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PREFACE 
 
 
 

This book is intended to appeal to any practicing optical scientist 
and optical engineer who is concerned with the design, operation, and 
service of wired (fiberoptic) and wireless optical systems for resolving both 
the direct and the inverse problems of optical communication and optical 
location, namely of LIDAR. It will be very useful for students of all three 
degree levels, B.Sc., M.Sc., and Ph.D., who are concerned with the 
performance of mathematical algorithms, theoretical and applied models, as 
well as with the design, construction, and servicing of different optical 
devices: from various kinds of laser, photodetectors, light emitters and 
diodes, and optical amplifiers, wired waveguide optical structures, such as 
fiberoptic structures – 2D and 3D – with applications in wireless (atmospheric) 
networks, to LIDAR applications.  

It should be mentioned that during the last 20–30 years a lot of 
optical elements, devices, and systems have been developed and constructed 
to satisfy the continually increasing demands of modern optical engineering 
and photonics for wired and wireless communications and LIDAR 
applications, including wide spectra – visual, infrared (IR) ultraviolet (UV) 
– sensors, devices, and systems. And, if for wireless (atmospheric) 
communication systems numerous excellent monographs have been 
published (see bibliography in Refs. [1-4]), the role of fiberoptic 
communication has been weakly illuminated. Moreover, the foundational 
books regarding photonics, physical aspects of laser and optical detectors 
operation, and photodiodes were published twenty to thirty years ago and 
paid attention only to some specific fields of wide spectra optical physics 
applications [5–8], accounting mostly either for a wide description of solid 
materials, such as dielectrics and semiconductors and their role in different 
optical sources and detectors operation, or fiberoptic communication, 
ignoring basic aspects of such elements as optical emitters (lasers) and 
detectors. During recent decades, many articles about all of these aspects 
have been published, including articles by the authors of this book, but 
general views on the problems of fiberoptic communication and lasers and 
detectors as basic terminals of any wireless and wired optical 
communication system or network were absent. Moreover, even such books 
and papers that were recently published mostly paid attention to aspects of 
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signal coding and decoding and signal modulation, and less so the physical 
layers of devices, transmitters, and receivers of optical information [9–11].  

We created this book to bring together all layers, where the first 
“layer” deals with a wide spectrum of electronic devices and circuits, which 
needs a careful and very transparent explanation of the physical processes 
occurring in the basic elements of optical emitters; lasers, detectors of 
optical radiation, various amplifiers, and so forth. The second “layer” 
illuminated in our book regards the presentation of optical signals in the 
channels and elements of their modulation during signal processing of the 
information passing through fiberoptic and wireless channels. The last 
“layer” deals with the physical nature of all kinds of noise occurring in each 
element of wired and wireless communication links – from the light emitter 
consisting of optical lasers to detectors consisting of laser and photodiodes. 
To unify all these “layers” and to create a “bridge” between them, it is 
important to introduce an additional layer, which the authors call the 
“physical and mathematical layer.” Therefore all aspects described in this 
book regarding electro-optic engineering start from the physical explanation 
of the matter and then, by entering into other engineering problems of these 
three “layers” mentioned above, where each engineering aspect is 
accompanied by corresponding examples, give the reader the chance to use 
the obtained information for application in the performance and design of 
modern devices and systems for optical communication and optical location 
(LIDAR) applications.  

At the same time, the book does not enter into technical details of 
how to produce different kinds of lasers, emitters, diodes, amplifiers, and 
optical waveguides, nor how to design different kinds of electronic devices 
based on semiconducting materials, assuming that for the reader it is more 
important to obtain fundamental knowledge about all above-mentioned 
elements of electro-optical engineering based on the common and joint 
physical “layers” on whole spectra of these elements, without entering into 
individual technical details and schemes.  

The main goal of this book is to illuminate those questions and 
aspects of modern electro-optical engineering and optical physics, which 
were only partly illuminated in the existing literature. The authors enjoyed 
sharing their knowledge of teaching undergraduate and postgraduate 
students the physical fundamentals of classical and applied optics and 
photonics, optical emitters and detectors fundamentals, different aspects of 
wired (fiber optic) and wireless engineering, and fundamentals in optical 
waves propagation in fiberoptic 2-D and 3-D structures.  

The book comprises ten chapters. Chapter 1 presents an introduction 
to the subjects that will be discussed and explained in chapters 2 to 10. It 
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gives the reader information on optical spectra, from UV to IR, as a part of 
the full electromagnetic spectra, with a general explanation of the similarity 
of optical and radio waves. This fundamental similarity of radio and optical 
waves allows Chapter 2 to present all electromagnetic aspects of optical 
wave propagation via the general laws of Maxwell, of optical waves via 
plane electromagnetic waves, their propagation in free space, the 
intersection between two media, and finally, in various kinds of media – 
from dielectric to conductive. In Chapter 3, the main laws of classical and 
quantum physics based on corpuscular theory and on wave-corpuscular 
dualism are discussed using a simple explanation of the subject with clearly 
presented illustrations. In this manner, the structure of a simple atom, 
molecules, and crystals are described based on elements of quantum 
mechanics and wave theory in such a manner so as not to complicate the 
text of the book with mathematical descriptions of differential equations and 
integral presentation of the basic characteristics and functions describing 
each element’s own structure. Then, Chapter 4 describes the basic physical 
principles of photonics, optical emitters, and laser operation based on the 
quantum presentation of their structure via linearly distributed discrete 
spectra of each element, emitter, or detector, and based on the interaction 
between holes and electrons inside various kinds of semiconductors as 
materials of such optical elements. In Chapter 5, laser diodes (LDs), p-n- 
and p-i-n-type photodiodes, and the avalanche photodiode (APD) are 
described, acting as emitted sources (e.g., lasers) or receiving detectors, 
which have found importance in electronics, photonics, and in 
optoelectronic diodes, as well as in solar cells. Their operational parameters 
and characteristics were described in a unified manner based on the physical 
knowledge illustrated in Chapters 3 and 4. Chapters 3 and 5 are filled with 
corresponding examples to aid the reader in understanding the matter and 
using the obtained knowledge in practice. 

In Chapter 6, different types of noise occurring in light sources 
(lasers) and detectors (diodes), as the initial and the later terminals of any 
optical communication link, whether wired (fiber optic) or wireless 
(atmospheric), are described in a unified manner. Chapter 7 explains the 
principles of operation of optical amplifiers based on various kinds of 
emission – stimulated and spontaneous – which compete with absorption in 
any semiconducting material. It is shown what type of emission gives the 
main impact in terms of noise and plays a positive role in the amplification 
of optical signals with data transmission along the link. An example of an 
optical amplifier based on an Erbium fiberoptic amplifier is fully described, 
with estimations of its full noise interference via the corresponding 
examples having practical meaning. In Chapter 8, types of optical signals – 
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continuous and discrete – are fully described with their mathematical 
explanation for practical applications. Chapter 9 deals with the types of 
modulation, analog and discrete, most practically used in optical 
communications. Here, more precisely, is given the relationship between 
the spectral presentation of analog signals after amplitude and frequency 
modulation to show the reader advantages of angular-frequency and phase 
modulation with respect to amplitude. At the end of this chapter, the 
corresponding examples are shown to prove these advantages. In Chapter 
10, which is short but informative, the basic types and characteristics of 
optical waveguides – 2D and 3D – as well as of fiber optic cylindrical 
structures are presented, and the propagation of optical wave modes in 
various kinds of optical guiding structures is fully analyzed with 
illustrations and computing plots. Then, the main factors of dispersion – 
waveguide, modal, material, and polarization – are described in a unified 
manner accounting for the specific impact of each of these factors on noises 
and fading occurring in optical communication links, both wired and 
wireless. At the end of this chapter, the examples, having practical meaning, 
will be important for the reader to accumulate the knowledge obtained in 
previous chapters and introduce them in practice.  
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CHAPTER 1 

FUNDAMENTAL ASPECTS OF ELECTRO-OPTICS 
 
 
 
Electro-optical engineering, as a subject of analysis and discussion, 

covers many basic aspects which should be understood and explained to the 
reader, such as [1–16]: 

- electromagnetic nature of light, 
- similarity of optical and electromagnetic waves,  
- corpuscular nature of light,  
- electromagnetic aspects of optical wave propagation in 

various environments, 
- elements of photonics, 
- optical lasers – emitters of light, 
- optical detectors of light – laser diodes and photo diodes, 
- optical amplifiers, 
- optical signals presentation – analog and digital,  
- types of modulation of optical signals, 
- types of noise occurring in optical elements and devices,  
- optical guiding structures and fiber optic engineering aspects,  
- dispersion and noises, occurring in optical guiding structures, 

etc. 
In this chapter, we will try to introduce the reader to the most 

important aspects of electro-optical engineering, including the technical and 
technological aspects of optical elements and component fabrication, their 
material description, applied aspects of optical links fabrication, basic 
aspects of optical radar (called LIDAR) operation, and so forth, since the 
fine details are out of the scope of this book. The main goal of this book is 
to introduce the reader to fundamental aspects of electro-optical engineering 
based on basic physical fundamental questions which future engineers, 
technicians and researchers will meet during the design and development of 
basic elements and devices for optical communication and LIDAR.  

  



Chapter 1 2

1.1 Spectrum of Optical Waves 

An optical communication system, either wired (i.e., fiber optics) 
or wireless (i.e., atmospheric or LIDAR), transmits analog and digital 
information from one place to another, using high carrier frequencies in the 
range of 100 THz to 1000 THz in the visible and infrared (IR) region of the 
electromagnetic spectrum [1–16]. As for microwave systems, they operate 
at carrier frequencies that are five orders of magnitude smaller, from 1 GHz 
to 50 GHz. 

As a narrow band of the whole electromagnetic spectrum, the light 
wavelength band spreads from the ultraviolet spectral band to the far 
infrared (IR) spectral band, passing through the visible band, to the middle- 
and far infrared bands, as illustrated in Fig. 1.1, since most fiber optic cables, 
optical detectors and sources operate in these spectral bands.  

 

 
Figure 1.1. Electromagnetic spectrum and types of interaction with matter, 

indicated in the top panel by: UV – ultraviolet, VIS  – visible light, IR – infrared, 
THz – terahertz-band wave, MW – microwaves, RW – radio waves (modified from 

[12-16]). 
 

In electro-optics the large spectrum usually used – from the UV-
band to the THz–band (see middle panel), which can be divided for practical 
applications into: UV, with UVC – far, UVB – middle, and UVA – near 
ultraviolet; VIS, divided from violet to red, as vividly shown by the 
corresponding color; and IR, with IRA – near, IRB – middle, and IRC – far 
infrared, as illustrated by the middle panel. The bottom panel presents along 
the horizontal axis the corresponding wavelengths for each narrow band [in 



Fundamental Aspects of Electro-Optics 
 

3

nanometers, 1nm = 10-9 m], the type of light and the band energy [in eV, 1 
eV = 1.6 10-19 J]. 

We notice that the relationship between wavelength ( ) and 
frequency (f) is: /c f , where 83 10 /c m s is the velocity of light in 
free space. As an example, a wavelength of light from the near IR band 
equals 1.5 m ; it corresponds to a frequency of f = 14 22 10 2 10Hz THz  
(with a period of oscillation equal to 140.5 10T s ).  

The main goal of modern electro-optical engineering, photonics 
and optical electronics is to find the lowest energy and bandwidth losses of 
the corresponding materials during fabrication of the optical elements and 
devices [1–7, 11–16]. Thus, optical fiber systems operating in the 0.65–0.67 

m bandwidth with a plastic intrinsic surface have losses of 120–160 
dB/km, whereas those operating in the 0.8–0.9 m bandwidth have losses 
of 3–5 dB/km, and those operating in the 1.25–1.35 m and 1.5–1.6 m 
bandwidths, based on a glass surface, have losses of 0.5 to 0.25 dB/km, 
respectively [13]. We notice that the decibel [dB] is a measure called “path 
loss” denoted by L and defined as L = 10logE, where E is the energy of the 
optical wave in Joules [J]. 

Sufficiently wide frequency bands of light have allowed the 
increase of the bit rate (in bit/second, bps) – distance (in km) ratio during a 
period of about 150 years from 2~ 10  bps/km to 15~ 10  bps/km (summarized 
from [7, 12, 14–16]). 

1.2 Fiber Optic Links 

Below, we will give a definition of the optical link, both for a fiber 
optical link, as a "wire" communication link, and for an atmospheric link, a 
"wireless" communication link. The atmospheric links are outside of the 
scope of this book because they are fully presented in [15, 16]. 

As for wired optical communication links via fiber optics, they can 
be considered as a finishing optical communication mono-network, 
consisting of one fiber optic link, as shown in Fig. 1.2 rearranged from [16]. 
The message passing such a link is assumed to be available in electronic 
form, usually as a current. The transmitter is a light source that is modulated 
so that the optical beam carries the message. 
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Figure 1.2. Scheme of optical communication link connected by fiber optics. 

 
As an example, for a digital signal, the light beam is electronically 

turned on (for binary ones) and off (for binary zeros). Here, the optical beam 
is the carrier of the digital message. As a source fiber optic links usually 
take the light emitting diode and the laser diode. Several characteristics of 
the light source determine the behavior of the propagating optical waves [1–
6]. The corresponding modulated light beam (i.e., the message with the 
carrier) is coupled into the transmission fiber.  

1.3. Main Elements and Devices in Electro-Optics 

The input to each optical channel is the optical signal from the 
optical transmitter, which emits optical signals, and the output of the 
channel is the input to the receiver, which detects optical signals. The 
receiver amplifies these optical signals, converts them to an electronic 
signal, and extracts the information. At the receiver, the signals are collected 
by a photodetector, which converts the information back into electrical 
form.  
 The photodetectors do not affect the propagation properties of the 
optical wave but certainly must be compatible with the rest of the optical 
system (Chapter 5). The transmitter includes a modulator, a driver, a light 
source, and optics (Fig. 1.3). The modulator converts the information bits to 
an analog signal that represents a symbol stream. The driver provides the 
required current to the light source based on the analog signal from the 
output of the modulator. The light sources are a light emitting diode (LED) 
and a pure laser, which is a coherent source and the subject of Chapter 5. 

 The source converts the electronic signal to an optical signal [6, 
12]. The optics focuses and directs the light from the output of the source in 
the direction of the receiver. 
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Fig. 1.3. The light source (transmitter) scheme. 
 

The receiver includes optics, a filter, a polarizer, a detector, a trans-
impedance amplifier, a clock recovery unit, and a decision device (see Fig. 
1.4). The optics concentrate the received signal power onto the filter. Only 
light at the required wavelength propagates through the filter to the 
polarizer. The polarizer only enables light at the required polarization to 
propagate through to the detector. The detector, in most cases, is a 
semiconductor device such as a positive-negative (PN) or positive-intrinsic-
negative (PiN) photodiode, which converts the optical signal to an electronic 
signal (see Chapter 5). 

 

 
 

Figure 1.4. The light detector (receiver) scheme. 
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The amplifier increases the amplitude of the electronic signal from 
the detector. The clock recovery unit provides a synchronization signal to 
the decision device based on the signal from the output of the trans-
impedance amplifier. The decision device estimates the received 
information based on the electronic signal from the trans-impedance 
amplifier and synchronization signal.  

1.4. Noise in Optical Emitters and Detectors 

In wired fiber optic and wireless (atmospheric) links, when the data 
stream is guided through them, they can be affected by noise occurring in 
each element of the optical emitters and detectors; the corresponding types 
of noise are discussed in Chapter 6.  

1.5. Presentation of Signals in Electro-Optics 

In electro-optics, the information carried by the optical signal can 
be presented both in analog and digital form, as shown in Figure 1.5. The 
analog form is a harmonically presented form of the signal in the time and 
frequency domains  

 
                                      s(t) = a(t) exp{j[ (t) + 2  f t]}                                  (1.1) 
 
via its amplitude a(t), phase (t) and frequency f (see Chapter 8). 
 

 
 

Figure 1.5. Presentation of information in optical communication links in the form 
of a) analog signal and b) digital (e.g., pulse) signal. 
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So, the upper set of blocks shown in Fig. 1.4 operate with a set of 
digital signals that were obtained by converting an analog signal, presented 
in harmonic form [see Eq. (1.1) above], into a digital signal via quantization 
of the analog optical signal and presentation of the flux of optical quants as 
a discrete sequence of codes, 0 and/or 1, as shown in Figure 1.6. 

 

 
 

Figure 1.6. a) Sampling, b) quantization, and c) coding. 

1.6. Types of Modulation of Optical Signals 

 As for types of modulation, it also depends on the type of optical 
signal – analog (or continuous wave (CW)) or digital. To understand the 
further presented material, we refer the reader to a simple explanation of 
CW modulation usually used in optical devices to obey different kinds of 
signals.  
 For such kinds of optical signals, we deal with three kinds of 
modulation/demodulation: amplitude or intensity, phase and frequency. 
Thus, each CW signal can be presented in exponential form (1.1). As follows 
from (1.1), there are three possible kinds of modulation/demodulation of CW 
optical signals:  
 a) via changes of carrier optical signal amplitude or intensity by 
the influence of the modulating signal (usually called the message),  

b) via changes in phase of the modulated carrier optical signal by 



Chapter 1 8

mixing it with modulating signal, and  
 c) via changes in frequency of the modulated carrier optical signal 
by mixing it with modulating signal frequency. 
All these aspects will be discussed in Chapter 9, where some examples of 
practical application will also be presented. 
 As for digital modulation/demodulation [10, 16], this also can be 
divided into three types according to changes of amplitude (called amplitude 
shift keying, ASK), phase (phase shift keying, PSK), and frequency 
(frequency shift keying, FSK), as shown schematically in Fig. 1.7. 
 

 
 

Figure 1.7. Three types of modulation of digital (pulse) optical signal: amplitude 
(ASK), phase (PSK), and frequency (FSK). 

  
 The most common type of digital coding and encoding is On-Off 
Keying (OOK) [10]. This can be presented in two basic formats (see Fig. 
1.8): a) Return-to-Zero (RZ), and b) Non-Return-to-Zero (NRZ) [10, 16].  
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Figure 1.8. a) RZ and b) NRZ format of digital optical signals (according to [10, 
16]). 

 
Now we will briefly describe the basic elements of the optical 

communication channel, including the transmitter, as a source of light and 
the receiver, as the detector of light. On this topic, the basic electronic 
elements usually used in electro-optics and photonics, in optical sources and 
detector fabrication, will be mentioned in Chapters 5–7.  

1.7. Wired (Fiber Optic) Fundamentals 

Propagation of light in wired links is fully characterized by 
propagation in guiding structures, as in 2-D slab or 3-D fiber optical cable. 
In this case, the electromagnetic approach, based on the wave nature of light, 
illuminates all the peculiarities of wave mode propagation within such kinds 
of guiding structures, the interaction of these modes, losses, time spreading 
processes, and so on. All these aspects will be discussed in Chapter 10.  
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CHAPTER 2 

ELECTROMAGNETIC NATURE OF LIGHT 
 

 
 

2.1. Optical Wave Electromagnetic Fundamentals 
 

The theoretical analysis of optical wave propagation, as a part of 
the whole electromagnetic spectrum [1–6] (see Paragraph 1.1, Chapter 1), 
is based on Maxwell’s equations [10–16]. In vector notation and in the SI-
units system, the optical wave electromagnetic features can be presented in 
the uniform macroscopic form [1–6]: 

 × ( , ) = ( , ),                                                (2.1a) 

              × ( , ) = ( , ) + ( , ),                                    (2.1b) ( , ) = 0,                                                                 (2.1c) ( , ) = ( , )                                                         (2.1d) 
 

Here, ( , ) is the electric field strength vector, in volts per meter 
(V/m); ( , ) is the magnetic field strength vector, in amperes per meter 
(A/m); ( , ) is the electric flux induced in the medium by the electric 
field, in coulombs/m3 (this is why, in the literature, sometimes it is called 
an “induction” of an electric field); ( , ) is the magnetic flux induced by 
the magnetic field, in webers/m2 (it is also called an “induction” of a 
magnetic field); ( , ) is the vector of electric current density, in 
amperes/m2; ( , ) is the charge density in coulombs/m2. The curl operator × is a measure of field rotation, and the divergence operator  is a 
measure of the total flux radiated from the desired point. 

It should be noted that for a time-varying EM-wave field, 
equations (2.1c) and (2.1d) can be derived from (2.1a) and (2.1b), 
respectively. In fact, taking the divergence of (2.1a) (by use of the 
divergence operator ) one can immediately obtain (2.1c). Similarly, 
taking the divergence of (2.1b) and using the well-known continuity 
equation [1–3, 10–13] 



Chapter 2 
 

12

                           ( ,t) + ( ,t) = 0                                         (2.2) 
 
one can arrive at (2.1d). Hence, only two equations (2.1a) and (2.1b) are 
independent. 
 Equation (2.1a) is the well-known Faraday law and indicates that 
a time-varying magnetic flux generates an electric field with rotation; (2.1b) 
without the term  (displacement current term [10–13]) limits to the well-
known Ampere law and indicates that a current or a time-varying electric 
flux (displacement current [10–13]) generates a magnetic field with 
rotation. 

Because one now has only two independent equations (2.1a) and 
(2.1b), which describe the four unknown vectors , , , , three more 
equations relating to these vectors are needed. To do this, we introduce 
relations between  and ,  and ,  and , which are known in 
electrodynamics. In fact, for isotropic media, which are usually considered 
in problems of land-atmospheric optical propagation, the electric and 
magnetic fluxes are related to the electric and magnetic fields, and the 
electric current is related to the electric field, via the constitutive relations 
[10–13]: 

 
                          = (  )                                                   (2.3) 

 
                                       = (  )                                                    (2.4) 

 
                                       = (  )                                                     (2.5) 

 
It is important to emphasize that relations (2.3) to (2.5) are valid only for 
propagation processes in regular isotropic media, which are characterized 
by the three scalar functions of any point r  in the medium: 

 permittivity (  ), 
 permeability (  ), and 
 conductivity (  ). 

In relations (2.3) to (2.5), it was assumed that the medium is 
inhomogeneous. In a homogeneous medium, the functions (  ), (  ), and (  ) transform to simple scalar values ,  and . 

In free space, these functions simply are constants, i.e., =  = 

8.854 10-12 = 10  Farad/meter (F/m), while = = 4 10-7 

Henry/meter (H/m). The constant =  is the velocity of light, which 
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has been measured very accurately and is 3 108 m/s. 
The system (2.1) can be further simplified if we assume that the 

fields are time harmonic. If the field time dependence is not harmonic then, 
using the fact that equations (2.1) are linear, we may treat these fields as 
sums of harmonic components and consider each component separately. In 
this case, the time harmonic field is a complex vector and can be expressed 
via its real part as [10–13, 16] 

 
                                                ( , ) = ( ) ,                              (2.6) 
 
where i = 1,  is the angular frequency in radians per second, = 2 f, f 
is the radiated frequency (in Hz = s-1), and ( , ) is the complex vector 
( , , , , or ). The time dependence ~e-i t is commonly used in the 
literature regarding electrodynamics and wave propagation. If ~ei t is used, 
then one must substitute -i for i and i for -i, in all equivalent formulations of 
Maxwell’s equations. In (2.6) e i t presents the harmonic time dependence 
of any complex vector ( , ), which satisfies the relationship: 
 
                                        ( , ) = ( )                            (2.7) 
 
Using this transformation, one can easily obtain from the system (2.1): 
 
                                               × ( ) = ( )                                        (2.8a) 
 
                                               × ( ) = ( ) + ( )                    (2.8b) 
 
                                               ( ) = 0                                                     (2.8c) 
 
                                               ( ) = ( )                                                (2.8d) 
 
It can be observed that system (2.8) was obtained from system (2.1) by 
replacing  with -i . Alternatively, the same transformation can be 
obtained by the use of the Fourier transform of system (2.1) with respect to 
time [1, 2, 10–16]. In (2.8a-d) all vectors and functions are actually the 
Fourier transforms with respect to the time domain, and the fields , , , and  are functions of frequency as well, we call them phasors of 
time domain vector solutions. They are also known as the frequency domain 
solutions of the EM field according to system (2.8). Conversely, the 
solutions of system (2.1) are the time domain solutions of the EM field. It is 
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more convenient to work with system (2.8) instead of system (2.1) because 
of the absence of the time dependence and time derivatives in it. 

2.2. Propagation of Optical Waves in Free Space 

The mathematical tool presented above shows that light can be fully 
described mathematically by Maxwell’s unified theory [1–3, 10–16], 
according to which optical waves have the same nature as electromagnetic 
waves, being their own part in frequency (or wavelength) domain (see Fig. 
1.1, Chapter 1). So, we may start with a physical explanation of 
electromagnetic waves based on Maxwell’s unified theory [1, 2, 10–13], 
which postulates that an electromagnetic field could be represented as a 
wave. The coupled wave components, electric and magnetic fields, are 
depicted in Fig. 2.1, from which it follows that the electromagnetic (EM) 
wave travels in a direction perpendicular to both EM field components. In 
Fig. 2.1 this direction is denoted as the z-axis in the Cartesian coordinate 
system by the wave vector k. In their orthogonal space-planes, the magnetic 
and electric oscillatory components repeat their waveform after a distance 
of one wavelength along the y-axis and x-axis, respectively (see Fig. 2.1). 

 

 
Fig. 2.1. Optical wave as an electromagnetic wave with its electrical and magnetic 

components, wavefront, and direction of propagation presentation. 
 

Both components of the EM wave are in phase in the time domain 
but not in the space domain [1, 2, 10–13]. Moreover, the magnetic 
component value of the EM field is closely related to the electric component 
value, from which one can obtain the radiated power of the EM wave 
propagating along the z-axis (see Fig. 2.1). 
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 At the same time, using Huygen’s principle, well-known in 
electrodynamics [10–13], one can show that the optical wave is the 
electromagnetic wave propagating only straightforward from the source, as 
rays with the minimum loss of energy and with minimum time for 
propagation (according to Fermat’s Principle postulated in classical optics 
[2, 7, 15]) in free space, as an unbounded homogeneous medium without 
sources, obstacles and discontinuities. 

 Thus, if we present Huygen’s concept, as it is shown in Fig. 2.2, the 
ray from each point propagates in all forward directions and forms many 
elementary spherical wavefronts, which Huygens called wavelets. 

 

 
 

Figure 2.2. Huygens principle for proof of straight propagation of waves as rays. 
 

The envelope of these wavelets forms the new wavefront. In other 
words, each point on the wavefront acts as a source of secondary elementary 
spherical waves, described by Green’s function (see Refs. [10–13]). These 
elementary waves combined together produce a new wavefront in the 
direction of wave propagation in a straight manner (see Fig. 2.2). As we will 
show below, each wavefront can be represented by the plane, which is 
normal to the wave vector k (e.g., wave energy transfer). Moreover, 
propagating forward along straight lines normal to their wavefront, any 
wave propagates as light rays in optics, spending minimum energy for 
passing from the source to detector, that is, the maximum energy of the ray 
is observed in a straight direction normal to the wavefront (as is seen from 
Fig. 2.2). The first person who mathematically showed this principle was 
Kirchhoff, based on a general Maxwell's unified theory. 

 Let us now assess all propagation phenomena theoretically using 
Maxwell's unified theory. Mathematically, optical wave propagation 
phenomena can be described by the use of both the scalar and vector wave 
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equation presentations. Because most problems of optical wave propagation 
in wireless and wired communication links are considered in unbounded, 
homogeneous, source-free isotropic media, we can present the 
environmental and material functions simply, as numbers, ( ) ,( ) , ( ) , and finally obtain from general wave equations: 

 × × ( ) ( ) = 0  
                  × × ( ) ( ) = 0                       (2.9) 
 
Because both equations are symmetric, one can use one of them, namely 
that for , and by introducing the vector relation × × = ( )

 and taking into account that = 0, finally obtain 
 
                                            ( ) + ( ) = 0                                   (2.10) 
 
where = . 

In special cases of a homogeneous, source-free, isotropic medium, 
the three dimensional wave equation reduces to a set of scalar wave 
equations. This is because in Cartesian coordinates, ( ) = ++ , where , ,  are unit vectors in the directions of the x, y, 
z coordinates, respectively. Hence, the equation (2.10) consists of three 
scalar equations such as 
 
                                                ( ) + ( ) = 0                              (2.11) 
 
where ( ) can be either , , or . This equation fully describes the 
propagation of optical waves in free space. 

2.3 Propagation of Optical Waves Through the Boundary 
of Two Media 

2.3.1 Boundary conditions 

The simplest case of wave propagation over the intersection 
between two media is that where the intersection surface can be assumed to 
be flat and perfectly conductive. 

If so, for a perfectly conductive flat surface the total electric field 
vector is equal to zero, i.e., = 0 [1–3, 10–13, 16]. In this case, the 
tangential component of the electric field vanishes at the perfectly 
conductive flat surface, that is, 
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                               = 0                                                   (2.12) 
 
Consequently, as follows from Maxwell’s equation × ( ) = ( ), 
(see above for the case of = 1 and ), at such a flat, perfectly 
conductive surface, the normal component of the magnetic field also 
vanishes, i.e., 
 
                                                    = 0                                                  (2.13) 
 
As also follows from system (2.1) of Maxwell’s equations, the tangential 
component of the magnetic field does not vanish because of its 
compensation by the surface electric current. At the same time, the normal 
component of the electric field is also compensated by pulsing electrical 
charge at the intersection surface. Hence by introducing the Cartesian 
coordinate system, one can present the boundary conditions at the flat 
perfectly conductive intersection surface as follows: 
 
              ( , , = 0) = ( , , = 0) = ( , , = 0) = 0      (2.14) 

2.3.2 Main formulations of reflection and refraction coefficients 

As was shown above, the influence of a flat material surface on 
optical wave propagation leads to phenomena such as reflection. Because 
all kinds of waves can be represented by means of the concept of the plane 
waves [1–3, 10–13], let us obtain the main reflection and refraction 
formulas for a plane wave that incidents on a plane surface between two 
media, as shown in Fig. 2.3. The media have different dielectric properties, 
which are described above and below the boundary plane z = 0 by the 
permittivity and permeability ,  and , , respectively, for each 
medium. 

Without reducing the general problem, let us consider an optical 
wave with wave vector  and frequency = 2  incident from a medium 
described by parameter . The reflected and refracted waves are described 
by wave vectors  and , respectively. Vector  is a unit normal vector 
directed from a medium with the refractive index  into a medium with 
refractive index  , where =  and = . Here, we should notice 
that in optics, usually the designers of optical systems deal with non-
magnetized materials, putting the normalized dimensionless permeability of 
the two media to equal the unit, that is, = / = 1 and = / =1, as well as using the normalized dimensionless permittivity for each 
medium, = / , and = / , accounting for the above presented 
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relations: =  and = . We notice that these parameters for free 
space were defined and introduced above. 

 
 

 
 

Fig. 2.3. Reflection and refraction of optical wave at the boundary of two media. 
 

According to the relations between electrical and magnetic 
components, which follow from Maxwell’s equations (see system (2.1)), 
one can easily obtain the expressions for the coefficients of reflection and 
refraction (see, for example, [1–3]). A physical meaning of the reflection 
coefficient is the follows: 

It defines the ratio of the reflected electric field component of the 
optical wave to its incident electric field component. 

The same physical meaning is of the refractive coefficient: 
It defines the ratio of the refractive electric field component to the 

incident electric field component of the optical wave. 
Before presenting these formulas, let us show two important laws 

usually used in classical optics. As follows from Maxwell’s laws, from the 
boundary conditions and geometry presented in Fig. 2.3, the values of the 
wave vectors are related by the following expressions [16]: 

 

                              0 1 1 2 2 2| | | | , | |k n k n
c c

k k k                   (2.15) 

From the boundary conditions described earlier by (2.12) to (2.14), one can 
easily obtain the condition of the equality of phase for each wave at the 
plane z = 0: 
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                             ( ) = ( ) = ( ) ,                  (2.16) 
 
which is independent of the nature of the boundary condition. Equation 
(2.16) describes the condition that all three wave vectors must lie in the 
same plane. From this equation it also follows that 
 
                             = =                                   (2.17) 
 
which is the analog of the second Snell’s law: 
 
                                    =                                                   (2.18) 
 
Moreover, because | | = | |, we find = , i.e., the angle of incidence 
equals the angle of reflection. This is the first Snell’s law. 

In the literature which describes wave propagation aspects, the 
optical waves are called waves with vertical and horizontal polarization, 
depending on the orientation of the electric field component regarding the 
plane of propagation, perpendicular or parallel, respectively. 
 Without entrance into straight retinue computations, following 
classical electrodynamics, we will obtain the expressions for the complex 
coefficients of reflection ( ) and refraction (T) for waves with vertical 
(denoted by index V) and horizontal (denoted by index H) polarization, 
respectively. For this purpose, we now introduce the relative dielectric 
parameter r = 2/ 1, that is, present it via dimensionless dielectric 
parameters of two media, = / , and = /  introduced above. 
Moreover, we will also account for the above introduced relations between 
the dimensionless dielectric permittivity and the refractive index for each 
medium: =  and = , and will use the 2nd Snell's law, =

. Finally, we will get: 
For vertical polarization: 

 
                                           = | | =             (2.19a) 

                                           = | | © =              (2.19b)      
     
               For horizontal polarization: 
 = | | =                          (2.20a) 
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                        = | | © =                                (2.20b) 
 
In the case of vertical polarization there is a special angle of incidence, 
called the Brewster angle, for which there is no reflected wave, only a 
refractive wave. For simplicity, we will assume that the condition =  
is valid. Then from (2.18) and (2.19a), it follows that the reflected wave 
limits to zero when the angle of incidence is equal to Brewster’s angle 
 
                                               =                                 (2.21) 
 
We should notice that the Brewster angle is only valid for the wave with the 
vertical polarization, which describes a situation with the absence of the 
reflected wave and the existence of the refractive wave only (the so-called 
effect of total refraction). For the case of = = 1, the reflected wave  
limits to zero when the incident wave is under the Brewster angle and can 
be described by formula (2.21). 

Another interesting phenomenon that follows from the presented 
formulas is called total ray reflection. It takes place when the condition >>  is valid. In this case, from Snell’s law (2.21) it follows that, if >> , then >> . Consequently, when >>  the reflection 
angle = , where 

                                                      =                                        (2.22) 
 
For waves incident at the surface under the critical angle  there is no 
refracted wave within the second medium; the refracted wave is propagated 
along the boundary between the first and second media and there is no 
energy flow across the boundary of these two media. 

Therefore, this phenomenon is called in the literature total internal 
reflection (TIR), and the smallest incident angle  for which we get TIR, is 
called the critical angle  defined by expression (2.22). The refraction 
of the wave in the second media is fully absent. 

2.4. Total Intrinsic Reflection in Optics 

We can rewrite Snell’s law, presented above for = , as [1–6] 
(see also the geometry of the problem shown in Fig. 2.3): 
                                                          =                        (2.23) 
 
or  
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                                                     =                   (2.24) 
 
If the second medium is less optically dense than the first medium and the 
incident ray has amplitude | |, that is, > , from (2.24) it follows that 
 
      
                                                                >                                   (2.25 ) 
 
or 
  
                                                              > 1.                                (2.25b) 
 
The value of the incident angle  for which (2.25) becomes true is known 
as a critical angle, which was introduced above. We now define its meaning 
by use of the ray concept [1–3]. If a critical angle is determined by (2.22), 
which we will rewrite in another way: 
 
                                                              =                                        (2.26) 
 
then for all values of incident angles >  the light is totally reflected at 
the boundary of the two media. This phenomenon is called in ray theory the 
total internal reflection (TIR) of rays, the effect which is very important in 
light propagation in fiber optics. 

We can also introduce another main parameter usually used in 
optic communications. The effective index of refraction is defined as: 

. When the incident ray angle = 90 , , and 
when = , . 

The guiding effect, which occurs in fiber optic structures (see 
Chapter 8), is based on the TIR phenomenon: 

All energy transport occurs along the boundary of two media after TIR, 
without any penetration of light energy inside the intersection. 

Moreover, we should notice that the totally internal reflected (TIR) wave 
undergoes a phase change, which depends on both the angle of incidence 
and the field polarization [15, 16]. 

Let us now explain the total internal reflection from another point 
of view based on discussions introduced in [16]. When the total internal 
reflection occurs, we should assume that there would be no electric field in 
the second medium. This is not the case, however. The boundary conditions 
presented above require that the electric field be continuous at the boundary, 
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that is, at the boundary the field in region 1 and region 2 must be equal. The 
exact solution shows that due to total internal reflection we have in region 
1 standing waves caused by the interference of incident and fully reflected 
waves, whereas in region 2 a finite electric field decays exponentially away 
from the boundary and carries no power into the second medium. This wave 
is called an evanescent field (see Fig. 2.4). As shown on the left side of Fig. 
2.4, the standing wave occurs as a result of interaction between two optical 
waves, the incident wave and the wave reflected from the interface of two 
media. We should notice that this picture is correct in situations when the 
refractive index of the first transparent medium is larger than that of the 
second transparent medium, that is, > , and when total reflection from 
the intersection occurs, that is, for an incident angle exceeding the critical 
one, , defined by Eq. (2.26). 

 

 
 

Fig. 2.4. Electric component of the optical wave at the boundary of two media 
forming standing wave due to reflection, and wave decay ~  due to refraction. 

 
This field attenuates away from the boundary as 
 

                                                                                               (2.27) 
 
where the attenuation factor equals 
 
                                              =                                 (2.28) 
 
It can be seen from (2.28), at the critical angle =  0, attenuation 
increases as the incident angle increases beyond the critical angle defined 
by (2.26). Because  is so small near the critical angle, the evanescent fields 
penetrate deeply beyond the boundary but do so less and less as the angle 
increases. 
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However, the behavior of the main formulas (2.19) and (2.20) 
depends on boundary conditions. Thus, if the fields are continuous across 
the boundary, as required by Maxwell’s equations, there must be a field 
disturbance of some kind in the second media (see Fig. 2.4). To investigate 
this disturbance, we can use Fresnel’s formulas. We first of all rewrite, 
following [15, 16], as = (1 ) / . For >  we can 
present  by the use of an additional function = , which 
can be more than one unit. If so, = ( 1) / = ± . 
Hence, we can write the field component in the second medium to vary as 
(for nonmagnetic materials = = ) 

  
                                                       (2.29a) 
or  
                                 .   (2.29b) 
 
The last formula represents a ray traveling in the z-direction in the second 
medium (that is, parallel to the boundary) with the amplitude decreasing 
exponentially in the z-direction (at right angles to the boundary). The rate 
of the amplitude decrease versus z can be written 
 
                                                                                               
 
where  is the wavelength of the light in the second medium. The wave 
with the exponential decay is usually called an evanescent wave in the 
literature [15, 16]. As seen from Fig. 2.4, rearranged from [16], the wave 
attenuates significantly (~ ) over critical distances  of about . 
Another expression of the evanescent wave decay region, , can be 
obtained, following [15, 16], by introducing the incident angle of light at 
the boundary of two media  and both refractive indexes of the media,  
and : 
 
                                             = /                           (2.30) 

This critical depth of field exponential attenuation is similar to the 
characteristics of electromagnetic wave penetration into the material usually 
used in electrodynamics and electromagnetism and called the skin layer 
[11–13]. 
 Even though the wave is propagating in the second medium, it 
transports no light energy in a direction normal to the boundary. All the light 
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is totally internally reflected (TIR) at the boundary. 

2.5.  Propagation of Optical Waves in Materials 

As was shown above, each electrical field component (let us say the x-
component) of the optical wave can be presented as a plane wave in any 
media in the following manner 

 
                                                     = +                               (2.31) 
 
where A and B are constants that can be obtained from the corresponding 
boundary conditions; the propagation parameter is complex and can be 
written as 
 
                                                           = +                                            (2.32) 
 
Here,  describes the attenuation of the optical wave amplitude, that is, the 
wave energy losses, and  describes the phase velocity of the plane wave in 
the material media. 

Now we can present the magnetic field phasor component in the 
same manner, as the electric field by use of [11–16]: 

 
                                                = ( )                          (2.33) 
 
where  is the intrinsic impedance of the medium, which is also complex. 
Solutions (2.31) and (2.33) can be concretized by the use of the 
corresponding boundary conditions. But this is not a goal of our future 
analysis. We will show the reader how the properties of the material 
medium change propagation conditions within it. For this purpose, we 
analyze the propagation parameters  [or  and ] and  associated with 
plane waves (2.31) and (2.33). After straightforward computations of the 
corresponding equations, following [11–13, 16], we can find for = 1 that 
 

                                                   = 1 + 1 /
         (2.34a) 

 

                                                  = 1 + + 1 /
           (2.34b) 
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The phase velocity is described by the propagation parameter  along the 
direction of propagation, which is defined by (2.34b): 
 

                                                = = 1 + + 1 /
    (2.35) 

 
The dispersion properties follow from dependence on the frequency of the 
wave phase velocity = ( ). Thus, waves with different frequencies = 2  travel with different phase velocities. In the same manner, the 
wavelength in the medium is dependent on the frequency of the optical 
wave: 
 

                                          = = 1 + + 1 /
         (2.36) 

 
We notice that the field variations with distances are not purely sinusoidal, 
as in free space. In other words, the wavelength is not exactly equal to the 
distance between two consecutive positive (or negative) extremes. It is 
equal to the distance between two alternative zero crossings. 

We can now present formulas (2.33) and (2.34) using the general 
presentation of  in the complex form, that is, = ". If so, 

 
                            = ( + ) = ( + ")                 (2.37) 
 
where now 
 

                                         = 1 + " 1 /
               (2.38a) 

 
and 
 

                                      = 1 + " + 1 /
              (2.38b) 

 
From general formulas (2.37) to (2.38), there follow some special cases for 
different kinds of material media. 

 Imperfect Dielectric Medium. This medium is characterized by 0,but / << 1. Using the following expansion 
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                                 (1 + ) = 1 + + ( )! +. ..               (2.39) 
 
we can easily obtain from (2.37) and (2.38) that 
 

                           "                                  (2.40a) 

 
                                                       1 + "                          (2.40b) 
 
Now, as has been done from the beginning, we will introduce the complex 
refractive index = " in the above expressions instead of 
permittivity, , where now = /  and " = "/  [5, 6]. Then, we 
will get in the case of a low-loss dielectric (or "imperfect" dielectric) that 
 
                                                            ",                                          (2.41a) 
 
                                                  1 + " ,                            (2.41b) 
 
and 
 
                                                      " "                                          (2.42) 

 
Good Conducting Medium. Good conductors are characterized by  / >> 1, the opposite of imperfect dielectrics. In this case, the so-called 

conductivity current component exceeds the polarized (dielectric) current 
component, that is, | |~ >> | |~ . Finally, from (2.45a) and 
(2.45b), we get: 

 

                                                        "                                  (2.43a) 

 
and 
 

                                                                 "                         (2.43b) 
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Exercises 

Exercise 1. 
 
The plane optical wave falls under the angle  at the boundary of two media 
with the following parameters: = = 3 and = = . The 
electric field of the incident wave equals ( / ). 

Find: 1) Angle of refraction . 2) Amplitude  of the second 
wave having entered the second medium. 
 

Solution 
 

1) From the beginning we find the relation between the permittivity of these 
two media 

 = = . 
 
Then, the angle of refraction can be defined as the following: 
 =  or =  

  
2) Taking into account the boundary conditions described earlier, we get 

 
- for the normal components of the incident and the refracted (entered into 
the second medium) we get: 
 =  or =  
 
- for the tangential components of the incident and the refracted (entered 
into the second medium) we get: 
 =  or =  

 
3) From the first equation we have: 
 =  

  
4) From the second equation we have: 
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=  

 
And replacing  on , we finally get: 
 =  

 
 5) Then, the angle of refraction can be defined as follows: 
 =  or =  
 
 6) Finally, the refractive field amplitude will be defined from the 
expression written in item 3, that is, 
 = , /  

 
Exercise 2. 

 
A plane optical wave falls under the angle of = 60  at the boundary of 
two media with the parameters = 1, = 3 and = = 1. The 
amplitude of the electric field of the wave equals | | = 3 ( / ). 

Find: 1) The coefficients of reflection and refraction for both types 
of wave polarization. 2) The corresponding amplitudes of the reflection and 
the refraction wave. 3) Check the obtained results are correct via the 
corresponding laws. 
 

Solution 
 

1). First of all we will find the relative permittivity 
 = = = 3. 
 
Then for the incident angle of 60 , we will get respectively: 
 | | = + = 0 
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| | = + = 12 

 | | = 2 + = 1 

 | | = 2+ = 12 

 
2) The corresponding components of the reflected and the refracted waves 
for both types of polarization equal: 
 | | = | || | = 0 3 = 0 ( / ) 

 | | = | || | = 12 3 = 32 ( / ) 

 | | = | || | = 1 3 = 3 ( / ) 
 | | = | || | = 12 3 = 32 ( / ) 

 
3) We check these coefficients and find coincidence with the 
corresponding laws: 
 | |+| |=1, | |+| |=1. 

 
Now we check the components of the incident, the reflected, and the 
refracted waves for both types of polarization that gives: 
  | | + | | = 0 + 3 = 3 | | 

 | | + | | = 32 + 32 = 3 | | 
 

Thus, all above computations are fully correct. 
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Exercise 3. 
 
A plane optical wave falls under the angle of at the boundary of two 
media with the parameters = 4, = 1,  = = 1, from the first 
to the second medium. The vector of the incident wave of the vertical 
polarization equals = 5 + ( / ). 

Find: 1) The Brewster angle. 2) The wave field in the second 
medium in conditions where the incident angle equals the Brewster angle. 
3) The critical angle of absence of refraction. 

 
Solution 

 
1) We find the Brewster angle as: 

 = / = 14 / = 26.56  

 
2) For incident angle equal to the Brewster angle we find from Snell's 

law that: 
 = = ( 2 6.56 2) = 63. 4  

 
3) Then the refractive coefficient for the wave in the second medium with 
vertical polarization equals: 
 | | = 2 + = 2 

 
4) Finally, the wave passed from the medium 1 to medium 2 equals: 

 
E2 = = 5 2 + = 10 0.448 +0.894 ( / ). 

 
 5) The critical angle equals: 

 = / = 14 / = 30  
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Exercise 4. 
 
Find the expression of skin depth for copper and intrinsic impedance. 
 

Solution 
 

1) The skin depth for copper is equal to 
 = 14 10 1 5.8 10 = 0.066 ( ) 

 
2) The amplitude of intrinsic impedance is equal to 
 | | = 2 4 105.8 10 = 3.69 10 ,  

 
 

Exercise 5. 
 
In seawater with = 4 / , = 81 , the frequency of an e/m wave is 
100 MHz. 

Find: 1) The parameter and the attenuation (in dB/m) considering 
that transmission of the wave is proportional to = ( ). 2) What it 
will be if it propagates an optical wave with frequency of 10 THz. 
 

Solution 
 

1a) Since / = 4/(2 10 81 10 /36 ) = 9 > 1, we can 
consider 
 seawater a good conductor. Then, using (2.43a), we get 
 

2 = 4 2 10 4 102 = 39.7  

 
1b) Then, attenuation 
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= 1 10 = 1 10 = 4.34 = 4.34 39.7= 172.5  
 
2) Now, for f=10 THz, we have for seawater that " 0.328, and 

 " = 2 10 0.3283 10 / = 6.87 10  

 
and 
 = 4.34 2.98 10 . 

 
 

Exercise 6. 
 
The absorption coefficient of glass at = 10  is = 1.8 . 

Find: the imaginary part of refractive index n". 
 

Solution 
 

According to expression (2.43a): 
 " = 1.8 = 2 " 

 
from which we get " 2 = 10 1.8 102 = 2.9 10  
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CHAPTER 3  

CORPUSCULAR NATURE OF LIGHT 
 
 
 

3.1. Elements of Quantum Theory 
 
Classical presentation of optical waves, as a part of electromagnetic 

waves with a narrow spectral band from 200 nm to 750 nm, along the whole 
electromagnetic spectrum, discussed in Chapters 1 and 2, during its 
performance from the middle of the nineteenth century to the beginning of 
the twentieth century, met in its practical applications several paradoxes that 
could not explain some experimentally observed phenomena, such as: 

1. Spectral distribution of radiation excited by a heated body – 
radiation of the absolute black body. 

2. Behavior of an optical wave as a flow of some “virtual” particles – 
pressure of light.  

3. Photoelectric effect. 
4. Construction of a stable atom. 
5. Radiation and absorption of an atom – linear spectrum. 
6. Equivalence and similarity of all atoms of the same elements. 

First of all, we will consider the paradox of Maxwell’s wave theory 
(see Chapter 2) application to black body radiation. Let us consider the 
heated body, as an absolute black body, which fully absorbs all wavelengths 
of the incident radiation. According to experiments carried out by Rayleigh, 
the density of the body radiation should increase in proportion to the square 
of frequency  (e.g., decrease of its intensity with wavelength  = c/ ), i.e., 
~ 2. This law is plotted in Fig. 3.1, shown by the yellow curve for a 
temperature of T = 5,250 K, where 0 K = -273 C. 
As can be seen from Fig. 3.1, the density of radiation energy of the black 
body increases with an increase of radiation intensity and should be fully 
concentrated at the shortwave part of the spectrum, that is, increases with a 
decrease of wavelength  from, say, 780 nm to 380 nm or an increase of 
frequency from 3.96 THz to 7.89 THz. 
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Figure 3.1. The intensity of hot body radiation vs. the wavelength in nm: according 
to classical electromagnetic theory (yellow curve) and to quantum theory (white 

curve). 
 

To explain the intensity distribution actually obtained as shown by 
the white curve in Fig. 3.1, in the year 1900 Max Planck postulated that light 
energy can be transferred, not continuously, but in portions, called “quanta” 
or “photons”. According to Planck, the energy excited by a black body 
depends only on the frequency (wavelength) of the excited radiation, but not 
on its intensity, and relates to it by the following mathematical formula: 

 
                                     E=h                                                                 (3.1) 

 
where 346.625 10h J s  is the Planck constant. 

 
According to Planck, the heat intensity distribution, shown in Fig. 

3.1 by the white curve, for some maximum wavelengths (in our case it is 
580 nm for T = 5,250 K), the intensity decreases according to an 
experimentally obtained heat intensity distribution but does not increase to 
infinity, as shown in Fig. 3.1 by the yellow curve. This phenomenon was 
postulated by Einstein in 1905, according to which high energy and low 
energy photons exist as quanta of light, the energy of which does not depend 
on the intensity of the light radiation, but on its frequency. So, the energy of 
each photon corresponds to its own frequency or the wavelength of the light 
(red, yellow, green, violet, and so on). And this is described by Planck’s 
formula (3.1). But what is impossible – photons, as quanta of light, cannot 
be divided into two or more parts. These light particles are real and below 
we will present their mass with respect to the mass of an electron.  
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Moreover, Einstein formulated two principal laws: 
- for energy of photon via its mass: E=mc2, c = 3 108 

(m/s); 
- for impulse of photon: P=mc or P=E/c. 

But as was shown in Chapters 1 and 2, light is an electromagnetic wave of 
specific spectral bands. So, photons also have wave properties. This 
dualism, called by Einstein the wave-corpuscular dualism, was proven 
experimentally. We will show its proof using a very simple experiment, 
shown in Fig. 3.2. As seen from the top panel, when one particle of light 
passes through the specially prepared slit, we obtain its position on the 
screen. But, when several light photons pass through the slit, they are 
concentrated sporadically on the screen (second panel from the top). When 
many photons pass through the slit, they are mostly concentrated at certain 
points on the screen, which correspond to the maximum of the interference 
picture, and less concentrated – at the minimum of the interference picture 
(third panel from the top). So, photons were distributed on the screen in the 
same manner, as the light as an electromagnetic wave was sent via the slit, 
as shown in the bottom panel. 

 

 
 

Figure 3.2. Experiment with quanta of light. 
 

de Broglie introduced the relation between the impulse of the 
photon and the wavelength corresponding to it based on Einstein’s law. 
Thus, if we account for (3.1) and take the relation  = c/ , we will get:  = 
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ch/E = ch/mc2 = h/mc, which yields: 
 
                                    = h/mc = h/P                                                     (3.2) 

 
Similar statements are correct for any corpuscular particle. So, the physical 
interpretation of wave-corpuscular dualism is the following: 
 

The intensity of the wave corresponding to the desired particle at any 
given point is proportional to the probability of finding this particle at this 

point. 
 
The de Broglie statement was also proven by Clinton Joseph 

Davisson and Lester Germer in 1927. They observed the diffraction of 
electrons as proof of the wave nature of electrons. They sent a beam of fast 
electrons onto a crystal and obtained a picture similar to that obtained in 
earlier tests on diffraction of roentgen beams by a monocrystal structure (see 
Fig. 3.3, top panel). The wavelength of the electron was defined by the use 
of the distance between the points of the diffraction picture and between the 
atoms in the crystal. The obtained results totally satisfied the de Broglie 
formula (3.2). The wavelength of the electron increased with a decrease of 
electron velocity v (but in the non-relativistic case, when the velocity v is 
less than the light speed (v<c)).  
Later, Otto Stern performed similar experiments with beams of neutrons and 
protons, sent to atoms of Na crystal. Figure 3.3 (bottom panel) presents the 
diffraction of neutrons by the Na crystal. 
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Figure 3.3. Picture of diffraction of roentgen beams by monocrystal (top panel) and 
neutrons by the Na crystal. 

 
Using this wave-corpuscular dualism, physics met with an 

experimentally found difficulty, how exactly the impulse of the desired 
particle and its exact localization in space can be measured. This difficulty 
was solved by the use of Heisenberg’s Principle. In 1925 Heisenberg 
postulated that for the same time, it is impossible to predict strict coordinates 
and velocity of any moving particle, such as light photons or electrons. In 
other words, if we know the exact position x of the particle, its wave function 
will be in the form of a wave packet with many  (or p = mv – with many 
velocities v). Conversely, if the impulse p (or velocity v) of the particle is 
known exactly, it corresponds to an infinite plane wave with a constant 
intensity over space. Then this particle cannot be found at any point in space. 
So, Heisenberg showed that unknowns of impulse p and a value of the 
region where a particle is localized x, must be related by the equation: 

 
                                                    x  p = h                                                         (3.3) 
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3.2. Structure of the Atom 

3.2.1 Wave – Corpuscular Dualism 

The quantum theory obtained its final explanation after its usage for 
the definition of the nature and structure of the atom. In 1903 it was found 
experimentally that fast electrons pass through atoms. More precisely, this 
effect was found and explained by Ernest Rutherford in 1911 in experiments 
on alpha-particle scattering on the positively charged nucleus. He proved 
the corpuscular model of the atom in contradiction to the wave model of the 
atom proposed by de Broglie. At the same time, by use of the wave model 
proposed by de Broglie, if we put an electron in the bounded closed 
structure, as in a model of an atom, with the length L, the electron will have 
behavior similar to a wave and its wave function  is presented as a 
sinusoidal wave with maxima and minima at the special points depending 
on the number of waves N (see Fig. 3.4).  

The wavelength of each wave with number n equals n = 2L/n. n=1, 
2,...,N. So, the electron has only a discrete sequence of impulses, Pn = h/ n 
or Pn = n h /2L. The corresponding kinetic energy of the electron with 
number n equals: 

 
                  Ekn = (1/2)m vn

2 = (1/2)Pn
2 /m = h2 n2 /8m L2                    (3.4) 

 
So, the energetic levels in the closed bounded structure (atom) are the 
following: 
 
                              Ekn = (1/2)Pn

2 /m = h2 n2 /8m L2                                            (3.5) 
 
Here n is called the non-zero quantum number, and m is the mass of electron 
m = 9.11 10-31 kg. 
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Figure 3.4. Electron wave functions n , n=1, 2,…, N for electron located inside the 

atom at the length L from the nucleus. 
 

The corresponding lines that are called the quantic transfers or spectral 
series, as shown in Fig. 3.5, are the following: 
 

 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
 

 
 

Figure 3.5. Spectral lines of an electron inside the hydrogen atom (H) vs. the 
values of discrete energy for an electron in the hydrogen atom. 
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According to the law of energy conservation: 
  

                  h  = En’ - En = [2 2 m e4/h2] [(1/n’2– 1/ n2],      n’ > n                  (3.6) 
 
or   
 
                                 h  = 13.6 [(1/n’2– 1/ n2]  (eV),                                           (3.7) 

 
where 13.6(eV) = 2 2 m e4/h2. If the hydrogen atom is in the stable state 
regime (n = 1), it obtains energy of -13.6 eV (see Fig. 3.5) which is enough 
to leave the atom. 

The value of 13.6 eV, is, therefore, called the ionized potential of 
hydrogen. We notice that in Fig. 3.5, the energy for each energy level is 
presented from n = 1 to n = 3. 
The minimal energy statement of the electron in the atom can be found for 
n = 1, as:  
 
                               Ek1 = (1/2)Pn

2/m = h2/8m L2                                                  (3.8) 
 

This energy is called the zero energy of the electron. Finally, we can state: 
 

In the closed bounded structure, as in the atom, the energy of the electron 
can obtain only discrete values. 

  
Next, we will present in Fig. 3.6 the possible transitions of valence electrons 
for a hydrogen atom from one series of energetic levels to another. 
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Figure 3.6. Possible transitions of valence electrons in a hydrogen atom. 

 
Thus, transition from high energy levels E(n), n > 1, to the 

“ground” level with E(n = 1) is called the Lyman series; transitions from 
E(n), n > 2 to E(n = 2) are called the Balmer series, from E(n), n > 3 to E(n 
= 3) the Paschen series, and, finally, from E(n), n > 4 to E(n = 4) is called 
the Brackett series. 

Finally, we can summarize for any atom the same concept as for 
the simplest hydrogen atom, that is, each valence electron has its own 
discrete energy level, as is shown in Fig. 3.7. 
 

 
Figure 3.7. The left panel presents discrete energy levels of the valence electrons of 
each atom, the right panel presents the probability of occupancy of each electron at 

the corresponding energy level. 
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3.2.2 Bohr’s Corpuscular Model of any Atom 

Niels Bohr, in 1913, introduced the concept of the linear structure 
of atoms based on the photon postulates introduced by Planck and Einstein, 
which can be presented in the simplest form :   

 

                    h  = 13.6 [(1/n’2 – 1/ n2]  (eV)       n, n’ = 1, 2, 3,…, N.               (3.9 ) 
 
From (3.9), Bohr found that the electronic levels of hydrogen 
equal: -13.6[1/n2)] (eV), which is clearly seen from Fig. 3.5.   

At the same time, in his theory, Bohr also postulated that electrons 
move along circular orbits (see Fig. 3.8), as in classical physics, from which 
he obtained the momentum of movement around circular orbits equals 
n/(h/2 ). And, finally, in a hydrogen atom in the field of a positive proton, 
the electron has only discrete values of kinetic energy, described by number 
n > 0, that is: 

 
            En  =  [2 2m e4/ h2]/n2 = h2 n2/ 8m L2,   n = 1, 2,..., N                (3.10 ) 
 
Really, (3.10) describes the energetic levels of electrons in the hydrogen 
atom (simply called the energy levels of hydrogen). The model of atoms 
according to Bohr’s presentation is seen in Fig. 3.8 for four quantum values, 
n=1, 2, 3, 4 and possible transfer from the higher levels (n=2 to n=4) to the 
lowers level (n = 1). 
 

 
 

Figure 3.8. Possible transfer of electrons from levels with n>1 to the level of n=1, 
according to Bohr’s model of the atom . 
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We should state that the linear energy levels of electrons in the 
hydrogen atom in Figs. 3.5 and 3.6 fully coincide with Bohr’s model of the 
atom presented in Fig. 3.8. To find the orbit momentum of movement Pl  of 
each electron in its own orbit, Schrödinger, analyzing his wave equation 
introduced for the atom energy states description, declared the quantum 
number l, a positive number including zero. So, any orbital momentum Pl 
along the vertical z-axis will have values of ml h/2 . Here Pl =2r/ l, where 
r is the radius of the orbit. Vector Pl and the geometry of the problem are 
shown in Fig. 3.9, where cos  =ml/l, because the full momentum will equal 
l h / 2 . 

 

 
Figure 3.9. Geometry of local momentums of electrons in a hydrogen atom . 

 
Relations between the main moment number n (related to the 

radius of the orbit r), orbital number l (related to the longitudinal angle ), 
and ml (related to the azimuthal angle ) in a spherical system of coordinates 
(r, , ) are the following: 
      
                                                           n = 1, 2                                                                    
                                                    l = 0, 1, 2, ….., n-1                              (3.11) 
                                                ml = 0, ±1, ±2, ±3,…, ±l 
 
In 1925 Wolfgang Pauli found that the electronic structure of atoms can be 
explained if be postulated that at each electron orbit there can be only two 
electrons, but with opposite vectors of momentum of each electron 
movement. In other words, according to Pauli’s Principle, at any orbit there 
cannot be more than one electron, but if two electrons exist, their momentum 
of rotation around the orbit (called spin orbital momentum) must be oriented 
opposite to each other. For these two electrons the spin number will be s = 
-1/2 for one, for which the momentum of rotation is left-hand oriented, and 
s = +1/2 for the second, for which the momentum of rotation is right-hand 
oriented.  
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For example, for n = 1, we have two wave functions corresponding 
to two electrons with opposite spin numbers : 

 
               (n = 1, l = 0, ml = 0, s = +1/2) and  (n = 1, l = 0, ml = 0, s = -1/2) 
 
or in the compact form:                 100(1/2)     and     100(-1/2). 

 
The information mentioned above allows us to summarize 

relations between quantum numbers n, l, ml , and the spin values (usually 
denoted in the literature by s/h or ms) in Table 3.1, for the main quantum 
number n=3. 
 

Table 3.1. Distribution of orbits and orbital electrons depending on the meaning  
of shells and states. 
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Here for l = 0 (only one subshell), we have two allowable states 
and, therefore, two electrons at the same orbit with opposite spins; in total, 
2 electrons with opposite spins. For l = 0 and l = 1 (two subshells), we have 
for each shell 2 electrons (for l = 0) and 6 electrons with opposite spins (for 
l = 1); in total – 8 electrons, and so forth.  

To finish discussions on the corpuscular description of atom 
structures according to the quantum theory, we should notice that in the 
theory of semiconductors, which are usually the basic material of optical 
devices used in photonics and optical communication, wired and wireless, 
other notations of different electron states in atoms are used. For the 
definition of different states of the electron in the hydrogen atom the 
traditional (from spectroscopy) notations are usually used for each value of 
l. Thus, for l = 0, the following are used, symbol s, for l = 1 – symbol p, for 
l = 2 – symbol d, for l = 3 – symbol f, and for l = 4 – symbol g.   

An example of relative displacement of energy levels with n=3 (3s, 
3p and 3d levels) and n=4 (4s and 4p levels) in Na atoms is shown in Fig. 
3.10, where the level (n=3, l=0) is written 3s; level (n=3, l=1) is written 3p, 
and the level (n=3, l=n-1=2) is written 3d . This means, according to (3.11), 
that for n=1, l=0, we have 1s status with ml = 0 or giving only one energy 
level (i.e., orbit) and accounting for s = -1/2 and s = +1/2, finally giving, for 
this level, 2 electrons. When n=2, l=0, 1, we have 2s and 2p statuses with ml 
= 0, -1, +1, i.e., 4 levels (orbits), and accounting for s = -1/2 and s = +1/2 
for each level, yields finally 8 electrons. For n=3, l=0, 1, 2, we have 3s, 3p 
and 3d statuses with ml =0 (l=0); ml =0, -1, +1 (l=1); and ml =0, -1, +1, -2, 
+2 (l=2), that is, 9 orbits. Accounting now for spin numbers s = -1/2 and s 
= +1/2, we find that 18 electrons fill these 9 levels (orbits).  

The first generalization of the Bohr Theory was carried out by 
Arnold Sommerfield. He took several postulates from astronomy, the main 
one being that electrons can move along not only circular, but also elliptical 
orbits, as was postulated in astronomy by Kepler. So, to the main quantum 
number n correspond now n ellipses with different numbers of their centers. 
For n = 1 there exists only one orbit which is denoted by symbol 1s and its 
axis is one and the second is related as 1:1; that is, we have a circular orbit 
for 1s. We will now use index s, p, d, f, g, which is more convenient with 
respect to orbit quantum numbers l. All these states (orbits) are presented 
graphically as shown in Fig. 3.10a-c  . 
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Figure 3.10a-c. Model of the atom as proposed by Sommerfield. 
 

A general view of the relations between the symbols and the 
possible orientations of the spatial orbits (e.g., amount of orbital quantum 
numbers ml) is presented in Table 3.2. 
 
Table 3.2. The number of states and electron orbits’ orientation in space around the 

nucleus of the atom . 
__________________________________________________  

Symbols                                                    s           p           d           f             g         
 

Quantum number l                                 0          1           2          3           4 
 

Number of possible orientations 
of the orbit in space                                1          3            5         7           9 
____________________________________________________________ 
 

Namely, a state 3d in the middle panel of Fig. 10 relates to n=3, 
with quantum number l=2, and has 5 different spatial orientations of orbital 
momentum of impulse that are placed normal to the plane of the orbit. 
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The rule of filling of energy levels discussed above can be 
broadened for all systems of chemical elements, which states that, according 
to the prohibiting law of Pauli, electrons first fill the lowest discrete levels 
and then the highest discrete level of any atom from the Mendeleev table of 
chemical elements. We present here only those stable atoms, among all 92 
atoms, which are usually used as a basic material of gaseous, liquid, and 
solid optical devices (see Table 3.3). 

 
Table 3.3. Part of Mendeleev’s elements creating the main types of conductors and 

semiconductors and based on their use in optical devices. 
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The top of Table 3.3 presents the main quantum number n = 1, 2 
…, 4. The corresponding charge number Z indicates for each element their 
relations to the groups of elements – from II, III, …, VI, to which the desired 
element is related. For each group of elements the second wide column 
presents the number of valence electrons for each desired element. Thus, the 
carbon (C) from group II has 6 (2+2+2) electrons redistributed at the 1s (2 
electrons), 2s (2 electrons) and 2p (2 electrons). The oxygen (O) from the 
same group II has 8 valence electrons, (2+2+4) electrons redistributed at the 
1s (2 electrons), 2s (2 electrons) and 2p (4 electrons), and so forth. 

3.2.3 De Brogli’s Wave – Corpuscular Dualism Concept 

Accounting now for a corpuscular-wave description, and using for 
each atom the wave theory postulated by de Brogli, according to which and 
to the corresponding Schrödinger’s equation, to each electron in various 
states corresponds its own wave function , which describes some “replaced 
in space” electron, or the cloud of electrons around the nucleus of the atom. 
At the same time, according to Niels Bohr and then to Sommerfield’s 
concept, this function  simply is the probability of finding any electron at 
its own orbit, corresponding to its discrete energy. 

We will now put a question: How will an atom look if we can create 
a photo of the position of a single electron and many electrons fixed in 
various moments of time. We will present a very simple virtual experiment, 
shown in Fig. 3.11. We put photos – one, two, three, and many together for 
electrons in simple state 1s of hydrogen.   
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Figure 3.11. Presentation of randomly positioned electrons corresponding to 1s-
conditions of hydrogen: a) electron A, b) electron B, c) electron C; d) many 

electrons together . 
 

Firstly, we selected virtually electron A (the red sphere in Fig. 
3.11a), then electron B (red sphere in Fig. 3.11b), and then electron C (red 
sphere in Fig. 3.11c) placed separately at various positions around the 
nucleus. If we now put many such photos of various electrons with their 
randomly distributed positions around the nucleus, we will see a stationary 
picture, which will correspond to the condition 1s of the hydrogen atom, as 
shown by Fig. 3.11d.  

Figure 3.12 illustrates the electron cloud as a symbiosis of many 
close orbits of any multi-electron atom with the charge number Z and mass 
M, the discrete energy levels of which are generalized and presented above 
in Eqs. (3.5) and (3.10).   

 
                          En = M Z2 e2 / [(4 )2 2h  L2 n2],  n=1, 2,…, N              (3.12) 
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Figure 3.12. A view of a multi-electron atom with a cloud of electrons. 
 

In Fig. 3.12, an electron cloud with n = 1 is shown by the dark 
color, and the outer electron with n = 2 by the lighter color. According to 
the statements above, n = 2, l = 0 and n = 2, l = 1 should have the same 
energy.  

 
Let us give some examples : 
 
1. Hydrogen (H) with a state n = 1, and Z = 1, consisting of one electron, 

has an ionization potential equaling E1 = 13.6 eV to leave the atom (see 
above). 

2. Helium (He) with Z = 2, according to formula (3.12), has ionization 
energy Z2 E1 = 4  13.6 = 54.5 eV, which is in good agreement with 
experimental data.  

43.2.  Structure of Crystal Materials 

First of all, we briefly describe the principal differences of solid 
crystal-like materials with respect to molecules and liquids. In crystal 
structures, the atoms are strongly localized at the corners of the crystal grid 
inside it. The relation between atoms occurs from electrons, which, 
according to the information presented in Fig. 3.13, are not exclusive to any 
one atom, but relate to all atoms inside the crystal grid because their wave 
functions spread through the lattice structure. 
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Figure 3.13. Grid structure of diamond. The blue spheres are atoms and the yellow 
small spheres surrounding them are valence electrons. 

 
The existence of a crystal grid and oscillations of its composite 

elements is the matter of physics of solid bodies. We do not enter into deep 
discussions here, transferring the reader to the excellent books [1–3]. We 
will, however, notice that the properties of solid bodies are closely related 
to the types of relations between atoms: ionic and/or covalent (e.g., atomic 
or chemical). The structure of ionic grids, because they are constructed by 
pure electrostatic forces, has the same nature as molecules and liquids. As 
for covalent or atomic grid structures, it is more complicated to understand 
because their components “enjoy” each other. Fig. 3.13 presents an example 
of the crystal grid of diamond constructed on covalent (atomic) relations. 
Each atom is surrounded by four other atoms creating a quadratic-form 
geometrical structure. Simultaneously each of the atoms is the tip of such 
neighboring structures (see lower left of Fig. 3.13) . 

Many properties of solid substances, particularly their conductivity, 
can be fully explained by the use of the zonal model. Namely, the zone 
model can explain why dielectrics, semiconductors, and metals differ from 
each other. As was mentioned above, according to Pauli’s Law, each level 
of an isolated atom can be occupied by not more than 2 electrons with 
opposite spins. Isolated atoms have thick lines, 1s, 2s, 2p, 3s, 3p,…, as 
shown in Fig. 3.14 (left panel).  

In metals (Fig. 3.14, second panel) all levels are occupied, then in 
the energetic zone not even one electron is absent. They are seated in the so-
called valence zone (shown by the black color). All electrons in this zone 
are not free and cannot move to create a current in the upper, conductive 
zone. In the latter zone in outer conditions (heating, pumping by an outer 
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light source or outer electric field), an electrical current can be created. In 
some elements, the highest level is not fully filled by electrons (such as 
metals, Na, Ca, and so on, having only one electron at their levels). So, for 
metals, from N separate levels, around half can be free to be filled. Thus, for 
metals, as shown in Fig. 3.14 (second panel), enough small voltage or light 
energy transmitted to electrons allows them to jump from lower levels to 
higher levels and, finally, pass via the prohibiting zone with energy Eg, as 
shown in Fig. 3.14. 
 

 
 

Fig. 3.14. Schematically presented zone structures of the separate atom, the metal, 
the semiconductor, and the insulator . (Pure dielectric.) 

 
So, metals, such as Mg, Ca, and so on, having two electrons at each 

level, are very good conductors. Here due to the wide filled zone, it fully 
overlaps the prohibited regions of energy between zones and enters into a 
free zone. This effect is called overlapping of zones, and finally, electrons 
can move in space not occupied by other electrons. However, when the 
prohibiting zone is too wide (see Fig. 3.14, third and fourth panels), such 
overlapping is impossible. Moreover, it is impossible to convert electrons 
between levels, let’s say, from 3s to 3p, from 4s to 3d (as it is fully 
occupied), 4p to 4d (it is also fully occupied), and so on. Such solids are 
called semiconductors and dielectrics (isolators) (see Fig. 3.14, last two 
panels). 
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3.3. Semiconductor Fundamentals 

Below, we briefly, without entering into deep mathematical 
descriptions of the subject because it is out of the scope of this book, 
introduce the reader to semiconducting material fundamentals because they 
are the most applicable materials in photonics, dealing with photon flows, 
and optoelectronics, dealing with electron and hole flows. Both these fields 
are based on semiconducting materials, which absorb and emit photons by 
undergoing transitions among the desired energy levels of semiconductors 
as crystal materials. Indeed, the photons generate electrons and holes, and 
charged particles generate and control the flow of photons. We should, from 
the beginning, notice that: 

 
 A semiconductor lattice cannot be viewed as a collection of 

non-interacting atoms, each with its own individual energy 
levels and probability (wave function). This is because in the 
proximity of each atom in the crystal lattice, the energy levels 
belong to the system as a whole and the wave functions  
overlap each other (see Fig. 3.15).  

 

 
 

 
 

 
Figure 3.15. Wave functions of each atom in a semiconductor overlap each other 

according to wave-corpuscular dualism. 
 

 Collections of close spaced energy levels form energy bands, 
which for T= 0 K or in the absence of an external excitation 
source, are either fully occupied or totally non-occupied. The 
higher non-occupying energy band is called the conductive 
band, whereas the lower fully occupied band is called the 
valence band. These two bands are separated by a forbidden 
band with the gap energy Eg, as shown in Fig. 3.14. 
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3.3.1. Zonal Structure of Semiconductors 

To understand these main properties of semiconducting materials, 
we will return the reader to what was discussed from the beginning, i.e., to 
the zonal model of crystals. As was shown by Schrödinger and follows from 
his equation, for electron energy in a field of periodical potential that 
describes a collection of atoms in the lattice, splitting of the atomic energy 
levels and formation of energy bands results. Indeed, the crystal lattice 
potential associated with an infinite 1-D collection of atoms with lattice 
constant a, which is depicted schematically in Fig, 3.16a, can be 
approximated by a 1-D periodical rectangular potential introduced for the 
simplified Schrödinger’s 1-D model, as illustrated by Fig. 3.16b. This model 
proves the results of the Schrödinger equation for such potential predicted 
energy bands with traveling-wave solutions, separated by prohibited bands 
with exponentially decaying solutions. The obtained results were also 
proved for the 3D case.  

 

 
 

Figure 3.16. a) Solution of the Schrödinger’s 1-D model, and b) its approximation. 
 
Finally, the information mentioned above allows us to present for 

each type of semiconductor, pure or composite (doped), its own zonal 
structure. As an example, Fig. 3.17 presents the zonal structure for two 
semiconductors: Si (Silicon), as a pure semiconductor, and GaAs (Gallium-
Arsenide), as a compound semiconductor. Here, each band contains a large 
number of densely packed discrete energy levels that can be approximated 
as a continuum (see Fig. 3.17). Thus, for Si Eg = 1.12 eV, while for GaAs 
Eg = 1.42 eV at a room temperature of 300 K. 
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Figure 3.17. Zonal structure of Si (left panel) and GaAs (right panel). 
 

As illustrated in Fig. 3.17, the valence and conductive bands are 
separated by an energy bandgap. These bands play a fundamental role in the 
definition of the electrical and optical properties of semiconductors, and not 
only them but also isolators and conductors.  

3.3.2 Electrons and Holes 

As was mentioned earlier, the wave functions (r) of electrons in 
semiconductors overlap and the Pauli exclusion and prohibiting principle 
applies and declares that no two electrons can occupy the same energy level, 
and if this does occur, the two electrons have opposite spin momentum 
number s = -1/2 and s = +1/2. 
  At a low temperature of T = -273 C = 0 K, the energy levels inside 
the valence zone are fully occupied, while the conduction band is fully 
empty. With an increase of T, some electrons can be thermally excited from 
the valence zone into the empty conduction zone, where the occupied levels 
are abundant (see Fig. 3.18). If now an outer electric field is applied, these 
free (conductive) electrons can drift through the lattice as mobile carriers, 
creating the electric currents inside the semiconductor. Moreover, moving 
high energy electrons give room for electrons occupying lower energy levels 
inside the valence zone, to go upward to these liberated levels. The places 
of liberation are called holes. The movements of holes, therefore, are in the 
opposite direction to the movements of electrons. The hole therefore 
behaves as if it has a positive charge +e, opposite to the charge of the 
electron –e. 
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Figure 3.18. Locations of electrons and holes in the conductive and the valence 

zone, respectively. 
 

To explain how electrons and holes move inside the crystal 
structure of a semiconductor, and for more evidence, we present in Fig. 3.19 
the 2-D scheme of the 3-D model of crystal presented in Fig. 3.13, but for 
the specific case of a crystal of pure semiconductor Ge (germanium). 
 

 
 

Figure 3.19. A fragment of 2-D structure of Ge: red spheres are electrons, black 
spheres are holes. 
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The red spheres are electrons that were transferred in the 
conductive zone. We notice that after leaving the corresponding atom, the 
electron creates an empty place called a hole. Because a crystal grid in 
normal conditions is electrically neutral, the existence of holes shows that 
at this place an electron is absent, which is equivalent to the existence in this 
place of a positive charge (+). Therefore, a pure semiconductor consists of 
an equal amount of negative charges (electrons) and positive charges 
(holes). In reality, holes react in the same manner as if they are positive 
charges. 

Indeed, the similarity of holes with positive charges can be easily 
understood by introducing to the crystal a source of voltage. Then holes will 
move to the “–” electrode, but electrons will move to “+” electrode of the 
source. In reality, holes do not move but the same result can be obtained if 
the free electron from the neighboring pair enters into this vacant hole. 

3.3.3 Joint Energy-Momentum Domain of Semiconductors 

Before entering into the subject, let us notice the following. As was 
mentioned earlier, the energy of an electron in the free space with constant 
potential has the energy  

 
                                          E=p2/2m0 = h2 k2/2m0                                            (3.13) 
 
where p is the absolute value of the momentum of the electron, k is the 
magnitude of the wave vector k = p/h, h is the Planck constant defined 
above, and m0 is the electron mass, m0 = 9.11 10-31 kg. As follows from Eq. 
(3.13), the E-k relation for a free electron is a simple parabola E ~ k2. 
 In semiconductors, according to the Schrödinger 1-D model and its 
approximation made by Kronig-Penney (see Fig. 3.16b) due to the periodic 
potential generated by charges in the periodic crystal lattice, the E-k 
relations for electrons and holes in the conductive and valence zones have a 
form, as is presented for Si and GaAs in Fig. 3.20. 
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Figure 3.20. The E-k function for Si and GaAs along two crystal directions: toward 
the left and toward to right (rearranged from [1–3]). 

 
The energy E is the periodic function of the components (k1, k2, k3) 

of the vector k, with periodicities ( /a1, /a2, /a3), where a1, a2, a3 are the 
crystal lattice constants. In Figure 3.20, the particular directions of E-k cross 
section are presented: k1 = k2 = k3 = 1 [1,1,1] (the left side in Fig. 3.20) and 
k1=1, k2=k3 = 0 [1,0,0] (the right side in Fig. 3.20). It should be mentioned 
that the range of k values in the interval [- /a. /a] defines the first Brillouin 
zone [1–3]. Electrons not placed in the first Brillouin zone fill the second 
zone. They also fill the region between planes of the first zone and planes 
defined by conditions of diffraction from planes [110]. So, the energy of an 
electron in the conduction zone depends not only on the magnitude of its 
momentum but on the direction of its drifting in the semiconductor. 

As follows from the illustration in Figure 3.21, near the bottom of 
the conduction band, the E-k relation can be described by the parabola:  

 
                                                 E= Ec  + h2 k2 / 2mc                                         (3.14) 
 
Here Ec is the energy at the bottom of the conduction band, mc is the electron 
conduction band mass, and k is measured from the wave vector, where the 
minimum of energy occurs. The effective mass mc, which differs from that 
in free space m0, is the result of the influence of the ions of the lattice on the 
motion of a conduction band electron.  
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Figure 3.21. E-k diagram, as in Fig. 3.20, but approximated by parabolas for Si and 
GaAs semiconductors. 

 
Similarly, near the top of the valence band, we get: 
 

                                                 E= Ev  + h2 k2 / 2mv                                         (3.15) 
 
where Ev = Ec - Eg is the energy at the top of the valence band and mv is hole 
valence band effective mass, which determines the effects of the lattice ions 
on the motion of the valence band hole. It depends on the crystal structure 
and direction of travel with respect to the lattice. 
 Approximating the E-k diagram for Si and GaAs by parabolas at 
the bottom of the conduction band and at the top of the valence band, as 
shown in Figure 3.21, we can explain such effective mass mc for electrons 
and holes in the conductive and valence zones, respectively.  
 As an example, we present typical values of electron and hole 
masses in some selected semiconductors (with respect to the mass m0 in free 
space). Thus, according to [1–3]: 
 

for Si (indirect-bandgap)           mc/m0 = 0.98;             mv/m0 = 0.49 
 

for GaAs (direct-bandgap)         mc/m0 = 0.07;             mv/m0 = 0.50 
 

for GaN                                      mc/m0 = 0.20;             mv/m0 = 0.80 
 
Semiconductors for which the conduction band and the valence band 
minimum energy correspond to the same k are direct-bandgap 
semiconductors. Otherwise, they are indirect-bandgap semiconductors. 
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3.3.4 P-Type and N-Type Semiconductors 

Semiconducting material in which the amount of electrons prevail (with 
respect to the amount of holes) are called n-type semiconductors, and those 
where holes prevail are called p-type semiconductors. Combining these 
types of pure semiconducting materials, we finally obtain the p-n or 
compound semiconductors.  

Let us use Sb, which is a fifth-valence substance, having one 
valence electron more than in Ge (see Table 3.3). But the atom of Sb is in a 
grid in the same manner as in the pure Ge (see Fig. 3.22).  

 

 
 

Figure 3.22. Compound GeSb n-type semiconductor. 
 

The connection of outer electrons with other atoms in Sb is very 
low (~ 0.5 eV) and the thermal energy for T = 290 K is enough to liberate 
electrons to start to produce electrical current. As a result, we obtained the 
composite semiconductor on n-type with electrons prevailing – negative 
carriers of charge.  

If now in the crystal grid, instead of atoms of Ge, In atoms are 
introduced In (see Table 3.3), having only a three-valence state, instead of 
a four-valence state of Ge, we will have an absence of an electron – or an 
additional hole, as shown in Fig. 3.23.  
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Figure 3.23. Compound InGe p-type semiconductor. 
 

Such a semiconductor is called the composite InGe  p-type semiconductor 
(with the absence of conductive electrons).  

3.3.5 P-N Junction in Equilibrium 

Overlapping differently pure regions of single semiconductor 
material are called home-junctions. The important example is a p-n junction, 
which occurs if in contact with both types of semiconductors, n-type and p-
type, as shown in Fig. 3.24.  
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Figure 3.24. Schematically presented overlapping of two kinds of semiconductors, 

the n-type and the p-type.  
 

A p-n junction consists of a p-type and an n-type section of the 
same semiconductor materials. The p-type region has many holes (majority 
carriers) and few mobile electrons (minority carriers) [see left-side two 
middle blocks in Fig 3.24]. The n-type region has many mobile electrons 
(majority carriers) and few holes (minority carriers) [see right-side two 
middle blocks in Fig. 3.24]. Both charge carriers are in conditions of random 
thermal motion in all directions inside their own materials.  

The lower panel in Fig. 3.24 shows clearly the fact that the 
concentration of holes in p-type material is much higher than electrons 
(denoted by n), whereas the concentration of free electrons in n-type 
material is prevalent with respect to holes. 

  Fermi energy Ef, which defines the minimum energy needed to 
transfer an electron from the upper level of the valence zone to the lower 
level of the conductive zone, lies for both separate materials closer to each 
of the types: above the valence zone of the p-type semiconductor and below 
the conductive zone of the n-type semiconductor (shown in the two middle 
panels by dashed lines).  

In this case, when T > 0 K, electrons from the n-type semiconductor 
will penetrate to the p-type semiconductor through the junction created 
between them. In the same manner, the holes will penetrate from the p-type 
semiconductor to the n-type semiconductor via the junction. Finally, they 
will create a spatial electrical charge difference inside the junction, and 
therefore, the inner electric field, as shown in Fig. 3.25a. 
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 (a)                                            (b)                                           (c) 

               
Figure 3.25. a) p-n semiconductor in equilibrium state (in absence of 

electric field); b) opposite to inner electric field; and (c) p-n junction under outer 
source – direct to inner electric field. 

 
The inner electric field regulates the number of electron-hole pairs, 

which can be increased until that time, when this process is not compensated 
for by the inverse process of recombination of electron-hole pairs, as major 
carriers of charges. In this case, the condition of dynamic equilibrium is 
observed. Of course, the width of this junction is too thick – around a few 
micrometers [~10-3 mm]. 

When an outer electric source generates charge “–” in the n-region, 
and “+” in the p-region (see Fig. 3.25c), the outer and inner fields have the 
same direction, increasing the total current through the circuit. The p-n 
junction works as a direct biased junction.  

When an outer electric source generates charge “–” in the p-region, 
and “+” in the n-region, the outer field has the opposite direction to the inner 
field and the absence of the current through the circuit is observed (see Fig. 
3.25b). The p-n junction works as an opposite biased junction. 
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Exercises 

Exercise 1. 
 

1) Find the relation of photon energy in “eV” with the wavelength in 
“Ångstrom” (Å). 
2) Find the wavelength (in m, nm, and Å) of the proton with energy E = 1 
MeV. 

 
Solution 

  
First of all we will find relations between the dimensions of the quantities. 
Thus:  
 

1 eV = 1.6 10-19 J = 1.6 10-12 erg; 
1  = 10-10 m = 10-4 m = 0.1 nm 

 
(1) Now, we will find the relation between the impulse of a particle 

and its wavelength by use of de Broglie postulate and Planck's law, 
that is:  

 
                 ( ) = c/  = c h / h = [6.62 10-34 (J s)  3 108 (m/s)] / h  (J) = 
                         = [6.61·10-34 (J s)  3 108 (m/s)] / h  (eV)  1.6  10-19 = 
                         = 12.390  10-7 / h  (eV) [m] = 12,390 / h  (eV) [ ]. 
                    Thus:      ( ) = 12,390 / h  (eV) [ ] = 12.39/ h  (keV) [ ] 
 
Conclusion: If the wavelength corresponding to a particle decreases 
(frequency increases) then the energy of the particle increases, and vice versa. 

 
            2) For proton with energy E=1 Mev = 1 106 eV, we get: 
              ( ) = 12,390 / E (eV) =  12,390 / [E  106 (eV)] = 1.239   10-2 [ ] 
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Exercise 2. 
 
What is the relativistic mass of the photon? Present its expression via 
quantities “h”, “ ” and “c”. 

 
Solution 

 
1) According to Einstein’s law, energy equals the product of the mass of the  
  particle and the square of light velocity, i.e., E = m  c2, correspondingly,  
  an impulse of the particle equals P = m  c, that is, E = P / m. 
 
2) The relativistic mass of a photon is a mass when its velocity equals the 
speed of light, i.e., v = c. If so, the relativistic mass of the photon equals: 
 

m = E/ c2 = h   / c2 = h  (c / ) / c2= h / (c  ) 
 

Exercise 3. 
 
The energy of photon E = 1 eV. What is the value of this photon impulse 
and what is its wavelength in “Å” and in “ m”? 
 

Solution 
 

1) According to Einstein’s law, pulse P = E/c, because E = mc2 and P = mc. 
So: 
     P = 1 (eV) / 3·108 (m/c) = 1.6 10-19 (J) / 3·108 (m/c) = 5.3·10-27 [kg m/s] 
 
2)  (Å) = 12,390 / h  (eV) [Å] = 12,390 / 1 (eV) = 12390 (Å) = 1,2390 
( m) 
 

 
Exercise 4. 

 
A photon and an electron both have energy E = 1eV. Which of them has the 
longer wavelength? 

 
Solution 

 
1) For the photon (see Example 1):  

 
 (Å) = 12,390 (Å) = 12,390 m 
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2) For the electron, accounting for the de Broglie postulate, because 
in the non-relativistic case the velocity of an electron is less than 
the speed of light, i.e., v << c, and its impulse p = mv << mc, and 
its kinetic energy Ek << m c2. In this case 

 = h c / (Ek + m c2) = h c / m c2= h / m c, yields: 
 = h / m c = 6.61 10-34 (J s) / [9.11 10-31 (kg)  3 108 

(m/s)] = 2.42 10-12 (m) = 2.42  10-6 ( m) 
So, 1,239 ( m) >> 2.42 10-6 ( m). 

   
Conclusion: The wavelength of the photon is longer (by about one million 
times) than that of the electron having the same energy of 1 eV.  
 

 
Exercise 5. 

 
The limit of the photon effect is characterized by the critical wavelength cr, 
after which an electron cannot leave the material, that is, to pass the 
prohibited zone limited by an energy Eg.  

Find: The critical length for metallic Cu, if its prohibited zone has 
a width of Eg = 4.3 eV. Notice that this “energy width” is exactly equal to 
the outwork of light, Wout to transfer the electron from the valence to the 
conductive zone giving the electron a kinetic energy Ek. 
 

Solution 
 

1) Energy of the photon needed to excite the valence electron transferring it 
from the valence to the conductive zone and obtaining the kinetic energy Ek 
can be found from the following relation: 
 

h  = Ek + Wout 
 
2) Since in our case, this energy is to transfer the electron only to pass by 
the prohibited zone (e.g., having Ek = 0 in the conductive zone), we get: 

 
h  = Wout = Eg = 4.3 eV 

 
If so, we can rewrite this expression, accounting for  = c / cr , as: 
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cr = h  c / Eg = 6.62 10-34 (J s)  3 108 (m/s) / 4.3  1.6 10-19 (J) 

= 2.87 10-7 (m) = 0.287 ( m) = 287 (nm) 
 
Conclusion: Photon with cr = 287 (nm), corresponding to the violet band 
of the visual light spectrum (occupying bandwidth from 200 nm to 750 nm, 
see Chapter 1), can be excited and it can be taken out from metallic Cu only 
one photoelectron.  
 
 

Exercise 6. 
 
The electron moves along a horizontal axis, and its movement is limited by 
the length of a box L = 10-10 m, which models the simple atom. 
 Find: 1) The zero energy of electron corresponding to wave 
function with n=1, E1. 
 
2) Wavelength (in Å) of the photon excited after transfer of an electron from 
level n’ = 2 to n=1.  
 

Solution 
 

1) Taking into account a general formula of electron wave functions inside 
the atom (as a closed box) En = h2 n / 8m L2, we get for n=1 the zero energy 
of the electron in the atom: 
 
E1 = h2 / 8 m L2 = [6.62 10-34 (J s)] 2 / [8  9.11 10-31 (kg)  [10-10 (m)] 2 

= 6.02 10-16 (J) = 37.5 (eV) 
 
2). Transfer from level n’ =2 to n=1 with excitation of the photon with 
energy h  can be found by the well-known formula: 
 

h  = E2 - E1 = E1 (n'2 – n2) = 37.5 (4-1) = 112, 5 (eV) 
 
3). Then, according to Example 1:  

 
 (Å) = 12390 / h  (eV) = 12390 / 112.5 (eV) = 110 (Å) 

  
Conclusion: Photon with  = 110 (Å) = 11 (nm), does not lie in the 
frequency band of visual light; it lies in the ultraviolet bandwidth. 
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Exercise 7. 
 

 1) Find the maximum wavelength  of light radiation for transfer of the 
electron from the “ground” level of an atom of hydrogen (H) defined by n1 
= 1 to the level defined by n2 =2. 
2) Find the maximum wavelength  for electron transfer from the level with 
n2 = 2 to the level n3 = 3. 

 
Solution 

 
1) E1 = Emin = 2 2 m e4 / h2= 13.6 (eV) 

 
2) Using the now well-known Bohr’s formula 

  
h  = - 13.6 [(1/n2

2) – (1/n1
2)] = 13.6 [(1/n1

2) – (1/ n2
2)] 

we get for transfer from the level (orbit) n1 = 1 to that with n2 = 2:  
 

h  = 13.6 (1 – 1/4) = 10.2 (eV) 
 
Then ( ) = 12390 / h  (eV) = 12390 / 10.2 (eV) = 1210 ( ) 
 

3) For n2 = 2 to n3 = 3 transfer we get: 
 

h  = 13.6 [(1/n2
2) – (1/n3

2)] = 13.6 (1/4 – 1/9) = 19 (eV) 
 

Then ( ) = 12390 / h  (eV) = 12390 / 19 (eV) = 6400 ( ) = 640 (nm) 
 
Conclusion: The photon during transfer from n2 = 2 to n3 = 3 has a 
wavelength, which lies inside the light spectrum, whereas the photon for the 
transfer from n1=1 to n2 = 2 is outside the light spectrum. 
  

 
Exercise 8. 

 
What is the relation between the spectral energy of helium (He) and 
hydrogen (H)? It is known that the charge number of He equals Z = 2, and 
for H it equals Z = 1. 

 
Solution 

 
1) We take into account the well-known Bohr’s formula  
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En = 2 2  m  e4  Z2/ h2  n2 = 13.6 (Z2 / n2) 
  
If so, for H we have for Z= 1 and any energy level (orbit), we get  
 

En = 13.6 / n2 
 
and for He with Z=2, we get 
 

En = 13.6 (Z2 / n2) = 4  13.6 / n2 
 
So, for any transfer in an atom of H, we have the formula used in Example 
7: 

h  = 13.6 [(1/ n2) – (1/n’2)] 
  
Whereas for an atom of He, we get  
 

h  = 4 13.6 [(1 / n2) – (1 / n'2)] 
  
Conclusion: The energy spectrum of He is four times bigger than that for H.  
 
 

Exercise 9. 
 
Find the line (i.e., wavelength) of the He atom spectrum (with Z=2) similar 
to the line of the H atom spectrum and compare them. 

 
Solution 

 
1) Accounting for the energy of a photon excited from the H atom (with 
Z=1), according to knowledge obtained from Example 7, we get: 
 

H = 13.6 [(1 / n2) – (1 / n'2)] / h 
from which  
 

H = 12390 / (h  H) 
 
2) Accounting for the energy of a photon excited from the He atom (with 
Z=2), according to knowledge obtained from Example 7, we get: 
 

He = 4  13.6  [(1 / n2) – (1 / n'2)] / h 
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From which follows: He = 4 H  
 
Then  

He = 12390 / h  He = 12390 / 4h H = (1/4) H  
  
Finally, we get:  He = (1/4) H 
 
3) Now, we introduce in the above formulas the corresponding quantities 
according to Example 6 for H for n = 1 and n’ = 2 we get:  
 

h H = 13.6  [(1 / n2) – (1 / n'2)] =10.2 (eV) 
Then 

H = 12390 / (h  H ) = 12390 / 10.2 =1216 ( ) 
  
At the same time for the He atom for the same transfer from n = 1 to n' = 2,  
 accounting for the relations obtained above, we get:  

h He = 13.6  [(1/ n2) – (1/ n'2)] =4  10.2 (eV) = 40.8 (eV) 
 
Then  

He = (1/4) H = 1216 / 4 = 304 ( ) 
 
Conclusion: for the same transfer of an electron from the ground level with 
n=1 to the level with n=2 for H and for He, we have found that for this 
transfer the excited photon frequency for H is four times bigger than that for 
He, whereas the corresponding line (wavelength) for He is four times less 
than for H.  
 
 

Exercise 10. 
 
How many electrons are in the atom sub-layers with the main quantum 
number n=2 and n=3? 

Solution 
 

1) For n = 2, the quantum number l, equaling n-1, is: l = 0 and l = 1. 
   

for l = 0, we get ml = 0 – one orbit (state or level) 
for l=1, we get ml = 0, ±1 – three orbits (states or levels) 

  
In total we get four states timing on two electrons (according to the Pauli 
postulate), we finally get 8 electrons.  
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2) For n=3, l = 0, 1, 2.  
 
for l = 0, we get ml = 0 – one orbit (state or level) 
for l=1, we get ml = 0, ±1   – three orbits (states or levels) 
for l=2, we get ml = 0, ±1, ±2     –   five orbits (states or levels) 

 
In total we get nine states timing on two electrons (according to the Pauli 
postulate), we finally get 18 electrons.  
 
 

Exercise 11. 
 
How many electrons are in the valence sub-zone (subshell) 6d, and sub-zone 
(subshell) 6f? 
 

Solution 
 

1) Subshell 6d corresponds to n=6 and l=2, for which we have ml = 0, 
±1, ±2 for orbital quantum number. Finally, we have 5 oriented 
orbits or according to Pauli’s prohibited rule – maximum of 2 
electrons. So, finally subshell 6d has 10 electrons. 
 

2) Subshell 6f corresponds to n=6 and l=3, for which we have ml = 0, 
±1, ±2, ±3 for orbital quantum number. Finally, we have 7 oriented 
orbits, or according to Pauli’s prohibited rule – a maximum of 2 
electrons. So, finally sub-zone 6f has 14 electrons. 
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CHAPTER 4  

BASIC PRINCIPLES OF PHOTONICS AND LASER 
OPERATION 

 
 
 

4.1. Boltzmann Distribution 
 

As follows from the discussions in Chapter 3 based on wave-
corpuscular dualism, in any gas of atoms, or any materials consisting of 
atoms, each atom can obtain its allowed energy level from a set of E1, E2,…, 
Em, as shown by Fig. 4.1 (left panel). In thermal equilibrium at temperature 
T their motions reach their steady-state regime with the probability P(Em) 
that the arbitrary atom is in the energy level Em given by the Boltzmann 
distribution: 
  
                                                 P(Em) ~exp{-Em / kBT}                                   (4.1) 
 
where kB is the Boltzmann constant equal to kB = 1.38·10-23J·K-1.  The 
coefficient of proportionality is chosen such that the total cumulative 
probability equals unit. The occupation probability is an exponential 
function as displayed in Fig. 4.1 (right panel).  
 

 
Figure 4.1. Discrete energy levels of atoms (left panel) and the probability of their 

energy distribution (dashed curve in the right panel). 
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Considering the Boltzmann distribution for a large number of atoms N, and 
assuming that an arbitrary number of atoms Nm accompany energy level Em, 
then the fraction Nm/N is proportional to P(Em). If N1 atoms occupy level 1 
and N2 atoms occupy a higher level 2, the population ratio is, on average: 
 
                                           N2/N1 ~exp{- (E2-E1) / (kBT)}                              (4.2) 
 
This quantity depends on temperature. For T = 0 K = -273 °C, all atoms are 
at the lowest levels (called the ground state). With an increase in 
temperature, a higher energy level can have a greater population than a 
lower energy level. This non-equilibrium case is known as a population 
inversion, providing the laser actions discussed further in Chapter 5. The 
same approach can also be taken for electrons filling metals, semiconductors, 
or dielectrics. Thus, according to wave-corpuscular dualism discussed in the 
previous chapter, in metal electrons filled the lowest energetic levels (states) 
to create the so-called Electron-Fermi gas. This peculiarity was mentioned 
by Enrico Fermi, according to which all energetic states – from the lowest 
to a state with kinetic energy (Ek)0, called the Fermi boundary, are filled by 
N electrons, every two of which, according to Pauli's principle (see Chapter 
3), fill each quantum level (state). This energy equals: 
 
                                                (Ek)0 =h2/(8me) (3 / ) 2/3                                 (4.3) 
 
where again h = 6.625·10-34 J·s is the Planck constant,  = N / V – number 
of free electrons in 1 cm2. This result does not depend on the shape of the 
volume of metal V, which was presented as a box with a length L (see the 
previous chapter), but only on the density of free electrons in the metal. On 
this boundary, the energy spectrum decreases sharply (see Fig. 4.2 below). 
As will be shown below, a Fermi spectrum of energy distribution differs 
from Boltzmann or Maxwell’s statistics in gases. 

4.2. Fermi-Dirac Energy Distribution 

According to quantum theory, briefly discussed in Chapter 3, each 
discrete system with overlapping wave functions, such as a multi-electron 
atom, metal, or semiconductor, is subject to the Pauli Prohibiting Principle. 
According to this principle, each energy level can be occupied by not more 
than 2 electrons with opposite spins, but most of them are occupied by at 
least one electron. If so, the number of electrons Nm in state m can be either 
0 or 1.  
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We notice that the word “spin” was introduced by George 
Uhlenbeck and Samuel Goudsmit from the USA during their investigations 
of atomic quantum structure. For a wave mechanical view, the concept of 
“spin” was introduced by Paul Dirac investigating not only electrons, but 
also other elementary particles, such as protons, having the same spin as 
electrons.  

The probability of occupancy of a state of energy E can be 
described by the Fermi-Dirac distribution (called also Fermi function):  
 
                                       f(E) = {exp[(E-Ef) / (kBT)] +1}-1                              (4.4) 
 
Here Ef is the Fermi energy introduced in Chapter 3 as a boundary energy 
of an inner electron to leave any solid crystal or multi-electron atom. f(E) = 
1 indicates that the state of energy E is definitely occupied. As shown in Fig. 
4.2, it lies along the horizontal axis between 0 and 1. This function decreases 
monotonically with increasing E and equals ½ when Fermi energy equals 
Ef. 

We should notice that f(E) is neither a probability density function 
nor a probability distribution function, but rather a distribution of 
probabilities for different values of E, each of which lies between 0 and 1.  

 

 
Figure 4.2. Comparison of Fermi function (continuous curve) and Boltzmann 

probability distribution (dashed curve). 
 

When E >> Ef and E >> kBT the Fermi function behaves like the 
Boltzmann probability distribution P(Em) ~ exp(Em/ kBT), since in general 
for atomic electrons in outer subshells, energy levels involving optical 
transitions are often characterized by Boltzmann distribution.  

It should also be noted from the beginning that Fermi wanted to use for 
electron gas the Bose distribution, which was usually used for photons, as 
quanta of light (called bosons), with their spin momentum +1(h/2 ) 
and -1(h/2 ). But then, according to Pauli’s law, Fermi used his own 
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statistics for electrons with their spins +1/2(h/2 ) and -1/2(h/2 ). Therefore, 
particles, including electrons, which follow the concept of Pauli and Fermi 
statistics (according to Fig. 4.2), are called fermions in the literature [1–7]. 
Hence, following the Fermi distribution for electrons, as a gas, and 
according to Pauli’s prohibiting law, only two electrons with different spins 
can fill each discrete energy level. 

4.3. Interaction of Photons with Atoms 

4.3.1 Thermal Emission – Spontaneous, Stimulated,  
and Absorption of Photons 

To characterize the interaction of any atom and radiated light 
photons, the so-called lineshape function and the transition cross section are 
usually introduced in photonics [1–7, 9–11].  

The transition cross section, ( ), can be determined via its area S 
as an integral of ( ) over the spectrum of frequencies  and has dimensions 
cm2 / Hz. Usually, it is called the transition strength or oscillator strength 
and presents a strength of interaction. Additionally in the literature, a 
normalized function g( ) = ( ) / S is introduced and called the lineshape 
function (or profile function), which has dimensions Hz-1 and unity area 
(e.g., integral of g( )d  = 1). The transition cross section can be written in 
terms of its strength and profile function as 
 
                                                           ( ) = S g( )                                             (4.5) 
 
The profile function g( ) is centered around the resonance frequency 0, 
where ( ) is maximal (see Fig. 4.3). So, the transition for photons occurs 
at  = 0, 
 

 
Figure 4.3. The transition function (left-side) and the lineshape (profile) function 

(right-side). 
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The width of g( ) is known as the transition linewidth, usually 
determined as a width , on which g( ) is half its maximum value. Since 
the area of g( ) is unity, its width is inversely proportional to its central 
value, i.e.: 
  
                                                              ~ 1/g( 0)                                           (4.6) 
 
It is useful to define a peak transition cross section at the resonance 
frequency 0 = ( 0). The function ( 0) is fully characterized by its height 

0, width , area S, and profile g( ), as clearly illustrated in Figure 4.3.  
Spontaneous Emission. According to Refs. [1–8], we define tsp as 

a spontaneous lifetime of transition from mode 2 to mode 1, as 
  
                                                PDFsp = M( 0) c <S> ~ 1/tsp                           (4.7) 
 
where M( 0) = 8 0

2/c3 [s/m3] is the modal density through which one can 
transform PDFsp of spontaneous emission over all modes into each mode 
using the weighted modal density M( ). From Eq. (4.7) it follows that PDFsp 
is a non-dimensional function. Because the shape of the average (over a full 
spectrum of frequencies) cross section < ( )> is narrow, but M( ) is wide 
and constant around M( 0), we can simplify general formulas for PDFsp 
obtained in Refs. [1–7] and present it by Eq. (4.7). This equation determines 
spontaneous emission of one photon to any mode, which is independent of 
the cavity volume. This gives us the possibility to find the average area of a 
2-D cavity, <S>, consisting of electrons, as 
 
                                                       <S> = 2 / 8 tsp                                           (4.8)          
 
The transition strength can be determined from experimental measurements 
of the spontaneous lifetime. Thus, for atomic hydrogen tsp = 10-8s for atomic 
transition from the first exciting state.  
           Now we can find the relations between these two specific functions, 
< ( )> and g( ). Using Eq. (4.8), and relation < ( )> = g( )  <S>, we 
finally have the relation between the spontaneous transition function and the 
profile shape function, which is called the average transition cross section: 
 
                                                < ( )> = 2  g( ) / 8 tsp                                  (4.9)  
 
The same characteristic, but for central frequency will equal: 
 
                                       < 0> = < ( 0)> = 2  g( 0) / 8 tsp                        (4.10) 
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So, because g( 0) is inversely proportional to linewidth  (according to Eq. 
(4.6)), < ( 0)> is also inversely proportional to the  for a given tsp.  
 Stimulated Emission and Absorption. If, due to outer radiation, 
the atom is transferred from the ground (lower) energy level to the high 
energy level and the corresponding mode (according to the wave-
corpuscular dualism) contains the photon, the atom can be induced to emit 
another photon into the same mode. Such emission of photons is called 
stimulated emission.  
 The PDF of an emission taking place from t to t+ t, depends on 
frequency  and on transition cross section ( ) centered on the atomic 
resonance frequency = 0:  
 
                                           PDFst = c ( ) / V                                       (4.11) 
 
If there are n photons in the light mode, the PDF that the atom is stimulated 
to emit an additional photon, as in a case of absorption, equals:  
 
                                                    PDFst = c n ( ) / V                                     (4.12) 
 
There is a possibility to present simply spontaneous and stimulated emission 
(see Fig. 4.4). 
 

 
 
Figure 4.4. Sketched simple presentation of the stimulated (from level 1 to level 3) 

and the spontaneous (from level 2 to level 1) emission. 
 

As is clearly seen, the atom, after interaction with the photon, 
absorbs it and jumps to the higher level of energy E3, which corresponds to 
the photon with frequency 31 (that corresponds to a wavelength 31 = c / 31 
= 550 nm, or green light). Due to the instability of the level with energy, the 
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atom falls into the unstable level with energy E2 (called metastable level), 
and after spontaneous emission it falls to the ground level with energy E1. 
Such a transaction corresponds to frequency 21 which corresponds to the 
wavelength of 21 = 694 nm, or red light. This process takes a longer time 
and is called a slow process of spontaneous emission. Such double-cascade 
transitions can be stimulated by photons with energy h 21, as shown in 
Figure 4.4. 
 Let us describe now this process mathematically accounting for 
two kinds of transition: a) stimulated by monochromatic (single-mode) 
light, and b) stimulated by broadband light. 
 
a) We consider a single-mode light and its interaction with the atom when a 
stream of photons impinges on it. Let monochromatic light of frequency  
and intensity I and the mean photon flux density  
 
                                                    = I / h  [photon/cm2]                                (4.13) 
 
interact with the atom whose resonant frequency is 0. 
 We also suppose that the probabilities of stimulated emission and 
absorption are similar, that is, PDFst = PDFabs in such a consideration. If the 
interacting volume has the form of a cylinder with volume V, height h, and 
base area A, and assuming that n photons are involved in the interactional 
process, we get V=h A. A flux of photons crossing area A is =A  
[photons/s]. Because photons move with the speed of light c, all of them 
cross the base of the cylinder within one second. If so, in any time the 
cylinder contains n photons, where 
 
                                                         n =  A =  V / d                                   (4.14) 
 
which yields 
 
                                                                 = n d / V                                        (4.15) 
 
Absorption of the photon can be viewed, according to Figure 4.4, as the 
transition of the atom from the lower energy level E1 to the higher energy 
level E3. This process is induced by a photon with the probability density 
function (PDF): 
 
                                                     PDFabs = c ( ) /V                                     (4.16) 
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If there are n photons in the light mode, the PDF that the atom absorbs one 
photon is n-times greater since the events are mutually exclusive, i.e., 
 
                                                     PDFabs = c n ( ) /V                                  (4.17)  
 
Accounting now for Eq. (4.15) and Eq. (4.17), yields 
 
                                                PDFabs = PDFst = ( )                              (4.18) 
 
Formula (4.18) determines the photon flux captured by the atom for the 
purpose of stimulated emission or absorption. 
 
b) In the case of stimulation by broadband light, let us consider an atom in 
a cavity of volume V containing multimode polychromatic light of spectral 
energy density ( ) (energy per unit bandwidth per unit volume), which is 
much broader than the linewidth. The average number of photons in the 
frequency range of [ , +d ] is ( ) Vd /h . 
 So, the overall probability of absorption or stimulated emission 
can be found via the integral, which accounting for a slow varied ( ) with 
respect to a sharp ( ), can be simplified as:  
 
                                     PDFabs = PDFst = ( 0) d <S>/h 0                      (4.19)                        
 
or accounting Eq. (4.8), we get: 
 
                                    PDFabs = PDFst = 3  ( 0)/ 8 h tsp                       (4.20) 
 
So, because g( 0) is inversely proportional to linewidth , according to Eq. 
(4.6), < ( 0)> is inversely proportional to the  for a given tsp. Accounting 
now for relations between the wavelength and the central photon frequency,   
 = c/ 0 and the mean number of photons per mode [3–8],  

<n> = 3  ( 0) / 8 h, we get:  
 
                                              PDFabs = PDFst = <n> / tsp                             (4.21) 
 
The mean photon number <n> has physical meaning. Indeed, the quantity 

( 0)/h 0 represents the mean number of photons per unit volume in the 
vicinity of frequency 0 and M( 0) is the number of modes per unit volume 

0 in the frequency domain. The two PDFs, for stimulated emission and 
absorption, are thus the factor of the event when the mean photon number, 
<n>, is greater than that for spontaneous emission, since each mode contains 
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an average of <n> photons.  
 In most literature related to photonics descriptions, useful 
parameters are usually introduced to describe the processes of spontaneous 
and stimulated emission and absorption. These coefficients are called 
Einstein's coefficients. It was postulated by Einstein as follows:  

The atom interacts with broadband radiation of spectral energy density 
( 0) under conditions of thermal equilibrium. 

According to this postulate, an expression for the probability densities of 
spontaneous and stimulated transitions was evaluated by introducing the so-
called Einstein's coefficients: 
 
                                           PDFsp = A,      PDFst = B ( 0)                            (4.22) 
 
which are associated with spontaneous and stimulated transitions (or 
absorption, see above), respectively. Their ratio yields: 
 
                                                     B / A = 3/ (8 h)                                         (4.23)  

4.3.2 Thermal Equilibrium Between Atoms and Photons 

Despite the fact that in Chapter 3 we briefly described conditions 
of thermal equilibrium to explain the Max Planck law regarding black body 
light absorption, let us return to this subject from the mathematical point of 
view and describe this phenomenon occurring during interactions of 
photons with atoms, considering a thermal light, as a universal form of 
radiation under conditions of thermal equilibrium in the absence of outer 
energy sources. Such light, as was mentioned in the previous chapter, is 
emitted by black bodies that absorb all light energy incident on them. 
 A macroscopic approach that balances spontaneous emission, 
stimulated emission, and absorption under conditions of thermal equilibrium 
leads to the spectral intensity of thermal light. Equation (4.7) or (4.8) is a 
point of our analysis. We consider a cavity with unit volume whose walls 
have a large number of atoms with two energy levels E1 and E2, separated 
by energy h . Levels 1 and 2 consist of N1(t) and N2(t) atoms, respectively.  
 We first consider the spontaneous emission alone. The probability 
a single atom in the upper-level 2 undergoes spontaneous emission into any 
of the modes within the time duration from t to t + dt, is Pspdt =dt / tsp. So, 
the average number of photons within dt is n2 = N2(t) dt / tsp. Hence, the 
negative rate of increase of N2(t) arising from spontaneous emission can be 
found from the differential equation: 
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                                             dN2(t)/dt = - N2/tsp                                    (4.24) 
 
The solution of Eq. (4.24) can be easily found as 
 
                                             N2(t)=N2(0) exp (-t/tsp)                                      (4.25) 
 
which is presented in Figure 4.5, where for t = tsp, the decay of the upper-
level population, N2(0), caused by spontaneously emitted photons, is up to 
e-1. So, this process takes time around t = tsp. 
 

 
Figure 4.5. Decay of the upper-level population N2 (t=0) by e-1 factor for t = tsp 

according to time dependence described by Eq. (4.25). 
 
 If we now also incorporate the absorption and account for the 
capability of N1 atoms to absorb, we will get the rate of increase of the 
population of the atoms at the upper energy level, arising from absorption, 
which can be found by the use of (4.21) as:  
 
                       dN2(t)/dt = PDFsp N1 = <n> N1 / tsp                              (4.26) 
 
Similarly, stimulated emission gives rise to a negative rate of increase of 
atoms in the upper state 2, expressed as  
 
                          dN2(t)/dt = - PDFst N2 = - <n> N2 / tsp                            (4.27) 
 
As is clearly seen from Eq. (4.26) and Eq. (4.27), the rate of N2(t) arising 
from absorption and stimulated emission are proportional to <n>. All three 
processes, described by Eqs. (4.25) to (4.27), yield the final equation: 
 
                   dN2(t)/dt = - N2/tsp + <n> N1 / tsp - <n> N2 / tsp                      (4.28) 
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In the absence of any outer source of light radiation, the steady-state regime, 
when dN2(t)/dt = 0, gives: 
 
                                             N2/N1 = <n>/ (<n> +1)                                     (4.29) 
 
From relation (4.29) follows that N2 < N1.  
 According to a thermal equilibrium condition, we can, as above, 
use the Boltzmann's distribution (4.2), rewriting it as: 
 
                                          N2/N1 = exp{- (h ) / (kBT)}                                   (4.30) 

 
Substituting Eq. (4.30) in Eq. (4.29), one can find the average number of 
photons per modes near frequency : 
 
                                       <n> = 1 / [exp (h ) / (kBT)-1]                             (4.31)  
 
Equation (4.31) allows us to find a mean number of photons in a mode of 
thermal light for which the occupation of modal energy level follows the 
photon distribution  
 
                                     PDF(n) ~ exp[- (h ) / (kBT)]                                       (4.32) 
 
This relation argues the self-consistency of the analysis carried out above 
and its correction for the description of any real situation in a solid cavity 
consisting at the walls of many atoms of arbitrary mode-states, existing in 
thermal equilibrium. Photons interacting with atoms in thermal equilibrium 
of temperature T, are also in thermal equilibrium at the same temperature. 
Therefore, we can call them a photon gas. 
 Accounting that the average energy of photon gas is <E> = 
<n> (h ) and accounting for Eq. (4.32) yields: 
 
                                       <E> = h  / [exp (h ) / (kBT) - 1]                      (4.33)  
 
Multiplying the average energy per mode, <E>, by the modal density, M( ), 
defined as M( 0) = 8 2/c3, we can obtain the spectral energy density ( ) 
= M( ) <E>, measured in energy (in Joules) per unit frequency bandwidth 
(in Hz) per unit cavity volume (in m-3), can be presented in the following 
form: 
 
                                  ( ) = [8 h 3] / c3 [exp (h )/( kBT) - 1]                    (4.34)  
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The spectral energy density function described by Eq. (4.34) is known as 
the black body radiation spectrum. It is a function of the frequency of light, 
mode of frequency  and temperature T. Below we present it as a function 
of frequency and temperature following the Max Planck validation of Eq. 
(4.33). 
 As was mentioned in Chapter 3, Max Planck in 1900 had found 
the theoretical proof of formula (4.33), which was agreed with by 
experiments. His calculation led to the expression for the black body 
spectrum via <E> by quantizing the energy of each mode. At the same time, 
as it is known from classical physics and statistical mechanics, the average 
energy per one mode <E>= kBT = Constant and independent of the modal 
frequency. Such a formulation was postulated by Rayleigh–Jeans, which for 
black body radiation gives: 
 
                                                ( ) = 8  2  kB T / c3                                     (4.35) 
 
At the same time, from Eqs. (4.33) and (4.34), obtained also by Max Planck, 
it follows that for h  << kBT, when exp(h / kBT) ~ 1 + (h ) / (kBT), these 
formulas are deduced to classical, <E>= kBT , [from Eq. (4.33)], and to Eq. 
(4.35) from Eq. (4.34). 

4.4. Electron and Hole Concentration in Semiconducting 
Materials 

 According to the discussion above and in Chapter 3, the quantum 
theory postulates the state of an electron and a hole in any semiconductor 
through their energy E, their vector k, and their spin s. Their concentration, 
as a function of energy E requires knowledge of two features:  
 1) the density of states or energy layers in each semiconductor,  
 2) the probability that some of these levels are occupied. 
As for an electron inside the conductive zone, it can be approximately 
described by its effective mass me, hidden into a 3-D box of dimension d 
with perfectly reflecting walls, with infinite rectangular potential inside, as 
was discussed in Chapter 3. The standing-wave solutions require the 
discrete components of the wave vector k with coordinates  
 
                                k = {kx = q1 /d, ky = q2 /d, kz = q3 /d}                     (4.36) 
 
and with the respective mode positive numbers (q1, q2, q3). The tip of the 
vector k can lie at the point of a lattice whose unit cell has dimension /d 
and volume ( /d) 3.  
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 If so, there are ( /d) 3 points per unit volume in k-space. The 
number of states for which k lies between 0 and k is determined by the 
number of points lying within the positive octant of a sphere of radius k with 
volume V = (1/8) (4 /3) k 3 = ( k 3) / 6. According to the Pauli statement, 
there are two states of electrons that are possible at each state (i.e., orbit) 
with the corresponding spins s = -1/2 and s = +1/2. If so, we finally get a 
number of points in volume V=2 [( k 3) / 6]/( /d) 3 = k 3 d 3/3  2.  
 So, in a unit volume of a cube we have a number of V/d 3= k 3/3 2 
points. Finally, the number of states with electron wavenumber ranged 
between k and k+dk per unit volume is: 
 
                             (k) dk = [d(k 3/3  2)/dk] dk = (k 2/ 2) dk                         (4.37) 
 
and the density of states is: 
 
                                                       (k) = k 2/ 2                                                (4.38) 
 
The results above allow us to point out that despite the fact that the result 
can be obtained from classical electrodynamics for an electromagnetic 
resonator, with -k relation =c k /2 , in semiconductor physics the allowed 
solutions for k are converted to discrete levels of energy via quadratic E-k 
relations, given by Eq. (3.13) in Chapter 3, which are near the conduction 
and valence bands, respectively. 
 If we now go to energy presentation, accounting for relations 
between energy E and impulse p as a function of k, we can represent now a 
number of conduction band energy levels per unit volume via the octave of 
a spherical surface shown in Figure 4.6. 
 

 
 

Figure 4.6. The octave of spherical surface where distribution of energy is lying 
between E and E + dE in the coordinate system { x, y, z}. 
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  If c(E)dE represents the number of conduction band energy 
levels per unit volume lying between E and E+dE, then, because the direct 
correspondence between E and k exists, the densities c(E) and (k) are 
related as (k)dk = c(E)dE. So c(E) = (k)dk/dE. The same will be found 
in the valence zone with bandgap energy levels, and v(E) = (k)dk/dE. 
Taking now into account that mentioned above, we get for densities of 
states, respectively: 
 
 c(E) = (2mc)3/2  (E-Ec) 1/2 / [2(  2 h 3)], E > Ec          (4.39) 
 
 v(E) = (2mv)3/2  (E-Ev) 1/2 / [2(  2 h 3)], E < Ev          (4.40) 
 
The relations c(E) and v(E) versus (E-Ec) 1/2 and (E-Ev) 1/2, respectively, 
the result of the quadratic E-k formulas (3.14) and (3.15) [see Chapter 3] for 
electrons in the conduction zone and holes in the valence zone near the band 
edges, respectively, as seen from Figure 4.7a. 
 

 
 

Figure 4.7. The plot of: a) the E-k quadratic dependence, b) the energy levels 
discrete distribution, and c) the  (E) – E dependence for electrons and holes in 

conductive and valence zones, respectively.  
 
 As follows from Figure 4.7a, the E-k quadratic dependence is 
zero at the band edge and increases away from it with a rate which depends 
on the effective masses of electrons and holes. Figure 4.7b presents energy 
levels at the range of wavenumbers k. Figure 4.7c presents densities of states 
of electrons in the conduction energy band and holes in the valence energy 
band according to (4.39) and (4.40), where mc and mv are average numbers 
presented above.  
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 The probability of occupancy of states in the valence zone by 
holes and in the conductive zone by electrons can be found by use of the 
following assumptions. As was mentioned in Chapter 3, at T = -273 °C = 0 
K (or absence of outer sources of thermal excitation), the energy levels 
inside the valence zone are fully occupied and there are no holes, while the 
conduction band is completely empty (it contains no free electrons). With 
increase of temperature, excitations raise some electrons from the valence 
zone to the conduction zone, creating empty states in the valence zone, or 
holes. Fermi function, defined in Chapter 3, following the principle of 
statistical mechanics, will determine the probability that in conditions of 
thermal equilibrium with temperature T, an electron occupied a state with 
energy E,  
 
                               f(E) = {exp [(E-Ef) / (h ) / (kBT)] +1}-1                      (4.41)  
 
At T = 300 K, kBT = 0.026 eV, kB is the Boltzmann’s constant, introduced 
in the previous chapter. A new energy characteristic, Ef, is the Fermi energy 
or Fermi level. The probability function f(E), is also called the Fermi-Dirac 
distribution.    
 According to this distribution, each energy level E is either 
occupied with probability f(E) or is empty with probability 1- f(E). In other 
words: 
  
f(E) is a probability of occupancy by an electron in a conductive band, and 

1- f(E) is a probability of occupancy by a hole in a valence band. 
 

For T=0 K, f(E) =1 for E < Ef, and f(E) = 0 for E > Ef (as follows from Fig. 
4.8, right-side panel). For T>0 K, (E-Ef) >> kBT, f(E) ~ exp [(E-Ef) / kBT] 
(plotted in the middle panel). So, the high-energy tail of the Fermi function 
in the conduction band (see coincidence of the left side and middle panels 
in Fig. 4.8) decreases exponentially with increasing energy E. 
 
  



Basic Principles of Photonics and Laser Operation 
 

89

 
 

Figure 4.8. Schematic distribution of electrons (dark spheres) and holes (white 
squares) with Fermi energy at the middle of the prohibited zone (left side panel), 

distribution of energy of electrons and holes for T > 0 K (middle panel), and 
energy of electrons and holes for T > 0 K. 

 
  The Fermi distribution is thus proportional to the Boltzmann 
distribution. According to symmetry, when E < Ef, and (E-Ef) << kBT, we 
get 1- f(E) ~ exp [(E-Ef) / kBT], and below the Fermi level the probability of 
occupancy by holes in the valence band also decreases exponentially (see 
coincidence of the left side and middle panels in Fig. 4.8). 
  Let us now consider the concentration of carriers, electrons, and 
holes in the thermal equilibrium statement. For this purpose, we consider 
that n(E) E and p(E) E are the numbers of electrons and holes per unit 
volume, respectively, with energy lying between E and E + E. The 
densities n(E) and p(E) can be obtained via densities of states at the energy 
level E and probabilities of occupancy of the level by electrons and holes, 
i.e., 
 
                                            n(E)= c(E) f(E)                                       (4.42a) 
                                                         
                                           p(E)= v(E) [1- f(E)]                                     (4.42b) 
 
The full concentration can be found via integrals of expressions (4.42a) and 
(4.42b). In this case, the Fermi energy (for n=p) lies in the middle of the 
bandgap (see left side panel in Fig. 4.9). Moreover, in materials with mc = 
mv, n(E) and p(E) are symmetric (see the right-side panel in Fig. 4.9). 
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Figure 4.9. Left panel presents distribution of electrons (black spheres) and holes 

(white squares) in the conductive and valence zones, respectively; right panel 
presents symmetrical distribution of electron and hole energy via their 

concentration. 
 

 In most pure semiconductors, however, the Fermi level is not at the 
middle of the bandgap. Thus, the energy band diagrams, Fermi function, and 
equilibrium concentration of electrons and holes for n-type and p-type 
semiconductors are shown in Figs. 4.10a and 4.10b, respectively. Donor 
electrons occupy an energy ED slightly below the conduction band edge (see 
Fig. 4.10a). For kBT = 0.026 eV (T = 300 K) and ED =0.01 eV, most donor 
electrons will be excited into the conduction band. We see increase of n(E) 
compared to p(E). The Fermi level will be above the middle of the bandgap. 
For the p-type semiconductor with acceptor level energy EA slightly above 
the valence zone, (see Fig, 4.10b), conversely, p(E) > n(E).  
 

 
 

Figure 4.10a. Sketched scenario, as in Fig. 4.9, but for n-type semiconductor when 
n(E) > p(E). 
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Figure 4.10b. Sketched scenario, as in Fig. 4.10a, but for p-type semiconductor 
when p(E) > n(E). 

 
 In doped structures, according to electrical neutrality, n + NA = p 
+ ND (for fixed donors and acceptors). We notice that all the above 
discussions were regarding semiconductors in thermal equilibrium.  
 But if thermal equilibrium is destorbed, let us say, by an external 
electric current or a photon flux induces band-to-band transitions under too 
high a rate for inter-band equilibrium to be achieved, despite the fact that 
the conduction band electrons and valence band holes are in their own 
equilibrium. This situation is known as quasi-equilibrium, which arises 
when relaxation (decay) times for transitions within each of the bands are 
much shorter than the relaxation time between the two bands. Thus, the 
inter-band relaxation time is less than 10-12seconds, whereas the radiative 
electron-hole recombination time is 10-9seconds. Under these conditions, 
two separate Fermi functions are used for two bands: fc(E) and fv(E), as well 
as two energy levels, denoted by Efc and Efv. They are called quasi-Fermi 
levels (see Fig. 4.11). When they lie inside the conduction and valence 
bands, respectively, the concentration of both electrons n(E) and hole p(E) 
can be quite large.  
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Figure 4.11. Sketched scenario, as in Figs. 4.10a,b, but for the case of the absence 
of thermal equilibrium, where Fermi energy levels are presented as two energy 

levels denoted by Efc and Efv. 
 

 The quasi-Fermi levels are: 
 
                                     Efc= Ec + (3 2) 2/3 h2 n2/3/ 2mc                                 (4.43a) 
                                        
                                     Efv= Ev + (3 2) 2/3 h2 n2/3/ 2mv                                (4.43b) 
 
For arbitrary T, if the amounts of n and p are sufficiently large, so that 
Efc – Ec >> kBT and Efv – Ev >> kBT, the quasi-Fermi levels lie deep within 
the conduction and valence bands (see right panels in Fig. 4.11).  

4.5. Law of Mass Action 

 Before entering into the subject, let us consider approximations of 
the Fermi function. Indeed, it was shown that when (E-Ef) >> kBT, f(E) ~ 
exp [(E-Ef) / kBT], i.e., the Fermi function is an exponential function. 
Similarly, when (E-Ef) <<kBT [or (Ef - E)>>kBT], 1- f(E) ~ exp [(E-Ef) / kBT], 
i.e., it also is an exponential function. These conditions apply when the 
Fermi level lies within the bandgap, but away from its edges by an energy 
level of at least several times kBT. Thus, at T=300 K, kBT = 0.026 eV, 
whereas in Si Eg = 1.12 eV and in GaAs Eg = 1.42 eV, that is for both 
semiconductors, the bandgap energy is more than the thermal energy kBT.  
 So, we can use the above approximation of the Fermi function for 
an integral presentation of electron-hole pairs both in pure (intrinsic) and 
composite (doped) semiconductors, we get: 
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                                      n = Nc  exp [(Ec - Ef) / kBT],                                     (4.44a) 
                                               
                                      p = Nv  exp [(Ef - Ev) / kBT],                                     (4.44b) 
                                        
                                      n p = Nc  Nv  exp [- (Eg / kBT)].                              (4.44c) 
 
where 
 
                                        Nc = 2[(2 mc  kBT) / h2] 3/2                                    (4.45a) 
                                                   
                                        Nv = 2[(2 mv  kBT) / h2] 3/2                                   (4.45b) 
 
For mc = mv, if Ef  is closer to the conduction zone, then n > p, whereas if Ef 
is closer to the valence zone, then p > n. In thermal equilibrium, the product 
n p is independent of the location of Fermi energy Ef. Indeed, 
 
                     n p = 4[2  kBT/h]3  (mc  mv ) 3/2 exp [- (Eg / kBT)]                 (4.46) 
 
The constancy of the concentration (population per unit volume) product is 
called the law of mass action. It is useful both for pure and doped 
semiconductors, for which n = p = ni. From Eqs. (4.44c) and (4.46) we get: 
 
                                     ni = (Nc  Nv) 1/2  exp [- (Eg / 2 kBT)]                          (4.47) 
 
which is called the intrinsic carrier concentration, leading to a new 
presentation of mass action:  
 
                                                                n p = ni

2                                            (4.48) 
 
Thus, for T = 300 K in Si: ni = 1.5 1016 [m-3]; in GaAs. ni = 1.8 1012 [m-3]; 
in GaN: ni = 1.9  10-4 [m-3]. As for doped semiconductors of n-type, n=ND 
and p= ni

2/ND. This is only if Ef >> kT and lies within the bandgap. If it lies 
inside the conduction or valence zone, we deal with a degenerate 
semiconductor, and approximations (4.44) to (4.46) cannot be used. So, in 
the equations n  p > ni

2 or n  p < ni
2 is valid.  

4.6. Generation and Recombination of Electrons  
and Holes in Thermal Equilibrium 

 The thermal excitation of electrons from the valence band into the 
conduction band results in electron-hole generation (see Fig. 4.12). Thermal 
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equilibrium requires that this generation process be accompanied by a 
simultaneous reverse process of de-excitation, which is called electron-hole 
recombination. This process occurs when an electron decays from the 
conduction zone to fill a hole in the valence zone (see Fig. 4.12). The energy 
released by the electron may take the form of an emitted photon. In this case 
the process is called radiative recombination. Non-radiative recombination 
can occur via a number of independent competing processes, including 
transfer of energy to lattice vibrations creating one or more photons or to 
another free electron. 
 

 
 

Figure 4.12. Schematic presentation of effects of the generation of electron and 
recombination electron with hole. 

 
 Non-radiative recombination also takes place at surfaces and 
indirectly via traps or defect centers, which are associated with impurities 
or defects of the lattice that lie within the forbidden zone. These impurities 
or defect states can act as a recombination center if it is capable of trapping 
both an electron and a hole, increasing their probability of recombination 
(see Fig. 4.13).  
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Figure 4.13. Schematic presentation of effects of generation of electron and 

recombination electron with hole in existence of traps inside the forbidden zone. 
 
 

 Impurity-assisted recombination can be radiative and non-
radiative. Taking both an electron and a hole for recombination, it 
determines the rate of recombination, as the product of the concentration n 
and p. Thus: 
 
                                        rate of recombination = r n p                                 (4.49)  
 
Here the recombination coefficient r (in cm3/s) depends on the 
characteristics of the material, including its composition and defect density, 
temperature and doping level.  
 Electron-Hole Injection. When generation and recombination 
rates are in balance, usually called the steady-state regime, we deal with 
equilibrium concentration of electrons n0 and holes p0. If G0 is the rate of 
thermal electron-hole generation at a given temperature, and r is the rate of 
pair recombination, then in thermal equilibrium 
 
                                                     G0 = r  n0  p0                                             (4.50)  
 
The product is approximately the same whether the material is n-type, p-
type or intrinsic (e.g., pure). If now some external (non-thermal) injection 
mechanism, such as light falling on the material, occurs, additional pairs of 
electron-holes will be generated at a steady rate R (pairs per unit volume per 
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unit time). A new steady-state will be reached in which concentrations are: 
n= n0 + n and p= p0 + p. It is clear that n = p, since electrons and holes 
are created in pairs. Now a new rate of generation and recombination can be 
summed up to give: 
  
                                                  G0 + R = r  n  p                                              (4.51) 
 
Accounting for Eq. (4.50), after straightforward computations we get: 
 
                          R = r(n  p - n0  p0) = r n  (n0 + p0 + n) = n /          (4.52) 
 
With 
                                                       
                                            = [r ( n0 + p0 + n)] -1                            (4.53) 
 
For the case of (n0 + p0) >> n (the case of insufficient injection) (4.53) 
yields 
 
                                                  = [r ( n0 + p0)] -1                                (4.54) 
 
which is called the excess–carrier recombination lifetime [5–14].  
 For n-type material n0 >> p0 and  ~ 1 / (r  n0), whereas for p-type 
material n0 << p0 and  ~ 1 / (r  p0). However, these formulas are not correct 
in the presence of traps that play an important role in the process [1–3]. 
 Now we can describe the physical meaning of electron-hole 
recombination lifetime. For this purpose, we will introduce the rate equation 
for injected-carrier concentration written in such a manner [3–5, 12–15]: 
 
                                                   d( n)/dt = R - n /                                    (4.55) 
 
In a steady-state regime d( n)/dt = 0, deducing to Eq. (4.52). Now, if the 
source of injection is removed at the time t0, i.e., R=0, n decays 
exponentially with time  according to law: 
 
                                                 n(t) = n(t) exp{- (t - t0)/ }                     (4.56)  
 
In another limiting case of the presence of a strong injection, as follows from 
Eq. (4.53), the lifetime of electron-hole recombination  itself is a function 
of n. 
 On the other hand, in steady-state, if the rate R is known, the 
steady-state injected concentration can be determined by: 
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                                                        n = R                                            (4.57)   
 
from which one can obtain the total concentration of electrons, n=n0 + n, 
and holes, p=p0 + p, accounting for n = p.  
 We now introduce the internal quantum efficiency of 
semiconductor materials i, which is defined as a ratio of the radiative 
electron-hole recombination rr to the total electron-hole recombination 
coefficient r, which is a sum of the radiative rr and non-radiative rnr 
recombination coefficients, i.e. 
 
                                                i = rr / r = rr / (rr + rnr)                                 (4.58) 
 
Equation (4.58) can be written via the recombination lifetimes, r and nr: 
 
                                                       1/  = 1/ r +1/ nr                                         (4.59)  
 
So, the total internal quantum efficiency can be easily found as 
 
          i = rr / r = (1/ r ) / (1/ ) = (1/ r) / (1/ r +1/ nr) = nr / ( r + nr)       (4.60) 
 
The radiative recombination lifetime determines the rate of photon 
absorption and emission, as was explained above, and it depends on the 
carrier (electron and photon) concentration and the material parameter rr. 
For low to moderate injection rates   
 
                                                        r = [rr (n0 + p0)] -1                                   (4.61)  
 
which is in accordance with Eq. (4.54). 
 The non-radiative recombination lifetime is described by the 
similar equation:  
 
                                                    nr = [rnr (n0 + p0)] -1                               (4.62) 
 
However, this parameter is more sensitive to the centers of defects existing 
in the forbidden (depletion) zone, than for the concentration of electrons and 
holes in the conduction and valence zones, because non-radiative 
recombination takes place via defect centers in the forbidden zone. Typical 
values of recombination coefficients and lifetimes are presented in Table 4.1.  
  



Chapter 4  
 

98

Table 4.1. Two types of recombination and their lifetimes. 
__________________________________________________________________ 
Material            rr (cm3/s)                 r                  nr                               i     
____________________________________________________________
__   
  Si                        10-15                      10 ms               100 ns            100 ns       10-5 

  GaAs                  10-10                    100 ns            100 ns          50 ns      5 10-1 

  GaN                   10-8                    20 ns              0.1 ns           0.1 ns    5 10-3 

 
 The radiative lifetime for Si is orders of magnitude longer than its 
overall lifetime because of its indirect bandgap. This results in a small 
internal quantum efficiency. For GaAs and GaN, having a direct bandgap, 
they show larger internal quantum efficiency (5 10-1 and 5 10-3, 
respectively). 

4.7. Photon Interactions with Semiconducting Materials 

Before entering into a description of laser physical aspects, let us 
consider briefly the process of emission and absorption that can occur in 
semiconducting materials based on the discussions briefly described above 
considering the interaction of photons with atoms (see also Refs. [12–17]). 

4.7.1 Processes of Emission and Absorption of Light 
 in Semiconductor Materials 

 Figure 4.14 illustrates three main processes occurring in laser 
semiconductor diodes: a) spontaneous emission, b) absorption, and c) 
stimulated emission. 
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Figure 4.14. Schematically presented a) spontaneous emission, b) absorption, and 
c) stimulated emission. 

 
Spontaneous Emission. An electron occupying an orbit of energy 

level Ej within an atom may randomly make the transition to another orbit 
of energy Ei (Figure 4.14a) by giving up a photon of energy Ep = Ej - Ei = 
h  = hc/ . Each photon produced results from one atom making the 
transition from state Ej to Ei. Hence, the rate of photon emission is equal to 
-dNj/dt which is directly proportional to the density of atoms, Nj (atoms per 
m3), in the energy level Ej, and we can write: 
 
                                                 dNj/dt = - AjiNj                                                   (4.63) 
 
Equation (4.63) represents the instantaneous rate of decline of the 
population Nj of energy level Ej given no other influences. Hence, if we 
pump a large number of atoms, Nj, from the ground state up into energy 
level Ej and then sharply switch off the pumping source, the population Nj 
and the spontaneous emission intensity will decay according to Eq. (4.63). 
We can readily solve this equation to give Nj as a function of time as follows: 

                             Nj = Nj exp (-Aji t) = Nj exp (- t / ji)                               (4.64) 
 
Equation (4.64) indicates that a population perturbation, in excess of thermal 
equilibrium, decays exponentially with a time constant ji = 1/Aji, which is 
referred to as the spontaneous emission lifetime of state j. We now notice 
that Eq. (4.64) is correct only for transitions between two specific energy 
levels. More generally, spontaneous emission may occur to a number of 
energy levels below state j and we have for the rate of spontaneous emission 
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the following solution: 
 
                      Nj = Nj exp (– Aj t) = Nj exp (–t /  )                            (4.65) 
 
where Aj =  Ajn and j = 1/Aj are the cumulative spontaneous emission rate 
constants for transitions between states j and n, and j are the cumulative 
spontaneous emission time constants for these n transitions, respectively. 
We do not consider here additional non-radiative processes occurring in the 
lattice due to vibration or collisions. 
 Absorption. In Fig. 4.14b, photons of energy Ep = Ej - Ei = h   = 
h  c/  may be absorbed by atoms in energy level Ei, which make the 
transition to energy level Ej as their electrons move between the 
corresponding orbits. Since each transition involves the absorption of one 
photon into one atom, the rate of absorption is equal to -dNi/dt, and 
proportional to the population density of atoms, Ni, in energy level Ei and to 
the photon energy density at frequency . Hence, we can write: 
 
                                               dNj/dt = Bij Ni ( )                                       (4.66) 
 
where ( ) is the photon energy density per unit frequency interval at 
frequency  within a broadband radiation field (i.e., ( )d  is the photon 
energy density in the frequency interval  to  + d ) and Bij is the 
proportionality constant for absorption.  
 Stimulated Emission. In this process, a photon of energy Ej - Ei = h 
 c/ , incident on an atom which has an electron in an orbit of energy level 

Ej, stimulates that electron to make the transition to energy level Ei giving 
up an additional (to spontaneous emission) photon in the process (Figure 
4.14c). Intuitively, the rate of stimulated emission is proportional to the 
population, Nj, of the Ej energy level and to the incident photon energy 
density per unit frequency interval, ( ), giving 
 
                                            dNj/dt = Bji Ni ( )                                         (4.67) 
 
where Bji is the proportionality constant for stimulated emission. The 
photons resulting from stimulated emission have the same energy 
(wavelength and frequency), direction, phase and polarization as the 
incident stimulating photons. This process results in the creation of new 
photons, which are added to the incident beam. Hence, if stimulated 
emission dominates over absorption the incident beam is amplified (the 
aspect of amplification in lasers will be discussed in Chapter 6). 
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 The proportionality constants Aji, Bij and Bji, in the rate expressions 
for spontaneous emission, absorption, and stimulated emission, are referred 
to as the Einstein Coefficients. We will not enter into his theory, based on 
the Boltzmann law and on Planck's theory of radiation from a black body as 
discussed in Chapter 3, but we will present again the relations between these 
coefficients, rewriting them as elements of matrices, that is,  
 
                                                    Bijgi = Bjigj                                                      (4.68) 
                                                  
                                           Aji = [8 n3h 3 / c3] Bji                                             (4.69) 
 
In Eq. (4.68), the functions gi ( ) and gj( ) are referred to as the lineshape of 
the transition and g( )d  is the relative probability that light is absorbed or 
emitted by the i-j or j-i transitions, respectively, in the frequency range  to 
 + d . We do not enter deeper into this subject because it is out of the scope 

of this book; we only will notice that over the full range of possible 
frequencies of optical radiation of any material, the probability of emission 
or absorption must be unit. This condition, then, allows finding the 
distribution of the lineshape function g( ) in the frequency domain both for 
absorption, and stimulated and spontaneous emission of light occurring in 
any solid material, namely, in semiconductors. 

According to that mentioned above, we can present the emission 
and absorption via the steady-state nature of each atom of a specific 
substance – to be in discrete energy levels that can be listed in order of 
ascending discrete values of energy Eij: E1, E2, E3,…, En. This means that 
each atom of any material or substance has a characteristic set of energy, 
called steady-state conditions of the atoms and free electrons inside the 
material, as an atomic system, crystal-like or liquid. Under conditions of 
thermal equilibrium for temperature T > 0 K, the number of atoms having 
energy Ei is related to the number of atoms having energy Ej by the 
Boltzmann relation [1–9] 

 
                        Ei /Ej = exp [(Ej – Ei) / kBT]                               (4.70) 

 
where the Boltzmann's constant equals: kB = 1.38·10-23J·K-1. Here, the 
energy of transfer of the atom (or corresponding valence electron) from 
lower energy level i to higher energy level j (j > i) according to quantum 
theory, can be written as :  
                                    
                                             h ji = Ej  -   Ei, ,         j > i                               (4.71)                      
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Similarly, relation (4.71) states that one quantum of light – a photon, with 
energy h ji can be absorbed by the atom, which in consequence has 
increased in energy from one of its steady states of the atomic system with 
energy Ei to another steady-state of the atomic system with energy Ej. 
Consequently, a photon will be emitted when a downward transition occurs 
from Ej to Ei, and this photon will have the same frequency ji. 
 In this context, considering a flux of q photons across unit area per 
unit time, we can write an intensity of light radiation by use of the "wave-
corpuscular" dualism and present the light intensity as a stream of photons 
[3–8, 16, 17], i.e.: 
 
                                                         I = q h                                                    (4.72) 
 
Similarly, any other quantity defined within the wave context also has its 
counterpart in the corpuscular context. So, in our further explanation of 
matter, we will use both the wave and the corpuscular (i.e., particle) 
representation. If so, Eq. (4.70) to (4.72) state that the light frequencies 
emitted in the form of photons or absorbed from photons by atoms fully 
characterize each material or substance, crystal-like or liquid under 
consideration. When an excited system returns to its lowest state, some 
return pathways are more probable than others, and these probabilities, 
described by the corresponding statistics, Fermi (for electrons inside atoms) 
or Boltzmann (for photons), are also characteristic of the specific atoms or 
materials under consideration.   
 In other words, the light wave, as a continuous electromagnetic 
wave, can be regarded as a probability function whose intensity at any point 
in space (or within an atom) defines the probability of finding a photon (or 
an electron) there. According to this wave-particle dualism, the emission 
and/or absorption spectrum of any material can be used for its identification 
and to determine the quantity present. These ideas form the substance of the 
subjects known as photonics and spectroscopy, which are very extensive 
and powerful tools in materials analysis, but outside the scope of our book.    

4.8. Physical Principles of Laser Operation 

The laser is a very special source or detection-based element, the 
discovery of which in 1960 by Maiman [8] gave a push to optical fiber and 
wireless optical communication. The word laser is an acronym for Light 
Amplification by Stimulated Emission of Radiation, and we will briefly 
describe the processes on which it depends. Further deep analysis of laser 
characteristics was carried out by Russian researchers during the sixties of 
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the last century and their results are fully described in Ref. [2, 4].  
 As was mentioned in the previous paragraph, a photon could cause 
an atomic system to change from one of its steady states to another 
according to the process described by (4.71), that is, the change of the 
atomic system from a lower to a higher energy state. However, if the system 
was already in the higher of the two states when the photon acted, then this 
action would cause a transition down to the lower state, still in accordance 
with (4.71), but now by changing j on i and i on j (here becomes j < i). This 
process is called stimulated emission since the effect is to cause the system 
to emit a photon with energy h ji corresponding to the energy lost by the 
atomic system. Finally, we have two kinds of photons – the acting photon 
(as an element of outer light radiation) and the emitted photon (as an element 
of light excited by the material as an atomic system) [9–17]. 

Let us explain stimulated emission by the use of a very simple 
scenario illustrated qualitatively in Fig. 4.15. Here the emitted light photon 
(denoted by "E") has a wavelength of 550 nm that corresponds to the "green" 
visual light spectrum. 
 
                                       

Figure 4.15a. Sketch on the process of            Figure 4.15b. The avalanche process 
stimulated emission of a laser.                          of photon radiation in lasers.  

The emitted photon transfers its energy to the 1st level (of lower 
energy) atom or its valence electron, giving rise to its jump into the 3rd level 
(of higher energy), which is nonstable [lifetime is t1~10-8 s]. Then, the 
electron fast falls onto the metastable 2nd level with the lifetime of the 
electron of about t2~10-2 s. This metastable level 2 accumulates many such 
atoms (e.g., valence electrons) because t2 >> t1 (Fig. 4.15a). So, during the 
longer period after the fall from metastable level 2 to ground level 1 with 
respect to that from the unstable 3rd level to the metastable 2nd level, a lot 
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of “red” photons with a wavelength of ~695 nm will be created (from one 
to two, from 2 to 4, from 4 to 8, and so on, see Fig. 4.15b).  

This process was called stimulated radiation by Einstein and it is 
the main process of radiation accompanying the operation of avalanche laser 
sources and diodes, based on the avalanche (exponential) growth of photons 
stimulated by the laser itself caused by stimulated emission. Finally, we 
have laser light. 

We must also mention that another process exists when an atomic 
system is not in its lowest energy state and is not in a stable equilibrium 
condition. If it has not had any interaction with the outer background but is 
embedded into a hot environment (even with a room temperature of 290 K 
= 17 C), it will eventually fall to its lower state. Thus, an atomic system 
with state Ej will fall spontaneously to the lower state Ei even without the 
stimulus of photon energy h ji in a time which depends on the exact nature 
of the equilibrium conditions. The emitted photon that results from this type 
of transition is thus said to be due to spontaneous emission [9–15]. 

To understand quantitatively how a laser works in these two 
regimes, spontaneous and stimulated, let us consider a simple two-level 
atomic system with energies E0 and E1, respectively, as shown in Fig. 4.16a. 
We also suppose that this two-level system is illuminated by light radiation 
at a frequency: 
                                              10 = (E1  -   E0,) / h                              (4.73)                         

 

Initially, if the system is in thermal equilibrium at temperature T, the relative 
numbers of atoms (or valence electrons) will be, according to [12–
17],                                                                                                    

                                          E0/E1 = exp [(E1 – E0) / kBT]                      (4.74)       
                                                                       

As follows from (4.74), for E1 > E0, we obtain N1 < N0. This means, if we 
assume the probability of transition is the same for two transitions, more 
atoms will be raised from the lower to the higher state than vice versa since, 
according to (4.66), there are more atoms in the lower state. As the intensity 
of radiation is increased (i.e., radiation at frequency 10 is steadily increased 
from zero), the number of downward spontaneous transitions will increase 
as the occupancy of the upper state rises, tending toward the saturation 
condition where the occupancies of the two states and the rates of transition 
in the two directions are equal. Now we will consider two variants of photon 
emission: stimulated and spontaneous, as shown in Fig. 4.14 on the left and 
right sides, respectively. 
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This process is called the two-level atomic process. In the case of the 
spontaneous emission regime, the desired electron from the conductive zone, 
the lowest level of the conductive-wedge level of energy E1 spontaneously 
falls into the valence zone, filling the lowest to the valence-wedge free level 
of energy E0 (called the process of electron-hole recombination). This 
process is accompanied by the emitting of a photon with energy h 10. When, 
conversely, a photon with energy enters into the semiconductor with energy 
h 10, it stimulates an electron to enter from the valence zone into the 
conductive zone, and after (due to changes of temperature or other 
conditions) falls back down, emitting the photon with the same energy h 10 
(see Fig. 4.16a). But these are very primitive stages of spontaneous and 
stimulated emissions. Often, there are more complicated stages of stimulated-
spontaneous mechanisms of emission observed in semiconducting lasers.  

 

Figure 4.16. a) two-level atomic system for spontaneous emission description, and 
b) three-level atomic system for stimulated emission description (according to 

[17]). 

 
Indeed, considering now a three-level atomic system shown in Fig, 

4.16b, we have a lowest level E0, a metastable level E1, and an unstable level 
E2, a simple sketch of which was presented in Fig. 4.15a and explained 
qualitatively.  

If the three-level system, being initially in thermal equilibrium, is 
irradiated with light frequency  

 
                                    20 = (E2  -   E0) / h                                      (4.75) 
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the effect is to raise a large number of atoms (or valence electrons) from the 
level with energy E0 to the level with energy E2. These particles then decay 
quickly [because the lifetime at this level ~ 10-8 s] to the state E1 by 
spontaneous emission only (since the input light frequency 20 does not 
correspond to this transition with frequency 21), and subsequently only 
slowly from this metastable long-lived [with t~10-2 s, see above] return back 
to the ground state E0. Owing to this process, a larger number of atoms can 
be in state E1 than in state E0. Since this process does not correspond to 
Boltzmann distribution (4.70), it is known as an inverted population [2]. 
Because the process of transition from the ground level to the unstable level 
is about a million times shorter than that from unstable to metastable, a lot 
of excited atoms (i.e., electrons) are accumulated into the metastable level. 
After the incidence of the second beam of light on this inverse population at 
frequency the effect is described by (4.73)-(4.74). 

It produces a downward movement by stimulated emission as it 
can excite atoms from E0 to E1. Thus, a lot more stimulated photons are 
produced than are absorbed by excitations (see also qualitative explanation 
shown in Fig. 4.15b). We call this the beam receiving gain from the atomic 
system (material or substance). In other words, the light beam is amplified. 
The system is said to be pumped by the first beam to provide gain for the 
second beam (as shown by Fig. 4.16b). We have the effect of the light 
amplification by stimulated emission of radiation, that is, we have obtained 
the laser [3–12].  

Now putting the desired material system between two parallel 
mirrors, we can not only amplify the stimulated photons, but also produce 
an oscillator, because as follows from Fig. 4.17a and 4.17b, such 
oscillations cover a wide spectrum of frequencies radiated by the laser. 
Moreover, there is a difference between laser radiation and visual light. 
Thus, the process of radiation by laser occurs with high accuracy and the 
phase of all radiated photons fully coincide with each other. Finally, the 
resulting laser beam will oscillate strongly (Fig. 4.17b). Such radiation of 
the laser is called coherent, and differs from that of visual light, generated 
let us say, by a lamp, which consists of a lot of partial short wavelength 
oscillations (see Fig. 4.17a).        
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Figure 4.17. a) Radiation of natural light, and b) coherent radiation of laser. 

Finally, we have obtained monochromatic (with narrow frequency 
band) or polychromatic (with wide frequency band) coherent (with well-
defined phase), and well-collimated light: we have laser light. The features 
and operation properties of the laser have been described and are the most 
commonly used light sources and detectors usually used in optical 
communication. Because, as was outlined in [9–12], most laser sources are 
currently constructed by use of semiconducting materials, or crystal-like 
materials, we briefly described the physical principles of semiconductor 
operation based on the zonal structure of materials described in Chapter 3. 
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CHAPTER 5 

FUNDAMENTALS OF LIGHT EMITTERS, 
OPTICAL DIODES AND DETECTORS 

 
 
 
As was mentioned in Chapters 3 and 4, the most commonly used 

light sources in optical communication, wired and wireless, as well as in 
LIDAR applications, are those based on semiconducting solid materials. 
Among them, most attractive for practical applications, are the light 
emitting diode (LED), the laser diode (LD), the photodiodes of p-n and p-i-
n types, and the avalanche photodiode (APD) [1–11]. All of them act as 
emitted sources (e.g., lasers, see Chapter 4) or receiving detectors, which 
have found importance in electronics, rectifiers, logic gates, voltage 
regulators, or tuners, and in optoelectronic diodes, as well as in solar cells. 
Now we will start to describe the operational parameters and characteristics 
of optical sources and detectors, as both sides, the beginning and the final, 
terminals of any wired or wireless link, any optical network, and of LIDAR 
(see Chapter 1).  

5.1. P-N Junction Operation Mode in Semiconductor 
Devices 

In Chapters 3 and 4, it was shown that the pure semiconductor, where 
the amount of electrons prevails with respect to holes, has properties of the 
n-type semiconductor, and that, in which the amount of holes prevail, has 
properties of the p-type semiconductor. We put a question: what will happen 
if we contact both types of pure semiconductor, as shown in Figure 5.1. In 
this case, when T > 0 K, electrons from the n-type semiconductor will 
penetrate to the p-type semiconductor through the junction created between 
them. In the same manner, the holes will penetrate from the p-type 
semiconductor to the n-type semiconductor via the junction [1–6]. In other 
words, the p-n junction is a home-junction between p-type and n-type 
semiconductors. Finally, they will create a spatial electrical charge 
difference inside a home-junction and, therefore, the inner electric field, as 
shown in Figure 5.1. 
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The inner electric field regulates the number of electron-hole pairs, 
which increases with time, when this process is not compensated by the 
inverse process of recombination of electron-hole pairs, as major carriers of 
charges. In this case, as was mentioned in Chapters 3 and 4, the condition 
of dynamic equilibrium is observed. Of course, the width of this junction is 
too thick – around a few micrometers, and in Figure 5.1 it is represented as 
wider for a clear understanding of the process. The Fermi energy level Ef, 
determined in the previous two chapters, as the maximum energy obtained 
by valence electron/hole to pass by the valence zone, and is depicted by the 
dashed line in the middle panel of Figure 5.1 and by the dashed line inside 
the forbidden zone. 

 

 
 

Figure 5.1. P-N junction – schematically presented principle of operation. 
 

Figure 5.2 shows the difference between situations when an outer 
source is absent (outer source voltage V = 0) and when it exists with an outer 
voltage V > 0, called in literature the biased p-n junction. 
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Figure 5.2. Difference between p-n semiconductor states without (V = 0) and with 
(V > 0) outer source. 

 
As is clearly seen from Figure 5.2, for V = 0 there is a unified Fermi 

energy level Ef for the p-semiconductor and the n semiconductor inside the 
p-n junction (denoted in the upper panel of Figure 5.2 by the dashed line). 
When the p-n junction is electrically biased with an outer source of voltage 
V>0, splitting of the corresponding Fermi energy level in two is observed 
within the valence zone (with energy EFp) and the conductive zone (with 
energy EFn) denoted by dashed curves in the bottom panel of Figure 5.2.  

We will now summarize all features regarding p-n junctions 
mentioned in Chapter 3 and shown in Figure 5.1 to Figure 5.3. When two 
semiconductors, p-type and n-type, are arranged to be in contact, as shown 
in Figures. 5.1 to 5.3, the following effects take place: 

 
1. In the absence of an outer source and in thermal equilibrium, 

electrons and holes diffuse from areas with high concentration 
towards areas of low concentration (left panel of Figure 5.3). 
Electrons diffuse from the n-region to the p-region leaving behind 
their movements positively charged ionized donors. In the p-region 
the electrons recombine with existing holes, and only near the 
boundary of the junction are the rest of the electrons (denoted by 
signs “-” in the top-left panel of Figure 5.3). Holes diffuse from the 
p-region to the n-region leaving behind their movements 
negatively charged ionized acceptors. In the n-region the holes 
recombine with existing electrons, and only near the boundary of 
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the junction are the rest of the holes (denoted by signs “+” in the 
top-left panel of Figure 5.3). 

 
Figure 5.3. a) P-N junction in stationary regime; P-N-junction under outer source 

which is: direct with (c) and opposite to (b) the inner electric field. 
 

2. As a result, a narrow region on both sides of the junction is nearly 
depleted, and mobile charged carriers are developed called the 
depletion layer or p-n junction. It contains fixed charges (positive 
(+e) in n-type semiconductors and negative (-e) in p-type 
semiconductors), creating an electric field in this layer directed 
from n-type to p-type, as shown at the left-top panel of Figure 5.3.  

3. In thermal equilibrium and in the absence of an outer source, there 
is only a single Fermi function for the entire structure, which 
describes the transition of electrons or holes from the valence zone 
to the conductive zone and vice versa. So the Fermi energy levels 
in the p-band and n-band are the same (see dashed line in the top 
panel of Figure 5.2, and the left-top panel of Figure 5.3 denoted by 
EF).  

All the above features of the carrier (electrons and holes) movements are 
correct in the absence of an outer source.  
 

4.  When the p-n junction is biased by the outer source, its potential 
difference V provides a lower potential energy on the n-side 
relative to the p-side (two right panels in Figure 5.3). This field 
with the potential difference V0 (called built-in or intrinsic) 
obstructs the diffusion of further mobile carriers through the 
junction region. 

5. In the case of V>0 net (cumulative) current flows across the p-n 
junction and the connecting electric circuit, because these currents 



Fundamentals of Light Emitters, Optical Diodes and Detectors 
 

113

are associated with drift and partly with the diffusion of both 
carriers, electrons and ions.  

6. When we put charge “+” in the p-region, and “-” in the n-region, 
the outer field has the opposite direction to the inner field (i.e., the 
width of p-n junction will decrease) and the increase of a current 
through the circuit is observed (see Figure 5.3c). The P-N junction 
works as a direct-biased (forward-biased) junction. 

7. Conversely, when we put “+” in the n-region, and “-” in the p-
region (Figure 5.3b), the outer and inner fields have the same 
direction (i.e., the width of p-n junction will increase), decreasing 
total current through the circuit. The P-N junction works as an 
opposite-biased (or reverse/inverse –biased) junction. 

To illustrate this process by the use of numerical examples let us 
consider that the concentration of electrons and holes under a temperature 
of T ~290 K is 2.5  1013 particles / cm3, then their product, p  n = 6.25  
1026. Let us consider that after some diffusion of electrons, we obtained in 
the junction ~1016 electrons / cm3.  

As for holes, their number will be ~ 6.25  1026 /1016 = 6.25  1010 
holes / cm3 due to the law of working masses [1–4, 11] (see Chapter 4). Due 
to the transfer of electrons from the n-region to the p-region the 
concentration of electrons is decreased by 106 times [from the beginning 
there were 1016 electrons in the n-region]. The same process of decreasing 
hole concentration will be observed during the transfer of holes in the 
opposite direction – from the p-region to the n-region. Continuous decrease 
of concentration of carriers, electrons and holes, at the proximity of the 
boundary layer (i.e., junction) is shown by the two curves in the bottom 
panel of Figure 5.1. According to this figure, at the middle (where the curves 
cross each other) both charges are presented in equal concentration, which 
according to the law of working masses equal 2.5  1013 particles / cm3.  

Thus, the total concentration of particles is 5 1013 particles / cm3, 
that is, (1016 / 5 1013) 200 times less in the junction with respect to each of 
them in the n-region and p-region separately (we remember that initially it 
was ~ 1016 particles / cm3, see above). So, the p-n junction is a depletion 
zone of charges. But, here the process is completely different when 
compared with diffusion in gases. Here, entering in the p-region, electrons, 
leave in the n-region positive holes. At the same time, holes diffused from 
the p-region to the n-region, leave in the p-region electrons with negative 
spatial charge. Finally, between these two spatial charges, the inner electric 
field is created, as shown in the left panel of Figure 5.3. The more particles 
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that diffuse, the stronger this inner electric field. Such diffused carriers in 
both directions are called the majority electrons and majority holes. 

Let us now consider a more practical case, shown in Figure 5.4, 
where such a p-n semiconductor was connected to the electric battery in 
such a manner that the “+V” of the electrical source was in contact with the 
p-type semiconductor, and its “0” (called the ground voltage) was 
connected to the n-type semiconductor. In this case, the outer electric field 
will occur and the direction of which (according to the rule of electrostatics) 
will be directed from “+V” to “0”, that is, will be directed opposite to the 
inner electric field (presented also in Figure 5.1 and Figure 5.3). 
 

 
 

Figure 5.4. Processes occurring in P-N-junction introduced in an electrical circuit, 
called the biased junction. 

 
As seen from the middle panel of Figure 5.4, the energy of the 

prohibited (depletion) zone between the valence and conductive energy 
band decreases from e Ve to e  (Ve –V0), helping electrons more easily 
leave the valence band and fill the conductive band, finally, increasing part 
of the drift current (compared with inner diffusion) generated along the 
biased p-n junction.  

Now, if “+V” of the electric source will be put to the n-type 
semiconductor and “0” to the p-type semiconductor, both fields, inner and 
outer, having the same direction, will increase the width of the junction 
region (see also Figure 5.3b, middle panel), leading to decrease of the total 
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current through the outer circuit to the minimum. Such a thick inner junction 
was called the inverse-biased junction, and the potential energy in the n-
region is increased compared with the p-region. 

If, conversely,  “+V” of the electric source will be put to the p-type 
semiconductor and “0” to the n-type semiconductor (as shown in Figure 
5.3c right panel), the outer field has the opposite direction to the inner field, 
will decrease the width of the junction region, increasing the possibility of 
the major carriers (electrons from the n-region and holes from the p-region) 
passing through the junction, and therefore, and finally, leads to increase of 
the total current through the outer circuit to the maximum. Such a thick inner 
junction was called the forward-biased junction. 

So, the p-n junction works as a diode generating minority carriers 
inside the junction regulated by an outer electric field, which drift through 
the junction: electrons in the direction towards “+” and holes in the direction 
towards “-” of the biased electrical circuit. In a thin p-n junction minor 
carriers exist, electrons n << n, and holes p << p (see the bottom panel 
in Figure 5.4), which give impact in their diffusion through the junction, 
called minority carriers diffusion, as was mentioned above with the help of 
Figure 5.1. In this case, one can find analytically close relations between the 
major and minor carriers (electrons (n) and holes (p)) playing the main role 
in drift and diffusion processes, respectively.  

As was shown in Chapter 4, in the case of equilibrium, when n = 
p, (see also bottom lines in Figure 5.4) with an increase of temperature the 

amount of charged particles, electrons and holes, taking part in through-
diode current creation, are 

 
                                      n = n0 + n and p = p0 + p                                       (5.1) 
 
It should be noticed that usually n = p << n0 + p0. As mentioned above, 
this allows us to define the p-n diode as 
P-N diode works as a device guiding current only in one direction, called 

a forward-biased device. 
Hence, a p-n junction, operating as a diode, has the following current-
voltage (or volt-ampere) characteristic, called in the literature the Shockley 
equation [1–4, 9–11]: 
 
                                           i=is{exp(e  V / kB T) -1}                                       (5.2) 
 
So, in the forward-biased p-n diode the current of majority carriers gives an 
increase of the total (cumulative = drift + diffusion) current by the 
exponential factor exp(eV/ kBT). In formula (5.2) is is a minimum current 
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that is created by diffusion of minor carriers located inside the depletion 
junction in the inverse-biased device (when V<0). It can be expressed via 
the area of p-n junction, A, and their charge, q = Ze [for electrons and holes 
Z=1], number of injected charge carriers, ni, number of minor diffused 
chargers (electrons) from n-type, Nn, number of minor diffused chargers 
(holes) from p-type, Np, their lifetime before mutual recombination in p-n 
junction, n and p, respectively, as: 
 
                  is = q  A  ni

 2  [(Dn / n)1/2 / Nn + (Dp / p)1/2 / Np ]                            (5.3) 
 
In Eq. (5.3) Dn and Dp are the coefficients of diffusion of minor electrons 
(from n-type) and minor holes (from p-type), which are functions of 
mobilities of these minor carriers, n and n, and temperature of the 
environment, T (in Kelvin): 
   
                       Dn = n  kB T /q and Dp = p  kB T /q                                      (5.4a) 
 
To find Nn and Np, we need to give relations between the conductivity of 
electrons, n, and holes, p, and their partial resistivity, n, and p, via their 
mobilities, n, and p, that is, 
 
                                                   n = 1/ n = q  n  Nn  
 
                                                   p = 1/ p

 = q  p  Np 
 
from which we get: 
 
                    Nn = 1 / (q  n  n) and Np = 1 / (q  p  p)                            (5.4b) 
 
A sketched view of such a p-n diode (a), its electrical scheme (b), and volt-
ampere characteristic (c), are illustrated by Figure 5.5. 
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Figure 5.5. Sketched view of: a) p-n diode, b) electrical scheme, and c) its volt-
ampere characteristics. 

 
The excess carriers - electrons n entering the p-region and holes 

p entering the n-region, become the majority carriers, which then 
recombine with the local majority carriers in the n-region and p-region, 
respectively and, finally, concentration decreases in both regions. This 
process is known as majority carrier injection. An inverse process of decay 
of electron-hole pairs is known as majority carrier extraction. 

5.2. Laser Diodes 

5.2.1 Light-Emitted Diode (LED) 

As follows from the information presented above the simultaneous 
availability of electrons and holes enhances the flux of emitted photons from 
a semiconductor – a light beam. 

Definition of LED: The light-emitted diode (LED) is a forward-
biased p-n junction semiconductor with a large radiative recombination rate 
arising from injected minority carriers. The semiconductor material is 
usually direct-bandgap (see definition in Chapter 4).  

The difference between laser diodes (LDs) and LEDs is the 
following: in an LED the current density is low, and the light is generated 
by spontaneous emission. In laser diodes large current densities supply large 
numbers of electrons into the active region conduction band creating a high 
electron population and a large number of holes into the valence band 
creating empty electron energy levels.   

The forward-biased diode, as an electronic device, is characterized 
by the photo-generated current, the major carriers of which are forward-
directed through the junction, that is, are usually direct-bandgap. As follows 
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from the information presented above the simultaneous availability of 
electrons and holes enhances the flux of emitted photons from a 
semiconductor. Electrons are the major charge in n-type material, and holes 
are the major charge in p-type material, but the generation of copious 
amounts of light requires that both electrons and holes would be localized 
in the same region of space. This condition can be really achieved in the 
junction region of a forward-biased p-n diode described previously in 
paragraph 5.1.1.  

As we mentioned in Chapter 3, p-n junction electron-hole pairs 
strongly recombine with each other emitting light as a stream of photons. In 
a steady-state regime, in the absence of outer forces (electric field or outer 
light), the velocity of generated electron-hole pairs and combined electron-
hole pairs will be in equilibrium conditions. The process of strong electron-
hole recombination together with spontaneous emission of electrons falling 
from the conductive to valence zones, together create a flux of photons, as 
shown in Figure 5.6, called in literature electroluminescence.  
 

 
 

Figure 5.6. Energy band diagram of p-n junction that is strongly forward-biased by 
an applied voltage V. Dashed lines represent the Fermi levels, which are separated 

as a result of the bias. 
 

Let us return to processes occurring in LED and put a question: 
how is light emitted from the p-n junction? As now shown in Figure 5.6, a 
forward-directed circuit with input voltage V causes holes from the p-region 
and electrons from the n-region to be forced and drift into the common p-n 
junction region by the process of minority carrier injection, where they 
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recombine (therefore this region is called the depletion region) and emit 
photons. So, the simultaneous abundance of electrons and holes within the 
junction region results in an injection of light radiation as a stream of 
photons due to strong electron-hole recombination [7–11]. 

A rate of injection of current carriers with charge q = e, i, can be 
found as: 

 
                               R = i / q V   [cm-3 s-1]                                      (5.5)     

  
At the same time, under outer light radiation (see Fig. 5.6) p-n 

junction of the semiconductor can increase the current inside the outer 
electric scheme. So, we can state that LEDs can be used both in photonics 
and in photo electronics. Knowledge of quantum efficiency, i, as a ratio of 
the number of photons emitted by carriers to the number of carriers, and a 
total current according to Eq. (5.2) allows us to find the flow of light emitted 
by an LED, i.e., 

 
                                              = i  i / q = i  V  R                                      (5.6a) 
 
Accounting for conditions n = p discussed in paragraph 5.1 and 
introducing the time the process of carriers injection and the time of mutual 
recombination,  = i  r, gives another expression of the photon flux emitted 
by LED: 
 
                                             = i  n  V /  = n  V / r                              (5.6b) 
 
The output power of a LED increases linearly from zero with the applied 
drive current (see Figure 5.7).  
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Figure 5.7. The optical intensity vs. the drive current for two kinds of signals: 

analog and digital. 
 

In a digital modulation scheme (see definitions in Chapter 1) the 
device is biased at zero drive current and current pulses representing digital 
ones are applied to generate the optical pulses (see Figure 5.7).  

For analog modulation (see definitions in Chapter 1), the device is 
biased mid-way between zero and the maximum drive. The power/current 
characteristic and the simple modulation schemes imply that the biasing and 
drive circuitry are straightforward. In addition, the current density in LEDs 
is lower than that in lasers.  
 Mathematically, the linear dependence of optical power of emitted 
light by an LED versus the amplitude ai of the light emitted by an LED and 
the drive current can be simply presented by the following relation: 
 
                                                   iP a i                                                                (5.7) 
 
We should also notice that light is generated in semiconductor sources 
/lasers as electrons fall from the bottom of the conduction band to the top of 
the valence band producing photons with a minimum energy equal to the 
bandgap, Eg. The electrons occupy a small range of energy levels (states) at 
the bottom end of the conduction band and fall to any level in a range of 
empty states (holes) at the top end of the valence band. There is thus a small 
distribution of photon energies and corresponding wavelengths in the 
emitted light.  
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The distribution of wavelengths of light generated depends on the 
distribution of electron energies in the conduction band and the distribution 
of empty states as in the valence band. The number of available states as a 
function of energy is defined by the density of states function (Figure 5.8a) 
and the distribution of electrons in these states is defined by the Fermi-Dirac 
function (Figure 5.8b). 
 

 
Figure 5.8. a) The density of states function and b) the Fermi-Dirac function. 

 
Due to their energy distribution along the narrow optical radiated 

bandwidth LEDs are more reliable than laser diodes with less chance of 
current-induced heating at defects and eventual destruction. The output 
power of LEDs for communications applications ranges from about 25 μW 
(-16 dBm) to about 1 mW (0 dBm) with powers around 100μW (-10 dBm) 
being typical.  

In Chapter 10 it will be shown that the spatial and coherence 
properties of the LED emission are poor, and it is a difficult optical problem 
to collect the light and focus it down to a small spot size. Hence, for single 
mode fiber with its core diameter less than 8 μm, the power launching from 
a LED is highly inefficient, incurring losses of 20–25 dB. For this reason, 
LEDs are only used with multimode fiber applications 

5.2.2. Laser Diode (LD) 

Laser diodes (LD), have a forward-biased p-n semiconductor 
junction with two parallel surfaces that act as reflectors, and therefore, 
works as an optical amplifier. Amplification is achieved by use of the 
returning ray paths provided by mirrors for optical feedback.   
 These mirrors are usually implemented by cleaving the 
semiconductor material along its crystal planes, as shown in Figure 5.9 
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according to [9–11]. The sharp refractive index difference between the 
crystal and the surrounding air causes the cleaved surfaces to act as 
reflectors. The semiconductor crystal acts both as a gain medium and as an 
optical resonator, as illustrated in Figure 5.9, achieving a sufficiently large 
gain coefficient. At the same time, the feedback converts the optical 
amplifier into an optical oscillator, i.e., into a polychromatic coherent laser.  

The laser diode (LD) has many features similar to the light-emitted 
diode (LED) because in both devices the source of energy is an electric 
current injected into a p-n junction. However, the light emitted from an LED 
is generated by spontaneous emission, whereas the light from an LD arises 
from stimulated emission (see definitions above). 
 

 
Figure 5.9. A sketched view of LD as a forward-directed p-n semiconductor 

junction with two parallel cleaved surfaces that act as reflectors (according to 
[11]).  

 
There is a principal difference between LED and LD detectors. If 

in Figure 5.7 for LED the drive current starts from zero, in an LD detector 
the drive current starts from some threshold iTH, as shown in Figure 5.10 
(rearranged from [9, 10]), after which the same linear dependence of light 
power versus the drive current takes place according to the same formula 
(5.7), but for i > iTH. The process is as follows. As the drive current to a laser 
diode increases from zero, light is generated by spontaneous emission until 
the current is high enough to achieve a population inversion which provides 
sufficient stimulated emission and gain to exceed the loss and tune-on laser 
oscillation. The precise point at which the gain exceeds the loss and laser 
operation begins is called the threshold and the drive current at this point is 
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known as the threshold current, iTH (see Figure 5.10). Below the threshold 
the laser operates like an LED and the power increases slowly with 
increasing current. Above the threshold the power increases linearly rapidly 
with increasing drive current in the region of full laser operation (see Figure 
5.10). 
 

 
Figure 5.10. Output intensity of optical pulse signal vs. drive current. 

 
Current pulses representing the digital ones are then applied to 

generate the optical pulses (see Figure 5.10). The threshold feature causes 
an operational problem because the threshold current increases with 
temperature. 

Physical processes of light emission in LDs depend on the 
refractive properties of two-sided mirrors with respect to that of the 
semiconducting p-n junction surface. Therefore, the coefficient of reflection 

 from two-sided mirrors around the p-n junction depends on the refractive 
index of the semiconducting surface, nsc, as: 

 
                                  = [(nsc - 1) / (nsc + 1)] 2                                  (5.8) 

 
It is clear that the reflection coefficient is less than unit because losses exist 
due to refraction both in the mirrors, m, and in the semiconductor sc, 
respectively. Moreover, for simplification of the subject under discussion, 
we assume that for both mirrors the same refraction occurs and therefore, 
the same coefficients of losses can be taken into consideration, i.e., m1 = 

m2, and 1 = 2 = . In such assumptions, the attenuation parameters of the 
mirrors depend on the reflection coefficient defined by (5.8) and the height 
of the LD surface, d (see Figure 5.9): 



Chapter 5 
 

124

    
                                    m = m1 = m2 = ln(1/ )  d-1                                          (5.9) 
 
In this case, laser diodes (LD), working as resonators, emit light with 
intensity proportional to: 
 
                                          I ~  2  exp (- 2 r  d )                                            (5.10) 
 
where the total attenuation coefficient, r, is a sum of attenuation on the p-
n junction surface and on both mirror surfaces, that is, 
 
                         r = sc + m1 + m2 = sc + ln(1/ )  d-1                               (5.11) 
 
To emit enough light intensity the coefficient of light emission e (called 
amplification) must exceed the total attenuation coefficient, i.e., e > r. In 
the case of e = r the total current density, accounting for losses in LD, 
equals the total density of current in LD with an absence of losses: JT = J. 
Otherwise, for e > r, LD works as a laser amplifier (see details in Chapter 
7).                                                                           

Laser diodes (LD) have a number of advantages with respect to 
other types of lasers, such as easy pumping by electric current injection and 
easy modulation by electric current injection. However, to maintain the bias 
at the threshold and maintain constant pulse amplitude throughout the 
operating life of the laser, active temperature control is used. Therefore, the 
biasing and drive circuitry for lasers is considerably more complex and 
therefore more expensive than for LEDs. Moreover, the broader bandwidths 
and lower coherence of LDs (with respect to LEDs) limit their usage in some 
applications in optical communication and LIDAR. 

5.3. Photodiodes 

5.3.1 The p-n Photodiode 

As above for photodetectors, photodiode detectors use photo-
generated charge carriers for their operation. A photodiode is a p-n junction 
whose reverse-biased current through the junction increases when it absorbs 
photons. Such photodiodes are faster than photoconductors, they do not 
exhibit gain. The reverse-biased p-n junction under light irradiation is 
shown in Figure 5.11 (according to [4, 9, 11]). We will notice again that the 
inverse-biased diode, as an electronic device, is characterized by the photo-
generated current, the major carriers of which are inverse directed through 



Fundamentals of Light Emitters, Optical Diodes and Detectors 
 

125

the junction, that is, are usually inverse-bandgap. 

 
 

Figure 5.11. An ideal reverse-directed p-n photodiode irradiated by photons. The 
drift and diffusion regions are indicated by 1 and 2, respectively. 

 
Photons are absorbed everywhere inside the p-n semiconductor. 

The intensity of light created by the photon stream, within the material at a 
depth of say, x can be described by the following exponential function 

 
                                   (x) = (0) exp{- x}                          (5.12) 

 
where  is the coefficient of photons’ absorbance inside the semiconductor 
material. It is a measure of the thickness of material required to absorb the 
optical radiation. For example, if x = 2/ , 86% absorption is achieved, and 
if x = 3/ , this rises to 95% [4–10]. 

The absorption of photons generates electron-hole pairs. Only in 
the presence of an ambient electric field, denoted in Figure 5.12 by the 
arrow, can the charge carriers be transported in the desired direction. Since 
only in the depletion layer is the electric field supported, this is a region in 
which photocarriers are generated: electrons and holes.   

There are three possible locations of electron-hole pairs: 
1. In the depletion region (1) , where electrons and holes drift in 

opposite directions under the influence of the electric field (see 
Figure 5.11), electrons move on the n-side, and holes on the p-side 
denoted by dashed lines in the corresponding right and left regions 
in Figure 5.12. The resulting reverse current occurs (directed from 
the n-region to the p-region). Each carrier creates an electric 
current pulse with gain G = 1 in the outer circuit. 
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Figure 5.12. Scheme of processes occurring in p-n- photodiode: diffusion of 

electrons and holes inside n-region and p-region, respectively, denoted in Figure 
5.11 as region 3, and their drift through the depletion region. 

 
2. Electrons and holes in region 3 (away from region 1) cannot be 

transported because of the absence of an electric field (see Figure 
5.11). They diffuse randomly until they recombine in the depletion 
region 1. 

3. Outside the depletion region, but in its vicinity, in region 2 (see 
Figure 5.11) electrons and holes have a chance to enter the 
depletion layer by random diffusion. An electron from the p-region 
and a hole from the n-region are transported across the junction, 
contributing charges in the outer circuit. But the process of 
diffusion is slower than that for drift. In this case, the additional 
carrier diffusion current in the depletion region acts to enhance 
quantum efficiency , which is defined by the following expression 
[9, 10]: 

                                         = jph / e                                           (5.13a)                        
 
where jph

 is the density of photocurrent passing through the outer circuit, e 
the electron charge equaling (e = -1.6 10-19 C),  is the flux of photons 
entering into the diode working surface. Here we take into account that a 
hole has +e charge. In [9, 10], formula (5.13a) is given by the following 
expression 
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                                               = iph  h  / e  Pr                                            (5.13b)                        
 
Here Pr is the optical power incident on the diode surface of area S; iph =jph 
S is the photocurrent. This leads to the definition of the photodetector 

responsivity 
 
                                                    R = e   / h                                               (5.14) 
 
measured in units of Ampere per Watt (A/W). 
 Accounting for the physical processes carried out in a 
photodetector of width d, the quantum efficiency can be written as 
 
                                       = (1-R)  [1- exp(- d)]                                  (5.15) 
 
where, more precisely, R is the optical responsivity of the source,  is the 
fraction of electron-hole pairs that successfully contribute to the detector 
current,  is the absorption coefficient of the material [in (cm)-1], and d is 
the photodetector depth. 
 Finally, the photocurrent in the p-n photodetector can be 
determined via the responsivity of the diode as: 
 
                                                      iph = R  Pr                                                    (5.16)                        
  
Response Time of Photodiodes. As was discussed above, two times play a 
role in the response time of photodiode detectors:  

1) The transit time of carriers across the depletion layer (tte = wd /ve 
for electrons and tth = wd /vh for holes, where wd is the width of junction, ve 
and vh are velocities of electrons and holes).  

2) RC time response.  
In photodiodes, there is an additional contribution to the response 

time which can occur from diffusion from region 2 to the depletion layer 
(see Figures 5.11 and 5.12). But this process is slower than drift.  

The maximum times for this process are the carrier lifetime ( p for 
electrons in the p-region and n for the holes in the n-region). The effect of 
diffusion time can be decreased by use of p-i-n diodes, which we will 
discuss later. In any way, photodiodes are faster than photoconductive 
detectors, since a strong electric field in the depletion layer causes a large 
velocity for the generated carriers.  
 Finally, we will notice that p-n photodetectors can be fabricated 
from many pure semiconductor materials [1–7, 11], as well as from 
compound or composite semiconductors, such as SiCr, InGaAs, GaAsP, etc. 
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They are constructed in such a manner that optical light falls normally to 
the p-n junction region, instead of parallel to it, as in LEDs or LDs.  

5.3.2 The p-i-n Photodiode 

A p-i-n diode is a p-n junction with an intrinsic lightly doped layer 
sandwiched between the p-region and n-region (see Figure 5.13). It can 
operate under various conditions, direct-biased (or forward-biased) and 
inverse-biased electronic devices with two kinds of bandgap arrangement.  
 

 
 

Figure 5.13. Schematic presentation of a p-i-n photodetector (top panel), energy 
distribution in valence and conductive bands with their own Fermi energies Ev and 
Ec, (middle panel), carriers density distribution at the wedges of two zones (middle 

panel), and electric field distribution inside the thick depletion layer (bottom 
panel). 

 
Because the depletion layer extends into each side of a junction by 

a distance inversely proportional to the doping concentration, the depletion 
layer of the p-i junction penetrates deeply into the p-region. Similarly, the 
depletion layer of the i-n junction extends well into the n-region. As a result, 
the p-i-n diode can behave like a p-n junction diode, but with a depletion 
layer that encompasses the entire intrinsic region, as shown by Figure 5.13. 
The electron energy, density of fixed charges, and the electric field in a p-i-
n junction diode in thermal equilibrium, as illustrated in Figure 5.14, differ 
with respect to those shown for p-n photodiodes, arising additional charges, 
“+” for n-side and “-” for p-side, at the wedges of the valence and 
conductive regions, and, therefore, resisting penetration of minor charges, 
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into these sides, respectively, for holes and electrons. In this case, a full 
current limits to zero at both wedges of the n-side and p-side of a p-i-n 
photodiode.  

The simple sketch of this process occurring in a p-i-n photodiode 
and the electric field distribution versus distance along a p-i-n photodiode 
are illustrated in Figure 5.14 (according to [9, 10]).  
 

 
 

Figure 5.14. A scheme of a p-i-n photodiode with the width of the depletion region 
W (top panel) and electric field distribution along the p-i-n detector (bottom panel). 

 
This structure serves to extend the width of the region supporting 

an electric field, in effect widening the depletion layer. As a detector, the p-
i-n photodiode has a number of advantages over the p-n photodiode: 

- Increasing the width of the depletion layer with width W 
where the generated carriers can be transported by drift, 
increases the area available for capturing light.  

- Increasing the width of the depletion layer increases the 
response time of photodiode detectors, which depend on the 
transit time of carriers across the depletion layer (Wj/ve for 
electrons and Wj/vh for holes, Wj is the width of the junction, 
ve and vh are velocities of electrons and holes) and on RC time 
response inside the outer electrical circuit.  

- Increasing the width of the depletion region reduces the 
junction capacitance, which determines the electrical and 
noise parameters of the optical detector, and thereby the RC 
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time response inside the outer circuit. But the whole transit 
time of carriers (electrons and holes) increases with the width 
W of the depletion region.  

- Reducing the ratio between the diffusion length and the drift 
length of the diode results in a greater proportion of the 
generated current being carried by the faster drift process.  

In Figure 5.15 (rearranged from [11]), the responsivity R (in A/W) 
according to (5.14) of the ideal Si photodiode (with quantum efficiency  
=1) and the typical available Si photodiode are compared. The maximum 
responsibility is at a wavelength that is shorter than the bandgap wavelength 

g (or frequency g = c/ g). 
 

 
Figure 5.15. Responsivity R dependence vs. the wavelength of the p-i-n 

diode (according to [11]). 
 

This occurs because Si is the indirect-bandgap material. The 
photon absorption transitions therefore take place from the valence zone to 
conduction-zone states that typically lie above the conduction band edge 
(see Figure 5.11, where the process is general for both types of 
photodiodes). The p-n and p-i-n detectors have many similar properties and 
operational parameters. Namely, a high value of external quantum 
efficiency in such kinds of photodetectors, described by (5.13a) or (5.13b), 
depends on the following [10]:  

- Reducing reflections from the detector surface, achieved by 
the use of an antireflection coating. 
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- Maximizing absorption within the depletion region, which 
depends on device design and requires the width of the 
depletion region to range from W ~ 2/  to W ~ 3/ . 

- Avoiding the major carrier pairs (electrons and holes) 
recombination, achieved through device design based on 
minimization of photon absorption outside the depletion 
region. 

We also should notice that for a p-i-n diode, detector reverse bias 
is normally applied so that a wide depletion region is created, and carrier 
generation predominantly takes place there. Carriers are swept through by 
the drift field with little or no recombination. The generation of electron-
hole pairs outside the depletion region relies upon the process of diffusion 
to drive carriers toward the junction and hence contribute to the 
photocurrent. In the event that electrons are generated by light radiation 
(e.g., by a stream of photons) and holes recombine before reaching the 
junction, they do not contribute to the process of total photocurrent. Hence, 
carrier generation outside the depletion region can lead to recombination 
losses and additional effects on the rise and fall of the operational time of 
the diode, influencing the speed and bandwidth of the p-i-n detector.  
 As was mentioned above, the width of junction W ultimately limits 
the transition time for electrons and holes to drift with velocities ve and vh 
across the depletion layer. Therefore, the frequency band of the detection 
that is inversely proportional to the response time can be estimated 
according to [4] as follows. For a mean transit time < >, this frequency band 
equals at the 3dB detector level: f |3dB ~ 1/< >.  

Moreover, as was mentioned in [10], the role of a junction that 
determines the depth of the depletion layer can be characterized by the 
detector capacitance CD. This parameter, as was mentioned above, 
determines the electrical and noise parameters of the optical detector. The 
capacitance depends on the depletion zone width W (see Figure 5.14) and 
on the semiconductor material permittivity  (see definitions in Chapter 2), 
that is, CD ~  / W.  

For most p-n and p-i-n photodiodes, the total noise, which 
influences the forward current of major carriers inside the diode, depends 
both on the diode current operated in dark conditions, is (current in the 
absence of light radiation), and on the photocurrent of the diode operated in 
light conditions, iph (photo-generated current during light radiation). The 
photodiode has an i-V (total current i – voltage V) relation given by 

  
              i + iph + is = is  exp(e V / kB T)                            (5.17a) 
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or in the form, written in [10], and depicted on the right-side of Figure 5.15 
via the corresponding i-V dependence: 
 

                i = is  [exp(e V / kB T) - 1] – iph                          (5.17b) 
 
The photo-generated current iph is proportional to the photon flux  and is 
directed from the n-side to the p-side due to the outer electric field (see 
Figure 5.16). Here again, the Boltzmann law for carriers under temperature 
T and outer voltage V is available, and the constant kB = 1.38  10-23 J/K is a 
Boltzmann constant, introduced after formula (5.2). As illustrated in Figure 
5.16 (rearranged from [9–11]), where the generic photodiode and its i-V 
relation is presented, this is usual i-V behavior in any p-n and p-i-n 
photodiode with an added dark current (when  = 0) and with a 
photocurrent proportional to ; Vph is the voltage needed to increase the 
total current exponentially through the photodetector according to (5.11). 
As illustrated in Figure 5.16, where a generic photodiode and its i-V relation 
is presented, this is the usual i-V relation of a p-n junction with an added 
photocurrent according to (5.17).  
 

 
Figure 5.16. From left to right panel: a scheme of photodiode under light radiation 

of flow and its i-V relation: for  = 0 and for  > 0. 

5.4. Multiplication of Photons – Avalanche Diodes 

5.4.1 Multiplication of Photons 

Multiplication of photons inside a detector can be achieved by 
using an avalanche photodiode (APD) that operates by converting each 
detecting photon into a cascade of moving carrier electron-hole pairs. So a 
weak light can be converted into a current enough large to be detected by 
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an electronic circuit following the APD. The device is configured as a 
strongly reverse-biased photodiode in which the junction electric field is 
large. The charge carriers can therefore achieve sufficient energy to excite 
new carriers by the process of impact ionization. A schematic representation 
of a typical electron-hole pair in the depletion region of an APD and the 
multiplication process by itself is presented in Figure 5.17. Let us say that a 
photon was absorbed by the middle side of the semiconductor (see Figure 
5.17), creating an electron-hole pair (electron “-” in conduction band and 
hole “+” in valence band). Then, two electrons and two holes are created in 
the next position, as shown in Figure 5.16 (according to [9, 10]), in 
conductive and valence regions, 3 and 2, respectively. The holes generated 
at the previous and the next points also can be accelerated by an outer 
electric field, moving toward the right along the x-axis (see Figure 5.16), 
having a chance of creating an impact ionization, generating a hole-initiated 
electron pair at the next point, and so on. 

 
Figure 5.17. The cascade (multiplication) of electrons “-” and holes “+” passing 

the depletion region of a photodiode.  
 

The process of acceleration caused by a strong electric field can be 
interrupted by random collisions with the lattice of the semiconductor 
crystal, in which electrons lose some obtained energy. This process causes 
electrons to reach an average saturation velocity. But, if the electron obtains 
energy exceeding the energy Eg of the gap (between the valence and 
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conductive zones) at any time during the process, it has an opportunity to 
generate a second electron-hole pair to impact ionization, presented at the 
left-side of the scheme. Then, these two electrons accelerate under the effect 
of a strong field, and each of them can be the source for further impact 
ionization.  
 The abilities of electrons and holes to impact ionize are 
characterized by the ionization coefficients for electrons, e, and for holes, 

h, as ionization probabilities per unit length (in cm-1). The inverse 
coefficients 1/ e and 1/ h represent average distances between consecutive 
ionizations. The ionization coefficients increase with the depletion layer 
electric field voltage V, providing acceleration, and decrease with increasing 
temperature (increasing frequency of collisions with the lattice of 
semiconductor material that loses the energy of accelerated carriers). We 
will follow a simple explanation, according to which e and h are constants. 
On the other hand, the ionization coefficients depend on position and carrier 
positions, in particular their paths inside the photodetector. An important 
parameter for characterizing the performance of APD is the ionization ratio, 
which is defined as the ratio of the ionization coefficients: 
 
                                                     k = h / e                                                        (5.18) 
 
When holes ionize more weakly than electrons (when e >> h, k <<1), most 
of the ionization is achieved by electrons. The avalanching process goes 
principally from left to right (from the p-side to the n-side of the device, see 
Figure 5.17, together with Figure 5.18). This process terminates when all 
electrons arrive at the n-side of the depletion region.  

But if electrons and holes ionize in the same order of strength (k 
=1), those holes that move to the left (from the n-side to the p-side) create 
electrons that move to the right, which in turn generate further holes moving 
to the left, undergoing some circulation. Despite the fact that this process 
increases the gain of the device (an increase of total generated charge q in 
the outer circuit of the detector per photo-carrier pair, q/e), there are some 
drawbacks of this process for several reasons:   

- The avalanching process takes time and therefore reduces the 
device bandwidth. 

- The avalanching process is random and therefore increases the 
device noise. 

- The avalanching process can be unstable, finally causing 
avalanche breakdown. 
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It is therefore not effective to fabricate APDs from materials that 
use only one type of carrier (either “+” or “-”) to impact ionize. If electrons 
are injecting carriers with e >> h, then materials where k is small are 
needed. If holes are major injecting carriers with e << h, then materials 
where k is large are needed. An ideal case can be achieved when k = 0 or is 
infinite. 

The photocurrent passing such an avalanche photodiode can be 
found via its responsivity R, the corresponding power Pr, and the 
multiplication factor M:  

  
                                     iph = M  R  Pr                                                (5.19)                

 
The relations between R (determined by Eq. (5.14)) and Pr are fully 
described by Eq. (5.19).  

5.4.2 Avalanche Photodiodes 

The same as for any photodiode, the geometry of an avalanche 
photodiode (APD) should maximize the photon absorption. Therefore, it 
usually takes the form of a p-i-n structure as shown in Fig. 5.13, but with 
some modifications as shown in Fig. 5.18 and Figure 5.19. 
 

 
 

Figure 5.18. a) Electric field distribution inside regions, b) charge multiplication 
within the n-p region. 
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In APDs, two conflicting requirements are taken into account for 
their design: the absorption and multiplication regions must be separated 
(see Figure 5.18). Structures of this kind are known as separate-absorption-
multiplication APD (SAM APD) devices, as shown by Figure 5.19.  

 
 

Figure 5.19. Scheme of SAM APD device. 
 
Photons are absorbed in a large intrinsic or lightly doped region. 

The photoelectrons drift across this region under the influence of a moderate 
electric field, and then enter a thin multiplication layer with a strong electric 
field where avalanching occurs. The reach through APD structure for these 
purposes is illustrated in Figure 5.19. Here, photon absorption occurs in the 
wide  region. Electrons created by photon drift through the region into a 
thin p-n+ junction, where they experience a sufficiently strong electric field 
to cause avalanching (see the bottom panel in Figure 5.19). 

The reverse-bias voltage applied across the device is large enough 
for the depletion layer to reach through the p and  regions into the p+ 
contact layer. So, we obtain a structure of p+ -  - p - n+ APD seen in the 
top panel of Figure 5.19. The  region is very lightly doped p-type material. 
The p+ and n+ regions are heavily doped. Finally, the p+ region collects 
multiplied electrons (“-”), and the n+ region collects multiplied holes (“+”), 
which create a net current in the outer circuit of the device. 

On the other hand, the multiplication region should be thin to 
minimize the possibility of localized uncontrolled avalanches being 
produced by the strong electric field. The electric field uniformity can be 
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achieved in a thin region of the depletion layers with enough width W. These 
two conflicting requirements are taken into account for an APD design by 
separating the absorption and multiplication regions. Structures of these 
types of photodiodes, as was mentioned above, are called in the literature 
separate-absorption-multiplication APD (SAM APD) devices [7–9, 11].  
Let us briefly discuss the main characteristics of LEDs. 

Ionization Coefficient. The abilities of electrons and holes to 
impact ionize are characterized by the ionization coefficients e and h, as 
ionization probabilities per unit length [cm-1]. The inverse coefficients 1/ e 
and 1/ h represent average distances between consecutive ionizations. The 
ionization coefficients increase with the depletion layer electric field 
providing acceleration, and decrease (deceleration) with increasing 
temperature (increasing frequency of collisions with lattice that loses energy 
of accelerated carriers). Presenting a simple theory according to which e 
and h are constants, we obtained equation (5.18) for the coefficient of 
ionization k.    

When holes ionize weaker than electrons (when e >> h and 
k<<1), most of the ionization is achieved by electrons. The avalanching 
process is going principally from left to right (from the p-side to the n-side 
of the device, see Figures 5.18 and 5.19). This process terminates when all 
electrons arrive at the n-side of the depletion region. But if electrons and 
holes ionize at the same order of strength (k ~ 1), these holes that move to 
the left (from the n-side to the p-side) create electrons that move to the right, 
which in turn generate further holes moving to the left, undergoing some 
circulation. Despite the fact that this process increases the gain of the device 
(an increase of total generated charge in the circuit per photo-carrier pair, 
q/e), there are some drawbacks of this process for several reasons which 
were mentioned above, but are repeating for more convenience:  

 
- The avalanching process takes time and therefore reduces the device 

bandwidth 
- The avalanching process is random and therefore increases the device 

noise 
- The avalanching process can be unstable, causing avalanche 

breakdown 
 

As was mentioned above, it is therefore not effective to fabricate 
APDs from materials that use only one type of carrier (or “+” or “-”) to 
impact ionize.  

If electrons are injecting carriers with e >> h, then they take 
materials with k small. If holes are injecting carriers with e << h, then they 
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took materials with k large. The ideal case is achieved when k = 0 or infinite. 
Gain and Responsivity. First of all, we will consider a simple 

problem where only one carrier (let us say, the electron) is “work.” In this 
ideal single-carrier process, h = 0 and k = 0. Let Je(x) be the electric current 
density carried by electrons at location x as shown in Figure 5.20.  

 

 
Figure 5.20. Electron current along the multiplication layer width w. 

 
Within the distance dx, on the average, the current differential can 

be written as: 
 
                                                    dJe(x) = e  Je(x)  dx                                   (5.20) 
 
from which yields 
 
                                                       dJe(x)/dx = e  Je(x).                              (5.21) 
 
The solution of Eq. (5.21) is 
 
                                                       Je(x) = Je(0) exp( e  x)                          (5.22) 
 
The gain G = Je(w) / Je(0) is therefore:  
 
                                                          G = exp( e  x).                                  (5.23) 
 
So, the electric current increases exponentially with the product of the 
ionization coefficient e and the multiplication layer width w (see Figure 
5.20).  
 Now, a more general problem of double-carrier multiplication 
requires knowledge of both the electron current density Je(x) and hole 
current density Jh(x). We will assume that only electrons are injected into 
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the multiplication region. Since hole ionizations also produce electrons, the 
growth of Je(x) is described by a differential equation: 
  
                                         dJe(x)/dx = e Je(x) + h Jh(x)                           (5.24) 

 
Response Time. The APDs have additional multiplication time 

with respect to other photodiodes, where the total response time is a 
superposition of the transit, diffusion and RC time constants. This additional 
time is called the avalanche buildup time. The response time for a two-
carrier multiplication APD is illustrated in Figure 5.21, which follows the 
process of photoelectrons generated at the edge of the absorption region 
(point 1, left panel).  
 

 
 

Figure 5.21. a) Schematically presented regions – absorption and multiplication in 
APD, b) electrons and holes current distribution in the time domain. 

 
In Figure 5.21a, the position-time relation of the total process of 

avalanche for APD is presented. Blue lines represent traces of the electrons, 
and the green lines represent holes traces. Electrons move to the right, but 
holes move to the left. Electron-hole pairs are produced in the multiplication 
region. The process of movements is terminated when carriers reach the 
edge of the material. Figure 5.21b presents hole current ih(t) and electron 
current ie(t) induced in an outer circuit. Each carrier pair induces a charge e 
in the circuit. The total induced charge q, which is an area under the ie(t) + 
ih(t) versus t vertical axis, is q = Ge.  
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 As is clearly seen, the electron drifts with a saturation velocity ve, 
reaching the multiplication region (point 2) after a transit time wd /ve. Within 
this region electrons also travel with a velocity ve. Through impact 
ionization it creates electron-hole pairs, say at points 3 and 4, generating 
additional electron-hole pairs. The holes travel in the opposite direction with 
their saturation velocity vh, also creating the impact ionization resulting in 
electron-hole pairs as shown, for example, at points 5 and 6, the resulting 
carriers can cause impact ionization by themselves.  
 The process is terminated when the last hole leaves the 
multiplication region (point 7) and crosses the drift region to point 8 (see 
left panel, Figure 5.21a). The total time  required for the entire process 
(between points 1 and 8) is the sum of the transit time (from 1 to 2 and from 
7 to 8), and the multiplication time m (see Figure 5.21b), i.e., 
 
                                              = wd /ve + wd /vh + m                                         (5.25) 
 
Because the process of multiplication is random, the multiplication time m 
is also a random value. In the special case k=0 (only electron multiplication, 

h =0) the maximum value of m is clearly seen from Figure 5.21b (middle 
panel). And can be obtained as: 
 
                                               m = wm /ve + wm /vh                                            (5.26) 
 
For a large gain G, and for 0<k<1, an order of magnitude of the average 
value of m is obtained by multiplying the first term in (5.25) by the factor 
G  k, i.e.,  
 
                                     m = G  k  wm /ve + wm /vh                                            (5.27) 
 
In this case, maximum ionization can be achieved by using the material (let 
us say, Si) with k ~ 1. Photons are absorbed in a large intrinsic or lightly 
doped region. The photoelectrons drift across this region under the influence 
of a moderate electric field, and then enter a thin multiplication layer with a 
strong electric field where avalanching occurs. 
 As for the gain, G, of APDs, its growth with an increase of the 
product of the ionization factor e on multiplication layer width w (assuming 
pure electron injection) depends on values of the ionization ratio k. Thus, 
with an increase of the parameter k from 0 to 1, one will get a sharper 
exponential increase of gain G both for ew lies from 0 to unit, and even 
after ew = 1.  
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So, we should find the materials of interest that are closely related 
to those purposes by use of p-i-n photodiodes, accounting for the additional 
condition that they should have the lowest (for electron injection) or highest 
(for hole injection) possible value of ionization ratio k. Silicon APDs have 
k = 0.1–0.2, but Si devices with k lower than 0.006 can be fabricated, 
providing excellent performance in the wavelength region of 700–900 nm 
(i.e., visual optic and close infrared spectra).  

In GaAs APDs are usually used in telecommunications (in 1300–
1600 nm), having higher values of k and moderate noise electric fields ~105 
V/cm, corresponding to tens of volts across the device, initiate the avalanche 
mechanism. As the reverse-bias voltage increases, the gain and dark current 
(e.g. noisy current) are also increased. The optimal gains for such materials 
are G=10 and typical dark currents are ~10-11 A, which is too small 
compared with a photo-induced current.  

5.5. Operational Characteristics of Light Photodiodes 

As follows from the above, the most common photodetector in 
electro-optical applications, fiber optic and/or wireless, is the semiconductor 
junction photodiode, which converts optical power to an electric current 
called a photocurrent. But now, instead of formula (5.19), we take into 
account the gain G of the diode described above. So, we get 

 
                                                      iph = R  G Pr                                                (5.28) 

 
The cutoff wavelength is determined by bandgap energy (i.e., the 

depletion zone energy Eg, see Chapter 3) and is given by the following 
relation: 

 
                                                     g = 1.24 / Eg                                                 (5.29) 
 
In (5.29), the wavelength is in micrometers ( m) and the bandgap energy is 
in electron-volts (eV). It is clearly seen that only photons with wavelengths 
equal to or smaller than the cutoff wavelength can be detected (i.e., their 
energy should be enough to transfer electrons from the valence region to the 
conductive region for current generation into the outer electronic circuit 
consisting of the photodetector). 
 According to (5.28), the photodetector acts like a constant current 
source. Therefore, the output voltage V = I  RL can be increased by 
increasing the load resistance RL. However, the receiver bandwidth is not 
larger than 
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                                               B  = 1 / [2   RL Cd]                                          (5.30) 
 
Hence, by the increase of RL, we can decrease the receiver bandwidth (to 
become narrowband). In (5.30), Cd is a shunt capacitance. 
 Now, entering into the problems and exercises for homework 
presented below, it can be useful to use Table 5.1 (according to [4-6, 9, 11]), 
listing the properties of commonly used semiconductors for optical emitters 
and diodes construction in electro-optical communication and LIDAR 
applications. 
 

Table 5.1. Common semiconductors characteristics. 
 

 
 
Moreover, some important graphically presented relations between 

parameters and characteristics of semiconductors are presented to be used 
in computations below. Thus, Figure 5.22 (according to [4-6]) presents the 
coefficient of absorption depending on the energy of photons and on the 
wavelength of the corresponding optical ray.  
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Figure 5.22. Attenuation versus photon energy for pure and binary semiconductors 
(according to [4–6]). 

 
 
Figure 5.23 (according to [4-6, 11]) presents the coefficient of 

absorption of the common mono-, dual -, and poly-semiconductors  

 
Figure 5.23. Coefficient of absorption vs. the wavelength of optical wave in 

semiconductor materials commonly used in electro-optics (according to [4-6, 11]). 
 

Figure 5.24 (according to [4-6, 11]) presents the coefficient of 
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refraction for a composite semiconductor presented in general form 
1In Ga Asx x , where the parameter x characterizes the proportion between 

pure semiconducting materials, In, Ga, or As, in the composite 
semiconductor, and so forth. 
 

 
Figure 5.24. Refractive coefficient vs. the photon energy [in eV] in 1In Ga Asx x

(according to [4-6, 11]. 

Exercises 

Exercise 1. 
 
Given: Binary semiconductor GaAs under the illumination of photon flux 
with  = 0.75 m and power density of I = 10 W/cm2. The time of 
recombination of electron-hole pairs inside p-n junction r = 10-9 sec. Each 
falling photon gives rise to one electron-hole pair, i.e., the quantum 
efficiency i = 1.  
 
Find: 1) Generation rate of electron-hole pairs, R;  
          2) Density of minor carriers ( n = p) in the p-n junction. 
 

Solution 
 

1) The light flux generating electron-hole pairs in the p-n junction satisfies 
formula (5.12), where the coefficient of absorption  presented in exponent 
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can be found from Figure 5.22, which presents the difference of the 
absorption coefficient versus photon energy (in eV) for pure and binary 
semiconductors (see Table 3.3, Chapter 3) for a room temperature of 300 K.  

As follows from Figure 5.22, for  = 0.75 m and for GaAs, 
crossing straight lines give us  = 2 104 cm-3. If so, the rate of electron-hole 
pair generation R by photons equals 

 
                           R =    =   I / h  = (2 104 cm-3  10 W/ cm2)    
                            [(1.24 eV/0.75) 1.6  10-19 eV] -1 = 5.65 1023 [cm-3 / s]  
  
2) The density of minor carriers n can be found from equation 
  
                                         d( n) / dt = 0 or R – n / r = 0 
 
from which we get: 
 
                        n = R  r = 5.65 1023 cm-3 / sec  10-9 sec = 5.65 1014 [cm-3] 
 

Exercise 2. 

Given: Photodiode Si has the following parameters: n = 1016 cm-3;  = 600 
nm; 

n = 1450 cm2 / V s;    p = 450 cm2 / V s;  ni = 1010 cm-3; n=4; V = 5 Volt;            
A = 1 m2; d = w = 2 m. 

Find: 1) The current passed the photodetector.  
          2) The reflection coefficient.  

Solution 

1) It is known that conductivity of a photodetector depends on the mobilities 
of the major carriers, electrons n from n-type and holes p from p-type, as 
well as their densities, n and p, respectively: 

                                                      = e  ( n n + p p) 

Here, from relation n p = ni
2 , we get: 

                                            p = ni
2 / n = 1020 / 1016 =104 [cm-3 ]  
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Because n>>p, we can write:   

                                           = e  n  n = 1.6 10-19  1450  1016 = 2.32 [S] 

Finally, accounting for the Ohm's law i =   E. and that according to the 
relation between field strength E and voltage V, V = E  d, we get 

                                              i =   E  A =   E  V / d = 580 [ A] 

2) The reflection coefficient for Si material coefficient of refraction n=4 
equals: 

                                         = [(n - 1) / (n + 1)] 2 = (3 / 5) 2 = 0.36 

 
Exercise 3. 

 
Given: P-N junction of the laser diode (LD) based on GaAs semiconductor 
with the following parameters: carriers (electron and hole) diffusion 
coefficients: Dn = 20 cm2 / sec and Dp = 15 cm2 / sec; the carriers densities 
equals respectively: Nn = 5 1017 cm-3 and Np = 5 1016 cm-3; the corresponding 
life-times equals: n = 10-8 sec and p = 10-7 sec; The bias voltage is V= 1 
Volt; the area of p-n junction A = 1 mm2; the total number of carriers 
(electrons and holes) ni = 2 106 cm-3. 
 
Find: 1) The total current i. 
          2) The output flux of emitted light;  
          3) The output power of light flux;  
          4) The refractive index of the mirror n2 if the reflection coefficient  
               = 0.1, and  the refraction index of the semiconducting material n1  
               = 3.66 (for GaAs);  
          5)  The angle of total intrinsic reflection.  
 

Solution 
 

1) The total current can be found by use of formulas (5.2) and (5.3), 
that is: 
 

                  is = e  A  ni
 2  [(Dn / n)1/2 / Nn + (Dp / p)1/2 / Np ] = 7 10-21 [A]                            

 
      i = is {exp (e  V / kB T) -1} = 7 10-21 exp (1 / 0.026) -1}= 0.35 [mA] 
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2) The outer emitted by LD photon flux rate according to (5.6a) equals: 

                              out = i  i / e = 0.5  i / e = 1.09  1015 [photons/s] 

3) The output power of light emitted by LD equals energy of photons and 
timing of their flux rate  

                                  Pout = out  h   = 0.25  10-3 [W] = 0.25 [mW] 

Here was accounted for 1 eV = 1.6  10-19 J and for Joule /sec = Watt. 

  4) Accounting for (5.8), but with n2 not equal to unit, as at the boundary of 
semiconductor-air, and accounting for reflection coefficient  = 0.1, we get: 

                                          = [(n1 – n2) / (n1 + n2)] 2 = 0.1 

from which for the refractive index n2 for given index n1 = 0.366 we get:            

                                  n2 = n1 (1 – 0.316) / (1 + 0.316) = 0.19 

  5) The angle of the total intrinsic reflection from mirrors equals 

                                                c = sin-1 (n1 / n2) = 310   

 

Exercise 4. 
 

Given: The light-emitted diode (LED) with the parameters: n = 3900 cm2 / 
V s;  p = 1300 cm2 / V s; n = 1 s cm; p = 0.3 s  cm; n = 10-8 s; p = 10-7 s. 
The total number of carriers (electrons and holes) ni = 2 106 cm-3; the 
forward-biased voltage is V= 1 Volt; the area of p-n junction A = 1 mm2. The 
temperature is 300K 

Find: 1) The current of diffusing minor carriers.  
          2) The total current of carriers (electrons and holes) at the LED 
output.  
 

Solution 
 

1) According to formula (5.3) 
  

                               is = q  A  ni
 2  [(Dn / n)1/2 / Nn + (Dp / p)1/2 / Np]  
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the diffusion coefficients can be found according to formulas (5.4) 
 
                                              Dn = n  kB T /q = 101.4 [cm2 / s] 
                                             
                                              Dp = p  kB T /q = 33.8 [cm2 / s] 
 
Accounting for relations (5.4b) between densities of carriers, Nn and Np, via 
their motilities, n and n, and their partial resistivity, n and p, we get: 
 
                                                 Nn = (e n n) -1 = 1.6 1015 [cm-3] 
                                                  
                                                 Np = (e p p) -1 = 1.6 1016 [cm-3] 

  
 Finally, using the above numbers we get: 
 
                                                   is = 4.1 10-19 [A] 
 

2) The total current can be found by use of formula (5.2), i.e.,  
 

                          i = is  {exp (e  V / kB T) -1} = 21  10-3 A = 21 [mA] 
                      

 

Exercise 5. 

Given: Laser diode (LD) GaAs with absorption coefficient s = 20 cm-1. 
Coefficient of refraction nGaAs = 3.6.  

Find:   1) The coefficient of reflection. 
            2) The length of the p-n junction, d. 
            3) Full coefficient of absorption of semiconducting material and two 
                 similar mirrors with 1 = 1 =  and s = 30 cm-1. 
            4) Lifetime of the process of recombination of electron-hole pairs.   

 
Solution 

1) According to formula (5.8) we get: 

                               = [(n1 – 1) / (n1 + 1)] 2 = [(3.6 – 1) / (3.6 + 1)] 2 = 0.33 

2) Since 1 = 1 = , we get  
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                                                s = m = ln (1/ ) / d = - ln  / d    

which yields: 

                                       d = - ln  / s = - ln (0.33) / 20 = 554 [ m] 

3)  The total coefficient of absorption from LD and two similar mirrors is: 

                                  r = s + m = s + ln (1/ ) / d = 30 + 20 = 50 [ cm-1]  

4) The total time of the process is inversely proportional to the total 
coefficient of absorption and the velocity of photons in a semiconductor v = 
c / nGaAs, c = 3 108 m/s, i.e., 

         = ( r v) -1 = ( r  c / nGaAs) -1 = 3.6 /(3 1010 cm/s  50 cm-1 = 12 10-12 

sec = 12 ps.                                              

      

Exercise 6. 

Given: Laser diode (LD) with the following parameters:  = 1.25 ns, T = 300 
K, i = 0.5; nT = 1.25 1018 cm-3 ;  = 600 cm-1 . Geometrical parameters of 
LD (see Figure 5.9) are: l = 2 m, d = 20 m, and w = 10 m.  

Find: 1) Time of emission.  
          2) Current density inside the p-n junction.  
          3) Coefficient of emission (amplification), if the total current of major 
               and minor carriers equals i = 700 mA.  
           4) The gain of LD. 
 

Solution 

1) Time of emission:    

                                    r  =   / i  = 1.25 10-9  sec / 0.5 = 2.5 [ns]  

2) The current density inside p-n-junction: 

                                     jT = e  l  nT / i  r = 3.2 104   [A/ cm2] 

       The total current density through LD 
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                                      j = i / A = i / w  d  =  3.5 104   [A/ cm2] 

3) The maximum coefficient of emission (amplification): 

                                          p = r  (j / jT - 1) = 56.25 cm-1 

4) The maximum gain of LD 

                                                  G = exp ( p  d) = 3 

 

Exercise 7. 

Given: Avalanche photodiode (APD) based on semiconductor Si (silica) 
material with wd = 50 m; wm = 0.5 m; ve = 107 cm/s; vh = 5  106 cm/s; G= 
100, k=0.1. 

Find:  1) Response times of APD:  m and ,  
            2) Compare the obtained response time with that for a p-i-n diode 
with the same parameters. 

Solution 

1) For APD from Eq. (5.26) we get  

                             m  = wm /ve + wm /vh = 5 + 10 = 15 ps. 

From Eq. (5.25) we get  

                                         = 500 + 1000 + 15 = 1515 ps = 1.515 ns.  

 On the other hand, Eq. (5.27) yields m = 60 ps, so that Eq. (5.25) now 
provides  

                                                 = 1565 ps = 1.565 ns.  

       2) For a p-i-n photodiode with the same values wd = 50 m; ve = 107 
cm/s; vh = 5  106 cm/s, the transit time  

                                                = wd /ve + wd /vh  = 1.5 ns,  

which is close to 1.515 ns and 1.565 ns. This is because in the silica (Si) 
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APD device, the transit time through the multiplicative zone, m, ranges from 
15 ps to 60 ps. i.e., is too small with respect to the transit time through the 
absorbing zone . (1500 ps).  

Problems 

Problem 1. 
Given: APD detector based on poly-semiconductor 0.53 0.47In Ga As  with the 
following parameters: 

20, 0.5, 1.55 m, 1.75 mG d  
Find:  

1. What is the detector responsivity R? 
2. What is the current in the detector for photon outer flux 
                = 10 110 s . 

 
 

Problem 2. 
 

Given: Optical detector based on composite poly-semiconductor 
0.5 0.5In Ga As  having the following parameters 

10 1
0 020, 0.5, 1550nm, 1.75 m, 10 sG d  

 
Find: 

1. The detector responsiveness. 
2. The flux of photons. 

Note: Use for these purposes Figures 5.22 to 5.24.  
 
 

Problem 3. 
 

Given: Non-semiconductor Si (silicon) with the following photovoltaic 
data and its characteristics:   

2 2
16 3 11cm cm1450 , 450 , 10 cm , 0.5, 5 10 s

V s V sn p n  

25V, 1 m , 2 mV A d w  
At the first stage, we consider that the silicon is not illuminated. 

1. What is the current in the photodetector? 
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Now a flux of photons of  = 15 12.3 10 s illuminates silicon at a 
wavelength of 600nm  

2. What is the change in the current in the photodetector? 
3. What is the ratio of the current with enlightenment to the 
               current without enlightenment? 
4. How can the ratio be improved? 

Note: Use for computations Table 5.1.  
 
 

Problem 4. 
 

Given: A laser based on dual semiconducting material GaAs  is presented 
at room temperature of 300K. The injected current (electron-hole pairs) is 
created at a rate of 23 3 110 cm s . Concentrating charges in a p-n junction 
equals ni = 16 310 cm . The recombination constant, describing the 
recombination rate of electro-hole pairs, equals 11 3 110 cm s .    
 
Find: 

1. Concentration of holes. 
2. Time of life of the process of photons creation.  
3. Excess in the current carriers, electrons and ions. 

Note: Use for computations Table 5.1 and Figures 5.22 to 5.24.  
 
 

Problem 5. 
 

Given: Avalanche photodiode (APD) based on semiconductor Si (silicon) 
material with wd = 35 m; wm = 0.4 m; ve = 5 107 cm/s; vh = 107 cm/s; G= 
50, k=0.3. 

Find:   
1) Response times of APD: for multiplication range, m, and the 

total time .  
2) Compare the obtained time with that for a p-i-n diode with the 

same parameters. 
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CHAPTER 6  

NOISE IN LIGHT EMITTERS AND DIODES 
 
 
 
We will start to analyze different types of noise occurring in the 

light sources (e.g., lasers) and detectors (e.g., diodes), as the initial and the 
later terminals of any optical communication link, wired (e.g., fiber optic) 
and wireless (e.g., atmospheric). Noise occurring in fiber optics will be 
discussed later.  

6.1. Noise in Photodiodes and Light Emitters 

As mentioned in [1–7], noise is a fundamental characteristic of all 
kinds of photodetectors and optical sources that characterizes the 
photoconductive process. Here we briefly introduce the reader to some main 
kinds of noise occurring inside each photodiode, working as a source or a 
detector, mentioned above, and will describe their main operational 
characteristics. Thus, as was shown in Chapter 5, any photodetector is 
responsive to photon flux , and therefore, on optical power P=h . This 
flux gives rise to a proportional photocurrent Iph = e  = R P, where  is 
quantum efficiency, and R is responsivity of the photodetector. However, 
the electric current generated in the device is a random quantity I, whose 
value fluctuations, determined as noise, around the average value <I>, 
characterized by a standard deviation I

2 or variance I = (I - <I>)2 1/2. For 
zero-mean photocurrent fluctuations <I> = 0, the standard deviation can be 
reduced by use of the root mean square (rms) definition, I = [<I2>] 1/2. 

We will now briefly describe the types of noise that can corrupt the 
optical signal data recorded by photodetectors and lead to fading 
phenomenon and data bit errors. 
  

Photon Noise. This noise is related to the random arrival of photons 
themselves and can be described by Poisson statistics [1–5]. 
 Let us suppose the existence of an assembly of n atoms, and the 
probability of any one of them emitting a photon in time  is p. Then, the 
average number of photons detected in this time would be np, but the actual 
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number for r photons will vary statistically around this mean according to 
the Poisson law with probability                                                      

 
                            (6.1)   

                                                
 
For example, the probability of receiving zero photons is exp(- np), and two 
photons is exp(- np) (np) 2 / 2!, and so forth. 
 We can relate np to the mean optical power received by the 
detector, Pm, for np is just the mean number of photons received in time . 
Hence 
 
                                                       

m
hP np                                                 (6.2) 

 
and then the mean of the Poisson distribution, i.e., the mean number of 
photons, becomes [1–3] 
 
                                          m mP Pnp

h h B
                                            (6.3) 

 
where B  is the detector bandwidth.  
 Now we need to measure the spread from this mean, which is 
called the variance, which, according to the Poisson law, is equal: 

                                                          
        2

n np                                                     (6.4) 
 
Finally, we obtain the variance as a measure that gives us the noise of the 
optical signal. This noise is usually called quantum noise or photon noise, 
the power of which equals:  
 

                                
1/2

m
n

PN
h B

                                             (6.5) 

 
Consequently, the signal-to-noise ratio (SNR or S/N) will be [9, 10] 
 

                      
1/2

1m mP PSNR
B h N h B

                                     (6.6) 

 

( )exp( )
!

r

r
npP np
r
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This is an important result since it provides the ultimate limit on the 
accuracy with which a light power level can be measured by a laser detector 
or photodetector. We should notice that the measurement accuracy 
improves as (Pm)1/2, and for lower power, the accuracy will be poor enough. 
Correspondingly, if frequency  of photon emission is larger for a given 
power, the accuracy becomes worse.  

Finally, it must be stated that these conclusions only apply when 
the probability of photon emission is small enough. The results obtained 
above are no longer valid for intense laser beams of power density w > 106 

W/m2. Such light is sometimes said to have non-Poisson statistics [1–6]. 
 
Photoelectron Noise. Since in the process of generation of a 

photon, an electron-hole pair is random and going with probability 1 – , it 
is a source of noise,  is quantum efficiency, as introduced above. An 
incident photon on a photodetector with quantum efficiency  creates the 
electron-hole pair or liberates a photoelectron, with probability  or fails to 
do so with probability 1 - . The carriers are selected at random from the 
photon stream. An incident mean photon flux  (photons/s) therefore results 
in a mean photoelectron flux  (photoelectrons per second). The number 
of photoelectrons nph detected in the time interval  is random  

 
                             < nph > =  <n> =                                           (6.7) 

 
Assuming, as above, that photons are distributed according to Poisson law, 
then the photoelectron-number variance, which describes the electron noise, 
is equal < nph >, that is, 
 
                                             m 2 = < nph > =  <n>                                            (6.8) 
 
It is seen that the photoelectron noise differs from the photon noise [compare 
(6.8) and (6.4)]. Accounting for the photon noise, as a fundamental noise 
when using light to transmit signals through the detector, we can easily 
determine the photoelectron SNR as: 
 
                                            SNR = < nph > = <n>                                          (6.9) 
 
 
The minimum-detectable photoelectron number is < nph > equals one 
photoelectron, corresponding to 1/  photons. If so, it can be easily shown 
that for SNR = 103 (or for SNR = 30 dB) the receiver sensitivity equals 103 
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photons per second or 103/  photoelectrons per second. 
 
 Generation - Recombination Noise. The generation- recombination 
noise arises from fluctuations in the generation and recombination rates of 
electron-hole pairs due to the process of photoemission, its spectral density 
can be presented according to [4] as 
 
                               Nph  =  4 e G  Iph  / [1 + 4  2 f 2 r

2]                           (6.10)  
 
where r is a mean electron-hole recombination time, and f is 3dB-bandwidth 
that can be defined as [4] 
 
                                                f |3dB = 1 / [2  G tT]                                       (6.11)  
 
where tT is the detector transit time.   
  

Photocurrent Noise. When induced in a circuit a random 
photoelectron stream with mean  results in a stream of current pulses 
with amplitude ae and time d in the outer electric circuit of the 
photodetector, which add together to constitute the photocurrent I(t). The 
randomness of the photon stream is transformed into a fluctuating electric 
current. If, as above, the incident photons are Poisson distributed, these 
fluctuations are known as shot noise [4, 5, 11]. Let us consider that the 
random number of photoelectrons counted within a characteristic time 
interval, Tr =1/2f, called the resolution time of the circuit [4], generates a 
photocurrent Iph(t), where t is the current time following the interval Tr. For 
rectangular current pulses of direction Tr, the current and the photoelectron 
number random variables are related by Iph = (ae /Tr )  < nph >. The 
photocurrent mean and variance are therefore given by: 
 
                                             < Iph > = ae   < nph > / Tr                                    (6.12) 
 
and, finally, the noise introduced by a photocurrent inside the detector 
equals 
 
                                                 i 

2  =  (ae / Tr) 
2 m 2                                       (6.13) 

 
where, again, < nph > =     T =    / B is a mean number of 
photoelectrons collected in the resolution time Tr = 1/2B; B is the bandwidth, 
and m 2 is defined by (6.8). 
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 Gain Noise. The photocurrent mean and variance for a device with 
fixed (deterministic) gain G is determined by the generated pulse q = G ae. 
In this case, the mean photocurrent can be written as: 
 
                                  < Iph > = ae  G   = ae G  P / h                    (6.14) 
 
and the corresponding variance is 
 
                           G 

2 = 2 ae G < Iph > B = 2 ae
2 G2 B                     (6.15) 

 
The SNR then equals: 
 
              SNR = < Iph > / (2 ae G B) =   / 2 B = < nph >               (6.16) 
 
Now, when G is a random variable, the derivation is more complicated, and 
we present here only their modified formula. First, instead of the above 
equations, we account for G = <G> and will introduce F as the excess noise 
factor:  
                                                                    
                           F = <G2> / <G>2 = 1 + G  / <G>2                        (6.17) 
 
Finally, we get 
 
               SNR = <I>2 / G 

2 = <I> / [2ae <G>  B  F] = 
                       =   / (2 B F) = < nph > / F                                      (6.18)  
 
The difference between formulas (6.16) and (6.18) is the existence in the 
denominator of the noise factor F, an increase of which decreases SNR at 
the output of the optical detector or source. 
                    

Thermal Noise. The thermal noise (called Johnson noise or Nyquist 
noise [1–4]), occurring in the outer electric circuit, consisting of any 
photodetector or laser emitted source, is the last noise that must be taken 
into account, when we discuss the terminal assembled in both ends of a 
wired or wireless communication link (see Chapter 1). It arises from the 
random motions of mobile carriers in the resistive electrical material at finite 
temperature T giving rise to a random electric current I(t). Even in the 
absence of an external electrical power source the thermal electric current 
at the bulk resistance of the photoconductor or laser emitted source, Rs, is a 
random function I(t) whose mean value <I(t)> = 0. The Johnson noise 
spectral density is directly proportional to the absolute temperature T (in 
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Kelvin, K) via the Boltzmann constant kB = 1.38  10-23 J / K, and inversely 
proportional to the bulk resistance of the photoconductor or laser emitted 
source, Rs, that is, 

 
                                                      NT = 4 kB T / Rs                                          (6.19) 
 
If we again take into account the Boltzmann statistics according to (5.7) [see 
Chapter 5], we immediately obtain the variance of the circuit current, r

2 
(for B << kB T / h) as 
 
                                        r 

2 = 4 kB T B / R                                        (6.20) 
 
It is clear that the thermal noise increases with the temperature T. 
  Circuit Noise. Additional noise is observed inside a photodiode 
circuit in the form of a random electric current ir of Gaussian probability 
distribution with zero-mean and variance q

2. Within a time interval T, the 
accumulated charge q = ir T /e (units of electrons) has an RMS value 

q = r T/e. The parameter q, called the circuit – noise parameter, depends 
on the receiver bandwidth B. The total accumulated charge per bit s =  + 
q (units of electrons) is the sum of a Poisson random variable  and 
independent Gaussian random variable q. Its mean is the sum of the 
averages: 
 
                                     = < > =   <n>                                             (6.21)                        
 
Its variance is the sum of the variances: 
  
                                       2 = < > + q

2                                                                (6.22) 
 
For large < >, the Poisson distribution can be approximated by the 
Gaussian one, with mean  and variance 2 (see above). According to this 
approximation, which is valid mostly for avalanche photodiode (APD) [see 
definition in Chapter 5] of gain <G>, the mean number of photoelectrons 
amplified by factor <G>, but with additional noise introduced in the 
amplification process, finally, we get for the mean of the total collected 
charge per bit s =  + q (units of electrons): 
 
                                                  = < > <G>                                             (6.23a) 
                                             
                                         2 = < > <G>2 F + q

2                                     (6.23b) 
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where F is the excess noise factor.  
Finally, we should emphasize that the above does not illuminate 

special aspects regarding types of semiconducting materials and special 
engineering techniques of light diodes and sources design. For precise and 
extensive information on light sources and detectors, the reader is referred 
to the corresponding works [1–6].   
 The simplest measure of the quality of any detection and 
recording optical device is the signal-to-noise ratio (SNR). 
 To find the SNR in a noiseless circuit, we should divide the 
variance of the total input current by the sum of variances of the constituent 
sources of noise written above: 
      SNR = <I>2 / [2 ae <G> B F + r 

2] =   
              = (ae <G>  ) 2/ [2 ae  <G>2   B F + r 

2]              (6.24) 
 
In the denominator of (6.24), the first term represents photoelectron and gain 
noise, the second one represents circuit noise. For the optical detector or 
source without gain and having resistance against noise, we can deduce 
formula (6.24) introducing in it <G> = 1 and F = 1. We notice that in [4], for 
characterizing the circuit noise, another parameter was introduced: q = r / 
2B ae. Accounting now for the relations  
 
                                                   < nph > =   Tr                                        (6.25a) 
 
and   
 
                                                       Tr =1/(2 B)                                           (6.25b) 
 
allows us to rewrite (6.24) in more compact form: 
 
                   SNR = (<G>2  < nph >

2) / [<G>2  F  < nph > + q
2]              (6.26) 

 
The SNR for an optical receiver described above has a simple interpretation. 
The numerator is the square of the mean number of multiplied 
photoelectrons detected in the receiver at resolution time Tr = 1/2B. The 
denominator is the sum of the variances of the number of photoelectrons and 
the number of circuit noise electrons collected in time Tr. For <G> = F = 1, 
for the noiseless receiver in the absence of gain yields: 
 
                               SNR = (< nph >

2) / [< nph >
2 + q

2]                                   (6.27) 
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As was mentioned in [4], this formula is useful for a resistance limited 
optical receiver with a temperature of T = 300 K, when q ~ B2 / 100 
(bandwidth B in Hz).   

Now, we will introduce the circuit noise parameter at room 
temperature T = 300 K, the gain noise q = r / 2B e, which for a resistance 
limited optical receiver can be simplified as (for B in Hz): q ~ B1/2 / 100. 
Again, if B=100 MHz (T = 300 K), then q ~100. For B ranging from 100 
MHz to 2 GHz, q typically ~500, provided that the corresponding transistors 
have optimal biased conditions between the resistivity and transistor.  
As follows from a general formula (6.24), SNR depends on all photo-
electrical processes occurring in optical sources and detectors, namely on 
the photon flux and quantum efficiency of excited photons, on the type of 
receiver and photo emitter, LED or avalanche (APD), and amplifier (see 
Chapters 5). For practical applications in optical communication and optical 
radars (LIDAR), designers mostly deal with the dependence of SNR on the 
bandwidth of the optical device. For example, for a resonance resistor, 
SNR~1/B, whereas for an amplifying receiver with bipolar transistor, 
SNR~(B + s B2)-1, and for an amplifying receiver with forward-emitted 
transistor (FET), SNR~(B + s B3)-1, where s is a constant defined 
empirically. These relations are illustrated in Figure 6.1 for all three kinds 
of receivers (according to [4]). 
 

 
Figure 6.1. A plot of SNR vs. bandwidth B in logarithmic scale for three types of 

receivers (according to [4]). 
 

The SNR always decreases with increasing B. For sufficiently 
small bandwidths, all three receivers exhibit an SNR that varies as B-1. For 
large bandwidths, the SNR of the FET and bipolar transistor-amplifier 
receivers declines more sharply with bandwidth with respect to the resistor-
limited receiver. 
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Finally, we should emphasize that the above has not illuminated 
special aspects regarding types of semiconducting materials. For precise and 
extensive information on light sources and detectors, the reader is referred 
to the corresponding works [1–7].   

6.2. Noise in Optical Receivers 

Noise inside Photodetector. In photodetectors, the noise arises 
from two kinds of noise: Johnson noise associated with the thermal noise 
from the bulk resistance of the photodiode slab described above by (6.8) and 
generation-recombination noise described above by (6.10).  

Noise inside Optical Receivers. As was mentioned in Chapters 1 
and 5, the optical receiver comprises the photodiode, a bias circuit, forward 
or inverse, a preamplifier and filtering. It can be depicted by the 
corresponding equivalent electronic circuit, as shown in Figure 6.2 
(according to [5]). This equivalent circuit is similar for a p-i-n diode, 
avalanche photodiode (APD), and photoconductor-biased receivers (see 
definitions in Chapter 5).  
 

 
 

Figure 6.2. Equivalent electronic circuit of an optical receiver: photodiode (input) 
and preamplifier (output) (according to [5]). 

 
Now we will summarize these types of noise for most detectors by 

representing such kinds of noise via the corresponding shunt noise current 
generators and the series noise voltage generators, as shown in Figure 6.2.   

Figure 6.2 depicts, in addition to the equivalent noise current 
photodetector, iph, also the equivalent noise current generators, ind, and, ina, 
and the equivalent noise voltage generators, end, and, ena, the equivalent 
noise current generator for the detector and preamplifier, respectively. The 
photodetector noise was discussed above.  
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1. Thus, for a p-i-n photodetector the noise current spectral 
density: 
 

                             <ind
2>/B = 2 e  (I + 2 ID + Iph)                         (6.28a) 

 
and the noise voltage spectral density: 
 
                             <end

2> / B = 4 kB T B / Rs                               (6.28b) 
 
2. For avalanche photodiode the noise current spectral density: 

 
               <ind

2> / B = 2 e (I + 2ID + Iph) M
2 F(M)                       (6.29a) 

 
and the noise voltage spectral density: 
 
                             <end

2> / B = 4 kB T B / Rs                               (6.29b) 
 
3. For photoconductor the noise current spectral density: 

 
                 <ind

2> / B = 4 kB T B / Rp + 4 e Iph G / (1 + 4 2  f2 c
2 )       (6.30) 

 
Here, as above, T is the temperature (in Kelvin), kB is the Boltzmann 
constant defined from the beginning, B is the rate of signals inside the 
receiver, G is the gain of the detector, M is the parameter of multiplication 
of the avalanche diode called the average gain (see Chapter 5), F(M) is the 
excess noise factor [this parameter depends on material and junction 
characteristics via the ionization coefficient, and the nature of electron and 
hole injection, see Chapter 5], Rp is the photoconductive resistance of 
photodetector, c is a mean lifetime of major carriers (see Chapter 5), and Rs 
is the bulk resistance of photoconductor or laser emitted source. 
 As for an amplifier, the corresponding equivalent circuit 
representation was proposed in [5, 6] and is presented in Figure 6.3, where 
RF denotes the feedback resistance. 
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Figure 6.3. Circuit representation of preamplifier with feedback resistor 

RF and amplifier gain A (according to [5, 6]). 
 
The amplifier gain A shown in Figure 6.3 relates to the receiver 

bandwidth B as: 
 
                                            A = 2  B CT RF                                  (6.31)  

 
where CT is the total capacitance of the receiver, and RF is the feedback 
resistor depicted in Figure 6.3.  

The SNR of a digital receiver with preamplifier described by the 
equivalent circuit shown in Fig. 6.3, can be expressed in the following form 
[6]:  

           
   SNR = M2 R2 Pr

2 / [(S1 + 4 kB T / RL) K2 B + <Ic
2>]        (6.32) 

 
In this expression, S1 refers to the noise current spectral density for the 
detector, the second term describes the thermal noise associated with the 
bias resistor RL. Here also <Ic

2> represents the noise contribution from the 
preamplifier, which can be related to the noise current generation ina and the 
noise voltage generation ena (see Figure 6.2).   

The quantity K2 is a dimensionless parameter and denotes a noise 
integral defined in such a way that, at a data rate B, the product K2 B 
represents the effective receiver noise bandwidth.  
 As for <Ic

2>, it is described in many works, which will not be 
repeated here. Instead, we give its form containing the dominant noise term 
for the case of a preamplifier, which was evaluated in [7]: 
 
                        <Ic

2> = 2 e Ib K2 B + 2e Ic (2CT)2 B2 K3 / gm
2          (6.33) 
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The noise integral parameter, K3, which depends on the input pulse shapes 
at the receiver, was described and evaluated in [7], and refers to the basic Ib 
and collector Ic current by bipolar transistors, respectively, and is the trans-
conductance of the field-effect-transistor (FET) of GaAs semiconductor 
(see Table 5.1 in Chapter 5), which is usually used for the fabrication of 
bipolar transistors.  

Now, following [5], we can present the noise current spectral 
density and the noise voltage spectral density for the noise generators ina and 
ena, respectively, depicted in Figure 6.2 for a preamplifier, that is: 

 
                                      <ina

2>/B = 2 e  IG                                       (6.34) 
 
and  
 

                <ena
2> / B = (4 kB T  / gm) / (1 - fk / f)                           (6.35) 

 
In (6.34), the FET of GaAs gate leakage noise is described by means of short 
noise of the leakage current IG. The channel thermal noise in (6.35) is 
described by use of the FET trans-conductance gm, as well as the empirical 
factor  close to unity for GaAs FET semiconductor [5]. In the denominator 
of (6.35) the second term ~ 1/f relates to the FET channel noise, which is 
characterized by a corner frequency fk in the receiver spectrum [5].   
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CHAPTER 7 

OPTICAL AMPLIFIERS

7.1. Principles of Optical Amplification 

Given the photon material interaction processes described above in 
Chapter 4, it is obvious that only stimulated emission can lead to optical 
amplification. In the system depicted by Figure 7.1, stimulated emission 
competes with absorption to determine whether the incident beam is 
amplified or attenuated. Spontaneous emission results in background light 
emitted randomly into a 4 -steroidal sphere, a proportion of which reaches 
the detector as background noise. So, simulated emission gives an impact in 
terms of noise and does not play a positive role in optical signals with data 
amplification and transmission along the link [1–6].  

Figure 7.1. Interaction of light beam with any material-filled body. 

As was shown in Chapter 4, to achieve amplification, the rate of 
stimulated emission must be greater than the rate of absorption, i.e., BjiNj > 
BijNi, which generally means that Nj > Ni. This situation (Nj > Ni) is referred 
to as a population inversion since at thermal equilibrium, the populations 
are highest for lower order states as defined by the Boltzmann distribution. 
For example, the relative population, Nj/Ni, at 295 K = 22 oC of two states 
differing in energy equivalent to the photon energy of light at  = 1 m is 
6.0  10-22 Joule (assuming gj = gi, see Chapter 4). Hence, at thermal 
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equilibrium absorption completely dominates and the beam is attenuated.  
 Let us first consider the process of stimulated emission in a slab of 
material of thickness z in the body of the gain medium (see Figure 7.2, 
according to [6-8]).  
 

  
Figure 7.2. Stimulated emission in the slab filled by the gain medium (according to 

[6-8]). 
 

Using the rate equations obtained in Chapter 4, we can derive 
expressions in terms of the population densities of the states involved and 
the incident light intensity. 

7.2. Amplification with Small Signal Gain 

The photon energy density in the slab is (z) and the incident light 
intensity is I  (z) (where (z) =I  (z) n/c, see Chapter 5). Applying (4.4) and 
(4.5) presented in Chapter 4, the rate of reduction of the number of atoms in 
energy level Ej due to stimulated emission in the slab is [6–8]: 
 
                  (dNj/dt)  A  z  = Bji  Nj   I  (z)  (n/c)  g( )  A  z                    (7.1) 
 
Each transition adds a photon of energy h  to the beam. Hence, we simply 
multiply by h  to get an expression for the incremental power, P, added to 
the beam by stimulated emission in the slab, and divide by the cross-
sectional area to get the incremental intensity, I (z) [6–8]: 
 

I (z) = - (dNj/dt)  h    z  =  Bji  Nj  I  (z)  (n/c)  g( )  h   z            
(7.2)             

 
Similarly, each absorption transition from state i to state j annihilates a 
photon from the beam and by analogy we can derive the incremental 
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reduction in intensity, - I (z), due to absorption as [6–8]: 
 
    I (z) = (dNi /dt)  h   z = Bij  Ni  I  (z)  (n/c)  g( )  h   z            (7.3)  
      
In addition, we must consider the contribution of spontaneous emission 
from the atoms of the slab to the total radiation field. Since spontaneous 
emission is random and omnidirectional, only a fraction of the light emitted 
by any element of the slab is collected at the detector, that fraction being 

/4 , where  is the solid angle subtended by the detector at the plane of 
the slab.  
 Hence, the incremental intensity provided by the slab to the 
detected beam from spontaneous emission is: 
 
      I (z) = (dNj/dt)  ( /4 )  h    z = Aji  Nj  ( /4 )  h    z            (7.4)  
                                        
In the formulation of Eq. (7.4), it is assumed that spontaneous emission 
contributes over the entire line shape function of the atomic transition. If a 
narrow band filter is used in front of the detector to reduce the level of 
spontaneous emission, then we must multiply (7.4) by g( ) , where  is 
the linewidth of the filter (see Chapters 4 and 5). 

The total contribution of the slab to the signal intensity is simply 
the summation of the incremental intensities contributed by stimulated and 
spontaneous emission minus the absorbed intensity. Hence, the rate of 
change of intensity with distance z through the gain medium is given by: 
 
   (dI /dz) = (h  /c)  g( )  n  [Bji  Nj - Bij  Ni ]  I (z) + Aji  Nj  ( /4 )  h         

(7.5) 
 
The second term at the end of the right side of Eq. (7.5) is the contribution 
of spontaneous emission to the collected signal. It is basically a source of 
noise. Neglecting the noise term and using the relationship (5.7a), obtained 
in Chapter 5, between the Einstein coefficients and the Max Plank’s law (see 
Chapter 3), we obtain the most widely used expression to describe the 
process of amplification/attenuation arising from the competing processes 
of stimulated emission and absorption, respectively: 
 
   (dI /dz) = {Aji  g( ) ( 0/n)2 / 8   [Nj - Ni(g2/g1)]}  I (z) = 0( )  I (z)            

(7.6) 
 
Equation (7.6) is only valid for I (0) sufficiently small to ensure negligible 
perturbation of Nj and Ni. For this reason, 0( ) is referred to as the small 
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signal gain coefficient, which is frequency-dependent through the lineshape 
function g( ). Clearly the condition for amplification is that the term [Nj - 
Ni(g2/g1)], referred to as the population inversion, is greater than 0, i.e., Nj > 
Ni(g2/g1). 
 Integrating Eq. (7.6) over coordinate of slab z, the intensity as a 
function of z for an input signal of I (0) can be obtained [6, 7]: 
 
                                       I (z) = I (0) exp{ 0( )  z}                                           (7.7) 
 
For a gain medium of length l, Eq. (7.7) becomes 
 
                                                   I (l) = G0( ) I (0)                                          (7.8) 
 
where G0( ) = exp{ 0( )  l} is the overall gain and 0( ) is the small signal 
gain of the amplifier of length l, respectively. In decibels, the overall gain 
of the amplifier can be presented as:  
     
          G(dB) = 10log G0( ) = 10log[exp ( 0( )  l)] = 4.34  0( )  l             (7.9) 
  
Equation (7.9) shows that the small signal gain (in dB) of an optical 
amplifier increases linearly with the gain coefficient and the pump power. 
Indeed, the increase in the pump power leads to an increase in the population 
of the upper gain state linearly, as well as to an increase of the population 
inversion and the gain coefficient.  

7.3. Pumping Mechanism in Optical Amplifiers 

As follows from previous discussions and from Eq. (7.9), at weak 
pump powers, the population inversion is insufficient to provide gain and 
the signal is attenuated by an amount depending on the population of the 
lower gain state.  

With an increase of the pump power, the population inversion and 
stimulated emission increase. At the same time, the attenuation decreases, 
and the system becomes transparent. Beyond the point of transparency (the 
gain threshold), the gain (in dB) increases linearly with pump power 
according to Eq. (7.9). It must be noted that the approach presented in the 
previous section only applies under weak pumping conditions for which we 
can assume insignificant depletion of the ground state.  
For strong pumping, the ground state becomes severely depleted, and further 
increases in pump power result in minimal improvements to the gain and 
the output power. Let us briefly consider the process of pumping accounting 
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for the fact that under thermal equilibrium, the condition of most of the 
atoms of any solid material is in the ground state and the relative populations 
of the higher allowed states are given by the Boltzmann distribution (see 
Figure 7.3).  
 
  

 
 

Figure 7.3. Distribution of energy levels of atoms according to Boltzmann’s law.  
 
In most semiconducting materials, laser and amplifier gain are 

pumped optically. In this process, atoms in the ground state (ground state 
energy level Eo, see Figure 7.3) of the material are raised to a higher energy 
level (Ej) by the absorption of photons of energy, Ej – E0, supplied from an 
external light source. If only two energy levels were involved in the process, 
then the population of the upper state would increase until the rates of 
absorption and stimulated emission of pump photons were equal. Hence, a 
population inversion cannot be created by pumping from the ground state 
in an only two-level system! 

Most optical amplifiers and lasers are based on either a three- or a 
four-level gain medium and pumping system. Figure 7.4, shows the 
simplified energy level diagram and pumping scheme for a typical three-
level system.  

 



Optical Amplifiers 
 

171

 
Figure 7.4. Three-level pumping system occurring in optical amplifiers (according 

to [6, 7]).  
 
Atoms are pumped by photons of energy, E2 – E0, from the ground 

state to some higher energy level, E2, from where they make rapid 
transitions into energy level E1. Provided that the rate of decay of the atomic 
population in the E1 level is slow relative to the pumping rate (i.e., the E1 
level is metastable), the population of E1 will increase to exceed that of the 
ground state, thus creating a population inversion. Light of a wavelength 
satisfying the relationship Ephoton = E1 - E0 = h c/ p can then be amplified by 
this gain medium. 

The rates of pumping and decay of the various populations are also 
indicated in Figure 7.4, where R2 is the rate (dN2/dt[pump]) at which atoms are 
being pumped into state E2 from the ground state as a result of absorption 
of the pump light. Since the transition rate, N2/ 21, to state E1 is very rapid 
( 21 is short), R2 is also the pumping rate (dN1/dt[pump]) of the upper lasing 
level, E1.  

Figure 7.5 presents a four-level pumping system, where ground 
state atoms are pumped by photons of energy E3 - E0, to energy level E3 
from where they rapidly make the transition to the metastable state, E2. Due 
to the long lifetime / slow decay of the atomic population in the metastable 
E2 level, its population builds up, creating an inversion relative to level E1 
and providing amplification of light of  satisfying the relationship Ephoton = 
E2 - E1 = h c/ p. 
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Figure 7.5. Four-level pumping system occurring in optical amplifiers (according 
to [6, 7]).  

 
In efficient gain media, the E1 level is sufficiently higher than the 

ground state. In addition, its transition rate to the ground state is usually very 
fast to ensure that its population remains negligible under high rates of 
emission from the E2 level. Here again, the pump and decay rates are 
indicated on the energy level diagram. R3 is the pump rate of level E3 and 
the upper lasing level, E2, since the transition rate, N3/ 32, is rapid. In the 
absence of stimulated emission, the population of the metastable E2 level 
decays slowly by spontaneous emission to E1 and to the ground state at the 
rates N2/ 21 and N2/ 20, respectively. The decay rate of the E1 population, 
N1/ 10, is very rapid, thus maintaining low N1.     

In the analysis of small signal gain presented above following [6, 
7], it is obviously assumed that the population inversion is constant, 
remaining unperturbed by the low levels of stimulated emission arising from 
amplification of a weak input signal. As the signal strength increases, the 
stimulated emission process begins to significantly reduce the population 
inversion and the gain decreases, a phenomenon referred to as gain 
saturation.  

To analyze large signal gain and gain saturation, we must consider 
the coupled rate equations for all of the transitions which influence the 
populations of the two energy levels involved in the amplification process. 
The analysis and results are different for three- and four-level pumping 
systems (see Figures 7.4 and 7.5) was carried out in Ref. [6] and we do not 
enter into the precise analysis illuminated there. We will only emphasize 
that knowledge of stimulated emission cross-section, SE, allows us to find a 
large signal gain of the amplifier ( ) via intensity I  and times of relaxation 
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1 and 2, respectively. Thus, for four-level pumping the optical amplifier 
yields:   

                          
            ( ) = ( )  [1 + ( 1 + 2 - 1  2 / 21) ( SE  I  / h )] -1                        (7.10) 
 

For homogeneously broadened gain material (see definition in 
Chapter 5) under intense radiation at any wavelength under the gain curve, 
the high level of stimulated emission simply depletes the population of the 
upper state and the entire gain curve diminishes but maintains its shape (see 
Figure 7.6). This means that the gain for all wavelengths under the gain 
curve is reduced uniformly.  

 

 
Figure 7.6. A typical gain curve under small signal conditions (solid line) and 
under internal radiation at r for homogeneously broadened transition (dashed 

lines). 
 

For gain media with inhomogeneously broadened transitions (see 
definition in Chapter 5) under intense radiation, the population of the upper 
state only decreases for that group of atoms with a homogeneous lineshape 
that overlaps the radiation wavelength. Hence, the gain is only diminished 
in a narrow range of wavelengths (the homogeneously broadened linewidth 
for these atoms) around the radiation wavelength (see Figure 7.7).  
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Fig. 7.7. The same, as in Fig. 7.6, but for inhomogeneously broadened transition. 
 

This phenomenon is referred to as spectral hole burning. The gain 
for wavelengths under the gain curve but out with this region is unaffected. 

7.4. Noise in Optical Amplifiers 

As was mentioned in Chapter 5 and above, the amplified 
spontaneous emission (ASE), is a random process and when mixed with the 
signal on the detector, it is a source of noise. Noise associated with the ASE 
is the limiting factor in determining the ultimate signal-to-noise ratio in any 
system using optical amplifiers [4], particularly in long haul periodically 
amplified systems using EDF, in which the ASE accumulates through the 
system (see discussions on EDFA below). 
 Let us consider the spontaneous emission from a cylindrical gain 
medium of cross-sectional area A and length l (see Figure 7.8, rearranged 
from [6, 7]). A cross-sectional slab of material of infinitesimal thickness, dz, 
will spontaneously emit a total power A21N2 g( ) d h A dz in the frequency 
range  to  + d .  
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Figure 7.8. Schematically sketched spontaneously emitted light falling at the 
detector under angle d  (rearranged from [6, 7]). 

 
Generally, we are only concerned with power emitted through the 

end face of the cylinder and confined within a given solid angle, d . The 
solid angle d  may be the angle subtended at the center of the cylinder by 
a remote receiver, as shown in Figure 7.8. Alternatively, if the gain medium 
is in the form of a waveguide as in optical fiber amplifiers, d  can be 
associated with the numerical aperture of the guide, i.e., d  = A2/4. 

 
                             dPASE = A21 N2 g( ) d h   A dz  d  /4                        (7.11) 
 
For small d  power emitted spontaneously from a slab at position z along 
the length of the cylinder l will be amplified by the remaining gain medium 
of length l-z by a factor ej(l - z) before it leaves the exit face. Hence, the ASE 
power, in the frequency interval d , emerging from the cylinder end face is 
the summation of the contributions from each slab of thickness dz and can 
be found after integration of (7.11) over z, which yields: 
 
                   PASE = [G-1] A21 N2 g( )  h   A d d  / ( 4 )                        (7.12) 
  
where, as above, G is the total gain of the amplifier given as G = exp ( l).
  
Accounting for well-known signal gain after spontaneous emission and the 
cross-section of such an emission, given, respectively, by 
              
                              ( ) = SE( )  [N2 - N1  (g2 / g1)]                                    (7.13) 
 
                                 SE( ) = A21 g( ) ( 0/n)2 / 8                                           (7.14) 
 
and substituting them in (7.12), we finally get: 
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                           PASE = 2 [G-1] h   A  n2 d d  / 0
2                                  (7.15) 

 
where  = N2 / [N2 - N1  (g2 / g1)] which is known as the population inversion 
factor. The term A n2 d  / 0

2 characterizes the geometry of the light 
emission and collection system relative to the wavelength. To minimize the 
ASE traveling with the beam to the detector, one can place an aperture stop 
at the output facet with a radius, a, equal to the beam radius. If so, the output 
beam diverges by diffraction at a half angle, , given by: 
 
                                                        = 0 / n a                                               (7.16) 
 
For small angles , this corresponds to a solid angle,  min  
 
                      min = sin2  =   2 =  ( 0 / n a )2 = 0 / n2 A                (7.17)  
 
For small angles and assuming transmission through a linear polarizer, the 
minimum ASE power incident on the receiver with the signal is obtained by 
substituting min for d  in (7.15) and dividing by 2 to give: 
 
                                    PASE = [G-1] h  d  = ASE d                                  (7.18) 
 
where ASE = [G - 1]h  is the spectral power density of the ASE contained 
within the amplified signal beam and reaching the detector via a linear 
polarizer. Here, we showed the resulting expression of the ASE power for a 
single linear polarization state, because only the E-field components in the 
ASE, which are polarized parallel with the signal E-field result in nonzero 
beat terms. For non-polarized ASE power, the right-hand side of (7.18) is 
simply doubled.  

Hence, the ASE power per frequency interval d  propagating in 
the fiber optic channel with the signal, polarized in the same direction as 
the signal and inseparable from it, is fully described by (7.18).  

At the output of an optical amplifier, the total optical power, PR, 
incident on a receiver is thus the summation of the received signal power, 
PS, and the total ASE power, ASE Bo, which has accumulated from the 
amplifier: 

 
                      PR = PS + ASE  Bo                                            (7.19) 

 
where Bo is the optical bandwidth of the system or of an optical filter placed 
in front of the receiver. 
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The presence of the ASE gives rise to additional optical noise at 
the receiver output, over and above the signal shot noise current. The ASE 
has its own shot noise, and it beats both with itself and the signal in the 
square law detector to generate ASE-ASE beat noise and signal (S) -ASE 
beat noise. These optical noise components must be considered in addition 
to the intrinsic noise of the receiver, which is usually dominated by thermal 
noise from the load resistance. 

Noise is characterized by the variance of the current fluctuations, 
which is equivalent to the mean square current fluctuations <i2 >. The noise 
sources discussed above are uncorrelated and the total variance of the 
receiver current fluctuation, N, is simply the sum of the variances 
associated with each noise source, i.e.: 

 
                 N = S  + ASE + S-ASE + ASE-ASE                                     (7.20) 

 
where the terms on the right are, in order of appearance, the mean square 
current fluctuations (the current variance) associated with thermal noise in 
the receiver, signal shot noise, ASE shot noise, S-ASE beat noise and ASE-
ASE beat noise. The optical noise terms are given by the following 
expressions:  
 
                 S  = 2e  IS Be = 2e R  PS Be  =2e R  G P0 Be                             (7.21a) 
 
                   ASE = 2e  IASE Be = 2e R  PASE  Be                                               (7.21b) 
 
            S-ASE  = 4 R2  G  B0  ASE  Be = 4 R2  G  P0  PASEBe                      (7.21c) 
 
         ASE-ASE =  R2  ASE

2  B0  Be  = 2 R2  PASEBe  PASEB0                      (7.21d)  
                   
Here e is the electronic charge, R is the photodiode responsivity (R = q/h , 
 being the quantum efficiency, defined in Chapter 5), Be is the receiver 

bandwidth, Bo is the optical bandwidth, IS and IASE are the photodetector 
currents arising from the signal and ASE, respectively; P0 is the signal input 
power to the amplifier, PS is the received signal power and PASEB0 = ASE B0  
and PASEBe = ASE Be are the single polarization ASE powers in the optical 
and electrical (receiver) bandwidths respectively. 

Clearly from (7.21a) to (7.21d) for any significant level of gain, G, 
and input signal, P0, the S-ASE beat noise and/or the ASE-ASE beat noise 
terms represent the largest optical contributions to the total noise. In most 
applications of optical amplifiers, one or other or both of these noise 
components limits the overall performance of any system.  
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Signal-to-Noise Ratio. As was mentioned in Chapter 6, for most 
applications the received signal-to-noise ratio, SNRout, at the output of an 
optical amplifier is: 
 
   SNRout = (R  G  P0) 2 / [4 R2  G  P0  PASEB0 + 2 R2  PASEBe  PASEB0 ]  

(7.22) 
 
For some applications, particularly for low signal levels and when the 
amplifier is not in saturation, the ASE-ASE beat noise becomes important 
and dominant, and we can neglect the first term in the denominator. 
Conversely, in many other practical applications the amplifiers have 
significant output signal levels and operate at or near saturation, implying 
that we can neglect the second term. In such cases, the received SNR is 
given by: 
 
SNRout = (R  G  P0) 2 / [4 R2  G  P0  PASEB0] = (G  P0) / (4  PASEB0)        (7.23) 
 
Generally speaking, our suggestions are realistic, because the shot noise and 
thermal noise influence shown in a system (7.21) were proven 
experimentally, their expressions are well known, and their derivations may 
be found in most textbooks on optical communications. The two beat noise 
terms in a system (7.21) are more particular to systems using optical 
amplifiers and are less familiar. Nevertheless, we present SNR via these two 
terms, accounting for ASE-ASE beat noise, as it is described by (7.22).  
 Noise Figure. Often it is convenient to characterize the noise and 
SNR of optically amplified systems using a parameter known as the 
amplifier noise figure, NF. Usually, NF is defined as the ratio of the optical 
SNR at the amplifier input to the optical SNR at the output, as detected by 
a receiver whose intrinsic noise level (thermal noise) is less than the optical 
noise in both cases. The optical noise at the input is simply the signal shot 
noise and the SNR (using (7.21a) and R = e/h ,  =1) is given by: 
 
                 SNRout = (R  P0) 2 / [2e R  P0  B0] = P0 / (2h Be)                        (7.24)  
 
Using (7.23), the NF is given by 
 
                    NF = SNRout / SNRin = 2  PASEB0 / (G  h Be)                           (7.25) 
 
Substituting in (7.23) PBe = ASE Be and using (7.18) by assuming gain 
G>>1, we get 
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                                                         NF = 2                                                    (7.26) 
 
This implies that the minimum possible noise figure (NF) is 2 (3dB) is for 
an ideal amplifier having a complete population inversion (i.e., N1 = 0,  = 
1). That is, even for an ideal amplifier, the output SNR is degraded by 3dB 
relative to the input SNR. Typically, in practice, amplifiers operate with a 
noise factor greater than 3dB, and it can be as high as 7–8 dB. If the NF is 
known under the conditions at which the amplifier is operated, then we can 
use it to calculate the output SNR. Applying (7.24) and (7.25), SNRout in 
terms of the noise figure is: 
 
                                           SNRout  = P0 / (2h Be NF)                                  (7.27)  
  
From measurements of the total ASE power and the ASE spectrum (see 
Figure 7.9) we can readily calculate PBe (i.e., the ASE power within the 
receiver bandwidth).  

Noise Figure (NF). In many systems the ASE-ASE beat noise is 
significant and must be included in the measurements of noise figure and 
expressions for SNRout presented by (7.22) and by the following expression: 

 
    NF = 2  PASEBe / (G  h Be)  +  PASEB0  PASEB0 / (G 2  h Be)               (7.28) 
 

 
 

Figure 7.9. ASE power spectrum showing the ASE falling within the bandwidth of 
the receiver; Be; PBe is integral of the ASE spectrum over the shaded area. 
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Hence, measurement of the total ASE power, plus the ASE 
spectrum and the gain allow the noise figure (NF) to be calculated. 

7.5. Erbium Doped Fiber Amplifier (EDFA) 

7.5.1. Structure and Principle of Operation of EDFA 

The main goal of researchers in the late nineteen eighties was to 
find the preferred wavelength for long optical communications systems, 
starting with 1550 nm for the construction of semiconductor optical 
amplifiers at 1550 nm. Spectroscopic studies had shown that erbium atoms 
may be suitable as an active 3 level species for optical amplification at 1550 
nm. Figure 7.10 shows a partial energy level diagram for erbium atoms 
doped into a glass host. Regarding fiber optic communication links we will 
discus in Chapter 10. 

 

 
 

Figure 7.10. Energy level diagram and pumping scheme for erbium doped silica 
glass – a three-level system giving gain at 1550 ± 30 nm (according to [6, 7]). 

 
Three-level systems (see definition above) with the ground state as 

the lower gain state require very strong pumping to achieve a population 
inversion and the erbium doped glass system is further impaired by the 
inability to achieve high doping concentrations, implying the need for long 
lengths of material to achieve significant gain. The broad band of levels 
denoted 4I13/2 are metastable with long spontaneous emission lifetimes in the 
region of a few milliseconds and transitions to the ground state produce 
photons in the wavelength range 1520–1580 nm, providing the possibility 



Optical Amplifiers 
 

181

of optical amplification centered on 1550 nm.  
As follows from the discrete zone diagram depicted in Figure 7.10, 

the population of the 4I13/2 levels could be pumped by irradiation at 980 nm 
or 1480 nm. Photons at 980 nm are absorbed by ground state atoms which 
make the transition to energy level 4I11/2. Further non-radiative transitions 
from the 4I11/2 level to the 4I13/2 level are very rapid and the population of the 
4I13/2 metastable levels builds up.  

Alternatively, irradiation by 1480nm light allows direct pumping 
into the upper levels of the 4I13/2 band with rapid transitions to the lower, 
long-lived levels allowing this pumping scheme to operate as a three-level 
system.  

The structure of a typical EDFA is shown in Figure 7.11, according 
to [6, 7]. Erbium ions are the active gain species which, when doped into 
silica glass form a useful 3-level gain medium.  

 

 
Figure 7.11. Schematic diagram of EDFA (according to [6, 7]).. 
 
As was shown in Fig. 7.10, depicted following [6, 7], pumping at 

980 nm or 1480 nm results in a population inversion between an 
intermediate state and the ground state providing gain in a band of 
wavelengths from 1520 to 1580 nm. In single mode fiber form, the high 
intensity and strong confinement of the pump and signal light creates an 
extremely efficient amplifier offering gains in excess of 40 dB for modest 
pump power, gain efficiencies in the region of 2–10 dB per mW of pump, 
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saturated output powers in excess of 100 mW and low noise figure (NF) 
down to < 4 dB. With such performance EDFAs are finding widespread use 
in fiber optic systems. 

Finally, EDFAs, based on an all fiber structure, are readily spliced 
into optical fiber systems to provide in-line gains of up to 40 dB or greater 
with the added advantages of low power consumption and high reliability. 
In addition, they offer the benefits of bit rate transparency and wavelength 
transparency over a 30nm range, leading to high bit rate operation, and the 
possibility of simultaneous multiple wavelength amplification for 
wavelength division multiplexing [3–5]. However, EDFAs provide only 
signal amplification without regeneration of the pulse shape or its width.  

With such advantages and suitably few disadvantages, EDFAs are 
replacing optoelectronic repeaters as the in-line signal conditioning 
elements in communications systems, and they have found numerous 
applications as power amplifiers and receiver pre-amplifiers in many other 
fields of fiber optics. 

7.5.2 Gain Characteristics of EDFA 

 We start to briefly discuss some of the principles and equations 
directly required in the following study. For small signals of insufficient 
intensity to significantly perturb the population of the upper gain state, the 
gain in intensity per unit length (dIn/dz) at a given distance z along a 
uniformly pumped amplifier is given by (7.6), where the term in the brackets 
is the population inversion, I (z) is the intensity at z defined by expression 
(7.7), and o( ) is referred to as the small signal gain coefficient given by 
formula the following formula: 
 
                                   o( ) = SE( )  [Nj – Nj (gi / gj )]                                   (7.29)     
 
Here SE was defined above as a constant referred to as the stimulated 
emission cross-section determined by expression (7.14). As for intensity, 
defined by (7.7), it can be described via the overall gain of the EDFA 
amplifier of the length l via an input intensity I (0) as [6, 7]: 
 
                                                  I (l) = G0( )  I (0)                                         (7.30)                        
 
where 
                                                    G0( ) = exp{ 0( )  l}                                        
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or in decibels, the overall gain of the EDFA will be expressed by the same 
formula, as formula (7.9), which we present again for the readers’ 
convenience: 
 
          G(dB) = 10log G0( ) = 10log[exp ( 0( )  l)] = 4.34  0( )  l          (7.31) 

7.5.3 Noise Characteristics of EDFA 

 Often it is convenient to characterize the noise and SNR of EDFA 
as usually presented above for optically amplified systems using a parameter 
known as the amplifier noise figure, NF as the ratio of the optical SNR at 
the EDFA input to the optical SNR at the output, detected by a receiver 
whose intrinsic noise level (thermal noise) is less than the optical noise in 
both cases. The optical noise at the input is simply the signal shot noise and 
the SNR is given by expression (7.24), which we repeat for the readers’ 
convenience: 

 
           SNRout = (R  P0) 2 / [2e R  P0  B] = P0 / (2h Be)                     (7.32) 

 
where we have used the substitution R = e/h  (we have assumed a quantum 
efficiency =1, see details in Chapter 5). Repeating the ratio (7.25), we 
present the noise figure by [6. 7]: 
 
                   NF = SNRout / SNRin = 2  PASEBe / (G  h Be)                            (7.33)                        
                     
Substituting (7.21b) for PASE and assuming significant gain, G>>1, gives the 
same expression for EDFA, as generally was obtained above, that is,  
 
                                                        NF = 2                                                      (7.34)          
 
This gives us that the minimum possible NF is 2 (3dB) for an ideal amplifier 
having a complete population inversion (i.e., N1 = 0,  = 1). That is, even 
for an ideal amplifier, the output SNR is degraded by 3dB relative to the 
input SNR. Typically, in practice, EDF-amplifiers operate with a noise 
factor greater than 3dB, and it can be as high as 7–8 dB. 

Following initial data (see Figures 7.10 and 7.11), it was quickly 
found that EDFAs were highly compatible with 1550nm fiber optic 
telecommunications systems and that their potential performance could 
significantly enhance such kinds of fiber systems, namely using fiber optic 
systems by providing high gain, excellent reliability, and low power 
consumption.  
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In addition, they proved to be bit rate transparent and wavelength 
transparent (within their optical bandwidth), implying that system capacities 
could be increased by increasing the bit rate capabilities of terminal 
equipment or by introducing wavelength division multiplexing (WDM) (see 
[3–5] and bibliography therein). EDFAs have thus found numerous 
applications, turning previously attenuation limited systems into much 
higher performance dispersion limited systems. The operational 
characteristics of EDFA are shown in Table 7.1, according to [6, 7]:  

 
Table 7.1. Main Characteristics of EDFA.  

Of course, EDFAs provide only gain but do not reshape the 
signals, which spread and degrade by dispersion. However, assembled with 
the dispersion shifted and dispersion compensating fiber, the dispersion 
limits have been extended dramatically even to transoceanic distances. For 
these reasons EDFAs were developed from proof of principle to fully 
engineered products for deployment under the ocean. 

 
Exercises 

 
On the basis of a specific Erbium Doped Fiber Amplifier (EDFA), we will 
show, as examples, how to compute each of its characteristics, described by 
system of equations (7.21)-(7.22). 
 

Exercise 1. 
 
Given: The optical bandwidth of the optical amplifier is Bo, which is defined 
by an optical band pass filter centered on the signal of frequency o; the 
optical gain G and the amplifier with spontaneous emission (ASE, see 
definition above) are uniform over that bandwidth. ASE is described by a 
summation of sinusoidal electric field components of infinitesimally small 
bandwidth  and ranging in frequency from o - Bo/2 to o + Bo/2. 
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Find: The beat noise current main terms.  
 

Solution 
 

The ASE spectral power density ASE( ) transmitted through a linear 
polarizer is given by [7]: 
 
                                              ASE( ) = h      (G - 1)                                     (1E)       
 
The total ASE power in a single linear polarization state is 
  
                                              PASE (Bo) = ASE( ) B0                                          (2E) 
 
Given that the optical power is proportional to the time averaged electric 
field amplitude squared, i.e. 
 
                                      <P> = c  0  <E2> = c  0  E0

2/2                             (3E)                        
 
In Eq. (3E), c is the speed of light and 0 is the vacuum permittivity. Finally, 
the narrow band sinusoidal field components associated with the ASE may 
be written: 
 

                                                 
 
                                                                                                                               
                                                                                                             (4E-1) 
Denoting now M = B0 / 2 , yields 
 

                                                                                                             (4E-2) 
 
The photo current, i(t), generated in the detector of responsivity R by 
incident power, Pin, can be found as [7] 
 

                                                                                    (5E) 
 
 
where the brackets denote time averaging over the optical frequencies. 
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Substituting (4E2) into (5E) yields: 
                             

(6E) 
 
 
 
 

So, a general expression was found consisting of three terms on the right-
hand side of (6E): the signal noise, the signal (S)-ASE beat noise, and the 
ASE-ASE beat noise. 
 
       

Exercise 2. 
 

Given: The same, as above, optical ASE with bandwidth Bo, and with the 
optical gain G. The electric field of ASE is ranging in frequency from o - 
Bo/2 to o + Bo/2 over infinitesimally small bandwidth . 
 
Find: The signal-ASE beat noise current. 

 
Solution 

 
The second term in Eq. (6E) gives the signal-ASE beat noise current. By use 
of the trigonometrical identity 2cosA cosB, we can rewrite the second term 
obtaining a series of sum and difference frequency terms proportional to 
(2 0 + 2k ). The sum frequencies can be filtered out by low passband 
of the optical receiver allowing us to present the second term in Eq. (6E) in 
the following form: 
 

                                       (7E) 
 
 
For each frequency, 2k , there are two contributions of random relative 
phase, one from each ASE component symmetrical in frequency space 
about the signal frequency, 0. Now, as was given from beginning, the ASE 
spectrum is uniformly distributed over the bandwidth, Bo, then the power 
spectrum of the beat noise is also will be uniform over the frequency interval 

 - Bo/2.  
To obtain the mean square noise current, associated with each 

frequency component, square each of the components of (7E), take the time 
average and multiply by 2 (to account for the 2 components symmetrical on 
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either side of the signal frequency), which yields 
 
                         < i2

S-ASE ( )> =4R2  G  P0  ASE                                    (8E)                                     
                                                                                
Finally, the mean square noise current density is: 
 
                                S-ASE  = < i2

S-ASE ( )> = 4R2  G  P0  ASE                          (9E)               
                                                                             
Hence, the total mean square noise current within the electronic bandwidth, 
Be, of the detector can be written 
  
  S-ASE  = 4 R2  G  P0  ASE  Bo = 4 R2  G  P0  PASE

Be = 
                                         = 4 e2 2 G  P0   (G-1)  Be                                         

(10E) 
 
where PASE

Be is the single polarization ASE power within the receiver 
bandwidth and  is the quantum efficiency of the optical detector in the 
receiver. 
 
 

Exercise 3. 
 

Given: The same, as above, optical ASE with bandwidth Bo, and with the 
optical gain G. The electric field of ASE ranges in frequency from o - Bo/2 
to o + Bo/2 over infinitesimally small bandwidth . 
 
Find: The ASE-ASE beat noise current. 
 

Solution 
 

The third term in Eq. (6E) represents the ASE-ASE beat noise current and 
can be written, according to Ref. [7], as 

                        
 

(11E) 
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For simplification of expression (11E), here the total phases for harmonics 
of electric field with numbers j and k is given as: 
 

                                                                            (12E) 
 
 
 

Using the standard trigonometric identity for 2cosA cosB, we rewrite Eq. 
(11E) as: 

                        
(13E)                          
 

 
Squaring and time averaging, following straightforward computations as 
carried out in [7], it can be easily found that each component at frequency 

 gives its contribution to the mean square noise current and for (2M - 1) 
components at frequency , the mean square noise current density close to 
DC current 
                                     

                                                                                                                   (14E) 
 
 
and finally can be presented as 
 

                                 (15E) 
 
 
For Bo >> , accounting that M = B0 / 2 , and assuming a detector quantum 
efficiency  =1, Eq. (15E) finally becomes: 
 
                 ASE-ASE = R2  2

ASE  B0  Be  = 2 R2  PASE
Be  PASE

B
0 

                              = 2 e2  2  (G-1) 2  Be  B0                                            (16E) 
 
Here, as above, PASE

Be and PASE
B

0 are the single polarization ASE powers 
within the optical and receiver bandwidth, respectively. 
So, we finally found all terms of beat noise current occurring in the EDFA 
presented in the system (7.21a-d) and in expression (7.22). 
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CHAPTER 8  

TYPES OF SIGNALS IN OPTICS 
 
 
 
In optical wire (e.g. fiber optic) or wireless (e. g. atmospheric) 

links, the same kinds of signal are formed and transmitted, as in similar radio 
wire and wireless communication channels. They are continuous and 
discrete (e.g., pulses). Therefore, the same mathematical tool can be used 
for the description of such kinds of signals, radio and optical. Let us briefly 
present a mathematical description of both types of signals – continuous 
wave (CW) and pulses. In communications, wired and wireless, there are 
other definitions of these kinds of signals that researchers have used 
regarding their presentation in the frequency domain. Thus, if we deal with 
a continuous signal in the time domain, let us say, ( ) ( ) cosx t A t t  that 
occupies a wide time range along the time axis, its Fourier transform F[x(t)] 
converts this signal into a narrowband signal, that is, F[x(t)]=y(f), which 
occupies a very narrow frequency band in the frequency domain. 
Conversely, if we deal initially with a pulse signal in the time domain that 
occupies a very narrow time range along the time axis, its Fourier transform 
F[x(t)] converts this signal into a wideband signal, that is, F[x(t)]=X(f), 
which occupies a wide frequency band in the frequency domain. Therefore, 
in the terminology usually used in communication systems and LIDAR 
design, the continuous signals and the pulses are often called the 
narrowband and wideband, respectively. In our description below we will 
follow both terminologies where the usage of different definitions is more 
suitable.  

8.1. Narrowband or Continuous Wave Optical Signals 

A voice modulated continuous wave (CW) signal occupies a very 
narrow bandwidth surrounding the carrier frequency  of the signal (e.g., 
the carrier), which can be expressed as: 

 
                                   ( ) ( ) cos 2 ( )cx t A t f t t                                (8.1) 
 

cf
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where is the signal envelope (i.e., slowly-varied amplitude) and (t) is 
its signal phase. Since all information in the signal is contained within the 
phase and envelope-time variations, an alternative form of a bandpass signal 
x(t) is introduced [1, 4–10]: 
 
                                ( ) ( ) exp ( )y t A t j t                                                       (8.2)  
 
which is also called the complex baseband representation of x(t). By 
comparing (8.1) and (8.2), we can see that the relation between the bandpass 
and the complex baseband signals are related by: 

                                                  

                                ( ) Re ( ) exp 2 cx t y t j f t                                           (8.3)  
 
Relations between these two representations of the narrowband signal in the 
frequency domain are shown schematically in Figure 8.1.  
 

 
Figure 8.1. Comparison between baseband and bandpass signals. 

 
           One can see that the complex baseband signal is a frequency shifted 
version of the bandpass signal with the same spectral shape but centered on 

)(tA
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a zero-frequency instead of the  [6–10]. Here, X(f) and Y(f) are the Fourier 
transform of x(t) and y(t), respectively and can be presented in the following 
manner [1–3, 12–14]: 
 

             2( ) ( ) d Re ( ) Im ( )j ftY f y t e t Y f j Y f                             (8.4)  

and 
 

            2( ) ( ) d Re ( ) Im ( )j ftX f x t e t X f j X f                           (8.5)  

 
Substituting for x(t) in integral (8.5) from (8.3) gives 
 

                        2 2( ) Re ( ) dcj f t j ftX f y t e e t                                        (8.6)  

 
Taking into account that the real part of any arbitrary complex variable w 
can be presented as 
 

                                                *1Re[ ]
2

w w w                                                    

 
where *w  is the complex conjugate, we can rewrite (8.5) in the following 
form: 
 

               2 2* 21( ) ( ) ( ) d
2

c cj f t j f t j ftX f y t e y t e e t                          (8.7)  

 
After comparing expressions (8.4) and (8.7), we get 
 

                       *1( ) ( ) ( )
2 c cX f Y f f Y f f                                        (8.8)  

 
In other words, the spectrum of the real bandpass signal x(t) can be 
represented by the real part of that for the complex baseband signal y(t) with 
a shift of cf  along the frequency axis. It is clear that the baseband signal 
has its frequency content centered on the “zero” frequency value. 

cf
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Now we notice that the mean power of the baseband signal y(t) 
gives the same result as the mean-square value of the real bandpass signal 
x(t), that is, 

 

  
2 *( ) ( ) ( )

( ) ( )
2 2y x

y t y t y t
P t P t                             (8.9) 

 
The complex envelope y(t) of the received narrowband signal can be 
expressed according to (8.2) and (8.3), within the multipath wireless 
channel, as a sum of phases of N baseband individual multiray components 
arriving at the detector with their corresponding time delay, i , i=0,1,2,…, 
N-1 [6–10]. 

                       
1 1

0 0
( ) ( ) ( ) exp ( , )

N N

i i i i
i i

y t u t A t j t                                  (8.10)  

 
If we assume that during the subscriber movements through the local area 
of service, the amplitude iA time variations are small enough, whereas 
phases i  vary greatly due to changes in propagation distance between the 
source and the desired detector, then there are great random oscillations of 
the total signal y(t) at the detector during its movement over a small 
distance. Since y(t) is the phase sum in (8.10) of the individual multipath 
components, the instantaneous phases of the multipath components result in 
large fluctuations, that is, fast fading, in the CW signal. The average 
received power for such a signal over a local area of service can be presented 
according to [1, 4–10] as: 
                                          

1 1
2

CW
0 0 ,

2 cos
N N

i i j i j
i i i j i

P A A A
               (8.11) 

8.2. Wideband or Impulse Optical Signals 

The typical wideband or impulse signal passing through the 
multipath communication channel is shown schematically in Figure 8.2a 
following [4–10].  
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Figure 8.2: (a) A typical impulse signal passing through a multipath 
communication channel; (b) The use of bins, as vectors, for the impulse signal with 

spreading. 
 

If we divide the time-delay axis into equal segments, usually called 
bins, then there will be a number of received signals in the form of vectors 
or delta functions. Each bin corresponds to a different path whose time of 
arrival is within the bin duration, as depicted in Figure 8.2b. In this case, the 
time-varying discrete-time impulse response can be expressed as: 
                               

1

0
( , ) ( , ) exp 2 ( ) ( ) exp ( , )

N

i c i i
i

h t A t j f t t j t       (8.12) 

 
If the channel impulse response is assumed to be time-invariant, or is at least 
stationary over a short-time interval or over a small-scale displacement of 
the detector or source, then the impulse response (8.12) reduces to 
 

                            
1

0
( , ) ( ) exp

N

i i i
i

h t A j                                (8.13)  

 
Where 2 ( )i c if . So, the received power delay profile for a 
wideband or pulsed signal averaged over a small area can be presented 
simply as a sum of the powers of the individual multipath components, 
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where each component has a random amplitude and phase at any time, that 
is, 
  

                   
1 12 2

0 0
( ) exp

N N

pulse i i i
i i

P A j A                         (8.14) 

              The received power of the wideband or pulse signal does not 
fluctuate significantly when the subscriber moves within a local area 
because, in practice, the amplitudes of the individual multipath components 
do not change widely in a local area of service, 

Comparison between small-scale presentations of the average 
power of the narrowband (CW) and wideband (pulse) signals, that is (8.11) 
and (8.14), shows that: 

 
In the cases when 0i jA A  or/and cos 0i j , the average 

power for CW signal and that for pulse are equivalent. 
 
This can occur when either the path amplitudes are uncorrelated, 

that is, each multipath component is independent after multiple reflections, 
diffractions, and scattering from obstructions surrounding both the detector 
and the source. It can also occur when multipath phases are independently 
and uniformly distributed over the range of 0, 2 . This property is 
correct for optical wavebands when the multipath components traverse 
differential paths having hundreds and thousands of wavelengths [6–10]. 
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CHAPTER 9  

MODULATION OF SIGNALS IN OPTICS 
 
 
 
As was shown in Chapter 8, there are two main types of optical signals 
propagating in fiber optic or atmospheric communication links, time-
continuous or analog, which correspond to narrowband channels, and time-
discrete or pulse-shaped, which correspond to wideband channels [1–5]. 
Therefore, there are different types of modulation that are usually used for 
such types of signals. First of all, we will define the process of modulation 
and demodulation.  
          Modulation is the process where the message information is added to 
the optical carrier. In other words, modulation is the process of encoding 
information from a message source in a manner suitable for transmission. 
This process involves translating a baseband message signal, the source, to 
a bandpass signal at frequencies that are very high with respect to the 
baseband frequency. The bandpass signal is called the modulated signal and 
the baseband message signal is called the modulating signal [3–10].  
          Modulation can be achieved by varying the amplitude, phase, or 
frequency of a high frequency carrier in accordance with the amplitude of 
the baseband message signal. These kinds of analog modulation have been 
employed in the first generation of wireless systems and have continued 
until nowadays for LIDAR and optical imaging applications. Further, digital 
modulation has been proposed for use in current radio and optical 
communication systems. Because this kind of modulation has numerous 
benefits compared with conventional analog modulation, the primary 
emphasis of this topic is on digital modulation techniques and schemes (see 
the next section). However, since analog modulation techniques are still in 
widespread use today and will continue to be used in future, they are treated 
first.  
          Demodulation is the process of extracting the baseband message from 
the carrier so that it may be processed and interpreted by the intended radio 
or optical receiver [1–3]. Since the main goal of a modulation technique is 
to transport the message signal through an optical communication channel, 
wire or wireless, with the best possible quality while occupying the least 
amount of frequency band spectrum, many modern practical modulation 
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techniques have been proposed to increase the quality and efficiency of 
various optical communication links, including fiber-optical links.  
          Below, will be described briefly the main principles of both kinds of 
modulation, analog and digital, and some examples will be given of the most 
useful types of modulation adapted for both kinds of channels, narrowband 
and wideband.  

9.1. Analog Modulation of Optical Signals 

Each analog signal consists of three main time-varying characteristics: the 
amplitude a(t), the phase ( ),t and the angular frequency ( ) 2 ( )t f t , 
since there is a simple relation between the phase and the frequency 

0( ) ( )t t t , where 0  is the initial phase of the signal. In other words, 
any signal can be presented via these three parameters as 
 
                                   0[ ( ) ]( )( ) ( ) ( ) j t tj tx t a t e a t e                                  (9.1) 
 
Consequently, there are three types of modulation, depending on what 
characteristic is time-varied in the modulating signal (called the message, 
see above definitions) – amplitude (AM), phase (PM) and frequency (FM) 
modulation. 

9.1.1 Analog Amplitude Modulation 

In the amplitude modulation (AM) technique, the amplitude of a high 
frequency carrier signal is varied in accordance with the instantaneous 
amplitude of the modulating message signal. The AM signal can be 
represented through the carrier signal and the modulating message signal as 
 
                                 ( ) [1 ( )]cos(2 )AM c cs t A m t f t                                    (9.2) 
 
where ( ) cos(2 )c c cx t A f t is a carrier signal with amplitude cA and high 
frequency cf , ( ) ( / ) cos(2 )m c mm t A A f t is a sinusoidal modulating signal 
with amplitude mA  and low frequency mf . Usually, the modulation index 

( / )m m ck A A  is introduced, which is often expressed as a percentage and 
is called percentage modulation. Figure 9.1 shows a sinusoidal modulating 
signal ( )m t  and the corresponding AM signal ( )AMs t  for the 
case  ( / ) 0.5m m ck A A – that is, the signal is said to be 50% modulated.  
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If (%) 100%mk , the message signal will be distorted at the 
envelope detector. Equation (9.2) can be rewritten as  

 
                                ( ) Re[ ( )exp( 2 )]AM cs t g t j f t                                        (9.3) 
 
where g(t) is the complex envelope of the AM signal given according to 
(9.2) by 
 
                                         ( ) [1 ( )]cg t A m t                                                    (9.4) 
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Figure 9.1. The amplitude modulating (top panel) and modulated (bottom panel) 
signals for the modulation index 0.5mk . 

 
The corresponding power spectrum of an AM signal can be shown 

to be [1–4] 
 

   1( ) ( ) ( ) ( ) ( )
2AM c c M c c M cS f A f f S f f f f S f f       (9.5) 
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where ( ) is the unit impulse function, and ( )MS f is the message signal 
spectrum.  

The bandwidth of an AM signal is equal to 2AM mB f  where mf  
is the maximum frequency contained in the modulating message signal. The 
total power in an AM signal can be obtained as [1–4] 

 

                       21( ) 1 2 ( ) ( )
2AM cP t A m t m t                            (9.6)  

 
where ( )m t  represents the average value of the message signal. Using 
the expression of the message signal through the modulation index 
presented above, one can simplify expression (9.6) as 
 

                              
21( ) 1 1

2 2
m

AM c m c
k

P t A P P                                   (9.7) 

 

where 21
2c cP A  is the power of the carrier signal and 2 ( )mP m t  is the 

power of the modulating message signal. It can be shown that 
 

2 2 2 2
2

2

1 1 1 1 1 1
2 2 2 2 2 2 2 2 8 4

m m c m
AM c c c c c m m

c

k k A AP P P P P P A P
A

,     (9.8) 

 
from which follows that / 2AM c mP P P . 

9.1.2 Analog Frequency and Phase Modulation 

Frequency modulation (FM) is a part of an angle modulation technique 
where the instantaneous frequency of the carrier, ( )cf t , varies linearly with 
the baseband modulating waveform, m(t), i.e.,  
 
                                           ( ) ( )c c ff t f k m t                                                    (9.9) 
 
where fk  is the frequency sensitivity (the frequency deviation constant) of 
the modulator measured in Hz/volt. To understand what it means, let us first 
of all explain the angle modulation technique.  
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          Angle modulation varies a sinusoidal carrier signal in such a way that 
the phase  of the carrier is varied according to the amplitude of the 
modulating baseband signal. In this technique of modulation, the amplitude 
of the carrier wave is kept constant (called the constant envelope 
modulation). There are several techniques to vary the phase ( )t of a carrier 
signal in accordance with the baseband signal. The well-used techniques of 
angle modulation are frequency modulation and phase modulation. In an 
FM signal the instantaneous carrier phase is 
 

                    
0 0

( ) 2 ( ') ' 2 ( ') '
t t

c c ft f t dt f t k m t dt                         (9.10) 

 
So, the bandpass FM signal can be presented in the following form: 
 

0

( ) Re[ ( )exp( 2 )] cos 2 2 ( ') '
t

FM c c c fs t g t j f t A f t k m t dt       (9.11) 

 
Here the envelope ( )g t  is the complex lowpass FM signal: 
 

                             
0

( ) exp 2 ( )
t

c fg t A k m t dt                                          (9.12) 

 
whereas before, Re[w] is the real part of w. The process of frequency 
modulation is illustrated in Figure 9.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.2. The modulating signal (top plot), time-varied modulation frequency 

(middle plot), and FM signal (bottom plot). 
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We notice that FM is a constant envelope modulation technique 
making it suitable for nonlinear amplification. If, for example, the 
modulating baseband signal has sinusoidal amplitude and frequency, then 
the FM signal can be expressed as 

                  ( ) cos 2 sin(2 )f m
FM c c m

m

k A
s t A f t f t

f
                               (9.13) 

 
In phase modulation (PM) signals the angle ( )t of the carrier signal is 
varied linearly with the baseband message signal m(t), and can be presented 
in the same manner as the FM signal, that is,  
      
                           ( ) cos 2 ( )PM c cs t A f t k m t                                   (9.14) 
 
In (9.14) k  is the phase sensitivity of the modulator (the phase deviation 
constant) measured in radian per volt. From (9.11) and (9.14) it follows that 
an FM signal can be regarded as a PM signal in which the lowpass 
modulating wave is integrated before modulation. So, an FM signal can be 
generated by first integrating m(t) and then using the result as an input to a 
phase modulator. Conversely, a PM signal can be generated by first 
differentiating m(t) and then using the result as the input to a frequency 
modulator. 
          The frequency modulation index defines the relationship between the 
message amplitude and the bandwidth of the transmitted signal, which is 
presented in the following form 
 

                                                f m
f

f f

k A f
B B

                                             (9.15) 

 
where, as above, mA  is the peak value of the modulating message signal, f  
is the peak frequency deviation of the transmitter, and fB is the maximum 
bandwidth of the modulating lowpass signal (usually fB  is equal to the 
highest frequency component mf  presented in the modulating signal and 
simply f / mf f ). 
          The phase modulation index is defined as 
 
                                                  mk A                                               (9.16) 
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where  is the peak phase deviation of the transmitter. 

9.1.3 Spectrum and Bandwidth of FM or PM Signals 

Since PM and FM signals have the same form of presentation of modulated 
signal, we will pay attention to one of them, let us say an FM signal. An FM 
signal is a nonlinear function of the modulating waveform m(t) and, 
therefore, the spectral characteristics of s(t) cannot be obtained directly from 
the spectral characteristics of m(t). However, the bandwidth of s(t) depends 
on /f mf f  . If 1f , then a narrowband FM signal is generated, 
where the spectral widths of s(t) and m(t) are about the same, i.e., 2 mf . If 

1f , then a wideband FM signal is generated, where the spectral width 
of s(t) is slightly greater than 2 f . For an arbitrary frequency modulation 
index, the approximate bandwidth of the FM signal (in which this signal has 
98% of the total power of the transmitted optical frequency (OF) signal), 
which continuously limits these upper and lower bounds, is [3–5] 
 

                      

12 1 2( 1) , 1

12 1 2 , 1

f m f
f

T

f
f

f f

B

f f

                     (9.17) 

 
This approximation of FM bandwidth is known as Carson’s rule [3–5]. It 
states that for the upper bound, the spectrum of the FM signal is limited to 
the carrier frequency cf  of the carrier signal, and one pair of sideband 
frequencies at c mf f . For the lower bound, the spectrum of the FM signal 
is simply slightly greater than 2 f . 
          There are two variants of FM signals generation, the direct and 
indirect, as well as many methods of its demodulation by use of different 
kinds of detectors. This specific subject is out of the scope of the current 
book, therefore we propose that the reader refers to the special literature [1–
5], where these questions are fully described.  
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9.1.4 Relations Between SNR and Bandwidth of AM  
and FM Signals 

In the angle modulation systems, the signal-to-noise ratio (SNR) before 
detection is a function of the receiver intermediate frequency (IF) filter 
bandwidth (see sections 9.1.1 and 9.1.2, where optical signal AM and FM 
modulation is described), of the received carrier power, and of the received 
interference [3–5], that is, 
 

                                      
2

0

/ 2
( )

2 ( 1)
c

in
f F

A
SNR

N B
                                      (9.18) 

 
Where cA  is the carrier amplitude, 0N  is the white noise power spectral 
density, and FB  is the equivalent bandwidth of the bandpass filter at the 
front end of the receiver. Note that ( ) inSNR  uses the carrier signal 
bandwidth according to Carson’s rule (9.17).  
          However, the SNR after detection is a function of the maximum 
frequency of the message, mf , the modulation index, f  or , and the 
given SNR at the input of the detector, ( ) inSNR . For example, the SNR at 
the output of an FM receiver depends on the modulation index and is given 
by [5] 
 

 
 (9.19) 

 
where pV  is the peak-to-zero value of the modulating signal m(t).  
          For comparison purposes, let us present here the ( ) inSNR  for an AM 
signal which, according to [3], is defined as the input power to a 
conventional AM receiver having bandwidth equaling to 2 FB , that is, 
 

                                       
2

,
0

( )
2

c c
in AM

F

P A
SNR

N N B
                                      (9.20) 

 
Then, for ( ) sin 2m mm t A f t , equation (9.20) can be simplified to 
 

                             2
, ,( ) 3 1 ( )out FM f f in FMSNR SNR                            (9.21) 

( ) ( ) ( )SNR m t
V

SNRout f f
p

in6 1 2

2
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At the same time 
 
                                       ,( )out FMSNR 2

,3 ( )f in A MSN R                              (9.22) 
 
Expressions (9.18) and from (9.21) to (9.22) are valid only if ( ) inSNR  
exceeds the threshold of the FM detector. The minimum received value of 
( ) inSNR , needed to exceed the threshold is around 10dB [3]. Below this 
threshold, the demodulated signal becomes noisy. Equation (9.21) shows 
that the SNR at the output of the FM detector can be increased with an 
increase of the modulation index f  of the transmitted signal. At the same 
time, the increase in modulation index f  leads to an increased bandwidth 
and spectral occupancy. In fact, for large values of f , Carson’s rule gives 
the channel bandwidth of 2 f mf . As also follows from (9.21), the SNR at 
the output of the FM detector is ( 1)f  times greater than the input SNR 
for an AM signal with the same bandwidth. Moreover, it follows from (9.21) 
that ,( )out FMSNR  for FM is much greater than ,( )out AMSNR  for AM. 
          Finally, we should notice that, as follows from (9.21), the term 

,( )out FMSNR  increases as a cube of the bandwidth of the message. This 
clearly illustrates why FM offers very good performance for fast fading 
signals when compared with AM. As long as ,( )in FMSNR  remains above 
threshold, ,( )out FMSNR  is much greater than ,( )in FMSNR . A technique called 
threshold extension is usually used in FM demodulators to improve 
detection sensitivity to about ,( ) 6dBin FMSNR  [5]. 

9.2. Digital Signal Modulation 

As was mentioned above, modulation is the process where the baseband 
message information is added to the bandpass carrier. In digital modulation 
the digital beam stream is transmitted as a message, and then is converted 
into the analog signal of the type described by (9.1) that modulates the 
digital bit stream into a carrier signal. As was mentioned above, the analog 
signal described by (9.1) has amplitude, frequency, and phase. Changing 
these three characteristics, we can formulate three kinds of digital 
modulation. They are [3–10]: 
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Amplitude shift keying (ASK) for phase and frequency keeping being 
constant; 

 
Frequency shift keying (FSK) for amplitude and phase keeping being 

constant; 
 

Phase shift keying (PSK) for amplitude and frequency keeping being 
constant. 

 
In so-called hybrid modulation methods combinations of these three kinds 
of modulation are usually used. Namely, if frequency is constant, but 
amplitude and phase are not constant, quadrature amplitude modulation 
(QAM) is used. Some modulation methods are linear, as binary phase shift 
keying (BPSK), quadrature phase shift keying (QPSK), including / 4
QPSK, DQPSK and / 4 DQPSK, and so on. At the same time, FSK as 
well as, minimum shift keying (MSK) and Gaussian minimum shift keying 
(GMSK) are nonlinear modulation techniques [3–10]. 
           Because digital modulation offers many advantages over analog 
modulation, it is often used in modern electro-optical systems. Some 
advantages include greater noise immunity and robustness to channel 
impairments, easier multiplexing of various forms of information (such as 
voice, data, and video), and greater security. Moreover, digital transmissions 
accommodate digital error-control codes, which detect and correct 
transmission errors, and support complex signal processing techniques such 
as coding, encryption, etc. (see [12]). 

9.2.1 Types of Linear Digital Modulation Techniques 

We present now only a few examples of such kinds of modulation, 
transferring the reader to the excellent books [4–10].  
           Linear Modulation. This is a type of modulation where the 
amplitude of the transmitted signal varies linearly with the modulating 
digital signal m(t) according to the following law: 
 
 

 
  (9.23) 

 
 
 
 

( ) Re ( ) exp( 2 )

( ) cos(2 ) ( ) sin(2 )

( ) ( ) ( )

c

R c I c

R I

s t A m t j f t

A m t f t m t f t

m t m t jm t
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This kind of modulation has a good spectral efficiency, but linear 
amplifiers have poor power efficiency [3–10]. Side lobes are generated, 
increasing adjacent channel interference and canceling the benefits of linear 
modulation. 
           Amplitude Shift Keying (ASK) Modulation. This is a modulation 
where keying (or switching) the carrier sinusoid on if the input bit is “1” and 
off if “0” (so-called On-Off-Keying-OOK [3, 5, 10]). This kind of 
modulation is shown in Figure 9.4. 
 

 
Figure 9.4. The message m(t) unipolar signal [top plot] and the baseband 

modulated OOK signal [bottom plot]. 
 

           Binary Phase Shift Keying (BPSK) Modulation. BPSK modulated 
signals 1( )g t  and 2 ( )g t  can be presented as: 

  

                   1
2

( ) cos(2 ), 0b
c b

b

W
g t f t t T

T
                              (9.24a) 

 
and 

                  2
2

( ) cos(2 ), 0b
c b

b

W
g t f t t T

T
                            (9.24b) 

 
where bW  is the energy per bit, bT  is the bit period, and a rectangular pulse 
shape ( ) ( / 2) /b bp t t T T  is assumed. Basis signals i   for this 
signal, setting in 2D-vector-space, simply contain a single wave form 1, 
where 
 



Chapter 9  
 

208

                         1
2( ) cos(2 )c
b

t f t
T

,         0 bt T                               (9.25) 

The result of such a kind of modulation is presented in Figure 9.5. 
 

 
Figure 9.5. BPSK signal presentation. 

 
Using this basis signal, the BPSK signal set can be represented as 

 
                               1 1( ), ( )iBPSK b bW t W tg                                     (9.26) 

 
Such a mathematical representation of a vector, consisting of two points that 
are then placed at the constellation diagram, as shown in Figure 9.6, 
provides a graphical representation of the complex envelope of each 
possible symbol state. The distance between signals on a constellation 
diagram relates to how different the modulation waveforms are and how 
well a receiver can differentiate between all possible symbols when random 
noise is present. 
 

sE

sE2

Q

I

Q

I

 

Figure 9.6. Constellation diagram of QPSK and / 4 QPSK modulated signals. 

 
          As was mentioned in Chapter 8, the number of basis signals will 
always be less than or equal to the number of signals in the set. The number 
of basis signals required to represent the complete modulation signal set is 
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called the dimension of the vector space (in the example above - it is two-
dimensional (2-D) vector space). If there are many basis signals in the 
modulation signal set, then all of them must be orthogonal according to 
(9.24). 
            Quadrature Phase Shift Keying (QPSK) Modulation. The QPSK 
signal has the advantage that it has twice the bandwidth efficiency or two 
bits at a time 
 

 

2( ) cos 2 0 0,1,2,3
2

2 2cos cos(2 ) sin sin(2 )
2 2

s
QPSK c s

s

s s
c c

s s

Es t f t i t T i
T

E Ei f t i f t
T T

       (9.27) 

 
This signal set is shown geometrically in Fig. 9.5, where the left diagram is 
for pure QPSK and the right one for / 4 QPSK modulation, that is with 
angle shift at / 4 . 

9.2.2 Nonlinear Digital Modulation 

As was mentioned from the beginning of this section, the frequency shift 
keying signals are examples of a nonlinear type of digital modulation. We 
shall briefly describe it. 

Frequency Shift Keying (FSK) Modulation. FSK modulated 
signals, where switching the carrier sinusoid frequency cf  to cf f  
occurs, if the input bit is “0”, and to cf f , if input bit is “1”. Results of 
modulation are shown in Figure 9.7. Finishing this chapter, we should notice 
that usage of each kind of modulation depends on the conditions of 
propagation inside a channel, effects of fading inside, and on what kinds of 
detectors and corresponding filters are used. 

                    
 
 
 
 
 

 
Figure 9.7. FSK modulated signal presentation. 

 
All these aspects are fully described in excellent books [3–5, 7–10].  
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Exercises 

Exercise 1. 
 
A zero mean (<m(t)>=0) sinusoidal message is applied to a transmitter that 
radiates the AM signal with a power of 10 kW. The modulation index 

mk  = 0.6. 
Find:   1) The carrier power. 

2) What is it as a percentage of the total power in the 
carrier?  

                          3) What is the power of each sideband? 
 

Solution: 
 

 1) 
2

10 8.47
1 0.181 / 2

AM
c

m

PP kW
k

 

 2) 8.47100% 100% 84.7%
10

c

AM

P
P

 

 3) 
1 ( ) 0.5 (10 8.47) 0.765
2 AM cP P kW  

 
 

Exercise 2. 
 

A sinusoidal modulating signal, ( ) 4 cos 2 mm t f t , that is, 4mf kHz  
and the maximum amplitude mA = 4 Volt, is applied to an FM modulator 
which has a frequency deviation constant gain 10 /fk kHz Volt . 

Find: 1) The peak frequency deviation, f  
          2) The modulation index, f . 
 

Solution: 
 

 1) 4 10 / 40f mf k A V kH z V kH z  

 2) 40 10
4f

m

kHzf
f kHz
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Example 3. 
 
A frequency modulated signal with the carrier frequency 880cf MHz
and with sinusoidal modulating waveform of 100mf kHz  has a peak 
deviation 500f kHz .  

Find: The receiver bandwidth necessary to pass such a signal. 
 
Solution: 
 

The modulation index equals: / 500 / 100 5f mf f  
According to Carson’s rule (9.21) 

                
2( 1) 2(5 1) 100 1200T f mB f kHz kHz  

 
 

Exercise 4. 
 

An FM signal with 5mf kHz  has modulation index 3f . 
Find: 1) The bandwidth required for such an analog frequency 
              modulation.  
          2) How much output SNR improvement would be obtained  

if the modulation index is increased to 5f . What is 
the trade-off bandwidth of this improvement? 

 
Solution: 

 
1)  for 3f : 2 ( 1) 2 (3 1) 5 40T f mB f kHz kHz  

                    for 5f : 2 ( 1) 2 (5 1) 5 60T f mB f kHz kHz  
2) from (9.24) the output SNR improvement factor is 

approximately for 3 23 3f f , that is,  
 

       for 3f :  3 2 3 23 3 3 (3) 3 (3) 108 20.33f f dB  
       for 5f :  3 2 3 23 3 3 (5) 3 (5) 450 26.53f f dB  

 
Therefore, the improvement in output SNR by increasing the modulation 
index from 3 to 5 is 26.53–20.33 = 6.2 dB.   
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This improvement is achieved at the expense of bandwidth (1.5 times 
wider): for 3f  is 40TB kHz  and for 5f  is 60TB kHz . 
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CHAPTER 10  

OPTICAL WAVES PROPAGATION  
IN FIBEROPTIC STRUCTURES 

 
 
 
Below, we pay attention to the description of optical wave propagation in 
fiber optic structures, the dispersive properties of optical signals caused by 
non-homogeneous material phenomena, and multimode propagation of 
optical signals in such kinds of wired links. We illustrate these phenomena, 
based on the corresponding computational results obtained below for such 
guiding optical structures accounting for arbitrary refractive indices of the 
inner (core) and outer (cladding) elements of the optical cable and on the 
features accompanying propagation of light inside fiber. In our discussions, 
we will follow the corresponding literature [1–6]. 

10.1. Types of Optical Fibers 

The fiber optic 3-D guiding structure consists of two parts: the inner, called 
the core, and the outer, called the cladding (see Figure 10.1). Light 
propagates inside the core which guides optical modes inside the optical 
cable.  
  

 
 

Figure 10.1. Two structures, inner and outer of 3-D optical fiber, called the core 
and the cladding, respectively.  

 
The first commonly used kind of fiber optic structure is the step-index fiber 
(see Figure 10.2, left panel). 
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Figure 10.2. Difference between the refractive index profiles for step-index and 
graded-index fibers. 

 
As clearly seen from Figure 10.2, such fibers consist of a central 

core of radius a and refractive index 1n , surrounded by a cladding of radius 
b and refractive index 2n . 

According to the definition of Total Intrinsic Reflection (TIR) (see 
definition in Chapter 2), to obtain the total reflection from the cladding, its 
refractive index should be lower than that for the core, i.e., 1 2n n . Figure 
10.1 shows the geometry of optical ray propagation within the core on the 
assumption that the cladding width is thick enough to exclude the 
evanescent field decay inside the cladding depth. So, from the beginning we 
can suppose that the effects of a finite cladding thickness are negligible, and 
a ray field is small enough to penetrate to the outer edges of the cladding. 
As will be described below, in multimode step-index fiber a large modal 
distortion occurs.  

To avoid such drawbacks of this kind of fiber, a new type, called 
graded-index fiber, was developed [1–6] that has the same configuration as 
the previous fiber, and is shown in Figure 10.2, right panel. The difference 
between both kinds of fiber is defined by differences in the profiles of the 
refractive indexes of the core and cladding, as illustrated in Figure 10.2. 
Thus, as clearly seen from the illustrations, in the step-index fiber the index 
change at the core-cladding interface is abrupt, whereas in the graded-index 
fiber the refractive index decreases gradually inside the core. 
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To understand the effects of optical wave propagation in both kinds 
of fibers, let us introduce the main operational parameters of the fiber optic 
guiding structures usually used in electro-optics and optical engineering. 

10.2. Main Operational Parameters of Optical Fibers 

In fiber optics, there is an important parameter that is usually used, called 
the numerical aperture of the fiber optic guiding structure, denoted as N.A. 
[1–6]  
 

                                  1. . sin sinc aN A n                                                (10.1) 
 
where 2full a  is called in the literature the angle of minimum light 
energy spread outside the cladding or angle of full transfer of optical energy 
along the core [1–6], when total internal reflection (TIR) occurs in a fiber 
optic structure. Accounting for 2 2cos 1 sin , we finally get 
 

                                           
1/ 22 2

1 2. .N A n n                                               (10.2)  
 
The second parameter usually used in fiber optic physics is the relative 
refractive index difference [1–6]. It has two definitions depending on the 
type of fiber optic structure, as shown in Figure 10.2.  

Thus, for the graded-index fiber: 
 

                                                                                (10.3)  
 
Using the above formulas, we can find relations between these two 
engineering parameters for the fiber optic with a graded-index refractive 
index profile (see Figure 10.2): 
 
                                               1/2

1. . ( )N A n                                                 (10.4) 
 
For the step-index fiber optic: 
 

                                                                                              (10.5) 
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As follows from the geometry of the refractive index profile presented in 
Figure 10.2 for the step-index fiber optic structure, the relation between 
N.A., according to (10.3) and  according to (10.5), is not so trivial, as 
(10.4) for this kind of optical cable. 

10.3. Propagation of Optical Rays in a 2-D Plane Dielectric 
Guiding Structure 

Before entering into discussions of optical wave propagation inside a 3-D 
fiber optic structure, let us consider the simpler case of a 2-D plane dielectric 
guiding structure, a slab, shown in Figure 10.3 on the basis of geometrical 
optic presentation of rays and the corresponding Snell’s laws, as was seen 
in Chapter 2. Such a simplified presentation of a 3-D fiber optic structure, 
presented in Figure 10.1, can model the plane core structure covered by the 
plane cladding structure, as shown in Figure 10.3.  
 
 

 
 

Figure 10.3. 2-D plane model of the 3-D fiber optic structure shown in Figure 10.1. 
 

In such a slab, for the description of the guiding modes of 
propagation, either the transverse electric (TE) or vertical polarized or the 
transverse magnetic (TM) or horizontal polarized [1–6], a new parameter is 
always used called the normalized frequency, denoted by V and defined as: 
 
                  V = 2 d  

1/ 22 2
1 2. .N A n n / 2 0                                       (10.6) 

 
where all parameters in Eq. (10.6) are shown in Figure 10.2 or defined above 
in Section 10.1.  
 We will discuss TE and TM modes later, but now, after a simplified 
assumption, we will present a description of such modes propagation for 
these two kinds of wave polarization, vertical and horizontal, briefly 
introduced in Chapter 2.  
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  The number of wave guiding modes propagating along such a 
dielectric slab, according to geometrical optic postulates, corresponds to the 
number of specular reflections (regulated by Snell’s second law, see Chapter 
2), as it is clearly illustrated in Figure 10.4 for TE modes propagation along 
the slab. 
 

   
 
 
 
 
 
 

Figure 10.4. Illustration of coincidence between numbers of reflection and indexes 
of TE modes. 

 
There are two kinds of optical wave propagating inside the guiding 

structure, one-mode, and multiple-mode, as shown in Figure 10.5. In the first 
case, only one ray propagates inside the optical structure with multiple 
reflections from both its boundaries (left panel) according to Snell’s law (see 
Chapter 2), whereas in the second case, many rays are reflecting from the 
upper and lower boundaries of the optical structure and propagate inside it 
(right panel).  
 

 
Figure 10.5. Presentation of single-mode and multiple-mode propagation inside a 

2-D slab. 
 

In Figure 10.5, which models the real 2-D fiber optic structure, n1 is the 
refractive index of the core and n2 is the refractive index of the cladding 
(illustrated by Figure 10.2). In an ideal case (i.e., without losses), 
propagation of a ray (left panel) and the rays (right panel) occur both along 
the vertical (along the x-axis) and the horizontal (along the z-axis) without 
any losses, if the law of total intrinsic reflection is satisfied (see Chapter 2), 
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according to which, the incident angle must exceed the critical angle of TIR, 
that is: 
 

  c  arcsine (n2 / n1)                                (10.7)  
 
Let us now consider the physical meaning of multi-ray propagation inside 
a 2-D slab, that models the fiber optic structure presented in Figure 10.1, 
based on a simple geometrical optic presentation and on Snell’s TIR law. 
Thus, the multimode propagation can be described via wave vector k and 
its components, kx and kz, along the x-axis and z-axis, respectively (as 
illustrated in Figure 10.6): 

 

               
 

Figure 10.6. Geometrical presentation of multi-ray propagation with the wave 
vector k via its components along x-axis and z-axis. 

 
 

                         k  kz  kx kz z +  kxx                                                                    (10.8) 
 
where 
 
                kx    k cos   k sin  n1/  sin

During propagation, each mode after its reflection obtains the phase 
difference not only 2kx , but also the angle , which is the result of 
differences between the inner and outer refractive indexes, n1 and n2, inside 
the Fresnel coefficients which depend on the phase difference and the wave 
polarization, vertical or horizontal (see Chapter 2). According to the 
transverse resonance condition of total intrinsic reflection of rays with 
vertical polarization (e.g., for TE – modes) 
 

            2kxd  2   2  m                                                    (10.10a) 
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Or 
                                        4 1n d sin m / m                     b) 
 
In Eq. (10.10b), angle was denoted by m because for each mode with 
number m (e.g., for each of m reflections), it has its own separate meaning 
and number. Accounting now for + = after straightforward 
computations, we finally get: 
 

 
                                            (10.11) 

Substituting expression (10.11) in Eq. (10.10b), yields: 
 

                         
 

The latter equation can be rearranged in a more convenient form: 
 
 

                                     (10.12) 
 
 
Equation (10.12) has a physically vivid explanation. Thus, the left-hand 
side (denoted by LHS) of Eq. (10.12) gives the roots of trigonometrical 
expressions of tangents via the mode parameter m, as shown by light 
points along the horizontal axis (indicated by sin in Figure 10.7), 
whereas the right-hand side (denoted as RHS) of Eq. (10.12) gives the 
roots of trigonometrical expression via sin  in Figure 10.7 lining the 
discrete curve, which monotonically decreases (with an increase of m 
from 1 to 8) until the condition of sin   sin c. The two sides of Eq. 
(10.12) are equal in the cases when the RHS curves cross the LHS curves 
(for each m from 0 to 8) at the bold points denoted by a dark color.  
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Figure 10.7. Geometrical presentation of the solutions of Eq. (10.12) depicted by 
bold points where the left-hand side (LHS) of this equation equals the right-hand 

side (RHS) of this equation; the difference between roots of LHS equals  /2d and 
is depicted by light points. 

 
It is clearly seen that after mode number m>8, that is, when sin m 

exceeds sin c , the law of TIR is valid, and the further propagation of 
optical modes (with m>8) without loss of energy due to penetration in the 
outer region (with n2) becomes unacceptable. We should also notice that 
(10.12) has roots for m = 0, 2, 4,.., i.e., even, with solutions of its LHS of 
tan dn sin /   and roots for m = 1, 3, 5…, i.e., odd, with solutions of 
cot  dn1 sin  /  

So, crossing bold points for even and odd modes of number m 
enables finding sin m for each m which are regulated by condition sin  

 sin c , and, finally, allow obtaining the component of the wave number 
along the z-axis, that is,  

 
                          kz  m  n1k cos m                                                  (10.13) 

 
A step between two light points (i.e., between two boundaries, left and right, 
of shadow vertical plates) was denoted in Figure 10.6, as  /2d n1, and a 
number of solutions, N, when LHS = RHS in Eq. (10.12), can be found 
according to the above condition sin   sin c and geometrical consideration 
sin  / (2d n1). Then, we get: 
 
                                       (  ) / (2d n1  sin c                                          (10.14a) 
 
or 
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                                        sin c / (  /2d n1)                                       (10.14b) 
 
Accounting now for definition (10.7) for c and that sin c = (1  cos2 ½ 

1  n2/n1 ½, we finally get: 

{(2d n1/ 0) 1  n2/n1 2 ½ } = [(2d / 0) n12  n22 ½ ]      (10.15a) 
 
Here, at the right side of (10.15a), and in further expressions for N, the 
rectangular parentheses indicate the integer part of the number N. This 
expression can be rewritten via the parameter numerical aperture, defined 
by (10.2), which is useful for future engineering computation of the relation 
between N and NA: 
 
                                        [NA  (2d / 0) ]                                    (10.15b)   
 
Remembering the relation between N.A. and the normalized frequency 
parameter V, defined by expression (10.6), we can present the additional 
useful engineering formula that defines N via V: 

 
  

(10.15c) 
 
 

 
accounting now for relations between NA and V  
 
 

                                           (10.16) 
 
 
So, based on the simple geometrical optic model of ray modes 
propagation inside the 2-D guiding structure that models the real case of 
a 3-D optical fiber, we presented several variants of how to find a 
number of propagating ray modes’ solutions N (according to Eq. 
(10.12)), through the knowledge of different operational parameters 
introduced above for the description of fiber optic guiding structures.  
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10.4. Propagation of Optical Wave Along the 3-D Fiber 
Optic Structure 

Let us now consider the cylindrical dielectric fiber optic structure as shown 
in Figure 10.8. This is just the geometry of the optical fiber, where the 
central region is known as the core and the outer region as the cladding. In 
this case, the same basic principles, as for the dielectric slab, but the circular 
rather than planar symmetry changes the mathematics. We use the solution 
of Maxwell’s equation in the cylindrical coordinates for both the coaxial 
cable and the circular waveguide, where we deal mostly with guiding modes 
rather than the ray concept [1–4, 6].   

The wave equation that describes such propagation of light within 
a cylindrical waveguide can be presented in cylindrical coordinates as 
follows for 1r : 

 
 

                                             (10.17) 

 
 

Figure 10.8. Presentation of fiber optic structure in a 3-D cylindrical coordinate 
system. 

 
We can present the solution taking into account the separation of 

variables: 
                                                   

                                                                            (10.18) 
 
From the well-known mathematical approaches [2-5] by use of the 
independence of each separated variable function, we immediately get for 
each of them its own simplified equation with the corresponding solution: 
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(10.19) 
 
     
 
As for coordinate r, the equation for it is more complicated and can be 
presented as 
 

                                                  (10.20) 
 
 
where l is an azimuthal integer. Equation (10.20) has the form of Bessel's 
equation, and its solutions are Bessel functions [7, 8]. We finally can obtain 
solutions for the field of rays through the modified Bessel functions of first 
and second order, ( )J qr and K(pr), via wave parameters h and q as 
propagation parameters inside the core and cladding, respectively. These 
parameters can be presented in the following form [2-5]: 

                                                   
 

(10.21) 
               
 
 
This finally gives at the core ( ar ) and at the cladding (r>a) the following 
expressions for z0 components of the electric and magnetic fields: 
 
                                    
 

(10.22a) 
 
                                     
 

(10.22b)    
 
 
As for other components of the total field, they can be presented through the 
z-components in the following manner: 
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                           (10.23) 

 
 
 
 
The solution for each component can be expressed via the corresponding 
Bessel Jl(hr) function of the first kind and via the modified Hankel Kl(hr) 
function (e.g., Bessel function of the second kind [7, 8]). Namely, for r-
components of the field solutions can be presented in the following form [7, 
8]: 
                                             Er  = Ec Jl(hr)                                                     (10.24a) 
 
                                             Er  = Ec1 Jl(hr)                                                   (10.24b)   
 
Roots of Jl(hr) = J(v), l = 0, 1, 2,…, are shown in Figure 10.9. 

 
Figure 10.9. Bessel function of the first kind vs. variable v. 

 
 At the boundary between the core and the cladding, one can obtain 
relations between the first order roots of these specific functions and the 
parameters of propagation described by (10.21) and the refractive index of 
the core and the cladding respectively, i.e., 
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(10.25) 
 
The solution of the first kind of Hankel function can be presented for qr 
>>1, as [8. 9]: 
                                         

                                                                                                                           (10.26) 
 
 
For practical applications the effective refractive index is usually introduced  
                                                                                                             
 
 

                                                        (10.27) 
 
 
 
 
and the normalized mode propagation constant 
 
                                                               

                                                                                                 (10.28) 
 
 
Now, according to Ref. [9], we can determine, for an optical fiber, 

the corresponding values for given propagation parameters k (in free space) 
and  (inside core), by imposing the boundary conditions at r = a. The result 
is a relationship that provides the  versus k or dispersion curves shown in 
Figure 10.10. 
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Figure 10.10. Dispersion diagram of optical modes in fiber optic structure. 

 
It is clearly seen that the modes with numbers from l = 0 to l = 3 

(the same property occurring for modes with numbers l > 3) propagate 
between the core upper and cladding lower boundaries of the fiber with 
wavelengths depending on the refractive properties of these two fiber 
structures. It is vividly seen that with an increase of wave propagation 
number k, these modes with increasing number l propagate inside the inner 
(core) structure.   

It should be noticed that the full mathematical approach is very 
complicated, and so-called “weakly guiding” approximation can only be 
used for analysis of the processes occurring with light in a fiber optic cable 
[1, 2]. This makes use of the fact that if 1 2n n  the ray’s angle of incidence 
at the boundary "core-cladding" must be very large, if TIR is to occur. The 
ray must bounce down the core almost at grazing incidence. This means that 
the wave is very nearly a transverse wave, with very small z-components. 
Let us briefly consider the weak guiding approximation of modes 
propagation in a fiber optic structure, which satisfies the following 
conditions: 

 
          (10.29) 

 
 
Accounting for relations between the parameters of propagation described 
by Eq. (10.21) and accounting for the constraint 
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we can present the components of the electric and magnetic fields in the 3-
D Cartesian coordinate system (see Fig. 10.8) inside and outside the core as 
follows: 
 

                                                                                                                (10.30a) 
 

(10.30b)                        
 
 
 (10.30c) 
 
                                                            

(10.30d) 
 
                                                                                                           (10.30e)                        

 
 
Since the waves within the fiber were considered to be transverse [1–4], the 
solution can be resolved conveniently into two linearly polarized components, 
just as for free-space propagation. The modes are called linearly polarized 
(LP) modes [1–4, 6]. All solutions obtained above relate directly to the 
optical fiber guiding structures. The latter has just the cylindrical geometry 
shown in Figure 10.8 for a typical fiber with the core radius r = a, for which 
it is supposed that a system of equations (10.30) is valid accounting for a 
“weakly guiding” approximation according to Refs. [1, 2]. The 
corresponding system (10.30) has two solutions for regular and modified 
Bessel functions of l-kind (see Figure 10.9): 
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(10.31) 

 
 
Let us introduce two variables:  
 

                                                                                                        (10.32) 
 
In this case from the left side equation of (10.31) for l = 0, we get: 
 
 

                                                                                            (10.33) 
 

 
Generally, for each i = 0,1,2,…. yields 
 

                                                                                                  (10.34) 
 
 
Or accounting for definition (10.16) of the normalized frequency V, and 
converting variables Xi via V, taking V = 10, the following dependence can 
be presented by Figure 10.11.  
 

 
 

Figure 10.11. Solutions of the left and the right sides of Eq. (10.33) vs. X for V=10. 
 

 The abbreviations "LHS" and "RHS" , as above in Figure 10.7, 
indicate the left-hand side (LHS) and the right-hand side (RHS) of Eq. 
(10.33), respectively, where the solution of the LHS is presented by a set of 
the exponential functions (bold curves) and the solution of the RHS is 
presented by a dashed curve. Their crossings give points where, for given 
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parameters of X (or V) along the horizontal axis and of Y along the vertical 
axis, the corresponding guiding modes of specific linear polarization can 
propagate inside a core in the fiber optic structure. We should notice that we 
obtained the same behavior of optical modes propagation inside a slab, as 
the 2-D guiding structure (see Figure 10.7), and inside the 3-D fiber optic 
cable shown schematically in Figure 10.8. 
            As examples, we present in Figure 10.12 a view of four main LP 
optical fiber modes: LP 01  (m = 0, l = 0) and LP 11  (m = 1, l = 1), LP20 (m = 
0, l = 0) and LP21 (m = 1, l = 1) [1–3].  

 

 
Figure 10.12. The mode LP 01  presents a single-mode propagation; the mode LP

11  consists of two modes, the mode LP20 consists of three propagating modes, and 
the mode LP21 consists of four propagating modes. 

 
 
To understand more precisely mode LP 11 , we present it separately 

in Figure 10.13 for horizontal and vertical linear polarization, respectively. 
Thus, on the left side of Figure 10.13, which corresponds to right top panel 
in Figure 10.12, both the electric field components Ey and Ex and the 
corresponding components Hx and Hy are directed oppositely, generating the 
two-wave form of LP 11 mode.   
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Figure 10.12. The mode LP 11  for both kinds of polarization: 2 vertical (or TE), 
which changes the modal form of the wave (left side); 2 horizontal (or HE or EH), 

which does not change its form. 
 

 
At the right side of Figure 10.13, the 2 rays of the horizontal 

polarization are presented. Here, components Hx and Hy are coincidently 
directed and therefore form a single-mode shape of mode LP 11 . 

We also notice that each mode propagates inside the core according 
to the value of the corresponding propagation parameter b defined by Eq. 
(10.28) and the normalized frequency V, introduced above, but now 
presented in another form via the parameter : 

 
                        

(10.35) 
 

 
As an example, the dependence of several from TE, TM, EH and HE 
polarized modes in the b-V plane on the refractive indexes [via Eqs. (10.28) 
and (10.35)] are presented in Figure. 10.14.   
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Figure 10.14. Presentation of TE and TM modes in the b-V plane for various 

refractive indexes n1 and n2.   
 
For cylindrical geometry the single-mode condition is [1–3]: 
 ( ) / < 2.404           (10.36) 

   
 
or more simply: V < 2.404. From Eq. (10.35) and constraint (10.36) for 
given refractive indexes of the core and the cladding, the optimal radius of 
the core, a, can be found, which allows a single-mode propagation regime 
inside the fiber (see the corresponding exercises below).  

As was shown in [1–6], depending on the shape of the intrinsic 
refractive index distribution, step-index or graded-index, the corresponding 
LP-modes can propagate asymmetrically and non-homogeneously. This 
phenomenon is called the modal dispersion [1–6]. Before entering into this 
important subject, let us introduce the main important operational 
parameters of fiber optic guiding structures and the corresponding problems 
of optical propagation via geometrical optics presentation of rays within 
such structures. 



Chapter 10  
 

232

10.5. Dispersion of Signals in Fiber Optic Links 

A problem of transmission of pulses via fiber optic structures occurs 
because of two factors. One is that the source of light is not emitted at a 
single wavelength but exists over a range of wavelengths called the source 
spectral width [1–6]. The second factor is that the index of refraction is not 
the same at all wavelengths. This property, when the light velocity is 
dependent on wavelength, is called dispersion.  

As was discussed earlier, in fiber optic cables fading and the 
corresponding noise of optical signals occurs due to four factors: 1) 
multimode dispersion phenomena leading to inter-ray interference (IRI); 2) 
material dispersion; 3) waveguide dispersion; 4) polarization mode 
dispersion. 

Dispersion of these types was discussed in detail by Refs. [4–6] 
and below, in our description of the subject, we will follow on from some 
of the discussions presented there.  

Before entering into the subject, let us briefly describe the physical 
meaning of dispersion occurring in fiber optic structures. 

As was shown in Chapter 2, an optical wave of angular frequency 
0 = 2 f (f is the carrier frequency) propagates in free space with parameter 

0 and with phase velocity vph = 0 / 0. As for group velocity, which defines 
propagation of total optical signal, as a wavelet, energy, its definition is 
more complicated and can be defined as: 

  
 

                                                          (10.37) 
 
 
The corresponding time of signal energy transfer along the z-axis along the 
fiber can be found as 
 

                                                                                                          (10.38)  
 
 
We can rewrite Eq. (10.37) via the absolute value of the wave vector v=|v|, 
as  
 
 

                                                                      (10.39) 
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Accounting for 
                                 
 
 
 
 
we finally get 
          

 
                                                   (10.40) 

 
 
 
The multimode dispersion can be found by knowledge of the second 
derivative of the parameter , that is, 
 
 

(10.41) 
 
 
or accounting for definition (10.35) via the normalized frequency V. 

In the case of modal dispersion caused by multimode propagation 
inside the optic fiber, a spread of information pulses at the length of optical 
guiding structure in time can be found as [9]: 

  
                                             w = l 1n  /c 2n                                                  (10.42) 
 
where l is the length of the fiber optic structure; other parameters were 
described above. 

The material dispersion also can be defined through the second 
derivative of  or by taking into account the relation between the latter and 
the group velocity, 
 

                                              (10.43) 
 
 
 
Finally, we get for material dispersion the definition: 
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(10.44) 
 
 
Usually, in practical applications of optical fibers, this parameter is 
presented in units of ps /nm km.  

Waveguide Dispersion depends on the material parameters 
(refractive indices, radius) of the fiber as well its modal parameters, such as 
wavelength and time of energy channeling. To analyze this more 
complicated phenomenon that combines both kinds of dispersion discussed 
above, let us return to Eq. (10.38) and find the time spread g between two 
modes which lie in the small spectral range  of the total signal, that is, 

                               
(10.45) 
 
 

Accounting for 
  
                                                        
 
 
 
and Eq. (10.42), yields 
 

                                                                                                (10.46) 
 
Usually, in fiber optic cable engineering, an additional parameter is used, 
called the index of transmission of energy via cable, defined as:  
 
 

                                                                                                 (10.47) 
 
 
We will find an expression for this index via the well-known and already 
introduced above effective index of refraction, which we will now rewrite 
in the following manner: 
                     
                  

                                                                                                                              (10.48) 
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Accounting for relation 
  
                                                 
 
 
 
or  
                                                  
 
 
 
and substituting in it (10.40) and (10.47), we finally get: 
 
 

                                                                                                  (10.49) 
 
 
If now we suppose that  
                                       

                                                                                       (10.50)                        
 
 
after straightforward manipulations, we get: 
 
 

                                                        (10.51) 
 
 
 
Moreover, trivial relations between the radiating frequency and the 
wavelength of the optical wave, propagating along the fiber optic structure 
 
 
                           
 
 
yields: 
 
 

                                                                         (10.52) 
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So, we obtained two equivalent definitions of the index ng via the frequency 
(10.51) and via the wavelength (10.52) of the optical wave inside the fiber 
optic cable.  
 Generally speaking, all the discussions above allow us to present 
the total dispersion as a cumulative effect of both waveguide dispersion and 
material dispersion, 

 
 
as: 
 

  (10.53)  
 
We notice here that if we introduce, according to (10.28), the parameter b, 
then, instead of (10.48), we will get: 
 

 (10.54) 
 
Finally, we can rewrite the expression (10.44) for the material expression 
via the index ng inside the cladding layer of the optic fiber: 
 
 

                                                                                  (10.55) 
 
 
Qualitative analysis of the process of optical wave propagation inside the 
fiber optic for the case when the refractive index can be presented by a sum 
of its value in free space and a sum of effects from i = 1, 2,…,M, harmonics 
propagating inside it with time dispersion (see definitions below), that is, 
 
                                                        

                                                                                                             (10.56) 
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Computations of the parameters n and ng are shown in Figure 10.15.  
 

 
 

Figure 10.15. Refractive indexes vs. the wavelength (in m). 
 
The vertical dotted line indicates the case occurring in fiber optic 

based on SiO2 semiconducting material (see Chapter 3) for  = 1.276 m. 
This line shows the boundary of the normal cable, where n and ng have the 
same tendency to decrease with an increase of . This wavelength, called 
the zero-dispersion (ZD) wavelength, can be defined for  = 1.276 m by 
the following constraint: 

 
                                                                                                  (10.57) 

 
As for various wavelengths, we now get: 
 
 

                                                                                            (10.58) 
 
 
General assumptions made above allow us to present the waveguide 
dispersion via parameters b from (10.28) and V from (10.35), as: 
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            (10.59) 

 
 
Figure 10.16 presents the total dispersion D = Dm + Dw, their separate 
dependence on the wavelength according to Ref. [6], where ZD = 1.35 m 
indicates the case of D = 0, that is, Dm = - Dw [6].  

 
Figure 10.16. The total (continuous curve), material (dashed curve) and waveguide 

(dashed bold curve) dispersions [in ps / km  nm] vs. wavelength; ZD = 1.35 m 
(indicated by arrow) corresponds to D = 0, and Dm = - Dw according to [6]. 

 
The summands of Eq. (10.59) and the parameter b according to 

(10.54) for fiber optic cable with diameter d = 2a and refraction indexes of 
the core n1 and the cladding n2, are shown in Figure 10.17 versus the 
normalized frequency V, according to computations made in Ref. [6].  
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Figure 10.17. Summands and parameter b in Eq. (10.59) vs. dimensionless 

parameter V computed according to [6]; the left-bottom side is the description of 
geometry and refraction indexes of the fiber.   

  
 Using now another approach presented in [6], we can rewrite Eq. 
(10.59) as: 
 
 
 
                              

                                                                                                                               (10.60) 
 
 
 
 
This equation, as well as the corresponding curves presented in Figure 10.17 
for parameters b and V (crossing straight lines in Figure 10.17), will be used 
in further exercises presented below.  
          Polarization mode dispersion (PMD) may occur in the optical guiding 
structures for different forms of optical wave polarization, vertical and 
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horizontal. Its characteristic, called a pulse spread due to changes of 
polarization, is defined as [6]:  
 
                                                  p = Dp  L 1/2                                                  (10.61)                        
 
where Dp is the polarization mode dispersion (PMD) parameter, measured 
in picoseconds per square root of kilometer [ps/(km)1/2]. In other words, 
light rays with different polarizations propagate at different speeds. For the 
usually used graded-index and step-index fibers, Dp is less than 0.5 ps/km1/2, 
but sometimes can exceed ~10 ps/(km)1/2. Critical limitations exist to 
transmit information signals of high data rates [9, 10].  

10.6. Attenuation and Scattering Inside Fiber Optic 
Structures  

Attenuation losses inside fiber optic structures are usually determined by 
factor , called the attenuation coefficient. This coefficient was fully 
described in Chapter 2. We now notice that, typically, attenuation inside an 
optical fiber is determined in dB/km, but not per Np/m, that is,  
 

                                                                                               (10.43) 
 
where the units of the attenuation coefficient are in km-1. As an example, 
the cladding or core of an optical cable fabricated from silica absorbs optical 
waves over a wide range of wavelengths – from ultraviolet (UV), due to 
electronic resonances, to infra-red (IR), due to vibrational resonances [4, 5].       
 Scattering phenomena can be characterized by several types of 
scattering which occur inside fiber optic links, most of which are Rayleigh 
and Raman (Stocks and anti-Stocks) [1–6]. Generally, the Rayleigh 
scattering approach, which is ~ -4 [6] and takes place for roughness and 
defects of the inner (core) fiber surface, is valid when the dimensions of 
which are much less than the wavelength of light (l << ). Impurities or 
defects that play major roles are defects with l = 0.6–1.6 m and which 
satisfy the constraint l <  or l ~ , then the Mie scattering phenomenon is 
valid (see Refs. [1–6]).  
 The total loss, obtained experimentally, as well as the Rayleigh 
scattering effects, with limits on UV and IR absorption, and the effects of 
different waveguide imperfections, are summarized in Figure 10.18. 

 

685.8/ kmdB
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Figure 10.18. The total experimental attenuation for silica fiber optic structure, 
Rayleigh scattering, UV and IR absorption curves, and Mie scattering for 

waveguide imperfections vs. wavelength ranging from 0.6 to 1.8 m.  
  

As follows from Figure 10.18, the minimum loss for IR observed 
at  = 1.55 m, which coincides with the experimental curve of total loss 
around 0.3 dB/km. As for Mie scattering, it shows independence of 
wavelength over the total waveband. The Rayleigh scattering law is fully 
approximated by the experimentally obtained data for silica in the near-
infrared band from 0.8 to 1.2 m, and a decrease of loss is observed from 5 
dB/km to 1 dB/km.  

Summary 

The information mentioned above allows us to outline the following:  
 

1. Depending on the wavelength of the optical signal propagating 
inside the fiber optic channel, the material dispersion index 
decreases exponentially with an increase of the signal wavelength.  

2. At the same time, with an increase of the wavelength of the optical 
signal passing through the fiber optic channel, the delay spread 
(i.e., widening) of the resulting optical signal inside the cable 
increases linearly, caused by the modal dispersion. 

3. The material time dispersion parameter along the fiber optic cable 
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increases linearly with an increase of the difference between the 
refraction indexes of the inner and outer parts of the fiber, called 
fractional refractive indexes difference (FRID), which has a 
tendency to decrease exponentially the optical signals passing such 
a cable. 

4. The multimode time dispersion depends significantly on the 
difference between the refraction indexes of the inner (core) and 
outer (cladding) parts of the fiber, and with an increase of FRID, it 
increases linearly. 

5. For all types of optical digital signals, multimode dispersion 
depends on the difference between the refraction indexes of the 
inner and outer parts of the fiber and on the increase of the length 
of the fiber. 

Exercises 

Exercise 1. 
 
Let us consider that 1 1.45n  and 0.02 (2%) .  
 
Find: N.A. and 2 a . 
 

Solution 
 

1) Accounting for (10.1) and (10.2), we get 1/ 2 1
1. . ( ) sin aN A n  

     Then:          1/ 2
1. . ( ) 1.45 2 0.02 0.29N A n  

 
2) 1 1 0. . sin sin 0.29 15.66aN A  
      Then: 0 02 2 15.66 31.33a . 
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Exercise 2. 
 

Given: Fiber optic step-index multimode cable with the following 
parameters:   0.01, 1n   1.455, d  20 m, and 0 = 780 nm.  
 
Find: Normalized frequency V. 

Solution 
 

1) Taking into account Eq. (10.2) we get:  
 

                               2n  = 1n  (1-2 )2  1.455  0.3 = 0.4365 
 
 2) Taking into account Eq. (10.1) we get: 
 
                                N.A. = [(1.455)2+ (0.4365)2] 1/2 = 1.4                                        
 
Taking Eq. (10.29), we get: V = ( d/ 0)  NA and taking into account Eq. 
(10.1), we get: 
 
                                     V = [3.14  20 / 0.78] 1.4 = 5.6  
 
 

Exercise 3. 
 

Given: Radius of the core d = 20 m, 0 = 1300 nm, 1n = 1.467, =1.36%.  
Find: How many mode solutions for N from Eq. (10.12) can be obtained 
(see also Fig. 10.7). 

 
Solution  

 
1) Accounting for Eq. (10.2), we get                 

    
 
  
 

2) Accounting for Eq. (10.2), we get 
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3) Accounting for Eq. (10.29) we get 
                                  
        
 
 

 
4) Accounting for Eq. (10.17) we get 

                                            
              
  
 

It also can be found by use of dependence of N with NA according to Eq. 
(10.17): 
                                

    
 
Conclusion: In such a fiber optic structure, only 7 modes can propagate 
according to Figure 10.7. 
 
 

Exercise 4. 
 
Given:  Radius of the core d = 20 m, 0 = 1300 nm, 1n = 1.467, =1.36%.  
 
Find:  
1) Angle of full transfer of main mode along the fiber (according to (10.1)) 
               max = max  
2) Critical angle c for the main mode and for mode 7 (according to 

Exercise 3). 
3) Incident angle 0 inside the fiber (see Figure 10.3).  
4) The range of neff between the main and the 7-th modes.  
5) Wavelength ranged between 6-th and 4-th modes, and similarly – the 

normalized frequency V ranged between these modes. 
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Solution 
 

1)  According to (10.1) 
                                            
 
 
 

2) According to Exercise 3: 
 

                                       
      
 
       and following (10.1), we get 
                                                           
         
 
 

3) The incident angle 0 can be found as: 
 

                                                            
 
         from which follows: 
 
                                                                 
 
Now, accounting from Exercise 3 for Nmax = 8.446. As follows from Figure 
10.7, for all 7 bold points N=8, finally, we get: 
 
                                                
 
 
 
 
from which 
 
                                                       
 
 
 
According to Snell’s law: 
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we get: 
 
                      
 
                       

4) As well-known from above: 
 
                                                              
 
 
As for 0 and 7, they can be found from step 3 of this Exercise: 
                       
 
 
 
 
 
 
If so, finally we get that 
 
                                                    
 
 
or after straightforward computation we get: 
 
                                                            
 

5) Accounting now for the following relation: 
 
  

                                                                 
 
we get for wavelengths of waveguide modes via  
 
                                                             
 
or 
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That 
 
 
 
 
 
Finally, the wavelength is varied from 4th to 6th mode at the range of  
 
                                                  
 
Similarly, we can find the normalized frequencies ranged between these 
modes. Thus, accounting for well-known relations (10.16), we get: 
 
for N=4      4 = 2V4 /  + 1, from which  V4 = 4.71  
                   
for N=6      6 = 2V6 /  + 1, from which  V6 = 7.85 
 
 

Exercise 5. 
 

Given: 2-D guiding structure with width d = 20 m, (Fig. 10.3), where light 
propagates along it with the wavelength 0 = 1550 nm. 
 
Find: 1) NA and V; 
          2) Angle of incidence for modes of m = 0, 2 and m = 6; 
          3) Wave numbers for modes of m = 0, 2 and m = 6; 
          4) For single-mode propagation conditions find the corresponding  

width of the slab and the wavelength for this mode. 
              

Solution 
 

1) Accounting for (10.1), we get: 
 

                                                   
 
 
In the same manner will be calculated the normalized frequency V: 
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2) Following the wave mode propagation condition, following geometry        
presented in Fig. 10.6, yields: 

                                                       
 
 
 
 
Then 

  
for m = 0 
                                                            
    
 
for m = 2 
 
 
 
 
 
for m = 6    
 
 
 
 
  

3) The corresponding wave numbers can be found in the same 
        manner: 

   
for m = 0 
                                             
   
 
 
for m = 2 
                                                 
   
 
 
for m = 6    
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 4) For single-mode propagation inside the slab, as following from 
                   (10.30) we get: 
                                          
 

 
 

or using the definition of V and the above conditions, we can find 
the conditions for the width d of the slab that guides only the main 
mode (with m = 0) 

                       

 
with the corresponding wavelength 

                               
 
 
 

 
 

Exercise 6. 
 

Given: 2-D guiding optical structure (see Figure 10.19), 1n  = 1.48 and 2n  = 
1.46. 
 

 
      Figure 10.19. Mode propagation inside the 2-D slab.  
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Find: 1) NA and .  
          2) Maximum incident angle 0max for n0 ~1.0. 
 

Solution 
 

1) Accounting for (10.1), we get: 
                               
 
                      
From (10.3), the approximate formula for  can be obtained 
 

                   
Then, we finally get:  
 
                               
 
2) Accounting for Snell's law (see geometry in Fig. 10.19) yields: 
 
                        
 
          
At the same time, as follows from geometry presented in Figure10.7 
  
                                           
 
Finally, we get: 

Moreover, according to Snell's law 
 
                                                            
 
 
If now inside core is some material, let us say, with n= 1.33, then we get: 
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and the corresponding 0, max for such conditions will equal: 
 
                                      
 
 
 
 

Exercise 7. 
 

Given: Multimode step-index fiber with parameters NA = 0.3, V = 75, 
1n  = 1.458, 0 = 820 nm. 

 
Find:  
1) 2n .  
2) Radius of core d. 

Solution 
 

1) from (10.1) we can find n2 as 
 

            2n = ( 1n 2 – NA 2)1/2 = (1.4582 - 0.32) 1/2 = 1.427 
 

2) from (10.16) radius d equals 
 

             d = V 0 / 2 NA = 75 820 10-9 / 6.28 0.3 = 32.63 m 
 

 
Exercise 8. 

 
Given: Multimode step-index fiber with parameters d = 25 m, 1n  = 1.48, 

0 = 820 nm. 
 
Find: 1) Normalized frequency V for  = 0.01; 
          2) The fiber mode parameter M for  = 0.003. 

 
Solution 

 
1) According to (10.16), we get 

 
  V = (2 )1/2 2  d  1n  / 0  = (0.02)1/2  6.28  25 10-6 1.48 / 820 10-9 = 24.9 
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2) the fiber mode parameter M can also be found via (10.16) as 
 
                M1 = V2/ 2 = 0.5 (2  d  1n   (2 )1/2/ 0)

2  =  

                      = 4 0.003 (3.14 25 10-6 1.48 / 820 10-9)2 = 241 
 
 

Exercise 9. 
 

Given: Multimode step-index fiber with the parameters M = 100 and NA = 
0.2; 0 = 850 nm. 
 
Find: 1) Diameter of core D. 
          2) Number M for 1 = 1320 nm and 2 = 1550 nm. 

 
Solution 

 
1) It is known that  

     
                          M = V2 / 2, so V = (2 1000) 1/2 = (2000) 1/2 
  
At the same time, according to (10.16) 
 
             d = V 0 / 2 NA = (2000) 1/2  850 10-9 / 6.28 0.2 = 30.25 m 
 
Then the diameter of the core equals 
 
                                         D =2d = 60.5 m 
 

2) For 1 = 1320 nm  
 

 M1 = V2 / 2 = 2 (  d NA / 1)
2 = 2 (6.28  30.25 10-6  0.2 / 1320 10-9)2 = 414 

 
      For 2 = 1550 nm 
 
 M2 = V2 / 2 = 2 (  d NA / 2)

2 = 2 (6.28  30.25 10-6  0.2 / 1550 10-9)2 = 300 
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Exercise 10. 
 

Given: Step-index fiber of the length L, 1n  = 1.5.  
 
Find: 
1) Maximum bit rate for a)  = 1/3, and b)  = 2 10-3. 
2) Time dispersion along the length of the fiber, T. 
 

Solution 
 
1) If, due to time spread, overlapping between bits occurs, called inter-
symbol interference (ISI), and its period TB exceeds T, accounting that the 
bit rate B ~ TB

-1, we finally get the following constraint: 
                                                              
    
          
Accounting for relations between the T, the refraction indexes, parameters 
of fiber, L and , we can rewrite the above constrain as following 
                                                             
       
 
 

a) For  = 1/3 and 1n  = 1.5, we get 
 

                               
  
and  
                       

   
 
 
b) For  = 2 10-3, and 1n  = 1.5, we get 
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2) According to geometry presented in Figure 10.20,  
 

 
Figure 10.20. Geometrical presentation of the minimum path (straight without 

reflections – dashed blue line in the middle of the fiber) and of the maximum path 
(after reflections inside the core) during mode propagation inside the 2-D slab.  

 
 
we find the maximum path of the optical mode in the fiber: 

                       
 
 
 

 
where the critical angle of the total inner reflection inside the core 
corresponds to (see discussions in Paragraph 10.2) 
 

 
 
 

Finally, we get the total time dispersion along the cable length L: 

or for  
                                = 1/3/ T / L = 2.5 ( s  km-1) 
 and for                  
                                 = 2 10-3/ T / L = 7 ( s  km-1) 
 
Conclusion:  Less difference between 1n  and 2n , and smaller parameter 

, means the weaker the time spread along the cable takes place. 
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Exercise 11. 
 

Given: The Step-index fiber with the following parameter 

 
Find: The total dispersion coefficient for  
          

Solution 
 

For  = 1.276 m according to (10.58) we get: 
 

       
 
 
and 
                                                     
  
 
The summands of Eq. (10.59) shown in Figure 10.21 (we present it again 
for the readers’ convenience) can be computed based on the above 
parameters. 
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Figure 10.21. Summands and parameter b in Eq. (10.59) vs. dimensionless 

parameter V computed according to [6]; the left-bottom side is the description of 
geometry and refraction indexes of the fiber. 

 
Finally,  from Figure 10.21, we get for  V = 2 (see crossing straight lines): 

 
                                                      
  
 
 
 
 
 
 
Returning now to Eq. (10.60) and rearranging it, we get: 
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Accounting for 
 

   
 
 
 

we get for waveguide dispersion coefficient: 
 

Accounting for the obtained above material dispersion coefficients, we 
finally get: 

  

    

 
 
 
Conclusion: The material dispersion, occurring in the fiber optic structure 
caused by impurities and defects (called irregularities or roughness 
structures) is a more essential factor with respect to the waveguide 
dispersion caused by multimode propagation inside the core of the optical 
cable. 
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