

React 18 Design Patterns and
Best Practices
Fourth Edition

Design, build, and deploy production-ready
web applications with React by leveraging
industry-best practices

Carlos Santana Roldán

BIRMINGHAM—MUMBAI

React 18 Design Patterns and Best Practices
Fourth Edition

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damage caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Suman Sen
Acquisition Editor – Peer Reviews: Saby Dsilva
Project Editor: Parvathy Nair
Content Development Editor: Shazeen Iqbal
Copy Editor: Safis Editor
Technical Editor: Srishty Bhardwaj
Proofreader: Safis Editor
Indexer: Rekha Nair
Presentation Designer: Rajesh Shirsath
Developer Relations Marketing Executive: Priyadarshini Sharma

First published: January 2017
Second published: March 2019
Third published: May 2021
Fourth edition: July 2023

Production reference: 2270723

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-80323-310-9

www.packt.com

http://www.packt.com

I would like to dedicate this book to my lovely daughter, Victoria.

– Carlos Santana Roldán

Contributors

About the author
Carlos Santana Roldán is a software engineer with over 16 years of experience in the industry.

He is the author of the books React Cookbook and React Design Patterns and Best Practices – Second,

Third, and Fourth Editions. Carlos is also the founder of one of the most renowned developers’

communities in Latin America, Series Frontend, where he trains individuals in various web tech-

nologies (https://www.youtube.com/@SeriesFrontend).

mailto:https://www.youtube.com/@SeriesFrontend

About the reviewers
Roy Derks has been working in web development for the past 15 years. He has founded multiple

startups, and worked as a startup CTO and developer advocate for numerous startups. Roy has

been using GraphQL, React, and TypeScript since the early days and is seen as a thought leader

in the space. In recent years he has published multiple books with Packt Publishing such as React

Projects (First and Second Editions) and React and React Native (Third and Fourth Editions).

Jonathan Reeves is a software engineer with over five years of experience. Jonathan has used

JavaScript and/or TypeScript for most of his development career, which has included extensive

usage of React, GraphQL, and Node with Express. Currently, he is working as a mid-level software

engineer in the video game industry using C++ and the .NET tech stack.

First, I would like to thank my wife. Without her patience and help with our children, I would not have

been able to review this book in the amount of time necessary. I love you. I would also like to thank my kids

for allowing me to review this book in the hopes that sometime soon they will start their journey of learning

software development. Ava, and Grayson, Daddy loves you very much.

Join our community on Discord
Join our community’s Discord space for discussion with the author and other readers:

https://packt.link/React18DesignPatterns4e

https://packt.link/React18DesignPatterns4e

Table of Contents

Preface � xix

Chapter 1: Taking Your First Steps with React � 1

Technical requirements ��� 2

Differentiating between declarative and imperative programming ������������������������������������� 3

How React elements work �� 5

Unlearning everything ��� 7

Understanding JavaScript fatigue �� 9

Misconceptions about React • 9

Getting started with React without the fatigue • 10

Advantages of the JavaScript ecosystem • 10

Bye to Create-React-App, welcome to Vite! • 10

Vite as a solution • 11

Summary ��� 12

Chapter 2: Introducing TypeScript � 15

Technical requirements ��� 16

TypeScript’s features ��� 16

Converting JavaScript code into TypeScript �� 17

Types ��� 18

Interfaces ��� 20

Extending interfaces and types �� 20

Table of Contentsviii

Implementing interfaces and types ��� 21

Merging interfaces ��� 23

Enums �� 24

Namespaces ��� 25

Template literals �� 26

TypeScript configuration file ��� 26

Summary ��� 28

Chapter 3: Cleaning Up Your Code � 29

Technical requirements ��� 30

Using JSX �� 30

Babel • 31

Creating our first element • 32

DOM elements and React components • 32

Props • 33

Children • 33

Differences with HTML • 34

Attributes • 34

Style • 35

Root • 35

Spaces • 37

Boolean attributes • 37

Spread attributes • 38

Template literals • 39

Common patterns • 39

Multiline • 39

Multi-properties • 40

Conditionals • 41

Loops • 44

Sub-rendering • 45

Table of Contents ix

Styling code ��� 46

EditorConfig • 46

Prettier • 47

ESLint • 48

Installation • 49

Configuration • 49

Git Hooks • 52

Functional programming ��� 53

First-class functions • 53

Purity • 54

Immutability • 54

Currying • 55

Composition • 56

Summary ��� 56

Chapter 4: Exploring Popular Composition Patterns � 59

Technical requirements ��� 59

Communicating components �� 60

Using the children prop • 61

Exploring the container and presentational patterns �� 62

Understanding HOCs ��� 67

Understanding FunctionAsChild ��� 70

Summary ��� 72

Chapter 5: Writing Code for the Browser � 73

Technical requirements ��� 74

Understanding and implementing forms ��� 74

Uncontrolled components • 74

Controlled components • 79

Handling events ��� 81

Table of Contentsx

Exploring refs �� 84

Understanding forwardRef • 85

Implementing animations ��� 87

Exploring SVG �� 89

Summary ��� 91

Chapter 6: Making Your Components Look Beautiful � 93

Technical requirements ��� 93

CSS in JavaScript �� 94

Understanding and implementing inline styles ��� 96

Using CSS modules ��� 100

Webpack 5 • 100

Setting up a project ��� 101

Locally scoped CSS ��� 108

Atomic CSS modules • 114

Implementing styled-components ��� 115

Summary �� 118

Chapter 7: Anti-Patterns to Be Avoided � 121

Technical requirements �� 121

Initializing the state using properties ��� 122

Using indexes as a key ��� 124

Spreading properties on DOM elements ��� 127

Summary ��� 128

Chapter 8: React Hooks � 131

Technical requirements �� 131

Introducing React Hooks �� 132

No breaking changes • 132

Using the State Hook • 132

Table of Contents xi

Rules of Hooks �� 134

Rule 1: Only call Hooks at the top level • 134

Rule 2: Only call Hooks from React functions • 134

Migrating a class component to React Hooks �� 134

Understanding React effects �� 140

Understanding useEffect • 140

Firing an effect conditionally • 140

Understanding useCallback, useMemo, and memo • 141

Memoizing a component with memo • 146

Memoizing a value with useMemo • 149

Memoizing a function definition with useCallback • 153

Memoizing a function passed as an argument in effect • 158

Understanding the useReducer Hook �� 161

Summary �� 169

Chapter 9: React Router � 171

Technical requirements �� 171

Installing and configuring React Router ��� 172

Creating our sections �� 173

Adding parameters to the routes ��� 177

React Router v6.4 ��� 186

React Router loaders • 189

Summary �� 193

Chapter 10: React 18 New Features � 195

Concurrent mode ��� 196

Automatic batching �� 197

Transitions ��� 198

Suspense on the server �� 200

New APIs �� 201

createRoot • 201

Table of Contentsxii

hydrateRoot • 203

renderToPipeableStream • 204

New Hooks ��� 205

useId • 205

useTransition • 206

useDeferredValue • 207

useInsertionEffect • 208

Strict mode �� 209

Node.js latest features �� 210

Experimental Fetch API • 210

Experimental test runner module • 210

Experimental node watch • 211

Node 18 is now Long-Term Support (LTS) • 212

Summary �� 212

Chapter 11: Managing Data � 213

Technical requirements �� 213

Introducing the React Context API �� 214

Creating our first context • 214

Wrapping our components with the provider • 216

Consuming context with useContext �� 217

Introducing React Suspense with SWR �� 218

Introducing SWR • 219

Building a Pokedex! • 219

Testing React Suspense • 226

Redux Toolkit: a modern approach to Redux �� 231

Key features • 231

Getting started • 231

Creating a store • 231

Creating a slice • 232

Combining reducers • 232

Table of Contents xiii

Connecting components to the store • 232

Integrating the store with a React application • 233

Summary ��� 233

Chapter 12: Server-Side Rendering � 235

Technical requirements ��� 236

Understanding universal applications ��� 236

Reasons for implementing SSR �� 237

Implementing SEO • 238

A common code base • 238

Better performance • 239

Don’t underestimate the complexity of SSR • 239

Creating a basic example of SSR ��� 240

Configuring our project from scratch with webpack • 241

Creating the application • 243

Implementing data fetching �� 247

Using Next.js to create a React application �� 251

Summary ��� 254

Chapter 13: Understanding GraphQL with a Real Project � 257

Technical requirements ��� 258

Building a backend login system using PostgreSQL, Apollo Server, GraphQL, Sequelize, and

JSON Web Tokens �� 258

Installing PostgreSQL �� 258

Best tools for PostgreSQL database management • 260

Creating our backend project ��� 260

Configuring our .env file • 261

Creating a basic config file • 261

Configuring Apollo Server �� 263

Defining our GraphQL types, queries, and mutations �� 266

Scalar types • 266

Table of Contentsxiv

Queries • 267

Mutations • 268

Merging type definitions • 269

Creating our resolvers �� 269

Creating the getUsers query • 270

Creating the getUser query • 271

Creating the mutations • 272

Merging our resolvers • 272

Using the Sequelize ORM ��� 273

Creating a user model in Sequelize • 273

Connecting Sequelize to a PostgreSQL database • 275

Authentication functions ��� 276

Creating JWT functions • 276

Creating authentication functions • 278

Defining types and interfaces • 279

Running our project for the first time �� 281

Testing GraphQL queries and mutations • 284

Testing model validations and querying users • 290

Performing a login • 294

Building a frontend login system with Apollo Client �� 299

Configuring Webpack 5 • 300

Configuring our TypeScript • 308

Configuring the Express server • 309

Creating our frontend configuration • 311

Creating the user middleware • 312

Creating JWT functions • 314

Creating our GraphQL queries and mutations • 315

Creating user context to handle login and connected user • 316

Configuring Apollo Client • 318

Creating our app routes • 319

Creating our pages • 319

Table of Contents xv

Creating our login components • 321

Creating our dashboard components • 324

Testing our login system • 324

Summary ��� 329

Chapter 14: MonoRepo Architecture � 331

Technical requirements ��� 332

Advantages of a monorepository and the problems it solves �� 332

Creating a MonoRepo with NPM Workspaces �� 334

Implementing TypeScript in our MonoRepo �� 337

Creating a devtools package to compile packages with Webpack ������������������������������������� 341

Creating a colorful log • 342

Webpack common configuration • 343

Webpack development configuration • 350

Webpack production configuration • 350

Creating the utils package �� 354

Creating the API package �� 361

Creating a user-shared model • 363

Creating a user-shared GraphQL type and resolver • 365

Creating custom services • 368

Building our service configuration • 370

Creating our custom models • 372

Creating model seeds • 374

Creating our custom GraphQL types and resolvers • 375

Synchronizing our models and starting Apollo Server • 378

Testing our CRM service • 381

Creating the frontend package ��� 384

Creating our Sites system • 388

Creating our Page Switcher • 389

Creating our Login system • 394

Creating our sites configuration • 401

Table of Contentsxvi

Putting everything together • 404

Demo time! • 406

Summary ��� 410

Chapter 15: Improving the Performance of Your Applications � 411

Technical requirements ��� 412

How reconciliation works �� 412

Using keys ��� 413

Optimization techniques ��� 414

Tools and libraries ��� 416

Immutability • 416

Babel plugins • 417

Summary ��� 418

Chapter 16: Testing and Debugging � 421

Technical requirements �� 421

Understanding the benefits of testing �� 422

Painless JavaScript testing with Jest �� 423

Testing events • 428

Introducing Vitest ��� 431

Installing and configuring Vitest • 433

Enabling globals • 437

In-source testing • 438

Using React DevTools ��� 442

Using Redux DevTools • 442

Summary ��� 443

Chapter 17: Deploying to Production � 445

Technical requirements ��� 445

Creating our first DigitalOcean Droplet ��� 445

Signing up to DigitalOcean • 446

Table of Contents xvii

Creating our first Droplet • 449

Installing Node.js • 453

Configuring Git and GitHub • 453

Turning off our Droplet • 458

Configuring nginx, PM2, and a domain �� 458

Installing and configuring nginx • 459

Setting up a reverse proxy server • 460

Adding a domain to our Droplet • 461

Implementing CircleCI for continuous integration �� 464

Adding an SSH key to CircleCI • 466

Configuring CircleCI • 468

Creating environment variables variables in CircleCI • 471

Summary ��� 476

Other Books You May Enjoy � 479

Index � 485

Preface

React is a revolutionary, open-source JavaScript library that breathes life into web applications

by constructing intricate user interfaces from small, isolated chunks known as components.

This book serves as a roadmap, guiding you through the wonders of React and enhancing your

productivity by introducing an efficient workflow without compromising on quality.

Our journey begins by delving deep into the core of React, gaining a thorough understanding of

its internal mechanisms and architecture. With this strong foundation in place, we will guide you

towards writing clean and maintainable code, breaking down complex concepts into digestible

and manageable chunks.

Continuing our journey, we will uncover the art of building components that aren’t just one-off

entities but reusable pieces across your application. We’ll illuminate the path to structuring your

applications, making them more organized and manageable. The seemingly daunting task of

creating functional forms will become a breeze as we equip you with strategies and techniques

to do so effectively.

As we ascend further, we’ll immerse ourselves in styling React components. You’ll learn how to

bring your applications to life with aesthetic appeal while ensuring they remain swift and re-

sponsive. Moreover, you’ll discover the secrets of enhancing application performance, fine-tuning

your components for speed and efficiency.

In the final phase of our journey, we’ll delve into testing methodologies effectively, refining the

quality and reliability of your applications. You’ll also gain insight into contributing to React

and its thriving ecosystem, joining the ranks of developers who continually drive its evolution.

By the end of this book, the trial-and-error process, the developmental hurdles, and guesswork

will be things of the past. You will have harnessed the power of React, equipped with the skills

necessary to construct and deploy real-world React web applications with confidence and finesse.

Prefacexx

Who this book is for
This book is for web developers who want to increase their understanding of React and apply it to

real-life app development. Intermediate-level experience with React and JavaScript is assumed.

What this book covers
In Chapter 1, Taking Your First Steps with React, we start our journey to understand React by learning

to write declarative code and distinguishing between our components and React’s elements. We

also discuss why we combine logic and templates in React, a decision that was controversial initially

but ultimately beneficial. Recognizing the potential for feeling overwhelmed in the rapidly evolving

world of JavaScript, we suggest taking small, manageable steps to avoid fatigue. We wrap up by

introducing the new create-vite tool, preparing you for hands-on coding experience in React.

In Chapter 2, Introducing TypeScript, we’ll learn the basics of TypeScript, including creating sim-

ple types, interfaces, using enums, namespaces, and template literals. We’ll also figure out how

to set up our first TypeScript configuration file (tsconfig.json) and divide it into two parts - a

common part and a specific part, which is particularly handy when working with MonoRepos.

After this chapter, you’ll be all set to delve into using JSX/TSX code and explore ways to make

your code better in the next chapter. Get ready to use TypeScript to make your React apps easy

to work with and maintain.

In Chapter 3, Cleaning Up Your Code, we’ll get to know JSX, including how it’s written and what

it can do. We’ll also set up Prettier and ESLint to keep our code neat and prevent mistakes. Plus,

we’ll learn about functional programming, which makes our code easier to manage and test. After

tidying up our code, we’ll be prepared to go deeper into React and learn how to make components

that we can use repeatedly in the next chapter. By adopting good habits, we can build React apps

that are simple to manage, grow, and check.

In Chapter 4, Exploring Popular Composition Patterns, we’ll learn how to use “props” to make our

reusable components work together better. Using props helps keep our components separate

and welldefined. We’ll look at two common ways to organize components: the container and

presentational pattern, which keeps the rules and looks of our components separate. We’ll also

learn about Higher Order Components (HOCs) for dealing with context without making our

components too dependent, and the Function as Child pattern for creating components on-the-fly.

In Chapter 5, Writing Code for the Browser, we’ll look at how React can be used in a web browser

to create forms, handle events, and animate SVGs. We’ll learn about the useRef Hook, which is

an easy way to reach DOM nodes.

Preface xxi

With React’s simple, straightforward approach, managing complex web apps becomes easier.

Plus, React allows us to access DOM nodes directly if we need to, which makes it simple to use

React with other libraries.

In Chapter 6, Making Your Components Look Beautiful, we’ll dive into styling in React. We’ll start by

looking at the problems with making CSS work for big projects, using the experiences of Meta as an

example. We’ll learn about how we can write styles directly inside our React components, which

keeps our code tidy and easy to read. But we’ll also learn about the limitations of this method and

explore another way of styling, called CSS modules, that lets us write CSS in separate files but

keep the styles scoped to individual components. Finally, we’ll get to know styled-components,

a popular library for styling in React. By the end of this chapter, you’ll have many tools for making

your React apps look great.

In Chapter 7, Anti-Patterns to Be Avoided., we’ll talk about four ways of using components that could

slow down or mess up our web apps. For each problem, we’ll use an example to show what goes

wrong and how to fix it. We’ll learn why using properties to set up the state can cause problems

between the state and the properties. We’ll also see how using the wrong “key” attribute can

mess up the way React updates components. Lastly, we’ll learn why spreading non-standard

properties to DOM elements is a bad idea. Understanding these issues will help us use React

more effectively and avoid common mistakes.

In Chapter 8, React Hooks, we’ll have a lot of fun learning about the new React Hooks. We’ll learn

how they work, how to use them to get data, and how to change a class component into a Hooks

one. We’ll also learn about effects and the differences between memo, useMemo, and useCallback.

Finally, we’ll see how the useReducer Hook works and how it’s different from react-redux. All

of this will help us make our React components faster and better.

In Chapter 9, React Router, we’ll learn about React Router, a tool we use with React to move be-

tween pages in a single-page application. React doesn’t do this on its own, so we use React Router.

We’ll find out how to use it to make our app respond to different URLs and manage navigation.

By the end of this chapter, you’ll know how React Router works and how to use it in your projects.

We’ll learn the differences between the react-router, react-router-dom, and react-router-

native packages, how to set up React Router, how to add the <Routes> component, and how to

add parameters to the routes.

In Chapter 10, React 18 New Features, we’ll explore the new and improved React 18. It has loads of

features that make building cool, interactive apps even easier.

Prefacexxii

With automatic state update grouping, concurrent rendering, Suspense for getting data, better

error handling, and new component types, you can create engaging and fast apps. If you work

with React, it’s a good idea to consider upgrading to React 18. We’ll also look at some of the big

new features in Node 18 and 19, which can make our web projects even better.

In Chapter 11, Managing Data, we’ll learn about the React Context API and how to use React Sus-

pense with SWR. We’ll learn the basics of the Context API, including creating and using contexts

and how the useContext hook makes this even easier. We’ll also look at React Suspense and how

it helps us handle loading states better for a smoother user experience. We’ll also learn about SWR,

which makes it easier to fetch and cache data with React Suspense. Lastly, we’ll learn how to use

the new Redux Toolkit. All these tools will help us build faster and more user-friendly React apps.

In Chapter 12, Server Side Rendering, we’ll finish our journey through server-side rendering (SSR)

with React. Now you’ll know how to create an app that uses SSR, and why it can be useful for things

like search engine optimization (SEO), social sharing, and improving performance. We’ll learn

how to load data on the server and put it into the HTML template so it’s ready for the client-side

app when it starts up in the browser. Lastly, we’ll see how tools like Next.js can make setting up

SSR in React a lot easier by reducing the amount of extra code and hiding some of the tricky parts.

In Chapter 13, Understanding GraphQL with a Real Project, we’re going to learn about GraphQL, a

cool tool that helps us work with APIs and our data more efficiently. Unlike regular REST APIs,

GraphQL lets us ask for exactly what we need and nothing more. We’re going to use it to make a

simple login and user registration system for a real project. We’ll learn how to install PostgreSQL,

set up environment variables with an .env file, set up Apollo Server, make GraphQL queries and

mutations, work with resolvers, create Sequelize models, use JWTs, play with the GraphQL Play-

ground, and do authentication. By the end, you’ll know how to use GraphQL in your own projects.

In Chapter 14, MonoRepo Architecture, we’ll talk about something called a “MonoRepo.” Normally,

when we build apps, we have one app, one git repository, and one build output. But many organi-

zations use a single repository for all their apps, components, and libraries to make development

easier. This is what we call a monorepository. It’s like keeping all your code in one big basket

instead of having many little baskets. This makes it easier to keep everything updated and it can

save time. We’ll also discuss how a MonoRepo can make it easier to refactor code, improve team-

work, and speed up the process of updating a package dependency without having to publish a

new version every time there’s an update.

Preface xxiii

Chapter 15, Improving the Performance of Your Applications, we will explore techniques to make

your apps run smoother and quicker for a better user experience. We’ll delve into how React

updates your app’s display and how using keys can aid in this process for improved efficiency.

We will discover the importance of well-structured, task-focused components in boosting app

performance. We will discuss the concept of immutability and its significance in helping React.

memo and shallowCompare work effectively. Toward the end, we will introduce various tools and

libraries that can further speed up your applications. This chapter aims to equip you with valuable

knowledge to enhance the speed and performance of your apps.

In Chapter 16, Testing and Debugging, we’re going to learn all about testing. You’ll find out why

testing is important and explore different tools and techniques for checking if our React compo-

nents are working as they should. We’ll work with libraries like React Testing Library and Jest

to write and run tests, and even see how to test complex parts of our application like high-order

components or forms with lots of fields. Plus, we’ll learn how to use tools like React DevTools

and Redux DevTools to help us develop better apps. By the end of this chapter, you’ll have a solid

grasp of how to keep your app working well through effective testing.

In Chapter 17, Deploying to Production, we’re going to take the React app you’ve built and share it

with the world! We’ll use a cloud service called DigitalOcean to do this. You’ll learn how to use

Node.js and nginx to get your app up and running on a server, and we’ll use an Ubuntu server

from DigitalOcean for this purpose. We’ll walk you through how to set up a DigitalOcean Droplet,

configure it, and link it to your domain. We’re also going to introduce you to CircleCI, which is a

tool that helps you automatically make sure your app is always ready for users, no matter how

many changes you make. By the end of this chapter, you’ll have your app live on the internet for

everyone to see!

To get the most out of this book
To master React, you need to have a fundamental knowledge of JavaScript and Node.js. This book

is mostly targeted at web developers, and, at the time of writing, the following assumptions were

made of the reader:

•	 The reader knows how to install the latest version of Node.js.

•	 The reader is an intermediate developer who can understand JavaScript ES6 syntax.

•	 The reader has some experience of CLI tools and Node.js syntax.

Prefacexxiv

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/.

We also have other code bundles from our rich catalog of books and videos available at https://

github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/o1WtB.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “After you

create this util, you need to create the index.ts file at packages/utils/src/index.ts."

A block of code is set as follows:

{

"name": "api",

"version": "1.0.0",

"main": "index.js",

"author": "",

"license": "ISC"

}

Any command-line input or output is written as follows:

cd packages/api

npm init -y

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “The first package we

need to create to be able to compile other packages is called devtools.”

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/o1WtB

Preface xxv

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com

Prefacexxvi

Share your thoughts
Once you’ve read React 18 Design Patterns and Best Practices, Fourth Edition, we’d love to hear your

thoughts! Please click here to go straight to the Amazon review page for this book and

share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1803233109

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80323-310-9

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-80323-310-9

1
Taking Your First Steps with
React

Hello, readers!

This book assumes that you already know what React is and what problems it can solve for you.

You may have written a small/medium application with React, and you want to improve your

skills and answer all your questions. You should know that React is maintained by the develop-

ers at Meta and hundreds of contributors within the JavaScript community. React is one of the

most popular libraries for creating UIs, and it is well known to be fast, thanks to its smart way of

working with the Document Object Model (DOM). It comes with JSX, a new syntax for writing

markup in JavaScript, which requires you to change your thinking regarding the separation of

concerns. It has many cool features, such as server-side rendering, which gives you the power to

write universal applications.

In this chapter, we will go through some basic concepts that are essential to master in order to

use React effectively, but are straightforward enough for beginners to figure out:

•	 The difference between imperative and declarative programming

•	 React components and their instances, and how React uses elements to control the UI flow

•	 How React changed the way we build web applications, enforcing a different new concept

of separation of concerns, and the reasons behind its unpopular design choice

•	 Why people feel JavaScript fatigue, and what you can do to avoid the most common errors

developers make when approaching the React ecosystem

Taking Your First Steps with React2

Technical requirements
To follow this book, you need to have some experience in using the terminal to run a few Unix

commands. Also, you need to install Node.js. You have two options: the first one is to download

Node.js directly from the official website (https://nodejs.org), and the second option (recom-

mended) is to install Node Version Manager (NVM) from https://github.com/nvm-sh/nvm.

If you decide to go with NVM, you can install any version of Node.js you want and switch the

versions with the nvm install command:

•	 node is an alias for the latest version:

nvm install node

•	 You can also install a global version of Node.js (nvm will install the latest version of

Node.js locally to a user’s computer):

nvm install 19

nvm install 18

nvm install 17

nvm install 16

nvm install 15

•	 Or you can install a very specific version:

nvm install 12.14.3

•	 After you have installed the different versions, you can switch between them by using

the nvm use command:

nvm use node # for latest version

nvm use 16 # for the latest version of node 16.X.X

nvm use 12.14.3 # Specific version

•	 Finally, you can specify a default Node.js version by running the following command:

nvm alias default node

nvm alias default 16

nvm alias default 12.14.3

In short, here is a list of the requirements to complete the chapter:

•	 Node.js (19+): https://nodejs.org

https://nodejs.org
https://github.com/nvm-sh/nvm
https://nodejs.org

Chapter 1 3

•	 NVM: https://github.com/nvm-sh/nvm

•	 VS Code: https://code.visualstudio.com

•	 TypeScript: https://www.npmjs.com/package/typescript

You can find the code in the book’s GitHub repository: https://github.com/PacktPublishing/

React-18-Design-Patterns-and-Best-Practices-Fourth-Edition.

Differentiating between declarative and imperative
programming
When reading the React documentation or blog posts about React, you will have undoubtedly

come across the term declarative. One of the reasons why React is so powerful is that it enforces

a declarative programming paradigm.

Therefore, to master React, it is essential to understand what declarative programming means

and what the main differences between imperative and declarative programming are. The easiest

way to approach this is to think about imperative programming as a way of describing how things

work, and declarative programming as a way of describing what you want to achieve.

Entering a bar for a beer is a real-life example in the imperative world, where normally you will

give the following instructions to the bartender:

1.	 Find a glass and collect it from the shelf.

2.	 Place the glass under the tap.

3.	 Pull down the handle until the glass is full.

4.	 Hand me the glass.

In the declarative world, you would just say, “Can I have a beer, please?”

The declarative approach assumes that the bartender already knows how to serve a beer, an

important aspect of the way declarative programming works.

Let’s move into a JavaScript example. Here we will write a simple function that, given an array of

lowercase strings, returns an array with the same strings in uppercase:

toUpperCase(['foo', 'bar']) // ['FOO', 'BAR']

An imperative function to solve the problem would be implemented as follows:

const toUpperCase = input => {

 const output = []

https://github.com/nvm-sh/nvm
https://code.visualstudio.com
https://www.npmjs.com/package/typescript
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition

Taking Your First Steps with React4

 for (let i = 0; i < input.length; i++) {

 output.push(input[i].toUpperCase())

 }

 return output

}

First, an empty array to contain the result is created. Then, the function loops through all the

elements of the input array and pushes the uppercase values into the empty array. Finally, the

output array is returned.

A declarative solution would be as follows:

const toUpperCase = input => input.map(value => value.toUpperCase())

The items of the input array are passed to a map function that returns a new array containing

the uppercase values. There are some significant differences to note: the former example is less

elegant, and it requires more effort to be understood. The latter is terser and easier to read, which

makes a huge difference in big code bases, where maintainability is crucial.

Another aspect worth mentioning is that in the declarative example, there is no need to use

variables or to keep their values updated during the execution. Declarative programming tends

to avoid creating and mutating a state.

As a final example, let’s see what it means for React to be declarative. The problem we will try to

solve is a common task in web development: creating a toggle button.

Imagine a simple UI component such as a toggle button. When you click it, it turns green (on) if

it was previously gray (off), and switches to gray (off) if it was previously green (on).

The imperative way of doing this would be as follows:

const toggleButton = document.querySelector('#toggle')

toogleButton.addEventListener('click', () => {

 if (toggleButton.classList.contains('on')) {

 toggleButton.classList.remove('on')

 toggleButton.classList.add('off')

 } else {

 toggleButton.classList.remove('off')

Chapter 1 5

 toggleButton.classList.add('on')

 }

})

It is imperative because of all the instructions needed to change the classes. In contrast, the

declarative approach using React would be as follows:

// To turn on the Toggle

<Toggle on />

// To turn off the toggle

<Toggle />

In declarative programming, developers only describe what they want to achieve, and there’s no

need to list all the steps to make it work. The fact that React offers a declarative approach makes

it easy to use, and consequently, the resulting code is simple, which often leads to fewer bugs

and more maintainability.

In the next section, you will learn how React elements work and you will get more context on

how props are being passed on a React component.

How React elements work
In this book, we assume that you are familiar with components and their instances, but there is

another object you should know about if you want to use React effectively – the element. Elements

are lightweight immutable descriptions of what should be rendered, while components are more

complex stateful objects responsible for generating elements.

Whenever you call createClass, extend Component, or declare a stateless function, you are

creating a component. React manages all the instances of your components at runtime, and

there can be more than one instance of the same component in memory at a given point in time.

As mentioned previously, React follows a declarative paradigm, and there’s no need to tell it how

to interact with the DOM; you declare what you want to see on the screen, and React does the

job for you. One of the tools that makes this process more expressive and readable is JSX, which

allows you to write HTML-like syntax directly in your JavaScript code. JSX is not mandatory, but

it’s widely used in the React community.

To control the UI flow, React uses a particular type of object called an element. These elements

are created using the React.createElement() function, or more commonly, with JSX syntax.

Elements contain only the information that is strictly needed to represent the interface.

Taking Your First Steps with React6

Here is an example of an element created with JSX:

<Title color="red">

 <h1>Hello, H1!</h1>

</Title>

This JSX code is converted into JavaScript objects like the following:

{

 type: Title,

 props: {

 color: 'red',

 children: {

 type: 'h1',

 props: {

 children: 'Hello, H1!'

 }

 }

 }

}

The element’s type is crucial because it informs React on how to handle it. If the type is a string,

the element represents a DOM node, while if it’s a function, the element represents a component.

You can nest DOM elements and components to create a render tree, representing the structure of

your application’s user interface. By organizing your elements and components in a hierarchical

manner, you can create complex and dynamic UIs.

React uses a technique called the Virtual DOM, which is an in-memory representation of the actual

DOM. It compares the current and new trees to minimize the number of actual DOM updates.

This process is called reconciliation and is used by both React DOM and React Native to create

UIs for their respective platforms.

When an element’s type is a function, React invokes that function, passing in the element’s props

to obtain the underlying elements. It recursively repeats this process on the result until it con-

structs a tree of DOM nodes that can be rendered on the screen.

In summary, elements play a crucial role in React’s declarative paradigm, allowing you to cre-

ate complex user interfaces without manually managing the creation and destruction of DOM

elements.

Chapter 1 7

By understanding how elements and components work together, and how React efficiently up-

dates the UI using the Virtual DOM and reconciliation, you’ll be well equipped to build dynamic

and efficient web applications.

Unlearning everything
When working with React for the first time, it’s essential to approach it with an open mind. This

is because React represents a new way of designing web and mobile applications, breaking away

from many traditional best practices.

In the last two decades, we’ve learned that separation of concerns is crucial, often involving sep-

arating logic from templates. We aim to write JavaScript and HTML in different files, and various

templating solutions have been created to aid developers in achieving this goal.

However, the problem with this approach is that it often creates an illusion of separation. In re-

ality, JavaScript and HTML are tightly coupled, no matter where they live. To illustrate this, let’s

consider an example template:

{{#items}}

 {{#first}}

 {{name}}

 {{/first}}

 {{#link}}

 {{name}}

 {{/link}}

{{/items}}

The preceding snippet is taken from the Mustache website, one of the most popular templating

systems.

The first row tells Mustache to loop through a collection of items. Inside the loop, there is some

conditional logic to check whether the #first and #link properties exist and, depending on their

values, a different piece of HTML is rendered. Variables are wrapped in curly braces.

If your application only has to display some variables, a templating library could represent a good

solution, but when it comes to starting to work with complex data structures, things change.

Templating systems and their Domain-Specific Language (DSL) offer a subset of features, and

they try to provide the functionalities of a real programming language without reaching the same

level of completeness. As shown in the example, templates highly depend on the models they

receive from the logic layer to display the information.

Taking Your First Steps with React8

On the other hand, JavaScript interacts with the DOM elements rendered by the templates to

update the UI, even if they are loaded from separate files. The same problem applies to styles –

they are defined in a different file, but they are referenced in the templates, and the CSS selectors

follow the structure of the markup, so it is almost impossible to change one without breaking the

other, which is the definition of coupling. That is why the classic separation of concerns ended

up being more the separation of technologies, which is, of course, not a bad thing, but it doesn’t

solve any real problems.

React tries to move a step forward by putting the templates where they belong – next to the log-

ic. The reason it does that is that React suggests you organize your applications by composing

small bricks called components. The framework should not tell you how to separate the concerns

because every application has its own, and only the developers should decide how to limit the

boundaries of their applications.

The component-based approach drastically changes the way we write web applications, which is

why the classic concept of separation of concerns is gradually being taken over by a much more

modern structure. The paradigm enforced by React is not new, and it was not invented by its

creators, but React has contributed to making the concept mainstream and, most importantly,

popularized it in such a way that it is easier to understand for developers with different levels

of expertise.

Rendering a React component looks like this:

return (

 <button style={{ color: 'red' }} onClick={handleClick}>

 Click me!

 </button>

)

We all agree that it seems a bit weird in the beginning, but that is just because we are not used to

that kind of syntax. As soon as we learn it and we realize how powerful it is; we understand its

potential. Using JavaScript for both logic and templating not only helps us separate our concerns

in a better way, but it also gives us more power and more expressivity, which is what we need to

build complex UIs.

That is why even if the idea of mixing JavaScript and HTML sounds weird in the beginning, it is

vital to give React 5 minutes. The best way to get started with new technology is to try it on a small

side project and see how it goes. In general, the right approach is always to be ready to unlearn

everything and change your mindset if the long-term benefits are worth it.

Chapter 1 9

There is another concept that is pretty controversial and hard to accept, and that the engineers

behind React are trying to push to the community: moving the styling logic inside the component,

too. The end goal is to encapsulate every single technology used to create our components and

separate the concerns according to their domain and functionalities. Here is an example of a style

object taken from the React documentation:

const divStyle = {

 color: 'white',

 backgroundImage: `url(${imgUrl})`,

 WebkitTransition: 'all', // note the capital 'W' here

 msTransition: 'all' // 'ms' is the only lowercase vendor prefix

}

ReactDOM.render(<div style={divStyle}>Hello World!</div>, mountNode)

This set of solutions, where developers use JavaScript to write their styles, is known as #CSSinJS,

and we will talk about it extensively in Chapter 6, Making Your Components Look Beautiful.

In the next section, we will see how to avoid JavaScript fatigue, which is caused by the large

number of configurations that are needed to run a React application (webpack mainly).

Understanding JavaScript fatigue
There is a prevailing opinion that React consists of a vast set of technologies and tools, and if you

want to use it, you are forced to deal with package managers, transpilers, module bundlers, and

an infinite list of different libraries. This idea is so widespread and shared among people that it

has been clearly defined and given the name JavaScript fatigue.

Misconceptions about React
It is not hard to understand the reasons behind JavaScript fatigue. All the repositories and libraries

in the React ecosystem are made using shiny new technologies, the latest version of JavaScript,

and the most advanced techniques and paradigms. Moreover, there is a massive amount of React

boilerplate code on GitHub, each with tens of dependencies to offer solutions for any problem.

However, it is essential to understand that React is a pretty tiny library, and it can be used inside

any page (or even inside JSFiddle) in the same way everyone used to use jQuery or Backbone, just

by including the script on the page before the closing body element.

Taking Your First Steps with React10

Getting started with React without the fatigue
React is split into two packages:

•	 react: Implements the core features of the library

•	 react-dom: Contains all the browser-related features

The reason behind this is that the core package is used to support different targets, such as React

DOM in browsers and React Native on mobile devices. Running a React application inside a single

HTML page does not require any package manager or complex operation.

Here are the URLs to be included in the HTML to start using React:

•	 https://unpkg.com/react@18.2.0/umd/react.production.min.js

•	 https://unpkg.com/react-dom@18.2.0/umd/react-dom.production.min.js

For a simple UI, we could just use createElement (_jsx since React 17) and only when we start

building something more complex can we include a transpiler to enable JSX and convert it into

JavaScript. As the app grows, we may need a router, API endpoints, and external dependencies.

Advantages of the JavaScript ecosystem
Despite the fast pace and constant change in the JavaScript ecosystem, it offers several advantages.

The community plays a significant role in driving innovation and rapid evolution. As soon as a

specification is announced or drafted, someone in the community implements it as a transpiler

plugin or a polyfill, letting everyone else experiment with it while the browser vendors agree

and start supporting it.

This makes JavaScript and the browser a unique environment compared to other languages or

platforms. The downside is that things change quickly, but it is just a matter of finding the right

balance between betting on new technologies versus staying safe.

Bye to Create-React-App, welcome to Vite!
Recently, the React team decided to remove create-react-app from their official documentation,

indicating that it is no longer the default method for setting up a new React project. Instead, React

now recommends using a framework such as Next.js, Remix, or Gatsby for more comprehensive

solutions. However, if these frameworks do not fit your needs and you are looking for a simpler

alternative, you can opt for build tools like Vite or Parcel.

mailto:https://unpkg.com/react@18.2.0/umd/react.production.min.js
mailto:https://unpkg.com/react-dom@18.2.0/umd/react-dom.production.min.js

Chapter 1 11

Vite as a solution
Vite is a build tool and development server created by Evan You, the creator of Vue.js. It leverages

the native ES modules feature in modern browsers for fast development and efficient production

builds.

To use Vite with React, first, install Vite globally using the following command:

npm install -g create-vite

Next, create a new Vite project using the React TypeScript template:

create-vite my-react-app --template react-ts

Finally, move into the newly created project folder and start the development server:

cd my-react-app

npm install

npm run dev

You should see the project running on port 5173 by default.

Figure 1.1: Vite default application

Taking Your First Steps with React12

If you want to change the port to 3000, you can modify the vite.config.ts file like this:

import { defineConfig } from 'vite'

import react from '@vitejs/plugin-react'

// https://vitejs.dev/config/

export default defineConfig({

 plugins: [react()],

 server: {

 port: 3000

 }

})

By using Vite, you can scaffold and run a React application with minimal dependencies and

still have access to all the features needed to build a complete React application using the most

advanced techniques.

Summary
In this first chapter, we have learned about some basic concepts that are very important for

following the rest of the book, and that are crucial to working with React daily. We now know

how to write declarative code, and we have a clear understanding of the difference between the

components we create and the elements that React uses to display their instances on the screen.

We learned the reasons behind the choice of locating logic and templates together, and why that

unpopular decision has been a big win for React. We went through the reasons why it is common

to feel fatigued in the JavaScript ecosystem, but we have also seen how to avoid those problems

by following an iterative approach.

Finally, we have seen what the new create-vite CLI is, and we are now ready to start writing

some real code.

In the next chapter, you will learn TypeScript and how to use it in your projects.

Chapter 1 13

Join our community on Discord
Join our community’s Discord space for discussion with the author and other readers:

https://packt.link/React18DesignPatterns4e

https://packt.link/React18DesignPatterns4e

2
Introducing TypeScript

This chapter assumes that you have prior experience with JavaScript and are interested in im-

proving the quality of your code by learning TypeScript. TypeScript is a typed superset of JavaS-

cript that compiles to JavaScript. In other words, TypeScript is essentially JavaScript with some

additional features.

Designed by Anders Hejlsberg, the creator of C# at Microsoft, TypeScript is an open-source lan-

guage that enhances the capabilities of JavaScript. By introducing static typing and other advanced

features, TypeScript helps developers write more reliable and maintainable code.

In this chapter, we will explore the features of TypeScript and how to convert existing JavaScript

code to TypeScript. By the end of this chapter, you will have a solid understanding of TypeScript’s

benefits and how to leverage them to create more robust and scalable applications.

In this chapter, we will cover the following topics:

•	 TypeScript’s features

•	 Convert JavaScript code into TypeScript

•	 Types

•	 Interfaces

•	 Extending interfaces and types

•	 Implementing interfaces and types

•	 Merging interfaces

•	 Enums

•	 Namespaces

Introducing TypeScript16

•	 Template literal types

•	 TypeScript configuration file

Technical requirements
To work through the contents of this chapter, you will need the following:

•	 Node.js 19+

•	 Visual Studio Code

TypeScript’s features
TypeScript, a popular open-source programming language developed and maintained by Micro-

soft, is rapidly gaining popularity among developers worldwide. It was introduced as a superset

of JavaScript, aiming to facilitate larger-scale applications while enhancing code quality and

maintainability. TypeScript leverages static typing and compiles to clean, simple JavaScript code,

ensuring compatibility with existing JavaScript environments.

This robust language brings a host of powerful features that set it apart and make it an appealing

choice for many programmers. Notably, TypeScript infuses strong typing into JavaScript, provid-

ing better error checking and reducing runtime bugs. Moreover, it fully supports object-oriented

programming with advanced features like classes, interfaces, and inheritance.

Since any valid JavaScript code is also TypeScript, transitioning from JavaScript to TypeScript can

be done gradually, with developers introducing types to their codebase progressively. This makes

TypeScript a flexible, scalable solution for both small and large-scale projects.

In this section, we will summarize the essential features of TypeScript that you should take

advantage of:

•	 TypeScript is JavaScript: TypeScript is a superset of JavaScript, which means that any

JavaScript code you write will work with TypeScript. If you already know how to use JavaS-

cript, you have all the knowledge you need to use TypeScript. You just need to learn how

to add types to your code. All TypeScript code is transformed into JavaScript in the end.

•	 JavaScript is TypeScript: This just means that you can rename any valid .js file with the

.ts extension, and it will work.

•	 Error checking: TypeScript compiles the code and checks for errors, which helps identify

issues before running the code.

Chapter 2 17

•	 Strong typing: By default, JavaScript is not strongly typed. With TypeScript, you can add

types to all your variables and functions, and even specify the return value types.

•	 Object-oriented programming supported: TypeScript supports advanced concepts such

as classes, interfaces, inheritance, and more. This allows for better organization of code

and enhances its maintainability.

After having discussed the key features of TypeScript, let us delve into a practical demonstration

of converting JavaScript code into TypeScript.

Converting JavaScript code into TypeScript
In this section, we will see how to transform some JavaScript code into TypeScript.

Let’s suppose we have to check whether a word is a palindrome. The JavaScript code for this

algorithm will be as follows:

function isPalindrome(word) {

 const lowerCaseWord = word.toLowerCase()

 const reversedWord = lowerCaseWord.split('').reverse().join('')

 return lowerCaseWord === reversedWord

}

You can name this file palindrome.ts.

As you can see, we are receiving a string variable (word), and we are returning a boolean value.

So, how will this be translated into TypeScript?

function isPalindrome(word: string): boolean {

 const lowerCaseWord = word.toLowerCase()

 const reversedWord = lowerCaseWord.split('').reverse().join('')

 return lowerCaseWord === reversedWord

}

You’re probably thinking, “Great, I just specified the string type as word and the boolean type

to the function returned value, but now what?”

Introducing TypeScript18

If you try to run the function with some value that is different from string, you will get a Type-

Script error:

console.log(isPalindrome('Level')) // true

console.log(isPalindrome('Anna')) // true

console.log(isPalindrome('Carlos')) // false

console.log(isPalindrome(101)) // TS Error

console.log(isPalindrome(true)) // TS Error

console.log(isPalindrome(false)) // TS Error

So, if you try to pass a number to the function, you will get the following error:

Figure 2.1: Type number is not assignable to parameter of type string

That’s why TypeScript is very useful, because it will force you to be stricter and more explicit

with your code.

Types
In the last example, we saw how to specify some primitive types for our function parameter and

returned value, but you’re probably wondering how you can describe an object or array with

more details. Types can help us to describe our objects or arrays in a better way. For example, let’s

suppose you want to describe a User type to save the information into the database:

type User = {

 username: string

 email: string

 name: string

 age: number

 website: string

 active: boolean

}

const user: User = {

 username: 'czantany',

Chapter 2 19

 email: 'carlos@milkzoft.com',

 name: 'Carlos Santana',

 age: 33,

 website: 'http://www.js.education',

 active: true

}

// Let's suppose you will insert this data using Sequelize...

models.User.create({ ...user }}

We get the following error if we forget to add one of the nodes or put an invalid value in one of them:

Figure 2.2: Age is missing in type User but is required

If you need optional nodes, you can always put a ? next to the age of the node, as shown in the

following code block:

type User = {

 username: string

 email: string

 name: string

 age?: number

 website: string

 active: boolean

}

Introducing TypeScript20

You can name type as you want, but a good practice to follow is to add a prefix of T. For example,

the User type will become TUser. In this way, you can quickly recognize that it is type and you

don’t get confused thinking it is a class or a React component.

Interfaces
Interfaces are very similar to types and sometimes developers don’t know the differences be-

tween them. Interfaces can be used to describe the shape of an object or function signature just

like types, but the syntax is different:

interface User {

 username: string

 email: string

 name: string

 age?: number

 website: string

 active: boolean

}

You can name an interface as you want, but a good practice to follow is to add a prefix of I. For

example, the User interface will become IUser. In this way, you can quickly recognize that it is

an interface, and you don’t get confused thinking it is a class or a React component.

An interface can also be extended, implemented, and merged.

Extending interfaces and types
An interface or type can also be extended, but again, the syntax will differ as shown in the fol-

lowing code block:

// Extending an interface

interface IWork {

 company: string

 position: string

}

interface IPerson extends IWork {

 name: string

 age: number

}

Chapter 2 21

// Extending a type

type TWork = {

 company: string

 position: string

}

type TPerson = TWork & {

 name: string

 age: number

}

// Extending an interface into a type

interface IWork {

 company: string

 position: string

}

type TPerson = IWork & {

 name: string

 age: number

}

As you can see, by using the & character, you can extend a type, while you extend an interface

using the extends keyword.

Understanding the extension of interfaces and types paves the way for us to delve into their im-

plementation. Let us transition to illustrating how classes in TypeScript can implement these

interfaces and types while keeping in mind the inherent constraints when dealing with union types.

Implementing interfaces and types
A class can implement an interface or type alias in the exact same way. But it cannot implement

(or extend) a type alias that names a union type. For example:

// Implementing an interface

interface IWork {

 company: string

 position: string

Introducing TypeScript22

}

class Person implements IWork {

 name: 'Carlos'

 age: 35

}

// Implementing a type

type TWork = {

 company: string

 position: string

}

class Person2 implements TWork {

 name: 'Cristina'

 age: 34

}

// You can't implement a union type

type TWork2 = {
 company: string;
 position: string
} | {
 name: string;
 age: number
}

class Person3 implements TWork2 {

 company: 'Google'

 position: 'Senior Software Engineer'

}

Chapter 2 23

If you write the preceding code, you will get the following error in your editor:

Figure 2.3: A class can only implement an object type or intersection of object types with
statically known members

As you can see, you are not able to implement a union type.

Merging interfaces
Unlike a type, an interface can be defined multiple times and will be treated as a single interface

(all declarations will be merged), as shown in the following code block:

interface IUser {

 username: string

 email: string

 name: string

 age?: number

 website: string

 active: boolean

}

interface IUser {

 country: string

}

Introducing TypeScript24

const user: IUser = {

 username: 'czantany',

 email: 'carlos@milkzoft.com',

 name: 'Carlos Santana',

 country: 'Mexico',

 age: 35,

 website: 'http://www.js.education',

 active: true

}

This is very useful when you need to extend your interfaces in different scenarios by just rede-

fining the same interface.

Enums
Enums are one of the few features TypeScript has that is not a type-level extension of JavaScript.

Enums permit a developer to define a set of named constants. Using enums can make it easier

to document intent or create a set of distinct cases.

Enums can store numeric or string values and are normally used to provide predefined values.

Personally, I like to use them to define a palette of colors in a theming system, as follows:

Figure 2.4: Enums used for color palette

Chapter 2 25

Moving on to another useful feature of TypeScript, let’s explore namespaces.

Namespaces
You may have heard of namespaces in other programming languages, such as Java or C++. In

JavaScript, namespaces are simply named objects in the global scope. They serve as a region in

which variables, functions, interfaces, or classes are organized and grouped together within a

local scope to avoid naming conflicts between components in the global scope.

While modules are also used for code organization, namespaces are more straightforward to

implement for simple use cases. However, modules offer additional benefits such as code isola-

tion, bundling support, re-exporting components, and renaming components that namespaces

do not provide.

In my own projects, I find namespaces useful for grouping styles when using styled-components,

for instance:

import styled from 'styled-components'

export namespace CSS {

 export const InputWrapper = styled.div`

 padding: 10px;

 margin: 0;

 background: white;

 width: 250px;

 `

 export const InputBase = styled.input`

 width: 100%;

 background: transparent;

 border: none;

 font-size: 14px;

 `

}

Then when I need to use it, I consume it like this:

import React, { ComponentPropsWithoutRef, FC } from 'react'

import { CSS } from './Input.styled'

export interface Props extends ComponentPropsWithoutRef<'input'> {

 error?: boolean

}

Introducing TypeScript26

const Input: FC<Props> = ({

 type = 'text',

 error = false,

 value = '',

 disabled = false,

 ...restProps

}) => (

 <CSS.InputWrapper style={error ? { border: '1px solid red' } : {}}>

 <CSS.InputBase type={type} value={value} disabled={disabled} {...
restProps} />

 </CSS.InputWrapper>

)

This is very useful because I don’t need to worry about exporting multiple styled components. I just

export the CSS namespace and I can use all the styled components defined inside that namespace.

Template literals
In TypeScript, template literals are based on string literal types and can be expanded into mul-

tiple strings using unions. These types are useful for defining a theme name, for instance:

type Theme = 'light' | 'dark'

Theme is a union type that can only be assigned one of the two string literal types: 'light' or

'dark'. This provides type safety and prevents runtime errors caused by passing an invalid value

as the theme name.

Using this approach, you can define a set of possible values for a variable, argument, or parameter

and ensure that only valid values are used at compile time. This makes your code more reliable

and easier to maintain.

TypeScript configuration file
The presence of a tsconfig.json file in a directory indicates that the directory is the root of a

TypeScript project. The tsconfig.json file specifies the root files and the compiler options re-

quired to compile the project.

You can check all the compiler options at the official TypeScript site: https://www.typescriptlang.

org/tsconfig.

https://www.typescriptlang.org/tsconfig
https://www.typescriptlang.org/tsconfig

Chapter 2 27

This is the tsconfig.json file that I normally use in my projects. I’ve always separated them into

two files: the tsconfig.common.json file will contain all the shared compiler options, and the

tsconfig.json file will extend the tsconfig.common.json file and add some specific options for

that project. This is very useful when you work with MonoRepos.

My tsconfig.common.json file looks like this:

{

 "compilerOptions": {

 "allowSyntheticDefaultImports": true,

 "alwaysStrict": true,

 "declaration": true,

 "declarationMap": true,

 "downlevelIteration": true,

 "esModuleInterop": true,

 "experimentalDecorators": true,

 "jsx": "react-jsx",

 "lib": ["DOM", "DOM.Iterable", "ESNext"],

 "module": "commonjs",

 "moduleResolution": "node",

 "noEmit": false,

 "noFallthroughCasesInSwitch": false,

 "noImplicitAny": true,

 "noImplicitReturns": true,

 "outDir": "dist",

 "resolveJsonModule": true,

 "skipLibCheck": true,

 "sourceMap": true,

 "strict": true,

 "strictFunctionTypes": true,

 "strictNullChecks": true,

 "suppressImplicitAnyIndexErrors": false,

 "target": "ESNext"

 },

 "exclude": ["node_modules", "dist", "coverage", ".vscode", "**/__
tests__/*"]

}

Introducing TypeScript28

And my tsconfig.json looks like this:

{

 "extends": "./tsconfig.common.json",

 "compilerOptions": {

 "baseUrl": "./packages",

 "paths": {

 "@web-creator/*": ["*/src"]

 }

 }

}

In Chapter 14, I will explain how to create a MonoRepos architecture.

Summary
In this chapter, we covered the basics of TypeScript, including creating basic types and interfaces,

extending them, and using enums, namespaces, and template literals. We also explored setting

up our first TypeScript configuration file (tsconfig.json) and splitting it into two parts – one

for sharing and the other for extending tsconfig.common.json. This approach is particularly

useful when working with MonoRepos.

In the next chapter, we will delve into using JSX/TSX code and explore various configurations that

can be applied to improve your code style. You will learn how to leverage the power of TypeScript

to create efficient and maintainable React applications.

3
Cleaning Up Your Code

This chapter assumes that you have prior experience with JSX (JavaScript XML) and are interested

in improving your skills to use it effectively. To use JSX/TSX without any issues or unexpected

behavior, it’s crucial to understand how it works under the hood and the reasons why it’s a useful

tool for building UIs.

Our objective is to write clean JSX/TSX code, maintain it, and have a good understanding of its

inner workings, including how it’s translated to JavaScript and the features it provides.

By understanding the intricacies of JSX/TSX, you can leverage its full potential to build efficient

and scalable UIs. We will explore various tips and techniques to help you write better code and

avoid common mistakes. By the end of this chapter, you will have a solid grasp of how JSX/TSX

works and how to use it effectively in your React applications.

In this chapter, we will cover the following topics:

•	 What is JSX and why should we use it?

•	 What is Babel and how can we use it to write modern JavaScript code?

•	 The main features of JSX and the differences between HTML and JSX.

•	 Best practices to write JSX in an elegant and maintainable way.

•	 How linting, and ESLint in particular, can make our JavaScript code consistent across

applications and teams.

•	 The basics of functional programming and why following a functional paradigm will

make us write better React components.

Cleaning Up Your Code30

Technical requirements
To complete this chapter, you will need the following:

•	 Node.js 19+

•	 Visual Studio Code

Using JSX
In Chapter 1, we saw how React changes the concept of separation of concerns, moving the bound-

aries inside components. We also learned how React uses the elements returned by the compo-

nents to display the UI on the screen.

Let’s now look at how we can declare elements inside our components.

React provides two ways to define elements. The first one is by using JavaScript functions, and

the second one is by using JSX, an optional XML-like syntax. The following is a screenshot of the

new official documentation of React.js (https://react.dev):

Figure 3.1: New official documentation site of React.js

https://react.dev

Chapter 3 31

To begin with, JSX is one of the main reasons why people fail to approach React, because looking

at the examples on the home page and seeing JavaScript mixed with HTML for the first time can

seem strange to most of us.

As soon as we get used to it, we realize that it is very convenient, precisely because it is similar to

HTML and looks very familiar to anyone who has already created UIs on the web. The opening

and closing tags make it easier to represent nested trees of elements, something that would have

been unreadable and hard to maintain using plain JavaScript.

Let’s take a look at JSX in more detail in the following sub-sections.

Babel
Babel is a popular JavaScript compiler widely used in the React community. It allows developers to

write code using the latest language features, such as JSX and ES6, that may not yet be supported

in all browsers. By transpiling the code into the more widely supported ES5, Babel ensures that

your application runs smoothly across different browsers.

To use Babel, you’ll first need to install the necessary packages. In older versions (Babel 6.x), you

would install the babel-cli package, which included babel-node and babel-core. However, in

more recent versions, these packages have been separated into individual modules: @babel/core,

@babel/cli, @babel/node, and so on.

To install Babel, follow these steps:

1.	 Install the required packages globally (although local installations are generally preferred):

npm install -g @babel/core @babel/node

2.	 To compile a JavaScript file using Babel, run:

babel source.js -o output.js

3.	 Babel is highly configurable, and you can customize it using presets. To install the most

common presets, run:

npm install -g @babel/preset-env @babel/preset-react

4.	 Create a .babelrc configuration file in your project’s root directory and add the following

content to tell Babel to use the installed presets:

{

 "presets": [

 "@babel/preset-env",

Cleaning Up Your Code32

 "@babel/preset-react"

]

}

Now, you can write ES6 and JSX in your source files, and Babel will transpile them into brows-

er-compatible ES5 JavaScript code.

Creating our first element
Now that our environment supports JSX, let’s explore a basic example: creating a div element.

Using the _jsx function, we can write:

_jsx('div', {})

However, using JSX, we can simply write:

<div />

This appears similar to regular HTML, but the crucial difference is that we’re writing markup

within a .js file. Keep in mind that JSX is only syntactic sugar and gets transpiled into JavaScript

before being executed in the browser.

When we run Babel, our <div /> element is translated into _jsx('div', {}). Remember this

when crafting templates.

Starting from React 17, React.createElement('div') has been deprecated, and the library now

uses react/jsx-runtime internally to render JSX. This means that you no longer need to import

the React object to write JSX code. Instead, you can write JSX directly, as shown in the previous

example.

DOM elements and React components
JSX allows us to create both HTML elements and React components, with the only difference

being whether or not they start with a capital letter. For instance, to render an HTML button, we

use <button />, while to render the Button component, we use <Button />.

The first button is transpiled into the following:

_jsx('button', {})

The second one is transpiled into the following:

_jsx(Button, {})

Chapter 3 33

The key difference is that in the first call, we pass the type of the DOM element as a string, while

in the second call, we pass the component itself. As a result, the component should exist in the

scope for it to work properly.

JSX also supports self-closing tags, which are useful for keeping the code concise and avoiding

unnecessary tag repetition.

Props
JSX is very convenient when your DOM elements or React components have props. Using XML is

pretty easy to set attributes on elements:

<img src="https://www.ranchosanpancho.com/images/logo.png" alt="Cabañas
San Pancho" />

The equivalent in JavaScript would be as follows:

_jsx("img", {

 src: "https://www.ranchosanpancho.com/images/logo.png",

 alt: "Cabañas San Pancho"

})

This is far less readable, and even with only a couple of attributes, it is harder to read without a

bit of reasoning.

Children
JSX allows you to define children to describe the tree of elements and compose complex UIs. A

basic example is a link with text inside it, as follows:

Click me!

This would be transpiled into the following:

_jsx(

 "a",

 { href: "https://ranchosanpancho.com" },

 "Click me!"

)

Our link can be enclosed inside a div element for some layout requirements, and the JSX snippet

to achieve that is as follows:

<div>

Cleaning Up Your Code34

 Click me!

</div>

The JavaScript equivalent is as follows:

_jsx(

 "div",

 null,

 _jsx(

 "a",

 { href: "https://ranchosanpancho.com" },

 "Click me!"

)

)

It should now be clear how the XML-like syntax of JSX makes everything more readable and main-

tainable, but it is always important to know the JavaScript parallel to our JSX has control over the

creation of elements. The good part is that we are not limited to having elements as children of

elements, but we can use JavaScript expressions, such as functions or variables.

To do this, we have to enclose the expression within curly braces:

<div>

 Hello, {variable}.

 I'm a {() => console.log('Function')}.

</div>

The same applies to non-string attributes, as follows:

Click me!

As you see, any variable or function should be enclosed in curly braces.

Differences with HTML
So far, we have looked at the similarities between JSX and HTML. Let’s now look at the little

differences between them and the reasons they exist.

Attributes
We must always keep in mind that JSX is not a standard language and that it gets transpiled into

JavaScript. Because of this, some attributes cannot be used.

Chapter 3 35

For example, instead of class, we have to use className, and instead of for, we have to use

htmlFor, as follows:

<label className="awesome-label" htmlFor="name" />

The reason for this is that class and for are reserved words in JavaScript.

Style
A pretty significant difference is the way the style attribute works. We will look at how to use

it in more detail in Chapter 6, Making Your Components Look Beautiful, but now we will focus on

the way it works.

The style attribute does not accept a CSS string as the HTML parallel does, but it expects a Ja-

vaScript object where the style names are camelCased:

<div style={{ backgroundColor: 'red' }} />

As you can see, you can pass an object to the style prop, meaning you can even have your styles

in a separate variable if you want:

const styles = {

 backgroundColor: 'red'

}

<div style={styles} />

This is the best way to have better control of your inline styles.

Root
One important difference with HTML worth mentioning is that since JSX elements get translated

into JavaScript functions, and you cannot return two functions in JavaScript, whenever you have

multiple elements at the same level, you are forced to wrap them in a parent.

Let’s look at a simple example:

<div />

<div />

This gives us the following error:

Adjacent JSX elements must be wrapped in an enclosing tag.

Cleaning Up Your Code36

On the other hand, the following works:

<div>

 <div />

 <div />

</div>

Before, React forced you to return an element wrapped with an <div> element or any other tag;

since React 16.2.0, it is possible to return an array directly as follows:

return [

 <li key="1">First item,

 <li key="2">Second item,

 <li key="3">Third item

]

Or you can even return a string directly, as shown in the following code block:

return 'Hello World!'

Also, React now has a new feature called Fragment that also works as a special wrapper for ele-

ments. It can be specified with React.Fragment:

import { Fragment } from 'react'

return (

 <Fragment>

 <h1>An h1 heading</h1>

 Some text here.

 <h2>An h2 heading</h2>

 More text here.

 Even more text here.

 </Fragment>

)

Or you can use empty tags (<></>):

return (

 <>

 <ComponentA />

 <ComponentB />

 <ComponentC />

 </>

Chapter 3 37

)

Fragment won’t render anything visible on the DOM; it is just a helper tag to wrap your React

elements or components.

Spaces
There’s one thing that could be a little bit tricky in the beginning and, again, it concerns the fact

that we should always keep in mind that JSX is not HTML, even if it has XML-like syntax. JSX han-

dles the spaces between text and elements differently from HTML, in a way that’s counter-intuitive.

Consider the following snippet:

<div>

 My

 name is

 Carlos

</div>

In a browser that interprets HTML, this code would give you My name is Carlos, which is exactly

what we expect.

In JSX, the same code would be rendered as MynameisCarlos, which is because the three nested

lines get transpiled as individual children of the div element, without taking the spaces into

account. A common solution to get the same output is putting a space explicitly between the

elements, as follows:

<div>

 My

 {' '}

 name is

 {' '}

 Carlos

</div>

As you may have noticed, we are using an empty string wrapped inside a JavaScript expression

to force the compiler to apply a space between the elements.

Boolean attributes
A couple more things are worth mentioning before really starting regarding the way you define

Boolean attributes in JSX.

Cleaning Up Your Code38

If you set an attribute without a value, JSX assumes that its value is true, following the same

behavior as the HTML disabled attribute, for example.

This means that if we want to set an attribute to false, we have to declare it explicitly as false:

<button disabled />

_jsx("button", { disabled: true })

The following is another example of the Boolean attribute:

<button disabled={false} />

_jsx("button", { disabled: false })

This can be confusing in the beginning, because we may think that omitting an attribute would

mean false, but it is not like that. With React, we should always be explicit to avoid confusion.

Spread attributes
An important feature is the spread attribute operator (...), which comes from the rest/spread

properties for ECMAScript “proposal” and is very convenient whenever we want to pass all the

attributes of a JavaScript object to an element.

A common practice that leads to fewer bugs is not to pass entire JavaScript objects down to

children by reference, but to use their primitive values, which can be easily validated, making

components more robust and error-proof.

Let’s see how it works:

const attrs = {

 id: 'myId',

 className: 'myClass'

}

return <div {...attrs} />

The preceding code gets transpiled into the following:

var attrs = {

 id: 'myId',

 className: 'myClass'

}

return _jsx('div', attrs)

Chapter 3 39

Template literals
Template literals are string literals that allow for embedded expressions, multiline strings, and

string interpolation. They are enclosed by the backtick (``) character instead of single or double

quotes.

One of the most useful features of template literals is the ability to include placeholders using

the dollar sign and curly braces (${expression}). This allows us to easily interpolate variables

or complex expressions into our string templates. Here’s an example:

const name = 'Carlos'

const age = 35

const message = `Hello, my name is ${name} and I am ${age} years old.`

console.log(message)

This will log the following output:

Hello, my name is Carlos and I am 35 years old.

In addition to string interpolation, template literals also support multiline strings, making it

easier to write and read complex strings without needing to concatenate multiple strings with

the plus (+) operator.

Common patterns
Now that we know how JSX works and can master it, we are ready to see how to use it in the right

way following some useful conventions and techniques.

Multiline
Let’s start with a very simple one. As stated previously, one of the main reasons we should prefer

JSX over React’s _jsx function is because of its XML-like syntax, and because balanced opening

and closing tags are perfect to represent a tree of nodes.

Therefore, we should try to use it in the right way and get the most out of it. One example is as

follows; whenever we have nested elements, we should always go multiline:

<div>

 <Header />

 <div>

 <Main content={...} />

 </div>

</div>

Cleaning Up Your Code40

This is preferable to the following:

<div><Header /><div><Main content={...} /></div></div>

The exception is if the children are not elements such as text or variables. In that case, it makes

sense to remain on the same line and avoid adding noise to the markup, as follows:

<div>

 <Alert>{message}</Alert>

 <Button>Close</Button>

</div>

Always remember to wrap your elements inside parentheses when you write them on multiple

lines. JSX always gets replaced by functions, and functions written on a new line can give you an

unexpected result because of automatic semicolon insertion. Suppose, for example, that you are

returning JSX from your render method, which is how you create UIs in React.

The following example works fine because the div element is on the same line as the return:

return <div />

The following, however, is not right:

return

 <div />

The reason for this is that you would then have the following:

return

_jsx("div", null)

This is why you have to wrap the statement in parentheses, as follows:

return (

 <div />

)

Multi-properties
A common problem in writing JSX comes when an element has multiple attributes. One solution

is to write all the attributes on the same line, but this would lead to very long lines that we do not

want in our code (see the following section for how to enforce coding style guides).

Chapter 3 41

A common solution is to write each attribute on a new line, with one level of indentation, and

then align the closing bracket with the opening tag:

<button

 foo="bar"

 veryLongPropertyName="baz"

 onSomething={this.handleSomething}

/>

Conditionals
Things get more interesting when we start working with conditionals, for example, if we want

to render some components only when certain conditions are matched. The fact that we can use

JavaScript in our conditions is a big plus, but there are many ways to express conditions in JSX,

and it is important to understand the benefits and problems of each one of these to write code

that is both readable and maintainable.

Suppose we want to show a logout button only if the user is currently logged in to our application.

A simple snippet to start with is as follows:

let button

if (isLoggedIn) {

 button = <LogoutButton />

}

return <div>{button}</div>

This works, but it is not very readable, especially if there are multiple components and multiple

conditions.

In JSX, we can use an inline condition:

<div>

 {isLoggedIn && <LoginButton />}

</div>

This works because if the condition is false, nothing gets rendered, but if the condition is true,

the createElement function of LoginButton gets called, and the element is returned to compose

the resulting tree.

Cleaning Up Your Code42

If the condition has an alternative (the classic if...else statement) and we want, for example,

to show a logout button if the user is logged in and a login button otherwise, we can use JavaS-

cript’s if...else statement as follows:

let button

if (isLoggedIn) {

 button = <LogoutButton />

} else {

 button = <LoginButton />

}

return <div>{button}</div>

Alternatively, and better still, we can use a ternary condition that makes the code more compact:

<div>

 {isLoggedIn ? <LogoutButton /> : <LoginButton />}

</div>

You can find the ternary condition used in popular repositories, such as the Redux real-world

example (https://github.com/reactjs/redux/blob/master/examples/real-world/src/

components/List.js#L28), where the ternary is used to show a Loading label if the component is

fetching the data or Load More inside a button depending on the value of the isFetching variable:

<button [...]>

 {isFetching ? 'Loading...' : 'Load More'}

</button>

Let’s now look at the best solution for when things get more complicated and, for example, we

have to check more than one variable to determine whether to render a component or not:

<div>

 {dataIsReady && (isAdmin || userHasPermissions) &&

 <SecretData />

 }

</div>

https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28
https://github.com/reactjs/redux/blob/master/examples/real-world/src/components/List.js#L28

Chapter 3 43

In this case, it is clear that using the inline condition is a good solution, but the readability is

strongly impacted. Instead, we can create a helper function inside our component and use it in

JSX to verify the condition:

const MyComponent = ({ dataIsReady, isAdmin, userHasPermissions }) => {

 const canShowSecretData = () => {

 return dataIsReady && (isAdmin || userHasPermissions)

 }

 return (

 <div>

 {canShowSecretData() && <SecretData />}

 </div>

)

}

As you can see, this change makes the code more readable and the condition more explicit. If you

look at this code in 6 months, you will still find it clear just by reading the name of the function.

The same applies to computed properties. Suppose you have two single properties for currency

and value. Instead of creating the price string inside render, you can create a function:

const MyComponent = ({ currency, value }) => {

 const getPrice = () => {

 return `${currency}${value}`

 }

 return <div>{getPrice()}</div>

}

This is better because it is isolated, and you can easily test it if it contains logic.

Going back to conditional statements, we can create a custom component and call it RenderIf

to render our components conditionally:

import React, { FC, ReactElement } from 'react'

interface Props {

 children: ReactElement | string

 isTrue?: Boolean

 isFalse?: Boolean

}

Cleaning Up Your Code44

const RenderIf: FC<Props> = ({ children, isTrue, isFalse }) => {

 if (isTrue === true) {

 return <>{children}</>

 }

 if (isFalse === false) {

 return <>{children}</>

 }

 return null

}

export default RenderIf

We can then easily use it in our projects, as follows:

import RenderIf from './RenderIf'

const MyComponent = ({ dataIsReady, isAdmin, userHasPermissions }) => {

 return (

 <div>

 <RenderIf isTrue={dataIsReady && (isAdmin || userHasPermissions)}>

 <SecretData />

 </RenderIf>

 </div>

)

}

Loops
A very common operation in UI development is to display lists of items. When it comes to showing

lists, using JavaScript as a template language is a very good idea.

If we write a function that returns an array inside our JSX template, each element of the array

gets compiled into an element.

As we have seen before, we can use any JavaScript expressions inside curly braces, and the most

common way to generate an array of elements, given an array of objects, is to use map.

Let’s dive into a real-world example. Suppose you have a list of users, each one with a name prop-

erty attached to it.

Chapter 3 45

To create an unordered list to show the users, you can do the following:

 {users.map(user => {user.name})}

This snippet is incredibly simple and incredibly powerful at the same time, where the power of

HTML and JavaScript converge.

Sub-rendering
It is worth stressing that we always want to keep our components very small and our render

methods very clean and simple.

However, that is not an easy goal, especially when you are creating an application iteratively, and

in the first iteration, you are not sure exactly how to split the components into smaller ones. So,

what should we be doing when the render method becomes too big to maintain? One solution

is to split it into smaller functions in a way that lets us keep all the logic in the same component.

Let’s look at an example:

const renderUserMenu = () => {

 // JSX for user menu

}

const renderAdminMenu = () => {

 // JSX for admin menu

}

return (

 <div>

 <h1>Welcome back!</h1>

 {userExists && renderUserMenu()}

 {userIsAdmin && renderAdminMenu()}

 </div>

)

This is not always considered best practice because it seems more obvious to split the component

into smaller ones. However, sometimes it helps to keep the render method cleaner. For example,

in the Redux real-world examples, a sub-render method is used to render the load more button.

Cleaning Up Your Code46

Now that we are JSX power users, it is time to move on and see how to follow a style guide within

our code to make it consistent.

Styling code
In this section, you will learn how to implement EditorConfig and ESLint to improve your code

quality by validating your code style. It is important to have a standard code style in your team

and avoid using different code styles.

EditorConfig
EditorConfig helps developers to maintain consistent coding styles between different IDEs.

EditorConfig is supported by a lot of editors. You can check whether your editor is supported or

not on the official website, https://www.editorconfig.org.

You need to create a file called .editorconfig in your root directory – the configuration I use is

this one:

root = true

[*]

indent_style = space

indent_size = 2

end_of_line = lf

charset = utf-8

trim_trailing_whitespace = true

insert_final_newline = true

[*.html]

indent_size = 4

[*.css]

indent_size = 4

[*.md]

trim_trailing_whitespace = false

You can affect all the files with [*], and specific files with [.extension].

https://www.editorconfig.org

Chapter 3 47

Prettier
Prettier is an opinionated code formatter, supported by many languages, that can be integrated

with most editors. This plugin is really useful because you can format the code on saving and you

don’t need to discuss the code style in code reviews, which will save you a lot of time and energy.

If you work with Visual Studio Code, you have to install the Prettier extension first:

Figure 3.2: Prettier – Code formatter

Then, if you want to configure the option to format when you save a file, you need to go to Settings,

search for Format on Save, and check that option:

Figure 3.3: Configuring option to format when saving a file

This will affect all your projects because it is a global setting. If you want to apply this option just

in a specific project, you have to create a .vscode folder inside your project and a settings.json

file with the following code:

{

 "editor.defaultFormatter": "esbenp.prettier-vscode",

 "editor.formatOnSave": true

}

Cleaning Up Your Code48

Then you can configure the options you want in your .prettierrc file – this is the configuration

I normally use:

{

 "arrowParens": "avoid",

 "bracketSpacing": true,

 "jsxSingleQuote": false,

 "printWidth": 100,

 "quoteProps": "as-needed",

 "semi": false,

 "singleQuote": true,

 "tabWidth": 2,

 "trailingComma": "none",

 "useTabs": false

}

This will help you or your team to standardize the code style.

ESLint
Writing high-quality code is always our goal, but errors can still occur, and spending hours hunting

down a bug caused by a simple typo can be incredibly frustrating. Thankfully, there are tools that

can help us catch these errors as soon as we type them, allowing us to avoid simple syntactical

mistakes.

If you’re coming from a statically typed language like C#, you may be used to getting warnings

inside your IDE. In the JavaScript world, the popular tool for linting code is ESLint. ESLint is an

open-source project released in 2013 that is highly configurable and extensible.

In the fast-paced JavaScript ecosystem, where libraries and techniques change frequently, it’s

crucial to have a tool that can be easily extended with plugins and rules that can be enabled or

disabled as needed. Additionally, with transpilers like Babel and experimental language features

that aren’t yet part of the standard JavaScript version, we need to be able to tell our linter which

rules we’re following in our source files. A linter not only helps us catch errors sooner, but it also

enforces common coding style guides, which is particularly important in large teams where

consistency is key.

In the following sections, we’ll take a closer look at ESLint and how it can help us write better,

more consistent code.

Chapter 3 49

Installation
First of all, we have to install ESLint and some plugins as follows:

npm install -g eslint eslint-config-airbnb eslint-config-prettier eslint-
plugin-import eslint-plugin-jsx-a11y eslint-plugin-prettier eslint-plugin-
react

Once the executable is installed, we can run it with the following command:

eslint source.ts

The output will tell us if there are errors within the file.

When we install and run it for the first time, we do not see any errors because it is completely

configurable, and it does not come with any default rules.

Configuration
Let’s start configuring ESLint. It can be configured using a .eslintrc file that lives in the root

folder of the project. To add some rules, let’s create a .eslintrc file configured for TypeScript

and add one basic rule:

{

 "parser": "@typescript-eslint/parser",

 "plugins": ["@typescript-eslint", "prettier"],

 "extends": [

 "airbnb",

 "eslint:recommended",

 "plugin:@typescript-eslint/eslint-recommended",

 "plugin:@typescript-eslint/recommended",

 "plugin:prettier/recommended"

],

 "settings": {

 "import/extensions": [".js", ".jsx", ".ts", ".tsx"],

 "import/parsers": {

 "@typescript-eslint/parser": [".ts", ".tsx"]

 },

 "import/resolver": {

 "node": {

 "extensions": [".js", ".jsx", ".ts", ".tsx"]

 }

Cleaning Up Your Code50

 }

 },

 "rules": {

 "semi": [2, "never"]

 }

}

This configuration file needs a bit of explanation: "semi" is the name of the rule and [2, "never"]

is the value. It is not very intuitive the first time you see it.

ESLint rules have three levels that determine the severity of the problem:

1.	 off (or 0): The rule is disabled.

2.	 warn (or 1): The rule is a warning.

3.	 error (or 2): The rule throws an error.

We are using the value 2 because we want ESLint to throw an error every time our code does not

follow the rule. The second parameter tells ESLint that we want the semicolon to never be used

(the opposite is always). ESLint and its plugins are very well documented, and for any single rule,

you can find the description of the rule and some examples of when it passes and when it fails.

Now create an index.ts file with the following content:

const foo = 'bar';

If we run eslint index.js, we get the following:

Extra semicolon (semi)

This is great; we set up the linter and it is helping us follow our first rule.

Here are other rules that I prefer to turn off or change:

"rules": {

 "semi": [2, "never"],

 "@typescript-eslint/class-name-casing": "off",

 "@typescript-eslint/interface-name-prefix": "off",

 "@typescript-eslint/member-delimiter-style": "off",

 "@typescript-eslint/no-var-requires": "off",

 "@typescript-eslint/ban-ts-ignore": "off",

Chapter 3 51

 "@typescript-eslint/no-use-before-define": "off",

 "@typescript-eslint/ban-ts-comment": "off",

 "@typescript-eslint/explicit-module-boundary-types": "off",

 "no-restricted-syntax": "off",

 "no-use-before-define": "off",

 "import/extensions": "off",

 "import/prefer-default-export": "off",

 "max-len": [

 "error",

 {

 "code": 100,

 "tabWidth": 2

 }

],

 "no-param-reassign": "off",

 "no-underscore-dangle": "off",

 "react/jsx-filename-extension": [

 1,

 {

 "extensions": [".tsx"]

 }

],

 "import/no-unresolved": "off",

 "consistent-return": "off",

 "jsx-a11y/anchor-is-valid": "off",

 "sx-a11y/click-events-have-key-events": "off",

 "jsx-a11y/no-noninteractive-element-interactions": "off",

 "jsx-a11y/click-events-have-key-events": "off",

 "jsx-a11y/no-static-element-interactions": "off",

 "react/jsx-props-no-spreading": "off",

 "jsx-a11y/label-has-associated-control": "off",

 "react/jsx-one-expression-per-line": "off",

 "no-prototype-builtins": "off",

 "no-nested-ternary": "off",

 "prettier/prettier": [

 "error",

Cleaning Up Your Code52

 {

 "endOfLine": "auto"

 }

]

 }

Git Hooks
To avoid having unlinted code in our repository, what we can do is add ESLint at one point of

our process using Git Hooks. For example, we can use husky to run our linter in a Git Hook called

pre-commit, and it is also useful to run our unit tests on the Hook called pre-push.

To install husky, you need to run the following command:

npm install --save-dev husky

Then, in our package.json file, we can add this node to configure the tasks we want to run in

the Git Hooks.

Edit the package.json > prepare script and run it once:

 npm pkg set scripts.prepare="husky install"

 npm run prepare

Add a hook:

 npx husky add .husky/pre-commit "npm run lint"

 git add .husky/pre-commit

Make a commit:

 git commit -m "Keep calm and commit"

 # `npm run lint` will run every time you commit

There is a special option (flag) for the ESlint command called --fix – with this option, ESLint will

try to fix all our linter errors automatically (not all of them). Be careful with this option because

sometimes it can affect a little bit of our code style. Another useful flag is --ext to specify the

extensions of the files we want to validate – in this case, just the .tsx and .ts files.

In the next section, you will learn about how functional programming (FP) works and topics

such as first-class objects, purity, immutability, currying, and composition.

Chapter 3 53

Functional programming
In addition to following best practices and using a linter to catch errors and enforce consistency,

another way to clean up our code is to adopt an FP style.

As we discussed in Chapter 1, Taking Your First Steps with React, React’s declarative programming

approach makes our code more readable. FP is a declarative paradigm as well, where side effects are

avoided, and data is considered immutable to make the code easier to maintain and reason about.

While we won’t cover FP in depth in this section, we’ll introduce some concepts commonly used

in React that you should be aware of.

FP principles, such as immutability, pure functions, and higher-order functions, can help us

write more maintainable and testable code. By treating our data as immutable, we can avoid

side effects and make it easier to reason about the flow of our application. Pure functions, which

always return the same output for the same input, help us avoid unintended side effects and

make our code easier to test. Higher-order functions, which take functions as arguments and/or

return functions as output, can help us create more modular and reusable code.

By adopting an FP style, we can write more declarative and less imperative code, making our

components easier to read and reason about.

First-class functions
JavaScript has first-class functions because they are treated like any other variable, meaning you

can pass a function as a parameter to other functions, or it can be returned by another function

and be assigned as a value to a variable.

This allows us to introduce the concept of Higher-Order Functions (HoFs). HoFs are functions

that take a function as a parameter, and optionally some other parameters, and return a function.

The returned function is usually enhanced with some special behaviors.

Let’s look at an example:

const add = (x, y) => x + y

const log = fn => (...args) => {

 return fn(...args)

}

const logAdd = log(add)

Cleaning Up Your Code54

Here, a function is adding two numbers that enhance a function that logs all the parameters and

then executes the original function.

This concept is pretty important to understand because, in the React world, a common pattern

is to use Higher-Order Components to treat our components as functions, and to enhance them

with common behaviors. We will see HOCs and other patterns in Chapter 4, Exploring Popular

Composition Patterns.

Purity
An important aspect of FP is to write pure functions. You will encounter this concept very often

in the React ecosystem, especially if you look into libraries such as Redux.

What does it mean for a function to be pure?

A function is pure when there are no side effects, which means that the function does not change

anything that is not local to the function itself.

For example, a function that changes the state of an application, or modifies variables defined

in the upper scope, or a function that touches external entities, such as the Document Object

Model (DOM), is considered impure. Impure functions are harder to debug, and most of the time

it is not possible to apply them multiple times and expect to get the same result.

For example, the following function is pure:

const add = (x, y) => x + y

It can be run multiple times, always getting the same result, because nothing is stored anywhere,

and nothing gets modified.

The following function is not pure:

let x = 0

const add = y => (x = x + y)

Running add(1) twice, we get two different results. The first time we get 1, but the second time

we get 2, even if we call the same function with the same parameter. The reason we get that be-

havior is that the global state gets modified after every execution.

Immutability
We have seen how to write pure functions that don’t mutate the state, but what if we need to

change the value of a variable? In FP, a function, instead of changing the value of a variable, creates

a new variable with a new value and returns it.

Chapter 3 55

This way of working with data is called immutability.

An immutable value is a value that cannot be changed.

Let’s look at an example:

const add3 = arr => arr.push(3)

const myArr = [1, 2]

add3(myArr); // [1, 2, 3]

add3(myArr); // [1, 2, 3, 3]

The preceding function doesn’t follow immutability because it changes the value of the given

array. Again, if we call the same function twice, we get different results.

We can change the preceding function to make it immutable using concat, which returns a new

array without modifying the given one:

const add3 = arr => arr.concat(3)

const myArr = [1, 2]

const result1 = add3(myArr) // [1, 2, 3]

const result2 = add3(myArr) // [1, 2, 3]

After we have run the function twice, myArr still has its original value.

Currying
A common technique in FP is currying. Currying is the process of converting a function that takes

multiple arguments into a function one argument at a time and returning another function. Let’s

look at an example to clarify the concept.

Let’s start with the add function we have seen before and transform it into a curried function.

Say we have the following code:

const add = (x, y) => x + y

We can instead define the function as follows:

const add = x => y => x + y

We use it in the following way:

const add1 = add(1)

Cleaning Up Your Code56

add1(2); // 3

add1(3); // 4

This is a pretty convenient way of writing functions because, since the first value is stored after

the application of the first parameter, we can reuse the second function multiple times.

Composition
Finally, an important concept in FP that can be applied to React is composition. Functions (and

components) can be combined to produce new functions with more advanced features and prop-

erties.

Consider the following functions:

const add = (x, y) => x + y

const square = x => x * x

These functions can be composed together to create a new function that adds two numbers and

then doubles the result:

const addAndSquare = (x, y) => square(add(x, y))

Following this paradigm, we end up with small, simple, testable pure functions that can be com-

posed together.

Summary
In this chapter, we have covered the fundamentals of JSX, including its syntax and features. We

have also learned how to configure Prettier and ESLint to maintain consistency and catch errors

early on in our codebase. Additionally, we have explored some essential concepts of functional

programming, which can help us write more maintainable and testable code.

With our code now clean and well-organized, we are ready to dive deeper into React and learn how

to write truly reusable components in the next chapter. By following best practices and adopting

good coding habits, we can create React applications that are easier to maintain, scale, and test.

Chapter 3 57

Join our community on Discord
Join our community’s Discord space for discussion with the author and other readers:

https://packt.link/React18DesignPatterns4e

https://packt.link/React18DesignPatterns4e

4
Exploring Popular Composition
Patterns

In this chapter, we will learn how to make components communicate with each other effec-

tively, which is a crucial part of building complex React applications using small, testable, and

maintainable components. By mastering the popular composition patterns and tools in React,

you will be able to take control of every single part of your application and build scalable and

extensible software.

Let’s dive in and explore how we can leverage these patterns and tools to build better React ap-

plications. We will cover the following topics:

•	 How components communicate with each other using props and children

•	 The container and presentational patterns and how they can make our code more main-

tainable

•	 What higher-order components (HOCs) are and how, thanks to them, we can structure

our applications in a better way

•	 What the function of the child component pattern is and what its benefits are

Technical requirements
To complete this chapter, you will need the following:

•	 Node.js 19+

•	 Visual Studio Code

Exploring Popular Composition Patterns60

You can find the code for this chapter in the book’s GitHub repository at https://github.com/
PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/

main/Chapter04.

Communicating components
Composing React components is one of the key benefits of building applications with React. By

creating small, reusable components with clean interfaces, you can easily compose them together

to create complex applications that are both powerful and maintainable.

Small components with a clean interface can be composed together to create complex applications

that are powerful and maintainable at the same time.

Composing React components is straightforward; you just have to include them in the render:

const Profile = ({ user }) => (

 <>

 <Picture profileImageUrl={user.profileImageUrl} />

 <UserName name={user.name} screenName={user.screenName} />

 </>

)

For example, you can create a Profile component by simply composing a Picture component

to display the profile image and a UserName component to display the name and the screen name

of the user.

In this way, you can produce new parts of the user interface very quickly, writing only a few lines

of code. Whenever you compose components, as in the preceding example, you share data be-

tween them using props. Props are the way a parent component can pass its data down the tree

to every component that needs it (or part of it).

When a component passes some props to another component, it is called the owner, irrespective

of the parent-child relationship between them. For example, in the preceding snippet, Profile

is not the direct parent of Picture (the div tag is), but Profile owns Picture because it passes

down the props to it.

In the next section, you will learn about the children prop and how to use it correctly.

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter04

Chapter 4 61

Using the children prop
There is a special prop that can be passed from the owners to the components defined inside

their render—children.

In the React documentation, it is described as opaque because it is a property that does not tell

you anything about the value it contains. Subcomponents defined inside the render of a parent

component usually receive props that are passed as attributes of the component itself in JSX, or

as a second parameter of the _jsx function. Components can also be defined with nested com-

ponents inside them, and they can access those children using the children prop.

Consider that we have a Button component that has a text property representing the text of the

button:

const Button = ({ text }) => <button className="btn">{text}</button>

The component can be used in the following way:

<Button text="Click me!" />

And this will render the following code:

<button class="btn">Click me!</button>

Now, suppose we want to use the same button with the same class name in multiple parts of our

application, and we also want to be able to display more than a simple string. Our UI consists of

buttons with text, buttons with text and icons, and buttons with text and labels.

In most cases, a good solution would be to add multiple parameters to Button or to create different

versions of Button, each one with its single specialization, for example, IconButton.

However, we should realize that Button could just be a wrapper, and we are able to render any

element inside it and use the children property:

const Button = ({ children }) => <button className="btn">{children}</
button>

By passing the children prop, we are not limited to a simple single text property, but we can pass

any element to Button, and it is rendered in place of the children property.

In this case, any element that we wrap inside the Button component will be rendered as a child

of the button element with btn as the class name.

Exploring Popular Composition Patterns62

For example, if we want to render an image inside the button and some text wrapped in a span

tag, we can do this:

<Button>

 Click me!

</Button>

The preceding snippet gets rendered in the browser as follows:

<button class="btn">

 Click me!

</button>

This is a pretty convenient way to allow components to accept any children elements and wrap

those elements inside a predefined parent.

Now, we can pass images, labels, and even other React components inside the Button component,

and they will be rendered as its children. As you can see in the preceding example, we defined

the children property as an array, which means that we can pass any number of elements as

the component’s children.

We can pass a single child, as shown in the following code:

<Button>

 Click me!

</Button>

Let’s now explore the container and the presentational pattern in the next section.

Exploring the container and presentational patterns
In the last chapter, we saw how to take a coupled component and make it reusable step by step.

Now we will see how to apply a similar pattern to our components to make them clearer and

more maintainable.

React components typically contain a mix of logic and presentation. By logic, we refer to anything

that is unrelated to the UI, such as API calls, data manipulation, and event handlers. The presen-

tation is the part of the render where we create the elements to be displayed on the UI.

Chapter 4 63

In React, there are simple and powerful patterns, known as container and presentational, which

we can apply when creating components that help us to separate those two concerns.

Creating well-defined boundaries between logic and presentation not only makes components

more reusable, but also provides many other benefits, which you will learn about in this section.

Again, one of the best ways to learn new concepts is by seeing practical examples, so let’s delve

into some code.

Suppose we have a component that uses geolocation APIs to get the position of the user and

displays the latitude and longitude on the page in the browser.

First, we create a Geolocation.tsx file in our components folder and define the Geolocation

component using a functional component:

import { useState, useEffect } from 'react'

const Geolocation = () => {}

export default Geolocation

We then define our states:

const [latitude, setLatitude] = useState<number | null>(null)

const [longitude, setLongitude] = useState<number | null>(null)

Now, we can use the useEffect Hook to fire the request to the APIs:

useEffect(() => {

 if (navigator.geolocation) {

 navigator.geolocation.getCurrentPosition(handleSuccess)

 }

}, [navigator])

When the browser returns the data, we store the result in the state using the following function

(place this function before the useEffect Hook):

const handleSuccess = ({

 coords: { latitude, longitude }

 }: { coords: { latitude: number; longitude: number }}) => {

 setLatitude(latitude)

 setLongitude(longitude)

}

Exploring Popular Composition Patterns64

Finally, we show the latitude and longitude values:

return (

 <div>

 <h1>Geolocation:</h1>

 <div>Latitude: {latitude}</div>

 <div>Longitude: {longitude}</div>

 </div>

)

It is important to note that, during the first render, the latitude and longitude are null because

we asked the browser for the coordinates when the component was mounted. In a real-world

component, you might want to display a spinner until the data gets returned. To do that, you can

use one of the conditional techniques we saw in Chapter 3, Cleaning Up Your Code.

Now, this component does not have any problems, and it works as expected. Wouldn’t it be nice

to separate it from the part where the position gets requested and loaded to iterate faster on it?

We will use the container and presentational patterns to isolate the presentational part. In this

pattern, every component is split into two smaller ones, each one with its clear responsibilities.

The container knows everything about the logic of the component and is where the APIs are called.

It also deals with data manipulation and event handling.

The presentational component is where the UI is defined, and it receives data in the form of props

from the container. Since the presentational component is usually logic-free, we can create it as

a functional, stateless component.

There are no rules that say that the presentational component must not have a state (for example,

it could keep a UI state inside it). In this case, we need a component to display the latitude and

longitude, so we are going to use a simple function.

First of all, we should rename our Geolocation component GeolocationContainer:

const GeolocationContainer = () => {...}

We will also change the filename from Geolocation.tsx to GeolocationContainer.tsx.

Chapter 4 65

This rule is not strict, but it is a best practice that’s widely used in the React community to ap-

pend Container to the end of the Container component name and give the original name to the

presentational one.

We also have to change the implementation of render and remove all the UI parts of it, as follows:

return <Geolocation latitude={latitude} longitude={longitude} />

As you can see in the preceding snippet, instead of creating the HTML elements inside the return

of the container, we just use the presentational one (which we will create next), and we pass the

state to it. The states are the latitude and longitude, which are null by default, and they contain

the real position of the user when the browser fires the callback.

Let’s create a new file, called Geolocation.tsx, where we define the functional component as

follows:

import { FC } from 'react'

type Props = {

 latitude: number

 longitude: number

}

const Geolocation: FC<Props> = ({ latitude, longitude }) => (

 <div>

 <h1>Geolocation:</h1>

 <div>Latitude: {latitude}</div>

 <div>Longitude: {longitude}</div>

 </div>

)

export default Geolocation

Functional components are an incredibly elegant way to define UIs. They are pure functions

that, given a state, return the elements of it. In this case, our function receives the latitude and

longitude from the owner, and it returns the markup structure to display it.

Exploring Popular Composition Patterns66

The first time you run the components in the browser, the browser will require your permission

to allow it to know your location.

Figure 4.1: Browser will require your permission to access your location

After you allow the browser to know your location, you will see something like this:

Figure 4.2: Displaying latitude and longitude

In adherence to the container and presentational pattern, we have created a “dumb” or pre-

sentational component that is reusable and can be effortlessly integrated into our components.

This enables us to conveniently pass mock coordinates for testing or demonstration purposes.

If a similar data structure is needed elsewhere in the application, it eliminates the necessity of

building a new component from scratch. Instead, we can encapsulate this existing component

within a new container. This container could, for example, be designed to retrieve latitude and

longitude information from a separate endpoint.

At the same time, other developers in our team can improve the container that uses geolocation

by adding some error-handling logic, without affecting its presentation. They can even build a

temporary presentational component just to display and debug data and then replace it with the

real presentational component when it is ready.

Being able to work in parallel on the same component is a big win for teams, especially for those

companies where building interfaces is an iterative process.

Chapter 4 67

This pattern is simple but very powerful, and when applied to big applications, it can make a

difference when it comes to the speed of development and the maintainability of the project. On

the other hand, applying this pattern without a real reason can give us the opposite problem and

make the code base less useful as it involves the creation of more files and components.

So, we should think carefully when we decide that a component has to be refactored following

the container and presentational patterns. In general, the right path to follow is starting with a

single component and splitting it only when the logic and the presentation become too coupled

where they shouldn’t be.

In our example, we began with a single component, and we realized that we could separate the

API call from the markup. Deciding what to put in the container and what goes into the presen-

tation is not always straightforward; the following points should help you make that decision:

The following are the characteristics of container components:

•	 They are more concerned with behavior.

•	 They render their presentational components.

•	 They make API calls and manipulate data.

•	 They define event handlers.

The following are the characteristics of presentational components:

•	 They are more concerned with the visual representation.

•	 They render the HTML markup (or other components).

•	 They receive data from the parents in the form of props.

•	 They are often written as stateless functional components.

As you can see, these patterns form a really powerful tool that will help you to develop your web

applications faster. Let’s see what HOCs are in the next section.

Understanding HOCs
In the functional programming section of Chapter 3, Cleaning Up Your Code, we introduced the

concept of higher-order functions (HOFs). HOFs are functions that accept another function

as an argument, enhance its behavior, and return a new function. Applying the idea of HOFs to

components results in higher-order components (HOCs).

Exploring Popular Composition Patterns68

An HOC looks like this:

const HoC = Component => EnhancedComponent

HOCs are functions that take a component as input and return an enhanced component as out-

put. Let’s start with a simple example to understand what an enhanced component looks like.

Suppose you need to attach the same className property to every component. You could man-

ually add the className property to each render method, or you could write an HOC like this:

const withClassName = Component => props => (

 <Component {...props} className="my-class" />

)

In the React community, it’s common to use the with prefix for HOCs.

The code above might be confusing at first, so let’s break it down. We declare a withClassName

function that takes a Component and returns another function. The returned function is a func-

tional component that receives some props and renders the original component. The collected

props are spread, and a className property with the "my-class" value is passed to the functional

component.

HOCs typically spread the props they receive on the component because they aim to be trans-

parent and only add new behavior.

While this example is simple and not particularly useful, it should give you a better understand-

ing of what HOCs are and what they look like. Now, let’s see how we can use the withClassName

HOC in our components.

First, create a stateless functional component that receives the className and applies it to a div

tag:

const MyComponent = ({ className }) => <div className={className} />

Instead of using the component directly, we pass it to an HOC like this:

const MyComponentWithClassName = withClassName(MyComponent)

Wrapping our components in the withClassName function ensures that they receive the className

property.

Now, let’s create a more exciting HOC to detect the innerWidth. First, create a function that

receives a Component:

Chapter 4 69

 import { useEffect, useState } from 'react'

 const withInnerWidth = Component => props => <Component {...props} />

It’s common practice to prefix HOCs that provide information to the components they enhance

using the with pattern.

Next, define the innerWidth state and the handleResize function:

const withInnerWidth = Component => props => {

 const [innerWidth, setInnerWidth] = useState(window.innerWidth)

 const handleResize = () => {

 setInnerWidth(window.innerWidth)

 }

 return <Component {...props} />

}

Then, add the effects:

useEffect(() => {

 window.addEventListener('resize', handleResize)

 return () => {

 window.removeEventListener('resize', handleResize)

 }

}, [])

Finally, render the original component like this:

return <Component {...props} innerWidth={innerWidth} />

Here, we spread the props as before, but we also pass the innerWidth state.

We store the innerWidth value as a state to achieve the original behavior without polluting the

component’s state. Instead, we use props. Using props is an excellent way to promote reusability.

Now, using an HOC and getting the innerWidth value is straightforward. The new React Hooks

can easily replace an HOC by creating custom Hooks. Create a functional component that expects

innerWidth as a property:

const MyComponent = ({ innerWidth }) => {

 console.log('window.innerWidth', innerWidth)

 // ...

}

Exploring Popular Composition Patterns70

Enhance it as follows:

const MyComponentWithInnerWidth = withInnerWidth(MyComponent)

By using HOCs, we avoid polluting any state and don’t require the component to implement any

function. This means the component and HOC are not coupled, and both can be reused through-

out the application.

Using props instead of state allows us to create a “dumb” component that can be used in our style

guide, ignoring complex logic and just passing down the props.

In this specific case, we could create a component for each of the different innerWidth sizes we

support. Consider the following example:

<MyComponent innerWidth={320} />

Or the following:

<MyComponent innerWidth={960} />

As you can see, by using HOCs, we can pass a component and then return a new compo-

nent with additional functionalities. Some common HOCs are connect from Redux and

createFragmentContainer from Relay.

Understanding FunctionAsChild
The FunctionAsChild pattern is gaining consensus within the React community. It is widely

used in popular libraries like react-motion, which we will explore in Chapter 5, Writing Code for

the Browser.

The main concept is that instead of passing a child as a component, we define a function that can

receive parameters from the parent. Let’s see what it looks like:

const FunctionAsChild = ({ children }) => children()

As you can see, FunctionAsChild is a component with a children property defined as a function.

Instead of being used as a JSX expression, it gets called.

The preceding component can be used like this:

<FunctionAsChild>

 {() => <div>Hello, World!</div>}

</FunctionAsChild>

Chapter 4 71

This example is quite simple: the children function is executed within the parent’s render method,

returning the Hello, World! text wrapped in a div tag, which is displayed on the screen.

Now, let’s explore a more meaningful example where the parent component passes some param-

eters to the children function.

Create a Name component that expects a function as children and passes it the 'World' string:

const Name = ({ children }) => children('World')

The preceding component can be used like this:

<Name>

 {name => <div>Hello, {name}!</div>}

</Name>

The snippet renders Hello, World! again, but this time the name has been passed by the parent.

It should now be clear how this pattern works. Let’s look at the advantages of this approach:

•	 The primary advantage is the ability to encapsulate components, delivering variables

dynamically, as opposed to utilizing static properties, which is a common practice with

HOCs. An excellent illustration of this is a Fetch component, designed to retrieve data

from a specific API endpoint and subsequently return it to its child function:

<Fetch url="...">

 {data => <List data={data} />}

</Fetch>

•	 Secondly, composing components with this approach does not force children to use pre-

defined prop names. Since the function receives variables, developers who use the com-

ponent can decide on their names. This flexibility makes the Function as Child solution

more versatile.

•	 Lastly, the wrapper is highly reusable because it does not make any assumptions about

the children it receives—it just expects a function. Due to this, the same FunctionAsChild

component can be used in different parts of the application to serve various children

components.

By adopting the Function as Child pattern, you can create more flexible, versatile, and reusable

components in your React applications.

Exploring Popular Composition Patterns72

Summary
In this chapter, we learned how to effectively compose and communicate between our reusable

components using props. By using props, we can create well-defined interfaces and decouple our

components from each other.

We also explored two popular composition patterns: the container and presentational pattern,

which help us separate our logic and presentation for more specialized and focused components.

Additionally, we discovered Higher-Order Components (HOCs) as a way to handle context with-

out tightly coupling our components to it, and the Function as Child pattern for composing

components dynamically.

In the next chapter, we will dive into controlled vs. uncontrolled components, refs, handling

events, and animations in React.

5
Writing Code for the Browser

There are some specific operations we can conduct when we work with React and the browser. For

example, we can ask our users to enter some information using forms. In this chapter, we will look

at how we can apply different techniques to deal with forms. We can implement uncontrolled

components and let the fields keep their internal states, or we can use controlled ones where we

have full control over the state of the fields.

In this chapter, we will also look at how events in React work and how the library implements

some advanced techniques to give us a consistent interface across different browsers. We will

look at some interesting solutions that the React team has implemented to make the event system

very performant.

After events, we will jump into refs to look at how we can access the underlying DOM nodes in

our React components. This represents a powerful feature, but it should be used carefully because

it breaks some of the conventions that make React easy to work with.

After refs, we will look at how we can implement animations easily with the React add-ons. Finally,

we will learn how easy it is to work with Scalable Vector Graphics (SVG) in React, and how we

can create dynamically configurable icons for our applications.

In this chapter, we will go through the following topics:

•	 Using different techniques to create forms with React

•	 Listening to DOM events and implementing custom handlers

•	 A way of performing imperative operations on DOM nodes using refs

Writing Code for the Browser74

•	 Creating simple animations that work across different browsers

•	 The React way of generating SVG

Technical requirements
To complete this chapter, you will need the following:

•	 Node.js 19+

•	 Visual Studio Code

You can find the code for this chapter in the book’s GitHub repository: https://github.com/
PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/

main/Chapter05.

Understanding and implementing forms
In this section, we are going to learn how to implement forms with React. As soon as we start

building a real application with React, we need to interact with the users. If we want to ask for

information from our users within the browser, forms are the most common solution. Due to

the way the library works and its declarative nature, dealing with input fields and other form

elements is non-trivial with React, but as soon as we understand its logic, it will become clear.

In the next sections, we are going to learn how to use uncontrolled and controlled components.

Uncontrolled components
Uncontrolled components are like regular HTML form inputs for which you will not be able to

manage the value yourself but instead, the DOM will take care of handling the value and you can

get this value by using a React ref. Let’s start with a basic example—displaying a form with an

input field and a Submit button.

The code is pretty straightforward:

import { FC, useState, ChangeEvent, MouseEvent } from 'react'

const Uncontrolled: FC = () => {

 const [value, setValue] = useState<string>('')

 return (

 <form>

 <input type="text" />

 <button>Submit</button>

 </form>

)

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter05

Chapter 5 75

}

export default Uncontrolled

If we run the preceding snippet in the browser, we will see exactly what we expect—an input field

in which we can write something and a clickable button. This is an example of an uncontrolled

component, where we do not set the value of the input field, but we let the component manage

its own internal state.

Most likely, we want to do something with the value of the element when the Submit button is

clicked. For example, we may want to send the data to an API endpoint.

We can do this easily by adding an onChange listener (we will talk more about event listeners later

in this chapter). Let’s look at what it means to add a listener.

We need to create the handleChange function:

const handleChange = (e: ChangeEvent<HTMLInputElement>) => {

 console.log(e.target.value)

}

The event listener is receiving an event object, where the target represents the field that generated

the event, and we are interested in its value. We start by just logging it because it is important to

proceed with small steps, but we will store the value into the state soon.

Finally, we render the form:

return (

 <form>

 <input type="text" onChange={handleChange} />

 <button>Submit</button>

 </form>

)

If we render the component inside the browser and type the word React into the form field, we

will see something like the following inside the console:

R

Re

Rea

Reac

React

Writing Code for the Browser76

The handleChange listener is fired every time the value of the input changes. Therefore, our func-

tion is called once for each typed character. The next step is to store the value that’s entered by

the user and make it available when the user clicks the Submit button.

We just have to change the implementation of the handler to store it in the state instead of log-

ging it, as follows:

const handleChange = (e: ChangeEvent<HTMLInputElement>) => {

 setValue(e.target.value)

}

Getting notified of when the form is submitted is very similar to listening to the change event

of the input field; they are both events that are called by the browser when something happens.

Let’s define the handleSubmit function, where we just log the value. In a real-world scenario, you

could send the data to an API endpoint or pass it to another component:

const handleSubmit = (e: MouseEvent<HTMLButtonElement>) => {

 e.preventDefault()

 console.log(value) // Here we are logging the value state

}

This handler is pretty straightforward; we just log the value currently stored in the state. We also

want to overcome the default behavior of the browser when the form is submitted, to perform a

custom action. This seems reasonable, and it works very well for a single field. The question now

is, what if we have multiple fields? Suppose we have tens of different fields?

Let’s start with a basic example, where we create each field and handler manually and look at

how we can improve it by applying different levels of optimization.

Let’s create a new form with first and last name fields. We can reuse the Uncontrolled component

and add some new states:

const [firstName, setFirstName] = useState('')

const [lastName, setLastName] = useState('')

We initialize the two fields inside the state, and we define an event handler for each one of the

fields as well. As you may have noticed, this does not scale very well when there are lots of fields,

but it is important to understand the problem clearly before moving to a more flexible solution.

Chapter 5 77

Now, we implement the new handlers:

const handleChangeFirstName = ({ target: { value } }) => {

 setFirstName(value)

}

const handleChangeLastName = ({ target: { value } }) => {

 setLastName(value)

}

We also have to change the submit handler a little bit so that it displays the first and the last

name when it gets clicked:

const handleSubmit = (e: MouseEvent<HTMLButtonElement>) => {

 e.preventDefault()

 console.log(`${firstName} ${lastName}`) // Logging the firstName and
lastName states

}

Finally, we render the form:

return (

 <form onSubmit={handleSubmit}>

 <input type="text" onChange={handleChangeFirstName} />

 <input type="text" onChange={handleChangeLastName} />

 <button>Submit</button>

 </form>

)

We are ready to go: if we run the preceding component in the browser, we will see two fields, and

if we type Carlos into the first one and Santana into the second one, we will see the full name

displayed in the browser console when the form is submitted.

Again, this works fine, and we can do some interesting things this way, but it does not handle

complex scenarios without requiring us to write a lot of boilerplate code.

Let’s look at how we can optimize it a little bit. Our goal is to use a single change handler so that

we can add an arbitrary number of fields without creating new listeners.

Writing Code for the Browser78

Let’s go back to the component and let’s change our states:

const [values, setValues] = useState({ firstName: '', lastName: '' })

We may still want to initialize the values, and later in this section, we will look at how to provide

prefilled values for the form.

Now, the interesting bit is the way in which we can modify the onChange handler implementation

to make it work in different fields:

const handleChange = ({ target: { name, value } }) => {

 setValues({

 ...values,

 [name]: value

 })

}

As we have seen previously, the target property of the event we receive represents the input field

that has fired the event, so we can use the name of the field and its value as variables.

We then have to set the name for each field:

return (

 <form onSubmit={handleSubmit}>

 <input

 type="text"

 name="firstName"

 onChange={handleChange}

 />

 <input

 type="text"

 name="lastName"

 onChange={handleChange}

 />

 <button>Submit</button>

 </form>

)

That’s it! We can now add as many fields as we want without creating additional handlers.

Chapter 5 79

Controlled components
A controlled component is a React component that controls the values of input elements in a

form by using the component state.

Here we are going to look at how we can prefill the form fields with some values, which we may

receive from the server or as props from the parent. To understand this concept fully, we will

start again from a very simple stateless function component, and we will improve it step by step.

The first example shows a predefined value inside the input field:

const Controlled = () => (

 <form>

 <input type="text" value="Hello React" />

 <button>Submit</button>

 </form>

)

If we run this component inside the browser, we realize that it shows the default value as expected,

but it does not let us change the value or type anything else inside it.

The reason it does this is that in React, we declare what we want to see on the screen, and setting

a fixed-value attribute always results in rendering that value, no matter what other actions are

taken. This is unlikely to be a behavior we want in a real-world application.

If we open the console, we get the following error message. React itself is telling us that we are

doing something wrong:

You provided a `value` prop to a form field without an `onChange` handler.
This will render a read-only field.

Now, if we just want the input field to have a default value and we want to be able to change it

by typing, we can use the defaultValue property:

import { useState } from 'react'

const Controlled = () => {

 return (

 <form>

 <input type="text" defaultValue="Hello React" />

 <button>Submit</button>

 </form>

)

Writing Code for the Browser80

}

export default Controlled

In this way, the field is going to show Hello React when it is rendered, but then the user can

type anything inside it and change its value. Now let’s add some states:

const [values, setValues] = useState({ firstName: 'Carlos', lastName:
'Santana' })

The handlers are the same as the previous ones:

const handleChange = ({ target: { name, value } }) => {

 setValues({

 [name]: value

 })

}

const handleSubmit = (e) => {

 e.preventDefault()

 console.log(`${values.firstName} ${values.lastName}`)

}

In fact, we will use the value attributes of the input fields to set their initial values, as well as the

updated one:

return (

 <form onSubmit={handleSubmit}>

 <input

 type="text"

 name="firstName"

 value={values.firstName}

 onChange={handleChange}

 />

 <input

 type="text"

 name="lastName"

 value={values.lastName}

 onChange={handleChange}

 />

Chapter 5 81

 <button>Submit</button>

 </form>

)

The first time the form is rendered, React uses the initial values from the state as the value of the

input fields. When the user types something into the field, the handleChange function is called

and the new value for the field is stored in the state.

When the state changes, React re-renders the component and uses it again to reflect the current

values of the input fields. We now have full control over the values of the fields, and we call this

pattern controlled components.

In the next section, we are going to work with events, which are a fundamental part of React to

handle data coming from forms.

Handling events
Events work in a slightly different way across various browsers. React tries to abstract the way

events work and give developers a consistent interface to deal with. This is a great feature of

React because we can forget about the browsers we are targeting and write event handlers and

functions that are vendor-agnostic.

To offer this feature, React introduced the concept of the synthetic event. A synthetic event is an

object that wraps the original event object provided by the browser, and it has the same properties,

no matter where it is created.

To attach an event listener to a node and get the event object when the event is fired, we can use

a simple convention that recalls the way events are attached to the DOM nodes. In fact, we can

use the word on plus the camelCased event name (for example, onKeyDown) to define the callback

to be fired when the events happen. A popular convention is to name the event handler functions

after the event name and prefix them using handle (for example, handleKeyDown).

We have seen this pattern in action in the previous examples, where we were listening to the

onChange event of the form fields. Let’s reiterate a basic event listener example to see how we can

organize multiple events inside the same component in a nicer way. We are going to implement

a simple button, and we start, as usual, by creating a component:

const Button = () => {

}

export default Button

Writing Code for the Browser82

Then we define the event handler:

const handleClick = (syntheticEvent) => {

 console.log(syntheticEvent instanceof MouseEvent)

 console.log(syntheticEvent.nativeEvent instanceof MouseEvent)

 }

As you can see here, we are doing a very simple thing: we just check the type of the event object

we receive from React and the type of native event attached to it. We expect the first to return

false and the second to return true.

You should never need to access the original native event, but it is good to know you can do it

if you need to. Finally, we define the button with the onClick attribute to which we attach our

event listener:

return (

 <button onClick={handleClick}>Click me!</button>

)

Now, suppose we want to attach a second handler to the button that listens to the double-click

event. One solution would be to create a new separate handler and attach it to the button using

the onDoubleClick attribute, as follows:

<button

 onClick={handleClick}

 onDoubleClick={handleDoubleClick}

>

 Click me!

</button>

Remember that we always aim to write less boilerplate and avoid duplicating code. For that

reason, a common practice is to write a single event handler for each component, which can

trigger different actions according to the event type.

This technique is described in a collection of patterns by Michael Chan:

http://reactpatterns.com/#event-switch

Let’s implement the generic event handler:

const handleEvent = (event) => {

 switch (event.type) {

http://reactpatterns.com/#event-switch

Chapter 5 83

 case 'click':

 console.log('clicked')

 break

 case 'dblclick':

 console.log('double clicked')

 break

 default:

 console.log('unhandled', event.type)

 }

}

The generic event handler receives the event object and switches on the event type to fire the

right action. This is particularly useful if we want to call a function on each event (for example,

analytics) or if some events share the same logic.

Finally, we attach the new event listener to the onClick and onDoubleClick attributes:

return (

 <button

 onClick={handleEvent}

 onDoubleClick={handleEvent}

 >

 Click me!

 </button>

)

From this point on, whenever we need to create a new event handler for the same component,

instead of creating a new method and binding it, we can just add a new case to the switch.

A couple more interesting things to know about events in React are that synthetic events are

reused and that there is a single global handler. The first concept means that we cannot store a

synthetic event and reuse it later because it becomes null right after the action. This technique

is very good in terms of performance, but it can be problematic if we want to store the event in-

side the state of the component for some reason. To solve this problem, React gives us a persist

method on the synthetic events, which we can call to make the event persistent so that we can

store it and retrieve it later.

Writing Code for the Browser84

The second very interesting implementation detail is again about performance, and it is to do

with the way React attaches the event handlers to the DOM.

Whenever we use the on attribute, we are describing to React the behavior we want to achieve,

but the library does not attach the actual event handler to the underlying DOM nodes.

What it does instead attaches a single event handler to the root element, which listens to all the

events, thanks to event bubbling. When an event we are interested in is fired by the browser,

React calls the handler on the specific components on its behalf. This technique is called event

delegation and is used for memory and speed optimization.

In our next section, we are going to explore React refs and see how we can take advantage of them.

Exploring refs
One of the reasons people love React is that it is declarative. Being declarative means that you

just describe what you want to be displayed on the screen at any point in time and React takes

care of the communications with the browser. This feature makes React very easy to reason about

and very powerful at the same time.

However, there might be some cases where you need to access the underlying DOM nodes to

perform some imperative operations. This should be avoided because, in most cases, there is a

more React-compliant solution to achieve the same result, but it is important to know that we

have the option to do it and to know how it works so that we can make the right decision.

Suppose we want to create a simple form with an input element and a button, and we want it to

behave in such a way that when the button is clicked, the input field gets focused. What we want

to do is call the focus method on the input node, the actual DOM instance of the input, inside

the browser’s window.

Let’s create a component called Focus; you need to import useRef and create an inputRef constant:

import { useRef } from 'react'

const Focus = () => {

 const inputRef = useRef(null)

}

export default Focus

Then, we implement the handleClick method:

const handleClick = () => {

 inputRef.current.focus()

Chapter 5 85

}

As you can see, we are referencing the current attribute of inputRef and calling the focus method

on it.

To understand where it comes from, you just have to check the implementation of the render:

return (

 <>

 <input

 type="text"

 ref={inputRef}

 />

 <button onClick={handleClick}>Set Focus</button>

 </>

)

Here comes the core of the logic. We create a form with an input element inside it and we define

a function on its ref attribute.

The callback we defined is called when the component gets mounted, and the element parameter

represents the DOM instance of the input. It is important to know that, when the component gets

unmounted, the same callback is called with a null parameter to free the memory.

What we are doing in the callback is storing the reference of the element to be able to use it in

the future (for example, when the handleClick method is fired). Then, we have the button with

its event handler. Running the preceding code in a browser will show the form with the field and

the button, and clicking on the button will focus the input field, as expected.

As we mentioned previously, in general, we should try to avoid using refs because they force the code to

be more imperative, and they become harder to read and maintain.

Understanding forwardRef
React.forwardRef is a useful feature that allows you to pass a ref (short for “reference”) from a

parent component down to a child component. This article will provide a basic introduction to

React.forwardRef and offer a straightforward example to help you understand its practical usage.

Refs in React are a mechanism to access and interact with the DOM elements rendered by a com-

ponent. They provide a way to modify the DOM or access DOM properties directly.

Writing Code for the Browser86

React.forwardRef is a higher-order component that allows you to pass a ref down to a child

component. This is useful when you need to access the child component’s DOM element or in-

stance from the parent component.

To create a component that can accept a forwarded ref, you will use the React.forwardRef func-

tion, which takes a render function as an argument. This render function receives two parameters:

the component’s props and the forwarded ref.

import React from 'react'

const TextInputWithRef = React.forwardRef((props, ref) => {

 return <input ref={ref} type="text" {...props} />

})

export default TextInputWithRef

To use the forwardRef component, you will create a ref using the useRef() hook and assign it

to the forwardRef component.

import React, { useRef } from 'react'

import TextInputWithRef from './TextInputWithRef'

function App() {

 const inputRef = useRef()

 const handleClick = () => {

 inputRef.current.focus()

 }

 return (

 <div>

 <TextInputWithRef ref={inputRef} />

 <button onClick={handleClick}>Focus on input</button>

 </div>

)

}

export default App

In this example, we created a TextInputWithRef component that accepts a forwarded ref. In the App

component, we use the useRef() hook to create a ref, which we then pass to the TextInputWithRef

component. When the "Focus on input" button is clicked, the handleClick function is called,

which focuses on the input element.

React.forwardRef is a powerful feature that allows you to pass refs from parent components to

child components, providing greater control over the child components’ behavior.

Chapter 5 87

By understanding the basics of refs and forwardRef, and examining a simple example, you can

effectively utilize this feature in your React applications.

With the nuances of utilizing React.forwardRef for superior control over components explored,

we can now shift our focus toward another pivotal aspect of enhancing user experiences in React

applications: implementing animations.

Implementing animations
When we think about UIs and the browser, we must surely think about animations as well. An-

imated UIs are more pleasant for users, and they are a very important tool to show users that

something has happened or is about to occur.

This section does not aim to be an exhaustive guide to creating animations and beautiful UIs; the

goal here is to provide you with some basic information about the common solutions we can put

in place to animate our React components.

For a UI library such as React, it is crucial to provide an easy way for developers to create and

manage animations. React comes with an add-on, called react-transition-group, which is

a component that helps us build animations in a declarative way. Again, being able to perform

operations declaratively is incredibly powerful, and it makes the code much easier to reason

about and share with the team.

The first thing we need to do to start building an animated component is to install the add-on:

npm install --save react-transition-group @types/react-transition-group

Once we have done that, we can import the component:

import { TransitionGroup} from 'react-transition-group'

Then, we just wrap the component to which we want to apply the animation:

const Transition = () => (

 <TransitionGroup

 transitionName="fade"

 transitionAppear

 transitionAppearTimeout={500}

 >

 <h1>Hello React</h1>

 </TransitionGroup>

)

Writing Code for the Browser88

As you can see, there are some props that need explaining. First, we are declaring the transitionName

prop. ReactTransitionGroup applies a class with the name of that property to the child element

so that we can then use CSS transitions to create our animations.

With a single class, we cannot easily create a proper animation, and that is why the transition

group applies multiple classes according to the state of the animation. In this case, with the

transitionAppear prop, we are telling the component that we want to animate the children

when they appear on the screen.

So, what the library does is apply the fade-appear class (where fade is the value of the

transitionName prop) to the component as soon as it gets rendered. On the next tick, the fade-

appear-active class is applied so that we can fire our animation from the initial state to the new

one, using CSS.

We also have to set the transitionAppearTimeout property to tell React the length of the anima-

tion so that it doesn’t remove elements from the DOM before animations are completed.

The CSS to make an element fade-in is as follows.

First, we define the opacity of the element in the initial state:

.fade-appear {

 opacity: 0.01;

}

Then, we define our transition using the second class, which starts as soon as it gets applied to

the element:

.fade-appear.fade-appear-active {

 opacity: 1;

 transition: opacity .5s ease-in;

}

We are transitioning the opacity from 0.01 to 1 in 500ms using the ease-in function. This is pretty

easy, but we can create more complex animations, and we can also animate different states of

the component. For example, the *-enter and *-enter-active classes are applied when a new

element is added as a child of the transition group. A similar thing applies to remove elements.

After delving into the dynamic world of animations and understanding how they can dramatically

enhance our React components, let’s now turn our attention to another fascinating facet of web

design: the exploration of Scalable Vector Graphics (SVG).

Chapter 5 89

Exploring SVG
Finally, one of the most interesting techniques we can apply in the browser to draw icons and

graphs is SVG.

SVG is great because it is a declarative way of describing vectors and it fits perfectly with the

purposes of React. We used to use icon fonts to create icons, but they have well-known problems,

with the first being that they are not accessible. It is also pretty hard to position icon fonts with

CSS, and they do not always look beautiful in all browsers. These are the reasons we should prefer

SVG for our web applications.

From a React point of view, it does not make any difference if we output a div or an SVG element

from the render method, and this is what makes it so powerful. We also tend to choose SVG

because we can easily modify them at runtime using CSS and JavaScript, which makes them an

excellent candidate for the functional approach of React.

So, if we think about our components as a function of their props, we can easily imagine how we

can create self-contained SVG icons that we can manipulate by passing different props to them. A

common way to create SVG in a web app with React is to wrap our vectors into a React component

and use the props to define their dynamic values.

Let’s look at a simple example where we draw a blue circle, thus creating a React component that

wraps an SVG element:

const Circle = ({ x, y, radius, fill }) => (

 <svg>

 <circle cx={x} cy={y} r={radius} fill={fill} />

 </svg>

)

As you can see, we can easily use a stateless functional component that wraps the SVG markup,

and it accepts the same props as SVG does.

An example usage is as follows:

<Circle x={20} y={20} radius={20} fill="blue" />

We can obviously use the full power of React and set some default parameters so that, if the circle

icon is rendered without props, we still show something.

Writing Code for the Browser90

For example, we can define the default color:

const Circle = ({ x, y, radius, fill = 'red' }) => (...)

This is pretty powerful when we build UIs, especially in a team where we share our icon set and

we want to have some default values in it, but we also want to let other teams decide their settings

without having to recreate the same SVG shapes.

However, in some cases, we prefer to be stricter and fix some values to keep consistency. With

React, this is a super simple task.

For example, we can wrap the base circle component into RedCircle, as follows:

const RedCircle = ({ x, y, radius }) => (

 <Circle x={x} y={y} radius={radius} fill="red" />

)

Here, the color is set by default, and it cannot be changed, while the other props are transparently

passed to the original circle.

The following screenshot shows two circles, blue and red, that are generated by React using SVG:

Figure 5.1: Two circles, blue and red SVGs

We can apply this technique and create different variations of the circle, such as SmallCircle

and RightCircle, and everything else we need to build our UIs.

Chapter 5 91

Summary
In this chapter, we explored the different capabilities of React when targeting the browser, from

creating forms and handling events to animating SVGs. We also learned about the new useRef

Hook, which provides a simple way to access DOM nodes. React’s declarative approach simplifies

the management of complex web applications. Additionally, React provides a way to access the

DOM nodes, allowing for imperative operations if needed, making it easier to integrate React

with existing libraries.

In the next chapter, we will delve into CSS and inline styles, and explore the concept of writing

CSS in JavaScript.

6
Making Your Components Look
Beautiful

Our journey into React best practices and design patterns has now reached the point where we

want to make our components look beautiful. To do that, we will go through all the reasons why

regular CSS may not be the best approach for styling components, and we will check out various

alternative solutions.

Starting with inline styles, then CSS modules, and styled-components, this chapter will guide

you through the magical world of CSS in JavaScript.

In this chapter, we will cover the following topics:

•	 Common problems with regular CSS at scale

•	 What it means to use inline styles in React and their downsides

•	 How to set up a project from scratch using Webpack and CSS modules

•	 Features of CSS modules and why they represent a great solution to avoid global CSS

•	 styled-components, a new library that offers a modern approach to styling React com-

ponents

Technical requirements
To complete this chapter, you will need the following:

•	 Node.js 19+

•	 Visual Studio Code

Making Your Components Look Beautiful94

You can find the code for this chapter in the book’s GitHub repository: https://github.com/
PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/

main/Chapter06.

CSS in JavaScript
In November 2014, Christopher Chedeau, also known as vjeux, gave a talk at the NationJS con-

ference (https://blog.vjeux.com/2014/javascript/react-css-in-js-nationjs.html) that

sparked a revolution in the way React components are styled. As a contributor to React and an

employee of Meta, Christopher outlined the many issues Facebook faced with CSS at scale. Un-

derstanding these issues is important because they are common in web development and will

help us introduce concepts such as inline styles and locally scoped class names.

The following is a list of the issues with CSS, which are basically problems with CSS at scale:

•	 Global namespace

•	 Dependencies

•	 Dead code elimination

•	 Minification

•	 Sharing constants

•	 Non-deterministic resolution

•	 Isolation

The first well-known problem of CSS is that all the selectors are global. No matter how organized

our styles are by using namespaces or a procedure such as the Block, Element, Modifier (BEM)

methodology, we are always polluting the global namespace, which we all know is wrong. It is

not only wrong in principle, but it also leads to many errors in big code bases, and it makes main-

tainability very hard in the long term. Working with big teams, it is non-trivial to know whether

a particular class or element has already been styled, and most of the time, we tend to add more

classes instead of reusing existing ones.

The second problem with CSS regards the definition of the dependencies. It is very hard, in fact,

to state clearly that a particular component depends on a specific CSS and that the CSS has to be

loaded for the style to be applied. Since styles are global, any style from any file can be applied to

any element, and losing control is very easy.

The third is that frontend developers tend to use pre-processors to be able to split their CSS into

submodules, but in the end, a big, global CSS bundle is generated for the browser.

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter06
https://blog.vjeux.com/2014/javascript/react-css-in-js-nationjs.html

Chapter 6 95

Since CSS code bases tend to become huge quickly, we lose control over them, and the third prob-

lem is to do with dead code elimination. It is not easy to quickly identify which styles belong to

which component, and this makes deleting code incredibly hard. In fact, due to the cascading

nature of CSS, removing a selector or a rule can result in an unintended result within the browser.

Another pain point of working with CSS concerns the minification of the selectors and the class

names, both in the CSS and in the JavaScript application. It might seem an easy task, but it is

not, especially when classes are applied on the fly or concatenated in the client; this is the fourth

problem.

Not being able to minify and optimize class names is bad for performance, and it can make a huge

difference to the size of the CSS. Another pretty common operation that is non-trivial with regular

CSS is sharing constants between the styles and the client application. We often need to know the

height of a header, for example, to recalculate the position of other elements that depend on it.

Usually, we read the value in the client using the JavaScript APIs, but the optimal solution would

be to share constants and avoid doing expensive calculations at runtime. This represents the fifth

problem that vjeux and the other developers at Facebook tried to solve.

The sixth issue concerns the non-deterministic resolution of CSS. In fact, in CSS, the order matters,

and if the CSS is loaded on demand, the order is not guaranteed, which leads to the wrong styles

being applied to the elements.

Suppose, for example, that we want to optimize the way we request CSS, loading the CSS related

to a particular page only when the users navigate to it. If the CSS related to this last page has

some rules that also apply to the elements of different pages, the fact that it has been loaded last

could affect the styling of the rest of the app. For example, if the user goes back to the previous

page, they might see a page with a UI that is slightly different than the first time they visited it.

It is incredibly hard to control all the various combinations of styles, rules, and navigation paths,

but again, being able to load the CSS when needed could have a critical impact on the perfor-

mance of a web application.

Last but not least, the seventh problem of CSS, according to Christopher Chedeau, is related to

isolation. In CSS, it is almost impossible to achieve proper isolation between files or components.

Selectors are global, and they can easily be overwritten. It is tricky to predict the final style of an

element just by knowing the class names applied to it because styles are not isolated, and other

rules in other parts of the application can affect unrelated elements. This can be solved by using

inline styles.

Making Your Components Look Beautiful96

In the following section, we will look at what it means to use inline styles with React and the

benefits and downsides of it.

Understanding and implementing inline styles
The official React documentation suggests developers use inline styles to style their React com-

ponents. This seems odd because we all learned in past years that separating the concerns is

important and we should not mix markup and CSS.

React tries to change the concept of separation of concerns by moving it from the separation of

technologies to the separation of components. Separating markup, styling, and logic into differ-

ent files when they are tightly coupled and where one cannot work without the other is just an

illusion. Even if it helps keep the project structure cleaner, it does not give any real benefit.

In React, we compose components to create applications where components are a fundamental

unit of our structure. We should be able to move components across the application, and they

should provide the same result regarding both logic and UI, no matter where they get rendered.

This is one of the reasons why collocating the styles within our components and applying them

using inline styles on the elements could make sense in React.

First, let’s look at an example of what it means to use the style attribute of the nodes to apply

the styling to our components in React. We are going to create a button with the text Click me!

and we are going to apply a color and background color to it:

const style = {

 color: 'palevioletred',

 backgroundColor: 'papayawhip'

}

const Button = () => <button style={style}>Click me!</button>

As you can see, it is pretty easy to style elements with inline styles in React. We just have to create

an object where the attributes are the CSS rules, and the values are the values we would use in

a regular CSS file.

The only differences are that the hyphenated CSS rules must be camelCased to be JavaScript-com-

pliant, and the values are strings, so they have to be wrapped in quote marks.

Chapter 6 97

There are some exceptions regarding the vendor prefixes. For example, if we want to define a tran-

sition on webkit, we should use the WebkitTransition attribute, where the webkit prefix begins

with a capital letter. This rule applies to all the vendor prefixes, except for ms, which is lowercase.

Other use cases are numbers – they can be written without quotes or units of measurement, and

by default, they are treated as pixels.

The following rule applies a height of 100 pixels:

const style = {

 height: 100

}

By using inline styles, we can also do things that are hard to implement with regular CSS. For

example, we can recalculate some CSS values on the client at runtime, which is a very powerful

concept, as you will see in the following example.

Suppose you want to create a form field in which the font size changes according to its value. So,

if the value of the field is 24, the font size is going to be 24 pixels. With normal CSS, this behavior

is almost impossible to reproduce without putting in a huge effort and duplicated code.

Let’s look at how easy it is to use inline styles instead, by creating a FontSize component first

and then declaring a value state:

import { useState, ChangeEvent } from 'react'

const FontSize = () => {

 const [value, setValue] = useState<number>(16)

}

export default FontSize

We implement a simple change handler, where we use the target attribute of the event to retrieve

the current value of the field:

const handleChange = (e: ChangeEvent<HTMLInputElement>) => {

 setValue(Number(e.target.value))

}

Finally, we render the input file of the number type, which is a controlled component because we

keep its value updated by using the state. It also has an event handler, which is fired every time

the value of the field changes.

Making Your Components Look Beautiful98

Last but not least, we use the style attribute of the field to set its font-size value. As you can see,

we are using the camelCased version of the CSS rule to follow the React convention:

return (

 <input

 type="number"

 value={value}

 onChange={handleChange}

 style={{ fontSize: value }}

 />

)

Rendering the preceding component, we can see an input field that changes its font size according

to its value. The way it works is that when the value changes, we store the new value of the field

inside the state. Modifying the state forces the component to re-render, and we use the new state

value to set the display value of the field and its font size; it’s easy and powerful.

Every solution in computer science has its downsides, and it always represents a trade-off. In the

case of inline styles, unfortunately, the problems are many.

For example, with inline styles, it is not possible to use pseudo-selectors (for example, :hover)

and pseudo-elements, which is a pretty significant limitation if you are creating a UI with inter-

actions and animations.

There are some workarounds, and, for example, you can always create real elements instead of

pseudo-elements, but for the pseudo-classes, it is necessary to use JavaScript to simulate the CSS

behavior, which is not optimal.

The same applies to media queries, which cannot be defined using inline styles, and it makes it

harder to create responsive web applications. Since styles are declared using JavaScript objects,

it is also not possible to use style fallbacks:

display: -webkit-flex;

display: flex;

JavaScript objects cannot have two attributes with the same name. Style fallbacks should be

avoided, but it is always good to have the ability to use them if needed.

Chapter 6 99

Another feature of CSS that it is not possible to emulate using inline styles is animations. The

workaround here is to define animations globally and use them inside the style attribute of the

elements. With inline styles, whenever we need to override a style with regular CSS, we are always

forced to use the !important keyword, which is bad practice because it prevents any other style

from being applied to the element.

The most difficult thing that happens to work with inline styles is debugging. We tend to use

class names to find elements in the browser DevTools to debug and check which styles have been

applied. With inline styles, all the styles of the items are listed in their style attribute, which

makes it very hard to check and debug the result.

For example, the button that we created earlier in this section is rendered in the following way:

<button style="color:palevioletred;background-color:papayawhip;">Click
me!</button>

By itself, it does not seem very hard to read, but if you imagine you have hundreds of elements

and hundreds of styles, you realize that the problem becomes very complicated.

Also, if you are debugging a list where every single item has the same style attribute, and if you

modify one on the fly to check the result in the browser, you will see that you are applying the

styles only to it and not to all the other siblings, even if they share the same style.

Last but not least, if we render our application on the server side (we will cover this topic in Chapter

12, Server-Side Rendering), the size of the page is bigger when using inline styles.

With inline styles, we are putting all the content of the CSS into the markup, which adds an extra

number of bytes to the file that we send to the clients and makes the web application appear

slower. Compression algorithms can help with that because they can easily compress similar

patterns, and, in some cases, loading the critical path CSS is a good solution; but in general, we

should try to avoid it.

It turns out that inline styles cause more problems than the problems they try to solve. For this

reason, the community created different tools to solve the problems of inline styles but keeping

the styles inside the components, or local to the components, to get the best of both worlds.

After Christopher Chedeau’s talk, a lot of developers started talking about inline styles, and many

solutions and experiments have been made to find new ways of writing CSS in JavaScript. In the

beginning, there were two or three solutions, while today there are more than 40.

Making Your Components Look Beautiful100

In the next section, we are going to learn how to use the CSS modules.

Using CSS modules
If you feel that inline styles are not a suitable solution for your project and your team, but you

still want to keep the styles as close as possible to your components, there is a solution for you,

called CSS modules. The CSS modules are CSS files in which all class names and animation names

are scoped locally by default. Let’s see how we can use them in our projects; but first, we need

to configure webpack.

Webpack 5
Before diving into CSS modules and learning how they work, it is important to understand how

they were created and the tools that support them.

In Chapter 3, Cleaning Up Your Code, we looked at how we can write ES6 code and transpile it by

using Babel and its presets. As soon as the application grows, you may want to split your code

base into modules as well.

You can use Webpack or Browserify to divide the application into small modules that you can

import whenever you need them, while still creating a big bundle for the browser. These tools

are called module bundlers, and what they do is load all the dependencies of your application

into a single bundle that can be executed in the browser, which does not have any concept of

modules (yet).

In the React world, Webpack is especially popular because it offers many interesting and useful

features, with the first one being the concept of loaders. With Webpack, you can potentially load

any dependencies other than JavaScript, if there is a loader for them. For example, you can load

JSON files, as well as images and other assets, inside the bundle.

In May 2015, Mark Dalgleish, one of the creators of CSS modules, figured out that you could im-

port CSS inside a Webpack bundle as well, and he pushed the concept forward. He thought that,

since the CSS could be imported locally into a component, all the imported class names could be

locally scoped as well, this is great because this will isolate the styles.

After tracing the conceptual evolution of locally scoped CSS by one of its pioneers, Mark Dalgleish,

and understanding how it revolutionized style isolation in Webpack bundles, let us transition

into a more practical arena. The next section will guide us in setting up a project that utilizes

these principles.

Chapter 6 101

Setting up a project
In this section, we will look at how to set up a very simple Webpack application, using Babel to

transpile the JavaScript and CSS modules to load our locally scoped CSS into the bundle. We will

also go through all the features of CSS modules and look at the problems they can solve. The first

thing to do is move to an empty folder and run the following command:

npm init

This will create a package.json file with some defaults.

Now, it is time to install the dependencies, with the first one being Webpack and the second

being webpack-dev-server, which we will use to run the application locally and to create the

bundle on the fly:

npm install --save-dev webpack webpack-dev-server webpack-cli

Once Webpack is installed, it is time to install Babel and its loader. Since we are using Webpack

to create the bundle, we will use the Babel loader to transpile our ES6 code within Webpack itself:

npm install --save-dev @babel/core @babel/preset-env @babel/preset-react
ts-loader

Finally, we install style-loader and the CSS loader, which are the two loaders we need to enable

the CSS modules:

npm install --save-dev style-loader css-loader

There is one more thing to do to make things easier, and that is to install html-webpack-plugin,

which is a plugin that can create an HTML page to host our JavaScript application on the fly, just

by looking into the Webpack configuration and without us needing to create a regular file. Also,

we need to install the fork-ts-checker-webpack-plugin package to make TypeScript work

with Webpack:

npm install --save-dev html-webpack-plugin fork-ts-checker-webpack-plugin
typescript

Last but not least, we install react and react-dom to use them in our simple example:

npm install react react-dom

Now that all the dependencies are installed, it is time to configure everything to make it work.

Making Your Components Look Beautiful102

First, you need to create a .babelrc file in your root path:

{

 "presets": ["@babel/preset-env", "@babel/preset-react"]

}

The first thing to do is add an npm script in package.json to run the webpack-dev-server, which

will serve the application in development:

"scripts": {

 "dev": "webpack serve --mode development --port 3000"

}

Webpack needs a configuration file to know how to handle the different types of dependencies

we are using in our application, and to do so, we must create a file called webpack.config.ts,

which exports an object:

module.exports = {}

The object we export represents the configuration object used by Webpack to create the bundle,

and it can have different properties depending on the size and the features of the project.

We want to keep our example very simple, so we are going to add three attributes. The first one

is entry, which tells Webpack where the main file of our application is:

entry: './src/index.tsx'

The second one is module, which is where we tell Webpack how to load the external dependen-

cies. It has an attribute called rules, where we set a specific loader for each one of the file types:

module: {

 rules: [

 {

 test: /\.(tsx|ts)$/,

 exclude: /node_modules/,

 use: {

 loader: 'ts-loader',

In Webpack 5, you need to use this way to call webpack instead of webpack-dev-

server but you still need to have this package installed.

Chapter 6 103

 options: {

 transpileOnly: true

 }

 }

 },

 {

 test: /\.css/,

 use: [

 'style-loader',

 'css-loader?modules=true'

]

 }

]

}

We are saying that the files that match the .ts or .tsx regular expression are loaded using ts-

loader so that they get transpiled and loaded into the bundle.

You may also have noticed that we added our presets in the .babelrc file. As we saw in Chapter

3, Cleaning Up Your Code, the presets are sets of configuration options that instruct Babel on how

to deal with the different types of syntax (for example, TSX).

The second entry in the rules array tells Webpack what to do when a CSS file is imported, and it

uses css-loader with the modules flag enabled to activate CSS modules. The result of the trans-

formation is then passed to style-loader, which injects the styles into the header of the page.

Finally, we enable the HTML plugin to generate the page for us, adding the script tag automati-

cally using the entry path we specified earlier:

const HtmlWebpackPlugin = require('html-webpack-plugin')

const ForkTsCheckerWebpackPlugin = require('fork-ts-checker-webpack-
plugin')

plugins: [

 new ForkTsCheckerWebpackPlugin(),

 new HtmlWebpackPlugin({

 title: 'Your project name',

 template: './src/index.html',

Making Your Components Look Beautiful104

 filename: './index.html'

 })

]

The complete webpack.config.ts should be as shown in the following code block:

const HtmlWebpackPlugin = require('html-webpack-plugin')

const path = require('path')

const ForkTsCheckerWebpackPlugin = require('fork-ts-checker-webpack-
plugin')

const isProduction = process.env.NODE_ENV === 'production'

module.exports = {

 devtool: !isProduction ? 'source-map' : false, // We generate source
maps

 // only for development

 entry: './src/index.tsx',

 output: { // The path where we want to output our bundles

 path: path.resolve(__dirname, 'dist'),

 filename: '[name].[hash:8].js',

 sourceMapFilename: '[name].[hash:8].map',

 chunkFilename: '[id].[hash:8].js',

 publicPath: '/'

 },

 resolve: {

 extensions: ['.ts', '.tsx', '.js', '.json', '.css'] // Here we add the

 // extensions we want to support

 },

 target: 'web',

 mode: isProduction ? 'production' : 'development', // production mode

 // minifies the code

 module: {

 rules: [

 {

 test: /\.(tsx|ts)$/,

 exclude: /node_modules/,

 use: {

 loader: 'ts-loader',

Chapter 6 105

 options: {

 transpileOnly: true

 }

 }

 },

 {

 test: /\.css/,

 use: [

 'style-loader',

 'css-loader?modules=true'

]

 }

]

 },

 plugins: [

 new ForkTsCheckerWebpackPlugin(),

 new HtmlWebpackPlugin({

 title: 'Your project name',

 template: './src/index.html',

 filename: './index.html'

 })

],

 optimization: { // This is to split our bundles into vendor and main

 splitChunks: {

 cacheGroups: {

 default: false,

 commons: {

 test: /node_modules/,

 name: 'vendor',

 chunks: 'all'

 }

 }

 }

}

}

Making Your Components Look Beautiful106

Then, to configure TypeScript, you need this tsconfig.json file:

{

 "compilerOptions": {

 "allowJs": true,

 "allowSyntheticDefaultImports": true,

 "baseUrl": "src",

 "esModuleInterop": true,

 "forceConsistentCasingInFileNames": true,

 "isolatedModules": true,

 "jsx": "react-jsx",

 "lib": ["dom", "dom.iterable", "esnext"],

 "module": "esnext",

 "moduleResolution": "node",

 "noEmit": true,

 "noFallthroughCasesInSwitch": true,

 "noImplicitAny": false,

 "resolveJsonModule": true,

 "skipLibCheck": true,

 "sourceMap": true,

 "strict": true,

 "target": "esnext"

 },

 "include": ["src/**/*.ts", "src/**/*.tsx"],

 "exclude": ["node_modules"]

}

In order to import CSS files using TypeScript, you need to create a declarations file at src/

declarations.d.ts:

declare module '*.css' {

 const content: Record<string, string>

 export default content

}

Then, you need to create the main file at src/index.tsx:

import { createRoot } from 'react-dom/client'

const App = () => {

 return <div>Hello World</div>

Chapter 6 107

}

 createRoot(document.getElementById('root') as HTMLElement).render(

 <React.StrictMode>

 <App />

 </React.StrictMode>

)

Finally, you need to create the initial HTML file at src/index.html:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0"

 />

 <meta http-equiv="X-UA-Compatible" content="ie=edge" />

 <title><%= htmlWebpackPlugin.options.title %></title>

 </head>

 <body>

 <div id="root"></div>

 </body>

</html>

We are done, and if we run the npm run dev command in the terminal and point the browser to

http://localhost:8080, we should be able to see the following markup being served:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>Your project name</title>

 <script defer src="/vendor.12472959.js"></script>

 <script defer src="/main.12472959.js"></script>

 </head>

 <body>

 <div id="root"></div>

 </body>

</html>

Making Your Components Look Beautiful108

Perfect – our React application is working! Let’s see now how we can add some CSS to our project.

Locally scoped CSS
Now it is time to create our app, which will consist of a simple button of the same sort we used

in previous examples. We will use it to show all the features of the CSS modules.

Let’s update the src/index.tsx file, which is the entry we specified in the Webpack configuration:

import { createRoot } from 'react-dom/client'

We can then create a simple button. As usual, we are going to start with a non-styled button, and

we will add the styles step by step:

const Button = () => <button>Click me!</button>

Finally, we can render the button into the DOM:

createRoot(document.getElementById('root') as HTMLElement).render(<Button
/>)

Now, suppose we want to apply some styles to the button – a background color, size, and so on.

We create a regular CSS file, called index.css, and we put the following class into it:

.button {

 background-color: #ff0000;

 width: 320px;

 padding: 20px;

 border-radius: 5px;

 border: none;

 outline: none;

}

Now, we said that with CSS modules we could import the CSS files into JavaScript; let’s look at

how it works.

Inside our index.ts file where we defined the button component, we can add the following line:

import styles from './index.css'

The result of this import statement is a styles object, where all the attributes are the classes

defined in index.css.

Chapter 6 109

If we run console.log(styles), we can see the following object in the DevTools:

{

 button: "_2wpxM3yizfwbWee6k0UlD4"

}

So, we have an object where the attributes are the class names and the values are (apparently)

random strings. We will see later that they are non-random, but let’s check what we can do with

that object first.

We can use the object to set the class name attribute of our button, as follows:

const Button = () => (

 <button className={styles.button}>Click me!</button>

);

If we go back to the browser, we can now see that the styles we defined in index.css have been

applied to the button. This is not magic, because if we check in DevTools, the class that has been

applied to the element is the same string that’s attached to the style object we imported inside

our code:

<button class="_2wpxM3yizfwbWee6k0UlD4">Click me!</button>

If we look at the header section of the page, we can now see that the same class name has also

been injected into the page:

<style type="text/css">

 ._2wpxM3yizfwbWee6k0UlD4 {

 background-color: #ff0000;

 width: 320px;

 padding: 20px;

 border-radius: 5px;

 border: none;

 outline: none;

 }

</style>

This is how the CSS and the style loaders work. The CSS loader lets you import the CSS files into

your JavaScript modules and, when the module flag is activated, all the class names are locally

scoped to the module they are imported into.

Making Your Components Look Beautiful110

As we mentioned previously, the string we imported was non-random, but it is generated using

the hash of the file and some other parameters in a way that is unique within the code base.

Finally, style-loader takes the result of the CSS module’s transformation and injects the styles

inside the header section of the page. This is very powerful because we have the full power and

expressiveness of the CSS, combined with the advantages of having locally scoped class names

and explicit dependencies.

As mentioned at the beginning of this chapter, CSS is global, and that makes it very hard to main-

tain in large applications. With CSS modules, class names are locally scoped, and they cannot

clash with other class names in different parts of the application, enforcing a deterministic result.

Moreover, explicitly importing the CSS dependencies inside our components helps us see clearly

which components need which CSS. It is also very useful for eliminating dead code because when

we delete a component for any reason, we can tell exactly which CSS it was using.

CSS modules are regular CSS, so we can use pseudo-classes, media queries, and animations.

For example, we can add CSS rules such as the following:

.button:hover {

 color: #fff;

}

.button:active {

 position: relative;

 top: 2px;

}

@media (max-width: 480px) {

 .button {

 width: 160px;

 }

}

This will be transformed into the following code and injected into the document:

._2wpxM3yizfwbWee6k0UlD4:hover {

 color: #fff;

}

Chapter 6 111

._2wpxM3yizfwbWee6k0UlD4:active {

 position: relative;

 top: 2px;

}

@media (max-width: 480px) {

 ._2wpxM3yizfwbWee6k0UlD4 {

 width: 160px;

 }

}

The class names get created and they get replaced everywhere the button is used, making it re-

liable and local, as expected.

As you may have noticed, those class names are great, but they make debugging pretty hard be-

cause we cannot easily tell which classes generated the hash. What we can do in development

mode is add a special configuration parameter, with which we can choose the pattern that’s used

to produce the scoped class names.

For example, we can change the value of the loader as follows:

{

 test: /\.css/,

 use: [

 {

 loader: 'style-loader'

 },

 {

 loader: 'css-loader',

 options: {

 modules: {

 localIdentName: '[local]--[hash:base64:5]'

 }

 }

 }

]

}

Making Your Components Look Beautiful112

Here, localIdentName is the parameter, and [local] and [hash:base64:5] are placeholders for

the original class name value and a five-character hash. Other available placeholders are [path],

which represents the path of the CSS file, and [name], which is the name of the source CSS file.

Activating the previous configuration option, the result we have in the browser is as follows:

<button class="button--2wpxM">Click me!</button>

This is way more readable and easier to debug.

In production, we do not need class names like this, and we are more interested in performance,

so we may want shorter class names and hashes.

With Webpack, it is pretty straightforward because we can have multiple configuration files that

can be used in the different stages of our application life cycle. Also, in production, we may want

to extract the CSS file instead of injecting it into the browser from the bundle so that we can have

a lighter bundle and cache the CSS on a Content Delivery Network (CDN) for better performance.

To do that, you need to install another Webpack plugin, called mini-css-extract-plugin, which

can write an actual CSS file, putting in all the scoped classes that were generated from CSS modules.

There are a couple of features of CSS modules that are worth mentioning.

The first one is the global keyword. Prefixing any class with :global, in fact, means asking CSS

modules not to scope the current selector locally.

For example, let’s say we change our CSS as follows:

:global .button {

 ...

}

The output will be as follows:

.button {

 ...

}

This is good if you want to apply styles that cannot be scoped locally, such as third-party widgets.

My favorite feature of CSS modules is composition. With composition, we can extract classes

from the same file or external dependencies and get all the styles applied to the element.

Chapter 6 113

For example, extract the rule to set the background to red from the rules for the button into a

separate block, as follows:

.background-red {

 background-color: #ff0000;

}

We can then compose it inside our button in the following way:

.button {

 composes: background-red;

 width: 320px;

 padding: 20px;

 border-radius: 5px;

 border: none;

 outline: none;

}

The result is that all the rules of the button and all the rules of the composes declaration are

applied to the element.

This is a very powerful feature, and it works in a fascinating way. You might expect that all the

composed classes are duplicated inside the classes where they are referenced as SASS @extend

does, but that is not the case. Simply put, all the composed class names are applied one after the

other on the component in the DOM.

In our specific case, we would have the following:

<button class="_2wpxM3yizfwbWee6k0UlD4 Sf8w9cFdQXdRV_i9dgcOq">Click me!</
button>

Here, the CSS that is injected into the page is as follows:

.Sf8w9cFdQXdRV_i9dgcOq {

 background-color: #ff0000;

}

._2wpxM3yizfwbWee6k0UlD4 {

 width: 320px;

 padding: 20px;

 border-radius: 5px;

Making Your Components Look Beautiful114

 border: none;

 outline: none;

}

As you can see, our CSS class names have unique names, which is good to isolate our styles. Now,

let’s take a look at the Atomic CSS modules.

Atomic CSS modules
It should be clear how composition works and why it is a very powerful feature of CSS modules.

At Disney, the company where I worked when I started writing this book, we tried to push it a

step further, combining the power of composes with the flexibility of Atomic CSS (also known

as Functional CSS).

Atomic CSS is a way to use CSS where every class has a single rule.

For example, we can create a class to set margin-bottom to 0:

.mb0 {

 margin-bottom: 0;

}

We can use another one to set font-weight to 600:

.fw6 {

 font-weight: 600;

}

Then, we can apply all those Atomic classes to the elements:

<h2 class="mb0 fw6">Hello React</h2>

This technique is controversial and particularly efficient at the same time. It is hard to start using

it because you end up having too many classes in your markup, which makes it hard to predict

the final result. If you think about it, it is pretty similar to inline styles, because you apply one

class per rule, apart from the fact that you are using a shorter class name as a proxy.

The biggest argument against Atomic CSS is usually that you are moving the styling logic from the

CSS to the markup, which is wrong. Classes are defined in CSS files, but they are composed in the

views, and every time you have to modify the style of an element, you end up editing the markup.

On the other hand, we tried using Atomic CSS for a bit and we found that it makes prototyping

incredibly fast.

Chapter 6 115

In fact, when all the base rules have been generated, applying those classes to the elements and

creating new styles is a very quick process, which is good. Second, using Atomic CSS, we can con-

trol the size of the CSS file, because as soon as we create new components with their styles, we

are using existing classes and we do not need to create new ones, which is great for performance.

So, we tried to solve the problems of Atomic CSS using CSS modules and we called the technique

Atomic CSS modules.

In essence, you start creating your base CSS classes (for example, mb0), and then, instead of ap-

plying the class names one by one in the markup, you compose them into placeholder classes

using CSS modules.

Let’s look at an example:

.title {

 composes: mb0 fw6;

}

Here’s another example:

<h2 className={styles.title}>Hello React</h2>

This is great because you still keep the styling logic inside the CSS, and the CSS module’s composes

does the job for you by applying all the single classes in the markup.

The result of the preceding code is as follows:

<h2 class="title--3JCJR mb0--21SyP fw6--1JRhZ">Hello React</h2>

Here, title, mb0, and fw6 are all applied automatically to the element. They are scoped locally as

well, so we have all the advantages of CSS modules.

Implementing styled-components
There is a library that is very promising because it takes into account all the problems other li-

braries have encountered in styling components. Different paths have been followed for writing

CSS in JavaScript, and many solutions have been tried, so now the time is ripe for a library that

takes all the learning and then builds something on top of it.

The library is conceived and maintained by two popular developers in the JavaScript community:

Glenn Maddern and Max Stoiber. It represents a very modern approach to the problem, and it uses

the edge features of ES2015 and some advanced techniques that have been applied to React to

provide a complete solution for styling.

Making Your Components Look Beautiful116

Let’s look at how it is possible to create the same button we saw in the previous sections and

check whether all the CSS features we are interested in (for example, pseudo-classes and media

queries) work with styled-components.

First, we have to install the library by running the following command:

npm install styled-components

Once the library is installed, we have to import it inside our component’s file:

import styled from 'styled-components'

At that point, we can use the styled function to create any element by using styled.elementName,

where elementName can be a div, a button, or any other valid DOM element.

The second thing to do is to define the style of the element we are creating and, to do so, we use

an ES6 feature called tagged template literals, which is a way of passing template strings to a

function without them being interpolated beforehand.

This means that the function receives the actual template with all the JavaScript expressions, and

this makes the library able to use the full power of JavaScript to apply the styles to the elements.

Let’s start by creating a simple button with a basic styling:

const Button = styled.button`

 backgroundColor: #ff0000;

 width: 320px;

 padding: 20px;

 borderRadius: 5px;

 border: none;

 outline: none;

`;

This kind-of-weird syntax returns a proper React component called Button, which renders a button

element and applies to it all the styles defined in the template. The way the styles are applied is

by creating a unique class name, adding it to the element, and then injecting the corresponding

style in the head of the document.

The following is the component that gets rendered:

<button class="kYvFOg">Click me!</button>

Chapter 6 117

The style that gets added to the page is as follows:

.kYvFOg {

 background-color: #ff0000;

 width: 320px;

 padding: 20px;

 border-radius: 5px;

 border: none;

 outline: none;

}

The good thing about styled-components is that it supports almost all the features of CSS, which

makes it a good candidate to be used in a real-world application.

For example, it supports pseudo-classes using a SASS-like syntax:

const Button = styled.button`

 background-color: #ff0000;

 width: 320px;

 padding: 20px;

 border-radius: 5px;

 border: none;

 outline: none;

 &:hover {

 color: #fff;

 }

 &:active {

 position: relative;

 top: 2px;

 }

`

It also supports media queries:

const Button = styled.button`

 background-color: #ff0000;

 width: 320px;

 padding: 20px;

 border-radius: 5px;

Making Your Components Look Beautiful118

 border: none;

 outline: none;

 &:hover {

 color: #fff;

 }

 &:active {

 position: relative;

 top: 2px;

 }

 @media (max-width: 480px) {

 width: 160px;

 }

`;

There are many other features that this library can bring to your project.

For example, once you have created the button, you can easily override its styles and use it mul-

tiple times with different properties. Inside the templates, it is also possible to use the props that

the component received and change the style accordingly.

Another great feature is theming. By wrapping your components in a ThemeProvider compo-

nent, you can inject a theme property down to the three component’s children, which makes it

extremely easy to create UIs where part of the style is shared between components and some

other properties depend on the currently selected theme.

Without a doubt, the styled-components library is a game-changer when you are taking your

styles to the next level. In the beginning, it could seem weird because it involves implementing

styles with components, but once you get used to it, I guarantee it will be your favorite styles

package.

Summary
In this chapter, we explored important topics that aim to help readers navigate the complexities

of styling in React. We discussed the challenges of scaling CSS, using Meta’s experiences as ex-

amples to highlight the real-world difficulties faced by large organizations. This emphasizes the

relevance and applicability of the knowledge we’re sharing.

To make styling in React more intuitive and efficient, we examined how inline styles work and

the benefits of co-locating styles within components. This approach promotes organized and

readable code, which is crucial for developers aiming to master React.

Chapter 6 119

Recognizing the limitations of inline styles, we introduced CSS modules as an alternative. We

provided a step-by-step guide to setting up a project, allowing readers to learn through hands-

on experimentation.

Importing CSS files into components was also emphasized as an important practice. This helps

clarify dependencies and prevents issues by keeping class names scoped locally, ensuring scalable

and conflict-free code.

Finally, we introduced readers to styled-components, a library that aligns with our book’s goal

of offering innovative ways to style components and optimize development practices in React.

So far, we have explored various approaches to managing CSS styles in React, each illustrating

different aspects of our central proposition. In the next chapter, we will further enhance your

understanding of React by delving into the practical implementation and benefits of server-side

rendering—a technique that improves application performance and user experience.

Join our community on Discord
Join our community’s Discord space for discussion with the author and other readers:

https://packt.link/React18DesignPatterns4e

https://packt.link/React18DesignPatterns4e

7
Anti-Patterns to Be Avoided

In this book, you’ve learned how to apply best practices when writing a React application. In the

first few chapters, we revisited the basic concepts to build a solid understanding, and then we

took a leap into more advanced techniques in the following chapters.

You should now be able to build reusable components, make components communicate with

each other, and optimize an application tree to get the best performance. However, developers

make mistakes, and this chapter is all about the common anti-patterns we should avoid when

using React.

Looking at common errors will help you to avoid them and will aid your understanding of how

React works and how to build applications in the React way. For each problem, we will see an

example that shows how to reproduce and solve it.

In this chapter, we will cover the following topics:

•	 Initializing the state using properties

•	 Using indexes as a key

•	 Spreading properties on DOM elements

Technical requirements
To complete this chapter, you will need the following:

•	 Node.js 19+

•	 Visual Studio Code

Anti-Patterns to Be Avoided122

You can find the code for this chapter in the book’s GitHub repository: https://github.com/
PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/

main/Chapter07.

Initializing the state using properties
In this section, we will see how initializing the state using properties received from the parent is

usually an anti-pattern. I have used the word usually because, as we will see, once we have it clear

in our mind what the problems with this approach are, we might still decide to use it.

One of the best ways to learn something is by looking at the code, so we will start by creating a

simple component with a + button to increment a counter.

Let’s create a functional component named Counter, as shown in the following code snippet:

import { FC, useState } from 'react'

type Props = {

 count: number

}

const Counter: FC<Props> = (props) => {}

export default Counter

Now, let’s set our count state:

const [state, setState] = useState<number>(props.count)

The implementation of the click handler is straightforward – we just add 1 to the current count

value and store the resulting value back in the state:

const handleClick = () => {

 setState({ count: state.count + 1 })

}

Finally, we render and describe the output, which is composed of the current value of the count

state and the button to increment it:

return (

 <div>

 {state.count}

 <button onClick={handleClick}>+</button>

 </div>

)

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter07

Chapter 7 123

Now, let’s render this component, passing 1 as the count property:

<Counter count={1} />

It works as expected – each click on the + button increments the current value. So, what’s the

problem?

There are two main errors, which are outlined as follows:

•	 We have a duplicated source of truth.

•	 If the count property passed to the component changes, the state does not get updated.

If we inspect the Counter element using the React DevTools, we notice that Props and State

hold a similar value:

<Counter>

Props

 count: 1

State

 count: 1

This makes it unclear which is the current and trustworthy value to use inside the component

and to display to the user.

Even worse, clicking + once makes the values diverge. An example of this divergence is shown in

the following code:

<Counter>

Props

 count: 1

State

 count: 2

At this point, we can assume that the second value represents the current count, but this is not

explicit and can lead to unexpected behaviors or wrong values down in the tree.

The second problem centers on how the class is created and instantiated by React. The useState

function of the component gets called only once when the component is created.

In our Counter component, we read the value of the count property and we store it in the state.

If the value of that property changes during the life cycle of the application (let’s say it becomes

10), the Counter component will never use the new value because it has already been initialized.

This puts the component in an inconsistent state, which is not optimal and hard to debug.

Anti-Patterns to Be Avoided124

What if we really want to use the prop’s value to initialize the component, and we know for sure

that the value does not change in the future?

In that case, it’s best practice to make it explicit and give the property a name that makes your

intentions clear, such as initialCount. For example, let’s say we change the prop declaration of

the Counter component in the following way:

type Props = {

 initialCount: number

}

const Counter: FC<Props> = (props) => {

 const [count, setState] = useState<Count>({ count: props.initialCount
 })

 ...

}

This usage makes it clear that the parent can only initialize the counter, and any subsequent

values of the initialCount property will be disregarded:

<Counter initialCount={1} />

In the next section, we are going to delve into the concept of keys.

Using indexes as a key
In Chapter 15, Improving the Performance of Your Applications, which talks about performance and

the reconciler, we saw how we can help React figure out the shortest path to update the DOM

by using the key prop.

The key property uniquely identifies an element in the DOM and React uses it to check whether

the element is new or whether it must be updated when the component properties or state change.

Using keys is always a good idea and if you don’t do it, React gives a warning in the console (in

development mode). However, it is not simply a matter of using a key; sometimes, the value that

we decide to use as a key can make a difference. In fact, using the wrong key can give us unexpected

behaviors in some instances. In this section, we will see one of those instances.

Let’s again create a List component, as shown here:

import { FC, useState } from 'react'

const List: FC = () => {

}

export default List

Chapter 7 125

Then we define our state:

const [items, setItems] = useState(['foo', 'bar'])

The implementation of the click handler is slightly different from the previous one because, in

this case, we need to insert a new item at the top of the list:

const handleClick = () => {

 const newItems = items.slice()

 newItems.unshift('baz')

 setItems(newItems)

}

Finally, in the render, we show the list and the + button to add the baz item at the top of the list:

return (

 <div>

 {items.map((item, index) => (

 <li key={index}>{item}

))}

 <button onClick={handleClick}>+</button>

 </div>

)

If you run the component inside the browser, you will not see any problems; clicking the + button

inserts a new item at the top of the list. But let’s do an experiment.

Let’s change the render in the following way, adding an input field near each item. We then use

an input field because we can edit its content, making it easier to figure out the problem:

return (

 <div>

 {items.map((item, index) => (

 <li key={index}>

 {item}

 <input type="text" />

))}

Anti-Patterns to Be Avoided126

 <button onClick={handleClick}>+</button>

 </div>

)

If we run this component again in the browser, copy the values of the items in the input fields,

and then click +, we will get unexpected behavior.

As shown in the following screenshot, the items shift down while the input elements remain in

the same position in such a way that their value does not match the value of the items anymore:

Figure 7.1: Using indexes as a key

Running the component, clicking +, and checking the console should give us all the answers we

need.

What we can see is that instead of inserting the new element at the top, React swaps the text of

the two existing elements, and inserts the last item at the bottom as if it was new. The reason it

does that is that we are using the index of the map function as the key.

In fact, the index always starts from 0, even if we push a new item to the top of the list, so React

thinks that we changed the values of the existing two and added a new element at index 2. The

behavior is the same as it would have been without using the key property at all.

This is a very common pattern because we may think that providing any key is always the best

solution, but it is not like that at all. The key must be unique and stable, identifying one, and

only one, item.

Chapter 7 127

To solve this problem, we can, for example, use the value of the item if we expect it not to be

repeated within the list, or create a unique identifier, for example:

 {items.map((item, index) => (

 <li key={`${item}-${index}`}>

 {item}

 <input type="text" />

))}

Now that we have understood the importance of unique and stable keys in React and explored

practical solutions to address this common issue, let’s shift our attention to another prevalent

practice in React development. The upcoming section will focus on the spreading of properties

on DOM elements, a technique that has recently been labeled as an anti-pattern by Dan Abramov.

Spreading properties on DOM elements
There is a common practice that has recently been described as an anti-pattern by Dan Abramov;

it also triggers a warning in the console when you do it in your React application.

It is a technique that is widely used in the community, and I have personally seen it multiple

times in real-world projects. We usually spread the properties to the elements to avoid writing

every single one manually, which is shown as follows:

<Component {...props} />

This works very well, and it gets transpiled into the following code by Babel:

_jsx(Component, props)

However, when we spread properties into a DOM element, we run the risk of adding unknown

HTML attributes, which is bad practice.

The problem is not related only to the Spread operator; passing non-standard properties one by

one leads to the same issues and warnings. Since the Spread operator hides the single properties

we are spreading, it is even harder to figure out what we are passing to the element.

To see the warning in the console, a basic operation we can do is render the following component:

const Spread = () => <div foo="bar" />

Anti-Patterns to Be Avoided128

The message we get looks like the following because the foo property is not valid for a div element:

 Unknown prop `foo` on <div> tag. Remove this prop from the element

In this case, as we said, it is easy to figure out which attribute we are passing and remove it, but

if we use the Spread operator, as in the following example, we cannot control which properties

are passed from the parent:

 const Spread = props => <div {...props} />;

If we use the component in the following way, there are no issues:

 <Spread className="foo" />

This, however, is not the case if we do something such as the following. React complains because

we are applying a non-standard attribute to the DOM element:

 <Spread foo="bar" className="baz" />

One solution we can use to solve this problem is to create a property called domProps that we

can spread safely to the component because we are explicitly saying that it contains valid DOM

properties.

For example, we can change the Spread component in the following way:

 const Spread = props => <div {...props.domProps} />

We can then use it as follows:

 <Spread foo="bar" domProps={{ className: 'baz' }} />

As we have seen many times with React, it’s always good practice to be explicit.

Summary
Knowing all the best practices is always a good thing, but sometimes, being aware of anti-pat-

terns helps us avoid taking the wrong path. Most importantly, learning the reasons why some

techniques are considered bad practice helps us understand how React works, and how we can

use it effectively.

In this chapter, we covered four different ways of using components that can harm the perfor-

mance and behavior of our web applications.

For each one of those, we used an example to reproduce the problem and supplied the changes

to apply in order to fix the issue.

Chapter 7 129

We learned why using properties to initialize the state can result in inconsistencies between the

state and the properties. We also saw how using the wrong key attribute can produce bad effects

on the reconciliation algorithm. Finally, we learned why spreading non-standard properties to

DOM elements is considered an anti-pattern.

In the next chapter, we will look into the new React Hooks.

8
React Hooks

React Hooks have revolutionized the way we write React applications, allowing us to use functional

components instead of class components, and making coding faster and more efficient. Since

their introduction in React 16.8, Hooks have become an essential part of React development and

have greatly improved the performance of our applications. With Hooks, we can manage the state,

handle side effects, and reuse code in a more concise and readable way. In the next chapter, we

will explore the different types of Hooks and how to use them to enhance our React applications.

In this chapter, we will cover the following topics:

•	 The new React Hooks and how to use them

•	 The rules of the Hooks

•	 How to migrate a class component to React Hooks

•	 Understanding the component life cycle with Hooks and effects

•	 How to fetch data with Hooks

•	 How to memoize components, values, and functions with memo, useMemo, and useCallback

•	 How to implement useReducer

Technical requirements
To complete this chapter, you will require the following:

•	 Node.js 19+

•	 Visual Studio Code

React Hooks132

You can find the code for this chapter in the book’s GitHub repository at https://github.com/
PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/

main/Chapter08.

Introducing React Hooks
React Hooks are a new addition to React 16.8. They let you use state and other React features

without writing a React class component. React Hooks are also backward-compatible, which

means they do not contain any breaking changes or not replace your knowledge of React concepts.

Over the course of this chapter, we will see an overview of Hooks for experienced React users,

and we are also going to learn about some of the most common React Hooks such as useState,

useEffect, useMemo, useCallback, and memo.

No breaking changes
In the context of React development, it’s a common misconception that the introduction of React

Hooks has made class components obsolete. However, this is not true, as there are no plans to

remove classes from React. The Hooks API does not replace your understanding of React concepts,

but rather offers a more streamlined approach to working with those concepts, such as props,

states, context, refs, and life cycles, which you are already familiar with.

Using the State Hook
In old React code, we used this.setState to use the component state. Now we will use the

useState hook to do this.

First, you need to extract the useState Hook from React:

import { useState } from 'react'

Since React 17, the React object is no longer required to render JSX code.

Then, you need to declare the state you want to use by defining the state and the setter for this

specific state:

const Counter = () => {

 const [counter, setCounter] = useState<number>(0)

}

As you can see, we are declaring the counter state with the setCounter setter and we are specifying

that we will only accept numbers, and finally, we are setting the initial value to zero.

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter08

Chapter 8 133

In order to test our state, we need to create a method that will be triggered by the onClick event:

type Operation = 'add' | 'substract'

const Counter = () => {

 const [counter, setCounter] = useState<number>(0)

 const handleCounter = (operation: Operation) => {

 if (operation === 'add') {

 return setCounter(counter + 1)

 }

 setCounter(counter - 1)

 }

}

Finally, we can render the counter state and some buttons to increase or decrease the counter state:

return (

 <p>

 Counter: {counter}

 <button onClick={() => handleCounter('add')}>+ Add</button>

 <button onClick={() => handleCounter('subtract')}>- Subtract</button>

 </p>

)

If you click on the + Add button once, you should see 1 for Counter:

Figure 8.1: Counter 1

And if you click the - Subtract button twice, then you should see -1 for Counter:

Figure 8.2: Counter -1

As you can see, the useState Hook is a game changer in React and makes it very easy to handle

the state in a functional component.

React Hooks134

After appreciating how the useState Hook has revolutionized state management in functional

components within React, we are now ready to delve deeper into the nuances of Hooks. The fol-

lowing section will discuss the essential rules of Hooks that govern their usage in React applications.

Rules of Hooks
React Hooks are basically JavaScript functions, but there are two rules that you need to follow

in order to use them. React provides a linter plugin to enforce those rules for you, which you can

install by running the following command:

npm install --save-dev eslint-plugin-react-hooks

Let’s look at these two rules.

Rule 1: Only call Hooks at the top level
To ensure the proper functioning of React Hooks, it is important to avoid calling them inside

loops, conditions, or nested functions. Instead, it is recommended to always use Hooks at the top

level of your React function. This practice ensures that Hooks are called in the same order every

time a component is rendered, allowing React to correctly preserve the state of Hooks between

multiple useState and useEffect calls. Following this rule will help you write more efficient and

maintainable code with React Hooks.

Rule 2: Only call Hooks from React functions
To ensure that all stateful logic in a component is clearly visible from its source code, avoid calling

Hooks from regular JavaScript functions. Instead, use Hooks in React function components or

custom Hooks (which we’ll learn about in the next section). By following this practice, you can

ensure that all stateful logic is centralized and easily understandable.

In the next section, we will learn how to migrate a class component to use the new React Hooks.

Migrating a class component to React Hooks
Let’s transform code that is currently using class components and is also using some life cycle

methods. In this example, we are fetching the issues from a GitHub repository and listing them.

For this example, you will need to install axios to perform the fetch:

npm install axios

Chapter 8 135

This is the class component version:

import axios from 'axios'

import { Component } from 'react'

type Issue = {

 number: number

 title: string

 state: string

}

type Props = {}

type State = { issues: Issue[] }

class Issues extends Component<Props, State> {

 constructor(props: Props) {

 super(props)

 this.state = {

 issues: []

 }

 }

 componentDidMount() {

 axios.get('https://api.github.com/repos/ContentPI/ContentPI/issues')

 .then((response: any) => {

 this.setState({

 issues: response.data

 })

 })

 }

 render() {

 const { issues = [] } = this.state

 return (

 <>

 <h1>ContentPI Issues</h1>

 {issues.map((issue: Issue) => (

 <p key={issue.title}>

 #{issue.number}{' '}

 <a

 href={`https://github.com/ContentPI/ContentPI/
issues/${issue.number}`}

React Hooks136

 target="_blank"

 >

 {issue.title}

 {' '}

 {issue.state}

 </p>

))}

 </>

)

 }

}

export default Issues

Chapter 8 137

If you render this component, you should see something like this:

Figure 8.3: ContentPI Issues

React Hooks138

Now, let’s transform our code into a functional component using React Hooks. The first thing we

need to do is to import some React functions and types:

import { FC, useState, useEffect } from 'react'

import axios from 'axios'

Now we can remove the Props and State types we created previously and just leave the Issue type:

type Issue = {

 number: number

 title: string

 state: string

}

After this, you can change the class definition to use a functional component:

const Issues: FC = () => {...}

The FC type is used to define a functional component in React. If you need to pass some props

to the component, you can pass them like this:

type Props = {

 propX: string

 propY: number

 propZ: boolean

}

const Issues: FC<Props> = () => {...}

The next thing we need to do is to replace our constructor and our state definition by using the

useState Hook:

// The useState hook replace the this.setState method

const [issues, setIssues] = useState<Issue[]>([])

We have used the life cycle method called componentDidMount before, which is executed when

the component is mounted and is going to run just once. The new React Hook, called useEffect,

will now handle all the life cycle methods using different syntax for each one, but for now, let’s

see how we can get the same effect of componentDidMount in our new functional component:

// When we use the useEffect hook with an empty array [] on the

// dependencies (second parameter)

// this represents the componentDidMount method (will be executed when the

Chapter 8 139

// component is mounted).

useEffect(() => {

 axios

 .get('https://api.github.com/repos/ContentPI/ContentPI/issues')

 .then((response: any) => {

 // Here we update directly our issue state

 setIssues(response.data)

 })

}, [])

And finally, we just render our JSX code:

return (

 <>

 <h1>ContentPI Issues</h1>

 {issues.map((issue: Issue) => (

 <p key={issue.title}>

 #{issue.number} {' '}

 <a

 href={`https://github.com/ContentPI/ContentPI/issues/${issue.
number}`}

 target="_blank">{issue.title}

 {' '}

 {issue.state}

 </p>

))}

 </>

)

As you can see, the new Hooks help us to simplify our code a lot and makes more sense. Also, we

reduced our code by 10 lines (the class component code has 53 lines, and the functional compo-

nent has 43 lines).

Now that we have seen the transformative power of new Hooks in streamlining our code and

reducing verbosity, let’s shift our focus to another foundational concept in React. In the next

section, we will delve into the differences between component life cycle methods used in class

components and the innovative React effects.

React Hooks140

Understanding React effects
In this section, we will learn the difference between the component life cycle methods that we

used in class components and the new React effects. Even if you have read in other places that

they are the same, just with a different syntax, this is not correct.

Understanding useEffect
When you work with useEffect, you need to think in terms of effects. If you want to perform the

equivalent method of componentDidMount using useEffect, you can do the following:

useEffect(() => {

 // Here you perform your side effect

}, [])

The first parameter is the callback of the effect that you want to execute, and the second param-

eter is the dependencies array. If you pass an empty array ([]) to the dependencies, the state and

props will have their original initial values.

However, it is important to mention that even though this is the closest equivalent to

componentDidMount, it does not have the same behavior. Unlike componentDidMount and

componentDidUpdate, the function that we pass to useEffect fires after layout and paint, during

a deferred event. This normally works for many common side effects, such as setting up sub-

scriptions and event handlers, because most types of work shouldn’t block the browser from

updating the screen.

However, not all effects can be deferred. For example, you will get a blink if you need to mutate

the Document Object Model (DOM). This is the reason why you must fire the event synchro-

nously before the next paint. React provides one Hook called useLayoutEffect, which works in

the exact same way as useEffect.

Firing an effect conditionally
If you need to fire an effect conditionally, then you should add a dependency to the array of de-

pendencies; otherwise, you will execute the effect multiple times and this may cause an infinite

loop. If you pass an array of dependencies, the useEffect Hook will only run if one of those

dependencies changes:

useEffect(() => {

// When you pass an array of dependencies the useEffect hook will only

Chapter 8 141

// run if one of the dependencies changes.

}, [dependencyA, dependencyB])

The effects are very important, but let’s also explore some other important new Hooks, including

useCallback, useMemo, and memo.

Understanding useCallback, useMemo, and memo
In order to understand the difference between useCallback, useMemo, and memo, we will do a to-do

list example. You can create a basic application by using create-vite and Typescript as a template:

npx create-vite todo --template react-ts

Right after that, you can remove all the extra files (App.css, App.test.ts, index.css, logo.svg,

reportWebVitals.ts, and setupTests.ts). You just need to keep the App.tsx file, which will

contain the following code:

import { FC, useState, useEffect, useMemo, useCallback, ChangeEvent } from
'react'

import List, { Todo } from './List'

const initialTodos: Todo[] = [

 { id: 1, task: 'Go shopping' },

 { id: 2, task: 'Pay the electricity bill'}

]

const App: FC = () => {

 const [todoList, setTodoList] = useState<Todo[]>(initialTodos)

 const [task, setTask] = useState<string>('')

 useEffect(() => {

 console.log('Rendering <App />')

 })

 const handleCreate = () => {

 const newTodo = {

 id: Date.now(),

If you understand how the React class life cycle methods work, basically, useEffect

behaves in the same way as componentDidMount, componentDidUpdate, and

componentWillUnmount combined.

React Hooks142

 task

 }

 // Pushing the new todo to the list

 setTodoList([...todoList, newTodo])

 // Resetting input value

 setTask('')

 }

 return (

 <>

 <input

 type="text"

 value={task}

 onChange={(e: ChangeEvent<HTMLInputElement>) => setTask(e.
target.value)}

 />

 <button onClick={handleCreate}>Create</button>

 <List todoList={todoList} />

 </>

)

}

export default App

Basically, we are defining some initial tasks and creating the todoList state, which we will pass

to the List component. Then, you need to create the List.tsx file with the following code:

import { FC, useEffect } from 'react'

import Task from './Task'

export type Todo = {

 id: number

 task: string

}

interface Props {

 todoList: Todo[]

}

Chapter 8 143

const List: FC<Props> = ({ todoList }) => {

 useEffect(() => {

 // This effect is executed every new render

 console.log('Rendering <List />')

 })

 return (

 {todoList.map((todo: Todo) => (

 <Task key={todo.id} id={todo.id} task={todo.task} />

))}

)

}

export default List

As you can see, we are rendering each task of the todoList array by using the Task component

and we pass the task as a prop. I also added a useEffect Hook to see how many renders we are

performing.

Finally, we create our Task.tsx file with the following code:

import { FC, useEffect } from 'react'

interface Props {

 id: number

 task: string

}

const Task: FC<Props> = ({ task }) => {

 useEffect(() => {

 console.log('Rendering <Task />', task)

 })

 return (

 {task}

)

}

export default Task

React Hooks144

This is how we should see the to-do list:

Figure 8.4: To-do list

As you can see, when we render our to-do list, by default, we are performing two renders of the

Task component, one render for List, and the other for the App component.

Chapter 8 145

Now, if we try to write a new task in the input, we can see that for each letter we write, we will

again see all of those renders:

Figure 8.5: Searching in the to-do list

As you can see, by just writing Go, we have two new batches of renders, so we can determine that

this component does not have good performance, and this is where memo can help us to improve

performance. In the next sections, we are going to learn how to implement memo, useMemo, and

useCallback to memoize a component, a value, and a function.

React Hooks146

Memoizing a component with memo
The memo High-Order Component (HOC) is similar to PureComponent for a React class because it

performs a shallow comparison of the props (meaning a superficial check), so if we try to render

a component with the same props all the time, the component will render just once and will

memoize. The only way to re-render the component is when a prop changes its value.

In order to fix our components to avoid multiple renders when we write in the input, we need to

wrap our components in the memo HOC.

The first component we will fix is our List component, and you just need to affect import memo

and wrap the component in export default:

import { FC, useEffect, memo } from 'react'

...

export default memo(List)

Then, you need to do the same with the Task component:

import { FC, useEffect, memo } from 'react'

...

export default memo(Task)

Chapter 8 147

Now, when we try to write Go again in the input, let’s see how many renders we get this time:

Figure 8.6: Evaluating how many renders our to-do list is performing

Now, we just get the first batch of renders the first time, and then, when we write Go, we just get

two more renders of the App component, which is totally fine because the task state (input value)

that we are changing is actually part of the App component.

React Hooks148

Also, we can see how many renders we are performing when we create a new task by clicking on

the Create button:

Figure 8.7: Improving performance

If you see, the first 16 renders are the word counting of the Go to the doctor string, and then,

when you click on the Create button, you should see one render of the Task component, one render

of List, and one render of the App component. As you can see, we have improved performance a

lot, and we are just performing the exact need that it renders.

Chapter 8 149

Memoizing a value with useMemo
Let’s suppose that we now want to implement a search feature in our to-do list. The first thing

we need to do is to add a new state called term to the App component:

const [term, setTerm] = useState('')

Then, we need to create a function called handleSearch:

const handleSearch = () => {

 setTerm(task)

}

Right before the return, we will create filterTodoList, which will filter the to-dos based on the

task, and we will add a console there to see how many times it is being rendered:

const filteredTodoList = todoList.filter((todo: Todo) => {

 console.log('Filtering...')

 return todo.task.toLowerCase().includes(term.toLowerCase())

})

At this point, you’re probably thinking that the correct thing is to always add memo

to our components, or maybe you’re thinking, why React doesn’t do this by default

for us?

The reason is performance, which means it is not a good idea to add memo to all our

components unless it is totally necessary; otherwise, the process of shallow comparisons

and memorization will have inferior performance than if we don’t use it.

I have a rule when it comes to establishing whether it is a good idea to use memo, and

this rule is straightforward: just don’t use it. Normally, when we have small compo-

nents or basic logic, we don’t need this unless you’re working with large data from some

API, your component needs to perform a lot of renders (normally huge lists), or when you

notice that your app is going slow. Only in that case would I recommend using memo.

React Hooks150

Finally, we need to add a new button next to the Create button that already exists:

<button onClick={handleSearch}>Search</button>

At this point, I recommend that you remove or comment console.log in the List and Task com-

ponents so that we can focus on the performance of filtering:

Figure 8.8: Reviewing filtering performance

When you run the application again, you will see that filtering is being executed twice, and then

the App component as well, and everything looks good here, but what’s the problem with this?

Chapter 8 151

Try to write Go to the doctor again in the input and let’s see how many counts of Rendering…

and Filtering… you get:

Figure 8.9: Bad performance on filtering

React Hooks152

As you can see, for each letter you write, you will get two filtering calls and one App render. You

don’t need to be a genius to see that this is bad performance; not to mention that if you are work-

ing with a large data array, this will be worse, so how can we fix this issue?

The useMemo Hook is our hero in this situation, and basically, we need to move our filter inside

useMemo, but first, let’s see the syntax:

const filteredTodoList = useMemo(() => SomeProcessHere, [])

The useMemo Hook will memoize the result (value) of a function and will have some dependencies

to listen to. Let’s see how we can implement it:

const filteredTodoList = useMemo(() => todoList.filter((todo: Todo) => {

 console.log('Filtering...')

 return todo.task.toLowerCase().includes(term.toLowerCase())

}), [])

Now, if you write something again in the input, you will see that filtering won’t be executed all

the time, as was the case previously:

Figure 8.10: Improving the performance of filtering

This is great, but there is still one small problem. If you try to click on the Search button, it won’t

filter, and this is because we missed the dependencies.

Chapter 8 153

Actually, if you see the console warnings, you will see this warning:

Figure 8.11: react-hooks/exhaustive-deps

You need to add the term and todoList dependencies to the array:

const filteredTodoList = useMemo(() => todoList.filter((todo: Todo) => {

 console.log('Filtering...')

 return todo.task.toLowerCase().includes(term.toLowerCase())

}), [term, todoList])

It should now work if you write Go and click on the Search button:

Figure 8.12: After fixing the warning

Here, we have to use the same rule that we used for memo; just don’t use it until absolutely necessary.

Memoizing a function definition with useCallback
Now we will add a delete task feature to learn how useCallback works. The first thing we need

to do is to create a new function called handleDelete in our App component:

const handleDelete = (taskId: number) => {

 const newTodoList = todoList.filter((todo: Todo) => todo.id !== taskId)

 setTodoList(newTodoList)

}

React Hooks154

And then you need to pass this function to the List component as a prop:

<List todoList={filteredTodoList} handleDelete={handleDelete} />

Then, in our List component, you need to add the prop to the Props interface:

interface Props {

 todoList: Todo[]

 handleDelete: any

}

Next, you need to pull it from the props and pass it down to the Task component:

const List: FC<Props> = ({ todoList, handleDelete }) => {

 useEffect(() => {

 // This effect is executed every new render

 console.log('Rendering <List />')

 })

 return (

 {todoList.map((todo: Todo) => (

 <Task

 key={todo.id}

 id={todo.id}

 task={todo.task}

 handleDelete={handleDelete}

 />

))}

)

}

Chapter 8 155

In the Task component, you need to create a button that will execute handleDelete onClick:

interface Props {

 id: number

 task: string

 handleDelete: any

}

const Task: FC<Props> = ({ id, task, handleDelete }) => {

 useEffect(() => {

 console.log('Rendering <Task />', task)

 })

 return (

 {task} <button onClick={() => handleDelete(id)}>X</button>

)

}

At this point, I recommend that you remove or comment console.log in the List and Task com-

ponents so that we can focus on the performance of filtering. Now you should see the X button

next to the task:

Figure 8.13: Let’s delete a task

React Hooks156

If you click on the X for Go shopping, you should be able to remove it:

Figure 8.14: Deleting a task

So far, so good, right? But again, we have a little issue with this implementation. If you now try

to write something in the input, such as Go to the doctor, let’s see what happens:

Figure 8.15: Bad performance

Chapter 8 157

As you can see, we are performing 71 renders of all the components again. At this point, you are

probably thinking about, what is going on if we have already implemented the memo HOC to memoize

the components? But the problem now is that our handleDelete function is being passed to two

components, from App to List and Task, and the issue is that this function is regenerated every

time we have a new re-render, in this case, every time we write something. So how do we fix this

problem?

The useCallback Hook is the hero in this case and is very similar to useMemo in the syntax, but

the main difference is that instead of memorizing the result value of a function, as useMemo does,

it is memorizing the function definition instead:

const handleDelete = useCallback(() => SomeFunctionDefinition, [])

Our handleDelete function should be like this:

const handleDelete = useCallback((taskId: number) => {

 const newTodoList = todoList.filter((todo: Todo) => todo.id !== taskId)

 setTodoList(newTodoList)

}, [todoList])

Now, it should work just fine if we write Go to the doctor again:

Figure 8.16: Improving performance

React Hooks158

Now, instead of 71 renders, we just have 23, which is normal, and we are also able to delete tasks:

Figure 8.17: Deleting tasks

As you can see, the useCallback Hook helps us to improve performance significantly. In the next

section, you will learn how to memoize a function passed as an argument in the useEffect Hook.

Memoizing a function passed as an argument in effect
There is a special case where we will need to use the useCallback Hook, and this is when we

pass a function as an argument in a useEffect Hook, for example, in our App component. Let’s

create a new useEffect block:

const printTodoList = () => {

 console.log('Changing todoList')

}

useEffect(() => {

 printTodoList()

}, [todoList])

In this case, we are listening for changes to the todoList state. If you run this code and you create

or remove a task, it will work just fine (remember to remove all the other consoles first):

Chapter 8 159

Figure 8.18: Changing the to-do list

Everything works fine, but let’s add todoList to the console:

const printTodoList = () => {

 console.log('Changing todoList', todoList)

}

If you’re using Visual Studio Code, you will get the following warning:

Figure 8.19: react-hooks/exhaustive-deps

Basically, it is asking us to add the printTodoList function to the dependencies:

useEffect(() => {

 printTodoList()

}, [todoList, printTodoList])

React Hooks160

But now, after we do that, we get another warning:

Figure 8.20: useCallback warning

The reason why we get this warning is that we are now manipulating the state (consoling the

state), which is why we need to add a useCallback Hook to this function to fix this issue:

const printTodoList = useCallback(() => {

 console.log('Changing todoList', todoList)

}, [todoList])

Now, when we delete a task, we can see that todoList updated correctly:

Figure 8.21: Changing to-do list data

At this point, this may be information overload for you, so let’s have a quick recap:

•	 memo:

•	 Memoizes a component

•	 Re-memoizes when props change

•	 Avoids re-renders

•	 useMemo:

•	 Memoizes a calculated value

•	 For computed properties

Chapter 8 161

•	 For heavy processes

•	 useCallback:

•	 Memoizes a function definition to avoid redefining it on each render

•	 Use it whenever a function is passed as an effect argument

•	 Use it whenever a function is passed by props to a memoized component

And finally, do not forget the golden rule: Do not use them until absolutely necessary.

In the next section, we are going to learn how to use the new useReducer Hook.

Understanding the useReducer Hook
You probably have some experience using Redux (react-redux) with class components, and if

that is the case, then you will understand how useReducer works. The concepts are basically the

same: actions, reducers, dispatch, store, and state. Even if, in general, it seems very similar to

react-redux, they have some differences. The main difference is that react-redux provides mid-

dleware and wrappers such as thunk, sagas, and many more besides, while useReducer just gives

you a dispatch method that you can use to dispatch plain objects as actions. Also, useReducer

does not have a store by default; instead, you can create one using useContext, but this is just

reinventing the wheel.

Let’s create a basic application to understand how useReducer works. You can start by creating

a new React app:

npx create-vite reducer --template react-ts

Then, as always, you can delete all files in your src folder except App.tsx and index.tsx to start

a brand-new application.

We will create a basic Notes application where we can list, delete, create, or update our notes

using useReducer. The first thing you need to do is import the Notes component, which we will

create later, into your App component:

import Notes from './Notes'

function App() {

 return (

 <Notes />

)

React Hooks162

}

export default App

Now, in our Notes component, you first need to import useReducer and useState:

Import { useReducer, useState, ChangeEvent } from 'react'

Then we need to define some TypeScript types that we need to use for our Note object, the Redux

action, and the action types:

type Note = {

 id: number

 note: string

}

type Action = {

 type: string

 payload?: any

}

type ActionTypes = {

 ADD: 'ADD'

 UPDATE: 'UPDATE'

 DELETE: 'DELETE'

}

const actionType: ActionTypes = {

 ADD: 'ADD',

 DELETE: 'DELETE',

 UPDATE: 'UPDATE'

}

After this, we need to create initialNotes (also known as initialState) with some dummy notes:

const initialNotes: Note[] = [

 {

 id: 1,

 note: 'Note 1'

 },

 {

 id: 2,

Chapter 8 163

 note: 'Note 2'

 }

]

If you remember how the reducers work, then this will seem very similar to how we handle the re-

ducer using a switch statement, so as to perform basic operations such as ADD, DELETE, and UPDATE:

const reducer = (state: Note[], action: Action) => {

 switch (action.type) {

 case actionType.ADD:

 return [...state, action.payload]

 case actionType.DELETE:

 return state.filter(note => note.id !== action.payload)

 case actionType.UPDATE:

 const updatedNote = action.payload

 return state.map((n: Note) => n.id === updatedNote.id ?
updatedNote : n)

 default:

 return state

 }

}

Finally, the component is very straightforward. Basically, you get the notes and the dispatch

method from the useReducer Hook (similar to useState), and you need to pass the reducer

function and initialNotes (initialState):

const Notes = () => {

 const [notes, dispatch] = useReducer(reducer, initialNotes)

 const [note, setNote] = useState<string>('')

 ...

}

Then, we have a handleSubmit function to create a new note when we write something in the

input. Then, we press Enter:

const handleSubmit = (e: ChangeEvent<HTMLInputElement>) => {

 e.preventDefault()

 const newNote = {

React Hooks164

 id: Date.now(),

 note

 }

 dispatch({ type: actionType.ADD, payload: newNote })

}

Finally, we render our Notes list with map, and we also create two buttons, one for delete and

one for update, and then the input should be wrapped into a <form> tag:

return (

 <div>

 <h2>Notes</h2>

 {notes.map((n: Note) => (

 <li key={n.id}>

 {n.note} {' '}

 <button onClick={() => dispatch({ type: actionType.DELETE,
payload: n.id })}>

 X

 </button>

 <button

 onClick={() => dispatch({ type: actionType.UPDATE,
payload: {...n, note} })}

 >

 Update

 </button>

))}

 <form onSubmit={handleSubmit}>

 <input

 placeholder="New note"

 value={note}

 onChange={e => setNote(e.target.value)}

 />

 </form>

Chapter 8 165

 </div>

)

export default Notes

If you run the application, you should see the following output:

Figure 8.22: React DevTools

As you can see in the React DevTools, the Reducer object contains the two notes that we have

defined as our initial state.

React Hooks166

Now, if you write something in the input and you press Enter, you should be able to create a new

note:

Figure 8.23: Creating a new note

Chapter 8 167

Then, if you want to delete a note, you just need to click on the X button. Let’s remove Note 2:

Figure 8.24: Deleting a note

React Hooks168

Finally, you can write anything you want in the input, and if you click on the Update button, you

will change the note value:

Figure 8.25: Updating a note

Nice, huh? As you can see, the useReducer Hook is pretty much the same as redux in terms of the

dispatch method, actions, and reducers, but the main difference is that this is limited just to the

context of your component and its child, so if you need a global store to be accessible from your

entire application, then you should use react-redux instead.

Chapter 8 169

Summary
I hope you enjoyed reading this chapter, which is full of very good information pertaining to the

new React Hooks. So far, you have learned how the new React Hooks work; how to fetch data with

Hooks; how to migrate a class component to React Hooks; how the effects work, the difference

between memo, useMemo, and useCallback; and finally, you learned how the useReducer Hook

works and the main difference compared with react-redux. This will help you to improve the

performance of your React components.

In the next chapter, we will learn about React Router v6 and how to implement it in our projects.

9
React Router

React is a library that provides a lot of useful building blocks for creating web applications, but

it doesn’t include everything you might need out of the box. One key feature that React doesn’t

provide is routing, which is the ability to handle URLs and navigate between different pages or

views in a single-page application. For that, we turn to third-party libraries, and the most popular

one for React is React Router.

In this chapter, we’ll explore React Router and learn how to use it to create dynamic routes and

handle navigation in our React applications. By the end of this chapter, you’ll have a good under-

standing of how React Router works and how to use it effectively in your own projects.

In this chapter, we will cover the following topics:

•	 Understanding the differences between the react-router, react-router-dom, and react-

router-native packages

•	 How to install and configure React Router

•	 Adding the <Routes> component

•	 Adding parameters to routes

•	 React Router v6.4 and React Router loaders

Technical requirements
To complete this chapter, you will need the following:

•	 Node.js 19+

•	 Visual Studio Code

React Router172

You can find the code for this chapter in the book’s GitHub repository at https://github.com/
PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/

main/Chapter09.

Installing and configuring React Router
After you create a new React application using create-react-app, the first thing you need to do

is to install React Router v6.x, using the following command:

npm install react-router-dom @types/react-router-dom

You are probably confused about why we are installing react-router-dom instead of react-

router. React Router contains all the common components of react-router-dom and react-

router-native. That means that if you are using React for the web, you should use react-router-

dom, and if you are using React Native, you need to use react-router-native.

The react-router-dom package was created originally to contain version 4 and react-router

uses version 3. The react-router-dom v6 package has some improvements over react-router.

They are listed here:

•	 Simplified route configuration: React Router v6 has introduced a more straightforward

route configuration, eliminating the need for Switch and exact props. Routes are now

implicitly prioritized based on their definition order.

•	 Nested routing: React Router v6 has improved support for nested routing. The Outlet

component is used to render child routes, allowing for more intuitive and maintainable

route structures.

•	 Simplified navigation: In v6, the useNavigate hook has replaced the useHistory hook,

providing a more straightforward and declarative approach to navigation.

•	 Route relative links and navigation: With the introduction of the useLinkProps and Link

components in v6, it’s now easier to create links relative to the current route. This reduces

the need to hardcode full paths and simplifies route management.

•	 Simplified route guards: React Router v6 introduces a more streamlined approach to

route guards using the useRoutes hook and the element prop. It allows for easier and

more maintainable route protection patterns.

Since React Router v6.4, the approach to creating routes has changed slightly, but it

still supports the “old way.” In our final section, we will convert the same example

to the new approach.

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter09

Chapter 9 173

Creating our sections
Let’s create some sections to test some basic routes. We need to create four stateless components

(About, Contact, Home, and Error404) and name them as index.tsx in their directories.

You can add the following to the src/components/Home.tsx component:

const Home = () => (

<div className="Home">

 <h1>Home</h1>

</div>

)

export default Home

The src/components/About.tsx component can be created with the following:

const About = () => (

<div className="About">

 <h1>About</h1>

</div>

)

export default About

The following creates the src/components/Contact.tsx component:

const Contact = () => (

<div className="Contact">

 <h1>Contact</h1>

</div>

)

export default Contact

Finally, the src/components/Error404.tsx component is created as follows:

const Error404 = () => (

<div className="Error404">

 <h1>Error404</h1>

</div>

)

export default Error404

React Router174

After we have created all the functional components, we need to modify our index.tsx file to

import our route file, which we will create in the next step:

// Dependencies

import { createRoot } from 'react-dom/client'

import { BrowserRouter as Router } from 'react-router-dom'

// Routes

import AppRoutes from './routes'

createRoot(document.getElementById('root') as HTMLElement).render(

 <Router>

 <AppRoutes />

 </Router>

)

Now, we need to create the src/routes.tsx file, where we will render our Home component when

the user accesses the root path (/):

// Dependencies

import { Routes, Route } from 'react-router-dom'

// Components

import App from './App'

import Home from './components/Home'

const AppRoutes = () => (

 <App>

 <Routes>

 <Route path="/" element={<Home />} />

 </Routes>

 </App>

)

export default AppRoutes

After that, we need to modify our App.tsx file to render the route components as children:

import { FC, ReactNode } from 'react'

import './App.css'

type Props = {

 children: ReactNode

}

Chapter 9 175

const App: FC<Props> = ({ children }) => (

<div className="App">

 {children}

</div>

)

export default App

If you run the application, you will see the Home component in the root (/):

Figure 9.1: Home page

Now, let’s add Error404 when the user tries to access any other route:

// Dependencies

import { Routes, Route } from 'react-router-dom'

// Components

import App from './App'

import Home from './components/Home'

import Error404 from './components/Error404'

const AppRoutes = () => (

<App>

 <Routes>

 <Route path="/" element={<Home />} />

 <Route path="*" element={<Error404 />} />

 </Routes>

</App>

)

export default AppRoutes

React Router176

Now, if you go to /somefakeurl, you will be able to see the Error404 component:

Figure 9.2: Error 404 page

Now, we can add our other components (About and Contact):

// Dependencies

import { Routes, Route } from 'react-router-dom'

// Components

import App from './App'

import About from './components/About'

import Contact from './components/Contact'

import Home from './components/Home'

import Error404 from './components/Error404'

const AppRoutes = () => (

<App>

 <Routes>

 <Route path="/" element={<Home />} />

 <Route path="/about" element={<About />} />

 <Route path="/contact" element={<Contact />} />

 <Route path="*" element={<Error404 />} />

 </Routes>

</App>

)

export default AppRoutes

Chapter 9 177

Now, you can visit /about:

Figure 9.3: About page

Alternatively, you can now visit /contact:

Figure 9.4: Contact page

Now that you have implemented your first routes, let’s add some parameters to the routes in the

next section.

Adding parameters to the routes
So far, you have learned how to use React Router for basic routes (one-level routes). Next, I will

show you how to add some parameters to the routes and get them into your components.

React Router178

For this example, we will create a Contacts component to display a list of contacts when we visit

the /contacts route, but we will show the contact information (name, phone, and email) when

the user visits /contacts/:contactId.

The first thing we need to do is to create our Contacts component. Let’s use the following

skeleton: const Contacts = () => (

<div className="Contacts">

 <h1>Contacts</h1>

</div>

)

export default Contacts

Let’s use these CSS styles:

.Contacts ul {

 list-style: none;

 margin: 0;

 margin-bottom: 20px;

 padding: 0;

}

.Contacts ul li {

 padding: 10px;

}

.Contacts a {

 color: #555;

 text-decoration: none;

}

.Contacts a:hover {

 color: #ccc;

 text-decoration: none;

}

Once you have created the Contacts component, you need to import it into your route file:

import { Routes, Route } from 'react-router-dom'

import App from './App'

import About from './components/About'

import Contact from './components/Contact'

Chapter 9 179

import Home from './components/Home'

import Error404 from './components/Error404'

import Contacts from './components/Contacts'

const AppRoutes = () => (

<App>

<Routes>

 <Route path="/" element={<Home />} />

 <Route path="/about" element={<About />} />

 <Route path="/contact" element={<Contact />} />

 <Route path="/contacts" element={<Contacts />} />

 <Route path="*" element={<Error404 />} />

</Routes>

</App>

)

export default AppRoutes

Now you will be able to see the Contacts component if you go to the /contacts URL:

Figure 9.5: Contacts page

Now that the Contacts component is connected to React Router, let’s render our contacts as a list:

import { FC, useState } from 'react'

import { Link, useParams } from 'react-router-dom'

import './Contacts.css'

type Contact = {

 id: number

 name: string

 email: string

 phone: string

}

React Router180

const data: Contact[] = [

{

 id: 1,

 name: 'Carlos Santana',

 email: 'carlos.santana@dev.education',

 phone: '415-307-3112'

},

{

 id: 2,

 name: 'John Smith',

 email: 'john.smith@dev.education',

 phone: '223-344-5122'

},

{

 id: 3,

 name: 'Alexis Nelson',

 email: 'alexis.nelson@dev.education',

 phone: '664-291-4477'

}

]

const Contacts: FC = () => {

const { contactId = 0 } = useParams()

// For now we are going to add our contacts to our

// local state, but normally this should come

// from some service.

const [contacts, setContacts] = useState<Contact[]>(data)

const renderContacts = () => (

 {contacts.map((contact: Contact, key) => (

 <li key={contact.id}>

 <Link to={`/contacts/${contact.id}`}>{contact.name}</Link>

))}

)

return (

 <div className="Contacts">

Chapter 9 181

 <h1>Contacts</h1>

 {renderContacts()}

 </div>

)

}

export default Contacts

As you can see, we are using the <Link> component, which will generate an <a> tag that points

to /contacts/contact.id, and this is because we will add a new nested route to our route file

to match the ID of the contact:

const AppRoutes = () => (

<App>

<Routes>

 <Route path="/" element={<Home />} />

 <Route path="/about" element={<About />} />

 <Route path="/contact" element={<Contact />} />

 <Route path="/contacts" element={<Contacts />}>

 <Route path=":contactId" element={<Contacts />} />

</Route>

 <Route path="*" element={<Error404 />} />

</Routes>

</App>

)

React Router v6 has a special hook called useParams, which will give you access to the contactId

parameter:

import { FC, useState } from 'react'

import { Link, useParams } from 'react-router-dom'

import './Contacts.css'

const data = [

{

 id: 1,

 name: 'Carlos Santana',

 email: 'carlos.santana@dev.education',

 phone: '415-307-3112'

},

React Router182

{

 id: 2,

 name: 'John Smith',

 email: 'john.smith@dev.education',

 phone: '223-344-5122'

},

{

 id: 3,

 name: 'Alexis Nelson',

 email: 'alexis.nelson@dev.education',

 phone: '664-291-4477'

}

]

type Contact = {

 id: number

 name: string

 email: string

 phone: string

}

const Contacts: FC<any> = () => {

const { contactId = 0 } = useParams()

console.log('contactId', contactId)

For now, we are going to add our contacts to our local state, but normally this should come from

some service:

const [contacts, setContacts] = useState<Contact[]>(data)

By default, our selectedNote is false:

let selectedContact: any = false

if (contactId > 0) {

Chapter 9 183

If the contactId is higher than 0, then we filter it from our contacts array:

selectedContact = contacts.filter((contact) => contact.id ===
Number(contactId))[0]

}

const renderSingleContact = ({ name, email, phone }: Contact) => (

<>

 <h2>{name}</h2>

 <p>{email}</p>

 <p>{phone}</p>

</>

)

const renderContacts = () => (

 {contacts.map((contact: Contact, key) => (

 <li key={key}>

 <Link to={`/contacts/${contact.id}`}>{contact.name}</Link>

))}

)

return (

<div className="Contacts">

 <h1>Contacts</h1>

 {/* We render our selectedContact or all the contacts */}

 {selectedContact ? renderSingleContact(selectedContact) :
 renderContacts()}

</div>

)

}

export default Contacts

As you can see, we are receiving the contactId parameter with useParams.

React Router184

If you run the application again, you should see your contacts like this:

Figure 9.6: Displaying contacts

If you click on John Smith (whose contactId is 2), you will see the contact information:

Figure 9.7: Displaying a specific contact

After this, you can add a navbar in the App component to access all the routes:

import { Link } from 'react-router-dom'

import './App.css'

const App = ({ children }) => (

Chapter 9 185

<div className="App">

 <ul className="menu">

 <Link to="/">Home</Link>

 <Link to="/about">About</Link>

 <Link to="/contacts">Contacts</Link>

 <Link to="/contact">Contact</Link>

 {children}

</div>

)

export default App

Now, let’s modify our App styles:

.App {

 text-align: center;

}

.App ul.menu {

 margin: 50px;

 padding: 0;

 list-style: none;

}

.App ul.menu li {

 display: inline-block;

 padding: 0 10px;

}

.App ul.menu li a {

 color: #333;

 text-decoration: none;

}

.App ul.menu li a:hover {

 color: #ccc;

}

React Router186

Finally, you will see something like this:

Figure 9.8: Displaying the menu

By the end of this section, you’ll know how to add routes with parameters to your application.

This is amazing, right?

React Router v6.4
As mentioned at the beginning of this chapter, React Router v6.4 introduces a new way of im-

plementing routes.

Let’s rewrite our last example to explore the differences. The first difference is that instead of

using AppRoutes as we did previously, we will now add our routes directly to our App.tsx file.

Let’s begin by modifying our main.tsx and removing AppRoutes:

import { createRoot } from 'react-dom/client'

import App from './App'

createRoot(document.getElementById('root') as HTMLElement).render(

<App />

)

Now, in our App.tsx file, we need to import some new functions from react-router-dom and

load the components that will be rendered for each URL:

import { FC } from 'react'

Chapter 9 187

import {

 createBrowserRouter,

 createRoutesFromElements,

 Route,

 Link,

 Outlet,

 RouterProvider

} from 'react-router-dom'

import About from './components/About'

import Home from './components/Home'

import Pokemons, { dataLoader } from './components/Pokemons'

import Error404 from './components/Error404'

import './App.css'

Afterward, we need to specify our routes by utilizing the createBrowserRouter and

createRoutesFromElements functions:

const App: FC<any> = () => {

const router = createBrowserRouter(

createRoutesFromElements(

 <Route path="/" element={<Root />}>

 <Route index element={<Home />} />

 <Route path="/about" element={<About />} />

 <Route path="*" element={<Error404 />} />

</Route>

)

)

}

As you can see, we are rendering the <Root /> component, and you might be wondering where

this component is located. The <Root /> component serves the purpose of housing our Navigation

menu. Additionally, using the new <Outlet /> component, we can specify the location where

we want to render the content of our routes. To accomplish this, you need to create the <Root />

component before defining the App component (at the top):

const Root = () => (

<>

<ul className="menu">

 <Link to="/">Home</Link>

React Router188

 <Link to="/about">About</Link>

 <Link to="/pokemons">Pokemons</Link>

<div>

 <Outlet />

</div>

</>

)

The first route is our Home, which is why we need to utilize the index prop. Next, we have the about

route where we specify the path as /about. Lastly, we added an asterisk, which will match any

other page that we don’t have, rendering a 404 Error page.

Once we have created the Root component and specified the routes, we need to render the

RouterProvider and pass the created router as a parameter:

return (

<div className="App">

 <RouterProvider router={router} />

</div>

)

If you’ve done everything correctly, you should be able to see the Home and About pages:

Figure 9.9: Home page

Chapter 9 189

If you click on About, you should see the page appear as follows:

Figure 9.10: About page

With this foundational understanding of the changes in React Router v6.4, we’ll now venture into

looking at implementing the new addition of loaders using the Pokemons page as our working

example.

React Router loaders
One of the main changes in React Router 6.4 is the addition of loaders. These loaders provide a

better way to fetch data, eliminating the need for the common pattern of using useEffect and

fetch within components.

As you may have noticed in the menu, I have included a Pokemons page without specifying the

route just yet. The reason for this is that I want to demonstrate how to use the new React Router

loaders with this page as an example.

First, let’s create our Pokemons component by using the Home component as a template:

const Pokemons = () => (

<div className="Pokemons">

 <h1>Pokemons</h1>

</div>

)

export default Pokemons

Now that we have our base component, we need to create a dataLoader function that is asyn-

chronous. This function will be responsible for fetching the data:

export const dataLoader = async () => {

React Router190

const response = await fetch('https://pokeapi.co/api/v2/
pokemon?limit=151')

const data = await response.json()

return data.results

}

export default Pokemons

As you can see, we place the dataLoader before exporting the Pokemons component as the default.

Once you have created your dataLoader, you need to import it and specify the route for Pokemons

in the App.tsx file. Remember to pass the dataLoader to the loader prop:

import Pokemons, { dataLoader } from './components/Pokemons'

...

const router = createBrowserRouter(

createRoutesFromElements(

 <Route path="/" element={<Root />}>

 <Route index element={<Home />} />

 <Route path="/about" element={<About />} />

 <Route path="/pokemons" element={<Pokemons />} loader={dataLoader} />

 <Route path="*" element={<Error404 />} />

</Route>

)

)

After connecting our dataLoader to the route, we can now render the data for Pokemons. To retrieve

the data, we will utilize the new useLoaderData hook. Additionally, we will use the useNavigation

hook to monitor the state of the route, enabling us to determine if the data is still loading. The

following is the complete code for the Pokemons component:

import { useLoaderData, useNavigation } from 'react-router-dom'

const Pokemons = () => {

const pokemons: any = useLoaderData()

const navigation = useNavigation()

 if (navigation.state === 'loading') {

 return <h1>Loading...</h1>

 }

Chapter 9 191

const imgUrl = 'https://raw.githubusercontent.com/PokeAPI/sprites/master/
sprites/pokemon/'

return (

<div className="Home">

 <h1>Pokemons</h1>

 {pokemons.map((pokemon: any, index: number) => (

<div key={pokemon.name}>

 <h2>{index + 1} {pokemon.name}</h2>

<img

src={`${imgUrl}/${pokemon.url.split('/').slice(-2, -1)}.png`}

alt={pokemon.name}

/>

 <p>

 {pokemon.url}

 </p>

 </div>

))}

 </div>

)

}

export const dataLoader = async () => {

const response = await fetch('https://pokeapi.co/api/v2/
pokemon?limit=151')

const data = await response.json()

 return data.results

}

export default Pokemons

React Router192

Let’s test our Pokemons page. We should see the first 150 Pokemons:

Figure 9.11: Pokemons page

Chapter 9 193

Through new features like loaders, React Router v6.4 streamlines routing and data fetching in React

applications. We created a Pokemons page using a dataLoader function, which asynchronously

fetched data from an API. We provided a more user-friendly interface by integrating this function

into our route configuration and using React Router’s useLoaderData and useNavigation hooks.

As a result of these enhancements, React Router v6.4 is now more robust, efficient, and intuitive,

enabling developers to create more complex, data-driven applications with less effort.

Summary
Good job! By navigating React Router, you have acquired essential skills for installing, configur-

ing, and managing routes, as well as incorporating parameters into nested routes. You will be

able to create more dynamic and robust web applications using React Router by utilizing these

capabilities. In addition, you have learned about the cutting-edge features of React Router v6.4,

particularly its innovative use of loaders.

We are about to embark on the next chapter of this series, where we will explore the exciting

new features introduced in React 18. By continuously learning and applying, you will become

proficient in React.

Join our community on Discord
Join our community’s Discord space for discussion with the author and other readers:

https://packt.link/React18DesignPatterns4e

https://packt.link/React18DesignPatterns4e

10
React 18 New Features

React 18, the latest version of the popular JavaScript library for building user interfaces, introduc-

es a host of new features and enhancements that aim to improve performance and enhance the

developer experience. As a part of the ever-evolving React ecosystem, it is crucial to stay up to

date with these advancements. In this chapter, we will provide a succinct overview of the most

notable additions in React 18, followed by a brief explanation of the latest features in Node.js 19.

The new features in React 18 include:

•	 Automatic Batching of State Updates: React 18 automatically batches multiple state

updates into a single update, which results in improved performance and smoother ani-

mations. This automatic batching eliminates the need for manual batching.

•	 Concurrent Rendering: This feature enables React to prioritize the rendering of certain

components, leading to faster load times, smoother animations, and better user expe-

riences.

•	 Suspense for Data Fetching: Suspense enables developers to suspend the rendering of a

component until the required data is loaded, providing a seamless user experience and

improved error handling.

•	 Improved Error Handling: React 18 simplifies error handling by offering more infor-

mation about errors such as the component and code location where the error occurred,

streamlining the debugging process.

•	 New Component Types: React 18 introduces two new component types – portals and

components with side effects. Portals enable rendering components outside of their parent

components, while components with side effects allow performing side effects without

a separate function.

React 18 New Features196

•	 No Support for Internet Explorer 11: To leverage modern web standards and enhance

performance, React 18 no longer supports Internet Explorer 11. Developers must ensure

their users employ a modern, supported browser like Google Chrome, Mozilla Firefox,

Apple Safari, or Microsoft Edge.

We’re going to cover the following main topics:

•	 Concurrent mode

•	 Automatic batching

•	 Suspense on the server

•	 New APIs

•	 New hooks

•	 Strict mode

•	 Node.js latest features

Concurrent mode
React concurrent mode is a set of new features in React 18 that enable faster and more responsive

user interfaces by allowing React to work on multiple tasks simultaneously.

In traditional React, the rendering process is synchronous, which means that React updates the

user interface in a single pass. This can sometimes lead to performance issues, especially when

rendering large, complex applications or handling real-time updates.

Concurrent mode allows React to split the rendering process into smaller units of work that can

be executed independently and in parallel. This means that React can prioritize certain tasks, such

as updating the user interface, while still allowing other tasks to run in the background, such as

handling user input or fetching data.

Here are some of the key features of React concurrent mode:

•	 Time slicing: Time slicing is a technique that allows React to break up large chunks of

work into smaller pieces and prioritize the most important tasks first. This can help to

reduce the perceived latency of an application and make it feel more responsive.

•	 Suspense: Suspense is a new feature in React that allows developers to suspend the ren-

dering of a component until the necessary data has been loaded. This can help to improve

the perceived performance of an application and provide a better user experience.

Chapter 10 197

•	 Concurrent rendering: Concurrent rendering is a new rendering mode in React that

allows React to update the user interface more frequently, resulting in smoother anima-

tions and transitions.

Overall, React concurrent mode is a powerful new set of features that can help developers create

faster and more responsive user interfaces. While it may require some adjustments to existing

code, adopting concurrent mode can help to improve the user experience of your applications and

keep them competitive in a fast-paced digital landscape. Here’s an example that demonstrates

the use of time slicing and concurrent rendering in React 18:

import React, { useState } from 'react'

function Counter() {

 const [count, setCount] = useState(0)

 function handleClick() {

 setCount(count + 1)

 }

 return (

 <button onClick={handleClick}>

 {count}

 </button>

)

}

function App() {

 return (

 <React.Suspense fallback={<div>Loading...</div>}>

 <Counter />

 </React.Suspense>

)

}

ReactDOM.createRoot(document.getElementById('root')).render(<App />)

Automatic batching
Automatic batching is a new feature in React 18 that improves the performance of updates by

automatically batching multiple updates into a single render pass. In traditional React, updates

to the user interface are typically processed synchronously, which means that each update trig-

gers a new render pass.

React 18 New Features198

This can be inefficient, especially when multiple updates occur in rapid succession. Automatic

batching solves this problem by grouping multiple updates together and processing them in a

single render pass.

Here’s an example to illustrate how automatic batching works:

function MyComponent() {

 const [count, setCount] = useState(0)

 function handleClick() {

 setCount(count + 1)

 setCount(count + 1)

 setCount(count + 1)

 }

 return (

 <div>

 <p>Count: {count}</p>

 <button onClick={handleClick}>Increment</button>

 </div>

)

}

In this example, we have a MyComponent component that uses the useState hook to manage a

count state variable. When the user clicks the Increment button, we call the setCount function

three times in rapid succession, each time incrementing the count by 1.

In traditional React, each call to setCount would trigger a new render pass, resulting in three

separate updates to the user interface. However, with automatic batching in React 18, these up-

dates are automatically grouped together and processed in a single render pass. This can result in

significant performance improvements, especially when handling user input or real-time updates.

Overall, automatic batching is a powerful new feature in React 18 that can help to improve the

performance and responsiveness of your applications. By automatically batching multiple up-

dates together, React can optimize the rendering process and reduce unnecessary render passes,

resulting in faster and more efficient updates to the user interface.

Transitions
React 18 introduces a new feature called transitions that allows developers to create smooth,

declarative animations and transitions in their applications.

Chapter 10 199

Transitions build on the existing capabilities of React’s declarative programming model to provide

a simple and intuitive way to animate elements and components.

Here’s a simple example to illustrate how transitions work:

import { useState } from 'react'

import { Transition } from 'react-transition-group'

function MyComponent() {

 const [show, setShow] = useState(false)

 function handleClick() {

 setShow(!show)

 }

 return (

 <div>

 <button onClick={handleClick}>

 {show ? 'Hide' : 'Show'}

 </button>

 <Transition in={show} timeout={300}>

 {(state) => (

 <div

 style={{

 transition: 'opacity 300ms ease-out',

 opacity: state === 'entered' ? 1 : 0,

 }}

 >

 {show && <p>Hello, world!</p>}

 </div>

)}

 </Transition>

 </div>

)

}

In this example, we use the Transition component from the react-transition-group library

to animate the appearance and disappearance of a p element. The Transition component takes

an in prop that determines whether the element should be shown or hidden, and a timeout prop

that specifies the duration of the transition in milliseconds.

React 18 New Features200

Inside the Transition component, we define a function that takes a state argument and returns

the contents of the transitioned element. The state argument is a string that represents the current

state of the transition, which can be one of entering, entered, exiting, or exited.

In our example, we use the state argument to set the opacity of the div element based on the

current state of the transition. When the state is entered, we set the opacity to 1 to make the

element fully visible. When the state is exiting or exited, we set the opacity to 0 to make the

element fade out smoothly.

By using the Transition component and the state argument, we can create a smooth, declarative

animation that responds to changes in the application state. This can be a powerful way to create

engaging and dynamic user interfaces that feel alive and responsive.

Overall, transitions are a powerful new feature in React 18 that allow developers to create declar-

ative animations and transitions with ease. By leveraging the power of React’s declarative pro-

gramming model, developers can create complex animations and transitions with a few lines of

code, making it easier than ever to create engaging and dynamic user interfaces.

Suspense on the server
React 18 introduces some improvements to server-side rendering (SSR) with Suspense that allow

developers to create more efficient and scalable server-rendered applications.

Before React 18, Suspense was primarily used in client-side rendering to manage asynchronous

data loading and code splitting. However, with React 18, Suspense can also be used on the server

to optimize the rendering of server-rendered components.

Here’s a high-level overview of how Suspense works on the server:

•	 During the initial render of a server-rendered component, any Suspense boundaries are

registered, and their fallback content is rendered instead of the main content.

•	 When data loading or code splitting is required, the server can return a “placeholder”

HTML response that contains the fallback content for the Suspense boundaries.

•	 Once the asynchronous data or code has loaded, the client can hydrate the Suspense

boundaries with the actual content, replacing the fallback content with the final content.

This approach allows the server to avoid the expensive rendering of component trees that may be

blocked by data loading or code splitting. Instead, the server can return a simple HTML response

with fallback content, which can be quickly and easily rendered by the client. This can significantly

improve the performance and scalability of server-rendered applications.

Chapter 10 201

Here’s an example to illustrate how Suspense can be used on the server:

import { Suspense } from 'react'

import { fetchUserData } from './api'

function MyComponent() {

 const userData = fetchUserData();

 return (

 <div>

 <p>Name: {userData.name}</p>

 <Suspense fallback={<p>Loading...</p>}>

 <UserProfile userId={userData.id} />

 </Suspense>

 </div>

)

}

In this example, we have a MyComponent component that fetches user data from an API and ren-

ders it alongside a UserProfile component that requires additional data loading. By wrapping

the UserProfile component in a Suspense boundary, we can ensure that the fallback content is

displayed until the additional data has been loaded.

When rendering on the server, the server can return a simple HTML response with the fallback

content for the Suspense boundary, allowing the client to render the fallback content quickly and

easily. Once the data has been loaded, the client can hydrate the Suspense boundary with the

actual content, replacing the fallback content with the final content.

Overall, the improvements to SSR with Suspense in React 18 can help to improve the performance

and scalability of server-rendered applications, making it easier to create fast and responsive

web experiences for users.

New APIs
React 18 has introduced a variety of new APIs that are focused on enhancing the user interface,

improving application performance, and providing a better developer experience. Notably, sig-

nificant additions include createRoot, hydrateRoot, and renderToPipeableStream.

createRoot
React 18 introduces a new API called createRoot, which provides a simpler and more explicit

way to render React components into the DOM.

React 18 New Features202

Traditionally, when rendering a React application into the DOM, you would use the ReactDOM.

render method to specify the root element and the React component to render into it. For example:

import React from 'react'

import ReactDOM from 'react-dom'

const App = () => {

 return <div>Hello, world!</div>

}

ReactDOM.render(<App />, document.getElementById('root'))

With createRoot, you can create a root element that can be used to render multiple components,

instead of specifying the root element for each component. Here’s an example:

const App = () => {

 return <div>Hello, world!</div>

}

const root = ReactDOM.createRoot(document.getElementById('root'))

root.render(<App />)

In this example, we first create a root element using createRoot, passing in the DOM element

that we want to render our React application into. We then use the render method on the root

element to specify the React component to render.

The createRoot API also supports concurrent mode, which allows React to update the UI in a

more efficient and responsive way by breaking up large updates into smaller chunks. To use

concurrent mode with createRoot, you can pass a mode option:

const root = ReactDOM.createRoot(document.getElementById('root'), { mode:
'concurrent' })

root.render(<App />)

In this example, we pass the mode option with a value of 'concurrent', indicating that we want

to use concurrent mode when rendering our React components.

Overall, the createRoot API provides a simpler and more flexible way to render React components

into the DOM and supports the new features introduced in React 18, such as concurrent mode

and the improved server-side rendering with Suspense.

Chapter 10 203

hydrateRoot
hydrateRoot is another new API introduced in React 18 that works in conjunction with createRoot.

In the traditional React rendering model, the server would render a static HTML document and

send it to the client, which would then create a new React root and render the app on the client

side. However, with SSR, React can render the initial HTML on the server and send it to the client,

which can then “hydrate” the HTML into a fully functional React app.

hydrateRoot is used for this process of hydrating the initial HTML sent by the server into a React

component tree. It allows React to reuse the server-rendered markup so that the initial page load

is faster and there’s less work for the client to do.

Here’s an example of how you can use hydrateRoot to hydrate the initial HTML on the client:

import React from 'react'

import { createRoot, hydrateRoot } from 'react-dom'

const App = () => {

 return <div>Hello, world!</div>

}

const root = createRoot(document.getElementById('root'))

if (root.isMounted()) {

 hydrateRoot(document.getElementById('root'), <App />)

} else {

 root.render(<App />)

}

In this example, we first create a root element using createRoot as we did in the previous exam-

ple. We then check if the root is already mounted by calling root.isMounted(). If it is, we use

hydrateRoot to hydrate the existing HTML on the page. If not, we use root.render to render the

React component as usual.

Note that you need to ensure that the server and client render the same HTML structure, otherwise,

hydration may fail, and you may end up with a mismatch between the server-rendered markup

and the hydrated React component tree. To avoid this, you can use the Suspense component to

handle asynchronous rendering and data fetching on both the server and client and ensure that

the HTML structure remains the same.

React 18 New Features204

renderToPipeableStream
renderToPipeableStream is another new API introduced in React 18 that allows you to render a

React component tree to a Node.js stream. This can be useful for server-side rendering in scenarios

where you need to send the rendered content over a network or to a file.

Here’s an example of how you can use renderToPipeableStream to render a React component

to a stream:

import React from 'react'

import { renderToPipeableStream } from 'react-dom/server'

import { createServer } from 'http'

const App = () => {

 return <div>Hello, world!</div>

}

const server = createServer((req, res) => {

 const stream = renderToPipeableStream(<App />)

 stream.pipe(res)

})

server.listen(3000)

In this example, we first create a simple React component called App. We then create a

Node.js HTTP server using the createServer method. When a request is made to the server, we

use renderToPipeableStream to render the App component to a Node.js stream. We then pipe

the stream to the response object using the pipe method.

Note that renderToPipeableStream returns a Node.js stream that you can pipe to other streams

or write to a file. This allows you to easily generate server-rendered content and send it over a

network or save it to disk without having to buffer the entire HTML in memory.

Also note that renderToPipeableStream is asynchronous, so it returns a Promise that resolves

to the stream. This means that you can use it with await to wait for the rendering to complete

before sending the response.

Overall, renderToPipeableStream is a useful API for SSR in Node.js environments and can help

improve the performance and scalability of your server-rendered applications.

Chapter 10 205

New Hooks
In React 18, a set of innovative hooks has been introduced, which provide enhanced tech-

niques for managing IDs, transitions, and optimizing performance. These hooks include useId,

useTransition, useDeferredValue, and useInsertionEffect.

useId
useId is a new built-in hook in React 18 that can be used to generate a unique ID. This can be useful

in scenarios where you need to generate unique identifiers for elements in a React component,

for example, when building forms.

Here’s an example of how you can use useId to generate a unique ID:

import { useId } from 'react'

const MyComponent = () => {

 const id = useId()

 return <div id={id}>Hello, world!</div>

}

In this example, we use the useId hook to generate a unique ID, which we then use as the id

attribute of a <div> element.

useId generates a unique ID that is guaranteed to be different on each render. It takes an optional

parameter that can be used to specify a prefix for the generated ID, which can be useful for naming

elements in a consistent way.

Here’s an example of how you can use the prefix parameter to specify a prefix for the generated ID:

import { useId } from 'react'

const MyComponent = () => {

 const id = useId('my-prefix')

 return <div id={id}>Hello, world!</div>

}

In this example, we use the useId hook with the 'my-prefix' prefix, which generates an ID that

starts with the string 'my-prefix'. This can be useful for naming elements in a way that is con-

sistent with your application’s naming conventions.

React 18 New Features206

Overall, useId is a useful addition to React 18 and can simplify the process of generating unique

identifiers for elements in a React component.

Although the useId hook in React 18 offers unique benefits, it’s essential to be aware of certain

caveats to avoid potential issues. Firstly, it’s not recommended to use useId for generating keys

in a list. The preferred approach is to derive keys directly from your data. Secondly, the useId

Hook requires a perfect match between the component trees on the server and the client side

during server rendering. Any discrepancies between the server and client-rendered trees could

lead to inconsistent IDs.

useTransition
useTransition is a new built-in hook in React 18 that allows you to add smooth transitions to your

application. It’s part of the new concurrent mode feature and is designed to work with Suspense

to create loading states and fallbacks for data fetching.

Here’s an example of how you can use useTransition to add a loading spinner while data is

being fetched:

import React, { useState, useTransition } from 'react'

const MyComponent = () => {

 const [data, setData] = useState(null)

 const [startTransition, isPending] = useTransition({ timeoutMs: 3000 })

 const handleClick = () => {

 startTransition(() => {

 const newData = fetchData()

 setData(newData)

 })

 }

 return (

 <div>

 {isPending && <LoadingSpinner />}

 <button onClick={handleClick}>Fetch Data</button>

 {data && <DataDisplay data={data} />}

 </div>

)

}

Chapter 10 207

In this example, we use useState to store the fetched data and useTransition to handle the loading

state while the data is being fetched. When the Fetch Data button is clicked, the startTransition

function is called with a callback that fetches the data and updates the state. The isPending value

returned from useTransition is used to conditionally render a loading spinner.

useTransition takes an optional configuration object with a timeoutMs property that specifies

the maximum amount of time to spend in the pending state before showing the loading spinner.

If the data is fetched before the timeout expires, the loading spinner is not displayed.

Overall, useTransition is a powerful new feature in React 18 that can help you create smoother,

more responsive applications with better user experiences.

useDeferredValue
useDeferredValue is a new built-in hook in React 18 that allows you to defer updates to a value

until the next frame. This can be useful when working with performance-intensive operations

like animations.

Here’s an example of how you can use useDeferredValue to animate a component:

import { useState, useDeferredValue } from 'react'

function MyComponent() {

 const [x, setX] = useState(0)

 const deferredX = useDeferredValue(x, { timeoutMs: 100 })

 function handleClick() {

 setX(x => x + 100)

 }

 return (

 <div style={{ transform: `translateX(${deferredX}px)` }}
onClick={handleClick}>

 Click me!

 </div>

)

}

In this example, we use useState to store the current position of the component, and

useDeferredValue to defer updates to the position until the next frame. When the component

is clicked, the position is updated using setX. The deferred value is used to render the component

with a transition effect using CSS transforms.

React 18 New Features208

useDeferredValue takes two arguments: the value to defer and an optional configuration object.

The configuration object can be used to specify a timeoutMs property that determines the maxi-

mum time to defer updates. By default, updates are deferred until the next frame.

Note that useDeferredValue only works in conjunction with the useTransition hook, which

provides the timing information necessary to defer updates to the next frame.

useInsertionEffect
useInsertionEffect is a variation of the existing useEffect hook that allows you to perform

actions after a DOM node has been inserted into the page. This can be useful for integrating with

third-party libraries or for performing actions that require the presence of a DOM node.

Here’s an example of how to use useInsertionEffect:

import { useInsertionEffect } from 'react'

function MyComponent() {

 useInsertionEffect(() => {

 const canvas = document.createElement('canvas')

 canvas.width = 300

 canvas.height = 200

 canvas.style.backgroundColor = 'red'

 document.body.appendChild(canvas)

 return () => {

 document.body.removeChild(canvas)

 }

 }, [])

 return (

 <div>

 <h1>Hello, world!</h1>

 <p>This is my React component.</p>

 </div>

)

}

In this example, we use useInsertionEffect to create a new canvas element and add it to the

DOM when the component is mounted. The cleanup function returned by the hook removes the

canvas element when the component is unmounted.

Chapter 10 209

Note that the second argument to useInsertionEffect is an empty array. This is because we

only want to perform the insertion action once the component is mounted. If we included any

dependencies in the array, the insertion action would be performed every time those dependen-

cies changed.

Strict mode
React 18 introduces a new feature called Strict Mode, which allows you to opt in to a stricter set

of checks and warnings for your React application. The goal of Strict Mode is to catch potential

problems early in development and to encourage best practices that make your code more per-

formant and easier to debug.

Here’s an example of how to use Strict Mode:

import React from 'react'

function MyComponent() {

 return (

 <React.StrictMode>

 <div>

 <h1>Hello, world!</h1>

 <p>This is my React component.</p>

 </div>

 </React.StrictMode>

)

}

In this example, we wrap our component tree with the React.StrictMode component. This

enables several additional checks and warnings during development, such as detecting unsafe

lifecycle methods, identifying potential side effects, and highlighting potential performance issues.

Strict Mode does not affect the behavior of your application in production and should only be

used during development. Once you are confident that your code is free of any issues highlighted

by Strict Mode, you can remove the React.StrictMode component from your code.

It’s worth noting that while Strict Mode can be useful for catching potential issues early in de-

velopment, it is not a replacement for thorough testing and debugging. Always test your code

thoroughly before deploying to production and use tools like React’s built-in debugging tools to

identify and fix any issues that arise.

React 18 New Features210

Node.js latest features
There are some relevant new features in the latest versions of Node (18 and 19); let’s see what is

new in those versions.

Experimental Fetch API
Node.js 18 (also in version 19) includes an experimental global Fetch API that is now available by

default. The API’s implementation is inspired by node-fetch, which is originally based on undi-

ci-fetch and comes from undici. The API’s developers aim to make it as close to the specification

as possible, but some features require a browser environment and are thus omitted.

Here is an example that hits the Pokémon API:

const getPokemons = async () => {

 const response = await fetch('https://pokeapi.co/api/v2/pokemon')

 if (response.ok) {

 const pokemons = await response.json()

 console.log(pokemons)

 } else {

 console.error(`${response.status} ${response.statusText}`)

 }

}

getPokemons()

This addition to Node.js 18 (also included in version 19) makes the following global variables

available: fetch, FormData, Headers, Request, and Response. Users can disable the API by spec-

ifying the --no-experimental-fetch command-line flag.

Experimental test runner module
It’s important to note that the test runner module is still in its experimental phase. To write unit

tests and generate reports in Test Anything Protocol (TAP) format, we can import the node:test

module. In this section, we’ll provide a few examples to illustrate how it works. This testing ap-

proach bears some similarity to Jest, a widely used JavaScript testing framework.

The node:test module simplifies the process of writing JavaScript tests that generate reports in

TAP format. To access it, simply use the following code:

import test from 'node:test'

import assert from 'node:assert'

Chapter 10 211

To provide an example, here’s a demonstration of a parent test with two subtests:

import test from 'node:test'

import assert from 'node:assert'

test('Math tests', async (t) => {

 await t.test('Multiply test', (t) => {

 const n = 2 * 2

 assert.equal(n, 4)

 })

 await t.test('Sum test', (t) => {

 const n = 5 + 3

 assert.equal(n, 8)

 })

})

If everything works fine, you should see something like this:

Figure 10.1: Experimental test runner module

Experimental node watch
Node --watch was introduced as a direct competitor to nodemon, and is a popular tool used for

watching anything, although it has primarily been used for Node.js projects. However, with the

code snippet provided below, you can now use it more easily:

node --watch <file or directory to observe>

React 18 New Features212

This code will automatically detect any changes made to the specified file or directory and restart

the server or script accordingly. This feature is available in versions 19.0.0 and 18.11.0+ of Node.js.

Node 18 is now Long-Term Support (LTS)
Following the release of Node.js 19, Node.js 18 became a LTS version on October 25, 2022, with the

codename Hydrogen. This transition marks the end of the active development phase of Node.js 18.x.

The current Node.js 18.x release has moved to Active LTS status and will remain so until October

2023. After that, it will enter the Maintenance phase and continue to receive necessary security

fixes and updates until the end of April 2025.

Summary
In React 18, a wide array of new features and enhancements are introduced, which simplify the

development of high-quality and interactive applications. These include automatic batching of

state updates, concurrent rendering, the inclusion of Suspense for data fetching, improved error

handling, and the addition of new component types. As a result, developers now have the ability

to create more responsive and engaging user interfaces. For React developers, considering an

upgrade to React 18 holds significant value. Additionally, we have also explored key features in

Node.js 18 and 19, which are crucial for enhancing our web projects.

In the next chapter, we will learn how to handle data properly by using React Context API, React

Suspense, and stale-while-revalidate (SWR).

11
Managing Data

In this chapter, we will explore two beneficial tools: the React Context API and React Suspense.

The Context API simplifies the process of sharing data across our entire application without the

need to pass it down through multiple layers. On the other hand, React Suspense enables spe-

cific parts of our app to wait for certain actions before being displayed, resulting in a smoother

loading experience.

By utilizing these tools collectively, we can enhance data management and improve the overall

performance of our app. Join us on this journey as we delve into the efficient handling of data

in React.

We will cover the following topics in this chapter:

•	 The React Context API

•	 How to consume a context with useContext

•	 How to use React Suspense with SWR (Stale-While-Revalidate)

•	 How to use Redux Toolkit

Technical requirements
To complete this chapter, you will need the following:

•	 Node.js 19+

•	 Visual Studio Code

You can find the code for this chapter in the book’s GitHub repository: https://github.com/
PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/

main/Chapter11.

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter11

Managing Data214

Introducing the React Context API
The React Context API has come a long way since it was first introduced as an experimental fea-

ture. Since version 16.3.0, it has been officially added to React and has become a game-changer

for many developers. In fact, many are now using the new Context API instead of Redux. The

Context API allows you to share data between components without having to pass a prop to

every child component.

To illustrate how to use the new Context API, let’s revisit the example from Chapter 8, React Hooks,

where we fetched GitHub issues using React Hooks, but this time by using the Context API instead.

Creating our first context
The first thing you need to do is to create the issue context. For this, you can create a folder called

contexts inside your src folder, where you will add the Issue.tsx file.

Then, you need to import some functions from React and axios:

import { FC, createContext, useState, useEffect, ReactElement, useCallback
} from 'react'

import axios from 'axios'

At this point, it is clear that you should install axios. If you still don’t have it, just do the following:

 npm install axios

 npm install --save-dev @types/axios

Next, we need to declare our interfaces:

export type Issue = {

 number: number

 title: string

 url: string

 state: string

}

interface Issue_Context {

 issues: Issue[]

 url: string

}

interface Props {

 url: string

}

Chapter 11 215

The first thing we need to do after this is to create our context by using the createContext func-

tion and defining the value we want to export:

export const IssueContext = createContext<Issue_Context>({ issues: [],
url: '' })

Once we have IssueContext, we need to create a component where we can receive props, set some

states, and perform the fetch by using useEffect, and then we render IssueContext.Provider

where we specify the context (value) we will export:

const IssueProvider: FC<Props> = ({ children, url }) => {

 // State

 const [issues, setIssues] = useState<Issue[]>([])

 const fetchIssues = useCallback(async () => {

 const response = await axios(url)

 if (response) {

 setIssues(response.data)

 }

 }, [url])

 // Effects

 useEffect(() => {

 fetchIssues()

 }, [fetchIssues])

 const context = {

 issues,

 url

 }

 return <IssueContext.Provider value={context}>{children}</IssueContext.
Provider>

}

export default IssueProvider

As you know, every time you want to use a function inside the useEffect Hook, you need to wrap

your function with the useCallback Hook. A good practice if you want to use async/await is to

have it in a separate function and not directly in useEffect.

Once we perform the fetch and get the data in our issues state, we will add all the values we want

to export as context, then when we render IssueContext.Provider, we will pass the context on

the value prop, and finally, we will render the children of the component.

Managing Data216

Wrapping our components with the provider
The way you consume a context is divided into two parts. The first one is where you wrap your

app with your context provider, so this code can be added to App.tsx (normally, all the providers

are defined in parent components).

Notice here that we are importing the IssueProvider component:

// Providers

import IssueProvider from '../contexts/Issue'

// Components

import Issues from './Issues'

const App = () => {

 return (

 <IssueProvider url="https://api.github.com/repos/ContentPI/ContentPI/
issues">

 <Issues />

 </IssueProvider>

)

}

export default App;

As you can see, we are wrapping the Issues component with IssueProvider. This means that

inside the Issues component, we can consume our context and get the issues value.

Many people find this concept confusing. If you forget to wrap your components with the provider,

you won’t be able to access your context within them. The challenging aspect is that you might

not receive an error message; instead, you will encounter undefined data, making it difficult to

pinpoint the problem.

Chapter 11 217

Now that we comprehend the significance of correctly wrapping our components with providers,

let’s explore how we can precisely consume our context using the useContext Hook within our

Issues component.

Consuming context with useContext
If you’ve already placed IssueProvider in App.tsx, now you can consume your context in your

Issues component by using the useContext Hook.

Notice here that we are importing the IssueContext context (between { }):

// Dependencies

import { FC, useContext } from 'react'

// Contexts

import { IssueContext, Issue } from '../contexts/Issue'

const Issues: FC = () => {

 // Here you consume your Context, and you can grab the issues value.

 const { issues, url } = useContext(IssueContext)

 return (

 <>

 <h1>ContentPI Issues from Context</h1>

 {issues.map((issue: Issue) => (

 <p key={`issue-${issue.number}`}>

 #{issue.number} {' '}

 {issue.title} {' '}

 {issue.state}

 </p>

))}

 </>

)

}

export default Issues

Managing Data218

If you did everything correctly, you should be able to see the issues list:

Figure 11.1: ContentPI Issues from Context

The Context API is super useful when you want to separate your application from your data and

do all the fetching in there. Of course, there are multiple uses for the Context API, which can also

be used for theming or to pass functions; it all depends on your application.

In the next section, we are going to learn how to implement React Suspense using the SWR library.

Introducing React Suspense with SWR
React Suspense was introduced in React 16.6. Suspense lets you suspend component rendering

until a condition is met. You can render a loading component or anything you want as a fallback

of Suspense.

Chapter 11 219

Right now, there are only two use cases for this:

•	 Code splitting: When you split your application and you’re waiting to download a chunk

of your app when a user wants to access it.

•	 Data fetching: When you’re fetching data.

In both scenarios, you can render a fallback, which can normally be a loading spinner, some

loading text, or even better, a placeholder skeleton.

Introducing SWR
Stale-While-Revalidate (SWR) is a React Hook for data fetching; it is an HTTP cache invalidation

strategy. SWR is a strategy to first return the data from cache (stale), then send the fetch request

(revalidate), and finally, return with up-to-date data, and was developed by Vercel, the company

that created Next.js.

Building a Pokedex!
I could not find a better example to explain React Suspense and SWR than building a Pokedex.

We will use a public Pokemon API (https://pokeapi.co): gotta catch ‘em all!

The first thing you need to do is to install some packages:

npm install swr react-loading-skeleton styled-components

For this example, you will need to create the Pokemon directory at src/components/Pokemon.

The first thing we need to do to work with SWR is to create a fetcher file where we will perform

our requests.

This file should be created at src/components/Pokemon/fetcher.ts:

const fetcher = (url: string) => {

 return fetch(url).then((response) => {

 if (response.ok) {

 return response.json()

 }

 return {

 error: true

 }

 })

}

export default fetcher

https://pokeapi.co

Managing Data220

If you notice, we are returning an object with an error if the response is not successful. This is

because sometimes we can get a 404 error from the API that can cause the app to break.

Once you have created your fetcher, let’s modify App.tsx to configure SWRConfig and enable

Suspense:

import { SWRConfig } from 'swr'

import PokeContainer from './Pokemon/PokeContainer'

import fetcher from './Pokemon/fetcher'

import { StyledPokedex, StyledTitle } from './Pokemon/Pokemon.styled'

const App = () => {

 return (

 <>

 <StyledTitle>Pokedex</StyledTitle>

 <SWRConfig value={{ fetcher, suspense: true }}>

 <StyledPokedex>

 <PokeContainer />

 </StyledPokedex>

 </SWRConfig>

 </>

)

}

export default App

As you can see, we need to wrap our PokeContainer component inside SWRConfig to be able to

fetch the data. The PokeContainer component will be our parent component, where we will add

our first Suspense. This file exists at src/components/Pokemon/PokeContainer.tsx:

import { FC, Suspense } from 'react'

import Pokedex from './Pokedex'

const PokeContainer: FC = () => {

 return (

 <Suspense fallback={<h2>Loading Pokedex...</h2>}>

 <Pokedex />

 </Suspense>

)

}

export default PokeContainer

Chapter 11 221

As you can see, we are defining a fallback for our first Suspense, which is just Loading Pokedex...

text. You can render whatever you want in there, React components or plain text. Then, we have

our Pokedex component inside Suspense.

Now let’s take a look at our Pokedex component where we are going to fetch data for the first

time by using the useSWR Hook:

import { FC, Suspense } from 'react'

import useSWR from 'swr'

import LoadingSkeleton from './LoadingSkeleton'

import Pokemon from './Pokemon'

import { StyledGrid } from './Pokemon.styled'

const Pokedex: FC = () => {

 const { data: { results } } = useSWR('https://pokeapi.co/api/v2/
pokemon?limit=150')

 return (

 <>

 {results.map((pokemon: { name: string }) => (

 <Suspense fallback={<StyledGrid><LoadingSkeleton /></StyledGrid>}>

 <Pokemon key={pokemon.name} pokemonName={pokemon.name} />

 </Suspense>

))}

 </>

)

}

export default Pokedex

As you can see, we are fetching the first 150 Pokemon because I’m old school and those were the

first generation. Right now, I don’t know how many Pokemon exist. Also, if you notice, we are

grabbing the results variable that comes from the data (this is the actual response from the API).

Then we map our results to render each Pokemon, but we add a Suspense component to each

one with a <LoadingSkeleton /> fallback (<StyledGrid /> has some CSS styles to make it look

nicer), and finally, we pass pokemonName to our <Pokemon> component, and this is because the

first fetch just brings us the name of the Pokemon, but we need to do another fetch to bring the

actual Pokemon data (name, types, power, and so on).

Managing Data222

Then, finally, our Pokemon component will perform a specific fetch by the Pokemon name and

will render the data:

import { FC } from 'react'

import useSWR from 'swr'

import { StyledCard, StyledTypes, StyledType, StyledHeader } from './
Pokemon.styled'

type Props = {

 pokemonName: string

}

const Pokemon: FC<Props> = ({ pokemonName }) => {

 const { data, error } = useSWR(`https://pokeapi.co/api/v2/
pokemon/${pokemonName}`)

 // Do you remember the error we set on the fetcher?

 if (error || data.error) {

 return <div />

 }

 if (!data) {

 return <div>Loading...</div>

 }

 const { id, name, sprites, types } = data

 const pokemonTypes = types.map((pokemonType: any) => pokemonType.type.
name)

 return (

 <StyledCard pokemonType={pokemonTypes[0]}>

 <StyledHeader>

 <h2>{name}</h2>

 <div>#{id}</div>

 </StyledHeader>

 <StyledTypes>

 {pokemonTypes.map((pokemonType: string) => (

 <StyledType key={pokemonType}>{pokemonType}</StyledType>

))}

 </StyledTypes>

 </StyledCard>

)

}

Chapter 11 223

export default Pokemon

Basically, in this component, we put together all the Pokemon data (ID, name, sprites, and types)

and we render the information. As you have seen, I’m using styled components, which are amazing,

so if you want to know the styles that I’m using for Pokedex, here is the Pokemon.styled.ts file:

import styled from 'styled-components'

// Type colors

const type: any = {

 bug: '#2ADAB1',

 dark: '#636363',

 dragon: '#E9B057',

 electric: '#ffeb5b',

 fairy: '#ffdbdb',

 fighting: '#90a4b5',

 fire: '#F7786B',

 flying: '#E8DCB3',

 ghost: '#755097',

 grass: '#2ADAB1',

 ground: '#dbd3a2',

 ice: '#C8DDEA',

 normal: '#ccc',

 poison: '#cc89ff',

 psychic: '#705548',

 rock: '#b7b7b7',

 steel: '#999',

 water: '#58ABF6'

}

export const StyledPokedex = styled.div`

 display: flex;

 flex-wrap: wrap;

 flex-flow: row wrap;

 margin: 0 auto;

 width: 90%;

 &::after {

 content: '';

 flex: auto;

 }

Managing Data224

`

type Props = {

 pokemonType: string

}

export const StyledCard = styled.div<Props>`

 position: relative;

 ${({ pokemonType }) => `

 background: ${type[pokemonType]} url(./pokeball.png) no-repeat;

 background-size: 65%;

 background-position: center;

 `}

 color: #000;

 font-size: 13px;

 border-radius: 20px;

 margin: 5px;

 width: 200px;

 img {

 margin-left: auto;

 margin-right: auto;

 display: block;

 }

`

export const StyledTypes = styled.div`

 display: flex;

 margin-left: 6px;

 margin-bottom: 8px;

`

export const StyledType = styled.span`

 display: inline-block;

 background-color: black;

 border-radius: 20px;

 font-weight: bold;

 padding: 6px;

 color: white;

 margin-right: 3px;

 opacity: 0.4;

 text-transform: capitalize;

Chapter 11 225

`

export const StyledHeader = styled.div`

 display: flex;

 justify-content: space-between;

 width: 90%;

 h2 {

 margin-left: 10px;

 margin-top: 5px;

 color: white;

 text-transform: capitalize;

 }

 div {

 color: white;

 font-size: 20px;

 font-weight: bold;

 margin-top: 5px;

 }

`

export const StyledTitle = styled.h1`

 text-align: center;

`

export const StyledGrid = styled.div`

 display: flex;

 flex-wrap: wrap;

 flex-flow: row wrap;

 div {

 margin-right: 5px;

 margin-bottom: 5px;

 }

`

Finally, our LoadingSkeleton component should be like this:

import { FC } from 'react'

import Skeleton from 'react-loading-skeleton'

const LoadingSkeleton: FC = () => (

 <div>

Managing Data226

 <Skeleton height={200} width={200} />

 </div>

)

export default LoadingSkeleton

This library is amazing. It lets you create skeleton placeholders to wait for the data. Of course,

you can build as many forms as you want. You have probably seen this effect on sites such as

LinkedIn or YouTube.

Testing React Suspense
Once you have all the pieces of the code working, there is a trick you can do in order to see all the

Suspense fallbacks. Normally, if you have a high-speed connection, it is hard to see it, but you can

slow down your connection to see how everything is being rendered. You can do this by selecting

Slow 3G in your Network tab on your Chrome inspector:

Figure 11.2: Slow 3G connection

Once you set the Slow 3G preset and you run your project, the first fallback you will see is Load-

ing Pokedex...:

Figure 11.3: Loading Pokedex

Then, you will see the Pokemon fallbacks that are rendering SkeletonLoading for each Pokemon

that is being loaded:

Chapter 11 227

Figure 11.4: SkeletonLoading

Normally those loaders have animation, but you won’t see that in this book, of course! And then

you will start seeing how the data is rendering and some images start appearing:

Figure 11.5: Loading Pokedex

Managing Data228

If you wait until all the data has downloaded correctly, you should now see the Pokedex with all

the Pokemon:

Figure 11.6: Displaying the entire Pokedex

Pretty nice, huh? But there is something else to mention; as I mentioned before, SWR will bring

the data from the cache first and then will revalidate the data all the time to see whether there

are new updates. This means that any time the data changes, SWR will perform another fetch to

revalidate whether the old data is still valid or needs to be replaced by a new one.

Chapter 11 229

You can see this effect even if you move out from the Pokedex tab to another and then come back.

You’ll see that your Network terminal, for the first time, looks like this:

Figure 11.7: Requests

Managing Data230

As you can see, we performed 151 initial requests (1 for the Pokemon lists and 150 others, 1 for

each Pokemon), but if you change the tab and come back, you will see how SWR is fetching again:

Figure 11.8: 151 requests

Now you can see that it is performing 302 requests (another 151). This is very useful when you

have real-time data that you want to fetch every second or every minute.

Currently, React Suspense lacks a defined pattern of use, which implies that there are various

ways to utilize it, and there are no established best practices for it yet. I have found that SWR is

the easiest and most understandable approach to working with React Suspense. I believe it is a

powerful library that can be utilized effectively even without the need for Suspense.

Chapter 11 231

After exploring the flexibility of React Suspense, let’s redirect our attention to another formida-

ble tool within the React ecosystem: Redux Toolkit. This tool is revolutionizing the approach to

Redux, and in the subsequent section, we will delve into its essential features and demonstrate

its application through practical code examples.

Redux Toolkit: a modern approach to Redux
Redux Toolkit is the official, opinionated, and batteries-included toolset for efficient Redux

development. It was created to help developers write better and more efficient Redux code with

less boilerplate. In this section, we’ll explore the key features of Redux Toolkit, along with code

examples to demonstrate how to use it in your application.

Key features
Redux Toolkit comes with several key features that simplify the Redux development process:

•	 configureStore: A function that sets up a Redux store with sensible defaults.

•	 createSlice: A function that automatically generates action creators and reducers based

on a provided configuration.

•	 createAction: A utility function to create action creators with a specific type and payload.

•	 createReducer: A utility function that simplifies reducer creation using Immer, enabling

direct state manipulation.

Getting started
First, install Redux Toolkit and its peer dependencies:

 npm install @reduxjs/toolkit react-redux typescript @types/react @types/
react-redux @types/react-dom

Creating a store
To create a store, we’ll use the configureStore function provided by Redux Toolkit (store.ts):

import { configureStore } from '@reduxjs/toolkit'

import rootReducer from './rootReducer'

const store = configureStore({

 reducer: rootReducer

})

export type RootState = ReturnType<typeof rootReducer>

export default store

Managing Data232

Creating a slice
A slice represents a portion of the Redux store that corresponds to a specific feature or domain.

To create a slice, use the createSlice function (createSlice.ts):

import { createSlice } from '@reduxjs/toolkit'

const counterSlice = createSlice({

 name: 'counter',

 initialState: 0,

 reducers: {

 increment: (state) => state + 1,

 decrement: (state) => state – 1

 }

})

export const { increment, decrement } = counterSlice.actions

export default counterSlice.reducer

Combining reducers
If you have multiple slices, you can use the combineReducers function from Redux Toolkit to

create a root reducer (rootReducer.ts):

import { combineReducers } from '@reduxjs/toolkit'

import counterReducer from './counterSlice'

const rootReducer = combineReducers({

 counter: counterReducer

})

export default rootReducer

Connecting components to the store
To connect a React component to the Redux store, use the useSelector and useDispatch Hooks

from the react-redux package (Counter.ts):

import { useSelector, useDispatch } from 'react-redux'

import { increment, decrement } from './counterSlice'

import { RootState } from './store'

function Counter() {

 const count = useSelector((state: RootState) => state.counter)

 const dispatch = useDispatch()

 return (

Chapter 11 233

 <div>

 <button onClick={() => dispatch(decrement())}>-</button>

 {count}

 <button onClick={() => dispatch(increment())}>+</button>

 </div>

)

}

export default Counter

Integrating the store with a React application
Finally, wrap your React application with the Provider component from react-redux and pass

your store as a prop:

import React from 'react'

import { createRoot } from 'react-dom/client'

import { Provider } from 'react-redux'

import store from './store'

import Counter from './Counter'

createRoot(document.getElementById('root') as HTMLElement).render(

 <Provider store={store}>

 <Counter />

 </Provider>

)

In this section, we’ve explored Redux Toolkit’s key features, including configureStore,

createSlice, createAction, and createReducer. By utilizing these features, developers can

write more efficient and maintainable Redux code with less boilerplate. The provided code ex-

amples demonstrate how to create a simple counter application using Redux Toolkit, illustrating

the steps required to set up the store, create slices and reducers, and connect components to the

store. By leveraging Redux Toolkit, you can simplify your Redux development process and build

more robust applications.

Summary
I really hope you enjoyed reading this chapter, which contains a lot of information about the

React Context API and how to implement React Suspense with SWR. We covered the basics of the

Context API, including how to create and consume contexts, as well as how to use the useContext

Hook for simpler consumption.

Managing Data234

Additionally, we explored React Suspense and how it can improve the user experience by allowing

us to handle loading states more effectively. We also learned about SWR and how it can simplify

data fetching and caching with React Suspense. Finally, we learned how to implement the new

Redux Toolkit. By utilizing these powerful tools, you can build more efficient and user-friendly

React applications.

In the next chapter, we will learn how to use Server-Side Rendering in React with Next.js.

12
Server-Side Rendering

The next step in building React applications is learning how server-side rendering (SSR) works

and what benefits it can give us. By implementing SSR, we can create universal applications

that are better for search engine optimization (SEO) and enable knowledge-sharing between

the frontend and the backend. They can also improve the perceived speed of a web application,

which usually leads to increased conversions. However, applying SSR to a React application comes

at a cost, and we should think carefully about whether we need it or not.

In this chapter, you will see how to set up a server-side-rendered application, and by the end of

the relevant sections, you will be able to build a universal application and understand the pros

and cons of the technique.

In this chapter, we will cover the following topics:

•	 Understanding what a universal application is

•	 Figuring out the reasons why we may want to enable SSR

•	 Creating a simple static server-side-rendered application with React

•	 Adding data fetching to server-side rendering and understanding concepts such as de-

hydration/hydration

•	 Using Next.js by Zeit to easily create a React application that runs on both the server and

the client

Server-Side Rendering236

Technical requirements
To complete this chapter, you will require the following:

•	 Node.js 19+

•	 Visual Studio Code

You can find the code for this chapter in the book’s GitHub repository at https://github.com/
PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fouth-Edition/tree/

main/Chapter12.

Understanding universal applications
A universal application is an application that can run both on the server side and client side with

the same code. In this section, we will look at the reasons why we should consider making our

applications universal, and we will learn how React components can be easily rendered on the

server side.

When we talk about JavaScript web applications, we usually think of client-side code that lives

in the browser. The way they usually work is that the server returns an empty HTML page with a

script tag to load the application. When the application is ready, it manipulates the DOM inside

the browser to show the UI and interact with users. This has been the case for the last few years,

and it is still the way to go for a huge number of applications.

In this book, we have seen how easy it is to create applications using React components and

how they work within the browser. What we have not seen yet is how React can render the same

components on the server, giving us a powerful feature called SSR.

Before going into the details, let’s try to understand what it means to create applications that

render both on the server and the client. For years, we used to have completely different applica-

tions for the server and client: for example, a Django application to render the views on the server,

and some JavaScript frameworks, such as Backbone or jQuery, on the client. Those separate apps

usually had to be maintained by two teams of developers with different skill sets. If you needed

to share data between the server-side-rendered pages and the client-side application, you could

inject some variables into a script tag. Using two different languages and platforms, there was

no way to share common information, such as models or views, between the different sides of

the application.

Since Node.js was released in 2009, JavaScript has gained a lot of attention and popularity on the

server side as well, thanks to web application frameworks such as Express.

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fouth-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fouth-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fouth-Edition/tree/main/Chapter12

Chapter 12 237

Using the same language on both sides not only makes it easy for developers to reuse their knowl-

edge but also enables different ways of sharing code between the server and the client.

With React in particular, the concept of isomorphic web applications became very popular within

the JavaScript community. Writing an isomorphic application means building an application

that looks the same on the server and the client. The fact that the same language is used to write

the two applications means that a big part of the logic can be shared, which opens many pos-

sibilities. This makes the code base easier to reason about and avoids unnecessary duplication.

React brings the concept a step forward, giving us a simple API to render our components on the

server and transparently applying all the logic needed to make the page interactive (for example,

event handlers) on the browser.

The term isomorphic does not fit in this scenario because, in the case of React, the applications are

the same, and that is why one of the creators of React Router, Michael Jackson, proposed a more

meaningful name for this pattern: universal.

Before we delve into the specific reasons for implementing universal server-side rendering, let

us take a moment to pause and ensure that we possess a solid understanding of when and why

this feature might be necessary for our application.

Reasons for implementing SSR
SSR is a great feature, but we should not jump into it just for the sake of it. We should have a real,

solid reason to start using it.

Adopting SSR without a clear purpose can introduce unwarranted complexities and issues into

your application. The intricacies of SSR can complicate aspects such as managing states, data

fetching, and routing, among others. Additionally, SSR puts an increased load on the server as it

is responsible for rendering HTML for each request. If not carefully optimized, this can result in

slower response times and higher server costs.

Moreover, the added complexity that SSR brings to an application can slow down the development

process, complicate debugging, and require maintenance of specific tools and configurations.

Furthermore, if your application does not have a significant amount of public content, the SEO

benefits that often drive the adoption of SSR may not be substantial.

In essence, while SSR can offer benefits, it is crucial to implement it with a clear understanding

of its trade-offs. Carefully assess your application’s needs and consider the advantages against

the potential disadvantages before deciding to adopt SSR.

Server-Side Rendering238

Implementing SEO
One of the main reasons why we may want to render our applications on the server side is SEO. If

we serve an empty HTML skeleton to the crawlers of the main search engines, they are not able to

extract any meaningful information from it. Nowadays, Google seems to be able to run JavaScript,

but there are some limitations, and SEO is often a critical aspect of our businesses.

For years, we used to write two applications: an SSR one for the crawlers, and another one to

be used on the client side by users. We used to do that because SSR applications could not give

us the level of interactivity users expect, while client-side applications did not get indexed by

search engines.

Maintaining and supporting two applications is difficult and makes the code base less flexible

and less prone to changes. Luckily, with React, we can render our components on the server side

and serve the content of our applications to the crawlers in such a way that it is easy for them to

understand and index the content.

This is great, not only for SEO but also for social sharing services. Platforms such as Facebook or

Twitter give us a way of defining the content of the snippets that is shown when our pages are

shared.

For example, using Open Graph, we can tell Facebook that, for a particular page, we want a certain

image to be shown and a particular title to be used as the title of the post. It is almost impossible

to do that using client-side-only applications because the engine that extracts the information

from the pages uses the markup returned by the server.

If our server returns an empty HTML structure for all the URLs, the result is that when the pages

are shared on social networks, the snippets of our web application are empty as well, which

affects their virality.

A common code base
Utilizing JavaScript on both the client and server sides of an application offers numerous ben-

efits. Firstly, it simplifies matters by employing the same language across all components. This

streamlines the process of maintaining a well-functioning system and facilitates knowledge

sharing among colleagues within the company.

Moreover, sharing code between the frontend and backend of a website eliminates the need for re-

dundant efforts. As a result, this approach generally reduces the occurrence of mistakes and issues.

Chapter 12 239

Furthermore, maintaining a single code base is more manageable compared to handling two

separate ones. Additionally, incorporating JavaScript on the server side enhances collaboration

between frontend and backend developers. By leveraging the same language, they can efficiently

reuse code and make prompt decisions, thereby enhancing workflow and productivity.

Better performance
Last but not least, we all love client-side applications because they are fast and responsive, but

there is a problem—the bundle has to be loaded and run before users can take any action on the

application.

This might not be a problem using a modern laptop or a desktop computer with a fast internet

connection. However, if we load a huge JavaScript bundle using a mobile device with a 3G connec-

tion, users have to wait for a little while before interacting with the application. This is not only

bad for the UX in general but it also affects conversions. It has been proven by major e-commerce

websites that a few milliseconds added to the page load can have an enormous impact on revenues.

For example, if we serve our application with an empty HTML page and a script tag on the server

and we show a spinner to our users until they can click on anything, the perception of the speed

of the website is significantly affected.

If we render our website on the server side instead and users start seeing some of the content as

soon as they hit the page, they are more likely to stay, even if they have to wait the same amount

of time before doing anything for real, because the client-side bundle has to be loaded regardless

of the SSR.

This perceived performance is something we can improve greatly using SSR because we can output

our components on the server and return some information to users straight away.

Don’t underestimate the complexity of SSR
Even though React provides an easy API to render components on the server, creating a universal

application has a cost. So, we should consider carefully before enabling it for one of the preceding

reasons and check whether our team is ready to support and maintain a universal application.

SSR can incur additional costs, extending development time and adding complexity. It also increas-

es the server load, potentially necessitating costlier infrastructure. Operationally, SSR requires a

well-maintained server with a complete setup, leading to increased operational costs. Additionally,

testing may become more time-consuming due to the heightened complexity.

Server-Side Rendering240

It is crucial to strike a balance between these costs and the potential benefits of SSR, such as

improved SEO and faster initial page loads.

As we progress through the upcoming sections, we will discover that rendering components is

not the sole task involved in creating server-side-rendered applications. We must establish and

maintain a server with its routes and logic, manage the server data flow, and perform various

other essential tasks to sustain a fully functional universal application. Consider caching content

to serve pages more efficiently and address other necessary responsibilities.

Therefore, my recommendation is to initially focus on constructing the client-side version of

your web application. Once it is fully functional and performs well on the server, you can then

consider incorporating SSR to enhance the user experience. It is essential to enable SSR only when

genuinely required. For instance, if improving your website’s visibility in search engines (SEO) is

a priority, that is when you should begin contemplating the implementation of SSR.

If you realize that your application takes a lot of time to load fully and you have already done all

the optimization (refer to Chapter 16, Improving the Performance of Your Applications, for more on

this topic), you can consider using SSR to offer a better experience to your users and improve the

perceived speed. Now that we have learned what SSR is and the benefits of universal applications,

let’s jump into some basic examples of SSR in our next section.

Creating a basic example of SSR
We will now create a very simple server-side application to look at the steps that are needed to

build a basic universal setup. It is going to be a minimal and simple setup on purpose because

the goal here is to show how SSR works rather than providing a comprehensive solution or a boil-

erplate, even though you could use the example application as a starting point for a real-world

application.

The application will consist of two parts:

•	 On the server side, where we will use Express to create a basic web server and serve an

HTML page with the server-side-rendered React application.

•	 On the client side, where we will render the application, as usual, using react-dom.

This section assumes that readers have a basic understanding of Node.js and are

familiar with the concepts related to JavaScript build tools, such as webpack and

its loaders.

Chapter 12 241

Configuring our project from scratch with webpack
Both sides of the application will be transpiled with Babel and bundled with webpack before

being run, which will let us use the full power of ES6 and the modules both on Node.js and on

the browser.

Let’s start by creating a new project folder (you can call it ssr-project) and running the following

command to create a new package:

npm init

Once package.json is created, it is time to install the dependencies. We can start with webpack:

npm install webpack

After this is done, it is time to install ts-loader and the presets that we need to write an ES6

application using React and TSX:

npm install --save-dev @babel/core @babel/preset-env @babel/preset-react
ts-loader typescript

In order to create the server bundle, we need to install a dependency. Webpack allows us to define

a set of externals, which are dependencies that we do not want to include in the bundle. When

generating a build for the server, it is preferable not to include all the Node.js packages used;

instead, we only want to bundle our server code. Excluding dependencies from the server bundle

offers several advantages, including reduced bundle size, faster compilation, and compatibility

with the Node.js environment. By leveraging the native module system of Node.js, the server code

can directly access the installed packages without the need for bundling. Tools like webpack-

node-externals assist in defining these dependencies as externals in the webpack configuration,

resulting in an optimized server bundle and a streamlined build process. Let’s proceed with the

installation of this tool:

npm install --save-dev webpack-node-externals

Great. It is now time to create an entry in the npm scripts section of package.json so that we can

easily run the build command from the terminal:

"scripts": {

 "build": "webpack"

}

Server-Side Rendering242

Next, you need to create a .babelrc file in your root path:

{

 "presets": ["@babel/preset-env", "@babel/preset-react"]

}

We now have to create the configuration file, called webpack.config.js, to tell webpack how we

want our files to be bundled.

Let’s start by importing the library we will use to set our node externals. We will also define the

configuration for ts-loader, which we will use for both the client and the server:

const nodeExternals = require('webpack-node-externals')

const path = require('path')

const rules = [{

 test: /\.(tsx|ts)$/,

 use: 'ts-loader',

 exclude: /node_modules/

}]

In Chapter 6, Making Your Components Look Beautiful, we looked at how we had to export a config-

uration object from the configuration file. There is one cool feature in webpack that lets us export

an array of configurations as well so that we can define both client and server configurations in

the same place and use both in one go.

The client configuration shown in the following block should be very familiar:

const client = {

 entry: './src/client.tsx',

 output: {

 path: path.resolve(__dirname, './dist/public'),

 filename: 'bundle.js',

 publicPath: '/'

 },

 module: {

 rules

 }

}

We are telling webpack that the source code of the client application is inside the src folder, and

we want the output bundle to be generated in the dist folder.

Chapter 12 243

We also set the module loaders using the previous object we created with ts-loader. The server

configuration is slightly different; we need to define a different entry, and add some new nodes,

such as target, externals, and resolve:

const server = {

 entry: './src/server.ts',

 output: {

 path: path.resolve(__dirname, './dist'),

 filename: 'server.js',

 publicPath: '/'

 },

 module: {

 rules

 },

 target: 'node',

 externals: [nodeExternals()],

 resolve: {

 extensions: [".ts", ".tsx", ".js", ".json"]

 }

}

As you can see, entry, output, and module are the same, except for the filenames.

The new parameters are the target, where we specify the node to tell webpack to ignore all the

built-in system packages of Node.js, such as fs, and externals, where we use the library we

imported earlier to tell webpack to ignore the dependencies.

Last but not least, we have to export the configurations as an array:

module.exports = [client, server]

The configuration is done. We are now ready to write some code, and we will start with the React

application, which we are more familiar with.

Creating the application
Let’s create an src folder and an app.ts file inside it.

The app.ts file should have the following content:

const App = () => <div>Hello React</div>

export default App

Server-Side Rendering244

Nothing complex here; we import React, create an App component, which renders the Hello

React message, and export it.

Let’s now create client.tsx, which is responsible for rendering the App component inside the

DOM:

import { render } from 'react-dom'

import App from './app'

render(<App />, document.getElementById('root'))

Again, this should sound familiar, since we import React, ReactDOM, and the App component we

created earlier, and we use ReactDOM to render it in a DOM element with the app ID.

Let’s now move to the server.

The first thing to do is to create a template.ts file, which exports a function that we will use to

return the markup of the page that our server will give back to the browser:

export default body => `

 <!DOCTYPE html>

 <html>

 <head>

 <meta charset="UTF-8" />

 </head>

 <body>

 <div id="root">${body}</div>

 <script src="/bundle.js"></script>

 </body>

</html>

It should be pretty straightforward. The function accepts body, which we will later see contains

the React app, and it returns the skeleton of the page.

It is worth noting that we load the bundle on the client side even if the app is rendered on the

server side. SSR is only half of the job that React does to render our application. We still want our

application to be a client-side application, with all the features we can use in the browser, such

as event handlers, for example.

After this, you need to install express, react, and react-dom:

npm install express react react-dom @types/express @types/react @types/
react-dom

Chapter 12 245

Now it is time to create server.tsx, which has more dependencies and is worth exploring in detail:

import React from 'react'

import express, { Request, Response } from 'express'

import { renderToString } from 'react-dom/server'

import path from 'path'

import App from './App'

import template from './template'

The first thing that we import is express, the library that allows us to create a web server with

some routes easily, and which is also able to serve static files.

Secondly, we import React and ReactDOM to render App, which we import as well. Notice the

/server path in the import statement of ReactDOM. The last thing we import is the template

we defined earlier.

Now we create an Express application:

const app = express()

We tell the application where our static assets are stored:

app.use(express.static(path.resolve(__dirname, './dist/public')))

As you may have noticed, the path is the same that we used in the client configuration of webpack

as the output destination of the client bundle.

Then, here comes the logic of SSR with React:

app.get('/', (req: Request, res: Response) => {

 const body = renderToString(<App />)

 const html = template(body)

 res.send(html)

})

We are telling Express that we want to listen to the / route, and when it gets hit by a client, we

render App to a string using the ReactDOM library. Here comes the magic and simplicity of the

SSR of React.

What renderToString does is return a string representation of the DOM elements generated by

our App component, the same tree that it would render in the DOM if we were using the React-

DOM render method.

Server-Side Rendering246

The value of the body variable is something like the following:

<div data-reactroot="" data-reactid="1" data-react-
checksum="982061917">Hello React</div>

As you can see, it represents what we defined in the render method of App, except for a couple

of data attributes that React uses on the client to attach the client-side application to the serv-

er-side-rendered string.

Now that we have the SSR representation of our app, we can use the template function to apply

it to the HTML template and send it back to the browser within the Express response.

Last but not least, we have to start the Express application:

app.listen(3000, () => {

 console.log('Listening on port 3000')

})

We are now ready to go; there are only a few operations left. The first one is to define the start

script of npm and set it to run the node server:

"scripts": {

 "build": "webpack",

 "start": "node ./dist/server"

}

The scripts are ready, so we can first build the application with the following command:

npm run build

When the bundles are created, we can run the following command:

npm start

Point the browser to http://localhost:3000 and see the result.

There are two important things to note here. First, when we use the View Page Source feature

of the browser, we can see the source code of the application being rendered and returned from

the server, which we would not see if SSR was not enabled.

Second, if we open DevTools and we have the React extension installed, we can see that the App

component has been booted on the client as well.

Chapter 12 247

The following screenshot shows the source of the page:

Figure 12.1: Source code page

Great! Now that you have created your first React application using SSR, let’s learn how to fetch

data in the next section.

Implementing data fetching
The example in the previous section should clearly explain how to set up a universal application

in React. It is pretty straightforward, and the main focus is on getting things done. However, in a

real-world application, we will likely want to load some data instead of a static React component,

such as App in the example.

Let’s assume, for example, we want to load Dan Abramov’s gists on the server and return the list

of items from the Express app we just created.

In the data fetching examples in Chapter 12, Managing Data, we looked at how we can use

useEffect to fire the data loading. That wouldn’t work on the server because components do

not get mounted on the DOM and the life cycle Hook never gets fired.

Using Hooks that were executed earlier will not work either because the data fetching operation

is async, while renderToString is not. For that reason, we have to find a way to load the data

beforehand and pass it to the component as props.

Let’s look at how we can take the application from the previous section and change it a bit to

make it load gists during the SSR phase.

Server-Side Rendering248

The first thing to do is to change App.tsx to accept a list of gists as props, and loop through it

in the render method to display their descriptions:

import { FC } from 'react'

type Gist = {

 id: string

 description: string

 }

 type Props = {

 gists: Gist[]

}

const App: FC<Props> = ({ gists }) => (

 {gists.map(gist => (

 <li key={gist.id}>{gist.description}

))}

)

export default App

Applying the concept that we learned in the previous chapter, we define a stateless functional

component, which receives gists as props and loops through the elements to render a list of

items. Now, we have to change the server to retrieve gists and pass them to the component.

To use the fetch API on the server side, we have to install a library called isomorphic-fetch,

which implements the fetch standards. It can be used in Node.js and the browser:

npm install isomorphic-fetch @types/isomorphic-fetch

We first import the library into server.tsx:

import fetch from 'isomorphic-fetch'

The API call that we want to make looks as follows:

fetch('https://api.github.com/users/gaearon/gists')

 .then(response => response.json())

 .then(gists => {})

Here, gists are available to be used inside the last then function. In our case, we want to pass

them down to App.

Chapter 12 249

Therefore, we can change the / route as follows:

app.get('/', (req, res) => {

 fetch('https://api.github.com/users/gaearon/gists')

 .then(response => response.json())

 .then(gists => {

 const body = renderToString(<App gists={gists} />)

 const html = template(body)

 res.send(html)

 })

})

Here, we first fetch gists, and then we render App as a string, passing the property.

Once App is rendered and we have its markup, we use the template we used in the previous section

and return it to the browser.

Run the following command in the console and point the browser to http://localhost:3000.

You should be able to see a server-side render list of gists:

npm run build && npm start

To make sure that the list is rendered from the Express app, you can navigate to view-

source:http://localhost:3000 and you will see the markup and the descriptions of gists.

That is great, and it looks easy, but if we check the DevTools console, we can see Cannot read

property 'map' of undefined error. The reason we see the error is that, on the client, we are

rendering App again, but without passing gists to it.

This could sound counter-intuitive in the beginning because we might think that React is smart

enough to use gists rendered within the server-side string on the client. But that is not what

happens, so we have to find a way to make gists available on the client side as well.

You may consider that you could execute the fetch again on the client. That would work, but it is

not optimal because you would end up firing two HTTP calls, one on the Express server and one

in the browser. If we think about it, we already made the call on the server, and we have all the

data we need. A typical solution to sharing data between the server and the client is dehydrating

the data in the HTML markup and hydrating it back in the browser.

This seems like a complex concept, but it is not. We will now look at how easy it is to implement.

The first thing we must do is inject gists into the template after we have fetched them on the client.

Server-Side Rendering250

To do this, we have to change the template slightly, as follows:

export default (body, gists) => `

 <!DOCTYPE html>

 <html>

 <head>

 <meta charset="UTF-8" />

 </head>

 <body>

 <div id="root">${body}</div>

 <script>window.gists = ${JSON.stringify(gists)}</script>

 <script src="/bundle.js"></script>

 </body>

 </html>

`

The template function now accepts two parameters—the body of the app and the collection of

gists. The first one is inserted into the app element, while the second is used to define a global

gists variable attached to the window object so that we can use it in the client.

Inside the Express route (server.ts), we just have to change the line where we generate the

template passing the body, as follows:

const html = template(body, gists)

Last but not least, we have to use gists attached to a window inside client.tsx, which is pretty easy:

ReactDOM.hydrate(

 <App gists={window.gists} />,

 document.getElementById('app')

)

The hydrate method was introduced in React 16 and works similarly to render on the client side,

irrespective of whether the HTML has server-side-rendered markup or not. If there is no markup

previously using SSR, then the hydrate method will fire a warning, which you can silence by using

the new suppressHydrationWarning attribute.

We read gists directly, and we pass them to the App component that gets rendered on the client.

Now, run the following command again:

npm run build && npm start

Chapter 12 251

If we point the browser window to http://localhost:3000, the error is gone, and if we inspect

the App component using React DevTools, we can see how the client-side App component receives

the collection of gists.

As we have created our first SSR application, let’s now see how we can do this more easily by using

an SSR framework called Next.js in the next section.

Using Next.js to create a React application
You have looked at the basics of SSR with React, and you can use the project we created as a starting

point for a real app. However, you may think that there is too much boilerplate and that you are

required to know about too many different tools to run a simple universal application with React.

This is a common feeling called JavaScript fatigue, as described in the introduction to this book.

Luckily, Meta developers and other companies in the React community are working very hard to

improve the DX and make the lives of developers easier. You might have used create-react-app

at this point to try out the examples in the previous chapters, and you should understand how

it makes it very simple to create React applications without requiring developers to learn about

many technologies and tools.

Now, create-react-app does not support SSR yet, but there’s a company called Vercel that has

created a tool called Next.js, which makes it incredibly easy to generate universal applications

without worrying about configuration files. It also reduces the boilerplate a lot.

It is important to say that using abstractions is always very good for building applications quickly.

However, it is crucial to know how the internals work before adding too many layers, and that

is why we started with the manual process before learning Next.js. We have looked at how SSR

works and how we can pass the state from the server to the client. Now that the base concepts

are clear, we can move on to a tool that hides a little bit of complexity and makes us write less

code to achieve the same results.

We will create the same app where all gists from Dan Abramov are loaded, and you will see how

clean and simple the code is, thanks to Next.js.

First of all, create a new project folder (you can call it next-project) and run the following

command:

npm init

Server-Side Rendering252

When this is done, we can install the Next.js library and React:

npm install next react react-dom typescript @types/react @types/node

Now that the project is created, we have to add an npm script to run the binary:

"scripts": {

 "dev": "next"

}

Perfect! It is now time to generate our App component. Next.js is based on conventions, with the

most important one being that you can create pages to match the browser URLs. The default page

is index, so we can create a folder called pages and put an index.js file inside it.

We start importing the dependencies:

import fetch from 'isomorphic-fetch'

Again, we import isomorphic-fetch because we want to be able to use the fetch function on

the server side.

We then define a component called App:

const App = () => {}

export default App

Then we define a static async function, called getInitialProps, which is where we tell Next.js

which data we want to load, both on the server side and on the client side. The library will make

the object returned from the function available as props inside the component.

The static and async keywords applied to a class method mean that the function can be ac-

cessed outside the instance of the class and that the function yields the execution of the wait

instructions inside its body.

These concepts are pretty advanced, and they are not part of the scope of this chapter, but if you

are interested in them, you should check out the ECMAScript proposals (https://github.com/

tc39/proposals).

The implementation of the method we just described is as follows:

App.getInitialProps = async () => {

 const url = 'https://api.github.com/users/gaearon/gists'

 const response = await fetch(url)

https://github.com/tc39/proposals
https://github.com/tc39/proposals

Chapter 12 253

 const gists = await response.json()

 return {

 gists

 }

}

We are telling the function to fire the fetch and wait for the response, then we are transforming

the response into JSON, which returns a promise. When the promise is resolved, we can return

the props object with gists.

The render of the component looks pretty similar to the preceding one:

return (

 {props.gists.map(gist => (

 <li key={gist.id}>{gist.description}

))}

)

Before you run the project, you need to configure tsconfig.json:

{

 "compilerOptions": {

 "baseUrl": "src",

 "esModuleInterop": true,

 "module": "esnext",

 "noImplicitAny": true,

 "outDir": "dist",

 "resolveJsonModule": true,

 "sourceMap": false,

 "target": "esnext",

 "lib": ["dom", "dom.iterable", "esnext"],

 "allowJs": true,

 "skipLibCheck": true,

 "strict": true,

 "forceConsistentCasingInFileNames": true,

 "noEmit": true,

 "moduleResolution": "node",

Server-Side Rendering254

 "isolatedModules": true,

 "jsx": "react-jsx"

 },

 "include": ["src/**/*.ts", "src/**/*.tsx"],

 "exclude": ["node_modules"]

}

Now, open the console and run the following command:

npm run dev

We will see the following output:

> Ready on http://localhost:3000

If we point the browser to that URL, we can see the universal application in action. It is really

impressive how easy it is to set up a universal application with a few lines of code and zero con-

figuration, thanks to Next.js.

You may also notice that if you edit the application inside your editor, you will be able to see the

results within the browser instantly without needing to refresh the page. That is another feature

of Next.js, which enables hot module replacement. It is incredibly useful in development mode.

If you liked this chapter, go and give it a star on GitHub: https://github.com/zeit/next.js.

Summary
The journey through SSR has come to an end. You are now able to create a server-side-rendered

application with React, and it should be clear why it can be useful for you. SEO is certainly one of

the main reasons, but social sharing and performance are important factors as well. You learned

how it is possible to load the data on the server and dehydrate it in the HTML template to make

it available to the client-side application when it boots on the browser.

Finally, you looked at how tools such as Next.js can help you reduce the boilerplate and hide

some of the complexity that setting up a server-side-rendered React application usually brings

to the code base.

In the next chapter, we will talk about how to improve the performance of our React applications.

https://github.com/zeit/next.js

Chapter 12 255

Join our community on Discord
Join our community’s Discord space for discussion with the author and other readers:

https://packt.link/React18DesignPatterns4e

https://packt.link/React18DesignPatterns4e

13
Understanding GraphQL with a
Real Project

GraphQL is a powerful query language designed to work seamlessly with APIs, allowing them

to efficiently interact with your existing data. Unlike traditional REST APIs, GraphQL provides

a comprehensive overview of the data in your API, making it easy to request only the exact data

you need and nothing more. This not only streamlines your API requests but also makes it easier

to optimize and improve your APIs when necessary. Additionally, GraphQL comes equipped with

powerful developer tools to further enhance your development experience.

In this chapter, we’ll delve into the practical application of GraphQL by building a basic login

and user registration system for a real-world project. By exploring how GraphQL can be utilized

in this context, you’ll gain a comprehensive understanding of the language and be able to apply

it effectively in your own projects.

We will cover the following topics in this chapter:

•	 Installing PostgreSQL

•	 Creating environment variables with a .env file

•	 Configuring Apollo Server

•	 Defining GraphQL queries and mutations

•	 Working with resolvers

•	 Creating Sequelize models

•	 Implementing JWT

Understanding GraphQL with a Real Project258

•	 Using GraphQL Playground

•	 Performing authentication

Technical requirements
To complete this chapter, you will need the following:

•	 Node.js 19+

•	 Visual Studio Code

•	 PostgreSQL

•	 Homebrew (https://brew.sh)

•	 pgAdmin 4 (https://www.pgadmin.org/download/)

You can find the code for this chapter in this book’s GitHub repository at https://github.com/
PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/

main/Chapter13.

Building a backend login system using PostgreSQL,
Apollo Server, GraphQL, Sequelize, and JSON Web
Tokens
In this section, we will be building a backend login system using PostgreSQL, Apollo Server, Graph-

QL, Sequelize, and JSON Web Tokens (JWTs). We will utilize PostgreSQL for data storage, Se-

quelize to perform database operations, Apollo Server to create a GraphQL API, GraphQL to shape

our API, and JWTs for user authentication and authorization. Whether you are a beginner or an

experienced developer, this guide will offer a comprehensive understanding of how to integrate

these technologies into a robust and secure backend login system. Let us dive in.

Installing PostgreSQL
For this example, we will use a PostgreSQL database, so you’ll need to install PostgreSQL to be

able to run this project on your machine.

PostgreSQL is an excellent choice for our database. Why? It excels in keeping data secure and

well organized, even in the event of an unexpected issue. It has the capability to handle various

types of data, which proves to be extremely convenient. Additionally, PostgreSQL is extensible,

enabling it to go beyond the basics. It operates efficiently and can manage a substantial number

of users concurrently.

https://brew.sh
https://www.pgadmin.org/download/
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter13

Chapter 13 259

Moreover, it boasts robust security features that ensure the protection of our data. Being an open-

source platform, it is not only free but also benefits from a large community actively working

toward its improvement. If you have prior experience with other databases, PostgreSQL is easy

to comprehend, as it adheres to the same standards. Furthermore, it can handle considerable

amounts of data and accommodate numerous users simultaneously. This is precisely why it

stands as a reliable choice for projects such as our login system.

If you have a macOS machine, the easiest way to install PostgreSQL is by doing so with Homebrew.

You just need to run the following command:

brew install postgres

Once you’ve installed it, you need to run the following command:

ln -sfv /usr/local/opt/postgresql/*.plist ~/Library/LaunchAgents

This command creates a symbolic link (a type of shortcut) from the PostgreSQL plist files (which

are configuration files used by macOS) to your ~/Library/LaunchAgents directory. The options

used with the ln -sfv command are as follows: “s” for symbolic (to create a symbolic link), “f”

for force (to remove existing destination files), and “v” for verbose (to display what is happening).

Then, you can create two new aliases to start and stop your PostgreSQL server:

alias pg_start="launchctl load ~/Library/LaunchAgents"

alias pg_stop="launchctl unload ~/Library/LaunchAgents"

Now, you should be able to start your PostgreSQL server by using pg_start or stop it with pg_stop.

After this, you need to create your first database, like so:

createdb `whoami`

Now, you can connect to PostgreSQL using the psql command. If you get an error stating the role

"postgresql" does not exist, you can fix it by running the following command:

createuser -s postgres

If you did everything correctly, you should see something like this:

Figure 13.1: psql

Understanding GraphQL with a Real Project260

Best tools for PostgreSQL database management
The best tool for PostgreSQL database management is pgAdmin 4 (https://www.pgadmin.org/

download/). I like this tool as it can be used to create new servers, users, and databases and can

be used to perform SQL queries and work with data. Remember to create a database in order to

use it in this example.

Sometimes, you may get an error when you start your PostgreSQL server that could say something

like FATAL lock file “postmaster.pid” already exists. If you get this error, you can easily fix it by

running the following command:

rm /usr/local/var/postgres/postmaster.pi

With this, you will be able to start your PostgreSQL server.

Now that we have completed the setup of PostgreSQL and have the pgAdmin tool available for

easier database management, we can shift our focus to the next task, which is building our back-

end project.

Creating our backend project
First, you need to create a backend directory in your GraphQL project (graphql/backend). After

that, let’s review the huge list of NPM packages you will need to install (focusing on the most

relevant):

npm init --yes

npm install @apollo/server@4.7.3 @contentpi/lib@1.0.10 @graphql-tools/
load-files@7.0.0 @graphql-tools/merge@9.0.0 @graphql-tools/schema@10.0.0
body-parser@1.20.2 cors@2.8.5 dotenv@16.1.4 express@4.18.2 graphql-
middleware@6.1.34 graphql-tag@2.12.6 jsonwebtoken@9.0.0 pg@8.11.0 pg-
hstore@2.3.4 pm2@5.3.0 sequelize@6.32.0 ts-node@10.9.1

npm install --save-dev prettier@2.8.8 ts-node-dev@2.0.0 typescript@5.1.3
eslint@8.42.0 @types/jsonwebtoken@9.0.2 @types/cors@2.8.13

Please note that some readers of my last book encountered issues with certain code that did not

work as intended. This is due to updates to package versions since the time of writing.

If you use Windows, you can download PostgreSQL at https://www.postgresql.

org/download/windows/ and for those that use Linux (Ubuntu), you can download

it from https://www.postgresql.org/download/linux/ubuntu/.

https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/linux/ubuntu/

Chapter 13 261

To ensure that the code in this book functions correctly, I have specified the specific versions of

packages that I use. It’s important to note that newer versions of these packages may contain

breaking changes that could impact the functionality of the code, so it’s recommended that you

use the specified versions to avoid any issues.

The scripts you should have in your package.json file should be as follows:

"scripts": {

 "dev": "ts-node-dev src/index.ts",

 "build": "rm -rf dist && tsc -p . --traceResolution",

 "lint": "eslint . --ext .js,.tsx,.ts",

 "lint:fix": "eslint . --fix --ext .js,.tsx,.ts",

 "test": "jest src"

}

In the next section, we are going to configure our environment variables.

Configuring our .env file
A .env file (also known as dotenv) is a configuration file to specify your application’s environ-

ment variables. Normally your application won’t change in development, staging, or production

environments but they normally need a different configuration. The most common variables to

change are the base URL, API URL, or even your API keys.

Before we jump into the actual login code, we need to create a file called .env (normally, this file

is ignored by .gitignore), which will allow us to use private data, such as the database connection

and security secrets. A file already exists in the repository called .env.example; you just need to

rename it and put your connection data inside it. The .env file will look something like this:

DB_DIALECT=postgres

DB_PORT=5432

DB_HOST=localhost

DB_DATABASE=<your-database>

DB_USERNAME=<your-username>

DB_PASSWORD=<your-password>

Creating a basic config file
For this project, we need to create a config file to store some security data, which should be created

at /backend/config/config.json.

Understanding GraphQL with a Real Project262

Here, we will define some basic configurations, such as our server’s port and some security in-

formation:

{

 "server": {

 "port": 4000

},

 "security": {

 "secretKey": "C0nt3ntP1",

 "expiresIn": "7d"

}

}

Then, you need to create an index.ts file in the config directory. This will bring in all the database

connection information we defined in the .env file using the dotenv package and then export

three configuration variables called $db, $security, and $server:

import dotenv from 'dotenv'

import config from './config.json'

dotenv.config()

type Db = {

 dialect: string

 host: string

 port: string

 database: string

 username: string

 password: string

}

type Security = {

 secretKey: string

 expiresIn: string

}

type Server = {

 port: number

}

const db: Db = {

 dialect: process.env.DB_DIALECT || '',

 port: process.env.DB_PORT || '',

 host: process.env.DB_HOST || '',

Chapter 13 263

 database: process.env.DB_DATABASE || '',

 username: process.env.DB_USERNAME || '',

 password: process.env.DB_PASSWORD || ''

}

const { security, server } = config

export const $db: Db = db

export const $security: Security = security

export const $server: Server = server

If your .env file is not in the root directory or does not exist, all your variables are going to be

undefined.

Once you have configured your file and verified the security details of your project, the subse-

quent step toward enhancing our project involves the utilization and setup of Apollo Server. This

invaluable tool facilitates the management of data exchanges between your server and client,

streamlining the communication process.

Configuring Apollo Server
Apollo Server is a highly popular open-source library for working with GraphQL, both as a server

and client. With extensive documentation and straightforward implementation, it has become a

go-to choice for many developers. Its intuitive interface and flexible architecture make it easy to

customize and adapt to your specific needs, while its robust features and reliable performance

ensure seamless integration with your existing code base. Whether you’re a seasoned developer

or new to GraphQL, Apollo Server is a powerful tool that can help you take your projects to the

next level.

The following diagram explains how Apollo Server works in the client and the server:

Figure 13.2: Apollo Server

Understanding GraphQL with a Real Project264

Apollo Server facilitates efficient communication between your app or website and the associ-

ated database. By utilizing GraphQL, it enables the frontend part of your app to request specific

data from the backend in a single operation, resulting in a faster and smoother data exchange.

In essence, it serves as an effective intermediary between your user interface and the database.

For our setup, we will use Express to establish our Apollo Server and the Sequelize Object Rela-

tional Mapper (ORM) to handle our PostgreSQL database. Express is a popular choice to configure

Apollo Server due to its seamless integration with Apollo and its flexibility, which provides devel-

opers with greater freedom. Express.js is a lightweight and performance-optimized framework

suitable for applications of various sizes, from small to large and scalable ones. Moreover, its

maturity and extensive community support make it a reliable option. Its simplicity, especially

for those already familiar with JavaScript and Node.js, enables a quick and efficient Apollo Server

setup. Therefore, we will begin by importing the necessary components.

The required file can be found at /backend/src/index.ts:

import { makeExecutableSchema } from '@graphql-tools/schema'

import { ApolloServer } from '@apollo/server'

import { expressMiddleware } from '@apollo/server/express4'

import { ApolloServerPluginDrainHttpServer } from '@apollo/server/plugin/
drainHttpServer'

import cors from 'cors'

import http from 'http'

import express from 'express'

import { applyMiddleware } from 'graphql-middleware'

import { json } from 'body-parser'

import { $server } from '../config'

import resolvers from './graphql/resolvers'

import typeDefs from './graphql/types'

import models from './models'

First, we need to set up our Express.js application and cors:

const app = express()

const corsOptions = {

 origin: '*',

 credentials: true

}

app.use(cors(corsOptions))

Chapter 13 265

app.use((req, res, next) => {

 res.header('Access-Control-Allow-Origin', '*')

 res.header(

 'Access-Control-Allow-Headers',

 'Origin, X-Requested-With, Content-Type, Accept'

)

 next()

})

Then, we need to create our schema using applyMiddleware and makeExecutableSchema by

passing typeDefs and resolvers:

// Schema

const schema = applyMiddleware(

 makeExecutableSchema({

 typeDefs,

 resolvers

 })

)

After that, we need to create an instance of Apollo Server, where we need to pass the schema and

the plugins:

// Apollo Server

const apolloServer = new ApolloServer({

 schema,

 plugins: [ApolloServerPluginDrainHttpServer({ httpServer })]

})

Finally, we need to synchronize Sequelize. Here, we pass some optional variables (alter and

force). If force is true and you change your Sequelize models, this will delete your tables, in-

cluding their values, and force you to create the tables again, while if force is false and alter is

true, then you will only update the table fields, without this affecting your values. So, you need

to be careful with this option, as you can lose all your data by accident. Then, after the sync, we

must run our Apollo Server, which listens to port 4000 ($server.port):

const main = async () => {

 const alter = true

 const force = false

 await apolloServer.start()

Understanding GraphQL with a Real Project266

 await models.sequelize.sync({ alter, force })

 app.use(

 '/graphql',

 cors<cors.CorsRequest>(),

 json(),

 expressMiddleware(apolloServer, {

 context: async () => ({ models })

 })

)

 await new Promise<void>((resolve) => httpServer.listen({

 port: $server.port

 }, resolve))

 console.log(`🚀 Server ready at http://localhost:${$server.port}/
graphql`)

}

main()

This process will help us in synchronizing our database with our models, ensuring that any mod-

ifications made to the models will automatically update the corresponding tables.

Defining our GraphQL types, queries, and mutations
Now that you have created your Apollo Server instance, the next step is to create your GraphQL

types. When setting up a GraphQL server like Apollo, creating GraphQL types is crucial. These

types ensure that the data returned from your API is reliable and conforms to the expected struc-

ture. They act as a helpful reference for available data and its expected format. By using types,

your application can precisely request the required data, resulting in faster execution and reduced

data consumption. Additionally, types help maintain data consistency, resulting in a robust,

comprehensible, and efficient API.

Scalar types
The first thing you need to do is define your scalar types at /backend/src/graphql/types/Scalar.

ts:

import gql from 'graphql-tag'

export default gql`

 scalar UUID

 scalar Datetime

 scalar JSON

Chapter 13 267

Now, let’s create our User type (backend/src/graphql/types/User.ts):

import gql from 'graphql-tag'

export default gql`

 type User {

 id: UUID!

 username: String!

 email: String!

 password: String!

 role: String!

 active: Boolean!

 createdAt: Datetime!

 updatedAt: Datetime!

}

`

As you can see, we use some scalar types such as UUID and Datetime to define some fields in

our User type. In this case, when you define a type in GraphQL, you need to do so with the type

keyword, followed by the type’s name capitalized. Then, you can define your fields inside the

curly braces, {}.

There are some primitive data types in GraphQL such as String, Boolean, Float, and Int. You

can define custom scalar types as we did with UUID, Datetime, and JSON, and you can also de-

fine custom types such as the User type and specify whether we want an array of that type, for

example, [User].

Queries
GraphQL queries are used to read or fetch values from a data store. Now that you know how to

define custom types, let’s define our Query type. Here, we will define getUsers and getUser. The

first will retrieve a list of users, while the second will bring us the data of the specific user:

type Query {

 getUser(at: String!): User!

The ! character after the types means the field is non-nullable.

Understanding GraphQL with a Real Project268

 getUsers: [User!]

}

In this case, our getUsers query will return an array of users ([User!]), while our getUser query,

which requires the at (access token) attribute, will return a single User!. Remember that with

any query you add here, you will need to define it under your resolvers later (we will do that

in the next section).

Mutations
Mutations are used to write or post values: that is, to modify data in the data store: and return a

value if you want to do some comparisons with REST, such as perform any POST, PUT, PATCH, or

DELETE actions. The Mutation type works exactly the same as the Query type, in that you need to

define your mutations and specify what arguments you will receive and what data you will return:

type Mutation {

 createUser(input: CreateUserInput): User!

 login(input: LoginInput): Token!

}

As you can see, we have defined two mutations. The first is createUser, to register or create a

new user in our data store, while the second one is to perform a login. As you may have noticed,

both receive the input argument with some different values (CreateUserInput and LoginInput),

called input types, which are used as query or mutation parameters. Finally, they will return the

User! and Token! types, respectively. Let’s learn how to define those inputs:

type Token {

 token: String!

}

input CreateUserInput {

 username: String!

 password: String!

 email: String!

 active: Boolean!

 role: String!

}

input LoginInput {

 emailOrUsername: String!

 password: String!

}

Chapter 13 269

The inputs are normally used with mutations, but you can also use them with queries.

Merging type definitions
Now that we’ve defined all our types, queries, and mutations, we need to merge all our GraphQL

files to create our GraphQL schema, which is basically one big file containing all our GraphQL

definitions.

For this, you need to create a file called /backend/src/graphql/types/index.ts that contains

the following code:

import { mergeTypeDefs } from '@graphql-tools/merge'

import Scalar from './Scalar'

import User from './User'

export default mergeTypeDefs([Scalar, User])

After successfully merging your type definitions into one comprehensive GraphQL schema, the

next critical step is to create resolvers. Resolvers are functions that have the responsibility of

fetching and generating the data that corresponds to the fields defined in your GraphQL schema.

Creating our resolvers
A resolver is a function that’s responsible for generating data for a field in your GraphQL schema.

It can normally generate the data in any way you want, in that it can fetch data from a database

or by using a third-party API.

To create our user resolvers, you need to create a file called /backend/src/graphql/resolvers/

user.ts. Let’s create a skeleton of what our resolver should look like. Here, we need to specify the

functions that are defined under Query and Mutation in our GraphQL schema. So, your resolver

should look like this:

export default {

 Query: {

 getUsers: () => {},

 getUser: () => {}

 },

 Mutation: {

 createUser: () => {},

 login: () => {}

 }

}

Understanding GraphQL with a Real Project270

As you can see, we return an object with two main nodes called Query and Mutation, and we map

the queries and the mutations we defined in our GraphQL schema (the User.ts file). Of course,

we need to make some changes to receive some parameters and return some data, but I wanted

to show you the basic skeleton of a resolver file first.

The first thing you need to do is add some imports to the file:

import { doLogin, getUserBy } from '../../lib/auth'

import { getUserData } from '../../lib/jwt'

import { ICreateUserInput, IloginInput, Imodels, Itoken, Iuser } from
'../../types'

We will create the getUsers and getUser functions in the next section.

Creating the getUsers query
Our first method will be the getUsers query. Let’s see how we need to define it:

getUsers: (

 _: any,

 args: any,

 ctx: { models: Imodels }

): Iuser[] => ctx.models.User.findAll(),

In any query or mutation method, we always receive four parameters: the parent (defined as _),

arguments (defined as args), the context (defined as ctx), and info (which is optional).

If you want to simplify the code a little bit, you can destructure the context, like this:

getUsers: (

 _: any,

 args: any,

 { models }: { models: Imodels }

): Iuser[] => ctx.models.User.findAll(),

In our next resolver function, we are going to destructure our arguments as well. Just as a reminder,

the context is passed in our Apollo Server setup (we did this previously):

// Apollo Server

const apolloServer = new ApolloServer({

schema,

context: async () => ({

Chapter 13 271

 models

 })

})

The context is very important when we need to share something globally in our resolvers.

Creating the getUser query
This function needs to be async because we need to perform some asynchronous operations, such

as getting the connected user via an at (access token) if a user already has a valid session. Then,

we can validate whether this is a real user by looking at our database. This helps stop people from

modifying the cookies or trying to do some form of injection. If we don’t find a connected user,

then we return an object of the user that contains empty data:

getUser: async (

 _: any,

 { at }: { at: string },

 { models }: { models: IModels }

): Promise<any> => {

// Get current connected user

const connectedUser = await getUserData(at)

if (connectedUser) {

 // Validating if the user is still valid

 const user = await getUserBy({

 id: connectedUser.id,

 email: connectedUser.email,

 active: connectedUser.active

 },

 [connectedUser.role],

 models

)

if (user) {

 return connectedUser

 }

}

return {

 id: '',

 username: '',

Understanding GraphQL with a Real Project272

 password: '',

 email: '',

 role: '',

 active: false

 }

}

Creating the mutations
Our mutations are very simple: we just need to execute some functions and pass all our argu-

ments by spreading the input value (this comes from our GraphQL schema). Let’s see what our

Mutation node should look like:

Mutation: {

 createUser: (

 _: any,

 { input }: { input: ICreateUserInput },

 { models }: { models: IModels }

): IUser => models.User.create({ ...input }),

 login: (

 _: any,

 { input }: { input: ILoginInput },

 { models }: { models: IModels }

): Promise<IToken> => doLogin(input.email, input.password, models)

}

You need to pass the email, password, and models to the doLogin function.

Merging our resolvers
As we did with our types definitions, we need to merge all our resolvers using the @graphql-tools

packages. You need to create the following file at /backend/src/graphql/resolvers/index.ts:

import { mergeResolvers } from '@graphql-tools/merge'

import user from './user'

const resolvers = mergeResolvers([user])

export default resolvers

This will combine all your resolvers into an array of resolvers.

Chapter 13 273

Once your resolvers are merged, bringing all your data-fetching functions into one coherent struc-

ture, it’s time to move on to the next phase: creating Sequelize models. Sequelize is a powerful

tool that simplifies the interaction between your application and various databases, translating

complex SQL commands into user-friendly JavaScript.

Using the Sequelize ORM
Sequelize is a popular ORM library for Node.js. It enables developers to interact with databases

like MySQL, PostgreSQL, SQLite, and Microsoft SQL Server by abstracting the underlying SQL

commands into higher-level, easy-to-use JavaScript objects and methods.

Using Sequelize, developers can perform database operations like creating, updating, deleting,

and querying records without having to write raw SQL queries. Sequelize also helps with defining

data models, managing associations between tables, and handling database migrations.

Some key features of Sequelize ORM include:

•	 Model definition: Sequelize allows you to define models with their attributes, data types,

and constraints, which map to tables in the underlying database.

•	 Associations: You can easily define relationships between models, such as one-to-one,

one-to-many, and many-to-many, which map to foreign key constraints in the database.

•	 Querying: Sequelize provides a robust querying system that allows you to fetch, filter,

sort, and paginate data without writing raw SQL.

•	 Transactions: It supports transactions for performing multiple database operations

atomically.

•	 Migrations: Sequelize offers a migration system to manage schema changes over time

and keep your database schema in sync with your application’s code.

Creating a user model in Sequelize
Before we jump into the authentication functions, we need to create our User model in Sequelize.

For this, we need to create a file at /backend/src/models/User.ts. Our model will have the

following fields:

•	 id

•	 username

•	 password

•	 email

Understanding GraphQL with a Real Project274

•	 role

•	 active

Let’s see the code:

import { encrypt } from '@contentpi/lib'

import { IDataTypes, IUser } from '../types'

export default (sequelize: any, DataTypes: IDataTypes): IUser => {

const User = sequelize.define('User', {

 id: {

 primaryKey: true,

 allowNull: false,

 type: DataTypes.UUID,

 defaultValue: DataTypes.UUIDV4()

 },

 username: {

 type: DataTypes.STRING,

 allowNull: false,

 unique: true,

 validate: {

 isAlphanumeric: {

 args: true,

 msg: 'The user just accepts alphanumeric characters'

 },

 len: {

 args: [4, 20],

 msg: 'The username must be from 4 to 20 characters'

 }

 }

},

 password: {

 type: Datatypes.STRING,

 allowNull: false

 },

 email: {

 type: DataTypes.STRING,

 allowNull: false,

 unique: true,

Chapter 13 275

 validate: {

 isEmail: {

 args: true,

 msg: 'Invalid email'

 }

 }

 },

 role: {

 type: DataTypes.STRING,

 allowNull: false,

 defaultValue: 'user'

 },

 active: {

 type: DataTypes.BOOLEAN,

 allowNull: false,

 defaultValue: false

 }

 },

{

 hooks: {

 beforeCreate: (user: IUser): void => {

 user.password = encrypt(user.password)

 }

 }

 }

)

return User

}

As you can see, we are defining a Sequelize Hook called beforeCreate, which helps us encrypt

(using sha1) the user password right before the data is saved. Finally, we return the User model.

Connecting Sequelize to a PostgreSQL database
Now that we’ve created the user model, we need to connect Sequelize to our PostgreSQL database

and put all our models together.

Understanding GraphQL with a Real Project276

You need to add the following code to the /backend/src/models/index.ts file:

import { Sequelize } from 'sequelize'

import { $db } from '../../config'

import { IModels } from '../types'

// Db Connection

const { dialect, port, host, database, username, password } = $db

// Connecting to the database

const uri =
`${dialect}://${username}:${password}@${host}:${port}/${database}`

const sequelize = new Sequelize(uri)

// Models

const models: IModels = {

 User: require('./User').default(sequelize, Sequelize),

 sequelize

}

export default models

Authentication functions
Step by step, we are putting all the puzzle pieces together. Now, let’s look at the authentication

functions we will use to validate whether a user is connected or not and get the user’s data. For

this, we need to use JWTs.

JWT is an open standard outlined in RFC 7519 (https://tools.ietf.org/html/rfc7519). It

serves as a valuable tool to transmit information between parties as a JSON object. One of the

primary advantages of JWTs is their digital signature, which allows them to be easily verified and

trusted. The token is signed using the HMAC algorithm and a secret or a public key pair using RSA

or ECDSA, ensuring that it remains secure and tamper-proof. This makes JWTs a reliable choice

for authentication and authorization purposes in a wide range of applications.

Creating JWT functions
Let’s create some functions that will help verify a JWT and get the user data. For this, we need to

create the jwtVerify, getUserData, and createToken functions. This file should be created at /

backend/src/lib/jwt.ts:

import { encrypt, getBase64, setBase64 } from '@contentpi/lib'

import jwt from 'jsonwebtoken'

import { $security } from '../../config'

https://tools.ietf.org/html/rfc7519

Chapter 13 277

import { IUser } from '../types'

const { secretKey } = $security

export function jwtVerify(accessToken: string, cb: any): void {

 // Verifiying our JWT token using the accessToken and the secretKey

 jwt.verify(accessToken, secretKey, (error: any, accessTokenData: any =
 {}) => {

 const { data: user } = accessTokenData

 // If we get an error or the user is not found we return false

 if (error || !user) {

 return cb(false)

 }

 // The user data is on base64 and getBase64 will retreive the

 // information as JSON object

 const userData = getBase64(user)

 return cb(userData)

 })

}

export async function getUserData(accessToken: string): Promise<any> {

 // We resolve the jwtVerify promise to get the user data

 const UserPromise = new Promise((resolve) => jwtVerify(accessToken,
 (user: any) => resolve(user)))

 // This will get the user data or false (if the user is not connected)

 const user = await UserPromise

 return user

 }

export const createToken = async (user: IUser): Promise<string[]> => {

 // Extracting the user data

 const { id, username, password, email, role, active } = user

 // Encrypting our password by combining the secretKey and the password

 // and converting it to base64

 const token = setBase64(`${encrypt($security.secretKey)}${password}`)

 // The "token" is an alias for password in this case

 const userData = {

 id,

 username,

 email,

 role,

Understanding GraphQL with a Real Project278

 active,

 token

 }

 // We sign our JWT token and we save the data as Base64

 const _createToken = jwt.sign({ data: setBase64(userData) }, $security.
 secretKey, {

 expiresIn: $security.expiresIn

 })

 return Promise.all([_createToken])

}

As you can see, jwt.sign is used to create a new JWT, while jwt.verify is used to validate our JWT.

Creating authentication functions
Now that we’ve created the JWT functions, we need to create some functions that will help us

log in at /backend/src/lib/auth.ts:

import { encrypt, isPasswordMatch } from '@contentpi/lib'

import { IToken, IModels, IUser } from '../types'

import { createToken } from './jwt'

export const getUserBy = async (where: any, models: IModels):
Promise<IUser> => {

We find a user by a WHERE condition:

const user = await models.User.findOne({

 where,

 raw: true

 })

 return user

}

export const doLogin = async (

 email: string,

 password: string,

 models: IModels

): Promise<IToken> => {

Finding a user by email:

const user = await getUserBy({ email }, models)

Chapter 13 279

If the user does not exist, we return Invalid Login:

if (!user) {

 throw new Error('Invalid Login')

}

We verify that our encrypted password is the same as the user.password value:

const passwordMatch = isPasswordMatch(encrypt(password), user.password)

We validate that the user is active:

const isActive = user.active

If the password does not match, we return Invalid Login:

if (!passwordMatch) {

 throw new Error('Invalid Login')

}

If the account is not active, we return an error:

if (!isActive) {

 throw new Error('Your account is not activated yet')

}

If the user exists, the password is correct and the account is active, then we create the JWT:

const [token] = await createToken(user)

// Finally we return the token to Graphql

return {

 token

}

}

Here, we validate whether the user exists by email, whether the password is correct, and whether

the account is active in order to create the JWT.

Defining types and interfaces
Finally, we need to define our types and interfaces for all our Sequelize models and GraphQL

inputs. For this, you need to create a file at /backend/src/types/types.ts:

export type User = {

 username: string

Understanding GraphQL with a Real Project280

 password: string

 email: string

 role: string

 active: boolean

}

export type Sequelize = {

 _defaults?: any

 name?: string

 options?: any

 associate?: any

}

Now, let’s create our interfaces at /backend/src/types/interfaces.ts:

import { Sequelize, User } from './types'

export interface IDataTypes {

 UUID: string

 UUIDV4(): string

 STRING: string

 BOOLEAN: boolean

 TEXT: string

 INTEGER: number

 DATE: string

 FLOAT: number

}

export interface IUser extends User, Sequelize {

 id: string

 token?: string

 createdAt?: Date

 updatedAt?: Date

}

export interface ICreateUserInput extends User {}

export interface ILoginInput {

 email: string

 password: string

}

export interface IToken {

Chapter 13 281

 token: string

}

export interface IModels {

 User: any

 sequelize: any

}

Finally, we need to export both files in /backend/src/types/index.ts:

export * from './interfaces'

export * from './types'

When you need to add more models, remember to always add your types and interfaces to those

files.

Finally, you need to create your tsconfig.json file in the root directory:

{

 "compilerOptions": {

 "baseUrl": "./src",

 "esModuleInterop": true,

 "module": "commonjs",

 "noImplicitAny": true,

 "outDir": "dist",

 "resolveJsonModule": true,

 "sourceMap": true,

 "target": "ESNext",

 "typeRoots": ["./src/@types", "./node_modules/@types"]

 },

 "include": ["src/**/*.ts"],

 "exclude": ["node_modules"]

}

In the next section, we will run our project and create our tables.

Running our project for the first time
Next up, we’re going to start our project for the first time. If we’ve done everything right, we’ll

see our Users table being set up and our Apollo Server will start running.

Understanding GraphQL with a Real Project282

In this part, we’ll cover how to start our project. After that, we’ll explore how to use our GraphQL

API. We’ll learn about testing queries, which allow us to retrieve data, and mutations, which en-

able us to modify data. We’ll also discuss validations, which are checks to ensure the correctness

of our data. Lastly, we’ll delve into the process of user login. Let’s get started!

If you followed the previous sections correctly and run the npm run dev command, you should be

able to see that the Users table has been created and that Apollo Server is running on port 4000:

Figure 13.3: Running our project for the first time

Now, let’s say that you want to modify your user model and change the "username" field to

"username2". Let’s see what will happen:

[INFO] 23:45:16 Restarting: /Users/czantany/projects/React-Design-
Patterns-and-Best-Practices-Third-Edition/Chapter05/graphql/backend/src/
models/User.ts has been modified

Executing (default): CREATE TABLE IF NOT EXISTS "Users" ("id" UUID NOT
NULL , "username2" VARCHAR(255) NOT NULL UNIQUE, "password" VARCHAR(255)
NOT NULL, "email" VARCHAR(255) NOT NULL UNIQUE, "privilege" VARCHAR(255)
NOT NULL DEFAULT 'user', "active" BOOLEAN NOT NULL DEFAULT false,
"createdAt" TIMESTAMP WITH TIME ZONE NOT NULL, "updatedAt" TIMESTAMP WITH
TIME ZONE NOT NULL, PRIMARY KEY ("id"));

Executing (default): ALTER TABLE "public"."Users" ADD COLUMN "username2"
VARCHAR(255) NOT NULL UNIQUE;

Executing (default): ALTER TABLE "Users" ALTER COLUMN "password" SET NOT
NULL;ALTER TABLE "Users" ALTER COLUMN "password" DROP DEFAULT;ALTER TABLE
"Users" ALTER COLUMN "password" TYPE VARCHAR(255);

Chapter 13 283

Executing (default): ALTER TABLE "Users" ALTER COLUMN "email" SET NOT
NULL;ALTER TABLE "Users" ALTER COLUMN "email" DROP DEFAULT;ALTER TABLE
"Users" ADD UNIQUE ("email");ALTER TABLE "Users" ALTER COLUMN "email" TYPE
VARCHAR(255) ;

Executing (default): ALTER TABLE "Users" ALTER COLUMN "privilege" SET NOT
NULL;ALTER TABLE "Users" ALTER COLUMN "privilege" SET DEFAULT 'user';ALTER
TABLE "Users" ALTER COLUMN "privilege" TYPE VARCHAR(255);

Executing (default): ALTER TABLE "Users" ALTER COLUMN "active" SET NOT
NULL;ALTER TABLE "Users" ALTER COLUMN "active" SET DEFAULT false;ALTER
TABLE "Users" ALTER COLUMN "active" TYPE BOOLEAN;

Executing (default): ALTER TABLE "Users" ALTER COLUMN "createdAt" SET NOT
NULL;ALTER TABLE "Users" ALTER COLUMN "createdAt" DROP DEFAULT;ALTER TABLE
"Users" ALTER COLUMN "createdAt" TYPE TIMESTAMP WITH TIME ZONE;

Running on http://localhost:4000/graphql

This will execute the following SQL query:

Executing (default): ALTER TABLE "public"."Users" ADD COLUMN "username2"
VARCHAR(255) NOT NULL UNIQUE;

Executing (default): ALTER TABLE "public"."Users" DROP COLUMN "username";

Now, let’s suppose you changed the force constant in your index.ts file to true. The following

will happen:

Figure 13.4: DROP TABLE IF EXISTS

As you can see, if force is true, it will execute DROP TABLE IF EXISTS "Users" CASCADE;. This

will completely remove your table and values and then recreate your table from scratch. That’s

why you need to be careful when you use the force option.

Understanding GraphQL with a Real Project284

At this point, if you open http://localhost:4000/graphql, you should be able to see your new

GraphQL Explorer:

Figure 13.5: GraphQL Explorer

Click on the Query your server button and then we are ready to test our queries and mutations.

Testing GraphQL queries and mutations
Great! At this point, you’re very close to executing your first GraphQL query and mutation. The first

query we will execute is going to be getUsers. The following is the correct syntax to run a query:

query {

 getUsers {

 id

http://localhost:4000/graphql

Chapter 13 285

 username

 email

 role

 }

}

When you don’t have any attribute to pass to the query, you just need to specify the name of the

query under the query {...} block and then specify the fields you want to retrieve once you’ve

executed your query. In this case, we want to fetch the id, username, email, and role fields.

If you run this query, you will probably get an empty array of data. This is because we don’t have

any users registered yet:

Figure 13.6: getUsers query

This means we need to execute our createUser mutation in order to register our first user. One

thing I like about GraphQL Explorer is that you have all the schema documentation in the Sche-

ma icon on the left-hand side. If you click on the Schema icon, you will see all your queries and

mutations listed.

Understanding GraphQL with a Real Project286

Let’s click there and select our createUser mutation to see what needs to be called and what

data may be returned:

Figure 13.7: Schema

As you can see, the createUser mutation needs an input argument, which is CreateUserInput.

Let’s click on that input:

Chapter 13 287

Figure 13.8: CreateUserInput

Awesome! Now, we know that we need to pass the username, password, email, role, and active

fields in order to create a new user. Let’s do this!

Create a new tab so that you don’t lose the code of your first query and then write the mutation:

mutation($input: CreateUserInput) {

 createUser(input: $input) {

 id

 username

 email

 role

 active

 }

}

Understanding GraphQL with a Real Project288

As you can see, your mutation needs to be written under the mutation {...} block, and you

must pass the input argument as an object in the Variables section. Finally, you must specify

the fields you want to retrieve once the mutation has been executed correctly. If everything is OK,

you should see something like this:

Figure 13.9: CreateUser mutation

If you’re curious and wish to take a look at the terminal where you run your Apollo Server, you

will see the SQL query that was performed for this user:

INSERT INTO "Users"
("id","username","password","email","role","active","createdAt","updatedAt")
VALUES ($1,$2,$3,$4,$5,$6,$7,$8)

The VALUES variables are handled by Apollo Server, so you won’t see the actual values in there,

but you can find out which operation is being executed in the database.

Chapter 13 289

Now, go back to your first query (getUsers) and run it again!

Figure 13.10: getUsers query

Nice: this is your first query and mutation that have been executed correctly in GraphQL. If you

want to see this data in your database, you can use OmniDB or PgAdmin4 to view your Users

table in your PostgreSQL database:

Figure 13.11: Database query

Understanding GraphQL with a Real Project290

As you can see, our first record has its own id field (UUID) and also has an encrypted password

field (remember our beforeCreate Hook in the user model?). By default, Sequelize will create

the createdAt and updatedAt fields.

Testing model validations and querying users
As you may recall, regarding our user model, you will want to make sure all the validations we

did work fine, such as whether the user is unique or whether their email is valid and unique. You

just need to execute the exact same mutation again:

Figure 13.12: Username must be unique

Chapter 13 291

As you can see, we will get a “username must be unique” error message because we’ve already

registered the “admin” username. Now, let’s try to change the username to “admin2” but leave

the email as is (admin@js.education):

Figure 13.13: Email must be unique

Understanding GraphQL with a Real Project292

We will also get an “email must be unique” error for the email. Now, try to change the email to

something invalid, such as admin@myfakedomain:

Figure 13.14: Invalid email

Now, we’re getting an "Invalid email" error message. This is just amazing, don’t you think? Now,

let’s stop playing with the validations and add a new valid user (username: admin2 and email:

admin2@js.education). Once you’ve created your second user, run our getUsers query once more.

However, this time, add the active field to the list of fields we want to return:

Chapter 13 293

Figure 13.15: getUsers query

Now, we have two registered users, and both are inactive accounts ("active" = false).

One thing I love about GraphQL is that when you’re writing your queries or mutations and you

don’t remember a certain field, GraphQL will always show you the list of available fields for

that query or mutation. For example, if you just write the letter p for the password, you will see

something like this:

Figure 13.16: Autocomplete

Now, we are ready to try and log in!

Understanding GraphQL with a Real Project294

Performing a login
I want to congratulate you for getting to this point in this book: I know we have covered a lot,

but we are almost there! Now, we are going to try and log in with GraphQL (how crazy is that?).

First, we need to write our login mutation:

mutation($input: LoginInput) {

 login(input: $input) {

 token

 }

}

Then, we need to log our user in by using “fake@email.com" as our email and “123456" as our

password. These do not exist in our database:

Figure 13.17: Invalid login after using non-existent login details

Chapter 13 295

Because the email does not exist in our database, an Invalid Login error message will be returned.

Now, let’s add the correct email but use a fake password:

Figure 13.18: Invalid login after inputting the correct email but a fake password

As you can see, we receive the exact same error (Invalid Login). This is because we don’t want

to provide too much information about what’s wrong with the login, as someone may be trying

to hack into your system. If we say something such as Invalid password or Your email does

not exist in our system, we give the attackers extra information that they may find useful.

Understanding GraphQL with a Real Project296

Now, let’s try to connect with the correct user and password (admin@js.education and 123456)

and see what happens:

Figure 13.19: Your account is not activated yet

Now, we receive an error stating Your account is not activated yet. This is OK because our

user has not been activated yet. Normally, when a user is registered in a system, you need to send

a link to their email so that they can activate their account. We don’t have this feature at the mo-

ment, but let’s suppose we sent that email, and the user has already activated their account. We

can simulate this by manually changing the value in our database using OnmiDB or PgAdmin4.

Chapter 13 297

We can do this by performing an UPDATE SQL query:

Figure 13.20: UPDATE SQL query

Now, let’s try to log in again!

Figure 13.21: Login token

Understanding GraphQL with a Real Project298

Nice: we are in, baby! This is you at this point:

Figure 13.22: Anonymous

Now that we’ve logged in and retrieved our JWT, let’s copy that huge string and use it in our

getUser query to see whether we can get the user’s data:

Figure 13.23: Access token

Chapter 13 299

If everything went well, then you should get the user’s data:

Figure 13.24: getUser data

If you change or remove any letter from the string (meaning the token is invalid), then you should

get empty user data:

Figure 13.25: Empty getUser data

Now that our login system works perfectly in the backend, it is time to implement this in the

frontend application. We’ll do this in the next section.

Building a frontend login system with Apollo Client
In the previous section, we learned how to build the backend for a login system using Apollo Server

to create our GraphQL queries and mutations. You are probably thinking, Great, I have the backend

working, but how can I use this on the frontend? And you’re right: I always like to explain things with

full examples and not just show basic things, even if this will take longer to do. So let’s get started!

Understanding GraphQL with a Real Project300

You can find the code for the example in this section at https://github.com/PacktPublishing/
React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter13/

graphql/frontend.

Configuring Webpack 5
Instead of using a vite project, we will configure a React project from scratch using Webpack 5

and Node.js.

The first thing we need to do is create the frontend directory and install all the packages inside.

To do this, we will execute the following commands:

npm init --yes

npm install @apollo/client@3.7.0 @contentpi/lib@1.0.10 cookie-parser@1.4.6
cors@2.8.5 dotenv-webpack@8.0.1 express@4.18.2 jsonwebtoken@8.5.1
pm2@5.2.2 react@18.2.0 react-dom@18.2.0 react-cookie@4.1.1 react-router-
dom@6.4.2 run-script-webpack-plugin@0.1.1 styled-components@5.3.6
typescript-plugin-styled-components@2.0.0 webpack-node-externals@3.0.0

npm install --save-dev @babel/core@7.19.3 @babel/preset-env@7.19.4 @babel/
preset-react@7.18.6 @types/node@18.11.3 buffer@6.0.3 cross-env@7.0.3
crypto-browserify@3.12.0 dotenv@16.0.3 html-webpack-plugin@5.5.0 npm-
run-all@4.1.5 prettier@2.7.1 stream-browserify@3.0.0 ts-loader@9.4.1
ts-node@10.9.1 ts-node-dev@2.0.0 typescript@4.8.4 webpack@5.74.0 webpack-
cli@4.10.0 webpack-dev-server@4.11.1 webpackbar@5.0.2

The buffer, crypto-browserify, and stream-browserify are polyfills that were included by

default in Webpack up to and including version 4. However, in the latest version (Webpack 5),

these are not included anymore, so you will get the following error:

Figure 13.26: Webpack < 5 used to include polyfills for Node.js core modules by default

You need to have those scripts in your package.json:

"scripts": {

 "build": "npm-run-all clean build:production:*",

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter13/graphql/frontend
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter13/graphql/frontend
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter13/graphql/frontend

Chapter 13 301

 "build:production:client": "webpack --env mode=production --env
presets=client",

 "build:production:server": "webpack --env mode=production --env
presets=server",

 "clean": "rm -rf dist",

 "dev": "cross-env DEBUG=server:* npm-run-all clean serve:dev",

 "analyze": "cross-env ANALYZE=true cross-env DEBUG=server:* npm-run-all
clean serve:*",

 "start": "pm2 start apps.json",

 "stop": "pm2 stop apps.json",

 "restart": "pm2 restart apps.json",

 "serve:dev": "cross-env NODE_ENV=development ts-node ./src/server/
devServer.ts",

 "webpack": "cross-env NODE_ENV=production webpack",

 "lint": "eslint . --ext .js,.tsx,.ts",

 "lint:fix": "eslint . --fix --ext .js,.tsx,.ts",

 "test": "jest src",

 "test:coverage": "jest src --coverage"

}

I like to split my Webpack configuration into separate files to identify more easily what is for the

client, for the server, for development, and for production. First let’s create our presets directo-

ry under /frontend/webpack/presets, and then create our webpack.client.ts to specify our

client configuration:

import HtmlWebpackPlugin from 'html-webpack-plugin'

import { Configuration } from 'webpack'

import { BundleAnalyzerPlugin } from 'webpack-bundle-analyzer'

import WebpackBar from 'webpackbar'

const isAnalyze = Boolean(process.env.ANALYZE) // This is to analyze the
bundles sizes

const webpackClientConfig: (args: { mode: string }) => Configuration = ({
mode }) => {

 const isProductionMode = mode === 'production'

 const title = 'My Website Title'

 const webpackConfig: Configuration = {

 entry: {

 main: './src/client/index.tsx' // Entry for the client app

 },

Understanding GraphQL with a Real Project302

 output: {

 publicPath: 'http://localhost:3001/' // This is for webpack-dev-server

 },

 plugins: [

 new HtmlWebpackPlugin({

 title,

 template: './src/client/index.html',

 filename: './index.html'

 }),

 new WebpackBar({

 name: 'client',

 color: '#2EA1F8'

 })

]

 }

 if (isProductionMode) {

 webpackConfig.output = {

 filename: '[name].js',

 chunkFilename: '[name].js',

 publicPath: '/'

 }

 }

 if (isAnalyze) {

 webpackConfig.plugins = [

 (webpackConfig.plugins || []),

 new BundleAnalyzerPlugin({

 analyzerPort: 9001

 })

]

 }

return webpackConfig

}

export default webpackClientConfig

That is our client preset; now let’s create the server preset under /frontend/webpack/presets/

webpack.server.ts:

import { resolve } from 'path'

Chapter 13 303

import { RunScriptWebpackPlugin } from 'run-script-webpack-plugin'

import { Configuration, IgnorePlugin, optimize } from 'webpack'

import { BundleAnalyzerPlugin } from 'webpack-bundle-analyzer'

import nodeExternals from 'webpack-node-externals'

import WebpackBar from 'webpackbar'

const isAnalyze = Boolean(process.env.ANALYZE)

const webpackServerConfig: (args: { mode: string }) => Configuration = ({
mode }) => {

const isDevelopment = mode === 'development'

 const webpackConfig: Configuration = {

 target: 'node', // Target node is only for server

 entry: './src/server/index.ts', // Entry for the server app

 output: {

 libraryTarget: 'commonjs2',

 filename: 'server.js',

 path: resolve('dist')

 },

 externals: [nodeExternals()], // Ignoring all node_modules

 plugins: [

 new optimize.LimitChunkCountPlugin({

 maxChunks: 1

 }),

 new IgnorePlugin({

 resourceRegExp: /\.((sc|c)ss|jpe?g|png|gif|svg)$/i

 }),

 new WebpackBar({

 name: 'server',

 color: '#2EA1F8',

 profile: true,

 basic: false

 })

]

 }

 if (isDevelopment) {

 webpackConfig.watch = true

 if (webpackConfig.entry instanceof Array) {

 webpackConfig.entry.unshift('webpack/hot/poll?300') // This is for HMR

Understanding GraphQL with a Real Project304

 }

 if (webpackConfig.plugins instanceof Array) {

 webpackConfig.plugins.push(

 new RunScriptWebpackPlugin({

 name: 'server.js',

 nodeArgs: ['--inspect']

 })

)

 }

 webpackConfig.externals = [

 nodeExternals({

 allowlist: ['webpack/hot/poll?300']

 })

]

 }

 if (isAnalyze) {

 webpackConfig.plugins = [

 (webpackConfig.plugins || []),

 new BundleAnalyzerPlugin({

 analyzerPort: 9002

 })

]

 }

return webpackConfig

}

export default webpackServerConfig

After you’ve created the presets, you need to create the loadPresets.ts file that will handle those

presets. This file must exist under /frontend/webpack/loadPresets.ts:

import { Configuration } from 'webpack'

import { merge } from 'webpack-merge'

import { ConfigArgs } from './webpack.types'

const loadPresets: (mode: ConfigArgs) => Promise<Configuration> = async
(env) => {

const presets: string[] = ([] as string[]).concat(...[env.presets])

const webpackConfigs = await Promise.all(

presets.map(async (presetName: string) => {

Chapter 13 305

try {

 // Dynamically loading the presets

 const {default: webpackConfig} = await import(`./presets/
 webpack.${presetName}`)

 return Promise.resolve(webpackConfig(env))

} catch (err) {

 return Promise.resolve({})

 }

 })

)

return merge({}, ...webpackConfigs)

}

export default loadPresets

Besides the client and server presets, we need to create some other configuration files: one for de-

velopment, another for production, and a file that will contain a common configuration between

both. First let’s create the common configuration at /frontend/webpack/webpack.common.ts:

import Dotenv from 'dotenv-webpack'

import { resolve } from 'path'

import createStyledComponentsTransformer from 'typescript-plugin-styled-
components'

import { Configuration } from 'webpack'

const styledComponentsTransformer = createStyledComponentsTransformer()

const webpackCommonConfig: () => Configuration = () => {

const webpackConfig: Configuration = {

 output: {

 path: resolve('dist') // Output by default will be dist directory

},

 resolve: {

 extensions: ['.ts', '.tsx', '.js', '.jsx', '.json'],

 alias: {

 '~': resolve(__dirname, '../src') // Alias for src

},

 fallback: {

 crypto: require.resolve('crypto-browserify'),

 buffer: require.resolve('buffer/'),

 stream: require.resolve('stream-browserify')

Understanding GraphQL with a Real Project306

 }

},

 optimization: { // This is to split the bundle in main.js (app) and
vendor.js (node_modules)

 splitChunks: {

 cacheGroups: {

 default: false,

 commons: {

 test: /node_modules/,

 name: 'vendor',

 chunks: 'all'

 }

 }

 }

},

 module: {

 rules: [

{

 test: /\.(woff|woff2)$/, // For loading fonts

 use: {

 loader: 'url-loader'

 }

 },

{

 test: /\.(ts|tsx)$/, // For loading TypeScript files

 exclude: /node_modules/,

 use: [

 {

 loader: 'ts-loader',

 options: {

 transpileOnly: true,

 getCustomTransformers: () => ({

 before: [styledComponentsTransformer]

 })

 }

 }

]

Chapter 13 307

 }

]

 },

 plugins: [new Dotenv()] // This will load our .env variables into Webpack

 }

return webpackConfig

}

export default webpackCommonConfig

Then we need to create the development configuration at /frontend/webpack/webpack.

development.ts:

import { Configuration, HotModuleReplacementPlugin, NoEmitOnErrorsPlugin }
from 'webpack'

const webpackDevConfig: () => Configuration = () => {

const webpackConfig: Configuration = {

 mode: 'development',

 devtool: 'source-map',

 output: {

 filename: '[name].js'

 },

 plugins: [new HotModuleReplacementPlugin(), new NoEmitOnErrorsPlugin()]

 }

return webpackConfig

}

export default webpackDevConfig

As you can see in development, we include the HotModuleReplacementPlugin for the HMR to

reload the site every time we make a change. After this, you need to create the production con-

figuration file at /frontend/webpack/webpack.production.ts:

import { Configuration } from 'webpack'

const webpackProdConfig: (args: { presets: string[] }) => Configuration =
() => {

const webpackConfig: Configuration = {

 mode: 'production' // By default this mode minifies all code

}

Understanding GraphQL with a Real Project308

 return webpackConfig

 }

export default webpackProdConfig

Finally, we have to create our Webpack types file at /frontend/webpack/webpack.types.ts.

These are the TypeScript types we will use for Webpack:

export type WebpackMode = 'production' | 'development'

export type ConfigArgs = {

 mode: WebpackMode

 presets: string[]

}

At this point, you need to create the index.html file, which should be at /frontend/src/client/

index.html. This will be our initial HTML file handled by HtmlWebpackPlugin:

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

 <title><%= htmlWebpackPlugin.options.title %></title>

</head>

<body>

 <div id="root"></div>

</body>

</html>

In the next section, we will configure our TypeScript.

Configuring our TypeScript
TypeScript is a special version of JavaScript, the language typically used to write web apps. What

makes TypeScript interesting is its ability to identify mistakes in our code earlier, potentially sav-

ing us significant time. This feature becomes particularly valuable when working on large-scale

projects. Therefore, we will utilize TypeScript for our project. Let’s now delve into the process

of setting it up.

Our tsconfig.json file should look like this:

{

 "compilerOptions": {

Chapter 13 309

 "sourceMap": true,

 "target": "ESNext",

 "lib": ["dom", "dom.iterable", "esnext"],

 "allowJs": true,

 "skipLibCheck": true,

 "esModuleInterop": true,

 "allowSyntheticDefaultImports": true,

 "strict": true,

 "forceConsistentCasingInFileNames": true,

 "noFallthroughCasesInSwitch": true,

 "module": "commonjs",

 "moduleResolution": "node",

 "resolveJsonModule": true,

 "isolatedModules": true,

 "noEmit": true,

 "jsx": "react-jsx",

 "noImplicitAny": false,

 "paths": {

 "~/*": ["./src/*"]

 }

 },

 "include": ["src"],

 "exclude": ["node_modules", "**/*.test.tsx"]

}

Now, let’s learn how to configure the Express server.

Configuring the Express server
Our application requires a Express server so that we can perform validations. These will help us

find out whether the user is connected (using a custom middleware, which I’ll explain later) and

can also configure our Express sessions. We have four main routes on our site:

•	 /: Our home page (handled by React).

•	 /dashboard: Our dashboard, which is protected. Only connected users with god or admin

permissions are allowed (handled by Express first then by React).

•	 /login: Our login page (handled by React).

Understanding GraphQL with a Real Project310

•	 /logout: This will delete our existing session (handled by Express).

Let’s look at our server code. The following file should exist at /frontend/src/server.ts. This

is in order to create our Express app and run our React app:

import cookieParser from 'cookie-parser'

import cors from 'cors'

import express, { Application, Request, Response } from 'express'

import { resolve } from 'path'

import * as config from '../config'

import html from './html'

import { isConnected } from './lib/middlewares/user'

// Express application

const app: Application = express()

const distDir = resolve('dist')

const staticDir = resolve('src', 'static')

// Middlewares

app.use(express.json())

app.use(express.urlencoded({ extended: true }))

app.use(cookieParser(config.security.secretKey))

app.use(cors({ credentials: true, origin: true }))

// Static directories

app.use(express.static(distDir))

app.use(express.static(staticDir))

// Routes

app.get('/login', isConnected(false), (req: Request, res: Response) => {

 res.send(html({ title: 'My Website' }))

})

app.get(`/logout`, (req: Request, res: Response) => {

 const redirect: any = req.query.redirectTo || '/'

 res.clearCookie('at')

 res.redirect(redirect)

})

app.get('*', (req: Request, res: Response) => {

 res.send(html({ title: 'My Website' }))

})

export default app

Chapter 13 311

As you can see, we protect our dashboard route with the isConnected middleware. Here, we

validate that we only accept users that are not connected in the login route.

Creating our frontend configuration
Now, we need to create our frontend configuration. So, let’s create the configuration at /frontend/

src/config.ts. This file will assist us to manage our GraphQL port and server, as well as incor-

porate security configurations such as our secret key and the expiration options:

// Types

type API = {

 uri: string

}

type Security = {

 secretKey: string

 expiresIn: string

}

// Environment Configuration

export const isProduction: boolean = process.env.NODE_ENV === 'production'

export const isDevelopment: boolean = process.env.NODE_ENV !==
'production'

// Server Configuration

const devUrl = 'localhost'

const prodUrl = 'localhost' // change this to your production url

export const PORT: number = Number(process.env.PORT) || 3000

export const DEV_SERVER_PORT = 3001

export const GRAPHQL_PORT = 4000

export const GRAPHQL_SERVER = isDevelopment ? devUrl : prodUrl

// Paths Configuration

export const domain: string = devUrl

export const baseUrl: string = isProduction

? `https://${domain}:${PORT}`

: `http://${domain}:${PORT}` // Remove port in actual production

export const publicPath: string = isProduction

? ``

: `http://${domain}:${DEV_SERVER_PORT}/`

// API Configuration

export const api: API = {

Understanding GraphQL with a Real Project312

 uri: `http://${GRAPHQL_SERVER}:${GRAPHQL_PORT}/graphql`

}

// Security Configuration

export const security: Security = {

 secretKey: process.env.SECURITY_SECRET_KEY || '',

 expiresIn: '7d'

}

Next, we need to create a user-called middleware and the jwt functions to validate whether the

user is connected and has the correct privileges.

Creating the user middleware
In web development, a middleware is a function that has access to the request object (req), the

response object (res), and the next function in the application’s request-response cycle. The next

function is a function in the Express router that, when invoked, executes the middleware suc-

ceeding the current middleware. This creates a chain of functions, each of which can perform a

specific task or modify the request and response objects as needed. By utilizing middleware, you

can streamline your code and simplify complex processes.

The following diagram provides a visual representation of the middleware flow:

Figure 13.27: Visual representation of the middleware flow

In our case, we will create the isConnected middleware to validate if a user is connected and has

the correct privileges. If not, we will break the flow and redirect them to the login page. If the user

is valid, we will execute the next piece of middleware, which will render our React application.

The following diagram describes this process:

Chapter 13 313

Figure 13.28: Auth middleware

Let’s apply the theoretical part to our code. The required file should exist at /frontend/src/

server/lib/middlewares/user.ts:

import { NextFunction, Request, Response } from 'express'

import { getUserData } from '../jwt'

export const isConnected = (isLogged = true, roles = ['user'], redirectTo
= '/') =>

async (req: Request, res: Response, next: NextFunction): Promise<void> =>
{

 const user = await getUserData(req.cookies.at)

 if (!user && !isLogged) {

 return next()

}

if (user && isLogged) {

 if (roles.includes('god') && roles.role === 'god') {

 return next()

 }

 if (roles.includes('admin') && user.role === 'admin') {

 return next()

 }

 if (roles.includes('user') && user.role === 'user') {

 return next()

 }

Understanding GraphQL with a Real Project314

 res.redirect(redirectTo)

 } else {

 res.redirect(redirectTo)

}

}

Basically, with this middleware, we can control whether we want to validate whether the user is

connected (isLogged = true). Then, we can validate specific roles (roles = ['god', 'admin'])

and redirect the user if they are not connected or do not have the correct roles (redirectTo = '/').

As you can see, we are using the getUserData function from jwt. We’ll create our jwt functions

in the next section.

Creating JWT functions
Earlier, when I explained the backend code, I talked about JWTs. In the frontend, we need those

functions to validate our token and get the user’s data. Let’s create a file containing the following

code at /frontend/src/server/lib/jwt.ts:

import { getBase64 } from '@contentpi/lib'

import jwt from 'jsonwebtoken'

import * as config from '~/config'

const { security: { secretKey } } = config

export function jwtVerify(accessToken: string, cb: any) {

jwt.verify(accessToken, secretKey, (error: any, accessTokenData: any = {})
=> {

const { data: user } = accessTokenData

 if (error || !user) {

 return cb(null)

}

 const userData = getBase64(user)

 return cb(userData)

 })

}

export async function getUserData(accessToken: string): Promise<any> {

 const UserPromise = new Promise(

 (resolve) => jwtVerify(accessToken, (user: any) => resolve(user))

)

Chapter 13 315

 const user = await UserPromise

 return user

}

As you can see, our getUserData function will retrieve the user data using accessToken, which

we grabbed from the cookies.

A JWT must be valid for security reasons and to ensure that the user’s identity is verified. The

server verifies this token whenever a user makes a request. If the token is invalid, the server will

not fulfill the user’s request. Additionally, the token helps protect user information, as it cannot

be altered without the server’s knowledge. Moreover, these tokens have an expiration time, re-

quiring users to log in again. This prevents unauthorized individuals from using a stolen token

to impersonate the user. Hence, ensuring the validity of a JWT is of utmost importance.

Creating our GraphQL queries and mutations
We’ve already created the required queries and mutations in our backend project. At this point,

however, we need to create some files that will execute them in our frontend project. For now,

we just need to define our getUserData query and our login mutation to perform the login in

the frontend.

Let’s create our getUser query at /frontend/src/client/graphql/user/getUser.query.ts:

import { gql } from '@apollo/client'

 export default gql`

 query getUser($at: String!) {

 getUser(at: $at) {

 id

 email

 username

 role

 active

 }

 }

`

Our login mutation should be at /frontend/src/graphql/user/login.mutation.ts:

import { gql } from '@apollo/client'

export default gql`

Understanding GraphQL with a Real Project316

 mutation login($email: String!, $password: String!) {

 login(input: { email: $email, password: $password }) {

 token

 }

 }

`

Now that we have defined our query and mutation, let’s create the user context so that we can

use them.

Creating user context to handle login and connected user
In our user context, we will have a login method that will execute our mutation and validate

whether the email and password are correct. We will also export the user data.

Let’s create this context at /frontend/src/client/contexts/user.tsx:

import { useMutation, useQuery } from '@apollo/client'

import { getGraphQlError, redirectTo } from '@contentpi/lib'

import { createContext, FC, ReactElement, useEffect, useState } from
'react'

import { useCookies } from 'react-cookie'

import GET_USER_QUERY from '../graphql/user/getUser.query'

import LOGIN_MUTATION from '../graphql/user/login.mutation'

// Interfaces

interface IUserContext {

 login(input: any): any

 connectedUser: any

}

interface IProps {

 page?: string

 children: ReactElement

}

// Creating context

export const UserContext = createContext<IUserContext>({

 login: () => null,

 connectedUser: null

})

const UserProvider: FC<IProps> = ({ page = '', children }) => {

const [cookies, setCookie] = useCookies()

Chapter 13 317

const [connectedUser, setConnectedUser] = useState(null)

// Mutations

const [loginMutation] = useMutation(LOGIN_MUTATION)

// Queries

const { data: dataUser } = useQuery(GET_USER_QUERY, {

 variables: {

 at: cookies.at || ''

 }

})

// Effects

useEffect(() => {

if (dataUser) {

 if (!dataUser.getUser.id && page !== 'login') {

 // If the user session is invalid and is on a different page than login

 // we redirect them to login

 redirectTo('/login?redirectTo=/dashboard')

} else {

 // If we have the user data available we save it in our connectedUser
state

 setConnectedUser(dataUser.getUser)

 }

 }

}, [dataUser, page])

async function login(input: { email: string; password: string }):
Promise<any> {

 try {

 // Executing our loginMutation passing the email and password

 const { data: dataLogin } = await loginMutation({

 variables: {

 email: input.email,

 password: input.password

 }

})

if (dataLogin) {

 // If the login was success, we save the token in our "at" cookie

 setCookie('at', dataLogin.login.token, { path: '/' })

 return dataLogin.login.token

}

Understanding GraphQL with a Real Project318

} catch (err) {

 // If there is an error we return it

 return getGraphQlError(err)

 }

}

// Exporting our context

const context = {

 login,

 connectedUser

}

 return <UserContext.Provider value={context}>{children}</UserContext.
Provider>

}

export default UserProvider

As you can see, we handle the login and have the connectedUser data in our context. Here, we

execute GET_USER_QUERY all the time to verify whether the user is connected (validating against

the database and not just with the cookies).

Configuring Apollo Client
So far, we have created a lot of code, but none of it is going to work if we don’t configure Apollo

Client. To configure Apollo Client, we need to add it to our index file at /frontend/src/client/

index.tsx:

import { ApolloClient, ApolloProvider, InMemoryCache } from '@apollo/
client'

import { render } from 'react-dom'

import * as config from '../config'

import AppRoutes from './AppRoutes'

const client = new ApolloClient({

 uri: config.api.uri,

 cache: new InMemoryCache()

})

render(

 <ApolloProvider client={client}>

 <AppRoutes />

 </ApolloProvider>,

Chapter 13 319

 document.querySelector('#root')

)

Basically, we pass config.api.uri, which is where GraphQL Playground is running (http://

localhost:4000/graphql), and then wrap our AppRoutes component with the ApolloProvider

component.

Creating our app routes
We will use react-router-dom to create our application routes. Let’s create the required code at

/frontend/src/client/AppRoutes.tsx:

import { BrowserRouter as Router, Route, Routes } from 'react-router-dom'

import DashboardPage from './pages/dashboard'

import Error404 from './pages/error404'

import HomePage from './pages/home'

import LoginPage from './pages/login'

const AppRoutes = () => (

<>

 <Router>

 <Routes>

 <Route path="/" element={<HomePage />} />

 <Route path="/dashboard" element={<DashboardPage />} />

 <Route path="/login" element={<LoginPage />} />

 <Route element={<Error404 />} />

 </Routes>

 </Router>

</>

)

export default AppRoutes

As you can see, we are adding some pages to our routes, such as HomePage, DashboardPage (pro-

tected), and LoginPage. If the user tries to access a different URL, then we will display an Error404

component. We’ll create these pages in the next section.

Creating our pages
The Home page should be at /frontend/src/client/pages/home.tsx:

const Page = () => (

<div className="home">

http://localhost:4000/graphql
http://localhost:4000/graphql

Understanding GraphQL with a Real Project320

<h1>Home</h1>

 Go to Dashboard

</div>

)

export default Page

The Dashboard page should be at /frontend/src/client/pages/dashboard.tsx:

import DashboardLayout from '../components/dashboard/DashboardLayout'

import UserProvider from '../contexts/user'

const Page = () => (

<UserProvider>

 <DashboardLayout />

</UserProvider>

)

export default Page

The Login page should be at /frontend/src/client/pages/login.tsx:

import { isBrowser } from '@contentpi/lib'

import { FC, ReactElement } from 'react'

import LoginLayout from '../components/users/LoginLayout'

import UserProvider from '../contexts/user'

 interface IProps {

 currentUrl?: string

}

const Page: FC<IProps> = ({

 currentUrl = isBrowser() ? window.location.search.
 replace('?redirectTo=', '') : ''

}) => (

<UserProvider page="login">

 <LoginLayout currentUrl={currentUrl} />

</UserProvider>

)

export default Page

Chapter 13 321

Finally, we need to create our Error404 page (/frontend/src/client/pages/error404.tsx):

const Page = () => (

 <div className="error404">

 <h1>Error404</h1>

 </div>

)

export default Page

We are almost done. The last piece of this puzzle is to create the Login and Dashboard components.

We’ll do that in the next section.

Creating our login components
I created some basic components for our login and our dashboard. Of course, their styles can be

improved, but let’s see how they work and how our login system is going to look.

The first file you need to create is called LoginLayout.tsx at /frontend/src/client/components/

users/LoginLayout.tsx:

import { FC, useContext } from 'react'

import { UserContext } from '../../contexts/user'

import Login from './Login'

// Interfaces

interface IProps {

 currentUrl: string

}

const Layout: FC<IProps> = ({ currentUrl }) => {

const { login } = useContext(UserContext)

return <Login login={login} currentUrl={currentUrl} />

}

export default Layout

The layout file is useful when we want to add a specific layout to our components. It is also useful

to consume data from a context and pass the data or functions as props.

Our Login component should look like this (/frontend/src/client/components/users/Login.

tsx):

import { redirectTo } from '@contentpi/lib'

import { ChangeEvent, FC, useState } from 'react'

Understanding GraphQL with a Real Project322

import { IUser } from '../../types'

import { StyledLogin } from './Login.styled'

interface IProps {

 login(input: any): any

 currentUrl: string

}

const Login: FC<IProps> = ({ login, currentUrl }) => {

const [values, setValues] = useState({

 email: '',

 password: ''

 })

const [errorMessage, setErrorMessage] = useState('')

const [invalidLogin, setInvalidLogin] = useState(false)

const onChange = (e: ChangeEvent<HTMLInputElement>): void => {

const { target: { name, value } } = e

 if (name) {

 setValues((prevValues: any) => ({

 prevValues,

 [name]: value

 }))

 }

}

const handleSubmit = async (user: IUser): Promise<void> => {

// Here we execute the login mutation

const response = await login(user)

if (response.error) {

 setInvalidLogin(true)

 setErrorMessage(response.message)

} else {

 redirectTo(currentUrl || '/')

 }

}

return (

<>

 <StyledLogin>

 <div className="wrapper">

Chapter 13 323

 {invalidLogin && <div className="alert">{errorMessage}</div>}

 <div className="form">

<p>

<input

 autoComplete="off"

 type="email"

 className="email"

 name="email"

 placeholder="Email"

 onChange={onChange}

 value={values.email}

/>

</p>

<p>

<input

 autoComplete="off"

 type="password"

 className="password"

 name="password"

 placeholder="Password"

 onChange={onChange}

 value={values.password}

/>

</p>

 <div className="actions">

 <button name="login" onClick={() => handleSubmit(values)}>Login</button>

 </div>

</div>

</div>

</StyledLogin>

</>

)

}

export default Login

We’ll create the dashboard components next.

Understanding GraphQL with a Real Project324

Creating our dashboard components
When creating our dashboard components, the first one should be the DashboardLayout.tsx file

at /frontend/src/client/components/dashboard/DashboardLayout.tsx:

import { FC, useContext } from 'react'

import { UserContext } from '../../contexts/user'

import Dashboard from './Dashboard'

const Layout: FC = () => {

const { connectedUser } = useContext(UserContext)

 // We only render the Dashboard if the user is connected

 if (connectedUser) {

 return <Dashboard connectedUser={connectedUser} />

 }

return <div />

}

export default Layout

This is how we protect our dashboard page to allow only connected users. Now, let’s create our

dashboard component at /frontend/src/components/dashboard/Dashboard.tsx:

interface IProps {

 connectedUser: any

}

const Dashboard = ({ connectedUser }) => (

<div className="dashboard">

 <h1>Welcome, {connectedUser.username}!</h1>

 Logout

</div>

)

export default Dashboard

And with that, we’re done! We’ll test the login system in the next section.

Testing our login system
If you followed the previous sections correctly, then you should be able to run the login system

successfully. To do this, we need to open three terminals:

Chapter 13 325

•	 In the first one, you need to run your backend project (npm run dev).

•	 In the other, you need to run the Node.js server in the frontend project (npm run dev).

The third terminal is that when you open http://localhost:3000 for the first time, you should

be able to see the Home page:

Figure 13.29: Home page

Then, if you click on the Go to Dashboard (http://localhost:3000/dashboard) link, you will

be redirected to http://localhost:3000/login?redirectTo=/dashboard, as shown in the fol-

lowing screenshot:

Figure 13.30: Login page

http://localhost:3000/dashboard
http://localhost:3000/login?redirectTo=/dashboard

Understanding GraphQL with a Real Project326

This is our login form. If you try to log in with fake credentials, you should get an error:

Figure 13.31: Invalid login

If you want to see the GraphQL request, you can do so on the Headers tab:

Figure 13.32: GraphQL request

Here, you can see the query you execute and the variables you send (email and password). You

can see the response on the Preview tab:

Figure 13.33: Invalid login

Chapter 13 327

As you can see, we get an "Invalid Login" error message, and that’s why we render it in our

login component.

Now, let’s try to connect with the correct account (admin@js.education and 123456). If your login

is correct, then you should be redirected to the dashboard, where you will see the following page:

Figure 13.34: Welcome, admin! page

Additionally, you can take a look at the query being executed to retrieve the user data (getUser):

Figure 13.35: getUser data

Here, you will see that the payload is returned:

Figure 13.36: getUserData payload

Understanding GraphQL with a Real Project328

We get the user information from the access token (at). If you refresh the page, you should remain

connected to the page. This is because we saved a cookie containing our token:

Figure 13.37: Cookies

Now, let’s try to modify the cookie by changing any letter of the token. For example, let’s change

the first two letters (ey) to XX:

Figure 13.38: Updating a cookie

Here, you will receive empty data for the user. This will invalidate the session and redirect you

to the login page again:

Figure 13.39: Empty data

Now, you have learned how to implement GraphQL in a backend and how to consume queries

and mutations in the frontend.

This login system is part of a course I’m doing on YouTube, where I’m teaching viewers how to

develop a headless CMS from scratch, so if you’re eager to learn more, you can check out the

course at https://www.youtube.com/watch?v=4n1AfD6aV4M.

https://www.youtube.com/watch?v=4n1AfD6aV4M

Chapter 13 329

Summary
I hope you found this chapter on GraphQL, JWT creation, login functionality, and Sequelize model

creation informative and engaging. It provided a wealth of valuable insights and practical tips

that you can apply to your own projects, helping you to streamline your development process

and achieve your goals more efficiently. By mastering these concepts, you’ll be better equipped

to build robust, scalable applications that meet the needs of your users and drive your success.

Thank you for reading, and I look forward to sharing more with you in the next chapter, where

you will learn how to create a monorepository and a multi-site project.

14
MonoRepo Architecture

When we think about building apps, we usually talk about an app, a git repository, and a build

output. However, this configuration of an application and a repository does not always reflect

the real-world experience of developers. Often organizations will use a single repository with all

the applications, components, and libraries that could be used in common development. These

are called a monorepository or single repository, and they are starting to become very popular.

So, what makes a monorepository interesting for organizations? Why put all the code in one place?

Why not have a single git repository where you have many small and separate repositories? If

we keep all our code in one project.

By keeping all the code in one repository, you keep all dependencies up to date across the orga-

nization. This is probably the biggest benefit of a single repository. This way we will stop having

to waste time updating all the dependencies of several different projects.

In this chapter, we’ll be walking through how to create a monorepository with multiple packages

using TypeScript, webpack, and NPM Workspaces.

We will look at the following topics:

•	 Advantages of a monorepository and the problems it solves

•	 How to create a monorepository

•	 Implementing TypeScript in the monorepository

•	 Creating a devtools package to compile other packages with Webpack

•	 Creating a utils package

•	 How to create a multi-site system

MonoRepo Architecture332

Technical requirements
To complete this chapter, you will need the following:

•	 Node.js 19+

•	 Visual Studio Code

You can find the code for this chapter in the book’s GitHub repository: https://github.com/
PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/

main/Chapter14.

Advantages of a monorepository and the problems it
solves
Some of the advantages of a MonoRepo (monorepository) are:

•	 Sharing is made easy: With all the code in one place, it becomes easier to utilize the same

code or tools across multiple projects, saving valuable time and effort.

•	 No mix-ups: In a MonoRepo, every project utilizes the same version of shared components,

eliminating concerns about compatibility issues between different versions.

•	 Change everything at once: In a MonoRepo, making changes across all projects simul-

taneously becomes a straightforward task, as opposed to the complexity of managing

individual projects in separate repositories.

•	 Grouped changes: Modifying multiple projects simultaneously within a MonoRepo en-

sures that all related components stay synchronized, allowing for efficient and cohesive

updates.

•	 Everyone can see everything: With all the code centralized in one repository, all develop-

ers have access to it, fostering a better understanding of the entire system and facilitating

effective collaboration.

Now let’s explore some of the real-life problems that a MonoRepo solves:

•	 Faster updates: With a MonoRepo, you can update all projects at once. Without it, you’d

have to update each project separately, which can take a lot of time.

•	 No more confusion: Without a MonoRepo, different projects might use different versions

of the same thing, which can cause problems. With a MonoRepo, everything uses the same

version, so there’s no confusion.

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter14
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter14
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter14

Chapter 14 333

•	 Better teamwork: With all the code in one place, developers can easily see and understand

what others have done. This can help them work together better.

•	 Easier start for newbies: For new team members, it’s easier to get started when all the

code is in one place. They can quickly understand the whole system, rather than having

to search through different places.

It is important to remember that MonoRepos may not always be the optimal choice. They can

introduce their own challenges, such as potential performance issues and increased complexity

when they become excessively large. Whether adopting a MonoRepo is a suitable approach de-

pends on the specific needs of the team and the scale of their projects.

In the following image you can see how the structure of a MonoRepo is different from that of a

Multi Repo:

Figure 14.1: MultiRepo vs MonoRepo

MonoRepo Architecture334

Now that we’ve shed light on the concept of a monorepository and explored why it is becoming

increasingly popular for organizations, we will delve into the practical implementation of a mon-

orepository using NPM Workspaces.

Creating a MonoRepo with NPM Workspaces
NPM Workspaces was introduced in NPM 7 and is a generic term that refers to the set of features

in the npm CLI that provides support for managing multiple packages from your local filesystem,

from within a singular top-level root package.

The first thing you need to do in order to create a monorepository is to create a root package.json

file, which should contain the following code:

{

 "name": "web-creator",

 "private": true,

 "workspaces": [

 "packages/*"

]

}

We will name our MonoRepo web-creator. We need to specify that web-creator will be private

(only the root), and we need to specify the workspaces where our packages will live, which is

on "packages/*"; the * means that we will include any directory that exists under the packages

folder. After this, you need to create the packages directly.

Let’s create two directories inside our new packages folder: "packages/api" and "packages/

frontend". Now go to your api project and run npm init -y:

cd packages/api

npm init -y

Once you run that command it will create a package.json like this:

{

 "name": "api",

 "version": "1.0.0",

 "main": "index.js",

 "author": "",

 "license": "ISC"

}

Chapter 14 335

As you can see, the name of that package by default will be "api", but in order to connect that

package to our main monorepository, we need to call it with a special format; in this case, you need

to rename it "@<name_of_root_package>/api", which in our example will be "@web-creator/

api". Your package.json should be like this:

{

 "name": "@web-creator/api",

 "version": "1.0.0",

 "main": "index.js",

 "author": "",

 "license": "ISC"

}

Now you need to create a file (packages/api/index.js) inside your api directory (later we will

change this to TypeScript) with the following code:

module.exports = () => console.log("I'm the API package")

After this, you need to go to your frontend package (packages/frontend) and run the same npm

init -y command:

cd packages/frontend

npm init -y

Also, you will need to rename that package @web-creator/frontend:

{

 "name": "@web-creator/frontend",

 "version": "1.0.0",

 "main": "index.js",

 "author": "Carlos Santana",

 "license": "ISC"

}

The monorepository now is ready to share packages. Let’s suppose you now want to consume

your api package in your frontend package. To do this, you need to specify the api package as a

dependency and put the same version we have in that api package; in this case, the version will

be 1.0.0. You need to be very careful and not change this version unless you really need to, and if

you change it then you will need to update it on the dependencies node as well.

MonoRepo Architecture336

This will be your package.json from packages/frontend:

{

 "name": "@web-creator/frontend",

 "version": "1.0.0",

 "main": "index.js",

 "author": "Carlos Santana",

 "license": "ISC",

 "dependencies": {

 "@web-creator/api": "1.0.0" // this version needs to match with the
API package.json

 }

}

After you’ve specified the api package as a dependency, you need to run npm install inside the

frontend project. One very interesting thing you will notice is that even if you run the npm install

command inside the frontend package (packages/frontend), your node_modules folder will be

created at the root level, and it will look like this:

Figure 14.2: Monorepo structure

Chapter 14 337

If everything worked as expected, you can consume your api package in your frontend pack-

age. For this, you need to create an index.js file inside packages/frontend/index.js with the

following code:

const api = require('@web-creator/api')

api()

Now you can execute your index file with node and see the console message that comes from the

api package:

Figure 14.3: Running frontend

One of the biggest advantages of a monorepository is that if you update your API index.js, the

change will be reflected right away without you having to compile anything or publish any package

to the NPM registry. This is very helpful and saves a lot of time for developers when coding large

projects. Let’s change our message now to I'm the API package UPDATED in the packages/api/

index.js and run the index.js again with node:

Figure 14.4: Updating the API

Congratulations, you have created your first MonoRepo successfully! In the next section, we will

transform our MonoRepo to use TypeScript.

Implementing TypeScript in our MonoRepo

The first thing you need to do in order to add TypeScript to your project is to install the typescript

package at the root level:

npm install -D typescript

In the following sections, I will outline the steps to create a multi-site project. Due

to the substantial amount of code involved, I’m unable to include it all in this

book. However, I invite you to review the complete code in the repository avail-

able at https://github.com/PacktPublishing/React-18-Design-Patterns-

and-Best-Practices-Fourth-Edition/tree/main/Chapter14/web-creator.

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter14/web-creator
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter14/web-creator

MonoRepo Architecture338

After this, you need to create the tsconfig.json file at the root level as well with the following

code:

{

 "extends": "./tsconfig.common.json",

 "compilerOptions": {

 "baseUrl": "./packages",

 "paths": {

 "@web-creator/*": ["*/src"]

 }

 }

}

As you can see, we extend the tsconfig.json file to tsconfig.common.json, and this is because

we don’t want to to repeat each package that we want to transform to TypeScript. The only

compilerOptions we want to specify is the baseUrl on our packages directory, and in the paths we

will specify the name of our MonoRepo to be able to do imports in the code. This is the tsconfig.

common.json file that you need to create:

{

 "compilerOptions": {

 "allowSyntheticDefaultImports": true,

 "alwaysStrict": true,

 "declaration": true,

 "declarationMap": true,

Chapter 14 339

 "downlevelIteration": true,

 "esModuleInterop": true,

 "experimentalDecorators": true,

 "jsx": "react-jsx",

 "lib": ["DOM", "DOM.Iterable", "ESNext"],

 "module": "commonjs",

 "moduleResolution": "node",

 "noEmit": false,

 "noFallthroughCasesInSwitch": false,

 "noImplicitAny": true,

 "noImplicitReturns": true,

 "outDir": "dist",

 "resolveJsonModule": true,

 "skipLibCheck": true,

 "sourceMap": true,

 "strict": true,

 "strictFunctionTypes": true,

 "strictNullChecks": true,

 "suppressImplicitAnyIndexErrors": false,

 "target": "ESNext"

 },

 "exclude": ["node_modules", "dist", "coverage", ".vscode", "**/__
tests__/*"]

}

MonoRepo Architecture340

The architecture of our project will look like this:

Figure 14.5: Web creator architecture

Chapter 14 341

Now that we have explored the project’s architecture, let’s dive into the first package that will

manage our Webpack configurations. This package will be referred to as devtools.

Creating a devtools package to compile packages
with Webpack
The first package we need to create to be able to compile other packages is called devtools and

should be created in packages/devtools. Let’s see how it should look in its package.json file:

{

 "name": "@web-creator/devtools",

 "version": "1.0.0",

 "main": "dist/index.js",

 "types": "dist/index.d.ts",

 "files": [

 "dist"

],

 "scripts": {

 "build": "npm-run-all clean compile",

 "clean": "rm -rf ./dist",

 "compile": "tsc",

 "lint": "npm run --prefix ../../ lint",

 "lint:fix": "npm run --prefix ../../ lint:fix"

 },

 "author": "Carlos Santana",

 "license": "MIT",

 "devDependencies": {

 "@types/cli-color": "^2.0.2",

 "@types/ip": "^1.1.0",

 "@types/webpack-bundle-analyzer": "^4.6.0",

 "@types/webpack-node-externals": "^2.5.3"

 },

 "dependencies": {

 "@svgr/webpack": "^6.5.1",

 "@types/file-loader": "^5.0.1",

 "cli-color": "^2.0.3",

 "css-loader": "^6.7.3",

 "dotenv": "^16.0.3",

MonoRepo Architecture342

 "file-loader": "^6.2.0",

 "html-webpack-plugin": "^5.5.0",

 "path-browserify": "^1.0.1",

 "run-script-webpack-plugin": "^0.1.1",

 "style-loader": "^3.3.1",

 "ts-loader": "^9.4.2",

 "typescript-plugin-styled-components": "^2.0.0",

 "webpack": "^5.75.0",

 "webpack-bundle-analyzer": "^4.7.0",

 "webpack-dev-server": "^4.11.1",

 "webpack-node-externals": "^3.0.0",

 "webpackbar": "^5.0.2"

 }

}

After you create the package.json, you need to create the tsconfig.json file for devtools. Each

package will have its own tsconfig.json file. Basically we will extend our tsconfig.common.

json from root and just specify the outDir and include the files inside the src folder:

{

 "extends": "../../tsconfig.common.json",

 "compilerOptions": {

 "outDir": "./dist"

 },

 "include": ["src/**/*"]

}

Creating a colorful log
We need to create a log function that will help us highlight the Webpack configuration that we

will implement, and for this we will use the cli-color package, which adds colors to the logs.

You need to create the file under packages/devtools/src/cli/log.ts:

import cliColor from 'cli-color'

type Args = {

 text?: string

 tag?: string

 json?: any

Chapter 14 343

 type?: 'info' | 'error' | 'warning'

}

export const log = (args: Args | any) => {

 const blockColor: any = {

 info: cliColor.bgCyan.whiteBright.bold,

 error: cliColor.bgRed.whiteBright.bold,

 warning: cliColor.bgYellow.blackBright.bold

}

 const textColor: any = {

 info: cliColor.blue,

 error: cliColor.red,

 warning: cliColor.yellow

}

 if (typeof args === 'string') {

 console.info(textColor.info(args))

}

 const { tag, json, type } = args

 if (tag && json) {

 console.info(blockColor[type](`<<< BEGIN ${tag.toUpperCase()}`))

 console.info(textColor[type](JSON.stringify(json, null, 2)))

 console.info(blockColor[type](`END ${tag.toUpperCase()} >>>`))

 }

}

Webpack common configuration
Now that we have our log function ready, we will continue creating the Webpack configura-

tion. We will break our Webpack configuration into three files: webpack.common.ts, webpack.

development.ts, and webpack.production.ts. The common configuration will be merged with

the development and production separately. However, before creating our common configuration,

we need to create our Webpack types, and you need to add this file to packages/devtools/src/

webpack/webpack.types.ts:

export type WebpackMode = 'production' | 'development'

export type ConfigType = 'web' | 'package'

export type Package = 'api' | 'design-system' | 'frontend' | 'utils'

export type ConfigArgs = {

 mode: WebpackMode

MonoRepo Architecture344

 type: ConfigType

 sandbox?: 'true' | 'false'

 packageName: Package

}

export type ModeArgs = {

 configType: ConfigType

 packageName: Package

 mode?: WebpackMode

 sandbox?: boolean

 devServer?: boolean

 isAnalyze?: boolean

 port?: number

 analyzerPort?: number

 color?: string

 htmlOptions?: {

 title: string

 template: string

}

}

Now let’s create our webpack.common.ts file, starting with the packages we need to import:

import HtmlWebPackPlugin from 'html-webpack-plugin'

import path from 'path'

import createStyledComponentsTransformer from 'typescript-plugin-styled-
components'

import { Configuration } from 'webpack'

import { BundleAnalyzerPlugin } from 'webpack-bundle-analyzer'

import nodeExternals from 'webpack-node-externals'

import { ModeArgs } from './webpack.types'

Next we need to create the getWebpackCommonConfig function, which will receive arguments

from the terminal to compile each package via the NPM script:

const getWebpackCommonConfig = (args: ModeArgs): Configuration => {

const {

 configType, // it can be "web" or "package"

 isAnalyze,

 port = 3000,

Chapter 14 345

 mode,

 analyzerPort = 9001,

 packageName,

 htmlOptions,

 sandbox,

 devServer

 } = args

 // Here goes the next block of codes

}

export default getWebpackCommonConfig

The blocks of code that you will see next from this chapter’s GitHub repository need to be added

where the comment is located in the previous code: // Here goes the next block of codes.

First let’s check if we are running a sandbox (this will be for our design-system package). If yes,

we will use port 8080, and if not, we will use the port + 1 (3001 by default):

const devServerPort = sandbox && devServer ? 8080 : port + 1

The first configuration option we need to create is entry, which will define the index file that we

will use to compile our project, based on the packageName we specify in our script. We can create

entry by running the following code:

// Client Entry

const entry = configType !== 'web'

? path.resolve(__dirname, `../../../${packageName}/src/index.ts`)

: path.resolve(__dirname, `../../../${packageName}/src/index.tsx`)

When our configType is "package" (or different than 'web'), we will specify the index.ts as

entry, and for the web packages, we will use index.tsx.

The second configuration option we need to create is going to be the resolve node, which will

include the extensions we want to support and the alias for each package (~). In Webpack 5, we

must turn off some fallback packages that are not enabled by default anymore:

// Resolve

const resolve = {

extensions: ['*', '.ts', '.tsx', '.js', '.jsx'],

alias: {

'~': path.resolve(__dirname, `../../../${packageName}/src`)

},

MonoRepo Architecture346

 fallback: {

 buffer: false,

 crypto: false,

 stream: false,

 querystring: false,

 os: false,

 zlib: false,

 http: false,

 https: false,

 url: false,

 path: require.resolve('path-browserify')

 }

}

The third configuration option is the output, which will specify where we will place the compiled

project (the dist directory), which will be the dynamic filename ([name].js). If we want to com-

pile a package, we will add the necessary options to be able to export that package (libraryTarget,

library, umdNamedDefine, and globalObject):

// Output

const output = {

 path: path.resolve(__dirname, `../../../${packageName}/dist`),

 filename: '[name].js',

 (sandbox && {

 publicPath: '/',

 chunkFilename: '[name].js'

 }),

 (configType === 'package' && !sandbox && {

 filename: 'index.js',

 libraryTarget: 'umd',

 library: 'lib',

 umdNamedDefine: true,

 globalObject: 'this'

 })

}

Chapter 14 347

The fourth configuration option is the plugins, which will be applied based on some conditions,

depending on if we want to analyze our bundle sizes (BundleAnalyzerPlugin) and add a template

with HtmlWebPackPlugin:

// Plugins

const plugins = []

if (isAnalyze) {

 plugins.push(

 new BundleAnalyzerPlugin({

 analyzerPort

 })

)

 }

if (mode === 'development' && htmlOptions?.title && htmlOptions.template)
{

 plugins.push(

 new HtmlWebPackPlugin({

 title: htmlOptions.title,

 template: path.resolve(__dirname,
 `../../../${packageName}/${htmlOptions.template}`),

 filename: './index.html'

 })

)

}

The fifth configuration option is the rules, which we will define depending on the extension file

we want to process. We will also use Webpack loaders like ts-loader to load TypeScript files or

svg-url-loader and @svgr/webpack to load SVG files:

// Rules

const rules = []

rules.push({

 test: /\.(tsx|ts)$/,

 exclude: /node_modules/,

 loader: 'ts-loader',

 options: {

MonoRepo Architecture348

 getCustomTransformers: () => ({

 before: [

createStyledComponentsTransformer({

 displayName: true,

 ssr: true,

 minify: true

 })

]

 })

}

})

if (packageName === 'design-system') {

 const svgUrlLoaderInclude: Record<string, string[]> = {

'design-system': [

 path.resolve(__dirname, '../../../design-system/src/components/Spinner/
loaders'),

 path.resolve(__dirname, '../../../design-system/src/components/Dialog/
icons'),

 path.resolve(__dirname, '../../../design-system/src/icons')

]

}

const svgrWebpackInclude: Record<string, string[]> = {

'design-system': [

 path.resolve(__dirname, '../../../design-system/src/components/Icon/
icons')

]

}

rules.push({

 test: /\.svg$/,

 oneOf: [

 {

 use: 'svg-url-loader',

 include: configType === 'package' ? svgUrlLoaderInclude[packageName] ??
 [] : []

 },

{

use: '@svgr/webpack',

Chapter 14 349

 include: configType === 'package' ? svgrWebpackInclude[packageName] ?? []
 : []

 }

]

})

}

if (configType === 'package' && sandbox) {

 rules.push({

 test: /\.(jpe?g|png|gif|svg)$/i,

 use: [{ loader: 'file-loader', options: {} }]

 })

}

Finally, we put all the options together in the webpackConfig object:

const webpackConfig = {

entry,

...(configType === 'package' && sandbox && {

 entry: path.resolve(__dirname, `../../../${packageName}/sandbox/index.
 tsx`)

}),

 (devServer && {

 devServer: {

 historyApiFallback: true,

 static: output.path,

 port: devServerPort

 }

}),

 (!sandbox && {

externals: [nodeExternals()]

}),

 output,

 resolve,

 plugins,

 module: {

 rules

},

 (configType !== 'web' && !sandbox && {

MonoRepo Architecture350

 target: 'node'

 })

}

return webpackConfig as Configuration

Webpack development configuration
After creating our Webpack common configuration file, we now need to create our webpack.

development.ts file, which is way smaller than the common one and will extend that configura-

tion (on webpack.config.ts), specifying the development mode for Webpack, adding the source

map, and passing the HMR plugin:

import {

Configuration as WebpackConfiguration,

HotModuleReplacementPlugin,

NoEmitOnErrorsPlugin

} from 'webpack'

import { Configuration as WebpackDevServerConfiguration } from 'webpack-
dev-server'

interface Configuration extends WebpackConfiguration {

devServer?: WebpackDevServerConfiguration

}

const getWebpackDevelopmentConfig = (): Configuration => {

const webpackConfig: Configuration = {

 mode: 'development',

 devtool: 'source-map',

 plugins: [new HotModuleReplacementPlugin(), new NoEmitOnErrorsPlugin()]

 }

return webpackConfig

}

export default getWebpackDevelopmentConfig

Webpack production configuration
The last file we need to create is the webpack.production.ts, which will will use external libraries

when we try to compile a package that uses shared libraries like React, Apollo Server, or JSON

Web Tokens, put the mode as production, and disable the source map:

import { Configuration } from 'webpack'

import { ModeArgs } from './webpack.types'

Chapter 14 351

const getWebpackProductionConfig = (args: ModeArgs): Configuration => {

const { configType } = args

// Externals

const externals = configType === 'package'

? {

 react: {

 commonjs: 'react',

 commonjs2: 'react',

 amd: 'React',

 root: 'React'

},

'react-dom': {

 commonjs: 'react-dom',

 commonjs2: 'react-dom',

 amd: 'ReactDOM',

 root: 'ReactDOM'

},

 jsonwebtoken: 'jsonwebtoken'

}

: {}

const webpackConfig = {

 mode: 'production',

 devtool: false,

 externals

 }

return webpackConfig as Configuration

}

export default getWebpackProductionConfig

That’s all for our devtools package. Now we only need to create the index.ts file in packages/

devtools/src/index.ts to export all the Webpack configuration and be able to compile our

devtools package:

// CLI

export * from './cli/log'

// Webpack

MonoRepo Architecture352

export { default as getWebpackCommonConfig } from './webpack/webpack.
common'

export { default as getWebpackDevelopmentConfig } from './webpack/webpack.
development'

export { default as getWebpackProductionConfig } from './webpack/webpack.
production'

export * from './webpack/webpack.types'

Since this will be the base package that will compile other packages, first we need to build it, and

for this, we will just use the tsc command to transform TypeScript into JavaScript files. For this,

you just need to run the build command inside packages/devtools:

npm run build

If everything is correct, you should see something like this:

Figure 14.6: npm run build

Finally, we need to create the webpack.config.ts file at the root level where we will consume

our brand-new devtools package and merge the configurations (development + common or

production + common) using webpack-merge:

import {

ConfigArgs,

getWebpackCommonConfig,

getWebpackDevelopmentConfig,

getWebpackProductionConfig,

log

} from '@web-creator/devtools'

import { Configuration } from 'webpack'

Chapter 14 353

import { merge } from 'webpack-merge'

// Mode Config

const getModeConfig = {

 development: getWebpackDevelopmentConfig,

 production: getWebpackProductionConfig

}

// Mode Configuration (development/production)

const modeConfig: (args: ConfigArgs) => Configuration = ({mode, type,
packageName}) => {

const getWebpackConfiguration = getModeConfig[mode]

return getWebpackConfiguration({

 configType: type,

 packageName,

 sandbox: true,

 devServer: true

 })

}

// Merging all configurations

const webpackConfig: (args: ConfigArgs) => Promise<Configuration> = async
({

mode, type, sandbox, packageName

} = {

 mode: 'production',

 type: 'web',

 sandbox: 'false',

 packageName: 'design-system'

}) => {

const isSandbox = type === 'package' && sandbox === 'true'

const commonConfiguration = getWebpackCommonConfig({

 configType: type,

 packageName,

 mode,

 (isSandbox && {

 htmlOptions: { title: 'Sandbox', template: 'sandbox/index.html' },

 sandbox: isSandbox,

 devServer: isSandbox

 })

})

MonoRepo Architecture354

// Mode Configuration

const modeConfiguration = mode && type ? modeConfig({ mode, type,
packageName }) : {}

// Merging all configurations

const webpackConfiguration = merge(commonConfiguration, modeConfiguration)

// Logging Webpack Configuration

log({ tag: 'Webpack Configuration', json: webpackConfiguration, type:
'warning' })

return webpackConfiguration

}

export default webpackConfig

Creating the utils package
After we’ve created the devtools package, it is time to add a basic utils package to test the Web-

pack compilation with devtools. For this, you will need to create a directory at packages/utils.

For the example in the book, we will just add one util file to test our devtools, but in the actual

repository you will find way more util files that have been added to the project.

As always let’s start creating our package.json in the utils package:

{

 "name": "@web-creator/utils",

 "version": "1.0.0",

 "main": "dist/index.js",

 "types": "dist/index.d.ts",

 "files": [

 "dist"

],

 "scripts": {

 "build": "cross-env NODE_ENV=production npm-run-all clean compile
webpack:production",

 "build:dev": "cross-env NODE_ENV=development npm-run-all clean compile
webpack:development",

 "clean": "rm -rf ./dist",

 "compile": "tsc",

 "lint": "npm run --prefix ../../ lint",

 "lint:fix": "npm run --prefix ../../ lint:fix",

 "prepublishOnly": "npm run lint && npm run build",

Chapter 14 355

 "webpack:development": "webpack --config=../../webpack.config.ts --env
mode=development --env type=package --env packageName=utils",

 "webpack:production": "webpack --config=../../webpack.config.ts --env
mode=production --env type=package --env packageName=utils"

 },

 "author": "Carlos Santana",

 "license": "MIT",

 "dependencies": {

 "currency-formatter": "^1.5.9",

 "slug": "^8.2.2",

 "uuid": "^9.0.0"

 },

 "devDependencies": {

 "@types/currency-formatter": "^1.5.1",

 "@types/slug": "^5.0.3",

 "@types/uuid": "^9.0.0"

 }

}

There are some important elements in this package.json that I want to mention:

•	 The first one is the name of the package, which is @web-creator/utils. As I mentioned

before, this is the correct format to name packages inside our MonoRepo.

•	 The second node is version, which always will be 1.0.0 (unless you want to publish this

package to the NPM registry; for now you don’t need to worry about that).

•	 main is to specify where our utils code will exist, which will always be in dist/index.js.

•	 The types node is to be able to load our TypeScript types; if you don’t specify this, it won’t

be possible to see the types you add to your utils package when you consume this package.

•	 Finally the files node is an array that will contain the dist directory that will contain

the compiled package.

Additionally, the scripts have some interesting things that you should know. Our build com-

mand will run multiple scripts using npm-run-all, which is a library that helps us run multiple

scripts one after the other. In this case, we always execute the script clean first to remove our

dist folder and start fresh. Then we compile the code with TypeScript (tsc), then we execute

webpack:production. This will execute webpack, specifying the configuration file that exists at

the root (two levels behind). We also use the --env flag to pass values as variables.

MonoRepo Architecture356

These variables are defined in our webpack.config.ts file. In this case, we’re passing

mode=production, type=package, and packageName=utils.

If you notice, some scripts contain npm run --prefix ../../, and I’m pretty sure you are won-

dering what exactly the --prefix flag is in this command. It is essentially a way to tell NPM that

we want to run a script from a different package.json. In this specific example, we are going back

two levels to run the script lint that exists in our root package.json.

Now let’s create our first util file, which is going to be called is.ts, and you must save it in

packages/utils/src/utils/is.ts with the following code:

const is = {

 Array(v: unknown) {

 return v instanceof Array

},

Defined(v: unknown) {

 return typeof v !== 'undefined' && v !== null

},

Email(email: string) {

 const regex = /^[^\s@]+@[^\s@]+\.[^\s@]+$/

 return regex.test(email)

},

False(v: unknown) {

 return (this.Defined(v) && v === false) || v === 'false'

},

Number(v: unknown) {

 return typeof v === 'number'

},

Function(v: unknown) {

 return typeof v === 'function'

},

Object(v: unknown) {

 return this.Defined(v) && typeof v === 'object' && !this.Array(v)

},

String(v: unknown) {

 return this.Defined(v) && typeof v === 'string'

},

Undefined(v: unknown) {

Chapter 14 357

 return typeof v === 'undefined' || v === null

},

JSON(str: string) {

 if (!str || str === null) {

 return false

}

 try {

JSON.parse(str)

} catch (e) {

 return false

}

 return true

},

Password(password: string, min = 8) {

 return Boolean(password && password.length >= min)

},

PasswordMatch(p1: string, p2: string) {

 return this.Password(p1) && this.Password(p2) && p1 === p2

},

Browser() {

 return typeof window !== 'undefined'

},

Device() {

 if (!this.Browser()) {

 return false

}

 const ua = navigator.userAgent

 if (/(tablet|ipad|playbook|silk)|(android(?!.*mobi))/i.test(ua)) {

 return true

}

 if (/Mobile|Android|iP(hone|od)|IEMobile|BlackBerry|Kindle|Silk-
Accelerated|(hpw|web)OS|Opera M(obi|ini)/.test(ua)) {

 return true

}

 return false

},

EmptyObject(v: any) {

MonoRepo Architecture358

 return v ? Object.keys(v).length === 0 : true

 }

}

export default is

After you create this util, you need to create the index.ts file in packages/utils/src/index.

ts, where you will export all your utils:

export { default as is } from './utils/is'

Finally, you must add a script to your root package.json to be able to compile your brand-new

utils package. Here is how your root package.json file should look:

{

 "name": "web-creator",

 "private": true,

 "workspaces": [

 "packages/*"

],

 "scripts": {

 "lint": "eslint --ext .tsx,.ts ./packages/**/src",

 "lint:fix": "eslint --ext .tsx,.ts ./packages/**/src",

 "build": "npm-run-all build:*",

 "build:devtools": "cd ./packages/devtools && npm run build",

 "build:utils": "cd ./packages/utils && npm run build",

 "build:authentication": "cd ./packages/authentication && npm run
build",

 "build:design-system": "cd ./packages/design-system && npm run build",

 "build:api": "cd ./packages/api && npm run build",

 },

 "devDependencies": {

 "@typescript-eslint/eslint-plugin": "^5.49.0",

 "@typescript-eslint/parser": "^5.49.0",

 "cross-env": "^7.0.3",

 "eslint": "^8.33.0",

 "eslint-config-airbnb": "^19.0.4",

 "eslint-config-airbnb-typescript": "^17.0.0",

 "eslint-config-prettier": "^8.6.0",

 "eslint-import-resolver-typescript": "^3.5.3",

Chapter 14 359

 "eslint-plugin-import": "^2.27.5",

 "eslint-plugin-jsx-a11y": "^6.7.1",

 "eslint-plugin-prettier": "^4.2.1",

 "eslint-plugin-react": "^7.32.2",

 "eslint-plugin-react-hooks": "^4.6.0",

 "npm-run-all": "^4.1.5",

 "prettier": "^2.8.3",

 "ts-node": "^10.9.1",

 "typescript": "^4.9.5",

 "webpack-cli": "^5.0.1"

 },

 "dependencies": {

 "webpack": "^5.75.0",

 "webpack-merge": "^5.8.0"

 }

}

As you can see, we need to add a build:package_name (in this case, build:utils) script for each

package that we want to build, and then our build script will execute all of them using npm-run-

all build:*.

Now you can build your utils package by running the npm run build script inside the utils

directory; you should see something like this:

Figure 14.7: Building utils

MonoRepo Architecture360

Following this, you should see the Webpack configuration log that we use to compile this package:

Figure 14.8: Webpack configuration

Chapter 14 361

Then at the end, you will see the compiled files by Webpack:

Figure 14.9: Compiled files by Webpack

Now that we have created our first package, which is compiled with devtools, and understand

the structure of a package, it’s time to start working on our API.

Creating the API package
In this package, we will implement a multi-service system that will help us have more than one

service to connect to multiple databases. Let’s see how our package.json file should look for

the api package:

{

 "name": "@web-creator/api",

 "version": "1.0.0",

 "main": "index.js",

 "scripts": {

 "build": "cross-env NODE_ENV=production npm-run-all clean compile
webpack:production",

MonoRepo Architecture362

 "build:dev": "cross-env NODE_ENV=development npm-run-all clean compile
webpack:development",

 "clean": "rm -rf ./dist",

 "compile": "tsc",

 "dev": "ts-node-dev src/index.ts",

 "lint": "npm run --prefix ../../ lint",

 "lint:fix": "npm run --prefix ../../ lint:fix",

 "webpack:development": "webpack --config=../../webpack.config.ts --env
mode=production --env type=api --env packageName=api",

 "webpack:production": "webpack --config=../../webpack.config.ts --env
mode=development --env type=api --env packageName=api"

 },

 "author": "Carlos Santana",

 "license": "MIT",

 "dependencies": {

 "@graphql-tools/merge": "8.3.18",

 "@graphql-tools/schema": "9.0.16",

 "@web-creator/authentication": "1.0.0",

 "@web-creator/utils": "^1.0.0",

 "@apollo/server": "^4.7.3",

 "cookie-parser": "^1.4.6",

 "cors": "^2.8.5",

 "dotenv": "^16.0.3",

 "express": "^4.18.2",

 "graphql": "16.6.0",

 "graphql-middleware": "6.1.33",

 "graphql-tag": "2.12.6",

 "isomorphic-fetch": "^3.0.0",

 "jsonwebtoken": "^9.0.0",

 "pg": "^8.9.0",

 "pg-hstore": "^2.3.4",

 "pg-native": "^3.0.1",

 "sequelize": "^6.28.0",

 "sequelize-typescript": "^2.1.5"

 },

 "devDependencies": {

 "@types/body-parser": "^1.19.2",

Chapter 14 363

 "@types/express-jwt": "^6.0.4",

 "@types/jsonwebtoken": "^9.0.1",

 "@types/cors": "^2.8.13",

 "@types/node": "^18.11.18",

 "@types/pg": "^8.6.6",

 "ts-node-dev": "2.0.0"

 }

}

In this case, we will use Sequelize (an ORM) and PostgreSQL for the database, but feel free to use

MySQL or any other type of database supported by Sequelize.

In the following sections, we’ll guide you through each of these steps in detail. We’ll demonstrate

how to integrate all the components and successfully operate your CRM service. If it appears

complex, there’s no need to worry. We’ll proceed at a steady pace and provide explanations

along the way.

Creating a user-shared model
The first thing we need to create is our shared model, which for now will be only the User model,

to be able to create a shared authentication system for all our sites.

You must create the User model file in packages/models/User.ts, which will create a table with

the following fields: id (UUID), username (STRING), password (STRING), Email (STRING), Role

(STRING), and active (BOOLEAN):

import { security } from '@web-creator/utils'

import { DataType, Sequelize, User } from '../types'

export default (sequelize: Sequelize, dataType: DataType): User => {

const user = sequelize.define('User', {

id: {

 primaryKey: true,

 allowNull: false,

 type: dataType.UUID,

 defaultValue: dataType.UUIDV4()

},

username: {

 type: dataType.STRING,

 allowNull: false,

 unique: true,

MonoRepo Architecture364

 validate: {

 isAlphanumeric: {

 args: true,

 msg: 'The user just accepts alphanumeric characters'

},

len: {

 args: [4, 20],

 msg: 'The username must be from 4 to 20 characters'

}

}

},

password: {

 type: dataType.STRING,

 allowNull: false

},

email: {

 type: dataType.STRING,

 allowNull: false,

 unique: true,

 validate: {

 isEmail: {

 args: true,

 msg: 'Invalid email'

 }

 }

},

role: {

 type: dataType.STRING,

 allowNull: false

},

active: {

 type: dataType.BOOLEAN,

 allowNull: false,

 defaultValue: false

 }

},

Chapter 14 365

{

hooks: {

 beforeCreate: (u: User): void => {

 u.password = security.encrypt(u.password)

 }

 }

 }

)

return user

}

Creating a user-shared GraphQL type and resolver
Besides the User-shared model, we need to create a shared GraphQL type and resolver, in order

to handle the authentication using GraphQL on all our sites.

First we need to create another shared GraphQL type called error, which will help us handle

errors on any of the queries or mutations we will create later. This file exists in packages/api/

src/graphql/types/Error.ts:

import gql from 'graphql-tag'

export default gql`

type ErrorResponse {

 code: Int

 message: String!

}

type Error {

 error: ErrorResponse

}

`

Another shared type that we need to create is the scalar one, which will define scalar types like

UUID, Datetime, and JSON. This file exists in packages/api/src/graphql/types/Scalar.ts:

import gql from 'graphql-tag'

export default gql`

scalar UUID

scalar Datetime

MonoRepo Architecture366

scalar JSON

`

Finally, we need to create our User type, which will include some queries to get a specific user via

an access token (at), get all users, and get some mutations to create a new user and also to log in.

This file should be placed in packages/api/src/graphql/types/User.ts:

import gql from 'graphql-tag'

export default gql`

"User type"

type User {

 id: UUID!

 username: String!

 email: String!

 role: String!

 active: Boolean!

 createdAt: Datetime!

 updatedAt: Datetime!

}

"Token type"

 type Token {

 token: String!

}

"User Query"

 type Query {

 getUser(at: String!): User!

 getUsers: [User!]

}

"User Mutation"

 type Mutation {

 createUser(input: ICreateUser): User!

 login(input: ILogin): Token!

}

"CreateUser Input"

 input ICreateUser {

 username: String!

 password: String!

 email: String!

Chapter 14 367

 active: Boolean!

 role: String!

}

"Login Input"

 input ILogin {

 emailOrUsername: String!

 password: String!

}

`

After you create the preceding types, you need to create the user resolver. For this we will use the

authentication package (please check the code at https://github.com/PacktPublishing/
React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter14/

web-creator/packages/authentication). Do you remember the authentication system we

created in Chapter 13? It is the same code, but now it will have its own package. This resolver

should be created in packages/api/src/graphql/resolvers/user.ts:

import { authenticate, getUserBy, getUserData } from '@web-builder/
authentication'

import { ICreateUser, ILogin, Model } from '../../types'

const getUsers = (_: any, _args: any, { models }: { models: Model }) =>
models.User.findAll()

const getUser = async (_: any, { at }: { at: string }, { models }:
{models: Model}) => {

const connectedUser = await getUserData(at)

if (connectedUser) {

 // Validating if the user is still valid

 const user = await getUserBy(

 {

 id: connectedUser.id,

 email: connectedUser.email,

 active: connectedUser.active

 },

 [connectedUser.role],

 models

)

if (user) {

 return {

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter14/web-creator/packages/authentication
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter14/web-creator/packages/authentication
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter14/web-creator/packages/authentication

MonoRepo Architecture368

 connectedUser

 }

 }

}

return {

 id: '',

 username: '',

 email: '',

 role: '',

 active: false

 }

}

const createUser = (_:any, {input}: {input: ICreateUser}, {models}:
{models: Model}) =>

models.User.create({ ...input })

const login = (_: any, { input }: { input: ILogin }, { models }: { models:
Model }) =>

authenticate(input.emailOrUsername, input.password, models)

export default {

Query: {

 getUser,

 getUsers

},

Mutation: {

 createUser,

 login

 }

}

Creating custom services
Now it is time to create our custom services; for this we will create one default service (just to

have an empty service) and one for a CRM project (it will be called crm).

The first thing we need to do is to create our service configuration, and for this we will create

some types that will help us to be very strict in the options that our configuration will receive.

This file needs to be created in packages/api/src/types/config.ts:

import { ValueOf } from '@web-creator/utils'

Chapter 14 369

// Here you need to add all the services you want to create

export const Service = {

CRM: 'crm'

} as const

export type Service = ValueOf<typeof Service>

export type Mode = 'production' | 'development'

export enum DeploymentType {

 PRODUCTION = 'production',

 STAGING = 'staging',

 DEVELOPMENT = 'development'

}

export interface ServiceConfiguration {

 domainName: string

 port: number

 database?: {

 engine?: string

 port?: number

 host?: string

 database?: string

 username?: string

 password?: string

 }

}

export interface ServiceBuilderConfiguration extends ServiceConfiguration
{

 service: Service

}

Our default configuration should be like this (packages/api/src/services/default/config.ts):

import { ServiceConfiguration } from '../../types/config'

export const config: ServiceConfiguration = {

 domainName: 'localhost',

 port: 4000,

 database: {

 engine: 'postgresql',

 port: 5432,

 host: 'localhost',

MonoRepo Architecture370

 database: '',

 username: '',

 password: ''

}

}

After that let’s create our CRM configuration (custom service). This should be placed in packages/

api/src/services/crm/config.ts:

import { ServiceConfiguration } from '../../types/config'

export const config: ServiceConfiguration = {

 domainName: 'ranchosanpancho.com',

 port: 4000,

 database: {

 database: 'crm'

}

}

I’m pretty sure you’re wondering where the other options of the database node (engine, port,

host, username, and password) are. Those will be overwritten in the main config file that we

will create later, but those values will be grabbed from our .env file (you must rename the .env.

example file). Hence, let’s create that file in packages/api/.env:

DB_ENGINE=postgresql

DB_PORT=5432

DB_HOST=localhost

DB_USERNAME=<YourDBUserName>

DB_PASSWORD=<YourDBPassword>

Building our service configuration
Now that we have our custom service (CRM) ready, let’s build our configuration. For this you

need to create the config file in packages/api/src/config.ts:

// This package will load the environment variables from our .env file

import dotenv from 'dotenv'

// Here you can add your custom services configuration

import { config as crmConfig } from './services/crm/config'

import { config as blankServiceConfig } from './services/default/config'

Chapter 14 371

import { Service, ServiceBuilderConfiguration, ServiceConfiguration } from
'./types/config'

// Loading Env vars

dotenv.config()

const getServiceConfig = (service: Service): ServiceConfiguration => {

switch (service) {

// Add your custom services here

case Service.CRM:

return crmConfig

 default:

 return blankServiceConfig

}

}

const buildConfig = (): ServiceBuilderConfiguration => {

const service = process.env.SERVICE as Service

if (!service) {

 throw 'You must specify a service (E.g., SERVICE=crm npm run dev)'

}

const serviceConfig = getServiceConfig(service)

const config: ServiceBuilderConfiguration = {

 serviceConfig,

database: {

 serviceConfig.database,

 engine: process.env.DB_ENGINE,

 host: process.env.DB_HOST,

 port: Number(process.env.DB_PORT),

 username: process.env.DB_USERNAME,

 password: process.env.DB_PASSWORD

},

service

}

return config

}

// Building the config

const Config = buildConfig()

export default Config

MonoRepo Architecture372

Creating our custom models
Once we’ve created the configuration correctly, we need to create our custom models for our

CRM service, which are created specifically for that service, and they will not be shared with

other services. In this case, we will add just one and call it Guest. This model needs to be saved

in packages/api/src/services/crm/models/Guest.ts:

import { DataType } from '../../../types'

export default (sequelize: any, dataType: DataType) => {

const Guest = sequelize.define('Guest', {

id: {

 primaryKey: true,

 allowNull: false,

 type: dataType.UUID,

 defaultValue: dataType.UUIDV4()

},

fullName: {

 type: dataType.STRING,

 allowNull: false

},

email: {

 type: dataType.STRING,

 allowNull: false,

 unique: true

},

photo: {

 type: dataType.STRING,

 allowNull: true

},

phone: {

 type: dataType.STRING,

 allowNull: true

},

socialMedia: {

 type: dataType.STRING,

 allowNull: true

},

Chapter 14 373

location: {

 type: dataType.STRING,

 allowNull: true

},

gender: {

 type: dataType.STRING,

 allowNull: true

},

birthday: {

 type: dataType.STRING,

 allowNull: true

}

})

return Guest

}

After we create the Guest model, we need to connect to our database and join our global models

(User) and our local models (Guest) in order to create our service tables. This file needs to be

created in packages/api/src/services/crm/models/index.ts:

import { keys, ts } from '@web-creator/utils'

import pg from 'pg'

import { Sequelize } from 'sequelize'

import Config from '../../../config'

// Db Connection

const { engine, port, host, database, username, password } = Config.
database ?? {}

const uri =
`${engine}://${username}:${password}@${host}:${port}/${database}`

const sequelize = new Sequelize(uri, {

dialectModule: pg

})

// Models

const addModel = (path: string) => require(path).default(sequelize,
Sequelize)

const models: any = {

User: addModel('../../../models/User'), // Global model

Guest: addModel('./Guest'), // Local model

MonoRepo Architecture374

sequelize // We must pass the sequelize object here

}

// Relationships

keys(models).forEach((modelName: string) => {

if (ts.hasKey(models, modelName)) {

if (models[modelName].associate) {

models[modelName].associate(models)

}

}

})

export default models

Creating model seeds
Seeds are the initial data for our models (tables). Most of the time we want to clear all the model

values but keep some of them as default values, but in this case we will add some default data

for our User model and our Guest model:

import models from '../models'

async function createFirstUser(): Promise<any> {

const existingUsers = await models.User.findAll()

if (existingUsers.length === 0) {

const newUser: any = await models.User.create({

 username: 'admin',

 password: '12345678',

 email: 'admin@ranchosanpancho.com',

 role: 'god',

 active: true

})

return newUser

}

return null

}

async function createGuests(): Promise<any> {

const existingGuests = await models.Guest.findAll()

if (existingGuests.length === 0) {

const newGuests: any = await models.Guest.bulkCreate([

Chapter 14 375

{

 fullName: 'Carlos Santana',

 email: 'carlos@ranchosanpancho.com',

 photo: 'carlos.jpg',

 phone: '+1 555 555 5555',

 socialMedia: 'https://www.facebook.com/carlos.santana',

 location: 'Colima, Mexico',

 gender: 'Male',

 birthday: '11/21/1987'

},

{

 fullName: 'Cristina Santana',

 email: 'cristina@ranchosanpancho.com',

 photo: 'cristina.jpg',

 phone: '+1 444 444 4444',

 socialMedia: 'https://www.facebook.com/cristina.santana',

 location: 'Colima, Mexico',

 gender: 'Female',

 birthday: '1/20/1989'

}

])

return newGuests

}

return null

}

function setInitialSeeds(): void {

createFirstUser()

createGuests()

}

export default setInitialSeeds

Creating our custom GraphQL types and resolvers
For our CRM, we will create a Guest type and resolver just to illustrate how we can use GraphQL

in different services that we create; the first file you need to create is the Guest type, which must

be saved in packages/api/src/services/crm/graphql/types/Guest.ts:

import gql from 'graphql-tag'

export default gql`

MonoRepo Architecture376

 type Guest {

 id: UUID!

 fullName: String!

 email: String!

 photo: String!

 socialMedia: String!

 location: String!

 phone: String!

 gender: String!

 birthday: String

 createdAt: Datetime!

 updatedAt: Datetime!

}

 type GuestResponse {

 guests: [Guest!]!

}

 union GuestResult = GuestResponse | Error

 type Query {

 getGuests: GuestResult

}

`

As you can see, we define our Guest type with some personal fields such as fullName, email, photo,

etc. Then we create a GuestResponse type that represents an array of guests ([Guest!]!). The

square brackets indicate that it’s an array, and the exclamation mark (!) denotes that it cannot

contain null values. After that, we create a union type, which enables the schema field to return

one of multiple object types. In this case, it can return GuestResponse when we have guests or

the Error type if we don’t have guests or encounter any other issues. If something else occurs,

we define the response of these types in our resolver.

After you create this type file (or more), it is time to merge all your Type Definitions (TypeDefs).

For this, we will create an index.ts file inside our types directory and import our global types

(Error, Scalar, and User). We will also include our local type (Guest) and merge it with a func-

tion provided by @graphql-tools/merge. This file is placed in packages/api/src/services/

crm/types/index.ts:

import { mergeTypeDefs } from '@graphql-tools/merge'

// Global Types

Chapter 14 377

import Error from '../../../../graphql/types/Error'

import Scalar from '../../../../graphql/types/Scalar'

import User from '../../../../graphql/types/User'

// Local Types

import Guest from './Guest'

export default mergeTypeDefs([Error, Scalar, User, Guest])

Now once you have merged your types, you need to create the Guest resolver. This file should be

placed in packages/api/src/services/crm/graphql/resolvers/guest.ts:

export default {

Query: {

getGuests: async (_: any, _args: any, { models }: { models: any }):
Promise<any> => {

const guests = await models.Guest.findAll({

order: [['fullName', 'ASC']]

})

// If there are guests, return them with a GuestResponse type

if (guests.length > 0) {

return {

 __typename: 'GuestResponse',

 guests

 }

}

// If there are no guests, return an Error type with a 404 code and
message

return {

 __typename: 'Error',

 error: {

 code: 404,

 message: 'No guests found'

 }

 }

 }

 }

}

MonoRepo Architecture378

As you can see, when we find guests (or data), we return them and add the __typename property

(which is a GraphQL property) with a value of GuestResponse. This property is necessary to re-

solve the query with the correct type, since we are using a union. Here is where we define what

we will return, whether it’s the GuestResponse type or the Error type. On the other hand, if we

don’t find any guests, we return an error object with a code and message, and the __typename

is set to 'Error'.

Now, we need to do the same with the resolvers. We need to merge our resolvers, both the global

ones and the local ones. To do this, create an index.ts file in the same resolvers directory and

add the following code:

import { mergeResolvers } from '@graphql-tools/merge'

import user from '../../../../graphql/resolvers/user'

import guest from './guest'

const resolvers = mergeResolvers([user, guest])

export default resolvers

We have done a similar thing with our resolvers as we did with the TypeDef. Now, we need to

import the global user resolver and merge it with our guest resolver.

Synchronizing our models and starting Apollo Server
Now that we have created our custom configs, models, seeds, types, and resolvers, it’s time

to put everything together, synchronize our models, and start our Apollo Server. This file should

be placed in packages/api/src/index.ts:

import { makeExecutableSchema } from '@graphql-tools/schema'

import { ts } from '@web-creator/utils'

import { ApolloServer } from '@apollo/server'

import { expressMiddleware } from '@apollo/server/express4'

import { ApolloServerPluginDrainHttpServer } from '@apollo/server/plugin/
drainHttpServer'

import bodyParser from 'body-parser'

import http from 'http'

import cookieParser from 'cookie-parser'

import cors from 'cors'

import express, { NextFunction, Request, Response } from 'express'

import { applyMiddleware } from 'graphql-middleware'

import { json } from 'body-parser'

import { Service } from './types/config'

Chapter 14 379

After importing all the packages we need, first we need to check if we received the SERVICE vari-

able from the terminal; otherwise, we will choose our default service. We will also check if our

service is valid (exists in our Service type):

// Service

const service: any = process.env.SERVICE ?? 'default'

// Validating service

if (!ts.includes(Service, service)) {

throw 'Invalid service'

}

Once we are sure that our service is valid, then we will dynamically import the resolvers, types,

models, and seeds:

// We are importing the service files dynamically

const resolvers = require(`./services/${service}/graphql/resolvers`).
default

const typeDefs = require(`./services/${service}/graphql/types`).default

const models = require(`./services/${service}/models`).default

const seeds = require(`./services/${service}/seeds`).default

Then we create our Express app and configure cors, cookieParser, and bodyParser:

const app = express()

const httpServer = http.createServer(app)

const corsOptions = {

 origin: '*',

 credentials: true

}

app.use(cors(corsOptions))

app.use(cookieParser())

app.use(bodyParser.json())

// CORS

app.use((req: Request, res: Response, next: NextFunction) => {

res.header('Access-Control-Allow-Origin', '*')

res.header('Access-Control-Allow-Headers', 'Origin, X-Requested-With,
Content-Type, Accept')

next()

})

MonoRepo Architecture380

We need to create our GraphQL schema with makeExecutableSchema and use the applyMiddleware:

// Schema

const schema = applyMiddleware(

 makeExecutableSchema({

 typeDefs,

 resolvers

 })

)

Finally, we create our ApolloServer instance passing the schema and the plugins.

// Apollo Server

const apolloServer = new ApolloServer({

schema,

plugins:[ApolloServerPluginDrainHttpServer({ httpServer })]

})

Now we need to sync our models. The alter option enables us to listen to changes in our models

and modify them:

// Database Sync

 const main = async () => {

 const alter = true

 const force = false

 await apolloServer.start()

 await models.sequelize.sync({ alter, force })

 // Setting up initial seeds

 console.log('Initializing Seeds...')

 seeds()

If you change something, BE VERY CAREFUL with the force option. If it is true, it

will truncate all your tables (meaning all your data will be deleted). Hence, only use

it when totally necessary.

Chapter 14 381

 app.use(

 '/graphql',

 cors<cors.CorsRequest>(),

 json(),

 expressMiddleware(apolloServer, {

 context: async () => ({ models })

 })

)

 await new Promise<void>((resolve) => httpServer.listen({ port: 4000 },
resolve))

 console.log(' Server ready at http://localhost:4000/graphql')

 }

 main()

Testing our CRM service
If you did everything correctly, you can run the command SERVICE=crm npm run dev inside your

api package. and you should see something like this:

Figure 14.10: SERVICE=crm npm run dev

MonoRepo Architecture382

If you check your database, you will see the two tables created from your models (Guests and

Users), and you should be able to see the seeds you added as well:

Figure 14.11: Database query

As you can see, the createdAt and updatedAt fields are automatically created by Sequelize. After

this, you can try to hit http://localhost:4000/graphql to see if your Apollo Server works fine.

Figure 14.12: GraphQL Explorer

http://localhost:4000/graphql

Chapter 14 383

We can start testing our service queries like getGuests; let’s see what it returns:

Figure 14.13: getGuests query

Also, you can test the getUsers query:

Figure 14.14: getUsers query

MonoRepo Architecture384

Finally, you can also test the login mutation to make sure your global authentication system

works fine:

Figure 14.15: The login mutation

Creating the frontend package
In this package, we will implement a multi-site system that will help us have more than one site

with the same code base.

Let’s see how our package.json file should look for this package:

{

 "name": "@web-creator/frontend",

 "version": "1.0.0",

 "scripts": {

 "dev": "cross-env NODE_ENV=development npm run next:dev",

 "build": "next build",

 "next": "ts-node src/server.ts",

 "next:dev": "ts-node src/server.ts",

 "lint": "npm run --prefix ../../ lint",

 "lint:fix": "npm run --prefix ../../ lint:fix",

Chapter 14 385

 "typecheck": "tsc --noEmit"

 },

 "author": "Carlos Santana",

 "license": "ISC",

 "peerDependencies": {

 "react": ">=17.0.2",

 "react-dom": ">=17.0.2"

 },

 "devDependencies": {

 "@babel/core": "^7.20.12",

 "@babel/node": "^7.20.7",

 "@types/cookie-parser": "^1.4.3",

 "@types/isomorphic-fetch": "^0.0.36",

 "@types/styled-components": "^5.1.26",

 "babel-plugin-jsx-remove-data-test-id": "^3.0.0",

 "babel-plugin-styled-components": "^2.0.7"

 },

 "dependencies": {

 "@apollo/client": "^3.7.7",

 "@web-creator/authentication": "1.0.0",

 "@web-creator/devtools": "1.0.0",

 "@web-creator/utils": "^1.0.0",

 "babel-preset-next": "^1.4.0",

 "cookie-parser": "^1.4.6",

 "dotenv": "^16.0.3",

 "express": "^4.18.2",

 "isomorphic-fetch": "^3.0.0",

 "next": "^13.1.6",

 "react-cookie": "^4.1.1",

 "styled-components": "^5.3.6",

 "webpack": "^5.75.0"

 }

}

Our frontend package works a little bit differently from our other packages because we use Next.

js, which takes care of its own Webpack configuration. We do not compile it using our devtools

like the other packages, and the TypeScript configuration differs slightly.

MonoRepo Architecture386

This is the tsconfig.json file for our frontend package:

{

 "extends": "../../tsconfig.common.json",

 "compilerOptions": {

 "outDir": "./dist",

 "baseUrl": ".",

 "isolatedModules": true,

 "noEmit": false,

 "allowJs": true,

 "forceConsistentCasingInFileNames": true,

 "incremental": true,

 "jsx": "preserve",

 "paths": {

 "~/*": ["./src/*"]

 }

 },

 "include": ["src/**/*"]

}

As you can see, we define the ~ path. This is handled by devtools in other packages but in our

case, we need to modify the next Webpack configuration directly. For this, you need to create the

file next.config.js (yes, .js, not .ts), and the code should look like:

const path = require('path')

module.exports = {

reactStrictMode: true,

webpack: (config, { isServer }) => {

// Fixes npm packages that depend on 'fs' module

if (!isServer) {

config.resolve.fallback.fs = false

}

// Aliases

config.resolve.alias['~'] = path.resolve(__dirname, './src')

return config

}

}

Chapter 14 387

Another configuration we need to set up is to add styled-components plugins to our .babelrc

file. We will also use the next/babel preset. This file exists in packages/frontend/.babelrc:

{

 "presets": ["next/babel"],

 "plugins": [["styled-components", { "ssr": true, "preprocess": false
}]],

 "env": {

 "production": {

 "plugins": ["babel-plugin-jsx-remove-data-test-id"]

 }

 }

}

Now that we have completed this portion of the chapter, we will proceed to create a universal

User model. This model will serve as a template that can be utilized across all our websites for

anyone who signs up.

Next, our focus will shift toward developing a Sites system, which can be visualized as a master

control room responsible for managing our websites. Just like changing TV channels, we will

also build a Page Switcher that enables users to seamlessly switch between different pages on

our websites.

Subsequently, we will construct a common Login system that ensures a consistent login experi-

ence across all our websites. To enhance customization and functionality, we will set up a Sites

configuration, which acts as a rulebook or settings panel for each individual site, dictating its

behavior and features.

To consolidate all these components, we will bundle them together in a single file named server.

ts, which will function as the command center for our system.

Once the setup is complete, we will proceed to test our work by running the program and ex-

amining the outcomes using various examples. If any issues arise, our system will provide error

messages to indicate and assist in troubleshooting.

In the upcoming sections, you will witness all these steps in action, enabling you to comprehend

how they integrate within our larger system. Rest assured, although it may sound intricate at the

moment, we will break it down and guide you through each step, ensuring a clear understanding

of the process.

MonoRepo Architecture388

Creating our Sites system
The Sites system is pretty much the same as the services system we created in our API packages,

but in this case instead of managing databases, we manage websites. So, like we did before, the

first thing we need to do is create the configuration of each site. In this scenario, we will also have

a default site, which is called 'blank-page', just to avoid the system breaking when no site has

been provided.

Let’s create the config file for this site in packages/frontend/src/sites/blank-page/config.

ts, and this is the content of that file:

import { SiteConfiguration } from '../../types/config'

export const config: SiteConfiguration = {

 siteTitle: 'Blank Page',

 domainName: 'localhost',

 api: {

 uri: 'http://localhost:4000/graphql'

 },

 pages: ['index']

}

For this example, I’ll use two personal sites, san-pancho and codejobs, but feel free to add any

site you want to the project.

As part of the site, we need to create the graphql files, to consume our API queries and mutations,

and the specific pages for this site. The only query we will add for now is the getGuests query

that we previously created in the API package. This file should be in packages/frontend/src/

sites/san-pancho/graphql/guest/getGuests.query.ts. If, at some point, you want to create

a mutation, you may want to use the myMutation.mutation.ts format for the filename:

import { gql } from '@apollo/client'

export const getGuestsQuery = '

getGuests {

 on GuestResponse {

guests {

 id

 fullName

 email

 photo

 socialMedia

Chapter 14 389

 location

 gender

 birthday

 note

 }

}

 on Error {

 error {

 code

 message

 }

 }

 }

'

export default gql'

query getGuests {

${getGuestsQuery}

}

'

Creating our Page Switcher
If you have used Next.js in the past, you’ll know how the Next page system works. Essentially, you

have your pages directory, and the files or directories you add to that will represent the route of a

page. For our example, we will need to create some Next pages that will “switch” or render a custom

page from each site. I know it sounds a little bit complicated, but let’s break this down into parts.

The first thing to do is to create our index.ts page in packages/frontend/src/pages/index.ts

(this is a Next page):

import React, { FC } from 'react'

import Config from '~/config'

const SwitcherPage = require('~/sites/${Config.site}/switcher').default

const getRouterParams = require('~/sites/${Config.site}/server/
routerParams').default

type Props = {

 siteTitle: string

}

const Page: FC<Props> = ({ siteTitle }) => {

MonoRepo Architecture390

const routerParams = getRouterParams({})

return <SwitcherPage routerParams={routerParams} siteTitle={siteTitle} />

}

export default Page

Another Next.js page that we must create is one that has a special name and needs to be created in

packages/frontend/src/pages/[page]/[…params].tsx. The [page] will be a dynamic path. The

[...params].tsx file will receive any additional parameters passed in the URL. If we have more

than two nested routes, these additional routes will be added as an array to the params variable:

import { useRouter } from 'next/router'

import React, { FC } from 'react'

import Config from '~/config'

const SwitcherPage = require('~/sites/${Config.site}/switcher').default

const getRouterParams = require('~/sites/${Config.site}/server/
routerParams').default

type Props = {

 siteTitle: string

 serverData: any

}

const Page: FC<Props> = ({ siteTitle, serverData }) => {

const router = useRouter()

const routerParams = getRouterParams(router.query)

return (

<SwitcherPage

 routerParams={routerParams}

 siteTitle={siteTitle}

 props={{ serverData }}

/>

)

}

export default Page

On each Next.js page, we will import a SwitcherPage component that exists on each site. We

also import the routerParams, which will control the routing for each site as well, and we will

receive the siteTitle via props. In other words, we just render the SwitcherPage component

and pass the props.

Chapter 14 391

Let’s see how the Switcher component from our san-pancho site looks (packages/frontend/

src/sites/san-pancho/switcher.tsx):

import dynamic from 'next/dynamic'

import React from 'react'

import Switcher, { Props } from '~/components/Switcher'

const dynamicPages: Record<string, Record<string, any>> = {

 index: {

 index: dynamic(() => import('./pages/index'))

 },

 login: {

 index: dynamic(() => import('./pages/login'))

 },

 dashboard: {

 index: dynamic(() => import('./pages/dashboard/index'))

 }

}

export default ({ routerParams, siteTitle, props }: Props) => (

<Switcher

 routerParams={routerParams}

 siteTitle={siteTitle}

 props={props}

 dynamicPages={dynamicPages}

/>

)

The next/dynamic is a composite extension of React.lazy and Suspense. These components

can delay hydration until the Suspense boundary is resolved. In our case, we are dynamically

loading pages from this site, specifically the index.index, login.index, and dashboard.index.

You’re probably wondering why we have a nested index page for each of them. This is because we

can have nested pages; for example, index.index will refer to http://localhost:3000/, login.

index to http://localhost:3000/login, and dashboard.index to http://localhost:3000/

dashboard. However, suppose you want to add a page inside the dashboard like guests. You will

then add dashboard.guests, which will point to http://localhost:3000/dashboard/guests.

Each switcher.ts file from the sites directories uses the Switcher component. Hence, let’s

create it. This file is located in packages/frontend/src/components/Switcher.tsx:

import React, { FC } from 'react'

http://localhost:3000/
http://localhost:3000/login
http://localhost:3000/dashboard
http://localhost:3000/dashboard
http://localhost:3000/dashboard/guests

MonoRepo Architecture392

import ErrorPage from '~/components/ErrorPage'

type Route = {

 page: string

 section?: string

 subSection?: string

 urlParams?: string[]

 queryParams?: Record<string, string>

}

export type Props = {

 routerParams: Route

 siteTitle: string

 props?: Record<string, any>

 dynamicPages: any

}

const Switcher: FC<Props> = ({ routerParams, props = {}, dynamicPages:
sitePages }) => {

const {

 page,

 section = 'index',

 subSection = '',

 urlParams,

 queryParams = {}

} = routerParams

const extraProps = {

 queryParams,

 router: {

 section,

 subsection

},

 urlParams

}

const pageName = page

let PageToRender // This will be a dynamic React Component

let sectionPages: any = {}

// We validate if our main page exists (index, login or dashboard)

if (sitePages[pageName]) {

Chapter 14 393

// If exists we get our sectionsPages (index.index, login.index and
dashboard.index)

sectionPages = sitePages[pageName]

// By default we will try to render the index of each page

PageToRender = sectionPages.index

// If we have subsection, we render it (dashboard.guests)

if (sectionPages[section][subSection]) {

PageToRender = sectionPages[section][subSection]

} else if (section !== 'index') {

// This is to render nested routes that only have index

PageToRender = sectionPages[section].index

}

} else {

// If we can't find any of the pages, then we render an ErrorPage

PageToRender = ErrorPage

}

return <PageToRender {...props} {...extraProps} />

}

export default Switcher

Let’s now create the index page for our San Pancho site. This page serves a simple purpose: to

display the site’s title, providing confirmation that we are currently on the San Pancho site. This

file should exist in packages/frontend/src/sites/san-pancho/pages/index.tsx:

import React from 'react'

export default () => <h1>San Pancho Index Page</h1>

After this, we can create our index page for our dashboard (packages/frontend/src/sites/

san-pancho/pages/dashboard/index.tsx):

import React from 'react'

export default () => (

<>

 <h1>Dashboard for San Pancho</h1>

 Logout

</>

)

MonoRepo Architecture394

Finally, we need to create our login page for san-pancho, which will share the Login component

for all the sites (packages/frontend/src/sites/san-pancho/pages/login.tsx):

import React from 'react'

import Login from '~/components/Login'

export default () => <Login />

Creating our Login system
All our sites will use the same login page because we share the authentication system. Let’s create

our Login component and see how we can perform the login:

import { Button, Input, RenderIf } from '@web-creator/design-system'

import { getRedirectToUrl, redirectTo } from '@web-creator/utils'

import React, { FC, useContext, useState } from 'react'

import { FormContext } from '~/contexts/form'

import { UserContext } from '~/contexts/user'

import { CSS } from './Login.styled'

type Props = {

 background?: string

}

const Login: FC<Props> = () => {

 const redirectToUrl = getRedirectToUrl()

 // States

 const [values, setValues] = useState({

 emailOrUsername: '',

 password: ''

 })

 const [notification, setNotification] = useState({

 id: Math.random(),

 message: ''

 })

 const [invalidLogin, setInvalidLogin] = useState(false)

 // Contexts

 const { change } = useContext(FormContext)

 const { login } = useContext(UserContext)

 // Methods

 const onChange = (e: any): any => change(e, setValues)

Chapter 14 395

 const handleSubmit = async (user: any): Promise<void> => {

 const response = await login(user)

 if (response.error) {

 setInvalidLogin(true)

 setNotification({

 id: Math.random(),

 message: response.message

 })

 } else {

 redirectTo(redirectToUrl || '/', true)

 }

 }

 return (

 <>

 <RenderIf isTrue={invalidLogin && notification.message !== ''}>

 {notification.message}

 </RenderIf>

 <CSS.Login>

 <CSS.LoginBox>

 <header>

 <h2>Sign In</h2>

 </header>

 <section>

 <Input

 autoComplete="off"

 name="emailOrUsername"

 placeholder="Email Or Username"

 onChange={onChange}

 value={values.emailOrUsername}

 />

 <Input

 name="password"

 type="password"

 placeholder="Password"

 onChange={onChange}

MonoRepo Architecture396

 value={values.password}

 />

 <div className="actions">

 <Button onClick={(): Promise<void> => handleSubmit(values)}>

 Login

 </Button>

 <Button color="success">

 Register

 </Button>

 </div>

 </section>

 </CSS.LoginBox>

 </CSS.Login>

 </>

)

}

export default Login

As you can see, the login function that is executed in the handleSubmit comes from our

UserContext. This will execute the login mutation when the user needs to perform a login, and

the getUser query to validate if a logged user is valid. Let’s create that User Context (Context

API), which should be located in packages/frontend/src/contexts/user.ts:

import { useMutation, useQuery } from '@apollo/client'

import { getGraphQlError, parseDebugData, redirectTo } from '@web-builder/
utils'

import React, { createContext, FC, ReactElement,
useEffect,useMemo,useState} from 'react'

import { useCookies } from 'react-cookie'

import Config from '~/config'

import GET_USER_QUERY from '~/graphql/user/getUser.query'

import LOGIN_MUTATION from '~/graphql/user/login.mutation'

// Interfaces

Chapter 14 397

interface IUserContext {

 login(input: any): any

 user: any

}

type Props = {

 children: ReactElement

}

// Creating context

export const UserContext = createContext<IUserContext>({

 login: () => null,

 user: null

})

const UserProvider: FC<Props> = ({ children }) => {

// States

const [cookies, setCookie] = useCookies()

const [user, setUser] = useState(null)

// Mutations

const [loginMutation] = useMutation(LOGIN_MUTATION)

// Queries

const { data: dataUser } = useQuery(GET_USER_QUERY, {

 variables: {

 at: cookies['at-${Config.site}'] || ''

 }

})

// Effects

useEffect(() => {

if (dataUser) {

setUser(dataUser.getUser)

}

}, [dataUser])

async function login(input:{emailOrUsername: string;password: string }):
Promise<any> {

try {

const { data: dataLogin } = await loginMutation({

 variables: {

 emailOrUsername: input.emailOrUsername,

 password: input.password

MonoRepo Architecture398

}

})

if (dataLogin) {

setCookie('at-${Config.site}', dataLogin.login.token, {

 path: '/',

 maxAge: 45 * 60 * 1000

})

return dataLogin.login.token

}

} catch (err) {

return getGraphQlError(err)

}

return null

}

const context = useMemo(() => ({

login,

user

}), [user])

return <UserContext.Provider value={context}>{children}</UserContext.
Provider>

}

export default UserProvider

Now let’s create our login mutation, which will receive two parameters ($emailOrUsername

and $password). This file should be located in packages/frontend/src/graphql/user/login.

mutation.ts:

import { gql } from '@apollo/client'

export default gql`

mutation login($emailOrUsername: String!, $password: String!) {

login(input: { emailOrUsername: $emailOrUsername, password: $password }) {

token

}

}

`

After that, we need to create the getUser query, which will take the accessToken (at) as a pa-

rameter and validate if the connected user is valid. This file exists in packages/frontend/src/

graphql/user/getUser.query.ts:

Chapter 14 399

import { gql } from '@apollo/client'

export default gql`

query getUser($at: String!) {

 getUser(at: $at) {

 id

 email

 username

 role

 active

 }

}

`

There are two more things to do. The first thing is to add our UserProvider as a wrapper of our

application; we need to do this on a special page called "_app.tsx" inside the pages directory:

import { ApolloProvider } from '@apollo/client'

import React, { FC } from 'react'

import Config from '~/config'

import GlobalStyle from '~/components/GlobalStyles/GlobalStyles'

import { useApollo } from '~/contexts/apolloClient'

import FormProvider from '~/contexts/form'

import UserProvider from '~/contexts/user'

const App: FC<any> = ({ Component, pageProps }) => {

const apolloClient = useApollo((pageProps && pageProps.initialApolloState)
|| {})

return (

<>

 <GlobalStyle />

 <ApolloProvider client={apolloClient}>

 <UserProvider>

 <FormProvider>

 <Component {...pageProps} />

 </FormProvider>

 </UserProvider>

 </ApolloProvider>

</>

)

MonoRepo Architecture400

}

// @ts-ignore

App.getInitialProps = async () => ({

...Config

})

export default App

Finally, we need to create another special file called "_document.tsx" inside the pages directo-

ry. In this file, we will render the ServerStyleSheet from styled-components to be able to use

styled-components in the server (Next.js):

import { cx } from '@web-creator/utils'

import Document, { Head, Html, Main, NextScript } from 'next/document'

import React from 'react'

import { ServerStyleSheet } from 'styled-components'

import Config from '~/config'

export default class MyDocument extends Document {

static async getInitialProps(ctx: any) {

const sheet = new ServerStyleSheet()

const originalRenderPage = ctx.renderPage

try {

ctx.renderPage = () =>

originalRenderPage({

enhanceApp: (App: any) => (props: any) => {

const themeClassname = 'theme--light'

return sheet.collectStyles(

 <body className={cx.join(themeClassname)}>

 <App {...props} title={Config.siteTitle} />

 </body>

)

}

})

const initialProps = await Document.getInitialProps(ctx)

return {

 initialProps,

 styles: (

<>

{initialProps.styles}

Chapter 14 401

 {sheet.getStyleElement()}

</>

)

}

} finally {

 sheet.seal()

}

}

render() {

return (

<Html>

<Head>

 <link rel="icon" type="image/x-icon" href="/images/favicon.png" />

</Head>

<Main />

 <NextScript />

</Html>

)

 }

}

Creating our sites configuration
As we did in our API project, we need to create a configuration for our sites. Let’s start by creat-

ing our SiteConfiguration type, the file for which will be located in packages/frontend/src/

types/config.ts:

import { ValueOf } from '@web-creator/utils'

// Here you add your sites

export const Site = {

SanPancho: 'san-pancho',

Codejobs: 'codejobs',

BlankPage: 'blank-page'

} as const

export type Site = ValueOf<typeof Site>

export type Mode = 'production' | 'development'

export enum DeploymentType {

 PRODUCTION = 'production',

 STAGING = 'staging',

MonoRepo Architecture402

 DEVELOPMENT = 'development'

}

export interface SiteConfiguration {

 siteTitle: string

 domainName: string

 hostname?: string

 mode?: string

 api?: {

 uri: string

}

 pages: string[]

 custom?: any

}

export interface SiteBuilderConfiguration extends SiteConfiguration {

 site: Site

 homeUrl: string

}

The configuration we will do is for the san-pancho site, and you should add this file to packages/

frontend/src/sites/san-pancho/config.ts:

import path from 'path'

import { SiteConfiguration } from '../../types/config'

export const config: SiteConfiguration = {

 siteTitle: 'Cabañas San Pancho',

 domainName: 'ranchosanpancho.com',

 pages: ['index', 'login']

}

After this, we must create our main config.ts file, which should be in packages/frontend/src/

config.ts:

import { is } from '@web-creator/utils'

// Importing sites configurations

import { config as blankPageConfig } from './sites/blank-page/config'

import { config as sanPanchoConfig } from './sites/san-pancho/config'

import { config as codejobsConfig } from './sites/codejobs/config'

import { Site, SiteBuilderConfiguration, SiteConfiguration } from './
types/config'

Chapter 14 403

const isProduction = process.env.NODE_ENV === 'production'

const isLocal = process.env.LOCAL === 'true'

const isLocalProduction = isProduction && isLocal

// Getting site configuration

const getSiteConfig = (site: Site): SiteConfiguration => {

switch (site) {

 case Site.SanPancho:

 return sanPanchoConfig

 case Site.Codejobs:

 return codejobsConfig

 default:

 return blankPageConfig

 }

}

// Building configuration

 const buildConfig = (): SiteBuilderConfiguration => {

// Server site

let site = process.env.SITE as Site

// On client side we grab the site from Next props

if (is.Browser()) {

 const { props } = window.__NEXT_DATA__

if (props && props.site) {

 site = props.site

 }

} else if (!site) {

throw 'You must specify a site (E.g. SITE=san-pancho npm run dev)'

}

 const siteConfig = getSiteConfig(site)

// Building configuration based on the environment and site configuration

const config: SiteBuilderConfiguration = {

...siteConfig,

 api: {

 uri: isProduction && !isLocalProduction

? `https://${siteConfig.domainName}/graphql`

: `http://localhost:4000/graphql`

},

MonoRepo Architecture404

site,

 homeUrl: `https://${siteConfig.domainName}`,

 hostname: isProduction && !isLocalProduction ? siteConfig.domainName :
'localhost',

 mode: isProduction ? 'production' : 'development'

}

return config

}

const Config = buildConfig()

export default Config

Putting everything together
The last piece of the puzzle is our server.ts file, which will handle Next.js, our static directories,

and routes. Let’s break down the file into parts and see each one in detail. This file should be in

packages/frontend/src/server.ts.

The first thing we need to do is to import some dependencies and the site configuration:

import cookieParser from 'cookie-parser'

import express, { Application, NextFunction, Request, Response } from
'express'

import nextJS from 'next'

import path from 'path'

import { ts } from '@web-creator/utils'

import Config from './config'

import { isConnected } from './lib/middlewares/user'

import { Site } from './types/config'

Then we need to check that the SITE being passed in the terminal is actually valid:

// Site

const site: string = process.env.SITE ?? 'blank-page'

// Validating service

if (!ts.includes(Site, site)) {

throw 'Invalid site'

}

If the site is valid, then we prepare our Next and Express applications:

// Setting up Next App

Chapter 14 405

const { hostname } = Config

const port = 3000

const dev = process.env.NODE_ENV !== 'production'

const nextApp = nextJS({ dev, hostname, port })

const handle = nextApp.getRequestHandler()

// Running Next App

nextApp.prepare().then(() => {

// Express application

const app: Application = express()

We also need to configure our cookieParser to be able to use cookies and set up our site’s static

directories, so we can have a shared public folder and then specific static directories inside

each site:

// Cookies

app.use(cookieParser())

// Sites static directories

app.use(express.static(path.join(__dirname, '../public')))

app.use(express.static(path.join(__dirname, './sites/${Config.site}/
static')))

Next, we’ll handle our custom routes next and add additional protection to specific routes, such

as /dashboard. We want to ensure that only connected users can access this route. For this, we

will use the isConnected middleware to validate whether a user is connected. If the user is not

connected, we will redirect them to the login page:

// Custom Routes

app.get('/logout', (req: Request, res: Response) => {

const redirect: any = req.query.redirectTo || '/'

// The "at (accessToken)" cookie will be per site, like: "at-san-pancho"
or "at-codejobs".

res.clearCookie('at-${Config.site}')

res.redirect(redirect)

})

app.get(

'/dashboard',

isConnected(true, ['god', 'admin', 'editor'], '/login?redirectTo=/
dashboard'),

MonoRepo Architecture406

(req: Request, res: Response, next: NextFunction) => next()

)

Finally, all other traffic is going to be handled by Next.js; then we listen to port 3000:

// Traffic handling

app.all('*', (req: Request, res: Response) => handle(req, res))

// Listening...

app.listen(3000)

Demo time!
After all of those configurations, we are ready to run our project and see if it works. We will need

to run it in a similar way to how we did on the API, but instead of the SERVICE variable, we will use

the SITE variable. We also need to specify which site we want to run (san-pancho or codejobs).

If you try to run some other site that does not exist, you will get an error. Let’s try that to test the

validation of the sites:

Figure 14.16: getGuests query

The validation works fine. Now, let’s run our san-pancho site with the SITE=san-pancho npm

run dev command:

Figure 14.17: San Pancho Index Page

Chapter 14 407

If everything works fine, you should see the preceding. Next, let’s run our codejobs site with

SITE=codejobs npm run dev:

Figure 14.18: Codejobs Index Page

Nice, so both our sites work as expected!

Now it’s time to test our login page for each site. Let’s start with San Pancho:

Figure 14.19: San Pancho Sign In page

MonoRepo Architecture408

Then let’s test the Codejobs login page:

Figure 14.20: Codejobs Sign In page

Everything seems good so far. Now let’s test the login with our default credentials, which are

username: admin and password: 12345678:

Figure 14.21: Dashboard for San Pancho

Nice! So now we are connected to San Pancho’s dashboard.

Chapter 14 409

One thing I want to highlight here is the cookie name we used for the user session, which is at-

san-pancho. However, even if you already performed a login in San Pancho, if you try to access

the Codejobs dashboard, you will be required to log in again because each site session is inde-

pendent of the other:

Figure 14.22: Site cookies

Finally, let’s test hitting a URL that does not exist on our sites:

Figure 14.23: 404 error page

You should see a 404 page that will be shared across both sites.

MonoRepo Architecture410

Summary
Congratulations on making it this far! Without a doubt, this chapter has been complex, yet incred-

ibly interesting. Now, you have the bare bones ready to begin working on your personal websites.

Throughout the course of this chapter, you acquired a comprehensive set of skills. You learned how

to create User models and GraphQL types, understand error handling, and set up custom services

like a CRM. You successfully navigated through the process of building a Sites system, enhanced

user experience with a Page Switcher, and established a shared login system. Furthermore, you

gained knowledge in managing configurations, working with “seeds” or default data for models,

and consolidating components into a command file such as server.ts. As a result, you are now

proficient in synchronizing models, starting up the Apollo Server, running tests, and effectively

troubleshooting any issues that may arise. In essence, you have established a robust foundation

in managing multi-site web systems, enhancing user experience, understanding GraphQL, and

troubleshooting.

In the next chapter, you will have the opportunity to expand your skills further as you learn how

to improve the performance of your React applications.

15
Improving the Performance of
Your Applications

The effective performance of a web application is critical to providing a good user experience

and improving conversions. The React library implements different techniques to render our

components fast and to touch the Document Object Model (DOM) as little as possible. Apply-

ing changes to the DOM is usually expensive, so minimizing the number of operations is crucial.

However, there are some scenarios where React cannot optimize the process, and it’s up to the

developer to implement specific solutions to make the application run smoothly.

In this chapter, we will go through the basic concepts of React and we will learn how to use

some APIs to help the library find the optimal path to update the DOM without degrading the

user experience. We will also see some common mistakes that can harm our applications and

make them slower.

We should avoid optimizing our components for the sake of it, and it is important to apply the

techniques that we will see in the following sections only when they are needed.

In this chapter, we will cover the following topics:

•	 How reconciliation works and how we can help React do a better job using keys

•	 Common optimization techniques and common performance-related mistakes

•	 Useful tools and libraries to make our applications run faster

•	 What it means to use immutable data and how to do it

Improving the Performance of Your Applications412

Technical requirements
To complete this chapter, you will require the following:

•	 Node.js 19+

•	 Visual Studio Code

You can find the code for this chapter in the book’s GitHub repository at https://github.com/
PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/

main/Chapter15.

How reconciliation works
Most of the time, React is fast enough by default, and you do not need to do anything more to

improve the performance of your application. React utilizes different techniques to optimize the

rendering of the components on the screen.

When React must display a component, it calls its render method and the render methods of its

children recursively. The render method of a component returns a tree of React elements, which

React uses to decide which DOM operations must be done to update the UI.

Whenever the component state changes, React calls the render method on the nodes again, and

it compares the result with the previous tree of React elements. The library is smart enough to

figure out the minimum set of operations required to apply the expected changes on the screen.

This process is called reconciliation, and it is managed transparently by React. Thanks to that,

we can easily describe how our components must look at a given point in time in a declarative

way and let the library do the rest.

React tries to apply the smallest possible number of operations on the DOM because touching

the DOM is an expensive operation.

However, comparing two trees of elements is not free either, and React makes two assumptions

to reduce its complexity:

•	 If two elements have a different type, they render a different tree.

•	 Developers can use keys to mark children as stable across different render calls.

The second point is interesting from a developer’s perspective because it gives us a tool to help

React render our views faster.

By default, when coming back to the children of a DOM node, both lists of children are iterated

by React at the same time, and whenever there is a difference, it creates a mutation.

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter15
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter15
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter15

Chapter 15 413

Let’s look at some examples. Converting between the following two trees will work well when

adding an element at the end of the children:

 Carlos

 Javier

 Carlos

 Javier

 Emmanuel

The two Carlos trees match the two Javier trees by React and then it will

insert the Emmanuel tree.

Inserting an element at the beginning produces inferior performance if implemented naively. If

we look at the example, it works very poorly when converting between these two trees:

 Carlos

 Javier

 Emmanuel

 Carlos

 Javier

Every child will be mutated by React instead of it realizing that it can keep the subtrees line,

Carlos and Javier, intact. This could possibly be an issue. This problem

can, of course, be solved and the way to do this is with the key attribute that is supported by

React. Let’s look at that next.

Using keys
Children possess keys and these keys are used by React to match children between the subse-

quent tree and the original tree. The tree conversion can be made efficient by adding a key to our

previous example:

Improving the Performance of Your Applications414

 <li key="2018">Carlos

 <li key="2019">Javier

 <li key="2017">Emmanuel

 <li key="2018">Carlos

 <li key="2019">Javier

React now knows that the 2017 key is the new one and that the 2018 and 2019 keys have just moved.

Finding a key is not hard. The element that you will be displaying might already have a unique

ID. So, the key can just come from your data:

<li key={element.id}>{element.title}

A new ID can be added to your model by you, or the key can be generated by some parts of the

content. The key must only be unique among its siblings; it does not have to be unique globally.

An item index in the array can be passed as a key, but it is now considered a bad practice. However,

if the items are never recorded, this can work well. The reorders will seriously affect performance.

If you are rendering multiple items using a map function and you don’t specify the key property,

you will get this message: Warning: Each child in an array or iterator should have a unique key prop.

Let’s learn some optimization techniques in our next section.

Optimization techniques
It is important to notice that, in all the examples in this book, we are using apps that have either

been created with create-react-app or have been created from scratch, but always with the de-

velopment version of React.

Using the development version of React is very useful for coding and debugging as it gives you

all the necessary information to fix various issues. However, all the checks and warnings come

with a cost, which we want to avoid in production.

So, the very first optimization that we should do to our applications is to build the bundle, set-

ting the NODE_ENV environment variable to production. This is easy with webpack, and it is just

a matter of using DefinePlugin in the following way:

new webpack.DefinePlugin({

 'process.env': {

Chapter 15 415

 NODE_ENV: JSON.stringify('production')

 }

})

To achieve the best performance, we not only want to create the bundle with the production flag

activated, but we also want to split our bundles, one for our application and one for node_modules.

To do so, you need to use the new optimization node in webpack:

optimization: {

 splitChunks: {

 cacheGroups: {

 default: false,

 commons: {

 test: /node_modules/,

 name: 'vendor',

 chunks: 'all'

 }

 }

 }

}

Webpack has two modes, development and production. By default, production mode is enabled,

meaning the code will be minified and compressed when you compile your bundles using pro-

duction mode; you can specify it with the following code block:

{

 mode: process.env.NODE_ENV === 'production' ? 'production' :
'development',

}

Your webpack.config.ts file should look like this:

module.exports = {

 entry: './index.ts',

 optimization: {

 splitChunks: {

 cacheGroups: {

 default: false,

 commons: {

 test: /node_modules/,

Improving the Performance of Your Applications416

 name: 'vendor',

 chunks: 'all'

 }

 }

 }

 },

 plugins: [

 new webpack.DefinePlugin({

 'process.env': {

 NODE_ENV: JSON.stringify('production')

 }

 })

],

 mode: process.env.NODE_ENV === 'production' ? 'production' :
'development'

}

With this webpack configuration, we are going to get very optimized bundles; one for our vendors

and one for the actual application.

Tools and libraries
In the next section, we will go through several techniques, tools, and libraries that we can apply

to our code base to monitor and improve performance.

Immutability
The new React Hooks, such as React.memo, use a shallow comparison method against the props,

which means that if we pass an object as a prop and we mutate one of its values, we do not get

the expected behavior.

In fact, a shallow comparison cannot find mutation on the properties and the components never

get re-rendered, except when the object itself changes. One way to solve this issue is by using

immutable data, data that, once it gets created, cannot be mutated.

For example, we can set the state in the following mode:

const [state, setState] = useState({})

const obj = state.obj

obj.foo = 'bar'

setState({ obj })

Chapter 15 417

Even if the value of the foo attribute of the object is changed, the reference to the object is still

the same and the shallow comparison does not recognize it.

What we can do instead is create a new instance every time we mutate the object, as follows:

const obj = Object.assign({}, state.obj, { foo: 'bar' })

setState({ obj })

In this case, we get a new object with the foo property set to bar, and the shallow comparison

will be able to find the difference. With ES6 and Babel, there is another way to express the same

concept in a more elegant way, and it is by using the object spread operator:

const obj = {

 ...state.obj,

 foo: 'bar'

}

setState({ obj })

This structure is more concise than the previous one, and it produces the same result, but, at the

time of writing, it requires the code to be transpiled to be executed inside the browser.

React provides some immutability helpers to make it easy to work with immutable objects, and

there is also a popular library called immutable.js, which has more powerful features, but it

requires you to learn new APIs.

Babel plugins
There are also a couple of interesting Babel plugins that we can install and use to improve the

performance of our React applications. They make the applications faster, optimizing parts of

the code at build time.

The first one is the React constant elements transformer, which finds all the static elements

that do not change depending on the props and extracts them from render (or the functional

components) to avoid calling _jsx unnecessarily.

Using a Babel plugin is straightforward. We first install it with npm:

npm install --save-dev @babel/plugin-transform-react-constant-elements

You need to create the .babelrc file and add a plugins key with an array that has a value of the

list of plugins that we want to activate:

{

Improving the Performance of Your Applications418

 "plugins": ["@babel/plugin-transform-react-constant-elements"]

}

The second Babel plugin that we can choose to use to improve performance is the React inline

elements transform, which replaces all the JSX declarations (or the _jsx calls) with a more opti-

mized version of them to make execution faster.

Install the plugin using the following command:

npm install --save-dev @babel/plugin-transform-react-inline-elements

Next, you can easily add the plugin to the array of plugins in the .babelrc file, as follows:

{

 "plugins": ["@babel/plugin-transform-react-inline-elements"]

}

Both plugins should be used only in production because they make debugging harder in devel-

opment mode. So far, we have learned a lot of optimization techniques and how to configure

some plugins using webpack.

Summary
Our journey through performance is finished, and we can now optimize our applications to give

users a better UX.

In this chapter, we learned how the reconciliation algorithm works and how React always tries

to take the shortest path to apply changes to the DOM. We can also help the library to optimize

its job by using keys. Once you’ve found your bottlenecks, you can apply one of the techniques

we have seen in this chapter to fix the issue.

We have learned how refactoring and designing the structure of your components in the proper

way could provide a performance boost. Our goal is to have small components that do one single

thing in the best possible way. At the end of the chapter, we talked about immutability, and we’ve

seen why it’s important not to mutate data to make React.memo and shallowCompare do their

job. Finally, we ran through different tools and libraries that can make your applications faster.

In the next chapter, we’ll look at testing and debugging using Jest, the React Testing Library, and

React DevTools.

Chapter 15 419

Join our community on Discord
Join our community’s Discord space for discussion with the author and other readers:

https://packt.link/React18DesignPatterns4e

https://packt.link/React18DesignPatterns4e

16
Testing and Debugging

Thanks to its components, React makes it easy to test our applications. There are many different

tools available that we can use to create tests with React. In this chapter, we will cover the most

popular ones to understand the benefits they provide.

Jest is an all-in-one testing framework solution maintained by Christoph Nakazawa from Meta

and contributors within the community and aims to give you the best developer experience.

By the end of this chapter, you’ll be able to create a test environment from scratch and write tests

for your application’s components.

In this chapter, we will look at the following topics:

•	 Why it is important to test our applications and how they help developers move faster

•	 How to set up a Jest environment to test components using Enzyme

•	 What the React Testing Library is and why it is a must-have for testing React applications

•	 How to test events

•	 How to implement Vitest

•	 React DevTools and some error-handling techniques

Technical requirements
To complete this chapter, you will need the following:

•	 Node.js 19+

•	 Visual Studio Code

Testing and Debugging422

You can find the code for this chapter in the book’s GitHub repository: https://github.com/
PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/

main/Chapter16.

Understanding the benefits of testing
Testing web UIs has always been a difficult job. From unit to end-to-end tests, the fact that the

interfaces depend on browsers, user interactions, and many other variables makes it difficult to

implement an effective testing strategy.

If you’ve ever tried to write end-to-end tests for the web, you’ll know how complex it is to get

consistent results and how the results are often affected by false negatives due to different fac-

tors, such as the network. Other than that, user interfaces are frequently updated to improve the

experience, maximize conversions, or simply add new features.

If tests are hard to write and maintain, developers are less prone to cover their applications. On

the other hand, tests are important because they make developers more confident with their

code, which is reflected in speed and quality. If a piece of code is well tested (and the tests are

well written), developers can be sure that it works and is ready to ship. Similarly, thanks to tests,

it becomes easier to refactor the code because tests guarantee that the functionalities do not

change during the rewrite.

Developers tend to focus on the feature they are currently implementing, and sometimes it is

hard to know if other parts of the application are affected by those changes. Tests help to avoid

regressions because they can tell if the new code breaks the old tests. Greater confidence in writing

new features leads to faster releases.

Testing the main functionalities of an application makes the code base more solid, and whenever

a new bug is found, it can be reproduced, fixed, and covered by tests so that it does not happen

again in the future.

Luckily, React (and the component era) makes testing user interfaces easy and efficient. Testing

components, or trees of components, is a less arduous job because every single part of the appli-

cation has its responsibilities and boundaries. If components are built in the right way, if they are

pure and aim for composability and reusability, they can be tested as simple functions.

Another great power that modern tools bring us is the ability to run tests using Node.js and the

console. Spinning up a browser for every single test makes tests slower and less predictable, de-

grading the developer experience; instead, running the tests using the console is faster.

https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter16
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter16
https://github.com/PacktPublishing/React-18-Design-Patterns-and-Best-Practices-Fourth-Edition/tree/main/Chapter16

Chapter 16 423

Testing components only in the console can sometimes give unexpected behaviors when they are

rendered in a real browser, but in my experience, this is rare. When we test React components, we

want to make sure that they work properly and that, given different sets of props, their output

is always correct.

We may also want to cover all the various states that a component can have. The state might

change by clicking a button, so we write tests to check if all the event handlers are doing what

they are supposed to do.

When all the functionalities of the component are covered, but we want to do more, we can write

tests to verify the component’s behavior on edge cases. Edge cases are states that the component

can assume when, for example, all the props are null or there is an error. Once the tests are written,

we can be pretty confident that the component behaves as expected.

Testing a single component is great, but it does not guarantee that multiple individually tested

components will still work once they are put together. As we will see later, with React, we can

mount a tree of components and test the integration between them.

There are different techniques that we can use to write tests, and one of the most popular ones is

test-driven development (TDD). Applying TDD means writing the tests first and then writing

the code to pass the tests.

Following this pattern helps us to write better code because we are forced to think more about

the design before implementing the functionalities, which usually leads to higher quality.

So, now that we have covered all of this, let’s roll up our sleeves and start writing tests for our

React components. We will also learn about a cool way of writing code called test-driven devel-

opment and use a handy tool called Jest to simplify our JavaScript testing. Are you ready? Let’s

dive in and start working with real code!

Painless JavaScript testing with Jest
The most important way to learn how to test React components in the right way is by writing

some code, and that is what we are going to do in this section.

The React documentation says that Facebook uses Jest to tests its components. However, React

does not force you to use a particular test framework, and you can use your favorite one without

any problems. To see Jest in action, we are going to create a project from scratch, install all the

dependencies, and write a component with some tests. It’ll be fun!

Testing and Debugging424

The first thing to do is to move into a new folder and run the following:

npm init

Once package.json is created, we can start installing the dependencies, with the first one being

the jest package itself:

npm install --save-dev jest

To tell npm that we want to use the jest command to run the tests, we must add the following

scripts to package.json:

"scripts": {

 "build": "webpack",

 "start": "node ./dist/server",

 "test": "jest",

 "test:coverage": "jest --coverage"

}

To write components and tests using ES6 and JSX, we must install all Babel-related packages so

that Jest can use them to transpile and understand the code.

The second set of dependencies is installed as follows:

npm install --save-dev @babel/core @babel/preset-env @babel/preset-react
ts-jest

As you may know, we now have to create a .babelrc file, which is used by Babel to know the

presets and the plugins that we would like to use inside the project.

The .babelrc file looks like the following:

{

 "presets": ["@babel/preset-env", "@babel/preset-react"]

}

Now, it is time to install React and ReactDOM, which we need to create and render components:

npm install --save react react-dom

The setup is ready, and we can run Jest against the ES6 code and render our components in the

DOM, but there is one more thing to do.

Chapter 16 425

We need to install jest-environment-jsdom, @testing-library/jest-dom, and @testing-

library/react:

npm install @testing-library/jest-dom @testing-library/react jest-
environment-jsdom

After you have installed these packages, you must create the jest.config.js file:

module.exports = {

 preset: 'ts-jest',

 setupFilesAfterEnv: ['<rootDir>/setUpTests.ts'],

 testEnvironment: 'jsdom'

}

Then, let’s create the setUpTests.ts file:

import '@testing-library/jest-dom/extend-expect'

Now, let’s imagine we have a Hello component (src/components/Hello/index.tsx):

import React, { FC } from 'react'

type Props = {

 name?: string

}

function Hello({ name }: Props) {

 return <h1 className="Hello">Hello {name || 'World'}</h1>

}

 Hello.defaultProps = {

 name: ''

}

export default Hello

In order to test this component, we need to create a file with the same name but add the .test

(or .spec) suffix to the new file. This will be our test file:

import React from 'react'

import { render, cleanup } from '@testing-library/react'

import Hello from './index'

 describe('Hello Component', () => {

 it('should render Hello World', () => {

 const wrapper = render(<Hello />)

Testing and Debugging426

 expect(wrapper.getByText('Hello World')).toBeInTheDocument()

 })

 it('should render the name prop', () => {

 const wrapper = render(<Hello name="Carlos" />)

 expect(wrapper.getByText('Hello Carlos')).toBeInTheDocument()

 })

 it('should has .Home classname', () => {

 const wrapper = render(<Hello />)

 expect(wrapper.container.firstChild).toHaveClass('Hello')

 })

 afterAll(cleanup)

})

Then, in order to run the test, you need to execute the following command:

npm test

You should see this result:

Figure 16.1: npm test

The PASS label means that all tests have been passed successfully; if at least one test failed, you

will see the FAIL label. Let’s change one of our tests to make it fail:

it('should render the name prop', () => {

 const wrapper = render(<Hello name="Carlos" />)

 expect(wrapper.getByText('Hello World')).toBeInTheDocument()

})

Chapter 16 427

This is the result:

Figure 16.2: Fail tests

As you can see, the FAIL label is specified with an X. Also, the expected and received values provide

useful information, and you can see which value is expected and which value is received.

If you want to see the coverage percentage of all your unit tests, you can execute the following

command:

npm run test:coverage

Testing and Debugging428

The result is the following:

Figure 16.3: Passing tests

The coverage also generates an HTML version of the result; it creates a directory called coverage

and inside another called Icov-report. If you open the index.html file in your browser, you will

see the HTML version as follows:

Figure 16.4: Icov-report

Now that you have done your first tests and you know how to collect the coverage data, let’s see

how we can test events in the next section.

Testing events
Events are very common in any web application, and we need to test them as well, so let’s learn

how to test events. For this, let’s create a new ShowInformation component:

import { useState, ChangeEvent } from 'react'

Chapter 16 429

 function ShowInformation() {

 const [state, setState] = useState({ name: '', age: 0, show: false })

 const handleOnChange = (e: ChangeEvent<HTMLInputElement>) => {

 const { name, value } = e.target

 setState({

 ...state,

 [name]: value

 })

 }

 const handleShowInformation = () => {

 setState({

 ...state,

 show: true

 })

 }

 if (state.show) {

 return (

 <div className="ShowInformation">

 <h1>Personal Information</h1>

 <div className="personalInformation">

 <p>Name: {state.name}</p>

 <p>Age: {state.age}</p>

 </div>

 </div>

)

 }

 return (

 <div className="ShowInformation">

 <h1>Personal Information</h1>

 <p>Name:</p>

 <p>

 <input name="name" type="text" value={state.name}
onChange={handleOnChange} />

 </p>

 <p>

Testing and Debugging430

 <input name="age" type="number" value={state.age}
onChange={handleOnChange} />

 </p>

 <p><button onClick={handleShowInformation}>Show Information</button></
p>

 </div>

)

}

export default ShowInformation

Now, let’s create the test file at src/components/ShowInformation/index.test.tsx:

import { render, cleanup, fireEvent } from '@testing-library/react'

import ShowInformation from './index'

describe('Show Information Component', () => {

 let wrapper

 beforeEach(() => {

 wrapper = render(<ShowInformation />)

 })

 it ('should modify the name', () => {

 const nameInput = wrapper.container.querySelector('input[name="name"]')
as HTMLInputElement

 const ageInput = wrapper.container.querySelector('input[name="age"]')
as HTMLInputElement

 fireEvent.change(nameInput, { target: { value: 'Carlos' } })

 fireEvent.change(ageInput, { target: { value: 34 } })

 expect(nameInput.value).toBe('Carlos')

 expect(ageInput.value).toBe('34')

 })

 it ('should show the personal information when user clicks on the
button', () => {

 const button = wrapper.container.querySelector('button')

 fireEvent.click(button)

 const showInformation = wrapper.container.querySelector('.
personalInformation')

 expect(showInformation).toBeInTheDocument()

})

Chapter 16 431

 afterAll(cleanup)

})

If you run the test and it works fine, you should see this:

Figure 16.5: Passing tests

Introducing Vitest
Vitest is a unit test framework built on Vite, designed for speed and minimal configuration. It

serves as a replacement for various testing tools such as Jest, Mocha, and Chai. Since Vitest is built

on top of the Jest API, if you already know how to use Jest, it works in a similar manner.

In this context, we will utilize Vite, a build tool that aims to provide a fast and lean development

experience for modern web projects.

Firstly, you need to install Vite globally with:

npm install vite -g

After it’s installed, you need to create your first project with the npm command:

npm create vite@latest

Testing and Debugging432

It will ask you for the project name. You can use my-first-vite-project, then for the framework

you want to use (React), and finally, choose the variant (TypeScript):

Figure 16.6: npm create vite@latest

Next, you need to install the project dependencies and run the npm run dev command. If you do

so, you will see something similar to the following on port 5173:

Figure 16.7: Vite app

Chapter 16 433

Installing and configuring Vitest
Once you have your Vite app running, it is time to install Vitest. To do so, you simply need to run

this command in your project terminal:

 npm install -D vitest @test-library/react

After you’ve installed Vitest, you need to modify the vite.config.ts file with the following code:

/// <reference types="vitest" />

import react from '@vitejs/plugin-react'

import { defineConfig } from 'vite'

// https://vitejs.dev/config/

export default defineConfig({

 plugins: [react()],

 test: {

 environment: 'jsdom'

 }

})

As you can see, we will use the jsdom environment, so you’ll need to install it as well:

npm install -D jsdom

Additionally, Vitest offers a plugin called Vitest UI, which enables Vitest to provide a visually

appealing user interface for viewing and interacting with your tests in the browser. While it is

an optional plugin, we will be using it. You can install it by executing the following command:

npm install -D @vitest/ui

In order to test your code, you need to add the test script to your package.json file using the

vitest --ui command:

"scripts": {

 "dev": "vite",

 "build": "tsc && vite build",

 "preview": "vite preview",

 "test": "vitest --ui"

}

Testing and Debugging434

We will be using the same Hello component that we used for Jest, although there will be a few

differences. You need to save this component at src/components/Hello/index.tsx:

 import React, { FC } from 'react'

 type Props = {

 name?: string

 }

 const Hello: FC<Props> = ({ name }) => <h1 className="Hello">Hello {name
|| "World"}</h1>

 export default Hello

Then you need to create a test file called index.test.tsx under the same component directory:

 import { cleanup, render } from '@testing-library/react'

 import { afterAll, describe, expect, it } from 'vitest'

 import Hello from './index'

 describe("Hello Component", () => {

 it("should render Hello World", () => {

 const wrapper = render(<Hello />)

 expect(wrapper.getByText("Hello World")).toBeDefined()

 })

 it("should render the name prop", () => {

 const wrapper = render(<Hello name="Carlos" />)

 expect(wrapper.getByText("Hello Carlos")).toBeDefined()

 })

 it("should has .Home classname", () => {

 const wrapper = render(<Hello />)

 const firstChild = wrapper.container.firstChild as HTMLElement

 expect(firstChild?.classList.contains("Hello")).toBe(true)

 })

 afterAll(cleanup)

 })

As you can see, the code is quite similar to Jest. However, one of the main differences is that we are

now importing all the testing methods we will use, such as afterAll, describe, expect, and it.

Chapter 16 435

If you run the test command, you should see something similar to this in your terminal:

Figure 16.8: npm test

If you have noticed, there is a link that is generated by the Vitest UI plugin we installed earlier. If

you click on that link, you will see the following:

Figure 16.9: Vitest UI

Testing and Debugging436

Currently, we only have one test file, but if you add more, you will see them listed on the sidebar

on the left. Now, let’s click on our current Hello test:

Figure 16.10 – Report

You will be able to see the test cases that are passing correctly. However, one of the most interest-

ing advantages of this UI plugin is that you can even modify the test code directly in the browser

by clicking on the Code tab:

Figure 16.11: Code

Chapter 16 437

Let’s modify our code to intentionally cause some tests to fail. You can change the first test to say

"Hello Foo" instead of "Hello World" and make sure to save it (Cmd + S):

Figure 16.12: Failing test

As you can see, now our first test fails because it is unable to find the "Hello Foo" text.

Enabling globals
Personally, I prefer importing all the necessary functions or variables in a file. However, I am

aware that when creating numerous test files, repeatedly importing global testing variables like

describe, it, expect, and so on, can become tedious and cumbersome.

Testing and Debugging438

Fortunately, Vitest offers a configuration option to enable globals, eliminating the need to im-

port them every time. To enable this feature, you need to modify your vite.config.ts file with

the following code:

/// <reference types="vitest" />

/// <reference types="vite/client" />

import react from '@vitejs/plugin-react'

import { defineConfig } from 'vite'

// https://vitejs.dev/config/

export default defineConfig({

 plugins: [react()],

 test: {

 environment: "jsdom",

 globals: true

 }

})

After making the changes mentioned earlier, you also need to update your tsconfig.json file

by adding the global types:

"compilerOptions": {

 "types": ["vitest/globals"]

}

After following these steps, you will now be able to remove the import of the globals in your

test file. If you still encounter any TypeScript errors, it is likely that you will need to restart your

TypeScript server or reload the window in your VSCode.

In-source testing
Vitest also offers a way to run tests within your source code alongside the implementation, similar

to Rust’s module tests.

Personally, I have an old-school approach, and I usually prefer to have a separate test file for my

testing. However, there are situations where the component or functions being tested are very

small, and creating a new test file may seem excessive.

To enable this feature, you need to modify your vite.config.ts file and add the includeSource

option:

export default defineConfig({

Chapter 16 439

 plugins: [react()],

 test: {

 environment: "jsdom",

 globals: true,

 includeSource: ["src/**/*.{ts,tsx}"]

 }

})

To resolve the TypeScript issues, you need to make another change by adding the vitest/

importMeta type to your tsconfig.json file:

"compilerOptions": {

 "types": ["vitest/globals", "vitest/importMeta"]

}

Now, let’s move our Hello component test file inside the same Hello component. Again, this is

optional and is just to demonstrate that it is possible to do so. In the end, you can decide which

testing approach to use.

To achieve this, we need to add an if statement inside our Hello component to check if we are

in testing mode. We can accomplish this with the following code: if (import.meta.vitest).

Inside this block, we will move all the testing cases, and we will also require the React Testing

Library methods only within that block. This way, our code will resemble the following:

import React, { FC } from 'react'

 type Props = {

 name?: string;

}

const Hello: FC<Props> = ({ name }) => <h1 className="Hello">Hello {name
|| "World"}</h1>

export default Hello;

if (import.meta.vitest) {

 const { cleanup, render } = require('@testing-library/react')

 describe("Hello Component", () => {

 it("should render Hello World", () => {

 const wrapper = render(<Hello />)

 expect(wrapper.getByText("Hello World")).toBeDefined()

 })

Testing and Debugging440

 it("should render the name prop", () => {

 const wrapper = render(<Hello name="Carlos" />)

 expect(wrapper.getByText("Hello Carlos")).toBeDefined()

 })

 it("should has .Home classname", () => {

 const wrapper = render(<Hello />)

 const firstChild = wrapper.container.firstChild as HTMLElement

 expect(firstChild?.classList.contains("Hello")).toBe(true)

 })

 afterAll(cleanup)

 })

}

Now you can delete your previous file (index.test.tsx). If you run your tests again, they should

work the same.

The difference is that now you will be able to see the entire code (Component and Test cases):

Chapter 16 441

Figure 16.13: Passing test

This approach may potentially speed up the testing process for a component or a function. How-

ever, personally, I still prefer to perform testing in a separate test file. Nevertheless, you are free

to choose what works best for you and your project.

Testing and Debugging442

After exploring the concept of in-source testing, let’s proceed to understand how React DevTools

can be effectively applied in our development process to optimize our application’s performance

and ensure it runs smoothly.

Using React DevTools
When testing in the console is not enough, and we want to inspect our application while it is

running inside the browser, we can use React DevTools.

The installation adds a tab to the Chrome DevTools called React, where you can inspect the ren-

dered tree of components and check which properties they have received and what their state is

at a particular point in time.

Props and states can be read, and they can be changed in real time to trigger updates in the UI

and see the results straight away. This is a must-have tool, and in the most recent versions, it has

a new feature that can be enabled by checking the Trace React Updates checkbox.

When this functionality is enabled, we can use our application and see which components get

updated when we perform a particular action. The updated components are highlighted with

colored rectangles, and it becomes easy to spot possible optimizations.

Using Redux DevTools
If you are using Redux in your application, you probably want to use Redux DevTools to be able

to debug your Redux flow. You can install it at the following URL: https://chrome.google.com/
webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es

Also, you need to install the redux-devtools-extension package:

npm install --save-dev redux-devtools-extension

Once you have installed React DevTools and Redux DevTools, you will need to configure them.

You can install this as a Chrome extension at the following URL: https://chrome.
google.com/webstore/detail/react-developer-tools/fmkadmapgo

fadopljbjfkapdkoienihi?hl=en.

https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=es
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

Chapter 16 443

If you try to use Redux DevTools directly, it won’t work; this is because we need to pass the

composeWithDevTools method into the Redux store; this should be the configureStore.ts file:

import { createStore, applyMiddleware } from 'redux';

import thunk from 'redux-thunk';

import { composeWithDevTools } from 'redux-devtools-extension';

import rootReducer from '@reducers';

export default function configureStore({

 initialState,

 reducer

}) {

const middleware = [thunk];

return createStore(

 rootReducer,

 initialState,

 composeWithDevTools(applyMiddleware(...middleware))

);

}

This is the best tool to test our Redux applications.

Summary
In this chapter, you gained a comprehensive understanding of the benefits of testing, as well as

the various frameworks and tools available for testing React components. You learned how to

implement and test components and events using the React Testing Library and how to use Jest

coverage to optimize your testing process. Additionally, you explored tools such as React DevTools

and Redux DevTools to further enhance your development experience. It’s important to keep in

mind common solutions when it comes to testing complex components, such as higher-order

components or forms with multiple nested fields, to ensure that your tests accurately reflect the

functionality of your application.

In the next chapter, you will learn how to deploy your application to production.

17
Deploying to Production

Now that you have completed your first React application, it is time to learn how to deploy it to

the world. For this purpose, we will use the cloud service called DigitalOcean.

In this chapter, you will learn how to deploy your React application using Node.js and nginx on

an Ubuntu server from DigitalOcean. In a nutshell, we will cover the following topics:

•	 Creating a DigitalOcean Droplet and configuring it

•	 Configuring nginx, PM2, and a domain

•	 Implementing CircleCI for continuous integration

Technical requirements
To complete this chapter, you will need the following:

•	 Node.js 19+

•	 Visual Studio Code

Creating our first DigitalOcean Droplet
I have used DigitalOcean for the last seven years, and I can say that it is one of the best cloud

services I have tried, not just because of the affordable costs but also because it is super easy

and fast to configure, and the community has a lot of updated documentation to fix most of the

common issues related to server configuration.

At this point, you will need to invest some money to get this service. I will show you the cheapest

way to do this, and if in the future you want to increase the power of your Droplets, you will be

able to increase the capacity without redoing the configuration.

Deploying to Production446

The lowest price for a very basic Droplet is $6.00 per month ($0.009 per hour).

We are going to use Ubuntu 20.04 (but feel free to use the latest version, 21.04); you will need

to know some basic Linux commands to be able to configure your Droplet. If you’re a beginner

using Linux, don’t worry—I’ll try to show you each step in a very easy way.

Signing up to DigitalOcean
If you don’t have a DigitalOcean account, you can sign up at https://cloud.digitalocean.com/

registrations/new.

You can sign up with your Google account or by registering manually. Once you register with

Google, you will see the Billing Info view, as follows:

Figure 17.1: Billing Info

https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new

Chapter 17 447

You can pay with your credit card or by using PayPal. Once you have configured your payment

information, DigitalOcean will ask you for some information about your project so that it can

configure your Droplet faster.

Figure 17.2: First application

Deploying to Production448

Let’s go on to create our first Droplet.

Creating our first Droplet
We will create a new Droplet from scratch. Follow these steps to do so:

1.	 Select the New Droplet option, as shown in the following screenshot:

Figure 17.3: New Droplet

2.	 Choose Ubuntu 20.04 (LTS) x64, as follows:

Figure 17.4: Choose an image

Chapter 17 449

3.	 Then, choose the Basic plan, as shown here:

Figure 17.5: Choose a plan

4.	 You can then choose $6/mo from the payment plan options:

Figure 17.6: CPU options

5.	 Select a region. In this case, we will select the San Francisco region:

Figure 17.7: Choose Region

Deploying to Production450

6.	 Create a root password, add the name of your Droplet, and then click on the Create Drop-

let button, as follows:

Figure 17.8: Authentication

7.	 It will take around 30 seconds to create your Droplet. Once it has been created, you will

be able to see it:

Figure 17.9: My first Droplet

8.	 Now, in your Terminal, you can access the Droplet by using the following command:

ssh root@THE_DROPLET_IP

9.	 The first time you access it, you will be asked for a fingerprint. You just need to type Yes, and

then it will require your password (the one you defined when you created your Droplet).

Chapter 17 451

This serves as a security feature specifically designed to prevent man-in-the-middle attacks.

The server’s “fingerprint” acts as a distinctive digital signature that is unique to the server

itself. When you observe a fingerprint that matches the expected one, you can proceed by

typing yes and pressing Enter to continue. Subsequently, the server will prompt you to

enter your password. Provide the password you defined when you created your Droplet,

and press Enter. Please note that, for security purposes, no characters will be displayed

on the screen as you enter your password. Upon successful authentication, you will be

logged in to your server, ready to initiate commands.

Figure 17.10: Connecting to Droplet

Now we are all set to install Node.js, which we will cover in the next section.

Deploying to Production452

Installing Node.js
Now that you’re connected to your Droplet, let’s configure it. First, we need to install the latest

version of Node.js using a Personal Package Archive. The current version of Node at the time of

writing this book is 19.9.x. Follow these steps to install Node.js:

1.	 If, when you are reading this paragraph, Node has a new version, change the version in

the setup_19.x command:

cd ~

curl -sL https://deb.nodesource.com/setup_19.x -o nodesource_setup.
sh

2.	 Once you get the nodesource_setup.sh file, run the following command:

sudo bash nodesource_setup.sh

3.	 Then, install Node by running the following command:

sudo apt install nodejs -y

4.	 If everything works fine, verify the installed version of Node and npm with the following

commands:

node -v

v19.9.0

npm -v

9.6.3

If you need a newer version of Node.js, you can always upgrade it.

Configuring Git and GitHub
I created a special repository to help you to deploy your first React application to production

(https://github.com/FoggDev/production).

In your Droplet, you need to clone this Git repository (or your own repository if you have your

React application ready to be deployed). The production repository is public, but normally you

will use a private repository; in this case, you need to add the SSH key of your Droplet to your

GitHub account.

https://github.com/FoggDev/production

Chapter 17 453

To create this key, follow these steps:

1.	 Run the ssh-keygen command and then press Enter three times without entering any

passphrase:

Figure 17.11: ssh-keygen

If you leave your Terminal inactive for more than five minutes, your Droplet connection

will probably be closed, and you will need to connect again.

2.	 Once you have created your Droplet SSH key, you can see it by running the following

command:

vi /root/.ssh/id_rsa.pub

You will see something like this:

Figure 17.12: ssh-rsa

Deploying to Production454

3.	 Copy your SSH key and then visit your GitHub account. Go to Settings | SSH and GPG

Keys (https://github.com/settings/ssh/new). Then, paste your key in to the text area

and add your title to the key:

Figure 17.13: Adding a new SSH key to GitHub

4.	 Once you click on the Add SSH key button, you will see your SSH key, like so:

Figure 17.14: SSH

5.	 Now you can clone our repository (or yours) using the following command:

git clone git@github.com:FoggDev/production.git

https://github.com/settings/ssh/new

Chapter 17 455

6.	 When you clone it for the first time, you will get a message asking you to allow the RSA

key fingerprint:

Figure 17.15: Cloning repository

7.	 You have to type Yes and then hit Enter to be able to clone it:

Figure 17.16: Known hosts

8.	 Then, you have to go to the production directory and install the npm packages:

cd production

npm install

9.	 If you want to test the application, just run the start script:

npm start

10.	 Then open your browser and go to your Droplet IP and add the port number. In my case,

it is http://144.126.222.17:3000:

Figure 17.17: Project running in development mode

11.	 This will run the project in development mode. If you want to run it in production mode,

use the following command:

npm run start:production

Deploying to Production456

You should see Production Process Manager (PM2) running, as shown in the following

screenshot:

Figure 17.18: PM2

12.	 If you run it and view the Network tab in your Chrome DevTools, you will see the bundles

being loaded:

Figure 17.19: The Network tab

We now have our React application working in production, but let’s see what else we can do with

DigitalOcean in the next section.

Chapter 17 457

Turning off our Droplet
To turn off the Droplet, follow these steps:

1.	 If you want to turn off your Droplet, you can go to the Power section, or you can use the

ON/OFF switch:

Figure 17.20: Turning off the Droplet

2.	 DigitalOcean will charge you only when your Droplet is ON. If you click on the ON switch

to turn it off, then you will get the following confirmation message:

Figure 17.21: Turn off Droplet

In this way, you can control your Droplet and avoid paying unnecessarily when you’re not using

your Droplet.

Configuring nginx, PM2, and a domain
Our Droplet is ready to be used for production, but as you can see, we are still using port 3000.

We need to configure nginx and implement a proxy to redirect the traffic from port 80 to 3000;

this means we won’t need to specify the port directly anymore.

Deploying to Production458

Node PM2 will help us run the Node server in production securely. Generally, if we run Node di-

rectly with the node or babel-node commands, and there is an error in the app, then it will crash

and will stop working. PM2 restarts the node server if an error occurs.

First, in your Droplet, you need to install PM2 globally:

npm install -g pm2

PM2 will help us to run our React app in a very easy way.

Installing and configuring nginx
To install nginx, you need to execute the following command:

sudo apt-get update

sudo apt-get install nginx

After you have installed nginx, you can start the configuration:

1.	 We need to adjust the firewall to allow the traffic for port 80. To list the available appli-

cation configurations, you need to run the following command:

sudo ufw app list

Available applications:

Nginx Full

Nginx HTTP

Nginx HTTPS

OpenSSH

2.	 Nginx Full means that it will allow the traffic from port 80 (HTTP) and port 443 (HTTPS).

We haven’t configured any domain with SSL, so, for now, we should restrict the traffic to

be sent just through port 80 (HTTP):

sudo ufw allow 'Nginx HTTP'

Rules updated

Rules updated (v6)

Chapter 17 459

If you try to access the Droplet IP, you should see nginx working:

Figure 17.22: Welcome to nginx

3.	 You can manage the nginx process with these commands:

Start server: sudo systemctl start nginx

Stop server: sudo systemctl stop nginx

Restart server: sudo systemctl restart nginx

Nginx is an amazing web server that is getting very popular nowadays.

Setting up a reverse proxy server
As I mentioned previously, we need to set up a reverse proxy server to send the traffic from port

80 (HTTP) to port 3000 (the React app). To do this, you need to open the following file:

sudo vi /etc/nginx/sites-available/default

The steps to set up the reverse proxy server are as follows:

1.	 In the location / block, you need to replace the code in the file with the following:

location / {

 proxy_pass http://localhost:3000;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection 'upgrade';

 proxy_set_header Host $host;

 proxy_cache_bypass $http_upgrade;

 }

Deploying to Production460

2.	 Once you have saved the file, you can verify whether there is a syntax error in the nginx

configuration with the following command:

sudo nginx -t

3.	 If everything is fine, then you should see this:

Figure 17.23: sudo ngnix-t

4.	 Finally, you need to restart the nginx server:

sudo systemctl restart nginx

Now, you should be able to access the React application without the port, as shown in the fol-

lowing screenshot:

Figure 17.24: The React application without the port

We are almost done! In the next section, we are going to add a domain to our Droplet.

Adding a domain to our Droplet
Using an IP to access a website is not nice; we always need to use a domain to help users find

our website more easily. If you want to use a domain with your Droplet, you need to change

the nameservers of your domain to point to the DigitalOcean DNS. I normally use GoDaddy to

register my domains.

Chapter 17 461

To do so using GoDaddy, follow these steps:

1.	 Go to https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns, and then go to the Nam-

eservers section:

Figure 17.25: Nameservers

2.	 Click on the Change button, select Custom, and then specify the DigitalOcean DNS:

Figure 17.26: DigitalOcean Nameservers

3.	 Normally, it takes between 15 and 30 minutes for the DNS changes to be reflected; for

now, after you have updated your nameservers, go to your Droplet dashboard and then

choose the Add a domain option:

https://dcc.godaddy.com/manage/YOURDOMAIN.COM/dns

Deploying to Production462

Figure 17.27: Add a domain

4.	 Then, write your domain name, select your Droplet, and click on the Add Domain button:

Figure 17.28: Networking

Chapter 17 463

5.	 Now, you must create a new record for CNAME. Select the CNAME tab, and in HOSTNAME,

type www; in the alias field, write @; by default, the TTL is 43200. All of this is to enable

access to your domain using the www prefix:

Figure 17.29: Create new record

If you did everything correctly, you should be able to access your domain and see the React ap-

plication working. As I said before, this process can take up to 30 minutes, but in some cases, it

can take up to 24 hours, depending on the DNS propagation speed:

Figure 17.30: React application running on domain

Amazing. Now you have officially deployed your first React application to production!

Implementing CircleCI for continuous integration
I’ve been using CircleCI for a while, and I can tell you that it is one of the best CI solutions: it is

free for personal use, giving you unlimited repositories and users; you have 1,000 build minutes

per month, one container, and one concurrent job; if you need more, you can upgrade the plan

with an initial price of $50 per month.

The first thing you need to do is sign up on the site using your GitHub account (or Bitbucket, if

you prefer).

Deploying to Production464

If you choose to use GitHub, you need to authorize CircleCI in your account, as shown in the

following screenshot:

Figure 17.31: Authorize CircleCI

Chapter 17 465

In the next section, we are going to add our SSH key to CircleCI.

Adding an SSH key to CircleCI
Now that you have created your account, CircleCI needs a way to log in to your DigitalOcean

Droplet to run the deploy script. Follow these steps to complete this task:

1.	 Create a new SSH key inside your Droplet using the following command:

ssh-keygen -t rsa

Then save the key as /root/.ssh/id_rsa_droplet with no password.

After go to .ssh directory

cd /root/.ssh

2.	 After that, let’s add the key to our authorized_keys:

cat id_rsa_droplet.pub >> authorized_keys

3.	 Now, you need to download the private key. To verify that you can log in with the new

key, you need to copy it to your local machine, as follows:

In your local machine do:

scp root@YOUR_DROPLET_IP:/root/.ssh/id_rsa_droplet ~/.ssh/

cd .ssh

ssh-add id_rsa_droplet

ssh -v root@YOUR_DROPLET_IP

If you did everything correctly, you should be able to log in to your Droplet without a

password, and that means CircleCI can access our Droplet too.

4.	 Copy the content of your id_rsa_droplet.pub key and then go to your repository set-

tings (https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/

YOUR_REPOSITORY):

https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY

Deploying to Production466

Figure 17.32: Project Settings

5.	 Go to SSH Keys, as follows:

Figure 17.33: SSH Keys

Chapter 17 467

6.	 You can also access the URL https://app.circleci.com/settings/project/github/

YOUR_GITHUB_USER/YOUR_REPOSITORY/ssh, and then click on the Add SSH Key button

at the bottom:

Figure 17.34: Add an SSH key

7.	 Paste your private key, and then provide a name for the Hostname field; we will name it

DigitalOcean.

Now let’s configure our CircleCI instance in the next section.

Configuring CircleCI
Now that you have configured access for CircleCI to your Droplet, you need to add a config file

to your project to specify the jobs you want to execute for the deployment process.

https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/ssh
https://app.circleci.com/settings/project/github/YOUR_GITHUB_USER/YOUR_REPOSITORY/ssh

Deploying to Production468

This process is shown in the following steps:

1.	 For this, you need to create the .circleci directory and add the following inside the

config.yml file:

version: 2.1

jobs:

build:

working_directory: ~/tmp

docker:

 - image: cimg/node:14.16.1

steps:

 - checkout

 - run: npm install

 - run: npm run lint

 - run: npm test

 - run: ssh -o StrictHostKeyChecking=no $DROPLET_USER@$DROPLET_IP
'cd production; git checkout master; git pull; npm install; npm run
start:production;'

 workflows:

 build-deploy:

 jobs:

 - build:

 filters:

 branches:

 only: master

2.	 When you have a .yml file, you need to be careful with the indentation; it is similar to

Python in that if you don’t use indents correctly, you will get an error. Let’s see how this

file is structured.

3.	 Specify the CircleCI version we will use. In this instance, you are using version 2.1 (the

latest one at the time of writing this book):

 version: 2.1

4.	 Inside jobs, we will specify that it needs to configure the container; we will create it using

Docker and also outline the steps to follow for the deployment process.

Chapter 17 469

5.	 working_directory will be the temporal directory we will use to install the npm packag-

es and run our deploy scripts. In this case, I decided to use the tmp directory, as follows:

 jobs:

 build:

 working_directory: ~/tmp

6.	 As I said before, we will create a Docker container, and in this instance, I selected an existing

image that includes node: 18.12.1. If you want to know about all the available images,

you can visit https://circleci.com/docs/2.0/circleci-images:

 docker:

 - image: cimg/node:18.12.1

7.	 For the code case, first do a git checkout to master, then in each run sentence, you need

to specify the scripts you want to run:

 steps:

 - checkout

 - run: npm install

 - run: npm run lint

 - run: npm test

 - run: ssh -o StrictHostKeyChecking=no $DROPLET_USER@$DROPLET_IP
'cd production; git checkout master; git pull; npm install; npm run
start:production;'

Here is an explanation of the previous steps:

1.	 First, you need to install the npm packages using npm install to be able to perform the

next tasks.

2.	 Execute the ESLint validation using npm run lint. If it fails, it will break the deployment

process; otherwise, it continues with the next run.

3.	 Execute the Jest validations using npm run test; if it fails, it will break the deployment

process. Otherwise, it continues with the next run.

4.	 In the last step, we connect to our DigitalOcean Droplet, passing the

StrictHostKeyChecking=no flag to disable the strict host key checking. We then use the

$DROPLET_USER and $DROPLET_IP ENV variables to connect to it (we will create those in

the next step), and finally, we will specify all the commands we will perform inside our

Droplet using single quotes.

https://circleci.com/docs/2.0/circleci-images

Deploying to Production470

These commands are listed as follows:

•	 cd production: Grants access to the production (or your Git repository name).

•	 git checkout master: This will check out the master branch.

•	 git pull: Pulls the latest changes from our repository.

•	 npm run start:production: This is the final step, which runs our project in pro-

duction mode.

Finally, let’s add some environment variables to our CircleCI.

Creating environment variables variables in CircleCI
As you saw previously, we are using the $DROPLET_USER and $DROPLET_IP variables, but how

do we define those? Follow these steps:

1.	 You need to go to your project settings again and select the Environment Variables option.

Then, you need to create the DROPLET_USER variable:

Figure 17.35: Add Environment Variable

Chapter 17 471

2.	 Then, you need to create the DROPLET_IP variable using your Droplet IP:

Figure 17.36: DROPLET_IP

3.	 Now, you need to push the config file to your repository, and you will be ready for the

magic. Now that CircleCI is connected to your repository, every time you push changes

to master, it will fire a build.

Normally, the first two or three builds can fail due to syntax errors, indent errors in our

config, or maybe because we have linter errors or unit test errors. If you have a failure, you

will see something like this:

Figure 17.37: Build error

Deploying to Production472

4.	 As you can see from the preceding screenshot, the first build failures at the bottom say

Build Error, and the second one says build-deploy under WORKFLOW, as shown in Figure

17.38. This basically means that in the first build, I had a syntax error in the config.yml file.

5.	 After you fix all the syntax errors in the config.yml file and all the issues with the linter

or the unit tests, you should see a Success build like this:

Figure 17.38: SUCCESS build

6.	 If you click on the build number, you can see all the steps that CircleCI executed before

publishing the new changes in your Droplet:

Figure 17.39: Steps executed by CircleCI

Chapter 17 473

7.	 As you can see, the order of the steps is the same as we specified in our config.yml file;

you can even see the output of each step by clicking on it:

Figure 17.40: Lint and test steps

Deploying to Production474

8.	 Now, let’s suppose you have an error on your linter validation or in some unit tests. Let’s

see what happens in that case, as follows:

Figure 17.41: Linter error

As you can see, once an error is detected, it will exit with code 1. This means it will abort the de-

ployment and mark it as a failure. Notice that none of the steps after npm run lint are executed.

Chapter 17 475

Another cool thing is that if you now go to your GitHub repository and check your commits, you

will see all the commits that had a successful build and all the commits that had a failed build:

Figure 17.42: GitHub successful build

This is amazing: now you have your project configured to do deployments automatically, and it

is connected to your GitHub repository.

Summary
Congratulations! We’ve reached the end of our journey through the deployment process, and you

now have the knowledge and skills needed to deploy your React application to the world (pro-

duction). You’ve also learned how to implement CircleCI for continuous integration, streamlining

your development process and ensuring that your application remains performant and reliable.

By leveraging the strategies and best practices outlined in this chapter, you can confidently launch

your application to a global audience, secure in the knowledge that it has been optimized for

speed, scalability, and resilience. Thank you for joining me on this journey. I hope you’ve enjoyed

reading my book.

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learning Angular, Fourth Edition

Aristeidis Bampakos

ISBN: 9781803240602

•	 Use the Angular CLI to scaffold, build, and deploy a new Angular application

•	 Build components, the basic building blocks of an Angular application

•	 Discover new Angular Material components such as Google Maps, YouTube, and multi-se-

lect dropdowns

•	 Understand the different types of templates supported by Angular

•	 Create HTTP data services to access APIs and provide data to components

•	 Learn how to build Angular apps without modules in Angular 15.x with standalone APIs

•	 Improve your debugging and error handling skills during runtime and development

https://www.packtpub.com/product/learning-angular-fourth-edition/9781803240602#_ga=2.34061473.1450455603.1689926827-1539622708.1683286721

Other Books You May Enjoy480

Angular Projects, Third Edition

Aristeidis Bampakos

ISBN: 9781803239118

•	 Set up Angular applications using Angular CLI and Nx Console

•	 Create a personal blog with Jamstack, Scully plugins, and SPA techniques

•	 Build an issue management system using typed reactive forms

•	 Use PWA techniques to enhance user experience

•	 Make SEO-friendly web pages with server-side rendering

•	 Create a monorepo application using Nx tools and NgRx for state management

•	 Focus on mobile application development using Ionic

Develop custom schematics by extending Angular CLI

https://www.packtpub.com/product/angular-projects-third-edition/9781803239118#_ga=2.34061473.1450455603.1689926827-1539622708.1683286721

Other Books You May Enjoy 481

Web Development with Blazor, Second Edition

Jimmy Engström

ISBN: 9781803241494

•	 Understand the different technologies that can be used with Blazor, such as Blazor Server,

Blazor WebAssembly, and Blazor Hybrid

•	 Find out how to build simple and advanced Blazor components

•	 Explore the differences between Blazor Server and Blazor WebAssembly projects

•	 Discover how Minimal APIs work and build your own API

•	 Explore existing JavaScript libraries in Blazor and JavaScript interoperability

•	 Learn techniques to debug your Blazor Server and Blazor WebAssembly applications

•	 Test Blazor components using bUnit

https://www.packtpub.com/product/web-development-with-blazor-second-edition/9781803241494#_ga=2.36986784.1450455603.1689926827-1539622708.1683286721

Other Books You May Enjoy482

Blazor WebAssembly by Example, Second Edition

Toi B. Wright

ISBN: 9781803241852

•	 Discover the power of the C# language for both server-side and client-side web devel-

opment

•	 Build your first Blazor WebAssembly application with the Blazor WebAssembly App proj-

ect template

•	 Learn how to debug a Blazor WebAssembly app, and use ahead-of-time compilation

before deploying it on Microsoft’s cloud platform

•	 Use templated components and the Razor class library to build and share a modal dialog

box

•	 Learn how to use JavaScript with Blazor WebAssembly

•	 Build a progressive web app (PWA) to enable native app-like performance and speed

•	 Secure a Blazor WebAssembly app using Azure Active Directory

•	 Gain experience with ASP.NET Web APIs by building a task manager app

https://www.packtpub.com/product/blazor-webassembly-by-example-second-edition/9781803241852#_ga=2.36986784.1450455603.1689926827-1539622708.1683286721

Other Books You May Enjoy 483

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished React 18 Design Patterns and Best Practices, Fourth Edition, we’d love to hear

your thoughts! If you purchased the book from Amazon, please click here to go straight

to the Amazon review page for this book and share your feedback or leave a review on the site

that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803233109
https://packt.link/r/1803233109

Index

Symbols
$db 262
$security 262
$server 262
#CSSinJS 9

.env.example 261

.env file
configuring 261

.gitignore 261

A
animations

implementing 87, 88
API package

Apollo Server 378, 380
creating 361, 363
CRM service, testing 381-383
custom GraphQL types and resolvers,

creating 375-378
custom models, creating 372, 373
custom services, creating 368-370
model seeds, creating 374
models, synchronizing 378, 380
service configuration, building 370
user-shared GraphQL type and resolver,

creating 365-367

user-shared model, creating 363
Apollo Client

configuring 318
Apollo Server 350

configuring 263-266
used, for building backend login system 258
working 378, 380

app routes
creating 319

Atomic CSS modules 114, 115
authentication functions 276

creating 278, 279
JWT functions, creating 276, 278
types and interfaces, defining 279, 281

automatic batching 197, 198

B
Babel 31

installing 31
babel-core package 31
babel-node package 31
Babel plugins 417
backend login system

building, with Apollo Server 258
building, with GraphQL 258
building, with JSON Web Tokens 258

Index486

building, with PostgreSQL 258
building, with Sequelize 258

backend project
.env file, configuring 261
basic config file, creating 261-263
creating 260

beforeCreate 275
Block, Element, Modifier (BEM) 94

C
children 33, 34
children prop

using 61, 62
CircleCI

configuring 468-471
ENV variables, creating 471-476
implementing, for continuous

integration 464
SSH key, adding to 466-468

CircleCI, convenience images
reference link 470

class component
migrating, to React Hooks 134-139

code, styling 46
colorful log

creating 342
component 8

memoizing, with memo 146-148
composition 56, 112

concurrent mode 196
constant elements transformer 417
container components

characteristics 67
exploring 62-66

Content Delivery Network (CDN) 112

continuous integration
CircleCI, implementing 464

controlled components 79-81
coupling 8
create-react-app 10
createRoot

using, to render multiple components 202
CRM service

testing 381-383
CSS, in JavaScript 94, 95
CSS modules

Atomic CSS modules 114, 115
locally scoped 108-114
using 100
Webpack 5 100

currying 55, 56
custom GraphQL types and resolvers

creating 375-378
custom models

creating 372, 373
custom services

creating 368-370

D
Dashboard components

creating 324
data fetching

implementing 247-250
data types, in GraphQL

Boolean 267
Float 267
Int 267
String 267

declarative programming 3
versus imperative programming 4, 5

Index 487

DELETE action 268
devtools package, to compile packages with

Webpack 341, 342
colorful log, creating 342
common configuration 343-349
development configuration 350
production configuration 350, 352

DigitalOcean 445
signing up 446, 447

DigitalOcean Droplet
creating 445-452
domain, adding to 461-464
Git, configuring 453-457
GitHub, configuring 453-457
Node.js, installing 453
turning off 458

DigitalOcean, signing up
URL 446

div element
creating 32

Document Object Model
(DOM) 1, 54, 140, 411

domain
adding, to Droplet 461-464

Domain-Specific Language (DSL) 7
DOM elements 33

properties, spreading on 127, 128

E
edge cases 423
EditorConfig 46

URL 46
elements 5, 6
enums

using 24

ENV variables
creating, in CircleCI 471-476

ESLint 46, 48
configuring 49, 50
installing 49

event bubbling 84
event delegation 84
events

handling 81-84
Express 237
Express server

configuring 309, 311

F
first-class functions 53
forms

implementing 74
forwardRef 85, 87
Fragment 36
frontend configuration

creating 311, 312
frontend login system, with Apollo Client

Apollo Client, configuring 318
app routes, creating 319
building 299
Dashboard components, creating 324
Express server, configuring 309, 311
frontend configuration, creating 311, 312
GraphQL queries and mutations, creating

315, 316
JWT functions, creating 314, 315
Login components, creating 321, 323
login system, testing 324-328
pages, creating 319, 321

Index488

TypeScript, configuring 308, 309
user context, creating to handle login and

connected user 316-318
user middleware, creating 312-314
Webpack 5, configuring 300-308

frontend package
creating 384-387
demo time 406-409
Login system, creating 394-400
Page Switcher, creating 389-394
sites configuration, creating 401, 402
Sites system, creating 388

functional component 138
Functional CSS 114
functional programming (FP) 53

composition 56
currying 55, 56
first-class functions 53
immutability 54, 55
pure functions 54

FunctionAsChild 70, 71
function definition

memoizing, with useCallback 153-158
function, passed as argument

memoizing, in effect 158-161

G
getInitialProps 252
getUser query

creating 271
getUsers query

creating 270, 271
Git

configuring 453-457
Git Hooks 52

GitHub
configuring 453-457

globals
enabling 437, 438

GraphQL 257
merging type definitions 269
mutations 268
queries 267
queries and mutations, creating 315, 316
queries and mutations, testing 284-290
scalar types 266, 267
used, for building backend login system 258

H
Higher-Order Functions (HoFs) 53, 67
High-Order Component (HOC) 67-69, 146
hooks 205

useDeferredValue 207
useId 205
useInsertionEffect 208
useTransition 206

hydrateRoot 203

I
immutability 55, 416, 417
imperative programming 3

versus declarative programming 4, 5
indexes

using, as key 124-127
inline styles

implementing 96-99
input types 268
interfaces 20

extending 20, 21

Index 489

implementing 21, 23
merging 23, 24

isomorphic application 237

J
JavaScript ecosystem

advantages 10
JavaScript fatigue 9, 251
JavaScript XML (JSX) 1, 29

Babel 31
children 33, 34
common patterns 39
div element, creating 32
DOM elements 33
props 33
React components 32
spread attributes 38
template literals 39
using 30, 31

JavaScript XML(JSX), versus HTML 34
attributes 34
Boolean attributes 37
root 35-37
spaces 37
style 35

Jest 421
events, testing with 428, 430
used, for painless JavaScript

testing 423-428
JSON Web Tokens (JWT) 258, 350

used, for building backend login system 258
JWT functions

creating 314, 315
defining 276, 278

K
keys

using 413

L
libraries 416
Linux (Ubuntu)

download link 260
loaders 189, 192, 193
Login components

creating 321, 323
login system

creating 394-400
testing 324-328

M
memo 141

component, memoizing with 146-148
models

synchronizing 378, 380
model seeds

creating 374
model validations

testing 290-293
module bundlers 100
MonoRepo

creating, with NPM Workspaces 334-337
TypeScript, implementing 337-341

MonoRepos 27
monorepository

advantages 332-334
used, for solving issues 332-334

Index490

mutations 270
creating 272

N
namespaces 25, 26
Next.js 251, 385

using, to create React application 251-254
nginx

configuring 459, 460
installing 459, 460

Node.js
features 210
installing 453

Node.js features
experimental Fetch API 210
experimental Node Watch 211
experimental Test Runner Module 210
Long-Term Support (LTS) 212

Node Production Process Manager
 (PM2) 459

NPM Workspaces
used, for creating MonoRepo 334-337

O
Object Relational Mapper (ORM) 264
optimization techniques 414, 416

P
Page Switcher

creating 389-394
PATCH action 268
patterns, JavaScript XML(JSX)

conditionals 41-44
loops 44

multiline 39, 40
multi-properties 40
sub-rendering 45

pgAdmin 4
download link 260

Pokedex
building 219-226
React Suspense, testing 226-231
reference link 219

POST action 268
PostgreSQL

download link 260
installing 258, 259
used, for building backend login system 258

PostgreSQL database
management tools 260
Sequelize, connecting to 275, 276

presentational components
characteristics 67

presentational patterns
exploring 62-67

Prettier 47
project

executing 281-284
GraphQL queries and mutations,

testing 284-290
login, performing 294-299
model validations, testing 290-293
users, querying 290-293

properties
spreading, on DOM elements 127, 128
state, initializing with 122, 123

props 33
pure functions 54
PUT action 268

Index 491

Q
Query 270

R
React 1, 350

misconceptions 9
URL 30

React 18 APIs
createRoot 201, 202
hydrateRoot 203
renderToPipeableStream 204

React application
creating 243-247
creating, with Next.js 251-254

React components 32
React concurrent mode, features

concurrent rendering 197
suspense 196
time slicing 196

React Context API 214
components, wrapping with

provider 216, 217
context, creating 214, 215

React DevTools
using 442, 443

React DOM 6
react-dom package 10
React effects 140

firing, conditionally 140, 141
useEffect 140

React elements
working 5, 6

React Hooks 131, 132
class component, migrating to 134-139
rules 134

React Native 6
react package 10
React Router 171

configuring 172
installing 172
parameters, adding to routes 177-186
sections, creating 173-177

react-router-dom package 172
react-router-dom v6 package

improvements 172
react-router-native package 172
React Router v6.4 186-188

loaders 189-193
React Router v6.x 172
React Suspense

implementing, with SWR 218, 219
React Testing Library methods 439
reconciliation 6, 412

working 412
Redux Toolkit 231

components, combining to store 232
key features 231
reducers, combining 232
slice, creating 232
store, creating 231
store, integrating with React application 233

refs
exploring 84, 85
forwardRef 85

renderToPipeableStream 204
resolvers

creating 269, 270
getUser query, creating 271
getUsers query, creating 270, 271

Index492

merging 272, 273
mutations, creating 272

reusable components 60
communicating 60

reverse proxy server
setting up 460, 461

S
SASS @extend 113
Scalable Vector Graphics (SVG)

exploring 89, 90
scalar types

Datetime 267
UUID 267

Search Engine Optimization (SEO) 235
implementing 238

self-closing tags 33
Sequelize

used, for building backend login system 258
Sequelize ORM

connecting, to PostgreSQL database 275
features 273
user model, creating in 273, 275
using 273

server-side rendering (SSR) 200, 235, 237
example, creating 240
implementing, reasons 237
project, configuring with webpack 241-243
React application, creating 243-246

server-side rendering (SSR) implementation,
reasons

better performance 239
common code base 238
complexity 239, 240
SEO 238

service configuration
building 370

single global handler 83
sites configuration

creating 401, 402
Sites system

creating 388
spread attributes 38
SSH key

adding, to CircleCI 466-468
Stale-While-Revalidate (SWR) 219

Pokedex, building 219-225
React Suspense, implementing

with 218, 219
state

initializing, with properties 122-124
State Hook

using 132-134
store, Redux Toolkit

components, connecting to 232
creating 231
integrating, with React application 233

strict mode 209
string literal types 26
styled-components

implementing 115-118
Suspense 200

working, on server 200, 201

T
tagged template literals 116
template literals 26, 39
templating systems 7
Test Anything Protocol (TAP) 210
test-driven development (TDD) 423

Index 493

testing
benefits 422, 423

theming 118
to-do list example 141-145
tools 416
transitions 198, 200
Type Definitions (TypeDefs) 376
types 18-20

extending 20, 21
implementing 21, 23

TypeScript
configuration file 26-28
configuring 308, 309
features 16
implementing, in MonoRepo 337-341
JavaScript code, converting into 17, 18
reference link 26

U
uncontrolled components 74-78
undici 210
undici-fetch 210
unions 26
universal applications 235-237
useCallback 141

function definition, memoizing
with 153-157

useContext
context, consuming with 217, 218

useDeferredValue 207
useEffect 140
useId 205
useInsertionEffect 208
useMemo 141

value, memoizing with 149-153

user context
creating, to handle login and connected

user 316, 318
useReducer Hook 161-168
user middleware

creating 312-314
user model

creating, in Sequelize 273, 275
users

querying 290-293
user-shared GraphQL type and resolver

creating 365-367
user-shared model

creating 363
useTransition 206, 207
utils package

creating 354-361

V
value

memoizing, with useMemo 149-153
Vercel 251
Virtual DOM 6
Vite 11, 431

using 11, 12
Vitest 431, 432

configuring 433-437
globals, enabling 437, 438
in-source testing 438-441
installing 433-437

W
Webpack

common configuration 343-349
development configuration 350

Index494

devtools package, creating to complie
packages 341, 342

production configuration 350, 352
used, for configuring SSR project 241-243

Webpack 5
configuring 300-308

Webpack application
setting up 101-107

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80323-310-9

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://dev.packt.link/free-ebook/9781801071109

	Cover
	Copyright
	Table of Contents
	Preface
	Chapter 1: Taking Your First Steps with React
	Technical requirements
	Differentiating between declarative and imperative programming
	How React elements work
	Unlearning everything
	Understanding JavaScript fatigue
	Misconceptions about React
	Getting started with React without the fatigue
	Advantages of the JavaScript ecosystem
	Bye to Create-React-App, welcome to Vite!
	Vite as a solution

	Summary

	Chapter 2: Introducing TypeScript
	Technical requirements
	TypeScript’s features
	Converting JavaScript code into TypeScript
	Types
	Interfaces
	Extending interfaces and types
	Implementing interfaces and types
	Merging interfaces
	Enums
	Namespaces
	Template literals
	TypeScript configuration file
	Summary

	Chapter 3: Cleaning Up Your Code
	Technical requirements
	Using JSX
	Babel
	Creating our first element
	DOM elements and React components
	Props
	Children
	Differences with HTML
	Attributes
	Style
	Root
	Spaces
	Boolean attributes

	Spread attributes
	Template literals
	Common patterns
	Multiline
	Multi-properties
	Conditionals
	Loops
	Sub-rendering

	Styling code
	EditorConfig
	Prettier
	ESLint
	Installation
	Configuration
	Git Hooks

	Functional programming
	First-class functions
	Purity
	Immutability
	Currying
	Composition

	Summary

	Chapter 4: Exploring Popular Composition Patterns
	Technical requirements
	Communicating components
	Using the children prop

	Exploring the container and presentational patterns
	Understanding HOCs
	Understanding FunctionAsChild
	Summary

	Chapter 5: Writing Code for the Browser
	Technical requirements
	Understanding and implementing forms
	Uncontrolled components
	Controlled components

	Handling events
	Exploring refs
	Understanding forwardRef

	Implementing animations
	Exploring SVG
	Summary

	Chapter 6: Making Your Components Look Beautiful
	Technical requirements
	CSS in JavaScript
	Understanding and implementing inline styles
	Using CSS modules
	Webpack 5

	Setting up a project
	Locally scoped CSS
	Atomic CSS modules

	Implementing styled-components
	Summary

	Chapter 7: Anti-Patterns to Be Avoided
	Technical requirements
	Initializing the state using properties
	Using indexes as a key
	Spreading properties on DOM elements
	Summary

	Chapter 8: React Hooks
	Technical requirements
	Introducing React Hooks
	No breaking changes
	Using the State Hook

	Rules of Hooks
	Rule 1: Only call Hooks at the top level
	Rule 2: Only call Hooks from React functions

	Migrating a class component to React Hooks
	Understanding React effects
	Understanding useEffect
	Firing an effect conditionally
	Understanding useCallback, useMemo, and memo
	Memoizing a component with memo
	Memoizing a value with useMemo
	Memoizing a function definition with useCallback
	Memoizing a function passed as an argument in effect

	Understanding the useReducer Hook
	Summary

	Chapter 9: React Router
	Technical requirements
	Installing and configuring React Router
	Creating our sections
	Adding parameters to the routes
	React Router v6.4
	React Router loaders

	Summary

	Chapter 10: React 18 New Features
	Concurrent mode
	Automatic batching
	Transitions
	Suspense on the server
	New APIs
	createRoot
	hydrateRoot
	renderToPipeableStream

	New Hooks
	useId
	useTransition
	useDeferredValue
	useInsertionEffect

	Strict mode
	Node.js latest features
	Experimental Fetch API
	Experimental test runner module
	Experimental node watch
	Node 18 is now Long-Term Support (LTS)

	Summary

	Chapter 11: Managing Data
	Technical requirements
	Introducing the React Context API
	Creating our first context
	Wrapping our components with the provider

	Consuming context with useContext
	Introducing React Suspense with SWR
	Introducing SWR
	Building a Pokedex!
	Testing React Suspense

	Redux Toolkit: a modern approach to Redux
	Key features
	Getting started
	Creating a store
	Creating a slice
	Combining reducers
	Connecting components to the store
	Integrating the store with a React application

	Summary

	Chapter 12: Server-Side Rendering
	Technical requirements
	Understanding universal applications
	Reasons for implementing SSR
	Implementing SEO
	A common code base
	Better performance
	Don’t underestimate the complexity of SSR

	Creating a basic example of SSR
	Configuring our project from scratch with webpack
	Creating the application

	Implementing data fetching
	Using Next.js to create a React application
	Summary

	Chapter 13: Understanding GraphQL with a Real Project
	Technical requirements
	Building a backend login system using PostgreSQL, Apollo Server, GraphQL, Sequelize, and JSON Web Tokens
	Installing PostgreSQL
	Best tools for PostgreSQL database management

	Creating our backend project
	Configuring our .env file
	Creating a basic config file

	Configuring Apollo Server
	Defining our GraphQL types, queries, and mutations
	Scalar types
	Queries
	Mutations
	Merging type definitions

	Creating our resolvers
	Creating the getUsers query
	Creating the getUser query
	Creating the mutations
	Merging our resolvers

	Using the Sequelize ORM
	Creating a user model in Sequelize
	Connecting Sequelize to a PostgreSQL database

	Authentication functions
	Creating JWT functions
	Creating authentication functions
	Defining types and interfaces

	Running our project for the first time
	Testing GraphQL queries and mutations
	Testing model validations and querying users
	Performing a login

	Building a frontend login system with Apollo Client
	Configuring Webpack 5
	Configuring our TypeScript
	Configuring the Express server
	Creating our frontend configuration
	Creating the user middleware
	Creating JWT functions
	Creating our GraphQL queries and mutations
	Creating user context to handle login and connected user
	Configuring Apollo Client
	Creating our app routes
	Creating our pages
	Creating our login components
	Creating our dashboard components
	Testing our login system

	Summary

	Chapter 14: MonoRepo Architecture
	Technical requirements
	Advantages of a monorepository and the problems it solves
	Creating a MonoRepo with NPM Workspaces
	Implementing TypeScript in our MonoRepo
	Creating a devtools package to compile packages with Webpack
	Creating a colorful log
	Webpack common configuration
	Webpack development configuration
	Webpack production configuration

	Creating the utils package
	Creating the API package
	Creating a user-shared model
	Creating a user-shared GraphQL type and resolver
	Creating custom services
	Building our service configuration
	Creating our custom models
	Creating model seeds
	Creating our custom GraphQL types and resolvers
	Synchronizing our models and starting Apollo Server
	Testing our CRM service

	Creating the frontend package
	Creating our Sites system
	Creating our Page Switcher
	Creating our Login system
	Creating our sites configuration
	Putting everything together
	Demo time!

	Summary

	Chapter 15: Improving the Performance of Your Applications
	Technical requirements
	How reconciliation works
	Using keys
	Optimization techniques
	Tools and libraries
	Immutability
	Babel plugins

	Summary

	Chapter 16: Testing and Debugging
	Technical requirements
	Understanding the benefits of testing
	Painless JavaScript testing with Jest
	Testing events

	Introducing Vitest
	Installing and configuring Vitest
	Enabling globals
	In-source testing

	Using React DevTools
	Using Redux DevTools

	Summary

	Chapter 17: Deploying to Production
	Technical requirements
	Creating our first DigitalOcean Droplet
	Signing up to DigitalOcean
	Creating our first Droplet
	Installing Node.js
	Configuring Git and GitHub
	Turning off our Droplet

	Configuring nginx, PM2, and a domain
	Installing and configuring nginx
	Setting up a reverse proxy server
	Adding a domain to our Droplet

	Implementing CircleCI for continuous integration
	Adding an SSH key to CircleCI
	Configuring CircleCI
	Creating environment variables variables in CircleCI

	Summary

	Packt page
	Other Books You May Enjoy
	Index

