 Routing

158

 .textContent = '

 This is Detail Page with Id ${id}

 '

}

const anotherDetail = (params) => {

 const { id, anotherId } = params

 container

 .textContent = '

 This is another Detail Page with Id ${id}

 and AnotherId ${anotherId}

 '

}

Listing 7-10 shows how to bind these two new components with the

relative URLs.

Listing 7-10.  Defining Routes with Parameters

router

 .addRoute('#/', pages.home)

 .addRoute('#/list', pages.list)

 .addRoute('#/list/:id', pages.detail)

 .addRoute('#/list/:id/:anotherId', pages.anotherDetail)

 .setNotFound(pages.notFound)

 .start()

Now it’s time to modify the router implementation in order to manage

the route parameters. This implementation will be strongly based on

regular expressions (RegEx). If you feel uncomfortable with regular

expressions (like I do), I suggest using regex101,2 a beneficial tool to grasp

what a specific regular expression does.

2 https://regex101.com/

Chapter 7 Routing

https://regex101.com/

159

The first thing to do is extract the parameter names from the URL that

is used as the first argument of the addRoute method. For example, from #/

list/:id/:anotherId, you have to extract an array with id and anotherId.

You can see how to do that in Listing 7-11.

Listing 7-11.  Extracting Parameter Names from Fragments

const ROUTE_PARAMETER_REGEXP = /:(\w+)/g

const URL_FRAGMENT_REGEXP = '([^\\/]+)'

router.addRoute = (fragment, component) => {

 const params = []

 const parsedFragment = fragment

 .replace(

 ROUTE_PARAMETER_REGEXP,

 (match, paramName) => {

 params.push(paramName)

 return URL_FRAGMENT_REGEXP

 })

 .replace(/\//g, '\\/')

 routes.push({

 testRegExp: new RegExp('^${parsedFragment}$'),

 component,

 params

 })

 return router

}

To extract parameter names from the fragment, use the /:(\w+)/g

RegEx, which matches :id and :anotherId. You can use this schema to

understand the purpose of this RegEx better.

:(\w+)

Chapter 7 Routing

160

•	 : matches the exact character :

•	 () indicates the start of a capturing group

•	 \w is a shortcut for [a-zA-Z0-9_] and matches any

standard character

•	 + indicates that you accept at least one occurrence of a

standard character

This RegEx is used with the replace function of the String object.

For every match of the RegEx with the target String (in this case, the

fragment), the callback is called. The second argument of this callback

is the name of the parameter that you add to the params array. Then the

match is replaced with another RegEx snippet: ([^\\/]+). At last, you

wrap your new fragment between a ^ and a $.

So, passing the fragment #/list/:id/:anotherId as an argument

to the addRoute method will result in a testRegExp with the value ^#\/

list\/([^\\/]+)\/([^\\/]+)$ that you will use when checking if this

route matches the current fragment in the location object. Here’s a

schema that explains in detail the meaning of this RegEx.

^#\/list\/([^\\/]+)\/([^\\/]+)$

•	 ^ indicates the beginning of the string

•	 #\/list\/ matches the exact string '#/list/'

•	 () indicates the start of the first capturing group

•	 [^\\/] matches any character apart from / and \

•	 + indicates that you accept at least one occurrence

of the previous match

Chapter 7 Routing

161

•	 () indicates the start of the second capturing group

•	 [^\\/] matches any character apart from / and \

•	 + indicates that you accept at least one occurrence

of the previous match

•	 $ indicates the end of the string

In Listing 7-12, the generated regular expressions are used to select the

right route for the current fragment and extract the actual parameters.

Listing 7-12.  Extracting the URL Params from the Current Fragment

const extractUrlParams = (route, windowHash) => {

 if (route.params.length === 0) {

 return {}

 }

 const params = {}

 const matches = windowHash

 .match(route.testRegExp)

 matches.shift()

 matches.forEach((paramValue, index) => {

 const paramName = route.params[index]

 params[paramName] = paramValue

 })

 return params

}

const checkRoutes = () => {

 const { hash } = window.location

Chapter 7 Routing

162

 const currentRoute = routes.find(route => {

 const { testRegExp } = route

 return testRegExp.test(hash)

 })

 if (!currentRoute) {

 notFound()

 return

 }

 const urlParams = extractUrlParams(

 currentRoute,

 window.location.hash

)

 currentRoute.component(urlParams)

}

As you can see, testRegExp checks if the current fragment matches

one of the routes in the registry. It uses the same RegEx to extract the

parameters that will be used as arguments for the component functions.

Notice the use of the shift in extractUrlParams. The String.matches

method returns an array where the first element is the match itself, while

the other elements are the result of the capturing groups. With shift, you

remove the first element from that array.

This is a recap of what happens when managing a route with

parameters.

•	 The fragment #/list/:id/:anotherId is passed to the

addRoute method.

•	 This method extracts the parameter names (id and

anotherId) and transforms the fragment in the RegEx

^#\/list\/([^\\/]+)\/([^\\/]+)$.

Chapter 7 Routing

163

•	 When the user navigates a matching fragment like #/

list/1/2, the checkRoutes method selects the right

route, thanks to the RegEx.

•	 The extractUrlParams method extracts the actual

parameters from the current fragment in this object

{id:'1', anotherId:'2'}.

•	 This object is passed to the component function that

will update the DOM.

Figure 7-4 shows what the user gets when navigating to #/list/1/2.

Figure 7-4.  Example project with route parameters

Listing 7-13 shows the complete code of the router based on fragment

identifiers.

Listing 7-13.  Router Based on Fragment Identifiers

const ROUTE_PARAMETER_REGEXP = /:(\w+)/g

const URL_FRAGMENT_REGEXP = '([^\\/]+)'

const extractUrlParams = (route, windowHash) => {

 const params = {}

 if (route.params.length === 0) {

 return params

 }

 const matches = windowHash

 .match(route.testRegExp)

Chapter 7 Routing

164

 matches.shift()

 matches.forEach((paramValue, index) => {

 const paramName = route.params[index]

 params[paramName] = paramValue

 })

 return params

}

export default () => {

 const routes = []

 let notFound = () => {}

 const router = {}

 const checkRoutes = () => {

 const { hash } = window.location

 const currentRoute = routes.find(route => {

 const { testRegExp } = route

 return testRegExp.test(hash)

 })

 if (!currentRoute) {

 notFound()

 return

 }

 const urlParams = extractUrlParams(

 currentRoute,

 window.location.hash

)

 currentRoute.component(urlParams)

 }

Chapter 7 Routing

165

 router.addRoute = (fragment, component) => {

 const params = []

 const parsedFragment = fragment

 .replace(

 ROUTE_PARAMETER_REGEXP,

 (match, paramName) => {

 params.push(paramName)

 return URL_FRAGMENT_REGEXP

 })

 .replace(/\//g, '\\/')

 console.log(`^${parsedFragment}$`)

 routes.push({

 testRegExp: new RegExp(`^${parsedFragment}$`),

 component,

 params

 })

 return router

 }

 router.setNotFound = cb => {

 notFound = cb

 return router

 }

 router.navigate = fragment => {

 window.location.hash = fragment

 }

 router.start = () => {

 window

 .addEventListener(

Chapter 7 Routing

166

 'hashchange',

 checkRoutes

)

 if (!window.location.hash) {

 window.location.hash = '#/'

 }

 checkRoutes()

 }

 return router

}

Note T his public API of this first implementation is the basis of the
other implementations covered in this chapter.

�The History API
History is an API that lets developers manipulate the browsing history of

the user. For this second implementation of the router, you are going to use

this API or, to be exact, one of its methods. Table 7-1 is a small cheat sheet

of the History API.3

3 For a complete reference, I suggest taking a look at the dedicated page on the
Mozilla Development Network (https://developer.mozilla.org/en-US/docs/
Web/API/History).

Chapter 7 Routing

https://developer.mozilla.org/en-US/docs/Web/API/History
https://developer.mozilla.org/en-US/docs/Web/API/History

167

Table 7-1.  History API Cheat Sheet

Signature Description

back() Go to the previous page in history.

forward() Go to the next page in history.

go(index) Go to a specific page in history.

pushState(state,

title, URL)

Push the data in the history stack and navigate to the

provided URL.

replaceState(state,

title, URL)

Replace the most recent data in the history stack and

navigate to the provided URL.

When using the History API for routing, you don’t need to base your

routes on fragment identifiers. You can instead utilize a real URL like

http://localhost:8080/list/1/2. Listing 7-14 shows a version based on

this API.

Listing 7-14.  Router Built with the History API

const ROUTE_PARAMETER_REGEXP = /:(\w+)/g

const URL_FRAGMENT_REGEXP = '([^\\/]+)'

const TICKTIME = 250

const extractUrlParams = (route, pathname) => {

 const params = {}

 if (route.params.length === 0) {

 return params

 }

 const matches = pathname

 .match(route.testRegExp)

 matches.shift()

Chapter 7 Routing

168

 matches.forEach((paramValue, index) => {

 const paramName = route.params[index]

 params[paramName] = paramValue

 })

 return params

}

export default () => {

 const routes = []

 let notFound = () => {}

 let lastPathname

 const router = {}

 const checkRoutes = () => {

 const { pathname } = window.location

 if (lastPathname === pathname) {

 return

 }

 lastPathname = pathname

 const currentRoute = routes.find(route => {

 const { testRegExp } = route

 return testRegExp.test(pathname)

 })

 if (!currentRoute) {

 notFound()

 return

 }

 const urlParams = extractUrlParams(currentRoute, pathname)

 currentRoute.callback(urlParams)

 }

Chapter 7 Routing

169

 router.addRoute = (path, callback) => {

 const params = []

 const parsedPath = path

 .replace(

 ROUTE_PARAMETER_REGEXP,

 (match, paramName) => {

 params.push(paramName)

 return URL_FRAGMENT_REGEXP

 })

 .replace(/\//g, '\\/')

 routes.push({

 testRegExp: new RegExp('^${parsedPath}$'),

 callback,

 params

 })

 return router

 }

 router.setNotFound = cb => {

 notFound = cb

 return router

 }

 router.navigate = path => {

 window

 .history

 .pushState(null, null, path)

 }

Chapter 7 Routing

170

 router.start = () => {

 checkRoutes()

 window.setInterval(checkRoutes, TICKTIME)

 }

 return router

}

Let’s look at the differences between this and the previous version

based on fragment identifiers. The only method that you need from the

History API is pushState to navigate to a new URL. The greatest difference

between the previous implementation is the absence of a DOM event that

you can employ to be notified when the URL changes. To achieve a similar

result, you can use a setInterval to regularly check if the pathname is

changed.

The public API is unchanged. The only thing that you need to change is

the routes, removing the hash at the beginning, as in Listing 7-15.

Listing 7-15.  Defining Routes without Fragments

router

 .addRoute('/', pages.home)

 .addRoute('/list', pages.list)

 .addRoute('/list/:id', pages.detail)

 .addRoute('/list/:id/:anotherId', pages.anotherDetail)

 .setNotFound(pages.notFound)

 .start()

�Using Links

To switch completely to the History API, you need to update the links in

the template. Listing 7-16 is an updated version of the initial template of

the sample application. In this case, the links point to real URLs and not to

fragment identifiers on the same page.

Chapter 7 Routing

171

Listing 7-16.  History API Link Navigation

<header>

 Go To Index

 Go To List

 Go To Detail With Id 1

 Go To Detail With Id 2

 Go To Another Detail

 Dummy Page

</header>

Just changing the href attribute is not enough; these links will not

work as expected. For example, clicking the Go To List link will result

in navigating to the http://localhost:8080/list/index.html URL,

resulting in a 404 HTTP error.

In order to make these links work, you need to change their default

behavior. The first thing to do is mark all the links that are used for internal

navigation, as shown in Listing 7-17.

Listing 7-17.  History API Link Navigation Marked Links

<header>

 <a data-navigation href="/">Go To Index

 <a data-navigation href="/list">Go To List

 <a data-navigation href="/list/1">Go To Detail With Id 1

 <a data-navigation href="/list/2">Go To Detail With Id 2

 <a data-navigation href="/list/1/2">Go To Another Detail

 <a data-navigation href="/dummy">Dummy Page

</header>

In Listing 7-18, you can easily recognize these links, disabling standard

navigation and using the router’s navigate method.

Chapter 7 Routing

172

Listing 7-18.  Changing the Behavior of the Internal

Navigation Links

const NAV_A_SELECTOR = 'a[data-navigation]'

router.start = () => {

 checkRoutes()

 window.setInterval(checkRoutes, TICKTIME)

 document

 .body

 .addEventListener('click', e => {

 const { target } = e

 if (target.matches(NAV_A_SELECTOR)) {

 e.preventDefault()

 router.navigate(target.href)

 }

 })

 return router

}

The router intercept clicks every internal navigation anchor, using the

event delegation technique discussed in Chapter 3. It’s possible to disable

the standard handler of any DOM element with the preventDefault

method of the Event object.

�Navigo
The last implementation that you will learn about in this chapter is

based on Navigo,4 a very simple and small open-source library. As you

learned in the previous chapter, it’s very important to wrap libraries

4 https://github.com/krasimir/navigo

Chapter 7 Routing

https://github.com/krasimir/navigo

173

with your own public interface. The implementation in Listing 7-19

keeps the same API of the previous two; it just changes the internals of

the router.

Listing 7-19.  Router Implementation with Navigo

export default () => {

 const navigoRouter = new window.Navigo()

 const router = {}

 router.addRoute = (path, callback) => {

 navigoRouter.on(path, callback)

 return router

 }

 router.setNotFound = cb => {

 navigoRouter.notFound(cb)

 return router

 }

 router.navigate = path => {

 navigoRouter.navigate(path)

 }

 router.start = () => {

 navigoRouter.resolve()

 return router

 }

 return router

}

Managing internal navigation links is very similar to the previous

implementation. You just need to change data-navigation in data-

navigo, as you can see in Listing 7-20.

Chapter 7 Routing

174

Listing 7-20.  Internal Navigation Links with Navigo

<header>

 <a data-navigo href="/">Go To Index

 <a data-navigo href="/list">Go To List

 <a data-navigo href="/list/1">Go To Detail With Id 1

 <a data-navigo href="/list/2">Go To Detail With Id 2

 <a data-navigo href="/list/1/2">Go To Another Detail

 <a data-navigo href="/dummy">Dummy Page

</header>

�Choosing the Right Router
There’s no meaningful difference between the three implementations. My

suggestion is to start with a frameworkless implementation, and only if you

need something very complex, switch to a third-party library.

Routing is the nervous system of any SPA; it decides how to match

URLs with what users see on-screen. Keep this in mind when you’re

working with a framework. If you use React Router for a project, it

means that, probably, you will not be able to remove React from your

project, because it’s very hard to change the routing system of an

SPA. Nevertheless, if your routing system is independent, you can start

changing the framework one view at a time.

Tip  When using a framework, try to keep a separate layer for
routing.

Chapter 7 Routing

175

�Summary
In this chapter, you learned the meaning of a single page application

and how to create a client-side routing system. You built two different

frameworkless versions of a router, the first one based on fragment

identifiers and the other one based on the History API. You also created a

router based on Navigo, a very small JavaScript library.

The next chapter explains how to manage the state of your applications

with different state management techniques.

Chapter 7 Routing

177

CHAPTER 8

State Management
In the previous chapters, you learned how to display data, manage user

inputs, and make HTTP requests and routes. You can consider these skills

as basic building blocks. But before you can start writing frameworkless

code, you need to know how to manage the data (or the state) that links

all these elements together. In front-end applications or, more generally,

all kinds of client applications (web, desktop, and mobile), the problem of

effectively managing data is called state management.

State management doesn’t solve a new problem, and indeed Model

View Controller (the most famous state management pattern) was

introduced in the 1970s. However, when React became a mainstream

library, the term started appearing in blogs, conferences, and so on.

Right now, there are a bunch of dedicated libraries for front-end state

management. Some are tied to existing frameworks like pinia1 (for Vue.

js) and NgRx2 (for Angular), while other libraries are agnostic, like Valtio3

and Redux.

Choosing the right architecture for your state management code

is crucial to keeping the application healthy and maintainable. In this

chapter, you will build three state management strategies, compare them,

and analyze their pros and cons.

1 https://pinia.vuejs.org/
2 https://ngrx.io/
3 https://github.com/pmndrs/valtio

© Francesco Strazzullo 2023
F. Strazzullo, Frameworkless Front-End Development,
https://doi.org/10.1007/978-1-4842-9351-5_8

https://pinia.vuejs.org/
https://ngrx.io/
https://github.com/pmndrs/valtio
https://doi.org/10.1007/978-1-4842-9351-5_8

178

�Reviewing the TodoMVC Application
The examples in this chapter use the TodoMVC that you developed in

Chapter 3 with a functional rendering engine. In Listing 8-1, you can see

the controller's code with all the events that manipulate the todos and the

filter.4

Listing 8-1.  The TodoMVC Controller

import todosView from './view/todos.js'

import counterView from './view/counter.js'

import filtersView from './view/filters.js'

import appView from './view/app.js'

import applyDiff from './applyDiff.js'

import registry from './registry.js'

registry.add('app', appView)

registry.add('todos', todosView)

registry.add('counter', counterView)

registry.add('filters', filtersView)

const state = {

 todos: [],

 currentFilter: 'All'

}

const events = {

 addItem: text => {

 state.todos.push({

 text,

4 The complete code of this application is available at https://github.com/
Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/
Chapter08/00.

Chapter 8 State Management

https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter08/00
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter08/00
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./tree/main/Chapter08/00

179

 completed: false

 })

 render()

 },

 updateItem: (index, text) => {

 state.todos[index].text = text

 render()

 },

 deleteItem: (index) => {

 state.todos.splice(index, 1)

 render()

 },

 toggleItemCompleted: (index) => {

 const {

 completed

 } = state.todos[index]

 state.todos[index].completed = !completed

 render()

 },

 completeAll: () => {

 state.todos.forEach(t => {

 t.completed = true

 })

 render()

 },

 clearCompleted: () => {

 state.todos = state.todos.filter(

 t => !t.completed

)

 render()

 },

Chapter 8 State Management

180

 changeFilter: filter => {

 state.currentFilter = filter

 render()

 }

}

const render = () => {

 window.requestAnimationFrame(() => {

 const main = document.querySelector('#root')

 const newMain = registry.renderRoot(

 main,

 state,

 events)

 applyDiff(document.body, main, newMain)

 })

}

render()

The state management code is defined in the events object that you

pass to the View function to attach its methods to DOM handlers.

�Model View Controller
Keeping your state in the controllers is not a good way to manage it. The

first step to enhance this design is to move all that code into a separate file.

Moving it to an external file has various advantages; the most important

one is testability. Having a separate model file lets developers work just

with the data of the model and not its presentation. In Listing 8-2, you

can see an updated version of the controller with an external model that

manages the state of the application.

Chapter 8 State Management

181

Listing 8-2.  The Controller with a Separate Model

import modelFactory from './model/model.js'

const model = modelFactory()

const events = {

 addItem: text => {

 model.addItem(text)

 render(model.getState())

 },

 updateItem: (index, text) => {

 model.updateItem(index, text)

 render(model.getState())

 },

 deleteItem: (index) => {

 model.deleteItem(index)

 render(model.getState())

 },

 toggleItemCompleted: (index) => {

 model.toggleItemCompleted(index)

 render(model.getState())

 },

 completeAll: () => {

 model.completeAll()

 render(model.getState())

 },

 clearCompleted: () => {

 model.clearCompleted()

 render(model.getState())

 },

 changeFilter: filter => {

 model.changeFilter(filter)

Chapter 8 State Management

182

 render(model.getState())

 }

}

const render = (state) => {

 window.requestAnimationFrame(() => {

 const main = document.querySelector('#root')

 const newMain = registry.renderRoot(

 main,

 state,

 events)

 applyDiff(document.body, main, newMain)

 })

}

render(model.getState())

Notice that the actual data used to render is returned from the

getState method of the model object. In Listing 8-3, you can see its code.

For simplicity, this listing just includes the addItem and the updateItem

methods5 (this is also true in other listings regarding the model in this

chapter).

Listing 8-3.  Simple Model Object for the TodoMVC Application

const INITIAL_STATE = {

 todos: [],

 currentFilter: 'All'

}

5 To check the complete code you can visit the GitHub repository at https://
github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./blob/
main/Chapter08/00/model/model.js.

Chapter 8 State Management

https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./blob/main/Chapter08/00/model/model.js
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./blob/main/Chapter08/00/model/model.js
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./blob/main/Chapter08/00/model/model.js

183

export default (initalState = INITIAL_STATE) => {

 const state = structuredClone(initalState)

 const getState = () => {

 return Object.freeze(structuredClone(state))

 }

 const addItem = text => {

 if (!text) {

 return

 }

 state.todos.push({

 text,

 completed: false

 })

 }

 const updateItem = (index, text) => {

 if (!text) {

 return

 }

 if (index < 0) {

 return

 }

 if (!state.todos[index]) {

 return

 }

 state.todos[index].text = text

 }

Chapter 8 State Management

184

 //Other methods...

 return {

 addItem,

 updateItem,

 deleteItem,

 toggleItemCompleted,

 completeAll,

 clearCompleted,

 changeFilter,

 getState

 }

}

Values from a model object should be immutable. This code generates

a clone every time that getState is invoked and freezes it with Object.

freeze.6 To clone the object, use structuredClone,7 which creates a deep

clone of a given object. Using an immutable state to transfer data forces

the consumers of this API to use public methods to manipulate the state

itself. In this way, the business logic is completely contained in the model

object and not scattered in various parts of the application. This approach

helps the state management code have high testability during the lifespan

of the codebase. In Listing 8-4, you can see part of the test suite of the

model object.

6 https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/
Global_Objects/Object/freeze
7 https://developer.mozilla.org/en-US/docs/Web/API/structuredClone

Chapter 8 State Management

https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/API/structuredClone

185

Listing 8-4.  Test Suite for the TodoMVC State Object

import stateFactory from './state.js'

describe('external state', () => {

 test('data should be immutable', () => {

 const state = stateFactory()

 expect(() => {

 state.get().currentFilter = 'WRONG'

 }).toThrow()

 })

 test('should add an item', () => {

 const state = stateFactory()

 state.addItem('dummy')

 const { todos } = state.get()

 expect(todos.length).toBe(1)

 expect(todos[0]).toEqual({

 text: 'dummy',

 completed: false

 })

 })

 �test('should not add an item when a falsy text is

provided', () => {

 const state = stateFactory()

 state.addItem('')

 state.addItem(undefined)

 state.addItem(0)

 state.addItem()

 state.addItem(false)

Chapter 8 State Management

186

 const { todos } = state.get()

 expect(todos.length).toBe(0)

 })

 test('should update an item', () => {

 const state = stateFactory({

 todos: [{

 text: 'dummy',

 completed: false

 }]

 })

 state.updateItem(0, 'new-dummy')

 const { todos } = state.get()

 expect(todos[0].text).toBe('new-dummy')

 })

 �test('should not update an item when an invalid index is

provided', () => {

 const state = stateFactory({

 todos: [{

 text: 'dummy',

 completed: false

 }]

 })

 state.updateItem(1, 'new-dummy')

 const { todos } = state.get()

 expect(todos[0].text).toBe('dummy')

 })

})

Chapter 8 State Management

187

This first version of a state management library for the TodoMVC

application is a classic Model View Controller (MVC) implementation.

Historically, MVC was probably one of the first patterns dedicated to

managing the state of a client application. You can see a schema of this

pattern in Figure 8-1.

Figure 8-1.  MVC pattern schema

This model object will be the base for all the other implementations.

Before continuing, let’s review the workflow of the application and the

relationship between its parts.

•	 The controller gets the initial state from the model.

•	 The controller invokes the view to render the

initial state.

•	 The system is ready to receive user inputs.

Chapter 8 State Management

188

•	 The user does something (for example, they add

an item).

•	 The controller maps the user action with the correct

model method (model.addItem).

•	 The model updates the state.

•	 The controller gets the new state from the model.

•	 The controller invokes the view to render the new state.

•	 The system is ready to receive user inputs.

This workflow is quite generic for any front-end application, and it

is summarized in Figure 8-2. The loop between the render and the user

action is called the “render cycle.”

Figure 8-2.  The render cycle

�Observable Model
This first version of state management code based on MVC works quite

well for this use case. Nevertheless, the integration between the model

and the controller is quite clumsy: you need to manually invoke the

render method every time the user takes some kind of action. This is not

an optimal solution for two main reasons. The first one is that manually

invoking the render after every state change is a very error-prone

approach. The second one is that the render method is also invoked when

Chapter 8 State Management

189

the action does not modify the state. For example, when adding an empty

item to the list. Both these issues are resolved in the next version of the

model, which is based on the observer8 pattern.

In Listing 8-5, you can see the new version of the model. The

differences from the previous version are highlighted for better

readability.9

Listing 8-5.  The Observable TodoMVC Model

const INITIAL_STATE = {

 todos: [],

 currentFilter: 'All'

}

export default (initalState = INITIAL_STATE) => {

 const state = structuredClone(initalState)

 let listeners = []

 const addChangeListener = listener => {

 listeners.push(listener)

 listener(freeze(state))

 return () => {

 listeners = listeners.filter(

 l => l !== listener

)

 }

 }

8 https://en.wikipedia.org/wiki/Observer_pattern
9 The complete code is available at https://github.com/Apress/frameworkless-
front-end-development/blob/master/Chapter08/01/model/model.js.

Chapter 8 State Management

https://en.wikipedia.org/wiki/Observer_pattern
https://github.com/Apress/frameworkless-front-end-development/blob/master/Chapter08/01/model/model.js
https://github.com/Apress/frameworkless-front-end-development/blob/master/Chapter08/01/model/model.js

190

 const invokeListeners = () => {

 const data = freeze(state)

 listeners.forEach(l => l(data))

 }

 const addItem = text => {

 if (!text) {

 return

 }

 state.todos.push({

 text,

 completed: false

 })

 invokeListeners()

 }

 const updateItem = (index, text) => {

 if (!text) {

 return

 }

 if (index < 0) {

 return

 }

 if (!state.todos[index]) {

 return

 }

 state.todos[index].text = text

 invokeListeners()

 }

Chapter 8 State Management

191

 //Other methods...

 return {

 addItem,

 updateItem,

 deleteItem,

 toggleItemCompleted,

 completeAll,

 clearCompleted,

 changeFilter,

 addChangeListener

 }

}

In order to easily understand the public API of this observable model

you can use Listing 8-6, which shows a simple test suite for the new model.

Listing 8-6.  Unit Tests for the Observable Model

import modelFactory from './model.js'

let model

describe('observable model', () => {

 beforeEach(() => {

 model = modelFactory()

 })

 test('listeners should be invoked immediately', () => {

 let counter = 0

 model.addChangeListener(data => {

 counter++

 })

 expect(counter).toBe(1)

 })

Chapter 8 State Management

192

 �test('listeners should be invoked when changing

data', () => {

 let counter = 0

 model.addChangeListener(data => {

 counter++

 })

 model.addItem('dummy')

 expect(counter).toBe(2)

 })

 �test('listeners should be removed when

unsubscribing', () => {

 let counter = 0

 const unsubscribe = model

 .addChangeListener(data => {

 counter++

 })

 unsubscribe()

 model.addItem('dummy')

 expect(counter).toBe(1)

 })

 test('state should be immutable', () => {

 model.addChangeListener(data => {

 expect(() => {

 data.currentFilter = 'WRONG'

 }).toThrow()

 })

 })

})

Chapter 8 State Management

193

Reading the tests, it’s clear that the only way to get the state from the

Model object is to add a listener callback. This callback will be invoked at

the moment of subscription and every time the internal state changes. This

approach will simplify the controller, as you can see in Listing 8-7.

Listing 8-7.  Using an Observable Model in the Controller

import modelFactory from './model/model.js'

const model = modelFactory()

const {

 addChangeListener,

 ...events

} = model

const render = (state) => {

 window.requestAnimationFrame(() => {

 const main = document.querySelector('#root')

 const newMain = registry.renderRoot(

 main,

 state,

 events)

 applyDiff(document.body, main, newMain)

 })

}

addChangeListener(render)

The controller code is much simpler now. To bind the render method

to the model, it’s enough to use that method as a listener for the model.

Notice that the methods are extracted from the model (apart from

addEventListener) to use them as events that you pass to the view.

Chapter 8 State Management

194

Having an observable model is useful for adding new features to the

controller without modifying the public interface of the model. Listing 8-8

shows a new version of the controller that creates two new change

listeners. The first one is a simple logger on the console. The second one

saves the state to window.localStorage. In this way, the controller can

load the initial data from the storage when the application starts.

Listing 8-8.  More Listeners Used with the Observable Model

import stateFactory from './model/state.js'

const loadState = () => {

 const serializedState = window

 .localStorage

 .getItem('state')

 if (!serializedState) {

 return

 }

 return JSON.parse(serializedState)

}

const state = stateFactory(loadState())

const {

 addChangeListener,

 ...events

} = state

const render = (state) => {

 // Render Code

}

addChangeListener(render)

Chapter 8 State Management

195

addChangeListener(state => {

 Promise.resolve().then(() => {

 window

 .localStorage

 .setItem('state', JSON.stringify(state))

 })

})

addChangeListener(state => {

 console.log(

 'Current State (${(new Date()).getTime()})',

 state

)

})

To implement the same features without the observable model would

have been really difficult and not maintainable. Remember this pattern

when your controller becomes too coupled with the model.

Before continuing, it’s important to state that in this section, I always

state “the model” as it was a single object. This is true for a simple

application like TodoMVC. In a real scenario, “the model” is a collection of

Model objects that manage all the different domains in your application.

�Reactive Programming
Reactive programming has been a buzzword in the front-end community

for quite a while. It became trendy when the Angular team announced

that their framework would have to be heavily based on RxJS (an acronym

Chapter 8 State Management

196

for “React Extensions for JavaScript”), a library built to create applications

based on Reactive programming.10

In a nutshell, implementing the Reactive paradigm means working

in an application where everything is an observable that can emit events:

model changes, HTTP requests, user actions, navigation, and so on.

Tip  If you’re using a lot of observables in your code, you’re working
with a Reactive paradigm.

Reactive programming is a fascinating and deep topic, and this chapter

just scratches the surface, creating a Reactive state management library in

a couple of different ways. If you’d like to study this topic in depth, I suggest

reading Front-End Reactive Architectures by Luca Mezzalira.11

�A Reactive Model
The model created in Listing 8-5 is already an example of Reactive state

management because it’s an observable. But, in a non-trivial application,

there should be a lot of different model objects, and so you need an easy

way to create observables. In this way, you can focus on the domain logic,

leaving the architectural part in a separate library. In Listing 8-9, you can

see a new version of the model object based on an observable factory,

while Listing 8-10 shows the observable factory itself.

10 In my opinion, the best source to easily understand the meaning of
Reactive programming is this GitHub Gist (https://gist.github.com/
staltz/868e7e9bc2a7b8c1f754) titled “The Introduction to Reactive
Programming You’ve Been Missing,” by André Staltz, one of the maintainers
of RxJS.
11 www.apress.com/gp/book/9781484231791

Chapter 8 State Management

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://www.apress.com/gp/book/9781484231791

197

Listing 8-9.  An Observable TodoMVC Model Built with a Factory

import observableFactory from './observable.js'

const INITIAL_STATE = {

 todos: [],

 currentFilter: 'All'

}

export default (initalState = INITIAL_STATE) => {

 const state = structuredClone(initalState)

 const addItem = text => {

 if (!text) {

 return

 }

 state.todos.push({

 text,

 completed: false

 })

 }

 const updateItem = (index, text) => {

 if (!text) {

 return

 }

 if (index < 0) {

 return

 }

 if (!state.todos[index]) {

 return

 }

Chapter 8 State Management

198

 state.todos[index].text = text

 }

 ...

 const model = {

 addItem,

 updateItem,

 deleteItem,

 toggleItemCompleted,

 completeAll,

 clearCompleted,

 changeFilter

 }

 return observableFactory(model, () => state)

}

Listing 8-10.  An Observable Factory

export default (model, stateGetter) => {

 let listeners = []

 const addChangeListener = cb => {

 listeners.push(cb)

 cb(freeze(stateGetter()))

 return () => {

 listeners = listeners

 .filter(element => element !== cb)

 }

 }

Chapter 8 State Management

199

 const invokeListeners = () => {

 const data = freeze(stateGetter())

 listeners.forEach(l => l(data))

 }

 const wrapAction = originalAction => {

 return (...args) => {

 const value = originalAction(...args)

 invokeListeners()

 return value

 }

 }

 const baseProxy = {

 addChangeListener

 }

 return Object

 .keys(model)

 .filter(key => {

 return typeof model[key] === 'function'

 })

 .reduce((proxy, key) => {

 const action = model[key]

 return {

 ...proxy,

 [key]: wrapAction(action)

 }

 }, baseProxy)

}

Chapter 8 State Management

200

The code of the observable factory may seem a little obscure, but its

functioning is quite simple. It creates a proxy of the model object that, for

every method of the original model, creates a new method with the same

name that wraps the original one and invokes all the listeners. To pass the

state to the proxy, a simple getter function is used to get the current state

after every modification made by the model.

From an external point of view, the observable model in Listing 8-5

and the one in Listing 8-9 have the same public interface. A good way

to design a reactive state management architecture is to create a simple

observable model, and only when you need more than one Model object

do you create the observable factory abstraction. Figure 8-3 shows the

relationship between the controller, the model, and the proxy.

Figure 8-3.  Observable model with a proxy

Chapter 8 State Management

201

�Native Proxies
JavaScript has a native way to create proxies, via the Proxy object.12 Using

this new AP is quite easy. You wrap the default behavior of any object with

some custom code. Listing 8-11 creates a simple proxy that logs a message

every time you get or set a property of the base object. Figure 8-4 shows the

result in the browser’s console.

Listing 8-11.  Basic Proxy Object Usage

const base = {

 foo: 'bar'

}

const handler = {

 get: (target, name) => {

 console.log('Getting ${name}')

 return target[name]

 },

 set: (target, name, value) => {

 console.log('Setting ${name} to ${value}')

 target[name] = value

 return true

 }

}

const proxy = new Proxy(base, handler)

proxy.foo = 'baz'

console.log('Logging ${proxy.foo}')

12 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Proxy

Chapter 8 State Management

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy

202

Figure 8-4.  Basic proxy result

In order to create a proxy that wraps a base object, you need to provide

a handler that consists of a set of traps. A trap is a method that wraps a

basic operation on the base object. This simple case overwrote all the

properties' setters and getters. Notice that the set handler should return a

Boolean value that represents the success of the operation. Listings 8-12

uses the Proxy object to create an observable factory.

Listing 8-12.  Observable Factory with Proxy Object.freeze

export default (initialState) => {

 let listeners = []

 const proxy = new Proxy(structuredClone(initialState), {

 set: (target, name, value) => {

 target[name] = value

 listeners.forEach(l => l(freeze(proxy)))

 return true

 }

 })

 proxy.addChangeListener = cb => {

 listeners.push(cb)

 cb(freeze(proxy))

 return () => {

 listeners = listeners.filter(l => l !== cb)

Chapter 8 State Management

203

 }

 }

 return proxy

}

Even if the signature is similar, the usage is slightly different, as in

Listing 8-13. It shows the new version of the model created with this new

observable factory.

Listing 8-13.  An Observable TodoMVC Model Built with a

Proxy Factory

export default (initialState = INITIAL_STATE) => {

 const state = observableFactory(initialState)

 const addItem = text => {

 if (!text) {

 return

 }

 state.todos = [...state.todos, {

 text,

 completed: false

 }]

 }

 const updateItem = (index, text) => {

 if (!text) {

 return

 }

 if (index < 0) {

 return

 }

Chapter 8 State Management

204

 if (!state.todos[index]) {

 return

 }

 state.todos = state.todos.map((todo, i) => {

 if (i === index) {

 todo.text = text

 }

 return todo

 })

 }

 ...

 return {

 addChangeListener: state.addChangeListener,

 addItem,

 updateItem,

 deleteItem,

 toggleItemCompleted,

 completeAll,

 clearCompleted,

 changeFilter

 }

}

There’s a significant difference between the two versions. In this

second one, based on Proxy, the todos array is overwritten every time.

In the first one, the todos array is modified in place, invoking the Array’s

push method or substituting an element. When using a Proxy object, it’s

mandatory to overwrite the properties in order to invoke the set trap.

Chapter 8 State Management

205

Caution  When working with a Proxy object, always replace
properties instead of modifying them in place.

�Event Bus
This section covers how to manage the state of an application using the

Event Bus pattern. Event Bus is one possible way to implement an Event-

driven architecture (EDA). When working with EDAs, every state change

is represented by an event that is dispatched in the system.13 An event is

defined by a name that identifies what happened and a payload containing

meaningful information to process the event. In Listing 8-14, you can see

an example event that should be dispatched when creating a new item in

the TodoMVC domain.

Listing 8-14.  Add Item Event

const event = {

 type: 'ITEM_ADDED',

 payload: 'Buy Milk'

}

The main idea behind the Event Bus pattern is that every event is

processed by a single object that connects all the “nodes” that compose

the application. The event is then processed, and the result is sent to all

the connected nodes. When using an Event Bus for state management, the

result of any event processing is an updated version of the application's

state. Figure 8-5 shows a diagram of the Event Bus pattern.

13 To learn more about the various kinds of EDA and their differences, I suggest
reading Building Evolutionary Architectures: Support Constant Change at www.
amazon.com/Building-Evolutionary-Architectures-Support-Constant/
dp/1491986360 by Neal Ford, Rebecca Parsons and Patrick Kua.

Chapter 8 State Management

http://www.amazon.com/Building-Evolutionary-Architectures-Support-Constant/dp/1491986360
http://www.amazon.com/Building-Evolutionary-Architectures-Support-Constant/dp/1491986360
http://www.amazon.com/Building-Evolutionary-Architectures-Support-Constant/dp/1491986360

206

Figure 8-5.  The Event Bus pattern

To better understand how an Event Bus works, you can analyze the

flow of an ITEM_ADDED event:

•	 The view renders the initial state.

•	 The user fills in the form and presses Enter.

•	 The DOM event is captured by the view.

•	 The view creates the ITEM_ADDED event and dispatches

it to the bus.

•	 The bus processes the event, generating a new state.

•	 The new state is sent to the controller.

•	 The controller invokes the view to render the new state.

•	 The system is ready to receive user inputs.

I just stated that the bus “processes the event, generating a new state.”

This is not correct because the Event Bus is an architectural element and

should not contain any kind of domain-related code. You need to add the

Chapter 8 State Management

207

model to the mix in order to implement the Event Bus pattern. In this

scenario, the model is a function that accepts the old state and an event

and returns a new version of the state, as shown in Figure 8-6.

It’s important to note that, in this pattern, the state that travels from

the model to the subscribers is a single object. This object contains all the

data useful for the application. This does not mean that the model should

be one single, big JavaScript function. You will see later how it's possible to

split this model into sub-models that together build the state object.

Figure 8-6.  Model structure in an Event Bus application

Figure 8-7 shows an updated diagram of the Event Bus pattern, with

the addition of the model.

Figure 8-7.  Event Bus pattern with model

Chapter 8 State Management

208

To complete this section, you will analyze two Event Bus

implementations. The first one is a frameworkless one, while the second

one is based on Redux. Redux is a state management library born in the

React ecosystem but usable in any kind of environment.

�A Frameworkless Implementation
The first element you will analyze is the Event Bus itself. As with the

previous examples, not all of the code is shown here.14 You can see the

code of the Event Bus in Listing 8-15.

Listing 8-15.  Frameworkless Event Bus

export default (model) => {

 let listeners = []

 let state = model()

 const subscribe = listener => {

 listeners.push(listener)

 return () => {

 listeners = listeners

 .filter(l => l !== listener)

 }

 }

 const invokeSubscribers = () => {

 const data = freeze(state)

 listeners.forEach(l => l(data))

 }

14 The complete code of this implementation is available at https://github.com/
Apress/frameworkless-front-end-development/tree/master/Chapter07/03.

Chapter 8 State Management

https://github.com/Apress/frameworkless-front-end-development/tree/master/Chapter07/03
https://github.com/Apress/frameworkless-front-end-development/tree/master/Chapter07/03

209

 const dispatch = event => {

 const newState = model(state, event)

 if (!newState) {

 throw new Error('model should always return a value')

 }

 if (newState === state) {

 return

 }

 state = newState

 invokeSubscribers()

 }

 return {

 subscribe,

 dispatch,

 getState: () => freeze(state)

 }

}

In this scenario, the model is a function that gets the previous state and

the event as inputs and returns a new state. There is another important

characteristic of the model; it’s a pure function. A pure function is a

function where the return value is only determined by its input values, just

like any standard mathematical function like Math.cos(x).

To design the model as a pure function provides a big boost to testability.

Because the new state cannot depend on the internal status of the model

itself. You can also use this aspect to optimize performance, because every

time the state is updated, it has to be a new object. So if the old state and

new state are equal, it means that you can skip the subscribers. In this

implementation, invoking the model without parameters will result in

obtaining the application's initial state.

Chapter 8 State Management

210

To better understand the inner workings of the Event Bus, Listing 8-16

shows the related test suite.

Listing 8-16.  Test Suite for the Event Bus

import eventBusFactory from './eventBus'

let eventBus

const counterModel = (state, event) => {

 if (!event) {

 return {

 counter: 0

 }

 }

 if (event.type !== 'COUNTER') {

 return state

 }

 return {

 counter: state.counter++

 }

}

describe('eventBus', () => {

 beforeEach(() => {

 eventBus = eventBusFactory(counterModel)

 })

 �test('subscribers should be invoked when the model catch the

event', () => {

 let counter = 0

 eventBus.subscribe(() => counter++)

 eventBus.dispatch({ type: 'COUNTER' })

Chapter 8 State Management

211

 expect(counter).toBe(1)

 })

 �test('subscribers should not be invoked when the model does

not catch the event', () => {

 let counter = 0

 eventBus.subscribe(() => counter++)

 eventBus.dispatch({ type: 'NOT_COUNTER' })

 expect(counter).toBe(0)

 })

 test('subscribers should receive an immutable state', () => {

 eventBus.dispatch({ type: 'COUNTER' })

 eventBus.subscribe((state) => {

 expect(() => {

 state.counter = 0

 }).toThrow()

 })

 })

 �test('should throw error if the model does not return a

state', () => {

 const eventBus = eventBusFactory(() => {

 return undefined

 })

 expect(() => {

 eventBus.dispatch({ type: 'EVENT' })

 }).toThrow()

 })

})

Chapter 8 State Management

212

The counterModel object gives you a glimpse of how a model should

work in an Event Bus architecture. When an event of the COUNTER type is

dispatched, a new state is created with an incremented counter property.

For all the other events, nothing is changed, and the old state is returned.

Listing 8-17 shows part of the model of the TodoMVC application.

Listing 8-17.  TodoMVC Model for Event Bus Architecture

const INITIAL_STATE = {

 todos: [],

 currentFilter: 'All'

}

const addItem = (state, event) => {

 const text = event.payload

 if (!text) {

 return state

 }

 return {

 ...state,

 todos: [...state.todos, {

 text,

 completed: false

 }]

 }

}

const updateItem = (state, event) => {

 const { text, index } = event.payload

 if (!text) {

 return state

 }

Chapter 8 State Management

213

 if (index < 0) {

 return state

 }

 if (!state.todos[index]) {

 return state

 }

 return {

 ...state,

 todos: state.todos.map((todo, i) => {

 if (i === index) {

 todo.text = text

 }

 return todo

 })

 }

}

const methods = {

 ITEM_ADDED: addItem,

 ITEM_UPDATED: updateItem

}

export default (initalState = INITIAL_STATE) => {

 return (prevState, event) => {

 if (!prevState) {

 return structuredClone(initalState)

 }

 const currentMethod = methods[event.type]

 if (!currentMethod) {

 return prevState

 }

Chapter 8 State Management

214

 return currentMethod(prevState, event)

 }

}

In order to avoid a very long switch statement to choose the right

method based on the Event type, I used a simple object that maps the

Event type with a method. If no method is found, it means that the model

does not manage that event, and so the previous state is returned.

In the previous section, I stated that in a real application, the Model

function should be separated into smaller sub-modules.15 In that version

of the model, there are two sub-models. The first one manages the todos,

and the other one manages the filter. The main Model function merges the

results of the sub-models into a single state object.

Tip  When working with an Event Bus, split the model into sub-
models in order to achieve good code readability.

Listing 8-18 shows the controller of the TodoMVC application based on

the Event Bus.

Listing 8-18.  Controller of an Event Bus-Based TodoMVC

Application

import eventBusFactory from './model/eventBus.js'

import modelFactory from './model/model.js'

const model = modelFactory()

const eventBus = eventBusFactory(model)

15 You can see another version of the Model in Listing 8-17 on GitHub at https://
github.com/Apress/frameworkless-front-end-development/blob/master/
Chapter07/03.1/model/model.js.

Chapter 8 State Management

https://github.com/Apress/frameworkless-­front-­end-development/blob/master/Chapter07/03.1/model/model.js
https://github.com/Apress/frameworkless-­front-­end-development/blob/master/Chapter07/03.1/model/model.js
https://github.com/Apress/frameworkless-­front-­end-development/blob/master/Chapter07/03.1/model/model.js

215

const render = (state) => {

 window.requestAnimationFrame(() => {

 const main = document.querySelector('#root')

 const newMain = registry.renderRoot(

 main,

 state,

 eventBus.dispatch)

 applyDiff(document.body, main, newMain)

 })

}

eventBus.subscribe(render)

render(eventBus.getState())

As you can see, the major difference with previous versions is that it

doesn't provide the events to the render function, but just the dispatch

method of the Event Bus. In this way, the view is capable of dispatching

events in the system, as you can see in Listing 8-19, which shows part of

the code of the view.

Listing 8-19.  View Function Using the Event Bus

import eventCreators from '../model/eventCreators.js'

let template

const getTemplate = () => {

 if (!template) {

 template = document.getElementById('todo-app')

 }

Chapter 8 State Management

216

 return template

 .content

 .firstElementChild

 .cloneNode(true)

}

const addEvents = (targetElement, dispatch) => {

 targetElement

 .querySelector('.new-todo')

 .addEventListener('keypress', e => {

 if (e.key === 'Enter') {

 const event = eventCreators

 .addItem(e.target.value)

 dispatch(event)

 e.target.value = ''

 }

 })

}

export default (targetElement, state, dispatch) => {

 const newApp = targetElement.cloneNode(true)

 newApp.innerHTML = ''

 newApp.appendChild(getTemplate())

 addEvents(newApp, dispatch)

 return newApp

}

Notice the use of eventCreators.addItem to create the Event object to

dispatch. The eventCreators object is a simple collection of factories used

to easily build consistent events. You can see its code in Listing 8-20.

Chapter 8 State Management

217

Listing 8-20.  Event Creators

const EVENT_TYPES = Object.freeze({

 ITEM_ADDED: 'ITEM_ADDED',

 ITEM_UPDATED: 'ITEM_UPDATED'

})

export default {

 addItem: text => ({

 type: EVENT_TYPES.ITEM_ADDED,

 payload: text

 }),

 updateItem: (index, text) => ({

 type: EVENT_TYPES.ITEM_UPDATED,

 payload: {

 text,

 index

 }

 })

}

These functions are useful for ensuring that every event is in the

canonical form shown in Listing 8-14.

�Redux
Redux is a state management library that was first announced at the

React-Europe conference in 2015 with a talk16 by Dan Abramov. After

that, it rapidly became a mainstream approach when working with React

applications. Redux is one (and surely the most successful) of the so-

called Flux-like libraries, a group of tools that implemented Facebook’s

16 www.youtube.com/watch?v=xsSnOQynTHs

Chapter 8 State Management

https://www.youtube.com/watch?v=xsSnOQynTHs

218

architecture, Flux.17 Working with Redux is very similar to working with a

frameworkless Event Bus. Nevertheless, being born after the Flux pattern,

the words used to define the components of the architecture are different,

as you can see in Table 8-1.

Table 8-1.  Comparing the Event Bus and Redux Elements

Event Bus Redux

Event Bus Store

Event Action

Model Reducer

To better understand the principles behind Redux, I strongly suggest

reading the “Three Principles” chapter of the Redux documentation

(https://redux.js.org/introduction/three-principles).

Apart from the naming, the elements are quite similar. In fact,

in Listing 8-21, you can see the code of the controller of a TodoMVC

application built with Redux.

Listing 8-21.  Controller of a Redux-Based TodoMVC Application

import reducer from './model/reducer.js'

const INITIAL_STATE = {

 todos: [],

 currentFilter: 'All'

}

const {

 createStore

} = Redux

17 To learn more about Flux, you can consult the official website at
https://facebook.github.io/flux/.

Chapter 8 State Management

https://redux.js.org/introduction/three-principles
https://facebook.github.io/flux/

219

const store = createStore(

 reducer,

 INITIAL_STATE

)

const render = () => {

 window.requestAnimationFrame(() => {

 const main = document.querySelector('#root')

 const newMain = registry.renderRoot(

 main,

 store.getState(),

 store.dispatch)

 applyDiff(document.body, main, newMain)

 })

}

store.subscribe(render)

render()

Using the Redux’s store instead of the Event Bus build in the previous

section makes almost no difference to the controller. Furthermore, as you

can see in the complete application code,18 the reducer has exactly the

same code as the model from the frameworkless event bus.

One of the main advantages of using Redux instead of a frameworkless

event bus is the large number of tools and plugins available. One of the

most famous tools for Redux developers is Redux DevTools. Using it,

developers can easily log all the actions dispatched in the system and see

how they affected the state. Moreover, it is possible to import or export the

state in JSON format. Figure 8-8 shows the Redux DevTools in action.

18 https://github.com/Apress/frameworkless-front-end-development/tree/
master/Chapter08/04

Chapter 8 State Management

https://github.com/Apress/frameworkless-front-end-development/tree/master/Chapter08/04
https://github.com/Apress/frameworkless-front-end-development/tree/master/Chapter08/04

220

Figure 8-8.  Redux DevTools

�Comparing State Management Strategies
This last section points out the characteristics of the three kinds of state

management strategies analyzed in this chapter from three different points

of view: simplicity, consistency, and scalability.

�Model View Controller
Model view controller is fairly simple to implement and gives developers a

lot of advantages. For example, a good grade of separation of concerns and

testability of your domain’s business logic.

The real problem of MVC is that it is not a strict pattern. The definition

of the elements and the relations between them can be unclear. If you ask

the question, “What exactly is the difference between the view and the

controller?” you can get a lot of different answers. This happens because

every MVC framework filled in the “gray areas” of the MVC pattern with

Chapter 8 State Management

221

their own ideas, so every framework implemented a slightly different

version of the MVC. To effectively work with a frameworkless MVC, the

first task to is to define your team’s MVC rules.

This is also a problem for scalability. When your application grows

bigger, the number of “gray areas” grow too, and if the consistency problem

is not addressed, your code may become unreadable.

�Reactive Programming
The main idea behind Reactive programming is that everything in your

application is an observable. You saw how easy it is to build observable

models, but there are libraries (like RxJS) that transform every aspect of a

front-end application to an observable, from user inputs to timers to HTTP

requests. This approach guarantees good consistency because you work

with objects of the “same type.”

Nevertheless, wrapping everything in an observable is not simple. It

may become easy if you use a third-party library like RxJS, but that does

not mean it would be simple.

Caution  Implementing an easy architecture is not the same thing
as building a simple one. Your goal should be to create the simplest
architecture that matches your requirements, not the easiest one
to build.

It may not be that simple because you’re working with a massive

abstraction: everything is an observable. Working with abstractions can

become a problem when your application becomes bigger, because

Chapter 8 State Management

222

they start to “leak”.19 Leakiness is not a specific problem of Reactive

programming; it's related to any pattern (or framework) based on a

central abstraction. This is extensively explained by the "Law of Leaky

Abstractions,” coined by Joel Spolsky, which states:

"All non-trivial abstractions, to some degree, are leaky.”

When your application grows, there will be some parts that are not

suited for that abstraction and this fact can become a big problem for

scalability.

�Event Bus
The Event Bus architecture (and in general event-driven architectures) is

based on a single, strict rule: “Every state change is generated by an event.”

This rule helps to keep the complexity of your application proportional

to its size, while in other architectures, the complexity is exponential to

the size of the application. That is one of the reasons that the code of an

extensive application is usually less readable than the code of a small one.

This happens because, with the increase in the number of elements

that compose your application, there are a lot of possibilities related to

how to let them communicate, as shown in Figure 8-9.

19 https://en.wikipedia.org/wiki/Leaky_abstraction

Chapter 8 State Management

https://en.wikipedia.org/wiki/Leaky_abstraction

223

Figure 8-9.  Complexity in a big application

Strictly following the Event Bus pattern will remove this complexity

because the only way to communicate is through the bus itself (compare

Figure 8-9 with Figure 8-7). This feature makes Event Bus a very good

approach if your first concern is the scalability.

As you saw in the section about the frameworkless implementation of

the Event Bus, it's relatively easy to use and build. It’s also relatively simple

because the abstraction behind the pattern is not as strong as in Reactive

programming. The main problem with Event Bus is its verbosity.20 For

every state update, the team needs to create the event, dispatch it through

the bus, write the model that updated the state, and finally send the new

state to the listeners. Because of the verbosity of this pattern, not all of the

application's state is managed with it. In the long run, developers tend to

pair it with another state management strategy (such as MVC or Reactive)

to manage smaller or simpler domains, resulting in a loss of consistency.

20 For Redux, some specific libraries like https://redux-toolkit.js.org/ are
born to solve the verbosity problem.

Chapter 8 State Management

https://redux-toolkit.js.org/

224

Table 8-2 is a summary of the comparison made in this section.

Table 8-2.  State Management Strategies Comparison

Simplicity Consistency Scalability

MVC ✓ ✗ ✗

Reactive ✗ ✓ -

Event Bus - ✗ ✓

As you might have noticed, none of these characteristics is really

measurable. They are just my personal thoughts based on my studies and

experiences. Using the different patterns covered in this chapter may lead

you to completely different considerations.

�Summary
In this chapter, you we learned the meaning of state management and

why it is important to create in client applications. You then analyzed and

implemented three different state management strategies: model view

controller, Reactive programming, and Event Bus.

Chapter 8 State Management

225

CHAPTER 9

Frameworkless
Refactoring:
StranglerFigApplication
Pattern
Now that you have learned about the five main “blocks” that frameworks

provide to build front-end applications—rendering, events, HTTP

requests, routing, and state management—the next objective is to cover

how to apply these blocks to the existing codebase to replace an old

framework. While there are some outstanding books about refactoring and

managing legacy code, most of the material I read in my career is about

back-end code. The reason is simple: Looking at the big picture of software

development history, front-end development is relatively young. So, by

some accounts, it is natural that all the material about this topic covers

back-end problems.

This chapter explains how to apply one of the most famous refactoring

patterns—the StranglerFigApplication—to a front-end application.

More specifically, it’s about transforming an AngularJS application to a

frameworkless one.

© Francesco Strazzullo 2023
F. Strazzullo, Frameworkless Front-End Development,
https://doi.org/10.1007/978-1-4842-9351-5_9

https://doi.org/10.1007/978-1-4842-9351-5_9

226

�Setting the Stage
The story in this chapter is based on a real-life scenario I tackled with my

team some years ago. I need to give you some context about the client and

their product to understand why we chose to work the way we did. It was

2013, and we collaborated with a new client, helping them create an SPA

for their product. They were working on porting a desktop ERP to a web

version of the same software. The development of that software was, for

them, a market test: They needed to know if their historical client would be

interested in working with a web version or if the web version could attract

new clients.

So, to be quick in testing this new market, our team needed to be as

fast as possible to release a working version of this software. It was 2013,

and we used AngularJS: At the time, it was almost a de facto standard for

that application.

Fast forward to five years later, in 2018. The web version of the software

is a commercial success, the desktop version is only maintained for long-

term support, but no new features are planned. Most of the company’s

efforts shifted to the web version because it became this client’s most

important source of revenue. At that time, AngularJS started to become a

problem; its EOF was arriving and finding people willing to work with it

was harder and harder. We decided to find a solution to remove AngularJS

from the application, replacing it with something else, but with which

framework? When creating the software, our top priority was the time-

to-market, but now it was durability. The company was making the bulk

of its money with this software, so it should (virtually) last as long as the

company itself. The only real durable solution in the 2018 JavaScript

ecosystem was a frameworkless approach.

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

227

�The Solution
We needed to understand how to solve the AngularJS problem and include a

frameworkless codebase. A significant rewrite was not an option; the software

was too big and the team too small, even if only considering that option. We

needed to refactor our codebase one piece at a time, and after some analyses

and POCs, we came up with the StranglerFigApplication1 pattern. The

main idea is to create a new version of a codebase that, over time, will

“strangle” the original application completely. (The name of the pattern came

from the Strangler figs plants that operate in a similar way to trees, the figs

suck up the nutrients from its victims, causing them to die eventually.)

In the same way, this frameworkless application would strangle the

AngularJS one, letting it “die” when all the code was ported from one

application to the other. As shown in Figure 9-1, the original application

was bundled with Grunt, while the new one was created using Webpack.

Figure 9-1.  From AngularJS to frameworkless with
StranglerApplication

�The Example
Now you will see a near real-world example. This chapter is divided

into steps that mimic the refactoring of an actual application. It starts

with an AngularJS application, and step by step, you will remove more

and more pieces of the original application, substituting them with the

frameworkless code.

1 https://martinfowler.com/bliki/StranglerFigApplication.html

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

https://martinfowler.com/bliki/StranglerFigApplication.html

228

�The Original Application
This application refactors a Twitter clone; the user can read a list of tweets

and post a new one. The data that the front-end application consumes is

generated by a simple web server2 based on faker.js.3 You can see the

main page of the app in Figure 9-2.

Figure 9-2.  AngularJS application to refactor

The application is relatively straightforward, with two routes formed

by a template and a controller. Both controllers use a tweets service to

interact with the REST APIs. Listings 9-1 to 9-6 show the whole application

codebase.

Listing 9-1.  Application Routes Definition

angular

 .module('myApp', ['ngRoute'])

2 You can see the code on GitHub at https://github.com/Apress/
Frameworkless-Front-End-Development-2nd-ed./blob/main/Chapter09/00/
server/tweets.js)
3 https://fakerjs.dev/.

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./blob/main/Chapter09/00/server/tweets.js
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./blob/main/Chapter09/00/server/tweets.js
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed./blob/main/Chapter09/00/server/tweets.js
https://fakerjs.dev/

229

 .config(['$routeProvider', ($routeProvider) => {

 $routeProvider

 .when('/', {

 templateUrl: 'app/templates/list.tpl.html',

 controller: 'ListController'

 })

 .when('/tweet', {

 templateUrl: 'app/templates/tweet.tpl.html',

 controller: 'TweetController'

 })

 .otherwise({redirectTo: '/'})

 }])

Listing 9-2.  Tweet List Page Template

<div class="container">

 <button class="confirm" data-ng-click="goToNewTweet()">

 New Tweet

 </button>

 <div class="item hoverable" data-ng-repeat="item in list">

 <div class="item-content">

 <div>

 {{item.name}}

 �<small class="username">{{item.userName}}

</small>

 </div>

 <div class="tweet">

 {{item.tweet}}

 </div>

 </div>

 </div>

</div>

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

230

Listing 9-3.  Tweet List Page Controller

angular

 .module('myApp')

 .controller('ListController', [

 '$scope',

 'tweets',

 '$location', function ($scope, tweets, $location) {

 $scope.list = []

 tweets.list().then((list) => {

 $scope.list = list

 })

 $scope.goToNewTweet = () => {

 $location.path('/tweet')

 }

 }])

Listing 9-4.  Tweet Detail Page Template

<div class="container">

 <div class="item">

 <div class="tweet-form">

 �<textarea data-ng-model="tweet" placeholder="write

your tweet here..." maxlength="140"></textarea>

 �<progress value="{{tweet.length}}" max="140">

</progress>

 �Characters left:

{{140 - tweet.length}}

 </div>

 </div>

 �<button class="confirm" data-ng-disabled="!tweet"

data-ng-click="sendTweet()">

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

231

 Send

 </button>

</div>

Listing 9-5.  Tweet Detail Page Controller

angular

 .module('myApp')

 .controller('TweetController', [

 '$scope',

 'tweets',

 '$location',

 function (

 $scope,

 tweets,

 $location

) {

 $scope.loading = false

 $scope.tweet = ''

 $scope.sendTweet = () => {

 $scope.loading = true

 tweets.send({

 tweet: $scope.tweet

 }).then(() => {

 $scope.tweet = ''

 $scope.loading = false

 $location.path('/')

 })

 }

 }])

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

232

Listing 9-6.  Tweet API Service

angular

 .module('myApp')

 .service('tweets', ['$http', function ($http) {

 const URL = 'http://localhost:3000/api/tweet'

 const list = () => {

 return $http

 .get(URL)

 .then((response) => response.data)

 }

 const send = (data) => {

 return $http

 .post(URL, data)

 .then((response) => response.data)

 }

 return {

 list,

 send

 }

 }])

The code shown in the previous listings is quite simple—almost

trivial—but I think it is an excellent example of a standard AngularJS

application that you can use as a model for a refactoring process.

�Moving Services
The first and most important thing to do when modernizing a legacy

front-end application is to let new “business logic” be used by the old

application. In this example, the only real piece of business logic is the

tweets service in Listing 9-6. In Listing 9-7, the same service has been

“translated” to a frameworkless approach using fetch.

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

233

Listing 9-7.  Tweet API Service (Frameworkless Version)

const URL = 'http://localhost:3000/api/tweet'

const list = async () => {

 const response = await window.fetch(URL, {

 method: 'GET',

 headers: {

 'Content-Type': 'application/json'

 }

 })

 return response.json()

}

const send = async (data) => {

 const response = await fetch(URL, {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 },

 body: JSON.stringify(data)

 })

 return response.json()

}

const tweets = {

 list,

 send

}

export const angularElement = [() => tweets]

export default tweets

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

234

The code is relatively straightforward;. Here is only one feature that

may seem odd at first glance: The double export at the end of the listing,

the default and the named one. The default export is used by all the

“new code” based on ES modules, while the angularElement export is

used by the “old” AngularJS application (notice the array form typical of

AngularJS). But how do you make this service available to AngularJS? The

solution is relatively easy, as shown in Listing 9-8.

Listing 9-8.  Booting the StranglerFigApplication

import {angularElement as tweets} from './services/tweets.mjs'

angular

 .module('myApp')

 .service('tweets', tweets)

const boot = () => {

 angular

 .element(document)

 .ready(() => {

 angular.bootstrap(document, ['myApp'])

 })

}

boot()

While the snippet in Listing 9-8 is small, it is essential to understand

how this process works. You import the service via the named import

and inject it into the AngularJS application. After you import all services,

you boot the application. Every service created in the new application is

available to both the old application via the named import/inject trick and

the new application via standard default export.

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

235

Note I t is not mandatory to use the default export for the new
application; you can use a named export also for the new application.
I suggest using the same named export for every module that
needs to be ported to the old application in the same way, like the
angularElement name used in the previous listings.

�Moving Components
The strategy to move UI elements that I prefer when using the

StranglerFigApplication pattern is to convert one route (or page) at a

time using Web Components, porting all the smaller components that

compose the pattern library along the way. Listings 9-9 and 9-10 show the

Web Component version of the new tweet page.

Listing 9-9.  Tweet Page as a Web Component (JavaScript)

import { loadDomElement } from '../utils/rendering.mjs'

import tweets from '../services/tweets.mjs'

class TweetPage extends HTMLElement {

 constructor () {

 super()

 this.tweet = ''

 }

 connectedCallback () {

 window.requestAnimationFrame(() => this.render())

 }

 onChange (value) {

 this.tweet = value

 const {length} = value

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

236

 �this.querySelector('my-app-character-counter').

value = length

 this.querySelector('my-app-progress-bar').value = length

 }

 async send () {

 await tweets.send({

 tweet: this.tweet

 })

 window.location.hash = '/'

 }

 async render () {

 this.innerHTML = ''

 �const child = await loadDomElement('./app/es6/components/

TweetPage.tpl.html')

 this.appendChild(child)

 const textarea = this.querySelector('textarea')

 textarea.value = this.tweet

 �textarea.addEventListener('input', e => this.onChange

(e.target.value))

 this

 .querySelector('button')

 .addEventListener('click', () => this.send())

 }

}

export default TweetPage

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

237

Listing 9-10.  Tweet Page as a Web Component (Template)

<div class="container">

 <div class="item">

 <div class="tweet-form">

 �<textarea placeholder="write your tweet here..."

maxlength="140"></textarea>

 <my-app-progress-bar></my-app-progress-bar>

 �<my-app-character-counter></my-app-character-

counter>

 </div>

 </div>

 �<button class="confirm" data-ng-disabled="!tweet"

data-ng-click="sendTweet()">

 Send

 </button>

</div>

The code in the previous listing is very similar to the code you analyzed

in earlier chapters, so there is no deep analysis of it. The only important

thing is that two other components were created while creating my-app-

character-counter and my-app-progress-bar. To connect this page

to AngularJS, you need two steps—first, register the TweetPage as a Web

Component via the custom elements registry with this instruction:

window.customElements.define('my-app-tweet-page', TweetPage

Then change the AngularJS’s route definition to render the newly

created page:

[...]

.when('/tweet', {

 template: '<my-app-tweet-page></my-app-tweet-page>'

 })

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

238

This way, one page at a time, you can convert all the applications. This

scenario is similar to applying the StranglerFigApplication pattern in

a back-end application, using a proxy, and then converting one route at

a time. In this case, the proxy is the routing system of AngularJS, and the

REST API converts the pages of the application.

�Other Conversion Strategies
Let’s recap how the process explained in this chapter works: You create a

second build system, based on ES modules, you connect the new system

to the old system, and then you convert one piece of the old application at

a time to the new one. You do this until the old application is completely

removed or is small enough not to be a problem anymore. Then you can

explore some other conversion strategies that can be used to achieve the

objective.

�iframes
Instead of using modules and pages, your team can create a completely

separate application and inject that into the old application via iframes.

The two applications can communicate and exchange events or data in

different ways, such as by using post messaging.4

�Proxy
Another option is to keep the two applications completely separated,

hosted on two different servers, and put a proxy in front of them. While

your team converts the old application, they tell the proxy to switch from

4 https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

239

some routes from the old application to the new one. This approach is

particularly beneficial if your team does not need to modify the behavior

of the existing application but instead needs to create a new part of the

application that could be isolated very quickly.

�Summary
This chapter covered how to refactor an application based on

an obsolete framework to a frameworkless application using the

StranglerFigApplication pattern. While the examples shown in this

chapter focus on frameworkless code, the same technique could be used

to move from one framework to another.

Chapter 9 Frameworkless Refactoring: StranglerFigApplication Pattern

241

CHAPTER 10

Defending from
Frameworks
The previous chapter explored the StranglerFigApplication pattern,

which is a way to rewrite a legacy application from the inside, substituting

new pieces along the usual new feature development flow. This chapter

covers how to build an application by mixing frameworkless code and

code based on frameworks, as well as how to create a stable codebase that

does not need considerable refactoring to remove a framework or parts of

it that are no longer required.

Before doing that, I need to explain the meaning of the title of this

chapter: defending from frameworks. To do that, I want to start with a

concept I covered in Chapter 1: technical debt. In a nutshell, technical

debt is the difference between the perfect application (from a technical

point of view) and your actual codebase. Every shortcut or decision that

can give a team a speed boost but sacrifices quality adds something to the

heap of technical debt, especially when the code is out of your control.

For this reason—not being in control—frameworks can also become a

part of technical debt. But, as I briefly explained in Chapter 1, sometimes

shortcuts (and frameworks are, in fact, “shortcuts”) are necessary to bring

a solution to the market in time. In this case, it becomes what I call a

“technical investment.”

© Francesco Strazzullo 2023
F. Strazzullo, Frameworkless Front-End Development,
https://doi.org/10.1007/978-1-4842-9351-5_10

https://doi.org/10.1007/978-1-4842-9351-5_10

242

Figure 10-1.  Technical debt

Now let’s try to analyze what “defending from frameworks” means.

Defending from what? From over-indebtedness. The phrase “defending

from frameworks” suggests that developers should avoid relying too much

on frameworks or, to explain my point better, they should avoid relying on

all the framework features.

In the next chapter, you learn about a tool that’s used to classify

frameworks based on whether they are “general purpose” tools. But, as

a rule of thumb, frameworks are huge and usually bloated compared to

what a development team needs. This chapter and its considerations are

critical because going fully frameworkless is—most of the time—not a

viable option due to constraints like time, budget, or the need to recruit

developers in the market. Working with frameworks should not be

considered a black-or-white approach—choosing a framework or going

frameworkless—but more as a scale of grays when the team is responsible

for defining its strategy, as shown in Figure 10-2.

Chapter 10 Defending from Frameworks

243

Figure 10-2.  The “defending from framework” strategy

To conclude, defending from frameworks means carefully choosing

which features are useful for your scenario and which just add debt that

someone has to pay in the future. I call the “defending from framework”

strategy the actual list of features that a team chooses to use and the one

they will build from scratch.

�Classify Framework Features
Throughout this book, I covered the essential features of front-end

frameworks and explained how to implement them with vanilla JavaScript,

and this is what I called the “frameworkless toolkit.” What I do in this

chapter is analyze each of them from two different points of view:

•	 The amount of debt generated

•	 The effort required to use a frameworkless solution

This analysis aims to help you define your “strategy” in defending from

a framework or, if you prefer, finding your position in Figure 10-2. The

analysis of the effort is based on my experiences and the skills of the teams

with which I have collaborated over the years. Different teams can incur

Chapter 10 Defending from Frameworks

244

completely different levels of action. Also, the features I choose to analyze

are arbitrary; every team should decide to split up the features based on

what they need or want to explore. Some teams may want to question if

creating a rendering engine is an option. Other teams that need to rely on

some particular protocol for server communication might want to analyze

that specific aspect.

�Rendering/Event Management
The first analysis covers rendering and event management; while they are

two different topics, they need to be considered as one in this scenario.

It is challenging—and usually very inefficient—to build a frameworkless

event management system on top of an existing rendering framework or

vice versa.

�Technical Debt: High

Rendering is the core of front-end applications; they live to display data

to the user and react to their inputs. This aspect of front-end applications

makes the rendering code of a framework the most difficult to “remove,”

precisely because of the importance of this aspect. Removing the

rendering part of a framework means removing the entire framework from

the codebase. As explained in Chapter 9, this is no easy task.

�Effort: Highest

Rendering is hard. Efficient rendering is even harder. As a rule of thumb,

the effort to build a frameworkless rendering engine is high. To evaluate

the effort needed to develop your rendering engine, your team should

determine the functional requirements of their application. From a

Chapter 10 Defending from Frameworks

245

rendering point-of-view, building an ERP1 software with many tables/

detail pages is completely different from creating a real-time chat or a

streaming service.

�HTTP Request
�Technical Debt: Low

As I mentioned in the previous section, front-end applications are all

about showing data. Usually, this data comes from a web server via HTTP

request, most of the time using the REST architecture with JSON payload.

So, receiving and sending asynchronous data is crucial, just like rendering.

If the codebase is written using some clean code practice, the HTTP layer

should be covered by an anti-corruption layer, hiding the implementation

based on frameworks. Just this simple precaution can keep the technical

debt under control.

�Effort: Lowest

Thanks to the fetch2 API, which is now available on all browsers, creating

a frameworkless HTTP requests layer is quite straightforward. Things can

become more complicated if you’re using GraphQL3 architecture or your

application relies heavily on socket communication.

1 https://en.wikipedia.org/wiki/Enterprise_resource_planning
2 https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
3 https://graphql.org/

Chapter 10 Defending from Frameworks

https://en.wikipedia.org/wiki/Enterprise_resource_planning
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://graphql.org/

246

�Routing
�Technical Debt: Medium

Routing is the nervous system of an SPA. When changing the framework

in an existing application—or removing it, as in Chapter 9—a team usually

works “route by route,” changing the application one page at a time. But

the piece of a codebase that manages which page is shown at which

URL, the routing, is the last piece to be changed. I witnessed some huge

refactoring that removed old frameworks almost entirely; the only part

left was the routing system. This is usually the case when working on a

very large application with hundreds of routes. Changing all of them can

become quite challenging. But in any case, the cost of keeping a “zombie”

framework just for the routes is manageable.

�Effort: Low

The interesting thing about building your routing system is that the

complexity of the code is constant; it does not depend on the size of

the application. The code shown in Chapter 7 can serve an extensive

application without any problem.

�State Management
�Technical Debt: Highest

State management is where the “magic” happens, where all the code

related to a software’s specific use cases—generally called the “business

logic”—resides. Binding that kind of code to a particular framework

skyrockets the technical debt. Suppose the application is big enough

Chapter 10 Defending from Frameworks

247

and not using techniques like hexagonal architecture.4 In that case, your

business logic will become a mess bundled with framework code, which is

incredibly difficult to untangle.

�Effort: Low

As demonstrated in Chapter 8, creating a custom state management

strategy is quite simple. Actually, it can also be simpler. You can just create

simple vanilla JavaScript objects that represent your business logic and

link them to the existing framework before building a state management

layer for consistency. But a group of POJOs5 is all a team needs to work

with small to medium applications.

�Visualizing Your Strategy
As explained, the features analyzed here and the level of effort needed are

not written in stone, and they greatly depend on the application to build

and on the skill level of the team. But in any case, using the “technical

debt” and the “effort” aspects, this section compares every feature and

puts them on a map called the framework strategy map, as shown in

Figure 10-3.

4 https://en.wikipedia.org/wiki/Hexagonal_architecture_(software)
5 POJO stands for “Plain Old Java Object” but is also used for the JavaScript
ecosystem (https://en.wikipedia.org/wiki/Plain_old_Java_object).

Chapter 10 Defending from Frameworks

https://en.wikipedia.org/wiki/Hexagonal_architecture_(software)
https://en.wikipedia.org/wiki/Plain_old_Java_object

248

Figure 10-3.  Framework strategy map

Visualizing framework features on this kind of map makes it easy

to compare them and define a strategy at the beginning of developing

a new product. A simple—yet very effective—way to create a plan is

what I call “cut off and prioritize.” The mechanism is straightforward;

considering your team skills and constraints like deadline or budget, you

draw a horizontal line called the framework cut-off line. The framework

will provide everything that is over the line. All the items under the line

will be numbered from right to left—from the most high level of debt to

the lowest—thus creating a priority. When the team starts working on

the product, they will begin working on specific features using those

priorities. An example based on the data from Figure 10-3 is shown in

Figure 10-4.

Chapter 10 Defending from Frameworks

249

Figure 10-4.  Framework strategy map (2)

Looking at Figure 10-4, it’s quite easy to explain the team’s strategy

derived from the map:

“The framework will provide routing and

rendering. During development, we will use a state

management architecture that we will build. If we

have enough time, we will also build the HTTP

Request layer, or we will use a dedicated library

separated from the original framework.”

The real power of these kinds of visual tools is that they can sum up

hours of conversation in a couple of seconds. They work much better than

pages of documentation when talking about architectural decisions.

�Summary
This chapter explored the meaning of “defending from frameworks”

and used a simple exercise based on a visual map to define a framework

strategy shared by team members.

Chapter 10 Defending from Frameworks

251

CHAPTER 11

The Right Tool for
the Right Job

Programming is a social activity.

—Robert C. Martin

In the previous chapters, you learned about the frameworkless toolkit

pieces. You know how to render DOM elements, manage user input, make

HTTP requests, implement a client-side routing system, and manage

the state of your application. You’re now ready to create a complete

frameworkless front-end application from scratch.

This final chapter helps you answer the question, “Now that I can

work effectively without frameworks, when should I do that?” Or, more

generally, “Which framework, if any, should I use for this product?”

In a nutshell, this chapter discusses choosing the right tool for the right

job. It will do that by defining a list of principles that you should consider

when making a technical decision and a collection of practical tools based

on these principles.

© Francesco Strazzullo 2023
F. Strazzullo, Frameworkless Front-End Development,
https://doi.org/10.1007/978-1-4842-9351-5_11

https://doi.org/10.1007/978-1-4842-9351-5_11

252

�JavaScript Fatigue
If you are a front-end developer, you probably heard the expression

“JavaScript fatigue”. JavaScript fatigue was coined around 2016 to express

the frustration generated by the inability to keep up with the latest

JavaScript libraries or frameworks. For newcomers, JavaScript fatigue can

be very hard to manage; they may feel overwhelmed by all the possibilities.

There are several reasons behind the constant change in the JavaScript

ecosystem. The most important is that JavaScript now runs almost

everywhere. Besides the browser and its natural environment, JavaScript

runs on servers, thanks to Node, and in many other environments like

mobile applications, blockchain, IoT, and so on. Jeff Atwood stated in the

so-called Atwood’s law that:

Any application that can be written in JavaScript will eventu-
ally be written in JavaScript.

For now, the rule is still valid. Table 11-1 is a non-comprehensive list

of areas (excluded the front-end) where JavaScript could be used; for every

area, I also include an example tool with a link to the project’s home page.

Table 11-1.  JavaScript Ecosystem Cheat Sheet

Tool Link

Back-end Node.JS https://nodejs.org/

Ethereum blockchain Truffle Suite https://truffleframework.com/

Mobile applications React Native https://facebook.github.io/

react-native/

IoT Johnny-Five http://johnny-five.io/

NES programming Nesly https://github.com/emkay/nesly

Machine learning TensorFlow www.tensorflow.org/

Alexa Skill ASK (Alexa

Skill Kit)

https://github.com/alexa/alexa-

skills-kit-sdk-for-nodejs

Chapter 11 The Right Tool for the Right Job

https://nodejs.org/
https://truffleframework.com/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
http://johnny-five.io/
https://github.com/emkay/nesly
https://www.tensorflow.org/
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs

253

Limiting the reasoning about the “fatigue” only to the front-end,

there are a lot of options out there. In addition to the three mainstream

frameworks—Angular, React, and Vue—many small libraries solve specific

problems. In previous chapters, you learned about some of them, like

Redux for state management and Navigo for routing, but they are just the

tip of the iceberg.

I don’t like the expression “JavaScript fatigue.” I am delighted to

have a lot of choices in my ecosystem. This book would never have been

published if I hadn’t had the opportunity to study the code of React,

Angular, and so on. Frameworks and libraries are great for learning. So,

the more frameworks you have, the faster you can learn new paradigms,

and the competition between libraries raises the bar, feature by feature. I

love to call this period the “JavaScript Renaissance,” a great moment to be a

JavaScript developer.

�The “Right” Framework
Why did I start this chapter with a section about the JavaScript

Renaissance? Because with the fantastic opportunities this ecosystem

gives developers also comes a challenge: Choosing the suitable framework.

I hope that this chapter can help you and your team with this task.

Remember that whenever I discuss choosing a framework, I always put a

frameworkless option on the table.

Tip  When choosing a framework, always consider a frameworkless
option. You may notice that frameworks are not giving you any
advantage in that particular scenario.

With “choose,” I don’t mean just to select a framework from a list but

to analyze and apply some decision-making techniques in a structured

way. Because of the magnitude of the decision-making topic, this chapter

Chapter 11 The Right Tool for the Right Job

254

introduces some basic principles that should drive you to choose a

framework. If you want to study decision-making in depth, here are some

books that I suggest you read:

•	 Decision Making For Dummies by Dawna Jones (www.

amazon.com/Decision-Making-Dummies-Dawna-Jones/

dp/111883366X)

•	 The Thinker’s Toolkit: 14 Powerful Techniques for

Problem-Solving by Morgan D. Jones (www.amazon.com/

Thinkers-Toolkit-Powerful-Techniques-Problem/

dp/0812928083)

•	 Thinking, Fast and Slow by Daniel Kahneman (www.

amazon.com/Thinking-Fast-Slow-Daniel-Kahneman/

dp/0374533555)

What does the “right” framework mean? One of the definitions that

you may find in the dictionary states:

True or correct as a fact.

But can a framework be correct as a “fact”? I don’t think so. There

is probably more than one “right” framework for your project. So I will

change the challenge from “choosing the right framework” to “choosing

a good enough framework.” By good enough, I mean one that helps your

team achieve its goals.

Tip  If a framework seems good enough, you should stop searching.
Trying to find the perfect match may cost you a lot of time.

Chapter 11 The Right Tool for the Right Job

https://www.amazon.com/Decision-Making-Dummies-Dawna-Jones/dp/111883366X
https://www.amazon.com/Decision-Making-Dummies-Dawna-Jones/dp/111883366X
https://www.amazon.com/Decision-Making-Dummies-Dawna-Jones/dp/111883366X
https://www.amazon.com/Thinkers-Toolkit-Powerful-Techniques-Problem/dp/0812928083
https://www.amazon.com/Thinkers-Toolkit-Powerful-Techniques-Problem/dp/0812928083
https://www.amazon.com/Thinkers-Toolkit-Powerful-Techniques-Problem/dp/0812928083
https://www.amazon.com/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374533555
https://www.amazon.com/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374533555
https://www.amazon.com/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374533555

255

So, throughout the rest of this chapter, I talk about “how to choose

a good enough framework” instead of the differences between React,

Angular, and so on. I do that because I firmly agree with one of the main

points of the Agile Manifesto:1

Individuals and interactions over processes and tools.

—Agile Manifesto

In other words, I want to focus on the team making that decision and how

they interact. Therefore, the challenge becomes “choosing a good enough

framework in the right way.”

�The Frameworkless Manifesto
As explained in the front matter, this book is related to the frameworkless

movement: A group of developers interested in developing without

frameworks and in making mindful technical decisions. In the Manifesto2

of the Movement, you can find the principles that drive the people who

believe in the frameworkless movement when making technical decisions.

This section analyzes these principles, explaining how they can be

useful in your day-by-day job.

�The First Principle
The first principle states that:

The value of software is not the code itself but in the reasons
behind the existence of that code.

1 https://agilemanifesto.org/
2 https://github.com/frameworkless-movement/manifesto

Chapter 11 The Right Tool for the Right Job

https://agilemanifesto.org/
https://github.com/frameworkless-movement/manifesto

256

In other words, to make mindful decisions about software (like

choosing a framework), you should clarify the reasons that a team is

building software in the first place. A way to know these reasons is to

consult the Business Model Canvas (BMC) of your project. A BMC is a way

to visually represent how the company wants to make money from your

software. You can download an empty Canvas at this website,3 and if you

want more information, you can read the book, Business Model Generation,

by Alexander Osterwalder and Yves Pigneur.4

This canvas is composed of nine “blocks” that, when filled, give a lot of

information at a glance. For example:

•	 Customer segments: Which customers your company

is trying to serve

•	 Value proposition: The products (or services) that your

company offers to meet the needs of the customers

•	 Key activities: The essential activities needed to

develop the value proposition

•	 Key resources: The necessary resources to develop the

value proposition

As you may imagine, your technical decisions should be influenced by

the information that you get from the BMC.

Tip  If your company does not have a BMC for your project, try to
create one. It contains a lot of helpful information.

3 www.strategyzer.com/canvas/business-model-canvas
4 www.amazon.com/Business-Model-Generation-Visionaries-Challengers/dp/
0470876417

Chapter 11 The Right Tool for the Right Job

https://www.strategyzer.com/canvas/business-model-canvas
http://www.amazon.com/Business-Model-Generation-Visionaries-Challengers/dp/0470876417
http://www.amazon.com/Business-Model-Generation-Visionaries-Challengers/dp/0470876417

257

�The Second Principle
The second principle states that:

Every decision should be made considering the context.
A good choice in a given context could be a bad choice in
another one.

This principle may seem quite apparent at first, but the main problem

is to define the “context” of a software. A method that I find really

compelling is to use a list of non-functional requirements (NFR). We all

know what a functional requirement is: A way to define what the software

should do. Usually, they come in the form of user stories; for example:

As an anonymous user, I want to log in, so that I can access
the premium area.

NFRs are a way to define how a software should be instead of what it

should do. Take a look at this second version of the user story:

As an anonymous user, I want to log in, so that I can access the
premium area in less than one second.

As you can see, in this new version of the user story, it’s beneficial

to understand if you are doing a good job developing the Login feature

of the software. In this case, the software should be performant enough

to let the users log in in less than one second. Table 11-2 shows a

non-comprehensive list of NFRs; for a complete list, you can consult

Wikipedia’s entry about non-functional requirements.5

5 https://en.wikipedia.org/wiki/Non-functional_requirement

Chapter 11 The Right Tool for the Right Job

https://en.wikipedia.org/wiki/Non-functional_requirement

258

Table 11-2.  Partial List of NFRs

Accessibility Maintainability Extensibility

Performances Wow-Effect Portability

Evolvability Customizability Testability

Deployability Credibility Reusability

The NFRs are a crucial aspect to keep in mind when making any kind

of technical decision. Two software programs with the exact functional

requirements but different NFRs need different technologies. Alas, NFRs

are usually entirely ignored when describing software.

Caution  You can’t rely only on functional requirements to make
mindful technical decisions. Keep NFRs in mind as well.

�The Third Principle
The third principle states:

The mindful choice of a framework is a technical one and
should be made by technical people, taking business needs
into account.

This is a critical point. Choosing a framework is a technical decision,

and so is a responsibility of a technical team. But to make a mindful

decision, you must consider business needs. For example, if you work for

a startup, shortening the time to market (TTM) is crucial to get customer

feedback. You need to reach a compromise between quality and the

velocity required for a short TTM.

Chapter 11 The Right Tool for the Right Job

259

�The Fourth Principle
The fourth principle states:

The decision-making criteria that led to the choice of a frame-
work should be known to all the members of the team.

This last principle is not directly related to “how” to make technical

decisions. Nevertheless, it’s a very important one. All the members

(not just developers) of your team should know the criteria that led to

a particular decision. This is very important because, after some time,

it’s hard to judge the result of a decision without knowing the original

context. When somebody enters a brownfield project, they usually have a

lot of questions about the architecture and tools chosen to work. Without

knowing the criteria that brought the team to that decision, they are blind.

They can mindlessly accept the decisions without questioning them, or

they can mindlessly change them. Both of these scenarios are far from

ideal; developers should not make any kind of decisions blindly.

A beneficial tool that tries to address these problems is the Lightweight

Architecture Decision Records (LADR). LADR is a way, developed by

Michael Nygard,6 to keep track of all the meaningful decisions that are

made during the lifespan of a project. For every architectural decision

that the team make, an Architectural Decision Record (ADR) is created.

6 http://thinkrelevance.com/blog/2011/11/15/documenting-
architecture-decisions

Chapter 11 The Right Tool for the Right Job

http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions
http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions

260

This ADR is a numbered markdown file that should be kept in the project

repository. You can see an example of ADR on GitHub.7 Every ADR should

contain the following:

•	 Title

•	 Context (discussing, accepted, deprecated,

superseded)

•	 Decision

•	 Status

•	 Consequences

None of these ADRs should be deleted, even if the decision that they

talk about is not valid anymore. In that case, a new ADR is created to state

the new decision and the status of the old one is changed to superseded.

When a new member of the team enters the project, they should read all

the ADRs present in the repository.

�Tools
This section covers a very small collection of technical decision-making

tools that you can start using every time you need to choose whether to

work with a framework.

7 https://github.com/Apress/Frameworkless-Front-End-Development-2nd-
ed./blob/main/Chapter11/ADR-001.MD

Chapter 11 The Right Tool for the Right Job

https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed/blob/main/Chapter11/ADR-001.MD
https://github.com/Apress/Frameworkless-Front-End-Development-2nd-ed/blob/main/Chapter11/ADR-001.MD

261

�Matteo Vaccari’s Tool
This tool,8 created by my friend Matteo Vaccari, is handy for classifying a

list of libraries/frameworks that you’re evaluating for your project. Place

every library on a two-axis graph, like the one shown in Figure 11-1.

Figure 11-1.  Matteo Vaccari’s tool

After you place all the elements on the graph, you can use the tool to

develop a strategy:

•	 Upper-left quadrant: These elements are good

candidates for a frameworkless approach if you have

the time to build the same features from scratch.

•	 Upper-right quadrant: These elements should be

included in your codebase. Nevertheless, remember to

write an interface around them.

8 http://matteo.vaccari.name/blog/archives/1022

Chapter 11 The Right Tool for the Right Job

http://matteo.vaccari.name/blog/archives/1022

262

•	 Lower-right quadrant: You may decide to add them to

the codebase or to study them in order to move them to

the lower-left quadrant.

•	 Lower-left quadrant: You should avoid putting them

in the codebase. If something is general purpose, it’s

usually hard to remove later.

Of course, what you just read is not a strict rule. There might be

exceptions that you need to discuss with your team.

�Trade-off Sliders
This tool helps your team visualize the context of your software which, as

covered in the previous section, is an essential element to making mindful

decisions. When working with this tool, the first task is to choose four or

five metrics that you want to compare. Most of the time, I use Quality,

Scope, Budget, and Deadline, but you can select other metrics if you think

that they can be helpful for your project. After that, order these metrics

by decreasing “negotiability.” You may need to sacrifice the other ones to

protect the metrics you put on the top of the list.

Start with a silent voting phase, where each person writes their list and

then starts a discussion to reach a consensus on the final list. You should

obtain something similar to Figure 11-2.

Chapter 11 The Right Tool for the Right Job

263

Figure 11-2.  Trade-off slider

When using this tool, you should also involve your managers. You

need their point of view on these metrics, and they need to understand

that in order to achieve something, you need to sacrifice something else.

The name “trade-off sliders” is not accidental; every decision is usually the

result of a trade-off of different aspects.

This simple “game” gives the team a lot of helpful information about

frameworks. If your first concern is the deadline, you probably have to

choose the framework your team knows better. This version of the trade-

off sliders differs slightly from the standard one; you can read about the

original one on Atlassian’s website.9

9 www.atlassian.com/team-playbook/plays/trade-off-sliders

Chapter 11 The Right Tool for the Right Job

https://www.atlassian.com/team-playbook/plays/trade-off-sliders

264

Tip  Every project has its trade-offs. Use this tool to visualize them
and help all the members of the team act accordingly.

�Architecture Compass Chart
I created this tool specifically to help teams choose frameworks. It helps

to visualize your project’s most important NFRs and their relationship.

This tool is meant to put together developers and managers in the same

meeting, just like trade-off slides. The first step is to choose the five most

important NFRs and place them on a radar chart, as shown in Figure 11-3.

Figure 11-3.  Empty architecture compass chart

Chapter 11 The Right Tool for the Right Job

265

There are different ways to choose the NFRs to put on the chart.

Table 11-3 shows some of the tools that I use with links to instructions.

Table 11-3.  Tools to Choose NFRs

Tool Link

Agile retrospective www.atlassian.com/team-playbook/plays/

retrospective

SWOT analysis www.mindtools.com/pages/article/newTMC_05.htm

Impact mapping www.impactmapping.org/

Lego serious play www.lego.com/en-us/seriousplay

Now you have to vote the importance of each NFRs on the chart

(voting from 1 to 5), reaching consensus among the team. You may use

a technique similar to the planning poker.10 Each person calls their vote

simultaneously, and then people with high and low votes talk to justify

their vote. Then repeat this procedure until you reach a consensus. The

result of these votes should be placed on the chart, as in Figure 11-4.

10 https://en.wikipedia.org/wiki/Planning_poker

Chapter 11 The Right Tool for the Right Job

https://www.atlassian.com/team-playbook/plays/retrospective
https://www.atlassian.com/team-playbook/plays/retrospective
https://www.mindtools.com/pages/article/newTMC_05.htm
https://www.impactmapping.org/
https://www.impactmapping.org/
https://www.lego.com/en-us/seriousplay
https://www.lego.com/en-us/seriousplay
https://en.wikipedia.org/wiki/Planning_poker

266

Figure 11-4.  Filled architecture compass chart

The technical team can now use this chart as a “compass” to choose a

framework. For each framework that they want to evaluate, they can create

a new chart and see how it fits on the compass, as shown in Figure 11-5.

Chapter 11 The Right Tool for the Right Job

267

Figure 11-5.  Architecture compass chart with a fitness check

The most crucial advantage of this tool is to drive the discussion of the

tech team toward topics that are useful for the project. In a lot of teams that

I helped, everyone was talking about performance. When I talked with the

managers, they said that performance was unimportant for their customer

segments. This tool helps to avoid these anti-patterns.

�Other Tools
There are many other tools you can use when choosing a framework

or making any other technical decision. These tools should gather

information from these four areas:

•	 Identity (“who are we?”)

•	 Market (“who are our users?”)

Chapter 11 The Right Tool for the Right Job

268

•	 Value (“what should the software do?”)

•	 Context (“How should the software be?”)

Figure 11-6 shows the relationship between these areas and decisions.

Figure 11-6.  Technical decision-making landscape

Table 11-4 shows a list of tools. Some of them were covered in the

previous sections of this chapter.

Chapter 11 The Right Tool for the Right Job

269

Table 11-4.  Decision-Making Tools

Area Tool Link

Identity Elevator Pitch www.atlassian.com/team-playbook/

plays/elevator-pitch

Five Whys Analysis www.atlassian.com/team-playbook/

plays/5-whys

Delegation Board https://management30.com/

practice/

delegation-poker/

Stakeholder Map www.lucidchart.com/blog/how-to-

do-a-stakeholder-analysis

Market Business Model Canvas www.strategyzer.com/canvas/

business-model-canvas

Customer Interview www.atlassian.com/team-playbook/

plays/customer-interview

Customer Journey Mapping www.atlassian.com/team-playbook/

plays/customer-journey-mapping

Value Proposition Canvas www.strategyzer.com/canvas/

value-proposition-canvas

Value Event Storming www.eventstorming.com/

Impact Mapping www.impactmapping.org/

Lean Value Tree https://blog.avanscoperta.it/

it/2018/08/17/product-

discovery-orchestrating-

experiments-at-scale/

User Story Mapping www.jpattonassociates.com/

user-story-mapping/

(continued)

Chapter 11 The Right Tool for the Right Job

https://www.atlassian.com/team-playbook/plays/5-whys
https://www.atlassian.com/team-playbook/plays/5-whys
https://www.atlassian.com/team-playbook/plays/5-whys
https://www.atlassian.com/team-playbook/plays/5-whys
https://management30.com/practice/delegation-poker/
https://management30.com/practice/delegation-poker/
https://management30.com/practice/delegation-poker/
https://management30.com/practice/delegation-poker/
https://www.lucidchart.com/blog/how-to-do-a-stakeholder-analysis
https://www.lucidchart.com/blog/how-to-do-a-stakeholder-analysis
https://www.strategyzer.com/canvas/business-model-canvas
https://www.strategyzer.com/canvas/business-model-canvas
https://www.atlassian.com/team-playbook/plays/customer-interview
https://www.atlassian.com/team-playbook/plays/customer-interview
https://www.atlassian.com/team-playbook/plays/customer-journey-mapping
https://www.atlassian.com/team-playbook/plays/customer-journey-mapping
https://www.strategyzer.com/canvas/value-proposition-canvas
https://www.strategyzer.com/canvas/value-proposition-canvas
https://www.strategyzer.com/canvas/value-proposition-canvas
https://www.eventstorming.com/
https://www.impactmapping.org/
https://www.impactmapping.org/
https://blog.avanscoperta.it/it/2018/08/17/product-discovery-orchestrating-experiments-at-scale/
https://blog.avanscoperta.it/it/2018/08/17/product-discovery-orchestrating-experiments-at-scale/
https://blog.avanscoperta.it/it/2018/08/17/product-discovery-orchestrating-experiments-at-scale/
https://blog.avanscoperta.it/it/2018/08/17/product-discovery-orchestrating-experiments-at-scale/
https://www.jpattonassociates.com/user-story-mapping/
https://www.jpattonassociates.com/user-story-mapping/

270

�Summary
This last chapter talked about the importance of decision-making

principles when choosing a framework or making any other technical

decision. You explored some technical decision-making anti-patterns

and the problems that they can bring to your organization. The chapter

analyzed the principle behind the frameworkless movement and talked

about some tools that can help you and your team make mindful technical

decisions.

Area Tool Link

Context Trade-off Sliders www.atlassian.com/team-playbook/

plays/trade-off-sliders

Architecture Compass

Chart

https://medium.com/flowingis/

framework-compass-chart-

d3851c25b45d

SWOT Analysis www.mindtools.com/pages/article/

newTMC_05.htm

Table 11-4.  (continued)

Chapter 11 The Right Tool for the Right Job

https://www.atlassian.com/team-playbook/plays/trade-off-sliders
https://www.atlassian.com/team-playbook/plays/trade-off-sliders
https://medium.com/flowingis/framework-compass-chart-d3851c25b45d
https://medium.com/flowingis/framework-compass-chart-d3851c25b45d
https://medium.com/flowingis/framework-compass-chart-d3851c25b45d
https://www.mindtools.com/pages/article/newTMC_05.htm
https://www.mindtools.com/pages/article/newTMC_05.htm

271

Index

A
add and renderRoot methods, 56
addEventListener method, 72
addItem function, 89
addItem handler, 88
addRoute method, 162
AngularJS, 21–25, 149, 227, 232
animate method, 12
Apollo Client, 12
applyDiff function, 60, 61
Architectural Decision Record

(ADR), 259, 260
Architecture compass chart, 264,

265, 267
Array’s push method, 204
Asynchronous JavaScript and XML

(AJAX), 123
attributeChangedCallback,

100–103, 106
Atwood’s law, 252

B
Business Model Canvas (BMC), 256

C
cloneNode method, 46
Color attribute, 99–101

connectedCallback method, 100
Custom elements API

attributeChanged
Callback, 100–103

connectedCallback, 97
custom events, 105–111
disappearing frameworks,

121, 122
HTML tags, 96
managing attribute, 98–100
vs. rendering functions

code style, 120
community, 121
portability, 120
testability, 120

TodoMVC application,
111–115, 117–119

virtual DOM algorithm, 103, 104
CustomEvent, 77, 78

D
data-component attribute, 53, 55
Decision-making techniques, 253
Decision-making tools, 269, 270
Defending from frameworks

features, 243
technical debt, 242
technical investment, 241

© Francesco Strazzullo 2023
F. Strazzullo, Frameworkless Front-End Development,
https://doi.org/10.1007/978-1-4842-9351-5

https://doi.org/10.1007/978-1-4842-9351-5

272

visualizing strategy, 247–249
diff algorithm, 59, 61
Disappearing (or invisible)

frameworks, 121, 122
Document Object Model

(DOM), 33
DOM events API

addEventListener, 68–70
custom events, 77, 78
event delegation, 91–94
event object, 70–72
keyboard events, 66
lifecycle, 67, 72–76
properties, 67, 68
TodoMVC application

event handling
architecture, 85–90

events, 79
rendering engine, 80
template element, 81–85

E
Event Bus

definition, 205
EDA, 205
example, 205
frameworkless implementation,

208–213, 215, 217
ITEM_ADDED event, 206
model structure, 207
pattern, 206
Redux, 217–220

Event-driven architecture
(EDA), 205

Extreme Programming (XP), 66

F
Fragment identifier

definition, 150
example, 150–155
navigation program, 155–157
route parameter, 157–165

Frameworkless toolkit
HTTP request, 245
rendering/event

management, 244
routing, 246
state management, 246, 247
strategy, 243

Frameworks
angular decisions, 6

frameworkless animation
library, 13

language, 6
observables, 6, 7
React, 8, 9, 12
technical debt, 15–17
web animations API, 10,

11, 14, 15
elements, 1
vs. libraries, 2–5
strategy map, 247, 248
system of rules, 5

Front-end application, 251
Front-end ecosystem, 19

Defending from frameworks (cont.)

INDEX

273

Front-end frameworks
Angular, 24, 25
Angular and React,

comparing, 27
AngularJS/Backcone.js/

Ember, 21–23
jQuery, 20, 21
Next.JS, 30
React, 26
Svelte, 28, 29
timeline, 19
tools, 31
web components, 27

G
getAttribute method, 98
getState method, 182
GitHubAvatar, 105
GitHub repository, 38

H
hashchange event, 154
href attribute, 171
HTTP requests

AJAX, 123, 124
code examples

fetch, 140–143
HTTP clients, 128–131, 133
review architecture, 143, 144
XMLHttpRequest, 128,

133–135, 137, 139, 145

REST, 126, 127
to-do list REST server, 124, 125

I
iframes, 238
Injectable annotation, 4
isNodeChanged function, 61

J, K
JavaScript fatigue, 252, 253

L
Lightweight Architecture Decision

Records (LADR), 259

M
Matteo Vaccari’s tool, 261, 262
Model View Controller (MVC), 21,

177, 187, 220
Mozilla Developer Network, 66

N
Navigo, 150, 172, 175
Next.JS, 30
Non-functional requirements

(NFR), 257, 258
notFound function, 154
npm package, 124

INDEX

274

O, P
Observable model, 191, 194
onclick property, 67
on* properties, 67

Q
querySelector method, 36

R
React, 8, 21, 24, 26
React community-created

libraries, 12
React Extensions for JavaScript

(RxJS), 196
Reactive programming, 221

model, 196–200
proxies, 201–204
RxJS, 195
state management library, 196

React Router, 12, 174
Redux, 26, 177, 217, 218
Redux DevTools, 220
removeEventListener method, 70
Render cycle, 188
Rendering

DOM, 33, 34, 36
dynamic data

examples, 57
virtual DOM

approach, 58–64
functions

pure, 41, 43
TodoMVC, 41, 42

monitoring performance
Chrome developer

tools, 36–38
custom performance

widget, 39, 40
stats.js widget, 38, 39
tools, 36

pure functions
application dynamic, 44
component functions, 51–57
controller, 47
DOM element, 46
rendering schema, 48
reviewing code, 48–51
TodoMVC, 44, 45
TodoMVC App structure, 43

Render method, 188, 193
Representational State Transfer

(REST), 126–128
“Right” framework, 254
Routing, 246

fragment identifier, 150
history API, 166

cheat sheet, 167
links, 170–172
router built, 167–169
without fragments, 170

Navigo, 172–174
React router, 174

S
Server-side rendering (SSR), 30
setAttribute method, 98, 101

INDEX

275

Single page applications (SPAs),
21, 29, 147

AJAX, 147
definition, 147
high-level architecture, 149
web application

architectures, 148
start method, 153
State management, 246

characteristics, 220
event bus, 205
model view controller, 177

model object, 184–186
observable model,

188, 190–195
parts, 187
pattern schema, 187
render cycle, 188
TodoMVC application,

182, 183
updated version, 180–182

reactive programming, 195
strategies

Event Bus, 222–224
model view controller, 220
reactive programming,

221, 222
TodoMVC application,

reviewing, 178–180
State-render-event

loop, 85, 86
StranglerFigApplication pattern

convertion strategies, 238
example

moving services, 232–234
original application,

228–230, 232
Web Components, 235–237

frameworkless application, 239
front-end application, 225
setting stage, 226
solution, 227

String.matches method, 162
Style property, 36

T
Timeout property, 137
Time to market (TTM), 258
TodoMVC, 41, 111
todos model object, 131
Trade-off slider, 262, 263
TypeScript, 6

U
updateItem methods, 182

V
Valtio, 177
Virtual DOM algorithm, 103
Virtual DOM approach, 58

W, X
Web components

API, 95
custom elements API, 96

INDEX﻿

276

technologies, 95, 96
window.customElements

property, 97
World Wide Web Consortium

(W3C), 96
Wow effect, 24

Y
You aren’t Gonna Need It

(YAGNI), 66

Z
Zombie framework, 246

Web components (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	The Frameworkless Movement
	Chapter 1: The Definition of Framework
	Frameworks vs Libraries
	Comparing Frameworks to Libraries

	Frameworks and Decisions
	Angular’s Decisions
	Language
	Observables

	The Framework’s Way
	Frameworks as Technical Debt
	Technical Investment

	Summary

	Chapter 2: Brief History of Front-end Frameworks
	The First Age: jQuery
	The jQuery’s Way

	The Second Age: AngularJS, Backbone, and Ember
	AngularJS

	The Third Age: React, Angular, and Vue
	Angular
	React
	Comparing Angular and React

	Bonus Tracks
	Web Components
	Svelte
	Next.JS

	Summary

	Chapter 3: Rendering
	The Document Object Model
	Monitoring Rendering Performance
	Chrome Developer Tools
	The stats.js Widget
	Custom Performance Widget

	Rendering Functions
	TodoMVC
	Rendering Pure Functions
	Reviewing the Code
	Component Functions

	Rendering Dynamic Data
	The Virtual DOM
	A Simple Virtual DOM Implementation

	Summary

	Chapter 4: Managing DOM Events
	The YAGNI Principle
	The DOM Events API
	Attach Handlers with Properties
	Attach Handlers with addEventListener
	The Event Object
	The DOM Event Lifecycle
	Using Custom Events

	Adding Events to TodoMVC
	Reviewing the Rendering Engine
	The Template Element

	A Basic Event-Handling Architecture

	Event Delegation
	Summary

	Chapter 5: Web Components
	The APIs
	The Custom Elements API
	Managing Attributes
	attributeChangedCallback
	Virtual DOM Integration
	Custom Events

	Using Web Components for TodoMVC
	Web Components vs Rendering Functions
	Code Style
	Testability
	Portability
	Community

	Disappearing Frameworks
	Summary

	Chapter 6: HTTP Requests
	A Bit of History: The Birth of AJAX
	A To-Do List REST Server
	Representational State Transfer (REST)

	Code Examples
	The Basic Structure
	XMLHttpRequest
	Fetch
	Reviewing the Architecture

	Summary

	Chapter 7: Routing
	Single Page Applications
	Code Examples
	Fragment Identifiers
	A First Example
	Navigating Programmatically
	Route Parameters

	The History API
	Using Links

	Navigo

	Choosing the Right Router
	Summary

	Chapter 8: State Management
	Reviewing the TodoMVC Application
	Model View Controller
	Observable Model

	Reactive Programming
	A Reactive Model
	Native Proxies

	Event Bus
	A Frameworkless Implementation
	Redux

	Comparing State Management Strategies
	Model View Controller
	Reactive Programming
	Event Bus

	Summary

	Chapter 9: Frameworkless Refactoring: StranglerFigApplication Pattern
	Setting the Stage
	The Solution
	The Example
	The Original Application
	Moving Services
	Moving Components

	Other Conversion Strategies
	iframes
	Proxy

	Summary

	Chapter 10: Defending from Frameworks
	Classify Framework Features
	Rendering/Event Management
	Technical Debt: High
	Effort: Highest

	HTTP Request
	Technical Debt: Low
	Effort: Lowest

	Routing
	Technical Debt: Medium
	Effort: Low

	State Management
	Technical Debt: Highest
	Effort: Low

	Visualizing Your Strategy
	Summary

	Chapter 11: The Right Tool for the Right Job
	JavaScript Fatigue
	The “Right” Framework
	The Frameworkless Manifesto
	The First Principle
	The Second Principle
	The Third Principle
	The Fourth Principle

	Tools
	Matteo Vaccari’s Tool
	Trade-off Sliders
	Architecture Compass Chart
	Other Tools

	Summary

	Index

