




Data Smart

John W. Foreman

Using Data Science to 
Transform Information 
into Insight



Data Smart: Using Data Science to Transform Information into Insight

Published by
John Wiley & Sons, Inc.

10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-66146-8
ISBN: 978-1-118-66148-2 (ebk)
ISBN: 978-1-118-83986-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or 
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written 
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the 
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-
8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John 
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ  07030, (201) 748-6011, fax (201) 748-6008, or online 
at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all 
warranties, including without limitation warranties of fi tness for a particular purpose. No warranty may be 
created or extended by sales or promotional materials. The advice and strategies contained herein may not 
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in 
rendering legal, accounting, or other professional services. If professional assistance is required, the services 
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for 
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation 
and/or a potential source of further information does not mean that the author or the publisher endorses 
the information the organization or website may provide or recommendations it may make. Further, readers 
should be aware that Internet websites listed in this work may have changed or disappeared between when 
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care 
Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax 
(317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material 
included with standard print versions of this book may not be included in e-books or in print-on-demand. 
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you 
may download this material at http://booksupport.wiley.com. For more information about Wiley 
products, visit www.wiley.com.

Library of Congress Control Number: 2013946768

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. 
and/or its affi  liates, in the United States and other countries, and may not be used without written permission. 
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated 
with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com


To my wife, Lydia. What you do each day is impossibly rad. If it weren’t for you, 

I’d have lost my hair (and my mind) eons ago.



Executive Editor

Carol Long

Senior Project Editor

Kevin Kent

Technical Editors

Greg Jennings 

Evan Miller 

Production Editor

Christine Mugnolo

Copy Editor

Kezia Endsley 

Editorial Manager

Mary Beth Wakefi eld 

Freelancer Editorial Manager

Rosemarie Graham

Associate Director of Marketing

David Mayhew

Marketing Manager

Ashley Zurcher

Business Manager

Amy Knies

Vice President and Executive Group 

Publisher

Richard Swadley

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Katie Crocker

Proofreader

Nancy Carrasco

Indexer

Johnna van Hoose Dinse

Cover Image

Courtesy of John W. Foreman

Cover Designer

Ryan Sneed

Credits



John W. Foreman is the Chief Data Scientist for MailChimp.com. He’s also a 

recovering management consultant who’s done a lot of analytics work for large 

businesses (Coca-Cola, Royal Caribbean, Intercontinental Hotels) and the gov-

ernment (DoD, IRS, DHS, FBI). John can often be found speaking about the trials 

and travails of implementing analytic solutions in business—check John-Foreman

.com to see if he’s headed to your town.

When he’s not playing with data, John spends his time hiking, watching copious 

amounts of television, eating all sorts of terrible food, and raising three smelly boys.

About the Author

Greg Jennings is a data scientist, software engineer, and co-founder of ApexVis. After 

completing a master’s degree in materials science from the University of Virginia, he 

began his career with the Analytics group of Booz Allen Hamilton, where he grew 

a team providing predictive analytics and data visualization solutions for planning 

and scheduling problems.

After leaving Booz Allen Hamilton, Greg cofounded his fi rst startup, Decision 

Forge, where he served as CTO and helped develop a web-based data mining plat-

form for a government client. He also worked with a major media organization to 

develop an educational product that assists teachers in accessing targeted content for 

their students, and with a McLean-based startup to help develop audience modeling 

applications to optimize web advertising campaigns.

After leaving Decision Forge, he cofounded his current business ApexVis, focused 

on helping enterprises get maximum value from their data through custom data 

visualization and analytical software solutions. He lives in Alexandria, Virginia, 

with his wife and two daughters.

Evan Miller received his bachelor’s degree in physics from Williams College in 

2006 and is currently a PhD student in economics at the University of Chicago. 

His research interests include specifi cation testing and computational methods in 

econometrics. Evan is also the author of Wizard, a popular Mac program for per-

forming statistical analysis, and blogs about statistics problems and experiment 

design at http://www.evanmiller.org.

About the Technical Editors

http://www.evanmiller.org


This book started after an improbable number of folks checked out my analytics 

blog, Analytics Made Skeezy. So I’d like to thank those readers as well as my 

data science Twitter pals who’ve been so supportive. And thanks to Aarron Walter, 

Chris Mills, and Jon Duckett for passing the idea for this book on to Wiley based 

on my blog’s silly premise.

I’d also like to thank the crew at MailChimp for making this happen. Without 

the supportive and adventurous culture fostered at MailChimp, I’d not have felt 

confi dent enough to do something so stupid as to write a technical book while 

working a job and raising three boys. Specifi cally, I couldn’t have done it without 

the daily assistance of Neil Bainton and Michelle Riggin-Ransom. Also, I’m indebted 

to Ron Lewis, Josh Rosenbaum, and Jason Travis for their work on the cover and 

marketing video for the book.

Thanks to Carol Long at Wiley for taking a chance on me and to all the editors 

for their expertise and hard work. Big thanks to Greg Jennings for working all the 

spreadsheets!

Many thanks to my parents for reading my sci-fi  novel and not telling me to quit 

writing.

Acknowledgments



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

 1 Everything You Ever Needed to Know about Spreadsheets but Were 
Too Afraid to Ask  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Some Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

Moving Quickly with the Control Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

Copying Formulas and Data Quickly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

Formatting Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Paste Special Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Inserting Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Locating the Find and Replace Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Formulas for Locating and Pulling Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Using VLOOKUP to Merge Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Filtering and Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Using PivotTables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Using Array Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Solving Stuff with Solver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

OpenSolver: I Wish We Didn’t Need This, but We Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Wrapping Up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

 2 Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  . . . . . . . . 29
Girls Dance with Girls, Boys Scratch Their Elbows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Getting Real: K-Means Clustering Subscribers in E-mail Marketing . . . . . . . . . . . . . . . . . . . . . . .35

Joey Bag O’ Donuts Wholesale Wine Emporium  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

The Initial Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Determining What to Measure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Start with Four Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Euclidean Distance: Measuring Distances as the Crow Flies . . . . . . . . . . . . . . . . . . . . . . . . . 41

Distances and Cluster Assignments for Everybody! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Solving for the Cluster Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Making Sense of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



Contents viii

Getting the Top Deals by Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

The Silhouette: A Good Way to Let Different K Values 
Duke It Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

How about Five Clusters?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Solving for Five Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Getting the Top Deals for All Five Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Computing the Silhouette for 5-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

K-Medians Clustering and Asymmetric Distance Measurements . . . . . . . . . . . . . . . . . . . . . . . . 66

Using K-Medians Clustering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Getting a More Appropriate Distance Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

Putting It All in Excel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

The Top Deals for the 5-Medians Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Wrapping Up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

 3 Naïve Bayes and the Incredible Lightness of Being an Idiot . . . . . . . . . . . . . . . . . . . . 77
When You Name a Product Mandrill, You’re Going to Get Some Signal and 
Some Noise  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

The World’s Fastest Intro to Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

Totaling Conditional Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Joint Probability, the Chain Rule, and Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

What Happens in a Dependent Situation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bayes Rule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Using Bayes Rule to Create an AI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

High-Level Class Probabilities Are Often Assumed to Be Equal . . . . . . . . . . . . . . . . . . . . . 84

A Couple More Odds and Ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Let’s Get This Excel Party Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Removing Extraneous Punctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Splitting on Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Counting Tokens and Calculating Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

And We Have a Model! Let’s Use It. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Wrapping Up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

 4 Optimization Modeling: Because That “Fresh Squeezed” Orange Juice 
Ain’t Gonna Blend Itself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Why Should Data Scientists Know Optimization?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102



Contents ix

Starting with a Simple Trade-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Representing the Problem as a Polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Solving by Sliding the Level Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

The Simplex Method: Rooting around the Corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Working in Excel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

There’s a Monster at the End of This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Fresh from the Grove to Your Glass...with a Pit Stop Through a Blending Model . . . . . . . . . 118

You Use a Blending Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Let’s Start with Some Specs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Coming Back to Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Putting the Data into Excel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Setting Up the Problem in Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Lowering Your Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Dead Squirrel Removal: The Minimax Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

If-Then and the “Big M” Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Multiplying Variables: Cranking Up the Volume to 11  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Modeling Risk  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

Normally Distributed Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Wrapping Up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

 5 Cluster Analysis Part II: Network Graphs and Community Detection . . . . . . . . . . .155
What Is a Network Graph? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Visualizing a Simple Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Brief Introduction to Gephi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Gephi Installation and File Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Laying Out the Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Node Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Pretty Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

Touching the Graph Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Building a Graph from the Wholesale Wine Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

Creating a Cosine Similarity Matrix  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Producing an r-Neighborhood Graph  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

How Much Is an Edge Worth? Points and Penalties in Graph Modularity . . . . . . . . . . . . . . . . 178



Contents x

What’s a Point and What’s a Penalty? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Setting Up the Score Sheet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Let’s Get Clustering! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Split Number 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Split 2: Electric Boogaloo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

And…Split 3: Split with a Vengeance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192

Encoding and Analyzing the Communities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

There and Back Again: A Gephi Tale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Wrapping Up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

 6 The Granddaddy of Supervised Artifi cial Intelligence—Regression . . . . . . . . . . . . 205
Wait, What? You’re Pregnant? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Don’t Kid Yourself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Predicting Pregnant Customers at RetailMart Using Linear Regression . . . . . . . . . . . . . . . . . 207

The Feature Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Assembling the Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Creating Dummy Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210

Let’s Bake Our Own Linear Regression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Linear Regression Statistics: R-Squared, F Tests, t Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . .221

Making Predictions on Some New Data and Measuring Performance . . . . . . . . . . . . . . 230

Predicting Pregnant Customers at RetailMart Using Logistic Regression . . . . . . . . . . . . . . . . 239

First You Need a Link Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Hooking Up the Logistic Function and Reoptimizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Baking an Actual Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Model Selection—Comparing the Performance of the Linear 
and Logistic Regressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245

For More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Wrapping Up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

 7 Ensemble Models: A Whole Lot of Bad Pizza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251
Using the Data from Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252

Bagging: Randomize, Train, Repeat  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Decision Stump Is an Unsexy Term for a Stupid Predictor  . . . . . . . . . . . . . . . . . . . . . . . . 254

Doesn’t Seem So Stupid to Me! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255

You Need More Power! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257



Contents xi

Let’s Train It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Evaluating the Bagged Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Boosting: If You Get It Wrong, Just Boost and 
Try Again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Training the Model—Every Feature Gets a Shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Evaluating the Boosted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Wrapping Up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

 8 Forecasting: Breathe Easy; You Can’t Win . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
The Sword Trade Is Hopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Getting Acquainted with Time Series Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Starting Slow with Simple Exponential Smoothing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Setting Up the Simple Exponential Smoothing Forecast . . . . . . . . . . . . . . . . . . . . . . . . . . 290

You Might Have a Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

 Holt’s Trend-Corrected Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Setting Up Holt’s Trend-Corrected Smoothing in a Spreadsheet . . . . . . . . . . . . . . . . . . 300

So Are You Done? Looking at Autocorrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Multiplicative Holt-Winters Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Setting the Initial Values for Level, Trend, and Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . 315

Getting Rolling on the Forecast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

And...Optimize! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324

Please Tell Me We’re Done Now!!!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326

Putting a Prediction Interval around the Forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327

Creating a Fan Chart for Effect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Wrapping Up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

 9 Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re 
Unimportant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Outliers Are (Bad?) People, Too . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335

The Fascinating Case of Hadlum v. Hadlum  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336

Tukey Fences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337

Applying Tukey Fences in a Spreadsheet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338

The Limitations of This Simple Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Terrible at Nothing, Bad at Everything . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Preparing Data for Graphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342



Contents xii

Creating a Graph  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345

Getting the k Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347

Graph Outlier Detection Method 1: Just Use the Indegree . . . . . . . . . . . . . . . . . . . . . . . . 348

Graph Outlier Detection Method 2: Getting Nuanced with k-Distance . . . . . . . . . . . . . 351

Graph Outlier Detection Method 3: Local Outlier Factors Are Where It’s At . . . . . . . .353

Wrapping Up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358

 10 Moving from Spreadsheets into R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361
Getting Up and Running with R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Some Simple Hand-Jamming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363

Reading Data into R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Doing Some Actual Data Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372

Spherical K-Means on Wine Data in Just a Few Lines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372

Building AI Models on the Pregnancy Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378

Forecasting in R  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Looking at Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Wrapping Up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

  Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Where Am I? What Just Happened? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .395

Before You Go-Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .395

Get to Know the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

We Need More Translators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397

Beware the Three-Headed Geek-Monster: Tools, Performance, and 
Mathematical Perfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397

You Are Not the Most Important Function of Your Organization . . . . . . . . . . . . . . . . . 400

Get Creative and Keep in Touch! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

  Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401



What Am I Doing Here?
You’ve probably heard the term data science fl oating around recently in the media, in 

business books and journals, and at conferences. Data science can call presidential races, 

reveal more about your buying habits than you’d dare tell your mother, and predict just 

how many years those chili cheese burritos have been shaving off  your life. 

Data scientists, the elite practitioners of this art, were even labeled “sexy” in a recent 

Harvard Business Review article, although there’s apparently such a shortage that it’s kind 

of like calling a unicorn sexy. There’s just no way to verify the claim, but if you could see 

me as I type this book with my neck beard and the tired eyes of a parent of three boys, 

you’d know that sexy is a bit of an overstatement.

I digress. The point is that there’s a buzz about data science these days, and that buzz 

is creating pressure on a lot of businesses. If you’re not doing data science, you’re gonna 

lose out to the competition. Someone’s going to come along with some new product called 

the “BlahBlahBlahBigDataGraphThing” and destroy your business. 

Take a deep breath. 

The truth is most people are going about data science all wrong. They’re starting with 

buying the tools and hiring the consultants. They’re spending all their money before they 

even know what they want, because a purchase order seems to pass for actual progress 

in many companies these days.

By reading this book, you’re gonna have a leg up on those jokers, because you’re going 

to learn exactly what these techniques in data science are and how they’re used. When it 

comes time to do the planning, and the hiring, and the buying, you’ll already know how 

to identify the data science opportunities within your own organization.

The purpose of this book is to introduce you to the practice of data science in a com-

fortable and conversational way. When you’re done, I hope that much of that data science 

anxiety you’re feeling is replaced with excitement and with ideas about how you can use 

data to take your business to the next level.

Introduction



xiv Introduction

A Workable Defi nition of Data Science
To an extent, data science is synonymous with or related to terms like business analytics, 

operations research, business intelligence, competitive intelligence, data analysis and modeling, 

and knowledge extraction (also called knowledge discovery in databases or KDD). It’s just a 

new spin on something that people have been doing for a long time.

There’s been a shift in technology since the heyday of those other terms. Advancements 

in hardware and software have made it easy and inexpensive to collect, store, and analyze 

large amounts of data whether that be sales and marketing data, HTTP requests from 

your website, customer support data, and so on. Small businesses and nonprofi ts can 

now engage in the kind of analytics that were previously the purview of large enterprises.

Of course, while data science is used as a catch-all buzzword for analytics today, data 

science is most often associated with data mining techniques such as artifi cial intelligence, 

clustering, and outlier detection. Thanks to the cheap technology-enabled proliferation 

of transactional business data, these computational techniques have gained a foothold in 

business in recent years where previously they were too cumbersome to use in produc-

tion settings.

In this book, I’m going to take a broad view of data science. Here’s the defi nition I’ll 

work from: 

Data science is the transformation of data using mathematics and statistics into valuable 

insights, decisions, and products. 

This is a business-centric defi nition. It’s about a usable and valuable end product derived 

from data. Why? Because I’m not in this for research purposes or because I think data 

has aesthetic merit. I do data science to help my organization function better and create 

value; if you’re reading this, I suspect you’re after something similar. 

With that defi nition in mind, this book will cover mainstay analytics techniques such 

as optimization, forecasting, and simulation, as well as more “hot” topics such as artifi cial 

intelligence, network graphs, clustering, and outlier detection.

Some of these techniques are as old as World War II. Others were introduced in the 

last 5 years. And you’ll see that age has no bearing on diffi  culty or usefulness. All these 

techniques—whether or not they’re currently the rage—are equally useful in the right 

business context. 

And that’s why you need to understand how they work, how to choose the right tech-

nique for the right problem, and how to prototype with them. There are a lot of folks out 



xvIntroduction

there who understand one or two of these techniques, but the rest aren’t on their radar. If 

all I had in my toolbox was a hammer, I’d probably try to solve every problem by smack-

ing it real hard. Not unlike my two-year-old.

Better to have a few other tools at your disposal.

But Wait, What about Big Data?
You’ve heard the term big data even more than data science most likely. Is this a book on 

big data?

That depends on how you defi ne big data. If you defi ne big data as computing simple 

summary statistics on unstructured garbage stored in massive, horizontally scalable, 

NoSQL databases, then no, this is not a book on big data.

If you defi ne big data as turning transactional business data into decisions and insight 

using cutting-edge analytics (regardless of where that data is stored), then yes, this is a 

book about big data. 

This is not a book that will be covering database technologies, like MongoDB and HBase. 

This is not a book that will be covering data science coding packages like Mahout, NumPy, 

various R libraries, and so on. There are other books out there for that stuff .

But that’s a good thing. This book ignores the tools, the storage, and the code. Instead, 

it focuses as much as possible on the techniques. There are many folks out there who 

think that data storage and retrieval, with a little bit of cleanup and aggregation mixed 

in, constitutes all there is to know about big data. 

They’re wrong. This book will take you beyond the spiel you’ve been hearing from the 

big data software sales reps and bloggers to show you what’s really possible with your data. 

And the cool thing is that for many of these techniques, your dataset can be any size, small 

or large. You don’t have to have a petabyte of data and the expenses that come along with 

it in order to predict the interests of your customer base. If you have a massive dataset, 

that’s great, but there are some businesses that don’t have it, need it, and will likely never 

generate it. Like my local butcher. But that doesn’t mean his e-mail marketing couldn’t 

benefi t from a little bacon versus sausage cluster detection.

If data science books were workouts, this book would be all calisthenics—no machine 

weights, no ergs. Once you understand how to implement the techniques with even the 

most barebones of tools, you’ll fi nd yourself free to implement them in a variety of tech-

nologies, prototype with them with ease, buy the correct data science products from 

consultants, delegate the correct approach to your developers, and so on. 



xvi Introduction

Who Am I?
Let me pause a moment to tell you my story. It’ll go a long way to explaining why I teach 

data science the way I do. Many moons ago, I was a management consultant. I worked 

on analytics problems for organizations such as the FBI, DoD, the Coca-Cola Company, 

Intercontinental Hotels Group, and Royal Caribbean International. And through all these 

experiences I walked away having learned one thing—more people than just the scientists 

need to understand data science. 

I worked with managers who bought simulations when they needed an optimization 

model. I worked with analysts who only understood Gantt charts, so everything needed 

to be solved with Gantt charts. As a consultant, it wasn’t hard to win over a customer 

with any old white paper and a slick PowerPoint deck, because they couldn’t tell AI from 

BI or BI from BS.

The point of this book is to broaden the audience of who understands and can imple-

ment data science techniques. I’m not trying to turn you into a data scientist against your 

will. I just want you to be able to integrate data science as best as you can into the role 

you’re already good at.

And that brings me to who you are.

Who Are You?
No, I haven’t been using data science to spy on you. I have no idea who you are, but thanks 

for shelling out some money for this book. Or supporting your local library. You can do 

that, too. 

Here are some archetypes (or personas for you marketing folks) I had in mind when 

writing this book. Maybe you are:

• The vice president of marketing who wants to use her transactional business data 

more strategically to price products and segment customers. But she doesn’t under-

stand the approaches her software developers and overpriced consultants are rec-

ommending she try.

• The demand forecasting analyst who knows his organization’s historical purchase 

data holds more insight about his customers than just the next quarter’s projections. 

But he doesn’t know how to extract that insight.

• The CEO of an online retail start-up who wants to predict when a customer is likely 

to be interested in buying an item based on their past purchases.



xviiIntroduction

• The business intelligence analyst who sees money going down the tubes from the 

infrastructure and supply chain costs her organization is accruing, but doesn’t know 

how to systematically make cost-saving decisions.

• The online marketer who wants to do more with his company’s free text customer 

interactions taking place in e-mail, Facebook, and Twitter, but right now they’re 

just being read and saved.

I have in mind that you are a reader who would benefi t directly from knowing more 

about data science but hasn’t found a way to get a foothold into all the techniques. The 

purpose of this book is to strip away all the distractions around data science (the code, 

the tools, and the hype) and teach the techniques using practical use cases that someone 

with a semester of linear algebra or calculus in college can understand. Assuming you 

didn’t fail that semester. If you did, just read slower and use Wikipedia liberally.

No Regrets. Spreadsheets Forever
This is not a book about coding. In fact, I’m giving you my “no code” guarantee (until 

Chapter 10 at least). Why?

Because I don’t want to spend a hundred pages at the beginning of this book messing 

with Git, setting environment variables, and doing the dance of Emacs versus Vi. 

If you run Windows and Microsoft Offi  ce almost exclusively. If you work for the govern-

ment, and they don’t let you download and install random open source stuff  on your box. 

Even if MATLAB or your TI-83 scared the hell out of you in college, you need not be afraid. 

Do you need to know how to write code to put most of these techniques in automated, 

production settings? Absolutely! Or at least someone you work with needs to be able to 

handle code and storage technologies.

Do you need to know how to write code in order to understand, distinguish between, 

and prototype with these techniques? Absolutely not!

This is why I go over every technique in spreadsheet software. 

Now, this is all a bit of a lie. The fi nal chapter in this book is actually on moving to the 

data science-focused programming language, R. It’s for those of you that want to use this 

book as a jumping-off  point to deeper things.

But Spreadsheets Are So Démodé!
Spreadsheets are not the sexiest tools around. In fact, they’re the Wilford-Brimley-selling-

Colonial-Penn of the analytics tool world. Completely unsexy. Sorry, Wilford.



xviii Introduction

But that’s the point. Spreadsheets stay out of the way. They allow you to see the data 

and to touch (or at least click on) the data. There’s a freedom there. In order to learn these 

techniques, you need something vanilla, something everyone understands, but nonethe-

less, something that will let you move fast and light as you learn. That’s a spreadsheet. 

Say it with me: “I am a human. I have dignity. I should not have to write a map-reduce 

job in order to learn data science.”

And spreadsheets are great for prototyping! You’re not running a production AI model 

for your online retail business out of Excel, but that doesn’t mean you can’t look at purchase 

data, experiment with features that predict product interest, and prototype a targeting 

model. In fact, it’s the perfect place to do just that.

Use Excel or LibreOffi ce
All the examples you’re going to work through will be visualized in the book in Excel. 

On the book’s website (www.wiley.com/go/datasmart) are posted companion spread-

sheets for each chapter so that you can follow along. If you’re really adventurous, you can 

clear out all but the starting data in the spreadsheet and replicate all the work yourself.

This book is compatible with Excel versions 2007, 2010, 2011 for Mac, and 2013. Chapter 

1 will discuss the version diff erences most in depth.

Most of you have access to Excel, and you probably already use it for reporting or 

recordkeeping at work. But if for some reason you don’t have a copy of Excel, you can 

either buy it or go for LibreOffi  ce (www.libreoffice.org) instead. 

LibreOffi  ce is open source, free, and has nearly all of the same functionality as Excel. 

I think its native solver is actual preferable to Excel’s. So if you want to go that route for 

this book, feel free.

WHAT ABOUT GOOGLE DRIVE?

Now, some of you might be wondering whether you can use Google Drive. It’s an appeal-

ing option since Google Drive is in the cloud and can run on your mobile devices as 

well as your beige box. But it just won’t work.

Google Drive is great for simple spreadsheets, but for where you’re going, Google 

just can’t hang. Adding rows and columns in Drive is a constant annoyance, the imple-

mentation of Solver is dreadful, and the charts don’t even have trendlines. I wish it were 

otherwise.

http://www.wiley.com/go/datasmart
http://www.libreoffice.org


xixIntroduction

Conventions
To help you get the most from the text and keep track of what’s happening, I’ve used a 

number of conventions throughout the book.

WARNING

Warnings hold important, not-to-be-forgotten information that is directly relevant to 

the surrounding text.

NOTE

Notes cover tips, hints, tricks, or asides to the current discussion.

Frequently in this text I’ll reference little snippets of Excel code like this:

=CONCATENATE(“THIS IS A FORMULA”, “ IN EXCEL!”)

We highlight new terms and important words when we introduce them. We show fi le 

names, URLs, and formulas within the text like so:

http://www .john-foreman.com.

Let’s Get Going
In the fi rst chapter, I’m going to fi ll in a few holes in your Excel knowledge. After that, 

you’ll move right into use cases. By the end of this book, you’ll not only know about but 

actually have experience implementing from scratch the following techniques:

• Optimization using linear and integer programming

• Working with time series data, detecting trends and seasonal patterns, and forecast-

ing with exponential smoothing

SIDEBARS

Sidebars, like the one you just read about Google Drive, touch upon some side issue 

related to the text in detail.

http://www


xx Introduction

• Using Monte Carlo simulation in optimization and forecasting scenarios to quantify 

and address risk

• Artifi cial intelligence using the general linear model, logistic link functions, ensem-

ble methods, and naïve Bayes

• Measuring distances between customers using cosine similarity, creating kNN 

graphs, calculating modularity, and clustering customers

• Detecting outliers in a single dimension with Tukey fences or in multiple dimen-

sions with local outlier factors

• Using R packages to “stand on the shoulders” of other analysts in conducting these 

tasks

If any of that sounds exciting, read on! If any of that sounds scary, I promise to keep 

things as clear and enjoyable as possible.

In fact, I prefer clarity well above mathematical correctness, so if you’re an academician 

reading this, there may be times where you should close your eyes and think of England. 

Without further ado, then, let’s get number-crunching.



1
This book relies on you having a working knowledge of spreadsheets, and I’m going to 

assume that you already understand the basics. If you’ve never used a formula before 

in your life, then you’ve got a slight uphill battle here. I’d recommend going through a For 

Dummies book or some other intro-level tutorial for Excel before diving into this.

That said, even if you’re a seasoned Excel veteran, there’s some functionality that’ll keep 

cropping up in this text that you may not have had to use before. It’s not diffi  cult stuff ; 

just things I’ve noticed not everyone has used in Excel. You’ll be covering a wide variety 

of little features in this chapter, and the example at this stage might feel a bit disjointed. 

But you can learn what you can here, and then, when you encounter it organically later 

in the book, you can slip back to this chapter as a reference.

As Samuel L. Jackson says in Jurassic Park, “Hold on to your butts!”

EXCEL VERSION DIFFERENCES

As mentioned in the book’s introduction, these chapters work with Excel 2007, 2010, 

2013, 2011 for Mac, and LibreOffi  ce. Sadly, in each version of Excel, Microsoft has 

moved stuff  around for the heck of it.

For example, things on the Layout tab on 2011 are on the View tab in the other ver-

sions. Solver is the same in 2010 and 2013, but the performance is actually better in 

2007 and 2011 even though 2007’s Solver interface is grotesque.

The screen captures in this text will be from Excel 2011. If you have an older or newer 

version, sometimes your interactions will look a little diff erent—mostly when it comes 

to where things are on the menu bar. I will do my best to call out these diff erences. If 

you can’t fi nd something, Excel’s help feature and Google are your friends.

The good news is that whenever we’re in the “spreadsheet part of the spreadsheet,” 

everything works exactly the same.

As for LibreOffi  ce, if you’ve chosen to use open source software for this book, then 

I’m assuming you’re a do-it-yourself kind of person, and I won’t be referencing the 

LibreOffi  ce interface directly. Never you mind, though. It’s a dead ringer for Excel.

Everything You Ever 
Needed to Know about 
Spreadsheets but Were 
Too Afraid to Ask



2 Data Smart

Some Sample Data

NOTE

The Excel workbook used in this chapter, “Concessions.xlsx,” is available for download 

at the book’s website at www.wiley.com/go/datasmart.

Imagine you’ve been terribly unsuccessful in life, and now you’re an adult, still living 

at home, running the concession stand during the basketball games played at your old 

high school. (I swear this is only semi-autobiographical.) 

You have a spreadsheet full of last night’s sales, and it looks like Figure 1-1.

Figure 1-1: Concession stand sales

Figure 1-1 shows each sale, what the item was, what type of food or drink it was, the 

price, and the percentage of the sale going toward profi t.

Moving Quickly with the Control Button
If you want to peruse the records, you can scroll down the sheet with your scroll wheel, 

track pad, or down arrow. As you scroll, it’s helpful to keep the header row locked at 

the top of the sheet, so you can remember what each column means. To do that, choose 

http://www.wiley.com/go/datasmart


3Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 

Freeze Panes or Freeze Top Row from the “View” tab on Windows (“Layout” tab on Mac 

2011 as shown in Figure 1-2).

Figure 1-2: Freezing the top row

To move quickly to the bottom of the sheet to look at how many transactions you have, 

you can select a value in one of the populated columns and press Ctrl+↓ (Command+↓ 

on a Mac). You’ll zip right to the last populated cell in that column. In this sheet, the fi nal 

row is 200. Also, note that using Ctrl/Command to jump around the sheet from left to 

right works much the same.

If you want to take an average of the sales prices for the night, below the price column, 

column C, you can jot the following formula:

=AVERAGE(C2:C200)

The average is $2.83, so you won’t be retiring wealthy anytime soon. Alternatively, you 

can select the last cell in the column, C200, hold Shift+Ctrl+↑ to highlight the whole col-

umn, and then select the Average calculation from the status bar in the bottom right of the 

spreadsheet to see the simple summary statistic (see Figure 1-3). On Windows, you’ll need 

to right-click the status bar to select the average if it’s not there. On Mac, if your status bar 

is turned off , click the View menu and select “Status Bar” to turn it on.



4 Data Smart

Figure 1-3: Average of the price column in the status bar

Copying Formulas and Data Quickly
Perhaps you’d like to view your profi ts in actual dollars rather than as percentages. You 

can add a header to column E called “Actual Profi t.” In E2, you need only to multiply the 

price and profi t columns together to obtain this:

=C2*D2 

For beer, it’s $2. You don’t have to rewrite this formula in every cell in the column. 

Instead, Excel lets you grab the right-bottom corner of the cell and drag the formula 

where you like. The referenced cells in columns C and D will update relative to where you 

copy the formula. If, as in the case of the concession data, the column to the left is fully 

populated, you can double-click the bottom-right corner of the formula to have Excel fi ll 

the whole column (see Figure 1-4). Try this double-click action for yourself, because I’ll 

be using it all over the place in this book, and if you get the hang of it now, you’ll save 

yourself a whole lot of heartache. 

Now, what if you don’t want the cells in the formula to change relative to the target when 

they’re dragged or copied? Whatever you don’t want changed, just add a $ in front of it.



5Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 

For example, if you changed the formula in E2 to: 

=C$2*D$2

Figure 1-4: Filling in a formula by dragging the corner

Then when you copy the formula down, nothing changes. The formula continues to 

reference row 2. 

If you copy the formula to the right, however, C would become D, D would become E, 

and so on. If you don’t want that behavior, you need to put a $ in front of the column refer-

ences as well. This is called an absolute reference as opposed to a relative reference.

Formatting Cells
Excel off ers static and dynamic options for formatting values. Take a look at column E, the 

Actual Profi t column you just created. Select column E by clicking on the gray E column 

label. Then right-click the selection and choose Format Cells.

From within the Format Cells menu, you can tell Excel the type of number to be found 

in column E. In this case you want it to be Currency. And you can set the number of 

decimal places. Leave it at two decimals, as shown in Figure 1-5. Also available in Format 

Cells are options for changing font colors, text alignment, fi ll colors, borders, and so on.



6 Data Smart

Figure 1-5: The Format Cells menu

But here’s a conundrum. What if you want to format only the cells that have a certain 

value or range of values in them? And what if you want that formatting to change with 

the values?

That’s called conditional formatting, and this book makes liberal use of it. 

Cancel out of the Format Cells menu and navigate to the Home tab. In the Styles 

section (Mac calls it Format), you’ll find the Conditional Formatting button (see 

Figure 1-6). Click the button to drop down a menu of options. The conditional formatting 

most used in this text is Color Scales. Pick a scale for column E and note how each cell 

in the column is colored based on its high or low value. 



7Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 

Figure 1-6: Applying conditional formatting to the profi t

To remove conditional formatting, use the Clear Rules options under the Conditional 

Formatting menu.

Paste Special Values
It’s often in your best interest not to have a formula lying around like you see in Column E 

in Figure 1-4. If you were using the RAND() formula to generate a random value, for example, 

it changes each time the spreadsheet auto-recalculates, which while awesome, can also be 

extremely annoying. The solution is to copy and paste these cells back to the sheet as fl at 

values. 

To convert formulas to values only, simply copy a column fi lled with formulas (grab 

column E) and paste it back using the Paste Special option (found on the Home tab under 

the Paste option on Windows and under the Edit menu on Mac). In the Paste Special win-

dow, choose to paste as values (see Figure 1-7). Note also that Paste Special allows you to 

transpose the data from vertical to horizontal and vice versa when pasting. You’ll be using 

that a fair bit in the chapters to come.



8 Data Smart

Figure 1-7: The Paste Special window in Excel 2011

Inserting Charts
In the concession stand sales workbook, there’s also a tab called Calories with a tiny table 

that shows the calorie count of each item the concession stand sells. You can chart data 

like this in Excel easily. On the Insert tab (Charts on a Mac), there is a charts section that 

provides diff erent visualization options such as bar charts, line graphs, and pie charts. 

NOTE

In this book, we’re going to use mostly column charts, line graphs, and scatter plots. 

Never be caught using a pie chart. And especially never use the 3D pie charts Excel 

off ers, or my ghost will personally haunt you when I die. They’re ugly, they don’t com-

municate data well, and the 3D eff ect has less aesthetic value than the seashell paintings 

hanging on the wall of my dentist’s offi  ce.

Highlighting columns A:B on the Calories workbook, you can select a Clustered Column 

chart to visualize the data. Play around with the graph. Sections can be right-clicked to 

bring up formatting menus. For example, right-clicking the bars, you can select “Format 



9Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 

Data Series…” under which you can change the fi ll color on the bars from the default 

Excel blue to any number of pleasing shades—black, for instance. 

There’s no reason for the default legend, so you should select it and press delete to 

remove it. You might also want to select various text sections on the graph and increase 

the size of their font (font size is under the Home tab in Excel). This gives the graph 

shown in Figure 1-8.

Figure 1-8: Inserting a calories column chart

Locating the Find and Replace Menus
You’re going to use fi nd and replace a fair bit in this book. On Windows you can either 

press Ctrl+F to open up the Find window (Ctrl+H for replace) or navigate to the Home 

tab and use the Find button in the Editing section. On Mac, there’s a search fi eld on the 

top right of the sheet (press the down arrow for the Replace menu), or you can just press 

Cmd+F to bring up the Find and Replace menu.

Just to test it out, open up the replace menu on the Calories sheet. You can replace every 

instance of the word “Calories” with the word “Energy” (see Figure 1-9) by popping the 

words in the Find and Replace window and pressing Replace All.



10 Data Smart

Figure 1-9: Running a Find and Replace

Formulas for Locating and Pulling Values
If I didn’t assume you at least knew some formulas in Excel (SUM, MAX, MIN, PERCENTILE, and 

so on), we’d be here all day. And I want to get started. But there are some formulas used a 

lot in this book that you’ve probably not used unless you’ve dug deep into the wonderful 

world of spreadsheets. These formulas deal with fi nding a value in a range and returning its 

location or on the fl ip side fi nding a location in a range and returning its value. 

I want to cover a few of those on the Calories tab.

Sometimes you want to know the place in line of some element in a column or row. Is it 

fi rst, second, third? The MATCH formula handles that quite nicely. Below your calorie data, 

label A18 as Match. You can implement the formula one cell over in B18 to fi nd where in 

the item list above the word “Hamburger” appears. To use the formula, you supply it a 

value to look for, a range to search in, and a 0 to force it to give you back the position of 

the keyword itself:

=MATCH("Hamburger",A2:A15,0)

This yields a 6, because “Hamburger” is the sixth item in the list (see Figure 1-10).

Next up is the INDEX formula. Label A19 as Index. 

This formula takes in a range of values and a row and column number and returns 

the value in the range at that location. For example, you can feed the INDEX formula our 

calorie table A1:B15, and to pull back the calorie count for bottled water, feed in 3 rows 

down and 2 columns over:

=INDEX(A1:B15,3,2)



11Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 

This yields a calorie count of 0 as expected (see Figure 1-10).

Another formula you’ll see a lot in this text is OFFSET. Go ahead and label A20 as Off set, 

and you can play with the formula in B20. 

With this formula, you provide a range that acts like a cursor which is moved around 

with row and column off sets (similar to INDEX for the single valued case except it’s 0-based). 

For example, you can provide OFFSET with a reference to the top left of the sheet, A1, and 

then pull back the value 3 cells below by providing a row off set of 3 and a column off set 

of 0:

=OFFSET(A1,3,0)

This returns the name of the third item on the list, “Chocolate Bar.” See Figure 1-10.

The last formula I want to look at in this section is SMALL (it has a counterpart called 

LARGE that works the same way). If you have a list of values and you want to return, say, 

the third smallest, SMALL does that for you. To see this, label A21 as Small and in B21 feed 

in the list of calorie counts and an index of 3:

=SMALL(B2:B15,3)

This hands back a value of 150 which is the third smallest after 0 (bottled water) and 

120 (soda). See Figure 1-10. 

Now, there’s one more formula used for looking up values that’s kind of like MATCH on 

steroids and that’s VLOOKUP (and its horizontal counterpart HLOOKUP). That’s got its own 

section next because it’s a beast.

Figure 1-10: Formulas you should learn



12 Data Smart

Using VLOOKUP to Merge Data
Go ahead and fl ip back to the Basketball Game Sales tab. You can still reference a cell 

here from the previous tab, Calories, by simply placing the tab name and “!” in front of a 

referenced cell. For example, Calories!B2 is a reference to the calories in beer regardless 

of what sheet you’re working in.

Now, what if you wanted to toss the calorie data into a column back on the sales sheet 

so that next to each item sold the appropriate calorie count was listed? You’d somehow 

have to look up the calorie count of each item sold and place it into a column next to the 

transaction. Well, it turns out there’s a formula for that called VLOOKUP.

Go ahead and label Column F in the spreadsheet Calories for this purpose. Cell F2 

will include the calorie count for the fi rst beer transaction from the Calories table. Using 

the VLOOKUP formula, you supply the item name from cell A2, a reference to the table 

Calories!$A$1:$B$15, and the relative column off set you want your return value to be 

read out of, which is to say the second column:

=VLOOKUP(A2,Calories!$A$1:$B$15,2,FALSE)

The FALSE at the end of the VLOOKUP formula means that you will not accept approximate 

matches for “Beer.” If the formula can’t fi nd “Beer” on the calories table, it returns an error.  

When you enter the formula, you can see that 200 calories is read in from the table 

on the Calories tab. Since you’ve put the $ in front of the table references in the formula, 

you can copy this formula down the column by double-clicking the bottom-right corner 

of the cell. Voila! As shown in Figure 1-11, you have calorie counts for every transaction.

Figure 1-11: Using VLOOKUP to grab calorie counts



13Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 

Filtering and Sorting
Now that you have calories in there, say you now want to view only those transactions 

from the Frozen Treats category. What you want to do then is fi lter the sheet. To do so, fi rst 

you select the data in range A1:F200. You can put the cursor in A1 and press Shift+Ctrl+↓ 

then →. An even easier method is to click the top of column A and hold the click as you 

mouse over to column F to highlight all six columns. 

Then to place auto-fi ltering on these six columns, you press the Filter button in the 

Data section of the ribbon. It looks like a gray funnel as shown in Figure 1-12.

Figure 1-12: Place auto-fi lter on a selected range

Once auto-fi lter is activated, you can click the drop-down menu that appears in cell B1 

and choose to show only certain categories (in this case, only the Frozen Treats transac-

tions will be displayed). See Figure 1-13. 

Once you’ve fi ltered, highlighting columns of data allows the summary bar in Excel to 

give you rolled-up information just on the cells that remain. For example, having fi ltered 

just the Frozen Treats, we can highlight the values in column E and use the summary bar 

to get a quick total of profi t just from that category. See Figure 1-14.



14 Data Smart

Figure 1-13: Filtering on category

Figure 1-14: Summarizing a fi ltered column

Auto-fi lter allows you to sort as well. For example, if you want to sort by profi t, just 

click the auto-fi lter menu on the Profi t cell (D1) and select Sort Ascending (or “Smallest 

to Largest” in some versions). See Figure 1-15.



15Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 

Figure 1-15: Sorting in ascending order by profi t

To remove all the fi ltering you’ve applied, either you can go back into the Category fi lter 

menu and check the other boxes, or you can un-toggle the fi lter button on the ribbon that 

you pressed in the fi rst place. You’ll see that although you have all of your data back, the 

Frozen Treats are still in the order you sorted them in.

Excel also off ers the Sort interface for doing more complex sorts than might be possible 

with auto-fi lter. To use the feature, you highlight the data to be sorted (grab A:F again) 

and select Sort from the Sort & Filter section of the Data tab in Excel. This will bring up 

the sort menu. On Mac, to get this window, you must press the down arrow in the sort 

button and select Custom Sort….

In the sort menu, shown in Figure 1-16, you can note whether your data has column 

headers or not, and if it does have headers like this example does, then you can select, by 

name, the columns to be sorted.

Now, the most awesome part of this sorting interface is that under the “Options…” 

button, you can select to sort left to right instead of column data. That’s something you 

cannot do with auto-fi lter. In top to bottom of this book you’ll need to randomly sort data 

by both columns and rows in two quick steps, and this interface is going to be your friend. 

For now, just cancel out of it as the data is already ordered the way you want it.



16 Data Smart

Figure 1-16: Using the Sort menu

Using PivotTables
What if you wanted to know the total counts of each item type you sold? Or you wanted 

to know revenue totals by item?

These questions are akin to “aggregate” or “group by” queries that you’d run in a tra-

ditional SQL database. But this data isn’t in a database. It’s in a spreadsheet. That’s where 

PivotTables come to the rescue.

Just as when you fi ltered your data, you start by selecting the data you want to manipu-

late—in this case, the purchase data in the range A1:F:200. From the Insert tab (Data tab 

on Mac), you can press the PivotTable button and select for Excel to create a new sheet 

with a PivotTable. While some versions of Excel allow you to insert a PivotTable into an 

existing sheet, it’s standard practice to select the new sheet option unless you have a really 

good reason not to. 

In this new sheet, the PivotTable Builder will be aligned to the right of the table (it fl oats 

on a Mac). The builder allows you to take the columns from the original selected data and 

use them as report fi lters, column and row labels for grouping, or values. A report fi lter 

is similar in function to a fi lter from the previous section—it allows you to select only a 

subset of the data, such as Frozen Treats. The Column Labels and Row Labels fi ll in the 

meat of the PivotTable report with distinct values from the selected columns. 



17Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 

On Windows, the initial PivotTable built will be completely empty, while on Mac it is 

often prepopulated with distinct values from the fi rst selected column down the rows of 

the table and distinct values from the second column across the columns. If you’re on a 

Mac, go ahead and uncheck all the boxes in the builder, so that you can work along from 

an empty table.

Now, say you wanted to know total revenue by item. To get at that, you’d drag the Item 

tile in the PivotTable Builder into the Rows section and the Price tile into the Values sec-

tion. This means that you’ll be operating on revenue grouped by item name.

Initially, however, the PivotTable is set up to merely count the number of price records 

that are within a group. For example, there are 20 Beer rows. See Figure 1-17. 

Figure 1-17: The PivotTable builder and a count of sales by item

You need to change the count to a sum in order to examine revenue. To do so, on 

Windows, drop the menu down on the Price tile in the Values section of the builder and 

select “Value Field Settings….” On Mac, press the little “i” button. From there, “sum” can 

be selected from the various summary options.



18 Data Smart

What if you wanted to break out these sums by category? To do so, you drag the Category 

tile into the Columns section of the builder. This gives the table shown in Figure 1-18. 

Note that the PivotTable in the fi gure automatically totals up rows and columns for you.

Figure 1-18: Revenue by item and category

And if you want to ever get rid of something from the table, just uncheck it or grab the 

tile from the section it’s in and drag it out of the sheet as if you were tossing it away. Go 

ahead and drop the Category tile.

Once you get a report you want in a PivotTable, you can always select the values and 

paste them to another sheet to work on further. In this example, you can copy the table 

(A5:B18 on Mac) and Paste Special its values into a new tab called Revenue By Item (see 

Figure 1-19).

Feel free to swap in various row and column labels until you get the hang of what’s 

going on. For instance, try to get a total calorie count sold by category using a PivotTable. 



19Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 

Figure 1-19: Revenue by Item tab created by pasting values from a PivotTable

Using Array Formulas
In the concession transaction workbook, there is a tab called Fee Schedule. As it turns out, 

Coach O’Shaughnessy would let you run the snack stand only if you kicked some of the 

profi t back to him (perhaps to subsidize his tube sock-buying habit). The Fee Schedule 

tab shows the percent cut he takes on each item sold. 

So how much money do you owe him for last night’s game? To answer that question, 

you need to multiply the total revenue of each item from the PivotTable by the cut for the 

coach and sum them all up.

There’s a great formula for this operation that will do all the multiplication and sum-

mation in a single step. Rather creatively named, it’s called SUMPRODUCT. In cell E1 on 

the Revenue By Item sheet, add a label called Total Cut for Coach. In C2, determine the 

SUMPRODUCT of the revenue and the fees by adding this formula:

=SUMPRODUCT(B2:B15,'Fee Schedule'!B2:O2)



20 Data Smart

Uh oh. There’s an error; the cell just reads #Value. What’s going wrong?

Even though you’ve selected two ranges of equal size and put them in SUMPRODUCT, 

the formula can’t see that the ranges are equal because one range is vertical and one’s 

horizontal.

Fortunately, Excel has a function for fl ipping arrays in the right direction. It’s called 

TRANSPOSE. You need to write the formula like this:

=SUMPRODUCT(B2:B15,TRANSPOSE('Fee Schedule'!B2:O2))

Nope! Still getting an error.

The reason you’re still getting an error is that every formula in Excel, by default, returns 

a single value. Even TRANSPOSE returns the fi rst value in the transposed array. If you want 

the whole array returned, you have to turn TRANSPOSE into an “array formula,” which means 

exactly what you might think. Array formulas hand you back arrays, not single values.

You don’t have to change the way you type your SUMPRODUCT to make this happen. All 

you need to do is when you’re done typing the formula, instead of pressing Enter, press 

Ctrl+Shift+Enter. On the Mac, you use Command+Return.

Victory! As shown in Figure 1-20, the calculation now reads $57.60. But I suggest round-

ing that down to $50, because how many socks does Coach really need?

Figure 1-20: Taking a SUMPRODUCT with an array formula 

Solving Stuff with Solver
Many of the techniques you’ll study in this book can be boiled down to optimization mod-

els. An optimization problem is one where you have to make the best decision (choose 

the best investments, minimize your company’s costs, fi nd the class schedule with the 



21Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 

fewest morning classes, or so on). In optimization models then, the words “minimize” 

and “maximize” come up a lot when articulating an objective.

In data science, many of the practices, whether that’s artifi cial intelligence, data mining, 

or forecasting, are actually just some data prep plus a model-fi tting step that’s actually an 

optimization model. So it’d make sense to teach optimization fi rst. But learning all there 

is to know about optimization is tough to do straight off  the bat. So you’ll do an in-depth 

optimization study in Chapter 4 after you do some more fun machine learning problems 

in Chapters 2 and 3. To fi ll in the gaps though, it’s best if you get a little practice with 

optimization now. Just a taste.

In Excel, optimization problems are solved using an Add-In that ships with Excel 

called Solver. 

• On Windows, Solver may be added in by going to File (in Excel 2007 it’s the top 

left Windows button) ➪ Options ➪ Add-ins, and under the Manage drop-down 

choosing Excel Add-ins and pressing the Go button. Check the Solver Add-In box 

and press OK. 

• On Mac, Solver is added by going to Tools then Add-ins and selecting Solver.xlam 

from the menu.

A Solver button will appear in the Analysis section of the Data tab in every version.

All right! Now that Solver is installed, here’s an optimization problem: You are told you 

need 2,400 calories a day. What’s the fewest number of items you can buy from the snack 

stand to achieve that? Obviously, you could buy 10 ice cream sandwiches at 240 calories 

a piece, but is there a way to do it for fewer items than that?

Solver can tell you!

To start, make a copy of the Calories sheet, name the sheet Calories-Solver, and clear 

out everything but the calories table on the copy. If you don’t know how to make a copy 

of a sheet in Excel, you simply right-click the tab you’d like to copy and select the Move 

or Copy menu. This gives you the new sheet shown in Figure 1-21.

To get Solver to work, you need to provide it with a range of cells it can set with deci-

sions. In this case, Solver needs to decide how many of each item to buy. So in Column C 

next to the calorie counts, label the column How many? (or whatever you feel like), and 

you can allow Solver to store its decisions in this column.

Excel considers blank cells to be 0s so you needn’t fi ll in these cells with anything to 

start. Solver will do that for you.



22 Data Smart

Figure 1-21: The copied Calories-Solver sheet

In cell C16, sum up the number of items to be bought above as:

=SUM(C2:C15)

And below that you can sum up the total calorie count of these items (which you’ll 

want eventually to equal 2,400) using the SUMPRODUCT formula:

=SUMPRODUCT(B2:B15,C2:C15)

This gives the initial sheet shown in Figure 1-22.

Now you’re ready to build the model, so bring up the Solver window by pressing the 

Solver button on the Data tab. 



23Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 

Figure 1-22: Getting calorie and item counts set up

NOTE

The Solver window, shown in Figure 1-23 in Excel 2011, looks pretty similar in Excel 

2010, 2011, and 2013. In Excel 2007, the layout is slightly diff erent, but the only 

substantive diff erence is that there is no algorithm selection box. Rather, there’s an 

“Assume Linear Model” checkbox under the Options menu. We’ll learn all about these 

elements later.

The main elements you plug into Solver to solve a problem, as shown in Figure 1-23, 

are an objective cell, an optimization direction (minimization or maximization), some 

decision variables that can be changed by Solver, and some constraints.



24 Data Smart

Figure 1-23: The uninitialized Solver window

In your case, the objective is to minimize the total items in cell C16. The cells that can 

be altered are the item selections in C2:C15. And the constraints are that C17, the total 

calories, needs to be equal to 2,400. Also, we’ll need to add a constraint that our decisions 

be counting numbers, so we’ll need to check the non-negative box (under the options menu 

in Excel 2007) and add an integer constraint to the decisions. After all, you can’t buy 1.7 

sodas. These integer constraints will be covered in depth in Chapter 4.

To add in the total calorie constraint, press the Add button and set C17 equal to 2,400 

as shown in Figure 1-24. 

Figure 1-24: Adding the calorie constraint

Similarly, add a constraint setting C2:C15 to be integers as shown in Figure 1-25.



25Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 

Figure 1-25: Adding an integer constraint

Press OK. 

In Excel 2010, 2011, and 2013, make sure the solving method is set to Simplex LP. 

Simplex LP is appropriate for this problem, because this problem is linear (the “L” in LP 

stands for linear as you’ll see in Chapter 4). By linear, I mean that the problem involves 

nothing but linear combinations of the decisions in C2 through C15 (sums, products with 

constants such as calorie counts, etc.). 

If we had non-linear calculations in the model (perhaps a square root of a decision, a 

logarithm, or an exponential function), then we could use one of the other algorithms 

Excel provides in Solver. Chapter 4 covers this in great detail. 

In Excel 2007, you would denote the problem as linear by clicking the Assume Linear 

Model under the Options screen. Your fi nal setup should appear as in Figure 1-26. 

Figure 1-26: Final Solver setup for minimizing items needed for 2,400 calories



26 Data Smart

All right! Go ahead and press the Solve button. Excel should fi nd a solution almost 

immediately. And that solution, as shown in Figure 1-27, is 5. Now, your Excel might 

pick a diff erent 5 items than mine in the screenshot, but the minimum is 5 nonetheless.

Figure 1-27: The optimized item selection

OpenSolver: I Wish We Didn’t Need This, but We Do
This book was originally designed to work completely with Excel’s built-in Solver. However, 

as it turns out, functionality was removed from Solver in later versions for mysterious and 

unadvertised reasons.

What that means is that while this whole book works using vanilla Solver in Excel 2007 

and Excel 2011 for Mac, in Excel 2010 and Excel 2013, the built-in Solver will occasion-

ally complain that a linear optimization model is too large (I’ll give you a heads-up in this 

book whenever a model gets that complex).

Luckily, there’s an excellent free tool called OpenSolver that’s available for the Windows 

versions of Excel that addresses this defi ciency. With OpenSolver, you can still build your 

model in the regular Solver interface, but OpenSolver provides a button that you press to 

use its Simplex LP algorithm implementation, which is blazingly fast.



27Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask 

To set up OpenSolver, navigate to http://OpenSolver.org and download the zip fi le. 

Uncompress the fi le into a folder, and whenever you want to solve a beefy model, just set 

it up in a spreadsheet like normal and double-click the OpenSolver.xlam fi le, which will 

give you an OpenSolver section on the Data tab in Excel. Press the Solve button to solve 

an existing model. As shown in Figure 1-28, I’ve applied OpenSolver in Excel 2013 to the 

model from the previous section, and it buys fi ve slices of pizza.

Figure 1-28: OpenSolver buys pizza like a madman

Wrapping Up
All right, you’ve learned how to navigate and select ranges quickly, how to leverage absolute 

references, how to paste special values, how to use VLOOKUP and other matching formulas, 

how to sort and fi lter data, how to create PivotTables and charts, how to execute array 

formulas, and how and when to bust out Solver.

http://OpenSolver.org


28 Data Smart

Here’s either a depressing or fun fact depending on your perspective. I’ve known man-

agement consultants at prominent fi rms who earn excellent salaries by doing what I call 

the “consulting two-step”:

 1. Talk about nonsense with clients (sports, vacation, barbeque ... not that there’s 

anything nonsensical about smoked meats). 

 2. Summarize data in Excel.

You may not know all there is to know about college football (I certainly don’t), but if 

you internalize this chapter, you’ll have point number two knocked out.

But you’re not here to become a management consultant. You’re here to drive deep into 

data science, and that starts in the next chapter where we’ll get started with a little bit of 

unsupervised machine lear ning.



2
I work in the e-mail marketing industry for a website called MailChimp.com. We help 

customers send e-mail newsletters to their audience, and every time someone uses the 

term “e-mail blast,” a little part of me dies. 

Why? Because e-mail addresses are no longer black boxes that you lob “blasts” at like 

fl ash grenades. No, in e-mail marketing (as with many other forms of online engagement, 

including tweets, Facebook posts, and Pinterest campaigns), a business receives feedback 

on how their audience is engaging at the individual level through click tracking, online 

purchases, social sharing, and so on. This data is not noise. It characterizes your audience. 

But to the uninitiated, it might as well be Greek. Or Esperanto.

How do you take a bunch of transactional data from your customers (or audience, users, 

subscribers, citizens, and so on) and use it to understand them? When you’re dealing with 

lots of people, it’s hard to understand each customer personally, especially if they all have 

their own diff erent ways in which they’ve engaged with you. Even if you could understand 

everyone at a personal level, that can be tough to act on.

You need to take this customer base and fi nd a happy medium between “blasting” 

everyone as if they were the same faceless entity and understanding everything about 

everyone to create personalized marketing for each individual recipient. One way to strike 

this balance is to use clustering to create a market segmentation of your customers so that 

you can market to segments of your base with targeted content, deals, etc.

Cluster analysis is the practice of gathering up a bunch of objects and separating them 

into groups of similar objects. By exploring these diff erent groups—determining how 

they’re similar and how they’re diff erent—you can learn a lot about the previously amor-

phous pile of data you had. And that insight can help you make better decisions at a level 

that’s more detailed than before.

In this way, clustering is called exploratory data mining, because these clustering tech-

niques help tease out relationships in large datasets that are too hard to identify with an 

eyeball. And revealing relationships in your population is useful across industries whether 

it’s for recommending fi lms based on the habits of folks in a taste cluster, identifying crime 

Cluster Analysis 
Part I: Using K-Means 
to Segment Your 
Customer Base



30 Data Smart

hot spots within urban areas, or grouping return-related fi nancial investments to ensure 

a diversifi ed portfolio spans clusters.

One of my favorite uses for clustering is image clustering—lumping together image 

fi les that “look the same” to the computer. For example, in photo sharing services like 

Flickr, a user will generate a lot of content, and there may end up being too many photos 

to navigate simply. But using clustering techniques, you can cluster similar images together 

and allow users to navigate between these clusters before drilling down.

This chapter looks at the most common type of clustering, called k-means clustering, 

which originated in the 1950s and has since become a go-to clustering technique for 

knowledge discovery in databases (KDD) across industries and the government. 

K-means isn’t the most mathematically rigorous of techniques. It’s born of the kind 

of practicality and common sense you might see in soul food. Soul food doesn’t have the 

snooty pedigree of French cuisine, but it hits the spot sometimes. Cluster analysis with 

k-means, as you’ll soon see, is part math, part story-telling. But its intuitive simplicity is 

part of the attraction. 

To see how it works, you’ll start with a simple example.

Girls Dance with Girls, Boys Scratch Their Elbows
The goal in k-means clustering is to take some points in space and put them into k groups 

(where k is any number you want to pick). Those k groups are each defi ned by a point in 

the center, kind of like a fl ag stuck in the moon that says, “Hey, this is the center of my 

SUPERVISED VERSUS UNSUPERVISED MACHINE LEARNING

By defi nition, in exploratory data mining, you don’t know ahead of time what you’re 

looking for. You’re an explorer. Like Dora. You may be able to articulate when two 

customers look the same and when they look diff erent, but you don’t know the best 

way to segment your customer base. So when you ask a computer to segment your 

customers for you, that’s called unsupervised machine learning, because you’re not 

“supervising”—telling the computer how to do its job.

This is in contrast to supervised machine learning, which usually crops up when artifi -

cial intelligence makes the front page of the paper. If I know I want to divide customers 

into two groups—say “likely to purchase” and “not likely to purchase”—and I provide 

the computer with historical examples of such customers and tell it to assign all new 

leads to one of these two groups, that’s supervised.

If instead I say, “here’s what I know about my customers and here’s how to measure 

whether they’re diff erent or similar. Tell me what’s interesting,” that’s unsupervised.



31Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

group. Join me if you’re closer to this fl ag than any others.” This group center (formally 

called the cluster centroid) is the mean from which k-means gets its name.

Take as an example a middle school dance. If you’ve blocked the horror of middle school 

dances from your mind, I apologize for resurfacing such painful memories.

Those in attendance at the McAcne Middle School dance, romantically called the “Under 

the Sea Gala,” are scattered about the fl oor as shown in Figure 2-1. I’ve even Photoshopped 

some parquet fl oor into the fi gure to help with the illusion.

And here’s a sampling of the songs these young leaders of the free world will be dancing 

awkwardly to if you’d like to listen along in Spotify:

• Styx: Come Sail Away

• Everything But the Girl: Missing

• Ace of Bass: All that She Wants

• Soft Cell: Tainted Love

• Montell Jordan: This is How We Do It

• Eiff el 65: Blue

Figure 2-1: McAcne Middle School students tearing up the dance fl oor

Now, k-means clustering demands that you specify how many clusters you want to put 

the attendees in. Let’s pick three clusters to start (later in this chapter we’ll look at how 



32 Data Smart

to choose k). The algorithm is going to plant three fl ags on the dance fl oor, starting with 

some initial feasible solution, such as that pictured in Figure 2-2, where you have three 

initial means spread on the fl oor, denoted by black circles. 

Figure 2-2: Initial cluster centers placed

In k-means clustering, dancers are assigned to the cluster that’s nearest them, so 

between any two cluster centers on the fl oor, you can draw a line of demarcation, whereby 

if a dancer is on one side of the line they’re in one group, but if they’re on the other side, 

their group changes (see Figure 2-3).

Using these lines of demarcation, you can assign dancers to their groups and shade 

them appropriately, as in Figure 2-4. This diagram, one that divides the space into poly-

topes based on which regions are assigned to which cluster centers by distance, is called 

a Voronoi diagram.

Now, this initial assignment doesn’t feel right, does it? You’ve sliced the space up in a 

rather odd way, leaving the bottom-left group empty and a lot of folks on the border of 

the top-right group.

The k-means clustering algorithm slides these three cluster centers around the dance 

fl oor until it gets the best fi t. 

How is “best fi t” measured? Well, each attendee is some distance away from their clus-

ter center. Whichever arrangement of cluster centers minimizes the average distance of 

attendees from their center is best. 



33Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Figure 2-3: Lines denote the borders of the clusters.

Figure 2-4: Cluster assignments given by shaded regions in the Voronoi diagram



34 Data Smart

Now, as I mentioned in Chapter 1, the word “minimize” is a tip-off  that you’ll need 

optimization modeling to best place the cluster centers. So in this chapter, you’ll be busting 

out Solver to move the cluster centers around. The way Solver is going to get the centers 

placed just right is by intelligently and iteratively moving them around, keeping track of 

many of the good placements it has found and combining them (literally mating them 

like race horses) to get the best placement.

So while the diagram in Figure 2-4 looks pretty bad, Solver might eventually bump the 

centers to something like Figure 2-5. This gets the average distance between each dancer 

and their center down a bit.

Figure 2-5: Moving the centers just a tad

Eventually though, Solver would fi gure out that the centers should be placed in the 

middle of our three groups of dancers as shown in Figure 2-6.

Nice! This is what an ideal clustering looks like. The cluster centroids are at the centers 

of each group of dancers, minimizing the average distance between dancer and nearest 

center. And now that you have a clustering, you can move on to the fun part: trying to 

understand what the clusters mean.

If you investigated the dancers’ hair colors, political persuasions, or mile run speeds, 

the clusters may not make much sense. But the moment you were to evaluate the genders 

and ages of the attendees in each cluster, you’d start to see some common themes. The 

small group at the bottom is all old people—they must be the dance chaperones. The left 

group is all young males, and the right group is all young females. Everyone is too afraid 

to dance with each other.



35Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Figure 2-6: Optimal 3-means clustering of the McAcne dance

All right! So k-means has allowed you to segment this dance attendee population and 

correlate attendee descriptors with cluster membership to understand the why behind 

the assignments.

Now, you’re probably saying to yourself, “Yeah, but that’s stupid. I already knew the 

answer to start.” You’re right. In this example, you did. The reason this is a toy problem, is 

that you can already solve it by just looking at the points. Everything is in two-dimensional 

space, which is super easy for your eyeballs to cluster. 

But what if you ran a store that sold thousands of products? Some customers have bought 

one or two in the past year. Other customers have bought tens. And the items purchased 

vary from customer to customer.

How do you cluster them on their “dance fl oor?” Well, your dance fl oor isn’t in a two-

dimensional space or three-dimensional space. It’s in a thousand-dimensional product 

purchase space in which a customer has either purchased or not purchased the product in 

each single dimension. Very quickly, you see, a clustering problem can exceed the limits 

of the “Mark I Eyeball,” as my military friends like to say.

Getting Real: K-Means Clustering Subscribers in 
E-mail Marketing
Let’s move on to a more substantive use case. I’m an e-mail-marketing guy, so I’m going 

to use an example from MailChimp.com where I work. But this same example would work 

on retail purchase data, ad conversion data, social media data, and so on. It works with 



36 Data Smart

basically any type of data where you’re reaching out to customers with marketing mate-

rial, and they’re choosing to engage with you.

Joey Bag O’ Donuts Wholesale Wine Emporium
Let’s imagine that you live in New Jersey where you run Joey Bag O’ Donuts Wholesale 

Wine Emporium. It’s an import-export business focused on bringing bulk wine to the 

states and selling it to select wine and liquor stores across the country. The way the busi-

ness works is that Joey Bags travels the globe fi nding incredible deals on large quantities of 

wine. Joey ships it back to Jersey, and it’s your job to sell this stuff  on to stores at a profi t.

You reach out to customers in a number of ways—a Facebook page, Twitter, even the 

occasional direct mailing—but the e-mail newsletter drums up the most business. For the 

past year, you’ve sent one newsletter per month. Usually there are two or three wine deals 

in each e-mail, perhaps one would be on Champagne, another on Malbec. Some deals are 

amazing, 80 percent or more off  of retail. In total, you’ve off ered 32 deals this year, all of 

which have gone quite well. 

But just because things are going well, doesn’t mean you can’t do better. It’d be nice 

if you could understand the customers a little more. Sure, you can look at a particular 

purchase—like how some person with the last name Adams bought some Espumante 

in July at a 50 percent discount—but you can’t tell whether that’s because he liked that 

the minimum purchase requirement was one six-bottle box or the price or that it hadn’t 

passed its peak yet. 

It would be nice if you could segment the list into groups based on interest. Then, you 

could customize the newsletter to each segment and maybe drum up some more busi-

ness. Whichever deal you thought matched up better with the segment could go in the 

subject line and would come fi rst in the newsletter. That type of targeting can result in a 

bump in sales. 

But how do you segment the list? Where do you start? 

This is an opportunity to let the computer segment the list for you. Using k-means 

clustering, you can fi nd the best segments and then try to understand why they’re the 

best segments.

The Initial Dataset

NOTE

The Excel workbook used in this chapter, “WineKMC.xlsx,” is available for down-

load at the book’s website at www.wiley.com/go/datasmart. This workbook includes 

all the initial data if you want to work from it. Or you can just read along using the 

sheets I’ve put together in the workbook.

http://www.wiley.com/go/datasmart


37Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Starting out, you have two interesting sources of data:

• The metadata on each off er is saved in a spreadsheet, including varietal, minimum 

bottle quantity for purchase, discount off  retail, whether the wine is past its peak, 

and country or state of origin. This data is housed in a tab called Off erInformation, 

as shown in Figure 2-7

• You also know which customers bought which off ers, so you can dump that infor-

mation out of MailChimp and into the spreadsheet with the off er metadata in a tab 

called Transactions. This transactional data, as shown in Figure 2-8, is simply rep-

resented as the customer who made the purchase and which off er they purchased.

Figure 2-7: The details of the last 32 offers 



38 Data Smart

Figure 2-8: A list of offers taken by customer 

Determining What to Measure
So here’s a conundrum. In the middle school dance problem, measuring distances between 

dancers and cluster centers was easy, right? Just break out the measuring tape!

But what do you do here?

You know there were 32 deals offered in the last year, and you have a list in the 

Transactions tab of the 324 purchases, broken out by customer. But in order to measure 

the distance between each customer and a cluster center, you need to position them in 

this 32-deal space. In other words, you need to understand the deals they did not take, 

and create a matrix of deals-by-customers, where each customer gets their own 32-deal 

column full of 1s for the deals they took and 0s for the ones they didn’t. 

In other words, you need to take this row-oriented Transactions tab and turn it into a 

matrix with customers in columns and off ers in rows. And the best way to create such a 

matrix is to use a PivotTable. 



39Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

NOTE

For a primer on PivotTables, see Chapter 1.

So here’s what you’re going to do. In the Transactions tab, highlight columns A and 

B and then insert a PivotTable. Using the PivotTable Builder, simply select deals as row 

labels, customers as column labels, and take a count of deals for the values. This count 

will be 1 if a customer/deal pair was present in the original data and 0 otherwise (0 ends 

up as a blank cell in this case). The resulting PivotTable is pictured in Figure 2-9.  

Figure 2-9: PivotTable of deals versus customers 

Now that you have your purchases in matrix form, copy the Off erInformation tab and 

name it Matrix. In this new sheet, paste the values from the PivotTable (you don’t need 

to copy and paste the deal number, because it’s already in the off er information) into the 

new tab starting at column H. You end up with a fl eshed out version of the matrix that 

has consolidated the deal descriptions with the purchase data, as pictured in Figure 2-10.



40 Data Smart

Figure 2-10: Deal description and purchase data merged into a single matrix 

STANDARDIZING YOUR DATA

In this chapter, each dimension of your data is the same type of binary purchase 

data. But in many clustering problems, this is not the case. Envision a scenario 

where people are clustered based on height, weight, and salary. These three types of 

data are all on diff erent scales. Height may range from 60 inches to 80 inches while 

weight may range from 100 to 300 pounds. 

In this context, measuring the distance between customers (like dancers on the dance 

fl oor) gets tricky. So it’s common to standardize each column of data by subtracting out 

the average and dividing through by a measure of spread we’ll encounter in Chapter 

4 called the standard deviation. This puts each column on the same scale, centered 

around 0.

While our data in Chapter 2 does not require standardization, you can see it in action 

in the outlier detection chapter, Chapt er 9.



41Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Start with Four Clusters
All right, so now you have all of your data consolidated into a single, useable format. 

In order to begin clustering, you need to pick k, which is the number of clusters in the 

k-means clustering algorithm. Often the approach in k-means is to try a bunch of diff er-

ent values for k (I’ll get to how to choose between them later), but for the sake of starting, 

you need to choose just one. 

You’ll want to choose a number of clusters to start with that’s in the ball park of what 

you’re willing to act on. You’re not going to create 50 clusters and send 50 targeted ad 

campaigns to a couple of folks in each group. That defeats the purpose of the exercise in 

the fi rst place. You want something small in this case. For this example, then, start with 

four—in an ideal world, maybe you’d get your list divided into four perfectly understand-

able groups of 25 customers each (this isn’t likely).

All right then, if you were to split the customers into four groups, what are the best 

four groups for that?

Rather than dirty up the pretty Matrix tab, copy the data into a new tab and call it 4MC. 

You can then insert four columns after Past Peak in columns H through K that will be the 

cluster centers. (To insert a column, right-click Column H and select Insert. A column 

will be added to the left.) Label these clusters Cluster 1 through Cluster 4. You can also 

place some conditional formatting on them so that whenever each cluster center is set 

you can see how they diff er.

The 4MC tab will appear as shown in Figure 2-11. 

These cluster centers are all 0s at this point. But technically, they can be anything 

you want, and what you’d like to see is that they, like in the middle school dance case, 

distribute themselves to minimize the distances between each customer and their closest 

cluster center.

Obviously then, these centers will have values between 0 and 1 for each deal since all 

the customer vectors are binary.

But what does it mean to measure the distance between a cluster center and a customer?

Euclidean Distance: Measuring Distances as the Crow Flies
You now have a single column per customer, so how do you measure the dance-fl oor 

distance between them? Well, the offi  cial term for that is “as-the-crow-fl ies,” measuring 

tape distance is the Euclidean distance.

Let’s return to the dance fl oor problem to understand how to compute it.

I’m going to lay down a horizontal and a vertical axis on the dance fl oor, and in Figure 

2-12, you can see that you have a dancer at (8, 2) and a cluster center at (4, 4). To compute 

the Euclidean distance between them, you have to remember the Pythagorean theorem 

you learned back in middle school.



42 Data Smart

Figure 2-11: Blank cluster centers placed on the 4MC tab

(8,2)

(4,4)

1

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10

Figure 2-12: A dancer at (8,2) and a cluster center at (4,4)



43Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

These two points are 8 – 4 = 4 feet apart in the vertical direction. They’re 4 – 2 = 2 feet 

apart in the horizontal direction. By the Pythagorean theorem then, the squared distance 

between these two points is 4^2 + 2^2 = 16 + 4 = 20 feet. So the distance between them is 

the square root of 20, which is approximately 4.47 feet (see Figure 2-13). 

(8,2)

(4,4)
2

4

1

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10

42 + 22 = 4.47

Figure 2-13: Euclidean distance is the square root of the sum of squared distances in each 
single direction

In the context of the newsletter subscribers, you have more than two dimensions, but 

the same concept applies. Distance between a customer and a cluster center is calculated 

by taking the diff erence between the two points for each deal, squaring them, summing 

them up, and taking the square root.

So for instance, let’s say in the 4MC tab, you wanted to take the Euclidean distance 

between the Cluster 1 center in column H and the purchases of customer Adams in col-

umn L.

In cell L34, below Adams’ purchases, you can take the diff erence of Adams’ vector and 

the cluster center, square it, sum it, and square root the sum, using the following array 

formula (note the absolute references that allow you to drag this formula to the right or 

down without the cluster center reference changing):

{=SQRT(SUM((L$2:L$33-$H$2:$H$33)^2))} 



44 Data Smart

You have to use an array formula (enter the formula and press Ctrl + Shift + Enter or 

Cmd + Return on Mac as covered in Chapter 1) because the (L2:L33 – H2:H33)^2 por-

tion of the formula needs to know to go item by item taking diff erences and squaring 

them. The end result, however, is a single number: 1.732 in this case (see Figure 2-14). 

This makes sense because Adams took three deals, but the initial cluster center is all 0s, 

and the square root of 3 is 1.732. 

Figure 2-14: The distance between Adams and Cluster 1 

In the spreadsheet shown in Figure 2-14, I’ve frozen panes (see Chapter 1) between 

columns G and H and labeled row 34 in G34 as Distance to Cluster 1 just to keep track 

of things when you scroll to the right.

Distances and Cluster Assignments for Everybody!
So now you know how to calculate the distance between a purchase vector and a cluster 

center.

It’s time to add the distance calculations for Adams to the other centers by dragging 

cell L34 down through L37 and then changing the cluster center reference manually from 

column H to I, J, and K in the descending cells. You end up with the following 4 formulas 

in L34:L37:

{=SQRT(SUM((L$2:L$33-$H$2:$H$33)^2))}
{=SQRT(SUM((L$2:L$33-$I$2:$I$33)^2))}



45Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

{=SQRT(SUM((L$2:L$33-$J$2:$J$33)^2))}
{=SQRT(SUM((L$2:L$33-$K$2:$K$33)^2))}

Since you’ve used absolute references (the $ sign in the formulas; see Chapter 1 for 

more details) for the cluster centers, you can drag L34:L37 over through DG34:DG37 to 

calculate distances between each customer and all four cluster centers. Also, in column 

G, label rows 35 through 37 Distance to Cluster 2, and so on. These new distances are 

pictured in Figure 2-15.

Figure 2-15: Distance calculations from each customer to each cluster 

For each customer then, you know their distance to all four cluster centers. Their cluster 

assignment is to the nearest one, which you can calculate in two steps.

First, going back to customer Adams in column L, let’s calculate the minimum distance 

to a cluster center in cell L38. That’s just:

=MIN(L34:L37) 

And then to determine which cluster center matches that minimum distance, you can 

use the MATCH formula (see Chapter 1 for more details). Placing the following MATCH formula 

in L39, you can determine which cell index in the range L34 to L37 counting up from 1 

matches the minimum distance:

=MATCH(L38,L34:L37,0)

In this case the minimum distance is a tie between all four clusters, so MATCH picks the 

fi rst (L34) by returning index 1 (see Figure 2-16). 



46 Data Smart

You can drag these two formulas across the sheet through DG38:DG39 as well. Add 

Minimum Cluster Distance and Assigned Cluster in Column G as labels for rows 38 and 

39 just to keep things organized. 

Figure 2-16: Cluster matches added into the sheet 

Solving for the Cluster Centers
You now have distance calculations and cluster assignments in the spreadsheet. To set the 

cluster centers to their best locations, you need to fi nd the values in columns H through 

K that minimize the total distance between the customers and their assigned clusters 

denoted on row 39 beneath each customer. 

And if you read Chapter 1, you know exactly what to think when you hear the word 

minimize: This is an optimization step, and an optimization step means using Solver.

In order to use Solver, you need an objective cell, so in cell A36, let’s sum up all the 

distances between customers and their cluster assignments:

=SUM(L38:DG38)

This sum of customers’ distances from their closest cluster center is exactly the objec-

tive function encountered earlier when clustering on the McAcne Middle School dance 



47Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

fl oor. But Euclidean distance with its squares and square roots is crazy non-linear (read 

“wicked non-linear” if you live in Massachusetts), so you need to use the evolutionary 

solving method instead of the simplex method to set the cluster centers. 

In Chapter 1, you used the simplex algorithm. Simplex is faster than other methods 

when it’s allowable, but it’s not possible when you’re squaring, square rooting, or other-

wise, taking non-linear functions of your decisions. Likewise, OpenSolver (introduced 

in Chapter 1), which uses an implementation of simplex on steroids is of no use here.

In this case, the evolutionary algorithm built into Solver uses a combination of random 

search and good solution “breeding” to fi nd good solutions similarly to how evolution 

works in biological contexts.

NOTE

For a full treatment of optimization, see Chapter 4.

Notice that you have everything you need to set up a problem in Solver:

• Objective: Minimize the total distances of customers from their cluster cen-

ters (A36).

• Decision variables: The deal values of each row within the cluster center 

(H2:K33).

• Constraints: Cluster centers should have values somewhere between 0 and 1.

Open Solver and hammer in the requirements. You’ll set Solver to minimize A36 by 

changing H2:K33 with the constraint that H2:K33 be <= 1 just like all the deal vectors. 

Make sure that the variables are checked as non-negative and that the evolutionary solver 

is chosen. See Figure 2-17.

Also, setting these clusters isn’t a cakewalk for Solver, so you should beef up some of 

the evolutionary solver’s options by pressing the options button within the Solver win-

dow and toggling over to the evolutionary tab. It’s useful to bump up the Maximum Time 

Without Improvement parameter somewhere north of 30 seconds, depending on how long 

you want to wait for the Solver to fi nish. In Figure 2-18, I’ve set mine to 600 seconds (10 

minutes). That way, I can set the Solver to run and go to dinner. And if you ever want to 

kill Solver early, just press Escape and then exit with the best solution it’s found so far.

If you’re curious, the inner workings of the evolutionary solver are covered in greater 

detail in Chapter 4 and at http://www.solver.com. 

http://www.solver.com


48 Data Smart

Figure 2-17: The Solver setup for 4-means clustering 

Figure 2-18: The evolutionary solver options tab

Press Solve and watch Excel do its thing until the evolutionary algorithm converges.



49Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Making Sense of the Results
Once Solver gives you the optimal cluster centers, the fun starts. You get to mine the 

groups for insight! So in Figure 2-19, you can see that Solver calculated an optimal total 

distance of 140.7, and the four cluster centers, thanks to the conditional formatting, all 

look very diff erent.

Note that your cluster centers may look diff erent from the spreadsheet provided with 

the book, because the evolutionary algorithm employs random numbers and does not 

give the same answer each time. The clusters may be fundamentally diff erent or, more 

likely, they may be in a diff erent order (for example, my Cluster 1 is very close to your 

Cluster 4, and so on).

Because you pasted the deal descriptions in columns B through G when you set up the 

tab, you can read off  the details of the deals in Figure 2-19 that seem important to the 

cluster centers.

Figure 2-19: The four optimal cluster centers 

For Cluster 1 in column H, the conditional formatting calls out deals 24, 26, 17, and to 

a lesser degree, 2. Reading through the details of those deals, the main thing they have 

in common: They’re all Pinot Noir. 

If you look at column I, the green cells all have a low minimum quantity in common. 

These are the buyers who don’t want to have to buy in bulk to get a deal.

But I’ll be honest; the last two cluster centers are kind of hard to interpret. Well, how 

about instead of interpreting the cluster center, you investigate the members of the cluster 

and determine which deals they like? That might be more elucidating.



50 Data Smart

Getting the Top Deals by Cluster
So instead of looking at which dimensions are closer to 1 for a cluster center, let’s check 

who is assigned to each cluster and which deals they prefer.

To do this, let’s start by making a copy of the Off erInformation tab and calling it 4MC – 

TopDealsByCluster. On this new tab, label columns H through K as 1, 2, 3, and 4 (see 

Figure 2-20).

Figure 2-20: Setting up a tab to count popular deals by cluster

Back on tab 4MC, you have cluster assignments listed (1-4) on row 39. All you need to 

do to get deal counts by cluster is check the column title on tab 4MC – TopDealsByCluster 

in columns H through K, see who on 4MC was assigned to that cluster using row 39, and 

then sum up their values for each deal row. That’ll give you the total customers from a 

given cluster that took a deal.

Start with cell H2, that is, the count of customers in Cluster 1 who took off er #1, the 

January Malbec off er. You want to sum across L2:DG2 on the 4MC tab but only for those 

customers who are in Cluster 1, and that is a classic use case for the SUMIF formula. The 

formula looks like this:

=SUMIF('4MC'!$L$39:$DG$39,'4MC - TopDealsByCluster'!H$1,'4MC'!$L2:$DG2)

The way the SUMIF statement works is that you provide it with some values to check 

in the fi rst section '4MC'!$L$39:$DG$39, which are checked against the 1 in the column 

header ('4MC - TopDealsByCluster'!H$1), and then for any match, you sum up row 2 by 

specifying '4MC'!$L2:$DG2 in the third section of the formula.

Note that you’ve used absolute references (the $ in the formula) in front of everything 

in the cluster assignment row, in front of the row number for our column headers, and 

in front of the column letter for our deals taken. By making these references absolute, 

you can then drag this formula through range H2:K33 to get deal counts for every cluster 

center and deal combination, as pictured in Figure 2-21. You can place some conditional 

formatting on these columns to make them more readable.



51Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

By selecting columns A through K and auto-fi ltering (see Chapter 1), you can make 

this data sortable. Sorting from high to low on column H, you can then see which deals 

are most popular within Cluster 1 (see Figure 2-22).

Just as noted earlier, the four top deals for this cluster are all Pinot. These folks have 

watched Sideways one too many times. When you sort on Cluster 2, it becomes abundantly 

clear that these are the low volume buyers (see Figure 2-23).

But when you sort on Cluster 3, things aren’t quite as clear. There are more than a hand-

ful of top deals; the drop-off  between in deals and out deals is not as stark. But the most 

popular ones seem to have a few things in common—the discounts are quite good, fi ve 

out of the top six deals are bubbly in nature, and France is in three of the top four deals. 

But nothing is conclusive (see Figure 2-24).

As for Cluster 4, these folks really loved the August Champaign deal for whatever rea-

son. Also, fi ve out of the top six deals are from France, and nine of the top 10 deals are 

high volume (see Figure 2-25). Perhaps this is the French-leaning high volume Cluster? 

The overlap between clusters 3 and 4 is somewhat troubling.

This leads to a question: Is 4 the right number for k in k-means clustering? Perhaps 

not. But how do you tell?

Figure 2-21: Totals of each deal taken broken out by cluster

Figure 2-22: Sorting on Cluster 1—Pinot, Pinot, Pinot!  



52 Data Smart

Figure 2-23: Sorting on Cluster 2—small-timers

Figure 2-24: Sorting on Cluster 3 is a bit of a mess 



53Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Figure 2-25: Sorting on Cluster 4—these folks just like Champagne in August? 

The Silhouette: A Good Way to Let Different K Values 
Duke It Out
There’s nothing wrong with just doing k-means clustering for a few values of k until you 

fi nd something that makes intuitive sense to you. Of course, maybe the reason that a 

given k doesn’t “read well” is not because k is wrong but because the off er information is 

leaving something out that would help describe the clusters better.

So is there another way (other than just eyeballing the clusters) to give a thumbs-up 

or -down to a particular value of k? 

There is—by computing a score for your clusters called the silhouette. The cool thing 

about the silhouette is that it’s relatively agnostic to the value of k, so you can compare 

diff erent values of k using this single score.

The Silhouette at a High Level: How Far Are Your Neighbors from You?

You can compare the average distance between each customer and their friends in the 

cluster they’ve been assigned to with the average distance to the customers in the cluster 

with the next nearest center.



54 Data Smart

If I’m a lot closer to the people in my cluster than to the people in the neighboring 

cluster, these folks are a good group for me, right? But what if the folks from the next 

nearest cluster are nearly as close to me as my own clustered brethren? Well, then my 

cluster assignment is a bit shaky, isn’t it? 

A formal way to write this value is:

(Average distance to those in the nearest neighboring cluster – Average distance to those 

in my cluster)/The maximum of those two averages

The denominator in the calculation keeps the value between -1 and 1. 

Think about that formula. As the residents of the next closet cluster get farther and 

farther away (more ill-suited to me), the value approaches 1. And if the two average dis-

tances are nearly the same? Then the value approaches 0.

Taking the average of this calculation for each customer gives you the silhouette. If the 

silhouette is 1, it’s perfect. If it’s 0, the clusters are rather ill suited. If it’s less than 0, lots 

of customers are better off  hanging out in another cluster, which is the pits. 

And for diff erent values of k, you can compare silhouettes to see if you’re improving.

To see this concept more clearly, go back to the middle school dance example. Figure 2-26 

shows an illustration of the distance calculations used in forming the silhouette. Note 

that one of the chaperone’s distance from the other two chaperones is being compared 

to the distances from the next nearest cluster, which is the fl ock of middle school boys. 

Now, the other two chaperones are by far closer than the herd of awkward teenagers, 

so that would make the distance ratio calculation far greater than 0 for this chaperone.

Figure 2-26: The distances considered for a chaperone’s contribution to the silhouette calculation



55Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Creating a Distance Matrix

In order to implement the silhouette, there’s one major piece of data you need: the distance 

between customers. And while cluster centers may move around, the distance between 

two customers never changes. So you can just create a single Distances tab and use it 

in all of your silhouette calculations no matter what value of k you use or where those 

centers end up.

Let’s start by creating a blank sheet called Distances and pasting in customers across 

the top and down the rows. A cell in the matrix will hold the distance between the cus-

tomer on the row and the customer on the column. To paste customers down the rows, 

copy H1:DC1 from the Matrix tab and use Paste Special to paste the values, making sure 

to choose the Transpose option in the Paste Special window.  

You need to keep track of where customers are on the Matrix tab, so number the cus-

tomers from 0 to 99 in both directions. Let’s put these numbers in column A and row 1, 

so insert blank rows and columns to the left and above the names you’ve already pasted 

by right-clicking column A and row 1 and inserting a new row 1 and a new column A. 

NOTE

FYI, there are a lot of ways to put those 0–99 counts into Excel. For instance, you 

can type the fi rst few in, 0, 1, 2, 3, and then highlight them and drag the bottom 

corner of the selection through the rest of the customers. Excel will understand and 

extend the count. The resulting empty matrix is pictured in Figure 2-27.

Consider cell C3, which is the distance between Adams and Adams, in other words 

between Adams and himself. This should be 0, right? You can’t get any closer to you 

than you! 

So how do you calculate that? Well, column H on the Matrix tab shows Adams’ deal 

vector. To calculate the Euclidean distance between Adams and himself, it’s just column 

H minus column H, square the diff erences, sum them up, and take the square root.

But how do you drag that calculation around to every cell in the matrix? I’d hate to 

type them in manually. That’d take forever. What you need to use is the OFFSET formula 

in cell C3 (see Chapter 1 for an explanation of OFFSET).

The OFFSET formula takes in an anchoring range of cells; in this case make it Adams’ 

deal vector Matrix!$H$2:$H$33, and moves the entire range a given number of rows and 

columns in the direction you specify.

So for instance, OFFSET(Matrix!$H$2:$H$33,0,0) is just Adams’ deal vector because 

you’re moving the original range 0 rows down and 0 columns to the right. 



56 Data Smart

Figure 2-27: The bare bones Distances tab 

But OFFSET(Matrix!$H$2:$H$33,0,1) is Allen’s deal column. 

OFFSET(Matrix!$H$2:$H$33,0,2) is Anderson, and so on.

And this is where those indices 0 – 99 in row 1 and column A are going to come in 

handy. For example:

{=SQRT(SUM((OFFSET(Matrix!$H$2:$H$33,0,Distances!C$1)-OFFSET(Matrix!$H$2:$
H$33,0,Distances!$A3))^2))}

That’s the distance between Adams and himself. Note that you’re pulling Distances!C$1 

for the column off set in the fi rst deal vector and Distances!$A3 for the column off set in 

the second deal vector. 

That way, when you drag this calculation across and down in the sheet, everything 

is anchored to Adams’ deal vector, but the OFFSET formula shifts the vectors over the 

appropriate amount using the indices in column A and row 1. This way, it will grab the 

appropriate two deal vectors for the customers you care about. Figure 2-28 shows the 

fi lled out distance matrix.

Also, keep in mind that just like on tab 4MC, these distances are array formulas.



57Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Figure 2-28: The completed distance matrix 

Implementing the Silhouette in Excel

All right, now that you have a Distances tab, you can create another tab called 4MC 

Silhouette for the fi nal silhouette calculation.

To start, let’s copy the customers and their community assignments from the 4MC tab 

and Paste Special the customer names down column A and the assignments down B (don’t 

forget to check that Transpose box in the Paste Special window).

Next, you can use the Distances tab to calculate the average distance between each 

customer and those in a particular cluster. So label columns C through F Distance from 

People in 1 through Distance from People in 4.

In my workbook, Adams has been assigned to Cluster 2, so calculate in cell C2 the 

distance between him and all the customers in Cluster 1. You need to look up customers 

and see which ones are in Cluster 1 and then average their distances from Adams on row 

3 of the Distances tab.

Sounds like a case for the AVERAGEIF formula:

=AVERAGEIF('4MC'!$L$39:$DG$39,1,Distances!$C3:$CX3)



58 Data Smart

AVERAGEIF checks the cluster assignments and matches them to Cluster 1 before aver-

aging the appropriate distances from C3:CX3.

For columns D through F, the formulas are the same except Cluster 1 is replaced with 

2, 3, and 4 in the formula. You can then double-click these formulas to copy them to all 

customers, yielding the table shown in Figure 2-29. 

Figure 2-29: Average distance between each customer and the customers in every cluster 

In column G, you can calculate the closest group of customers using the MIN formula. 

For instance, for Adams, it’s simply:

=MIN(C2:F2) 

And in column H, you can calculate the second closest group of customers using the 

SMALL formula (the 2 in the formula is for second place):

=SMALL(C2:F2,2) 

Likewise, you can calculate the distance to your own community members (which is 

probably the same as column G but not always) in column I as:

=INDEX(C2:F2,B2) 

The INDEX formula is used to count over to the appropriate distance column in C 

through F using the assignment value in B as an index.

And for the silhouette calculation, you also need the distance to the closest group of 

customers who are not in your cluster, which is most likely column H but not always. To 

get this in column J, you check your own cluster distance in I against the closest cluster 

in G, and if they match, the value is H. Otherwise, it’s G.

=IF(I2=G2,H2,G2) 

Copying all these values down, you’ll get the spreadsheet shown in Figure 2-30. 



59Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Figure 2-30: Average distances to the folks in my own cluster and to the closest group whose cluster 
I’m not in 

Once you’ve placed those values together, adding the silhouette values for a particular 

customer in column K is simple:

=(J2-I2)/MAX(J2,I2) 

You can just copy that formula down the sheet to get these ratios for each customer. 

You’ll notice that for some customers, these values are closer to 1. For example, the 

silhouette value for Anderson in my clustering solution is 0.544 (see Figure 2-31). Not 

bad! But for other customers, such as Collins, the value is actually less than 0, implying 

that all things being equal Collins would be better off  in his neighboring cluster than in 

his current one. Poor guy.

Now, you can average these values to get the fi nal silhouette fi gure. In my case, as shown 

in Figure 2-31, it’s 0.1492, which seems a lot closer to 0 than 1. That’s disheartening, but 

not entirely surprising. After all, two out of four of the clusters were very shaky when you 

tried to interpret them with the deal descriptions.

Figure 2-31: The fi nal silhouette for 4-means clustering 



60 Data Smart

Okay. Now what?

Sure, the silhouette is 0.1492. But what does that mean? How do you use it? You try 

other values of k! Then you can use the silhouette to see if you’re doing better.

How about Five Clusters?
Try bumping k up to 5 and see what happens.

Here’s the good news: Because you’ve already done four clusters, you don’t have to start 

the spreadsheets from scratch. You don’t have to do anything with the Distances sheet at 

all. That one’s good to go.

You start by creating a copy of the 4MC tab and calling it 5MC. All you need to do is 

add a fi fth cluster to the sheet and work it into your calculations.

First, let’s right-click column L and insert a new column called Cluster 5. You also need 

to insert a Distance to Cluster 5 row by right-clicking row 38 and selecting Insert. You can 

copy down the Distance to Cluster 4 row into row 38 and change column K to L, to create 

the Distance to Cluster 5 row. As for the Minimum Cluster Distance and Assigned Cluster 

rows, references to row 37 should be revised to 38 to include the new cluster distance.

You’ll end up with the sheet pictured in Figure 2-32. 

Figure 2-32: The 5-means clustering tab

Solving for Five Clusters
Opening up Solver, you need only change $H$2:$K$33 to $H$2:$L$33 in both the decision vari-

ables and constraints sections to include the new fi fth cluster. Everything else stays the same.

news:Because


61Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Press Solve and let this new problem run. 

In my run, the Solver terminated with a total distance of 135.1, as shown in Figure 2-33.

Figure 2-33: The optimal 5-means clusters

Getting the Top Deals for All Five Clusters
All right. Let’s see how you did. 

You can create a copy of the 4MC – TopDealsByCluster tab and rename it 5MC – 

TopDealsByCluster, but you’ll need to revise a few of the formulas to get it to work.

First of all, you need to make sure that this worksheet is ordered by Off er # in column 

A. Then label column L with a 5 and drag the formulas from K over to L. You should also 

highlight columns A through L and reapply the auto-fi ltering to make Cluster 5’s deal 

purchases sortable.



62 Data Smart

Everything on this sheet is currently pointing to tab 4MC, so it’s time to break out the 

ol’ Find and Replace. The cluster assignments on tab 5MC are shifted one row down and 

one column to the right, so the reference to '4MC'!$L$39:$DG$39 in the SUMIF formulas 

should become '5MC'!$M$40:$DH$40. As shown in Figure 2-34, you can use Find and 

Replace to change this.

Figure 2-34  Replacing 4-means cluster assignments with 5-means cluster assignments 

NOTE

Keep in mind that your results will diff er from mine due to the evolutionary solver. 

Sorting on Cluster 1, you clearly have your Pinot Noir cluster again (see Figure 2-35). 

Figure 2-35: Sorting on Cluster 1—Pinot Noir out the ears  



63Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Cluster 2 is the low-volume buyer cluster (see Figure 2-36).

Figure 2-36: Sorting on Cluster 2—small quantities only, please 

As for Cluster 3, this one hurts my head. It seems only to be a South African Espumante 

that’s important for some reason (Figure 2-37).

Figure 2-37: Sorting on Cluster 3—is Espumante that important? 

The Cluster 4 customers are interested in high volume, primarily French deals with 

good discounts. There may even be a propensity toward sparkling wines. This cluster is 

tough to read; there’s a lot going on (see Figure 2-38).



64 Data Smart

Figure 2-38: Sorting on Cluster 4—all sorts of interests  

Sorting on Cluster 5 gives you results similar to Cluster 4, although high volume and 

high discounts seem to be the primary drivers (see Figure 2-39).

Computing the Silhouette for 5-Means Clustering
You may be wondering whether fi ve clusters did any better than four. From an eyeball 

perspective, there doesn’t seem to be a whole lot of diff erence. Let’s compute the silhouette 

for fi ve clusters and see what the computer thinks.

Start by making a copy of 4MC Silhouette and renaming it 5MC Silhouette. Next, right-

click column G, insert a new column, and name it Distance From People in 5. Drag the 

formula from F2 over into G2, change the cluster check from 4 to 5, and then double-click 

the cell to shoot it down the sheet.



65Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Figure 2-39: Sorting on Cluster 5—high volume 

Identical to the previous section, you’ll need to Find and Replace '4MC'!$L$39:$DG$39 

with '5MC'!$M$40:$DH$40. 

In cells H2, I2, and J2, you should include distances to folks in Cluster 5 in your cal-

culations, so any ranges that stop at F2 should be expanded to include G2. You can then 

highlight H2:J2 and double-click the bottom right to send these updated calculations 

down the sheet.

Lastly, you need to copy and Paste Special values from the cluster assignments on row 

40 of the 5MC tab into column B on the 5MC Silhouette tab. This means you have to check 

the Transpose button when using Paste Special.

Once you’ve revised the sheet, you should get something like what’s pictured in 

Figure 2-40. 



66 Data Smart

Figure 2-40: The silhouette for 5-means clustering 

Well, this is depressing, isn’t it? The silhouette isn’t all that diff erent. At 0.134, it’s 

actually a little worse! But that’s not much of a surprise after mining the clusters. In both 

cases, you had three clusters that really made sense. The others were noisy. Maybe you 

should go the other direction and try k=3? If you want to give this a shot, I leave it as an 

exercise for you to try on your own.

Instead, let’s give a little thought to what may be going wrong here to cause these noisy, 

perplexing clusters. 

K-Medians Clustering and Asymmetric Distance 
Measurements
Usually doing vanilla k-means clustering with Euclidean distance is just fi ne, but you’ve 

run into some problems here that many who do clustering on sparse data (whether that’s 

in retail or text classifi cation or bioinformatics) often encounter.

Using K-Medians Clustering
The fi rst obvious problem is that your cluster centers are decimals even though each 

customer’s deal vector is made of solid 0s and 1s. What does 0.113 of a deal really mean? 

I want cluster centers that commit to a deal or don’t!

If you modify the clustering algorithm to use only values present in the customers’ deal 

vectors, this is called K-medians clustering, rather than K-means clustering.



67Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

And if you wanted to stick with Euclidean distance, all you’d need to do is add a binary 

constraint, (bin) in Solver to all of your cluster centers. 

But if you make your cluster centers binary, is Euclidean distance what you want?

Getting a More Appropriate Distance Metric
When folks switch from k-means to k-medians, they typically stop using Euclidean dis-

tance and start using something called Manhattan distance. 

Although a crow can fl y from point A to B in a straight line, a cab in Manhattan has to 

stay on the grid of straight streets; it can only go north, south, east, and west. So while in 

Figure 2-13, you saw that the distance between a middle school dancer and their cluster 

center was approximately 4.47, their Manhattan distance was 6 feet (that’s 4 feet down 

plus 2 feet across).

In terms of binary data, like the purchase data, the Manhattan distance between a 

cluster center and a customer’s purchase vector is just the count of the mismatches. If the 

cluster center has a 0 and I have a 0, in that direction there’s a distance of 0, and if you 

have mismatched 0 and 1, you have a distance of 1 in that direction. Summing them up, 

you get the total distance, which is just the number of mismatches. When working with 

binary data like this, Manhattan distance is also commonly called Hamming distance.

Does Manhattan Distance Solve the Issues?

Before you dive headfi rst into doing k-medians clustering using Manhattan distance, stop 

and think about the purchase data. 

What does it mean when customers take a deal? It means they really wanted that 

product!

What does it mean when customers don’t take a deal? Does it mean that they didn’t 

want the product as much as they did want the one they bought? Is a negative signal as 

strong as a positive one? Perhaps they like Champagne but already have a lot in stock. 

Maybe they just didn’t see your e-mail newsletter that month. There are a lot of reasons 

why someone doesn’t take an action, but there are few reasons why someone does.

In other words, you should care about purchases, not non-purchases.

The fancy way to say this is that there’s an “asymmetry” in the data. The 1s are worth 

more than the 0s. If a customer matches another customer on three 1s, that’s more impor-

tant than matching some other customer on three 0s. What stinks though is that while 

the 1s are so important, there are very few of them in the data—hence, the term “sparse.”

But think about what it means for a customer to be close to a cluster center from a 

Euclidean perspective. If I have a customer with a 1 for one deal and a 0 for another, both 

of those are just as important in calculating whether a customer is near a cluster center.



68 Data Smart

What you need is an asymmetric distance calculation. And for binary encoded transac-

tional data, like these wine purchases, there are a bunch of good ones.

Perhaps the most widely used asymmetric distance calculation for 0-1 data is something 

called cosine distance.

Cosine Distance Isn’t Scary Despite the Trigonometry

The easiest way to explain cosine distance is to explain its opposite: cosine similarity.

Say you had a couple of two-dimensional binary purchase vectors (1,1) and (1,0). In the 

fi rst vector, both products were purchased, whereas in the second, only the fi rst product 

was purchased. You can visualize these two purchase vectors in space and see that they 

have a 45-degree angle between them (see Figure 2-41). Go on, break out the protractor 

and check it.

You can say that they have a cosine similarity then of cos(45 degrees) = 0.707. But why?

It turns out the cosine of an angle between two binary purchase vectors is equal to: 

The count of matched purchases in the two vectors divided by the product of the square 

root of the number of purchases in the first vector times the square root of the number of 

purchases in the second vector.

In the case of the two vectors (1,1) and (1,0), they have one matched purchase, so the 

calculation is 1 divided by the square root of 2 (two deals taken), times the square root 

of one deal taken. And that’s 0.707 (see Figure 2-41).

Why is this calculation so cool?

Three reasons:

• The numerator in the calculation counts numbers of matched purchases only, so 

this is an asymmetric measure, which is what you’re looking for.

• By dividing through by the square root of the number of purchases in each vec-

tor, you’re accounting for the fact that a vector where everything is purchased, call 

it a promiscuous purchase vector, is farther away from another vector than one 

who matches on the same deals and has not taken as many other deals. You want 

to match up vectors whose taste matches, not where one vector encompasses the 

taste of another.

• For binary data, this similarity value ranges between 0 and 1, where two vectors 

don’t get a 1 unless their purchases are identical. This means that 1 – cosine similarity 



69Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

can be used as a distance metric called cosine distance, which also ranges between 

0 and 1.

(1,1)

(1,0)45 degree angle

cos(45°) = = .707
1 matched purchase

2 purchases 1 purchase

Figure 2-41: An illustration of cosine similarity on two binary purchase vectors 

Putting It All in Excel
It’s time to give k-medians clustering with cosine distance in Excel a shot. 

NOTE

Clustering with cosine distance is also sometimes called spherical k-means. In Chapter 10, 

you’ll look at spherical k-means in R.

For consistency’s sake, continue using k = 5.

Start by making a copy of the 5MC tab and naming it 5MedC. Since the cluster centers 

need to be binary, you might as well delete what Solver left in there.



70 Data Smart

The only items you need to change (other than adding the binary constraint in Solver 

for k-medians) are the distance calculations on rows 34 through 38. Start in cell M34, 

which is the distance between Adams and the center of Cluster 1.

To count the deal matches between Adams and Cluster 1, you need to take a SUMPRODUCT 

of the two columns. If either or both have 0s, they get nothing for that row, but if both 

have a 1, that match will get totaled by the SUMPRODUCT (since 1 times 1 is 1 after all).

As for taking the square root of the number of deals taken in a vector, that’s just a SQRT 

laid on a SUM of the vector. Thus, the overall distance equation can be written as:

=1-SUMPRODUCT(M$2:M$33,$H$2:$H$33)/
    (SQRT(SUM(M$2:M$33))*SQRT(SUM($H$2:$H$33)))

Note the 1– at the beginning of the formula, which changes from cosine similarity to 

distance. Also, unlike with Euclidean distance, the cosine distance calculation does not 

require the use of array formulas.

However, when you stick this into cell M34, you should add an error check in case the 

cluster center is all 0s:

=IFERROR(1-SUMPRODUCT(M$2:M$33,$H$2:$H$33)/
    (SQRT(SUM(M$2:M$33))*SQRT(SUM($H$2:$H$33))),1)

Adding the IFERROR formula prevents you from having a division by 0 situation. If for 

some reason Solver picks an all-0s cluster center, then you can consider that center to 

have a distance of 1 from everything instead (1 being the largest possible distance in this 

binary setup).

You can then copy M34 down through M38 and change the references from column 

H to I, J, K, and L respectively. Just like in the Euclidean distance case, you use absolute 

references ($) in the formula so that you can drag it across without the cluster center 

columns changing.

This gives you a 5MedC sheet (see Figure 2-42) that’s remarkably similar to the earlier 

5MC tab.

Now, to fi nd the clusters, you need to open Solver and change the <= 1 constraint for 

H2:L33 to instead read as a binary or bin constraint.

Press Solve. You can take a load off  for a half hour while the computer fi nds the optimal 

clusters. Now, you’ll notice visually that the cluster centers are all binary, so likewise the 

conditional formatting goes to two shades, which is much more stark.

The Top Deals for the 5-Medians Clusters
When Solver completes, you end up with fi ve cluster centers, each which have a smattering 

of 1s, indicating which deals are preferred by that cluster. In my Solver run, I ended up with 

an optimal objective value of 42.8, although yours may certainly vary (see Figure 2-43).



71Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Figure 2-42: The 5MedC tab not yet optimized 

Figure 2-43: The fi ve-cluster medians



72 Data Smart

Let’s make sense of these clusters using the same deal counting techniques you’ve 

used in k-means. To do so, the fi rst thing you need to do is make a copy of the 5MC – 

TopDealsByCluster tab and rename it 5MedC – TopDealsByCluster.

On this tab, all you need to do to make it work is to fi nd and replace 5MC with 5MedC. 

Because the layout of rows and columns between these two sheets is identical, all the 

calculations carry over once the sheet reference is changed.

Now, your clusters may be slightly diff erent than mine in both order and composition 

due to the evolutionary algorithm, but hopefully not substantively so. Let’s walk through 

my clusters one at a time to see how the algorithm has partitioned the customers.

Sorting on Cluster 1, it’s apparent that this is the low-volume cluster (see Figure 2-44). 

Figure 2-44: Sorting on Cluster 1—low-volume customers 

Cluster 2 has carved out customers who only buy sparkling wine. Champagne, Prosecco, 

and Espumante dominate the top 11 spots in the cluster (see Figure 2-45). It’s interesting 

to note that the k-means approach did not so clearly demonstrate the bubbly cluster with 

k equal to 4 or 5. 

Cluster 3 is our Francophile cluster. The top fi ve deals are all French (see Figure 2-46). 

Don’t they know California wines are better?



73Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Figure 2-45: Sorting on Cluster 2—not all who sparkle are vampires 

Figure 2-46: Sorting on cluster—Francophiles 



74 Data Smart

As for Cluster 4, all the deals are high volume. And the top rated deals are all well 

discounted and not past their peak (Figure 2-47).

Figure 2-47: Sorting on Cluster 4—high volume for 19 deals in a row

Cluster 5 is the Pinot Noir cluster once again (see Figure 2-48).

That feels a lot cleaner doesn’t it? That’s because in the k-medians case, using an asym-

metric distance measure like cosine distance, you can cluster customers based on their 

interests more than their disinterests. And that’s really what you care about.

What a diff erence a distance measure makes!

So now you can take these fi ve cluster assignments, import them back into MailChimp

.com as a merge fi eld on the list of e-mails, and use the values to customize your e-mail 

marketing per cluster. This should help you better target customers and drive sales.



75Cluster Analysis Part I: Using K-Means to Segment Your Customer Base  

Figure 2-48: Sorting on cluster 5—mainlining Pinot Noir 

Wrapping Up
This chapter covered all sorts of good stuff . To summarize, you looked at:

• Euclidean distance

• k-means clustering using Solver to optimize the centers

• How to understand the clusters once you have them

• How to calculate the silhouette of a given k-means run

• K-medians clustering

• Manhattan/Hamming distance

• Cosine similarity and distance

If you made it through the chapter, you should feel confi dent not only about how to 

cluster data, but also which questions can be answered in business through clustering, 

and how to prepare your data to make it ready to cluster.

K-means clustering has been around for decades and is defi nitely the place to start for 

anyone looking to segment and pull insights from their customer data. But it’s not the 

most “current” clustering technique. In Chapter 5, you’ll explore using network graphs 



76 Data Smart

to fi nd communities of customers within this same dataset. You’ll even take a fi eld trip 

outside of Excel, very briefl y, to visualize the data.

If you want to go further with k-means clustering, keep in mind that vanilla Excel 

tops out at 200 decision variables in Solver, so you need to upgrade to a better non-linear 

Solver (for example Premium Solver available at Solver.com or just migrate over to using 

the non-linear Solver in LibreOffi  ce) to cluster on data with many deal dimensions and 

a high value of k.

Most statistical software off ers clustering capabilities. For example, R comes with the 

kmeans() function; however, the capabilities of the fastcluster package, which includes 

k-medians and a variety of distance functions, is preferable. In Chapter 10, you’ll look at 

the skmeans package for performing sphe rical k-means.



3
In the previous chapter, you hit the ground running with a bit of unsupervised learning. 

You looked at k-means clustering, which is like the chicken nugget of the data mining 

world: simple, intuitive, and useful. Delicious too. 

In this chapter you’re going to move from unsupervised into supervised artifi cial intel-

ligence models by training up a naïve Bayes model, which is, for lack of a better metaphor, 

also a chicken nugget, albeit a supervised one.

As mentioned in Chapter 2, in supervised artifi cial intelligence, you “train” a model 

to make predictions using data that’s already been classifi ed. The most common use of 

naïve Bayes is for document classifi cation. Is this e-mail spam or ham? Is this tweet happy 

or angry? Should this intercepted satellite phone call be classifi ed for further investigation 

by the spooks? You provide “training data,” i.e. classifi ed examples, of these documents 

to the training algorithm, and then going forward, the model can classify new documents 

into these categories using its knowledge.

The example you’ll work through in this chapter is one that’s close to my own heart. 

Let me explain. 

When You Name a Product Mandrill, You’re Going to 
Get Some Signal and Some Noise
Recently the company I work for, MailChimp, started a new product called Mandrill.com. 

It has the most frightening logo I’ve seen in a while (see Figure 3-1).

Mandrill is a transactional e-mail product for software developers who want their apps 

to send one-off  e-mails, receipts, password resets, and anything else that’s one-to-one. 

Because it allows you to track opens and clicks of individual transactional e-mails, you 

can even wire it into your personal e-mail account and track whether your relatives are 

actually viewing those pictures of your cat you keep sending them. (Take it from a data 

scientist—they’re not.) 

Naïve Bayes and the 
Incredible Lightness of 
Being an Idiot



Data Smart78

Figure 3-1: The trance-inducing Mandrill logo

But ever since Mandrill was released, one thing has perpetually annoyed me. Whereas 

a “MailChimp” is a something we invented, a mandrill, also a primate, has been kicking 

it here on earth for a while. And they’re quite popular. Heck, Darwin called the mandrill’s 

colorful butt “extraordinary.” 

That means that if you go onto Twitter and want to look at any tweets mentioning the prod-

uct Mandrill, you get something like what you see in Figure 3-2. The bottom tweet is about 

a new module hooking up the Perl programming language to Mandrill. That one is relevant. 

But the two above it are about Spark Mandrill from the Super Nintendo game Megaman X 

and a band called Mandrill.

Figure 3-2: Three tweets, only one of which matters



79Naïve Bayes and the Incredible Lightness of Being an Idiot

Yuck. 

Even if you enjoyed Megaman X when you were a teen, many of these tweets aren’t 

relevant to your search. Indeed, there are more tweets about the band plus the game plus 

the animal plus other Twitter users with “mandrill” in their handle combined than there 

are about Mandrill.com. That’s a lot of noise.

 So is it possible to create a model that can distinguish the signal from the noise? Can 

an AI model alert you only to the tweets about the e-mail product Mandrill?

This then is a classic document classifi cation problem. If a document, such as a Mandrill 

tweet, can belong to multiple classes (about Mandrill.com, about other things), which 

class should it go in?

And the most typical way of attacking this problem is using a bag of words model in 

combination with a naïve Bayes classifi er. A bag of words model treats documents as a 

collection of unordered words. “John ate Little Debbie” is the same as “Debbie ate Little 

John”; they both are treated as a collection of words {“ate,” “Debbie,” “John,” “Little”}.

A naïve Bayes classifi er takes in a training set of these bags of words that are already 

classifi ed. For instance, you might feed it some bags of about-Mandrill-the-app words and 

some bags of about-other-mandrills words and train it to distinguish between the two. 

Then in the future, you can feed it an unknown bag of words, and it’ll classify it for you.

So that’s what you’re going to build in this chapter—a naïve Bayes document classifi er 

that treats the Mandrill tweets as bags of words and gives you back a classifi cation. And 

it’s going to be really fun. Why?

Because naïve Bayes is often called “idiot’s Bayes.” As you’ll see, you get to make lots of 

sloppy, idiotic assumptions about your data, and it still works! It’s like the splatter-paint 

of AI models, and because it’s so simple and easy to implement (it can be done in 50 lines 

of code), companies use it all the time for simple classifi cation jobs. You can use it to clas-

sify company e-mails, customer support transcripts, AP wire articles, the police blotter, 

medical documents, movie reviews, whatever!

Now, before you get started implementing this thing in Excel (which is really quite 

easy), you’re going to have to learn some probability theory. My apologies. If you get lost 

in the math, press on to the implementation, and you’ll see how simply it all shakes out.

The World’s Fastest Intro to Probability Theory
In the next couple sections I’m going to use the notation p() to talk about probability. 

For instance: 

  p(Michael Bay’s next fi lm will be terrible) = 1

  p(John Foreman will ever go vegan) = 0.0000001



Data Smart80

Sorry, it’s extremely unlikely that I’ll ever give up Conecuh smoked sausage—the one 

thing I like that comes out of Alabama.

Totaling Conditional Probabilities
Now, the previous two examples are simple probabilities, but what you’re going to be work-

ing with a lot in this chapter are conditional probabilities. Here’s a conditional probability:

  p(John Foreman will go vegan | you pay him $1B) = 1

Although the odds of me ever going vegan are extremely low, the probability of me 

going vegan given you pay me a billion dollars is 100 percent. That vertical bar | in the 

statement is used to separate the event from what it’s being conditioned on.

How do you reconcile the 0.0000001 overall vegan probability with the virtually assured 

conditional probability? Well, you can use the law of total probability. The way it works is 

the probability of my going vegan equals the sum of the probabilities of my going vegan 

conditioned on all possible cases times their probability of happening:

  p(vegan) = p($1B) * p(vegan | $1B) + p(not $1B)* p(vegan | not $1B) = .0000001

The overall probability is the weighted sum of all conditional probabilities multiplied 

by the probability of that condition. And the probability of the condition that you will 

pay me one billion dollars is 0 (pretty sure that’s a safe assumption). Which means that 

p(not $1B) is 1, so you get:

  p(vegan) = 0*p(vegan | $1B) + 1* p(vegan | not $1B) = .0000001 

  p(vegan) = 0*1 + 1*.0000001 = .0000001 

Joint Probability, the Chain Rule, and Independence
Another concept in probability theory is that of the joint probability, which is just a fancy 

way of saying “and.” Think back to your SAT days.

Here’s the probability that I’ll eat Taco Bell for lunch today:

  p(John eats Taco Bell) = .2

It’s a once-a-week thing for me. And here’s the probability that I’ll listen to some cheesy 

electronic music today:

  p(John listens to cheese) = .8

It’s highly likely.



81Naïve Bayes and the Incredible Lightness of Being an Idiot

So what are the odds that I do both today? That’s called the joint probability, and it’s 

written as follows:

  p(John eats Taco Bell, John listens to cheese)

You just separate the two events with a comma. 

Now, in this case these events are independent. That means that my listening doesn’t 

aff ect my eating and vice versa. Given this independence, you can then multiply these 

two probabilities together to get their joint likelihood:

  p(John eats Taco Bell, John listens to cheese) = .2 * .8 = .16

This is sometimes called the multiplication rule of probability. Note that the joint prob-

ability is less than the probability of either occurring, which makes perfect sense. Winning 

the lottery on the day you get struck by lightning is far less likely to happen than either 

event alone. 

One way to see this is through the chain rule of probability, which goes like this:

  p(John eats Taco Bell, John listens to cheese) = p(John eats Taco Bell) * p(John listens 

to cheese | John eats Taco Bell)

The joint probability is the probability of one event happening times the probability of 

the other event happening given that the fi rst event happens. But since these two events 

are independent, the condition doesn’t matter. I’m going to listen to cheesy techno the 

same amount regardless of lunch, so:

  p(John listens to cheese | John eats Taco Bell) = p(John listens to cheese)

That reduces the chain rule setup to simply:

  p(John eats Taco Bell, John listens to cheese) = p(John eats Taco Bell) * p(John listens 

to cheese) = .16

What Happens in a Dependent Situation?
I’ll introduce another probability, the probability that I listen to Depe che Mode today:

  p(John listens to Depeche Mode) = .3

There’s a 30 percent chance I’ll rock some DM today. Don’t judge. I now have two events 

that have dependencies on each other: listening to Depeche Mode and listening to cheesy 

electronic music. Why? Because Depeche Mode is cheesy techno. That means that:

  p(John listens to cheese | John listens to Depeche Mode) = 1



Data Smart82

If I listen to Depeche Mode today then there’s a 100 percent chance I’m listening to 

cheesy techno. It’s a tautology. Since Depeche Mode is cheesy, the probably that I’m listen-

ing to cheesy techno given that I’m listening to Depeche Mode must be 1.

And that means that when I want to calculate their joint probability, I’m not just going 

to get the product of the two probabilities. Using the chain rule:

  p(John listens to cheese, John listens to DM) = p(John listens to Depeche Mode) * p(John 

listens to cheese | John listens to Depeche Mode) = .3 * 1 = .3

Bayes Rule
Since I’ve defi ned Depeche Mode as cheesy techno, the probability of my listening to cheesy 

techno given I listen to Depeche Model is 1. But what about the other way around? You 

don’t yet have a probability for this statement:

  p(John listens to Depeche Mode | John listens to cheese)

After all, there are other techno groups out there. Kraftwerk anyone? The new Daft 

Punk album, maybe?

Well, a kindly gentleman named Bayes came up with this rule: 

  p(cheese) * p(DM | cheese) = p(DM) * p(cheese | DM)

This rule allows you to relate the probability of a conditional event to the probability 

when the event and condition are swapped.

Rearranging the terms then, we can isolate the probability we do not know (the prob-

ability that I’m listening to Depeche Mode given that I’m listening to cheesy music):

p(DM | cheese) = p(DM) * p(cheese | DM) / p(cheese)

The preceding formula is the way you’ll encounter Bayes Rule most often. It’s merely a 

way of fl ipping around conditional probabilities. When you know a conditional probability 

going only one way, yet you know the total probabilities of the event and the condition, 

you can fl ip everything around.

Plugging in values, you’ll get:

p(DM | cheese) = .3 * 1 / .8 = .375

I typically have a 30 percent chance of listening to Depeche Mode on any day. However, 

if I know I’m going to listen to some kind of cheesy techno today, the odds of listening to 

Depeche Mode jump up to 37.5 percent given that knowledge. Cool!



83Naïve Bayes and the Incredible Lightness of Being an Idiot

Using Bayes Rule to Create an AI Model
All right, it’s time to leave my music taste behind and think on this Mandrill tweet prob-

lem. You’re going to treat each tweet as a bag of words, meaning you’ll break each tweet 

up into words (often called tokens) at spaces and punctuation. There are two classes of 

tweets—called app for the Mandrill.com tweets and other for everything else. 

You care about these two probabilities:

  p(app | word
1
, word

2
, word

3
, …)

  p(other | word
1
, word

2
, word

3
, …)

These are the probabilities of a tweet being either about the app or about something 

else given that we see the words “word
1
,” “word

2
,” “word

3
,” etc.

The standard implementation of a naïve Bayes model classifi es a new document based 

on which of these two classes is most likely given the words. In other words, if:

  p(app | word
1
, word

2
, word

3
, …) > p(other | word

1
, word

2
, word

3
, …)

then you have a tweet about the Mandrill app. 

This decision rule—which picks the class that’s most likely given the words—is called 

the maximum a posteriori rule (MAP rule).

But how do you calculate these two probabilities? The fi rst step is to use the Bayes Rule 

on them. Using the Bayes Rule, you can rewrite the conditional app probability as follows:

  p(app | word
1
, word

2
, …) = p(app) p(word

1
, word

2
, …| app) / p(word

1
, word

2
, …)

Similarly, you get:

  p(other | word
1
, word

2
, …) = p(other) p(word

1
, word

2
, …| other) / p(word

1
, word

2
, …)

But note that both of these calculations have the same denominator:

p(word1, word2, …)

This is just the probability of getting these words in a document in general. Because this 

quantity doesn’t change based on the class, you can drop it out of the MAP comparison, 

meaning you care only about which of these two values is larger:

p(app) p(word
1
, word

2
, …| app)

p(other) p(word
1
, word

2
, …| other)



Data Smart84

But how do you calculate the probability of getting a bag of words given that it’s an app 

tweet or an other tweet?

This is where things get idiotic!

Assume that the probabilities of these words being in the document are independent 

from one another. Then you get:

  p(app) p(word
1
, word

2
, …| app) = p(app) p(word

1
| app) p(word

2
| app) p(word

3
| app)…

  p(other) p(word
1
, word

2
, …| other) = p(other) p(word

1
| other) p(word

2
| other) 

p(word
3
| other)…

The independence assumption allows you to break that joint conditional probability of 

the bag of words given the class into probabilities of single words given the class.

And why is this idiotic? Because words are not independent of one another in 

a document!

If you were classifying spam e-mails and you had two words in the document,—

“erectile” and “dysfunction”—this would assume:

  p(erectile, dysfunction | spam) = p(erectile | spam) p(dysfunction | spam)

But this is idiotic, isn’t it? It’s naïve, because if I told you that I got a spam e-mail 

with the word “dysfunction” in it and I asked you to guess what the previous word was, 

you’d almost certainly guess “erectile.” There’s a dependency there that’s being blatantly 

ignored.

The funny thing is though that for many practical applications, somehow this idiocy 

doesn’t matter. That’s because the MAP rule doesn’t really care that you calculated your 

class probabilities correctly; it just cares about which incorrectly calculated probability 

is larger. And by assuming independence of words, you’re injecting all sorts of error into 

that calculation, but at least this sloppiness is across the board. The comparisons used in 

the MAP rule tend to come out in the same direction they would have had you applied all 

sorts of fancier linguistic understanding to the model.

High-Level Class Probabilities Are Often Assumed to Be Equal
So then to recap, in the case of the Mandrill app, you want to classify tweets based on 

which of these two values is higher:

  p(app) p(word
1
| app) p(word

2
| app) p(word

3
| app)…

  p(other) p(word
1
| other) p(word

2
| other) p(word

3
| other)…

So what are p(app) and p(other)? You can log on to Twitter and see that p(app) is really 

about 20 percent. Eighty percent of tweets using the word mandrill are about other stuff . 



85Naïve Bayes and the Incredible Lightness of Being an Idiot

Although this is true now, it may shift over time, and I’d prefer to get too many tweets 

classifi ed as app tweets (false positives) rather than fi lter some relevant ones out (false 

negatives), so I’m going to assume my odds are 50/50. You’ll see this assumption con-

stantly in naïve Bayes classifi cation in the real world, especially in spam fi ltering where 

the percentage of e-mail that’s spam shifts over time and may be hard to measure globally.

But if you assume both p(app) and p(other) are 50 percent, then when comparing the 

two values using the MAP decision rule, you might as well just drop them out. Thus, you 

can classify a tweet as app-related if:

  p(word
1
| app) p(word

2
| app) … >= p(word

1
| other) p(word

2
| other) …

But how do you calculate the probability of a word given the class it’s in? For example, 

contemplate the following probability:

  p(“spark” | app)

To fi gure this out, you can pull a set of training tweets in for the app, tokenize them 

into words, count up the words, and fi gure out what percentage of those words are “spark.” 

It’ll probably be 0 percent since most “spark” mandrill tweets are about video games.

Pause a moment and contemplate this point. To build a naïve Bayes classifi cation model, 

you need only track frequencies of historic app-related and non-app-related words. Well 

that’s not hard!

A Couple More Odds and Ends
Now, before you get started in Excel, you have to address two practical hurdles in imple-

menting naïve Bayes in Excel or in any programming language: 

• Rare words

• Floating-point underfl ow

Dealing with Rare Words

The fi rst is the problem of rare words. What if you get a tweet that you’re supposed to 

classify, but there’s the word “Tubal-cain” in it? Based on past data in the training set, 

perhaps one or both classes have never seen this word. A place where this happens a lot 

on Twitter is with shortened URLs, since each new tweet of a URL might have a diff erent, 

never-seen-before encoding. 

You can assume:

  p(“Tubal-cain” | app) = 0

But then you’d get:

  p(“Tubal-cain” | app) p(word
2
| other) p(word

3
| other)… = 0



Data Smart86

Tubal-cain eff ectively “zeros out” the entire probability calculation. 

Instead, assume that you’ve seen “Tubal-cain” once before. You can do this for all rare 

words.

But wait—that’s unfair to the words you actually have seen once. Okay, so add 1 to 

them, too. 

But that’s unfair to the words you’ve actually seen twice. Okay, so add one to every count. 

This is called additive smoothing, and it’s often used to accommodate heretofore-unseen 

words in bag of words models.

Dealing with Floating-Point Underfl ow

Now that you’ve addressed rare words, the second problem you have to face is called 

fl oating-point underfl ow. 

A lot of these words are rare, so you end up with very small probabilities. In this data, 

most of the word probabilities will be less than 0.001. And because of the independence 

assumption, you’ll be multiplying these individual word probabilities together.

What if you have a 15-word tweet with probabilities all under 0.001? You’ll end up 

with a value in the MAP comparison that’s tiny, such as 1x10-45. Now, in truth, Excel can 

handle a number as small as 1x10-45. It craps out somewhere in the hundreds of 0s after 

the decimal place. So for classifying tweets, you’d probably be all right. But for longer 

documents (e.g. e-mails, news articles), tiny numbers can wreak havoc on calculations.

Just to be on the safe side, you need to fi nd a way to not make the MAP evaluation 

directly:

  p(word
1
| app) p(word

2
| app) … >= p(word

1
| other) p(word

2
| other) …

You can solve this problem using the log function (natural log in Excel is available 

through the LN formula). 

Here’s a math fun fact for you. Say you have a product:

  .2 * .8

If you take the log of it, the following is true:

  ln(.2 * .8) = ln(.2) + ln(.8)

And when you take the natural log of any value between 0 and 1, instead of getting a 

tiny decimal, you get a solid negative number. So you can take the natural log of each of 

the probabilities and sum them to conduct the maximum a posteriori comparison. This 

gives a value that the computer won’t barf on.

If you’re a bit confused, don’t worry. This will become very clear in Excel.



87Naïve Bayes and the Incredible Lightness of Being an Idiot

Let’s Get This Excel Party Started

NOTE

The Excel workbook used in this chapter, “Mandrill.xlsx,” is available for download 

at the book’s website at www.wiley.com/go/datasmart.This workbook includes all the 

initial data if you want to work from that. Or you can just read along using the sheets 

I’ve already put together in the workbook.

In this chapter’s workbook, called Mandrill.xlsx, you have two tabs of input data to start 

with. One tab, AboutMandrillApp, contains 150 tweets, one per row, pertaining to Mandrill.

com. The other tab, AboutOther, contains 150 tweets about other mandrill-related things.

I just want to say before you get started—welcome to the world of natural language 

processing (NLP). Natural language processing concerns itself with chewing on human-

written text and spitting out knowledge. And that almost always means prepping that 

human-written content (like tweets) for computer consumption. It’s time to get prepping.

Removing Extraneous Punctuation
The primary step in creating a bag of words from a tweet is tokenizing the words wherever 

there’s a space between them. But before you divide the words wherever there’s whitespace, 

you must lowercase everything and replace most of the punctuation with spaces since 

punctuation in tweets isn’t always meaningful. The reason why you lowercase everything 

is because the words “e-mail” and “E-mail” aren’t meaningfully diff erent.

So in cell B2 on the two tweet tabs, add this formula:

=LOWER(A2)

This will lowercase the fi rst tweet. In C2, strip out any periods. You don’t want to mangle 

the URLs, so strip out any periods with a space after them using the SUBSTITUTE command:

=SUBSTITUTE(B2,". "," ")

This formula substitutes the string ". " for a single space " ".

You can also point cell D2 at cell C2 and replace any colons with a space after them 

with a single space:

=SUBSTITUTE(C2,": "," ")

In cells E2 through H2, you should make similar substitutions with the strings "?", 

"!", ";", and ",":

=SUBSTITUTE(D2,"?"," ")
=SUBSTITUTE(E2,"!"," ")

http://www.wiley.com/go/datasmart


Data Smart88

=SUBSTITUTE(F2,";"," ")
=SUBSTITUTE(G2,","," ")

You don’t need to add a space after the punctuation in the previous four formulas 

because they don’t appear in URLs (especially in shortened links) that often.

Highlight cells B2:H2 on both tabs and double-click the formulas to send them down 

through row 151. This gives you two tabs like the ones shown in Figure 3-3.

Figure 3-3: Prepped tweet data

Splitting on Spaces
Next, create two new tabs and call them AppTokens and OtherTokens.

You need to count how many times each word is used across all tweets in a category. 

That means you need all the tweets’ words in a single column. It’s safe to assume that 

each tweet contains no more than 30 words (feel free to expand this to 40 or 50 if you 

like), so if you’re going to extract one token from a tweet per row, that means you need 

150 x 30 = 4,500 rows.

To start, in these two tabs label A1 as Tweet. 

Highlight A2:A4501 and Paste Special the tweet values from column H of the initial two 

tabs. This will give you a list of the processed tweets, as shown in Figure 3-4. Note that 

because you’re pasting 150 tweets into 4,500 rows, Excel automatically repeats everything 

for you. Ginchy.

That means that if you extract the fi rst word from the fi rst tweet on row 2, that same 

tweet is repeated to extract the second word from it on row 152, then the third word on 

row 302, and so on.



89Naïve Bayes and the Incredible Lightness of Being an Idiot

Figure 3-4: The initial AppTokens sheet

In column B, you need to indicate the position of each successive space between words 

in a tweet. You can label this column something like Space Position. Because there is no 

space at the beginning of each tweet, begin by placing a 0 in A2:A151 to indicate that 

words begin at the fi rst character of each tweet. 

Beginning at B152 when the tweets repeat for the fi rst time, you can calculate the next 

space as follows:

=FIND(" ",A152,B2+1)

The FIND formula will search the tweet for the next empty space beginning with the 

character after the previous space referenced in cell B2, which is 150 cells above. See 

Figure 3-5.

Figure 3-5: The space position of the second word in the tweet on row 152



Data Smart90

However, note that this formula will give an error once you run out of spaces if there 

are fewer words than the 30 you’ve planned for, so to accommodate this, you need 

to wrap the formula in an IFERROR statement and just return one plus the tweet length to 

indicate the position after the last word:

=IFERROR(FIND(" ",A152,B2+1),LEN(A152)+1)

You can then double-click this formula to send it down the sheet through A4501. This 

will produce the sheet shown in Figure 3-6.

Figure 3-6: Positions of each space in the tweet

Next in column C, you can begin to extract single tokens from the tweets. Label column 

C as Token, and beginning in cell C2, you can pull the appropriate word from the tweet 

using the MID function. MID takes in a string of text, a start position, and the number of 

characters to yank. So in C2, your text is in A2, the starting position is one past the last 

space (B2 + 1), and the length is the diff erence between the subsequent space position in 

cell B152 and the current space position in B2 minus 1 (keeping in mind that identical 

tweets are off set by 150 rows). 

This yields the following formula:

MID(A2,B2+1,B152-B2-1) 

Now, once again, you can get into some tight spots at the end of the string when you run 

out of words. So, if there’s an error, turn the token into "." so it will be easy to ignore later:

=IFERROR(MID(A2,B2+1,B152-B2-1),".")

You can then double-click this formula and send it down the sheet to tokenize every 

tweet, as shown in Figure 3-7.

Add a Length column to column D, and in cell D2 take the length of the token in C2 as:

=LEN(C2)

You can double-click this to send it down the sheet. This value allows you to fi nd and 

delete any token three characters or less, which tend overall to be meaningless.



91Naïve Bayes and the Incredible Lightness of Being an Idiot

Figure 3-7: Every tweet token

NOTE

Typically in these kind of natural language processing tasks, rather than drop all the 

short words, a list of stop words for the particular language (English in this case) would 

be removed. Stop words are words which have very little lexical content, which is like 

nutritional content, for bag of words models. 

For instance, “because” or “instead” might be stop words, because they’re common 

and they don’t really do much to distinguish one type of document from another. The 

most common stop words in English do happen to be short, such as “a,” “and,” “the,” 

etc., which is why in this chapter you’ll take the easier, yet more Draconian, route of 

removing short words from tweets only.

If you follow these steps, you’ll have the AppTokens sheet shown in Figure 3-8 (the 

OtherTokens sheet is identical except for the tweets pasted in column A).

Figure 3-8: App tokens with their respective lengths



Data Smart92

Counting Tokens and Calculating Probabilities
Now that you’ve tokenized your tweets, you’re ready to calculate the conditional prob-

ability of a token, p(token | class).

To do so, you need to determine how many times each token is used. Start with the 

AppTokens tab by selecting the token and length range C1:D4501 and then inserting the 

data into a PivotTable. Rename the created pivot table tab AppTokensProbability.

In the PivotTable Builder, fi lter on token length, make the tokens the row labels, and in 

the values box set the value to be a count of each token. This gives you the Builder setup 

shown in Figure 3-9.

In the actual pivot, drop down the length fi lter and uncheck tokens of length 0, 1, 2, 

or 3 from being used. (On Windows you have to instruct Excel to Select Multiple Items 

in the drop-down.) This is also pictured in Figure 3-9.

Figure 3-9: PivotTable Builder setup for token counting

You now have only the longer tokens from each tweet, all counted up.

You can now tack on the probabilities to each token, but before you run the numbers, apply 

the additive smoothing concept discussed earlier in the chapter by adding one to each token.



93Naïve Bayes and the Incredible Lightness of Being an Idiot

Label column C Add One To Everything, and set C5 = B5+1 (C4 = B4+1 on Windows, 

where Excel builds pivot tables one row higher just to annoy this book). You can double-

click the formula to send it down the page.

Since you’ve added one to everything, you’ll also need a new grand total token count. 

So at the bottom of the table (row 828 in the AppTokensProbability tab), set the cell to 

sum the counts above it. Once again, note that if you’re on Windows everything is one 

row higher (C4:C826 for the summation range):

=SUM(C5:C827)

In column D, you can calculate the probability of each token as its count in column C 

divided by the total token count. Label column D as P(Token|App). The probability of the 

fi rst token in D5 (D4 on Windows) is calculated as:

=C5/C$828

Note the absolute reference to the token total count. This allows you to double-click 

the formula and send it down column D. Then in column E (call it LN(P)), you can take 

the natural log of the probability in D5 as follows:

=LN(D5)

Sending this down the sheet, you now have the values you need for the MAP rule. See 

Figure 3-10.

Figure 3-10: The logged probabilities for the app tokens

Also, create an identical tab using the non-app tokens called OtherTokensProbabilies.



Data Smart94

And We Have a Model! Let’s Use It
Unlike with a regression model (which you’ll encounter in Chapter 6), there’s no optimi-

zation step here. No Solver, no model fi tting. A naïve Bayes model is nothing more than 

these two conditional probability tables.

This is one of the reasons why programmers love this model. There’s no complicated 

model-fi tting step—they just chunk up some tokens and count them. And you can dump 

that dictionary of tokens out to disk for later use. It’s terribly easy.

Okay, so now that the naïve Bayes model is trained, you can use it. In the TestTweets 

tab of the workbook, you’ll fi nd 20 tweets, 10 about the app and 10 about other mandrills. 

You’re going to prep these tweets, tokenize them (you’ll do the tokenizing a bit diff er-

ently this time for kicks), calculate their logged token probabilities for both classes, and 

determine which class is most likely.

To begin then, copy cells B2:H21 from AboutMandrillApp and paste them into D2:J21 of 

the TestTweets tab in order to prep the tweets. This gives you the sheet shown in Figure 3-11.

Figure 3-11: Prepped test tweets

Next, create a tab called TestPredictions. In the tab, paste the Number and Class col-

umns from TestTweets. Name column C Prediction, which you’ll fi ll in with the predicted 

class values. Then label column D as Tokens, and in D2:D21, paste the values from column 

J on the TestTweets tab. This gives you the sheet shown in Figure 3-12.



95Naïve Bayes and the Incredible Lightness of Being an Idiot

Figure 3-12: The TestPredictions tab 

Unlike when you built the probability tables, you don’t want to combine these tokens 

across tweets. You want to evaluate each tweet separately, and this makes tokenizing 

rather simple.

To start, highlight the tweets in D2:D21 and choose Text to Columns on the Data tab of 

the Excel ribbon. In the Convert Text to Columns wizard that pops up, select Delimited 

and press Next.

On the second screen of the wizard, specify Tab and Space as delimiters. You can also 

choose Treat Consecutive Delimiters As One and make sure that the Text Qualifi er is set 

to {none}. This gives the setup shown in Figure 3-13.

Figure 3-13: The Text to Columns Wizard setup



Data Smart96

Press Finish. This chunks up the tweets into columns going all the way out to column 

AI (see Figure 3-14).

Figure 3-14: The tokens from the test tweets 

Below the tokens starting in column D on row 25, you should look up the app prob-

abilities for each token. To do so, you can use the VLOOKUP function (see Chapter 1 for 

more on VLOOKUP), starting with cell D25:

=VLOOKUP(D2,AppTokensProbability!$A$5:$E$827,5,FALSE)

The VLOOKUP function takes the corresponding token from D2 and tries to fi nd it in 

column A on the AppTokensProbability tab. When it fi nds the token, the lookup grabs 

the value from column E.

But this isn’t suffi  cient, because you need to deal with the rare words not on the lookup 

table—these tokens will get an N/A value from the VLOOKUP as it stands. As discussed 

earlier, these rare words should get a probability of 1 divided by the total token count in 

cell B828 on the AppTokensProbability tab.

To handle these rare words, you just wrap the VLOOKUP in an ISNA check and slide in 

the rare word logged probability if needed:

IF(ISNA(VLOOKUP(D2,AppTokensProbability!$A$5:$E$827,5,FALSE)),
LN(1/AppTokensProbability!$C$828),VLOOKUP(D2,AppTokensProbability!
$A$5:$E$827,5,FALSE))

The one thing this solution hasn’t addressed yet are the small tokens you want to throw 

away. Since you’re going to sum these logged probabilities, you can set any small token’s 

logged probability to zero (this is akin to setting the probability to 1 on both sides, that 

is, throwing it away).



97Naïve Bayes and the Incredible Lightness of Being an Idiot

To do this, you just wrap the whole formula in one more IF statement that checks length:

=IF(LEN(D2)<=3,0,IF(ISNA(VLOOKUP(D2,AppTokensProbability!
$A$5:$E$827,5,FALSE)),LN(1/AppTokensProbability!$C$828),
VLOOKUP(D2,AppTokensProbability!$A$5:$E$827,5,FALSE)))

Note that absolute references are used on the AppTokensProbability tab so that you 

can drag this formula around.

Since the tweet tokens reach all the way to column AI, you can drag this formula from 

D25 through AI44 to score each token. This gives the worksheet shown in Figure 3-15.

Figure 3-15: App logged probabilities assigned to tokens

Starting at cell D48, you can use the same formula as in D25 except that it should ref-

erence the OtherTokensProbability tab, and the range on the probability tab changes to 

$A$5:$E$810 in the VLOOKUP with the total token count being on $C$811.

This then yields the sheet shown in Figure 3-16.

Figure 3-16: Both sets of logged probabilities assigned to the test tweets



Data Smart98

In column C, you can sum each row of probabilities, yielding the sheet shown in Figure 

3-17. For example, C25 is simply:

=SUM(D25:AI25)

Figure 3-17: Sums of logged conditional token probabilities

In cell C2, you can classify this fi rst tweet by simply comparing its scores below in cells 

C25 and C48 using the following IF statement:

=IF(C25>C48,"APP","OTHER")

Copying this formula down through C21, you get all of the classifi cations, as shown 

in Figure 3-18.

It gets 19 out of 20 correct! Not bad. If you look at the one tweet that was misclassifi ed, 

the language is quite vague—the scores are close to tied. 

And that’s it. Model built, predictions done.

Wrapping Up
This chapter is super short compared to others in this book. Why? Because naïve Bayes 

is easy! And that’s why folks love it. Naïve Bayes appears to be working some kind of 

complex magic when in reality it just relies on the computer to have a good memory of 

how often each token in the training data showed up in each class.

There’s a proverb that goes, “Experience is the father of wisdom and memory the 

mother.” Nowhere is this truer than with naïve Bayes. Its entire faux-wisdom stems from 

a combination of past data and storage with a little bit of mathematical duct tape.



99Naïve Bayes and the Incredible Lightness of Being an Idiot

Figure 3-18: Test tweets classifi ed

Naïve Bayes lends itself particularly well to simple implementations in code. For exam-

ple, here’s a C# implementation:

http://msdn.microsoft.com/en-us/magazine/jj891056.aspx

Here’s a tiny version someone posted online in Python:

http://www.mustapps.com/spamfilter.py

Here’s one in Ruby:

http://blog.saush.com/2009/02/11/naive-bayesian-classifiers-and-ruby/

One of the great things about this type of model is that it works well even when there 

are a boatload of features (AI model inputs) you’re predicting with (in the case of this data, 

each word was a feature). But that said, keep in mind that a simple bag of words model 

does have some drawbacks. Chiefl y, the naïve bit of the model can cause problems. I’ll 

give you an example.

http://msdn.microsoft.com/en-us/magazine/jj891056.aspx
http://www.mustapps.com/spamfilter.py
http://blog.saush.com/2009/02/11/naive-bayesian-classifiers-and-ruby


Data Smart100

Suppose I build a naïve Bayes classifi er that tries to classify tweets about movies into 

“thumbs up” and “thumbs down.” When someone says something like:

  Michael Bay’s new movie is a steaming pile of misogynistic garbage, full of explosions 

and poor acting, signifying nothing. And I, for one, loved the ride!

Is the model going to get that correct? You have a bunch of thumbs-down tokens fol-

lowed by a thumbs-up token at the end.

Since a bag of words model throws away the structure of the text and tokens are 

assumed to be unordered, this could be a problem. Many naïve Bayes models actually 

take in phrases rather than individual words as tokens. That helps contextualize words 

a little bit (and makes the naïve assumption even more ludicrous...but who cares!). You 

need more training data to make that work because the space of possible n-word phrases 

is larger than the space of possible words.

For something like this movie review you might need a model that actually cares about 

the position of a word in the review. Which phrase “had the last word?” Incorporating 

that kind of information immediately does away with this simple bag of words concept.

But, hey, this is nitpicking. Naïve Bayes is a straightforward and versatile AI tool. It’s 

easy to prototype and test with. So you can try out a modeling idea with naïve Bayes, and 

if it works well enough, you’re good. If it shows promise but is poor, you can move on to 

something beefi er, like an ensemble model (which is covered in Chapt er 7).



4
Business Week recently published an article about how The Coca-Cola Company uses a 

large analytics model to determine how to blend raw orange juices to create the perfect 

not-from-concentrate product.

I was discussing this article with some folks, and one of them blurted something like, 

“But you could never do that with an artifi cial intelligence model!”

They were right. You can’t. Because Coca-Cola doesn’t use an artifi cial intelligence model. 

It uses an optimization model. Huh? What’s the diff erence?

An artifi cial intelligence model predicts the result of a process by analyzing its inputs. 

That’s not what Coca-Cola is doing. Coca-Cola doesn’t need to predict the outcome when 

they combine juice A with juice B. It needs to decide which combination of juice A, B, C, 

D, and so on to buy and blend together. Coca-Cola is taking some data and some business 

rules (their inventory, their demand, their specs, and so on) and deciding how to blend a 

product. These decisions enable Coca-Cola to blend juices with complementary strengths 

and weaknesses (maybe one is too sweet and another not sweet enough) to get exactly the 

right taste for the minimum cost and the maximum profi t.

There’s no one outcome that needs predicting. The model gets to change the future. 

Optimization modeling is analytics’ Arminianism to AI’s Calvinism. Free will, baby! 

(Sorry, that’s the last historical theological joke in this book.)

Companies across industries use optimization models every day to answer questions 

such as these:

• How do I schedule my call center employees to accommodate their vacation requests, 

balance overtime, and eliminate back-to-back graveyard shifts for any one employee? 

• Which oil drilling opportunities do I explore to maximize return while keeping 

risk under control? 

• When do I place new orders to China, and how do I get them shipped to minimize 

cost and meet anticipated demand?

Optimization 
Modeling: Because 
That “Fresh Squeezed” 
Orange Juice Ain’t 
Gonna Blend Itself



Data Smart102

Optimization, you see, is the practice of mathematically formulating a business problem 

and then solving that mathematical representation for the best solution. And as noted in 

Chapter 1, this objective is always a minimization or a maximization where the “best solution” 

gets to mean whatever you like—lowest cost, highest profi t, or least likely to land you in jail.

The most widely used and understood form of mathematical optimization, called linear 

programming, was developed in secret by the Soviet Union in the late 1930s and gained 

traction through its extensive use in World War II for transportation planning and resource 

allocation to minimize cost and risk and maximize damage to the enemy.

In this chapter, I’ll go into detail on the linear part of linear programming. The 

programming part is a holdover from wartime terminology and has nothing to do with 

computer programming. Just ignore it. 

This chapter covers linear, integer, and a bit of non-linear optimization. It focuses on 

how to formulate business problems in a language in which the computer can solve them. 

The chapter also discusses at a high level how the industry-standard optimization meth-

ods built into Excel’s Solver tool attack these problems and close in on the best solutions.

Why Should Data Scientists Know Optimization?
If you watch a bunch of James Bond or Mission Impossible movies, you’ll notice that they 

often have a big action sequence before the opening credits. Nothing draws viewers in 

like an explosion. 

The previous chapters on data mining and artifi cial intelligence were just that—our 

explosions. But now, like in any good action movie, the plot must advance. In Chapter 2 

you used a bit of optimization modeling in fi nding the optimal placement of cluster cen-

troids, but you had only been given enough optimization knowledge in Chapter 1 to make 

that happen. In this chapter, you’re going to dive deep into optimization and get lots of 

experience with how to formulate models that solve business problems.

Artifi cial intelligence is making waves these days for its use at tech companies and 

start-ups. Optimization, on the other hand, seems to be more of a Fortune 500 business 

practice. Reengineering your supply chain to reduce the fuel costs of your fl eet is anything 

but sexy. But optimization, whether it’s trimming the fat or making the most of economies 

of scale, is fundamental to eff ectively running a business. 

And when we talk data science, the truth is that optimization is fundamental there 

too. As you’ll see in this book, not only is optimization a worthwhile analytic practice to 

understand on its own, but any data science practitioner worth their salt is going to need 

to use optimization on the way to implementing other data science techniques. In this 

book alone, optimization makes a cameo in four other chapters:

• Determining optimal cluster centers in k-means clustering as seen in Chapter 2

• Maximizing modularity for community detection (Chapter 5)



103Optimization Modeling

• Training coeffi  cients for an AI model (fi tting a regression in Chapter 6)

• Optimally setting smoothing parameters in a forecasting model (Chapter 8)

Optimization problems are embedded everywhere in data science, so you need to master 

solving them before you move on.

Starting with a Simple Trade-Off
This section begins by discussing economists’ two favorite resources—guns and butter. 

The year is 1941, and you’ve been airdropped behind enemy lines where you’ve assumed 

the identity of one Jérémie (or Ameline) Galiendo, a French dairy farmer. 

Your day job: milking cows and selling sweet, creamy butter to the local populace.

Your night job: building and selling machine guns to the French resistance.

Your job is complex and fraught with peril. You’ve been cut off  from HQ and are left 

on your own to run the farm while not getting caught by the Nazis. You only have so 

much money in the budget to make ends meet while producing guns and butter; you must 

stay solvent throughout the war. You cannot lose the farm and your cover along with it.

After sitting and thinking about your plight, you’ve found a way to characterize your 

situation in terms of three elements:

• The objective: You get $195 dollars (or, uh, francs, although honestly my Excel is 

set to dollars, and I’m not going to change it for the fi gures here) in revenue from 

every machine gun you sell to your contact, Pierre. You get $150 for every ton of 

butter you sell in the market. You need to bring in as much revenue as you can each 

month to keep the farm going.

• The decisions: You need to fi gure out what mix of guns and tons of butter to pro-

duce each month to maximize total profi t. 

• The constraints: It costs $100 to produce a ton of butter and $150 to produce a 

machine gun. You have a budget of $1,800 a month to devote to producing new 

product for sale. You also have to store this stuff  in your 21 cubic meter cellar. Guns 

take up 0.5 cubic meters once packaged, and a ton of butter takes up 1.5 cubic 

meters. You can’t store the butter elsewhere or it’ll spoil. You can’t store the guns 

elsewhere or you’ll get caught by the Nazis.

Representing the Problem as a Polytope
This problem as it’s been laid out is called a linear program. A linear program is char-

acterized as a set of decisions that need to be made to optimize an objective in light of 

some constraints, where both the constraints and the objective are linear. Linear in this 

case means that any equation in the problem can only add decisions, subtract decisions, 

multiply decisions by constants, or some combination of those things. 



104 Data Smart

In linear programming, you can’t shove your decisions through any non-linear func-

tions, which might include: 

• Multiplying decisions together (guns times butter cannot be used anywhere)

• Sending a decision variable through a kind of logic check, such as an if statement 

(“If you only store butter in the cellar, then you can give it a little squish and make 

the capacity 22 cubic meters.”)

As you’ll see later in this chapter, restrictions breed creativity. 

Now, back to the problem. Start by graphing the “feasible region” for this problem. The 

feasible region is the set of possible solutions. Can you produce no guns and no butter? 

Sure, that’s feasible. It won’t maximize revenue, but it’s feasible. Can you produce 100 guns 

and 1,000 tons of butter? Nope, not in the budget, and not in the cellar. Not feasible. 

Okay, so where do you start graphing? Well, you can’t produce negative quantities of guns or 

butter. This isn’t theoretical physics. So you’re dealing with the fi rst quadrant of the x-y plane. 

In terms of the budget, at $150 a pop you can make 12 guns from the $1,800 budget. 

At $100 a ton, you can make 18 tons of butter.

So if you graph the budget constraint as a line on the x-y plane, it’d pass right through 

12 guns and 18 tons of butter. As shown in Figure 4-1, the feasible region is then a triangle 

of positive values in which you can produce, at most, 12 guns and 18 tons of butter, or 

some middling linear combination of the two extremes.

30 40

Budget Constraint

Butter

G
u
n
s

5010

10

20

30

40

50

20

Figure 4-1: The budget constraint makes the feasible region a triangle.



105Optimization Modeling

Now, this triangle is more generally called a polytope. A polytope is nothing more than 

a geometric shape with fl at sides. You’ve probably heard the term polygon. Well, a polygon 

is just a polytope in a two-dimensional space. If you’ve got a big fat rock of an engagement 

ring on your hand…Bam! The diamond is a polytope.

All linear programs can have their feasible regions expressed as polytopes. Some algo-

rithms, as you’ll see momentarily, exploit this fact to arrive quickly at solutions to linear 

programming problems.

Concerning the problem at hand, it’s time to consider the second constraint—the cellar. 

If you produced only guns, you’d be able to pack 42 of them in the cellar. On the other 

hand, you could shove 14 tons of butter in the cellar, maximum. So adding this constraint 

to the polytope, you shave off  part of the feasible region, as shown in Figure 4-2.

30 40
Cellar Constraint

Butter

G
u
n
s

5010

10

20

30

40

50

20

Budget Constraint

Figure 4-2: The cellar constraint cuts a chunk out of the feasible region.

Solving by Sliding the Level Set
Now that you’ve determined the feasible region, you can begin to ask the question, “Where 

in that region is the best guns/butter mix?”

To answer that question, begin by defi ning something called the level set. A level set for your 

optimization model is a region in the polytope where all the points give the same revenue.

Because your revenue function is $150*Butter + $195*Guns, each level set can be defi ned 

by the line $150*Butter + $195*Guns = C, where C is a fi xed amount of revenue. 



106 Data Smart

Consider the case where C is $1950.  For the level set $150*Butter + $195*Guns = $1950, both 

the points (0,10) and (13,0) exist in the level set as does any combination of guns and butter 

where $150*Butter + $195*Guns comes out to $1950. This level set is pictured in Figure 4-3.

Using this idea of the level set, you could then think of solving the revenue maximization 

problem by sliding the level set in the direction of increasing revenue (this is perpendicular 

to the level set itself) until the last possible moment before you left the feasible region.

In Figure 4-3, a level set is pictured with a dashed line, while the arrow and dashed 

line together represent your objective function. 

30 40

Butter

G
u
n
s

50

Level Set

10

10

20

30

40

50

20

Figure 4-3: The level set and objective function for the revenue optimization

The Simplex Method: Rooting around the Corners
To reiterate, if you want to know which feasible points are optimal, you can just slide that 

level set along the direction of increasing revenue. Right at the border before the level set 

leaves the polytope, that’s where the best points would be. And here’s what’s cool about that: 

One of these optimal points at the border will always be a corner of the polytope. 

Go ahead and confi rm this in Figure 4-3. Lay a pencil on the level set and move it up 

and right in the direction of increasing revenue. See how it leaves the polytope at a corner?



107Optimization Modeling

Why is that cool? Well, the polytope in Figure 4-3 has an infi nite number of feasible 

solutions. Searching the entire space would be hell. Even the edges have an infi nite num-

ber of points! But there are only four corners, and there’s an optimal solution in one of 

them. Much better odds.

It turns out there’s an algorithm that’s been designed to check corners. And even in 

problems with hundreds of millions of decisions, it’s very eff ective. The algorithm is called 

the simplex method.

Basically, the simplex method starts at a corner of the polytope and slides along edges 

of the polytope that benefi t the objective. When it hits a corner whose departing edges all 

are detrimental to the objective, well, then that corner is the best one.

In the case of selling guns and butter, assume that you start out at point (0,0). It’s a 

corner, but it’s got $0 in revenue. Surely you can do better. 

Well, as seen in Figure 4-3, the bottom edge of the polytope increases revenue as you 

move right. So sliding along the bottom edge of the polytope in this direction, you hit the 

corner (14,0)—14 tons of butter and no guns will produce $2,100 dollars (see Figure 4-4).

30 40

Butter

G
u
n
s

5010

10

20

30

40

50

20

Figure 4-4: Testing out the all-butter corner

From the all-butter corner, you can then slide along the cellar storage edge in the direc-

tion of increasing revenue. The next corner you hit is (12.9, 3.4), which gives you revenue 

just shy of $2,600. All the edges departing the corner lead to worse nodes, so you’re done. 

As pictured in Figure 4-5, this is the optimum!



108 Data Smart

30 40

Butter

G
u
n
s

5010

10

20

30

40

50

20

Figure 4-5: Located the optimal corner

Working in Excel
Before you leave this simple problem behind for something a little tougher, I want to build 

and solve it in Excel. The fi rst thing you’re going to do in a blank Excel workbook is create 

spaces for the objective and decision variables, so you’ll label cell B2 as the spot where the 

total revenue will go and cells B4:C4 as the range where the production decisions will go.

Below the objective and decision sections, add the size and price information for guns 

and butter, the limits on storage space and budget, and each item’s contribution to revenue. 

The barebones spreadsheet should look like Figure 4-6.

Figure 4-6: Guns and butter data placed, lovingly, in Excel



109Optimization Modeling

To this data, you need to add several calculations, namely, the constraint calculations 

and the revenue calculation. In Column E, next to the Limit cells, you can multiply the 

amounts of guns and butter produced times their respective sizes and prices, and sum 

them up in a Used column. For example, in E7 you can place how much space is used in 

the cellar using the formula:

=SUMPRODUCT(B4:C4,B7:C7)

Note that this formula is linear because only one range, B4:C4, is a decision range. The 

other range just houses the storage coeffi  cients. You can do the same calculation to gather 

the total amount spent on guns and butter.

For the objective function, you need only take a SUMPRODUCT of the purchased 

quantities on row 4 with their revenue on row 9. Placing a feasible solution, such as 

1 gun, 1 ton of butter, into the decision cells now yields a sheet like that pictured 

in Figure 4-7.

Figure 4-7: Revenue and constraint calculations within the guns and butter problem

All right, so how do you now get Excel to set the decision variables to their optimal 

values? To do this, you use Solver! Start by popping open an empty Solver window (pic-

tured in Figure 4-8). For more on adding Solver to Excel see Chapter 1.

Just as was mocked up earlier in the chapter, you need to provide Solver with an objec-

tive, decisions, and constraints. The objective is the revenue cell created in B1. Also, make 

sure that you choose the Max radio button since you’re maximizing, not minimizing, 

revenue. If you were working a problem with cost or risk in the objective function, you 

would use the Min option instead.

The decisions are in B4:C4. After you add them to the “By Changing Variable Cells” 

section, the Solver window will look like Figure 4-9.



110 Data Smart

Figure 4-8: The Solver window

As for the constraints, there are two you have to add. Start with the cellar storage 

constraint. Click on the Add button next to the constraints section. Filling out the small 

dialog box, you need to indicate that cell E7 must be less than or equal to (≤) cell D7 (see 

Figure 4-10). The amount of space you’re using must be less than the limit.

NOTE

Note that Solver will add absolute references ($) to everything in your formulation. It 

doesn’t matter that Solver does this. Honestly, I don’t know why it does because you 

can’t drag formulas in the context of a Solver model. See Chapter 1 for more on absolute 

references.



111Optimization Modeling

Figure 4-9: Objective and decisions populated in Solver

NOTE

Before pressing OK, look at the other constraint types Solver off ers you. Beyond ≤, ≥, 

and =, there are some funky ones, namely int, bin, and dif. These odd constraints can 

be placed on cells to make them integers, binary (0 or 1), or “all diff erent.” Keep the 

int constraint in mind. You’re going to return to it in a second.

Press OK to add the constraint, and then add the budget constraint the same way (E8 ≤ 

D8). Confi rm also that the Make Unconstrained Variables Non-Negative box is checked to 

make sure the guns and butter production doesn’t become negative for some odd reason. 

(Alternatively, you can just add a B4:C4 ≥ 0 constraint, but the check box makes it easy.) 

Now, from Select a Solving Method, make sure the Simplex LP algorithm is selected. 

You’re ready to go (see Figure 4-11).

Figure 4-10: The Add Constraint dialog box



112 Data Smart

USING EXCEL 2007

In Excel 2007, there is no Make Unconstrained Variables Non-Negative checkbox. 

Instead, go to the Options screen and check off  the Assume Non-negative box. Also, 

there’s no Solving Method selection. Instead, check the Assume Linear Model box in 

order to activate the simplex algorithm.

When you press Solve, Excel quickly fi nds the solution to the problem and pops up a 

box letting you know. You can either accept the solution found or restore the values in the 

decision cells (see Figure 4-12). If you press OK to accept the solution, you would see that 

it’s 3.43 guns and 12.86 tons of butter just like you’d graphed (see Figure 4-13).

Figure 4-11: Completed Guns and Butter formulation in Solver

Figure 4-12: Solver lets you know when it’s solved the problem.



113Optimization Modeling

Figure 4-13: Optimized guns and butter workbook

But You Can’t Make 3.43 Guns

Now, your French alter ego is most likely shouting, “Zut alors!” Why? Because you can’t 

make 43 percent of a gun. And I concede this point. 

When working with linear programs, the fractional solutions can sometimes be an 

annoyance. If you were producing guns and butter in the millions, the decimal could be 

ignored without too much danger of infeasibility or revenue changes. But for this problem, 

the numbers are small enough to where you really need Solver to make them integers.

So, hopping back into the Solver window, add a constraint to force the decision cells 

B4:C4 to be integers (see Figure 4-14). Click OK to return to the Solver Parameters window.

Figure 4-14: Making the guns and butter decisions integers

Under the Options section next to Simplex LP, make sure that the Ignore Integer 

Constraints box is not checked. Press OK.

Press Solve and a new solution pops up. At $2,580, you’ve only lost about $17. Not bad! 

Note that by forcing the decisions to be integers, you can never do better, only worse, 

because you’re tightening up the possible solutions.

Guns have moved up to an even 4 while butter has dropped to 12. And while the budget 

is completely used up, note that you’ve got a spare 1 cubic meter of storage left in the cellar.



114 Data Smart

So why not just make your decisions integers all the time? Well, sometimes you just 

don’t need them. For instance, if you’re blending liquids, fractions can be just fi ne. 

Also, behind the scenes the algorithm Solver uses actually changes when integers are 

introduced, and performance degrades as a result. The algorithm Solver uses when it 

encounters the integer or binary constraints is called “Branch and Bound,” and at a high 

level, it has to run the simplex algorithm over and over again on pieces of your original 

problem, rooting around for integer-feasible solutions at each step.

Let’s Make the Problem Non-Linear for Kicks

Even though you’ve added an integer constraint to the decisions, the basic problem at 

hand is still a linear one.

What if you got a $500 bonus from your contact Pierre if you were able to bring him 5 

or more guns each month? Well, you can place an IF statement in the revenue function 

that checks gun production in cell B4:

=SUMPRODUCT(B9:C9,B4:C4) + IF(B4>=5,500,0)

Once you tack on that IF statement, the objective function becomes non-linear. By 

graphing the IF statement in Figure 4-15, you can easily see the large non-linear discon-

tinuity at 5 guns.

$0

$500

Guns

B
o
n
u
s 

fr
o
m

 P
ie

rr
e

5 10 15 20

Figure 4-15: A graph of Pierre’s $500 bonus

If you were to open Solver and use Simplex LP again to solve this problem, Excel would 

politely complain that “the linearity conditions required by this LP Solver are not satis-

fi ed” (see Figure 4-16). 



115Optimization Modeling

Figure 4-16: Excel won’t let you put the decision variables through an IF statement when using 
Simplex LP.

Luckily, Solver provides two other algorithms for resolving this problem, called the 

“Evolutionary” and “GRG Nonlinear” algorithms. You’ll give the evolutionary approach 

a shot here, with which you’re already familiar if you’ve worked through Chapter 2. (In 

Excel 2007, since there is no algorithm selection box, leaving the Assume Linear Model 

box unchecked will activate a non-linear optimization algorithm.)

The way an evolutionary algorithm works is loosely modeled on the way evolution 

works in biology:

• Generate a pool of initial solutions (kind of like a “gene pool”), some feasible and 

some infeasible.

• Each solution has some level of fi tness for survival.

• Solutions breed through crossover, meaning components are selected and combined 

from two or three existing solutions.

• Solutions mutate to create new solutions.

• Some amount of local search takes place, wherein new solutions are generated within 

the close vicinity of the current best solution in the population.

• Selection occurs when randomly selected poor performing candidate solutions are 

dropped from the gene pool.

Note that this approach does not inherently require that the problem structure be 

linear, quadratic, or otherwise. To an extent, the problem can be treated like a black box.

What that means is that when modeling a linear program in Excel, you’re limited to 

things like the +/- signs, the SUM and AVERAGE formulas, and the SUMPRODUCT formula, 

where only one range contains decisions. But with the evolutionary solver, your formula 



116 Data Smart

choices expand to just about anything your little heart desires, including these useful 

non-linear functions:

• Logical checks: 

• IF
• COUNTIF
• SUMIF

• Statistical functions: 

• MIN
• MAX
• MEDIAN
• LARGE
• NORMDIST, BINOMDIST, and so on

• Lookup functions: 

• VLOOKUP
• HLOOKUP
• OFFSET
• MATCH
• INDEX

Now, I know you’re getting pumped, so let me defl ate the excitement just a little bit. 

There are a number of problems with the evolutionary solver:

• It gives no guarantees that it can fi nd an optimal solution. All it does is keep track 

of the best solution in a population until time runs out, until the population hasn’t 

changed enough in a while to merit continuing, or until you kill Solver with the 

Esc key. You can modify these “stopping criteria” in the evolutionary algorithm 

options section of Excel Solver.

• The evolutionary solver can be quite slow. With complex feasible regions, it often 

barfs, unable to fi nd even a good starting place.

• In order to get the evolutionary algorithm to work well in Excel, you should specify 

hard bounds for each decision variable. If you have a decision that’s more or less 

unbounded, you have to pick a really large number to bound it. 

Concerning this last bullet point, for the guns and butter problem, you should add 

a constraint that both decisions must stay below 25, giving the new setup pictured in 

Figure 4-17.



117Optimization Modeling

Figure 4-17: Formulation for the evolutionary solver

Press OK then Solve. The algorithm kicks off  and should eventually fi nd a solution of 

6 guns and 9 tons of butter. So the evolutionary algorithm decided to take Pierre up on his 

$500 bonus. Nice! But notice that even on such a small problem, this took a while. About 

30 seconds on my laptop. Think about what that might mean for a production model.

There’s a Monster at the End of This Chapter
Okay, so that’s an imaginary problem. In the next section, I’m going to demonstrate the 

powers of Solver on something a bit meatier. You’ll also spend time learning how to model 

non-linear functions (such as Pierre’s $500 gun bonus) in linear ways, so that you can still 

use the fast Simplex LP algorithm.

If you’re chomping at the bit to move on to another topic, you now know most of what 

you need to know to succeed in the following chapters. Stick around at least through the 

If-Then and the “Big M” Constraint section of this chapter in order to learn what you 

need for Chapter 5 on clustering in graphs. Or, better yet, strap in and work through all 

the remaining problems here! But be warned, the last two business rules modeled in this 

chapter are monsters.



118 Data Smart

OTHER TOOLS

Huge models don’t fi t very well in Excel. The version of Solver that comes packaged 

with Excel allows only 100 – 200 decision variables and constraints, depending on 

the version you’re running. That’s going to limit the size of the problems you can 

attack in this book. 

If you want to go larger in Excel, you can buy a bigger version of Solver from Frontline 

Systems. Even better, if you’re on a Windows box, use OpenSolver just as you’ll do in 

the later sections of this chapter. OpenSolver, introduced in Chapter 1, calls an open 

source solver called COIN Branch and Cut (http://www.coin-or.org/) that is excellent 

for midsized optimization problems. I’ve used OpenSolver on hundreds of thousands 

of variables eff ectively.

Other beefi er linear programming engines include Gurobi and CPLEX. I generally 

recommend that developers and other people who like their software “in the cloud” 

check out Gurobi, whereas CPLEX, owned by IBM, is the go-to enterprise solution.

Interfacing with these industrial strength tools happens in all sorts of ways. For 

instance, CPLEX comes packaged with an environment called OPL where you can write 

models in a specialized language that’s got excellent hooks into spreadsheets. There 

are plenty of hooks into programming languages for embedding these algorithms and 

models within production systems.

My favorite tool for plugging into the heavy-duty solvers like CPLEX and Gurobi is 

called AIMMS (www.AIMMS.com). The software lets you build out optimization models 

and then slap a user interface on them without having to write code. Also, the software 

can talk to spreadsheets and databases. 

For the rest of this book, you’re going to stick with Excel and Solver, but just know 

that there are cutting-edge modeling environments out there for solving bigger problems, 

should your needs grow beyond what Excel can handle.

Fresh from the Grove to Your Glass...with a Pit Stop 
through a Blending Model

NOTE

The Excel workbook used in this chapter, “OrangeJuiceBlending.xlsx,” is available 

for download at the book’s website at www.wiley.com/go/datasmart.This workbook 

includes all the initial data if you want to work from that. Or you can just read along 

using the sheets I’ve already put together in the workbook.”

http://www.coin-or.org
http://www.AIMMS.com
http://www.wiley.com/go/datasmart


119Optimization Modeling

When you were a child, perhaps there came that day when someone explained to you that 

Santa Claus didn’t exist, outside of men with bad rosacea dressed up at the mall.

Well, today I’m going to shatter another belief: your not-from-concentrate premium 

orange juice was not hand squeezed. In fact, the pulp in it is probably from diff erent oranges 

than the juice, and the juice has been pulled from diff erent vats and blended according 

to mathematical models to ensure that each carafe you drink tastes the same as the last.

Consistent taste in OJ year round isn’t something that just anyone can pull off . Oranges 

aren’t in season in Florida year round. And at diff erent times of the year, diff erent orange 

varietals are ripe. Pull fruit too early and it tastes “green.” Get fruit from another country 

that’s in season instead, and the juice might be another color. Or sweeter. Consumers 

demand consistency. That might be easy with Sunny D, but how do you get that out of a 

bunch of vats of freshly squeezed, very chilled orange juice?

You Use a Blending Model
On the hit TV show Downton Abbey, the wealthy Lord Grantham invests all his family’s 

money in a single railroad venture. It’s risky. And he loses big. Apparently in the early 

1900s, diversifi cation was not a popular concept. 

By averaging the risk and return of an investment portfolio across multiple investments, 

the odds of you striking it rich probably decrease, but so do the odds of your going broke. 

This same approach applies to orange juice production today.

Juice can be procured from all around the world, from diff erent oranges in diff erent 

seasons. Each product has diff erent specs—some might be a bit more tart, some a bit 

more astringent, and others might be sickly sweet. By blending this “portfolio” of juices, 

a single consistent taste can be maintained.

That’s the problem you’ll work through in this section. How do you build a blending 

model that reduces cost while maintaining quality, and what type of wrenches might get 

thrown into the works that would need to get mathematically formulated along the way?

Let’s Start with Some Specs
Let’s say you’re an analyst working at JuiceLand and your boss, Mr. Juice R. Landingsly 

III (your company is full of nepotism), has asked you to plan the procurement of juice 

from your suppliers for January, February, and March of this coming year. Along with this 

assignment, Mr. Landingsly hands you a sheet of specs from your suppliers containing 

the country of origin and varietal, the quantity available for purchase over the next three 

months, and the price and shipping cost per 1,000 gallons. 



120 Data Smart

The specs sheet rates the color of the juice on a scale from one to ten and three fl avor 

components:

• Brix/Acid ratio: Brix is a measure of sweetness in the juice, so Brix/Acid ratio is a 

measure of sweetness to tartness, which in the end, is really what orange juice is 

all about.

• Acid (%): Acid as a percentage of the juice is broken out individually, because at 

a certain point, it doesn’t really matter how sweet the juice is, it’s still too acidic.

• Astringency (1–10 scale): A measure of the “green” quality of the juice. It’s that 

bitter, unripe, planty fl avor that can creep in. This scale is assessed by a panel of 

tasters at each juicing facility on a scale of 1–10.

All of these specifi cations are represented in the specifi cations spreadsheet pictured 

in Figure 4-18.

Figure 4-18: The specs sheet for raw orange juice procurement

Whatever juice you choose to buy will be shipped to your blending facility in large, 

aseptic chilled tanks, either by cargo ship or rail. That’s why there isn’t a shipping cost 

for the Florida Valencia oranges—the blending facility is located in your Florida grove 

(where, back in the good old days, you grew all the oranges you needed).

Look over the specs pictured in Figure 4-18. What can you say about them? The juice 

is coming from an international selection of varietals and localities.

Some juice, such as that from Mexico, is cheap but a bit off . In Mexico’s case, the astrin-

gency is very high. In other cases, such as the Sunstar oranges from Texas, the juice is 

sweeter and less astringent, but the cost is higher.



121Optimization Modeling

Which juice you buy for the next three months depends on some considerations:

• If you’re minimizing cost, can you buy whatever you want?

• How much juice do you need?

• What are the fl avor and color bounds for each batch?

Coming Back to Consistency
Through taste tests and numerous customer interviews, JuiceLand has determined what 

their orange juice should taste and look like. Any deviation outside the allowable range 

of these specs and customers are more likely to label the juice as generic, cheap, or even 

worse, from concentrate. Eek.

Mr. Landingsly III lays out the requirements for you:

• He wants the lowest cost purchase plan for January, February, and March that 

meets a projected demand of 600,000 gallons of juice in January and February and 

700,000 gallons in March.

• JuiceLand has entered an agreement with the state of Florida which provides the 

company tax incentives so long as the company buys at least 40 percent of its juice 

each month from Florida Valencia growers. Under no circumstances are you to 

violate this agreement.

• The Brix/Acid ratio (BAR) must stay between 11.5 and 12.5 in each month’s blend.

• The acid level must remain between 0.75 and 1 percent.

• The astringency level must stay at 4 or lower.

• Color must remain between 4.5 and 5.5. Not too watery, not too dark.

Real quickly shove those requirements into an outline of an LP formulation:

• Objective: Minimize procurement costs.

• Decisions: Amount of each juice to buy each month

• Constraints:

• Demand

• Supply

• Florida Valencia requirement

• Flavor

• Color

Putting the Data into Excel
To model the problem in Excel, the fi rst thing you need to do is create a new tab to house 

the formulation. Call it Optimization Model.



122 Data Smart

In cell A2, under the label Total Cost, put a placeholder for the objective. 

Below that, in cell A5, paste everything from the Specs tab, but insert four columns 

between the Region and Qty Available columns to make way for the decision variables as 

well as their totals by row. 

The fi rst three columns will be labeled January, February, and March, while the fourth 

will be their sum, labeled Total Ordered. In the Total Ordered column, you need to sum 

the three cells to the left, so for example in the case of Brazilian Hamlin oranges, cell F6 

contains:

=SUM(C6:E6)

You can drag cell F6 down through F16. Placing some conditional formatting on the 

range C6:E16, the resulting spreadsheet looks like the one in Figure 4-19.

Figure 4-19: Setting up the blending spreadsheet

Below the monthly purchase fi elds, add some fi elds for monthly procurement and 

shipping costs. For January, place the monthly procurement cost in cell C17 as follows:

=SUMPRODUCT(C6:C16,$L6:$L16)

Once again, since only the C column is a decision variable, this calculation is linear. 

Similarly, you need to add the following calculation to C18 to calculate shipping costs 

for the month:

=SUMPRODUCT(C6:C16,$M6:$M16)

Dragging these formulas across columns D and E, you’ll have all of your procurement 

and shipping costs calculated. You can then set the objective function in cell A2 as the 

sum of C17:E18. The resulting spreadsheet is pictured in Figure 4-20.



123Optimization Modeling

Figure 4-20: Cost calculations added to the juice blending worksheet

Now add the calculations you need to satisfy the demand and Florida Valencia con-

straints. On row 20, sum the total quantity of juice procured on that month, and on row 21, 

place the required levels of 600, 600, and 700, respectively into columns C through E.

As for total Valencia ordered from Florida, map C8:E8 to cells C23:E23 and place the 

required 40 percent of total demand (240, 240, 280) below the values.

This yields the spreadsheet shown in Figure 4-21.

Now that you’ve covered the objective function, the decision variables, and the supply, 

demand, and Valencia calculations, all you have left are the taste and color calculations 

based on what you order.

Let’s tackle Brix/Acid ratio fi rst. In cell B27, put the minimum BAR of the blend, which 

is 11.5. Then in cell C27, you can use the SUMPRODUCT of the January orders (column C) 

with their Brix/Acid specs in column H, divided by total demand, to get the average Brix/

Acid ratio. 

WARNING

Do not divide through by total ordered, as that’s a function of your decision variables! 

Decisions divided by decisions are highly non-linear.



124 Data Smart

Figure 4-21: Demand and Valencia calculations added

Just remember, you’ll be setting the total ordered amount equal to projected demand 

as a constraint, so there’s no reason not to just divide through by demand when getting 

the average BAR of the blend. Thus, cell C27 looks as follows:

=SUMPRODUCT(C$6:C$16,$H$6:$H$16)/C$21

You can drag that formula to the right through column E. In column F, you’ll fi nish 

off  the row by typing in the maximum BAR of 12.5. You can then repeat these steps to 

set up calculations for acid, astringency, and color in rows 28 through 30. The resulting 

spreadsheet is pictured in Figure 4-22.

Setting Up the Problem in Solver
All right, so you have all the data and calculations you need to set up the blending prob-

lem in Solver. The fi rst thing you need to specify in Solver is the total cost function in A2 

that you’re minimizing.

The decision variables are the monthly purchase amounts of each varietal housed in 

the cell range C6:E16. Once again, these decisions can’t be negative, so make sure the 



125Optimization Modeling

Make Unconstrained Variables Non-Negative box is checked (Assume Linear Model is 

checked in Excel 2007).

Figure 4-22: Adding taste and color constraints to the worksheet

When it comes to adding constraints, this problem really deviates from the guns and 

butter example. There are a lot of them.

The fi rst constraint is that the orders on row 20 must equal demand on row 21 for each 

month. Similarly, the Florida Valencia orders on row 23 should be greater than or equal 

to the required amount on row 24. Also, the total quantity ordered from each geography, 

calculated in F6:F16, should be less than or equal to what’s available in G6:G16.

With supply and demand constraints added, you need to add the taste and color 

constraints. 

Now, Excel won’t let you put a constraint on two diff erently sized ranges, so if you enter 

C27:E30 ≥ B27:B30, it’s not going to understand how to handle that. (I fi nd this terribly 

irritating.) Instead, you have to add constraints for columns C, D, and E individually. For 

example, for January orders you have C27:C30 ≥ B27:B30 and C27:C30 ≤ F27:F30. And 

the same goes for February and March.

After you add all those constraints, make sure that Simplex LP is the chosen solving 

method. The fi nal formulation should look like Figure 4-23.



126 Data Smart

Figure 4-23: The populated Solver dialog for the blending problem

Solving, you get an optimal cost of $1.23 million dollars in procurement costs (see 

Figure 4-24). Note how Florida Valencia purchases hug their lower bound. Obviously, 

these oranges aren’t the best deal, but the model is being forced to make do for tax pur-

poses. The second most popular orange is the Verna out of Mexico, which is dirt cheap 

but otherwise pretty awful. The model balances this bitter, acidic juice with mixtures of 

Belladonna, Biondo Commune, and Gardner, which are all milder, sweeter, and superior 

in color. Pretty neat!

Lowering Your Standards
Excited, you bring your optimal blend plan to your manager, Mr. Landingsly III. You 

explain how you arrived at your answer, and he eyes it with suspicion. Even though you 

claim it’s optimal, he wants you to shave an additional 5 percent off  the cost. He explains 

his seemingly nonsensical position using mostly sports analogies about “playing all four 

quarters” and “giving 110 percent.”

There’s no use arguing against sports analogies. If $1,170,000 is the sweet spot, then so 

be it. You explain that there’s no way to achieve that within the current quality bounds, 

and he merely grunts and tells you to “bend reality a bit.”

Hmmm…



127Optimization Modeling

You return to your spreadsheet fl ustered.

How do you get the best blend for a cost of $1,170,000?

After the heart to heart with Mr. Landingsly, cost is no longer an objective. It’s a con-

straint! So what’s the objective? 

Figure 4-24: Solution to the orange juice-blending problem

Your new objective based on the bossman’s grunts appears to be fi nding the solution 

that degrades quality the least for 1.17 million dollars. And the way to implement that is to 

stick a decision variable in the model that loosens up the quality constraints.

Go ahead and copy the Optimization Model tab into a new sheet, called Relaxed Quality. 

You don’t have to change a whole lot to make this work.

Take a moment and think about how you might change things around to accommo-

date the new relaxed quality objective and cost constraint. Don’t peak ahead until your 

head hurts!

All right.

The fi rst thing you do is pop $1,117,000 as the cost limit in cell B2 right next to the old 

objective. Also, copy and paste values of the old minima and maxima for taste and color 

into columns H and I, respectively. And in column G on rows 27 through 30, add a new 

decision variable called % Relaxed.

Now consider how you might use the Brix/Acid relaxation decision in cell G27 to relax 

the lower bound of 11.5. Currently, the allowable band of Brix/Acid is 11.5 to 12.5, which 



128 Data Smart

is a width of 1. So a 10 percent broadening at the bottom of the constraint would make 

the minimum 11.4.

Following this approach, replace the minimum in B27 with this formula: 

=H27-G27*(I27-H27)

This takes the old minimum, now in H27, and subtracts from it the percent relaxation 

times the distance of the old maximum from the old minimum (I27 minus H27). You can 

copy this formula down through row 30. Similarly, implement the relaxed maximum in 

column F.

For the objective, take the average of the relaxation decisions in G27:G30. Placing this 

calculation in cell D2, the new sheet now looks like Figure 4-25.

Figure 4-25: Relaxed quality model

Open Solver and change the objective to minimize the average relaxation of the quality 

bounds calculated in cell D2. You also need to add G27:G30 to the list of decision variables 

and set the cost in A2 as less than or equal to the limit in B2. This new formulation is 

pictured in Figure 4-26.



129Optimization Modeling

To recap then, you’ve transformed your previous cost objective into a constraint with 

an upper bound. You’ve also transformed your hard constraints on quality into soft con-

straints that can be relaxed by altering G27:G30. Your objective in D2 is to minimize the 

average amount you must degrade quality across your specs. Press Solve.

Figure 4-26: Solver implementation of the relaxed quality model

Excel fi nds that with an average relaxation of 35 percent on each end of the bounds, a 

solution can be achieved that meets the cost constraint, as shown in Figure 4-27.

Now that you have the model set up, one thing you can do is provide more information 

to Mr. Landingsly than he asked for. You know that for $1.23 million you get a quality 

degradation of 0 percent, so why not step down the cost in increments of 20 grand or so 

and see what quality degradation results? At $1.21 million it’s 5 percent, at $1.19 million 

it’s 17 percent, and so forth, including 35 percent, 54 percent, 84 percent, and 170 percent. 

If you try to dip below $1.1 million the model becomes infeasible.

Creating a new tab called Frontier, you can paste all these solutions and graph them 

to illustrate the trade-off  between cost and quality (see Figure 4-28). To insert a graph 

like the one pictured in Figure 4-28, simply highlight the two columns of data on the 

Frontier sheet and insert a Smoothed Line Scatter plot from the Scatter selection in Excel 

(see Chapter 1 for more on inserting charts).



130 Data Smart

Figure 4-27: Solution to the relaxed quality model

Figure 4-28: Graphing the trade-off between cost and quality



131Optimization Modeling

Dead Squirrel Removal: The Minimax Formulation
If you look at the relaxed quality solution for a cost bound of $1.17 million, there’s a poten-

tial problem. Sure, the average relaxation across the taste and color bounds is 35 percent, 

but for color it’s 80 percent and for Brix/Acid ratio it’s 51 percent. The average hides this 

variability.

What you’d rather do in this situation is minimize the maximum relaxation across the four 

quality bounds. This problem is commonly called a “minimax” problem because you’re 

minimizing a maximum, and it’s fun to say really fast. Minimax, minimax, minimax.

But how can you do that? If you make your objective function MAX(G27:G30), you’ll be 

non-linear. You could try that with the evolutionary solver, but it’ll take forever to solve. 

It turns out there’s a way to model this non-linear problem in a linear way.

First, copy the relaxed model to a new tab called Minimax Relaxed Quality. 

Now, how many of you have had to pick up and get rid of a dead animal? Last summer 

I had a squirrel die in my blisteringly hot attic here in Atlanta, and the smell knocked 

many brave men and women to their knees.

How did I get rid of that squirrel? 

I refused to touch it or deal with it directly. 

Instead, I scooped it from below with a shovel and pressed down on it from above with 

a broom handle. It was like picking it up with giant salad tongs or chopsticks. Ultimately, 

this pincer move had the same eff ect as grabbing the squirrel with my bare hands, but it 

was less gross.

You can handle the calculation MAX(G27:G30) in the same way I handled that dead 

squirrel. Since you’re no longer computing the average of G27:G30, you can clear out the 

objective in D2. That’s where you would compute the MAX() function, but you can leave 

the cell blank. It needs to be lifted up to the max somehow without being touched directly.

Here’s how you can do it:

 1. Set the objective, D2, to be a decision variable, so that the algorithm can move it as 

needed. Keep in mind that since you’ve set the model to be a minimization, Simplex 

is going to try to send this cell down as far as it can go.

 2. Set G27:G30 to be less than or equal to D2 using the Add Constraint window. 

D2 must go in the right side of the Add Constraint dialogue for Excel to allow an 

unequal number of cells (4 cells in a range on the left side and 1 upper bound on 

the right side). Unlike elsewhere in this chapter where you couldn’t use two dif-

ferent sized ranges in a constraint, this works because Excel has been designed to 

understand the case where the right side of the constraint is a single cell.



132 Data Smart

Okay, so what did you just do?

Well, as the objective function of the model, simplex will try to force D2 down to 0, 

while the taste and color constraints will force it up to maintain a workable blend. Where 

will cell D2 land? The lowest it can go will be the maximum of the four relaxation per-

centages in G27 through G30.

Once the objective strikes that maximum, the only way the Solver can make progress 

is by forcing that maximum down. Just like with the squirrel, the constraints are the 

shovel under the squirrel and the minimization objective is the mop handle pressing 

down. Hence, you get the term “minimax.” Pretty cool, ain’t it? Or gross...depending on 

how you feel about dead squirrels.

Now that you’ve cleared out the formula in D2, the implementation in Solver (making 

D2 a variable and adding G27:G30 ≤ D2) looks like Figure 4-29.

Figure 4-29: Solver setup for minimax quality reduction

Solving this setup yields a quality reduction of 58.7 percent, which, while greater than 

the average 34.8 percent from the previous model, is a vast improvement over the worst-

case color relaxation of 84 percent. 



133Optimization Modeling

If-Then and the “Big M” Constraint
Now that you have a feel for vanilla linear modeling, you can add some integers. Mr. 

Landingsly III eventually signs off  on your original procurement plan, but when you 

deliver it to the supply chain team, their eyes start twitching uncontrollably.

They refuse to procure juice in any given month from more than four suppliers. Too 

much paperwork, apparently.

Okay, so how do you handle this within the model? 

Take a minute and think about what model modifi cations might be required before 

moving on.

Start by copying the original Optimization Model sheet to a new tab called Optimization 

Model (Limit 4).

Now, regardless of how much juice you buy from a supplier, whether it’s 1,000 gallons 

or 1,000,000 gallons, that counts as an order from one supplier. In other words, you need 

to fi nd a way to fl ick a switch the moment you order a drop of juice from a supplier.

In integer programming, a “switch” is a binary decision variable, which is merely a cell 

that Solver can set to 0 or 1 only.

So what you want to do is defi ne a range the same size as your order variables only it’ll 

hold 0s and 1s, where a 1 is set when an order gets placed.

You can place these variables in range C34:E44. Now, assuming they’re going to be 

set to 1 when you place an order from the supplier, you can sum up each column in row 

45 and make sure the sum is less than the limit of 4, which you can toss in row 46. The 

resulting spreadsheet is pictured in Figure 4-30.

Here’s the tricky part though. You can’t use an IF formula that sets the indicator to 1 

when the order quantity above is nonzero. That would be non-linear, which would force 

you to use the much slower evolutionary algorithm. For truly large problems with if-then 

constraints, the slower non-linear algorithms become useless. So you’ll need to “turn on” 

the indicator using linear constraints instead.

But say you add a constraint to have the Brazilian Hamlin indicator variable turn on 

when you place an order by using the constraint C34 ≥ C6. 

If C34 is supposed to be binary, then that’s going to limit C6 to a max of 1 (that is, 

1,000 gallons ordered).

Thus, you have to model this if-then statement, “if we order, then turn on the binary 

variable,” using something colloquially called a “Big M” constraint. “Big M” is just a num-

ber, a big number, called M. In the case of C34, M should be big enough that you’d never 



134 Data Smart

order more Brazilian Hamlin than M. Well, you’ll never order more juice than is available, 

right? For Hamlin, the available quantity is 672 thousand gallons. So make that M.

Figure 4-30: Adding indicator variables to the spreadsheet

Then you can set a constraint where 672*C34 ≥ C6. When C6 is 0, C34 is allowed to 

be zero. And when C6 is greater than zero, C34 is forced to fl ip to 1 in order to raise the 

upper bound from 0 to 672.

To implement this in the spreadsheet, you set up a new range of cells in F34:H44 where 

you’ll multiply the indicators to the left times their respective available quantities in range 

G6:G16. The result is pictured in Figure 4-31.

In Solver, you need to add C34:E44 to the range of decision variables. You also need 

to make them binary, which you accomplish by putting a bin constraint on the range.

To put the “Big M” constraint in eff ect, you set C6:E16 ≤ F34:H44. You can then check 

the supplier counts and make sure they’re under four by setting C45:E45 ≤ C46:E46. The 

resulting spreadsheet is pictured in Figure 4-32.



135Optimization Modeling

Figure 4-31: Setting up our “Big M” constraint values

Figure 4-32: Initializing Solver



136 Data Smart

Press Solve. You’ll notice that the problem takes longer to solve with the addition of the 

binary variables. When using integer and binary variables in your formulation, Solver will 

display the best “incumbent” solution it fi nds in the status bar. If for some reason Solver 

is taking too long, you can always press the Escape key and keep the best incumbent it’s 

found so far.

As shown in Figure 4-33, the optimal solution of the model restricted to four suppliers 

per month is $1.24 million, about $16,000 more than the original optimum. Armed with 

this plan, you can return to the supply chain team and ask them if their reduced paper-

work is worth an extra $16,000. 

Quantifying the introduction of new business rules and constraints in this way is 

one of the hallmarks of employing optimization modeling in a business. You can place 

a dollar fi gure to a business practice and make an informed decision to the question, “Is 

it worth it?”

Figure 4-33: Optimal solution limited to four suppliers per period



137Optimization Modeling

That’s how “Big M” constraints are set up; you’ll encounter them again in the graph 

clustering problem in Chapter 5.

Multiplying Variables: Cranking Up the Volume to 11

OPENSOLVER NEEDED FOR EXCEL 2010 AND EXCEL 2013

That last bit was tough, but it was child’s play compared to this next business rule 

you’re going to model.

For this next problem, please keep the worked spreadsheet available for download 

with you for reference. This is a tough one but worth learning if your business is con-

fronted with complex optimization problems. Also, nothing in the book is dependent 

on you learning this section, so if it gets too hard, just skip ahead. That said, I urge you 

to dig deep and give it a shot.

If you’re working in Excel 2010 or Excel 2013, you’ll want to have OpenSolver 

installed and loaded (see Chapter 1 for an explanation). If you don’t use OpenSolver to 

solve the problem in those versions of Excel, you’ll get an error saying the optimization 

model is too large. To use OpenSolver in this chapter, set up the problem normally as 

shown in this section, but when it comes time to solve, use OpenSolver’s Solve button 

on the ribbon.

Before you implement the limited supplier plan, you’re informed that the new “acid-

reducers” have been hooked up in the blending facility. Using ion exchange with a bed 

of calcium citrate, the technology is able to neutralize 20 percent of the acid in the juice 

that’s run through it. This not only reduces acid percent by 20 but also increases the Brix/

Acid ratio by 25 percent.

But the power and raw materials needed to run the reducer cost $20 per 1,000 gal-

lons of juice put through it. Not all orders from suppliers need to be put through the de-

acidifi cation process; however, if an order is processed through the ion exchanger, the 

entire order must be pumped through.

Can you create a new optimal plan that tries to use ion exchange to reduce the optimal 

cost? Think about how you might set this one up. You now have to make a new set of 

decisions regarding when and when not to reduce the acid. How might those decisions 

interact with order quantities?

Start by copying the Optimization Model (Limit 4) tab to a new tab. Call it Optimization 

Model Integer Acid.



138 Data Smart

The problem with this business rule is that the natural way to model it is non-linear, 

and that would force you to use a slow optimization algorithm. You could have a binary 

variable that you “turn on” when you want to de-acidify an order, but that means that the 

cost of that de-acidifcation is: 

De-acid indicator * Amount purchased * $20

You can’t multiply two variables together unless you want to switch to using the non-

linear solver, but that thing is never gonna fi gure out the complexities of this model. There 

has to be a better way to do this. Keep this in mind when doing linear programming: There 

are very few things that cannot be linearized through the judicious use of new variables 

manipulated by additional constraints and the objective function like a pair of salad tongs.

The fi rst thing you’re going to need is a set of new binary variables that get “turned 

on” when you choose to de-acidify a batch of juice. You can insert a new chunk of them 

in a rectangle between the Valencia orders and the quality constraints (cells C26:E36).

Furthermore, you can’t use the product of De-acid indicator * Amount purchased, 

so instead you’ll create a new grid of variables below the indicators that you’re going to 

force to equal this amount without expressly touching them (a la dead squirrel). Insert 

these empty cells in C38:E48.

The spreadsheet now has two empty grids of variables—the indicators and the total 

amount of juice being fed through acid reduction—as shown in Figure 4-34.

Now, if you want to multiply a de-acidifi cation binary variable times the amount of 

juice you’ve ordered, what are the values that product can take on? There are a number 

of distinct possibilities:

• If both the indicator and the product purchase amount are 0, their product is 0. 

• If you order some juice but decide to not reduce the acid, the product is still 0. 

• If you choose to reduce, the product is merely the amount of juice ordered.

In every case, the total possible juice that can be de-acidifi ed is limited by the de-

acidifi cation indicator variable times the total juice available to purchase. If you don’t 

reduce the acid, this upper bound goes to zero. If you choose to reduce, the upper bound 

pops up to the max available for purchase. This is a “Big M” constraint just like in the 

last section.

For Brazilian Hamlin then, this “Big M” constraint could be calculated as the indicator 

in cell C26 times the amount available for purchase, 672,000 gallons, in cell G6. Adding 

this calculation next to the indicator variables in cell G26, you can copy it to the remain-

ing months and varietals.

This yields the worksheet shown in Figure 4-35.



139Optimization Modeling

Figure 4-34: Indicator and amount variables added for the de-acidifi cation decision

On the fl ip side, the total possible juice that can be de-acidifi ed is limited by the 

amount you decide to purchase, given in C6:E16. So now you have two upper bounds on 

this product:

• De-acid indicator * Amount available for purchase

• Amount purchased

That’s one upper bound per variable in the original non-linear product.

But you can’t stop there. If you decide to de-acidify a batch, you need to send the whole 

batch through. That means you have to add a lower bound to the two upper bounds to 

help “scoop up” the de-acidifi ed amount in C38:E48.

So how about just using the purchase amount as the lower bound? In the case where 

you decide to de-acidify, that works perfectly. You’ll have a lower bound of the purchase 



140 Data Smart

amount, an upper bound of the purchase amount, and an upper bound of the total amount 

available for purchase times a de-acidifi cation indicator set to 1. These upper and lower 

bounds force the amount going through de-acidifi cation to be the whole shipment, which 

is what you want. 

Figure 4-35: Calculation added for upper bound on how much juice can be de-acidifi ed

But what if you choose not to de-acidify a batch? Then one of the upper bounds becomes 

an indicator of 0 times the amount available to purchase, whereas the lower bound is still 

the amount purchased. In that case, a non-zero purchase amount that’s not de-acidifi ed 

becomes impossible.

Hmmm. 

So you need a way to “turn off ” this lower bound in the situation where you choose 

not to de-acidify the juice.



141Optimization Modeling

Instead of making the lower bound the amount you ordered, why not make it the 

following: 

Amount purchased - Amount available for purchase * (1 – de-acid 
indicator)

In the case where you choose to de-acidify, this lower bound bounces up to the amount 

you purchased. In the case where you don’t de-acidify, this value becomes less than or 

equal to 0. The constraint still exists, but it’s for all intents worthless.

It’s a bit janky, I know.

Try working it through an example. You buy 40,000 gallons of the Brazilian Hamlin 

juice. Furthermore, you decide to de-acidify. 

The upper bounds on the amount you’re de-acidifying are the amount purchased of 40 

and the de-acid indicator times the amount available of 672.

The lower bound on the amount you’re de-acidifying is 40 – 672 * (1-1) = 40. In other 

words, you have upper and lower bounds of 40, so you’ve sandwiched the amount you’re 

de-acidifying right into De-acid indicator * Amount purchased without ever calculat-

ing this quantity.

If I choose not to de-acidify the Hamlin, the indicator is set to 0. In that case you have 

upper bounds of 40 and 672*0 = 0. You have a lower bound of 40 – 672 * (1-0) = -632. 

And since you’ve checked the box making all the variables be non-negative, that means 

that the amount of Hamlin you’re de-acidifying is sandwiched between 0 and 0. 

Perfect! 

All right, so let’s add this lower bound in a grid to the right of the upper bound calcula-

tion. In cell K26 you’d type:

=C6-$G6*(1-C26)

And you can copy that formula to each varietal and month, giving you the spreadsheet 

in Figure 4-36.

Next to the Total Reduced section, subtract that value from the total purchases in 

C6:E16 to get the remaining Not Reduced quantities of juice. For example, in cell G38, 

you place:

=C6 – C38

You can drag this across and down to the remaining cells in the grid (see Figure 4-37).

Wrapping up the formulation, you need to alter the cost, Brix/Acid, and Acid % calcula-

tions. For cost, you can just add $20 times the sum of the month’s Total Reduced values 

into the Price cell. For example, January’s Price calculation would become:

=SUMPRODUCT(C6:C16,$L6:$L16)+20*SUM(C38:C48)

which you can then drag across to February and March.



142 Data Smart

Figure 4-36: Adding in a lower bound on de-acidifi cation

The Brix/Acid and Acid % calculations will now be calculated off  of the split quantities 

in the Total Reduced and Not Reduced sections of the spreadsheet. Not Reduced values will 

be put through a SUMPRODUCT with their original specs, whereas the same SUMPRODUCT using 

the reduced acid juice will be scaled by 1.25 and 0.8, respectively, for BAR and Acid and 

added to the total in the monthly averages.

For example, Brix/Acid for January in C51 can be calculated as:

=(SUMPRODUCT(G38:G48,$H6:$H16)+SUMPRODUCT(C38:C48,$H6:$H16)*1.25)/C21



143Optimization Modeling

Now you need to modify the model in Solver. The objective function remains the same 

(sum of price and shipping), but the decision variables now include the de-acid indicators 

and amounts to be reduced located in C26:E36 and C38:E48.

As for the constraints, you need to indicate that C26:E36 is bin. Also, C38:C48 is less 

than or equal to the two upper bounds in C6:E16 and G26:I36. Also, you need a lower 

bound constraint where C38:E48 is greater than or equal to K26:M36.

This all yields the new model pictured in Figure 4-38.

Figure 4-37: Adding a “Not Reduced” calculation



144 Data Smart

Figure 4-38: Solver formulation for the de-acidifi cation problem

Press Solve and let the Branch and Bound do its thing. You’ll end up with an optimal 

solution that’s about $4,000 lower than in the previous formulation. Examining the new 

decision variables, you fi nd that two batches—one from Arizona and one from Texas—are 

going through the de-acidifi cation process. The lower and upper bounds for those two 

batches match precisely to force the product of the variables into place (see Figure 4-39).

Modeling Risk
That last business rule was a toughie, but it illustrates how a modeler can linearize most 

business problems by adding more constraints and variables. However, no matter how 

easy or hard the previous problems were, they all had one thing in common—they treat 

the input data as gospel.

This doesn’t always conform to the reality many businesses fi nd themselves in. Parts are 

not all to spec, shipments don’t always arrive on time, demand doesn’t match the forecast, 

and so on. In other words, there’s variability and risk in the data.

So how do you take that risk and model it within an optimization model?



145Optimization Modeling

Figure 4-39: Solved de-acidifi cation model

Normally Distributed Data
In the orange juice problem, you’re trying to blend juices to take out variability, so is it 

reasonable to expect that the product you’re getting from your suppliers won’t have vari-

able specs?

Chances are that shipment of Biondo Commune orange juice you’re getting from Egypt 

won’t have an exact 13 Brix/Acid ratio. That may be the expected number, but there’s 

probably some give around it. And oftentimes, that wiggle room can be characterized 

using a probability distribution.

A probability distribution, loosely speaking, gives a likelihood to each possible outcome 

of some situation, and all the probabilities add up to 1. Perhaps the most famous and 

widely used distribution is the normal distribution, otherwise known as the “bell curve.” 

The reason why the bell curve crops up a lot is because when you have a bunch of inde-

pendent, complex, real-world factors added together that produce randomly distributed 



146 Data Smart

data, that data will often be distributed in a normal or bell-like way. This is called the 

central limit theorem.

To see this, let’s do a little experiment. Pull out your cell phone and grab the last four 

digits of each of your saved contacts’ phone numbers. Digit one will probably be uniformly 

distributed between 0 and 9, meaning each of those digits will show up roughly the same 

amount. Same goes for digits 2, 3, and 4. 

Now, let’s take these four “random variables” and sum them. The lowest number you 

could get is 0 (0 + 0 + 0 + 0). The highest is 36 (9 + 9 + 9 + 9). There’s only one way to get 

0 and 36. There are four ways to get 1 and four ways to get 35, but there’s a ton of ways to 

get 20. So if you did this to enough phone numbers and graphed a bar chart of the various 

sums, you’d have a bell curve that looks like Figure 4-40 (I used 1,000 phone numbers to 

get the fi gure, because I’m just that popular).  

1
0

10

20

30

40

50

60

70

80

3 5 7 9 11 13 15 17 19 21 23
Sum of 4 digits

Summing the last 4 digits of the numbers
in your cell phone’s contact list

C
o
u
n
t 

o
f 

in
st

a
n
ce

s

25 27 29 31 33

Figure 4-40: Combining independent random variables to illustrate how they gather into a bell curve

The Cumulative Distribution Function

There’s another way of drawing this distribution that’s going to be super helpful, and it’s 

called the cumulative distribution function (CDF). The cumulative distribution function 

gives the probability of an outcome that’s less than or equal to a particular value.

In the case of the cell phone data, only 12 percent of the cases are less than or equal to 

10, whereas 100 percent of the cases are less than or equal to 36 (since that’s the largest 

possible value). This cumulative distribution is pictured in Figure 4-41.



147Optimization Modeling

1
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3 5 7 9 11 13 15 17 19 21 23
Digit sum

Cumulative distribution function for summing last 4
phone number digits

%
 t

h
a
t’

s 
L
E
S

S
 T

H
A

N
 O

R
 E

Q
U

A
L

 T
O

 d
ig

it
 s

u
m

25 27 29 31 33

Figure 4-41: The cumulative distribution function for the cell phone contact sums 

And here’s the cool thing about the cumulative distribution function—you can read it 

backward to generate samples from the distribution. 

For example, if you wanted to generate a random value from this contact list four-digit 

sum distribution, you could generate a random number between 0 and 100 percent. Say 

you come up with 61 percent as your random value. Looking that up on the vertical axis 

of the CDF, 61 percent lines up with 19 on the horizontal axis. And you could do this 

over and over to generate a lot of samples from the distribution.

Now, a normal CDF can be described completely by two numbers: a mean and a standard 

deviation. The mean is nothing more than the center of the distribution. The standard 

deviation measures the variability or spread of the bell curve around the mean. 

Say in the case of the juice you order from Egypt, it has a Brix/Acid mean of 13 and a 

standard deviation of 0.9. That means that 13 is the center of the probability distribution 

and 68 percent of orders are going to be within +/-0.9 of 13, 95 percent will be within two 

standard deviations (+/-1.8), and 99.7 percent will be within three standard deviations 

(+/-2.7). This is sometimes called the “68-95-99.7” rule.

In other words, it’s pretty likely you’ll receive a 13.5 Brix/Acid batch from Egypt, but 

it’s very unlikely you’ll receive a 10 Brix/Acid batch.



148 Data Smart

CALCULATING THE SAMPLE MEAN AND STANDARD DEVIATION

For those of you who haven’t calculated standard deviation before and are interested 

to know how it’s done, it’s super easy.

Figure 4-42 shows the past 11 orders of the Biondo Commune orange juice from 

Egypt and their respective Brix/Acid measurements in column B. The sample mean of 

those measures is 13, as given in the original specs spreadsheet. 

The sample estimate of the standard deviation is just the square root of the mean 

squared error. By “error,” I just mean the deviation of each order from the expected 

value of 13.

In column C of Figure 4-42, you can see the error calculation, and the squared error 

calculation is in column D. The mean squared error is AVERAGE(D2:D12), which comes 

out to 0.77. The square root of the mean squared error is then 0.88. Easy enough!

In practice however, when calculating the sample standard deviation for a small 

number of orders, you get a better estimate if you sum the squared error and divide 

through by 1 less than your total orders (in this case 10 instead of 11).

If you make this adjustment, the standard deviation becomes 0.92, as shown in 

Figure 4-42.

Figure 4-42: An example of the sample standard deviation calculation

Generating Scenarios from Standard Deviations in the Blending Problem

NOTE

Just as in the previous section, those using Excel 2010 and Excel 2013 will need to 

employ OpenSolver. Just set the problem up normally and use the OpenSolver Solve 

button on the ribbon when the time comes. See Chapter 1 for more detail on OpenSolver.

Imagine instead of receiving the Specs tab, you received standard deviations along with 

your specifi cations in a tab titled Specs Variability, as shown in Figure 4-43. The goal is 



149Optimization Modeling

to fi nd a blending plan that’s less than $1.25 million dollars that best meets the quality 

expectations in light of supplier variability.

You can create a copy of the original Minimax Relaxed Quality tab called the Robust 

Optimization Model, where the new standard deviations will go in N6:Q16 adjacent to 

the old specifi cations.

Once they’re in there, what do you do with them? 

You’re going to use the mean and standard deviation for the specs to take a Monte 

Carlo simulation approach to solving this problem. The Monte Carlo method means that 

instead of somehow incorporating the distribution directly into the model, you sample 

the distribution, creating scenarios or instantiations from each set of samples, and then 

include those samples in the model.

A scenario is one possible answer to the question, “If these are the distributions for 

my stats, what would an actual order look like?” To draw a scenario, you read the nor-

mal CDF—characterized by the mean and standard deviation—backward, as discussed 

previously with Figure 4-41.

Figure 4-43: Specifi cations with standard deviation added

The formula in Excel for reading the normal CDF backward (or “inverted” if you like) 

is NORMINV.

So generate a scenario in column B, starting at row 33 below everything that’s in the 

worksheet already. You can call this Scenario 1.

In B34:B44 you’ll generate an actual scenario of Brix/Acid values for all the suppliers. 

In B34 generate a random value for Brazilian Hamlin where its mean Brix/Acid is 10.5 

(H6) and its standard deviation is 2 (N6) using the NORMINV formula:

=NORMINV(RAND(),$H6,$N6)



150 Data Smart

You’re feeding a random number between 0 and 100 percent into NORMINV along with 

the mean and standard deviation, and out pops a random Brix/Acid value. Let’s drag that 

formula down to B44. 

Starting at B45, you can do the same thing for Acid, then Astringency, then Color. The 

range B34:B77 now contains a single scenario, randomly drawn from the distributions. 

Dragging this scenario across the columns all the way to CW (note the absolute refer-

ences that allow for this), you can generate 100 such random spec scenarios. Solver can’t 

understand them if they remain non-linear formulas, so go ahead and copy and paste the 

scenarios on top of themselves as values only. Now the scenarios are fi xed data.

This mound of scenario data in B34:CW77 is pictured in Figure 4-44.

Figure 4-44: 100 generated juice spec scenarios



151Optimization Modeling

Setting Up the Scenario Constraints

Okay, so what you want to do is fi nd a solution that relaxes the quality bounds the least 

in order to meet them in each and every scenario you’ve generated. Just fi nd a solution 

that protects the product.

So under the fi rst scenario in cell B79 calculate the BAR for January as:

=SUMPRODUCT($C$6:$C$16,B34:B44)/$C$21

You can do the same for February and March on rows 80 and 81 and then drag the 

entire calculation right through column CW to get a Brix/Acid for each scenario.

Doing the same for the other specs, you end up with calculations on each scenario, as 

shown in Figure 4-45.

Figure 4-45: Spec calculations for each scenario

Setting up the model isn’t all that diffi  cult. You put a cost upper bound of $1.25 mil-

lion in B2. You’re still minimizing D2, the quality relaxation, in a minimax setup. All you 

need to do is place the quality bounds around all of the scenarios rather than just the 

expected quality values.



152 Data Smart

Thus, for BAR, you add that B79:CW81 ≥ B27 and ≤ F27 and similarly for Acid, Astringency, 

and Color, yielding the formulation shown in Figure 4-46.

Figure 4-46: Solver setup for robust optimization

Press Solve. You’ll get a solution rather quickly. Now, if you generated the random 

scenarios yourself rather than keeping the ones provided in the spreadsheet available for 

download, the solution you get will be diff erent. For my 100 scenarios, the best quality I 

could get is a 133 percent relaxation while keeping cost under $1.25 million.

For giggles, you can up the cost upper bound to $1.5 million and solve again. You get a 

114 percent relaxation without the cost even going to the upper bound but rather staying 

at about $1.3 million. It seems that upping the cost higher than that doesn’t give you any 

more leeway to improve quality (see the solution in Figure 4-47). 

And that’s it! You now have a balance of cost and quality that meets constraints even 

in random, real-world situations.



153Optimization Modeling

Figure 4-47: Solution to the robust optimization model

AN EXERCISE FOR THE READER

If you’re a glutton for pain, I’d like to off er one more formulation to work through. 

In the previous problem, you minimized the percent you had to lower and raise the 

quality bounds such that every constraint was satisfi ed. But what if you cared only 

that 95 percent of the scenarios were satisfi ed? 

You would still minimize the quality relaxation percentage, but you’d need to stick 

an indicator variable on each scenario and use constraints to set it to 1 when the sce-

nario’s quality constraints were violated. The sum of these indicators could then be set 

≤5 as a constraint.

Give it a shot. See if you can work it. 



154 Data Smart

Wrapping Up
If you stuck with me on those last couple of models, then bravo. Those suckers weren’t toy 

problems. In fact, this may be the hardest chapter in this book. It’s all downhill from here! 

Here’s a little recap of what you just learned:

• Simple linear programming

• The minimax formulation

• Adding integer variables and constraints

• Modeling if-then logic using a “Big M” constraint

• Modeling the product of decision variables in a linear way

• The normal distribution, central limit theorem, cumulative distribution functions, 

and the Monte Carlo method

• Using the Monte Carlo method to model risk within a linear program

Your head is probably spinning with all sorts of applications of this stuff  to your busi-

ness right now. Or you’ve just downed a stiff  drink and never want to deal with linear 

programming again. I hope it’s the former, because the truth is, you can get arbitrarily 

creative and complex with linear programming. In many business contexts you’ll often 

fi nd models with tens of millions of decision variables.

PRACTICE, PRACTICE, PRACTICE! AND READ SOME MORE

Modeling linear programs, especially when you have to execute funky “squirrel 

removal” tricks, can be rather non-intuitive. The best way to get good at it is to fi nd 

some opportunities in your own line of work that could use modeling and have at it. 

You can’t memorize this stuff ; you have to get a feel for how to address certain mod-

eling peculiarities. And that comes with practice.

If you want some additional linear programming literature to supplement your prac-

tice, here are some free online resources that I highly recommend:

• The AIMMS optimization modeling book available at http://www.aimms.com/

downloads/manuals/optimization-modeling is an incredible resource. Don’t 

skip their two Tips and Tricks chapters; those things are awesome.

• “Formulating Integer Linear Programs: A Rogue’s Gallery” from Brown and Dell 

of the Naval Postgraduate School: http://faculty.nps.edu/gbrown/docs/

Brown_Dell_INFORMS_Transactions_on_Education_January2 0 07.pdf.

http://www.aimms.com
http://faculty.nps.edu/gbrown/docs


5
This chapter continues the discussion on cluster identification and analysis using the 

wholesale wine dataset from Chapter 2. Although it’s perfectly fine to jump around 

in this book, in this case I recommend at least skimming Chapter 2 before reading this 

chapter, because I don’t repeat the data preparation steps, and you’re going to be using 

cosine similarity, which was discussed at the end of Chapter 2.

Also, the techniques used here rely on the “Big M” constraint optimization techniques 

introduced in Chapter 4, so some familiarity with that will be helpful.

This chapter continues addressing the problem of detecting interesting groups of cus-

tomers based on their purchases, but it approaches the problem from a fundamentally 

diff erent direction. 

Rather than thinking about customers huddling around fl ags planted on the dance fl oor 

to assign them to groups, as you did with k-means clustering (Chapter 2), you’re going to 

look at your customers in a more relational way. Customers buy similar things, and in that 

way, they’re related to each other. Some are more “friendly” than others, in that they’re 

interested in the same stuff . So by thinking about how related or not related each customer 

is to the others, you can identify communities of customers without needing to plant a set 

number of fl ags in the data that get moved around until people feel at home.

The key concept that allows you to approach customer clustering in this relational way 

is called a network graph. A network graph, as you’ll see in the next section, is a simple 

way to store and visualize entities (such as customers) that are connected (by purchase 

data for instance).

These days, network visualization and analysis are all the rage, and the techniques used 

to mine insights from network graphs often work better than traditional techniques (such 

as k-means clustering in Chapter 2), so it’s important that a modern analyst understand 

and be able to leverage network graphs in their work.

When doing cluster analysis on a network, people often use the term community detection 

instead, which makes sense because many network graphs are social in nature and their 

Cluster Analysis 
Part II: Network Graphs 
and Community 
Detection



156 Data Smart

clusters do indeed make up communities. This chapter focuses on a particular community 

detection algorithm called modularity maximization.

At a high level, modularity maximization rewards you every time you place two good 

friends in a cluster together and penalizes you every time you shove some strangers together. 

By grabbing all the rewards you can and avoiding as many penalties as possible, the tech-

nique leads to a natural clustering of customers. And here’s the cool part, which you’ll see 

later—unlike the k-means clustering approach, you don’t need to choose k. The algorithm 

does it for you! In this way, the clustering technique used here takes unsupervised machine 

learning to a whole new level of knowledge discovery.

Also, from a mathematical-sex-appeal perspective, k-means clustering, while rad, has 

been around for over half a century. The techniques you’ll use in this chapter were devel-

oped in just the past several years. This is cutting edge stuff .

What Is a Network Graph?
A network graph is a collection of things called nodes that are connected by relationships 

called edges. Social networks like Facebook provide a lot of network-graphable data, such 

as friends who are connected to you and possibly to each other. Hence, the term “the social 

graph” has come up a lot in recent years.

The nodes in a network graph don’t have to be people of course, and the edges that 

represent relationships don’t have to be interpersonal relationships. For instance, you 

could have nodes that are Facebook users and other nodes that are product pages they 

like. Those “likes” comprise the edges of the graph. Similarly, you could create a network 

graph of all the stops on your city’s transportation system. Or all the destinations and 

routes on Delta’s fl ight map (in fact, if you look at the route map on any airline’s website, 

you’ll see it’s a canonical network graph).

Or you could get all spy-like and graph anyone who has called anyone on a GPS sat 

phone within al-Qaeda in the Islamic Magreb. With the release of material on the NSA’s 

spying eff orts by Edward Snowden, this last type of network graph has been getting a 

lot of attention in the media. One example is the congressional discussion around NSA’s 

ability to perform a “three-hop” query—that is go into their network graph of phone call 

data and fi nd people three hops from a known terrorist (nodes connected to a terrorist 

by a three edge path in the graph).

Whatever your business is, I guarantee you have a graph hiding in your data. One 

of my favorite network graphing projects is called DocGraph (http://notonlydev.com/

docgraph/). Some intrepid folks have used a Freedom of Information Act request to cre-

ate a graph of all kinds of Medicare referral data. Doctors get connected to other doctors 

via referrals, and the graph can be used to identify communities, infl uential providers 

(the doctor everyone goes to for the fi nal opinion on a tricky diagnosis), and even cases 

of fraud and abuse.

http://notonlydev.com/docgraph
http://notonlydev.com/docgraph


157Cluster Analysis Part II: Network Graphs and Community Detection  

Network graphs are a rare contradiction in the analytics world. They are aesthetically 

beautiful and yet extremely utilitarian in the way they store and enable certain analyses. 

These graphs allow analysts to discover all sorts of insights both visually and algorithmi-

cally, such as clusters, outliers, local infl uencers, and bridges between diff erent groups.

In the next section, you’ll visualize some network data to get a feel for how these things 

work. 

Visualizing a Simple Graph
The TV show Friends was one of the most popular sitcoms of the 1990s and early 2000s. 

The show centered around six friends: Ross, Rachel, Joey, Chandler, Monica, and Phoebe. 

If you’ve never heard of the show or these characters, you’re either super young or trapped 

in a cave.

These six characters become involved in a lot of romances with each other of various 

types: real romances, fantasy romances that never amount to anything, play romances 

based on some dare or competition, and so on.

Think of these characters as six nodes or vertices on the graph. The relationships 

between them are edges. Off  the top of my head, I can think of these edges:

• Ross and Rachel, obviously

• Monica and Chandler end up married.

• Joey and Rachel have a little romance going but ultimately decide it’s too weird.

• Chandler and Rachel meet each other in a fl ashback episode over a pool table mis-

hap, and Rachel imagines what it’d be like to be with Chandler.

• Chandler and Phoebe play at a relationship and end up having to kiss, because 

Chandler refuses to admit he’s with Monica.

These six characters and their fi ve edges can be visualized as shown in Figure 5-1.

Ross Rachel

MonicaJoey

Chandler Phoebe

Figure 5-1: Diagram of ro(faux)mances on Friends



158 Data Smart

Pretty simple, right? Nodes and edges. That’s all a network graph is. And note how net-

work graphs have nothing whatsoever to do with the graphs you may be familiar with, such 

as dot plots, line charts, and bar charts. No, these graphs are a diff erent animal entirely.

Figure 5-1 is what’s called an undirected network graph, because the relationships are 

mutual by defi nition. Something like Twitter data on the other hand is directed, that is, 

I can follow you, but you don’t have to follow me. When visualizing a directed graph, the 

edges are usually directional arrows.

Now, one of the drawbacks about using Excel to work on network graphs is that, unlike 

other graphing and charting capabilities, Excel does not provide tools for visualizing 

network graphs.

So for this chapter, I’m going to break my own ground rules for this book and use an 

external tool called Gephi for some visualization and computation, which is discussed 

more in the next section. That said, you can ignore all the Gephi aspects of this chapter if 

you want to. All the actual data mining on network data can be done without visualizing 

the network in Gephi; you’re just doing that part for fun.

But visualization aside, if you want to work on this type of graph, you need a numerical 

representation of the data. One intuitive representation is called an adjacency matrix. An 

adjacency matrix is just a node-by-node grid of 0s and 1s, where a 1 in a particular cell 

means “put an edge here” and a 0 means “these nodes are unconnected.”

You can create an adjacency matrix out of the Friends data, as shown in Figure 5-2 (the 

matrix looks a bit like a Galaga-style lobster to me). The friends’ names line the columns 

and rows, and relationships between them are shown with 1s. Notice how the graph is 

symmetric along the diagonal, because the graph is undirected. If Joey has an edge with 

Rachel, then the converse is true, and the adjacency matrix shows this. If relationships 

were one-sided, you could have a matrix without this symmetry.

Although the edges here are represented with 1s, they don’t have to be. You can 

add weights to the edges, such as capacities—think of diff erent planes with diff erent 

NODEXL

If you’re in Excel 2007 or 2010, the Social Media Research Foundation has released a 

template that allows network visualization in Excel called NodeXL. It’s not covered 

in this book because it’s still early days for the software, and LibreOffi  ce and Excel 

2011 for Mac users wouldn’t be able to follow along. If you’re interested, you can 

check out NodeXL for yourself at http://www.smrfoundation.org/nodexl/.

http://www.smrfoundation.org/nodexl


159Cluster Analysis Part II: Network Graphs and Community Detection  

capacities fl ying routes or varying bandwidths available on diff erent links of an IT network. 

A weighted adjacency matrix is also called an affi  nity matrix.

Figure 5-2: An adjacency matrix for the Friends data

Brief Introduction to Gephi
Let’s go ahead and get Gephi running so you can import and visualize the Friends dataset. 

Then you’ll know your way around later when things get real all up in here. 

Gephi is an open source network visualization tool written in Java, and it’s the main 

culprit behind many of the network visualization graphics you see in the media today. 

It’s easy to produce striking pictures, and people seem to have taken to it for graphing 

tweets like bunnies to carrots.

The reason why I’ve waived my usual hesitancy to stay in Excel is that Gephi fi lls in 

the network visualization gap in Excel, it’s free, and it works on Windows, Mac OS, and 

Linux, so no matter what computer you’re using, you can follow along.

You don’t have to do these visualization steps. If you just want to follow along in the 

fi gures feel free, but I recommend getting your hands dirty. It’s fun. Keep in mind, though, 

that this book is not about Gephi. If you want to get really crazy with this tool, check out 

the resources at wiki.gephi.org for deeper instruction.



160 Data Smart

Gephi Installation and File Preparation
To download Gephi, navigate to gephi.org in your browser, and then download and install 

the package following the instructions for your OS at http://gephi.org/users/install/. 

If you want a general tutorial on Gephi, check out the quick start guide at https://

gephi.org/users/quick-start/. Also, inside the application, Gephi has a Help selection 

in the menu bar if you need it.

Once Gephi is installed, you need to prep the adjacency matrix for importing into the 

visualization tool.

Now, I fi nd that importing an adjacency matrix into Gephi takes one step more than it 

should. Why? Because Gephi doesn’t accept comma-separated adjacency matrices. Each 

value has to be separated by a semicolon.

Although Kurt Vonnegut said in A Man Without A Country, “Do not use semicolons. 

They are transvestite hermaphrodites representing absolutely nothing. All they do is show 

you’ve been to college,” Gephi has ignored his sound advice. My apologies. So follow along, 

and I’ll take you through the import process.

I’ve made the FriendsGraph.xlsx spreadsheet available with the book (download at the 

book’s website at www.wiley.com/go/datasmart), or if you like, you can just hand-jam in 

the small dataset from the adjacency matrix pictured in Figure 5-2.

The fi rst thing you’re going to do to import this graph into Gephi is save it as a CSV, 

which is a plain-text, comma-separated fi le format. To do so, go to Save As in Excel and 

choose CSV from the format list. The fi lename will end up as FriendsGraph.csv, and when 

you save it, Excel may bark some warnings at you, which I give you permission to ignore.

Once you’ve exported the fi le, you need to replace all the commas in it with semico-

lons. To do this, open the fi le in a text editor (such as Notepad on Windows or TextEdit 

on Mac OS) and fi nd and replace the commas with semicolons. Save the fi le. Figure 5-3 

shows this process in Mac OS TextEdit.

Figure 5-3: Replacing commas with semicolons in the Friends graph CSV

http://gephi.org/users/install
https://gephi.org/users/quick-start
https://gephi.org/users/quick-start
http://www.wiley.com/go/datasmart


161Cluster Analysis Part II: Network Graphs and Community Detection  

Once that’s completed, open your freshly installed copy of Gephi, and using the Open 

Graph File option on the Welcome screen (see Figure 5-4), select the FriendsGraph.csv 

fi le you just edited.

Figure 5-4: Open the FriendsGraph.csv fi le in Gephi.

When you attempt to open the fi le, an Import Report window will pop up. Note that six 

nodes and ten edges have been detected. The reason why ten edges are listed is because 

the adjacency matrix is symmetric, so each relationship is duplicated. To resolve this 

duplication, change the Graph Type from directed to undirected in the import window 

(see Figure 5-5). Press OK.



162 Data Smart

Figure 5-5: Importing the Friends graph

Laying Out the Graph
Make sure the Overview tab is selected in the top left of the Gephi window. If it is selected, 

your Gephi window should look something like Figure 5-6. The nodes and edges are laid 

out haphazardly in space. The zoom is all out of whack so the graph is barely visible. Your 

initial layout will likely appear diff erent.

Let’s make this graph a little prettier. A couple of navigational items you should be 

aware of—you can zoom in with the scroll wheel on your mouse, and you can move the 

canvas around by right-clicking in the space and dragging the graph until it’s centered.

By clicking the T button at the foot of the overview window, you can add labels to the 

graph nodes so you know which character is which node. After zooming in, adjusting, 

and adding labels, the graph now looks as shown in Figure 5-7.

You need to lay this graph out in a nicer fashion. And luckily, Gephi has a bunch of 

algorithms for automating this process. Many of them use forces such as gravity between 

connected nodes and repulsion between unconnected nodes to settle things into place. 

The layout section of Gephi is in the bottom-left window of the overview panel. Feel free 

to select things haphazardly from the menu to try them out.



163Cluster Analysis Part II: Network Graphs and Community Detection  

Figure 5-6: Initial layout of the Friends graph

NOTE

Be warned that some of the layout algorithms are going to shrink or expand the 

graph such that you’ll have to zoom in or out to see the graph again. Also, the sizes 

of your labels are going to get out of whack, but there’s a Label Adjust selection 

under the Layout drop-down menu to fi x that.



164 Data Smart

Figure 5-7: The Friends graph is decipherable but messy.

To get my preferred layout, the fi rst thing I’m going to do is select ForceAtlas 2 from the 

layout menu and press the Run button. This is going to move my nodes around to better 

positions. But the labels are now huge (see Figure 5-8).

Select Label Adjust from the menu and press Run. You’ll get something that looks much 

better. I can see that Rachel and Chandler are really the most well-connected in the graph. 

Obviously, Monica and Ross are distant because they’re brother and sister, and so on.



165Cluster Analysis Part II: Network Graphs and Community Detection  

Node Degree
One concept in network graphing that’s going to be important in this chapter is that of 

degree. The degree of a node is simply the count of edges connected to it. So Chandler 

has a degree of 3, whereas Phoebe has a degree of 1. You can use these degrees in Gephi 

to resize nodes.

Figure 5-8: After running ForceAtlas 2 on the Friends graph



166 Data Smart

To get a sense of the average degree of the graph and who has what degree, press the 

Average Degree button on the right side of Gephi in the Statistics section. This will pop 

up a window like the one shown in Figure 5-9, where the average degree of the graph is 

1.6667 with four nodes of degree 1 and two nodes of degree 3 (Rachel and Chandler).

Close this window and navigate to the Ranking section of the Overview window in 

the top left box. Select the Nodes section and the red gemstone label that indicates node 

resizing. Select Degree from the drop-down and toggle the minimum and maximum sizes 

for nodes. When you press Apply, Gephi will resize the nodes using degree as a proxy for 

importance. I’ve called out this section of the Overview window in Figure 5-10.

Pretty Printing
Although these pictures look okay, you’re not going to hang them on your wall. To prepare 

the graph for printing an image, click the Preview pane at the top of Gephi.

INDEGREE, OUTDEGREE, IMPORTANCE, AND BAD BEHAVIOR

In a directed graph, the count of edges going into a node is called the indegree. The 

count of outbound edges is the outdegree. Indegree in a social network is a simple 

way to gauge the prestige of a node. This is often the fi rst value people look at on 

Facebook or Twitter to gauge importance. “Oh, they have a lot of followers…they 

must be a big deal.”

Now, this metric can certainly be gamed. Who exactly are these followers whose 

edges fl ow into your node? Maybe they’re all fake users you signed up for to heighten 

your own prestige.

Google uses indegree (in search engine speak this is a backlink count) in their 

PageRank algorithm. When someone fakes inbound links to their website to heighten 

its prestige and move up the search results, that’s called link spam. In contexts such as an 

Internet search where rankings mean big business, more complex measures of prestige, 

infl uence, and centrality have evolved to account for such bad behavior.

As you’ll see in Chapter 9, these network graph concepts are useful in outlier 

detection. Rather than fi nding who is central in a graph, you can use indegree to fi nd 

who’s on the periphery.



167Cluster Analysis Part II: Network Graphs and Community Detection  

Under the Preview Settings tab, select the Black Background preset from the Presets 

drop-down (because you have hacker delusions), and click the Refresh button at the bot-

tom left of the window.

Gephi will paint the graph with stunning, curvy beauty (see Figure 5-11). Note how the 

labels are resized with the nodes, which is awesome. I fi nd the edges of this graph a little 

on the thin side, so I bumped the edge thickness up from 1 to 3 on the left settings pane.

Figure 5-9: Calculating the average degree of a graph



168 Data Smart

Figure 5-10: Resizing the graph according to node degree

If you want to export this image to a graphics fi le (for example, a .png fi le), press the 

Export button in the bottom left of the preview settings section. You can then distribute 

the graph on a website, in a PowerPoint presentation, or even in a book on data science.

Touching the Graph Data
Before you move back to Excel to confront the wholesale wine problem from Chapter 2, I 

want to take you through the Data Laboratory section of Gephi. Click Data Laboratory at 

the top of Gephi to see the underlying data that you’ve imported into the graph.

Note that there are two sections of data: Nodes and Edges. In the Nodes section, you 

see the six characters. And because you went through the Average Degree calculation 

earlier, a column for Degree has been added to the node dataset. If you want to, you can 

export this column back to Excel by pressing the Export Table button on the menu bar. 

See Figure 5-12.



169Cluster Analysis Part II: Network Graphs and Community Detection  

Figure 5-11: A prettier Friends graph

Figure 5-12: Node information with degree count in the Data Laboratory



170 Data Smart

Clicking the edges section, the fi ve edges with their endpoints are laid out. Each edge 

was a weight of 1, because you imported an adjacency matrix with all 1s. If you had 

changed some of those values to be higher in the case of, say, an actual marriage then 

those higher weights would be refl ected in this column (they also would have aff ected 

the ForceAtlas 2 layout).

All right! So there’s your 30,000-foot tour of Gephi. Let’s get back to clustering the 

wholesale wine data, and you’ll return to Gephi later to do some more visualizations and 

computations.

Building a Graph from the Wholesale Wine Data

NOTE

The Excel workbook used in this chapter, “WineNetwork.xlsx,” is available for 

download at the book’s website at www.wiley.com/go/datasmart. This workbook 

includes all the initial data if you want to work from that. Or you can just read along 

using the sheets I’ve already put together in the workbook.

In this chapter, I want to demonstrate how to detect clusters within your customer pur-

chase data by representing that data as a graph. Some businesses have data that’s already 

graphable, such as the Medicare referral data discussed earlier. 

But in this case, the wine purchase matrix from Chapter 2 does not represent customer-

to-customer relationships out of the box.

To start, you should fi gure out how to graph the wholesale wine dataset as a network. 

And that means constructing an adjacency matrix similar to the Friends adjacency matrix 

shown in Figure 5-2. From there you’ll be able to visualize and compute whatever you 

want on the graph.

I’ll pick up the analysis using the Matrix tab in the WineNetwork.xlsx workbook 

(available for download with this book). If you remember, this is the same Matrix tab 

you created at the beginning of Chapter 2 from the wine sale transactional data and the 

wholesale deal metadata. 

Pictured in Figure 5-13, the rows of the Matrix tab give details of the 32 wine deals 

off ered by Joey Bag O’ Donuts Wine Emporium last year. In the columns of the sheet are 

http://www.wiley.com/go/datasmart


171Cluster Analysis Part II: Network Graphs and Community Detection  

customer names, and each (deal, customer) cell has a value of 1 if that customer purchased 

that deal.

Figure 5-13: The Matrix tab showing who bought what 

So you need to turn this data from Chapter 2 into something similar to the Friends 

adjacency matrix, but how do you go about doing that? 

If you created the Distances matrix for the k-means silhouette in Chapter 2, you’ve 

already seen something similar. For that calculation, you created a matrix of distances 

between each customer based on the deals they took (shown in Figure 5-14).



172 Data Smart

Figure 5-14: The customer distances tab from Chapter 2

This dataset was oriented in a customer-to-customer fashion just like the Friends data-

set. Connections between customers were characterized by how their purchases aligned.

But there are a couple of problems with this customer-to-customer distance matrix 

created in Chapter 2:

• At the end of Chapter 2 you discovered that asymmetric similarity and distance 

measures between customers work much better than Euclidean distance in the case 

of purchase data. You care about purchases, not “non-purchases.” 

• If you want to draw edges between two customers, you want to do so because the 

two customers are similar not because they are distant, so this calculation needs to 

be reversed. This closeness of purchases is captured via cosine similarity, so you 

need to create a similarity matrix in contrast to Chapter 2’s distance matrix.

Creating a Cosine Similarity Matrix
In this section, you’ll take the Matrix tab in your notebook and construct from it a cus-

tomer-to-customer graph using cosine similarity. The process for doing this in Excel, 

using numbered rows and columns together with the OFFSET formula, is identical to that 

used in Chapter 2 for the Euclidean distances sheet. For more on OFFSET, see Chapter 1.

You’ll start by creating a tab called Similarity in which you will paste a customer-by-

customer grid, whereby each customer is numbered in each direction. Remember that 



173Cluster Analysis Part II: Network Graphs and Community Detection  

copying and pasting customers from the Matrix tab down the rows requires using the 

Paste Special feature in Excel with the Transpose box checked. 

This empty grid is shown in Figure 5-15.

Figure 5-15: The empty grid for the cosine similarity matrix

Start by computing the cosine similarity between Adams and himself (which should 

be 1). As a refresher, recall the defi nition of cosine similarity between two customers’ 

binary purchase vectors that you read in Chapter 2:

The count of matched purchases in the two vectors divided by the product of the square root 

of the number of purchases in the fi rst vector times the square root of the number of purchases 

in the second vector. 

Adams’ purchase vector is Matrix!$H$2:$H$33; so in order to compute the cosine 

similarity of Adams to himself, you use the following formula in cell C3:

=SUMPRODUCT(Matrix!$H$2:$H$33,Matrix!$H$2:$H$33)/
  (SQRT(SUM(Matrix!$H$2:$H$33))*SQRT(SUM(Matrix!$H$2:$H$33)))

In the top of the formula you take the SUMPRODUCT of the purchase vectors you care 

about to count matched purchases. In the denominator, you take the square roots of the 

number of purchases for each customer and multiply them.

Now, this computation works for Adams, but you want to drag it around the 

sheet so you don’t have to type each formula individually. And to make that 

happen, you use the OFFSET  formula. By replacing Matrix!$H$2:$H$33  with 

OFFSET(Matrix!$H$2:$H$33,0,Similarity!C$1) for the columns and, similarly using 



174 Data Smart

OFFSET(Matrix!$H$2:$H$33,0,Similarity!$A3) for the rows, you get a formula that uses 

the customer numbers in column A and row 1 to shift the purchase vectors being used 

in the similarity calculation.

This leads to a slightly more ugly (sorry!) formula for cell C3:

=SUMPRODUCT(OFFSET(Matrix!$H$2:$H$33,0,Similarity!C$1),
   OFFSET(Matrix!$H$2:$H$33,0,Similarity!$A3))/
   (SQRT(SUM(OFFSET(Matrix!$H$2:$H$33,0,Similarity!C$1)))
   *SQRT(SUM(OFFSET(Matrix!$H$2:$H$33,0,Similarity!$A3))))

This formula locks down Matrix!$H$2:$H$33 by the absolute references, so as you drag 

the formula around the sheet, it stays the same. Similarity!C$1 will change columns but 

will stay on row 1 where you want it, and Similarity!$A3 will stay in column A.

But you’re not quite done. You’re interested in creating a graph of customers who are 

similar to each other, but honestly, you don’t care about the diagonal of the matrix. Yes, 

Adams is identical to himself and has a cosine similarity of 1, but you’re not interested 

in drawing a graph with edges that loop back to point where they start, so you need to 

make all those entries 0 instead.

This just means wrapping the cosine similarity calculation in an IF statement to check 

whether the customer on the row equals the one in the column. Thus, you get the fi nal 

formula of:

IF(C$1=$A3,0,SUMPRODUCT(OFFSET(Matrix!$H$2:$H$33,0,Similarity!C$1),
   OFFSET(Matrix!$H$2:$H$33,0,Similarity!$A3))/
   (SQRT(SUM(OFFSET(Matrix!$H$2:$H$33,0,Similarity!C$1)))
   *SQRT(SUM(OFFSET(Matrix!$H$2:$H$33,0,Similarity!$A3)))))

Now that you have a formula that you can drag around, grab the bottom-right corner 

of C3, drag it across the sheet to CX3, and drag it down to CX102.

You now have a cosine similarity matrix that shows which customers match each other. 

Placing some conditional formatting on the grid, you get what’s pictured in Figure 5-16.

Producing an r-Neighborhood Graph
The Similarity tab is a weighted graph. Each pair of customers either has a 0 between 

them or some non-zero cosine similarity value that shows how strong their edge should 

be. As it is, this similarity matrix is an affi  nity matrix.

So why not just dump this affi  nity matrix out and peek at it in Gephi? Maybe you’re 

all set to do the analysis on the graph as is.

Sure, exporting the CSV and importing it into Gephi is possible at this step. But let 

me save you the heartache and just throw up an image (Figure 5-17) of the graph after 

it’s been laid out in Gephi. It’s a huge mess of edges going every which way. Too many 

connections prevent the layout algorithms from properly moving nodes away from each 

other, so in the end you have an oblong chunk of noise.



175Cluster Analysis Part II: Network Graphs and Community Detection  

Figure 5-16: The completed customer cosine similarity matrix

Figure 5-17: The mess of a cosine similarity customer-to-customer graph



176 Data Smart

You’ve taken about 300 purchases and turned them into thousands of edges in the 

graph. Some of these edges you can probably chalk up to randomness. Yeah, maybe you 

and I lined up on 1 of our 10 wine purchases, and you have a teeny tiny cosine similarity, 

but is that edge worth drawing on the graph?

In order to make sense of the data, it’s best if you prune edges from the graph that 

really don’t matter all that much, and keep only the strongest relationships on there—the 

relationships that don’t just come from one lucky shared purchase.

Okay, so which edges should you drop? 

There are two popular techniques for pruning edges from network graphs. You can 

take the affi  nity matrix and build one of the following:

• An r-neighborhood graph: In an r-neighborhood graph, you keep only the edges 

that are of a certain strength. For instance, in the affi  nity matrix, edge weights range 

from 0 to 1. Maybe you should drop all edges below 0.5. That’d be an example of 

an r-neighborhood graph where r is 0.5.

• A k nearest neighbors (kNN) graph: In a kNN graph, you keep a set number of 

edges (k) going out of each node. For instance, if you set k to 5, you’d keep the fi ve 

edges coming out of each node that have the highest affi  nities.

Neither graph is superior to the other. It depends on the situation.

This chapter focuses on the fi rst option, an r-neighborhood graph. I leave it as an exer-

cise for you to go back and work the problem with a kNN graph. It’s pretty easy to imple-

ment in Excel using the LARGE formula (see Chapter 1 for more on LARGE). In Chapter 9, 

we’ll use a kNN graph for outlier detection.

All right. So how do you take the Similarity tab and turn it into an r-neighborhood 

adjacency matrix? Well, fi rst you need to settle on what r should be.

In the white space below the similarity matrix, count how many edges (non-zero simi-

larity values) you have in the affi  nity matrix using the formula in cell C104:

=COUNTIF(C3:CX102,">0")

This returns 2,950 edges made from the original 324 sales. What if you kept only the 

top 20 percent of them? What would the value of r have to be to make that happen? Well, 

because you have 2,950 edges, the 80th percentile similarity value would be whatever the 

590th edge has. So below the edge count in C105, you can use the LARGE formula to get 

the 590th largest edge weight (see Figure 5-18):

=LARGE(C3:CX102,590)

This returns a value of 0.5. So you can keep the top 20 percent of edges by throwing 

away everything with a cosine similarity of less than 0.5. 



177Cluster Analysis Part II: Network Graphs and Community Detection  

Figure 5-18: Calculating the 80th percentile of edge weights 

Now that you have the cutoff for the r-neighborhood graph, construction of 

the adjacency matrix is super easy. First create a new tab in the workbook called 

r-NeighborhoodAdj, and paste the customer names in column A and row 1 to create a grid.

In any cell in the grid, you put a 1 if the similarity value on the previous Similarity tab 

is greater than 0.5. So, for example, in cell B2, you can use the following formula:

=IF(Similarity!C3>=Similarity!$C$105,1,0)

The IF formula simply checks the appropriate similarity value against the cutoff  in 

Similarity$C$105 (0.5) and assigns a 1 if it’s large enough. Because Similarity$C$105 

is locked down with absolute references, you can drag this formula across the columns 

and down the rows to fi ll in the whole adjacency matrix, as shown in Figure 5-19 (I’ve 

used some conditional formatting for the benefi t of the fi gure).

You now have the r-neighborhood graph of the customer purchase data. You’ve trans-

formed the purchase data into customer relationships and then whittled those down to 

a set of meaningful ones.

If you were to now export the r-neighborhood adjacency matrix to Gephi and lay it out, 

you would get something much improved over Figure 5-17. Export the graph yourself, do 

the semicolon two-step, and take a peek along with me.

As shown in Figure 5-20, there are at least two tightly knit communities in the graph 

that kinda look like tumors. One of them is well-separated from the rest of the herd, 

which is awesome, because it means their interests separate them from other customers. 



178 Data Smart

Figure 5-19: The 0.5-neighborhood adjacency matrix

Figure 5-20: Gephi visualization of the r-neighborhood graph



179Cluster Analysis Part II: Network Graphs and Community Detection  

And then there’s poor old Parker, the one customer who didn’t end up with any edges 

greater than or equal to 0.5 cosine similarity. So he’s by himself, crying in his tea. I hon-

estly feel bad for the guy, because the layout algorithms are going to try to toss him as far 

as possible from the connected part of the graph.

All right! So now you have a graph that you can eyeball. And in fact, just laying a graph 

out and eyeballing it—separating it into communities by inspection—isn’t half bad. You’ve 

taken high-dimensional data and distilled it into something fl at like the middle school 

dance fl oor from Chapter 2. But if you had thousands of customers instead of a hundred, 

your eyeballs wouldn’t be terribly helpful. Indeed, even now, there’s a mesh of custom-

ers in the graph who are hard to group together. Are they in one community or several?

This is where modularity maximization comes into play. The algorithm uses these 

relationships in the graph to make community assignment decisions even when your 

eyeballs might have trouble.

How Much Is an Edge Worth? Points and Penalties in 
Graph Modularity
Pretend that I’m a customer hanging out in my graph, and I want to know who belongs 

in a community with me.

How about that lady who’s connected to me by an edge? Maybe. Probably. We are con-

nected after all.

How about the guy on the other side of the graph who shares no edge with me? Hmmm, 

it’s much less likely.

Graph modularity quantifi es this gut feeling that communities are defi ned by connections. 

The technique assigns scores to each pair of nodes. If two nodes aren’t connected, I need 

to be penalized for putting them in a community. If two nodes are connected, I need to be 

rewarded. Whatever community assignment I make, the modularity of the graph is driven 

by the sum of those scores for each pair of nodes that ends up in a community together.

Using an optimization algorithm (you knew Solver was coming!), you can “try out” dif-

ferent community assignments on the graph and see which one rakes in the most points 

with the fewest penalties. This will get you a winning modularity score.

What’s a Point and What’s a Penalty?
In modularity maximization you give yourself one point every time you cluster two nodes 

that share an edge in the adjacency matrix. You get zero points every time you cluster 

those who don’t.



180 Data Smart

Easy.

What about penalties?

This is where the modularity maximization algorithm really gets creative. Consider 

again the Friends graph, originally pictured in Figure 5-1.

Modularity maximization bases its penalties for putting two nodes together on one 

question:

If you had this graph and you erased the middle of each edge and “rewired” it a bunch of 

times at random, what is the expected number of edges you’d get between two nodes? 

That expected number of edges is the penalty.

Why is the expected number of edges between two nodes the penalty? Well, you don’t 

want to reward the model as much for clustering people based on a relationship that was 

likely to happen anyway because both parties are extremely social. 

I want to know how much of that graph is intentional relationship and connection, 

and how much of it is just because, “Yeah, well, Chandler’s connected to a lot of people, 

so odds are Phoebe would be one of them.” This means that edges between two highly 

selective individuals are “less random” and worth more than edges between two socialites.

To understand this more clearly, look at a version of the Friends graph in which I’ve 

erased the middle of each edge. These half-edges are called stubs. See Figure 5-21.

Ross Rachel

MonicaJoey

Chandler Phoebe

Figure 5-21: Stubby Friends graph

Now, think about wiring the graph up randomly. In Figure 5-22, I’ve drawn an ugly 

random rewiring. And yes, in a random rewiring it’s totally possible to connect someone 

to him or herself if they have multiple stubs coming out of them. Trippy.



181Cluster Analysis Part II: Network Graphs and Community Detection  

Ross Rachel

MonicaJoey

Chandler Phoebe

Figure 5-22: A rewiring of the Friends graph

Figure 5-22 is just one way to wire it up, right? There are tons of possibilities even 

with a graph with just fi ve edges. Notice that Ross and Rachel were chosen. What were 

the odds of that happening? Based on that probability, what is the expected number of 

edges between the two if you rewired the graph randomly over and over and over again?

Well, when drawing a random edge, you need to select two stubs at random. So what’s 

the probability that a node’s stubs will be selected?

In the case of Rachel, she has three stubs out of a total of ten (two times the number 

of edges) on the graph. Ross has one stub. So the probability that you’d select Rachel for 

any edge is 30 percent, and the probability that you’d select Ross’s stub for any edge is 10 

percent. The node selection probabilities are shown in Figure 5-23.

Ross Rachel

MonicaJoey

Chandler Phoebe

1
10

1
10

3
10

3
10

1
10

1
10

Figure 5-23: Node selection probabilities on the Friends graph

So if you were randomly selecting nodes to link up, you could select Ross and then 

Rachel or Rachel and then Ross. That’s roughly 10 percent times 30 percent or 30 percent 

times 10 percent, which is 2 times 0.3 times 0.1. That comes out to 6 percent. 



182 Data Smart

But you’re not drawing just one edge, are you? You need to draw a random graph with 

fi ve edges, so you get fi ve tries to pick that combo. The expected number of edges between 

Ross and Rachel then is roughly 6 percent times 5, or 0.3 edges. Yes, that’s right, expected 

edges can be fractional. 

Did I just blow your mind Inception-style? Think of it like this. If I fl ip a Sacagawea dol-

lar coin, which you get to keep if it lands on heads but not tails, then fi fty percent of the 

time you’re going to get a dollar and fi fty percent of the time you get nothing. Your expected 

payoff  is 0.5 * $1 = $0.50, even though you’ll never actually win fi fty cents in a game.

Similarly here, you’ll only ever encounter graphs where Ross and Rachel are or are not 

connected, but their expected edge value is nevertheless 0.3.

Figure 5-24 shows these calculations in detail.

Ross Rachel

Probability of getting Ross-Rachel:

Expected number of Ross-Rachel connections:MonicaJoey

Chandler Phoebe

1
10

1
10

3
10

3
10

1
10

1
10

2
# Ross Stubs

2 ∗ # Edges

# Rachel Stubs

2 ∗ # Edges
= 2

1

10

3

10

# Ross Stubs ∗ # Rachel Stubs

2 ∗ # Edges
=

3

10

2 ∗ Edges
# Ross Stubs

2 ∗ # Edges

# Rachel Stubs

2 ∗ # Edges
= 

Figure 5-24: The expected number of edges between Ross and Rachel

Bringing the points and penalties together, things should now become clear.

If you put Ross and Rachel in a community together, you don’t get a full 1 point. This is 

because you get penalized 0.3 points since that’s the expected number of edges a random 

graph would have anyway. That leaves you with a score of 0.7.

If you didn’t cluster Ross and Rachel, then you would receive 0 rather than 0.7 points.

On the other hand, Rachel and Phoebe aren’t connected. They have the same expected 

edge value of 0.3 though. That means that if you put them in a community together, you’d 

still get the penalty but you’d receive no points, so the score would be adjusted by −0.3.

Why? Because the fact that there’s no edge between Rachel and Phoebe means some-

thing! The expected number of edges was 0.3 and yet this graph doesn’t have one, so the 

score should account for that possibly intentional separation.

If you didn’t put Rachel and Phoebe in a community together, then they’d receive no 

score at all, so all things being equal, you’re best separating them into diff erent clusters.



183Cluster Analysis Part II: Network Graphs and Community Detection  

To sum it all up then, the points and penalties capture the amount that the graph’s 

structure deviates from the expected graph structure. You need to assign communities 

that account for these deviations.

The modularity of a community assignment is just the sum of these points and penalties 

for pairs of nodes placed in community together, divided by the total number of stubs in 

the graph. You divide by the number of stubs so that whatever the size of the graph, the 

maximum modularity score is 1, which facilitates comparisons across graphs.

Setting Up the Score Sheet
Enough talk! Let’s actually calculate these scores for each pair of customers in the graph.

To start, let’s count how many stubs are coming out of each customer and how many 

total stubs there are in the graph. Note that the stub count of a customer is just the degree 

of the node.

So on the r- NeighborhoodAdj tab you can count the degree of a node simply by sum-

ming down a column or across a row. If there’s a 1, that’s an edge, hence a stub, hence it’s 

counted. So, for example, how many stubs does Adams have? In cell B102, you can just 

place the following formula to count them:

=SUM(B2:B101)

You get 14. Similarly, you could sum across row 2 by placing in CX2 the formula:

=SUM(B2:CW2)

You get 14 in that case as well, which is what you’d expect since the graph is undirected.

Copying these formulas across and down respectively, you can count the stubs for each 

node. And by simply summing column CX in row 102, you get the total number of stubs 

for the graph. As shown in Figure 5-25, the graph has a total of 858 stubs.

Now that you have the stub counts, you can create a Scores tab in your workbook 

where you place the customers’ names across row 1 and down column A, just as in the 

r-NeighborhoodAdj tab.

Consider cell B2, which is the score for Adams connecting with himself. Does this 

get one point or none? Well, you can read in the value from the adjacency matrix, 

'r-NeighborhoodAdj'!B2, and you’re done. If the adjacency matrix is a 1, it’s copied in. 

Simple.

As for the expected edge calculation that you need to tack on as a penalty, you can 

calculate it the same way that was shown in Figure 5-24:

# stubs customer A * # stubs customer B / Total stubs 

By bringing these points and penalties together in cell B2, you end up with this formula:



184 Data Smart

='r-NeighborhoodAdj'!B2 – 
(('r-NeighborhoodAdj'!$CX2*'r-NeighborhoodAdj'!B$102)/
'r-NeighborhoodAdj'!$CX$102)

Figure 5-25: Counting edge stubs on the r-Neighborhood graph

You have the 0/1 adjacency score minus the expected count.

Note that the formula uses absolute cell references on the stub values so that when you 

drag the formula, everything changes appropriately. Thus, dragging the formula across 

and down the Scores tab, you end up with the values shown in Figure 5-26.

Figure 5-26: The Scores tab



185Cluster Analysis Part II: Network Graphs and Community Detection  

To drive this score home, check out cell K2. This is the score for an Adams/Brown 

clustering. It’s 0.755.

Adams and Brown share an edge on the adjacency matrix so you get 1 point for cluster-

ing them ('r-NeighborhoodAdj'!K2 in the formula), but Adams has a stub count of 14 

and Brown is a 15, so their expected edge count is 14 * 15 / 858. That second part of the 

formula looks like this:

(('r-NeighborhoodAdj'!$CX2*'r-NeighborhoodAdj'!K$102)/
'r-NeighborhoodAdj'!$CX$102) 

which comes out to 0.245. Bringing it all together, you get 1 - 0.245 = 0.755 for the score.

Let’s Get Clustering!
You now have the scores you need. All you need to do now is set up an optimization model 

to fi nd optimal community assignments.

Now, I’m going to be honest with you up front. Finding optimal communities using 

graph modularity is a more intense optimization setup than what you encountered in 

Chapter 2. This problem is often solved with complex heuristics such as the popular 

“Louvain” method (see http://perso.uclouvain.be/vincent.blondel/research/

louvain.html for more info), but this is a code-free zone, so you’re going to make do with 

Solver.

To make this possible, you’re going to attack the problem using an approach called 

divisive clustering or hierarchical partitioning. All that means is that you’re going to set up 

the problem to fi nd the best way to split the graph into two communities. Then you’re 

going to split those two into four, and on and on until Solver decides that the best way to 

maximize modularity is to stop dividing the communities.

NOTE

Divisive clustering is the opposite of another often-used approach called 

agglomerative clustering. In agglomerative clustering, each customer starts in their 

own cluster, and you recursively glom together the two closest clusters until you 

reach a stopping point.

Split Number 1
All right. So you start this divisive clustering process by dividing the graph into two com-

munities so the modularity score is maximized.

http://perso.uclouvain.be/vincent.blondel/research


186 Data Smart

First create a new sheet called Split1 and paste customers down column A. Each cus-

tomer’s community assignment will go in column B, which you should label Community. 

Since you’re splitting the graph in half, have the Community column be a binary decision 

variable in Solver, where the 0/1 value will denote whether you’re in community 0 or 

community 1. Neither community is better than the other. There’s no shame in being a 0.

Scoring Each Customer’s Community Assignment

In column C, you’re going to calculate the scores you get by placing each customer in 

their respective community. By that, I mean if you place Adams in community 1, you’ll 

calculate his piece of the total modularity score by summing all the values from his row 

in the Scores tab whose customer columns also landed in community 1.

Consider how you’d add these scores in a formula. If Adams is in community 1, you need 

to sum all values from the Scores tab on row 2 where the corresponding customer in the 

optimization model is also assigned a 1. Because assignment values are 0/1, you can use 

SUMPRODUCT to multiply the community vector by the score vector and then sum the result.

Although the score values go across the Scores tab, in the optimization model, the 

assignments go top to bottom, so you need to TRANSPOSE the score values in order to make 

this work (and using TRANSPOSE means making this an array formula): 

{=SUMPRODUCT(B$2:B$101,TRANSPOSE(Scores!B2:CW2))}  

The formula simply multiplies the Scores values for Adams times the community assign-

ments. Only scores matching community assignment 1 stay, whereas the others get set 

to 0. The SUMPRODUCT just sums everything.

But what if Adams were assigned to community 0? You need only fl ip the community 

assignments by subtracting them from 1 in order to make the sum of scores work.

{=SUMPRODUCT(1-(B$2:B$101),TRANSPOSE(Scores!B2:CW2))}

In an ideal world, you could put these two together with an IF formula that checks 

Adams’ community assignment and then uses one of these two formulas to sum up the 

correct neighbors’ scores. But in order to use an IF formula, you need to use the non-linear 

solver (see Chapter 4 for details), and in this particular case, maximizing modularity is too 

hard for the non-linear solver to handle effi  ciently. You need to make the problem linear.

Making the Score Calculation into a Linear Model

If you read Chapter 4, you’ll recall a method for modeling the IF formula using linear 

constraints, called a “Big M” constraint. You’re going to use this tool here.

Both of the previous two formulas are linear; so what if you just set a score variable 

for Adams to be less than both of them? You’re trying to maximize the total modularity 

scores, so Adams’ score will want to rise until it bumps up against the lowest of these two 

constraining formulas.



187Cluster Analysis Part II: Network Graphs and Community Detection  

But how do you know which score calculation corresponding to Adams’ actual com-

munity assignment is the lowest? You don’t.

To fi x that, you need to deactivate whichever of those two formulas isn’t in play. If 

Adams is assigned a 1, the fi rst formula becomes an upper bound and the second formula 

is turned off . If Adams is a zero, you have the opposite.

How do you turn off  one of the two upper bounds? Add a “Big M” to it— just big enough 

that its bound is meaningless, because the legit bound is lower.

Consider this modifi cation to the fi rst formula:

{=SUMPRODUCT(B$2:B$101,TRANSPOSE(Scores!B2:CW2))+ 
(1-B2)*SUM(ABS(Scores!B2:CW2))}

If Adams is assigned to community 1, the addition you made at the end of the formula 

turns to 0 (because you’re multiplying by 1-B2). In this way, the formula becomes identical 

to the fi rst one you examined. But if Adams gets assigned to community 0, this formula 

no longer applies and needs to be turned off . So the (1-B2)*SUM(ABS(Scores!B2:CW2) 

piece of the formula adds one times the sum of all the absolute values of the scores Adams 

could possibly get, which guarantees the formula is higher than its fl ipped version that’s 

now in play:

{=SUMPRODUCT(1-(B$2:B$101),TRANSPOSE(Scores!B2:CW2))+
B2*SUM(ABS(Scores!B2:CW2))} 

All you’re doing is setting Adams’ score to be less than or equal to the correct calcula-

tion and removing the other formula from consideration by making it larger. It’s a ghetto-

hacked IF statement.

Thus, in column C you can create a score column that will be a decision variable, 

whereas in columns D and E in the spreadsheet you can place these two formulas as upper 

bounds on the score (see Figure 5-27).

Figure 5-27: Adding two upper bounds to each customer’s score variable



188 Data Smart

Note that in the formula absolute references are used on the community assignment 

range, so that as you drag the formulas down, nothing shifts.

Summing the scores in cell G2 for each eventual community assignment in col-

umn C, you get the total score, which you can normalize by the total stub count in 

'r-NeighborhoodAdj'!CX102 in order to get the modularity calculation:

=SUM(C2:C101)/'r-NeighborhoodAdj'!CX102

This gives the sheet shown in Figure 5-28.

Figure 5-28: Filled out Split1 tab, ready for optimization 

Setting Up the Linear Program

Now everything is set up for optimizing. Open the Solver window and specify that you’re 

maximizing the graph modularity score in cell G2. The decision variables are the com-

munity assignments in B2:B101 and their modularity scores are in C2:C101.

You need to add a constraint forcing the community assignments in B2:B101 to be 

binary. Also, you need to make the customer score variables in column C less than both 

the upper bounds in columns D and E.

As shown in Figure 5-29, you can then set all the variables to be non-negative with the 

checkbox and select Simplex LP as the optimization algorithm.

But wait. There’s more!

One of the problems with using a “Big M” constraint is that Solver often has trouble 

confi rming it’s actually found the optimal solution. So it’ll just sit there and spin its wheels 

even though it’s got a great solution in its back pocket. To prevent that from happening, 

press the Options button in Solver and set the Max Subproblems value to 15,000. That 

ensures that Solver quits after about 20 minutes on my laptop. 

Go ahead and press Solve—regardless of whether you’re using Solver or OpenSolver 

(see the nearby sidebar) when the algorithm terminates due to a user-defi ned limit, it 



189Cluster Analysis Part II: Network Graphs and Community Detection  

may tell you that while it found a feasible solution, it didn’t solve to optimality. This just 

means that the algorithm didn’t prove optimality (similar to how non-linear solvers are 

unable to prove optimality), but in this case, your solution should be strong nonetheless.

Figure 5-29: The LP formulation for the fi rst split

Once you have a solution, the Split1 tab should appear as in Figure 5-30.

EXCEL 2010 AND 2013 MUST USE OPENSOLVER

If you’re in Excel 2010 or 2013 on Windows, this problem is too hard for the Solver 

provided you, and you’ll need to use OpenSolver, as discussed in Chapters 1 and 4.

If you use OpenSolver, set up the problem with regular Solver, but before solving, 

open the OpenSolver plugin to beef up your system. OpenSolver has the same diffi  culty 

with “Big M” constraints, so before running the model, click the OpenSolver options 

button and set the time limit to 300 seconds. If you don’t do this, the default run time 

on OpenSolver is really high, and it may just spin its wheels, forcing you to kill Excel.

If you’re in Excel 2007 or Excel 2011 for Mac, you’re good to go with vanilla 

Solver, although if you’d like to use OpenSolver with Excel 2007, you can. If you’re in 

LibreOffi  ce, you should be just fi ne.



190 Data Smart

Figure 5-30: Optimal solution for the fi rst split

My Solver run came up with 0.464 for the modularity; your solution may be better if 

you use OpenSolver. Running down column B, you can see who ended up in community 

0 and who’s in community 1. The question then is, are you done? Are there only two com-

munities or are there more?

In order to answer that question, you need to try to split these two communities up. 

If you’re done, Solver won’t have any of it. But if making three or four communities from 

these two improves modularity, well, then Solver is going to do it.

Split 2: Electric Boogaloo
All right. Split these communities up like you’re doing cell division. You start by making 

a copy of the Split1 tab and calling it Split2.

The fi rst thing you need to do is insert a new column after the community values in 

column B. Label this new column C Last Run and copy the values over from B into C. 

This gives the sheet pictured in Figure 5-31.

In this model, the decisions are the same—customers are given a 1 or a 0. But you need 

to keep in mind that if two customers are given 1s this time around they’re not necessarily 

in the same community. If one of them was in community 0 on the fi rst run and the other 

was in community 1, they’re in two diff erent communities.

In other words, the only scores Adams might get for being in, say, community 1-0 

are from those customers who were also placed in community 0 on the fi rst split and in 

community 1 on the second. Thus, you need to change the upper bounds on the score 



191Cluster Analysis Part II: Network Graphs and Community Detection  

calculation. The score calculation for column E (here you show E2) then requires a check 

against the previous run in column C:

{=SUMPRODUCT(B$2:B$101,IF(C$2:C$101=C2,1,0),TRANSPOSE(Scores!B2:CW2))}

Figure 5-31: The Split2 tab with previous run values 

The IF statement IF(C$2:C$101=C2,1,0) prevents Adams from getting points unless 

his neighbors are with him on the fi rst split.

You can use an IF statement here, because column C isn’t a decision variable this time 

around. That split was fi xed on the last run, so there’s nothing non-linear about this. You 

can add the same IF statement into the “Big M” part of the formula to make the fi nal 

calculation in column E:

=SUMPRODUCT(B$2:B$101,IF(C$2:C$101=C2,1,0),TRANSPOSE(Scores!B2:CW2))+
(1-B2)*SUMPRODUCT(IF(C$2:C$101=C2,1,0),TRANSPOSE(ABS(Scores!B2:CW2)))

Similarly, you can add the same IF statements into the second upper bound in column F:

=SUMPRODUCT(1-(B$2:B$101),IF(C$2:C$101=C2,1,0),TRANSPOSE(Scores!B2:CW2))
+B2*SUMPRODUCT(IF(C$2:C$101=C2,1,0),TRANSPOSE(ABS(Scores!B2:CW2)))

All you’ve done is silo-ed the problem—those who were split into community 0 the 

fi rst time around have their own little world of scores to play with and the same goes for 

those who ended up in 1 the fi rst time.

And here’s the cool part—you don’t have to change the Solver formulation at all! Same 

formulation, same options! If you’re using OpenSolver, it may not have saved your maxi-

mum time limit options from the previous tab. Reset the option to three hundred seconds. 

Solve again.



192 Data Smart

In my run on Split2, I ended up with a fi nal modularity of 0.546 (see Figure 5-32), which 

is a substantial improvement over 0.464. That means that splitting was a good idea. (Your 

solution may end up diff erent and possibly better.)

Figure 5-32: The optimal solution for Split2

And…Split 3: Split with a Vengeance
Okay, so should you stop here or should you keep going? The way to tell is to split again, 

and if Solver can’t do better than 0.546, you’re through.

Start by creating a Split3 tab, renaming Last Run to Last Run 2, and then inserting a 

new Last Run in column C. Then copy the values from column B into C.

Add more IF statements to the upper bounds to check for community assignments in 

the previous run. For example, F2 becomes:

=SUMPRODUCT(B$2:B$101,
IF(D$2:D$101=D2,1,0),IF(C$2:C$101=C2,1,0),
TRANSPOSE(Scores!B2:CW2))+
(1-B2)*SUMPRODUCT(
IF(C$2:C$101=C2,1,0),IF(D$2:D$101=D2,1,0),
TRANSPOSE(ABS(Scores!B2:CW2)))

Once again, the Solver formulation doesn’t change. Reset your maximum solving time 

if need be, press Solve, and let the model run its course. In the case of my model, I saw 

no improvement in modularity (see Figure 5-33).

Splitting again added nothing, so this means that modularity was eff ectively maximized 

on Split2. Let’s take the cluster assignments from that tab and investigate.



193Cluster Analysis Part II: Network Graphs and Community Detection  

Encoding and Analyzing the Communities
In order to investigate these community assignments, the fi rst thing you should do is take 

this binary tree that’s been created by the successive splits and turn those columns into 

single cluster labels.

Create a tab called Communities and paste the customer name, community, and last 

run values from the Split2 tab. You can rename the two binary columns Split2 and Split1. 

To turn their binary values into single numbers, Excel provides a nifty binary-to-decimal 

formula called BIN2DEC. So in column D, starting at D2, you can add:

=BIN2DEC(CONCATENATE(B2,C2))

Figure 5-33: No modularity improvement in Split 3

Copying that formula down, you get the community assignments shown in Figure 5-34 

(your assignments may vary depending on Solver).

Figure 5-34: Final community labels for modularity maximization



194 Data Smart

You get four clusters with labels 0 to 3 out of the decimal encoding. So what are these 

four optimal clusters? Well, you can fi nd out in the same way you delved into clusters in 

Chapter 2—by investigating the most popular purchases of their members.

To begin, just as in Chapter 2, create a tab called TopDealsByCluster and paste the deal 

information from columns A through G on the Matrix tab. Next to the matrix, place the 

cluster labels 0, 1, 2, and 3 in columns H through K. This gives you the sheet pictured in 

Figure 5-35.

Figure 5-35: The initial TopDealsByCluster tab

For label 0 in column H, you now want to look up all customers on the Communities 

tab who have been assigned to community 0 and sum how many of them took each deal. 

Just as in Chapter 2 and in the previous Split tabs, you use SUMPRODUCT with an IF state-

ment to achieve this:

{=SUMPRODUCT(IF(Communities!$D$2:$D$101=TopDealsByCluster!H$1,1,0),
    TRANSPOSE(Matrix!$H2:$DC2))} 

In this formula you check which customers match the 0 in the column label at H1, and 

when they do match, you sum whether or not they took the fi rst deal by checking H2:DC2 

on the Matrix tab. Note that you use TRANSPOSE in order to orient everything vertically. 

This means you have to make the calculation an array formula.

Note that you’ve used absolute references on the customer community assignments, 

the header rows, and the purchase matrix columns. This allows you to drag the formula 

to the right and down, giving you a full picture of the popular purchases for each cluster 

(see Figure 5-36).

Just as in Chapter 2, you need to apply fi ltering to the sheet and sort by descending 

deal count on community 0 in column H. This gives you Figure 5-37, the low-volume 



195Cluster Analysis Part II: Network Graphs and Community Detection  

customer community (your clusters may vary in their order and composition depending 

on the solution Solver terminated with at each step).

Figure 5-36: TopDealsByCluster with completed purchase counts

Figure 5-37: Top deals for community 0

Sorting by community 1, you get what appears to be the high-volume French Champagne 

cluster (see Figure 5-38). Fascinating.



196 Data Smart

Figure 5-38: Poppin’ bottles in community 1

As for community 2, it looks similar to community 0, except that the March Espumante 

deal is the main driver (see Figure 5-39).

Figure 5-39: People who liked the March Espumante deal

And for community 3, it’s the Pinot Noir folks. Haven’t you ever heard of Cabernet 

Sauvignon, people!? Admittedly, I have a terrible palate for wine. See Figure 5-40.

That’s it! You have four clusters, and honestly, three of them make perfect sense, 

although I suppose it’s possible that you have a group of people who really just love 

Espumante in March. And you may get that in your work—some indecipherable outlier 

clusters.



197Cluster Analysis Part II: Network Graphs and Community Detection  

Figure 5-40: Pinot peeps

Note how similar this solution is to the clusters found in Chapter 2, however. In 

Chapter 2, you used a whole diff erent methodology by keeping each customer’s deal vector 

in the mix and using it to measure their distances from a cluster center. Here, there’s no 

concept of a center and even which deals a customer has purchased have been obfuscated. 

What’s important is the distance to other customers.

There and Back Again: A Gephi Tale
Now that you’ve gone through the entire clustering process, I’d like to show you that same 

process in Gephi. In Figure 5-20, you examined a laid out export of the r-Neighborhood 

graph into Gephi, which I return to in this section.

This next step is going to make you envious, but here it goes. In Excel you had to solve 

for the optimal graph modularity using divisive clustering. In Gephi, there’s a Modularity 

button. You’ll fi nd it on the right side of the window in the Network Overview section of 

the Statistics tab. 

When you press the Modularity button, a settings window opens. You needn’t use edge 

weights since you exported an adjacency matrix (see Figure 5-41 for the Gephi modular-

ity settings window).

Press OK. The modularity optimization will run using an approximation algorithm 

that’s blindingly fast. A report is then displayed with a total modularity score of 0.549 

as well as the size of each detected cluster (see Figure 5-42). Note that if you run this in 

Gephi, the solution may come out diff erent since the calculation is randomized.



198 Data Smart

Figure 5-41: Gephi modularity settings

Figure 5-42: Modularity score from Gephi



199Cluster Analysis Part II: Network Graphs and Community Detection  

Once you have your clusters from Gephi, you can do a few things with them. 

First, you can recolor the graph using the modularity. Just as you resized the Friends 

graph using node degree, you can navigate to the Ranking window in the upper left of 

window in Gephi and go into the Nodes section. From there, you can select Modularity 

Class from the drop-down menu, pick any color scheme you want, and press Apply to 

recolor the graph (see Figure 5-43).

Figure 5-43: Customer graph recolored to show modularity clusters

Cool! You can now see that the two “tumor-esque” parts of the graph are indeed com-

munities. The spread-out middle section of the graph was divided into three clusters. And 

poor Parker was placed in his own cluster, unconnected to anyone. How lonely and sad.

The second thing you can do with the modularity information is export it back into 

Excel to examine it, just as you did with your own clusters. To accomplish this, go into 

the Data Laboratory tab you visited earlier in Gephi. You’ll notice that the modularity 

classes have already been populated as a column in the Nodes data table. Pressing the 

Export Table button, you can select the label and modularity class columns to dump to 

a CSV fi le (see Figure 5-44).



200 Data Smart

Figure 5-44: Exporting modularity classes back to Excel

Press OK on the export window to export your modularity classes to a CSV wherever 

you like and then open that fi le in Excel. From there, you can create a new tab in the 

main workbook called CommunitiesGephi, where you can paste the classes Gephi has 

found for you (see Figure 5-45). You’ll need to use the fi lter capability in Excel to sort your 

customers by name just as they are in the rest of the workbook.

Just for kicks, let’s confi rm that this clustering really does beat the original score in 

column C. You’re not bound by linear modeling constraints anymore, so you can total 

each customer’s modularity scores using the following formula (shown here using our 

favorite customer, Adams, in cell C2):

{=SUMPRODUCT(IF($B$2:$B$101=B2,1,0),TRANSPOSE(Scores!B2:CW2))} 

The formula merely checks for customers in the same cluster using an IF statement, 

gives those customers 1s and all else 0s, and then uses a SUMPRODUCT to sum their modu-

larity scores.

You can double-click this formula to send it down column C. Summing the column in 

cell E2 and dividing through by the total stub count from 'r-NeighborhoodAdj'!CX102, 



201Cluster Analysis Part II: Network Graphs and Community Detection  

you do indeed get a modularity score of 0.549 (see Figure 5-46). So Gephi’s heuristic has 

beat out the divisive clustering heuristic by 0.003. Oh well! Pretty close. (If you used 

OpenSolver, you may actually be able to beat Gephi.)

Figure 5-45: Gephi modularity classes back in Excel

Figure 5-46: Reproducing the modularity score for the communities detected by Gephi

Let’s see which clusters Gephi actually came up with. To start, let’s make a copy of the 

TopDealsByCluster tab, which you should rename TopDealsByClusterGephi. Once you’ve 

made a copy, sort the deals back in order by column A and drop the fi ltering placed on 

the table. Now, in Gephi’s clustering, you have six clusters with labels 0 through 5 (your 

results may be diff erent since Gephi uses a randomized algorithm), so let’s add 4 and 5 

to the mix in columns L and M.



202 Data Smart

The formula in cell H2 need only be modified to reference column B on the 

CommunitiesGephi tab instead of column D on the Communities tab. You can then drag 

this formula to the rest of the sheet, yielding Figure 5-47.

Figure 5-47: Top purchases per cluster from Gephi

If you sort once again by column, you see the all too familiar clusters—low volume, 

sparkling wine, Francophiles, Pinot people, high volume, and last but not least, Parker 

by himself.

Wrapping Up
In Chapter 2, you looked at k-means clustering. Using the same data in this chapter, you 

tackled network graphs and clustering via modularity maximization. You should feel 

pretty good about your data mining chops by now. In more detail, here are some items 

you learned:

• How network graphs are visually represented as well as how they’re represented 

numerically using adjacency and affi  nity matrices

• How to load a network graph into Gephi to augment Excel’s visualization defi ciencies

• How to prune edges from network graphs via the r-neighborhood graph. You also 

learned the concept of a kNN graph, which I recommend you go back and tinker 

with.

• The defi nitions of node degree and graph modularity and how to calculate modular-

ity scores for grouping two nodes together



203Cluster Analysis Part II: Network Graphs and Community Detection  

• How to maximize graph modularity using a linear optimization model and divisive 

clustering

• How to maximize graph modularity in Gephi and export the results

Now, you may be wondering, “John, why in the world did you take me through that 

graph modularity maximization process when Gephi does it for me?”

Remember, the point of this book is not to press buttons blindly, without understanding 

what they do. Now you know how to construct and prep graph data for cluster detection. 

And you know how community detection on graph data works. You’ve done it. So next 

time you do this, even if you’re just pushing a button, you’ll know what’s going on behind 

the scenes, and that level of understanding and confi dence in the process is invaluable.

Although Gephi is one of the best places to do this analysis, if you’re looking for a place 

to code with graph data, the igraph library, which has hooks in R and Python, is excellent 

for working with network graphs. 

Also worth mentioning are the Neo4J and Titan graph databases. These databases are 

designed to store graph data for querying later, whether that query is something as simple 

as “get John’s friends’ favorite fi lms” or as complex as “fi nd the shortest path on Facebook 

between John and Kevin Bacon.”

So that’s it. Go forth, graph, and fi nd commu nities!





6
Wait, What? You’re Pregnant?

In a recent Forbes article, it was reported that Target had created an artificial intelligence 

(AI) model that could predict when a customer was pregnant and use that information 

to start targeting them with pregnancy-related marketing and offers. New parents blow a 

lot of money on the accouterments of child rearing, and what better time to turn them into 

loyal customers than before the baby even shows up? They’ll be buying the store brand 

diapers for years!

This story about Target is just one of many that have peppered the press recently. Watson 

won Jeopardy!. Netfl ix off ered a million dollar prize to improve its recommendation system. 

The Obama re-election campaign used artifi cial intelligence to help direct ground, online, 

and on the air media and fundraising operations. And then there’s Kaggle.com, where 

competitions are popping up to predict everything from whether a driver is getting sleepy 

to how much a grocery shopper will spend on groceries. 

But those are only the headline-catching applications. AI is useful across nearly any 

industry you can think of. Your credit card company uses it to identify odd transactions 

on your account. The enemy in your shoot-em-up Xbox game runs on AI. There’s e-mail 

spam fi ltering, tax fraud detection, spelling auto-correction, and friend recommendation 

on social networks. 

Quite simply, a good AI model can help a business make better decisions, market better, 

increase revenue, and decrease costs. An AI model can help your sales and support staff  

prioritize leads and support calls. AI can help predict what off ers will bring a customer 

back to your brick and mortar store. AI can identify applicants who lie on their online 

dating profi le or are going to have a coronary in the next year. You name it; if there’s good 

historical data, a trained AI model can help.

The Granddaddy of 
Supervised Artifi cial 
Intelligence—
Regression



Data Smart206

Don’t Kid Yourself
Folks who don’t know how AI models work often experience some combination of awe and 

creepiness when hearing about how these models can predict the future. But to paraphrase 

the great 1992 fi lm Sneakers, “Don’t kid yourself. It’s not that [intelligent].”

Why? Because AI models are no smarter than the sum of their parts. At a simplistic level, you 

feed a supervised AI algorithm some historical data, purchases at Target for example, and 

you tell the algorithm, “Hey, these purchases were from pregnant people, and these other 

purchases were from not-so-pregnant people.” The algorithm munches on the data and 

out pops a model. In the future, you feed the model a customer’s purchases and ask, “Is 

this person pregnant?” and the model answers, “No, that’s a 26-year-old dude living in 

his mom’s basement.”

That’s extremely helpful, but the model isn’t a magician. It just cleverly turns past data 

into a formula or set of rules that it uses to predict a future case. As we saw in the case 

of naïve Bayes in Chapter 3, it’s the AI model’s ability to recall this data and associated 

decision rules, probabilities, or coeffi  cients that make it so eff ective.

We do this all the time in our own non-artifi cially intelligent lives. For example, using 

personal historical data, my brain knows that when I eat a sub sandwich with brown-

looking alfalfa sprouts on it, there’s a good chance I may be ill in a few hours. I’ve taken 

past data (I got sick) and trained my brain on it, so now I have a rule, formula, model, 

whatever you’d like to call it: brown sprouts = gastrointestinal nightmare.

In this chapter, we’re going to implement two diff erent regression models just to see how 

straightforward AI can be. Regression is the granddaddy of supervised predictive modeling 

with research being done on it as early as the turn of the 19th century. It’s an oldie, but its 

pedigree contributes to its power—regression has had time to build up all sorts of rigor 

around it in ways that some newer AI techniques have not. In contrast to the MacGyver 

feel of naïve Bayes in Chapter 3, you’ll feel the weight of the statistical rigor of regression 

in this chapter, particularly when we investigate signifi cance testing.

Similarly to how we used the naïve Bayes model in Chapter 3, we’ll use these models 

for classifi cation. However as you’ll see, the problem at hand is very diff erent from the 

bag-of-words document classifi cation problem we encountered earlier.



207The Granddaddy of Supervised Artifi cial Intelligence—Regression

Predicting Pregnant Customers at RetailMart Using 
Linear Regression

NOTE

The Excel workbook used in this chapter, “RetailMart.xlsx,” is available for download 

at the book’s website at www.wiley.com/go/datasmart.This workbook includes all the 

initial data if you want to work from that. Or you can just read along using the sheets 

I’ve already put together in the workbook.

Pretend you’re a marketing manager at RetailMart’s corporate headquarters in charge of 

infant merchandise. Your job is to help sell more diapers, formula, onesies, cribs, strollers, 

pacifi ers, etc. to new parents, but you have a problem.

You know from focus groups that new parents get into habits with baby products. 

They fi nd diaper brands they like early on and stores that have the best prices on their 

brands. They fi nd the pacifi er that works with their baby, and they know where to go 

to get the cheap two-pack. You want RetailMart to be the fi rst store these new parents 

buy diapers at. You want to maximize RetailMart’s chances of being a parent’s go-to for 

baby purchases.

But to do that, you need to market to these parents before they buy their fi rst package 

of diapers somewhere else. You need to market to the parents before the baby shows up. 

That way, when the baby arrives, the parents have already received and possibly already 

used that coupon they got in the mail for diapers and ointment.

Quite simply, you need a predictive model to help identify potential pregnant custom-

ers for targeted direct marking. 

The Feature Set
You have a secret weapon at your disposal for building this model: customer account 

data. You don’t have this data for every customer; no, you’re up the creek for the guy who 

lives in the woods and only pays cash. But for those who use a store credit card or have 

an online account tied to their major credit card, you can tie purchases not necessarily to 

an individual but at least to a household.

http://www.wiley.com/go/datasmart.This


Data Smart208

However, you can’t just feed an entire purchase history, unstructured, into an AI model 

and expect things to happen. You have to be smart about pulling relevant predictors out of 

the dataset. So the question you should ask yourself is which past purchases are predictive 

for or against a household being pregnant?

The fi rst purchase that comes to mind is a pregnancy test. If a customer buys a preg-

nancy test, they’re more likely to be pregnant than the average customer. These predictors 

are often called model features or independent variables, while the thing we’re trying to 

predict “Pregnant (yes/no)?” would be the dependent variable in the sense that its value is 

dependent on the independent variable data we’re pushing into the model.

Pause a moment, and jot down your thoughts on possible features for the AI model. 

What purchase history should RetailMart consider?

Here’s a list of example features that could be generated from a customer’s purchase 

records and associated account information:

• Account holder is Male/Female/Unknown by matching surname to census data.

• Account holder address is a home, apartment, or PO box.

• Recently purchased a pregnancy test

• Recently purchased birth control

• Recently purchased feminine hygiene products

• Recently purchased folic acid supplements

• Recently purchased prenatal vitamins

• Recently purchased prenatal yoga DVD

• Recently purchased body pillow

• Recently purchased ginger ale

• Recently purchased Sea-Bands

• Bought cigarettes regularly until recently, then stopped

• Recently purchased cigarettes

• Recently purchased smoking cessation products (gum, patch, etc.)

• Bought wine regularly until recently, then stopped

• Recently purchased wine

• Recently purchased maternity clothing

None of these predictors are perfect. Customers don’t buy everything at RetailMart; 

a customer might choose to buy their pregnancy test at the local drug store instead of 

RetailMart or their prenatal supplements might be prescription. Even if the customer did 

buy everything at RetailMart, pregnant households can still have a smoker or a drinker. 

Maternity clothing is often worn by non-pregnant folks, especially when the Empire waist 

is in style—thank goodness RetailMart doesn’t exist in a Jane Austen novel. Ginger ale 

may help nausea, but it’s also great with bourbon. You get the picture.

None of these predictors are going to cut it, but the hope is that with their powers com-

bined Captain-Planet-style, the model will be able to classify customers reasonably well.



209The Granddaddy of Supervised Artifi cial Intelligence—Regression

Assembling the Training Data
Six percent of RetailMart’s customer households are pregnant at any given time according 

to surveys the company has conducted. You need to grab some examples of this group 

from the RetailMart database and assemble your modeling features on their purchase 

history before they gave birth. Likewise, you need to assemble these features for a sample 

of customers who aren’t pregnant.

Once you assemble these features for a bunch of pregnant and non-pregnant households, 

you can use these known examples to train an AI model. 

But how should you go about identifying past pregnant households in the data? 

Surveying customers to build a training set is always an option. You’re just building a 

prototype, so perhaps approximating households who just had a baby by looking at buying 

habits is good enough. For customers who suddenly began buying newborn diapers and 

continued to buy diapers of increasing size on and off  for at least a year, you can reason-

ably assume the customer’s household has a new baby.

So by looking at the purchase history for the customer before the diaper-buying event, 

you can assemble the features listed previously for a pregnant household. Imagine you 

pull 500 examples of pregnant households and assemble their feature data from the 

RetailMart database.

As for non-pregnant customers, you can assemble purchase history from a random selec-

tion of customers in RetailMart’s database that don’t meet the “ongoing diaper purchasing” 

criteria. Sure, one or two pregnant people might slip into the not-pregnant category, but 

because pregnant households only make up a small percentage of the RetailMart popu-

lation (and that’s before excluding diaper-buyers), this random sample should be clean 

enough. Imagine you grab another 500 examples of these non-pregnant customers.

If you plopped the 1,000 rows (500 preggers, 500 not) into a spreadsheet it’d look like 

Figure 6-1.

Figure 6-1: Raw training data



Data Smart210

RESOLVING CLASS IMBALANCE

Now, you know that only 6 percent of our customer population in the wild is preg-

nant at any given time, but the training set you’ve assembled is 50/50. This is called 

over-sampling. Pregnancy would be the “minority” or rare class in the data, and by 

balancing the sample, the classifi er you’re going to train won’t become overwhelmed 

by non-pregnant customers. After all, if you left the sample at a natural 6/94 split, 

then just labeling everyone as not pregnant leads to a 94 percent accuracy rate. 

That’s dangerous since pregnancy, while in the minority, is actually the class you 

care about marketing to.

This rebalancing of the training data will introduce a bias to the model—it’ll think 

pregnancy is more common than it really is. But that’s fi ne, because you don’t need to 

get actual probabilities of being pregnant out of the model. As you’ll see later in this 

chapter, you just need to fi nd the sweet spot for pregnancy scores coming out of the 

model that balances the true positives and false positives.

In the fi rst two columns of the training dataset, you have categorical data for gender 

and address type. The rest of the features are binary where a 1 means TRUE. So for 

example, if you look at the fi rst row in the spreadsheet, you can see that this customer 

was confi rmed pregnant (column S). That’s the column you’re going to train the model to 

predict. And if you look at this customer’s past purchasing history, you can see that they 

purchased a pregnancy test and some prenatal vitamins. Also, they have not purchased 

cigarettes or wine recently.

If you scroll through the data, you’ll see all types of customers, some with lots of indi-

cators and some with little. Just as expected, pregnant households will occasionally buy 

cigarettes and wine, while non-pregnant households will buy products associated with 

pregnancy.

Creating Dummy Variables
You can think of an AI model as nothing more than a formula that takes numbers in, 

chews on them a bit, and spits out a prediction that should look something like the 1s 

(pregnant) and 0s (not) in column S of the spreadsheet. 

But the problem with this data is that the fi rst two columns aren’t numbers, now are 

they? They’re letters standing for categories, like male and female. 

This issue, handling categorical data, that is, data that’s grouped by a fi nite number of 

labels without inherent numeric equivalents, is one that constantly nips at data miners’ 



211The Granddaddy of Supervised Artifi cial Intelligence—Regression

heels. If you send out a survey to your customers and they have to report back what line 

of work they’re in, their marital status, the country they live in, the breed of dog they 

own, or their favorite episode of Gilmore Girls, then you’re going to be stuck dealing with 

categorical data. 

This is in contrast to quantitative data, which is already numeric and ready to be 

devoured by data mining techniques.

So what do you do to handle categorical data? Well, in short you need to make it 

quantitative.

Sometimes, your categorical data may have a natural ordering that you can use to 

assign each category a value. For instance, if you had a variable in your dataset where 

folks reported whether they drove a Scion, a Toyota, or a Lexus, maybe you could just 

make those responses 1, 2, and 3. Voila, numbers.

But more frequently, there is no ordering, such as with gender. For example, male, 

female, and unknown are distinct labels without a notion of ordering. In this case, it’s 

common to use a technique called dummy coding to convert your categorical data to 

quantitative data.

Dummy coding works by taking a single categorical column (consider the Implied 

Gender column) and turning it into multiple binary columns. You could take the Implied 

Gender column and instead have one column for male, another for female, and another 

for unknown gender. If a value in the original column were “M,” that instead could be 

coded as a 1 in the male column, a 0 in the female column, and a 0 in the unknown 

gender column.

This is actually overkill, because if the male and female columns were both 0, then the 

unknown gender is already implied. You don’t need a third column.

In this way, when dummy coding a categorical variable, you always need one less 

column than you have category values—the last category is always implied by the other 

values. In stats-speak, you’d say that the gender categorical variable has only two degrees 

of freedom, because the degrees of freedom are always one less than the possible values 

the variable can take.

In this particular example, start by creating a copy of the Training Data sheet called 

Training Data w Dummy Vars. You’re going to split the fi rst two predictors into two 

columns each, so go ahead and clear out column A and B and insert another two blank 

columns to the left of column A.

Label these four empty columns Male, Female, Home, and Apt (unknown gender and 

PO box become implied). As shown in Figure 6-2, you should now have four empty col-

umns to house the dummy coding of your two categorical variables.



Data Smart212

Figure 6-2: Training Data w Dummy Vars tab with new columns for the dummy variables

Consider the fi rst row of training data. To turn the “M” in the gender column into 

dummy encoded data, you place a 1 in the Male column and a 0 in the Female column. 

(The 1 in the Male column naturally implies that the gender is not Unknown.)

In cell A2 on the Training Data w Dummy Vars tab, check the old category on the 

Training Data tab and set a 1 if the category was set to “M”:

=IF(‘Training Data’!A2=”M”,1,0)

Same goes for values “F” in the Female column, “H” in the Home column, and “A” in 

the Apt column. To copy these four formulas down through all the rows of the training 

data, you can either drag them, or better yet, as explained in Chapter 1, highlight all four 

formulas and then double-click the bottom right corner of D2. That’ll fi ll in the sheet 

with the converted values through D1001. Once you’ve converted these two categorical 

columns into four binary dummy variables (see Figure 6-3), you’re ready to get modeling.

Figure 6-3: Training data with dummy variables populated



213The Granddaddy of Supervised Artifi cial Intelligence—Regression

Let’s Bake Our Own Linear Regression
Every time I say this, a statistician loses its wings, but I’m going to say it anyway—If 

you’re ever shoved a trendline through a cloud of points on a scatter plot, then you’ve 

built an AI model.

You’re probably thinking, “But there’s no way! I would’ve known had I created a robot 

that could travel back in time to stop John Conner!”

The Simplest of Linear Models

Let me explain by showing some simple data in Figure 6-4.

Figure 6-4: Cat ownership versus me sneezing

In the pictured table, you have the number of cats in a house in the fi rst column and the 

likelihood that I’ll sneeze inside that house in the second column. No cats? Three percent 

of the time I sneeze any way just because I know a Platonic cat exists somewhere. Five 

cats? Well, then my sneezing is just about guaranteed. Now, we can scatter plot this data 

in Excel and look at it as shown in Figure 6-5 (For more on inserting plots and charts 

see Chapter 1).

0
0%

20%

40%

60%

80%

100%

1 2
# of cats

Likelihood I’ll sneeze in your home

L
ik

e
li

h
o
o
d
 o

f 
sn

e
e
zi

n
g

3 4 5

Figure 6-5: Scatter plot of cats versus sneezing



Data Smart214

By right-clicking on the data points in the graph (you have to right-click an actual data 

point, not just the graph itself) and selecting Add Trendline from the menu, you can select 

a linear regression model to add to the graph. Under the “Options” section of the “Format 

Trendline” window, you can select to “Display equation on chart.” Pressing OK, you can 

now see the trendline and formula for the line (Figure 6-6).

0
0%

20%

40%

60%

80%

100%

y = 0.1529x + 0.0362

1 2
# of cats

Likelihood I’ll sneeze in your home

L
ik

e
li

h
o
o
d
 o

f 
sn

e
e
zi

n
g

3 4 5

Figure 6-6: Linear model displayed on the graph

The trendline in the graph rightly shows the relationship between cats and sneezing 

with a formula of:

Y = 0.1529x + 0.0362 

In other words, when x is 0, the linear model thinks I’ve got about a 3-4 percent chance 

of sneezing, and the model gives me an extra 15 percent chance per cat.

That baseline of 3-4 percent is called the intercept of the model, and the 15 percent per 

cat is called a coeffi  cient for the cats variable. Making a prediction with a linear model 

like this requires nothing more than taking my future data and combining it with the 

coeffi  cients and the intercept of the model.

In fact, you can copy the formula =0.1529x+0.0362 out of the graph if you like and paste 

it in a cell to make predictions by replacing the x with an actual number., For example, 

if in the future I went into a home with three and a half cats (poor Timmy lost his hind 

paws in a boating accident), then I’d take a “linear combination” of the coeffi  cients and 

my data, add in the intercept, and get my prediction:

0.1529*3.5 cats + 0.0362 = 0.57



215The Granddaddy of Supervised Artifi cial Intelligence—Regression

A 57 percent chance of sneezing! This is an AI model in the sense that we’ve taken an 

independent variable (cats) and a dependent variable (sneezing) and asked the computer 

to describe their relationship as a formula that best fi ts our historical data.

Now, you might wonder how the computer fi gured this trendline out from the data. 

It looks good, but how’d it know where to put it? Basically, the computer looked for a 

trendline that best fi t the data, where by best fi t I mean the trendline that minimizes the 

sum of squared error with the training data.

To get a handle on what the sum of squared error means, if you evaluate the trendline 

for one cat you get:

0.1529*1 cat + 0.0362 = 0.1891

But the training data gives a likelihood of 20 percent, not 18.91 percent. So then your 

error at this point on the trendline is 1.09 percent. This error value is squared to make 

sure it a positive value, regardless of whether the trendline is above or below the data 

point. 1.09 percent squared is 0.012 percent. Now if you summed each of these squared 

error values for the points in our training data, you’d get the sum of the squared error 

(often just called the sum of squares). And that’s what Excel minimized when fi tting the 

trendline to the sneeze graph.

Although your RetailMart data has way too many dimensions to toss into a scatter 

plot, in these next sections, you’ll fi t the exact same type of line to the data from scratch.

Back to the RetailMart Data

OK, so it’s time to build a linear model like the Kitty Sneeze model on the RetailMart 

dataset. First, create a new tab called Linear Model, and paste the values from the Training 

Data w Dummy Vars tab, except when you paste it, start in column B to save room for 

some row labels in column A and on row 7 to leave space at the top of the sheet for the 

linear model’s coeffi  cients and other evaluative data you’ll be tracking.

Paste the header row for your dependent variables again on row 1 to stay organized. 

And in column U, add the label Intercept because your linear model will need a baseline 

just like in the previous example. Furthermore, to incorporate the intercept into the model 

easier, fi ll in your intercept column (U8:U1007) with 1s. This will allow you to evaluate 

the model by taking a SUMPRODUCT of the coeffi  cient row with a data row that will incor-

porate the intercept value.

All the coeffi  cients for this model are going to go on row 2 of the spreadsheet, so label 

row 2 as Model Coeffi  cients and place a starting value of 1 in each cell. You can also lay 



Data Smart216

on some conditional formatting on the coeffi  cient row so you can see diff erences in them 

once they’re set. 

Your dataset now looks like Figure 6-7.

Figure 6-7: Linear modeling setup

Once the coeffi  cients in row 2 are set, you can take a linear combination (formula 

SUMPRODUCT) of the coefficients with a row of customer data and get a pregnancy 

prediction.

You have too many columns here, to build a linear model by graphing it the way I did 

with the cats, so instead you’re going to train the model yourself. The fi rst step is to add 

a column to the spreadsheet with a prediction on one of the rows of data.

In column W, next to the customer data, add the column label Linear Combination 

(Prediction) to row 7 and below it take a linear combination of coeffi  cients and customer 

data (intercept column included). The formula you plug into row 8 to do this for your 

fi rst customer is:

=SUMPRODUCT(B$2:U$2,B8:U8)

The absolute reference should be placed on row 2, so that you can drag this formula 

down to all the other customers without the coeffi  cient row changing.

TIP

Also, you may want to highlight column W, right-click, select “Format Cells…,” and 

format the values as a number with two decimal places just to keep your eyes from 

bleeding at the sight of so many decimals.

Once you’ve added this column, your data will look like Figure 6-8.



217The Granddaddy of Supervised Artifi cial Intelligence—Regression

Figure 6-8: The prediction column for a linear model

Ideally, the prediction column (column W) would look identical to what we know to be 

the truth (column V), but using coeffi  cients of 1 for every variable, it’s easy to see you’re 

way off . The fi rst customer gets a prediction of 5 even though pregnancy is indicated with 

a 1 and non-pregnancy with a 0. What’s a 5? Really, really pregnant?

Adding in an Error Calculation

You need to get the computer to set these model coeffi  cients for you, but in order for it to 

know how to do that, you need to let the machine know when a prediction is right and 

when it’s wrong.

To that end, add an error calculation in column X. Use squared error, which is just the square 

of the distance of the value of PREGNANT (column V) from the predicted value (column W).

Squaring the error allows each error calculation to be positive, so that you can sum 

them together to get a sense of overall error of the model. You don’t want positive and 

negative errors canceling each other out. So for the fi rst customer in the sheet, you’d have 

the following formula:

=(V8-W8)^2

You can drag that cell down the rest of the column to give each prediction its own 

error calculation.

Now, add a cell above the predictions in cell X1 (labeled in W1 as Sum Squared Error) 

where you’ll sum the squared error column using the formula:

=SUM(X8:X1007)



Data Smart218

Your spreadsheet looks like Figure 6-9:

Figure 6-9: Predictions and sum of squared error

Training with Solver

Now you’re ready to train your linear model. You want to set the coeffi  cients for each vari-

able such that the sum of squared error is as low as it can be. If this sounds like a job for 

Solver to you, you’re right. Just as you did in Chapters 2, 4, and 5, you’re going to open up 

Solver and get the computer to fi nd the best coeffi  cients for you.

The objective function will be the Sum Squared Error value from cell X1, which you’ll 

want to minimize “by changing variable cells” B2 through U2, which are your model 

coeffi  cients.

Now, squared error is a quadratic function of your decision variables, the coeffi  cients, 

so you can’t use Simplex-LP as the solving method like you used extensively in Chapter 

4. Simplex is super-fast and guarantees fi nding the best answer, but it requires that the 

model only consider linear combinations of the decisions. You’ll need to use the evolu-

tionary algorithm in Solver.

REFERENCE

For more on non-linear optimization models and the inner workings of the evolution-

ary optimization algorithm, see Chapter 4. If you like, you can also play with the other 

non-linear optimization algorithm Excel off ers called GRG.



219The Granddaddy of Supervised Artifi cial Intelligence—Regression

Basically, Solver is going to sniff  around for coeffi  cient values that make the sum of 

squares fall until it feels like it’s found a really good solution. But in order to use the evo-

lutionary algorithm eff ectively, you need to set upper and lower bounds on each of the 

coeffi  cients you’re trying to set.

I urge you to play around with these upper and lower bounds. The tighter they are 

(without getting too tight!), the better the algorithm works. For this model, I’ve set them 

to be between -1 and 1.

Once you’ve completed these items, your Solver setup should look like Figure 6-10.

Figure 6-10: Solver setup for linear model

Press the Solve button and wait! As the Evolutionary Solver tries out various coeffi  cients 

for the model, you’ll see the values change. The conditional formatting on the cells will 

give you a sense of magnitude. Furthermore, the sum of the squared error should bounce 

around but generally decrease over time. Once Solver fi nishes, it will tell you the problem 

is optimized. Click OK, and you’ll have your model back.

In Figure 6-11, you’ll see that the Solver run fi nished with a 135.52 sum of squared 

error. If you’re following along and would like to run Solver yourself, be aware that two 

runs of the evolutionary algorithm don’t have to end up in the same place—your sum of 

squares might end up being higher or lower than the book’s, with slightly diff erent fi nal 

model coeffi  cients. The optimized linear model is pictured in Figure 6-11.



Data Smart220

Figure 6-11: Optimized linear model

USING THE LINEST() FORMULA FOR LINEAR REGRESSION

Some readers may be aware that Excel has its own linear regression formula called 

LINEST(). In one stroke, this formula can, indeed, do what you just did by hand. It 

craps out at 64 features, however, so for truly large regressions, you’ll need to roll 

your own anyway.

Feel free to try it out on this dataset. But beware! Read the Excel help documentation 

on the formula. In order to get all your coeffi  cients out of it, you’ll need to use it as an 

array formula (see Chapter 1). Also, it spits the coeffi  cients out in reverse order (Male 

will be the fi nal coeffi  cient before the intercept), which is truly annoying.

Where LINEST() comes in super handy is that it automatically computes many of 

the values needed for performing statistical testing on your linear model, such as the 

dreaded coeffi  cient standard error calculation that you’ll see in the next section.

But in this chapter, you’re going to do everything by hand so that you’ll know a great 

deal about what LINEST() (and other software packages’ linear modeling functions) is 

doing and will feel comfortable leaning on it in the future. Also, doing things by hand 

will aid the transition into logistic regression, which Excel does not support.



221The Granddaddy of Supervised Artifi cial Intelligence—Regression

USING MEDIAN REGRESSION TO BETTER HANDLE OUTLIERS

In median regression, you minimize the sum of the absolute values of the errors instead 

of the sum of the squared errors. That’s the only change from linear regression.

What does it get you?

In linear regression, outliers (values that are markedly distant from the rest of the data) 

in your training set have more pull and can throw off  the model fi tting process. When 

an outlier’s error values are large, the linear regression will chase them more, striking 

a diff erent balance between a large error and a bunch of other normal points’ smaller 

errors than the balance that is struck in median regression. In median regression, the 

line that’s fi t to the data will stay close to the typical, inlying data points rather than 

chase the outliers so much.

While I won’t work through median regression in this chapter, it’s not hard to try 

out on your own. Just swap the squared error term for the absolute value (Excel has the 

ABS function) and you’re off  and running.

That said, if you’re on Windows and have OpenSolver installed (see Chapter 1), then 

here’s a huge bonus problem!

Since in median regression, you’re minimizing error, and since an absolute value can 

also be thought of as a max function (the max of a value and -1 times that value), try to 

linearize the median regression as a minimax-esque optimization model (see Chapter 4 

for more on minimax optimization models). Hint: You’ll need to create one variable per 

row of training data, which is why you need OpenSolver—regular Solver can’t handle 

a thousand decisions and two thousand constraints.

Good luck!

Linear Regression Statistics: R-Squared, F Tests, t Tests

NOTE

This next section is the heaviest statistical section in the whole book. Indeed, this section 

arguably houses the most complex calculation in this entire book—the calculation of 

model coeffi  cient standard error. I’ve tried to describe everything as intuitively as pos-

sible, but some of the calculations defy explanation at a level appropriate for the text. 

And I don’t want to get sidetracked teaching a linear algebra course here.

Try to understand these concepts as best you can. Practice them. And if you want to 

know more, grab an intro level stats textbook (for example, Statistics in Plain English 

by Timothy C. Urdan [Routledge, 2010]).

If you get bogged down, know that this section is self-contained. Skip it and come 

back if you need to.



Data Smart222

You have a linear model now that you fi t by minimizing the sum of squares. Glancing 

at the predictions in Column Y, they look all right to the eye. For example, the pregnant 

customer on row 27 who bought a pregnancy test, prenatal vitamins, and maternity clothes 

gets a score of 1.07 while the customer on row 996 who’s only ever bought wine gets a 

score of 0.15. That said, questions remain:

• How well does the regression actually fi t the data from a quantitative, non-eyeball 

perspective?

• Is this overall fi t by chance or is it statistically signifi cant?

• How useful are each of the features to the model?

To answer these questions for a linear regression, you can compute the R-squared, an 

overall F test, and t tests for each of your coeffi  cients.

R-Squared—Assessing Goodness of Fit

If you knew nothing about a customer in the training set (columns B through T were 

missing) but you were forced to make a prediction on pregnancy anyway, the best way to 

minimize the sum of squared error in that case would be to just put the average of column 

V in the sheet for each prediction. In this case the average is 0.5 given the 500/500 split in 

the training data. And since each actual value is either a 0 or 1, each error would be 0.5, 

making each squared error 0.25. At 1000 predictions then, this strategy of predicting the 

average, would give a sum of squares of 250.

This value is called the total sum of squares. It’s the sum of squared deviations of each 

value in column V from the average of column V. And Excel off ers a nifty formula for 

calculating it in one step, DEVSQ.

In X2, you can calculate the total sum of squares as:

=DEVSQ(V8:V1007)

But while putting the mean for every prediction would yield a sum of squared error of 

250, the sum of the squared error given by the linear model you fi t earlier is far less than 

that. Only 135.52. 

That means 135.52 out of the total 250 sum of squares remains unexplained after you 

fi t your regression (in this context, the sum of squared error is often called the residual 

sum of squares). 

Flipping this value around, the explained sum of squares (which is exactly what it says—

the amount you explained with your model) is 250 – 135.52. Put this in X3 as:

=X2–X1

This gives 114.48 for the explained sum of squares (if you didn’t obtain a sum of squared 

error of 135.52 when you fi t your regression, then your results might vary slightly).

So how good of a fi t is this?



223The Granddaddy of Supervised Artifi cial Intelligence—Regression

Generally, this is answered by looking at the ratio of the explained sum of squares to the 

total sum of squares. This value is called the R-squared. We can calculate the ratio in X4:

=X3/X2

As shown in Figure 6-12, this gives an R-squared of 0.46. If the model fi t perfectly, 

you’d have 0 squared error, the explained sum of squares would equal the total, and the 

R-squared would be a perfect 1. If the model didn’t fi t at all, the R-squared would be closer 

to 0. So then in the case of this model, given the training data’s inputs, the model can do 

an okay-but-not-perfect job of replicating the training data’s independent variable (the 

Pregnancy column).

Figure 6-12: R-squared of 0.46 for the linear regression

Now, keep in mind that the R-squared calculation only works in fi nding linear relation-

ships between data. If you have a funky, non-linear relationship (maybe a V or U shape) 

between a dependent and independent variable in a model, the R-squared value could not 

capture that relationship.

The F Test—Is the Fit Statistically Signifi cant?

Oftentimes, people stop at R-squared when analyzing the fi t of a regression. 

“Hey, the fi t looks good! I’m done.”

Don’t do that.



Data Smart224

The R-squared only tells you how well the model fi ts the data. What it doesn’t tell you 

is whether this fi t is statistically signifi cant. 

It is easy, especially with sparse datasets (only a few observations), to get a model that 

fi ts quite well but whose fi t is statistically insignifi cant, meaning that the relationship 

between the features and the independent variable may not actually be real. 

Is your model’s fi t due to chance? Some stroke of luck? For a model to be statistically 

signifi cant, you must reject this fi t-by-fl uke hypothesis. So assume for a moment, that your 

model’s fi t is a complete fl uke. That the entire fi t is due to luck of the draw on the random 

1,000 observations you pulled from the RetailMart database. This devil’s advocate assump-

tion is called the null hypothesis.

The standard practice is to reject the null hypothesis if given it were true, the prob-

ability of obtaining a fi t at least this good is less than 5 percent. This probability is often 

called a p value.

To calculate that probability, we perform an F test. An F test takes three pieces of 

information about our model and runs them through a probability distribution called the 

F distribution (for an explanation of the term probability distribution, see Chapter 4’s 

discussion of the normal distribution). Those three pieces of information are:

• Number of model coeffi  cients—This is 20 in our case (19 features plus an intercept).

• Degrees of freedom—This is the number of training data observations minus the 

number of model coeffi  cients.

• The F statistic—The F statistic is the ratio of explained to unexplained squared error 

(X3/X1 in the sheet) times the ratio of degrees of freedom to dependent variables.

The larger the F statistic, the lower the null hypothesis probability is. And given the 

explanation of the F statistic above, how do you make it larger? Make one of the two ratios 

in the calculation larger. You can either explain more of the data (i.e., get a better fi t) or 

you can get more data for the same number of variables (i.e., make sure your fi t holds in 

a larger sample).

Returning then to the sheet, we need to count up the number of observations and the 

number of model coeffi  cients we have. 

Label Y1 as Observation Count and in Z1 count up all the pregnancy values in column V:

=COUNT(V8:V1007)

You should, as you’d expect, get 1,000 observations.

In Z2, get the Model Coeffi  cient Count by counting them on row 2:

=COUNT(B2:U2)



225The Granddaddy of Supervised Artifi cial Intelligence—Regression

You should get 20 counting the intercept. You can then calculate the Degrees of Freedom 

in Z3 by subtracting the model coeffi  cient count from the observation count:

=Z1-Z2

You’ll get a value of 980 degrees of freedom. 

Now for the F statistic in Z4. As noted above, this is just the ratio of explained to 

unexplained squared error (X3/X1) times the ratio of degrees of freedom to dependent 

variables (Z3/(Z2-1)):

=(X3/X1)*(Z3/(Z2-1))

We can then plug these values into the F distribution in Z5 using the Excel function 

FDIST. Label the cell F Test P Value. FDIST takes the F statistic, the number of dependent 

variables in the model, and the degrees of freedom:

=FDIST(Z4,Z2-1,Z3)

As shown in Figure 6-13, the probability of getting a fi t like this given the null hypoth-

esis is eff ectively 0. Thus, you may reject the null hypothesis and conclude that the fi t is 

statistically signifi cant.

Figure 6-13: The result of the F test



Data Smart226

Coeffi cient t Tests—Which Variables Are Signifi cant?

WARNING: MATRIX MATH AHEAD!

While the previous two statistics weren’t hard to compute, performing a t test on a 

multiple linear regression requires matrix multiplication and inversion. If you don’t 

remember how these operations work from high school or intro college math, check 

out a linear algebra or calculus book. Or just read up on Wikipedia. And use the 

workbook that’s available for download with this chapter to make sure your math is 

correct.

In Excel, matrix multiplication uses the MMULT function while inversion uses the 

MINVERSE function. Since a matrix is nothing more than a rectangular array of numbers, 

these formulas are array formulas (see Chapter 1 for using array formulas in Excel).

While the F test verifi ed that the entire regression was signifi cant, you can also check 

the signifi cance of individual variables. By testing the signifi cance of single features, you 

can gain insight into what’s driving your model’s results. Statistically insignifi cant vari-

ables might be able to be eliminated, or if you’re sure in your gut that the insignifi cant 

variable should matter, then you might investigate if there are data cleanliness issues in 

your training set.

This test for model coeffi  cient signifi cance is called a t test. When performing a t test, 

much like an F test, you assume that the model coeffi  cient you’re testing is worthless and 

should be 0. Given that assumption, the t test calculates the probability of obtaining a 

coeffi  cient as far from 0 as what you actually obtained from your sample.

When performing a t test on a dependent variable, the fi rst value you should calculate is 

the prediction standard error. This is the sample standard deviation of the prediction error 

(see Chapter 4 for more on standard deviation), meaning that it’s a measure of variability 

in the model’s prediction errors.

You can calculate the prediction standard error in X5 as the square root of the sum of 

squared error (X1) divided by the degrees of freedom (Z3):

=SQRT(X1/Z3)

This gives us the sheet shown in Figure 6-14.

Using this value, you can then calculate the model’s coeffi  cient standard errors. Think 

of the standard error of a coeffi  cient as the standard deviation of that coeffi  cient if you 

kept drawing new thousand-customer samples from the RetailMart database and fi tting 

new linear regressions to those training sets. You wouldn’t get the same coeffi  cients each 

time; they’d vary a bit. And the coeffi  cient standard error quantifi es the variability you’d 

expect to see.



227The Granddaddy of Supervised Artifi cial Intelligence—Regression

Figure 6-14: The prediction standard error for the linear regression

To st ar t  th i s  ca lculat ion,  create a  new t ab in the workbook ca l led 

ModelCoeffi  cientStandardError. Now, the thing that makes computing the standard error 

so diffi  cult is that we need to understand both how the training data for a coeffi  cient var-

ies by itself and in concert with the other variables. The fi rst step in nailing that down 

is multiplying the training set as one gigantic matrix (often called the design matrix in 

linear regression) by itself.

This product of the design matrix (B8:U1007) with itself forms what’s called a sum of 

squares and cross products (SSCP) matrix. To see what this looks like, fi rst paste the row 

headers for the training data in the ModelCoeffi  cientStdError tab in B1:U1 and transposed 

down the rows in A2:A21. This includes the Intercept header.

To multiply the design matrix times itself, you feed it into the Excel’s MMULT function, 

fi rst transposed, then right-side up:

{=MMULT(TRANSPOSE(‘Linear Model’!B8:U1007),’Linear Model’!B8:U1007)}

Since this function returns a variables-by-variables sized matrix, you actually have to 

highlight the entire range of B2:U21 on the ModelCoeffi  cientStdError tab and execute the 

function as an array formula (see Chapter 1 for more on array formulas). 

This yields the tab shown in Figure 6-15.

Note the values in the SSCP matrix. Along the diagonal, you’re counting matches of 

each variable with itself—the same as just summing up the 1s in each column of the 

design matrix. The intercept gets 1000, for example, in cell U21, because in the original 

training data, that column is made up of 1000 ones.

In the off -diagonal cells, you end up with counts of the matches between diff erent 

predictors. While Male and Female obviously never match by design, Pregnancy Test and 

Birth Control appear together in six customer rows in the training data. 



Data Smart228

Figure 6-15: The SSCP matrix

The SSCP matrix then gives you a glimpse into the magnitudes of each variable and 

how much they overlap and move with each other. 

The coeffi  cient standard error calculation uses the inverse of the SSCP matrix. To obtain 

the inverse, paste the variable headers again below the SSCP matrix in B24:U24 and in 

A25:A44. The inverse of the SSCP matrix in B2:U21 is then calculated by highlighting 

B25:U44 and employing the MINVERSE function as an array formula:

{=MINVERSE(B2:U21)}

This yields the sheet shown in Figure 6-16.

The values required in the coeffi  cient standard error calculation are those on the 

diagonal of the SSCP inverse matrix. Each coeffi  cient standard error is calculated as the 

prediction standard error for the entire model (calculated as 0.37 on the Linear Model 

tab earlier in cell X5) scaled by the square root of the appropriate value from the SSCP 

inverse diagonal.

For example, the coeffi  cient standard error for Male would be the square root of its 

Male-to-Male entry in the inverse SSCP matrix (square root of 0.0122) times the predic-

tion standard error.

To calculate this for all variables, number each variable starting with 1 in B46 through 20 

in U46. The appropriate diagonal value can then be read for each predictor using the INDEX 

formula. For example, INDEX(ModelCoefficientStdError!B25:B44,ModelCoefficientSt

dError!B46) returns the Male-to-Male diagonal entry (see more on the INDEX formula in 

Chapter 1). 



229The Granddaddy of Supervised Artifi cial Intelligence—Regression

Figure 6-16: The inverse of the SSCP matrix

Taking the square root of this value and multiplying it times the prediction standard 

error, the Male coeffi  cient standard error is calculated in cell B47 as:

=’Linear Model’!$X5*SQRT(INDEX(ModelCoefficientStdError!B25:B44,
ModelCoefficientStdError!B46))

This comes out to 0.04 for the model fi t in the book.

Drag this formula through column U to obtain all the coeffi  cient standard error values 

as shown in Figure 6-17.

Figure 6-17: The standard error of each model coeffi cient



Data Smart230

On the Linear Model tab, label A3 as Coeffi  cient Standard Error. Copy the coeffi  cient 

standard errors, and paste their values back on the Linear Model tab in row 3 (B3:U3).

Phew! It’s downhill from here. No more matrix math for the rest of the book. I swear.

Now you have everything you need to calculate each coeffi  cient’s t statistic (similar to 

the entire model’s F statistic from the previous section). You will be performing what’s 

called a two-tailed t test, meaning that you’ll be calculating the probability of obtaining 

a coeffi  cient at least as large in either the positive or negative direction if, in reality, there’s 

no relationship between the feature and the dependent variable. 

The t statistic for the test can be calculated in row 4 as the absolute value of the coef-

fi cient normalized by the coeffi  cient’s standard error. For the Male feature this is:

=ABS(B2/B3)

Copy this through column U to all the variables.

The t test can then be called by evaluating the t distribution (another statistical distri-

bution like the normal distribution introduced in Chapter 4) at the value of the t statistic 

for your particular degrees of freedom value. Label row 5 then as t Test p Value, and in 

B5 use the formula TDIST to calculate the probability of a coeffi  cient at least this large 

given the null hypothesis:

=TDIST(B4,$Z3,2)

The two in the formula indicates you’re performing the two-tailed t test. Copying this 

formula across to all variables and applying conditional formatting to cells over 0.05 

(5percent probability), you can see which features are not statistically signifi cant. While 

your results may vary based on the fi t of your model, in the workbook shown in Figure 

6-18, the Female, Home, and Apt columns are shown to be insignifi cant.

Figure 6-18: Female, Home, and Apt are insignifi cant predictors according to the test

You could remove these columns from your model in future training runs.

Now that you’ve learned how to evaluate the model using statistical tests, let’s change gears 

and look at measuring the model’s performance by making actual predictions on a test set.



231The Granddaddy of Supervised Artifi cial Intelligence—Regression

Making Predictions on Some New Data and Measuring 
Performance
That last section was all statistics. Lab work you could say. It’s not the most fun you’ve 

ever had, but validating goodness of fi t and signifi cance are important skills to have. But 

now it’s time to take this model to the racetrack and have some fun!

How do you know your linear model actually will predict well in the real world? After 

all, your training set does not encapsulate every possible customer record, and your coef-

fi cients have been purpose built to fi t the training set (although if you’ve done your job 

right, the training set, very nearly, resembles the world at large).

To get a better sense of how the model will perform in the real world, you should run some 

customers through the model that were not used in the training process. You’ll see this sepa-

rate set of examples used for testing a model often called a validation set, test set, or holdout set. 

To assemble your test set, you can just return to the customer database and select 

another set of data from random customers (paying special attention to not pull the same 

customers used in training). Now, as noted earlier, 6 percent of RetailMart’s customers are 

pregnant, so if you randomly selected a thousand customers from the database, roughly 

60 of them would be pregnant.

While you oversampled the pregnant class in training the model, for testing you’ll leave 

the ratio of pregnant households at 6 percent so that our measurements of the precision 

of the model are accurate for how the model would perform in a live setting.

In the RetailMart spreadsheet available for download that accompanies this chapter, 

you’ll fi nd a tab called Test Set, which is populated with a thousand rows of data identi-

cal to the training data. The fi rst 60 customers are pregnant, while the other 940 are not 

(see Figure 6-19).

Figure 6-19: Test set data

Just as you did on the Linear Model tab, run this new data through the model by tak-

ing a linear combination of customer data and coeffi  cients and adding in the intercept. 



Data Smart232

Placing this prediction in column V, you have the following formula for the fi rst customer 

on row 2 (since the test set doesn’t have an Intercept column, you add it in separately): 

=SUMPRODUCT(‘Linear Model’!B$2:T$2,’Test Set’!A2:S2)+’Linear Model’!U$2

Copy this calculation down to all the customers. The resulting spreadsheet looks as 

shown in Figure 6-20.

Figure 6-20: Predictions on the test set

You can see in Figure 6-20 that the model has identifi ed many of the pregnant house-

holds with predictions closer to 1 than they are to 0. The highest prediction values are 

for households that bought a product clearly related to pregnancy, such as folic acid or 

prenatal vitamins.

On the other hand, out of the 60 pregnant households, there are some who never bought 

anything to indicate they were pregnant. Of course, they didn’t buy alcohol or tobacco, but 

as their low pregnancy scores indicate, not buying something doesn’t mean a whole lot.

Conversely, if you look at the predictions for non-pregnant folks there are some misses. 

For instance if you’re following along in the workbook, on row 154 a non-pregnant cus-

tomer bought maternity clothing and stopped buying cigarettes, and the model gave them 

a score of 0.76.

It’s clear then that if you are going to use these predictions in real marketing eff orts, 

you need to set a score threshold for when you can assume someone is pregnant and reach 



233The Granddaddy of Supervised Artifi cial Intelligence—Regression

out to that person with marketing materials. Perhaps you only send someone marketing 

materials if they’re scored at  0.8 or above. Perhaps that cutoff  should be 0.95, so that 

you’re extra sure.

In order to set this classifi cation threshold, you need to look at trade-off s in model 

performance metrics. Most predictive model performance metrics are based on counts 

and ratios of four values that come from the predictions on our test set:

• True positives—Labeling a pregnant customer as pregnant

• True negatives—Labeling a not pregnant customer as not pregnant

• False positives (also called type I error)—Calling a not-so-pregnant customer preg-

nant. In my experience, this specifi c false positive is very insulting face-to-face. Do 

not try this at home.

• False negatives (also called type II error)—Failing to identify a pregnant customer 

as such. This is not nearly as insulting in my experience. 

As you’ll see, while there are lots of diff erent performance metrics for a predictive model, 

they all feel a bit like Tex Mex food—they’re all basically combinations of the same four 

ingredients listed above.

Setting Up Cutoff Values

Create a new sheet called Performance. The lowest value that could practically be used as 

a cutoff  between pregnant and not pregnant is the lowest prediction value from the test 

set. Label A1 as Min Prediction and in A2, you can calculate this as:

=MIN(‘Test Set’!V2:V1001)

Similarly, the highest cutoff  value would be the max prediction from the test set. Label 

A4 as Max Prediction, and in A5, you can calculate this as:

=MAX(‘Test Set’!V2:V1001)

The values given back are -0.35 and 1.25 respectively. Keep in mind that your linear 

regression can make predictions below 0 and above 1 because it’s not actually returning 

class probabilities (we’ll address this with another model later).

In column B, then, add the header Probability Cutoff  for Pregnant Classifi cation and 

below that specify a range of cutoff  values starting with -0.35. In the sheet shown in Figure 

6-21, the cutoff  values have been chosen to increase in increments of 0.05 all the way to 

the max of 1.25 (just enter the fi rst three by hand, highlight them, and drag down to fi ll 

in the rest).

Alternatively, you could specify every single prediction value from the test set as a cutoff  

if you wanted to be thorough. No more than that would be needed.



Data Smart234

Precision (Positive Predictive Value)

Let’s now fi ll in some model performance metrics for each of these cutoff  values using the 

Test Set data predictions starting with precision, also known as positive predictive value.

Precision is the measure of how many pregnant households we correctly identify out 

of all the households the model says are pregnant. In business-speak, precision is the 

percent of fi sh in your net that are tuna and not dolphins.

Label column C as Precision. Consider the cutoff  score in B2 of -0.35. What’s the preci-

sion of our model if we consider anyone scoring at least a -0.35 to be pregnant? 

To calculate that, we can go to the “Test Set” tab and count the number of cases where 

a pregnant household scored greater than or equal to -0.35 divided by the number of total 

rows with a score over -0.35. Using the COUNTIFS formula to check actuals and predictions, 

the formula in cell C2 would look as follows:

=COUNTIFS(‘Test Set’!$V$2:$V$1001,”>=” & B2,
‘Test Set’!$U$2:$U$1001,”=1”)/COUNTIF(‘Test Set’!$V$2:$V$1001,”>=” & B2)

Figure 6-21: Cutoff values for the pregnancy classifi cation



235The Granddaddy of Supervised Artifi cial Intelligence—Regression

The fi rst COUNTIFS statement in the formula matches both on actual pregnancy and 

model prediction, while the COUNTIF in the denominator just cares about only those who 

scored higher that -0.35 regardless of pregnancy. You can copy this formula to all the 

thresholds you’re evaluating.

As seen in Figure 6-22, the precision of the model increases with the cutoff  value, and 

at a cutoff  value of 1, the model becomes completely precise. A completely precise model 

identifi es only pregnant customers as pregnant.

Figure 6-22: Precision calculations on the test set

Specifi city (True Negative Rate)

Another performance metric that increases with the cutoff  value is called Specifi city. 

Specifi city, also called the True Negative Rate is a count of how many not pregnant cus-

tomers are correctly predicted as such (true negatives) divided by the total number of not 

pregnant cases.



Data Smart236

Labeling column D as Specifi city/True Negative Rate, you can calculate it in D2 by 

using COUNTIFS in the numerator to count true negatives, and COUNTIF in the denominator 

to count total customers who aren’t pregnant:

=COUNTIFS(‘Test Set’!$V$2:$V$1001,”<” & B2,
‘Test Set’!$U$2:$U$1001,”=0”)/COUNTIF(‘Test Set’!$U$2:$U$1001,”=0”) 

Copying this calculation down through the other cutoff  values, you should see it 

increase (see Figure 6-23). Once a cutoff  value of 0.85 is reached, 100 percent of not 

pregnant customers in the test set are appropriately predicted.

Figure 6-23: Specifi city calculations on the test set

False Positive Rate

The false positive rate is a common metric looked at to understand model performance. 

And since you already have the true negative rate, this can quickly be calculated as one 

minus the true negative rate. Label column E as False Positive Rate/(1 – Specifi city) and 

fi ll in the cells as one minus the value in the adjacent cell in D. For E2, that’s written as:

=1-D2



237The Granddaddy of Supervised Artifi cial Intelligence—Regression

Copying this formula down, you can see that as the cutoff  value increases, you get less 

false positives. In other words, you’re committing fewer type I errors (calling customers 

pregnant who aren’t).

True Positive Rate/Recall/Sensitivity

The fi nal metric you can calculate on your model’s performance is call true positive rate. 

And recall. And sensitivity. Geez. They should just pick one name and stick with it.

The true positive rate is the ratio of correctly identifi ed pregnant women divided by the 

total of actual pregnant women in the test set. Label column F as True Positive Rate/Recall/

Sensitivity. In F2 then you can calculate the true positive rate of a cutoff  value of -0.35 as:

=COUNTIFS(‘Test Set’!$V$2:$V$1001,”>=” & B2,
‘Test Set’!$U$2:$U$1001,”=1”)/COUNTIF(‘Test Set’!$U$2:$U$1001,”=1”)

Looking back at the true negative rate column, this calculation is exactly the same 

except “<” becomes “>=” and 0s become 1s.

Copying this metric down, you can see that as the cutoff  increases, some of the pregnant 

women cease to be identifi ed as such (these are type II errors) and the true positive rate 

falls. Figure 6-24 shows the false and true positive rates in columns E and F.

Figure 6-24: The false positive rate and the true positive rate



Data Smart238

Evaluating Metric Trade-Offs and the Receiver Operating Characteristic Curve

When choosing a threshold value for a binary classifi er, it’s important to select the best 

balance of these performance metrics. The higher the cutoff , the more precise the model 

but the lower the recall, for example. One of the most common visualizations used to 

assess these performance trade-off s is the receiver operating characteristic (ROC) curve. 

The ROC curve is just a plot of the False Positive Rate versus the True Positive Rate (col-

umns E and F in the Performance sheet). 

WHY IS IT CALLED THE RECEIVER OPERATING CHARACTERISTIC?

The reason why such a simple graph has such a complex name is that it was devel-

oped during World War II by radar engineers rather than by marketers predicting 

when customers are pregnant.

These folks were using signals to detect enemies and their equipment in the battle-

fi eld, and they wanted to better visualize the trade-off  between correctly and incorrectly 

identifying something as a foe.

To insert this graph, simply highlight the data in columns E and F and select the straight 

lined scatter plot in Excel (see Chapter 1 for more on inserting charts and graphs). With a 

little formatting (setting the axes between 0 and 1, bumping up the font), the ROC curve 

looks as shown in Figure 6-25.

0%

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Tr
u
e
 P

o
si

ti
ve

 R
a
te

False Positive Rate

ROC Curve

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 6-25: The ROC curve for the linear regression



239The Granddaddy of Supervised Artifi cial Intelligence—Regression

This curve allows you to quickly assess the false positive rate that’s associated with a 

true positive rate in order to understand your options. For example, in Figure 6-25, you 

can see that the model is capable of identifying 40 percent of pregnant customers using 

a cutoff  of 0.85 without a single fal se positive. Nice! 

And if you were okay with occasionally sending a not pregnant household some 

pregnancy-related coupons, the model could achieve a 75 percent true positive rate with 

only a 9 percent false positive rate.

Where you decide to set the threshold for acting on someone’s pregnancy score is a 

business decision, not purely an analytic one. If there were little downside to predicting 

someone was pregnant, then a low precision might be a fi ne trade-off  for a high true posi-

tive rate. But if you’re predicting likelihood of default for loan applications, you’re going 

to want specifi city and precision to be a bit higher, right? On the extreme end, if a model 

like this were being used to validate the legitimacy of overseas threats based on a body of 

intelligence, then you’d hope that the operator of the model would want a very high level 

of precision before calling in a drone strike.

So whether we’re talking sending coupons in the mail, approving loans, or dropping 

bombs, the balance you strike between these performance metrics is a strategic decision.

COMPARING ONE MODEL TO ANOTHER

As we’ll see a bit later, the ROC curve is also good for choosing one predictive model 

over another. Ideally, the ROC curve would jump straight up to 1 on the y-axis as 

fast as possible and stay there all the way across the graph. So the model that looks 

most like that (also said to have the highest area under the curve or AUC) is often 

considered superior.

All right! So now you’ve run the model on some test data, made some predictions, 

computed its performance on the test set for diff erent cutoff  values, and visualized that 

performance with the ROC curve.

But in order to compare model performance, you need another model to race against.

Predicting Pregnant Customers at RetailMart Using 
Logistic Regression
If you look at the predicted values coming out your linear regression, it’s clear that while 

the model is useful for classifi cation, the prediction values themselves are certainly in no 

way class probabilities. You can’t be pregnant with 125 percent probability or -35 percent 

probability.



Data Smart240

So is there a model whose predictions are actually class probabilities? Once such model 

that we can build is called a logistic regression.

First You Need a Link Function
Think about the predictions currently coming out of your linear model. Is there a formula 

you can shove these numbers through that will make them stay between 0 and 1? It turns 

out, this kind of function is called a link function, and there’s a great one for doing just that:

exp(x)/(1 + exp(x))

In this formula, x is our linear combination from column W on the Linear Model tab, 

and exp is the exponential function. The exponential function exp(x) is just the math-

ematical constant e (2.71828…it’s like pi, but a little lower) raised to the power of x.

Look at a graph of the function pictured in Figure 6-26.

–5 –4 –3 –2 –1 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4
Any value can go in

Link function for pregnant/not pregnant

V
a
lu

e
s 

b
e
tw

e
e
n
 0

 a
n
d
 1

 c
o
m

e
 o

u
t

5

Figure 6-26: The link function

This link function looks like a really wide S. It takes in any values given from multiply-

ing the model coeffi  cients times a row of customer data, and it outputs a number between 

0 and 1. But why does this odd function look like this?

Well, just round e to 2.7 real quick and think about the case where the input to this 

function is pretty big, say 10. Then the link function is:

exp(x)/(1 + exp(x)) = 2.7^10 / (1+ 2.7^10) = 20589/20590

Well, that’s basically 1, so we can see that as x gets larger, that 1 in the denominator 

just doesn’t matter much. But as x goes negative? Look at -10:

exp(x)/(1 + exp(x)) = 2.7^-10 / (1+ 2.7^-10) = 0.00005/1.00005



241The Granddaddy of Supervised Artifi cial Intelligence—Regression

Well, that’s just 0 for the most part. In this case the 1 in the denominator means every-

thing and the teeny numbers are more or less 0s.

Isn’t that handy? In fact, this link function has been so useful that someone gave it a 

name along the way. It’s called the “logistic” function.

Hooking Up the Logistic Function and Reoptimizing
Now create a copy of the Linear Model tab in the spreadsheet and call it Logistic Link 

Model. Delete all of the statistical testing data from the sheet since that was primarily 

applicable to linear regression. Specifi cally, highlight and delete rows 3 through 5, and 

clear out all the values at the top of columns W through Z except for the Sum Squared 

Error placeholder. Also, clear out the squared error column and rename it Prediction (after 

Link Function). See Figure 6-27 to see what the sheet should look like.

Figure 6-27: The initial logistic model sheet

You’re going use column X to suck in the linear combination of coeffi  cients and data 

from column W and put it through your logistic function. For example, the fi rst row of 

modeled customer data would be sent through the logistic function by putting this for-

mula in cell X5:

=EXP(W5)/(1+EXP(W5))

If you copy this formula down the column, you can see that the new values are all 

between 0 and 1 (see Figure 6-28).



Data Smart242

NOTE

Your sheet might have slightly diff erent values in columns W and X to start since the 

model coeffi  cients are coming from the evolutionary algorithm run on the previous tab.

Figure 6-28: Values through the logistic function

However, most of the predictions appear to be middling, between 0.4 and 0.7. Well, 

that’s because we didn’t optimize our coeffi  cients in the “Linear Model” tab for this new 

kind of model. We need to optimize again.

So add back in a squared error column to column Y, although this time, the error cal-

culation will use the predictions coming out of the link function in column X:

=(V5-X5)^2

Which you’ll again sum up just as in the linear model in cell X1 as:

=SUM(Y5:Y1004)

You can then minimize the sum of squares in this new model using the exact same 

Solver setup (see Figure 6-29) as in the linear model, except if you experiment with the 

variable bounds, you’ll fi nd it’s best to broaden them a bit for a logistic model. In Figure 

6-29, the bounds have been set to keep each coeffi  cient between -5 and 5.

Once you’ve reoptimized for the new link function, you can see that your predictions 

on the training data now all fall between 0 and 1 with many predictions confi dently being 



243The Granddaddy of Supervised Artifi cial Intelligence—Regression

committed to either a 0 or a 1. As you can see in Figure 6-30, from an aesthetic perspec-

tive, these predictions feel nicer than those from the linear regression.

Figure 6-29: Identical Solver setup for logistic model

Figure 6-30: Fitted logistic model



Data Smart244

Baking an Actual Logistic Regression
The truth is that in order to do an actual logistic regression that gives accurate, unbiased 

class probabilities, you can’t, for reasons outside the scope of this book, minimize the 

sum of squared error.

Instead, you fi t the model by fi nding the model coeffi  cients that maximize the joint 

probability (see Chapter 3 for more on joint probability) of you having pulled this training 

set from the RetailMart database given that the model accurately explains reality. 

So what is the likelihood of a training row given a set of logistic model parameters? For 

a given row in the training set, let p stand in for the class probability your logistic model 

is giving in column X. Let y stand for the actual pregnancy value housed in column V. 

The likelihood of that training row, given the model parameters is:

py(1-p)(1-y)

For a pregnant customer (column V is 1) with a prediction of 1 (column X has a 1 in 

it), this likelihood calculation is, likewise, 1. But if the prediction were 0 for a pregnant 

customer, then the above calculation would be 0 (plug in the numbers and check it). Thus, 

the likelihood of each row is maximized when the predictions and actuals all line up. 

Assuming each row of data is independent (see Chapter 3 for more on independence) as 

is the case in any good random pull from a database, then you can calculate the log of the 

joint probability of the data by taking the log of each of these likelihoods and summing 

them up. The log of the above equation, using the same rules you saw in the fl oating-point 

underfl ow section in Chapter 3, is:

y*ln(p)+(1-y)*ln(1-p)

The log likelihood is near 0 when the previous formula is near 1 (i.e., when the model 

fi ts well).

Rather than minimize the sum of the squared error then, you can calculate this 

log-likelihood value on each prediction and sum them up instead. The model coeffi  cients 

that maximize the joint likelihood of the data will be the best ones.

To start, make a copy of the Logistic Link Model tab and call it Logistic Regression. In 

column Y, change the squared error column to read Log Likelihood. In cell Y5, the fi rst 

log likelihood can be calculated as:

=IFERROR(V5*LN(X5)+(1-V5)*LN(1-X5),0)

The entire log likelihood calculation is wrapped in an IFERROR formula, because when 

the model coeffi  cients generate a prediction very, very near the actual 0/1 class value, you 

can get numerical instability. In that case, it’s fair just to set the log-likelihood to a perfect 

match score of 0.

Copy this formula down column Y, and in X1, sum the log likelihoods. Optimizing, 

you get a set of coeffi  cients that look similar to the sum of squares coeffi  cients with some 

small shifts here and there. See Figure 6-31.



245The Granddaddy of Supervised Artifi cial Intelligence—Regression

Figure 6-31: The Logistic Regression sheet

If you check the sum of squared error associated with your actual logistic regression, 

it’s nearly optimal for that metric anyway.

STATISTICAL TESTS ON A LOGISTIC REGRESSION

Analogous statistical concepts to the R-squared, F test, and t test are available in 

logistic regression. Computations such as pseudo R-squared, model deviance, and 

the Wald statistic lend logistic regression much of the same rigor as linear regres-

sion. For more information, see Applied Logistic Regression by David W. Hosmer, Jr., 

Stanley Lemeshow, and Rodney X. Sturdivant (John Wiley & Sons, 2013).

Model Selection—Comparing the Performance of the Linear 
and Logistic Regressions
Now that you have a second model, you can run it on the test set and compare its perfor-

mance to that of your linear regression. Predictions using the logistic regression are made in 

exactly the same way they were modeled in the Logistic Regression tab in columns W and X. 

In cell W2 on the Test Set tab, take the linear combination of model coeffi  cients and 

test data as:

=SUMPRODUCT(‘Logistic Regression’!B$2:T$2,’Test Set’!A2:S2)+
‘Logistic Regression’!U$2

In X2, run this through the link function to get your class probability:

=EXP(W2)/(1+EXP(W2))

Copy these cells down through the test set to obtain the sheet shown in Figure 6-32.



Data Smart246

Figure 6-32: Logistic regression predictions on the test set

To see how the predictions stack up, make a copy of the Performance tab and call it 

Performance Logistic. Changing the minimum and maximum prediction formulas to 

point to column X from the Test Set tab, the values come back as 0 and 1, just as you’d 

expect now that your model is giving actual class probabilities unlike the linear regression.

NOTE

While the logistic regression returns class probabilities (actual predictions between 0 

and 1), these probabilities are based on the 50/50 split of pregnant and not pregnant 

customers in the rebalanced training set. 

This is fi ne if all you care about is binary classifi cation at some cutoff  value rather 

than using the actual probabilities.  

Choose cutoff  values from 0 to 1 in 0.05 increments (actually, you may need to make 

1 a 0.999 or so to keep the precision formula from dividing by 0). Everything below row 

22 can be cleared, and the performance metrics need only be changed to check column X 

on the Test Set tab instead of V. This yields the sheet shown in Figure 6-33.

You can set the ROC curve up in exactly the same way as before, however, in order 

to compare the logistic regression to the linear regression, add in a data series for each 

model’s performance metrics (right-click the chart and choose Select Data to add another 

series). In Figure 6-34, it’s apparent that the ROC curves for the two models are almost 

exactly on top of each other.



247The Granddaddy of Supervised Artifi cial Intelligence—Regression

Figure 6-33: The Performance Logistic tab

0%

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Tr
u
e
 P

o
si

ti
ve

 R
a
te

False Positive Rate

ROC Curve

10%

20%

30%

40%

Logistic Regression

Linear Regression

50%

60%

70%

80%

90%

100%

Figure 6-34: The linear and logistic regression ROC curves graphed together



Data Smart248

Given that the models’ performances are nearly identical, you might consider using 

the logistic regression if for no other reason than the practicality of getting actual class 

probabilities bounded between 0 and 1 from the model. It’s prettier if nothing else.

A WORD OF CAUTION

You may hear a lot about model selection out there in the real world. Folks may ask, 

“Why didn’t you use support vector machines or neural nets or random forests or 

boosted trees?” There are numerous types of AI models, all with their strengths and 

weaknesses. And I would encourage you to read about them, and if in your work you 

happen to use an AI model, then you should try some of these models head-to-head.

But. 

Trying diff erent AI models is not the most important part of an AI modeling project. 

It’s the last step, the icing on the cake. This is where sites like Kaggle.com (an AI model-

ing competition website) have it all wrong.

You get more bang for your buck spending your time on selecting good data and 

features than models. For example, in the problem I outlined in this chapter, you’d be 

better served testing out possible new features like “customer ceased to buy lunch meat 

for fear of listeriosis” and making sure your training data was perfect than you would 

be testing out a neural net on your old training data.

Why? Because the phrase “garbage in, garbage out” has never been more applicable 

to any fi eld than AI. No AI model is a miracle worker; it can’t take terrible data and 

magically know how to use that data. So do your AI model a favor and give it the best 

and most creative features you can fi nd.

For More Information
If you just love supervised AI, and this chapter wasn’t enough for you, then let me make 

some reading suggestions:

• Data Mining with R by Luis Torgo (Chapman & Hall/CRC, 2010) is a great next 

step. The book covers machine learning in the programming language, R. R is a 

programming language beloved by statisticians everywhere, and it’s not hard to 

pick up for AI modeling purposes. In fact, if you were going to productionalize 

something like the model in this chapter, R would be a great place to train up and 

run that production model.

• The Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani, and Jerome 

Friedman (Springer, 2009) takes an academic look at various AI models. At times 



249The Granddaddy of Supervised Artifi cial Intelligence—Regression

a slog, the book can really up your intellectual game. A free copy can be found on 

Hastie’s Stanford website.

For discussion with other practitioners, I usually head to the CrossValidated forum at 

StackExchange (stats.stackexchange.com). Oftentimes, someone has already asked your 

question for you, so this forum makes for an excellent knowledge base.

Wrapping Up
Congratulations! You just built a classifi cation model in a spreadsheet. Two of them 

actually. Maybe even two and a half. And if you took me up on my median regression 

challenge, then you’re a beast.

Let’s recap some of the things we covered:

• Feature selection and assembling training data, including creating dummy variables 

out of categorical predictors

• Training a linear regression model by minimizing the sum of squared error

• Calculating R-squared, showing a model is statistically signifi cant using an F test, 

and showing model coeffi  cients are individually signifi cant using a t test

• Evaluating model performance on a holdout set at various classifi cation cutoff  values 

by calculating precision, specifi city, false positive rate, and recall

• Graphing a ROC curve

• Adding a logistic link function to a general linear model and reoptimizing

• Maximizing likelihood in a logistic regression

• Comparing models with the ROC curve

And while I’ll be the fi rst to admit that the data in this chapter is fabricated from whole 

cloth, let me assure you that the power of such a logistic model is not to be scoff ed at. 

You could use something like it in a production decision support or automated marketing 

system for your business. 

If you’d like to keep going with AI, in the next chapter, I’m going to introduce a diff er-

ent approach to AI called the ensemble model. 





7
On the American version of the popular TV show The Office, the boss, Michael Scott, 

buys pizza for his employees. Everyone groans when they learn that he has unfortu-

nately bought pizza from Pizza by Alfredo instead of Alfredo’s Pizza. Although it’s cheaper, 

apparently pizza from Pizza by Alfredo is awful.

In response to their protests, Michael asks his employees a question: is it better to have 

a small amount of really good pizza or a lot of really bad pizza?

For many practical artifi cial intelligence implementations, the answer is arguably the 

latter. In the previous chapter, you built a single, good model for predicting pregnant 

households shopping at RetailMart. What if instead, you got democratic? What if you 

built a bunch of admittedly crappy models and let them vote on whether a customer was 

pregnant? The vote tally would then be used as a single prediction.

This type of approach is called ensemble modeling, and as you’ll see, it turns simple 

observations into gold. 

You’ll be going over a type of ensemble model called bagged decision stumps, which is 

very close to an approach used constantly in industry called the random forest model. In 

fact, it’s very nearly the approach I use daily in my own life here at MailChimp.com to 

predict when a user is about to send some spam.

After bagging, you’ll investigate another awesome technique called boosting. Both of 

these techniques fi nd creative ways to use the training data over and over and over again 

to train up an entire ensemble of classifi ers. There’s an intuitive feel to these approaches 

that’s reminiscent of naïve Bayes—a stupidity that, in aggregate, is smart.

Ensemble Models: A 
Whole Lot of Bad Pizza



Data Smart252

Using the Data from Chapter 6

NOTE

The Excel workbook used in this chapter, “Ensemble.xlsm,” is available for down-

load at the book’s website at www.wiley.com/go/datasmart. This workbook includes 

all the initial data if you want to work from that. Or you can just read along using 

the sheets I’ve already put together in the workbook.

This chapter’s gonna move quickly, because you’ll use the RetailMart data from 

Chapter 6. Using the same data will give you a sense of the diff erences in these two mod-

els’ implementations from the regression models in the previous chapter. The modeling 

techniques demonstrated in this chapter were invented more recently. They’re somewhat 

more intuitive, and yet, are some of the most powerful off  the shelf AI technologies we 

have today.

Also, we’ll be building ROC curves identical to those from Chapter 6, so I won’t be 

spending much time explaining performance metric calculations. See Chapter 6 if you 

really want to understand concepts like precision and recall.

Starting off , the workbook available for download has a sheet called TD which includes 

the training data from Chapter 6 with the dummy variables already set up properly (for 

more on this see Chapter 6). Also, the features have been numbered 0 to 18 in row 2. This 

will come in handy with recordkeeping later (see Figure 7-1). 

The workbook also includes the Test Set tab from Chapter 6.

Figure 7-1: The TD tab houses the data from Chapter 6.

http://www.wiley.com/go/datasmart


253Ensemble Models: A Whole Lot of Bad Pizza 

You will try to do exactly what you did in Chapter 6 with this data—predict the values 

in the PREGNANT column using the data to the left of it. Then you’ll verify the accuracy on 

the holdout set.

MISSING VALUE IMPUTATION

In the RetailMart example introduced in Chapter 6 and continued here, you’re work-

ing with a dataset that doesn’t have holes in it. For many models built off  of trans-

actional business data, this is often the case. But there will be situations in which 

elements are missing from some of the rows in a dataset.

For example, if you were building a recommendation AI model for a dating site and 

you asked users in their profi le questionnaire if they listened to the symphonic heavy 

metal band Evanescence, you might expect that question to be left blank on occasion.

So how do you train a model if some of the folks in your training set leave the 

Evanescence question blank?

There are all sorts of ways around this issue, but really quickly I’ll list some places 

to start:

• Just drop the rows with missing values. If the missing values are more or less 

random, losing some rows of training data isn’t going to kill you. In the dating 

site example, these blanks are more likely intentional than random, so dropping 

the rows could cause the training data to get a skewed view of reality.

• If the column is numeric, fi ll in the missing value with the median of those 

records that have values. Filling in missing values is often called imputation. If 

the column is categorical, use the most common category value. Once again, in 

the case of ashamed Evanescence fans, the most common value is probably No, so 

fi lling in with the most common value can be the wrong way to go when people 

are censoring themselves.

• On top of the previous option, you can add another indicator column that has a 

0 in it unless you had a missing value in your original column and a 1 otherwise. 

That way, you’ve fi lled in the missing value as best you could, but you’ve told 

the model not to quite trust it.

• Instead of just using the median, you can train a model like the general linear 

model presented in Chapter 6 to predict the missing value using the data from 

the other columns. This is a fair bit of work, but it’s worth it if you have a small 

dataset and can’t aff ord to lose accuracy or throw away rows. 

continues



254 Data Smart

Bagging: Randomize, Train, Repeat
Bagging is a technique used to train multiple classifi ers (an ensemble if you will) without 

them all being trained on the exact same set of training data. Because if you trained the 

classifi ers on the same data, they’d look identical; you want a variety of models, not a 

bunch of copies of the same model. Bagging lets you introduce some variety in a set of 

classifi ers where there otherwise wouldn’t be.

Decision Stump Is an Unsexy Term for a Stupid Predictor
In the bagging model you’ll be building, the individual classifi ers will be decision stumps. A 

decision stump is nothing more than a single question you ask about the data. Depending 

on the answer, you say that the household is either pregnant or not. A simple classifi er 

such as this is often called a weak learner.

For example, in the training data, if you count the number of times a pregnant house-

hold purchased folic acid by highlighting H3:H502 and summing with the summary bar, 

you’d fi nd that 104 pregnant households made the purchase before giving birth. On the 

other hand, only two not-pregnant customers bought folic acid.

So there’s a relationship between buying folic acid supplements and being pregnant. 

You can use that simple relationship to construct the following weak learner: 

Did the household buy folic acid? If yes, then assume they’re pregnant. If no, then assume 

they’re not pregnant.

(continued)

• Unfortunately, this last approach (like all others mentioned in this note) feels a 

bit overly confi dent. It treats the imputed data point as if it’s a fi rst-class citizen 

once it’s predicted from the regression line. To get around this, statisticians will 

often use statistical models to generate multiple regression lines. The empty data 

will be fi lled in multiple times using these regression models, each creating a 

new imputed dataset. Any analysis will be run on each of the imputed datasets 

and any results will be combined at the end of the analysis. This is called multiple 

imputation.

• Another approach worth trying is called k nearest neighbors imputation. Using 

distance (see Chapter 2) or affi  nity matrices (Chapter 5), calculate the k nearest 

neighbors to an entry with missing data. Take a weighted average by distance 

(or the most common value if you prefer) of the neighbors’ values to impute the 

missing data.



255Ensemble Models: A Whole Lot of Bad Pizza 

This predictor is visualized in Figure 7-2. 

Customer Data

TRUE

Purchased
Folic Acid?

Not
Pregnant Pregnant

FALSE

Figure 7-2: The folic acid decision stump

Doesn’t Seem So Stupid to Me!
The stump in Figure 7-2 divides the set of training records into two subsets. Now, you 

might be thinking that that decision stump makes perfect sense, and you’re right, it does. 

But it ain’t perfect. After all, there are nearly 400 pregnant households in the training data 

that didn’t buy folic acid but who would be classifi ed incorrectly by the stump.

It’s still better than not having a model at all, right? 

Undoubtedly. But the question is how much better is the stump than not having a model. 

One way to evaluate that is through a measurement called node impurity.

Node impurity measures how often a chosen customer record would be incorrectly 

labeled as pregnant or not-pregnant if it were assigned a label randomly, according to the 

distribution of customers in its decision stump subset.

For instance, you could start by shoving all 1,000 training records into the same subset, 

which is to say, start without a model.

The probability that you’ll pull a pregnant person from the heap is 50 percent. And 

if you label them randomly according to the 50/50 distribution, you have a 50 percent 

chance of guessing the label correctly.

Thus, you have a 50%*50% = 25 percent chance of pulling a pregnant customer and 

appropriately guessing they’re pregnant. Similarly, you have a 25 percent chance of pulling 



256 Data Smart

a not-pregnant customer and guessing they’re not pregnant. Everything that’s not those 

two cases is just some version of an incorrect guess.

That means I have a 100% – 25% – 25% = 50 percent chance of incorrectly labeling a 

customer. So you would say that the impurity of my single starting node is 50 percent.

The folic acid stump splits this set of 1,000 cases into two groups—894 folks who didn’t 

buy folic acid and 106 folks who did. Each of those subsets will have its own impurity, 

so if you average the impurities of those two subsets (adjusting for their size diff erence), 

you can tell how much the decision stump has improved your situation.

For those 894 customers placed into the not-pregnant bucket, 44 percent of them are 

pregnant and 56 percent are not. This gives an impurity calculation of 100% – 44%^2 – 

56%^2 = 49 percent. Not a whole lot of improvement.

But for the 106 customers placed in the pregnant category, 98 percent of them are 

pregnant and 2 percent are not. This gives an impurity calculation of 100% – 98%^2 – 

2%^2 = 4 percent. Very nice. Averaging those together, you fi nd that the impurity for the 

entire stump is 44 percent. That’s better than a coin fl ip!

Figure 7-3 shows the impurity calculation.

SPLITTING A FEATURE WITH MORE THAN TWO VALUES

In the RetailMart example, all the independent variables are binary. You never have 

to decide how to split the training data when you create a decision tree—the 1s go 

one way and the 0s go the other. But what if you have a feature that has all kinds 

of values?

For example, at MailChimp one of the things we predict is whether an e-mail address 

is alive and can receive mail. One of the metrics we use to do this is how many days have 

elapsed since someone sent an e-mail to that address. (We send about 7 billion e-mails 

a month, so we pretty much have data on everyone ...)

This feature isn’t anywhere close to being binary! So when we train a decision tree 

that uses this feature, how do we determine what value to split it on so that some of the 

training data can go one direction and the rest the other direction?

It’s actually really easy.

There’s only a fi nite number of values you can split on. At max, it’s one unique value 

per record in your training set. And there’s probably some addresses in your training 

set that have the exact same number of days since you last sent to them. 

You need to consider only these values. If you have four unique values to split on 

from your training records (say 10 days, 20 days, 30 days, and 40 days), splitting on 35 

is no diff erent than splitting on 30. So you just check the impurity scores you get if you 

chose each value to split on, and you pick the one that gives you the least impurity. Done!



257Ensemble Models: A Whole Lot of Bad Pizza 

Customer Data

TRUE

Purchased
Folic Acid?

Not
Pregnant Pregnant

FALSE

500 Pregnant/500 Not
Impurity = 100% – (50%2) – (50%2) = 50%

396 Pregnant/498 Not (89% of rows)
Impurity = 100% – (44%2) – (56%2) = 49%

104 Pregnant/2 Not (11% of rows)
Impurity = 100% – (98%2) – (2%2) = 4%

Average Impurity:
.89*.49 + .11*.04 = 44%

Figure 7-3: Node impurity for the folic acid stump

You Need More Power!
A single decision stump isn’t enough. What if you had scads of them, each trained on 

diff erent pieces of data and each with an impurity slightly lower than 50 percent? Then 

you could allow them to vote. Based on the percentage of stumps that vote pregnant, you 

could decide to call a customer pregnant.

But you need more stumps.

Well, you’ve trained one on the Folic Acid column. Why not just do the same thing on 

every other feature?

You have only 19 features, and frankly, some of those features, like whether the cus-

tomer’s address is an apartment, are pretty terrible. So you’d be stuck with 19 stumps of 

dubious quality.

It turns out that through bagging, you can make as many decision stumps as you like. 

Bagging will go something like this:

 1. First, bite a chunk out of the dataset. Common practice is to take roughly the square 

root of the feature count (four random columns in our case) and a random two 

thirds of the rows.

 2. Build a decision stump for each of those four features you chose using only the 

random two thirds of the data you picked. 



258 Data Smart

 3. Out of those four stumps, single out the purest stump. Keep it. Toss everything back 

into the big pot and train a new stump.

 4. Once you have a load of stumps, grab them all, make them vote, and call them a 

single model.

Let’s Train It
You need to be able to select a random set of rows and columns from the training data. 

And the easiest way to do that is to shuffl  e the rows and columns like a deck of cards and 

then select what you need from the top left of the table.

To start, copy A2:U1002 from the TD tab into the top of a new tab called TD_BAG 

(you won’t need the feature names, just their index values from row 2). The easiest way to 

shuffl  e TD_BAG will be to add an extra column and an extra row next to the data fi lled 

with random numbers (using the RAND() formula). Sorting by the random values from top 

to bottom and left to right and then skimming the amount you want off  the upper left of 

the table gives you a random sample of rows and features.

Getting the Random Sample

Insert a row above the feature indexes and add the RAND() formula to row 1 (A1:S1) and 

to column V (V3:V1002). The resulting spreadsheet then looks like Figure 7-4. Note that 

I’ve titled column V as RANDOM.

Figure 7-4: Adding random numbers to the top and side of the data 

Sort the columns and rows randomly. Start with the columns, because side-to-side 

sorting is kind of funky. To shuffl  e the columns, highlight columns A through S. Don’t 

highlight the PREGNANT column, because that’s not a feature; it’s the dependent variable.



259Ensemble Models: A Whole Lot of Bad Pizza 

Open the custom sort window (see Chapter 1 for a discussion on custom sorting). 

From the Sort window (Figure 7-5), press the Options button and select to sort left to 

right in order to sort the columns. Make sure Row 1, which is the row with the random 

numbers, is selected as the row to sort by. Also, confi rm that the My List Has Headers box 

is unchecked since you have no headers in the horizontal direction. 

Figure 7-5: Sorting from left to right

Press OK. You’ll see the columns on the sheet reorder themselves. 

Now you need to do the same thing to the rows. This time around, select the range 

A2:V1002, including the PREGNANT column so that it remains tied to its data while 

excluding the random numbers at the top of the sheet. 

Access the Custom Sort window again, and under the Options section, select to sort 

from top to bottom this time.

Make sure the My List Has Headers box is checked this time around, and then select 

the RANDOM column from the drop-down. The Sort window should look like Figure 7-6.

Figure 7-6: Sorting from top to bottom



260 Data Smart

Now that you’ve sorted your training data randomly, the fi rst four columns and the fi rst 

666 rows form a rectangular random sample that you can grab. Create a new tab called 

RandomSelection. To pull out the random sample, you point the cell in A1 to the following:

=TD_BAG!A2

And then copy that formula through D667.

You can get the PREGNANT values next to the sample, by mapping them straight into 

column E. E1 points to cell U2 from the previous tab:

=TD_BAG!U2

Just double-click that formula to send it down the sheet. Once you complete this, you’re 

left with nothing but the random sample from the data (see Figure 7-7). Note that since 

the data is sorted randomly, you’ll likely end up with four diff erent feature columns.

And what’s cool is that if you go back to the TD_BAG tab and sort again, this sample 

will automatically update!

Figure 7-7: Four random columns and a random two-thirds of the rows

Getting a Decision Stump Out of the Sample

When looking at any one of these four features, there are only four things that can happen 

between a single feature and the dependent PREGNANT variable:

• The feature can be 0 and PREGNANT can be 1.

• The feature can be 0 and PREGNANT can be 0.



261Ensemble Models: A Whole Lot of Bad Pizza 

• The feature can be 1 and PREGNANT can be 1.

• The feature can be 1 and PREGNANT can be 0.

You need to get a count of the number of training rows that fall into each of these cases 

in order to build a stump on the feature similar to that pictured in Figure 7-2. To do this, 

enumerate the four combinations of 0s and 1s in G2:H5. Set I1:L1 to equal the column 

indexes from A1:D1.

The spreadsheet then looks like Figure 7-8.

Figure 7-8: Four possibilities for the training data

Once you’ve set up this small table, you need to fi ll it in by getting counts of the train-

ing rows whose values match the combination of predictor and pregnant values specifi ed 

to the left. For the upper-left corner of the table (the fi rst feature in my random sample 

ended up being number 15), you can count the number of training rows where feature 15 

is a 0 and the PREGNANT column is a 1 using the following formula:

=COUNTIFS(A$2:A$667,$G2,$E$2:$E$667,$H2)

The COUNTIFS() formula allows you to count rows that match multiple criteria, hence 

the S at the end of IFS. The fi rst criterion looks at the feature number 15 range (A2:A667) 

and checks for rows that are identical to the value in G2 (0), whereas the second criterion 

looks at the PREGNANT range (E2:E667) and checks for rows that are identical to the value 

in H2 (1). 

Copy this formula into the rest of the cells in the table to get counts for each case (see 

Figure 7-9).

If you were going to treat each of these features as a decision stump, which value for 

the feature would indicate pregnancy? It’d be the value with the highest concentration of 

pregnant customers in the sample.



262 Data Smart

So in row 6 below the count values you can compare these two ratios. In I6 place the 

formula:

=IF(I2/(I2+I3)>I4/(I4+I5),0,1)

Figure 7-9: Feature/response pairings for each of the features in the random sample

If the ratio of pregnant customers associated with the 0 value for the feature (I2/

(I2+I3)) is larger than that associated with 1 (I4/(I4+I5)), then 0 is predictive of preg-

nancy in this stump. Otherwise, 1 is. Copy this formula across through column L. This 

gives the sheet shown in Figure 7-10.

Figure 7-10: Calculating which feature value is associated with pregnancy

Using the counts in rows 2 through 5, you can calculate the impurity values for the 

nodes of each decision stump should you choose to split on that feature.

Let’s insert the impurity calculations on row 8 below the case counts. Just as in Figure 

7-3, you need to calculate an impurity value for the training cases that had a feature value 

of 0 and average it with those that had a value of 1.



263Ensemble Models: A Whole Lot of Bad Pizza 

If you use the fi rst feature (number 15 for me), 299 pregnant folks and 330 not-pregnant 

folks ended up in the 0 node, so the impurity is 100% – (299/629)^2 – (330/629)^2, which 

can be entered in the sheet in cell I8 as follows:

=1-(I2/(I2+I3))^2-(I3/(I2+I3))^2

Likewise, the impurity for the 1 node can be written as follows:

=1-(I4/(I4+I5))^2-(I5/(I4+I5))^2

They are combined in a weighted average by multiplying each impurity times the 

number of training cases in its node, summing them, and dividing by the total number 

of training cases, 666:

=(I8*(I2+I3)+I9*(I4+I5))/666

You can then drag these impurity calculations across all four features yielding com-

bined impurity values for each of the possible decision stumps, as shown in Figure 7-11.

Figure 7-11: Combined impurity values for four decision stumps

Looking over the impurity values, for my workbook (yours will likely be diff erent due 

to the random sort), the winning feature is number 8 (looking back at the TD sheet, this 

is Prenatal Vitamins) with an impurity of 0.450.

Recording the Winner

All right, so prenatals won on this sample for me. You probably got a diff erent winner, 

which you should record somewhere. 



264 Data Smart

Label cells N1 and N2 as Winner and Pregnant Is. You’ll save the winning stump in 

column O. Start with saving the winning column number in cell O1. This would be the 

value in I1:L1 that has the lowest impurity (in my case that’s 8). You can combine the 

MATCH and INDEX formulas to do this lookup (see Chapter 1 for more on these formulas):

=INDEX(I1:L1,0,MATCH(MIN(I10:L10),I10:L10,0))

MATCH(MIN(I10:L10),I10:L10,0) fi nds which column has the minimum impurity on 

row 10 and hands it to INDEX. INDEX locates the appropriate winning feature label.

Similarly, in O2 you can put whether 0 or 1 is associated with pregnancy by fi nding 

the value on row 6 from the column with the minimum impurity:

=INDEX(I6:L6,0,MATCH(MIN(I10:L10),I10:L10,0))

The winning decision stump and its pregnancy-associated node are then called out, as 

pictured in Figure 7-12.

Figure 7-12: The winner’s circle for the four decision stumps

Shake Me Up, Judy!

Phew! I know that was a lot of little steps to create one stump. But now that all the formulas 

are in place, creating the next couple hundred will be a lot easier.

You can create a second one real quick. But before you do, save the stump you just 

made. To do that, just copy and paste the values in O1:O2 over to the right into P1:P2.

Then to create a new stump, fl ip back to the TD_BAG tab and shuffl  e the rows and 

columns again. 



265Ensemble Models: A Whole Lot of Bad Pizza 

Click back on the RandomSelection tab. Voila! The winner has changed. In my case, 

it’s folic acid, and the value associated with pregnancy is 1 (see Figure 7-13). The previous 

stump is saved over to the right.

Figure 7-13: Reshuffl ing the data yields a new stump.

To save this second stump, right-click column P and select Insert to shift the fi rst 

stump to the right. Then paste the new stump’s values in column P. The ensemble now 

looks like Figure 7-14.

Figure 7-14: And then there were two.

Well, that second one sure took less time than the fi rst. So here’s the thing ...

Let’s say you want to shoot for 200 stumps in the ensemble model. All you have to do 

is repeat these steps another 198 times. Not impossible, but annoying.



266 Data Smart

Why don’t you just record a macro of yourself doing it and then play the macro back? 

As it turns out, this shuffl  ing operation is perfect for a macro.

For those of you who have never recorded a macro, it’s nothing more than recording 

a series of repetitive button presses so you can play them back later instead of giving 

yourself carpal tunnel syndrome.

So hop on up to View ➪ Macros (Tools ➪ Macro in Mac OS) and select Record New 

Macro.

Pressing Record will open a window where you can name your macro something like 

GetBaggedStump. And for convenience sake, let’s associate a shortcut key with the macro. 

I’m on a Mac so my shortcut keys begin with Option+Cmd, and I’m going to throw in a 

z into the shortcut box, because that’s the kind of mood I’m in today (see Figure 7-15).

Figure 7-15: Getting ready to record a macro

Press OK to get recording. Here are the steps that’ll record a full decision stump:

 1. Click the TD_BAG tab.

 2. Highlight columns A through S.

 3. Custom-sort the columns.

 4. Highlight rows 2 through 1002.

 5. Custom-sort the rows.

 6. Click over to the RandomSelection tab.

 7. Right-click column P and insert a new blank column.

 8. Select and copy the winning stump in O1:O2.

 9. Paste Special the values into P1:P2.

Go to View ➪ Macro ➪ Stop Recording (Tools ➪ Macro ➪ Stop Recording in Excel 

2011 for Mac) to end the recording.

You should now be able to generate a new decision stump with a single shortcut key 

press to activate the macro. Hold on while I go click this thing about 198 hundred times . . .



267Ensemble Models: A Whole Lot of Bad Pizza 

Evaluating the Bagged Model
That’s bagging! All you do is shuffl  e the data, grab a subset, train a simple classifi er, and 

go again. And once you have a bunch of classifi ers in your ensemble, you’re ready to 

make predictions.

Once you’ve run the decision stump macro a couple hundred times, the RandomSelection 

sheet should look like Figure 7-16 (your stumps will likely diff er).

Figure 7-16: The 200 decision stumps

Predictions on the Test Set

Now that you have your stumps, it’s time to send your test set data through the model. 

Create a copy of the Test Set tab and name it TestBag.

Moving over to the TestBag tab, insert two blank rows at the top of the sheet to make 

room for your stumps.

Paste the stump values from the RandomSelection tab (P1:HG2 if you’ve got 200 of them) 

onto the TestBag tab starting in column W. This gives the sheet shown in Figure 7-17.

Figure 7-17: Stumps added to the TestBag tab



268 Data Smart

You can run each row in the Test Set through each stump. Start by running the fi rst row 

of data (row 4) through the fi rst stump in column W. You can use the OFFSET formula 

to look up the value from the stump column listed in W1, and if that value equals the 

one in W2, then the stump predicts a pregnant customer. Otherwise, the stump predicts 

non-pregnancy. The formula looks like this:

=IF(OFFSET($A4,0,W$1)=W$2,1,0)

This formula can be copied across all stumps and down the sheet (note the absolute 

references). This gives the sheet shown in Figure 7-18.

Figure 7-18: Stumps evaluated on the TestBag set

In column V, take the average of the rows to the left in order to obtain a class probability 

for pregnancy. For example, in V4 if you have 200 stumps, you’d use:

=AVERAGE(W4:HN4) 

Copy this down column V to get predictions for each row in the test set as shown in 

Figure 7-19. 



269Ensemble Models: A Whole Lot of Bad Pizza 

Figure 7-19: Predictions for each row

Performance

You can evaluate these predictions using the same performance measures used in 

Chapter 6. I won’t dwell on these calculations since the technique is exactly the same as 

that in Chapter 6. First, create a new tab called PerformanceBag. In the fi rst column, just 

as in Chapter 6, calculate the maximum and minimum predictions. For my 200 stumps, 

that range comes out to 0.02 to 0.75.

In column B, place a range of cutoff  values from the minimum to the maximum (in my 

case, I incremented by 0.02). Precision, specifi city, false positive rate, and recall can all then 

be calculated in the same way as Chapter 6 (fl ip back to Chapter 6 for the precise details).

This gives the sheet shown in Figure 7-20. 

Note that for a prediction cutoff  of 0.5, that is, with half of the stumps voting pregnant, 

you can identify 33 percent of pregnant customers with only a 1 percent false positive 

rate (your mileage may vary due to the random nature of the algorithm). Pretty sweet for 

some simple stumps!

You can also insert a ROC curve using the false positive rate and true positive rate 

(columns E and F) just as you did in Chapter 6. For my 200 stumps, I got Figure 7-21.



270 Data Smart

Figure 7-20: Performance metrics for bagging

0%

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Tr
u
e
 P

o
si

ti
ve

 R
a
te

False Positive Rate

ROC Curve

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 7-21: The ROC Curve for Bagged Stumps



271Ensemble Models: A Whole Lot of Bad Pizza 

Beyond Performance

While this bagged stumps model is supported by industry standard packages like R’s 

randomForest package, it’s important to call out two diff erences between this and typical 

random forest modeling settings:

• Vanilla random forests usually sample with replacement, meaning that the same row 

from the training data can be pulled into the random sample more than once. When 

you sample with replacement, you can sample the same number of records as the 

actual training set rather than limiting it to two thirds. In practice, while sampling 

with replacement has nicer statistical properties, if you’re working with a large 

enough dataset, there’s virtually no diff erence between the two sampling methods.

• Random forests by default grow full classifi cation trees rather than stumps. A full tree 

is one where once you’ve split the data into two nodes, you pick some new features 

to split those nodes apart, and on and on until you hit some stopping criteria. Full 

classifi cation trees are better than stumps when there are interactions between the 

features that can be modeled.

Moving the conversation beyond model accuracy, here are some advantages to the 

bagging approach:

• Bagging is resistant to outliers and tends not to overfi t the data. Overfi tting occurs 

when the model fi ts more than just the signal in your data and actually fi ts the 

noise as well.

• The training process can be parallelized since training an individual weak learner 

is not dependent on the training of a previous weak learner.

• This type of model can handle tons of decision variables.

The models we use at MailChimp for predicting spam and abuse are random forest 

models, which we train in parallel using around 10 billion rows of raw data. That’s not 

going to fi t in Excel, and I sure as heck wouldn’t use a macro to do it! 

No, I use the R programming language with the randomForest package, which I would 

highly recommend learning about as a next step if you want to take one of these models 

into production at your organization. Indeed, the model in this chapter can be achieved 

by the randomForest package merely by turning off  sampling with replacement and set-

ting the maximum nodes in the decision trees to 2 (see Chapter 10).



272 Data Smart

Boosting: If You Get It Wrong, Just Boost and 
Try Again
What was the reason behind doing bagging, again? 

If you trained up a bunch of decision stumps on the whole dataset over and over again, 

they’d be identical. By taking random selections of the dataset, you introduce some variety 

to your stumps and end up capturing nuances in the training data that a single stump 

never could.

Well, what bagging does with random selections, boosting does with weights. Boosting 

doesn’t take random portions of the dataset. It uses the whole dataset on each training 

iteration. Instead, with each iteration, boosting focuses on training a decision stump that 

resolves some of the sins committed by the previous decision stumps. It works like this:

• At fi rst, each row of training data counts exactly the same. They all have the same 

weight. In your case, you have 1000 rows of training data, so they all start with a 

weight of 0.001. This means the weights sum up to 1.

• Evaluate each feature on the entire dataset to pick the best decision stump. Except 

when it comes to boosting instead of bagging, the winning stump will be the one that 

has the lowest weighted error. Each wrong prediction for a possible stump is given a 

penalty equal to that row’s weight. The sum of those penalties is the weighted error. 

Choose the decision stump that gives the lowest weighted error.

• The weights are adjusted. If the chosen decision stump accurately predicts a row, 

then that row’s weight decreases. If the chosen decision stump messes up on a row, 

then that row’s weight increases.

• A new stump is trained using these new weights. In this way, as the algorithm rolls 

on, it concentrates more on the rows in the training data that previous stumps 

haven’t gotten right. Stumps are trained until the weighted error exceeds a threshold.

Some of this may seem a bit vague, but the process will become abundantly clear in a 

spreadsheet. Off  to the data!

Training the Model—Every Feature Gets a Shot
In boosting, each feature is a possible stump on every iteration. You won’t be selecting 

from four features this time.

To start, create a tab called BoostStumps. And on it, paste the possible feature/response 

value combinations from G1:H5 of the RandomSelection tab.

Next to those values, paste the feature index values (0–18) in row 1. This gives the 

sheet shown in Figure 7-22.



273Ensemble Models: A Whole Lot of Bad Pizza 

Figure 7-22: The initial portions of the BoostStumps tab

Below each index, just as in the bagging process, you must sum up the number of train-

ing set rows that fall into each of the four combinations of feature value and independent 

variable value listed in columns A and B.

Start in cell C2 (feature index 0) by summing the number of training rows that 

have a 0 for the feature value and also are pregnant. This can be counted using the 

COUNTIFS formula:

=COUNTIFS(TD!A$3:A$1002,$A2,TD!$U$3:$U$1002,$B2)

The use of absolute references allows you to copy this formula through U5. This gives 

the sheet shown in Figure 7-23.

Figure 7-23: Counting up how each feature splits the training data

And just as in the case of bagging, in C6 you can fi nd the value associated with preg-

nancy for feature index 0 by looking at the pregnancy ratios associated with a feature 

value of 0 and a feature value of 1:

=IF(C2/(C2+C3)>C4/(C4+C5),0,1)

This too may be copied through column U.



274 Data Smart

Now, in column B enter in the weights for each data point. Begin in B9 with the label 

Current Weights, and below that through B1009 put in a 0.001 for each of the thousand 

training rows. Across row 9, paste the feature names from the TD sheet, just to keep track 

of each feature.

This gives the sheet shown in Figure 7-24.

For each of these possible decision stumps, you need to calculate its weighted error 

rate. This is done by locating the training rows that are miscategorized and penalizing 

each according to its weight.

For instance in C10, you can look back at the fi rst training row’s data for feature index 0 

(A3 on the TD tab), and if it matches the pregnancy indicator in C6, then you get a penalty 

(the weight in cell B10) if the row is not pregnant. If the feature value does not match C6, 

then you get a penalty if the row is pregnant. This gives the following two IF statements:

=IF(AND(TD!A3=C$6,TD!$U3=0),$B10,0)+IF(AND(TD!A3<>C$6,TD!$U3=1),$B10,0)

The absolute references allow you to copy this formula through U1009. The weighted 

error for each possible decision stump may then be calculated in row 7. For cell C7 the 

calculation of the weighted error is:

=SUM(C10:C1009)

Figure 7-24: Weights for each training data row



275Ensemble Models: A Whole Lot of Bad Pizza 

Copy this across row 7 to get the weighted error of each decision stump (see 

Figure 7-25).

Figure 7-25: The weighted error calculation for each stump

Tallying Up the Winner

Label cell W1 as the Winning Error, and in X1, fi nd the minimum of the weighted error 

values:

=MIN(C7:U7)

Just as in the bagging section, in X2 combine the INDEX and MATCH formulas to grab the 

feature index of the winning stump:

=INDEX(C1:U1,0,MATCH(X1,C7:U7,0))

And in X3, you can likewise grab the value associated with pregnancy for the stump 

using INDEX and MATCH:

=INDEX(C6:U6,0,MATCH(X1,C7:U7,0))



276 Data Smart

This gives the sheet shown in Figure 7-26. Starting with equal weights for each data 

point, feature index 5 with a value of 0 indicating pregnancy is chosen as the top stump. 

Flipping back to the TD tab, you can see that this is the Birth Control feature.

Figure 7-26: The fi rst winning boosted stump

Calculating the Alpha Value for the Stump

Boosting works by giving weight to training rows that were misclassifi ed by previous 

stumps. Stumps at the beginning of the boosting process are then more generally eff ective, 

while the stumps at the end of the training process are more specialized—the weights 

have been altered to concentrate on a few annoying points in the training data.

These stumps with specialized weights help fi t the model to the strange points in the 

dataset. However in doing so, their weighted error will be larger than that of the initial 

stumps in the boosting process. As their weighted error rises, the overall improvement 

they contribute to the model falls. In boosting, this relationship is quantifi ed with a value 

called alpha:

alpha = 0.5 * ln((1 – total weighted error for the stump)/total weighted error for the stump)

As the total weighted error of a stump climbs, the fraction inside the natural log func-

tion grows smaller and closer to 1. Since the natural log of 1 is 0, the alpha value gets 

tinier and tinier. Take a look at it in the context of the sheet.

Label cell W4 as Alpha and in X4 send the weighted error from call X1 through the 

alpha calculation:

=0.5*LN((1-X1)/X1)



277Ensemble Models: A Whole Lot of Bad Pizza 

For this fi rst stump, you end up with an alpha value of 0.207 (see Figure 7-27). 

Figure 7-27: Alpha value for the fi rst boosting iteration

How exactly are these alpha values used? In bagging, each stump gave a 0/1 vote when 

predicting. When it comes time to predict with your boosted stumps, each classifi er will 

instead give alpha if it thinks the row is pregnant and –alpha if not. So for this fi rst stump, 

when used on the test set, it would give 0.207 points to any customer who had not bought 

birth control and -0.207 points to any customer who had. The fi nal prediction of the 

ensemble model is the sum of all these positive and negative alpha values.

As you’ll see later on, to determine the overall pregnancy prediction coming from 

the model, a cutoff  is set for the sum of the individual stump scores. Since each stump 

returns either a positive or negative alpha value for its contribution to the prediction, it 

is customary to use 0 as the classifi cation threshold for pregnancy, however this can be 

tuned to suit your precision needs.

Reweighting

Now that you’ve completed one stump, it’s time to reweight the training data. And to 

do that, you need to know which rows of data this stump gets right and which rows it 

gets wrong. 

So in column V label V9 as Wrong. In V10, you can use the OFFSET formula in combi-

nation with the winning stump’s column index (cell X2) to look up the weighted error 

for the training row. If the error is nonzero, then the stump is incorrect for that row, and 

Wrong is set to 1:

=IF(OFFSET($C10,0,$X$2)>0,1,0)



278 Data Smart

This formula can be copied down to all training rows (note the absolute references).

Now, the original weights for this stump are in column B. To adjust the weights accord-

ing to which rows are set to 1 in the Wrong column, boosting multiplies the original weight 

times exp(alpha * Wrong) (where exp is the exponential function you encountered when 

doing logistic regression in Chapter 6). 

If the value in the Wrong column is 0, then exp(alpha * Wrong) becomes 1, and the 

weight stays put. 

If Wrong is set to 1, then exp(alpha * Wrong) is a value larger than 1, so the entire 

weight is scaled up. Label column W as Scale by Alpha, and in W10, you can calculate 

this new weight as:

=$B10*EXP($V10*$X$4)

Copy this down through the dataset.

Unfortunately, these new weights don’t sum up to one like your old weights. They need 

to be normalized (adjusted so that they sum to one). So label X9 as Normalize and in X10, 

divide the new, scaled weight by the sum of all the new weights:

=W10/SUM(W$10:W$1009)

This ensures that your new weights sum to one. Copy the formula down. This gives 

the sheet shown in Figure 7-28.

Figure 7-28: The new weight calculation



279Ensemble Models: A Whole Lot of Bad Pizza 

Do That Again... and Again...

Now you’re ready to build a second stump. First, copy the winning stump data from the 

previous iteration over from X1:X4 to Y1:Y4.

Next, copy the new weight values from column X over to column B. The entire sheet 

will update to select the stump that’s best for the new set of weights. As shown in 

Figure 7-29, the second winning stump is index 7 (Folic Acid) where a 1 indicates 

pregnancy.

You can train 200 of these stumps in much the same way as you did in the bagging 

process. Simply record a macro that inserts a new column Y, copies the values from X1:X4 

into Y1:Y4, and pastes the weights over from column X to column B. 

After 200 iterations, your weighted error rate will have climbed very near to 0.5 while 

your alpha value will have fallen to 0.005 (see Figure 7-30). Consider that your fi rst stump 

had an alpha value of 0.2. That means that these fi nal stumps are 40 times less powerful 

in the voting process than your fi rst stump.

Figure 7-29: The second stump



280 Data Smart

Figure 7-30: The 200th stump

Evaluating the Boosted Model
That’s it! You’ve now trained an entire boosted decision stumps model. You can compare 

it to the bagged model by looking at its performance metrics. To make that happen, you 

must fi rst make predictions using the model on the test set data.

Predictions on the Test Set

First make a copy of the Test Set called TestBoost and insert four blank rows at the top 

of it to make room for your winning decision stumps. Beginning in column W on the 

TestBoost tab, paste your stumps (all 200 in my case) at the top of the sheet. This gives 

the sheet shown in Figure 7-31.

Figure 7-31: Decision stumps pasted to TestBoost



281Ensemble Models: A Whole Lot of Bad Pizza 

In W6, you can then evaluate the fi rst stump on the fi rst row of test data using OFFSET 

just as you did with the bagged model. Except this time, a pregnancy prediction returns 

the stump’s alpha value (cell W4) and a non-pregnancy prediction returns –alpha:

=IF(OFFSET($A6,0,W$2)=W$3,W$4,-W$4)

Copy this formula across to all the stumps and down through all the test rows (see 

Figure 7-32). To make a prediction for a row, you sum these values across all its individual 

stump predictions.

Figure 7-32: Predictions on each row of test data from each stump

Label V5 as Score. The score then for V6 is just the sum of the predictions to the right:

=SUM(W6:HN6)

Copy this sum down. You get the sheet shown in Figure 7-33. A score in column V 

above 0 means that more alpha-weighted predictions went in the pregnant direction than 

in the not pregnant direction (see Figure 7-33).

Calculating Performance

To measure the performance of the boosted model on the test set, simply create a copy of 

the PerformanceBag tab called PerformanceBoost, point the formulas at column V on the 

TestBoost tab, and set the cutoff  values to range from the minimum score to the maxi-

mum score produced by the boosted model. In my case, I incremented the cutoff  values 

by 0.25 between a minimum prediction score of -8 and a maximum of 4.5. This gives the 

performance tab shown in Figure 7-34.



282 Data Smart

Figure 7-33: Final predictions from the boosted model

With this model, you can see that a score cutoff  of 0 produces a true positive rate 

85 percent with only a 27 percent false positive rate. Not bad for 200 stupid stumps.

Add the boosted model’s ROC curve to the bagged model’s ROC curve to compare the 

two just as you did in Chapter 6. As seen in Figure 7-35, at 200 stumps each, the boosted 

model outperforms the bagged model for many points on the graph.

Figure 7-34: The performance metrics for boosted stumps



283Ensemble Models: A Whole Lot of Bad Pizza 

0%

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Tr
u
e
 P

o
si

ti
ve

 R
a
te

False Positive Rate

ROC Curve

10%

20%

30%

40%

50%

60%

70%

Boosted
Bagged

80%

90%

100%

Figure 7-35: The ROC curves for the boosted and bagged models

Beyond Performance

In general, boosting requires fewer trees than bagging to produce a good model. It’s not 

as popular in practice as bagging, because there is a slightly higher risk of overfi tting the 

data. Since each reweighting of the training data is based on the misclassifi ed points in 

the previous iteration, you can end up in a situation where you’re training classifi ers to 

be overly-sensitive to a few noisy points in the data.

Also, the iterative reweighting of the data means that boosting, unlike bagging, cannot 

be parallelized across multiple computers or CPU cores.

That said, in a neck and neck contest between a well fi t boosted model and a well fi t 

bagged model, it’s hard for the bagged model to win.

Wrapping Up
You’ve just seen how a bunch of simple models can be combined via bagging or boosting 

to form an ensemble model. These approaches were unheard of until about the mid-1990s, 

but today, they stand as two of the most popular modeling techniques used in business.

And you can boost or bag any model that you want to use as a weak learner. These 

models don’t have to be decision stumps or trees. For example, there’s been a lot of talk 

recently about boosting naïve Bayes models like the one you encountered in Chapter 3.



284 Data Smart

In Chapter 10, you’ll implement some of what you’ve encountered in this chapter using 

the R programming language.

If you’d like to learn more about these algorithms, I’d recommend reading about them 

in The Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani, and Jerome 

Friedman (Springer, 2 009).



8
As you saw in Chapters 3, 6 and 7, supervised machine learning is about predicting a 

value or classifying an observation using a model trained on past data. Forecasting 

is similar. Sure, you can forecast without data (astrology, anyone?). But in quantitative 

forecasting, past data is used to predict a future outcome. Indeed, some of the same tech-

niques, such as multiple regression (introduced in Chapter 6), are used in both disciplines.

But where forecasting and supervised machine learning diff er greatly is in their canoni-

cal problem spaces. Typical forecasting problems are about taking some data point over 

time (sales, demand, supply, GDP, carbon emissions, or population, for example) and 

projecting that data into the future. And in the presence of trends, cycles, and the occa-

sional act of God, the future data can be wildly outside the bounds of the observed past.

And that’s the problem with forecasting: unlike in Chapters 6 and 7 where pregnant 

women more or less keep buying the same stuff , forecasting is used in contexts where the 

future often looks nothing like the past. 

Just when you think you have a good projection for housing demand, the housing bubble 

bursts and your forecast is in the toilet. Just when you think you have a good demand 

forecast, a fl ood disrupts your supply chain, limiting your supply, forcing you to raise 

prices, and throwing your sales completely out of whack. Future time series data can and 

will look diff erent than the data you’ve observed before.

The only guarantee with forecasting is that your forecast is wrong. You hear that a lot in 

the world of forecasting. But that doesn’t mean you don’t try. When it comes to planning 

your business, you often need some projection. At MailChimp, we might continue to grow 

like gangbusters, or a hole might open up under Atlanta and swallow us. But we make an 

eff ort to forecast growth as best we can so that we can plan our infrastructure and HR 

pipelines. You don’t always want to be playing catch-up.

And as you’ll see in this chapter, you can try forecasting the future, but you can also 

quantify the uncertainty around the forecast. And quantifying the forecast uncertainty 

by creating prediction intervals is invaluable and often ignored in the forecasting world.

Forecasting: Breathe 
Easy; You Can’t Win



Data Smart286

As one wise forecaster said, “A good forecaster is not smarter than everyone else; they 

merely have their ignorance better organized.” 

So without further ado, let’s go organize some ignorance.

The Sword Trade Is Hopping
Imagine with me that you’re a rabid Lord of the Rings fan. Years ago when the fi rst of the 

feature fi lms came out, you strapped on some prosthetic hobbit feet and waited in line for 

hours to see the fi rst midnight showing. Soon you were attending conventions and arguing 

on message boards about whether Frodo could have just ridden an eagle to Mount Doom.

One day, you decided to give something back. You took a course at the local commu-

nity college on metalwork and began handcrafting your own swords. Your favorite sword 

from the book was Anduril, the Flame of the West. You became an expert at hammering 

out those beefy broadswords in your homemade forge, and you started selling them on 

Amazon, eBay, and Etsy. These days, your replicas are the go-to swords for the discerning 

nerd; business is booming.

In the past, you’ve found yourself scrambling to meet demand with the materials on 

hand. And so you’ve decided to forecast your future demand. So you dump your past sales 

data in a spreadsheet. But how do you take that past data and project it out?

This chapter looks at a set of forecasting techniques called exponential smoothing meth-

ods. They’re some of the simplest and most widely used techniques in business today. 

Indeed, I know a few Fortune 500s just off  the top of my head that forecast with these 

techniques, because they’ve proven the most accurate for their data.

This accuracy stems in part from the techniques’ simplicity—they resist over-fi tting the 

often-sparse historical data used in forecasting. Furthermore, with these techniques, it’s 

relatively easy to compute prediction intervals around exponential smoothing forecasts, 

so you’re going to do a bit of that too.

Getting Acquainted with Time Series Data

NOTE

The Excel workbook used in this chapter, “SwordForecasting.xlsm,” is available for 

download at the book’s website at www.wiley.com/go/datasmart. This workbook 

includes all the initial data if you want to work from that. Or you can just read along 

using the sheets I’ve already put together in the workbook.

http://www.wiley.com/go/datasmart


287Forecasting: Breathe Easy; You Can’t Win 

The workbook for this chapter includes the last 36 months of sword demand starting from 

January three years ago. The data is shown in the Timeseries tab in Figure 8-1. As men-

tioned earlier in this chapter, data like this—observations over regular time intervals—is 

called time series data. The time interval can be whatever is appropriate for the problem 

at hand, whether that’s yearly population fi gures or daily gas prices.

Figure 8-1: Time series data

In this case, you have monthly sword demand data, and the fi rst thing you should do 

with it is plot it, as shown in Figure 8-2. To insert a plot like this, just highlight columns 

A and B in Excel and pick Scatter from the charts section of the Excel ribbon (Charts tab 

on Mac, Insert Tab on Windows). You can adjust the range of your axes by right-clicking 

them and selecting the Format option. 

So what do you see in Figure 8-2? The data ranges from the 140s three years ago to 

304 last month. That’s a doubling of demand in three years—so maybe there’s an upward 

trend? You’ll come back to this thought in a bit.



288 Data Smart

Figure 8-2: Scatter plot of time series data

There are a few ups and downs that may be indicative of some seasonal pattern. For 

instance, months 12, 24, and 36, which are all Decembers, are the highest demand months 

for each of their years. But that could just be chance or due to the trend. Let’s fi nd out.

Starting Slow with Simple Exponential Smoothing
Exponential smoothing techniques base a future forecast off  of past data where the most 

recent observations are weighted more than older observations. This weighting is done 

through smoothing constants. The fi rst exponential smoothing method you’re going to 

tackle is called simple exponential smoothing (SES), and it uses only one smoothing con-

stant, as you’ll see. 



289Forecasting: Breathe Easy; You Can’t Win 

Simple exponential smoothing assumes that your time series data is made up of two 

components: a level (or mean) and some error around that level. There’s no trend, no 

seasonality, just a level around which the demand hovers with little error jitters here 

and there. By preferring recent observations, SES can account for shifts in this level. In 

formula-speak then, you have:

  Demand at time t = level + random error around the level at time t

And the most current estimate of the level serves as a forecast for future time periods. 

If you’re at month 36, what’s a good estimate of demand at time period 38? The most 

recent level estimate. And time 40? The level. Simple—hence the name simple exponen-

tial smoothing.

So how do you get an estimate of the level? 

If you assume that all your historical values are of equal importance, you just take a straight 

average. 

This mean would give you a level, and you’d forecast the future by just saying, “Demand 

in the future is the average of the past demand.” And there are companies that do this. I’ve 

seen monthly forecasts at companies where future months were equal to the average of 

those same months over the past few years. Plus a “fudge factor” for kicks. Yes, forecast-

ing is often done so hand-wavily that even at huge, public companies words like “fudge 

factor” are still used. Eek.

But when the level shifts over time, you don’t want to give equal weight to each histori-

cal point in the way that an average does. Should 2008 through 2013 all carry the same 

weight when forecasting 2014? Maybe, but for most businesses, probably not. So you want 

a level estimate that gives more weight to your recent demand observations.

So let’s think about calculating the level, instead, by rolling over the data points in 

order, updating the level calculation as you go. To start, say the initial estimate of the level 

is the average of some of the earliest data points. In this case, pick the fi rst year’s worth 

of data. Call this initial estimate of the level, level
0
:

  level
0
 = average of the fi rst year’s demand (months 1 – 12)

That’s 163 for the sword demand.

Now, the way exponential smoothing works is that even though you know demand for 

months 1 through 36, you’re going to take your most recent forecast components and use 

them to forecast one month ahead through the entire series.

So you use level
0
 (163) as the forecast for demand in month 1. 

Now that you’ve forecasted period 1, you take a step forward in time from period 0 to 

period 1. The actual demand was 165, so you were off  by two swords. You should update 



290 Data Smart

the estimate of the level then to account for this error. Simple exponential smoothing 

uses this equation:

  level
1
 = level

0
 + some percentage * (demand

1
 – level

0
)

Note that (demand
1
 - level

0
) is the error you get when you forecast period one with the 

initial level estimate. Rolling forward:

  level
2
 = level

1
 + some percentage * (demand

2
 – level

1
)

And again:

  level
3
 = level

2
 + some percentage * (demand

3
 – level

2
)

Now, the percentage of the error you want to fold back into the level is the smoothing 

constant, and for the level, it’s historically been called alpha. It can be any value between 

0 and 100 percent (0 and 1). 

If you set alpha to 1, you’re accounting for all the error, which just means the level of 

the current period is the demand of the current period. 

If you set alpha to 0, you conduct absolutely no error correction on that fi rst level 

estimate.

You’ll likely want something in between those two extremes, but you’ll learn how to 

pick the best alpha value later.

So you can roll this calculation forward through time:

  level
current period

 = level
previous period

 + alpha * (demand
current period

 – level
previous period

)

Eventually you end up with a fi nal level estimate, level
36

, where the last demand obser-

vations count for more because their error adjustments haven’t been multiplied by alpha 

a zillion times:

  level
36

 = level
35

 + alpha * (demand
36

 – level
35

)

This fi nal estimate of the level is what you’ll use as the forecast of future months. The 

demand for month 37? Well, that’s just level
36

. And the demand for month 40? level
36

. 

Month 45? level
36

. You get the picture. The fi nal level estimate is the best one you have 

for the future, so that’s what you use.

Let’s take a look at it in a spreadsheet.

Setting Up the Simple Exponential Smoothing Forecast
The fi rst thing you’ll do is create a new worksheet in the workbook called SES. Paste the 

time series data in columns A and B starting at row 4 to leave some room at the top of the 



291Forecasting: Breathe Easy; You Can’t Win 

sheet for an alpha value. You can put the number of months you have in your data (36) 

in cell A2, and an initial swag at the alpha value in C2. I’m going with 0.5, because it’s in 

between 0 and 1, and that’s just how I roll.

Now, in column C, you place the level calculations. You’ll need to insert a new row 5 

into the time series data at the top for the initial level estimate at time 0. In C5, use the 

following calculation:

=AVERAGE(B6:B17)

This averages the fi rst year’s worth of data to give the initial level. The spreadsheet then 

looks as shown in Figure 8-3.

Figure 8-3: Initial level estimate for simple exponential smoothing

 Adding in the One-Step Forecast and Error

Now that you’ve added the fi rst level value into the sheet, you can roll forward in time 

using the SES formula laid out in the previous section. To do this, you’ll need to add two 

columns: a one-step forecast column (D) and a forecast error column (E). The one-step 



292 Data Smart

forecast for time period 1 is just level
0
 (cell C5), and the error calculation is then the actual 

demand minus the forecast:

=B6-D6

The level estimate then for period 1 is the previous level adjusted by alpha times the 

error, which is:

=C5+C$2*E6

Note that I’ve placed a $ in front of the alpha value so that when you drag the formula 

down the sheet, the absolute row reference leaves alpha be. This yields the sheet shown 

in Figure 8-4.

Figure 8-4: Generating the one-step forecast, error, and level calculation for period 1

Drag That Stuff Down!

Humorously enough, you’re pretty much done here. Just drag C6:E6 down through all 36 

months, and voila, you have level
36

.

Let’s add months 37–48 to column A. The forecast for these next 12 months is just 

level
36

. So in B42, you can just add: 

=C$41

as the forecast and drag it down for the next year.



293Forecasting: Breathe Easy; You Can’t Win 

This gives you a forecast of 272, as shown in Figure 8-5. 

Figure 8-5: Simple exponential smoothing forecast with alpha of 0.5

But is that the best you can do? Well, the way you optimize this forecast is by setting 

alpha—the larger alpha is, the less you care about the old demand points.

Optimizing for One-Step Error

Similar to how you minimized the sum of squared error when fi tting the regression in 

Chapter 6, you can fi nd the best smoothing constant for the forecast by minimizing the 

sum of the squared error for the one-step ahead forecasts.

Let’s add a squared error calculation into column F that’s just the value from column 

E squared, drag that calculation through all 36 months, and sum it in cell E2 as the sum 

of squared error (SSE). This yields the sheet shown in Figure 8-6.

Also, you’re going to add the standard error to the spreadsheet in cell F2. The standard 

error is just the square root of the SSE divided by 35 (36 months minus the number of 

smoothing parameters in the model, which for simple exponential smoothing is 1).



294 Data Smart

Figure 8-6: The sum of squared error for simple exponential smoothing

The standard error is an estimate of the standard deviation of the one-step ahead error. 

You saw the standard deviation fi rst in Chapter 4. It’s just a measure of the spread of the 

error.

If you have a nicely fi tting forecast model, its error will have a mean of 0. This is to 

say the forecast is unbiased. It over-estimates demand as often as it underestimates. The 

standard error quantifi es the spread around 0 when the forecast is unbiased.

So in cell F2, you can calculate the standard error as:

=SQRT(E2/(36-1))

For an alpha value of 0.5, it comes out to 20.94 (see Figure 8-7). And if you’ll recall the 

68-95-99.7 rule from the normal distribution discussed in Chapter 4, this is saying that 68 

percent of the one-step forecast errors should be less than 20.94 and greater than -20.94.

Now, what you want to do is shrink that spread down as low as you can by fi nding the 

appropriate alpha value. You could just try a bunch of diff erent values of alpha. But you’re 

going to use Solver for the umpteenth time in this book.

The Solver setup for this is super easy. Just open Solver, set the objective to the standard 

error in F2, set the decision variable to alpha in C2, add a constraint that C2 be less than 

1, and check the box that the decision be non-negative. The recursive level calculations 

that go into making each forecast error are highly non-linear, so you’ll need to use the 

evolutionary algorithm to optimize alpha.



295Forecasting: Breathe Easy; You Can’t Win 

Figure 8-7: The standard error calculation

The Solver formulation should look like what’s shown in Figure 8-8. Pressing Solve, 

you get an alpha value of 0.73, which gives a new standard error of 20.39. Not a ton of 

improvement.

Figure 8-8: Solver formulation for optimizing alpha 



296 Data Smart

Let’s Graph It 

The best way to “gut check” a forecast is to graph it alongside your historical demand 

and see how the predicted demand takes off  from the past. You can select the historical 

demand data and the forecast and plot them. I like the look of Excel’s straight-lined scat-

ter. To start, select A6:B41, which is just the historical data, and choose the straight-line 

scatter plot from Excel’s chart section.

Once you’ve added that chart, right-click the center of the chart, choose Select Data, 

and add a new series to the chart with just the forecasted values of A42:B53. You can also 

add some labels to the axes if you like, after which you should have something similar 

to Figure 8-9.

Figure 8-9: Graphing the fi nal simple exponential smoothing forecast

You Might Have a Trend
Just looking at that graph, a few things stand out. First, simple exponential smoothing is 

just a fl at line—the level. But when you look at the demand data from the past 36 months, 

it’s on the rise. There appears to be a trend upward, especially at the end.

Not to denigrate the human eyeball, but how do you prove it?

You prove it by fi tting a linear regression to the demand data and performing a t test 

on the slope of that trendline, just as you did in Chapter 6. 



297Forecasting: Breathe Easy; You Can’t Win 

If the slope of the line is nonzero and statistically signifi cant (has a p value less than 

0.05 in the t test), you can be confi dent that the data has a trend. If that last sentence 

makes absolutely no sense to you, check out the statistical testing section in Chapter 6.

Flip back to the Timeseries tab in the workbook to perform the trend test.

Now, in Chapter 6 you proved your mettle by performing both an F test and a t test by 

hand. No one wants to subject you to that again.

In this chapter, you’ll use Excel’s built-in LINEST function to fi t a linear regression, pull 

the slope, standard error of the slope coeffi  cient, and degrees of freedom (see Chapter 6 

to understand these terms). Then you can calculate your t statistic and run it through the 

TDIST function just as in Chapter 6. 

If you’ve never used LINEST before, Excel’s help documentation on the function is very 

good. You provide LINEST with the dependent variable data (demand in column B) and 

the independent variable data (you only have one independent variable and it’s time in 

column A). 

You also have to provide a fl ag of TRUE to let the function know to fi t an intercept as part 

of the regression line, and you have to provide a second fl ag of TRUE to get back detailed 

stats like standard error and R-squared. For the Timeseries tab data then, a linear regres-

sion can be run as:

=LINEST(B2:B37,A2:A37,TRUE,TRUE)

This call will only return the slope of the regression line however, because LINEST 

is an array formula. LINEST returns back all the regression stats in an array, so you can 

either run LINEST as an array formula to dump everything out into a selected range in a 

sheet, or you can run LINEST through the INDEX formula and pull off  just the values you 

care about one by one.

For instance, the fi rst components of a regression line that LINEST gives are the regres-

sion coeffi  cients, so you can pull the slope for the regression in cell B39 on the Timeseries 

tab by feeding LINEST through INDEX:

=INDEX(LINEST(B2:B37,A2:A37,TRUE,TRUE),1,1)

You get back a slope of 2.54, meaning the regression line is showing an upward trend 

of 2.54 additional demanded swords per month. So there is a slope. But is it statistically 

signifi cant?

To run a t test on the slope, you need to pull the standard error for the slope and the 

degrees of freedom for the regression. LINEST parks the standard error value in row 2, 

column 1 of its array of results. So in B40, you can pull it as:

=INDEX(LINEST(B2:B37,A2:A37,TRUE,TRUE),2,1)



298 Data Smart

The only change from pulling the slope is that in the INDEX formula you pull row 2, 

column 1 for the standard error instead of row 1 column 1 for the slope. 

The standard error of the slope is given as 0.34. This gives the sheet shown in 

Figure 8-10.

Figure 8-10: The slope and standard error for a regression line fi tted to the historical demand

Similarly, Excel’s LINEST documentation notes that degrees of freedom for the regres-

sion are returned at the fourth row and second column value in the result array. So in B41 

you can pull it as follows:

=INDEX(LINEST(B2:B37,A2:A37,TRUE,TRUE),4,2)

You should get 34 for the degrees of freedom (as noted in Chapter 6, this is calculated 

as 36 data points minus 2 coeffi  cients from the linear regression).

You now have the three values you need to perform a t test on the statistical signifi -

cance of your fi tted trend. Just as in Chapter 6, you can calculate the test statistic as the 

absolute value of the slope divided by the standard error for the slope. You can pull the p 

value for this statistic from the t distribution with 34 degrees of freedom using the TDIST 

function in B42:

=TDIST(ABS(B39/B40),B41,2)

This returns a p value near 0 implying that if the trend were nonexistent in reality 

(slope of 0), there’s no chance we would have gotten a slope so extreme from our regres-

sion. This is shown in Figure 8-11.



299Forecasting: Breathe Easy; You Can’t Win 

Figure 8-11: Your trend is legit

All right! So you have a trend. Now you just need to incorporate it into your forecast.

 Holt’s Trend-Corrected Exponential Smoothing
Holt’s Trend-Corrected Exponential Smoothing expands simple exponential smoothing to 

create a forecast from data that has a linear trend. It’s often called double exponential 

smoothing, because unlike SES, which has one smoothing parameter alpha and one non-

error component, double exponential smoothing has two. 

If the time series has a linear trend, you can write it as:

  Demand at time t = level + t*trend + random error around the level at time t

The most current estimates of the level and trend (times the number of periods out) 

serve as a forecast for future time periods. If you’re at month 36, what’s a good estimate of 

demand at time period 38? The most recent level estimate plus two months of the trend. 

And time 40? The level plus four months of the trend. Not as simple as SES but pretty close.

Now, just as in simple exponential smoothing, you need to get some initial estimates 

of the level and trend values, called level
0
 and trend

0
. One common way to get them is 

just to plot the fi rst half of your demand data and send a trendline through it (just like 

you did in Chapter 6 in the cat allergy example). The slope of the line is trend
0
 and the 

y-intercept is level
0
.

Holt’s Trend-Corrected Smoothing has two update equations, one for the level as you roll 

through time and one for the trend. The level equation still uses a smoothing parameter 



300 Data Smart

called alpha, whereas the trend equation uses a parameter often called gamma. They’re 

exactly the same—just values between 0 and 1 that regulate how much one-step forecast-

ing error is incorporated back into the estimates.

So, here’s the new level update equation:

  level
1
 = level

0
 + trend

0
 + alpha *  (demand

1
 – (level

0
 + trend

0
) )

Note that (level
0
 + trend

0
) is just the one-step ahead forecast from the initial values to 

month 1, so (demand
1
 – (level

0
 + trend

0
) ) is the one-step ahead error. This equation looks 

identical to the level equation from SES except you account for one time period’s worth 

of trend whenever you count forward a slot. Thus, the general equation for the level esti-

mate is:

  level
current period

 = level
previous period 

+ trend
previous period

 + alpha * (demand
current period

 – 

(level
previous period

 + trend
previous period

) )

Under this new smoothing technique, you also need a trend update equation. For the 

fi rst time slot it’s:

  trend
1
 = trend

0
 +gamma * alpha * (demand

1
 – (level

0
 + trend

0
) )

So the trend equation is similar to the level update equation. You take the previous 

trend estimate and adjust it by gamma times the amount of error incorporated into the 

accompanying level update (which makes intuitive sense because only some of the error 

you’re using to adjust the level would be attributable to poor or shifting trend estimation).

Thus, the general equation for the trend estimate is:

  trend
current period 

= trend
previous period

 + gamma * alpha * (demand
current period

 – 

(level
previous period

 + trend
previous period

) )

Setting Up Holt’s Trend-Corrected Smoothing in a Spreadsheet
To start, create a new tab called Holt’sTrend-Corrected. On this tab, just as with the simple 

exponential smoothing tab, paste the time series data on row 4 and insert an empty row 

5 for the initial estimates.

Column C will once again contain the level estimates, and you’ll put the trend estimates 

in column D. So at the top of those two columns you’ll put the alpha and gamma values. 

You’re going to be optimizing them with Solver in a second, but for now, just toss in some 

0.5s. This gives the sheet shown in Figure 8-12.

For the initial values of level and trend that go in C5 and D5, let’s scatter plot the fi rst 

18 months of data and add a trendline to it with the equation (if you don’t know how to 

add a trendline to a scatterplot, see Chapter 6 for an example). This gives an initial trend 

of 0.8369 and an initial level (intercept of the trendline) of 155.88.  



301Forecasting: Breathe Easy; You Can’t Win 

Figure 8-12: Starting with smoothing parameters set to 0.5

Adding these to D5 and C5 respectively, you get the sheet shown in Figure 8-13.

Figure 8-13: The initial level and trend values



302 Data Smart

Now in Columns E and F, add the one-step ahead forecast and forecast error columns. 

If you look at row 6, the one-step ahead forecast is merely the previous level plus one 

month’s trend using the previous estimate—that’s C5+D5. And the forecast error is the 

same as in simple exponential smoothing; F6 is just actual demand minus the one-step 

forecast—B6-E6.

You can then update the level in cell C6 as the previous level plus the previous trend 

plus alpha times the error:

=C5+D5+C$2*F6

The trend in D6 is updated as the previous trend plus gamma times alpha times the 

error:

=D5+D$2*C$2*F6

Note that you need to use absolute references on both alpha and gamma in order to 

drag the formulas down. You’ll do that now—drag C6:F6 down through month 36. This 

is shown in Figure 8-14.

Figure 8-14: Dragging down the level, trend, forecast, and error calculations



303Forecasting: Breathe Easy; You Can’t Win 

Forecasting Future Periods

To forecast out from month 36, you add the fi nal level (which for an alpha and gamma of 

0.5 is 281) to the number of months out you’re forecasting times the fi nal trend estimate. 

You can calculate the number of months between month 36 and the month you care about 

by subtracting one month in column A from the other.

For example, forecasting month 37 in cell B42, you’d use:

=C$41+(A42-A$41)*D$41

By using absolute references for month 36, the fi nal trend, and the fi nal level, you can 

drag the forecast down through month 48, giving the sheet shown in Figure 8-15.

Figure 8-15: Forecasting future months with Holt’s Trend-Corrected Exponential Smoothing



304 Data Smart

Just as on the simple exponential smoothing tab, you can graph the historical demand 

and the forecast as two series on a straight-line scatter plot, as shown in Figure 8-16.

With an alpha and gamma of 0.5, that forecast sure looks a bit nutty, doesn’t it? It’s taking 

off  where the fi nal month ends and increasing at a rather rapid rate from there. Perhaps 

you should optimize the smoothing parameters.

Figure 8-16: Graph of the forecast with default alpha and gamma values

Optimizing for One-Step Error

As you did for simple exponential smoothing, add the squared forecast error in column 

G. In F2 and G2, you can calculate the sum of the squared error and the standard error 

for the one-step forecast exactly as earlier. Except, this time the model has two smoothing 

parameters so you’ll divide the SSE by 36 – 2 before taking the square root:

=SQRT(F2/(36-2))

This gives you the sheet shown in Figure 8-17.

The optimization setup is identical to simple exponential smoothing except this time 

around you’re optimizing both alpha and gamma together, as shown in Figure 8-18.

When you solve, you get an optimal alpha value of 0.66 and an optimal gamma value of 

0.05. The optimal forecast is shown in the straight-line scatter in Figure 8-19. 



305Forecasting: Breathe Easy; You Can’t Win 

Figure 8-17: Calculating the SSE and standard error

Figure 8-18: Optimization setup for Holt’s Trend-Corrected Exponential Smoothing



306 Data Smart

Figure 8-19: Graph of optimal Holt’s forecast

The trend you’re using from the forecast is an additional fi ve swords sold per month. 

The reason why this trend is double the one you found using the trendline on the previ-

ous tab is because trend-corrected smoothing favors recent points more, and in this case, 

the most recent demand points have been very “trendy.”

Note how this forecast starts very near the SES forecast for month 37 – 290 versus 

292. But pretty quickly the trend-corrected forecast begins to grow just like you’d expect 

with a trend.

So Are You Done? Looking at Autocorrelations
All right. Is this the best you can do? Have you accounted for everything?

Well, one way to check if you have a good model for the forecast is to check the one-

step ahead errors. If those errors are random, you’ve done your job. But if there’s a pattern 

hidden in the error—some kind of repeated behavior at a regular interval—there may be 

something seasonal in the demand data that is unaccounted for.

And by a “pattern in the error,” I mean that if you took the error and lined it up 

with itself shifted by a month or two months or twelve months, would it move in sync? 

This concept of the error being correlated with the time-shifted version of itself is called 

autocorrelation (auto means “self” in Greek. It’s also a good prefi x for ditching vowels in 

Scrabble). 

So to start, create a new tab called Holt’s Autocorrelation. And in that tab, paste months 

1 through 36 along with their one-step errors from the Holt’s forecast into columns A and B. 

Underneath the errors in B38, calculate the average error. This gives the sheet shown 

in Figure 8-20.



307Forecasting: Breathe Easy; You Can’t Win 

Figure 8-20: Months and associated one-step forecast errors

In column C, calculate the deviations of each error in column B from the average in 

B38. These deviations in the one-step error from the average are where patterns are going 

to rear their ugly head. For instance, maybe every December the forecast error is sub-

stantially above average—that type of seasonal pattern would show up in these numbers. 

In cell C2, then, the deviation of the error in B2 from the mean would be:

=B2-B$38

You can then drag this formula down to give all the mean deviations. In cell C38, cal-

culate the sum of squared deviations as:

=SUMPRODUCT($C2:$C37,C2:C37)

This gives you the sheet shown in Figure 8-21.

Now, in column D “lag” the error deviations by one month. Label column D with a 1. 

You can leave cell D2 blank and set cell D3 to:

=C2

And then just drag the formula down until D37 equals C36. This gives you Figure 8-22. 



308 Data Smart

Figure 8-21: Sum of squared mean deviations of Holt’s forecast errors

Figure 8-22: One month lagged error deviations 

To lag by two months, just select D1:D37 and drag it into column E. Similarly, to lag up 

to 12 months, just drag the selection through column O. Easy! This gives you a cascading 

matrix of lagged error deviations, as shown in Figure 8-23.



309Forecasting: Breathe Easy; You Can’t Win 

Figure 8-23: A beautiful cascading matrix of lagged error deviations fi t for a king

Now that you have these lags, think about what it means for one of these columns to 

“move in sync” with column C. For instance, take the one-month lag in column D. If these 

two columns were in sync then when one goes negative, the other should. And when one 

is positive, the other should be positive. That means that the product of the two columns 

would result in a lot of positive numbers (a negative times a negative or a positive times 

a positive results in a positive number). 

You can sum these products, and the closer this SUMPRODUCT of the lagged column with 

the original deviations gets to the sum of squared deviations in C38, the more in sync, 

the more correlated, the lagged errors are with the originals. 

You can also get negative autocorrelation where the lagged deviations go negative 

whenever the originals are positive and vice versa. The SUMPRODUCT in this case will be a 

larger negative number.



310 Data Smart

To start, drag the SUMPRODUCT($C2:$C37,C2:C37) in cell C38 across through column O. 

Note how the absolute reference to column C will keep the column in place, so you get the 

SUMPRODUCT of each lag column with the original, as shown in Figure 8-24.

Figure 8-24: SUMPRODUCT of lagged deviations with originals

You calculate the autocorrelation for a given month lag as the SUMPRODUCT of lagged 

deviations times original deviations divided by the sum of squared deviations in C38.

For example, you can calculate the autocorrelation of a one-month lag in cell D40 as:

=D38/$C38

And dragging this across, you can get the autocorrelations for each lag.

Highlighting D40:O40, you can insert a bar chart into the sheet as shown in Figure 

8-25 (Right-click and format the series’ fi ll to be slightly transparent if you want to read 

the month labels under the negative values). This bar chart is called a correlogram, and it 

shows the autocorrelations for each month lag up to a year. (As a personal note, I think 

the word correlogram is really cool.)

All right. So which autocorrelations matter? Well, the convention is that you only worry 

about the autocorrelations larger than 2/sqrt(number of data points), which in this case 

is 2/sqrt(36) = 0.333. You should also care about ones with a negative autocorrelation less 

than -0.333. 

You can just eyeball your chart for autocorrelations that are above or below these 

critical values. But it’s typical in forecasting to plot some dashed lines at these critical values 

on the correlogram. For the sake of a pretty picture, I’ll show you how to do that here.



311Forecasting: Breathe Easy; You Can’t Win 

Figure 8-25: This is my correlogram; there are many like it but this is mine.

In D42, add =2/SQRT(36) and drag it across through O. Do the same in D43 only with 

the negative value =-2/SQRT(36) and drag that across through O. This gives you the criti-

cal points for the autocorrelations, as shown in Figure 8-26.

Figure 8-26: Critical points for the autocorrelations



312 Data Smart

Right-click the correlation bar chart and choose Select Data. From the window that 

appears, press the Add button to create a new series. 

For one series select the range D42:O42 as the y-values. Add a third series using 

D43:O43. This will add two more sets of bars to the graph. 

Right-clicking each of these new bar series, you can select Change Series Chart Type 

and select the Line chart to turn it into a solid line instead of bars. Right-click these lines 

and select Format Data Series. Then navigate to the Line (Line Style in some Excel ver-

sions) option in the window. In this section, you can set the line to dashed, as shown in 

Figure 8-27.

Figure 8-27: Changing the critical values for bars into a dashed line

This yields a correlogram with plotted critical values, as shown in Figure 8-28.

And what do you see? 

There’s exactly one autocorrelation that’s above the critical value, and that’s at 12 

months. 

The error shifted by a year is correlated with itself. That indicates a 12-month seasonal cycle. 

This shouldn’t be too surprising. If you look at the plot of the demand on the Timeseries 

tab, it’s apparent that there are spikes each Christmas and dips around April/May.



313Forecasting: Breathe Easy; You Can’t Win 

You need a forecasting technique that can account for seasonality. And wouldn’t you 

know it—there’s an exponential smoothing technique for that.

Figure 8-28: Correlogram with critical values

Multiplicative Holt-Winters Exponential Smoothing
Multiplicative Holt-Winters Smoothing is the logical extension of Holt’s Trend-Corrected 

Smoothing. It accounts for a level, a trend, and the need to adjust the demand up or down 

on a regular basis due to seasonal fl uctuations. Note that the seasonal fl uctuation needn’t 

be every 12 months like in this example. In the case of MailChimp, we have periodic 

demand fl uctuations every Thursday (people seem to think Thursday is a good day to send 

marketing e-mail). Using Holt-Winters, we could account for this 7-day cycle.

Now, in most situations you can’t just add or subtract a fi xed amount of seasonal demand 

to adjust the forecast. If your business grows from selling 200 to 2,000 swords each month, 

you wouldn’t adjust the Christmas demand in both those contexts by adding 20 swords. 

No, seasonal adjustments usually need to be multipliers. Instead of adding 20 swords 

maybe it’s multiplying the forecast by 120 percent. That’s why it’s called Multiplicative 

Holt-Winters. Here’s how this forecast conceives of demand:

  Demand at time t = (level +t*trend) * seasonal adjustment for time t * whatever irregular 

adjustments are left we can’t account for

So you still have the identical level and trend structure you had in Holt’s Trend-

Corrected Smoothing, but the demand is adjusted for seasonality. And since you can’t 

account for irregular variations in the demand, such as acts of God, you’re not going to.



314 Data Smart

Holt-Winters is also called triple exponential smoothing, because, you guessed it, there 

are three smoothing parameters this time around. There are still alpha and gamma param-

eters, but this time you have a seasonal adjustment factor with an update equation and 

a factor called delta.

Now, the three error adjustment equations are slightly more complex than what you’ve 

seen so far, but you’ll recognize bits. 

Before you get started, I want to make one thing clear—so far you’ve used levels and 

trends from the previous period to forecast the next and adjust. But with seasonal adjust-

ments, you don’t look at the previous period. Instead, you look at the previous estimate 

of the adjustment factor for that point in the cycle. In this case, that’s 12 periods prior 

rather than one. 

That means that if you’re at month 36 and you’re forecasting three months forward to 

39, that forecast is going to look like:

  Forecast for month 39 = (level
36

+3*trend
36

)*seasonality
27

Yep, you’re seeing that seasonality
27

 correctly. It’s the most recent estimate for the March 

seasonal adjustment. You can’t use seasonality
36

, because that’s for December.

All right, so that’s how the future forecast works. Let’s dig into the update equations, 

starting with the level. You need only an initial level
0
 and trend

0
, but you actually need 

twelve initial seasonality factors, seasonality
-11

 through seasonality
0
. 

For example, the update equation for level
1
 relies on an initial estimate of the January 

seasonality adjustment: 

  level
1
 = level

0
 + trend

0
 + alpha * (demand

1
 – (level

0
 + trend

0
)*seasonality

-11
)/

seasonality
-11

You have lots of familiar components here in this level calculation. The current level is 

the previous level plus the previous trend (just as in double exponential smoothing) plus 

alpha times the one-step ahead forecast error (demand
1
 – (level

0
 + trend

0
)*seasonality

-11
), 

where the error gets a seasonal adjustment by being divided by seasonality
-11

.

And so as you walk forward in time, the next month would be:

  level
2
 = level

1
 + trend

1
 + alpha * (demand

2
 – (level

1
 + trend

1
)*seasonality

-10
)/

seasonality
-10

So in general then the level is calculated as:

  level
current period

 = level
previous period

 + trend
previous period

 + alpha * (demand
current period

 – 

(level
previous period

 + trend
previous period

)*seasonality
last relevant period

)/seasonality
last relevant period



315Forecasting: Breathe Easy; You Can’t Win 

The trend is updated in relation to the level in exactly the same way as in double expo-

nential smoothing:

  trend
current period

 = trend
previous period

 + gamma * alpha * (demand
current period

 – 

(level
previous period

 + trend
previous period

)*seasonality
last relevant period

)/seasonality
last relevant period

Just as in double exponential smoothing, the current trend is the previous trend plus 

gamma times the amount of error incorporated into the level update equation.

And now for the seasonal factor update equation. It’s a lot like the trend update equa-

tion, except that it adjusts the last relevant seasonal factor using delta times the error that 

the level and trend updates ignored:

  seasonality
current period

 = seasonality
last relevant period

 + delta * (1-alpha) * 

(demand
current period

 – (level
previous period

 + trend
previous period

)*seasonality
last relevant period

)/ 

(level
previous period

 + trend
previous period

)

In this case you’re updating the seasonality adjustment with the corresponding factor 

from 12 months prior, but you’re folding in delta times whatever error was left on the cut-

ting room fl oor from the level update. Except, note that rather than seasonally adjusting 

the error here, you’re dividing through by the previous level and trend values. By “level 

and trend adjusting” the one-step ahead error, you’re putting the error on the same mul-

tiplier scale as the seasonal factors.

Setting the Initial Values for Level, Trend, and Seasonality
Setting the initial values for SES and double exponential smoothing was a piece of cake. 

But now you have to tease out what’s trend and what’s seasonality from the time series. 

And that means that setting the initial values for this forecast (one level, one trend, and 

12 seasonal adjustment factors) is a little tough. There are simple (and wrong!) ways of 

doing this. I’m going to show you a good way to initialize Holt-Winters, assuming you 

have at least two seasonal cycles’ worth of historical data. In this case, you have three 

cycles’ worth.

Here’s what you’re going to do:

 1. Smooth out the historical data using what’s called a 2 × 12 moving average.

 2. Compare a smoothed version of the time series to the original to estimate seasonality.

 3. Using the initial seasonal estimates, deseasonalize the historical data.

 4. Estimate the level and trend using a trendline on the deseasonalized data.

To start, create a new tab called HoltWintersInitial and paste the time series data into 

its fi rst two columns. Now you need to smooth out some of the time series data using a 



316 Data Smart

moving average. Because the seasonality is in 12-month cycles, it makes sense to use a 

12-month moving average on the data. 

What do I mean by a 12-month moving average?

For a moving average, you take the demand for a particular month as well as the 

demand around that month in both directions and average them. This tamps down any 

weird spikes in the series.

But there’s a problem with a 12-month moving average. Twelve is an even number. If 

you’re smoothing out the demand for month 7, should you average it as the demand of 

months 1 through 12 or the demand of months 2 through 13? Either way, month 7 isn’t 

quite in the middle. There is no middle!

To accommodate this, you’re going to smooth out the demand with a “2 × 12 moving 

average,” which is the average of both those possibilities—months 1 through 12 and 2 

through 13. (The same goes for any other even number of time periods in a cycle. If your 

cycle has an odd number of periods, the “2x” part of the moving average is unnecessary 

and you can just do a simple moving average.)

Now note for the fi rst six months of data and the last six months of data, this isn’t even 

possible. They don’t have six months of data on either side of them. You can only smooth 

the middle months of the dataset (in this case it’s months 7–30). This is why you need at 

least two years’ worth of data, so that you get one year of smoothed data.

So starting with month 7, use the following formula:

=(AVERAGE(B3:B14)+AVERAGE(B2:B13))/2

This is the average of month 7 with the 12 months around it, except that months 1 and 

13 count for half of what the other months count for, which makes sense; since months 

1 and 13 are in the same month if they were each counted twice then you’d have January 

over-represented in the moving average.

Dragging this formula down through month 30 and graphing both the original and 

smoothed data in a straight-line scatter plot, you get the sheet shown in Figure 8-29. In 

my chart I’ve labeled the two series smoothed and unsmoothed. It’s apparent looking at 

the smoothed line that any seasonal variation present in the data has, more or less, been 

smoothed out.

Now, in column D, you can divide the original value by the smoothed value to get an 

estimate of the seasonal adjustment factor. Starting at month 7, you have for cell D8:

B8/C8



317Forecasting: Breathe Easy; You Can’t Win 

And you can drag this down through month 30. Note how in both months 12 and 24 

(December) you get spikes around 20 percent of normal, whereas you get dips in the spring.

Figure 8-29: The smoothed demand data

This smoothing technique has given you two point estimates for each seasonality fac-

tor. In column E, let’s average these two points together into a single value that will be 

the initial seasonal factor used in Holt-Winters.

For example, in E2, which is January, you average the two January points in column 

D, which are D14 and D26. Since the smoothed data starts in the middle of the year in 

column D, you can’t drag this average down. In E8, which is July, you have to take the 

average of D8 and D20 for instance.

Once you have these 12 adjustment factors in column E, you can subtract 1 from each 

of them in column F and format the cells as percentages (highlight the range and right-

click Format Cells) to see how these factors move the demand up or down each month. 

You can even insert a bar chart of these skews into the sheet, as shown in Figure 8-30.



318 Data Smart

Figure 8-30: A bar chart of estimated seasonal variations

Now that you have these initial seasonal adjustments, you can use them to 

deseasonalize the time series data. Once the entire series is deseasonalized, you can toss 

a trendline through it and use the slope and intercept as the initial level and trend.

To start, paste the appropriate seasonal adjustment values for each month in G2 through 

G37. Essentially, you’re just pasting E2:E13 three times in a row down column G (make 

sure to paste values only). In column H you can then divide the original series in column 

B by the seasonal factors in G to remove the estimated seasonality present in the data. 

This sheet is shown in Figure 8-31.

Next, as you’ve done on previous tabs, insert a scatter plot of column H and toss a 

trendline through it. Displaying the trendline equation on the graph, you get an initial 

trend estimate of 2.29 additional sword sales per month and an initial level estimate of 

144.42 (see Figure 8-32).



319Forecasting: Breathe Easy; You Can’t Win 

Figure 8-31: The deseasonalized time series

Getting Rolling on the Forecast
Now that you have the initial values for all the parameters, create a new tab called 

HoltWintersSeasonal, where you’ll start by pasting the time series data on row 4 just as 

you did for the previous two forecasting techniques.

In columns C, D, and E next to the time series you’re going to put the level, trend, and 

seasonal values, respectively. And in order to start, unlike on previous tabs where you only 

needed to insert one new blank row 5, this time around you need to insert blank rows 5 

through 16 and label them as time slots -11 through 0 in column A. You can then paste 

the initial values from the previous tab in their respective spots, as shown in Figure 8-33.



320 Data Smart

Figure 8-32: Initial level and trend estimates via a trendline on the deseasonalized series

Figure 8-33: All of the initial Holt-Winters values in one place



321Forecasting: Breathe Easy; You Can’t Win 

In column F you’ll do a one-step ahead forecast. So for time period 1, it’s the previous 

level in C16 plus the previous trend in D16. But both of those are adjusted by the appro-

priate January seasonality estimate 12 rows up in E5. Thus, F17 is written as:

=(C16+D16)*E5

The forecast error in G17 may then be calculated as:

=B17-F17

Now you’re ready to get started with calculating the level, trend, and seasonality rolling 

forward. So in cells C2:E2, put the alpha, gamma, and delta values (as always I’m going to 

start with 0.5). Figure 8-34 shows the worksheet.

Figure 8-34: Worksheet with smoothing parameters and fi rst one-step forecast and error 

The fi rst item you’ll calculate as you roll through the time periods is a new level esti-

mate for period 1 in cell C17:

=C16+D16+C$2*G17/E5



322 Data Smart

Just as you saw in the previous section, the new level equals the previous level plus 

the previous trend plus alpha times the deseasonalized forecast error. And the updated 

trend in D17 is quite similar:

=D16+D$2*C$2*G17/E5

You have the previous trend plus gamma times the amount of deseasonalized error 

incorporated into the level update.

And for the January seasonal factor update you have:

=E5+E$2*(1-C$2)*G17/(C16+D16) 

That’s the previous January factor adjusted by delta times the error ignored by the level 

correction scaled like the seasonal factors by dividing through by the previous level and 

trend.

Note that in all three of these formulas alpha, gamma, and delta are referenced via 

absolute references, so that as you drag the calculations down they don’t move. Dragging 

C17:G17 down through month 36, you get the sheet shown in Figure 8-35.

Figure 8-35: Taking the update equations through month 36



323Forecasting: Breathe Easy; You Can’t Win 

And now that you have your fi nal level, trend, and seasonal estimates, you can forecast 

the next year’s worth of demand. Starting in month 37 in cell B53 you have:

=(C$52+(A53-A$52)*D$52)*E41

Just as in Holt’s Trend-Corrected Smoothing, you’re taking the last level estimate 

and adding to it the trend times the number of elapsed months since the most recent 

trend estimate. The only diff erence is you’re scaling the whole forecast by the most 

up-to-date seasonal multiplier for January, which is in cell E41. And while the level in 

C$52 and the trend in D$52 use absolute references so that they won’t shift as you drag 

the forecast down, the seasonal reference in E41 must move down as you drag the 

forecast through the next 11 months. And so, dragging the calculation down, you get 

the forecast shown in Figure 8-36.

Figure 8-36: Getting the Holt-Winters forecast for future months

You can graph this forecast using Excel’s straight-line scatter plot just as in the previous 

two techniques (see Figure 8-37).



324 Data Smart

Figure 8-37: Graphing the Holt-Winters forecast

And...Optimize!
You thought you were done, but no. Time to set those smoothing parameters. So just as in 

the previous two techniques, toss the SSE in cell G2, and place the standard error in H2.

The only diff erence this time around is that you have three smoothing parameters, so 

the standard error is calculated as:

=SQRT(G2/(36-3))

This gives the sheet shown in Figure 8-38.

As for the Solver setup (shown in Figure 8-39), this time around you’re optimizing H2 

by varying the three smoothing parameters. You’re able to achieve a standard error almost 

half that of previous techniques. The forecast plot (see Figure 8-40) looks good to the 

eye, doesn’t it? You’re tracking with the trend and the seasonal fl uctuations. Very nice.



325Forecasting: Breathe Easy; You Can’t Win 

Figure 8-38: Adding SSE and standard error

Figure 8-39: The Solver setup for Holt-Winters



326 Data Smart

Figure 8-40: The optimized Holt-Winters forecast

Please Tell Me We’re Done Now!!!
You now need to check the autocorrelations on this forecast. Since you’ve already set up 

the autocorrelation sheet, this time around you just need to make a copy of it and paste 

in the new error values. 

Make a copy of the Holt’s Autocorrelation tab and call it HW Autocorrelation. Then 

you need only paste special the values from the error column G into the autocorrelation 

sheet in column B. This gives the correlogram shown in Figure 8-41.

Figure 8-41: Correlogram for the Holt-Winters model



327Forecasting: Breathe Easy; You Can’t Win 

Bam! Since there are no autocorrelations above the critical value of 0.33, you know that 

the model is doing a nice job at capturing the structure in the demand values.

Putting a Prediction Interval around the Forecast
All right, so you have a forecast that fi ts well. How do you put some lower and upper 

bounds around it that you can use to set realistic expectations with the boss?

You’re going to do this through Monte Carlo simulation, which you’ve already seen 

in Chapter 4. Essentially, you’re going to generate future scenarios of what the demand 

might look like and determine the band that 95 percent of those scenarios fall into. The 

question is how do you even begin to simulate future demand? It’s actually quite easy.

Start by making a copy of the HoltWintersSeasonal tab and calling it PredictionIntervals. 

Delete all the graphs in the tab. They’re unnecessary. Furthermore, clear out the forecast 

in cells B53:B64. You’ll be putting “actual” (but simulated) demand in those spots.

Now, like I said at the beginning of this chapter, the forecast is always wrong. There 

will always be error. But you know how this error will be distributed. You have a well-

fi tting forecast that you can assume has mean 0 one-step error (unbiased) with a standard 

deviation of 10.37, as calculated on the previous tab.

Just as in Chapter 4, you can generate a simulated error using the NORMINV function. In 

future months, you can just feed the NORMINV function the mean (0), the standard devia-

tion (10.37 in cell H$2), and a random number between 0 and 1, and it’ll pull an error 

from the bell curve. (See the discussion on cumulative distribution functions in Chapter 

4 for more on how this works.)

Okay, so toss a simulated one-step error into cell G53:

=NORMINV(RAND(),0,H$2)

Drag it down through G64 to get 12 months of simulated errors in the one-step fore-

cast. This gives you the sheet shown in Figure 8-42 (yours will have diff erent simulated 

values from these).

But now that you have the forecast error, you have everything you need to update the 

level, trend, and seasonality estimates going forward as well as the one-step forecast. So 

grab cells C52:F52 and drag them down through row 64.

Here’s where things get analytically badass. You now have a simulated forecast error 

and a one-step ahead forecast. So if you add the error in G to the forecast in F, you can 

actually back out a simulated demand for that time period.

Thus, B53 would simply be:

=F53+G53



328 Data Smart

Figure 8-42: Simulated one-step errors

And you can drag that down through B64 to get all 12 months’ demand values (see 

Figure 8-43).

Once you have that one scenario, by simply refreshing the sheet, the demand values 

change. So you can generate multiple future demand scenarios merely by copy-pasting 

one of the scenarios elsewhere and watching the sheet refresh itself.

To start then, label cell A69 as Simulated Demand and label A70:L70 as months 37 

through 48. You can do this by copying A53:A64 and doing a paste special with trans-

posed values into A70:L70.

Similarly, paste special the transposed values of the fi rst demand scenario into A71:L71. 

To insert a second scenario, simply right-click row 71 and select Insert to insert a new 

blank row 71. Then paste special some more simulated demand values (they should have 

updated when you pasted the last set).



329Forecasting: Breathe Easy; You Can’t Win 

You can just keep doing this operation to generate as many future demand scenarios 

as you want. That’s tedious though. Instead, you can record a quick macro. 

Figure 8-43: Simulated future demand

Just as in Chapter 7, record the following steps into a macro:

 1. Insert a blank row 71.

 2. Copy B53:B64. 

 3. Paste special transposed values into row 71.

 4. Press the Stop recording button.

Once you’ve recorded those keystrokes, you can hammer on whatever macro shortcut 

key you selected (see Chapter 7) over and over until you get a ton of scenarios. You can 

even hold the shortcut key down—1,000 scenarios should do it. (If the idea of holding a 

button down is abhorrent to you, you can read up on how to put a loop around your macro 

code using Visual Basic for Applications. Just Google for it.)



330 Data Smart

When it’s all said and done, your sheet should look like Figure 8-44. 

Figure 8-44: I have 1,000 demand scenarios

Once you have your scenarios for each month, you can use the PERCENTILE function to 

get the upper and lower bounds on the middle 95 percent of scenarios to create a predic-

tion interval.

For instance, above month 37 in A66 you can place the formula:

=PERCENTILE(A71:A1070,0.975)

This gives you the 97.5th percentile of demand for this month. In my sheet it comes out 

to about 264. And in A67 you can get the 2.5th percentile as:

=PERCENTILE(A71:A1070,0.025)

Note that I’m using A71:A1070 because I have 1,000 simulated demand scenarios. You 

may have more or less depending on the dexterity of your index fi nger. For me, this lower 

bound comes out to around 224. 

That means that although the forecast for month 37 is 245, the 95 percent prediction 

interval is 224 to 264.



331Forecasting: Breathe Easy; You Can’t Win 

You can drag these percentile equations across through month 48 in column L to get 

the entire interval (see Figure 8-45). So now you can provide your superiors with a con-

servative range plus a forecast if you like! And feel free to swap out the 0.025 and 0.975 

with 0.05 and 0.95 for a 90 percent interval or with 0.1 and 0.9 for an 80 percent interval, 

and so on.

Figure 8-45: The forecast interval for Holt-Winters

Creating a Fan Chart for Effect
Now, this last step isn’t necessary, but forecasts with prediction intervals are often shown 

in something called a fan chart. You can create such a chart in Excel.

To start, create a new tab called Fan Chart and in that tab, paste months 37 through 48 

on row 1 and then paste the values of the upper bound of the prediction interval from row 

66 of the PredictionIntervals tab on row 2. On row 3, paste special the transposed values 

for the actual forecast from the HoltWintersSeasonal tab. And on row 4, paste the values of 

the lower bound of the prediction interval from row 67 of the intervals sheet.

So you have the months, the upper bound of the interval, the forecast, and the lower 

bound all right in a row (see Figure 8-46).



332 Data Smart

Figure 8-46: The forecast sandwiched by the prediction interval

By highlighting A2:L4 and selecting Area Chart from the charts menu in Excel, you 

get three solid area charts laid over each other. Right-click one of the series and choose 

Select Data. You can change the Category (X) axis labels for one of the series to be A1:L1 

in order to add in the correct monthly labels to the graph.

Now, right-click the lower bound series and format it to have a white fi ll. You should 

also remove grid lines from the graph for consistency’s sake. Feel free to add axis labels 

and a title. This yields the fan chart shown in Figure 8-47.

Figure 8-47: The fan chart is a thing of beauty



333Forecasting: Breathe Easy; You Can’t Win 

The cool thing about this fan chart is that it conveys both the forecast and the intervals 

in one simple picture. Heck, you could actually layer on an 80 percent interval too if you 

wanted more shades of gray. There are two interesting items that stand out in the chart:

• The error gets wider as time goes on. This makes sense. The uncertainty from month 

to month gets compounded.

• Similarly, there is more error in absolute terms during periods of high seasonal 

demand. When demand dips in a trough, the error bounds tighten up. 

Wrapping Up
This chapter covered a ton of content:

• Simple exponential smoothing (SES)

• Performing a t test on a linear regression to verify a linear trend in the time series

• Holt’s Trend-Corrected Exponential Smoothing

• Calculating autocorrelations and graphing a correlogram with critical values

• Initializing Holt-Winters Multiplicative Exponential Smoothing using a 2 x 12 mov-

ing average

• Forecasting with Holt-Winters

• Creating prediction intervals around the forecast using Monte Carlo simulation

• Graphing the prediction intervals as a fan chart

If you made it through the entire chapter, bravo. Seriously, that’s a lot of forecasting 

for one chapter.

Now if you want to go further with forecasting, there are some excellent textbooks out 

there. I really like Forecasting, Time Series, and Regression by Bowerman et al. (Cengage 

Learning, 2004). Hyndman has a free forecasting textbook online at http://otexts.com/

fpp/, and his blog (awesomely called “Hyndsight”) is an excellent resource. For questions, 

http://stats.stackexchange.com/ is the community to go to.

When it comes to forecasting in a production setting, there are countless products out 

there. For light jobs, feel free to stay in Excel. If you have tons of products or SKUs, using 

some code would be helpful.

SAS and R both have excellent packages for forecasting. The ones in R were written by 

Hyndman himself (see Chapter 10), who came up with the statistical underpinnings for 

how to do prediction intervals on the exponential smoothing techniques.

And that’s it! I hope you now feel empowered to go forth and “organize your ign orance!”

http://otexts.com
http://stats.stackexchange.com




9
Outliers are the odd points in a dataset—the ones that don’t fit somehow. Historically, 

that’s meant extreme values, meaning quantities that were either too large or small 

to have come naturally from the same process as the other observations in the dataset. 

The only reason people used to care about outliers was because they wanted to get rid 

of them. Statisticians a hundred years ago had a lot in common with the Borg: a data point 

needed to assimilate or die. However, this was done with good reason (in the case of the 

statistician)—outliers can move averages and mess with spread measurements in the data. 

A good example of outlier removal is in gymnastics, where the highest and lowest judges’ 

scores are always trimmed from the data before taking the average score.

Outliers have a knack for messing up machine learning models. For example, in 

Chapters 6 and 7 you looked at predicting pregnant customers based on their purchase 

data. What if a store miscoded some items on the shelves of the pharmacy and were 

registering multi-vitamin purchases as folic acid purchases? The customers with those 

faulty purchase vectors are outliers that shift the relationship of pregnancy-to-folic-acid-

purchasing in a way that harms the AI model’s understanding.

Once upon a time when I consulted for the government, my company found a water 

storage facility that the United States had in Dubai that had been valued at billions and 

billions of dollars. The property value was an outlier that was throwing off  the results of 

our analysis—turns out someone had typed it into the database with too many zeroes.

So that’s one reason to care about outliers: to facilitate cleaner data analysis and modeling.

But there’s another reason to care about outliers. They’re interesting for their own sake!

Outliers Are (Bad?) People, Too
Consider when your credit card company calls you after you make a transaction that is 

potentially fraudulent. What’s your credit card company doing? They’re detecting that 

transaction as being an outlier based on your past behavior. Rather than ignoring the 

Outlier Detection: Just 
Because They’re Odd 
Doesn’t Mean They’re 
Unimportant



336 Data Smart

transaction because it’s an outlier, they’re purposefully fl agging the potential fraud and 

acting on it.

At MailChimp when we predict spammers before they send, we’re predicting outliers. 

These spammers are a small group of people whose behavior lies outside of what we as a 

company consider normal. We use supervised models similar to those in Chapters 6 and 

7 to predict based on past occurrences when a new user is going to send spam.

So in the case of MailChimp, then, an outlier is no more than a small but understood 

class of data in the population that can be predicted using training data. But what about 

the cases when you don’t know what you’re looking for? Like those mislabeled folic acid 

shoppers? Fraudsters often change their behavior so that the only thing you can expect 

from them is something unexpected. If that error has never happened before, how do you 

fi nd those odd points for the fi rst time?

This type of outlier detection is an example of unsupervised learning and data mining. 

It’s the intuitive fl ip side of the analysis performed in Chapters 2 and 5 of this book where 

you detected clusters of points. In cluster analysis, you look for a data point’s group of 

friends and analyze that group. In outlier detection, you care about data points that diff er 

from the groups. They’re odd or exceptional in some way.

This chapter starts with a simple, standard way of calculating outliers in normal-like 

one-dimensional data. Then it moves on to using k nearest neighbor (kNN) graphs to 

detect outliers in multidimensional data, similar to how you used r-neighborhood graphs 

to create clusters in Chapter 5.

The Fascinating Case of Hadlum v. Hadlum

NOTE

The Excel workbook used in this section, “Pregnancy Duration.xlsx,” is available for 

download at the book’s website at www.wiley.com/go/datasmart. Later in this chap-

ter, you’ll be diving into a larger spreadsheet, “SupportCenter.xlsx,” also available on 

the same website.

Back in the 1940s, a British guy named Mr. Hadlum went off  to war. Some days later, 349 

of them in fact, his wife Mrs. Hadlum gave birth. Now, the average pregnancy lasts about 

266 days. That places Mrs. Hadlum almost 12 weeks past her due date. I can’t think of a 

single woman who’d stand for that added discomfort these days, but back then, inducing 

pregnancy wasn’t as common.

Now, Mrs. Hadlum claimed she had nothing more than an exceptionally long preg-

nancy. Fair enough. 

http://www.wiley.com/go/datasmart


337Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re Unimportant 

But Mr. Hadlum concluded her pregnancy must have been the result of another man 

while he’d been away—that a 349-day pregnancy was an anomaly that couldn’t be justi-

fi ed given the distribution of typical birth durations.

So, if you had some pregnancy data, what’s a quick-and-dirty way to decide whether 

Mrs. Hadlum’s pregnancy should be considered an outlier? 

Well, studies have found that gestation length is more or less a normally distributed 

random variable with a mean of 266 days after conception, with a standard deviation of 

about 9. So you can evaluate the normal cumulative distribution function (CDF) intro-

duced in Chapter 4 to get the probability of a value less than 349 occurring. In Excel, this 

is evaluated using the NORMDIST function:

=NORMDIST(349,266,9,TRUE)

The NORMDIST function is supplied with the value whose cumulative probability you 

want, the mean, the standard deviation, and a fl ag set to TRUE, which sets the function to 

provide the cumulative value.

This formula returns a value of 1.000 all the way out as far as Excel tracks decimals. 

This means that nearly all babies born from here to eternity are going to be born at or 

under 349 days. Subtracting this value from 1:

=1-NORMDIST(349,266,9,TRUE)

You get 0.0000000 as far as the eye can see. In other words, it’s nearly impossible for 

a human baby to gestate this long.

We’ll never know for sure, but I’d bet good money Mrs. Hadlum had a little something 

else going on. Funny thing is, the court ruled in her favor, stating that such a long preg-

nancy, although highly unlikely, was still possible.

Tukey Fences
This concept of outliers being unlikely points when sampled from the bell curve has led 

to a rule of thumb for outlier detection called Tukey fences. Tukey fences are easy to check 

and easy to code. They are used by statistical packages the world over for identifying and 

removing spurious data points from any set of data that fi ts in a normal bell curve.

Here’s the Tukey fences technique in its entirety:

• Calculate the 25th and 75th percentiles in any dataset you’d like to fi nd outliers in. 

These values are also called the fi rst quartile and the third quartile. Excel calculates 

values these using the PERCENTILE function.

• Subtract the fi rst quartile from the third quartile to get a measure of the spread of 

the data, which is called the Interquartile Range (IQR). The IQR is cool because it’s 



338 Data Smart

relatively robust against extreme values as a measure of spread, unlike the typical 

standard deviation calculation you’ve used to measure spread in previous chapters 

of this book.

• Subtract 1.5*IQR from the fi rst quartile to get the lower inner fence. Add 1.5*IQR 

to the third quartile to get the upper inner fence.

• Likewise, subtract 3*IQR from the fi rst quartile to get the lower outer fence. Add 

3*IQR to the third quartile to get the upper outer fence.

• Any value less than a lower fence or greater than an upper fence is extreme. In 

normally distributed data, you’d see about 1 in every 100 points outside the inner 

fence, but only 1 in every 500,000 points outside the outer fence.

Applying Tukey Fences in a Spreadsheet
I’ve included a sheet called PregnancyDuration.xlsx for download off  the book’s website 

so that you can apply this technique to some actual data. If you open it, you’ll see a tab 

called Pregnancies, with a sample of 1,000 durations in column A.

Mrs. Hadlum’s gestation period of 349 days is in cell A2. In column D, place all of the 

summary statistics and fences. Start with the median (the middle value), which is a more 

robust statistic of centrality than the average value (averages can be skewed by outliers). 

Label C1 as Median and in D1, calculate the median as follows:

=PERCENTILE(A2:A1001,0.5)

That would be the 50th percentile. Below the median, you can calculate the fi rst and 

third quartiles as:

=PERCENTILE(A2:A1001,0.25)
=PERCENTILE(A2:A1001,0.75)

And the interquartile range is the diff erence between them:

=D3-D2

Tacking on 1.5 and 3 times the IQR to the fi rst and third quartile respectively, you can 

then calculate all the fences:

=D2-1.5*D4
=D3+1.5*D4
=D2-3*D4
=D3+3*D4

If you label all these values, you’ll get the sheet shown in Figure 9-1.



339Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re Unimportant 

Figure 9-1: Tukey fences for some pregnancy durations

Now you can apply some conditional formatting to the sheet and see who falls outside 

these fences. Start with the inner fence. To highlight the extreme values, select Conditional 

Formatting from the Home tab, choose Highlight Cells Rules, and select Less Than, as 

shown in Figure 9-2. 

Figure 9-2: Adding conditional formatting for outliers

Specifying the lower inner fence, feel free to choose a highlight color that tickles your 

fancy (I’m going to choose a yellow fi ll for inner fences and a red for outer, because I like 

traffi  c lights). Similarly, add formatting for the other three fences (if you’re using Excel 

2011 for the Mac you can use the Not Between rule to add the formatting with two rules 

rather than four).



340 Data Smart

As shown in Figure 9-3, Mrs. Hadlum turns red, meaning her pregnancy was radically 

extreme. Scrolling down, you’ll fi nd no other red pregnancies, but there are nine yellows. 

This matches up closely with the roughly 1 out of 100 points you’d expect to be fl agged 

in normal data by the rule.

Figure 9-3: Uh oh, Mrs. Hadlum. What say you to this conditional formatting?

The Limitations of This Simple Approach
Tukey fences work only when three things are true:

• The data is vaguely normally distributed. It doesn’t have to be perfect, but it should 

be Bell-curve shaped and hopefully symmetric without some long tail jutting out 

one side of it.

• The defi nition of an outlier is an extreme value on the perimeter of a distribution.

• You’re looking at one-dimensional data.

Let’s look at an example of an outlier that violates the fi rst two of these assumptions.

In The Fellowship of the Ring, when the adventurers fi nally form a single company (the 

fellowship for which the book is named), they all stand in a little group as the leader of 

the elves, Elrond, pronounces who they are and what their mission is.

This group contains four tall people: Gandalf, Aragorn, Legolas, and Boromir. There 

are also four short people. The hobbits themselves: Frodo, Merry, Pippin, and Sam. 

And in between them, there’s a single dwarf: Gimli. Gimli is shorter than the men by 

a couple heads and taller than the hobbits by about the same (see Figure 9-4).

In the movie, when we see this group presented to us for the fi rst time, Gimli is the 

clear outlier by height. He belongs to neither group.



341Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re Unimportant 

Guess
I’m an
outlier

Hobbits Gimli Tall Folks

Figure 9-4: Gimli, son of Gloin, Dwarven outlier

But how is he the outlier? His height is neither the least nor the greatest. In fact, his 

height is the closest to the average of the group’s.

You see, this height distribution isn’t anywhere near normal. If anything, you could call 

it “multi-modal” (a distribution with multiple peaks). And Gimli is an outlier not because 

his height is extreme, but because it’s between these two peaks. And these types of data 

points can be even harder to spot when you’re looking over several dimensions.

This kind of outlier crops up in fraud pretty frequently. Someone who’s too ordinary 

to actually be ordinary. Bernie Madoff  is a great example of this. Although most Ponzi 

schemes off er outlier rates of return of 20-plus percent, Madoff  off ered reliably modest 

returns that blended into the noise each year—he wasn’t jumping any Tukey fences. But 

across years, his multiyear returns in their reliability became a multi-dimensional outlier. 

So how do you fi nd outliers in the case of multi-model, multi-dimensional data (you 

just as easily could call it “real-world data”)?

One awesome way to approach this is to treat the data like a graph, just as you did in 

Chapter 5 to fi nd clusters in the data. Think about it. What defi nes Gimli as an outlier 

is his relationship to the other data points; his distance from them in relation to their 

distance from each other. 

All of those distances, each point from every other point, defi nes edges on a graph. 

Using this graph, you can tease out the isolated points. To do that, you start by creating 

a k nearest neighbor (kNN) graph and going from there.

Terrible at Nothing, Bad at Everything
For this next section, imagine that you manage a large customer support call center. Each 

call, e-mail, or chat from a customer creates a ticket, and each member of the support team 

is required to handle at least 140 tickets daily. At the end of each interaction, a customer 



342 Data Smart

is given the opportunity to rate the support employee on a fi ve-star scale. Support staff  

are required to keep an average rating above 2, or they are fi red. 

High standards, I know.

The company keeps track of plenty of other metrics on each employee as well. How 

many times they’ve been tardy over the past year. How many graveyard and weekend 

shifts they’ve taken for the team. How many sick days they’ve taken, and out of those, 

how many have been on Friday. The company even tracks how many hours the employee 

uses to take internal training courses (they get up to 40 hours paid) and how many times 

they’ve put in a request for a shift swap or been a good Samaritan and fulfi lled another 

employee’s request.

You have all this data for all 400 call center employees in a spreadsheet. And the ques-

tion is which employees are outliers, and what do they teach you about being a call center 

employee? Are there some baddies slipping through who don’t get culled by the ticket 

requirements and minimum customer ratings? Perhaps the outliers will teach you how 

to write better rules.

If you open the spreadsheet for this section of the chapter (SupportCenter.xlsx available 

for download on the book’s website at www.wiley.com/go/datasmart), you’ll fi nd all this 

tracked performance data on the SupportPersonnel sheet (see Figure 9-5).

Figure 9-5: Multi-dimensional employee performance data

Preparing Data for Graphing
There’s a problem with this performance data. You can’t measure the distance between 

employees in order to fi gure out who’s “on the outside” when each column is scaled so 

diff erently. What does it mean to have a diff erence of 5 between two employees on their 

http://www.wiley.com/go/datasmart


343Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re Unimportant 

average tickets versus a diff erence of 0.2 in customer rating? You need to standardize each 

column so that the values are closer to the same center and spread.

The way that columns of data are usually standardized is:

 1. Subtract the mean of a column from each observation.

 2. Divide each observation by the standard deviation of the column.

For normally distributed data, this centers the data at 0 (gives it a mean of 0) and gives 

it a standard deviation of 1. Indeed, a normal distribution with mean 0 and standard 

deviation 1 is called the standard normal distribution. 

STANDARDIZING USING ROBUST MEASURES OF CENTRALITY AND SCALE

Not all data you’ll want to scale is normally distributed to begin with. Subtracting 

out the mean and dividing through by the standard deviation tends to work well 

anyway. But outliers can screw up mean and standard deviation calculations, so 

sometimes folks like to standardize by subtracting more robust statistics of centrality 

(the “middle” of the data) and dividing through by more robust measures of scale/

statistical dispersion (the spread of the data).

Here are some centrality calculations that work better against one-dimensional outli-

ers than the mean:

• Median—Yep, just the 50th percentile

• Midhinge—The average of the 25th and 75th percentiles

• Trimean—The average of the median and the midhinge. I like this one, because 

it sounds intelligent.

• Trimmed/truncated mean—The mean, but you throw away the top and bottom 

N points or top and bottom percentage of points. You see this one in sports a 

lot (think gymnastics where they throw out the top and bottom scores). If you 

throw away the top and bottom 25 percent and average the middle 50 percent of 

the data, that has its own name: the interquartile mean (IQM).

• Winsorized mean—Like the trimmed mean, but instead of throwing away points 

that are too large or too small, you replace them with a limit.

As for robust measures of scale, here are some others worth using instead of the 

standard deviation:

• Interquartile range—You saw this one earlier in the chapter. It’s just the 75th 

percentile minus the 25th percentile in the data. You can use other n-tiles too. For 

example, if you use the 90th and 10th percentiles, you get the interdecile range.

• Median absolute deviation (MAD)—Take the median of the data. Then take the 

absolute value of the diff erence of each point from the median. The median of 

these deviations is the MAD. It’s kinda like the median’s answer to the standard 

deviation.



344 Data Smart

To start then, calculate the mean and standard deviation of each column at the bot-

tom of the SupportPersonnel sheet. The fi rst value you’ll want in B402 is the mean of the 

tickets taken per day, which you can write as:

=AVERAGE(B2:B401)

And below that you take the standard deviation of the column as:

=STDEV(B2:B401)

Copying those two formulas through column K, you get the sheet shown in Figure 9-6.

Figure 9-6: Mean and standard deviation for each column

Create a new tab called Standardized and copy the column labels from row 1 as well 

as the employee IDs from column A. You can start standardizing the values in cell B2 

using Excel’s STANDARDIZE formula. This formula just takes the original value, a center, 

and a spread measure and returns the value with the center subtracted out divided by the 

spread. So in B2 you would have:

=STANDARDIZE(SupportPersonnel!B2,
             SupportPersonnel!B$402,SupportPersonnel!B$403)

Note that you’re using absolute references on the rows only for the mean and standard 

deviation, so that they stay put when you copy the formula down. However, when you 

copy the formula across, the column will change.

Copy and paste B2 across through K2, highlight the range, and then double-click it to 

send the calculations down through K401. This yields the standardized set of data shown 

in Figure 9-7.



345Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re Unimportant 

Figure 9-7: The standardized set of employee performance data

Creating a Graph
A graph is nothing more than some nodes and edges. In this case, each employee is a node, 

and to start, you can just draw edges between everybody. The length of the edge is the 

Euclidean distance between the two employees using their standardized performance data.

As you saw in Chapter 2, the Euclidean (as-the-crow-fl ies) distance between two points 

is the square root of the sum of the squared diff erences of each column value for the two.

In a new sheet called Distances, create an employee-by-employee distance matrix in 

the exact same way as in Chapter 2, by using the OFFSET formula.

To start, number the employees 0 through 399 starting at A3 going down and at C1 

going across. (Tip: Type 0, 1, and 2 in the fi rst three cells and then highlight those cells 

and drag down or across. Excel will fi ll in the rest for you, because it’s smart like that.) 

Next to these off set values, paste the employee IDs (Paste Special values transposed for 

the columns). This creates the empty matrix shown in Figure 9-8.

To fi ll in this matrix, let’s start in the fi rst distance cell C3. This is the distance between 

employee 144624 and themselves. 

Now, for all these distance calculations, you’re going to use the OFFSET formula anchored 

on the fi rst row of standardized employee data:

OFFSET(Standardized!$B$2:$K$2,Some number of rows, 0 columns)

In the case of cell C3, Standardized!$B$2:$K$2 is the actual row you want for employee 

144624, so you can take the diff erences between this employee and themselves using the 

off set formula as:

OFFSET(Standardized!$B$2:$K$2,Distances!$A3,0)-
OFFSET(Standardized!$B$2:$K$2,Distances!C$1,0)



346 Data Smart

Figure 9-8: Empty employee distance matrix

In the fi rst off set formula, you’re moving rows using the value in $A3, while in the 

second off set formula you use the value in C$1 to move the OFFSET formula to another 

employee. Absolute references are used on these values in the appropriate places so that 

as you copy the formula around the sheet, you’re still reading row off sets from column 

A and row 1.

This diff erence calculation needs to be squared, summed, and then square rooted to 

get the full Euclidean distance:

{=SQRT(SUM((OFFSET(Standardized!$B$2:$K$2,Distances!$A3,0)
   -OFFSET(Standardized!$B$2:$K$2,Distances!C$1,0))^2))}

Note that this calculation is an array formula due to the diff erence of entire rows from 

each other. So you have to press Ctrl+Shift+Enter (Command+Return on a Mac) to make 

it work.

The Euclidean distance of employee 144624 from his/herself is, naturally, 0. This for-

mula can be copy and pasted through OL2. Then highlight this range and double-click 

the bottom corner to send the calculation down through cell OL402. This gives you the 

sheet shown in Figure 9-9.

And that’s it! Now you have an employee-by-employee graph. You could export it to 

Gephi like you did in Chapter 5 and take a peak at it, but since it has 16,000 edges and 

only 400 nodes, it would be a mess.

Similarly to how in Chapter 5 you constructed an r-neighborhood graph out of the 

distance matrix, in this chapter you’re going to focus on only the nearest k neighbors of 

each employee in order to fi nd the outliers.



347Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re Unimportant 

The first step is ranking the distance of each employee in relation to each other 

employee. This ranking will yield the fi rst and most basic method for highlighting outli-

ers on the graph.

Figure 9-9: The employee distance matrix

Getting the k Nearest Neighbors
Create a new tab called Rank. Paste the employee IDs starting down at A2 and across at 

B1 to form a grid, as on the previous tab.

Now you need to rank each employee going across the top according to his or her dis-

tance to each employee in column A. Start the rankings at 0, just so that rank 1 will go 

to an actual other employee, and all the 0s will stay on the diagonal of the graph (due to 

self-distances always being the smallest). 

Starting in B2, the ranking of employee 144624 in relation to him/herself is written 

using the RANK formula:

=RANK(Distances!C3,Distances!$C3:$OL3,1)-1

This -1 at the end of the formula gives this self-distance a rank of 0 instead of 1. Note 

that you lock down columns C through OL on the Distances tab with absolute references, 

which allows you to copy this formula to the right.

Copying this formula one to the right, C2, you are now ranking employee 142619 in 

relationship to their distance from employee 144624:

=RANK(Distances!D3,Distances!$C3:$OL3,1)-1



348 Data Smart

This returns a rank of 194 out of 400, so these two folks aren’t exactly buds (see 

Figure 9-10).

Figure 9-10: Employee 142619 ranked by distance in relation to 144624

Copy this formula throughout the sheet. You’ll get the full ranking matrix pictured in 

Figure 9-11.

Figure 9-11: Each employee on the column ranked in relation to each row

Graph Outlier Detection Method 1: Just Use the Indegree
If you wanted to assemble a k nearest neighbors (kNN) graph using the Distances and 

Rank sheets, all you’d need to do is delete any edge in the Distances sheet (set its cell to 



349Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re Unimportant 

blank) whose rank was greater than k. For k = 5, you’d drop all the distances with a rank 

on the Rank sheet that was 6 or over.

What would it mean to be an outlier in this context? Well, an outlier wouldn’t get picked 

all that often as a “nearest neighbor,” now would it?

Say you created a 5NN graph, so you kept only those edges with a rank of 5 or less. If 

you scroll down a column, such as column B for employee 144624, how many times does 

this employee end up in the top-fi ve ranks for all the other employees? That is, how many 

employees choose 144624 as one of their top fi ve neighbors? Not many. I’m eyeballing none, 

in fact, except for its self-distance on the diagonal with a rank of 0, which you can ignore. 

How about if you made a 10NN? Well, in that case employee 139071 on row 23 hap-

pens to consider 144624 its ninth nearest neighbor. This means that in the 5NN graph 

employee 144624 has an indegree of 0, whereas in the 10NN graph employee 144624 has 

an indegree of 1. 

The indegree is the count of the number of edges going into any node on a graph. The lower 

the indegree, the more of an outlier you are, because no one wants to be your neighbor.

At the bottom of column B on the Rank sheet, count up the indegree for employee 

144624 for the cases of 5, 10, and 20 nearest neighbor graphs. You can do this using a 

simple COUNTIF formula (subtracting out 1 for the self-distance on the diagonal which 

you’re ignoring). So, for example, to count up the indegree for employee 144624 in a 5NN 

graph, you’d use the following formula in cell B402:

=COUNTIF(B2:B401,”<=5”)–1

Similarly below it, you could calculate the employee’s indegree if you made a 10NN 

graph:

=COUNTIF(B2:B401,”<=10”)-1

And below that for a 20NN:

=COUNTIF(B2:B401,”<=20”)-1

Indeed, you could pick any k you wanted between 1 and the number of employees 

you have. But you can stick with 5, 10, and 20 for now. Using the conditional formatting 

menu, you can highlight cells whose counts are 0 (which means there are no inbound 

edges to the node for a graph of that size). This calculation on employee 144624 yields 

the tab shown in Figure 9-12.

Highlighting B402:B404, you can drag the calculations to the right through column 

OK. Scrolling through the results, you can see that some employees may be considered 

outliers at the 5NN mark but not necessarily at the 10NN mark (if you defi ne an outlier 

as an employee with a 0 indegree—you could use another number if you liked).



350 Data Smart

Figure 9-12: The indegree counts for three different nearest neighbor graphs

There are only two employees who even at the 20NN graph level still have no inbound 

edges. No one considers them even in the top 20 closest of neighbors. That’s pretty distant!

Those two employee IDs are 137155 and 143406. Flipping back to the SupportPersonnel 

tab, you can investigate. Employee 137155 is on row 300 (see Figure 9-13). They have a 

high ticket average, high customer rating, and they appear to be a good Samaritan. They’ve 

taken lots of weekend shifts, graveyard shifts, and they’ve off ered on seven occasions to 

swap shifts with an employee who needed it. Nice! This is someone who across multiple 

dimensions is exceptional enough that they’re not even in the top 20 distances to any other 

employee. That’s pretty amazing. Maybe this employee deserves a pizza party or something.

Figure 9-13: The performance data for employee 137155



351Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re Unimportant 

What about the other employee—143406? They’re on row 375, and they’re an interesting 

contrast to the previous employee (see Figure 9-14). No metric by itself is enough to fi re 

them, but that said, their ticket number is two standard deviations below the average, their 

customer rating is likewise a couple of standard deviations down the distribution. Their 

tardies are above average, and they’ve taken fi ve out of six sick days on a Friday. Hmmm. 

This employee has taken plenty of employee development, which is a plus. But maybe 

that’s because they just enjoy getting out of taking tickets. Perhaps employee dev should 

start being graded. And they’ve requested four shift swaps without off ering to swap with 

someone else. 

This employee feels like they’re working the system. While meeting the minimum 

requirements for employment (note they’re not jumping any Tukey fences here), they seem 

to be skating by at the bad end of every distribution.

Figure 9-14: The performance data for employee 143406

Graph Outlier Detection Method 2: Getting Nuanced with 
k-Distance
One of the drawbacks of the previous method is that for a given kNN graph you either get 

an inbound edge from someone or you don’t. And that means that you get large shifts in 

who’s an outlier and who’s not one, depending on the value of k you pick. This example 

ended up trying 5, 10, and 20 before you were left with just two employees. And of those 

two employees, which one was the biggest outlier? Beats me! They both had an indegree 

of 0 on the 20NN, so they were kinda tied, right?

What would be nice is to have a calculation that assigned an employee a continuous 

degree of outlying-ness. The next two methods you’ll look at attempt to do just that. First, 

you’ll look at ranking outliers using a quantity called the k-distance.



352 Data Smart

The k-distance is the distance from an employee to their kth neighbor. 

Nice and simple, but since it’s giving back a distance rather than a count, you can get 

a nice ranking out of the value. Create a new tab in the workbook called K-Distance to 

take a look.

For k, use 5, which means you’ll grab everyone’s distance to their fi fth closest neighbor. 

One way to think of this is that if the neighborhood where I live has fi ve neighbors and 

myself, how much land does that neighborhood sit on? If I have to walk 30 minutes to 

make it to my fi fth neighbor’s house, then maybe I live in the boonies. 

So label A1 as How many employees are in my neighborhood? and put a 5 in B1. This 

is your k value.

Starting in A3, label the column Employee ID and paste the employee IDs down. Then 

you’ll start calculating the k-distance with that of employee 144624 in cell B4.

Now, how do you calculate the distance between 144624 and his fi fth closest neighbor? 

The fi fth closest employee will be ranked 5 on row 2 (144624’s row) of the Rank tab. So 

you can just use an IF statement to set that value to 1 in a vector of all 0s, and then mul-

tiply that vector times the distances row for 144624 on the Distances tab. Finally, sum 

everything up. 

Thus, in B4 you’d have:

{=SUM(IF(Rank!B2:OK2=$B$1,1,0)*Distances!C3:OL3)}

Note that the k value in cell B1 is locked down with absolute references, so you can 

copy the formula down. Also, this is an array formula since the IF statement is checking 

an entire array of values.

Double-click the formula to send it down the sheet and apply some conditional for-

matting to highlight the large distances. Once again, the two outliers from the previous 

section rise to the top (see Figure 9-15).

Figure 9-15: Employee 143406 has a high 5-distance



353Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re Unimportant 

This time around, you get a little more nuance. You can see in this single list that the 

bad employee, 143406, is substantially more distant than 137155, and both of those values 

are substantially larger than the next largest value of 3.53.

But there’s a drawback to this approach, which is visualized in Figure 9-16. Merely using 

k-distance gives you a sense of global outlying-ness, that is, you can highlight points that 

are farther away from their neighbors than any other points. But when you look at Figure 

9-16, the triangular point is clearly the outlier, and yet, its k-distance is going to be less 

than that of some of the diamond shape points.

Are those diamonds really weirder than that triangle? Not to my eyes!

The issue here is that the triangle is not a global outlier, so much as it is a local outlier. 

The reason why your eyeballs pick it up as the odd point out is that it’s nearest to the tight 

cluster of circles. If the triangle were among the spaced-out diamonds, it’d be fi ne. But it’s 

not. Instead, it looks nothing like its circular neighbors.

This leads to a cutting-edge technique called local outlier factors (LOF).

Figure 9-16: k-distance fails on local outliers

Graph Outlier Detection Method 3: Local Outlier Factors Are 
Where It’s At
Just like using k-distance, local outlier factors provide a single score for each point. The 

larger the score, the more of an outlier they are. But LOF gives you something a little 

cooler than that: The closer the score is to 1, the more ordinary the point is locally. As 



354 Data Smart

the score increases, the point should be considered less typical and more like an outlier. 

And unlike k-distance, this “1 is typical” fact doesn’t change no matter the size or scale 

of your graph, which is really cool.

At a high level here’s how it works: You are an outlier if your k nearest neighbors consider 

you farther away than their neighbors consider them. The algorithm cares about a point’s 

friends and friends-of-friends. That’s how it defi nes “local.”

Looking back at Figure 9-16 this is exactly what makes the triangle an outlier, isn’t it? 

It may not have the highest k-distance, but the ratio of the triangle’s distance to its nearest 

neighbors over their distance to each other is quite high (see Figure 9-17). 

Figure 9-17: The triangle is not nearly as reachable by its neighbors as the neighbors are by each other

Starting with Reach Distance

Before you can put together your local outlier factors for each employee, you need to cal-

culate one more set of numbers, called reachability distances. 

The reachability distance of employee A with respect to employee B is just their ordinary 

distance, unless A is within B’s k-distance neighborhood, in which case the reachability distance 

is just B’s k-distance.

In other words, if A is inside B’s neighborhood, you round up A’s distance to B to the 

size of B’s neighborhood; otherwise, you leave it alone.

Using reachability distance rather than ordinary distance for LOF helps stabilize the 

calculation a bit. 

Create a new tab called Reach-dist and replace the distances from the Distances tab 

with the new reach distances.



355Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re Unimportant 

First thing you’ll want to do is Paste Special the transposed values from the K-Distance 

tab across the top of the tab, and then paste the employee-by-employee grid, like on the 

Distances tab starting in row 3. This gives you the empty sheet shown in Figure 9-18.

Figure 9-18: The skeleton of the reach distance tab

Starting in cell B4, you’re going to slide in the distance of 144624 to itself from the 

Distances tab (Distances!C3) unless it’s less than the k-distance above in B1. It’s a simple 

MAX formula:

=MAX(B$1,Distances!C3)

The absolute reference on the k-distance allows you to copy the formula around the 

sheet. Copying the formula through OK4, you can then highlight the calculations on row 4 

and double-click them to send them through row 403. This fi lls in all the reach distances, 

as shown in Figure 9-19.

Putting Together the Local Outlier Factors

Now you’re ready to calculate each employee’s local outlier factor. To start, create a new 

tab called LOF and paste the employee IDs down column A.

As stated earlier, local outlier factors gauge how a point is viewed by its neighbors versus 

how those neighbors are viewed by their neighbors. If I’m 30 miles outside of town, my 

closest neighbors may view me as a redneck, whereas they are viewed by their neighbors 

as members of the community. That means that locally I’m viewed more as an outlier than 

my neighbors are. You want to capture that phenomenon.

These values hinge on the average reachability of each employee with respect to his k 

nearest neighbors. 



356 Data Smart

Figure 9-19:  All reach distances

Consider employee 144624 on row 2. You’ve already set k to 5, so the question is, what 

is the average reachability distance of 144624 with respect to that employee’s fi ve nearest 

neighbors? 

To calculate this, pull a vector of 1s from the Rank tab for the fi ve employees closest to 

144624 and 0s for everyone else (similar to what you did on the K-Distance tab). Such a 

vector can be created using IF formulas to grab the top-ranked neighbors while exclud-

ing the actual employee:

IF(Rank!B2:OK2<=’K-Distance’!B$1,1,0)*IF(Rank!B2:OK2>0,1,0)

Multiply this indicator vector times 144624’s reach distances, sum up the product, and 

divide them by k=5. In cell B2, then, you have:

=SUM(IF(Rank!B2:OK2<=’K-Distance’!B$1,1,0)*
IF(Rank!B2:OK2>0,1,0)*
‘Reach-dist’!B4:OK4)/’K-Distance’!B$1}

Just as when you calculated k-distance, this is an array formula. You can send this 

formula down the sheet by double-clicking it (see Figure 9-20).

So this column indicates how the fi ve nearest neighbors of each employee view them.

The local outlier factor then for an employee is the average of the ratios of the employee’s 

average reachability distance divided by the average reachability distances of each of their k 

neighbors.



357Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re Unimportant 

Figure 9-20: Average reachability for each employee with respect to his neighbors

You will tackle the LOF calculation for employee 144624 in cell C2 fi rst. Just as in 

previous calculations, the following IF statements give you a vector of 1s for 144624’s top 

fi ve nearest neighbors:

IF(Rank!B2:OK2<=’K-Distance’!B$1,1,0)*IF(Rank!B2:OK2>0,1,0)

You then multiply the ratio of 144624’s average reachability divided by each neighbor’s 

average reachability as:

IF(Rank!B2:OK2<=’K-Distance’!B$1,1,0)
  *IF(Rank!B2:OK2>0,1,0)*B2/TRANSPOSE(B$2:B$401)

Note that the neighbors’ reachability distances referenced in range B2:B401 on the 

bottom of the ratio are transposed so that the column is turned into a row, just like the 

vectors coming out of the IF statements in the equation.

You can average these ratios by summing them and dividing by k:

{=SUM(IF(Rank!B2:OK2<=
   ‘K-Distance’!B$1,1,0)
   *IF(Rank!B2:OK2>0,1,0)
   *B2/TRANSPOSE(B$2:B$401))/’K-Distance’!B$1}

Note the curly braces since this is an array formula. Press Control+Shift+Enter 

(Command+Return on Mac) to get back the LOF factor for 144624. 



358 Data Smart

It’s 1.34, which is somewhat over a value of 1, meaning that this employee is a bit of a 

local outlier.

You can send this formula down the sheet by double-clicking and then check out 

the other employees. Conditional formatting is helpful to highlight the most signifi cant 

outliers.

Lo and behold, when you scroll down you fi nd that employee 143406, the resident 

slacker, is the most outlying point with an LOF of 1.97 (see Figure 9-21). His neighbors 

view him as twice as distant as they are viewed by their neighbors. That’s pretty far out-

side the community.

Figure 9-21: LOFs for the employees. Somebody is knocking on the door of 2.

And that’s it! You now have a single value assigned to each employee that ranks them 

as a local outlier and is scaled the same no matter the size of the graph. Pretty fl ippin’ 

awesome.

Wrapping Up
Between the graph modularity chapter and this chapter on outlier detection, you’ve been 

exposed to the power of analyzing a dataset by “graphing” your data, that is, assigning 

distances and edges between your observations. 

Although in the clustering chapters, you mined groups of related points for insights, 

here you mined the data for points outside of communities. You saw the power of some-

thing as simple as indegree to demonstrate who’s infl uential and who’s isolated.



359Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re Unimportant 

For more on outlier detection, check out the 2010 survey put together by Kriegel, Kroger, 

and Zimek at http://www.siam.org/meetings/sdm10/tutorial3.pdf for the 2010 SIAM 

conference. All the techniques in this chapter show up there along with a number of others.

Note that these techniques don’t require any kind of arbitrarily long-running process 

the way optimization models might. There are a fi nite number of steps to get LOFs, so this 

kind of thing can be coded in production on top of a database quite easily. 

If you’re looking for a good programming language to do this stuff  in, R is the way to 

go. The bplot function in R provides box plots of data with Tukey fences built in. The 

ability to plot Tukey fences graphically is something so painful in Excel that I didn’t even 

bother putting it in this book, so the bplot function is a huge plus for R.

Also in R, the DMwR package (which accompanies the excellent Data Mining with R 

book by Torgo [Chapman and Hall, 2010]) includes an implementation of LOF in a func-

tion called lofactor. To construct and analyze the degree of nodes in a graph, the igraph 

package in Python and R is the way  to go.

http://www.siam.org/meetings/sdm10/tutorial3.pdf




10
After spending the previous nine chapters injecting Excel directly into your veins, I’m 

now going to tell you to drop it. Well, not for everything, but let’s be honest, Excel 

is not ideal for all analytics tasks.

Excel is awesome for learning analytics, because you can touch and see your data in 

every state as an algorithm changes it from input into output. But you came, you saw, 

you learned. Do you really need to go through all those steps manually every time? For 

example, do you really need to bake up your own optimization formulation to fi t your own 

logistic regressions? Do you need to input the defi nitions of cosine similarity all yourself? 

Now that you’ve learned it, you’re allowed to cheat and have someone else do that for 

you! Think of yourself as Wolfgang Puck. Does he cook everything at all his restaurants? 

I sure hope not; otherwise, his skills vary wildly from airport to real world. Now that 

you’ve learned this stuff , you too should feel comfortable using other folks’ implementa-

tions of these algorithms.

And that, among many other things (for example, referencing a whole table of data using 

one word) is why moving from Excel into the analytics-focused programming language 

called R is worth doing.

This chapter runs some of the previous chapters’ analyses in R rather than Excel—same 

data, same algorithms, diff erent environment. You’ll see how easy this stuff  can be!

Now, just as a warning, this chapter is not an intro tutorial of R. I’m going to be 

moving at a thousand miles an hour to hit a few algorithms in a single chapter. If you 

want a more comprehensive introduction, check out the books I recommend at the end 

of this chapter.

And if you haven’t read the previous chapters to this point, this isn’t going to make 

a lick of sense, because I’m going to assume that you are already familiar with the data, 

problems, and techniques from earlier chapters. This ain’t a “choose your own adventure” 

novel. Read everything else and come back!

Moving from 
Spreadsheets into R



362 Data Smart

Getting Up and Running with R
You can download R from the R website at www.r-project.org. Just click the download 

link, pick a mirror nearest you, and download the installer for your OS.

Run through the installer (on Windows it’s nice to install the software as the admin-

istrator) and then open the application. On Windows and Mac, the R console is going to 

load. It looks something like Figure 10-1.

Figure 10-1: The R console on Mac OS

Inside the R console, you type commands into the > prompt and press Return to get 

the system to do anything. Here’s a couple for you:

> print("No regrets. Texas forever.")
[1] "No regrets. Texas forever."
> 355/113
[1] 3.141593

You can call the print function to get the system to print out text. You can also 

type in arithmetic directly to make calculations. Now, my standard workflow for 

using R is:

 1. Bring data into an R.

 2. Do data-sciency things with data.

 3. Dump results out of R where some other person or process can use them.

http://www.r-project.org


363Moving from Spreadsheets into R 

When it comes to the fi rst step, bringing data in R, there are all sorts of options, but in 

order to understand variables and datatypes, you’ll start simply by entering data manually.

Some Simple Hand-Jamming
The simplest way to get data in R is the same way you get it into Excel. By typing it with 

your fi ngers and storing those keystrokes somewhere. You can start by storing a single 

value in a variable:

> almostpi <- 355/113
> almostpi
[1] 3.141593
> sqrt(almostpi)
[1] 1.772454

In this little bit of code, you are storing 355/113 in a variable called almostpi. Then 

by typing the variable back into the console and pressing Return, you can print its con-

tents. You can then act on that variable with a variety of functions (this example calls 

the square root). 

For a quick reference of many of the built-in functions R has (functions available without 

loading packages ... something you’re building toward), check out the R reference card at 

http://cran.r-project.org/doc/contrib/Short-refcard.pdf.

To understand what a function does, just type a question mark before it when you put 

it into the console:

> ?sqrt

This will pop open a Help window on the function (see Figure 10-2 for the Help win-

dow on sqrt). 

You can also type two question marks in front of functions to do a search for informa-

tion, like the following:

> ??log

The log search yields the results shown in Figure 10-3.

NOTE

There are all sorts of great resources for fi nding out what functions and packages are avail-

able to you in R besides the whole ?? rigmarole. For example, rseek.org is a great search 

engine for R-related content. And you can post specifi c questions to stackoverflow.com 

(see http://stackoverflow.com/questions/tagged/r) and the R mailing list (see http://

www.r-project.org/mail.html).

http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://stackoverflow.com/questions/tagged/r
http://www.r-project.org/mail.html
http://www.r-project.org/mail.html


364 Data Smart

Figure 10-2: The Help window for the square root function

Vector Math and Factoring

You can insert a vector of numbers using the c() function (the c stands for “combine”). 

Toss some primes into a variable:

> someprimes <- c(1,2,3,5,7,11)
> someprimes
[1]  1  2  3  5  7 11



365Moving from Spreadsheets into R 

Figure 10-3: Search results for the word log

Using the Length() function, you can count the number of elements you have in your 

vector:

> length(someprimes)
[1] 6

You can also reference single values in the vector using bracket notation:

> someprimes[4]
[1] 5

This gives back the fourth value in the vector, which happens to be 5. You can provide 

vectors of indices using the c() function or a : character to specify a range:

> someprimes[c(4,5,6)]
[1]  5  7 11
> someprimes[4:6]
[1]  5  7 11



366 Data Smart

In both of these cases, you’re grabbing the fourth through sixth values of the vector. 

You can also use logical statements to pull out values. For instance, if you only wanted 

primes less than seven, you could use the which() function to return their indices:

> which(someprimes<7)
[1] 1 2 3 4

> someprimes[which(someprimes<7)]
[1] 1 2 3 5

Once you’ve placed your data in a variable, you can perform operations on the entire 

dataset and store the results in a new variable. For example, you can multiply all the data 

by two:

> primestimes2 <- someprimes*2
> primestimes2
[1]  2  4  6 10 14 22

Think about how you do this in Excel. You enter the formula in the adjacent column 

and copy it down. R lets you name that column or row of data and operate on that variable 

as a single entity, which is neat.

One useful function for checking your data for wonky entries is the summary function:

> summary(someprimes)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.000   2.250   4.000   4.833   6.500  11.000

And you can work with text data too:

> somecolors <- c("blue","red","green","blue",
"green","yellow","red","red")
> somecolors
[1] "blue"   "red"    "green"  "blue"   "green"  "yellow" "red"    "red"

If you summarize somecolors, all you get is a little bit of descriptive data:

> summary(somecolors)
   Length     Class      Mode 
        8 character character

But you can treat these colors as categories and make this vector into categorical data 

by “factoring” it:

> somecolors <- factor(somecolors)
> somecolors
[1] blue   red    green  blue   green  yellow red    red   
Levels: blue green red yellow

Now when you summarize the data, you get back counts for each “level” (a level is 

essentially a category):



367Moving from Spreadsheets into R 

> summary(somecolors)
  blue  green    red yellow 
     2      2      3      1

Two-Dimensional Matrices

The vectors you’ve been playing with so far are one-dimensional. Something more akin 

to a spreadsheet in R might be a matrix, which is a two-dimensional array of numbers. 

You can construct one with the matrix function:

> amatrix <- matrix(data=c(someprimes,primestimes2),nrow=2,ncol=6)
> amatrix
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    3    7    2    6   14
[2,]    2    5   11    4   10   22

You can count columns and rows:

> nrow(amatrix)
[1] 2
> ncol(amatrix)
[1] 6

If you want to transpose the data (just as you did throughout the book using Excel’s 

Paste Special transpose functionality), you use the t() function:

> t(amatrix)
     [,1] [,2]
[1,]    1    2
[2,]    3    5
[3,]    7   11
[4,]    2    4
[5,]    6   10
[6,]   14   22

To grab individual records or ranges, you use the same bracket notation, except you 

separate column and row references with a comma:

> amatrix[1:2,3]
[1]  7 11

This gives back rows 1 through 2 for column 3. But you need not reference row 1 and 

2 since that’s all the rows you have—you can instead leave that portion of the bracket 

blank and all the rows will be printed:

> amatrix[,3]
[1]  7 11



368 Data Smart

Using the rbind() and cbind() functions, you can smush new rows and columns of 

data into the matrix:

> primestimes3 <- someprimes*3
> amatrix <- rbind(amatrix,primestimes3)
> amatrix
             [,1] [,2] [,3] [,4] [,5] [,6]
                1    3    7    2    6   14
                2    5   11    4   10   22
primestimes3    3    6    9   15   21   33

Here you’ve created a new row of data (primestimes3) and used rbind() on the amatrix 

variable to tack primestimes3 onto it and assign the result back into amatrix.

The Best Datatype of Them All: The Dataframe

A dataframe is the ideal way to work with real world, database table-style data in R. A 

dataframe in R is a specifi c version of the “list” datatype. So what’s a list? A list is a col-

lection of objects in R that can be of diff erent types. For instance, here’s a list with some 

info about yours truly:

> John <- list(gender="male", age="ancient", height = 72,
               spawn = 3, spawn_ages = c(.5,2,5))
> John
$gender
[1] "male"

$age
[1] "ancient"

$height
[1] 72

$spawn
[1] 3

$spawn_ages
[1] 0.5 2.0 5.0

A dataframe is a type of list that looks eerily similar to an Excel sheet. Essentially, it’s a 

two-dimensional column-oriented sheet of data where columns can be treated as numeric 

or categorical vectors. You can create a dataframe by calling the data.frame() function 

on arrays of imported or jammed-in data. The following example uses data from James 

Bond fi lms to illustrate. First, create some vectors:

> bondnames <- c("connery","lazenby","moore","dalton","brosnan","craig")
> firstyear <- c(1962,1969,1973,1987,1995,2006)
> eyecolor <- c("brown","brown","blue", "green", "blue", "blue")
> womenkissed <- c(17,3,20,4,12,4)
> countofbondjamesbonds <- c(3,2,10,2,5,1)



369Moving from Spreadsheets into R 

So at this point you have fi ve vectors—some text, some numeric—and all are the same 

length. You can combine them into a single dataframe called bonddata like so:

> bonddata <- data.frame(bondnames,firstyear,eyecolor,womenkissed,
countofbondjamesbonds)
> bonddata
  bondnames firstyear eyecolor womenkissed countofbondjamesbonds
1   connery      1962    brown          17                     3
2   lazenby      1969    brown           3                     2
3     moore      1973     blue          20                    10
4    dalton      1987    green           4                     2
5   brosnan      1995     blue          12                     5
6     craig      2006     blue           4                     1

The data.frame function is going to take care of recognizing which of these columns 

are factors and which are numeric. You can see this diff erence by calling the str() and 

summary() functions (the str stands for “structure”):

> str(bonddata)
'data.frame’: 6 obs. of  5 variables:
$ bondnames            : Factor w/ 6 levels "brosnan","connery",..: 
2 5 6 4 1 3
 $ firstyear            : num  1962 1969 1973 1987 1995 ...
 $ eyecolor             : Factor w/ 3 levels "blue","brown",..: 
2 2 1 3 1 1
 $ womenkissed          : num  17 3 20 4 12 4
 $ countofbondjamesbonds: num  3 2 10 2 5 1
> summary(bonddata)
bondnames  firstyear     eyecolor womenkissed    countofbondjamesbonds
brosnan:1  Min.   :1962  blue :3  Min.   : 3.00  Min.   : 1.000       
connery:1  1st Qu.:1970  brown:2  1st Qu.: 4.00  1st Qu.: 2.000       
craig  :1  Median :1980  green:1  Median : 8.00  Median : 2.500       
dalton :1  Mean   :1982           Mean   :10.00  Mean   : 3.833       
lazenby:1  3rd Qu.:1993           3rd Qu.:15.75  3rd Qu.: 4.500       
moore  :1  Max.   :2006           Max.   :20.00  Max.   :10.000 

Note that the year is being treated as a number. You could factorize this column using 

the factor() function if you wanted it treated categorically instead. 

And one of the awesome things about dataframes is that you can reference each column 

using a $ character plus the column name, as shown:

> bonddata$firstyear <- factor(bonddata$firstyear)
> summary(bonddata)
   bondnames firstyear  eyecolor  womenkissed    countofbondjamesbonds
 brosnan:1   1962:1    blue :3   Min.   : 3.00   Min.   : 1.000       
 connery:1   1969:1    brown:2   1st Qu.: 4.00   1st Qu.: 2.000       
 craig  :1   1973:1    green:1   Median : 8.00   Median : 2.500       
 dalton :1   1987:1              Mean   :10.00   Mean   : 3.833       
 lazenby:1   1995:1              3rd Qu.:15.75   3rd Qu.: 4.500       
 moore  :1   2006:1              Max.   :20.00   Max.   :10.000   



370 Data Smart

Thus, when you run the summary function, the years are rolled up by category counts 

instead of by distribution data. Also, keep in mind that whenever you transpose a 

dataframe, the result is a good old two-dimensional matrix rather than another dataframe. 

This makes sense since the transposed version of the Bond data would not have consistent 

datatypes in each column.

Reading Data into R

NOTE

The CSV fi le used in this section, “WineKMC.csv,” is available for download at the 

book’s website, www.wiley.com/go/datasmart.

Okay, so you’ve learned how to shove data into various datatypes by hand, but how 

do you read data in from fi les? The fi rst thing you need to understand is the working 

directory. The working directory is the folder in which you can put data so that the R 

console can fi nd it and read it in. The getwd() function displays the current working 

directory:

> getwd()
[1] "/Users/johnforeman/RHOME"

If you don’t like the present working directory, you can change it with the setwd() 

command. Keep in mind, even on Windows machines R expects directory paths to be 

specifi ed with forward slashes. For example:

> setwd("/Users/johnforeman/datasmartfiles")

Use this command to set your working directory to a place where you’re happy to toss 

some data. You’ll start by placing the downloaded WineKMC.csv fi le in that directory. 

This comma-delimited fi le has the data from the Matrix tab in the k-means clustering 

workbook from Chapter 2. Read it in and take a look.

To read in data, you use the read.csv() function:

> winedata <- read.csv("WineKMC.csv")

This data should look exactly like the Matrix tab from Chapter 2, so when you print 

the fi rst few columns (I’ve chosen nine to fi t on this page) you see descriptive data about 

each of the 32 off ers followed by some customers’ click vectors in columns:

> winedata[,1:9]
   Offer  Mth   Varietal MinQty Disc    Origin PastPeak Adams Allen
1      1  Jan     Malbec     72   56    France    FALSE    NA    NA
2      2  Jan Pinot Noir     72   17    France    FALSE    NA    NA

http://www.wiley.com/go/datasmart


371Moving from Spreadsheets into R 

3      3  Feb  Espumante    144   32    Oregon     TRUE    NA    NA
4      4  Feb  Champagne     72   48    France     TRUE    NA    NA
5      5  Feb Cab. Sauv.    144   44        NZ     TRUE    NA    NA
6      6  Mar   Prosecco    144   86     Chile    FALSE    NA    NA
7      7  Mar   Prosecco      6   40 Australia     TRUE    NA    NA
8      8  Mar  Espumante      6   45 S. Africa    FALSE    NA    NA
9      9  Apr Chardonnay    144   57     Chile    FALSE    NA     1
10    10  Apr   Prosecco     72   52        CA    FALSE    NA    NA
11    11  May  Champagne     72   85    France    FALSE    NA    NA
12    12  May   Prosecco     72   83 Australia    FALSE    NA    NA
13    13  May     Merlot      6   43     Chile    FALSE    NA    NA
14    14  Jun     Merlot     72   64     Chile    FALSE    NA    NA
15    15  Jun Cab. Sauv.    144   19     Italy    FALSE    NA    NA
16    16  Jun     Merlot     72   88        CA    FALSE    NA    NA
17    17  Jul Pinot Noir     12   47   Germany    FALSE    NA    NA
18    18  Jul  Espumante      6   50    Oregon    FALSE     1    NA
19    19  Jul  Champagne     12   66   Germany    FALSE    NA    NA
20    20  Aug Cab. Sauv.     72   82     Italy    FALSE    NA    NA
21    21  Aug  Champagne     12   50        CA    FALSE    NA    NA
22    22  Aug  Champagne     72   63    France    FALSE    NA    NA
23    23 Sept Chardonnay    144   39 S. Africa    FALSE    NA    NA
24    24 Sept Pinot Noir      6   34     Italy    FALSE    NA    NA
25    25  Oct Cab. Sauv.     72   59    Oregon     TRUE    NA    NA
26    26  Oct Pinot Noir    144   83 Australia    FALSE    NA    NA
27    27  Oct  Champagne     72   88        NZ    FALSE    NA     1
28    28  Nov Cab. Sauv.     12   56    France     TRUE    NA    NA
29    29  Nov  P. Grigio      6   87    France    FALSE     1    NA
30    30  Dec     Malbec      6   54    France    FALSE     1    NA
31    31  Dec  Champagne     72   89    France    FALSE    NA    NA
32    32  Dec Cab. Sauv.     72   45   Germany     TRUE    NA    NA

It’s all in! But you’ll notice that the blank spaces in purchase vectors (which Excel treats 

as zeroes) have become NA values. You need to make those NA values 0, which you can do 

using the is.na() function inside of brackets:

> winedata[is.na(winedata)] <- 0
> winedata[1:10,8:17]
   Adams Allen Anders Bailey Baker Barnes Bell Bennett Brooks Brown
1      0     0      0      0     0      0    0       0      0     0
2      0     0      0      0     0      0    1       0      0     0
3      0     0      0      0     0      0    0       0      1     0
4      0     0      0      0     0      0    0       0      0     0
5      0     0      0      0     0      0    0       0      0     0
6      0     0      0      0     0      0    0       0      0     0
7      0     0      0      1     1      0    0       0      0     1
8      0     0      0      0     0      0    0       1      1     0
9      0     1      0      0     0      0    0       0      0     0
10     0     0      0      0     1      1    0       0      0     0

Bam! NA becomes 0.



372 Data Smart

Doing Some Actual Data Science
At this point you’ve learned how to work with variables and datatypes, hand-jam data, 

and read it in from a CSV. But how do you actually use the algorithms you learned earlier 

in this book? Since you already have the wine data loaded up, you’ll start with a little 

k-means clustering.

Spherical K-Means on Wine Data in Just a Few Lines
In this section, you’ll cluster based on cosine similarity (also called spherical k-means). 

And in R, there’s a spherical k-means package you can load, called skmeans. But skmeans 

doesn’t come baked into R; it’s written by a third party as a package that you can load into 

R and use. Essentially, these geniuses have done all the work for you, and you just have 

to stand on their shoulders.

Like most R packages, you can read up on it and install it from the Comprehensive R 

Archive Network (CRAN). CRAN is a repository of many of the useful packages that can 

be loaded into R to extend its functionality. A list of all the packages you can download 

from CRAN is available here: http://cran.r-project.org/web/packages/.

Just search for “spherical k means” in rseek.org and a PDF explaining the package 

comes up as the fi rst result. There’s a function called skmeans() that you want.

R is initially set up to download packages from CRAN, so to get the skmeans package 

you need only use the install.packages() function (R may ask to set up a personal 

library the fi rst time you do this):

> install.packages("skmeans",dependencies = TRUE)
trying URL 'http://mirrors.nics.utk.edu/cran/bin/macosx/leopard/
                   contrib/2.15/skmeans_0.2-3.tgz’
Content type 'application/x-gzip’ length 224708 bytes (219 Kb)
opened URL
==================================================
downloaded 219 Kb

The downloaded binary packages are in
   /var/…/downloaded_packages

You can see in the code that I set dependencies = TRUE in the installation call. This 

ensures that if the skmeans package is dependent on any other packages, R downloads 

those packages as well. The call downloads the appropriate package for my R installation 

(version 2.15 on Mac) from a mirror and puts it where it needs to go. 

You can then load the package using the library() function:

> library(skmeans)

http://cran.r-project.org/web/packages
http://mirrors.nics.utk.edu/cran/bin/macosx/leopard


373Moving from Spreadsheets into R 

You can look up how to use the skmeans() function using the ? call. The documenta-

tion specifi es that skmeans() accepts a matrix where each row corresponds to an object 

to cluster. 

Your data on the other hand is column-oriented with a bunch of deal descriptors at the 

beginning that the algorithm isn’t gonna want to see. So you need to transpose it (note 

that the transpose function coerces a matrix out of the dataframe). 

Using the ncol() function, you can see that the customer columns go out to column 107, 

so you can isolate just the purchase vectors as rows for each customer by transposing the 

data from column 8 to 107 and shoving it in a new variable called winedata.transposed:

> ncol(winedata)
[1] 107
> winedata.transposed <- t(winedata[,8:107])
> winedata.transposed[1:10,1:10]
        [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
Adams      0    0    0    0    0    0    0    0    0     0
Allen      0    0    0    0    0    0    0    0    1     0
Anders     0    0    0    0    0    0    0    0    0     0
Bailey     0    0    0    0    0    0    1    0    0     0
Baker      0    0    0    0    0    0    1    0    0     1
Barnes     0    0    0    0    0    0    0    0    0     1
Bell       0    1    0    0    0    0    0    0    0     0
Bennett    0    0    0    0    0    0    0    1    0     0
Brooks     0    0    1    0    0    0    0    1    0     0
Brown      0    0    0    0    0    0    1    0    0     0

Then you can call skmeans on the dataset, specifying fi ve means and the use of a genetic 

algorithm (much like the algorithm you used in Excel). You’ll assign the results back to 

an object called winedata.clusters:

> winedata.clusters <- skmeans(winedata.transposed, 5, method="genetic")

Typing the object back into the console, you can get a summary of its contents (your 

results may vary due to the optimization algorithm):

> winedata.clusters
A hard spherical k-means partition of 100 objects into 5 classes.
Class sizes: 16, 17, 15, 29, 23
Call: skmeans(x = winedata.transposed, k = 5, method = "genetic")

Calling str() on the clusters object shows you that the actual cluster assignments are 

stored within the “cluster” list of the object:

> str(winedata.clusters)
List of 7
 $ prototypes: num [1:5, 1:32] 0.09 0.153 0 0.141 0 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:5] "1" "2" "3" "4" ...



374 Data Smart

  .. ..$ : NULL
 $ membership: NULL
 $ cluster   : int [1:100] 5 4 1 5 2 2 1 3 3 5 ...
 $ family    :List of 7
  ..$ description: chr "spherical k-means"
  ..$ D          :function (x, prototypes)  
  ..$ C          :function (x, weights, control)  
  ..$ init       :function (x, k)  
  ..$ e          : num 1
  ..$ .modify    : NULL
  ..$ .subset    : NULL
  ..- attr(*, "class")= chr "pclust_family"
 $ m         : num 1
 $ value     : num 38
 $ call      : language skmeans(x = winedata.transposed,
                                k = 5, method = "genetic")
 - attr(*, "class")= chr [1:2] "skmeans" "pclust"

So for instance, if you wanted to pull back the cluster assignment for row 4, you’d just 

use the matrix notation on the cluster vector:

> winedata.clusters$cluster[4]
[1] 5

Now, each row is labeled with a customer’s name (because they were labeled when you 

read them in with the read.csv() function), so you can also pull assignments by name 

using the row.names() function combined with the which() function:

> winedata.clusters$cluster[
which(row.names(winedata.transposed)=="Wright")
]
[1] 4

Cool! Furthermore, you can write out all these cluster assignments using the 

write.csv() function if you cared to. Use ? to learn how to use it. Spoiler: It’s like 

read.csv(). 

Now, the main way you understood the clusters in Excel was by understanding the 

patterns in the descriptors of the deals that defi ned them. You counted up the total deals 

taken in each cluster and sorted. How do you do something similar in R?

To perform the counts, you just use the aggregate() function where in the “by” fi eld 

you specify the cluster assignments—meaning “aggregate purchases by assignment.” And 

you also need to specify that the type of aggregation you want is a sum as opposed to a 

mean, min, max, median, and so on:

aggregate(winedata.transposed,by=list(winedata.clusters$cluster),sum)

You’ll use transpose to store these counts back as fi ve columns (just as they were 

in Excel) and you’ll lop off the first row of the aggregation, which just gives back 



375Moving from Spreadsheets into R 

the cluster assignment names. Then, store all this back as a variable called winedata

.clustercounts:

> winedata.clustercounts <-t(aggregate(winedata.transposed,by=list
           (winedata.clusters$cluster),sum)[,2:33])
> winedata.clustercounts
    [,1] [,2] [,3] [,4] [,5]
V1     2    5    0    3    0
V2     7    3    0    0    0
V3     0    2    3    0    1
V4     0    5    1    6    0
V5     0    0    0    4    0
V6     0    8    1    3    0
V7     0    3    1    0   15
V8     0    1   15    0    4
V9     0    2    0    8    0
V10    1    4    1    0    1
V11    0    7    1    4    1
V12    1    3    0    0    1
V13    0    0    2    0    4
V14    0    3    0    6    0
V15    0    3    0    3    0
V16    1    1    0    3    0
V17    7    0    0    0    0
V18    0    1    4    0    9
V19    0    4    1    0    0
V20    0    2    0    4    0
V21    0    1    1    1    1
V22    0   17    2    2    0
V23    1    1    0    3    0
V24   12    0    0    0    0
V25    0    3    0    3    0
V26   12    0    0    3    0
V27    1    4    1    3    0
V28    0    5    0    0    1
V29    0    1    4    0   12
V30    0    4    4    1   13
V31    0   16    1    0    0
V32    0    2    0    2    0

All right, so there are your counts of deals by cluster. Let’s slap those seven columns of 

descriptive data back on to the deals using the column bind function cbind():

> winedata.desc.plus.counts <- 
cbind(winedata[,1:7],winedata.clustercounts)
> winedata.desc.plus.counts
    Offer  Mth   Varietal MinQty Disc    Origin PastPeak  1  2  3 4  5
V1      1  Jan     Malbec     72   56    France    FALSE  2  5  0 3  0
V2      2  Jan Pinot Noir     72   17    France    FALSE  7  3  0 0  0
V3      3  Feb  Espumante    144   32    Oregon     TRUE  0  2  3 0  1



376 Data Smart

V4      4  Feb  Champagne     72   48    France     TRUE  0  5  1 6  0
V5      5  Feb Cab. Sauv.    144   44        NZ     TRUE  0  0  0 4  0
V6      6  Mar   Prosecco    144   86     Chile    FALSE  0  8  1 3  0
V7      7  Mar   Prosecco      6   40 Australia     TRUE  0  3  1 0 15
V8      8  Mar  Espumante      6   45 S. Africa    FALSE  0  1 15 0  4
V9      9  Apr Chardonnay    144   57     Chile    FALSE  0  2  0 8  0
V10    10  Apr   Prosecco     72   52        CA    FALSE  1  4  1 0  1
V11    11  May  Champagne     72   85    France    FALSE  0  7  1 4  1
V12    12  May   Prosecco     72   83 Australia    FALSE  1  3  0 0  1
V13    13  May     Merlot      6   43     Chile    FALSE  0  0  2 0  4
V14    14  Jun     Merlot     72   64     Chile    FALSE  0  3  0 6  0
V15    15  Jun Cab. Sauv.    144   19     Italy    FALSE  0  3  0 3  0
V16    16  Jun     Merlot     72   88        CA    FALSE  1  1  0 3  0
V17    17  Jul Pinot Noir     12   47   Germany    FALSE  7  0  0 0  0
V18    18  Jul  Espumante      6   50    Oregon    FALSE  0  1  4 0  9
V19    19  Jul  Champagne     12   66   Germany    FALSE  0  4  1 0  0
V20    20  Aug Cab. Sauv.     72   82     Italy    FALSE  0  2  0 4  0
V21    21  Aug  Champagne     12   50        CA    FALSE  0  1  1 1  1
V22    22  Aug  Champagne     72   63    France    FALSE  0 17  2 2  0
V23    23 Sept Chardonnay    144   39 S. Africa    FALSE  1  1  0 3  0
V24    24 Sept Pinot Noir      6   34     Italy    FALSE 12  0  0 0  0
V25    25  Oct Cab. Sauv.     72   59    Oregon     TRUE  0  3  0 3  0
V26    26  Oct Pinot Noir    144   83 Australia    FALSE 12  0  0 3  0
V27    27  Oct  Champagne     72   88        NZ    FALSE  1  4  1 3  0
V28    28  Nov Cab. Sauv.     12   56    France     TRUE  0  5  0 0  1
V29    29  Nov  P. Grigio      6   87    France    FALSE  0  1  4 0 12
V30    30  Dec     Malbec      6   54    France    FALSE  0  4  4 1 13
V31    31  Dec  Champagne     72   89    France    FALSE  0 16  1 0  0
V32    32  Dec Cab. Sauv.     72   45   Germany     TRUE  0  2  0 2  0

And you can sort using the order() function inside the brackets of the dataframe. 

Here’s a sort to discover the most popular deals for cluster 1 (note that I put a minus sign 

in front of the data to sort descending. Alternatively, you can set the decreasing=TRUE 

fl ag in the order() function.):

> winedata.desc.plus.counts[order(-winedata.desc.plus.counts[,8]),]
    Offer  Mth   Varietal MinQty Disc    Origin PastPeak  1  2  3 4  5
V24    24 Sept Pinot Noir      6   34     Italy    FALSE 12  0  0 0  0
V26    26  Oct Pinot Noir    144   83 Australia    FALSE 12  0  0 3  0
V2      2  Jan Pinot Noir     72   17    France    FALSE  7  3  0 0  0
V17    17  Jul Pinot Noir     12   47   Germany    FALSE  7  0  0 0  0
V1      1  Jan     Malbec     72   56    France    FALSE  2  5  0 3  0
V10    10  Apr   Prosecco     72   52        CA    FALSE  1  4  1 0  1
V12    12  May   Prosecco     72   83 Australia    FALSE  1  3  0 0  1
V16    16  Jun     Merlot     72   88        CA    FALSE  1  1  0 3  0
V23    23 Sept Chardonnay    144   39 S. Africa    FALSE  1  1  0 3  0



377Moving from Spreadsheets into R 

V27    27  Oct  Champagne     72   88        NZ    FALSE  1  4  1 3  0
V3      3  Feb  Espumante    144   32    Oregon     TRUE  0  2  3 0  1
V4      4  Feb  Champagne     72   48    France     TRUE  0  5  1 6  0
V5      5  Feb Cab. Sauv.    144   44        NZ     TRUE  0  0  0 4  0
V6      6  Mar   Prosecco    144   86     Chile    FALSE  0  8  1 3  0
V7      7  Mar   Prosecco      6   40 Australia     TRUE  0  3  1 0 15
V8      8  Mar  Espumante      6   45 S. Africa    FALSE  0  1 15 0  4
V9      9  Apr Chardonnay    144   57     Chile    FALSE  0  2  0 8  0
V11    11  May  Champagne     72   85    France    FALSE  0  7  1 4  1
V13    13  May     Merlot      6   43     Chile    FALSE  0  0  2 0  4
V14    14  Jun     Merlot     72   64     Chile    FALSE  0  3  0 6  0
V15    15  Jun Cab. Sauv.    144   19     Italy    FALSE  0  3  0 3  0
V18    18  Jul  Espumante      6   50    Oregon    FALSE  0  1  4 0  9
V19    19  Jul  Champagne     12   66   Germany    FALSE  0  4  1 0  0
V20    20  Aug Cab. Sauv.     72   82     Italy    FALSE  0  2  0 4  0
V21    21  Aug  Champagne     12   50        CA    FALSE  0  1  1 1  1
V22    22  Aug  Champagne     72   63    France    FALSE  0 17  2 2  0
V25    25  Oct Cab. Sauv.     72   59    Oregon     TRUE  0  3  0 3  0
V28    28  Nov Cab. Sauv.     12   56    France     TRUE  0  5  0 0  1
V29    29  Nov  P. Grigio      6   87    France    FALSE  0  1  4 0 12
V30    30  Dec     Malbec      6   54    France    FALSE  0  4  4 1 13
V31    31  Dec  Champagne     72   89    France    FALSE  0 16  1 0  0
V32    32  Dec Cab. Sauv.     72   45   Germany     TRUE  0  2  0 2  0

Looking at the top deals, it becomes clear that cluster 1 is the Pinot Noir cluster. (Your 

mileage may vary. The genetic algorithm doesn’t give the same answer each time.)

So just to reiterate then, if you strip away all my pontifi cation, the following R code 

replicates much of Chapter 2 of this book:

> setwd("/Users/johnforeman/datasmartfiles")
> winedata <- read.csv("WineKMC.csv")
> winedata[is.na(winedata)] <- 0
> install.packages("skmeans",dependencies = TRUE)
> library(skmeans)
> winedata.transposed <- t(winedata[,8:107])
> winedata.clusters <- skmeans(winedata.transposed, 5, method="genetic")
> winedata.clustercounts <-
t(aggregate(winedata.transposed,
by=list(winedata.clusters$cluster),sum)[,2:33])

> winedata.desc.plus.counts <- 
cbind(winedata[,1:7],winedata.clustercounts)
> winedata.desc.plus.counts[order(-winedata.desc.plus.counts[,8]),]

That’s it—from reading in the data all the way to analyzing the clusters. Pretty nuts! 

And that’s because the call to skmeans() pretty much isolates all the complexity of this 

method away from you. Terrible for learning, but awesome for working.



378 Data Smart

Building AI Models on the Pregnancy Data

NOTE

The CSV fi les used in this section, “Pregnancy.csv” and “Pregnancy_Test.csv,” are avail-

able for download at the book’s website, www.wiley.com/go/datasmart.

In this section, you’re going to replicate some of the pregnancy prediction models you 

built in Chapters 6 and 7 of this book. Specifi cally, you’re going to build two classifi ers 

using the glm() function (general linear model) with a logistic link function and using 

the randomForest() function (randomForest() bags trees, which may be anywhere from 

simple stumps to full decision trees).

The training and test data are separated into two CSV fi les, called Pregnancy.csv and 

Pregnancy_Test.csv. Go ahead and save them into your working directory and then load 

them into a couple of dataframes:

> PregnancyData <- read.csv("Pregnancy.csv")
> PregnancyData.Test <- read.csv("Pregnancy_Test.csv")

You can then run summary() and str() on the data to get a feel for it. It’s immediately 

apparent that the gender and address type data have been loaded as categorical data, but as 

you can see in the str() output, the response variable (1 for pregnant, 0 for not pregnant) 

has been treated as numeric instead of as two distinct classes:

> str(PregnancyData)
'data.frame’: 1000 obs. of  18 variables:
$ Implied.Gender        : Factor w/ 3 levels "F","M","U": 2 2 2 3 1...
$ Home.Apt..PO.Box      : Factor w/ 3 levels "A","H","P": 1 2 2 2 1...
$ Pregnancy.Test        : int  1 1 1 0 0 0 0 0 0 0 ...
$ Birth.Control         : int  0 0 0 0 0 0 1 0 0 0 ...
$ Feminine.Hygiene      : int  0 0 0 0 0 0 0 0 0 0 ...
$ Folic.Acid            : int  0 0 0 0 0 0 1 0 0 0 ...
$ Prenatal.Vitamins     : int  1 1 0 0 0 1 1 0 0 1 ...
$ Prenatal.Yoga         : int  0 0 0 0 1 0 0 0 0 0 ...
$ Body.Pillow           : int  0 0 0 0 0 0 0 0 0 0 ...
$ Ginger.Ale            : int  0 0 0 1 0 0 0 0 1 0 ...
$ Sea.Bands             : int  0 0 1 0 0 0 0 0 0 0 ...
$ Stopped.buying.ciggies: int  0 0 0 0 0 1 0 0 0 0 ...
$ Cigarettes            : int  0 0 0 0 0 0 0 0 0 0 ...
$ Smoking.Cessation     : int  0 0 0 0 0 0 0 0 0 0 ...
$ Stopped.buying.wine   : int  0 0 0 0 1 0 0 0 0 0 ...
$ Wine                  : int  0 0 0 0 0 0 0 0 0 0 ...
$ Maternity.Clothes     : int  0 0 0 0 0 0 0 1 0 1 ...
$ PREGNANT             : int  1 1 1 1 1 1 1 1 1 1 ...

http://www.wiley.com/go/datasmart


379Moving from Spreadsheets into R 

It’s best for randomForest() that you actually factorize this response variable into 

two classes (a 0 class and a 1 class) instead of treating the data as an integer. So you can 

factorize the data like so:

PregnancyData$PREGNANT <- factor(PregnancyData$PREGNANT)
PregnancyData.Test$PREGNANT <- factor(PregnancyData.Test$PREGNANT)

Now if you summarize the PREGNANT column, you merely get back class counts as if 0 

and 1 were categories:

> summary(PregnancyData$PREGNANT)
  0   1 
500 500

To build a logistic regression, you need the glm() function, which is in the built-in stats 

package for R. But for the randomForest() function, you’ll need the randomForest pack-

age. Also, it’d be nice to build the ROC curves that you saw in Chapters 6 and 7. There’s a 

package specifi cally built to give you those graphs, called ROCR. Go ahead and install and 

load up those two real quick:

> install.packages("randomForest",dependencies=TRUE)
> install.packages("ROCR",dependencies=TRUE)
> library(randomForest)
> library(ROCR)

You now have the data in and the packages loaded. It’s time to get model building! Start 

with a logistic regression:

> Pregnancy.lm <- glm(PREGNANT ~ .,
data=PregnancyData,family=binomial("logit"))

The glm()function builds the linear model that you’ve specifi ed as a logistic regression 

using the family=binomial("logit") option. You supply data to the function using the 

data=PregnancyData fi eld. Now, you’re probably wondering what PREGNANT ~ . means. 

This is a formula in R. It means “train my model to predict the PREGNANT column using all 

the other columns.” The ~ means “using” and the period means “all the other columns.” 

You can specify a subset of columns as well by typing their column names:

> Pregnancy.lm <- glm(PREGNANT ~ 
Implied.Gender + 
Home.Apt..PO.Box + 
Pregnancy.Test + 
Birth.Control,
data=PregnancyData,family=binomial("logit"))

But you’re using the PREGNANT~. notation because you want to use all of the columns 

to train the model.



380 Data Smart

Once the linear model is built, you can view the coeffi  cients and analyze which vari-

ables are statistically signifi cant (similar to the t tests you conducted in Chapter 6) by 

summarizing the model:

> summary(Pregnancy.lm)

Call:
glm(formula = PREGNANT ~ ., family = binomial("logit"), 
data = PregnancyData)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.2012  -0.5566  -0.0246   0.5127   2.8658  

Coefficients:
                    Estimate Std. Error z value Pr(>|z|)    
(Intercept)        -0.343597   0.180755  -1.901 0.057315 .  
Implied.GenderM    -0.453880   0.197566  -2.297 0.021599 *  
Implied.GenderU     0.141939   0.307588   0.461 0.644469    
Home.Apt..PO.BoxH  -0.172927   0.194591  -0.889 0.374180    
Home.Apt..PO.BoxP  -0.002813   0.336432  -0.008 0.993329    
Pregnancy.Test      2.370554   0.521781   4.543 5.54e-06 ***
Birth.Control      -2.300272   0.365270  -6.297 3.03e-10 ***
Feminine.Hygiene   -2.028558   0.342398  -5.925 3.13e-09 ***
Folic.Acid          4.077666   0.761888   5.352 8.70e-08 ***
Prenatal.Vitamins   2.479469   0.369063   6.718 1.84e-11 ***
Prenatal.Yoga       2.922974   1.146990   2.548 0.010822 *  
Body.Pillow         1.261037   0.860617   1.465 0.142847    
Ginger.Ale          1.938502   0.426733   4.543 5.55e-06 ***
Sea.Bands           1.107530   0.673435   1.645 0.100053    
Stopped.buying.cig  1.302222   0.342347   3.804 0.000142 ***
Cigarettes         -1.443022   0.370120  -3.899 9.67e-05 ***
Smoking.Cessation   1.790779   0.512610   3.493 0.000477 ***
Stopped.buying.win  1.383888   0.305883   4.524 6.06e-06 ***
Wine               -1.565539   0.348910  -4.487 7.23e-06 ***
Maternity.Clothes   2.078202   0.329432   6.308 2.82e-10 ***
---
Signif. codes: 0 '***’ 0.001 '**’ 0.01 '*’ 0.05 '.’ 0.1 ' ' 1

Those coeffi  cients without at least one * next to them are of dubious worth.

Similarly, you can train a random forest model using the randomForest() function:

> Pregnancy.rf <- 
randomForest(PREGNANT~.,data=PregnancyData,importance=TRUE)

This is the same basic syntax as the glm() call (execute ?randomForest to learn more 

about tree count and depth). Note the importance=TRUE in the call. This allows you to 



381Moving from Spreadsheets into R 

graph variable importance using another function, varImpPlot(), which will allow you 

to understand which variables are important and which are weak. 

The randomForest package allows you to look at how much each variable contributes 

to decreasing node impurity on average. The more a variable contributes, the more useful 

it is. You can use this to select and pare down the variables you might want to feed into 

another model. To look at this data, use the varImpPlot() function with type=2 to pull 

rankings based on the node impurity calculation introduced in Chapter 7 (feel free to use 

the ? command to read up on the diff erence between type=1 and type=2):

> varImpPlot(Pregnancy.rf, type=2)

This yields the ranking shown in Figure 10-4. Folic acid ranks fi rst with prenatal vita-

mins and birth control trailing. 

Figure 10-4: A variable importance plot in R



382 Data Smart

Now that you’ve built the models, you can predict with them using the predict() 

function in R. Call the function and save the results to two diff erent variables, so you 

can compare models. The way the predict() function generally works is that it accepts 

a model, a dataset to predict on, and any model-specifi c options:

> PregnancyData.Test.lm.Preds <-
predict(Pregnancy.lm,PregnancyData.Test,type="response")
> PregnancyData.Test.rf.Preds <-
predict(Pregnancy.rf,PregnancyData.Test,type="prob")

You can see in the two predict calls, that each is provided with a diff erent model, the 

test data, and the type parameters that those models need. In the case of a linear model, 

type="response" sets the values returned from the prediction to be between 0 and 1 just 

like the original PREGNANT values. In the case of the random forest, the type="prob" ensures 

that you get back class probabilities—two columns of data, one probability of pregnancy 

and one probability of no pregnancy.

These outputs are slightly diff erent, but then again, they use diff erent algorithms, diff er-

ent models, and so on. It’s important to play with these things and read the documentation.

Here’s a summary of the prediction output:

> summary(PregnancyData.Test.lm.Preds)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
0.001179 0.066190 0.239500 0.283100 0.414300 0.999200 
> summary(PregnancyData.Test.rf.Preds)
       0                1         
 Min.   :0.0000   Min.   :0.0000  
 1st Qu.:0.7500   1st Qu.:0.0080  
 Median :0.9500   Median :0.0500  
 Mean   :0.8078   Mean   :0.1922  
 3rd Qu.:0.9920   3rd Qu.:0.2500  
 Max.   :1.0000   Max.   :1.0000  

The second column from the random forest predictions then is the probability associ-

ated with pregnancy (as opposed to a non-pregnancy), so that’s the column that’s akin to 

the logistic regression predictions. Using the bracket notation, you can pull out individual 

records or sets of records and look at their input data and predictions (I’ve transposed the 

row to make it print prettier):

> t(PregnancyData.Test[1,])
                       1  
Implied.Gender         "U"
Home.Apt..PO.Box       "A"
Pregnancy.Test         "0"
Birth.Control          "0"
Feminine.Hygiene       "0"
Folic.Acid             "0"
Prenatal.Vitamins      "0"



383Moving from Spreadsheets into R 

Prenatal.Yoga          "0"
Body.Pillow            "0"
Ginger.Ale             "0"
Sea.Bands              "1"
Stopped.buying.ciggies "0"
Cigarettes             "0"
Smoking.Cessation      "0"
Stopped.buying.wine    "1"
Wine                   "1"
Maternity.Clothes      "0"
PREGNANT               "1"
> t(PregnancyData.Test.lm.Preds[1])
             1
[1,] 0.6735358
> PregnancyData.Test.rf.Preds[1,2]
[1] 0.504

Note that in printing the input row, I leave the column index blank in the square brack-

ets [1,] so that all columns’ data is printed. This particular customer has an unknown 

gender, lives in an apartment, and has bought sea bands and wine, but then stopped buying 

wine. The logistic regression gives them a score of 0.67 while the random forest is right 

around 0.5. The truth is that she is pregnant—chalk one up for the logistic regression!

Now that you have the two vectors of class probabilities, one for each mode, you 

can compare the models in terms of true positive rate and false positive rate just as you 

did earlier in the book. Luckily for you, though, in R the ROCR package can compute 

and plot the ROC curves so you don’t have to. Since you’ve already loaded the ROCR 

package, the fi rst thing you need to do is create two ROCR prediction objects (using the 

ROCR prediction() function), which simply count up the positive and negative class 

predictions at various cutoff  levels in the class probabilities:

> pred.lm <-
prediction(PregnancyData.Test.lm.Preds,
PregnancyData.Test$PREGNANT)
> pred.rf <-
prediction(PregnancyData.Test.rf.Preds[,2],
PregnancyData.Test$PREGNANT)

Note in the second call that you hit the second column of class probabilities from the 

random forest object just as discussed earlier. You can then turn these prediction objects 

into ROCR performance objects by running them through the performance() function. A 

performance object takes the classifi cations given by the model on the test set for various 

cutoff  values and uses them to assemble a curve of your choosing (in this case a ROC 

curve):

> perf.lm <- performance(pred.lm,"tpr","fpr")
> perf.rf <- performance(pred.rf,"tpr","fpr")



384 Data Smart

NOTE

If you’re curious, performance() provides other options besides the tpr and fpr values, 

such as prec for precision and rec for recall. Read the ROCR package documentation 

for more detail.

You can then plot these curves using R’s plot() function. First, the linear model curve 

(the xlim and ylim fl ags are used to set the upper and lower bounds on the x and y axes 

in the graph):

> plot(perf.lm,xlim=c(0,1),ylim=c(0,1))

You can add the random forest curve in using the add=TRUE fl ag to overlay it and the lty=2 

fl ag (lty stands for “line type”; check out ?plot to learn more) to make this line dashed:

> plot(perf.rf,xlim=c(0,1),ylim=c(0,1),lty=2,add=TRUE)

This overlays the two curves with the random forest performance as a dashed line, 

as shown in Figure 10-5. For the most part, the logistic regression is superior with the 

random forest pulling ahead briefl y on the far right of the graph.

Figure 10-5: Recall and precision graphed in R

All right, so to recap here, you trained two diff erent predictive models, used them on 

a test set, and compared their precision versus recall using the following code:

> PregnancyData <- read.csv("Pregnancy.csv")
> PregnancyData.Test <- read.csv("Pregnancy_Test.csv")



385Moving from Spreadsheets into R 

> PregnancyData$PREGNANT <- factor(PregnancyData$PREGNANT)
> PregnancyData.Test$PREGNANT <- factor(PregnancyData.Test$PREGNANT)
> install.packages("randomForest",dependencies=TRUE)
> install.packages("ROCR",dependencies=TRUE)
> library(randomForest)
> library(ROCR)
> Pregnancy.lm <- glm(PREGNANT ~ .,
data=PregnancyData,family=binomial("logit"))
> summary(Pregnancy.lm)
> Pregnancy.rf <-
randomForest(PREGNANT~.,data=PregnancyData,importance=TRUE)
> PregnancyData.Test.rf.Preds <-
predict(Pregnancy.rf,PregnancyData.Test,type="prob")
> varImpPlot(Pregnancy.rf, type=2)
> PregnancyData.Test.lm.Preds <-
predict(Pregnancy.lm,PregnancyData.Test,type="response")
> PregnancyData.Test.rf.Preds <-
predict(Pregnancy.rf,PregnancyData.Test,type="prob")
> pred.lm <-
prediction(PregnancyData.Test.lm.Preds,
PregnancyData.Test$PREGNANT)
> pred.rf <- 
prediction(PregnancyData.Test.rf.Preds[,2],
PregnancyData.Test$PREGNANT)
> perf.lm <- performance(pred.lm,"tpr","fpr")
> perf.rf <- performance(pred.rf,"tpr","fpr")
> plot(perf.lm,xlim=c(0,1),ylim=c(0,1))
> plot(perf.rf,xlim=c(0,1),ylim=c(0,1),lty=2,add=TRUE)

Pretty straightforward, really. Compared to Excel, look at how easy it was to compare 

two diff erent models. That’s quite nice.

Forecasting in R

NOTE

The CSV fi le used in this section, “SwordDemand.csv,” is available for download at the 

book’s website, www.wiley.com/go/datasmart.

This next section is nuts. Why? Because you’re going to regenerate the exponential 

smoothing forecast from Chapter 8 so fast it’s going to make your head spin.

First, load in the sword demand data from SwordDemand.csv and print it to the console:

> sword <- read.csv("SwordDemand.csv")
> sword
SwordDemand
1          165
2          171

http://www.wiley.com/go/datasmart


386 Data Smart

3          147
4          143
5          164
6          160
7          152
8          150
9          159
10         169
11         173
12         203
13         169
14         166
15         162
16         147
17         188
18         161
19         162
20         169
21         185
22         188
23         200
24         229
25         189
26         218
27         185
28         199
29         210
30         193
31         211
32         208
33         216
34         218
35         264
36         304

All right, so you have 36 months of demand loaded up, nice and simple. The fi rst thing 

you need to do is tell R that this is time series data. There’s a function called ts() that is 

used for this purpose:

sword.ts <- ts(sword,frequency=12,start=c(2010,1))

In this call, you provide the ts() function with the data, a frequency value (the number 

of observations per unit of time, which in this case is 12 per year), and a starting point 

(this example uses January 2010).

When you print sword.ts by typing it in the terminal, R now knows to print it in a 

table by month:

> sword.ts
     Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec



387Moving from Spreadsheets into R 

2010 165 171 147 143 164 160 152 150 159 169 173 203
2011 169 166 162 147 188 161 162 169 185 188 200 229
2012 189 218 185 199 210 193 211 208 216 218 264 304

Nice!

You can plot the data too:

 > plot(sword.ts)

This gives the graph shown in Figure 10-6.

Figure 10-6: Graph of sword demand

At this point, you’re ready to forecast, which you can do using the excellent forecast 

package. Feel free to look it up on CRAN (http://cran.r-project.org/package=forecast) 

or watch the author talk about it in this YouTube video: http://www.youtube.com/

watch?v=1Lh1HlBUf8k.

To forecast using the forecast package, you just feed a time series object into the 

forecast() function. The forecast() call has been set up to detect the appropriate tech-

nique to use. Remember how you ran through a few techniques earlier in the book? The 

forecast() function is gonna do all that stuff  for you:

http://cran.r-project.org/package=forecast
http://www.youtube.com


388 Data Smart

> install.packages("forecast",dependencies=TRUE)
> library(forecast)
> sword.forecast <- forecast(sword.ts)

And that’s it. Your forecast is saved in the sword.forecast object. Now you can print it:

> sword.forecast
         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
Jan 2013       242.9921 230.7142 255.2699 224.2147 261.7695
Feb 2013       259.4216 246.0032 272.8400 238.8999 279.9433
Mar 2013       235.8763 223.0885 248.6640 216.3191 255.4334
Apr 2013       234.3295 220.6882 247.9709 213.4669 255.1922
May 2013       274.1674 256.6893 291.6456 247.4369 300.8980
Jun 2013       252.5456 234.6894 270.4019 225.2368 279.8544
Jul 2013       257.0555 236.7740 277.3370 226.0376 288.0734
Aug 2013       262.0715 238.9718 285.1711 226.7436 297.3993
Sep 2013       279.4771 252.0149 306.9392 237.4774 321.4768
Oct 2013       289.7890 258.1684 321.4097 241.4294 338.1487
Nov 2013       320.5914 281.9322 359.2506 261.4673 379.7155
Dec 2013       370.3057 321.2097 419.4018 295.2198 445.3917
Jan 2014       308.3243 263.6074 353.0413 239.9357 376.7130
Feb 2014       327.6427 275.9179 379.3675 248.5364 406.7490
Mar 2014       296.5754 245.8459 347.3049 218.9913 374.1594
Apr 2014       293.3646 239.2280 347.5013 210.5698 376.1595
May 2014       341.8187 274.0374 409.5999 238.1562 445.4812
Jun 2014       313.6061 247.0271 380.1851 211.7823 415.4299
Jul 2014       317.9789 245.9468 390.0109 207.8153 428.1424
Aug 2014       322.9807 245.1532 400.8081 203.9538 442.0075
Sep 2014       343.1975 255.4790 430.9160 209.0436 477.3513
Oct 2014       354.6286 258.7390 450.5181 207.9782 501.2790
Nov 2014       391.0099 279.4304 502.5893 220.3638 561.6559
Dec 2014       450.1820 314.9086 585.4554 243.2992 657.0648

You get a forecast with prediction intervals built-in! And you can print the actual 

forecasting technique used by printing the method value in the sword.forecast object:

> sword.forecast$method
[1] "ETS(M,A,M)"

The MAM stands for multiplicative error, additive trend, multiplicative seasonality. The 

forecast() function has actually chosen to run Holt-Winters exponential smoothing! 

And you didn’t even have to do anything. When you plot it, as shown in Figure 10-7, you 

automatically get a fan chart:

> plot(sword.forecast)

To recap, here’s the code that replicated Chapter 8:

> sword <- read.csv("SwordDemand.csv")
> sword.ts <- ts(sword,frequency=12,start=c(2010,1))
> install.packages("forecast",dependencies=TRUE)
> library(forecast)



389Moving from Spreadsheets into R 

> sword.forecast <- forecast(sword.ts)
> plot(sword.forecast)

Figure 10-7: Fan chart of the demand forecast

Crazy. But that’s the beauty of using packages other folks have written specially to do 

this stuff .

Looking at Outlier Detection

NOTE

The CSV fi les used in this section, “PregnancyDuration.csv” and “CallCenter.csv,” are 

available for download at the book’s website, www.wiley.com/go/datasmart.

In this section, you’ll do one more of the chapters from this book in R, just to drive home 

the ease of this stuff . To start, read in the pregnancy duration data in PregnancyDuration

.csv available from the book’s website:

> PregnancyDuration <- read.csv("PregnancyDuration.csv")

http://www.wiley.com/go/datasmart


390 Data Smart

In Chapter 9, you calculated the median, fi rst quartile, third quartile, and inner and 

outer Tukey fences. You can get the quartiles just from summarizing the data:

> summary(PregnancyDuration)
 GestationDays  
 Min.   :240.0  
 1st Qu.:260.0  
 Median :267.0  
 Mean   :266.6  
 3rd Qu.:272.0  
 Max.   :349.0     

That makes the interquartile range equal to 272 minus 260 (alternatively, you can call 

the built-in IQR() function on the GestationDays column):

> PregnancyDuration.IQR <- 272 - 260
> PregnancyDuration.IQR <- IQR(PregnancyDuration$GestationDays)
> PregnancyDuration.IQR
[1] 12

You can then calculate the lower and upper Tukey fences:

> LowerInnerFence <- 260 - 1.5*PregnancyDuration.IQR
> UpperInnerFence <- 272 + 1.5*PregnancyDuration.IQR
> LowerInnerFence
[1] 242
> UpperInnerFence
[1] 290

Using R’s which() function, it’s easy to determine the points and their indices that 

violate the fences. For example:

> which(PregnancyDuration$GestationDays > UpperInnerFence)
[1]   1 249 252 338 345 378 478 913
> PregnancyDuration$GestationDays[
which(PregnancyDuration$GestationDays > UpperInnerFence)
]
[1] 349 292 295 291 297 303 293 296

Of course, one of the best ways to do this analysis is to use R’s boxplot() function. The 

boxplot() function will graph the median, fi rst and third quartiles, Tukey fences, and 

any outliers. To use it, you simply toss the GestationDays column inside the function:

> boxplot(PregnancyDuration$GestationDays)

This yields the visualization shown in Figure 10-8.

The Tukey fences can be modifi ed to be “outer” fences by changing the range fl ag in 

the boxplot call (it defaults to 1.5 times the IQR). If you set range=3, then the Tukey fences 

are drawn at the last point inside three times the IQR instead:

> boxplot(PregnancyDuration$GestationDays, range=3)



391Moving from Spreadsheets into R 

As shown in Figure 10-9, note now that you have only one outlier, which is 

Mrs. Hadlum’s pregnancy duration of 349 days. 

Figure 10-8: A boxplot of the pregnancy 
duration data

Figure 10-9: A boxplot with Tukey fences 
using three times the IQR



392 Data Smart

You can also pull this data out of the boxplot in the console rather than plot it. Printing 

the stats list, you get the fences and quartiles:

> boxplot(PregnancyDuration$GestationDays,range=3)$stats
     [,1]
[1,]  240
[2,]  260
[3,]  267
[4,]  272
[5,]  303

Printing the out list, you get a list of outlier values:

> boxplot(PregnancyDuration$GestationDays,range=3)$out
[1] 349

Okay, so that’s a bit on the pregnancy duration problem. Let’s move on to the harder 

problem of fi nding outliers in the call center employee performance data. It’s in the 

CallCenter.csv sheet on the book’s website. Loading it up and summarizing, you get:

> CallCenter <- read.csv("CallCenter.csv")
> summary(CallCenter)
       ID             AvgTix          Rating         Tardies     
 Min.   :130564   Min.   :143.1   Min.   :2.070   Min.   :0.000  
 1st Qu.:134402   1st Qu.:153.1   1st Qu.:3.210   1st Qu.:1.000  
 Median :137906   Median :156.1   Median :3.505   Median :1.000  
 Mean   :137946   Mean   :156.1   Mean   :3.495   Mean   :1.465  
 3rd Qu.:141771   3rd Qu.:159.1   3rd Qu.:3.810   3rd Qu.:2.000  
 Max.   :145176   Max.   :168.7   Max.   :4.810   Max.   :4.000  
   Graveyards       Weekends         SickDays     PercSickOnFri   
 Min.   :0.000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
 1st Qu.:1.000   1st Qu.:1.0000   1st Qu.:0.000   1st Qu.:0.0000  
 Median :2.000   Median :1.0000   Median :2.000   Median :0.2500  
 Mean   :1.985   Mean   :0.9525   Mean   :1.875   Mean   :0.3522  
 3rd Qu.:2.000   3rd Qu.:1.0000   3rd Qu.:3.000   3rd Qu.:0.6700  
 Max.   :4.000   Max.   :2.0000   Max.   :7.000   Max.   :1.0000  
 EmployeeDevHrs  ShiftSwapsReq   ShiftSwapsOffered
 Min.   : 0.00   Min.   :0.000   Min.   :0.00     
 1st Qu.: 6.00   1st Qu.:1.000   1st Qu.:0.00     
 Median :12.00   Median :1.000   Median :1.00     
 Mean   :11.97   Mean   :1.448   Mean   :1.76     
 3rd Qu.:17.00   3rd Qu.:2.000   3rd Qu.:3.00     
 Max.   :34.00   Max.   :5.000   Max.   :9.00     

Just as in Chapter 9, you need to scale and center the data. To do so, you need only use 

the scale() function:

> CallCenter.scale <- scale(CallCenter[2:11])
> summary(CallCenter.scale)
    AvgTix              Rating            Tardies          Graveyards      
Min.   :-2.940189   Min.   :-3.08810   Min.   :-1.5061   Min.   :-2.4981  



393Moving from Spreadsheets into R 

1st Qu.:-0.681684   1st Qu.:-0.61788   1st Qu.:-0.4781   1st Qu.:-1.2396  
Median :-0.008094   Median : 0.02134   Median :-0.4781   Median : 0.0188  
Mean   : 0.000000   Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.0000  
3rd Qu.: 0.682476   3rd Qu.: 0.68224   3rd Qu.: 0.5500   3rd Qu.: 0.0188  
Max.   : 2.856075   Max.   : 2.84909   Max.   : 2.6062   Max.   : 2.5359  
    Weekends           SickDays        PercSickOnFri     EmployeeDevHrs     
Min.   :-1.73614   Min.   :-1.12025   Min.   :-0.8963   Min.   :-1.60222  
1st Qu.: 0.08658   1st Qu.:-1.12025   1st Qu.:-0.8963   1st Qu.:-0.79910  
Median : 0.08658   Median : 0.07468   Median :-0.2601   Median : 0.00401  
Mean   : 0.00000   Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.00000  
3rd Qu.: 0.08658   3rd Qu.: 0.67215   3rd Qu.: 0.8088   3rd Qu.: 0.67328  
Max.   : 1.90930   Max.   : 3.06202   Max.   : 1.6486   Max.   : 2.94879  
 ShiftSwapsReq     ShiftSwapsOffered
Min.   :-1.4477   Min.   :-0.9710  
1st Qu.:-0.4476   1st Qu.:-0.9710  
Median :-0.4476   Median :-0.4193  
Mean   : 0.0000   Mean   : 0.0000  
3rd Qu.: 0.5526   3rd Qu.: 0.6841  
Max.   : 3.5530   Max.   : 3.9942   

Now that the data is prepped, you can send it through the lofactor() function that’s 

part of the DMwR package:

> install.packages("DMwR",dependencies=TRUE)
> library(DMwR)

To call the lofactor() function, you supply it the data and a k value (this example uses 

5, just like in Chapter 9), and the function spits out LOFs:

> CallCenter.lof <- lofactor(CallCenter.scale,5)

Data with the highest factors (LOFs usually hover around 1) are the oddest points. 

For instance, you can highlight the data associated with those employees whose LOF is 

greater than 1.5:

> which(CallCenter.lof > 1.5)
[1] 299 374
> CallCenter[which(CallCenter.lof > 1.5),]
        ID AvgTix Rating Tardies Graveyards Weekends SickDays
299 137155  165.3   4.49       1          3        2        1
374 143406  145.0   2.33       3          1        0        6
    PercSickOnFri EmployeeDevHrs ShiftSwapsReq ShiftSwapsOffered
299          0.00             30             1                 7
374          0.83             30             4                 0

These are the same two outlying employees discussed in Chapter 9. But what a huge 

diff erence in the number of lines of code it took to get this:

> CallCenter <- read.csv("CallCenter.csv")
> install.packages("DMwR",dependencies=TRUE)
> library(DMwR)



394 Data Smart

> CallCenter.scale <- scale(CallCenter[2:11])
> CallCenter.lof <- lofactor(CallCenter.scale,5)

That’s all it took!

Wrapping Up
Okay, this was a fast and furious run-through of some of what you can do in R merely by 

understanding three things:

• Loading and working with data in R

• Finding and installing relevant packages

• Calling functions from those packages on your dataset

Is this all you need to know how to do in R? Nope. I didn’t cover writing your own 

functions, a whole lot of plotting, connecting to databases, the slew of apply() functions 

available, and so on. But I hope this has given you a taste to learn more. If it has, there are 

scads of R books out there worth reading as a follow-up to this chapter. Here are a few:

• Beginning R: The Statistical Programming Language by Mark Gardener (John Wiley 

& Sons, 2012)

• R in a Nutshell, 2nd Edition by Joseph Adler (O’Reilly, 2012)

• Data Mining with R: Learning with Case Studies by Luis Torgo (Chapman and Hall, 

2010)

• Machine Learning for Hackers by Drew Conway and John Myles White (O’Reilly, 

2012)

Go forth and tinker i n R!



Where Am I? What Just Happened?

You may have started this book with a rather ordinary set of skills in math and spread-

sheet modeling, but if you’re here, having made it through alive (and having not just 

skipped the first 10 chapters), then I imagine you’re now a spreadsheet modeling connois-

seur with a good grasp of a variety of data science techniques.

This book has covered topics ranging from classic operations research fodder (optimiza-

tion, Monte Carlo, and forecasting) to unsupervised learning (outlier detection, clustering, 

and graphs) to supervised AI (regression, decision stumps, and naïve Bayes). You should 

feel confi dent working with spreadsheet data at this higher level. 

I also hope that Chapter 10 showed you that now that you understand data science 

techniques and algorithms, it’s quite easy to use those techniques from within a program-

ming language such as R.

And if there’s a particular topic that really grabbed you in this book, dive deeper! Want 

more R, more optimization, more machine learning? Grab one of the sources I recom-

mend in each relevant chapter’s conclusion and read on. There’s so much to learn. I’ve 

only scraped the surface of analytics practice in this book.

But wait...

Before You Go-Go
I want to use this conclusion to off er up some thoughts about what it means to practice 

data science in the real world, because merely knowing the math isn’t enough. 

Anyone who knows me well knows that I’m not the sharpest knife in the drawer. My 

quantitative skills are middling, but I’ve seen folks much smarter than I fail mightily at 

working as analytics professionals. The problem is that while they’re brilliant, they don’t 

know the little things that can cause technical endeavors to fail within the business 

environment. So let’s cover these softer items that can mean the success or failure of your 

analytics project or career.

Conclusion



Data Smart396

Get to Know the Problem
My favorite movie of all time is the 1992 fi lm Sneakers. The movie centers on a band of 

penetration testers led by Robert Redford that steals a “black box” capable of cracking 

RSA encryption. Hijinks ensue. (If you haven’t watched it, I envy you, because you have 

an opportunity to see it for the fi rst time!)

There’s a scene where Robert Redford encounters an electronic keypad on a locked 

offi  ce door at a think tank, and he needs to break through.

He reaches out to his team via his headset. They’re waiting in a van outside the building.

“Anybody ever had to defeat an electronic keypad?” he asks.

“Those things are impossible,” Sydney Poitier exclaims. But Dan Aykroyd, also wait-

ing in the van, comes up with an idea. They explain its complexities to Redford over the 

comms.

Robert Redford nods his head and says, “Okay, I’ll give it a shot.”

He ignores the keypad and kicks in the door.

You see, the problem wasn’t “defeating an electronic keypad” at all. The problem was 

getting inside the room. Dan Aykroyd understood this.

This is the fundamental challenge of analytics: understanding what actually must be 

solved. You must learn the situation, the processes, the data, and the circumstances. You 

need to characterize everything around the problem as best you can in order to understand 

exactly what an ideal solution is.

In data science, you’ll often encounter the “poorly posed problem”:

 1. Someone else in the business encounters a problem.

 2. They use their past experience and (lack of?) analytics knowledge to frame the 

problem.

 3. They hand their conception of the problem to the analyst as if it were set in stone 

and well posed.

 4. The analytics person accepts and solves the problem as-is.

This can work. But it’s not ideal, because the problem you’re asked to solve is often not 

the problem that needs solving. If this problem is really about that problem then analytics 

professionals cannot be passive. 

You cannot accept problems as handed to you in the business environment. Never allow 

yourself to be the analyst to whom problems are “thrown over the fence.” Engage with the 

people whose challenges you’re tackling to make sure you’re solving the right problem. 

Learn the business’s processes and the data that’s generated and saved. Learn how folks 

are handling the problem now, and what metrics they use (or ignore) to gauge success. 

Solve the correct, yet often misrepresented, problem. This is something no mathe-

matical model will ever say to you. No mathematical model can ever say, “Hey, good 



397Conclusion

job formulating this optimization model, but I think you should take a step back and 

change your business a little instead.” And that leads me to my next point: Learn how to 

communicate.

We Need More Translators
If you’ve fi nished this book, it’s safe to say you now know a thing or two about analytics. 

You’re familiar with the tools that are available to you. You’ve prototyped in them. And 

that allows you to identify analytics opportunities better than most, because you know 

what’s possible. You needn’t wait for someone to bring an opportunity to you. You can 

potentially go out into the business and fi nd them. 

But without the ability to communicate, it becomes diffi  cult to understand others’ chal-

lenges, articulate what’s possible, and explain the work you’re doing. 

In today’s business environment, it is often unacceptable to be skilled at only one thing. 

Data scientists are expected to be polyglots who understand math, code, and the plain-

speak (or sports analogy-ridden speak ...ugh) of business. And the only way to get good 

at speaking to other folks, just like the only way to get good at math, is through practice.

Take any opportunity you can to speak with others about analytics, formally and 

informally. Find ways to discuss with others in your workplace what they do, what you 

do, and ways you might collaborate. Speak with others at local meet-ups about what you 

do. Find ways to articulate analytics concepts within your particular business context.

Push your management to involve you in planning and business development discus-

sions. Too often the analytics professional is approached with a project only after that 

project has been scoped, but your knowledge of the techniques and data available makes 

you indispensable in early planning.

Push to be viewed as a person worth talking to and not as an extension of some number-

crunching machine that problems are thrown at from a distance. The more embedded 

and communicative an analyst is within an organization, the more eff ective he or she is.

For too long analysts have been treated like Victorian women—separated from the 

fi ner points of business, because they couldn’t possibly understand it all. Oh, please. 

Let people feel the weight of your well-rounded skill set—just because they can’t crunch 

numbers doesn’t mean you can’t discuss a PowerPoint slide. Get in there, get your hands 

dirty, and talk to folks. 

Beware the Three-Headed Geek-Monster: Tools, Performance, 
and Mathematical Perfection
There are many things that can sabotage the use of analytics within the workplace. Politics 

and infi ghting perhaps; a bad experience from a previous “enterprise, business intelligence, 



Data Smart398

cloud dashboard” project; or peers who don’t want their “dark art” optimized or automated 

for fear that their jobs will become redundant. 

Not all hurdles are within your control as an analytics professional. But some are. There 

are three primary ways I see analytics folks sabotage their own work: overly-complex 

modeling, tool obsession, and fi xation on performance.

Complexity

Many moons ago, I worked on a supply chain optimization model for a Fortune 500 com-

pany. This model was pretty badass if I do say so myself. We gathered all kinds of busi-

ness rules from the client and modeled their entire shipping process as a mixed-integer 

program. We even modeled normally distributed future demand into the model in a novel 

way that ended up getting published.

But the model was a failure. It was dead out of the gate. By dead, I don’t mean that it 

was wrong, but rather that it wasn’t used. Frankly, once the academics left, there was no 

one left in that part of the company who could keep the cumulative forecast error means 

and standard deviations up to date. The boots on the ground just didn’t understand it, 

regardless of the amount of training we gave.

This is a diff erence between academia and industry. In academia, success is not gauged 

by usefulness. A novel optimization model is valuable in its own right, even if it is too 

complex for a supply chain analyst to keep running. 

But in the industry, analytics is a results-driven pursuit, and models are judged by their 

practical value as much as by their novelty.

In this case, I spent too much time using complex math to optimize the company’s 

supply chain but never realistically addressed the fact that no one would be able to keep 

the model up to date. 

The mark of a true analytics professional, much like the mark of a true artist, is in knowing 

when to edit. When do you leave some of the complexity of a solution on the cutting room 

fl oor? To get all cliché on you, remember that in analytics great is the enemy of good. The 

best model is one that strikes the right balance between functionality and maintainability. 

If an analytics model is never used, it’s worthless.

Tools

Right now in the world of analytics (whether you want to call that “data science,” “big 

data,” “business intelligence,” “blah blah blah cloud,” and so on), people have become 

focused on tools and architecture. 

Tools are important. They enable you to deploy your analytics and data-driven prod-

ucts. But when people talk about “the best tool for the job,” they’re too often focused on 

the tool and not on the job.



399Conclusion

Software and services companies are in the business of selling you solutions to problems 

you may not even have yet. And to make matters worse, many of us have bosses who read 

stuff  like the Harvard Business Review and then look at us and say, “We need to be doing 

this big data thing. Go buy something, and let’s get Hadoop-ing.” 

This all leads to a dangerous climate in business today where management looks 

to tools as proof that analytics are being done, and providers just want to sell us the 

tools that enable the analytics, but there’s little accountability that actual analytics is 

getting done.

So here’s a simple rule: Identify the analytics opportunities you want to tackle in as much 

detail as possible before acquiring tools.

Do you need Hadoop? Well, does your problem require a divide-and-conquer aggrega-

tion of a lot of unstructured data? No? Then the answer may be no. Don’t put the cart 

before the horse and buy the tools (or the consultants who are needed to use the open 

source tools) only to then say, “Okay, now what do we do with this?”

Performance

If I had a nickel every time someone raised their eyebrows when I tell them MailChimp 

uses R in production for our abuse-prevention models, I could buy a Mountain Dew. 

People think the language isn’t appropriate for production settings. If I were doing high-

performance stock trading, it probably wouldn’t be. I’d likely code everything up in C. 

But I’m not, and I won’t.

For MailChimp, most of our time isn’t spent in R. It’s spent moving data to send through 

the AI model. It’s not spent running the AI model, and it’s certainly not spent training the 

AI model.

I’ve met folks who are very concerned with the speed at which their software can train 

their artifi cial intelligence model. Can the model be trained in parallel, in a low-level 

language, in a live environment?

They never stop to ask themselves if any of this is necessary and instead end up spend-

ing a lot of time gold-plating the wrong part of their analytics project. 

At MailChimp, we retrain our models offl  ine once a quarter, test them, and then promote 

them into production. In R, it takes me a few hours to train the model. And even though 

we as a company have terabytes of data, the model’s training set, once prepped, is only 10 

gigabytes, so I can even train the model on my laptop. Crazy. 

Given that that’s the case, I don’t waste my time on R’s training speed. I focus on more 

important things, like model accuracy.

I’m not saying that you shouldn’t care about performance. But keep your head on 

straight, and in situations where it doesn’t matter, feel free to let it go.



Data Smart400

You Are Not the Most Important Function of Your 
Organization
Okay, so there are three things to watch out for. But more generally, keep in mind that 

most companies are not in the business of doing analytics. They make their money through 

other means, and analytics is meant to serve those processes.

You may have heard elsewhere that data scientist is the “sexiest job of the century!” 

That’s because of how data science serves an industry. Serves being the key word.

Consider the airline industry. They’ve been doing big data analytics for decades to 

squeeze that last nickel out of you for that seat you can barely fi t in. That’s all done through 

revenue optimization models. It’s a huge win for mathematics.

But you know what? The most important part of their business is fl ying. The products 

and services an organization sells matter more than the models that tack on pennies to 

those dollars. Your goals should be things like using data to facilitate better targeting, 

forecasting, pricing, decision-making, reporting, compliance, and so on. In other words, 

work with the rest of your organization to do better business, not to do data science for 

its own sake.

Get Creative and Keep in Touch!
That’s enough sage wisdom. If you’ve labored through the preceding chapters then you 

have a good base to begin dreaming up, prototyping, and implementing solutions to the 

analytics opportunities posed by your business. Talk with your coworkers and get cre-

ative. Maybe there’s an analytical solution for something that’s been patched over with 

gut feelings and manual processes. Attack it.

And as you go through the process of implementing these and other techniques in your 

work-a-day life, keep in touch. I’m on Twitter at @John4man. Reach out and tell me your tale. 

Or to give me hell about this book. I’ll take any feedback.

Happy data wrangling !



A
absolute references, Solver, 110
absolute values of errors, median 

regression, 221
additive smoothing, 86
adjacency matrix, 158
affi  nity matrix, 159
agglomerative clustering, 185
AI model

Bayes rule and, 83–86
dummy variables, 210–212
feature set, 207–208
versus optimization model, 101–102
overview, 206–207
pregnancy data, 378–385
pregnant customers (See RetailMart 

(pregnant customers))
training data, oversampling, 210

AIMMS, 118
algorithms, evolutionary, 115–116
alpha value calculation, 276–277
arrays, formulas, 19–20
autocorrelations, 306–313

B
bag of words model, 79

extraneous punctuation, 87–88
spaces, 88–91

bagged decision stumps, 251
bagging, 254. See also decision stumps

model evaluation, 267–271
outliers and, 271
random forest models, 271

Bayes rule, 82
AI model creation, 83–86

Big M, 133–137
binary tree, 193–197

BINOMDIST function, 116
blending model, 119
boosting, 251

model evaluation, 280–283
model training, 272–275
weighted errors, 272

reweighting, 277–278

C

CDF (cumulative distribution function), 
146–148, 337

mean deviation, 147–148
standard deviation, 147–148

scenarios from, 148–150
cell formatting, 5–7
central limit theorem, 146
chain rule of probability, 81
charts. See also graphs

fan chart, 331–333
inserting, in spreadsheets, 8–9

classifi ers, bagging, 254
cluster analysis, 29
cluster centers, solving for, 46–48
cluster labels, 193–197
clustering, 29–30

agglomerative, 185
cluster centroid, 31
community detection, 155–156
divisive, 185–192

Index



Index402

hierarchical partitioning, 185
image clustering, 30
k-means, 30–35

e-mail marketing, 35–66
k groups, 30–35

k-medians, 66–67
cosine distance, 68–69
Excel, 69–75
Manhattan distance, 67–68

network graphs, 155, 156–157
edges, 156
nodes, 156

Solver, 34–35
results, 49

coeffi  cient, variables, 214
coeffi  cient standard error, 226–227
coeffi  cient tests, 226–230
community detection, clustering and, 

155–156
modularity maximization, 156

Concessions.xlsx fi le, 2
conditional formatting, 6–7
conditional probabilities, 80

Bayes rule, 82
naÏve Bayes model, 94–98
token counting, 92–93

constraints, 110–112
copying

data, 4–5
formulas, 4–5

correlogram, 310–313
cosine distance, k-medians clustering, 

68–69
cosine similarity matrix, 172–174

COUNTIF function, 116

COUNTIFS statement, 235
CPLEX, 118
CRAN (Comprehensive R Archive 

Network), 372–373
critical values, 310–311
cutoff  values, 233

D
data

copying, 4–5

merging, VLOOKUP and, 12
Data Laboratory (Gephi), 168–170
data mining, exploratory, 29–30
data sources, k-means clustering, 37–38

data standardization, 40
dataframe, 368–370
decision stumps, 254–257, 260–263

alpha value calculation, 276–277
macros, 266
number of, 257–258

dependent situations, probability theory, 
81–82

dependent variables, 208
design matrix (linear regression), 227

SSCP, 227–228
distribution

CDF (cumulative distribution function), 
146–148, 337

mean deviation, 147–148
standard deviation, 147–148

central limit theorem, 146
Monte Carlo simulation, 149
probability distribution, 145–146
standard normal distribution, 343–344
uniform distribution, 146

divisive clustering, 185–192
DocGraph, 156
document classifi cation, 77
double exponential smoothing, 

299–313
dummy variables, 210–212

E
edges, network graphs, 156, 158

kNN (k nearest neighbors) graph, 176
r-neighborhood graphs, 176

ensemble modeling, 251
Ensemble.xlsm, 252
error in calculation column, 217–218
Euclidean distance, 41–44, 345–347
evolutionary algorithms, 115–116
Excel

constraints, 110–112
GRG, 218
k-medians clustering, 69–75
silhouette, 57–60
version diff erences, 1

exploratory data mining, 29–30
exponential smoothing, 288–290

double exponential smoothing, 
299–313

forecast setup, 290–296
Holt’s Trend-Corrected Exponential 

Smoothing, 299–313



Index 403

Multiplicative Holt-Winters Smoothing, 
313–333

trends, 296–299

F
F test, 223–225
factoring, R, 364–367
false positive rate, 236–237
fan chart, 331–333
features, independent variables, 208
fi lters, 13–16
Find and Replace, 9–10
fl oating-point underfl ow, 86
forecasting, 285

autocorrelations, 306–313
correlogram, 310–313
critical values, 310–311
future periods, 303–304
graphing, 296
one-step forecast column, 291–292

error optimization, 293–295
Holt’s Trend-Correct Exponential 

Smoothing, 304–306
prediction intervals, 285, 327–331
R, 385–389
smoothing

exponential, 288–299
SES (simple exponential smoothing), 

288–290
time series data, 286–287

deseasonalizing, 318
seasonality, 314–315

Format Cells menu, 5–6
formatting

cells, 5–7
conditional, 6–7

formulas
arrays, 19–20
copying, 4–5
INDEX, 298
LINEST( ), 220
SUMPRODUCT, 19–20
values, locating, 10–11
VLOOKUP, 12

Freeze Panes, 3
Freeze Top Row, 3
functions

BINOMDIST, 116
COUNTIF, 116
HLOOKUP, 116

IF, 116
INDEX, 116
LARGE, 116
LINEST, 297
MATCH, 116

MAX, 116
MEDIAN, 116

MIN, 116
MINVERSE, 226
MMULT, 226
non-linear, 116

NORMDIST, 116, 337
OFFSET, 116
PERCENTILE, 337–338
SUMIF, 116
SUMPRODUCT, 109
TDIST, 297
VLOOKUP, 116

G
Gephi, 158, 159

Data Laboratory, 168–170
graph layout, 162–164
installation, 160–162
modularity, 197–198
node degrees, 165–166
printing, 166–168

global outliers, 353
graphs. See also charts; network graphs

data preparation, 342–345
forecasting and, 296
kNN (k nearest neighbors), 347–348
modularity

penalities, 179–183
points, 179–183

outlier detection and, 345–347
indegree, 348–351
k-distance, 351–353
LOFs, 353–358

GRG, 218
Gurobi, 118

H
Hadlum versus Hadlum, 336–337
hierarchical partitioning, 185
high-level class probabilities, 84–85

HLOOKUP function, 116
Holt’s Trend-Corrected Exponential 

Smoothing, 299–313



Index404

I
idiot’s Bayes. See naïve Bayes

IF function, 114, 116
image clustering, 30
indegree (graphs), 166

outlier detection, 348–351
independent variables, 208

INDEX formula, 298

INDEX function, 116
integer programming, switches, 133
intercept of linear model, 214
IQR (Interquartile Range), 

337–338

J
Joey Bag O’Donuts Wholesale Wine 

Emporium, 36
joint probability, 80–81

chain rule of probability, 81
JuiceLand, 120–121

Solver, 124–126

K
KDD (knowledge discovery in 

databases), 30
k-distance, graph outlier detection, 

351–353
k-means clustering, 30–35

cluster centers, 46–48
data source, 37–38
distance, 44–46

matrix, 55–56
fi ve clusters, 60–64
four clusters, 41
Joey Bag O’Donuts Wholesale Wine 

Emporium, 36
k groups, 30–35
PivotTables, 38–39
silhouette, 53–60

5-Means clustering, 64–66
spherical k-means, 372–373

k-medians clustering, 66–67
cosine distance, 68–69
Excel, 69–75
Manhattan distance, 67–68

kNN (k nearest neighbor), 336
outlier detection and, 

347–348

L
LARGE function, 116
law of total probability, 80
layout, Gephi graph, 162–164
level sets, 105–106
lexical content, stop words and, 91
LibreOffi  ce, 1
linear programming, 102, 103–104

Excel and, 108–117
fractional solutions, 113
level sets, 105–106
polytopes, 103–105
simplex method, 106–108

linear regression
coeffi  cient, 214
cutoff  values, 233
design matrix, 227

SSCP, 227–228
false positive rate, 236–237
intercept, 214

LINEST( ) formula, 220
logistic regression comparison, 245–248
metric trade-off s, 238–239
positive predictive value, 234–235
ROC (Receiver Operating 

Characteristic) curve, 238–239
simple model, 213–215
statistics, 221

coeffi  cient standard error, 226–227
coeffi  cient tests, 226–230
F test, 223–225
prediction standard error, 226
R-squared, 222–223
t distribution, 230
t test, 226–230

sum of squared error, 215
training the model, 218–220
true negative rate, 235–236
true positive rate/recall/sensitivity, 237
validation set, 231–233

LINEST( ) formula, 220

LINEST function, 297
link function, 240–241
link spam, 166
local outliers, 353
LOF (local outlier factors), 353–358
logistic regression, 239–240

linear regression comparison, 245–248
link function, 240–241



Index 405

log-likelihood, 244–245
reoptimizing, 241–243
statistical tests, 245

lower inner fence (Tukey fences), 338

M
machine learning, 30
macros, recording, 266
MailChimp.com, 29

Mandrill.com, 77–79
Mandrill.com, 77–79
Mandrill.xlsx, 87
Manhattan distance, 67–68

MATCH function, 116
matrix inversion, 226
matrix multiplication, 226

MAX function, 116
mean deviation, CDF, 147–148
measurement, Euclidean distance, 41–44

MEDIAN function, 116
median regression, 221

merging, VLOOKUP and, 12

MIN function, 116
minimax formulation, 131–132

MINVERSE function, 226
missing values, 253–254

MMULT function, 226
modularity, Gephi, 197–198
modularity maximization, 156

penalities, 179–183
points, 179–183

Monte Carlo simulation, 149
Multiplicative Holt-Winters Smoothing, 

313–333

N
naïve Bayes, 77

bag of words model, 79
conditional probability tables, 94–98
rare words, 85–86

navigation, Control button, 2–3
network graphs, 155

adjacency matrix, 158
affi  nity matrix, 159
binary tree, 193–197
cosine similarity matrix, 172–174
DocGraph, 156
edges, 156, 158

kNN (k nearest neighbors) graph, 176
r-neighborhood graphs, 176

Gephi, 158
layout, 162–164
node degrees, 165–166
printing, 166–168

indegree, 166
link spam, 166
nodes, 156, 158
NodeXL, 158
outdegree, 166
outlier detection, 166
r-Neighborhood graph, 174–185
symmetry, 158
undirected, 158
visualizing, 157–158
WineNetwork.xlsx, 170–172

NLP (natural language processing), 87
lexical content, 91
stop words, 91

node impurity, 255–256
nodes, network graphs, 156, 158
NodeXL, 158
non-linear functions, 116

NORMDIST function, 116, 337
null hypothesis, 224

O
OFFSET function, 116
one-step forecast column, 291–292

error optimization, 293–295
Holt’s Trend-Correct Exponential 

Smoothing, 304–306
OpenSolver, 26–27, 118

variables, multiplying, 137–144
optimization, need for, 102–103
Optimization Model tab, 127
optimization models, 20–26, 121–124, 

127–128
versus artifi cial intelligence model, 

101–102
OrangeJuiceBlending.xlsx, 118
outdegree (graphs), 166
outlier detection, 166, 335–336

global outliers, 353
graphing, 345–347

data preparation, 342–345
indegree, 348–351
k-distance, 351–353



Index406

IQR (Interquartile Range), 337–338
kNN (k nearest neighbor), 347–348
local outliers, 353
LOF (local outlier factors), 353–358
R, 389–394
Tukey fences, 337–338

limitations, 340–341
spreadsheets, 338–340

unsupervised machine learning, 336
outliers

bagging and, 271
overview, 335

oversampling, 210

P-Q
p( ), 79–80
partitioning, hierarchical, 185
Paste Special, 7–8

PERCENTILE function, 337–338
PivotTables, 16–19

k-means clustering, 38–39
PivotTable Builder, 16–17

polytopes, 103–105
simplex method, 106–108

positive predictive value, 234–235
prediction intervals, 327–331
prediction standard error, 226
Pregnancy Duration.xlsx, 336
pregnancy length, 336–337
printing in Gephi, 166–168
probability distribution, 145–146
probability theory, 79–80

Bayes rule, 82
chain rule of probability, 81
conditional probabilities, 80

Bayes rule, 82
token counting, 92–93

dependent situations, 81–82
fl oating-point underfl ow, 86
high-level class probabilities, 84–85
independent events, 81
joint probability, 80–81
law of total probability, 80
multiplication rule of probability, 81

R
R (programming language)

aggregate( ) function, 374

boxplot( ) function, 390–392

c( ) function, 364–365

cbind( ) function, 368, 375–376
CRAN (Comprehensive R Archive 

Network), 372–373
data input, 363
dataframe, 368–370

data.frame( ) function, 368–369
downloading, 362

factor( ) function, 369–370
factoring, 364–367

forecast( ) function, 387–388
forecasting, 385–389
functions, built-in, 363

glm( ) function, 378
installation, 362

IQR( ) function, 390

Length( ) function, 365

library( ) function, 372–373

lofactor( ) function, 393
matrices, 367–368

matrix function, 367

order( ) function, 376–377
outlier detection, 389–394
packages, 363

performance( ) function, 383

plot( ) function, 384

predict( ) function, 382

print function, 362
randomForest( ) function, 378

rbind( ) function, 368

read.csv( ) function, 374
reading data into, 370–371

row.names( ) function, 374

scale( ) function, 392–393

setwd( ) command, 370

skmeans( ) function, 373

skmeans package, 372
spherical k-means, 372–373

str( ) function, 373–374, 378

summary( ) function, 378

summary function, 370

t function, 367

ts( ) function, 386

varImpPlot( ) function, 381
vector math, 364–367



Index 407

which( ) function, 366, 374, 390
working directory, 370–371

write.csv( ) function, 374
random forest model, 251

replacement and, 271

randomForest package, 271
rare words, naÏve Bayes and, 85–86
references, absolute, Solver, 110
regression

linear
coeffi  cient, 214
compared to logistic, 245–248
cutoff  values, 233
design matrix, 227–228
false positive rate, 236–237
intercept, 214

LINEST( ) formula, 220
metric trade-off s, 238–239
positive predictive value, 

234–235
ROC (Receiver Operating 

Characteristic) curve, 238–239
simple model, 213–215
statistics, 221–230
sum of squared error, 215
training the model, 218–220
true negative rate, 235–236
true positive rate/recall/sensitivity, 

237
validation set, 231–233

logistic, 239–240
compared to linear, 245–248
link function, 240–241
log-likelihood, 244–245
reoptimizing, 241–243
statistical tests, 245

median, 221
residual sum of squares, 222
RetailMart (pregnant customers)

data, 215–217
dummy variables, 210–212
error in calculation column, 

217–218
feature set, 207–208
folic acid stump, 254–257
linear regression, 213–239
logistic regression, 239–248
training data, 209–210

reweighting weighted errors, 
277–278

risk, 144–145
distribution

CDF (cumulative distribution 
function), 146–148

central limit theorem, 146
probability distribution, 145–146

r-neighborhood graph, 174–185
ROC (Receiver Operating Characteristic) 

curve, 238–239, 252
rows, freezing, 3
R-squared, linear regression, 222–223

S
scenarios, standard deviation, 148–150

constraints, 151–153
school dance analogy for clustering, 

31–35
seasonality (forecasting), 314–315
SES (simple exponential smoothing), 

288–290
silhouette

5-Means clustering, 64–66
Excel and, 57–60
k-means clustering, 53–60

simplex method, 106–108
smoothing, exponential, 288–290

double exponential smoothing, 299–313
forecast setup, 290–296
Holt’s Trend-Corrected Exponential 

Smoothing, 299–313
Multiplicative Holt-Winters Smoothing, 

313–333
trends, 296–299

Solver, 20–26
absolute references, 110
clustering, 34–35

results, 49
JuiceLand problem, 124–126
linear regression, training the model, 

218–220
OpenSolver, 26–27

sorting, 13–16
spaces, 88–91
spherical k-means, 372–373
spreadsheets

arrays, formulas, 19–20
charts, inserting, 8–9
copying

data, 4–5
formulas, 4–5



Index408

fi lters, 13–16
formatting

cells, 5–7
conditional, 6–7

Freeze Panes, 3
Freeze Top Row, 3
Holt’s Trend-Corrected Exponential 

Smoothing, 300–306
navigating, Control button, 2–3
Paste Special option, 7–8
PivotTables, 16–19
sorting, 13–16
Tukey fences, 338–340

limitations, 340–341
SSCP (sum of squares and cross 

products) matrix, 227–228
standard deviation

CDF, 147–148
scenarios from, 148–150

constraints, 151–153
standard normal distribution, 343–344
standardizing data, 40
statistics, 221

coeffi  cient standard error, 226–227
coeffi  cient tests, 226–230
F test, 223–225
logistic regression, 245
matrix inversion, 226
matrix multiplication, 226
prediction standard error, 226
residual sum of squares, 222
R-squared, 222–223
t distribution, 230
t test, 226–230
total sum of squares, 222

stop words, 91

SUBSTITUTE command, 87–88
sum of squared error, 215

SUMIF function, 116

SUMPRODUCT formula, 19–20

SUMPRODUCT function, 109
supervised machine learning, 30
switches, 133
SwordForecasting.xlsm, 286
symmetry in network graphs, 158

T
t distribution, 230
t test, 226–230

TDIST function, 297
time series data, forecasting and, 286–287
tokens, conditional probability, 92–93
total sum of squares, 222
training data

decision stumps, 260–263
oversampling, 210
random sample, 258–260

trends, forecasting, exponential 
smoothing, 296–299

triple exponential smoothing, 313–333
true negative rate, 235–236
true positive rate/recall/sensitivity, 237
Tukey fences, 337–338

limitations, 340–341
lower inner fence, 338
spreadsheets, 338–340
upper inner fence, 338

U
undirected network graphs, 158
uniform distribution, 146
unsupervised machine learning, 30, 336
upper inner fence (Tukey fences), 338

V
validation set, 231–233
values

locating, with formulas, 10–11
missing, 253–254

variables
coeffi  cient, 214
dependent, 208
dummy variables, 210–212
independent, 208
multiplying, 137–144

vector math, R, 364–367

VLOOKUP formulas, 12

VLOOKUP function, 116
Voronoi diagram, 32



Index 409

W–Z
weak learners, 254–255
weighted errors, 272

reweighting, 277–278
WineKMC.xlsx, 36

WineNetwork.xlsx, building graph, 
170–172

workbooks
Ensemble.xlsm, 252
Mandrill.xlsx, 87
OrangeJuiceBlending.xlsx, 118
Pregnancy Duration.xlsx, 336
SwordForecasting.xlsm, 286
WineKMC.xlsx, 36 


	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Chapter 1 Everything You Ever Needed to Know about Spreadsheets but Were Too Afraid to Ask�������������������������������������������������������������������������������������������������
	Some Sample Data�����������������������
	Moving Quickly with the Control Button���������������������������������������������
	Copying Formulas and Data Quickly����������������������������������������
	Formatting Cells�����������������������
	Paste Special Values���������������������������
	Inserting Charts�����������������������
	Locating the Find and Replace Menus������������������������������������������
	Formulas for Locating and Pulling Values�����������������������������������������������
	Using VLOOKUP to Merge Data����������������������������������
	Filtering and Sorting����������������������������
	Using PivotTables������������������������
	Using Array Formulas���������������������������
	Solving Stuff with Solver��������������������������������
	OpenSolver: I Wish We Didn’t Need This, but We Do��������������������������������������������������������
	Wrapping Up������������������

	Chapter 2 Cluster Analysis Part I: Using K-Means to Segment Your Customer Base�������������������������������������������������������������������������������������
	Girls Dance with Girls, Boys Scratch Their Elbows��������������������������������������������������������
	Getting Real: K-Means Clustering Subscribers in E-mail Marketing�����������������������������������������������������������������������
	Joey Bag O’ Donuts Wholesale Wine Emporium�������������������������������������������������
	The Initial Dataset��������������������������
	Determining What to Measure����������������������������������
	Start with Four Clusters�������������������������������
	Euclidean Distance: Measuring Distances as the Crow Flies����������������������������������������������������������������
	Distances and Cluster Assignments for Everybody!�������������������������������������������������������
	Solving for the Cluster Centers��������������������������������������
	Making Sense of the Results����������������������������������
	Getting the Top Deals by Cluster���������������������������������������
	The Silhouette: A Good Way to Let Different K Values Duke It Out�����������������������������������������������������������������������
	How about Five Clusters?�������������������������������
	Solving for Five Clusters��������������������������������
	Getting the Top Deals for All Five Clusters��������������������������������������������������
	Computing the Silhouette for 5-Means Clustering������������������������������������������������������

	K-Medians Clustering and Asymmetric Distance Measurements����������������������������������������������������������������
	Using K-Medians Clustering���������������������������������
	Getting a More Appropriate Distance Metric�������������������������������������������������
	Putting It All in Excel������������������������������
	The Top Deals for the 5-Medians Clusters�����������������������������������������������

	Wrapping Up������������������

	Chapter 3 Naïve Bayes and the Incredible Lightness of Being an Idiot���������������������������������������������������������������������������
	When You Name a Product Mandrill, You’re Going to Get Some Signal and Some Noise���������������������������������������������������������������������������������������
	The World’s Fastest Intro to Probability Theory������������������������������������������������������
	Totaling Conditional Probabilities�����������������������������������������
	Joint Probability, the Chain Rule, and Independence����������������������������������������������������������
	What Happens in a Dependent Situation?���������������������������������������������
	Bayes Rule�����������������

	Using Bayes Rule to Create an AI Model���������������������������������������������
	High-Level Class Probabilities Are Often Assumed to Be Equal�������������������������������������������������������������������
	A Couple More Odds and Ends����������������������������������

	Let’s Get This Excel Party Started�����������������������������������������
	Removing Extraneous Punctuation��������������������������������������
	Splitting on Spaces��������������������������
	Counting Tokens and Calculating Probabilities����������������������������������������������������
	And We Have a Model! Let’s Use It����������������������������������������

	Wrapping Up������������������

	Chapter 4 Optimization Modeling: Because That “Fresh Squeezed” Orange Juice Ain’t Gonna Blend Itself�����������������������������������������������������������������������������������������������������������
	Why Should Data Scientists Know Optimization?����������������������������������������������������
	Starting with a Simple Trade-Off���������������������������������������
	Representing the Problem as a Polytope���������������������������������������������
	Solving by Sliding the Level Set���������������������������������������
	The Simplex Method: Rooting around the Corners�����������������������������������������������������
	Working in Excel�����������������������
	There’s a Monster at the End of This Chapter���������������������������������������������������

	Fresh from the Grove to Your Glass...with a Pit Stop Through a Blending Model������������������������������������������������������������������������������������
	You Use a Blending Model�������������������������������
	Let’s Start with Some Specs����������������������������������
	Coming Back to Consistency���������������������������������
	Putting the Data into Excel����������������������������������
	Setting Up the Problem in Solver���������������������������������������
	Lowering Your Standards������������������������������
	Dead Squirrel Removal: The Minimax Formulation�����������������������������������������������������
	If-Then and the “Big M” Constraint�����������������������������������������
	Multiplying Variables: Cranking Up the Volume to 11����������������������������������������������������������

	Modeling Risk��������������������
	Normally Distributed Data��������������������������������

	Wrapping Up������������������

	Chapter 5 Cluster Analysis Part II: Network Graphs and Community Detection���������������������������������������������������������������������������������
	What Is a Network Graph?�������������������������������
	Visualizing a Simple Graph���������������������������������
	Brief Introduction to Gephi����������������������������������
	Gephi Installation and File Preparation����������������������������������������������
	Laying Out the Graph���������������������������
	Node Degree������������������
	Pretty Printing����������������������
	Touching the Graph Data������������������������������

	Building a Graph from the Wholesale Wine Data����������������������������������������������������
	Creating a Cosine Similarity Matrix������������������������������������������
	Producing an r-Neighborhood Graph����������������������������������������

	How Much Is an Edge Worth? Points and Penalties in Graph Modularity��������������������������������������������������������������������������
	What’s a Point and What’s a Penalty?�������������������������������������������
	Setting Up the Score Sheet���������������������������������

	Let’s Get Clustering!����������������������������
	Split Number 1���������������������
	Split 2: Electric Boogaloo���������������������������������
	And…Split 3: Split with a Vengeance������������������������������������������
	Encoding and Analyzing the Communities���������������������������������������������

	There and Back Again: A Gephi Tale�����������������������������������������
	Wrapping Up������������������

	Chapter 6 The Granddaddy of Supervised Artificial Intelligence—Regression��������������������������������������������������������������������������������
	Wait, What? You’re Pregnant?�����������������������������������
	Don’t Kid Yourself�������������������������
	Predicting Pregnant Customers at RetailMart Using Linear Regression��������������������������������������������������������������������������
	The Feature Set����������������������
	Assembling the Training Data�����������������������������������
	Creating Dummy Variables�������������������������������
	Let’s Bake Our Own Linear Regression�������������������������������������������
	Linear Regression Statistics: R-Squared, F Tests, t Tests����������������������������������������������������������������
	Making Predictions on Some New Data and Measuring Performance��������������������������������������������������������������������

	Predicting Pregnant Customers at RetailMart Using Logistic Regression����������������������������������������������������������������������������
	First You Need a Link Function�������������������������������������
	Hooking Up the Logistic Function and Reoptimizing��������������������������������������������������������
	Baking an Actual Logistic Regression�������������������������������������������
	Model Selection—Comparing the Performance of the Linear and Logistic Regressions���������������������������������������������������������������������������������������

	For More Information���������������������������
	Wrapping Up������������������

	Chapter 7 Ensemble Models: A Whole Lot of Bad Pizza����������������������������������������������������������
	Using the Data from Chapter 6������������������������������������
	Bagging: Randomize, Train, Repeat����������������������������������������
	Decision Stump Is an Unsexy Term for a Stupid Predictor��������������������������������������������������������������
	Doesn’t Seem So Stupid to Me!������������������������������������
	You Need More Power!���������������������������
	Let’s Train It���������������������
	Evaluating the Bagged Model����������������������������������

	Boosting: If You Get It Wrong, Just Boost and Try Again��������������������������������������������������������������
	Training the Model—Every Feature Gets a Shot���������������������������������������������������
	Evaluating the Boosted Model�����������������������������������

	Wrapping Up������������������

	Chapter 8 Forecasting: Breathe Easy; You Can’t Win���������������������������������������������������������
	The Sword Trade Is Hopping���������������������������������
	Getting Acquainted with Time Series Data�����������������������������������������������
	Starting Slow with Simple Exponential Smoothing������������������������������������������������������
	Setting Up the Simple Exponential Smoothing Forecast�����������������������������������������������������������

	You Might Have a Trend�����������������������������
	Holt’s Trend-Corrected Exponential Smoothing���������������������������������������������������
	Setting Up Holt’s Trend-Corrected Smoothing in a Spreadsheet�������������������������������������������������������������������
	So Are You Done? Looking at Autocorrelations���������������������������������������������������


	Multiplicative Holt-Winters Exponential Smoothing��������������������������������������������������������
	Setting the Initial Values for Level, Trend, and Seasonality�������������������������������������������������������������������
	Getting Rolling on the Forecast��������������������������������������
	And...Optimize!����������������������
	Please Tell Me We’re Done Now!!!���������������������������������������
	Putting a Prediction Interval around the Forecast��������������������������������������������������������
	Creating a Fan Chart for Effect��������������������������������������

	Wrapping Up������������������

	Chapter 9 Outlier Detection: Just Because They’re Odd Doesn’t Mean They’re Unimportant���������������������������������������������������������������������������������������������
	Outliers Are (Bad?) People, Too��������������������������������������
	The Fascinating Case of Hadlum v. Hadlum�����������������������������������������������
	Tukey Fences�������������������
	Applying Tukey Fences in a Spreadsheet���������������������������������������������
	The Limitations of This Simple Approach����������������������������������������������

	Terrible at Nothing, Bad at Everything���������������������������������������������
	Preparing Data for Graphing����������������������������������
	Creating a Graph�����������������������
	Getting the k Nearest Neighbors��������������������������������������
	Graph Outlier Detection Method 1: Just Use the Indegree��������������������������������������������������������������
	Graph Outlier Detection Method 2: Getting Nuanced with k-Distance������������������������������������������������������������������������
	Graph Outlier Detection Method 3: Local Outlier Factors Are Where It’s At��������������������������������������������������������������������������������

	Wrapping Up������������������

	Chapter 10 Moving from Spreadsheets into R�������������������������������������������������
	Getting Up and Running with R������������������������������������
	Some Simple Hand-Jamming�������������������������������
	Reading Data into R��������������������������

	Doing Some Actual Data Science�������������������������������������
	Spherical K-Means on Wine Data in Just a Few Lines���������������������������������������������������������
	Building AI Models on the Pregnancy Data�����������������������������������������������
	Forecasting in R�����������������������
	Looking at Outlier Detection�����������������������������������

	Wrapping Up������������������

	Conclusion�����������������
	Where Am I? What Just Happened?��������������������������������������
	Before You Go-Go�����������������������
	Get to Know the Problem������������������������������
	We Need More Translators�������������������������������
	Beware the Three-Headed Geek-Monster: Tools, Performance, and Mathematical Perfection��������������������������������������������������������������������������������������������
	You Are Not the Most Important Function of Your Organization�������������������������������������������������������������������

	Get Creative and Keep in Touch!��������������������������������������

	Index������������




