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Preface

This book is intended to be a second course in probability for undergraduate 
and graduate students in statistics, mathematics, engineering, finance, and 
actuarial science. It is a guided tour aimed at instructors who want to 
give their students a familiarity with some advanced topics in probability, 
without having to wade through the exhaustive coverage contained in the 
classic advanced probability theory books (books by Billingsley, Chung, 
Durrett, Breiman, etc.). The topics covered here include measure theory, 
limit theorems, bounding probabilities and expectations, coupling, Stein’s 
method, martingales, Markov chains, renewal theory, and Brownian motion.

One noteworthy feature is that this text covers these advanced topics 
rigorously but without the need for much background in real analysis; other 
than calculus and material from a first undergraduate course in probability 
(at the level of A First Course in Probability, by Sheldon Ross [7]), any 
other concepts required, such as the definition of convergence, the Lebesgue 
integral, and countable and uncountable sets, are introduced as needed.

The treatment is highly selective, and one focus is on giving alternative 
or nonstandard approaches for familiar topics to improve intuition. For 
example, we introduce measure theory with an example of a nonmeasurable 
set, prove the law of large numbers using the ergodic theorem in the first 
chapter, and later give two alternative (but beautiful) proofs of the central 
limit theorem using Stein’s method and Brownian motion embeddings. The 
coverage of martingales, probability bounds, Markov chains, and renewal 
theory focuses on applications in applied probability, where a number of 
recently developed results from the literature are given.

The book can be used in a flexible fashion: After starting with Chapter 
1, you may take the remaining chapters in almost any order, with a few 
caveats. We hope you enjoy this book.

About Notation

Here we assume the reader is familiar with the mathematical notation used 
in an elementary probability course. For example, we write X ~ U(a, b) 
or X =d U(a, b) to mean that X is a random variable having a uniform 
distribution between the numbers a and b. We use common abbreviations 
like N(p,,a2) and Poisson(A) to mean a normal distribution with mean 
p, and variance a2 and a Poisson distribution with parameter A, respec­
tively. We also write IA or I{A} to denote a random variable that equals 
1ifA is true and equals 0 otherwise, and we use the abbreviation iid for 
random variables to mean independent and identically distributed random 
variables.

vii
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1

Measure Theory and Laws 
of Large Numbers

1.1 Introduction

If you’re reading this, you’ve probably already seen many different types of 
random variables and have applied the usual theorems and laws of probabil­
ity to them. We will, however, show you there are some seemingly innocent 
random variables for which none of the laws of probability apply. Mea­
sure theory, as it applies to probability, is a theory that carefully describes 
the types of random variables the laws of probability apply to. This puts 
the whole field of probability and statistics on a mathematically rigorous 
foundation.

You are probably familiar with some proof of the famous strong law 
of large numbers, which asserts that the long-run average of independent 
and identically distributed (iid) random variables converges to the expected 
value. One goal of this chapter is to show you a beautiful and more general 
alternative proof of this result using the powerful ergodic theorem. In 
order to do this, we will first take you on a brief tour of measure theory 
and introduce you to the dominated convergence theorem, one of measure 
theory’s most famous results and the key ingredient we need.

In Section 1.2, we construct an event, called a nonmeasurable event, to 
which the laws of probability don’t apply. In Section 1.3, we introduce the 
notions of countably and uncountably infinite sets and show you how the 
elements of some infinite sets cannot be listed in a sequence. In Section 1.4, 
we define a probability space and the laws of probability that apply to them. 
In Section 1.5, we introduce the concept of a measurable random variable, 
and in Section 1.6, we introduce the concepts of convergence and limits. In 
Section 1.7, we define the expected value in terms of the Lebesgue integral. 
In Section 1.8, we illustrate and prove the dominated convergence theorem, 
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2 1 Measure Theory and Laws of Large Numbers

and Section 1.9, we discuss convergence in probability and distribution. 
Lastly, in Section 1.10, we prove zero-one laws and the ergodic theorem 
and use these to obtain the strong law of large numbers.

1.2 A Nonmeasurable Event

Consider a circle that has a radius equal to one. We say that two points on 
the edge of the circle are in the same family if you can go from one point to 
the other point by taking steps of length one unit around the edge of the 
circle. By this we mean each step you take moves you an angle of exactly 
one radian degree around the circle, and you are allowed to keep looping 
around the circle in either direction.

Suppose each family elects one of its members to be the head of the 
family. Here is the question: What is the probability a point X selected 
uniformly at random along the edge of the circle is the head of its family? 
It turns out this question has no answer.

The first thing to notice is that each family has an infinite number of 
family members. Because the circumference of the circle is 2n, you can 
never get back to your starting point by looping around the circle with 
steps of length one. If it were possible to start at the top of the circle and 
get back to the top going a steps clockwise and looping around b times, 
then you would have a = b2n for some integers a, b, and hence n = a/(2b). 
This is impossible because it’s well-known that n is an irrational number 
and can’t be written as a ratio of integers.

It may seem to you like the probability should either be zero or one, 
but we will show you why neither answer could be correct. It doesn’t even 
depend on how the family heads are elected. Define the events A = {X 
is the head of its family}, Ai = {X is i steps clockwise from the head of 
its family}, and Bi = {X is i steps counterclockwise from the head of its 
family}.

Because X was uniformly chosen, we must have P(A)=P (Ai)=P (Bi). 
But because every family has a head, the sum of these probabilities should 
equal one, or in other words,

oo
1=P(A)+ (P (Ai)+ P (Bi)).

i=1

Thus, if x = P (A)weget1=x + io=1 2x, which has no solution where 
0 < x < 1. This means it’s impossible to compute P(A), and the answer 
is neither zero nor one, nor any other possible number. The event A is 
called a non-measurable event, because you can’t measure its probability 
in a consistent way.
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What’s going on here? It turns out that allowing only one head per 
family, or any finite number of heads, is what makes this event nonmea- 
surable. If we allowed more than one head per family and gave everyone 
a 50% chance, independent of all else, of being a head of the family, then 
we would have no trouble measuring the probability of this event. Or if we 
let everyone in the top half of the circle be a family head, and again let 
families have more than one head, the answer would be easy. Later we will 
give a careful description of what types of events we can actually compute 
probabilities for.

Being allowed to choose exactly one family head from each family re­
quires a special mathematical assumption called the axiom of choice. This 
axiom famously can create all sorts of other logical mayhem, such as allow­
ing you to break a sphere into a finite number of pieces and rearrange them 
into two spheres of the same size (the Banach-Tarski paradox). For this 
reason, the axiom is controversial and has been the subject of much study 
by mathematicians.

1.3 Countable and Uncountable Sets

You may now be asking yourself if the existence of a uniform random vari­
able X ~ U(0, 1) also contradicts the laws of probability. We know that 
for all x, P(X = x) = 0, but also P(0 < X < 1) = 1. Doesn’t this give a 
contradiction because

P(0 < X < 1) = P (X = X) = 0?
xt [0,1]

Actually, this is not a contradiction because a summation over an interval 
of real numbers does not make any sense. Which values of x would you 
use for the first few terms in the sum? The first term in the sum could use 
x = 0, but it’s difficult to decide which value of x to use next.

In fact, infinite sums are defined in terms of a sequence of finite sums:

E Xi = lim V Xi, 
n^^ 

i=1 i=1

so to have an infinite sum, it must be possible to arrange the terms in a 
sequence. If an infinite set of items can be arranged in a sequence it is 
called countable; otherwise it is called uncountable.

Obviously the integers are countable using the sequence 0, -1, +1, -2, 
+2, ..... The positive rational numbers are also countable if you express
them as a ratio of integers and list them in order by the sum of these 
integers:

1 2 1 3 2 1 4 3 2 1
1,1, 2,1, 2, 3,1, 2, 3, 4,...
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The real numbers between zero and one, however, are not countable. 
Here we will explain why. Suppose somebody thinks they have a method 
of arranging them into a sequence x 1 ,x2,..., where we express them as 
Xj f=1 dij 10-i so that dij E {0, 1, 2,..., 9} is the ith digit after the
decimal place of the j th number in their sequence. Then you can clearly 
see that the number

y = £ (1 +1 {dii = 1} )10-i, 
i=1

where I{A} equals one if A is true and zero otherwise is nowhere to be 
found in their sequence. This is because y differs from xi in at least the 
ith decimal place, so it is different from every number in their sequence. 
Whenever someone tries to arrange the real numbers into a sequence, this 
shows that they will always be omitting some of the numbers. This proves 
that the real numbers in any interval are uncountable and that you can’t 
take a sum over all of them.

So it’s true with X ~ U(0, 1) that for any countable set A we have 
P(X E A) = ExeA P (X = x) = 0, but we can’t simply sum up the 
probabilities like this for an uncountable set. There are, however, some 
examples of uncountable sets A (the Cantor set, for example) that have 
P(X E A)=0.

1.4 Probability Spaces

Let Q be the set of points in a sample space, and let F be the collection 
of subsets of Q for which we can calculate a probability. These subsets are 
called events and can be viewed as possible things that could happen. If we 
let P be the function that gives the probability for any event in F, then the 
triple (Q, F,P) is called a probability space. The collection F is usually 
what is called a sigma field (also called a sigma algebra), which we define 
next.

Definition 1.1 The collection of sets F is a sigma field, or a a field, if it 
has the following three properties:

1. Q EF

2. A E F ^ Ac E F

3. A 1 ,A2,... F ■ . Ai eF.

These properties say you can calculate the probability of the whole 
sample space (Property 1), the complement of any event (Property 2), and 
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the countable union of any sequence of events (Property 3). They also 
imply that you can calculate the probability of the countable intersection 
of any sequence of events because Af=1 Ai = (Uf=1 AC)c .

To specify a a field, people typically start with a collection of events A 
and write a(A) to represent the smallest a field containing the collection of 
events A. Thus a(A) is called the a field “generated” by A. It is uniquely 
defined as the intersection of all possible sigma fields that contain A, and 
in Exercise 3 at the end of this chapter, you will show such an intersection 
is always a sigma field.

Example 1.2 Let Q = {a, b, c} be the sample space, and let A = {{a, b}, {c}}. 
Then A is not a a field because {a, b, c} / A, but a(A) = {{a, b, c}, {a, b}, 
{c}, $>}, where $ = Qc is the empty set.

Definition 1.3 A probability measure P is a function, defined on the sets 
in a sigma field, which has the following three properties:

1. P(Q) = 1, and

2. P (A) > 0, and

3. P(Ui=iAi) 52i=i P(Ai) if ^i = j we have Ai H Aj = &

These properties imply that probabilities must be between zero and one 
and say that the probability of a countable union of mutually exclusive 
events is the sum of the probabilities.

Example 1.4 Dice. If you roll a pair of dice, the 36 points in the sample
space are Q = {(1, 1), (1, 2), ..., (5, 6), (6, 6)}. We can let F be the collection
of all possible subsets of Q, and it’s easy to see that it is a sigma field. Then
we can define

P <A )=-36!,

where -A- is the number of sample space points in A. Thus, if A = {(1, 1), (3, 2)}, then P(A) = 2/36, and it’s easy to see that P is a probability 

measure.

Example 1.5 The unit interval. Suppose we want to pick a uniform random 
number between zero and one. Then the sample space equals Q = [0, 1], 
the set of all real numbers between zero and one. We can let F be the 
collection of all possible subsets of Q, and it’s easy to see that it is a sigma 
field. But it turns out that it’s not possible to put a probability measure 
on this sigma field. Because one of the sets in F would be similar to the set 
of heads of the family (from the nonmeasurable event example), this event 
cannot have a probability assigned to it. So this sigma field is not a good 
one to use in probability.
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Example 1.6 The unit interval again. Again with Q = [0, 1], suppose we 
use the sigma field F = a({x}xeq), the smallest sigma field generated by 
all possible sets containing a single real number. This is a nice enough 
sigma field, but it would never be possible to find the probability for some 
interval, such as [0.2, 0.4]. You can’t take a countable union of single real 
numbers and expect to get an uncountable interval somehow. So this is 
not a good sigma field to use.

If we want to put a probability measure on the real numbers between 
zero and one, what sigma field can we use? The answer is the Borel sigma 
field B, the smallest sigma field generated by all intervals of the form [x, y) 
of real numbers between zero and one: B = a([x, y)x<y^q). The sets in this 
sigma field are called Borel sets. We will see that most reasonable sets you 
would be interested in are Borel sets, although sets similar to the one in 
the “heads of the family” example are not Borel sets.

We can then use the special probability measure, which is called a 
Lebesgue measure (named after the French mathematician Henri Lebesgue), 
defined by P([x,y)) = y — x, for 0 < x < y < 1, to give us a uniform dis­
tribution. Defining it for just these intervals is enough to uniquely specify 
the probability of every set in B. (This fact can be shown to follow from 
Theorem 1.65, which is discussed later). And actually, you can do almost 
all of probability starting from just a uniform(0,1) random variable, so this 
probability measure is pretty much all you need.

Example 1.7 If B is the Borel sigma field on [0,1], is {.5} G B? Yes,
because {0.5} = nf=1[0.5, 0.5 + 1 /i). Also note that {1} = [0, 1)c G B.

Example 1.8 If B is the Borel sigma field on [0,1], is the set of rational 
numbers between zero and one Q GB? The argument from the previous 
example shows {x}GBfor all x, so each number by itself is a Borel set, 
and we then get Q G B because Q is countable union of such numbers. Also 
note that this then means Qc GB, so the set of irrational numbers is also 
a Borel set.

There are some Borel sets that can’t directly be written as a countable 
intersection or union of intervals like the preceding, but you usually don’t 
run into them.

From the definition of probability, we can derive many of the famous 
formulas you may have seen before such as

P (A U B) = P (A) + P (B) — P (A n B),
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and extending this by induction,

P(u"=iAi) = £ P(A) - P(Ai n Aj)

+ P(AinAjnAk)•••

• • • + (—1)n+1P (A1 n A 2 • • • n An),

where the last formula is usually called the inclusion-exclusion formula. 
Next we give a couple of examples applying these. In these examples, 
the sample space is finite, and in such cases unless otherwise specified, we 
assume the corresponding sigma field is the set of all possible subsets of the 
sample space.

Example 1.9 Cards.Adeckofn cards is well shuffled many times. (a) 
What’s the probability the cards all get back to their initial positions? (b) 
What’s the probability at least one card is back in its initial position?

Solution Because there are n! different ordering for the cards and all are 
approximately equally likely after shuffling, the answer to Part (a) is ap­
proximately 1/n!. For the answer to Part (b), let Ai = {card i is back in 
its initial position} and let A = Ui=1 Ai be the event at least one card is 
back in its initial position. Because P (Ai1 n Ai2 n ... n Aik) = (n - k)!/n!, 
and because the number of terms in the kth sum of the inclusion-exclusion 
formula is nk , we have

P (A ) = £ (—1)k «( “) /

k=1

» ( -1) k + 1

k!
k=1

« 1 — 1/e

for large n. ■

Example 1.10 Coins. If a fair coin is flipped n times, what is the chance 
of seeing at least k heads in row?

Solution We will show you that the answer is

(—1)m+1

(n+1) /(k+1)
n-mk 2-m(k+1) + n-mk 2-m(k+1)+1 

m m-1
m=1
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When we define the event Ai = {a run of a tail immediately followed by k 
heads in a row starts at flip i}, and A0 = {the first k flips are heads}, we 
can use the inclusion-exclusion formula to get this solution because

P(at least k heads in row) = P(U"=-0k-1 Ai)

and

{
0 if flips for any events overlap 
2-m(k+1) otherwise and i1 > 0

2-m(k+1)+1 otherwise and i1 =0

and the number of sets of indices i 1 < i2 < • • • < im, where the runs that 
do not overlap equal n-mmk if i1 > 0 (imagine the k heads in each of the 
m runs are invisible, so this is the number of ways to arrange m tails in 
n — mk visible flips) and nn~m.k\ if i 1 = 0. ■m-1 1 .

An important property of the probability function is that it is a contin­
uous function on the events of the sample space Q. To make this precise, 
let An, n > 1 be a sequence of events, and define the event liminf An as

liminf An = U~=1 n~n Ai.

Because lim inf An consists of all outcomes of the sample space that are 
contained in A“= nAi for some n, it follows that liminf An consists of all 
outcomes that are contained in all but a finite number of the events An ,n > 
1.

Similarly, the event lim sup An is defined by

limsup An = n~1 U= n Ai.

Because lim sup An consists of all outcomes of the sample space that are 
contained in U“nAi for all n, it follows that limsupAn consists of all 
outcomes that are contained in an infinite number of the events An,n > 1. 
Sometimes the notation {An i.o.} is used to represent lim sup An, where i.o. 
stands for infinitely often and means that an infinite number of the events 
An occur.

Note that by their definitions

lim inf An c lim sup An.

Definition 1.11 If lim sup An = liminfAn, we say that limn An exists 
and define it by

lim An = lim sup An = lim inf An . 
n
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Example 1.12 (a) Suppose that An,n > 1 is an increasing sequence of 
events, in that An C An +1, n > 1. Then nf= nAi = An, showing that

lim infAn = „.' ■ An.

Also, U“nAi = Ui=iAi, showing that

limsup An = un=i An.

Hence, 
lim An = Ui=i Ai. 

n

(b) If An ,n > 1 is a decreasing sequence of events, in that An+i C An ,n> 
1, then it similarly follows that

lim An = nf=i Ai. ■
n

The following result is known as the continuity property of probabilities.

Proposition 1.13 If limn An = A, then limn P (An)=P (A).

Proof We prove it first for when An is either an increasing or decreasing 
sequence of events. Suppose An C An+i, n > 1. Then, with A0 defined to 
be the empty set,

P (lim An) = P (Ui=i Ai)
= P (U=1 Ai (U= Aj) c)
= P (Uf=i AiAc-1)

oo
= P(AiAic-i)

i=i 

n

= lim P (AiAic-i)
n^o * i=i

= lim P (Uin=iAiAic-i) 
n^o

= lim P (Uin=iAi) 
n^o

= lim P (An). 
n^o

Now, suppose that An+i C An,n > 1. Because Acn is an increasing se­
quence of events, the preceding implies that

P (Uio=iAic) = lim P (Acn), 
n^o

or equivalently,
P((nio=iAi)c) = 1 - lim P(An) 

n^o
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or
P(nf=iAi) = lim P(An), 

n^x

which completes the proof whenever An is a monotone sequence. Now, 
consider the general case, and let Bn = UJi'- nAi. Noting that Bn+1 C Bn, 
and applying the preceding yields

P(limsupAn) = P(nnx=1Bn)
= lim P (Bn). (1.1)

n^x

Also, with Cn = nix=nAi ,

P(liminfAn) = P(Unx=1Cn)
= lim P (Cn) (1.2)

n^x

because Cn C Cn+1. But

Cn = nix=nAi C An C Uix=nAi = Bn ,

showing that
P(Cn) < P(An) < P(Bn). (1.3)

Thus, if lim inf An = lim sup An = lim An , then we obtain from Equations 
1.1 and 1.2 that the upper and lower bounds of Equation 1.3 converge to 
each other in the limit, and this proves the result. ■

1.5 Random Variables
Suppose you have a function X that assigns a real number to each point in 
the sample space Q and you also have a sigma field F. We say that X is 
an F -measurable random variable if you can compute its entire cumulative 
distribution function using probabilities of events in F or, equivalently, that 
you would know the value of X if you were told which events in F actually 
happen. We define the notation {X < x} = {w G Q : X(w) < x}, so X is 
F measurable if {X < x} G F for all x. This is often written in shorthand 
notation as X GF.

Example 1.14 Q = {a,b,c}, A = {{a, b, c}, {a, b}, {c}, $>}, and we define 
three random variables X, Y, Z as follows:

w X Y Z 
a 111 
b 12 7 
c 2 2 4
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Which of the random variables X, Y, and Z are A measurable? Because 
{Y < 1} = {a} / A, then Y is not A measurable. For the same reason, Z 
is not A measurable. The variable X is A measurable because {X < 1} = 
{a, b} A A, and {X < 2} = {a, b, c} A A. In other words, you can always 
figure out the value of X using just the events in A, but you can’t always 
figure out the values of Y and Z.

Definition 1.15 For a random variable X we define

a(X) = a({X < x}, ^x)

to be the sigma field generated by all events of the type {X < x}, where 
a(X ) is the sigma field generated by X .

Alternatively, we can define a(X ) as the intersection of all possible sigma 
fields F where X is F measurable; such an uncountable intersection is a 
sigma field, as in Exercise 3 at the end of this chapter. Intuitively, a(X) 
contains just enough events to know the value of X when you know which 
of the events occur.

Definition 1.16 For random variables X, Y we say that X is Y measurable 
if X a a (Y).

Example 1.17 In the previous example, is Y A a(Z)? Yes, because a(Z) = 
{{a, b, c}, {a}, {a, b}, {b}, {b, c}, {c}, {c, a},^}, the set of all possible sub­
sets of Q. Is X A a(Y)? No, because {X < 1} = {a, b} / a(Y) = 
{{a, b, c}, {b, c}, {a},0}.

To see why a(Z) is as given, note that {Z < 1} = {a}, {Z < 4} = {a, c}, 
{Z < 7} = {a, b, c}, {a}c = {b,c}, {a,b}c = {c}, {a} U {c} = {a,c}, 
{a, b, c}c = 0, and {a, c}c = {b}.

Example 1.18 Suppose X and Y are random variables taking values be­
tween zero and one and are measurable with respect to the Borel sigma 
field B .IsZ = X + Y also measurable with respect to B? Well, we must 
show that {Z < z} A B for all z. We can write

{X + Y > z} = UqtQ ({X > q} n {Y > z - q}),

where Q is the set of rational numbers. Because {X > q} A B, {Y > z-q} A 
B, and Q is countable, this means that {X + Y < z} = {X + Y > z}c A B 
and thus Z is measurable with respect to B.
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Example 1.19 The function F(x) = P(X < x) is called the distribution 
function of the random variable X. If xn ^ x then the sequence of events 
An = {X < xn}, n > 1, is a decreasing sequence with a limit that is

lim An = An An = {X < x}. 
n

Consequently, the continuity property of probabilities yields

F(x) = lim F (xn), 
n^w

showing that a distribution function is always right continuous. On the 
other hand, if xn f x, then the sequence of events An = {X < xn}, n > 1, 
is an increasing sequence, implying that

lim F (xn) = P(UnAn) = P(X < x) = F (x) — P(X = x). 
n^w

Two events are independent if knowing that one occurs does not change 
the chance that the other occurs. This is formalized in the following defi­
nition.

Definition 1.20 Sigma fields F1,..., Fn are independent if whenever Ai G 
Fi for i =1,...,n, we have P(Ain=1Ai) = in=1 P (Ai).

Using this we say that random variables X1, ...,Xn are independent if the 
sigma fields a(X 1),..., a(Xn) are independent, and we say events A 1,..., An 

are independent if IA1 , ..., IAn are independent random variables.

Remark 1.21 One interesting property of independence is that it’s possible 
that events A, B, C are not independent even if each pair of the events are 
independent. For example, if we make three independent flips of a fair coin 
and let A represent the event exactly one head comes up in the first two 
flips, let B represent the event exactly one head comes up in the last two 
flips, and let C represent the event exactly one head comes up among the 
first and last flip. Then each event has probability 1/2, the intersection of 
each pair of events has probability 1/4, but we have P(ABC) = 0.

In our next example, we derive a formula for the distribution of the 
convolution of geometric random variables.

Example 1.22 Suppose we have n coins that we toss in sequence, moving 
from one coin to the next in line each time a head appears. That is, we 
continue using a coin until it lands heads, and then we switch to the next 
one. Let Xi denote the number of flips made with coin i. Assuming that 
all coin flips are independent and that each lands heads with probability p, 
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we know from our first course in probability that Xi is a geometric random 
variable with parameter p and that the total number of flips made has a 
negative binomial distribution with probability mass function

(m.- 1\
P(X1 + ... + Xn = m) = 1 Un(1 -p)m-n, m > n.

n-1

The probability mass function of the total number of flips when each coin 
has a different probability of landing heads is easily obtained using the 
following proposition.

Proposition 1.23 If X1 ,...,Xn are independent geometric random vari­
ables with parameters p1 ,...,pn , where pi = pj if i = j , then, with qi = 
1 - pi , for k > n - 1

P (X1 + ... + Xn >k )= £ qk nj 
pj- pi 

i=1 j=i

Proof We will prove Ak,n = P(X1 + ... + Xn > k) is as given using 
induction on k + n. Because A1,1 = q1, we will assume as our induction 
hypothesis that Ai,j is as given previously for all i + j<k+ n. Then, 
depending on whether or not the event {Xn > 1} occurs, we get

Ak,n = qnAk-1,n + pnAk-1,n-1

n

= qn

i=1

qik n 

j=i

pj

pj- Pi

n — 1

+ pn

i=1

k-1 Pn - Pi 
qi _

n

j=i

Pj

Pj- Pi

1

n

= qik

i=1 j=i

Pj , Pj - Pi

which completes the proof by induction. ■

1.6 Convergence, Limits, sup, and inf

A sequence of real numbers x1 ,x2 ,... converges to a limit x, and we write 
this as limn . ... xn = x or limn xn = x or xn ^ x if for any e > 0 the values 
in the sequence beyond some point are all within e of x. We write xn f x if 
xn ^ x and the sequence is nondecreasing, and we write xn ^ x if xn ^ x 
and the sequence is nonincreasing.

If Xn is a sequence of random variables and we write Xn ^ X, we mean 
that if we observe the sequence and then consider it as a sequence of real 
numbers, we will always have Xn ^ X.
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Example 1.24 If xn = n/(n +1) for n = 1, 2,... then we have xn f 1. This 
is because xn is nondecreasing, and given any e > 0, we can let n = 1 /e 
and 1 — xi = 1 / (i +1) < e when when i > n.

Example 1.25 If xn = n/(n +1) when n is even and xn =0whenn is 
odd, we say that the sequence has no limit. Because for n > 1 we have 
x2n > 2/3 and x2n +1 = 0, when e = 1 /3 we can never find an n such that 
all the values beyond the nth value are less than e from the same number.

If xi for i G S are real numbers with indices in a set S we write

x = supxi 
its

if xi < x for all i and for any y < x there is some i G S such that xi > y. 
We say that x is the supremum of the set {xi : i G S}, which means it 
is the smallest possible upper bound for the set. Here S may be either a 
countable or an uncountable set. We also define the infimum of a set as the 
largest possible lower bound so that if

x =infxi 
itS

it means xi > x for all i and for any y>xthere is some i G S such that 
xi <y.

Example 1.26 If S = {1, 2,...} and xi = i, we have that supitS xi = to 
and inf itS xi = 1. Also note that there is no maximum value of xi, so 
maxitS xi does not exist.

Every set of real numbers has a supremum and an infimum, although 
these may not actually be in the set. Infinite sets may not have a maximum 
or minimum value within them, although finite sets always do.

1.7 Expected Value

A random variable X is continuous if there is a function f, called its 
density function, so P(X < x) = —\ f (t)dt for all x. A random variable 
is discrete if it can only take a countable number of different values. In 
elementary textbooks, you usually see two separate definitions for expected 
value:

E[X] = lxix(P (X = xi) 
xf (x)dx

ifX is discrete
if X is continuous with density f.
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But it’s possible to have a random variable that is neither continuous 
nor discrete. For example, with U ~ U(0, 1), the variable X = UIU>0.5 

is neither continuous nor discrete. It’s also possible to have a sequence of 
continuous random variables that converges to a discrete random variable or 
vice versa. For example, if Xn = U/n, then each Xn is a continuous random 
variable, but limn . ,. Xn is a discrete random variable (which equals zero). 
This means it would be better to have a single more general definition that 
covers all types of random variables. We introduce this next.

A simple random variable is one that can take on only a finite number 
of different possible values, and its expected value is defined as in the first 
paragraph in this section for discrete random variables. Using these, we 
next define the expected value of a more general nonnegative random vari­
able. We will later define it for general random variables X by expressing 
it as the difference of two nonnegative random variables X = X + - X - , 
where x+ = max(0,x) and x- = max(-x, 0).

Definition 1.27 If X > 0, then we define

E [ X ] = sup E [ Y ].
all simple variables Y<X

We write Y < X for random variables X, Y to mean P(Y < X) = 1; this 
is sometimes written as “Y < X almost surely” and abbreviated “Y < X 
a.s.” For example, if X is nonnegative and a > 0, then Y = aIX>a is a 
simple random variable such that Y < X . And by taking a supremum over 
all simple variables, we of course mean the simple random variables must 
be measurable with respect to some given sigma field. Given a nonnegative 
random variable X , one concrete choice of simple variables is the sequence 
Yn = min(2nX\/2n,n), where [xj denotes the integer portion of x. In 
Exercise 18 at the end of this chapter, we ask you to show that Yn f X and 
E[X] = limn E[Yn].

Another consequence of the definition of expected value is that if Y < X , 
then E[Y] < E[X].

Example 1.28 Markov’s inequality. Suppose X > 0. Then, for any a>0 
we have that aIX>a < X. Therefore, E[a IX>a] < E[X] or, equivalently,

P(X > a) < E[X]/a,

which is known as Markov’s inequality.

Example 1.29 Chebyshev’s inequality. A consequence of Markov’s inequal­
ity is that for a> 0

P(|X| > a) = P(X2 >a2) < E[X2]/a2,

a result known as Chebyshev’s inequality.
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Given any random variable X > 0 with E[X] < to , and any e > 0, 
we can find a simple random variable Y with E [X] — e < E [Y] < E [X]. 
Our definition of the expected value also gives what is called the Lebesgue 
integral of X with respect to the probability measure P and is sometimes 
denoted E[X] = XdP.

So far we have only defined the expected value of a nonnegative random 
variable. For the general case, we first define X + = XIx>0 and X- = 
—XIX<0 so that we can define E[X] = E[X+] —E[X-], with the convention 
that E[X] is undefined if E[X+] = E[X-] = to.

Remark 1.30 The definition of expected value covers random variables that 
are neither continuous nor discrete, but if X is continuous with density 
function f, it is equivalent to the familiar definition E[X] = xf (x)dx. 
For example, when 0 < X < 1 the definition of the Riemann integral in 
terms of Riemann sums implies, with |_xj denoting the integer portion of x,

xf (x)dx = lim xf (x)dx
/- n'x ' l /0 i=0 i/n

< lim —-—p i;n< < X < —-—
n—x ' n \ n

i=0

= lim i/nP (%)< < X < —-—
n — x \ n /

i=0

= lim E [ [nXJ/n] 
n 'x

< E[X],

where the last line follows because [nX\/n < X is a simple random vari­
able.

Using that the density function g of 1 — X is g(x)=f (1 — x), we obtain

1 — E[X] = E[1 — X]
> 1 xf(1

— x)dx

— x)f (x)dx

=1 xf (x)dx.

Remark 1.31 At this point, you may think it might be possible to express 
any random variable as sums or mixtures of discrete and continuous random 
variables, but this is not true. Let X ^ U(0, 1) be a uniform random 
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variable, and let di G {0, 1, 2,..., 9} be the ith digit in its decimal expansion 
so that X = 522=1 di 10-i. The random variable Y = 522=1 min(1, di )10-i is 
not discrete and has no intervals over which it is continuous. This variable 
Y can take any value (between zero and one) having a decimal expansion 
that uses only the digits 0 and 1, which are a set of values C called a Cantor 
set. Because C contains no intervals, Y is not continuous. And Y is not 
discrete because C is uncountable; every real number between zero and one, 
using its base two expansion, corresponds to a distinct infinite sequence of 
binary digits.

Another interesting fact about a Cantor set is, although C is uncount­
able, P (X G C)=0. Let Ci be the set of real numbers between zero and 
one that have a decimal expansion using only the digits 0 and 1 up to the 
ith decimal place. Then it’s easy to see that P (X G Ci) = 0.2i and because 
P(X G C) < P (X G Ci) = 0.2i for any i, we must have P (X G C) = 0. 
The set C is called an uncountable set having measure zero.

Proposition 1.32 If E\X\,E\Y| < x then (a) E [aX + b] = aE[X] + b for 
constants a, b,and(b)E [X + Y]=E [X]+E [Y].

Proof In this proof we assume X, Y > 0, a > 0, and b = 0. The general 
cases will follow using E[X + Y] = E[X+ + Y+] - E[X- + Y-],

E[b+X]= sup E[Y]=supE[b+Y]=b+supE[Y]=b+E[X], 
Y <b+X Y <X Y <X

and -aX + b = a(-X) + b.

For Part (a) if X is simple we have

E [ aX ] = axP (X = x) = aE [ X ],

and because for every simple variable Z < X there corresponds another 
simple variable aZ < aX , and vice versa, we get

E[aX] = sup E[aZ] = sup aE[Z] = aE[X], 
aZ<aX Z<X

where the supremums are over simple random variables.
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For Part (b) if X, Y are simple we have

E [ X + Y ] = zP (X + Y = z)

= Zz E p(x = x,y = y)

= (x + y)P(X =x,Y=y)
z x,y:x+y=z

= (x + y)P(X = x,Y = y)
x,y

= xP(X = x, Y = y)+ yP(X = x, Y = y)

= xP(X = x)+ yP(Y = y)

=E[X]+E[Y], y

and applying this in the following second line, we get

E[X]+E[Y]= sup E[A] + E[B]
A<X,B<Y

= sup E[A+B]
A<X,B <Y

< sup E [ A ]
A<X+Y

=E[X+Y],

where the supremums are over simple random variables. We then use this 
inequality in the following third line:

E[min(X + Y, n)] = 2n - E[2n - min(X + Y, n)]
< 2n - E[n - min(X, n)+n - min(Y, n)]
< 2n - E[n - min(X, n)] - E[n - min(Y, n)]
= E[min(X, n)] + E [min(Y, n)]
< E[X] + E[Y],

and we use Part (a) in the first and fourth lines and min(X + Y, n) < 
min(X, n) + min(Y, n) in the second line.

This means for any given simple Z < X + Y we can pick n larger than 
the maximum value of Z so that E[Z] < E [min(X + Y, n)] < E[X] + E[Y], 
and taking the supremum over all simple Z < X + Y gives E[X + Y] < 
E[X] + E[Y] and the result is proved. ■
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Proposition 1.33 If X is a nonnegative integer valued random variable, 
then

oo

E[X]= P(X > n).
n=0

Proof Because E [X]=p1 +2p2 +3p3 +4p4 ... (see Exercise 7 at the end 
of this chapter), where pi = P (X = i), we rewrite this as

E[X] = p1 + p2 + p3 + p4 ...
+ p2 + p3 + p4 . . .

+ p3 + p4 . . .
+ p4 ..

Notice that the columns equal p1 , 2p2 , 3p3 ,..., respectively, whereas the 
rows equal P(X > 0),P(X > 1),P(X > 2),..., respectively. ■

Example 1.34 With X1, X2 ... independent U(0, 1) random variables, com­
pute the expected value of

N =min n :
n

Xi > 1
i=1

Solution Using E[N] = no=0 P(N > n), and noting that

P(N>0) = P(N>1) = 1,

and

n
1 — x 1 11 — x 1 —x 2 11 -x 1 -x 2------------- Xn- 1

00 n

= 1/n!,

we get E [N] = e. ■

1.8 Almost Sure Convergence and the 
Dominated Convergence Theorem

For a sequence of nonrandom real numbers, recall that we write xn ^ x or 
limn . o xn = x if for any £ > 0 there exists a value n such that \xm — x\ < £ 
for all m>n. Intuitively, this means eventually the sequence never leaves 
an arbitrarily small neighborhood around x. It doesn’t simply mean that 
you can always find terms in the sequence that are arbitrarily close to x, but 
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rather it means that eventually all terms in the sequence become arbitrarily 
close to x. When xn ^ <x, it means that for any k > 0 there exists a value 
n such that xm >k for all m>n.

The sequence of random variables Xn, n > 1, is said to converge almost 
surely to the random variable X, written as Xn —ass X, or limn . ... Xn = 
X a.s., if with

lim Xn = X. 
n

The following proposition presents an alternative characterization of 
almost sure convergence.

Proposition 1.35 Xn —ass X if and only if for any e > 0

P(|Xn — X | < e for all n > m) ^ 1 as m ^ <x.

Proof Suppose first that Xn —ass X. Fix e > 0, and for m > 1, define 
the event

Am = {|Xn — X | < e for all n > m}.

Because Am,m > 1, is an increasing sequence of events, the continuity 
property of probabilities yields that

limmP(Am) = P(limmAm)

= P(|Xn — X| < e for all n sufficiently large)
> P (lim Xn = X) 

n

=1.

To go the other way, assume that for any e > 0

P(|Xn — X| < e for all n > m) ^ 1 as m ^ <x.

Let ei, i > 1, be a decreasing sequence of positive numbers that converge 
to 0, and let

Am.i = {|Xn — X | < ei for all n > m}.

Because Am.i C Am +1 .i and, by assumption, limm P(Am,i) = 1, it follows 
from the continuity property that

1=P( lim Am.i) = P(Bi), 
mi^

where Bi = {|Xn — X| < ei for all n sufficiently large}. But Bi, i > 1, is 
a decreasing sequence of events, so invoking the continuity property once 
again yields

1 = lim P(Bi) = P (lim Bi),



1.8 Almost sure and dominated convergence 21

which proves the result because

lim Bi = {for all i, |Xn — X | < ei for all n sufficiently large} 
i

= {lim Xn = X}. 
n

Remark 1.36 The reason for the word almost in “almost surely” is because 
P (A) = 1 doesn’t necessarily mean that Ac is the empty set. For example, 
if X ~ U(0, 1), we know that P(X = 1 /3) = 1 even though {X = 1 /3} is 
a possible outcome.

The dominated convergence theorem is one of the fundamental building 
blocks of all limit theorems in probability. It tells you something about 
what happens to the expected value of random variables in a sequence if 
the random variables are converging almost surely. Many limit theorems in 
probability involve an almost surely converging sequence, and being able to 
accurately say something about the expected value of the limiting random 
variable is important.

Given a sequence of random variables X1,X2,..., it may seem to you at 
first thought that Xn ^ X a.s. should imply limn . ,. E[Xn] = E[X]. This 
is sometimes called interchanging limit and expectation, because E[X] = 
E [limn . ... Xn]. But this interchange is not always valid, and the next ex­
ample illustrates this.

Example 1.37 Suppose U ~ U(0, 1) and Xn = nIn< 1 /U. Regardless of 
what U turns out to be, as soon as n gets larger than 1/U, we see that the 
terms Xn in the sequence will all equal zero. This means Xn ^ 0 a.s., but 
at the same time we have E[Xn] = nP(U < 1/n) = n/n = 1 for all n, and 
thus limn . ... E [Xn] = 1. Interchanging limit and expectation is not valid 
in this case.

What’s going wrong here? In this case, Xn can increase beyond any 
level as n gets larger and larger, and this can cause problems with the 
expected value. The dominated convergence theorem says that if Xn is 
always bounded in absolute value by some other random variable with 
finite mean, then we can interchange limit and expectation. We will first 
state the theorem, give some examples, and then give a proof. The proof 
is a nice illustration of the definition of expected value.

Proposition 1.38 The dominated convergence theorem. Suppose Xn ^ X 
a.s., and there is a random variable Y with E[Y] < to such that |Xn| < Y 
for all n. Then

E[ lim Xn] = lim E[Xn]. 
n^^ n^^



22 1 Measure Theory and Laws of Large Numbers

This is often used in the form where Y is a nonrandom constant, and 
then it’s called the bounded convergence theorem. Before we prove it, we 
first give a couple of examples and illustrations.

Example 1.39 Suppose U ~ U(0, 1) and Xn = U/n. It’s easy to see that 
Xn ^ 0 a.s., and the theorem would tell us that E[Xn] ^ 0. In fact, in 
this case we can easily calculate E [Xn] = 2n ^ 0. The theorem applies 
using Y = 1 because |Xn | < 1.

Example 1.40 With X ~ N(0, 1), let Xn = min(X, n), and notice Xn ^ X 
almost surely. Because Xn < |X |, we can apply the theorem using Y = |X | 
to tell us E [Xn ] ^ E [X].

Example 1.41 Suppose X ~ N(0, 1) and let Xn = XIX>-n — nIX<-n. 
Again Xn ^ X, so using Y = |X | the theorem tells us E[Xn] ^ E[X].

Proof Proof of the dominated convergence theorem. To be able to directly 
apply the definition of expected value, in this proof we assume Xn > 0. To 
prove the general result, we can apply the same argument to Xn + Y > 0 
with the bound |Xn + Y | < 2Y.

Our approach will be to show that for any £ > 0 we have, for all suffi­
ciently large n, both (a) E[Xn] > E[X] — 3£ and (b) E[Xn] < E[X] + 3£. 
Because £ is arbitrary, this will prove the theorem.

First, let N = min{n : Xi — X| < £ for all i > n}, and note that 
Xn —aas X implies that P(N < to) = 1. To Part (a), note first that for 
any m

Xn + £ > min(X, m) — mINe>n.

The preceding is true when N > n because in this case the right-hand side 
is nonpositive; it is also true when N < n because in this case Xn + £ > X. 
Thus,

E[Xn] + £ > E[min(X, m)] — mP(N > n).

Now, |X |<Y implies that E[X] < E[Y] < to. Consequently, using the 
definition of E[X], we can find a simple random variable Z < X with 
E[Z] > E[X] — £. Because Z is simple, we can then pick m large enough 
so Z < min(X, m), and thus

E[min(X, m)] > E[Z] > E[X] — £.

Then N < to implies, by the continuity property, that mP (N > n) < £ 
for sufficiently large n. Combining this with the preceding shows that for 
sufficiently large n

E[Xn] + £ > E[X] — 2£,

which is Part (a).
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For Part (b), apply Part (a) to the sequence of nonnegative random 
variables Y - Xn , which converges almost surely to Y - X with a bound 
|Y — Xn| < 2Y. We get E[Y — Xn] > E[Y — X] — 3£, and rearranging and 
subtracting E [Y] from both sides gives Part (b). ■

Remark 1.42 Part (a) in the proof holds for nonnegative random variables 
even without the upper bound Y and under the weaker assumption that 
infm>n Xm ^ X as n ^ to. This result is usually referred to as Fatou’s 
lemma, which states that for any e > 0 we have E [Xn] > E [X] — e for 
sufficiently large n, or equivalently that infm>n E[Xm] > E[X] — e for 
sufficiently large n. This result is usually denoted as liminfn . ,. E [Xn] > 
E[liminfn , Xn].

A result called the monotone convergence theorem can also be proved.

Proposition 1.43 The monotone convergence theorem. If

0 < Xn t X,

then E [Xn] t E [X].

Proof If E [X] < to , we can apply the dominated convergence theorem 
using the bound |Xn | <X.

Consider now the case where E[X] = to. For any m, we have min(Xn, m) 
^ min(X, m). Because E[min(X, m)] < to, it follows by the dominated 
convergence theorem that

lim E[min(Xn, m)] = E [min(X, m)]. 
n

But because E[Xn] > E[min(Xn, m)], this implies

lim E[Xn] > lim E[min(X, m)].

Because E[X] = to, it follows that for any K there is a simple random 
variable A < X such that E[A] >K. Because A is simple, A < min(X, m) 
for sufficiently large m. Thus, for any K

lim E [min(X, m)] > E[A] >K, 
m^^

proving that limm . ^ E[min(X, m)] = to and completing the proof. ■ 
We now present a couple of corollaries of the monotone convergence 

theorem.

Corollary 1.44 If Xi > 0, then E £ ==1 Xi] = £ = E [Xi].
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Proof
co n

E[Xi] = lim E[Xi]
n

i=1 i=1

lim E
n

n
Xi

i=1

=E
oo

Xi 

i=1

where the final equality follows from the monotone convergence theorem 
because £ n=1 Xi t E 0=1 Xi■ ■

Corollary 1.45 If X and Y are independent, then

E[XY] = E[X]E[Y].

Proof Suppose first that X and Y are simple. Then we can write

X = xiI{X=xi}, Y= yjI{Y=yj} .
i=1 j=1

Thus,

E[XY] = E xiyjI{X=xi,Y =yj}

= xiyjE[I{X=xi,Y =yj}]
i j

= xiyjP (X = xi,Y = yj)
i j

= xiyjP (X = xi)P (Y = yj)
ij

= E[X]E[Y].

Next, suppose X, Y are general nonnegative random variables. For any n, 
define the simple random variables

Xn
n/W ;r k y k k +1 /. _ o on _ iAv / 2 , i 1 2 n _z/A- 2 n , Av ^0, . . . , A 2 2 1.

n, if X> n

Define random variables Yn in a similar fashion, and note that

Xn t X, Yn t Y, XnYn t XY.
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Hence, by the monotone convergence theorem,

E[XnYn] ^ E[XY].

But Xn and Yn are simple, so

E [XnYn] = E [Xn] E [Yn] ^ E [X] E [Y],

with the convergence again following by the monotone convergence theorem. 
Thus, E[XY] = E[X]E[Y] when X and Y are nonnegative. The general 
case follows by writing X = X + - X - ,Y= Y+ - Y- , using

E[XY] = E[X+Y +] - E[X+Y -] - E[X-Y +] + E[X-Y -] 

and applying the result to each of the four preceding expectations. ■

1.9 Convergence in Probability and in Distribu­
tion

In this section, we introduce two forms of convergence that are weaker than 
almost sure convergence. However, before giving their definitions, we will 
start with a useful result, known as the Borel-Cantelli lemma.

Proposition 1.46 If 52j P(Aj) < ^, then P(limsup Ak) = 0.

Proof Suppose 52j P(Aj) < ^- Now,

P(limsup Ak) = P(n~i U~n Ai).

Hence, for any n

P(limsupAk) < P(UOnAi) 
co 

< P (Ai),

and the result follows by letting n ^ <x. ■

Remark Because 52 n I An is the number of events An, n > 1, that occur, 
the Borel-Cantelli theorem states that if the expected number of events 
An ,n > 1, that occur is finite, then the probability that an infinite number 
of them occur is zero. Thus, the Borel-Cantelli lemma is equivalent to the 
rather intuitive result that if there is a positive probability that an infinite 
number of the events An occur, and then the expected number of them 
that occur is infinite.

The converse of the Borel-Cantelli lemma requires that the indicator 
variables for each pair of events be negatively correlated.
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Proposition 1.47 Let the events Ai, i > 1, be such that

Cov(lAi ,IA. ) = E[IAlAj ] - E [IA ]E[lAj ] < 0,i = j.

If 52°==1 P(Ai) = to, then P(limsup Ai) = 1.

Proof Let Nn = 52n=i lAi be the number of the events A 1,..., An that 
occur, and let N = °21 IAi be the total number of events that occur. 
Let mn = E[Nn] 52n=1 P(Ai), and note that limn mn = to. Using the 
formula for the variance of a sum of random variables learned in your first 
course in probability, we have

n
Var(Nn) = Var(IAi) + 2 Cov(IAi,IAj)

i=1 i<j

n
< Var(IAi )

i=1

n
= P (Ai)[1 - P (Ai)]

i=1

< mn.

Now, by Chebyshev’s inequality, for any x<mn

P(Nn <x)=P(mn - Nn >mn - x)
< P (|Nn - mn | >mn - x)
< Var( Nn)
“ (mn - x)2

< mn

~ (mn - x)2 .

Hence, for any x, limn . ,. P(Nn < x) = 0. Because P(N < x) < P(Nn <
x), this implies that

P(N<x)=0.

Consequently, by the continuity property of probabilities,

0 = lim P(N<k) 
k^^

= P lim{N < k}

= P (Uk {N<k})
= P(N < to).

Hence, with a probability of one, an infinite number of the events Ai 

occur. ■
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Example 1.48 Consider independent flips of a coin that lands heads with 
probability p>0. For fixed k, let Bn be the event that flips n, n +1, ...,n+ 
k — 1 all land heads. Because the events Bn, n > 1, are positively correlated, 
we cannot directly apply the converse to the Borel-Cantelli lemma to obtain 
that, with a probability of 1; an infinite number of them occur. However, 
by letting An be the event that flips nk +1,...,nk+ k all land heads, then 
because the set of flips these events refer to are nonoverlapping, it follows 
that they are independent. Because ^2n P(An) 52nPk = TO, we obtain 
from Borel-Cantelli that P(limsup An) = 1. But limsup An C limsup Bn, 
so the preceding yields the result P(limsupBn) = 1. ■

Remark 1.49 The converse of the Borel-Cantelli lemma is usually stated 
as requiring the events Ai,i > 1, to be independent. Our weakening of this 
condition can be useful, as the next example shows.

Example 1.50 Consider an infinite collection of balls that are numbered 
0, 1,. .. and an infinite collection of boxes also numbered 0, 1,...... Suppose
that ball i, i > 0, is to be put in box i + Xi , where Xi ,i > 0, are iid with 
probability mass function

P(Xi = j)=pj pj =1.
j> o

Suppose also that the Xi are not deterministic, so pj < 1 for all j > 0. If 
Aj denotes the event that box j remains empty, then

P(Aj) = P(Xj = 0,Xj-1 =1,...,X0=j)
= P(X0=0,X1 =1,...,Xj =j)
> P(Xi = i, for all i > 0).

But

P(Xi = i, for all i > 0)
= 1 — P (Uj>0 {Xi = i} )

=1— p0 — P(X0 =0,...,Xi-1 = i — 1,Xi = i)

i—1

= 1 — P 0 — Pill (1 — Pj).

Now, there is at least one pair k < i such that pipk = p > 0. Hence, for 
that pair

i-1

Pi]! (1 — Pj ) - Pi (1 - Pk ) = Pi - P,
j=0
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implying that

P(Aj) > P (Xi = i, for all i > 0) > P > 0 •

Hence, 52j P(Aj) = ^^ Conditional on box j being empty, each ball be­
comes more likely to be put in box i, i = j ,sofori<j,

i

P(Ai|Aj) = P(Xk =i-k|Aj)
k=0

i
= P(Xk =i-k|Xk =j-k)

k=0

_i_
< n p (Xk=i - k) 

k=0

= P (Ai),

which is equivalent to Cov(lAi ,1a) < 0. Hence, by the converse of the 
Borel-Cantelli lemma we can conclude that, with a probability of one, there 
will be an infinite number of empty boxes.

We say that the sequence of random variables Xn,n > 1, converges in 
probability to the random variable X, written Xn —pp X, if for any e > 0

P(|Xn — X| > e) ^ 0 as n ^ <x>.

An immediate corollary of Proposition 1.35 is that almost sure convergence 
implies convergence in probability. The following example shows that the 
converse is not true.

Example 1.51 Let Xn,n > 1 be independent random variables such that

P (Xn = 1) = 1 /n =1 — P (Xn =0) •

For any e > 0, P(|Xn| > e) = 1 /n ^ 0; hence, Xn —pp 0. However, 
because 522=1 P (Xn = 1) = TO, it follows from the converse to the Borel- 
Cantelli lemma that Xn = 1 for infinitely many values of n, showing that 
the sequence does not converge almost surely to zero.

Let Fn be the distribution function of Xn ,andletF be the distribution 
function of X .WesaythatXn converges in distribution to X if

lim Fn(x) = F(x) 
n^2

for all x at which F is continuous. (That is, convergence is required at all 
x for which P (X = x) = 0.)
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To understand why convergence in distribution only requires that Fn (x) 
d F(x) at points of continuity of F, rather than at all values x, let Xn be 
uniformly distributed on (0, 1/n). Then, it seems reasonable to suppose that 
Xn converges in distribution to the random variable X that is identically 
zero. However,

0,
Fn (x)= nx, 

I 1 ,

if x< 0
if 0 < x < 1 /n,
if x> 1/n

whereas the distribution function of X is

F(x) = 10,, if x< 0
if x > 0.

Thus, limn Fn (0) = 0 = F(0) = 1. On the other hand, for all points of 
continuity of F (that is, for all x = 0), we have that limn Fn(x) = F(x), 
so with the definition given, it is indeed true that Xn —dd X.

We now show that convergence in probability implies convergence in 
distribution.

Proposition 1.52

Xn  dp X ^ Xn  dd X.

Proof Suppose that Xn —pp X. Let Fn be the distribution function of 
Xn, n > 1, and let F be the distribution function of X. Now, for any e > 0

Fn(x) = P(Xn < x, X < x + e) + P(Xn < x, X >x + e) 
< F(x + e) + P(|Xn — X| > e),

where the preceding used

Xn < x, X > x + e ^ |Xn — X| > e.

Letting n go to infinity yields, upon using Xn —dp X,

limsupFn(x) < F(x + e). (1.4)
n^^^O

Similarly,

F(x — e) = P(X < x — e, Xn < x) + P(X < x — e, Xn > x") 
< Fn (x)+ P(|Xn — X | >e).
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Letting n ^ <x gives

F(x — e) < liminf Fn(x). (1.5)
n^—^o

Combining Equations 1.4 and 1.5 shows that

F(x — e) < liminf Fn(x) < limsupFn(x) < F(x + e). 
n -^ n -'\.

Letting e ^ 0 shows that if x is a continuity point of F then

F(x) < lim inf Fn (x) < lim sup Fn(x) < F (x), 
n 'x n—^

and the result is proved. ■

Proposition 1.53 If Xn —dd X, then

E[g(Xn)] ^ E[g(X)]

for any bounded continuous function g .

To focus on the essentials, we will present a proof of Proposition 1.53 
when all the random variables Xn and X are continuous. Before doing so, 
we will prove a couple of lemmas.

Lemma 1.54 Let G be the distribution function of a continuous random 
variable, and let G-1 (x) = inf {t : G(t) > x} , be its inverse function. If U 
is a uniform (0, 1) random variable, then G-1 (U) has distribution function 
G.

Proof Because
inf {t : G(t) > U} < x & G(x) > U

implies

P (G-1(U) < x) = P(G(x) > U) = G(x),

we get the result. ■

Lemma 1.55 Let Xn —dd X, where Xn is continuous with distribution 
function Fn,n> 1, and X is continuous with distribution function F.If 
Fn(xn) ^ F(x), where 0 < F(x) < 1 then xn ^ x.
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Proof Suppose there is an e > 0 such that xn < x — e for infinitely many 
n. If so, then Fn (xn) < Fn (x — e) for infinitely many n, implying that

F (x) = liminf Fn (xn) < lim Fn (x — e) = F (x — e),

which is a contradiction. We arrive at a similar contradiction upon as­
suming there is an e > 0 such that xn > x + e for infinitely many n. 
Consequently, we can conclude that for any e > 0, lxn — xl > e for only a 
finite number of n, thus proving the lemma. ■

Proof of Proposition 1.53 Let U be a uniform (0, 1) random variable, and 
set Yn = Fn-1 (U),n> 1, and Y = F -1(U). Note that from Lemma 1.54 
it follows that Yn has distribution Fn and Y has distribution F . Because

Fn(Fn-1(u)) = u = F(F-1(u)),

it follows from Lemma 1.55 that F-1 (u) d F-1 (u) for all u. Thus, 
Yn —aas Y. By continuity, this implies that g(Yn) —aas g(Y), and 
because g is bounded, the dominated convergence theorem yields that 
E[g(Yn)] d E[g(Y)]. But Xn and Yn both have distribution Fn, whereas X 
and Y both have distribution F,so E[g(Yn)] = E[g(Xn)] and E[g(Y)] = 
e [ g ( x )]. ■

Remark 1.56 The key to our proof of Proposition 1.53 was showing that, if 
Xn —di X, we can define random variables Yn, n > 1, and Y such that Yn 

has the same distribution as Xn for each n,andY has the same distribution 
as X , and are such that Yn —das Y. This result (which is true without the 
continuity assumptions we made) is known as Skorokhod’s representation 
theorem.

Skorokhod’s representation and the dominated convergence theorem im­
mediately yield the following.

Corollary 1.57 If Xn —id X and there exists a constant M < to such that 
|Xn | <Mfor all n, then

lim E[Xn] = E[X]. 
n^^

Proof Let Fn denote the distribution of Xn,n> 1, and F that of X. Let 
U be a uniform (0, 1) random variable, and for n > 1, set Yn = Fn-1 (U), 
and Y = F-1 (U ). Note that the hypotheses of the corollary imply that 
Yn —ias Y and, because Fn(M)=1=1— Fn(—M), also that |Yn| < M. 
Thus, by the dominated convergence theorem

E[Yn] i E[Y],
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which proves the result because Yn has distribution Fn , and Y has distri­
bution F. ■

Proposition 1.53 can also be used to give a simple proof of Weierstrass’ 
approximation theorem.

Corollary 1.58 Weierstrass’ approximation theorem. Any continuous func­
tion f defined on the interval [0, 1] can be expressed as a limit of polynomial 
functions. Specifically, if

Bn(t) = £ f (i/n)fn}ti(1 - t)n-i 

i
i=0

then f (t) = limn . Bn (t).

Proof Let Xi, i > 1, be a sequence of iid random variables such that

P(Xi=1)=t=1-P(Xi=0).

Because E[X1 + +Xn ] = t, it follows from Chebyshev’s inequality that for 
any e > 0

P X1 + ••• + Xn

n
-1 >e

Var([ X i + • • • + Xn ]/n)
12

P (1 - P) 
ne 2

Thus, X1+n+ Xn ^p t, implying that X1+n+Xn ^d t. Because f is a 
continuous function on a closed interval, it is bounded and so Proposition
1.53 yields

X1 + ••• + Xn 
E f -------------------^ f (t).n

But X1 + ••• + Xn is a binomial (n, t) random variable; thus,

E HX1 + n+ X^] = Bn (t) ’

and the proof is complete. ■

1.10 Law of Large Numbers and Ergodic Theo­
rem

Definition 1.59 For a sequence of random variables X1, X2, ... the tail sigma 
field T is defined as

T = P| a(Xn,Xn +1,...). 
n=1

Events A ET are called tail events.
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Although it may seem as though there are no events remaining in the 
preceding intersection, there are a lot of examples of interesting tail events. 
Intuitively, with a tail event you can ignore any finite number of the vari­
ables and still be able to tell whether or not the event occurs. Next are 
some examples.

Example 1.60 Consider a sequence of random variables X1 ,X2, ... hav­
ing tail sigma field T and satisfying |Xi| < to for all i. For the event 
Ax = {lim,,.... n 52n=1 Xi = x}, it’s easy to see that Ax TT because to 
determine if Ax happens you can ignore any finite number of the random 
variables; their contributions end up becoming negligible in the limit.

For the event Bx = {supi Xi = x}, it’s easy to see that B., & T because 
it depends on the long-run behavior of the sequence. Note that B7 &/ T 
because it depends, for example, on whether or not X 1 < 7.

Example 1.61 Consider a sequence of random variables X1, X2, ... having 
tail sigma field T, but this time let it be possible for Xi = to for some 
i. For the event Ax = {lim,,.... - 52n=1 Xi = x}, we now have Ax & T 
because any variable along the way that equals infinity will affect the limit.

Remark 1.62 The previous two examples also motivate the subtle differ­
ence between Xi < to and Xi < to almost surely. The former means it’s 
impossible to see X5 = to, and the latter only says it has probability zero. 
An event that has probability zero could still be a possible occurrence. For 
example, if X is a uniform random variable between zero and one, we can 
write X =0.2 almost surely even though it is possible to see X = 0.2.

One approach for proving an event always happens is to first prove that 
its probability must either be zero or one, and then rule out zero as a 
possibility. This first type of result is called a zero-one law, because we are 
proving the chance must either be zero or one. A nice way to do this is to 
show an event A is independent of itself, and hence P (A)=P (A A)= 
P (A)P (A), and thus P (A)=0or1. We use this approach next to prove 
a famous zero-one law for independent random variables, and we will use 
this in our proof of the law of large numbers.

First, we need the following definition. Events with probability either 
zero or one are called trivial events, and a sigma field is called trivial if 
every event in it is trivial.

Theorem 1.63 Kolmogorov’s Zero-One Law. A sequence of independent 
random variables has a trivial tail sigma field.

Before we give a proof we need the following result. To show that a ran­
dom variable Y is independent of an infinite sequence of random variables



34 1 Measure Theory and Laws of Large Numbers

X1 ,X2, ..., it suffices to show that Y is independent of X1, X2, ..., Xn for 
every finite n < to . In elementary courses, this result is often given as a 
definition, but it can be justified using measure theory in the next propo­
sition. We define a(Xi,i E A) = a(Ui- Aa(Xi)) to be the smallest sigma 
field generated by the collection of random variables Xi, i E A.

Proposition 1.64 Consider the random variables Y and X1, X2, ..., where 
a(Y ) is independent of a(X1, X2, ..., Xn) for every n<to.Thena(Y ) is 
independent of a(X1, X2, ...).

Before we prove this proposition, we show how this implies Kolmogorov’s 
zero-one law

Proof Proof of Kolmogorov’s zero-one law. We will argue that any event 
A E T is independent of itself, and thus P(A) = P (A A A) = P (A) P (A) 
and so P(A) = 0 or 1. Note that the tail sigma field T is independent of 
a(X 1 ,X2,...,Xn) for every n < to (because T C a(Xn +1 ,Xn+2,...)), so 
by the previous proposition, it is also independent of a(X1, X2, ...). Thus, 
because T C a(X 1, X2,...), it also is independent of T. ■

Now we prove the proposition.

Proof Proof of Proposition 1.64. Pick any A E a(Y ). You might at first 
think that H = U^=1 a(X 1 ,X2,...,Xn) is the same as F = a(X 1 ,X2,...), 
and then the theorem would follow immediately because by assumption A 
is independent of any event in H. But it is not true that H and F are the 
same; H may not even be a sigma field. Also, the tail sigma field T is a 
subset of F but not necessarily of H. It is, however, true that FCa(H)(in 
fact, it turns out that a(H) = F) because a(X 1 ,X2,...) = a(0^1 a(Xn)) 
and . a(Xn) C H. We will use F C a(H) later.

Define the collection of events G to contain any B EF, where for every 
e > 0 we can find a corresponding approximating event C E H where 
P(B A Cc) + P(Bc A C) < e. Because A is independent of any event C eH, 
we can see that A must also be independent of any event B EG because, 
using the corresponding approximating event C for any desired e > 0,

P(AAB)=P(AABAC)+P(AABACc)
< P(AAC)+P(BACc)
< P (A) P (C) + e
= P(A)(P(C A B) + P(C A Bc)) + e
< P (A) P (B ) + 2 e
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and

1 - P(A n B) = P(Ac U Bc)
= P(Ac)+ P(A n Bc)
= P(Ac)+P(AnBcnC)+P(AnBcnCc)
< P(Ac) + P (Bc n C) + P(A n Cc)
< P(Ac) + e + P(A)P(Cc)
= P(Ac) + e + P(A)(P(Cc n B) + P(Cc n Bc))
< P(Ac) + 2e + P(A)P (Bc)
= 1 + 2 e - P (A) P (B),

which when combined gives

P(A)P(B) - 2e < P(A n B) < P(A)P(B) + 2e.

Because e is arbitrary, this shows a(Y) is independent of G. We obtain 
the proposition by showing F C a (H) C G and thus that a (Y) is indepen­
dent of F, as follows. First note we immediately have H C G, and thus 
a(H) C a(G), and we will be finished if we can show a(G) = G.

To show that G is a sigma field, clearly Q e G and Bc e G whenever 
B e G. Next let B 1, B2,... be events in G. To show that Uf=1 Bi e G, pick 
any e > 0 and let Ci be the corresponding approximating events that satisfy 
P (Bi n Cic) + P (Bi n Ci) < e/2i+1. Then pick n so that

E P (Bi n Bl- 1 n Bl-2 n... n Bc) < e/2. 
i>n

In the following, we use the approximating event C = U" । Ci e H to get

P(uiBi n Cc)+ P((uiBi)c n C)

< P [U Bi n CM + e/2+ H [U bJ n C) 
i=1 i=1

 ̂ 2 P (Bi n ci ) + P ( bi n Ci) + e/2

< £ e/2i+1 + e/2

= e,

and thus Ui=1 Bi e G. ■

A more powerful theorem, called the extension theorem, can be used to 
prove Kolmogorov’s zero-one law. We state it without proof.

Theorem 1.65 The extension theorem. Suppose you have random vari­
ables X1, X2, ..., and you consistently define probabilities for all events in 
a(X1, X2, ..., Xn) for every n. This implies a unique value of the probability 
of any event in a(X1, X2, ...).
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Remark 1.66 To see how this implies Kolmogorov’s zero-one law, spec­
ify probabilities under the assumption that A is independent of any event 
B & U^=i Fn. The extension theorem will say that A is independent of 
a (U~i Fn).

We will prove the law of large numbers using the more powerful ergodic 
theorem. This means we will show that the long-run average for a sequence 
of random variables converges to the expected value under more general 
conditions then just for independent random variables. We will define these 
more general conditions next.

Given a sequence of random variables Xi,X2,..., suppose (for simplicity 
and without loss of generality) that there is a one-to-one correspondence 
between events of the form {Xi = xi, X2 = x2, X3 = x3...} and elements of 
the sample space Q. An event A is called an invariant event if the occurrence 
of

{Xi = xi, X2 = x2, X3 = x3...} & A

implies both
{Xi = x2,X2 = x3,X3 = x4...} & A

and
{Xi = x0, X2 = xi, X3 = x2...} & A.

In other words, an invariant event is not affected by shifting the sequence of 
random variables to the left or right. For example, A = {supn> 1 Xn = to} 
is an invariant event if Xn < to for all n because supn> 1 Xn = to implies 
both supn>i Xn+i = to and supn>i Xn-i = to.

On the other hand, the event A = {limn X2n =0} is not invariant 
because if a sequence x2, x4, ... converges to zero it doesn’t necessarily mean 
that x1, x3, ... converges to zero. Consider the example where P (X1 =1)= 
1/2=1- P (X1 =0)andXn =1- Xn-1 for n>1. In this case, either 
X2n = 0 and X2n- 1 = 1 for all n > 1 or X2n = 1 and X2n- 1 = 0 for 
all n > 1, so {limn X2n = 0} and A = {limn X2n- 1 = 0} cannot occur 
together.

It can be shown (see Exercise 22 at the end of this chapter) that the 
set of invariant events makes up a sigma field, called the invariant sigma 
field, and is a subset of the tail sigma field. A sequence of random variables 
X1 ,X2 , ... is called ergodic if it has a trivial invariant sigma field and is 
called stationary if the random variables (X1, X2 , ..., Xn) have the same 
joint distribution as the random variables (Xk, Xk+1,..., Xn+k-1) for every 
n, k.

We are now ready to state the ergodic theorem, and an immediate 
corollary will be the strong law of large numbers.

Theorem 1.67 The ergodic theorem. If the sequence X 1 ,X2,... is station­
ary and ergodic with E\X 11 < to, then 1^2n=1 Xi ^ E[X 1] almost surely.
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Because a sequence of iid random variables is clearly stationary and, by 
Kolmogorov’s zero-one law, ergodic, we get the strong law of large numbers 
as an immediate corollary.

Corollary 1.68 The strong law of large numbers. If X1 ,X2,... are iid with 
E\X 11 < <x, then -1^2n=i Xi ^ E [X1] almost surely.

Proof Proof of the ergodic theorem. Given £ > 0, let Yi = Xi —E[X 1] — £ and 
Mn = max(0, Y1, Y1 + Y2,..., Y1 + Y2 + • • • + Yn)■ Because 1 52i=i Yi — 1 Mn, 
we will first show that Mn/n ^ 0 almost surely, and then the theorem 
will follow after repeating the whole argument applied instead to Yi = 
—Xi + E [X1 ] — £.

Letting Mn = max(0, Y2, Y2 + Y3,..., Y2 + Y3 + • • • + Yn +1) and using 
stationarity in the last equality, we have

E [ Mn+1] = E [max(0 ,Y1 + Mn)]
= E [ Mn +max(—Mn ,Y1)]
= E [ Mn ]+ E [max(—Mn ,Y1)],

and because Mn — Mn+1 implies E[Mn] — E[Mn+1], we can conclude 
E[max(—Mn, Y1)] > 0 for all n.

Because {Mn/n ^ 0} is an invariant event, by ergodicity it must have 
probability either zero or one. If we were to assume the probability is 
zero, then Mn +1 > Mn would imply Mn ^ to and also Mn ^ to, and 
thus max( —Mn ,Y1) ^ Y1. The dominated convergence theorem using 
the bound \ max(—Mf ,Y1) \ — |Y1 \ would then give E[max(—Mf ,Y1)] ^ 
E[Y1] = —£, which would then contradict the previous conclusion that 
E[max(—Mf ,Y1)] > 0 for all n. This contradiction means we must have 
Mn/n ^ 0 almost surely, and the theorem is proved. ■

1.11 Exercises
1. For n =1, 2,...,letxn = (—n)-n. What can you say about supn xn, 

infn xn , maxn xn , min xn , and limn xn ?

2. Given a sigma field F, if Ai e F for all 1 — i — n, is nn=1 Ai e F?

3. Suppose Fi, i = 1, 2, 3,... are sigma fields. (a) Is ni=1 Fi necessarily 
always a sigma field? Explain. (b) Does your reasoning in (a) also 
apply to the intersection of an uncountable number of sigma fields? 
(c) Is Ui=1 Fi necessarily always a a field? Explain.

4. (a) Suppose Q = {1, 2, ...,n}. How many different sets will there be 
in the sigma field generated by starting with the individual elements 
in Q? (b) Is it possible for a sigma field to have a countably infinite 
number of different sets in it? Explain.
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5. Show that if X and Y are real-valued random variables measurable 
with respect to some given sigma field, then so is XY with respect to 
the same sigma field.

6. If X is a random variable, is it possible for the cumulative distribution 
function (CDF) F(x) = P(X < x) to be discontinuous at a countably 
infinite number of values of x? Is it possible for it to be discontinuous 
at an uncountably infinite number of values of x? Explain.

7. Show that E[X] = i xiP (X = xi)ifX can only take a countably
infinite number of different possible values.

8. Prove that if X > 0 and E[X] < to, then limn Z E[XIX>n ] = 0•

9. Assume X > 0 is a random variable, but don’t necessarily assume that 
E[1 /X] < to. Show that limn Z E[XXIX>n]=0 and limn Z 

E [ nX Ix>n ]=0.

10. Use the definition of expected value in terms of simple variables to 
prove that if X > 0andE[X]=0thenX = 0 almost surely.

11. Show that if Xn —id c then Xn —pp c.

12. Show that if E[g(Xn)] d E[g(X)] for all bounded, continuous func­
tions g then Xn -dd X .

13. If X1 ,X2 ,... are nonnegative random variables with the same dis­
tribution (but the variables are not necessarily independent) and 
E[Xi] < to, prove that limn Z E[maxi<n Xi/n] = 0.

14. For random variables X 1, X2,..., let T be the tail sigma field, and let 
Sn = E n=i Xi. (a) Is {lim n . Sn/n > 0}eT ? (b) Is {lim n . Sn >
0 T ?

15. If X 1, X2,... are nonnegative iid random variables with P(Xi > 0) > 0, 
show that PQ2Zi Xi = to) = 1.

16. Suppose X1, X2, ... are continuous iid random variables and

Yn = I{Xn>maxi<n Xi} .

(a) Argue that Yi, is independent of Yj for i = j. (b) What is 
P(EZi Yi < to)? (c) What is P(£ = YiYi+1 < to)?

17. Suppose there is a single server and the ith customer to arrive requires 
the server spend Ui time serving them, the time between their arrival 
and the next customer’s arrival is Vi , and Xi = Ui - Vi are iid with 
mean p,. (a) If Qn +1 is the amount of time the (n + 1) customer 
must wait before being served, explain why Qn+i = max(Qn + Xn, 0) 
= max(0,Xn, Xn+Xn- 1, ...,Xn+• • •+X 1). (b) Show P(Qn to ) = 1
if ^> 0.
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18. Given a nonnegative random variable X , define the sequence of ran­
dom variables Yn = min(2nX\/2n, n), where |_xj denotes the integer 
portion of x. Show that Yn f X and E [X] = limn E [Yn ].

19. Show that for any monotone functions f and g if X, Y are independent 
random variables then so are f (X), g(Y).

20. Let X 1 ,X 2,... be random variables with Xi < to and suppose 
nP P(Xn > 1) < to. Compute P(supnXn < to).

21. Suppose Xn ^p X and that there is a random variable Y with 
E[Y] < to such that |Xn| < Y for all n. Show E[limn .- Xn] = 
lim> ■ .. E [Xn].

22. For random variables X1 ,X2 ,..., let T and I be the set of tail events 
and the set of invariant events, respectively. Show that I and T are 
both sigma fields.

23. A ring is hanging from the ceiling by a string. Someone will cut the 
ring in two positions chosen uniformly at random on the circumfer­
ence, and this will break the ring into two pieces. Player I gets the 
piece that falls to the floor, and player II gets the piece that stays 
attached to the string. Whoever gets the bigger piece wins. Does 
either player have an advantage here? Explain.

24. A box contains four marbles. One marble is red, and each of the other 
three marbles is either yellow or green, but you have no idea exactly 
how many of each color there are or if the other three marbles are all 
the same color or not. (a) Someone chooses one marble at random 
from the box, and if you can correctly guess the color, you will win 
$1,000. What color would you guess? Explain. (b) If this game is to 
be played four times using the same box of marbles (and the marble 
drawn each time is placed back in the box), what guesses would you 
make if you had to make all four guesses ahead of time? Explain.

25. For a sequence of iid continuous random variables X1 ,X2 ,..., let 
N = inf{n > 2 : Xn +1 > Xn} be the first time the next variable is 
larger than its immediate predecessor. Compute E[N].

26. Is it possible to pick a random positive integer uniformly at random? 
Is it possible to pick a positive real number uniformly at random? 
Explain why or why not.

27. In a group of n people, what is the expected number of distinct birth­
days?

28. If a fair coin is flipped n times, what is the expected number of runs 
of k heads in a row if overlapping runs are each counted separately? 
What is the expected number of times a run of at least k heads appears 
in n flips, without counting overlapping runs?
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Stein’s Method and Central
Limit Theorems

2.1 Introduction

You are probably familiar with the central limit theorem, which says that 
the sum of a large number of independent random variables follows roughly 
a normal distribution. Most proofs presented for this celebrated result 
generally involve properties of the characteristic function $(t) = E[ei'X] for 
a random variable X , the proofs of which are nonprobabilistic and often 
somewhat mysterious to the uninitiated.

One goal of this chapter is to present a beautiful alternative proof of 
a version of the central limit theorem using a powerful technique called 
Stein’s method. This technique also amazingly can be applied in settings 
with dependent variables and gives an explicit bound on the error of the 
normal approximation; such a bound is difficult to derive using other meth­
ods. The technique also can be applied to other distributions, the Poisson 
and geometric distributions included. We first embark on a brief tour of 
Stein’s method applied in the relatively simpler settings of the Poisson and 
geometric distributions, and then we move to the normal distribution. As a 
first step, we introduce the concept of a coupling, one of the key ingredients 
we need.

In Section 2.2, we introduce the concept of coupling and show how 
it can be used to bound the error when approximating one distribution 
with another distribution, and in Section 2.3, we prove a theorem by Le 
Cam that gives a bound on the error of the Poisson approximation for 
independent events. In Section 2.4, we introduce the Stein-Chen method, 
which can give bounds on the error of the Poisson approximation for events 
with dependencies, and in Section 2.5, we illustrate how the method can 
be adapted to the setting of the geometric distribution. In Section 2.6, we 

40
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demonstrate Stein’s method applied to the normal distribution, obtain a 
bound on the error of the normal approximation for the sum of independent 
variables, and use this to prove a version of the central limit theorem. 
Lastly, in Section 2.7 we demonstrate Stein’s method applied to exponential 
distribution and use it to approximate the sum of geometric number of 
independent random variables.

2.2 Coupling
One of the most interesting properties of expected value is that E [X - 
Y ]=E [X] - E [Y ] even if the variables X and Y are highly dependent on 
each other. A useful strategy for estimating E[X] - E[Y ]istocreatea 
dependency between X and Y , which simplifies estimating E[X - Y ]. Such 
a dependency between two random variables is called a coupling.

Definition 2.1 The pair (Ji, Y) is a coupling of the random variables (X, Y) 
if X = d X and F = d Y.

Example 2.2 Suppose X, Y and U are U(0, 1) random variables. Then 
both (U, U) and (U, 1 - U) are couplings of (X, Y).

A random variable X is said to be stochastically smaller than Y , also 
written as X <st Y, if

P (X < x) > P (Y < x), Yx.

Note that if X < Y almost surely then X <st Y. Under this condition, we 
can create a coupling where one variable is always less than the other.

Proposition 2.3 If X <st Y, it is almost surely possible to construct a 
coupling (X, F) of (X, Y) with X < F.

Proof With F(t) = P(X < t), G(t) = P(Y < t) and F-1 (x) = 
inf {t : F(t) > x} and G-1 (x) = inf {t : G(t) > x} , let U ~ U(0, 1), Ji = 
F-1 (U), and Y = G-1 (U). Because F (t) > G(t) implies F - 1(x) < 
G- 1(x), we have Ji < Y. And because

inf {t : F (t) > U} < x & F(x) > U

implies

P(F-1(U) < x) = P(F(x) > U) = F(x),

we get Ji = d X and Y = d Y after applying the same argument to G. ■

Example 2.4 If X ~ N(0, 1) and Y ^ N(1, 1), then X <st Y. To show this, 
note that (Ji, Y) = (X, 1 + X) is a coupling of (X, Y). Because Ji < Y'', we 
must have Ji <st Y'' and thus X <st Y.
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Even though the probability that two independent continuous random 
variables exactly equal each other is always zero, it is possible to couple two
variables with completely different density functions so that they equal each
other with high probability. For the random variables (X, Y ), the coupling
(Ji, Y') is called a maximal coupling if P(Ji = Y) is as large as possible. We 
next show how large this probability can be and how to create a maximal
coupling.

Proposition 2.5 Suppose X and Y are random variables with respective 
piecewise continuous density functions f and g. The maximal coupling 
(X,Y) for (X,Y) has

Z
TO .  ....................... ....

min(f(x), g(x))dx.
-TO

Proof Letting p = f^^ min(f (x), g(x))dx and A = {x : f (x) < g(x)}, note 
that any coupling (Ji, Y) of (X, Y) must satisfy

P (X = Y) = P (X = Y e A) + P (X = Y e Ac)

< P (X e A) + P (Y e Ac)

= f (x)dx + g(x)dx

= p.

We use the fact that f, g are piecewise continuous to justify that the inte­
grals in the preceding step (and in the next step) are well defined. Next 
we construct a coupling with P(Ji = Y) > p, which in light of the previous 
inequality, must therefore be the maximal coupling. Let B, C, and D be 
independent random variables with respective density functions

min(f (x), g(x)) 
b (x) =---------------------

p

and

f(x) - min(f (x), g(x)) 
c(x) =------------ ------------------1-p

d( ) = g(x) ~ min(f (x),g(x)) 
( ) 1 - p '

Let I be a Bernoulli(p) random variable independent of B, C, and D, and 
if I =1, then let Ji = Y = B, and otherwise, let Ji = C and Y = D. This 
clearly gives P (Ji = Y) > P (I = 1) = p and
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P(X < x) = P(X < x\I = 1)p + P(X < x\I = 0)(1 -p)

= p b(x)dx +(1 - p) c(x)dx
— -tt — —oo

= f (x)dx,
—o

and the same argument again gives P(Y < x) = P(Y < x). ■
We can repeat this exact same proof with probability mass functions 

replacing densities and sums replacing integrals to obtain the following 
proposition for two discrete random variables.

Proposition 2.6 Suppose X and Y are discrete random variables, with each 
taking values in a set A. Let their respective probability mass functions 
f(x)=P(X = x) and g(x)=P(Y = x). The maximal coupling of (X, Y) has

P(X = V) = 52mn(5(x),f (x)) • 
x

There is a relationship between how closely two variables can be coupled 
and how close they are in distribution. One common measure of distance 
between the distributions of two random variables X and Y is called total 
variation distance, which is defined as

dTV (X, Y) = sup \P (X & A) - P (Y & A) | •
A

We next show the link between total variation distance and couplings.

Proposition 2.7 If (JC, 'Y) is a maximal coupling for (X, Y), then

dTV ( x,y ) = p (Xc = y) •

Proof The result will be proven under the assumption that X, Y are contin­
uous with respective density functions f, g. Letting A = {x : f(x) > g(x)}, 
we must have

dTV(X,Y)
= max{P(X & A) - P(Y & A),P(Y & Ac) - P(X & Ac)}
= max{P(X & A) - P(Y & A), 1 - P(Y & A) - 1+P(X & A)}
= P(X & A) - P(Y & A)
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and so

p ( x = Y) = 1 - 0 min(f(x), g(x))dx 
— -oo

=1- g(x)dx - f (x)dx

= 1 - P (Y e A) - 1 + P (X e A)
=dTV(X,Y).

2.3 Poisson Approximation and Le Cam’s Theo­
rem

It’s well known that a binomial distribution converges to a Poisson distri­
bution when the number of trials is increased and the probability of success 
is decreased at the same time in such a way that the mean stays constant. 
This also motivates using a Poisson distribution as an approximation for a 
binomial distribution if the probability of success is small and the number 
of trials is large. If the number of trials is very large, computing the distri­
bution function of a binomial distribution can be computationally difficult, 
whereas the Poisson approximation may be much easier.

A fact that is not as well known is that the Poisson distribution can be 
a reasonable approximation even if the trials have varying probabilities and 
even if the trials are not completely independent of each other. This ap­
proximation is interesting because dependent trials are notoriously difficult 
to analyze in general, and the Poisson distribution is elementary.

It’s possible to assess how accurate such Poisson approximations are, 
and we first give a bound on the error of the Poisson approximation for 
completely independent trials with different probabilities of success.

Proposition 2.8 Let Xi be independent Bernoulli(pi), and let W = n=1 r==r Xi, 
Z ~ Poisson(A), and A = E[W] 52n=i Pi■ Then

dTV ( W,Z) < £ p2.
i=1

Proof We first write Z 52n=i Zi, where the Zi are independent and Zi ~ 
Poisson(pi). Then we create the maximal coupling (Zi,Xi) of (Zi,Xi) and 
use the previous corollary to get
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P (Zi = X i) = min( P (Xi = k) ,P (Zi = k))
k=0

= min(1 - pi, e-pi ) + min(pi, pie-pi )

=1- pi + pie-pi

> 1 — P2,

where we use e x > 1 — x. Using that Q2in=i Zi, X2 n=i Xi) is a coupling of 
(Z, W ) yields that

dTV (W,Z) <

<

<

(n . n .
E Zi = E xi 

i=i i=i

P( Ui{Zi = xi})

P(Zp (Zi = xi) 
i

< is p2. 

i=i

Remark 2.9 The drawback to this beautiful result is that when E[W] is 
large the upper bound could be much greater than 1 even if W has ap­
proximately a Poisson distribution. For example, if W is a binomial (100, 
0.1) random variable and Z ~ Poisson(10), we should have W ~:d Z, 
but the proposition gives us the trivial and useless result dTV (W, Z) < 
100 x (0.1)2 = 1.

2.4 Stein-Chen Method

The Stein-Chen method is another approach for obtaining an upper bound 
on dTV (W, Z), where Z is a Poisson random variable and W another vari­
able of interest. This approach covers the distribution of the number of 
successes in both dependent and independent trials with varying probabil­
ities of success.

In order for the bound to be good, it should be close to 0 when W is 
close in distribution to Z . In order to achieve this, the Stein-Chen method 
uses the interesting property that if Z is a Poisson random variable with 
mean A then

kP (Z = k) = AP (Z = k — 1). (2.1)
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Thus, for any bounded function f with f (0) = 0,
oo

E[Zf(Z)] = kf(k)P(Z = k)
k=0

oo
= x^f (k)P(Z = k - 1) 

k=1
oo

= x f(i+1)P(Z=i)

= xE=[f(Z + 1)].

The secret to using the preceding is in cleverly picking a function f such 
that dTV(W, Z) < E[Wf (W)] — XE[f (W + 1)], and so we are likely to get 
a small upper bound when W K,d Z, where we use the notation W ~:d Z 
to mean that W and Z have approximately the same distribution.

Suppose Z ~ Poisson(X) and A is any set of nonnegative integers. Define 
the function fA(k), k =0, 1, 2, ..., starting with fA(0) = 0 and then using 
the following Stein equation for the Poisson distribution:

XfA(k + 1) — kfA(k)= IkeA — P(Z E A)• (2.2)

Notice that by plugging in any random variable W for k and taking 
expected values we get

XE[fA(W+1)—E[WfA(W)]]=P(WEA)—P(ZEA),

so that

dTV(W,Z)=sup|XE[fA(W+1)]—E[WfA(W)]|. (2.3)
A

Lemma 2.10 For any A and i, j, |fA (i) — fA(j)| < min(1, 1/X)|i — j|.

Proof The solution to Equation 2.2 is

r 11. Ij-k — P(Z < k)fA ( + ) = ]AA XP (z = k)/P (z = j)

because when we plug it in to the left-hand side of Equation 2.2 and use
Equation 2.1 in the second line in the following, we get

XfA (k + 1) — kfA (k)
_ I Ij<k— P(Z < k) k Ij<k-1 - P(Z < k — 1) A
= 2^ P (Z = k)/P (Z = j) - XP (Z = k — 1)/P (Z = j)) 

j^A

__ Ij=k — P (Z = k)
-2A p ( z = k)/p ( z = j)

= IkeA — P(Z E A),

which is the right-hand side of Equation 2.2.
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Because
P (Z < k) k!Xi-k k! X-
P(Z = k) i! = Z^ (k - i)!

7 7 i<k i<k 7 7

is increasing in k and

1 — P(Z < k)_ k!X - k!Xi
P(Z = k) ~~i\ = Z^ (i + k)!

7 7 i>k i>0 7 7

is decreasing in k, we see that f{j} (k + 1) < f{j} (k) when j = k and thus

<

fA ( k +1) — fA ( k ) = £ f{j} ( k +1) — f{j} ( k ) 
a

<12 f{j}(k+ 1) — f{j}(k) 
pA,j=k

P (Z>k) , P (Z < k — 1)
X + xp ( z = k — 1)/p ( z = k)

P (Z>k) P (Z < k — 1)
X + k

P (Z >k) P (0 < Z < k)
X + X

1 — e~x 

X
< min(1, 1 /X)

<

<

and
—fA(k + 1) + fA(k) = fAc (k + 1) — fAc (k) < min(1, 1 /X), 

which together give

\fA(k +1) — fA(k)| < min(1, 1 /X).

The final result is proved using

max( i,j) -1

If A (i) — fA (j) 1^ E If A (k +1) — fA (k) \<\j — i| min(1, 1 /X).
k=min( i,j)

Theorem 2.11 Suppose W = "= n=i Xi, where Xi are indicator variables 
with P(Xi = 1) = Xi and X = X2ni=1 Xi. Letting Z ~ Poisson(X) and 
Vi = d (W — 1 \Xi = 1), we have

dTV(W,Z) < min(1, 1 /X) XiE\W — Vi\.
i=1
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Proof We use

n

E[WfA(W)] = E[XifA(W)]
i=1
n

= ^2 E [XifA (W) Xi = 1] Xi

i=1
n

= E E [ fA (Vi + 1)] Xi

i=1

with Equation 2.3 to get

dTV(W, Z) = sup IE[XE[fA(W + 1)] - WfA(W)] |
A

< sup ^2 Xi IE [ fA (W +1) - fA (Vi + 1)] |

A i=1

< sup ^2 Xi E If a (W + 1) - fA (Vi + 1) |

A i=1

< min(1, 1/X) 22XiEIW - ViI,
i=1

Proposition 2.12 With the preceding notation, we have the following:

1. If W > Vi almost surely for all i, then we have

dTV (W, Z) < 1 - Var(W)/E[W].

2. If either W > Vi almost surely or W < Vi almost surely for all i, then

dTV(W, Z) < min(1, 1 /X) XE[W] - E[Vi]I-
i=1
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Proof Using W > Vi, we have

XiE|W - Vil = XiE[W - Vi]
i=1 i=1

= x2 + x - xiE[1 + Vi]
i=1

= X2 + X - XiE[WXi = 1]
i=1 
n

= X2 + X - E[XiW]
i=1

= X - Var(W),

and the preceding theorem along with X = E [W] gives

dTV(W,Z) < min(1, 1 /E[W])(E[W] - Var(W))
< 1 - Var(W)/E[W]

proving part 1. Under condition 2, we will have E|W - Vi | = |E[W - Vi]|, 
so the result also follows from the previous theorem. ■

Example 2.13 Let Xi be independent Bernoulli(pi) random variables with 
X = n=1 n=iPi. Let W = n= n=iXi, and let Z ~ Poisson(X). Using Vi = 
j=ij=i Xj, note that W > Vi and E [W - Vi] = pi, so the preceding theorem 
gives us

dTV (W, Z) < min(1, 1/X) pi2 .
i=i

For instance, if X is a binomial random variable with parameters n = 
100,p = 1/10, then the upper bound on the total variation distance between 
X and a Poisson random variable with mean 10 given by the Stein-Chen 
method is 1/10, as opposed to the upper bound of 1 that results from the 
LeCam method of the preceding section.

Example 2.14 A coin with probability p =1- q of coming up heads is 
flipped n + k times. We are interested in P (Rk), where Rk is the event that 
a run of at least k heads in a row occurs. To approximate this probability, 
the exact expression for which is given in Example 1.10, let Xi =1ifflip 
i lands tails and flips i +1,...,i+ k all land heads; otherwise, let Xi =0, 
i =1,...,n. Let

W = E Xi 

i=i
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and note that there will be a run of k heads either if W>0 or if the first 
k flips all land heads. Consequently,

P (W>0) <P(Rk ) <P(W>0) + pk .

Because the flips are independent and Xi = 1 implies Xj = 0 for all j = i 
where |i — j\ < k, it follows that if we let

i + k

Vi = W — Xj

j=i-k

then Vi = d (W — 1 \Xi = 1) and W > Vi. Using A = E[W] = nqpk and 
E[W — Vi] = (2k + 1)qpk, we see that

dTV (W, Z) < min(1, 1/A)n(2k + 1)q2p2k,

where Z ~ Poisson(A). For instance, suppose we flip a fair coin 1,034 times 
and want to approximate the probability that we have a run of 10 heads in 
a row. In this case, n =1,024,k= 10, and p = 1/2, so A = 1,024/211 = 0.5. 
Consequently,

P(W > 0) « 1 — e-0.5

with the error in the preceding approximation being at most 21/212. Con­
sequently, we obtain

1 — e-0.5 — 21/212 < P(R10 > 0) < 1 — e-0.5 + 21/212 + (1/2)10

or
0.388 < P(R10 > 0) < 0.4.

Example 2.15 Birthday Problem. With m people and n days in the year, 
let Yi, equal the number of people born on day i. Let Xi = IYi=0, and 
W = in=1 Xi equal the number of days on which nob ody has a birthday.

Next imagine n different hypothetical scenarios are constructed, where 
in scenario i all the Yi people initially born on day i have their birthdays 
reassigned randomly to other days. Let 1 + Vi equal the number of days 
under scenario i on which nobody has a birthday, and note that Vi =d 

(W—1|Xi =1).
Notice that this construction gives W > Vi, so E|W — Vi| = |E[W] — 

E[Vi]|. Letting A = E[W] = n(1 — 1/n)m and noting E[Vi] = (n — 1)(1 — 
1 /(n — 1))m, we use Theorem 2.11 with Z ~ Poisson(A) to get

dTV (W, Z) < min(1,A)(A — (n— 1)(1 — 1/(n — 1))m).
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2.5 Stein’s Method for the Geometric Distribu­
tion

In this section, we show how to obtain an upper bound on the distance 
dTV (W, Z), where W is a given random variable and Z has a geometric 
distribution with parameter p =1- q = P (W =1)=P (Z =1). We use 
a version of Stein’s method applied to the geometric distribution. Define 
fA(1) = 0, and for k =1, 2, ..., use the recursion

fA (k) - qfA (k + 1) = IktA — P (Z c A).

Lemma 2.16 We have |fA(i) - fA(j)| < 1/p

Proof It’s easy to check that the solution is

fA (k) = P (Z C A,Z > k)/P (Z = k) - P (Z C A) /p,

and because neither of the two terms in the difference can be larger than 
1 /p, the lemma follows. ■

Theorem 2.17 Given random variables W and V such that V =d (W - 1| 
W > 1), let p = P(W = 1) and Z ~ geometric(p). Then

dTV (W,Z) < qp-1P(W = V).

Proof

|P(WcA)-P(ZcA)| = |E[fA(W) -qfA(W+1)]|
= |qE[fA(W)|W > 1] -qE[fA(W+1)]| 
<qE|fA(1+V)-fA(1+W)|

< qp-1P(W = V),

where the last inequality follows from the preceding lemma. ■

Example 2.18 Coin flipping. A coin has probability h =1- q of coming 
up heads with each flip, and let Xi = H if the ith flip is heads and Xi = T 
if it is tails. We are interested in the distribution of the number of flips

M = min{i > 1:(Xi,Xi+1,...,Xi+k-1)=(H,H,...,H)}

required until the start of the first appearance of a run of k heads in a row. 
Suppose in particular we are interested in estimating P(M c A) for some 
set A. To do this, define the number of flips

N = min{i > 1:(Xi,Xi+1,...,Xi+k)=(T,H,...,H)} 



52 2 Stein’s Method and Central Limit Theorems

required until the start of the first appearance of a run of a tail followed by 
k heads in a row. For instance, if k = 3 and the flip sequence is HHTTHHH, 
then N =4 and M =5. Note that we will have N +1 = M unless M =1 
so

dTV (M, N +1) < P(N + 1 = M) = P(M = 1) = pk.

We will first obtain a bound on the geometric approximation to N and use 
it to get a bound for M . We first define

W = min{i > 2 : (Xi, Xi+1,..., Xi + k) = (T, H,..., H)} — 1

and note that W =d N. Then, we define the event

A={(X1,X2,...,Xk+1)=(T,H,...,H)}

and independently generate new variables that have the joint distribution

(X1 ,X2,...,Xk+1)= d (X1 ,X2,...,Xk+1 \Ac)

given (T,H,. .. ,H) doesn’t appear first. We will construct a new sequence 
of coin flips Y1, Y2, ... by letting

Y = f Xi if i < k + 1 and A happens
i = Xi otherwise

and note that with

V = min{i >2:(Yi,Yi+1,...,Yi+k)=(T,H,...,H)}—1

we have V =d (W — 1\W>1) and

P(W = V) < P(A n{v < k}) < kqp2k.. 
1 — qpk

Thus, if Z ~ geometric(qpk), the previous theorem gives

dTV (N, Z) < 1—qpkP (W = V) < kpk 

qpk

and the triangle inequality applies to dTV so we get

dTV(M — 1,Z) < dTV(M — 1,N)+dTV(N,Z)=(k+1)pk,

and we get the bounds

P(Z e A) — (k + 1)pk < P(M e A) < P (Z e A) + (k + 1)pk.
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2.6 Stein’s Method for the Normal Distribution
Let Z ~ N(0, 1) be a standard normal random variable. It can be shown 
that for smooth functions f we have E [f'(Z) — Zf (Z)] = 0, and this in­
spires the following Stein equation.

Lemma 2.19 Given a > 0 and any value of z let

{
1 if x < z
0 if x > z + a

(a + z — x)/a otherwise,

and define the function fa,z (x) = f (x), —x < x < x so it satisfies

f' (x) — xf (x) = h (x) — E [ h (Z)].

Then\f'(x) — f'(y)|< 2\x — y\, Vx,y.

Proof Letting 9(x) = e—x /2/V2n be the standard normal density function, 
we have the solution

E . E[h(Z)Iz<x] — E[h(Z)]P(Z < x)
f (x) =------------ =----- ,

V(x)

which can be checked by differentiating using dx (9(x)- 1) = x/9(x) to get 
f'(x) = xf (x) + h(x) — E[h(Z)]. Then this gives

If " (x) | = \f (x) + xf' (x) + h' (x) |
= | (1 + x 2) f (x) + x (h (x) — E [ h (Z)]) + h' (x) |.

Because

h(x) — E[h(Z)]

Z
.

(h (x) — h (s)) 9 (s) ds
r

= f h h' (t) dt^(s) ds — I h h' (t) dt^(s) ds
-r s x x

= ( h' (t) P (Z < t) dt -[ h' (t) P (Z>t)) dt,
— —^ X x

and a similar argument gives

f (x) = — P(Z>x) r h'(t)P(Z < t)dt
9(x) J—r

—P(Z<x) r h(t)p(Z>t)dt,9(x) x
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we get

\f"(x)| < lh'(x)| + |(1 + x2)f (x) + x(h(x) - E[h(Z)]|
1

< - 
a

+---- (— x + (1 + x2)P(Z > x)/ f(x))(xP(Z < x) + f (x))
a

+---- (x + (1 + x2)P(Z < x)/ f (x))(—xP(Z > x) + f (x))
a

< 2/a.

We finally use

f'(x) — f'(y)| < [ maX(X,y) f"(x)fa < 2 — y!

min(x,y) a

to give the lemma. ■

Theorem 2.20 If Z ~ N(0, 1) and W n=i Xi, where Xi are indepen­
dent variables with mean 0 and Var(W) = 1, then

n

sup ]P(W < z) — P(Z < z)| < 2. 3?E[|Xi|3].
z \

Proof Given any a > 0 and any z, define h, f as in the previous lemma. 
Then

P (W < z) — P (Z < z)
= Eh(W) — Eh(Z) + Eh(Z) — P (Z < z)
< E[h(W)] — E[h(Z)] | + P(z < Z < z + a)

= E [ h (W)] — E [ h (Z)] | + [ + ^= e-x212 dx 
2 z 2n n

< E[h(W)] — E[h(Z)] | + a.

To finish the proof of the theorem, we show

n

E [ h (W)] — E [ h (Z)] 3 E [ X | ]/a,
i=1

and then by choosing
n

a = 3 E [ Xf | ]



2.6 Stein’s Method for the Normal Distribution 55

we get

n

P (W < x) - P (Z < x) < 2 3£ E [ X 3].

Repeating the same argument starting with

P (Z < z) - P (W < z)
< P(Z < z) - Eh(Z + a) + Eh(Z + a) - Eh(W + a)
< IE[h(W + a)] - E[h(Z + a)] | + P(z < Z < z + a),

the theorem is proved.
To do this, let Wi = W - Xi, and let Yi, be a random variable inde­

pendent of all else that has the same distribution as Xi. Using Var(W) = 
m=1 E[Yi2] = 1 and E[Xif (Wi)] = E[Xi]E[f (Wi)] = 0 in the second 
equality to come, and the preceding lemma with |W - Wi - tl < |t| + Xi| 
in the second inequality to come, we have

E[h(W)] - E[h(Z)] |
= E [ f' ( w ) - Wf ( w )] |

n

E_X'[Yi2 f'(W) - Xi(f (W) - f (Wi)))] 
i =1

0
= e e Yi ri(f1 (w) - f1 (wi+1))dt 

i=1 L 70

< V E Yi f \f'(W) - f'(Wi +1) ]dt 

00

r
0

n

—([^ + X^) dt , 
a

and continuing on from this we get

n

E [ Xi | ]/a + 2 E [ Xi2 ] E [ |Xi| ]/a
i=1
n

3 E [ Xi | ]/a,
i=1

where in the last line we use E[|Xi |]E[Xi2] < E[|Xi |3] (which follows because 
|Xi| and Xi2 are both increasing functions of |Xi| and are thus positively 
correlated. The proof of this result is given in the following lemma ■
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Lemma 2.21 If f(x) and g(x) are nondecreasing functions, then for any 
random variable X

E[f (X)g(X)] > E[f (X)]E[g(X)].

Proof Let X1 and X2 be independent random variables having the same 
distribution as X. Because f (X1) - f(X2) and g(X1) - g(X2) are either 
both nonnegative or are both nonpositive, their product is nonnegative. 
Consequently,

E[(f(X1) - f(X2))(g(X1) - g(X2))] >0,

or equivalently,

E[f(X1)g(X1)] + E[f(X2)g(X2)] > E[f(X1)g(X2)] + E[f(X2)g(X1)].

But by independence,

E[f(X1)g(X2)] = E[f(X2)g(X1)] = E[f(X)]E[g(X)],

and the result follows. ■
The preceding results yield the following version of the central limit 

theorem as an immediate corollary.

Corollary 2.22 If Z ~ N(0, 1) and Y1, Y2, .. . are iid random variables with 
E[Yi]] = /a, Var(Yi) = a2 and E[|Yi|3] < <x, then as n ^ <x we have

p( Y—^ < * । ^ p ( z < z).
na 

i=1

Proof Letting Xi = Y^—ni, i > 1, and Wn n=i Xi, then Wn satisfies the
conditions of Theorem 2.20. Because

E[IXi 13] = nE[|X 113] = nE Yn3- ' 3] ^ 0, 
i=1

it follows from Theorem 2.20 that P(Wn < x) ^ P(Z < x). ■
See [3] for additional results on applying Stein’s method to normal dis­

tributions.

2.7 Stein’s Method for the Exponential Distri­
bution

Let Z have an exponential distribution with mean 1. Here we develop 
Stein’s method and use it to approximate the sum of a geometric number 
of independent random variables.
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Lemma 2.23 Given a > 0 and z > 0, let h(x) be defined as in Lemma 
2.19, and define the function fa,z (x) = f (x), 0 < x < <x, so it satisfies 
f(0) = 0 and, for x>0,

f'(x) - f (x) = h(x) - E[h(Z)] •

Then If'(x) - f'(y)| < 2Ix - y\, Vx,y > 0•

Proof We have the solution
f' (x) = —ex[ h (t) e-tdt,

x

which can be checked by taking the derivative of both sides to get f" (x) = 
h'(x) + f'(x). Noting that \h'(x)| < 1 /a, we have

If'(x)| < ex I ---- dt < 1 /a
xa

and
If"(x)I = \h'(x) + f'(x)|< 2/a.

We can use this to obtain the following result for a geometric sum.

Corollary 2.24 For 0 < p < 1 let N ~ Geometric(p), suppose Xi > 0 
are iid and independent of N with E[Xi] = p, let Sn = in=1 Xi, and let 
W = SN. With Z ~ Exponential (1), we have

sup IP(W < z) - P(Z < z) | < J4E[X1 ]/p + 8p. 
z

Before giving the proof, for a random variable X > 0, we say that Xs is 
a size-biased version of X if E[f(Xs)] = E[Xf(X)]/E[X] for all bounded 
functions f . For example, if X is discrete, then P (X s = k )=kP(X = 
k)/E [X], and if X is continuous with density g(x), then Xs has density 
xg (x)/E [ X ] •

Proof of Corollary Let U ~ U(0, 1) be independent of all else and let 
W* = UXN + SN- 1, where XSN is a size-biased version of XN and is 
independent of U and SN- 1 • Given any a > 0 and z > 0, define h, f as in 
the previous lemma. Then

P(W < z) - P(Z < z)
= Eh(W) - Eh(Z) + Eh(Z) -P(Z < z)
< IE[h(W)] - E[h(Z)]I + P (z < Z < z+a)

= IE[f'(W) - f (W)] I + [z+" e-xdx 

z

< IE[f'(W) - f'(W*)] I + a
< 2EIW - W*I/a + a,
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where we use the previous lemma in the last line and

E [ f' (W *)] = E [ Xn f' ( UXN + SN -1)]/E [ XN ]

=E X Xn f' (uXN + Sn — 1) du
0

/p

= E[f(SN) - f(SN-1)]/p
co

= P(N = n)E[f(Sn) - f(Sn-1)]/p
n=1
o

= £ P(N > n)E[f (Sn) - f (Sn— 1)]
n=1

=E
co

]T1 N >n ( f ( Sn ) — f ( Sn— 1))
n=1

= E[f(W)]

in the fourth line. Then, choosing a \J'2EW - W*|, we obtain the result
after noting

E|W - W*| < E[UXSN] + E[Xn] = E[Xi]/(2P) + P.

2.8 Exercises
1. If X ~ Poisson(a) and Y ~ Poisson(b), with b > a, use coupling to 

show that Y >st X.

2. (a) Show that X <st Y if and only if E [h(X)] < E[h(Y)] for all 
increasing functions h.

(b) Suppose X1, . . .,Xn are independent, and Y1, . . .,Yn are inde­
pendent. Show that if Xi <st Yi for all i = 1,...,n then 
E[h(X1,...,Xn)] < E[h(Y1,...,Yn)] for all increasing
functions h.

3. Suppose two particles start at position 0 and at each time period 
particle i moves one position to the right with probability Pi,j or moves 
one position to the left with probability 1 - Pi,j where j is the position 
of the particle before it moves. Let Xn,i be the position of particle 
i after n moves. If Pi,j > P1,j for all j show that Xn,i >st Xn,1 for 
all n. Is this also always true under the same conditions but allowing 
the second particle to initially start to the right of the first particle?
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4. Let X, Y be indicator variables with E[X]=a and E[Y ]=b.

(a) Show how to construct a maximal coupling Ji,Y for X and Y, 
and then compute P(Ji = Y) as a function of a, b.

(b) Show how to construct a minimal coupling to minimize P(Ji = 
Y).

5. In a room full of n people, let J be the number of people who share 
a birthday with at least one other person in the room. Then let Y be 
the number of pairs of people in the room having the same birthday. 
Assume that the n birthdays are independent and that each is equally 
likely to be any of the 365 days of the year.

(a) Compute E[J ] and Var(J )andE[Y]andVar(Y).

(b) Which of the two variables J or Y do you believe will more 
closely follow a Poisson distribution? Why?

(c)Ifn = 51, use a Poisson approximation to estimate P(J >9) 
and P(Y >6). Which of these two approximations do you think 
will be better? Have we observed a rare event here?

6. Compute a bound on the accuracy of the better approximation in 
part (c) of Exercise 5 using the Stein-Chen method.

7. For discrete X, Y prove dTV(X, Y) = 11^x IP(X = x) — P(Y = x) I

8. For discrete X, Y show that P(X = Y) > dTV(X, Y) and that a 
coupling exists that yields equality.

9. Compute a bound on the accuracy of a normal approximation for a 
Poisson random variable with mean 100.

10. If X ~ Geometric(p), with q =1 — p, then show that for any bounded 
function f with f(1) = 0, we have E[f(X) - qf(X +1)]=0.

11. Suppose X ।, X 1,... are independent mean zero random variables with 
|X„| < 1 for all n and £i<n Var(Xi)/n ^ s < <x. If Sn = £i<n Xi 

and Z ~ N(0, s), show that Sn/y/n ^p Z.

12. Suppose m balls are placed among n urns, with each ball indepen­
dently going in to urn i with probability pi . Assume m is much larger 
than n. Approximate the chance none of the urns are empty, and give 
a bound on the error of the approximation.
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13. A ring with a circumference of c is cut into n pieces (where n is large) 
by cutting at n places chosen uniformly at random around the ring. 
Estimate the chance you get k pieces of length at least a, and give a 
bound on the error of the approximation.

14. Suppose Xi,i=1, 2, ..., 10 are iid U(0, 1). Give an approximation for 
P ( i1=0 1 Xi > 7), and give a bound on the error of this approximation.

15. Suppose Xi, i = 1, 2,...,n are independent random variables with 
E[Xi] = 0, and in=1 Var(Xi) = 1. Let W = in=1 Xi and show that

E|W| ji * 3 e ®iX<i3.
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Conditional Expectation and 
Martingales

3.1 Introduction

A generalization of a sequence of independent random variables occurs when 
we allow the variables in the sequence to be dependent on previous variables 
in the sequence. One example of this type of dependence is called a mar­
tingale, and its definition formalizes the concept of a fair gambling game. 
A number of results that hold for independent random variables also hold, 
under certain conditions, for martingales, and seemingly complex problems 
can be elegantly solved by reframing them in terms of a martingale.

In Section 3.2 we introduce the notion of conditional expectation, for­
mally define a martingale in Section 3.3, introduce the concept of stopping 
times and prove the martingale stopping theorem in Section 3.4, give an 
approach for finding tail probabilities for martingale in Section 3.5, and 
introduce supermartingales and submartingales and prove the martingale 
convergence theorem in Section 3.6.

3.2 Conditional Expectation

Let X be such that E[|X|] < <x. In a first course in probability, E[X|F], 
the conditional expectation of X given Y , is defined to be the function of 
Y that when Y = y is equal to

61
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E[X|Y =y]=

xxP(X = x|Y = y), 
if X, Y are discrete

xfX|Y (x|y)dx,
if X, Y have joint density f

where
fxlY () = ..' = fxy) ( (3.1)

f(x,y)dx fY (y)

The important result, often called the tower property,

E[X] = E[E[X|Y]],

is then proven. This result, which is often written as

E[X] =

y E[X|Y = y]P(Y =y)
if X,Y are discrete

f E[X Y = y] fY(y)dy,
if X,Y are jointly continuous,

is then gainfully employed in a variety of different calculations.
We now show how to give a more general definition of conditional expec­

tation that reduces to the preceding cases when the random variables are 
discrete or continuous. To motivate our definition, suppose that whether 
or not A occurs is determined by the value of Y. (That is, suppose that 
A € a(Y).) Then, using material from our first course in probability, we 
see that

E[XIA] = E[E[XIA|Y]] 
= E [IAE[X|Y]],

where the final equality holds because, given Y , IA is a constant random 
variable.

We are now ready for a general definition of conditional expectation.

Definition For random variables X,Y, let E[X|Y], which is called the con­
ditional expectation of X given Y, denote that function h(Y) having the 
property that for any A € a (Y)

E[XIA] = E[h(Y)IA].
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By the Radon-Nikodym theorem of measure theory, a function h that 
makes h(Y ) a (measurable) random variable and satisfies the preceding 
always exists, and as we show in the following, it is unique in the sense that 
any two such functions of Y must, with a probability of one, be equal. The 
function h is also referred to as a Radon-Nikodym derivative.

Proposition 3.1 If h1 and h2 are functions such that

E[h1(Y)IA] = E[h2(Y)IA]

for any A G a (Y), then

P(h1(Y)=h2(Y))=1.

Proof Let An = {h1 (Y) - h2 (Y) > 1/n}. Then,

0 = E[h1(Y)IAn]-E[h2(Y)IAn]
= E[(h1(Y) - h2(Y))IAn]
> 1P ( An ), 

n

showing that P (An )=0. Because the events An are increasing in n, this 
yields

0 = lim P ( An ) = P (lim An ) = P ( UnAn ) = P ( h 1( Y ) > h 2( Y )) .

Similarly, we can show that 0 = P(h1 (Y) < h2(Y)), which proves the 
result. ■

We now show that the preceding general definition of conditional ex­
pectation reduces to the usual ones when X, Y are either jointly discrete or 
continuous.

Proposition 3.2 If X and Y are both discrete, then

E [ X Y = y ] = xP (X = xY = y),
x

whereas if they are jointly continuous with joint density f, then

E[X|Y = y]= xfX|Y (x|y)dx,

where f^w ( x\i/) — __ f (x,y)__where JX|y(x\y)— J f (x,y)dx .
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XIA =

h(Y)IA =

Proof Suppose X and Y are both discrete, and let

h(y) = xP(X = x|Y = y).
x

For A € a (Y), define

B = {y : IA =1whenY = y}.

Because B € a(Y), it follows that IA = IB . Thus,

x if X = x, Y € B 
0 otherwise

and

£x xP(X = xY = y) if Y = y € B.
0 otherwise

Thus,

E [XIA] = xP (X = x,Y € B)
x

= x P(X = x, Y = y)

= EE xP(X = x|Y= y)P(Y = y)
yEB x

= E[h(Y)IA].

The result thus follows by uniqueness. The proof in the continuous case is 
similar and is left as an exercise. ■

For any sigma field F, we can define E [X |F] to be that random variable 
in F having the property that for all A €F

E[XIA] = E[E[X|F]IA].

Intuitively, E [X |F] represents the conditional expectation of X given that 
we know all of the events in F that occur.

Remark 3.3 It follows from the preceding definition that E[X|Y] = 
E[X|a(Y)].

For any random variables X, X1 ,...,Xn, define E[X |X1,...,Xn]by

E[X|X1,...,Xn]=E[X|a(X1,...,Xn)].

In other words, E[X|X1,...,Xn] is that function h(X1,...,Xn)forwhich

E[XIA] = E[h(X1,...,Xn)IA], for allA € a(X1,...,Xn).

We now establish some important properties of conditional expectation.
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Proposition 3.4
(a) Tower property: For any sigma field F 

E[X] = E[E[X|F]].

(b) For any A G F,

E[XIA|F] = IAE[X|F].

(c) If X is independent of all Y G F, then 

E[X|F] = E[X].

(d) If E [|Xj|] < <x, i =1, .. ., n, then
n

Xi|F
i=1

E
n

= E[Xi|F].
i=1

(e) Jensen’s inequality: If f is a convex function, then

E[f (X)IF] > f (E[XIF])

provided the expectations exist.

Proof Recall that E [X |F] is the unique random variable in F such that

E[XIA]=E[E[X|F]IA] ifA GF.

Letting A = Q, Ia = Iq = 1, and Part (a) follows.
To prove Part (b), fix A G F and let X* = XIa. Because E[X*|F] 

is the unique function of Y such that E[X*Ia] = E[E[X*|F]I a] for all 
A G F, to show that E[X*|F] = IaE[X|F], it suffices to show that for 
A GF

E [ X *Ia, ] = E [ IaE [ X |F ] Ia, ].

That is, it suffices to show that

E [ XIaIa ] = E [ IaE [ X F] I a ]

or, equivalently, that

E [ XIaa ] = E [ E [ X F] Iaa ],

which because AA G F, follows by the definition of conditional expectation. 
Part (c) will follow if we can show that, for A GF

E [XIA] = E[E[X]IA], 

which follows because

E[XIA] = E[X]E[IA] by independence
= E[E[X]IA].

We will leave the proofs of Parts (d) and (e) as exercises.
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Remark 3.5 It can be shown that E[X|F] satisfies all the properties of or­
dinary expectations, except that all probabilities are now computed condi­
tional on knowing which events in F have occurred. For instance, applying 
the tower property to E[X|F] yields

E [ X |F] = E [ E [ X F .G ] |F].

Although the conditional expectation of X given the sigma field F is 
defined to be that function satisfying

E [ XIA ] = E [ E [ X IF ] I A ] for all A eF,

it can be shown, using the dominated convergence theorem, that

E[XW] = E[E[X|F]W] for all W eF. (3.2)

The following proposition is useful.

Proposition 3.6 If W eF, then

E[XW|F] = WE[X|F].

Before giving a proof, let us note that the result is intuitive. Because 
W eF, it follows that conditional on knowing which events of F occur 
(that is, conditional on F), the random variable W becomes a constant, 
and the expected value of a constant times a random variable is just the 
constant times the expected value of the random variable. Next we formally 
prove the result.

Proof Let

Y = E[XW|F] - WE[X|F]
=(X - E[X|F])W - (XW - E[XW |F]),

and note that Y eF. Now, for A eF,

E[Y IA] = E[(X - E[X|F])WIA] - E[(XW - E[XW|F])IA].

However, because WIA e F, we use Equation 3.2 to get

E[(X - E[X|F])WIA] = E[XWIA] - E[E[X|F]WIA] = 0, 

and by the definition of conditional expectation, we have

E[(XW - E[XW |F])IA)] = E[XW IA] - E[E[XW|F]IA] = 0.

Thus, we see that for A eF,

E[YIA]=0.

Setting first A = {Y>0}, and then A = {Y<0} (which are both in F 
because Y e F) shows that

P(Y>0) = P(Y<0) = 0.

Hence, Y = 0, which proves the result. ■
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3.3 Martingales
We say that the sequence of sigma fields F1, F2,... is a filtration if F1 C 
F2   We say a sequence of random variables X1 ,X2 , .. . is adapted to Fn 

if Xn e Fn for all n.
To obtain a feel for these definitions, it is useful to think of n as rep­

resenting time, with information being gathered as time progresses. With 
this interpretation, the sigma field Fn represents all events that are deter­
mined by what occurs up to time n and thus contains Fn-1 . The sequence 
Xn,n > 1, is adapted to the filtration Fn,n > 1, when the value of Xn is 
determined by what occurs by time n.

Definition 3.7 Zn is a martingale for filtration Fn if

(a) E[Znl] < to

(b) Zn is adapted to Fn

(c) E [Zn+1|Fn] = Zn

A bet is said to be fair if its expected gain is equal to zero. A martingale 
can be thought of as being a generalized version of a fair game. For example, 
consider a gambling casino in which bets can be made concerning games 
played in sequence. Let Fn consist of all events with an outcome that is 
determined by the results of the first n games. Let Zn denote the fortune of 
a specified gambler after the first n games. Then, the martingale condition 
states that regardless of the results of the first n games, the gambler’s 
expected fortune after game n + 1 is exactly what it was before that game. 
That is, no matter what has previously occurred, the gambler’s expected 
winnings in any game is equal to zero.

It follows upon taking expectations of both sides of the final martingale 
condition that

E[Zn+1] = E[Zn],

implying that
E[Zn] = E[Z1].

We call E [Z1 ] the mean of the martingale.
Another useful martingale result is that

E[Zn+2 |Fn] = E[E[Zn+2 |Fn +1 U Fn] |Fn]
= E[E[Zn+2|Fn+1]|Fn]
= E[Zn+1 |Fn]
= Zn .

Repeating this argument yields

E[Zn+k|Fn]=Zn, k> 1.
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Definition 3.8 We say that Zn,n > 1, is a martingale (without specifying 
a filtration) if

(a) E[IZnl] < x

(b) E [Zn+1 |Z1,...,Zn]=Zn

If {Zn } is a martingale for the filtration Fn , then it is a martingale. 
This follows from

E[Zn+1 |Z1,...,Zn] = E[E[Zn+1 |Z1,...,Zn, Fn]|Z1,...,Zn]
= E[E[Zn+1|Fn]|Z1,...,Zn]
= E[Zn |Z1,...,Zn]
= Zn .

where the second equality followed because Zi G Fn, for all i = 1,... ,n. 
We now give some examples of martingales.

Example 3.9 If Xi,i > 1, are independent zero mean random variables, 
then Zn = ^2n=i Xi, n > 1, is a martingale with respect to the filtration 
a (X 1,..., Xn), n > 1. This follows because

E[Zn+i|Xi,...,Xn] = E[Zn+Xn+i|Xi,...,Xn]
= E[Zn|X1,...,Xn]+E[Xn+1|X1,...,Xn]
= Zn + E [Xn+1]

by the independence of the Xi

= Zn. ■

Example 3.10 Let Xi,i > 1, be iid with mean zero and variance a2. Let 
Sn = in=1 Xi , and define

Zn = Sn2 - na 2 ,n> 1.

Then Zn,n > 1 is a martingale for the filtration a(X1 ,...,Xn). To verify 
this claim, note that

E[Sn2+1|X1,...,Xn] = E[(Sn+Xn+1)2|X1,...,Xn]
= E[Sn2|X1,...,Xn] + E[2SnXn+1|X1,...,Xn] 

+E[Xn2+1|X1,...,Xn]
= Sn2 + 2SnE[Xn+1|X1,...,Xn] + E[Xn2+1]
= Sn2 + 2SnE[Xn+1] + a2

= Sn2 + a2 .

Subtracting (n + 1)a2 from both sides, yields

E [ Zn +1 |X 1 ,...,Xn ]= Zn. ■
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Our next example introduces an important type of martingale, known 
as a Doob martingale.

Example 3.11 Let Y be an arbitrary random variable with E[|Y|] < <x, 
let Fn, n > 1, be a filtration, and define

Zn = E[Y |Fn].

We claim that Zn,n > 1, is a martingale with respect to the filtration 
Fn,n > 1. To verify this, we must first show that E[\Zn\] < <x, which is 
accomplished as follows:

E[|Zn|] = E[|E[Y|Fn]|]
< E[E[ |Y||Fn ]]
= E[|Y|]
< <x,

where the first inequality uses that the function f(x) = |x| is convex, and 
thus from Jensen’s inequality

E[|Y||Fn] > |E[Y |Fn]|,

whereas the final equality used the tower property. The verification is now 
completed as follows:

E[Zn+1|Fn] = E[E[Y|Fn+1]|Fn]
= E[Y |Fn] by the tower property
= Zn .

The martingale Zn,n > 1, is a called a Doob martingale. ■

Example 3.12 Our final example generalizes the result that the succes­
sive partial sums of independent zero mean random variables constitute 
a martingale. For any random variables Xi,i > 1, the random variables 
Xi - E[Xi |X1,...,Xi-1],i> 1, have mean zero. Even though they need 
not be independent, their partial sums constitute a martingale. That is, we 
claim that 

n
Zn = (Xi-E[Xi|X1,...,Xi-1]),n> 1,

i=1

is, provided that E[|Zn |] < m, a martingale with respect to the filtration 
a (X 1,..., Xn), n > 1. To verify this claim, note that

Zn+1 = Zn + Xn+1 - E[Xn+1|X1,..., Xn].
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Thus,

E[Zn+1|X1,...,Xn]=Zn+E[Xn+1|X1,...,Xn]
-E[Xn+1|X1,...,Xn]

= Zn. ■

3.4 Martingale Stopping Theorem
The positive integer valued, possibly infinite, random variable N is said to 
be a random time for the filtration Fn if {N = n} G Fn or, equivalently, 
if {V > n} G Fn- 1, for all n. If P(N < to) = 1, then the random time is 
said to be a stopping time for the filtration.

Thinking once again in terms of information being amassed over time, 
with Fn being the cumulative information for all events that have occurred 
by time n, the random variable N will be a stopping time for this filtration 
if the decision whether to stop at time n (so that N = n) depends only 
on what has occurred by time n. (That is, the decision to stop at time 
n is not allowed to depend on the results of future events.) It should be 
noted, however, that the decision to stop at time n need not be independent 
of future events, only that it must be conditionally independent of future 
events given all information up to the present.

Lemma 3.13 Let Zn,n > 1, be a martingale for the filtration Fn.IfN is 
a random time for this filtration, then the process Zn = Zmin(N,n) ,n> 1, 
called the stopped process, is also a martingale for the filtration Fn .

Proof Start with the identity

Zn = Zn-1 + I{N>n} (Zn — Zn-1) ■

To verify the preceding, consider two cases:
1. N > n : Here, Zn = Zn, Zn-1 = Zn-1, I{N>n} = 1, and the 

preceding is true.
2. N < n : Here, Zn = Zn- 1 = ZN, I{N>n} = 0, and the preceding is 

true.
Hence,

E[Zn |Fn-1] = E[Zn-1 |Fn-1 ] + E[I{N>n} (Zn — Zn-1) |Fn-1] 
= Zn-1 + I{N>n}E[Zn - Zn-1|Fn-1]

Zn -1. ■

Theorem 3.14 Martingale stopping theorem. Let Zn, n > 1, be a mar­
tingale for the filtration Fn, and suppose that N is a stopping time for this 
filtration. Then

E[ZN] = E[Z1]
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if any of the following three sufficient conditions hold.
(a) Zn are uniformly bounded;
(b) N is bounded; or
(c) E[N] < to, and there exists M < to such that

E[\Zn +1 - Zn\\Fn] < M-

Proof Because the stopped process is also a martingale,

E [ Zn ] = E [ Z1] = E [ Z1].

Because P(N < to ) = 1, it follows that Zn = ZN for sufficiently large N, 
implying that

lim Zn = ZN.
n^o

Part (a) follows from the bounded convergence theorem, and Part (b) with 
the bound N < n follows from the dominated convergence theorem using 
the bound \Zj \ <^2■ ■ \Zi\.

To prove Part (c) note that with Z0 = 0

\Zn\ =
n
E(Zi - Zi-1)
i =1

< E\zi - zi-1 \
i=1 

°o
I{N>>}N >i}\Zi — Zi-1 b

and the result now follows from the dominated convergence theorem be­
cause

oo

^N>{N >i}\Zi — Zi-1 \ 
i=1

E
oo

= E[I{N>i}\Zi — Zi-1 \]
i=1
oo

y2 E[E[I{N>i}\Zi — Zi-1 \\Fi-1]] 
i=1

OO

y2 E[I{N>i}E[\Zi — Zi-1 \\Fi-1]] 
i=1

oo

< ^^P(N> i)
i=1

= ME [ N ] 
< to.
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A corollary of the martingale stopping theorem is Wald’s equation.

Corollary 3.15 Wald’s equation. If X1, X2,. .. are iid with finite mean h = 
E[Xi], and if N is a stopping time for the filtration Fn = a(X1,. .., Xn), n > 
1, such that E[N] < <x, then

E Xi 

i=1

= pE [ N ].

Proof Zn = n=1 n=1(Xi — h) ,n > 1, being the successive partial sums of 
independent zero mean random variables, is a martingale with mean zero. 
Hence, assuming the martingale stopping theorem can be applied we have 
that

0 = E[ZN]

=E

=E

’ N

E( Xi - h)
i=1 

’ N

Xi 
i=1

- Nh)

=E Xi 
i=1

— E[Nh].

To complete the proof, we verify the sufficient condition from Part (c) of 
the martingale stopping theorem.

E[|Zn+1 —Zn||Fn] = E[|Xn+1 — h||Fn]
= E [|Xn+1 — h|] by independence.

< E[IXil] + Ihl

Thus, the condition from Part (c) is verified and the result proved. ■

Example 3.16 Suppose iid discrete random variables X1,X2,... are ob­
served in sequence. With P (Xi = j)=pj , what is the expected number of 
random variables that must be observed until the subsequence 0, 1, 2, 0, 1 
occurs? What is the variance?

Solution Consider a fair gambling casino in which the expected casino 
win for every bet is zero. Note that if a gambler bets their entire fortune 
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of a that the next outcome is j ; then their fortune after the bet will either 
be 0 with probability 1 - pj , or a/pj with probability pj . Now, imagine a 
sequence of gamblers betting at this casino. Each gambler starts with an 
initial fortune of one and stops playing if their fortune ever becomes zero. 
Gambler i bets one that Xi = 0. If they win, they bet their entire fortune 
(of 1/p0) that Xi+1 = 1; if they win that bet, they bet their entire fortune 
that Xi+2 = 2; if they win that bet, they bet their entire fortune that 
Xi+3 = 0; if they win that bet, they bet their entire fortune that Xi+4 =1; 
and if they win that bet, they quit with a final fortune of (p02p12p2)-1.

Let Zn denote the casino’s winnings after the data value Xn is observed; 
because it is a fair casino, Zn,n > 1, is a martingale with mean zero with 
respect to the filtration a(X 1 ,...,Xn),n > 1. Let N denote the number 
of random variables that need be observed until the pattern 0, 1, 2, 0, 1 
appears - so (XN-4,..., XN) = (0, 1, 2, 0, 1). Because it is easy to verify 
that N is a stopping time for the filtration, and that the condition in Part 
(c) of the martingale stopping theorem is satisfied when M = 4/(p02p12p2), 
it follows that E[ZN] = 0. However, after XN has been observed, each of 
the gamblers 1,...,N- 5 would have lost one: Gambler N - 4 would have 
won (p20p21p2 )-1 - 1; gamblers N - 3andN - 2 would each have lost one; 
gambler N - 1 would have won (p0p1)-1 - 1; and gambler N would have 
lost one. Therefore,

ZN = N - (p20p21p2)-1 - (p0p1)-1

Using E [ZN] = 0 yields the result

E[N] = (p20p21p2)-1 + (p0p1)-1.

In the same manner, we can compute the expected time until any specified 
pattern occurs in iid generated random data. For instance, when making 
independent flips of a coin that comes up heads with probability p, the mean 
number of flips until the pattern HHTTHH appears is p-4q-2 +p-2 +p-1, 
where q =1 - p.

To determine Var(N ), suppose now that gambler i starts with an initial 
fortune i and bets that amount that Xi = 0. If they win, they bet their 
entire fortune that Xi+1 = 1; if they win that bet, they bet their entire 
fortune that Xi+2 = 2; if they win that bet, they bet their entire fortune 
that Xi+3 = 0; if they win that bet, they bet their entire fortune that 
Xi+4 = 1; and if they win that bet, they quit with a final fortune of 
i/(p20p21p2). The casino’s winnings at time N is thus

ZN = 1 + 2 + • • • + N —
N — 4

2 2 p20p21p2

N — 1
p o p 1

N(N+1) N—4 N—1
2 2 p20p21p2 p0p12
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Assuming that the martingale stopping theorem holds (although none of 
the three sufficient conditions hold, the stopping theorem can still be shown 
to be valid for this martingale), we obtain upon taking expectations that

E[N2]+E[N]=2 E [ N ] - 4
2 2 p20p21p2

+ 2 E [ N ] - 1
p o p 1

Using the previously obtained value of E[N], the preceding can now be 
solved for E[N2] to obtain Var(N) = E[N2] — (E[N])2. ■

Example 3.17 The cards from a shuffled deck of 26 red and 26 black cards 
are to be turned over one at a time. At any time, a player can request the 
next card and is a winner if the next card is red and is a loser otherwise. 
A player who has not yet requested another card when only a single card 
remains is a winner if the final card is red and is a loser otherwise. What 
is a good strategy for the player?

Solution Every strategy has probability 1/2 of resulting in a win. To see 
this, let Rn denote the number of red cards remaining in the deck after n 
cards have been shown. Then

E[Rn +1 R1, . . . , Rn] = Rn — 7Z--------  -------- Rn-52 - n 52 - n

Hence, 5R-n, n > 0 is a martingale. Because R0/52 = 1 /2, this martingale 
has mean 1/2. Now, consider any strategy, and let N denote the number of 
cards that are turned over before the next card is requested. Because N is 
a bounded stopping time, it follows from the martingale stopping theorem 
that

e\ R\ 1 = 1 / 2.
.52 — N

Hence, with I = I{win}

RNE[I] = E[E[I|RN]] =E
52 — N

= 1/2.

Our next example involves the matching problem.

Example 3.18 Each member of a group of n individuals throws their hat 
in a pile. The hats are then mixed together, and each person randomly 
selects a hat in such a manner that each of the n! possible selections of the 
n individuals are equally likely. Any individual who selects their own hat 
departs, and that is the end of round one. If any individuals remain, then 
each throws the hat they have in a pile, and each one then randomly chooses 
a hat. Those selecting their own hats leave, and that ends round two. Find 
E[N], where N is the number of rounds until everyone has departed.
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Solution Let Xi,i > 1, denote the number of matches on round i for 
i =1,...,N, and let it equal one for i>N. To solve this example, we will 
use the zero mean martingale Zk,k > 1, defined by

k

Zk = (Xi - E[Xi|X1,..., Xi-1])
i=1

k

= (Xi - 1),
i=1

where the final equality follows because, for any number of remaining indi­
viduals, the expected number of matches in a round is one (which is seen 
by writing this as the sum of indicator variables for the events that each 
remaining person has a match). Because

N =min k : Xi = n
i=1

is a stopping time for this martingale, we obtain from the martingale stop­
ping theorem that 

0=E[ZN]=E Xi - N
i=1

= n - E[N],

so E[N] = n.

Example 3.19 If X1,X2,..., is a sequence of iid random variables, P (Xi = 
0) = 1, then the process

Sn = it Xi, i > 1

i=1

is said to be a random walk. For given positive constants a, b,letp denote 
the probability that the the random walk becomes as large as a before it 
becomes as small as -b.

We now show how to use martingale theory to approximate p. In the 
case where we have a bound |Xi | <c, it can be shown there will be a value 
6 = 0 such that

E [ e8X ] = 1.

Then, because

Zn = ' S = JI e6Xi
i=1 
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is the product of independent random variables with mean one, it follows 
that Zn,n > 1, is a martingale having mean one. Let

N = min(n : Sn > a or Sn < —b).

The condition in Part (c) of the martingale stopping theorem can be shown 
to hold, implying that

E [ eeSN ] = 1.

Thus,

1 = E[e6SN |SW > a]p + E[eeSN |SW < —b](1 — p).

Now, if 0 > 0, then

eea < E[eeSN |SW > a] < ee(a+c)

and
e-e(b + c) < e[e>SN|sw < -b] < e-eib,

yielding the bounds

1 — e-eb 1 — e-e(b+c)
<< < p <ee (a+c) e~eb — — eea e~e (b + c)

and motivating the approximation

_ 1 — e-eb 
p ^ eea _ e-eb.

We leave it as an exercise to obtain bounds on p when 0 < 0. ■

Our next example involves a Doob backward martingale. Before defining 
this martingale, we need the following definition.

Definition 3.20 The random variables X1,...,Xn are said to be exchange­
able if Xi1 ,...,Xin has the same probability distribution for every permu­
tation i1,...,in of 1,...,n.

Suppose that X 1,... ,Xn are exchangeable. Assume E[|X 11] < to, let

-j y

Sj = Xi, j=1,...,n
i=1

and consider the Doob martingale Z1 ,...,Zn , given by

Z1 = E[X1|Sn]
Zj = E[X1|Sn,Sn-1,...,Sn+1-j], j=1,...,n.
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However,

Sn+1-j = E[Sn+1-j|Sn+1-j,Xn+2-j,...,Xn]
n +1 -j

= E[Xi|Sn+1-j, Xn+2-j,..., Xn]
i=1

=(n +1- j)E[X1 |Sn+1-j , Xn+2-j ,...,Xn]
(by exchangeability)

=(n +1- j)Zj ,

where the final equality follows because knowing Sn,Sn-1,...,Sn+1-j is 
equivalent to knowing Sn+1-j , Xn+2-j ,...,Xn.

The martingale

Zj = Sn +1 -j 

n +1 —
,j=1,...,n 

j

is called the Doob backward martingale. We now apply it to solve the ballot 
problem.

Example 3.21 In an election between candidates A and B, candidate A 
receives n votes and candidate B receives m votes, where n > m. Assuming 
that all orderings of the n+m votes are equally likely, what is the probability 
that A is always ahead in the count of the votes?

Solution Let Xi equal one if the ith voted counted is for A, and let it equal 
—1 if that vote is for B. Because all orderings of the n+m votes are assumed 
to be equally likely, it follows that the random variables X1 ,...,Xn+m are 
exchangeable, and Z1 ,...,Zn+m is a Doob backward martingale when

Zj = Sn+m+1-j 

n+m+ 1 —j,

where Sk = ik=1 Xi. Because Z1 = Sn+m/(n + m)=(n — m)/(n + m), 
the mean of this martingale is (n — m)/(n + m). Because n > m, candidate 
A will always be ahead in the count of the vote unless there is a tie at some 
point, which will occur if one of the Sj (or equivalently, one of the Zj )is 
equal to zero. Consequently, define the bounded stopping time N by

N = min{j : Zj =0orj = n + m}.

Because Zn+m = X1 , it follows that ZN will equal zero if the candidates 
are ever tied and will equal X1 if A is always ahead. However, if A is always 
ahead, then A must receive the first vote; therefore,

1
0ZN =

if A is always ahead 
otherwise.
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By the martingale stopping theorem, E[ZN] = (n - m)/(n + m), yielding 
the result

P (A is always ahead) =
n-m

. 
n+m

Example 3.22 Ante one game. There are three players, with player i ini­
tially having a fortune xi > 0, i = 1, 2, 3. Say that a player is alive if their 
current fortune is positive. At the beginning of a round, all of the alive 
players put one into a pot, which is then equally likely to be won by any of 
these players. Let Gi be the number of games that involve i players. We 
now show how to compute E[G2] and E [G3].

Let Xi (n) be player i’s fortune after game n, and let Wi (n) be player 
i’s winnings in game n. Also let Ii (n) = I{Xi (n) > 0} be the indicator of 
the event that i is still alive after game n, and N(n) = ik=1 Ii(n) be the 
number of players that are still alive after game n. Then

Wi(n + 1) = Ii(n)(N(n)Ji(n +1)- 1),

where Ji(n +1), the indicator of the event that i wins game n +1, is such 
that

P(Ji(n + 1) = 1 Fn) = Ii(n) n(n) =1 — P(Ji(n + 1) = 0IFn),

where Fn is the sigma field generated by everything that happens up to 
and including game n. Hence,

E[Wi(n+1)|Fn]=Ii(n)(1—1)=0
E[Wi2(n+1)|Fn] = Ii(n)E[N2(n)Ji(n+1)—2N(n)Ji(n+1)+1|Fn] 

= Ii(n)(N(n) — 1)

E[Wi3(n + 1)|Fn]

= Ii(n) E[N3(n)Ji(n + 1) — 3N2(n)Ji(n + 1) + 3N(n)Ji(n + 1) — 1|Fn]

= Ii(n)(N 2(n) — 3N(n)+3— 1)
= Ii (n)(N(n) — 1)(N(n) — 2).

Using
Xi(n +1)=Xi (n)+Wi (n +1),

the preceding gives

E[Xi(n+1)|Fn] = Xi(n)
E[Xi2(n+1)|Fn] = Xi2(n)+2Xi(n)E[Wi(n+1)|Fn]+E[Wi2(n+1)|Fn] 

= Xi2(n) + Ii(n)(N(n) — 1)
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E [ Xf( n +1)\Fn ]

= X3( n) + 3 Xi( n) E [ Wi (n + 1)\Fn ] + 3 Xi (n) E [ W^( n + 1)\Fn ]

+ E [ W?( n + 1)\Fn ]

= X3(n) + 3Xi(n)Ii(n)(N(n) - 1) + Ii(n)(N(n) - 1)(N(n) - 2).

With s = x i + x2 + x3, it follows from the preceding that

E
■ 3
X^Xi (n +1)\Fn

_i =1

r3
£X2( n +1)\Fn

i=1

E

3

22 Xi (n) = s
i=1

3
= 22X2(n) + N(n)(N(n) - 1)

i=1

E
3

X2X+ n + 1)\Fn

i=1

= X3(n) + 3(N(n) - 1)]TXi(n)Ii(n) + N(n)(N(n) - 1)(N(n) - 2)
i=1 i=1

= 22X3(n) + 3(N(n) - 1)s + N(n)(N(n) - 1)(N(n) - 2), 
i=1

where the preceding used that 523=i Xi(n)Ii(n) 523=1 Xi(n) = s.
Now, if

E[Vn +1 \Fn] = Vn + Yn, n > 0,

then 52n=i(Vj-E[Vj\Fj— 1]) = Vn-V0-^j=o Yj is a zero mean martingale, 
which implies that

Zn = Vn - Yj, n > 1
j=0

is a martingale with mean V0. Consequently, both

Z 1(n) = X?(n) - n— N(j)(N(j) - 1), n > 0

i=1 j=0

and

Z2(n) = X3(n) -3s ^NN(j) -1)-£ N(j)(N(j) -1)(N(j) -2), n > 0

i=1 j=0 j=0

are martingales, with Z 1(n) having mean 523=1 x2 and Z2(n) having mean
52i=1 x3. Letting T be the number of games until one of the player’s fortune
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is s, and using that i3=1 Xij (T )=sj ,j=2, 3, the martingale stopping
theorem gives that

Exi = E[Z 1(T)] = s2 - E £■ N(j)(N(j) - 1) 
i=1 j=0

=EtZ2(T)] = s3 - 3sE e(N(j)- 1) 
i=1 j=0

-E
T-1

N(j)(N(j) - 1)(N(j) - 2)
j=0

Now, let Gi be the number of games involving i players, i =2, 3. Because 
N (j)(N (j) - 1) will equal i(i - 1) if game j involves i players, it follows that 
ET- N(j)(N(j) - 1) = E3=2 i(i - 1)Gi, and similarly that ET=o(N(j) -

3 T-1 31) = i=2(i - 1)Gi and j=0 N (j)(N (j) - 1)(N (j) - 2) = i=2 i(i -
1)(i - 2)Gi =6G3 . Hence, from the preceding we see that

3

i=1
3

i=1

s2 - 2E[G2] - 6E[G3]

s3 - 3sE[G2] - (6s + 6)E[G3].

Solving these equations gives

E[G2] =
E3=i Xi(Xi - 1)(s - Xi) 

s - 2
and

Hence,

E[G3] =
X1X2X3

.
s - 2

E[T] = E[G2 + G3]= x 1X 2 X 3 + E 3=1 Xi (Xi - 1)( s - Xi )
-2

Remark 3.23 The following are two remarks for the previous example:

1. The martingale stopping theorem applies in the preceding because 
Markov chain theory shows that E [T] < <x.

2. If we let Pi be the probability that player i eventually has fortune s, 
then using that Xi(n),n > 0 is a martingale with mean Xi, it follows 
from the martingale stopping theorem that Xi = E[Xi(T)] = sPi, 
giving Pi = xSi.
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3.5 Hoeffding-Azuma Inequality

Let Zn,n > 0, be a martingale with respect to the filtration Fn. If the 
differences Zn - Zn-1 can be shown to lie in a bounded random interval of 
the form [-Bn, -Bn + dn], where Bn G Fn- 1 and dn is constant, then the 
Hoeffding-Azuma inequality often yields useful bounds on the tail proba­
bilities of Zn . Before presenting the inequality, we will need a couple of 
lemmas.

Lemma 3.24 If E[X] = 0, and P(—a < X < ft) = 1, then for any convex 
function f

fta 
E[f(X)] < a+ftf(—a) + ~f(ft).

Proof Because f is convex it follows that, in the region -a < x < ft, 
it is never above the line segment connecting the points (-a, f (-a)) and 
(ft, f(ft )). Because the formula for this line segment is

y = —f— f (-a) +----------f (ft) +---------- [ f (ft) — f (—a)] x,
y a + ftf ( ) + a + ftf (') + a + ft [ f (') f ( )] ,

we obtain from the condition P(—a < X < ft) = 1 that

f (X) < ^-f (—a) + —^-f (ft) + —Ljf (ft) — f (—a)]X. 
a+ft a+ft a+ft

Taking expectations, and using E[X] = 0, yields the result. ■

Lemma 3.25 For 0 < p < 1

pet(1-p) + (1 — p)e-tp < et2/8.

Proof Letting p =(1+a)/2andt =2ft, we must show that for —1 < 
a<1

(1 + a)e3(1 -a) + (1 — a)e-3(1+a) < 2ft32//■

or, equivalently,

e3 + e-3 + a(e3 — e-3) < 2ea3+32/2.

The preceding inequality is true when a = —1 or +1 and when |ft | is large 
(say, when |ft | > 100). Thus, if the Lemma were false, then the function

f (a, ft) = e3 + e-3 + a(e3 — e-3) — 2ea3+32/2 
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twould assume a strictly positive maximum in the interior of the region 
R = {(a, ft) : |a| < 1, |ft| < 10}. Setting the partial derivatives of f equal 
to 0, we obtain

e ' - e- + a(ef + e~)) = 2aftea+?2/2 (3.3)

ft3 - e-i = 2ftea?+?2/2. (3.4)

We will now prove the lemma by showing that any solution of Equations 
3.3 and 3.4 must have ft =0. However, because f(a, 0) = 0, this would 
contradict the hypothesis that f assumes a strictly positive maximum in 
R, thus establishing the lemma.

So, assume that there is a solution of Equations 3.3 and 3.4 in which 
ft =0. Now note that there is no solution of these equations for which a =0 
and ft =0. For if there were such a solution, then Equation 3.4 would say 
that

e? - e-? = 2fte?2/2, (3.5)

But expanding in a power series about zero shows that Equation 3.5 is 
equivalent to

2 ft 2 i +1

i=0 (2i + 1)!

oo
= 2 Ei=0

ft 2 i +1

i !2i ’

which (because (2i +1)! > i!2i when i>0) is clearly impossible when 
ft =0. Thus, any solution of Equations 3.3 and 3.4 in which ft = 0 will also 
have a =0. Assuming such a solution gives, upon dividing Equation 3.3 by 
Equation 3.4,

1+a
e? + e-?

e? - e-?

a
= + ft.

Because a = 0, the preceding is equivalent to

ft(e?+e-?)=e?-e-?.

or, expanding in a Taylor series,

ft2 i +1
(-i (2i)!i=0

g ft 2 i+1

which is clearly not possible when ft =0. Thus, there is no solution of 
Equations 3.3 and 3.4 in which ft = 0, thus proving the result. ■

We are now ready for the Hoeffding-Azuma inequality.
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Theorem 3.26 Hoeffding-Azuma inequality. Let Zn, n > 1, be a 
martingale with mean p with respect to the filtration Fn. Let Zo = p and 
suppose there exist nonnegative random variables Bn,n > 0, where Bn G 
Fn-1, and positive constants dn,n > 0, such that

— Bn < Zn — Zn-1 < -Bn + dn.

Then, for n > 0, a > 0,

(i) P(Zn - p > a) < e-2a2/ En=i d2

(ii) P(Zn — p <-a) < e-2a2/ En=i 2. (3.6)

Proof Suppose that p = 0. For any c > 0,

P (Zn > a) = P (ecZ' > eca) 
< e-caE[ecZ'],

where we use Markov’s inequality in the second equality. Let Wn = ecZn. 
Note that W0 = 1 and that for n > 0

E [ Wn\Fn-1] = E [ ecZn-1 ec (Zn-Zn- 1) |Fn-1]
= ecZn- 1 E [ ec( Zn-Zn- 1) \Fn- 1]
= Wn-1 E [ ec (Zn-Zn- 1)\Fn-1], (3.7)

where the second equality used that Zn- 1 G Fn- 1. Because
(a) f (x) = ecx is convex,
(b)

E [ Zn — Zn-1 |Fn-1] = E [ Zn\Fn-1] — E [ Zn-1 |Fn-1]
= Zn-1 — Zn-1 = 0, 

and
(c) —Bn < Zn — Zn-1 < —Bn + dn.

It follows from Lemma 3.24, with a = Bn, fi = —Bn + dn, that

E[ec(Zn -Zn- 1)Fn-11 < E \( — Bn + dn )e-cBn + Bne ‘-B'+dn ’ \Fn-,1

L + dn

__ (—Bn + dn)e-cBn + Bnec (-Bn+dn)

= d~n ,

where the final equality used that Bn G Fn- 1. Hence, from Equation 3.7, 
we see that

w ( — Bn + dn ) e-cB + BnPc (-B' + dn)
E [ Wn\Fn-1] < Wn-11-------------------- L--------- - -----------------------------------

dn

< Wn-1 ec2d2n/8,
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where the final inequality used Lemma 3.25 (with p = Bn/dn, t = cdn). 
Taking expectations gives

E[Wn] < E[Wn-1]ec2dn/8 .

Using that E[W0] = 1 yields, upon iterating this inequality,

E[Wn] < n eC2d2 /8 = eC2 En=i d2/8. 
i=1

Therefore, from Equation 3.6, we obtain that for any c>0

P(Zn > a) < exp I —ca + c^52 d/M ' 
i=1

Letting c = 4a/^2n=i d2, which is the value of c that minimizes — ca + 
c2 in=1 di2/8, gives

P (Zn > a) < e-2a2 / E == d2.

Parts (a) and (b) of the Hoeffding-Azuma inequality now follow from ap­
plying the preceding, first to the zero mean martingale {Zn — ii.} and second 
to the zero mean martingale {p — Zn}. ■

Example 3.27 Let Xi,i > 1 be independent Bernoulli random variables 
with means pi,i =1,...,n. Then

n n
Zn = (Xi — pi ) = Sn — pi , n> 0

i=1 i=1

is a martingale with mean zero. Because Zn — Zn-1 = Xn — p, we see that

—p < Zn — Zn-1 < 1 — p.

Thus, by the Hoeffding-Azuma inequality (Bn = p,dn = 1), we see that 
for a> 0

(
n X

Sn — pi > a < e-2a2/n
i=1

P ( Sn — Pi <— a) < e-2 a 2/n.
i=1

The preceding inequalities are often called Chernoff bounds. ■
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The Hoeffding-Azuma inequality is often applied to a Doob type mar­
tingale. The following corollary is often used.

Corollary 3.28 Let h be such that if the vectors x =(x1,...,xn) and y = 
(y1 ,...,yn) differ in at most one coordinate (that is, for some k, xi = yi 

for all i = k) then

\h(x) - h(y)| < 1 •

Then, for a vector of independent random variables X =(X1 ,...,Xn), and 
a>0

P(h(X) - E[h(X)] > a) < e-2a2/n

P(h(X) - E[h(X)] <-a) < e-2a2/n.

Proof Let Z0 = E[h(X)], and Zi = E[h(X)|a(X 1, • • • ,Xi)], for i = 
1,...,n. Then Z0 ,...,Zn is a martingale with respect to the filtration 
a (X 1,..,, Xi), i = 1,... ,n. Now,

Zi - Zi-1 = E[h(X)|X1,...,Xi)] - E[h(X)|X1,...,Xi-1] 
< sup{E[h(X)|X 1 ,...,Xi- 1 ,Xi = x] 

x

-E [ h (X) |X 1 ,...,Xi- 1]}.

Similarly,

Zi - Zi- 1 > inf {E [ h (X) |X 1,..., Xi-1, Xi = y ] 
y

- E [ h (X) |X 1 ,...,Xi- 1]}.

Hence, letting

-Bi = inf{E[h(X) |X 1,... ,Xi- 1 ,Xi = y] - E[h(X) |X 1,..., Xi- 1]} 
y

and di =1, the result will follow from the Hoeffding-Azuma inequality if 
we can show that

sup {E [ h (X) |X 1 ,...,Xi- 1 ,Xi = x ]}
x

- inf {E [ h (X) |X 1 ,...,Xi- 1 ,Xi = y ]} < 1. 
y

However, with Xi- 1 = (X 1,... ,Xi- 1), the left-hand side of the preceding 
can be written as
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sup{E[h(X)|X1,..., Xi-1, Xi = x] 
x,y

- E[h(X)|X1,...,Xi-1,Xi =y]}
= sup{E[h(X1,...,Xi-1,x,Xi+1,...,Xn)|Xi-1] 

x,y

- E[h(X1,..., Xi-1, y, Xi+1,..., Xn)|Xi-1]}
=sup{E[h(X1,...,Xi-1,x,Xi+1,...,Xn) 

x,y

- E[h(X1,..., Xi-1, y, Xi+1,..., Xn)|Xi-1]}

< 1,

and the proof is complete. ■

Example 3.29 Let X1,X2,...,Xn be iid discrete random variables, with 
P (Xi = j)=pj. With N equal to the number of times the pattern 3, 4, 5, 6, 
appears in the sequence X1 ,X2 ,...,Xn , obtain bounds on the tail proba­
bility of N .

Solution First note that

n — 3

E[N] = E I{pattern begins at position i} 
i=1

=(n - 3)p3p4p5p6.

With h(x1,...,xn) equal to the number of times the pattern 3, 4, 5, 6ap- 
pears when Xi = xi,i = 1,...,n, it is easy to see that h satisfies the 
condition of Corollary 3.28. Hence, for a>0

P(N - (n - 3)p3p4p5p6 > a) < e 2a2/(n 3)

P(N - (n - 3)p3p4p5p6 <-a) < e-2a2/(n-3).

Example 3.30 Suppose that n balls are to be placed in m urns, with each 
ball independently going into urn i with probability pi, im=1 pi =1. Find 
bounds on the tail probability of Yk , equal to the number of urns that 
receive exactly k balls.

Solution First note that

E[Yk] = E I{urn i has exactly k balls}

m z \
= ni pik (1 - pi)n-k

i=1
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Let Xj denote the urn in which ball j is put, where j =1,...,n. Also, let 
hk(x1,...,xn) denote the number of urns that receive exactly k balls when 
Xi = xi,i = 1,...,n, and note that Yk = hk (X1 ,...,Xn). When k =0, 
it is easy to see that h0 satisfies the condition that if x and y differ in at 
most one coordinate, then lh0(x) — h0(y)| < 1. Therefore, from Corollary 
3.28 we obtain, for a>0, that

P\Y0 — Z (1 — Pi)n > «) < e-2a2 /n 

i=1

P\Yo — Z (1 — Pi)n <— a) < e-2a2 n 

i=1

For 0 <k <n, it is no longer true that if x and y differ in at most one 
coordinate, then |hk(x)—hk(y)| < 1. This is because the one different value 
could result in one of the vectors having one less and the other having one 
more urn with k balls than would have resulted if that coordinate was not 
included. Thus, if x and y differ in at most one coordinate, then

|hk(x) — hk(y)| < 2,

showing that h*k(x) = hk(x)/2 satisfies the condition of Corollary 3.28. 
Because

P(Yk — E[Yk]] > a) = P(hk (X) — E[hk (X)] > a/2),

we obtain, for a> 0, 0 <k <n, that

— Pi)n-k < e-a2/2n

— Pi)n-k < e-a2/2n

Of course,

P (Yn = 1) = £ Pn = 1 — P (Yn = 0). ■

i=1

3.6 Submartingales, Supermartingales, and a Con­
vergence Theorem

Submartingales model superfair games, whereas supermartingales model 
subfair ones.
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Definition 3.31 The sequence of random variables Zn, n > 1, is said to be 
a submartingale for the filtration Fn if

(a) E[\Zn\] < x

(b) Zn is adapted to Fn

(c) E [Zn+1|Fn] > Zn

If Part (c) is replaced by E [Zn +1 |^n] < Zn, then Zn,n > 1, is said to be 
supermartingale.

It follows from the tower property that

E[Zn+1] > E[Zn]

for a submartingale, with the inequality reversed for a supermartingale. 
(Of course, if Zn,n > 1, is a submartingale, then -Zn, n > 1, is a super­
martingale and vice-versa.)

The analogs of the martingale stopping theorem remain valid for sub­
martingales and supermartingales. We leave the proof of the following 
theorem as an exercise.

Theorem 3.32 If N is a stopping time for the filtration Fn, then

E[ZN] > E[Z1] for a submartingale
E[ZN] < E[Z1] for a supermartingale

provided that any of the sufficient conditions of Theorem 3.14 hold.

One of the most useful results about submartingales is the Kolmogorov 
inequality. Before presenting it, we need a couple of lemmas.

Lemma 3.33 If Zn ,n > 1, is a submartingale for the filtration Fn , and N 
is a stopping time for this filtration such that P(N < n)=1,then

E[Z1] < E[ZN] < E[Zn].

Proof Because N is bounded, it follows from the submartingale stopping 
theorem that E[ZN] > E[Z1]. Now,

E[Zn|Fk, N = k] = E[Zn|Fk] > Zk = ZN.

Taking expectations of this inequality completes the proof. ■

Lemma 3.34 If Zn,n > 1, is a martingale with respect to the filtration 
Fn,n > 1, and f is a convex function for which E[|f (Zn)|] < x, then 
f (Zn), n > 1, is a submartingale with respect to the filtration Fn,n > 1.
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Proof

E[f (Zn+1)|Tn] > f (E[Zn +1 |Tn]) by Jensen’s inequality
= f(Zn).

Theorem 3.35 Kolmogorov’s inequality for submartingales. Suppose Zn,n > 
1, is a nonnegative submartingale, then for a>0

P (max {Z 1, ...,Zn}> a) < E [ Zn ]/a.

Proof Let N be the smallest i, i < n such that Zi > a, and let it equal n 
if Zi <a for all i =1,...,n. Then

P (max{Z1 ,...,Zn}>a)=P(ZN > a)
< E [ZN]/a by Markov’s inequality
< E[Zn]/a since N < n. ■

Corollary 3.36 If Zn,n > 1, is a martingale, then for a>0

P (max{|Z1|,..., |Zn|} > a) < min(E[|Zn|]/a, E[Zn2]/a2).

Proof Noting that

P (max{|Z1 |,..., |Zn |} > a) = P(max{Z12 ...,Zn2 }>a2)

the corollary follows from Lemma 3.34 and Kolmogorov’s inequality for 
submartingales upon using that f(x) = |x| and f(x) = x2 are convex 
functions. ■

Theorem 3.37 Martingale convergence theorem. Let Zn, n > 1, be a mar­
tingale. If there is M < to such that

E[|Zn|] < M for all n,

then with a probability of one limn . ^ Zn exists and is finite.

Proof We will give a proof under the stronger condition that E[Zn2] is 
bounded. Because f(x) = x2 is convex, it follows from Lemma 3.34 that 
Zn2 ,n > 1, is a submartingale, yielding that E[Zn2] is nondecreasing. Be­
cause E[Zn2] is bounded, it follows that it converges; let m<to be given 
by

m = lim E [Zn2].
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We now argue that lim,,.... Zn exists and is finite by showing that, with 
a probability of one Zn, n > 1, is a Cauchy sequence. That is, we will show 
that, with a probability of one

IZm + k — ZmI —0 0 as m, k —— ^o.

Using that Zm+k - Zm,k > 1, is a martingale, it follows that (Zm+k - 
Zm)2, k > 1, is a submartingale. Thus, by Kolmogorov’s inequality,

P(\Zm + k — Zm | > e for some k < n)

= P ( max (Zm + k — Zm)2 > e2 )
k=1,...,n

< E[(Zm+n — Zm)2]A2

=E [ Zn+m—2 ZmZn+m+Zm]a 2.

However,

E[ZmZn+m] = E[E[ZmZn+m IZm]] 
= E[ZmE[Zn+m IZm]] 
= E[Zm2 ].

Therefore,

P(IZm+k — Zml > e for some k < n) < (E[Zn+m] — E[Zm])/e2.

Letting n — o now yields

P(IZm+k — Zml > e for some k) < (m — E[Zm])/e2.

Thus,
P(IZm + k — Zml > e for some k) — 0 as m — o.

Therefore, with a probability of one, Zn ,n > 1, is a Cauchy sequence, and 
so has a finite limit. ■

As a consequence of the martingale convergence theorem, we obtain the 
following.

Corollary 3.38 If Zn,n > 1, is a nonnegative martingale, then with a prob­
ability of one, limn . ... Zn exists and is finite.

Proof Because Zn is nonnegative,

E[IZnI]= E[Zn] = E[Z1] < o. ■
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Example 3.39 A branching process follows the size of a population over 
succeeding generations. It supposes that, independent of what occurred in 
prior generations, each individual in generation n independently has j off­
spring with probability pj ,j > 0. The offspring of individuals of generation 
n then make up generation n +1. Let Xn denote the number of individuals 
in generation n. Assuming that m = j jpj , the mean number of offspring 
of an individual, is finite it is easy to verify that Zn = Xn /mn ,n > 0, is 
a martingale. Because it is nonnegative, the preceding corollary implies 
that limn Xn/mn exists and is finite. But this implies, when m<1, that 
limn Xn = 0 or, equivalently, that Xn = 0 for all n sufficiently large. When 
m> 1, the implication is that the generation size either becomes zero or 
converges to infinity at an exponential rate. ■

3.7 Exercises
1. For F = {$, Q}, show that E[X|F] = E[X].

2. Give the proof of Proposition 3.2 when X and Y are jointly continu­
ous.

3. If E [Xi |] < <x, i = 1,..., n, show that

n
Xi|F

i=1

E
n

= E[Xi|F].
i=1

4. Prove that if f is a convex function, then

E[f(X)|F] > f(E[X|F])

provided the expectations exist.

5. Let X 1 ,X2,... be independent random variables with mean one. 
Show that Zn = in=1 Xi,n> 1, is a martingale.

6. If E[Xn+1|X1,..., Xn] = anXn + bn for constants an, bn, n > 0, find 
constants An ,Bn so that Zn = AnXn + Bn ,n > 0, is a martingale 
with respect to the filtration a (X0,..., Xn).

7. Consider a population of individuals as it evolves over time, and sup­
pose that, independent of what occurred in prior generations, each 
individual in generation n independently has j offspring with proba­
bility pj ,j > 0. The offspring of individuals of generation n then make 
up generation n +1. Assume that m = j jpj < x. Let Xn denote
the number of individuals in generation n, and define a martingale 
related to Xn ,n > 0. The process Xn ,n > 0 is called a branching 
process.



92 3 Conditional Expectation and Martingales

8. Suppose X1 ,X2 ,... are iid random variables with mean zero and finite 
variance a2. If T is a stopping time with finite mean, show that

Var fe XH = a 2 E (T) •

i=1

9. Suppose X 1, X2, • • • are iid mean zero random variables that each take 
value +1 with probability 1/2 and take value — 1 with probability 1/2. 
Let Sn = ^2n=1 Xi- Which of the following (a)-(c) are stopping times? 
Compute E[Ti] for the Ti that are stopping times.
(a) T1 = min{i > 5 : Si = Si-5 + 5}.
(b) T2 = T1 — 5.
(c) T3 = T2 + 10 •

10. Consider a sequence of independent flips of a coin, and let Ph denote 
the probability of a head on any toss. Let A be the hypothesis that 
Ph = a,andletB be the hypothesis that Ph = b, for given values 
0 < a, b < 1 • Let Xi be the outcome of flip i, and set

p P ( X 1 ,^,XnA )
n P ( X1 ,...,Xn\B ) •

If Ph = b, show that Zn ,n > 1, is a martingale having mean one.

11. Let Zn ,n > 0 be a martingale with Z0 = 0. Show that

n

e [ zn ] = e e [(i—— 1)2] •
i=1

12. Consider an individual who at each stage, independently of past move­
ments, moves to the right with probability p or to the left with prob­
ability 1 — p. Assuming that p > 1 /2, find the expected number of 
stages it takes the person to move i positions to the right from where 
they started.

13. In Example 3.19 obtain bounds on p when 0 < 0.

14. Use Wald’s equation to approximate the expected time it takes a 
random walk to either become as large as a or as small as —b, for 
positive a and b. Give the exact expression if a and b are integers, and 
at each stage the random walk either moves up one with probability 
p or moves down one with probability 1 — p.

15. Consider a branching process that starts with a single individual. 
Let n denote the probability this process eventually dies out. With 
Xn denoting the number of individuals in generation n, argue that 
nXn, n > 0, is a martingale.
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16. Given X 1 ,X2,..., let Sn = n=1 n=1 Xi and Fn = a(X 1 ,...Xn). Suppose 
for all n ElSn| < to and E[Sn +1 |Fn] = Sn. Show E[XiXj] = 0 if 
i = j.

17. Suppose n random points are chosen in a circle having a diameter 
equal to one, and let X be the length of the shortest path connecting 
all of them. For a > 0, bound P(X — E[X] > a).

18. Let X1, X2 ,...,Xn be iid discrete random variables, with P(Xi = 
j )=pj . Obtain bounds on the tail probability of the number of times 
the pattern 0, 0, 0, 0 appears in the sequence.

19. Repeat Example 3.29, but now assume that the Xi are independent 
but not identically distributed. Let Pi,j = P(Xi = j).

20. Let Zn ,n > 0, be a martingale with mean Z0 =0, and let vj ,j > 0, 
be a sequence of nondecreasing constants with v0 =0. Prove the 
Kolmogorov-Hajek-Renyi inequality:

n

P (\Zj | < Vj, for all j = 1 ,...,n) > 1 — ^ E [(Zj - Zj- 1)2] /vj.

21. Consider a gambler who plays at a fair casino. Suppose that the 
casino does not give any credit, so the gambler must quit when their 
fortune is zero. Suppose further that on each bet made at least one is 
either won or lost. Argue that, with a probability of one, a gambler 
who wants to play forever will eventually go broke.

22. What is the implication of the martingale convergence theorem to the 
scenario of Exercise 10?

23. Three gamblers each start with a, b, and c chips, respectively. In 
each round of a game, a gambler is selected uniformly at random to 
give up a chip, and one of the other gamblers is selected uniformly 
at random to receive that chip. The game ends when there are only 
two players remaining with chips. Let Xn ,Yn , and Zn respectively 
denote the number of chips the three players have after round n,so 
(X0,Y0,Z0) = (a, b, c).
(a) Compute E[Xn+1Yn+1Zn+1 | (Xn,Yn,Zn) = (x, y, z)].
(b) Show that Mn = XnYnZn + n(a + b + c)/3 is a martingale.
(c) Use the preceding to compute the expected length of the game.

24. In the ante one game of Example 3.22, find the expected number of 
games played by player 1.

25. Consider the ante one game, but now suppose there are r players 
with each player initially having fortune k. Suppose further that each 
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player has a value, with vi being the value of player i. As before, 
suppose that a player is alive if their fortune is positive and that at 
the beginning of a round each alive player puts one into the pot. But 
with A being the set of alive players, now suppose the pot is won by 
i G A with probability , , vi—.

Laa vj
(a) With Xi(n) being player i’s fortune after game n, find E[Xi(k)]. 
(b) Let Pi be the probability that player i eventually has fortune kr. 
If v 1 = maxi vi, show that P1 > —v—EX vi

26. Suppose a gambler bets $1 that a fair coin will come up heads. If it 
comes up heads, they win their bet and stop; if it comes up tails, they 
lose their bet, and in subsequent flips, they will bet all their losses 
so far plus $1 that the next flip will be heads. This repeats until the 
gambler eventually wins and has a $1 net profit. Because all bets are 
fair, why doesn’t the martingale stopping theorem apply to show that 
the gambler is not expected to come out ahead?

27. Suppose a gambler wins $1 each time a flipped coin comes up heads, 
and loses $1 each time it comes up tails. Suppose the coin is flipped 
until the gambler eventually ends up with a $1 profit. Because all 
bets are fair, why doesn’t the martingale stopping theorem apply to 
show that the gambler is not expected to come out ahead? It can be 
shown using Markov chain theory that, with a probability of one, the 
gambler will eventually be up $1.



4

Bounding Probabilities and 
Expectations

4.1 Introduction

In this chapter, we develop some approaches for bounding expectations 
and probabilities. We start in Section 4.2 with Jensen’s inequality, which 
bounds the expected value of a convex function of a random variable. In 
Section 4.3, we develop the importance sampling identity and show how it 
can be used to yield bounds on tail probabilities. A specialization of this 
method results in the Chernoff bound, which is developed in Section 4.4. 
Section 4.5 deals with the second moment and the conditional expectation 
inequalities, which lower bound the probability that at least one of a given 
number of events occurs. Section 4.6 develops the min-max identity and 
uses it to obtain bounds on the maximum of a set of random variables. 
Finally, in Section 4.7 we introduce some general stochastic order relations 
and explore their consequences.

4.2 Jensen’s Inequality

Jensen’s inequality yields a lower bound on the expected value of a convex 
function of a random variable.

Proposition 4.1 If f is a convex function, then

E[f (X)] > f (E[X])

provided the expectations exist.

95
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Proof We give a proof under the assumption that f has a Taylor series 
expansion. Expanding f about the value m = E[X], and using the Taylor 
series expansion with a remainder term, yields that for some a

f (x) = f (M)+ f'(M)(x - M) + f"(a)(x — M)2/
> f(M)+ f'(M)(x — M),

where the preceding used that f"(a) > 0 by convexity. Hence, 

f (X) > f (M) + f'(M)(X — M)•

Taking expectations yields the result. ■

Remark 4.2 If
P (X = x 1) = A =1 — P (X = x 2),

then Jensen’s inequality implies that for a convex function f

Af(x1) + (1 — A)f (x2) > f (Ax1 +(1— A)x2),

which is the definition of a convex function. Thus, Jensen’s inequality 
can be thought of as extending the defining equation of convexity from 
random variables that take on only two possible values to arbitrary random 
variables.

4.3 Probability Bounds via the Importance Sam­
pling Identity

Let f and g be probability density (or probability mass) functions; let h be 
an arbitrary function, and suppose that g (x) = 0 implies that f (x) h(x) = 0• 
The following is known as the importance sampling identity.

Proposition 4.3 The importance sampling identity is

Ef [h(X)]= Eg [h(X)f((X) , 
g(X)

where the subscript on the expectation indicates the density (or mass func­
tion) of the random variable X .

Proof We give the proof when f and g are density functions:

Z
w 

h(x) f(x) dx
-TO

= £ f g (x) dx

w r h ( x ) f ( x ) i
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The importance sampling identity yields the following useful corollary 
concerning the tail probability of a random variable.

Corollary 4.4

Pf (X>c)=Eg
f (X) 
g( (X)

X>c Pg(X > c).

Proof

Pf (X>c)=Ef [I{X>c}]

I{{x>f( (X) 1= Eg

= Eg

g(X)
r i{x>c}( ( x )

= Eg

L g (X)
’ (X 
.9 (X)

X>cPg(X>c)

X>cPg(X>c).

Example 4.5 Bounding standard normal tail probabilities. Let ( be the 
standard normal density function

((x) = e-x2/2, 
X2n

-^ < x < <x.

For c>0, consider Pf (X>c), the probability that a standard normal 
random variable exceeds c. With

g (x)=ce-cx, x>0,

we obtain from Corollary 4.4

Pf (X>c) = e~^ Eg [ e-X 2 / 2 ecX X > c ]
cy 2n

-c2
= e_ Eg [e-(x+c)2/2e<(x+cc

where the first equality used that Pg (X>c)=e-c and the second the 
lack of memory property of exponential random variables to conclude that 
the conditional distribution of an exponential random variable X given that 
it exceeds c is the unconditional distribution of X + c. Thus the preceding 
yields

-c2 /2
Pf (X>c )= Eg [ e-x 2 / 2]. (4.1)

2 n
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Noting that, for x> 0,

1 - x<e x < 1 - x + x /2,

we see that
1 - X2/2 < e-X2/2 < 1 - X2/2 + X4/8.

Using that E[X2] = 2/c2 and E[X4] = 24/c4 when X is exponential with 
rate c, the preceding inequality yields

1 - 1/c2 < Eg[e-X2/2] < 1 - 1/c2 + 3/c4.

Consequently, using Equation 4.1, we obtain

-c2/2 -c2/2
(1 - 1 /c2) < Pf (X >c) < (1 - 1 /c2 + 3/c4) . ■ (4.2)

cy 2 n cyj 2 n

Our next example uses the importance sampling identity to bound the 
probability that successive sums of a sequence of iid normal random vari­
ables with a negative mean ever cross some specified positive number.

Example 4.6 Let X 1, X2,... be a sequence of iid normal random variables 
with mean ^ < 0 and variance one. Let Sk = k= k=1 Xi and, for a fixed 
A>0, consider

p = P(Sk >Afor some k).

Let fk(xk)=fk(x1,...,xk) be the joint density function of Xk =(X1,...,Xk). 
That is,

fk (x k) = (2 n)-k/2-— k=1 (xi -m)2 / 2.

Also, let gk be the joint density of k iid normal random variables with mean 
—t. and variance one. That is,

gk (xk) = (2n)-k/2-- k=1(xi+m)2/2.

Note that
fk (xk) = e2m Ek=i xi.

With

Rk = (x 1 ,...,xk): £ xi < A,j<k, £ xi >A , 
i=1 i=1
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gk

we have 
co

p = £ P(Xk & Rk)
k=1 

o
= £ Efk [ I{ X k eRkj ] 

k=1

I{ X kERk }fk (X k )
. gk (X k) _

o
= 12 Egk [I{xk ERk} e2^Sk ] •

k=1

Now, if Xk & Rk then Sk > A, implying, because ^ < 0, that e2kSk < 
e2^A. Because this implies that

I{XkERk} e2^Sk < I{XkERk} e2^A, 

we obtain from the preceding that

P < £ Egk [I{XkERk} e2'A] 
k=1

= e 2 ^A £ Egk [ I{ X kERk } ] • 
k=1

Now, if Yi,i > 1, is a sequence of independent normal random variables 
with mean — ii. and variance 1, then

Egk [ I{ X k ERk} ] = P (jY Yi < A,,j<k, it Yi >A 

i=1 i=1

Therefore, from the preceding

p < e 2 aa it P (fY Yi < A,,j<k, it Yi >A 

k=1 i=1 i=1

(_k _
Yi >Afor some k

i=1

= e2^A,

where the final equality follows from the strong law of large numbers be­
cause limn^o Zn=1 Y/n = -^> 0, implies P (limn^^2 n=1 Yi = x ) = 
1, and thus P Q2k=1 Yi > A for some k) = 1 •
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The bound
p = P (Sk > A for some k) < e2vA

is not useful when A is a small nonnegative number. In this case, we should 
condition on X 1 and then apply the preceding inequality. With $ being 
the standard normal distribution function, this yields

Z
. -I

P(Sk > A for some k\X 1 = x) e-(x '') /2dx

Z
A 1

P(Sk > A for some k\X 1 = x)  e-(x-v) /2dx
-. v 2n

+P (X 1 > A)

< -^ y e2v(A-x)e-(x-v)2/2dx + 1 - $(A - p)

= e2vA —= - e-(x+v)2/2dx + 1 - $(A - p)

= e2vA$(A + p) + 1 - $(A - p).

Thus, for instance

P(Sk > 0 for some k) < $(p) + 1 - $(-p) = 2$(p).

4.4 Chernoff Bounds
Suppose that X has probability density (or probability mass) function f (x). 
For t> 0, let

g ( x) = etX f (x )
g(x) M (t) ’

where M(t) = Ef [etX] is the moment generating function of X . Corollary 
4.4 yields, for c> 0, that

Pf (X > c) = Eg [M(t)e^tX |X > c] Pg (X > c) 
< Eg [M(t)e-tX |X > c] 
< M(t) e-tc.

Because the preceding holds for all t>0, we can conclude that

Pf(X > c) < inf M(t) e-tc. (4.3)

The inequality (Equation 4.3) is called the Chernoff bound.
Rather than choosing the value of t so as to obtain the best bound, it is 

often convenient to work with bounds that are more analytically tractable. 
The following inequality can be used to simplify the Chernoff bound for a 
sum of independent Bernoulli random variables.
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Lemma 4.7 For 0 < p < 1,

pet(1 -p) + (1 - p)e-tp < et2/8.

The proof of Lemma 4.7 was given in Lemma 3.25.

Corollary 4.8 Let X1 ,...,Xn be independent Bernoulli random variables, 
and set W = in=1 Xi . Then, for any c>0,

P(W - E[W] > c) < e-2c2/n 

P(W - E[W] <-c) < e-2c2/n.
(4.4)

(4.5)

Proof For c> 0,t>0,

P(W - E[W] > c) P (et(W -E[W]) > etc)

= e-tcE[et(W -E[W])] by the Markov inequality

e-tc
( n

E exp t(Xi - E[Xi])

=e-tcE
n

et(Xi -E[Xi])

n
= e-tc E[et(Xi-E[Xi])]

i=1

However, if Y is Bernoulli with parameter p, then

E[et(Y -E[Y]] = pet(1-p) + (1 - p)e-tp < et2/8,

where the inequality follows from Lemma 4.7. Therefore,

P(W - E[W] > c) < e-tcent2/8.

Letting t = 4c/n yields the inequality in Equation 4.4.
The proof of the inequality in Equation 4.5 is obtained by writing it as

P(E[W] - W > c) < e-2c2/n

and using an analogous argument. ■

Example 4.9 Suppose that an entity contains n + m cells, of which cells 
numbered 1,...,n are target cells, whereas cells n +1,... , n + m are 
normal cells. Each of these n + m cells has an associated weight, with wi 

being the weight of cell i. Suppose that the cells are destroyed one at a 
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time in a random order such that if S is the current set of surviving cells, 
then the next cell destroyed is i,i G S, with probability wi/^2j^s wj■ In 
other words, the probability that a specified surviving cell is the next one 
destroyed is equal to its weight divided by the weights of all still surviving 
cells. Suppose that each of the n target cells has weight one, whereas each 
of the m normal cells has weight w. For a specified value of a, 0 < a < 1, 
let Na equal the number of normal cells that are still alive at the moment 
when the number of surviving target cells first falls below an. We will now 
show that as n, m ^ to , the probability mass function of Na becomes 
concentrated about the value maw .

Theorem 4.10 For any e > 0, as n ^ to and m ^ to,

P((1 — e)maw < Na < (1 + e)maw) ^ 1.

Proof To prove the result, it is convenient to first formulate an equivalent 
continuous time model that results in the times at which the n + m cells are 
killed being independent random variables. To do so, let X1 ,. ..,Xn+m be 
independent exponential random variables, with Xi having weight wi ,i= 
1,... ,n + m. Note that Xi will be the smallest of these exponentials with 
probability w,/£j wj; further, given that Xi is the smallest, Xr,r = i, will 
be the second smallest with probability wr / j=i wj ; further, given that Xi 

and Xr are, respectively, the first and second smallest, Xs, s = i, r, will be 
the next smallest with probability ws / j=i,r wj ; and so on. Consequently, 
if we imagine that cell i is killed at time Xi , then the order in which the 
n + m cells are killed has the same distribution as the order in which they 
are killed in the original model. So let us suppose that cell i is killed at 
time Xi, i > 1.

Now let Ta denote the time at which the number of surviving target 
cells first falls below na. Also, let N(t) denote the number of normal cells 
that are still alive at time t, so Na = N (Ta). We will first show that

P(N(Ta) < (1 + e)maw) ^ 1 as n, m ^ to. (4.6)

To prove the preceding, let e* be such that 0 < e* < e, and set t = 
— ln(a(1 + e* )1/w). We will prove Equation 4.6 by showing that as n and 
m approach to,

(a) P(Ta >t) ^ 1, 
and

(b) P(N(t) < (1 + e) maw) ^ 1.

Because the events Ta > t and N(t) < (1 + e) maw together imply that 
N(Ta) < N(t) < (1 + e)maw, the result (Equation 4.6) will be established.
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To prove Part (a), note that the number, call it Y , of surviving target 
cells by time t is a binomial random variable with parameters n and e-t = 
a(1 + e* )1/w. Hence, with a = na[(1 + e* )1/w — 1], we have

P(Ta < t) = P(Y < na} = P(Y < ne-t — a) < e-2a2/n,

where the inequality follows from the Chernoff bound (Equation 4.3). This 
proves Part (a), because a2/n ^ to as n ^ to.

To prove Part (b), note that N (t) is a binomial random variable with 
parameters m and e-wt = aw (1 + e*). Thus, by letting b = maw (e — e*) 
and again applying the Chernoff bound (Equation 4.3), we obtain

P(N(t) > (1 + e)maw } = P(N(t) > me-wt + b)< e-2b2/m.

This proves Part (b), because b2/m ^ to as m ^ to. Thus, Equation 4.6 
is established.

It remains to prove that

P(N(Ta) > (1 — e)maw) ^ 1 as n, m ^ to. (4.7)

However, Equation 4.7 can be proven in a similar manner as Equation 4.6; 
a combination of these two results completes the proof of the theorem. ■

Lemma 4.11 Suppose W = in=1 Xi, where X1,X2,...,Xn are indicator 
variables, and let I be independent of these and have a uniform distribution 
on the integers 1, 2,...,n. Then, for any function f ,

E [ f (W )X = 1] = f.

Proof For any function f, we have

E[f (W)|XI = 1] = E[XIf(W)]/P(XI =1)
= 1 E n=1 E [ Xif ( W )]

1 e n=i e [ Xi ]
= E[Wf(W)]/E[W].

Proposition 4.12 Suppose W = in=1 Xi , where X1,X2 ,...,Xn are in­
dicator variables, and let I be independent of these and have a uniform
distribution on the integers 1, 2,...,n.If

(W |XI =1)<st W+1, (4.8)

then
P(W>x) < (eE[W]/x)x.
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Proof Let t >0, and let g(x) = etx. By Lemma 4.11,

E [X = 1] = WW

Because g(x) is an increasing function, it follows from the preceding upon 
using Equation 4.8 and Exercise 2a from Chapter 2 that

E[et(W+1)] > E[WetW]/E[W], 

which after letting f(t) = E[etW ], corresponds to 

etf (t) > f' (t)/E [W]

or 
d . . .

777 log f (t) < E [W ] e dt
and 

t t d t tlog f (t) = J dss (log f (s))ds < J E[w]^Sds = E[W]et

Using the Chernoff bound, we have

P(W>x) < e-xteE[W]et < (eE[W]/x)x, 

where we have plugged in the minimizing value t = log(x/E[W]). ■ 

Remark 4.13 A sufficient condition for Equation 4.8 is that

Xj \Xi = 1 <st Xj, for all i.

As an example where the preceding holds, let N1 , . . .,Nr have a multinomial 
distribution, and for given constants n1 ,...,nr, let Xi = I{Ni > ni}, i = 
1, . . . ,r.

4.5 Second Moment and Conditional Expecta­
tion Inequalities

The second moment inequality gives a lower bound on the probability that 
a nonnegative random variable is positive.

Proposition 4.14 Second moment inequality. For a nonnegative random 
variable X,

P (X> 0) > (EXT.
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Proof Using Jensen’s inequality in the second line here, we have

E[X2]=E[X2|X>0]P(X>0)
> (E[X|X > 0])2P(X > 0)
= (E [ X ])2

P(X > 0) ■

When W is the sum of Bernoulli random variables, we can improve the 
bound of the second moment inequality. So, suppose for the remainder of 
this section that

w=it Xi,

i=1

where Xi is Bernoulli with E[Xi] = Xi, i = 1,..., n, and A = n=1 n=1 Xi.

Proposition 4.15 Conditional expectation inequality.

n X-P(W> 0) > i£ e[wXi = i].

Proof Let f (0) = 0, f (x) = X,x = 0. Lemma 4.11 now gives

P(W > 0) = XE W X = 1

= XE E WX =1 ,I = i P(I = ilXi = 1)

= £ E '. X = 1] X"

Xi

E[WIXi = 1],

i

where final inequality follows from Jensen’s inequality. ■

Example 4.16 Consider a system consisting of m components, each of 
which either works or not. Suppose, further, that for given subsets of 
components Sj,j = 1,...,n, none of which is a subset of another, the 
system functions if all of the components of at least one of these subsets 
work. If component j independently works with probability aj, derive a 
lower bound on the probability the system functions.
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Solution Let Xi equal one if all the components in Si work, and let it 
equal zero otherwise, i =1,...,n. Also, let

Pi = P (Xi = 1) = JI aj.

Then, with W = in=1 Xi , we have

P (system functions) = P(W>0)
n

> y____pi_____
> = E [ W Xi = 1]

n
__ ______________ pi_______________

= En=1 P(Xj = 1 Xi = 1)
n

= V—=—, 
i=1 1 + Ej=Jlfces,--Si ak

where Sj — Si consists of all components that are in Sj but not in Si. ■

Example 4.17 Consider a random graph on the set of vertices {1, 2, ..., n}, 
which is such that each of the n2 pairs of vertices i = j is, independently, 
an edge of the graph with probability p. We are interested in the probability 
that this graph will be connected, where by connected we mean that for 
each pair of distinct vertices i = j there is a sequence of edges of the form 
(i, i1), (i1,i2),...,(ik,j). (That is, a graph is connected if for each each pair 
of distinct vertices i and j , there is a path from i to j .)

Suppose that

p
ln(n) 
c-------
n

We will now show that if c< 1, then the probability that the graph is 
connected goes to zero as n ^ <x. To verify this result, consider the number 
of isolated vertices, where vertex i is said to be isolated if there are no edges 
of type (i, j). Let Xi be the indicator variable for the event that vertex i 
is isolated, and let

W=it Xi

i=1

be the number of isolated vertices. 
Now,

P(Xi =1) = (1 — p)n-1
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Also,

n

E[W|Xi = 1] = P(Xj = 1|Xi =1)

= 1 + £(1 - p) n-2

j=i

=1+(n - 1)(1 - p)n-2.

Because

(1 - p)n-1 c
n- 1

e-c ln(n)

=n c

the conditional expectation inequality yields that for n large

1-cn
p(w > 0) >

1 + (n - 1)1—c '

Therefore,
c < 1 ^ P(W > 0} ^ 1 asn ^ x.

Because the graph is not connected if W>0, it follows that the graph 
will almost certainly be disconnected when n is large and c< 1. (It can be 
shown when c> 1 that the probability the graph is connected goes to one 
as n ^ x.) ■

4.6 Min-Max Identity and Bounds on the Maxi­
mum

In this section, we are be interested in obtaining an upper bound on E [maxi Xi], 
when X1 ,...,Xn are nonnegative random variables. To begin, note that 
for any nonnegative constant c,

n

max Xi < c + (Xi - c)+, (4.9)
i

i=1

where x+ , the positive part of x, is equal to x if x>0 and is equal to zero 
otherwise. Taking expectations of the preceding inequality yields

n

E[max Xi] < c+ E[(Xi - c)+].
i

i=1
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Because (Xi - c)+ is a nonnegative random variable, we have

fOO

E[(Xi - c)+] = P ((Xi - c)+ > x)dx

P (Xi - c>x)dx

P (Xi > y)dy.

Therefore,
_ni o o

E [max Xi ] < c + P (Xi > y)dy.
i i=1 c

(4.10)

Because the preceding is true for all c > 0, the best bound is obtained by 
choosing the c that minimizes the right side of the preceding. Differenti­
ating, and setting the result equal to zero, shows that the best bound is 
obtained when c is the value c* such that

n

P(Xi >c*)=1.
i=1

Because in=1 P (Xi >c) is a decreasing function of c, the value of c* can 
be easily approximated and then utilized in the inequality in Equation 4.10. 
It is interesting to note that c* is such that the expected number of the Xi 

that exceed c* is equal to one, which is interesting because the inequality 
in Equation 4.9 becomes an equality when exactly one of the Xi exceed c.

Example 4.18 Suppose the Xi are independent exponential random vari­
ables with rates Xi, i = 1,..., n. Then the minimizing value c* is such that

1= E '
i=1

with resulting bound

E[max Xi] < c* + e e Xiydy
i i=1 c"

c* +
n

e-^c.

In the special case where the rates are all equal, say Xi =1, then

1= ne-c" or c* = ln(n),
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and the bound becomes

E[maxXi] < ln(n) + 1. (4.11)
i

However, it is easy to compute the expected maximum of a sequence of 
independent exponentials with a rate of one. Interpreting these random 
variables as the failure times of n components, we can write

max Xi = Ti,
i

i=1

where Ti is the time between the (i - 1)st and the ith failure. Using the lack 
of memory property of exponentials, it follows that the Ti are independent, 
with Ti being an exponential random variable with rate n - i +1. (This 
is because when the (i - 1) failure occurs, the time until the next failure 
is the minimum of the n - i + 1 remaining lifetimes, each of which is 
exponential with a rate of one.) Therefore, in this case

E[maxXJ = E \- = E |.
n- 

i=1 i=1

As it is known that, for n large

" I
- - ln(n) + E, i 

i=1

where E - 0.5772 is Euler’s constant, we see that the bound yielded by 
the approach can be accurate. (Also, the bound in Equation 4.11 only 
requires that the Xi are exponential with a rate of one and not that they 
are independent.) ■

The preceding bounds on E [maxi Xi] only involve the marginal distri­
butions of the Xi . When we have additional knowledge about the joint 
distributions, we can often do better. To illustrate this, we first need to 
establish an identity relating the maximum of a set of random variables to 
the minimums of all the partial sets.

For nonnegative random variables X1 ,...,Xn ,fixx and let Ai denote 
the event that Xi >x. Let

W =max(X1,...,Xn).

Noting that W will be greater than x if and only if at least one of the events 
Ai occur, we have

P (W>x) = P [(J Aij ,
i=1 
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and the inclusion-exclusion identity gives

n

P(W>x)= P(Ai)- P(AiAj)+ P(AiAjAk)

+ ' ' ' + ( - 1) n +1 P (A1 ' ' ' An ),

which can be succinctly written

P ( W>X )= £ ( - 1) r +1 P ( Ai i ••• Air ) .
r = 1 i i <-<ir

Now,

P(Ai) = P(Xi >x}
P(AiAj) = P(Xi >x,Xj >x} = P (min(Xi, Xj ) >x) 

P(AiAjAk) = P(Xi >x,Xj >x,Xk >x}
= P (min(Xi, Xj ,Xk) >x),

and so on. Thus, we see that

P(W>x) = E(- 1)r+1 E P(min(Xii,...,Xir) >x)). 
r =1 i 1 <"<ir

Integrating both sides as x goes from zero to to gives the result:

n
E [ W ] = D - 1) r+1 E E [min( Xi i ,->Xir)] •

Moreover, using that going out one term in the inclusion-exclusion identity 
results in an upper bound on the probability of the union, going out two 
terms yields a lower bound, going out three terms yields an upper bound, 
and so on, yields

E [ W ] E [ Xi ]

E[W] > E E[Xi] - E E[min(XiX)]

E[W] < EE[Xi] - EE[min(XiX)] + E Emin(XiXX)]

E[W] > ...,

and so on.
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Example 4.19 Consider the coupon collectors problem, where each differ­
ent coupon collected is, independent of past selections, a type i coupon with 
probability pi . Suppose we are interested in E[W], where W is the number 
of coupons we need collect to obtain at least one of each type. Then, letting 
Xi denote the number that need be collected to obtain a type i coupon, we 
have that

W = max(X1 ,...,Xn),

yielding that

n
E [ W ] = D -1) r+1 E [min( Xi 1 ,-,Xir)] •

Now, min(Xi1 ,...,Xir ) is the number of coupons that need be collected 
to obtain any of the types i 1,... ,ir. Because each new type collected will be 
one of these types with probability jr=1 pij , it follows that min(Xi1 ,...,Xir ) 
is a geometric random variable with mean r 1 p . Thus, we obtain the 
result

1E [ W] = E - - E 
l ! -

i pi

1

i<j pi + pj

+
i<j<k

1
pi + pj + pk

+ ••• + ( -1) n+1
1

.
p1 + • • • + pn

Using the preceding formula for the mean number of coupons needed to 
obtain a complete set requires summing over 2n terms, so it is not practical 
when n is large. Moreover, the bounds obtained by only going out a few 
steps in the formula for the expected value of a maximum generally turn 
out to be too loose to be beneficial. However, a useful bound can often 
be obtained by applying the max-min inequalities to an upper bound for 
E[W] rather than directly to E[W]. We now develop the theory.

For nonnegative random variables X1 ,...,Xn ,let

W =max(X1,...,Xn).

Fix c > 0, and note the inequality

W < c + max((X 1 — c)+,..., (Xn — c)+).

Now apply the max-min upper bound inequalities to the right side of the 
preceding, take expectations, and obtain that
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n
E[W] < c + E[(Xi - c)+]

i=1

E[W] < c + E[(Xi - c)+] - E [min((Xi - c)+, (Xj - c)+)]

+ E [min((Xi - c)+, (Xj - c)+, (Xk - c)+)],

and so on.

Example 4.20 Consider the case of independent exponential random vari­
ables X1 ,...,Xn , all having a rate of one. Then, the preceding gives the 
bound

E [maxXi] 
i

<c+ E[(Xi - c)+] - E[min((Xi - c)+, (Xj - c)+)]

+ E[min((Xi - c)+, (Xj - c)+, (Xk - c)+)].

To obtain the terms in the three sums of the right-hand side of the pre­
ceding, condition, respectively, on whether Xi >c, whether min(Xi ,Xj ) > 
c, and whether min(Xi ,Xj ,Xk ) >c. This yields

E[(Xi -c)+] = e-c

E[min((Xi - c)+, (Xj - c)+)] = e-2c2

E[min((Xi - c)+, (Xj - c)+, (Xk - c)+)] = e-3c 1.
i , j , 3.

Using the constant c = ln(n) yields the bound
n(n - 1) n(n - 1)(n - 2)

E [max Xi ] < ln(n) + 1-------2 ’ +-------------—---------
i 4n2 18n3

« ln(n) + .806 for n large.

Example 4.21 Let us reconsider Example 4.19, the coupon collector’s 
problem. Let c be an integer. To compute E[(Xi - c)+], condition on 
whether a type i coupon is among the first c collected.

E[(Xi -c)+] = E[(Xi - c)+|Xi < c]P(Xi < c) 
+E[(Xi - c)+|Xi > c]P(Xi >c)

= E[(Xi - c)+|Xi > c](1 - pi)c

(1 - Pi) c .
pi
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Similarly,

E[min((Xi - c)+, (Xj - c)+)]

E[min((Xi - c)+, (Xj - c)+, (Xk - c)+)]

(1 - Pi - Pj)c

Pi + Pj

(1 - Pi - Pj - Pk)c 

Pi + Pj + Pk

Therefore, for any nonnegative integer c

E[W] < , (1 - Pi ) )c
c + / >

i Pi

E[W] < c + (1 - Pi ) c - (1 - Pi - Pj ) c

+ (1 - Pi - Pj - Pk ) )c
■Pi+t. Pi + Pj + Pk '
i<j<k

4.7 Stochastic Orderings
We say that X is stochastically greater than Y, written X >st Y, if

P (X >t) > P (Y > t) for all t.

In this section, we define and compare some other stochastic orderings of 
random variables.

If X is a nonnegative continuous random variable with distribution func­
tion F and density f, then the hazard rate function of X is defined by

Xx (t ) = f (t)/F( t),

where F(t) = 1 - F(t). Interpreting X as the lifetime of an item, then for 
e small

P(t year old item dies within an additional time e)
= P(X <t + e\X > t)
~ Xx(t)e.

If Y is a nonnegative continuous random variable with distribution func­
tion G and density g, say that X is hazard rate order larger than Y, written 
X >hr Y, if

XX (t) < Xy (t) for all t.

Say that X is likelihood ratio order larger than Y, written X >lr Y, if

f (x)/g(x) t x,

where f and g are the respective densities of X and Y.
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Proposition 4.22

X >lr Y ^ X >hr Y ^ X >st Y.

Proof Let X have density f, and Y have density g. Suppose X >lr Y. 
Then, for y>x,

f f f f( (y) < f( (x)
f (y ) =g(y) g(y) > g(y) g(x) ■

implying that
f “ f (y ) dy > f(xl [ - g ( y ) dy
x g(x) x

or
Xx (x) < Xy (x).

To prove the final implication, note first that

[ Xx (t)dt =( ft)- dt = - log F(s)
0 0 F(t)

or
F'(s) = e- F XX(t),

which immediately shows that X >hr Y ^ X >st Y. ■

Define rX (t), the reversed hazard rate function of X,by

rX(t) = f(t)/F(t),

and note that
P (t - e<X IX <t) 

lim---------------------------= rX (t).
4 0 e

Say that X is reverse hazard rate order larger than Y, written X >rh Y, 
if

rX (t) > rY (t) for all t.

Our next theorem gives some representations of the orderings of X and 
Y in terms of stochastically larger relations between certain conditional 
distributions of X and Y. Before presenting it, we introduce the following 
notation.

Notation For a random variable X and event A, let [X |A] denote a random 
variable with a distribution that is that of the conditional distribution of 
X given A.
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Theorem 4.23

(a) X >hr Y & [X|X > t] >st [Y|Y > t] for all t.
(b) X >rh Y & [X|X < t] >st [Y|Y < t] for all t.
(c) X >lr Y ^ [X|s < X < t] >st [Y|s < Y < t] for all s <t.

Proof To prove Part (a), let Xt = d [X — t\X > t] and Yt = d [Y — t\Y > t]. 
Noting that

■ ( s >={°X ( s + t) if s < t 
if s > t

shows that

X >hr Y ^ Xt >hr Yt ^ Xt >st Yt ^ [XX>t ] >st [Y!Y>t].

To go the other way, use the identity

FXt (e) = e- ft+‘ XX (s)ds

to obtain that

[X |X > t] >st [Y|Y > t] & Xt >st Yt 
^ XX (t) < Xy (t) .

(b) With Xt = d [t — X|X < t],

Xxt (y) = rx (t — y) 0 < y < t.

Therefore, with Yt = d [t — Y |Y < t],

X >rhY ^ XXt(y) > XYt(y) 
^ Xt <st Yt

^ [t — X|X <t] <st [t — Y|Y <t] 
^ [X^<1 ] >st [Y|Y <t].

On the other hand,

[X^<1 ] >st [Y|Y <t] ^ 

^ 

^ 

^

Xt <st Yt

X XXt(y) dy >^ XYt(y) dy

r rx (t — y) dy > / ry (t — y) dy
JQ JO

rX (t) > ry (t).
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(c) Let X and Y have respective densities f and g. Suppose [X|s<X< 
t] >st [Y|s < Y < t] for all s <t. Letting s < v < t, this implies that

P (X >vls<X <t) > P (Y >vls<Y <t)

or, equivalently, that

P (v < X < t) P (v < Y < t)
P (s<X <t) > P (s<Y <t)

or, upon inverting, that

P (s<X< v) P (s<Y< v)
1 +< < 1 +' P (v < X < t) < ' P (v < Y < t)

or, equivalently, that

P (s<X < v) P (v<X<t) 
P (s <Y < v) < P (v <Y <t) . (4.12)

Letting v ^ s in Equation 4.12 yields

f(s) < P(s<X<t) 
g (s) “ p (s < y <t) ,

whereas letting v f t in Equation 4.12 yields

P(s<X<t) < f(t)
P (s < Y < t) “ g (t).

T'l'lllQ f (t ^ f (s ) el'i nwm O’ f 11 ft I jThus, g(t) > g(s) , showing that X >ir Y.
Now suppose that X >lr Y. Then clearly [Xls<X<t] >lr [Yls<Y<

t ], implying from Proposition 4.22 that [ X |s < X <t ] >st [ Y |s <Y <t ]. ■

Corollary 4.24 X >lr Y ^ X >rh Y ^ X >st

Proof The first implication immediately follows from Parts (b) and (c) of 
Theorem 4.23. The second implication follows upon taking the limit as 
t ^ <x in Part (b) of that theorem. ■

Say that X is an increasing hazard rate (IHR) random variable if XX (t) 
is nondecreasing in t. (Other terminology is to say that X has an increasing 
failure rate.)
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Proposition 4.25 Let Xt =d [X - t|X > t]. Then, 
(a) Xt Jst as t f ■& X is IHR and 
(b) Xt J-ir as t f ^ log f (x) is concave.

Proof (a) Let A (y) be the hazard rate function of X. Then Xt (y), the 
hazard rate function of Xt , is given by

At(y)=A(t+y), y>0.

Hence, if X is IHR then Xt ^r t, implying that Xt ^st t. Now, let s <t, 
and suppose that Xs >st Xt. Then,

e- t++' a(y)dy = p(Xt > e) < p (Xs >e) = e- s+' a(y)dy,

showing that A(t) > A(s). Thus Part (a) is proved.
(b) Using that the density of Xt is fxt (x) = f (x+t)/F(t) yields, for s < t, 
that

Xs >lr X « f'x . s) f x

^ log f (x + s) — log f (x + t) f x

&

■ &

■ &

■ &

f' (x + s) f' (x + t)
——------- ---------------- r" > 0
f (x + s) f (x + t)
f' (y) 
f (y) + y

4- log f (y) + y
dy
log f(y) is concave.

4.8 Exercises

1. For a nonnegative random variable X, show that (E [X n])1/n is non­
decreasing in n.

2. Let X be as standard normal random variable. Use Corollary 4.4, 
along with the density

g(x)=xe-x2/2, x>0

to show, for c> 0, that
(a) P (X>c ) = -2^ e-c 2 / 2 Eg [ XIX > c ].
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(b) Show, for any positive random variable W , that

E W1 W < E
1

W

(c) Show that
P(X >c) < 1 e2/2.

(d) Show that

Eg [X X > c] = c + ec2 /2 V2nP (X > c).

(e) Use Jensen’s inequality, along with the preceding, to show that

cP(X >c) + ec2/2V2n(P(X > c))2 >-1=e 2/2.
V2 n

(f) Argue from Part (e) that P(X>c) must be at least as large as 
the positive root of the equation

cx + ec / 2 V2nx2 -c2/21
,__ e

\27

(g) Conclude that

P(X >c) ■ (Vc2 + 4 - c) e-c2/2.
^/2 n

3. Let X be a Poisson random variable with mean A. Show that, for 
n > A, the Chernoff bound yields that

P(X > n) <
e—(Ae)n 

nn

4. Let m(t) = E[Xt]. The moment bound states that for c>0

P(X > c) < m(t)c-t

for all t>0. Show that this result can be obtained from the impor­
tance sampling identity.

5. Fill in the details of the proof that, for independent Bernoulli random 
variables X1 ,...,Xn , and c>0,

P(S - E[S] <-c) < e-2c2/n,

where S = n=1 Xi.
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6. If X is a binomial random variable with parameters n and p, show 
(a) P(|X — np\ > c) < 2e-2c /n and
(b) P(X — np > anp) < exp{— 2np2a2}.

7. Give the details of the proof of Equation 4.7.

8. Prove that
E[f(X)] > E[f(E[X|Y])] > f(E[X]).

Suppose you want a lower bound on E[f(X)] for a convex function f. 
The preceding shows that first conditioning on Y and then applying 
Jensen’s inequality to the individual terms E[f(X)|Y = y] results in 
a larger lower bound than does an immediate application of Jensen’s 
inequality.

9. Let Xi be binary random variables with parameters pi, i = 1,..., n. 
Let X = in=1 Xi, and also let I, independent of the variables X1,...,
Xn, be equally likely to be any of the values 1,...,n. For R indepen­
dent of I, show that
(a) P(I = i|XI = 1) = pi/E[X],
(b) E[XR] =E[X]E[R|XI =1], and
(c) P(X> 0) = E[X] E[-1 Xi = 1].

10. For Xi and X as in Exercise 9, show that

V pi > (E[X])2

E[XXi = 1] > E[X2] .

Thus, for sums of binary variables, the conditional expectation in­
equality yields a stronger lower bound than does the second moment 
inequality.
Hint: Make use of the results of Exercises 8 and 9.

11. Let Xi be exponential with mean 8 + 2i, fori =1, 2, 3. Obtain an 
upper bound on E[maxXi], and compare it with the exact result 
when the Xi are independent.

12. Let Ui,i =1,...,n be uniform (0, 1) random variables. Obtain an 
upper bound on E[max Ui], and compare it with the exact result 
when the Ui are independent.

13. Let U1 and U2 be uniform (0, 1) random variables. Obtain an upper 
bound on E[max(U1, U2)], and show this maximum is obtained when 
U1=1—U2.

14. Show that X >hr Y if and only if

P (X >t) P (Y > t)
P (X > s) > P (Y > s)

for all s<t.
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15. Let h(x, y) be a real valued function satisfying

h(x, y) > h(y,x) whenever x > y.

(a) Show that if X and Y are independent and X >lr Y, then 
h(X, Y) >st h(Y, X).
(b) Show by a counterexample that the preceding is not valid under 
the weaker condition X >st Y.

16. There are n jobs, with job i requiring a random time Xi to process. 
The jobs must be processed sequentially. Give a sufficient condition, 
the weaker the better, under which the policy of processing jobs in 
the order 1, 2,... ,n maximizes the probability that at least k jobs are 
processed by time t for all k and t.

17. Verify Remark 4.13.
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Markov Chains

5.1 Introduction
This chapter introduces a natural generalization of a sequence of indepen­
dent random variables, called a Markov chain, where a variable may depend 
on the immediately preceding variable in the sequence. Named after the 
19th century Russian mathematician Andrei Andreyevich Markov, these 
chains are widely used as simple models of more complex real-world phe­
nomena.

Given a sequence of discrete random variables X0, X1 ,X2, ... taking val­
ues in some finite or countably infinite set S, we say that Xn is a Markov 
chain with respect to a filtration Fn if Xn G Fn for all n and, for all B C S, 
we have the Markov property

P (Xn+1 G B| Fn) = P(Xn+1 G B|Xn).

If we interpret Xn as the state of the chain at time n, then the preceding 
means that if you know the current state, nothing else from the past is 
relevant to the future of the Markov chain. That is, given the present 
state, the future states and the past states are independent. When we let 
Fn = &(X0, X 1,..., Xn), this definition reduces to

P(Xn+1 =j| Xn = i, Xn-1 =in-1,...,X0 =i0)
= P (Xn+1 = j | Xn = i).

If P (Xn+1 = j | Xn = i) is the same for all n, we say that the Markov 
chain has stationary transition probabilities, and we set

Pij = P (Xn+1 = j| Xn = i).

In this case, the quantities Pij are called the transition probabilities, and 
specifying them along with a probability distribution for the starting state

121
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X0 is enough to determine all probabilities concerning X0 ,...,Xn .We 
will assume from here on that all Markov chains considered have stationary 
transition probabilities. In addition, unless otherwise noted, we will assume 
that S, the set of all possible states of the Markov chain, is the set of 
nonnegative integers.

Example 5.1 Reflected random walk. Suppose Yi are iid Bernoulli(p) ran­
dom variables, and let X0 =0andXn = (Xn-1 +2Yn - 1)+ for n =1, 2, ...
The process Xn , called a reflected random walk, can be viewed as the po­
sition of a particle at time n such that at each time the particle has a p 
probability of moving one step to the right and a 1 -p probability of moving 
one step to the left; it is returned to position zero if it ever attempts to 
move to the left of zero. It is immediate from its definition that Xn is a 
Markov chain.

Example 5.2 A non-Markov chain. Again let Yi be iid Bernoulli(p) random 
variables, let X0 = 0, and this time let Xn = Yn + Yn-1 for n =1, 2, ...
It’s easy to see that Xn is not a Markov chain because P (Xn+1 = 2|Xn = 
1, Xn-1 = 2) = 0, whereas on the other hand P (Xn+1 = 2|Xn = 1,Xn-1 = 
0) = p.

5.2 Transition Matrix

The transition probabilities

Pij =P(X1 = j|X0 =i)

are also called the one-step transition probabilities. We define the n-step 
transition probabilities by

Pi(jn) = P(Xn = j|X0 =i).

In addition, we define the transition probability matrix

P00 P01 P02

P = P10 P11 P12

and the n-step transition probability matrix

P(n) =

(n) P00 
p( n) 
P10

(n) (n)
P01 P2 ' "
(n) n) p( n)
P11 P12 " •
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An interesting relation between these matrices is obtained by noting 
that

pj+m) = p(xn+m = j jx0 = i,xn = k)p(x = = .)

k

= ^2 p(m) p (n) 

k

The preceding are called the Chapman-Kolmogorov equations.
If follows from the Chapman-Kolmogorov equations that

p(n+m) = pn x pm
where x represents matrix multiplication. Hence,

P(2) = P x P,

and by induction,
P(n) = Pn,

where the right-hand side represents multiplying the matrix P by itself n 
times.

Example 5.3 Reflected random walk. A particle starts at position zero and 
at each time moves one position to the right with probability p and, if the 
particle is not in position zero, moves one position to the left (or remains 
in state zero) with probability 1 - p.Thepositionxn of the particle at 
time n forms a Markov chain with transition matrix

P=

1 — p p 0 0 0 • • •
1 — p 0 p 0 0 ...

0 1 — p 0 p 0 ...

Example 5.4 Two-state Markov chain. Consider a Markov chain with 
states zero and one having transition probability matrix

a 1 — a
P 1 — P

The two-step transition probability matrix is given by

a2 +(1— a)P 1 — a2 — (1 — a)P 
aP+P(1 —P)1—aP—P(1 —P)
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5.3 Strong Markov Property

Consider a Markov chain Xn having one-step transition probabilities Pij , 
which means that if the Markov chain is in state i at a fixed time n, then 
the next state will be j with probability Pij . However, it is not necessarily 
true that if the Markov chain is in state i at a randomly distributed time 
T , the next state will be j with probability Pij . That is, if T is an arbitrary 
nonnegative integer valued random variable, it is not necessarily true that 
P (XT +1 = j|XT = i)=Pij . For a simple counterexample, suppose

T = min(n : Xn = i, Xn+1 = j).

Then, clearly,
P (XT +1 = j |XT = i)=1.

The idea behind this counterexample is that a general random variable T 
may depend not only on the states of the Markov chain up to time T but 
also on future states after time T . Recalling that T is a stopping time for 
a filtration Fn if {T = n} G Fn for every n, we see that for a stopping time 
the value of T can only depend on the states up to time t. We now show 
that P (XT +n = j |XT = i) will equal Pi(jn) provided that T is a stopping 
time.

This is usually called the strong Markov property and essentially means 
a Markov chain “starts over” at stopping times. From here on, we define 
FT = {A : A 0 {T = t} G Ft for all t}, which intuitively represents any 
information you would know by time T .

Proposition 5.5 Strong Markov property. Let Xn,n > 0, be a Markov chain 
with respect to the filtration Fn. If T < to a.s. is a stopping time with 
respect to Fn , then

P(XT+n=j|XT=i,FT)=Pi(jn).

Proof

P(XT+n = j|XT =i,FT,T=t)=P(Xt+n = j|Xt =i,Ft,T=t)
= P(Xt+n = j|Xt =i,Ft)

(n)= Pij ,

where the next to last equality used the fact that T is a stopping time to 
give {T = t} G Ft. ■

Example 5.6 Losses in queuing busy periods. Consider a queuing system 
where Xn is the number of customers in the system at time n. At each time 
n =1, 2,..., either a new customer arrives or, if there are any customers 
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present, one departs, with the former happening with probability p. Start­
ing with X0 =1,letT =min{t>0:Xt =0} be the length of a busy 
period. Suppose also there is only space for at most m customers in the 
system. Whenever a customer arrives to find m customers already in the 
system, the customer is lost and departs immediately. Letting Nm be the 
number of customers lost during a busy period, compute E[Nm].

Solution Let A be the event that the first arrival occurs before the first de­
parture. We will obtain E [Nm] by conditioning on whether A occurs. Now, 
when A happens, for the busy period to end we must first wait an interval 
of time until the system goes back to having a single customer, and then 
after that we must wait another interval of time until the system becomes 
completely empty. By the Markov property, the number of losses during 
the first time interval has distribution Nm-1 because we are now starting 
with two customers and therefore with only m - 1 spaces for additional 
customers. The strong Markov property tells us that the number of losses 
in the second time interval has distribution Nm . We therefore have

E[Nm|A] = E[Nm-1] + E[Nm] 
1 + E[Nm] 

ifm> 1 
ifm =1,

and using P (A)=p and E[Nm|Ac] = 0, we have

E[Nm] = E[Nm|A]P(A) + E[Nm|Ac]P(Ac) 
= pE[Nm-1] + pE[Nm]

for m> 1 along with
E[N1] = p + pE[N1]

and thus

E [ Nm ] = ( ~
1-

It’s interesting to notice that E[Nm] increases in m when p>1/2, 
decreases when p< 1/2, and stays constant for all m when p = 1/2. The 
intuition for the case p =1/2 is that when m increases, losses become less 
frequent but the busy period becomes longer. ■

We next apply the strong Markov property to obtain a result for the 
cover time, the time when all states of a Markov chain have been visited.

Proposition 5.7 Cover times. Given an N -state Markov chain Xn, let Ti = 
min{n > 0 : Xn = i} and let C = maxi Ti be the cover time. Then 
E[C] < Em =1 m maxi,j E[T X0 = i] •
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Proof Let I1 ,I2, ..., IN be a random permutation of the integers 1, 2, ..., N 
chosen so that all possible orderings are equally likely. Letting TI0 =0, and 
noting that maxj<m TIj — maxj<m- 1 TIj is the additional time after all 
states I1,...,Im-1 have been visited until all states I1,...,Im have been 
visited, we see that

N /

C = max TIj — max TIj
—j jj<m j j<m- 1 j 

m=1

Thus, we have

N

E[C] = E max TIj — max TIj 
j<m 3 j<m-1 3

N 1
—E max TIj 

m=1

max TIj |TIm > max TIj 
j<m- 1 j<m- 1

1
—max E [ Tj |X 0 = i ],

where the second line follows because all orderings are equally likely and 
thus P(TIm > maxj<m- 1 TIj) = 1 /m, and the third follows the strong 
Markov property. ■

5.4 Classification of States
We say that states i, j of a Markov chain communicate with each other, or

(n)are in the same class, if there are integers n and m such that both Pij > 0 
and Pj(im) > 0 hold. This means that it is possible for the chain to get from 
i to j and vice versa. A Markov chain is called irreducible if all states are 
in the same class.

For a Markov chain Xn ,let

Ti =min{n>0:Xn = i}

be the time until the Markov chain first makes a transition into state i. 
Using the notation Ei [• • • ] and Pi (• • •) to denote that the Markov chain 
starts from state i, let

fi = Pi (Ti < to)

be the probability that the chain ever makes a transition into state i given 
that it starts in state i. We say that state i is transient if fi < 1and 
recurrent if fi =1. Let

Ni = I{Xn=i}
n=1
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be the total number of transitions into state i. The strong Markov property 
tells us that, starting in state i,

Ni + 1 ~ geometric(1 — fi)

because each time the chain makes a transition into state i there is, inde­
pendent of all else, a (1 — fi ) chance it will never return. Consequently,

Ei [ Ni ] = £ P(n n

n=1

is either infinite or finite depending on whether or not state i is recurrent 
or transient.

Proposition 5.8 If state i is recurrent and i communicates with j, then j 
is also recurrent.

Proof Because i and j communicate, there exist values n and m such that
(n) (m)Pij Pji > 0. But for any k>0,

(n+m+k) (m) (k) (n)
Pjj - Pji Pii Pij ,

where the preceding follows because Pj(jn+m+k) is the probability starting 
in state j that the chain will be back in j after n + m + k transitions, 
wereas ji ii ij is te proaiity o te same event o ccurring ut 
with the additional condition that the chain must also be in i after the first 
m transitions and then back in i after an additional k transitions. Summing 
over k shows that

(n+m+k) (m) (n) (k)
Ej[Nj] ^2.^ Pjj - Pji Pij / v Pii = tt-

Thus, j is also recurrent. ■

Proposition 5.9 If j is transient, the^^L^=1 Pij) < ^-

Proof Note that

Ei[Nj] = Ei

oo

I{Xn=j} 
n=0

co
= E pjn

n=1

Let fij denote the probability that the chain ever makes a transition into 
j given that it starts at i. Then, conditioning on whether such a transition 
ever occurs yields, upon using the strong Markov property,

Ei[Nj] = (1 + Ej[Nj])fij <tt

because j is transient. ■
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If i is recurrent, let
Pi = Ei [ Ti ]

denote the mean number of transitions it takes the chain to return to state 
i, given it starts in i. We say that a recurrent state i is null if ^i = to 
and positive if ^i < to. In the next section, we will show that positive 
recurrence is a class property, meaning that if i is positive recurrent and 
communicates with j then j is also positive recurrence. (This also implies, 
using that recurrence is a class property, that so is null recurrence.)

5.5 Stationary and Limiting Distributions

For a Markov chain Xn starting in some given state i, we define the limiting 
probability of being in state j to be

Pj = lim Pi(jn)
J n^x ij

if the limit exists and is the same for all i.
It is easy to see that not all Markov chains will have limiting probabili­

ties. For instance, consider the two state Markov chain with P01 = P10 =1. 
For this chain, P0(0n) will equal one when n is even and zero when n is odd, 
so it has no limit.

Definition 5.10 State i of a Markov chain Xn is said to have period d if 
(n)d is the largest integer having the property that Pii =0when n is not a 

multiple of d.

Proposition 5.11 If states i and j communicate, then they have the same 
period.

nmroo Let k e te perio o state . etn, m e suc t at ij ji > 0.
Now, if Pi(ir) > 0, then

(r+n+m) (m) (r) (n)
Pjj < Pji Pii Pij > 0 •

So dj divides r + n + m. Moreover, because

(2r) (r) (r)
Pii ^ Pii Pii > 0,

the same argument shows that dj also divides 2r + n + m; therefore dj 

divides 2r + n + m — (r + n + m) = r Because dj divides r whenever 
(r)Pii > 0, it follows that dj divides di • But the same argument can now be 

used to show that di divides dj. Hence, di = dj. ■
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It follows from the preceding that all states of an irreducible Markov 
chain have the same period. If the period is one, we say that the chain 
is aperiodic. It’s easy to see that only aperiodic chains can have limiting 
probabilities.

Intimately linked to limiting probabilities are stationary probabilities. 
The probability vector ni, i G S is said to be a stationary probability vector 
for the Markov chain if

nj = £ niPij for all j

j=n = 1 • 
j

Its name arises from the fact that if the X0 is distributed according to a 
stationary probability vector {ni} then

P(X1 = j) = P(X1 = j |X0 = i)ni = niPij = nj

and, by a simple induction argument,

P (Xn = j ) = P (Xn = jlXn-1 = i) P (Xn-1 = i) = niPij = nj •

Consequently, if we start the chain with a stationary probability vector 
then Xn, Xn+1, • • • has the same probability distribution for all n.

The following result will be needed later.

Proposition 5.12 An irreducible transient Markov chain does not have a 
stationary probability vector.

Proof Assume there is a stationary probability vector ni, i > 0, and take it 
to be the probability mass function of X0 . Then, for any j

nj = P(Xn = j) ^2 niP(:n ) •
i
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Consequently, for any m

nj = lim 52 nPj) 
n^— ij

i

< lim |E ) + £ nJ 
n^^^o

\i<m >>m j

= E ni^m-Pj) + E ni 

i<m i>m

= E ni, 
i>m

where the final equality used that ^2j Pin ) < TO because j is transient, 
implying that limn .^ Pj) = 0. Letting m ^ to shows that nj = 0 for 
all j, contradicting the fact that ^2j nj = 1■ Thus, assuming a stationary 
probability vector results in a contradiction, proving the result. ■

The following theorem is of key importance.

Theorem 5.13 An irreducible Markov chain has a stationary probability 
vector {ni} if and only if all states are positive recurrent. The stationary 
probability vector is unique and satisfies

nj = 1 /hj.

i

Moreover, if the chain is aperiodic then

nj=lnm Pin).

To prove the preceding theorem, we will make use of a couple of lemmas.

Lemma 5.14 For an irreducible Markov chain, if there exists a stationary 
probability vector {ni}, then all states are positive recurrent. Moreover, the 
stationary probability vector is unique and satisfies

nj = 1 / hj.

Proof Let nj be stationary probabilities, and suppose that P(X0 = j) = nj 

for all j. We first show that ni > 0 for all i. To verify this, suppose that 
nk = 0. Now for any state j, because the chain is irreducible, there is 

(n)an n such that Pjk > 0. Because X0 is determined by the stationary 
probabilities,

n, = P (X = k ) = nP(n) > nP(n)nk = P(Xn = k) = / y niPik > njPjk .
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Consequently, if nk =0 then so is nj. Because j was arbitrary, that means 
that if ni = 0 for any i, then ni =0 for all i. But that would contradict 
the fact that 52i ni = 1. Hence, any stationary probability vector for an 
irreducible Markov chain must have all positive elements.

Now, recall that Tj =min(n>0:Xn = j). So,

Vj = E [ Tj |Xo = j ]
co

= E P(Tj > nXo = j) 
n=1

= P (Tj > n,Xo = j)
n=1 P ( x o=j) .

Because X0 is chosen according to the stationary probability vector {ni}, 
this gives 

o
njVj = E P(Tj > n,Xo = j). (5.1)n=1

Now,
P(Tj > 1 ,Xo = j)= P(Xo = j)= nj,

and for n > 2,

P(Tj > n,Xo=j)
= P(Xi = j, 1 < i < n - 1 ,Xo = j)
= P(Xi = j, 1 < i < n — 1) — P(Xi = j, 0 < i < n — 1)
= P(Xi = j, 1 < i < n - 1) - P(Xi =j, 1 < i < n),

where the final equality used that Xo ,...,Xn-1 has the same probability distribution as X1 , . . . ,Xn, when Xo is chosen according to the stationary 

probabilities. Substituting these results into Equation 5.1 yields

njVj = nj + P(X 1 = j) — lim P(Xi = j, 1 < i < n).

But the existence of a stationary probability vector implies that the Markov chain is recurrent and that limnP (Xi = j, 1 < i < n) = P(Xi = j, for all i >

1) = 0. Because P (X 1 = j) = 1 — nj, we thus obtain

nj 1/ Vj,

showing that there is at most one stationary probability vector. In addition, 
because all nj > 0, we have that all Vj < TO, showing that all states of the 
chain are positive recurrent. ■

Lemma 5.15 If some state of an irreducible Markov chain is positive re­
current, then there exists a stationary probability vector.
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Proof Suppose state k is positive recurrent. Thus,

Mk = Ek [Tk] < ^.

Say that a new cycle begins every time the chain makes a transition into 
state k. For any state j ,letAj denote the amount of time the chain spends 
in state j during a cycle. Then

E[Aj] = Ek

oo

I{Xn=j,Tk >n} 
n=0

°o
= Ek [I{Xn=j,Tk>n}]

n=0 
oo

= Pk(Xn =j,Tk >n).
n=0

We claim that nj = E[Aj]/^k, j > 0, is a stationary probability vector. 
Because E[ j Aj] is the expected time of a cycle, it must equal Ek [Tk], 
showing that

nL^=i = 1.

j

Moreover, for j = k

Mk nj = E Pk (Xn = j,Tk >n)

= Pk (Xn = j, Tk >n-1,Xn-1 = i)
n> 1 i

= EE Pk (Tk >n - 1 ,Xn-1 = i) 
n>1 i

xPk (Xn = j ITk >n - 1 ,Xn-1 = i)

= Pk (Tk >n-1,Xn-1 = i)Pij

i n>1

= EE Pk (Tk >n,Xn = i ) Pij

i n>0

= E [ Ai ] Pij

i

M^ n niPij.
i
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Finally,

niPik ni I 1 _ ^2 Pij

= 1 - EEniPij

= i — ^k n 

nk,

and the proof is complete. ■

Note that Lemmas 5.14 and 5.15 imply the following.

Corollary 5.16 If one state of an irreducible Markov chain is positive re­
current, then all states are positive recurrent.

We are now ready to prove Theorem 5.13.

Proof All that remains to be proven is that if the chain is aperiodic, as 
well as irreducible and positive recurrent, then the stationary probabilities 
are also limiting probabilities. To prove this, let ni,i > 0, be stationary 
probabilities. Let Xn, n > 0 and Yn, n > 0 be independent Markov chains, 
both with transition probabilities Pi,j, but with X0 = i and with P(Y0 = 
i) = ni. Let

N = min(n : Xn = Yn).

We first show that P (N < to ) = 1. To do so, consider the Markov chain 
with a state at time n that is (Xn ,Yn ) and thus has transition probabilities 
P(i,j),(k,r) = PikPjr.

That this chain is irreducible can be seen by the following argument. 
Because {Xn } is irreducible and aperiodic, it follows that for any state 
'l I lllll'l) ‘I I'll l'<L I ‘i I I‘7<L I I ' lll'lliil'. I 1 I I < 111 '< 11'^' 'll III ^'ll/'ll I It'll , Il llllli tere are reativey prime integers n, m suc tat ii ii > 0. ut
any sufficiently large integer can be expressed as a linear combination of 
relatively prime integers, implying that there is an integer Ni such that

Pi(in) > 0 for all n>Ni .

Because i and j communicate, this implies the existence of an integer Ni,j 

such that
Pi(jn) > 0 for all n>Ni,j .

Hence, 

n nnP(i,k),(j,r) = Pij Pkr > 0 for all sufficiently large n, 

which shows that the vector chain (Xn ,Yn ) is irreducible.
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In addition, we claim that ni,j = ninj is a stationary probability vector, 
which is seen from

ninj E nkPk,i^2 nr Pr,j E nk nr Pk,iPr,j.

By Lemma 5.14, this shows that the vector Markov chain is positive recur­
rent, so P(N < to) = 1 and thus limn P(N > n) = 0.

Now, let Zn = Xn if n < N and let Zn = Yn if n > N. It is easy to 
see that Zn,n > 0, is also a Markov chain with transition probabilities Pij 

and has Z0 = i. Now

Pi(,nj) = P(Zn = j)

= P (Zn = j, N < n) + P(Zn = j,N > n)
= P(Yn = j,N < n)+ P(Zn = j,N>n)
< P(Yn=j)+P(N>n)
= nj + P (N>n). (5.2)

On the other hand,

nj = P (Yn = j)
= P(Yn =j,N<n)+P(Yn =j,N>n)
= P(Zn=j,N<n)+P(Yn=j,N>n)
< P(Zn = j)+P(N>n)
= Pi(jn) +P(N>n). (5.3)

Hence, from Equations 5.2 and 5.3, we see that

lim Pin) = nj

Remark 5.17 It follows from Theorem 5.13 that if we have an irreducible 
Markov chain, and we can find a solution of the stationarity equations

nj = £ "P j > 0

Y= = 1, 
i

then the Markov chain is positive recurrent, and the ni are the unique 
stationary probabilities. If, in addition, the chain is aperiodic, then the ni 

are also limiting probabilities.
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Remark 5.18 Because ^i is the mean number of transitions between succes­
sive visits to state i, it is intuitive (and will be formally proven in Chapter 
6 on renewal theory) that the long run proportion of time that the chain 
spends in state i is equal to 1 /pi. Hence, the stationary probability ni is 
equal to the long-run proportion of time that the chain spends in state i.

Definition 5.19 A positive recurrent, aperiodic, irreducible Markov chain 
is called an ergodic Markov chain.

Definition 5.20 A positive recurrent irreducible Markov chain with an ini­
tial state that is distributed according to its stationary probabilities is called 
a stationary Markov chain.

5.6 Time Reversibility

A stationary Markov chain Xn is called time reversible if

P(Xn = j|Xn+1 = i) = P(Xn+1 = j|Xn = i) for all i,j.

By the Markov property, we know that the processes Xn+1 , Xn+2 ,... and 
Xn-1 , Xn-2 ,... are conditionally independent given Xn, so it follows that 
the reversed process Xn-1, Xn-2,... will also be a Markov chain having 
transition probabilities

P(X v ■> P (Xn = j,Xn+1 = i)
P (X. = j|X. +1 = i) = P (Xn+1 = i)

nj Pji 
, ni

where ni and Pij respectively denote the stationary probabilities and the 
transition probabilities for the Markov chain Xn . Thus, an equivalent def­
inition for n being time reversible is if

niPij = nj Pji for all i, j.

Intuitively, a Markov chain is time reversible if it looks the same run­
ning backward as it does running forward. It also means that the rate of 
transitions from i to j - namely, niPij - is the same as the rate of transi­
tions from j to i - namely, njPji. This happens if there are no “loops” for 
which a Markov chain is more likely in the long run to go in one direction 
compared with the other direction. We illustrate this with examples.

Example 5.21 Random walk on the circle. Consider a particle that moves 
around n positions on a circle numbered 1, 2, ..., n according to transition 
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probabilities Pi,i +1 = p =1 — Pi+1 ,i for 1 < i < n and Pn, 1 = p =1 — P1 ,n. 
Let Xn be the position of the particle at time n. Regardless of p, it is easy 
to see that the stationary probabilities are ni = 1 /n. Now, for 1 < i < n 
we have niPi,i +1 = p/n and ni+1 Pi +1 ,i = (1 — p)/n (and also nnPn, 1 = p/n 
and n 1 P1 ,n = (1 — p)/n). If p = 1 /2 these will all be equal and Xn will be 
time reversible. On the other hand, if p =1/2 these will not be equal and 
Xn will not be time reversible.

It can be much easier to verify the stationary probabilities for a time 
reversible Markov chain than for a Markov chain that is not time reversible. 
Verifying the stationary probabilities ni for a Markov chain involves check­
ing 52i ni = 1 and, for all j,

nj = 22 niPij.

For a time-reversible Markov chain, it only requires checking that 52i ni = 1 
and

niPij nj Pji

for all i, j because if the preceding holds, then summing both sides over j 
yields

ni 22 Pij 22 nj Pji

or

ni = 22 nj Pji.

This can be convenient in some cases, and we illustrate one next.

Example 5.22 Random walk on a graph. Consider a particle moving on a 
graph that consists of nodes and edges, and let di be the number of edges 
emanating from node i.IfXn is the location of the particle at time n, let 
P (Xn+1 = j|Xn = i) = 1/di if there is an edge connecting node i and node 
j. This means that, when at a given node, the random walker’s next step 
is equally likely to be to any of the nodes that are connected by an edge. If 
D is the total number of edges that appear in the graph, we will show that 
the stationary probabilities are given by ni = 2D.

Solution Checking that niPij = njPji holds for the claimed solution, we 
see that this requires that

di 1 dj 1
2D di = 2D dj.

It thus follows, because 52i ni = ^dp* = 1, that the Markov chain is time 
reversible with the given stationary probabilities. ■
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5.7 A Mean Passage Time Bound

Consider now a Markov chain with a state space that is the set of nonneg­
ative integers and is such that

Pij = 0, 0 < i <j. (5.4)

That is, the state of the Markov chain can never strictly increase. Suppose 
we are interested in bounding the expected number of transitions it takes 
such a chain to go from state n to state zero. To obtain such a bound, 
let Di be the amount by which the state decreases when a transition from 
state i occurs so that

P(Di = k) = Pi,i-k , 0 < k < i.

The following proposition yields the bound.

Proposition 5.23 Let Nn denote the number of transitions it takes a Markov 
chain satisfying Equation 5.4 to go from state n to state zero. If for some 
nondecreasing function di,i > 0, we have that E[Di] > di, then

n

E[Nn] < 1/di.

Proof The proof is by induction on n. It is true when n = 1, because N1 

is geometric with mean

E [ N1] = -j1-
P1,0 E [ D1] < d 1.

So, assume that E[Nk] < ik=1 1/di , for all k<n.To bound E[Nn], we 
condition on the transition out of state n and use the induction hypothesis 
in the first inequality in the following to get



138 5 Markov Chains

E[Nn]
n

= E[Nn|Dn = j]P(Dn = j)
j=0

n

=1+ E[Nn-j]P (Dn = j)

n

= 1 + Pn,nE[Nn] + E[Nn-j]P (Dn = j)
j=1

n n-j

< 1 + Pn,nE[Nn] + P(D> = j ) Z 1 /di

j=1 i=1

n n n

= 1+ Pn,nE[Nn] + P(Dn = j ) Z 1 /di — Z 1 /di

n n

< 1 + Pn,nE[Nn] + P(Dn =j) 1/di - j/dn

j=1 i=1

where the last line follows because di is nondecreasing. Continuing from 
the previous line, we get

n n
= 1 + Pn,nE[Nn] + (1 — Pn,n) 1 /di — d" Z jP(Dn = j )

= 1 + Pn,nE[Nn] +(1 — Pn,n) V 1 /di — ^D^
d

n

< Pn,nE[Nn] + (1 — Pn,n) 1/di,
i=1

which completes the proof. ■

Example 5.24 At each stage, each of a set of balls is independently put in 
one of n urns, with each ball being put in urn i with probability pi , in=1 pi = 
1. After this is done, all of the balls in the same urn are coalesced into a 
single new ball, with this process continually repeated until a single ball 
remains. Starting with N balls, we would like to bound the mean number 
of stages needed until a single ball remains.

We can model the preceding as a Markov chain {Xk,k > 0}, with a 
state that is the number of balls that remain in the beginning of a stage. 
Because the number of balls that remain after a stage beginning with i balls 
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is equal to the number of nonempty urns when these i balls are distributed, 
it follows that

E[Xk+1|Xk = i]=E
n

I {urn j is nonempty}|Xk = i 
j=1

n
= P (urn j is nonempty|Xk = i)

j=1
n

= [1- (1 - pj)i].
j=1

Hence, E[Di], the expected decrease from state i is

E[Di] = i - n + (1 - pj)i.
j=1

Because
n

E[Di+1] - E[Di]=1- pj (1 - pj)i > 0,
j=1

it follows from Proposition 5.23 that the mean number of transitions to go 
from state N to state one satisfies

n

E [ Nn ] <£ - 
i=2 i

1
- n+e n=i(1- pj) i'

5.8 Gambler’s Ruin

Consider a gambler who in each round of a game has a probability p of 
winning one dollar and a probability q =1- p of losing one dollar, with 
the outcomes of successive rounds being independent. Letting Xn be the 
net winnings of the gambler after the nth round, the process {Xn ,n = 
0, 1, 2,...} is a Markov chain, also called a random walk, with transition 
probabilities pi,i+1 =1- pi,i-1 = p for integers i.

Letting Tp =min{t>0:Xt = m or Xt = -m} be the number of 
rounds until the gambler’s net winnings reaches either -m or +m starting 
from X0 = 0, we will show that if 1 > p 1 > p2 > 1 /2 then

Tpi <st Tp2, (5.5)

meaning that this duration is stochastically longer when the rounds are 
more fair.
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To verify the preceding result, we first show that |Xn|, n > 0 is a Markov 
chain.

To do so, suppose we are given that |X0 | = x0, |X1 | = x1 ,...,|X2n+i | = 
x2n+i , where x0 = 0,x2n+i = i. To determine the conditional probability 
distribution of |X2n+i+1 |, we will first determine

P (X2n+i = i | |Xr| = xr,r=0,...,2n + i).

To do so, let
j = max{k : 0 < k < 2n + i : xk = 0}

and note that j is an even integer. Because Xj = 0 it follows that

P (X2n+i = i | |Xr| = xr,r=0,...,2n + i)
=P (X2n+i = i | |Xr| = xr,r= j,...,2n + i)

Because xj = 0,xr =0,r = j +1,...,2n + i, it follows that there are 
only two possible values of the sequence Xj+1 ,...,X2n+i , with the first 
occurring if the sequence results from n - j/2+i up moves and n - j/2 
down moves, and the second if the reverse occurs. Hence,

P (X2n+i =i | |Xr| =xr,r=0,...,2n+i) 
pn-j/2+iqn-j/2

pn-j/2+iqn-j/2 + qn—j/2+ipn—j/2 

pi

pi + qi

Conditioning on whether X2n+i = i or X2n+i = -i now gives that
pi+1 + qi+1

P (|X 2 n+i+11 = i +1 | |Xr | = Xr ,r = 0,..., 2 n + i) = ---- ——i—
pi + qi

As it is easily shown that the preceding transition probability is in­
creasing in p when p > 1/2, it follows that if we have two versions of the 
random walk Xn and X'n respectively with upward probabilities p 1 and p2 

with 1 > p1 > p2 > 1/2, the upward transition probabilities for the Markov 
chain |Xn| are always at least as large as for Xn|. This means we can 
create a coupling where |Xn| > |Xn | for all n by letting the two Markov 
chains step independently when at different levels, and when at the same 
level we can couple their next steps so that the latter never ends up above 
the former; the two chains will never cross when stepping from different 
levels because they always are an even number of steps apart. This means 
the former reaches m sooner and (5.5) holds.

5.9 Exercises
1. Let fij denote the probability that the Markov chain ever makes a 

transition into state j given that it starts in state i. Show that if i is 
recurrent and communicates with j then fij =1.
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2. Show that a recurrent class of states of a Markov chain is a closed 
class, in the sense that if i is recurrent and i does not communicate 
with j then Pij =0.

3. The one-dimensional simple random walk is the Markov chain Xn. n > 
0, with states that are all the integers and that has the transition 
probabilities

Pi,i+1 =1- Pi,i-1 = p.

Show that this chain is recurrent when p =1/2 and transient for 
all p = 1/2. When p = 1/2, the chain is called the one-dimensional 
simple symmetric random walk.
Hint: Make use of Stirling’s approximation, which states that

n! ~ nn+1 / 2 < 'n^2n.

where we say that an ~ bn if limn . ,. an/bn = 1. You can also use 
the fact that if an > 0.bn > 0 for all n, then an ~ bn implies that 
nan an < to if and only if £n bn < to.

4. The two-dimensional simple symmetric random walk moves on a two­
dimensional grid according to the transition probabilities

P(i,j),(i,j+1) = P(i,j),(i+1,j) = P(i,j),(i-1,j) = P(i,j),(i,j-1) = 1/4.

Show that this Markov chain is recurrent.

5. Define the three-dimensional simple symmetric random walk, and 
then show that it is transient.

6. Given a finite-state Markov chain Xn ,letTi = min{n > 0:Xn = i} 
and C = maxi Ti .
(a) Show that for any subset of states A

1min E [ C X0 = i ] 'V min Ei [ Tj ].
i m m iEA,jEA L j

m=1

where |A| denotes the number of elements in A.
(b) Obtain a lower bound for the mean number of flips required until 
all 2k patterns of length k have appeared when a fair coin is repeatedly 
flipped.

7. Consider a Markov chain with a state space that is the set of nonneg­
ative integers. Suppose its transition probabilities are given by

P0,i = pi.i> 0. Pi,i-1 =1.i>0.

where i ipi < to. Find the limiting probabilities for this Markov
chain.
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8. Consider a Markov chain with states 0, 1,...,N and transition prob­
abilities

P0N =1, Pij = 1/i, i > 0,j<i.

That is, from state zero the chain always goes to state N , and from 
state i> 0 it is equally likely to go to any lower numbered state. Find 
the limiting probabilities of this chain.

9. Consider a Markov chain with states 0, 1,...,N and transition prob­
abilities

Pi,i+1 = p =1- Pi,i-1,i=1,...,N - 1

P0,0 = PN,N =1.

Suppose that X0 = i, where 0 <i<N.Argue that, with a probability 
of one, the Markov chain eventually enters either state zero or N . 
Derive the probability it enters state N before state zero. This is 
called the gambler’s ruin probability.

10. If Xn is a stationary ergodic Markov chain, show that X1 ,X2 ,... is 
an ergodic sequence.

11. Suppose X1 ,X2 ,... are iid integer valued random variables with Mn = 
maxi<n Xi. Is Mn necessarily a Markov chain? If yes, give its transi­
tion probabilities; if no, construct a counterexample.

12. Suppose Xn is a finite-state stationary Markov chain, and let T = 
min{n>0:Xn = X0 }. Compute E[T].

13. Given an irreducible Markov chain with transition probabilities Pij 

and any positive probability vector {ni} for these states, show that the 
Markov chain with transition probabilities Qij = min(Pij,njPji/ni) 
if i = j and Qii =1- j=i Qij is time reversible and has stationary 
distribution {ni}.

14. Consider a time-reversible Markov chain with transition probabili­
ties Pij and stationary probabilities ni. If A is a set of states of 
this Markov chain, then we define the A-truncated chain as being 
a Markov chain with a set of states that is A and with transition 
probabilities Pij, i,j E A, that are given by

pA = P Pij if j = i
ij [ Pii +52k</A Pik if j = i.

If this truncated chain is irreducible, show that it is time reversible, 
with stationary probabilities

nA = n^/ nj, i E A.
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15. A collection of M balls are distributed among m urns. At each stage, 
one of the balls is randomly selected, taken from whatever urn it is 
in and then randomly placed in one of the other m - 1 urns. Con­
sider the Markov chain with a state that is at any time the vector 
(n1 ,n2 ,...,nm)whereni is the number of balls in urn i. Show that 
this Markov chain is time reversible and find its stationary probabil­
ities.

16. Let Q be an irreducible symmetric transition probability matrix on 
the states 1,...,n. That is,

Qij = Qji, i,j=1,...,n.

Let bi,i = 1,...,n be specified positive numbers, and consider a 
Markov chain with transition probabilities

bj
Pij = Qij W+bj, j =1

PH = 1 " g Pi3 .

Show that this Markov chain is time reversible with stationary prob-
abilities

ni
bi

E nn=i bj,
i=1,...,n.

17. Consider a Markov chain with a state space that is the set of positive 
integers and with transition probabilities that are

P1,1 = 1, Pij = -~1i, 1 < j <i, i> 1.

Show that the bound on the mean number of transitions to go from 
state n to state one given by Proposition 5.23 is approximately twice 
the actual mean number.
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Renewal Theory

6.1 Introduction

A counting process with a sequence of interevent times that are iid is called 
a renewal process. More formally, let X1 ,X2,... be a sequence of iid non­
negative random variables having distribution function F . Assume that 
F(0) =1, so that the Xi are not identically zero, and set

S0 =0

Sn = £Xi, n > 1 •
i=1

With

N(t) = sup(n : Sn < t),

the process {N (t), t > 0} is called a renewal process.
If we suppose that events are occurring in time and we interpret Xn as 

the time between the (n - 1) and the nth event, then Sn is the time of the 
nth event, and N (t) represents the number of events that occur before or 
at time t. An event is also called a renewal because, if we consider the time 
of occurrence of an event as the new origin, then because the Xi are iid, the 
process of future events is also a renewal process with interarrival distribu­
tion F . Thus, the process probabilistically restarts, or renews, whenever 
an event occurs.

Let p = E[Xi]. Because P(Xi > 0) = 1 and P(Xi =0) < 1, it follows 
that p > 0. Consequently, by the strong law of large numbers,

lim Sn/n = p > 0,
n^^

144
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implying that
lim Sn = x.
n^^

Thus, with a probability of one, Sn <tfor only a finite number of n, 
showing that

P (N (t) < x ) = 1

and enabling us to write

N(t) = max(n : Sn < t).

The function
m(t) = E[N(t)]

is called the renewal function. We now argue that it is finite for all t.

Proposition 6.1
m(t) < x.

Proof Because P(Xi < 0) < 1, it follows from the continuity property of 
probabilities that there is a value fi > 0 such that P (Xi > fi) > 0. Let

Xi = fi I{Xi>l3},

and define the renewal process

N(t) = max(n : X1 + • • • + Xn < t).

Because renewals of this process can only occur at integral multiples of fi , 
and because the number of them that occur at the time nfi is a geometric 
random variable with parameter P(Xi > fi), it follows that

E[Nt)] < PIX +> fi) < ". P (Xi > fi )

Because Xi < Xi,i > 1, implies that N(t) < N(t), the result is proven. ■

6.2 Some Limit Theorems of Renewal Theory
In this section, we prove the strong law and the central limit theorem 
for renewal processes as well as the elementary renewal theorem. We start 
with the strong law for renewal processes, which says that N (t)/t converges 
almost surely to the inverse of the mean interevent time.

Proposition 6.2 Strong law for renewal processes. With a probability of 
one,

lim —= — Wwhere — = 0 ) .
t^-<x t \ x J
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Proof Because Sn is the time of the nth event, and N (t) is the number of 
events by time t, it follows that SN (t) and SN (t)+1 represent, respectively, 
the time of the last event prior to or at time t and the time of the first 
event after t. Consequently,

SN (t) < t < SN (t )+1,

implying that
SN) ± <SNt+-1. (6.1’

Because N(t) —as to as t — to , it follows by the strong law of large 
numbers that

SN (t) 
Nt)

X1 + • • • + XN (t)
—as,s p as t —— oo.N(t)

Similarly,

SN (t ) + 1 
"WT

X1 + ••• + XN (t)+1 N(t) +1
---- Tt-/—x------------- —Tt-/—x— —as p as t —— ^roN(t) + 1 N(t) as '

and the result follows. ■

Example 6.3 Suppose that a coin selected from a bin will on each flip come 
up heads with a fixed but unknown probability with a probability distribu­
tion that is uniformly distributed on (0, 1). At any time, the coin currently 
in use can be discarded and a new coin chosen. The heads probability of 
this new coin, independent of what has previously transpired, will also have 
a uniform (0, 1) distribution. If the objective is to maximize the long-run 
proportion of flips that land heads, what is a good strategy?

Solution Consider the strategy of discarding the current coin whenever it 
lands on tails. Under this strategy, every time a tail occurs we have a 
renewal. Thus, by the strong law for renewal processes, the long-run pro­
portion of flips that land tails is the inverse of p, the mean number of flips 
until a selected coin comes up tails. Because

[ 1 1 J
p = J ----- dp = to,

it follows that, under this strategy, the long-run proportion of coin flips 
that come up heads is one. ■

The elementary renewal theorem says the E[N (t)/t] also converges to 
1 /p. Before proving it, we will prove a lemma.
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Lemma 6.4 Wald’s equation. Suppose that Xn > 1 are iid with finite mean
E[X] and that N is a stopping time for this sequence, in the sense that the 
event {N > n — 1} is independent of Xn, Xn +1,.. ., for all n. If E[N] < to,
then

r n
E Xi

n=1

= E[N]E[X].

Proof To begin, let us prove the lemma when the Xi are replaced by their 
absolute values. In this case,

r n
E |Xn| 

n=1

=E
co

|Xn|I{N >n}

=E lim |Xn|I{N>n}
m — o

= lim E |Xn|I{N>n}
m ■o ' ■* _

n=1

where the monotone convergence theorem (Theorem 1.43) was used to jus­
tify the interchange of the limit and exp ectations operations in the last 
equality. Continuing, we then get

■JV

|Xn|
n=1

E
m

= lim E[|Xn|I{N>n-1}]
m^o

n=1
co

= E[|Xn|]E[I{N>n-1}]
n=1

o

= E[|X|] P(N>n—1)
n=1

= E[|X|]E[N] 
< to.

But now we can repeat exactly the same sequence of steps, but with Xi 

replacing |Xi |, and with the justification of the interchange of the expec­
tation and limit operations in the third equality now provided by the 
dominated convergence theorem (Theorem 1.38) upon using the bound 
IEm=ixni{N>n}l< EN=1 |X<|. ■

Proposition 6.5 Elementary renewal theorem.

m(t) 1 
lim ------ = —

t^o t ^ where
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Proof Suppose first that p < to. Because

N(t)+1=min(n : Sn >t),

it follows that N (t) + 1 is a stopping time for the sequence of interevent 
times X1 ,X2 ,...... Consequently, by Wald’s equation, we see that

E[SN(t)+1] = p[m(t) + 1].

Because SN (t)+1 >t, the preceding implies that

lim inf mt) > 1. 
t^tt t p

We will complete the proof by showing that lim supt , ^ mt) < 1. Toward 
this end, fix a positive constant M and define a related renewal process with 
interevent times Xn, n > 1, given by

X n =min( Xn,M).

Let
n

Sn = Xii, N(t) = max(n : Sn < t).
i=1

Because an interevent time of this related renewal process is at most M ,it 
follows that

Sn{t +d < t + M.

Taking expectations and using Wald’s equation yields

pM[mi(t)+1]< t + M,

where piM = E[Xn]andmi(t)=E[Ni (t)]. The preceding equation implies 
that

lim sup mt) < -L. 
t ■ t pM

However, Xin < Xn,n > 1, implies that Ni (t) > N (t) and thus that
mi (t) > m(t). Thus,

limsup mt) < —. (6.2)
t^tt t pM

Now,
min(Xi,M) f Xi as M f to,

so by the dominated convergence theorem, it follows that

p m —^ p as ^M ^ to .
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Thus, letting M ^ to in Equation 6.2 yields

limsup mt) < 1. 
t^-tt t y

Thus, the result is established when y < to. When y = to , again consider 
the related renewal process with interarrivals min(Xn ,M). Using the mono­
tone convergence theorem, we can conclude that yM = E[min(X 1, M)] ^ 
to as M ^ to. Consequently, Equation 6.2 implies that

limsup mt) = 0,

and the proof is complete. ■

If the interarrival times Xi, i > 1, of the counting process N(t), t > 0, are 
independent, but with X1 having distribution G, and the other Xi having 
distribution F , the counting process is said to be a delayed renewal process. 
We leave it as an exercise to show that the analogs of the the strong law 
and the elementary renewal theorem remain valid.

Remark 6.6 Consider an irreducible recurrent Markov chain. For any state 
j , we can consider transitions into state j as constituting renewals. If 
X0 = j, then Nj (n), n > 0, would be a renewal process, where Nj (n) is the 
number of transitions into state j by time n;ifX0 = j, then Nj (n), n > 0 
would be a delayed renewal process. The strong law for renewal processes 
then shows that, with a probability of one, the long-run proportion of 
transitions that are into state j is 1 / yj, where yj is the mean number 
of transitions between successive visits to state j . Thus, for positive recur­
rent irreducible chains the stationary probabilities will equal these long-run 
proportions of time that the chain spends in each state.

Proposition 6.7 Central limit theorem for renewal processes. If y and a2, 
assumed finite, are the mean and variance of an interevent time, then N(t) 
is asymptotically normal with mean t/y and variance ta2/ y3. That is,

lim P 
t^tt

Nt — t/y 
a t/y 3

e-x2/2dx

Proof Let rt = t/y + ya^/t/y3. If rt is an integer, let nt = rt; if rt is
not an integer, let nt =[rt]+1, where [x] is the largest integer less than or 
equal to x. Then
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P ( N(t)t/p \ = p (N(t) < rt)

= P(N(t) <nt)
= P St > t)
= P S Snt — ntP > t — ntp

where the preceding used that the events {N (t) <n} and {Sn >t} are 
equivalent. Now, by the central limit theorem, Snt-nnt^ converges to a 
standard normal random variable as nt approaches to or, equivalently, as 
t approaches to . Also,

t — ntp 
i™ lim

t^tt

t — rtp 
a^rt

lim 
t^-tt

—yp

—y.

Consequently, with Z being a standard normal random variable

lim P 
t^tt

N t — t/p 
a t/p 3

=P(Z>—y)=P(Z<y),

and the proof is complete. ■

6.3 Renewal Reward Processes
Consider a renewal process with interarrival times Xn,n > 1, and suppose 
that rewards are earned in such a manner that if Rn is the reward earned 
during the nth renewal cycle - that is, during the time from Sn 1 to Sn - 
then the random vectors (Xn ,Rn ) are iid. The idea of this definition is 
that the reward earned during a renewal cycle is allowed to depend on what 
occurs during that cycle and thus on its length, but whenever a renewal 
occurs, the process probabilistically restarts. Let R(t) denote the total 
reward earned by time t.

Theorem 6.8 If E[R1] and E[X1] are both finite, then

(a)

(b)

R (t) E [ R 1]
~ aas E [X 1]

E[R(t)] a E [ R 1]
t E [ X 1]

as t TO to

as t TO to.
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Proof To begin, let us suppose that the reward received during a renewal 
cycle is earned at the end of that cycle. Consequently,

M t)

R(t) = Rn,
n=1

and thus
R (t) = E N= 1 Rn N (t) 

t N (t) t

Because N(t) ^ to as t ^ to , it follows from the strong law of large 
numbers that

N ( t ) R
n=n = 1 1 n . I'lj 1N aaS E[R1] •

Hence, Part (a) follows by the strong law for renewal processes.
To prove Part (b), fix 0 < M < to, set Ri = min(Ri,M), and let

R(t) = ES) Ri • Then,

E[R(t)] > E[R(t)]

=E E i=1 — E [ R N (t ) + i]

= [ m (t ) + 1] E[ Ri] — E[ R N (t )+i],

where the final equality used Wald’s equation. Because RN(t)+1 < M, the 
preceding yields

E[R(t)] > m(t) + 1 E[JR1] — M
Consequently, by the elementary renewal theorem,

f E[R(t)]lim inf ----------
t^^ t

> E[RRi]
> E [ x ] •

By the dominated convergence theorem, limm ■ ■ E[Ri] = E[R1], yielding

f E[R(t)]lim inf ----------
t^^ t

> E [ R i] 
> E [ x ] •

Letting R* (t) = — R(t) = N(N=t)(—Ri) yields, upon repeating the same 
argument,

lim inf EiR*a > M 
t^iX, t E[x]
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or equivalently,

lim sup
t^-tt

E [ R (t)] 
t

< E[R1]
- E [ X ] •

Thus,
lim EEN=(t) Ri] E[R 1]

t^tt t E [ X ] ’
(6.3)

proving the theorem when the entirety of the reward earned during a re­
newal cycle is gained at the end of the cycle. Before proving the result 
without this restriction, note that

E =E - E [RN(t)+1]

= E[R1]E[N(t) + 1] - E [RN (t)+1] by Wald’s equation 
= E[ R 1][ m (t) + 1] — E[ rn (t )+1] •

Hence,
E[ENt) Ri] = m(t) + 1 E[R] — E[Rn(t)+i]

so we can conclude from Equation 6.3 and the elementary renewal theorem
that

E[RN (t ) + 1] 0 0
t

(6.4)

Now, let us drop the assumption that the rewards are earned only at the 
end of renewal cycles. Suppose first that all partial returns are nonnegative. 
Then, with R(t) equal to the total reward earned by time t,

E Nt) Ri < R (t) < E N=(t) Ri + rn (t )+i 

t t t t

Taking expectations, and using Equations 6.3 and 6.4 proves Part (b). Part
(a) follows from the inequality

E Nt) Ri n (t) < R (t) < E S)+1 Ri n (t) +1
N (t) t ~ t ~ N (t ) + 1 t

by noting that for j =0, 1

EN(it)+ j Ri N(t)+ j E[R1 ]
N(t)+ j t as E[Xi] •

A similar argument holds when all partial returns are nonpositive, and 
the general case follows by breaking up the returns into their positive and 
negative parts and applying the preceding argument separately to each. ■
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Example 6.9 Generating a random variable with a distribution that is the 
stationary distribution of a Markov chain. For a finite-state irreducible 
aperiodic Markov chain Xn,n > 0, having transition probabilities {Pij} 
and stationary distribution {xi}, Theorem 5.13 says that the approximation 
P(Xn = i\X0 =0) « xi is good for large n. Here we will show how to find 
a random time T > 0 so that we have exactly P (XT = i|X0 =0)=xi .

Suppose that for some p>0wehavePi0 >pfor all i. (If this condition 
doesn’t hold, then we can always find an m such that the condition holds for 
the transition probabilities Pi(jm) , implying that the condition holds for the 
Markov chain Yn = Xnm ,n > 0, which also has the stationary distribution 
{xi}.)

To begin, let Jn ~ Bernoulli(p) be iid and define a Markov chain Yn so 
that

P (Yn+1 = 0|Yn = i, Jn+1 =1)=1,

P (Yn+1 = 0|Yn = i, Jn+1 =0)=(Pi0-p)/(1-p),

and for j =0,

P (Yn+1 = j |Yn = i, Jn+1 = 0) = Pij/(1 - p).

Notice that this gives Yn = 0 whenever Jn = 1 and in addition that

P (Yn+1 = j|Yn = i) = P(Yn+1 = j|Yn = i, Jn+1 =0)(1-p)
+ P (Yn+1 = j|Yn = i, Jn+1 =1)p

=P = ij .

Thus, both Xn and Yn have the same transition probabilities and thus the 
same stationary distribution.

Say that a new cycle begins at time n if Jn =1. Suppose that a new 
cycle begins at time zero, so Y0 =0, and let Nj denote the number of time 
periods the chain is in state j during the first cycle. If we suppose that a 
reward of one is earned each time the chain is in state j , then xj equals 
the long-run average reward per unit time, and the renewal reward process 
result yields that

Xj = ^[rf, 

where T =min{n>0: Jn =1} is the time of the first cycle. Because T is 
geometric with parameter p, we obtain the identity

xj = pE [Nj].

Now, let Ik be the indicator variable for the event that a new cycle begins 
on the transition following the kth visit to state j . Note that

J\
Ik = I{YT-1=j} .

k=1
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Because I1 ,I2,... are iid and the event {Nj = n} is independent of In+1, 
In+2,..., it follows from Wald’s equation that

P(YT-1 = j) = E[Nj]E[I1] = pE[Nj],

giving the result that
nj = P ( Yt -1 = j) •

Remark 6.10 In terms of the original Markov chain Xn, set X0 = 0 • Let 
U 1, U2, • • • be a sequence of independent uniform (0, 1) random variables 
that is independent of the Markov chain. Then define

T =min(n>0:Xn =0,Un < p/PXn-1,0),

with the result that P (XT - 1 = jX 0 = 0) = nj. In fact, if we set X 0 = 0, 
let T0 = 0, and define

Ti = min(n > Ti-1 : Xn =0,Un < p/PXn-1,0),

then XTi- 1, i > 1, are iid with

P(XTi- 1 = jlX 0 = 0) = nj •

Example 6.11 Suppose that Xi,i > 1 are iid discrete random variables 
with probability mass function pi = P (X = i) • Suppose we want to find the 
expected time until the pattern 1, 2, 1, 3, 1, 2, 1 appears. To do so, suppose 
that we earn a reward of one each time the pattern occurs. Because a 
reward of one is earned at time n > 7 with probability P(Xn = 1, Xn-1 = 
2, Xn-2 =1, •••, Xn-6 = 1) = p14p22p3, it follows that the long-run expected 
reward per unit time is p41p22p3 . However, suppose that the pattern has just 
occurred at time 0. Say that cycle 1 begins at time 1, and that a cycle ends 
when, ignoring data from previous cycles, the pattern reappears. Thus, for 
instance, if a cycle has just ended then the last data value was 1, the next 
to last was 2, then 1, then 3, then 1, then 2, and then 1. The next cycle 
will begin when, without using any of these values, the pattern reappears. 
The total reward earned during a cycle, call it R, can be expressed as

R=1+A4+A6,

where A4 is the reward earned when we observe the fourth data value of 
the cycle (it will equal one if the first four values in the cycle are 3, 1, 2, 1), 
A6 is the reward earned when we observe the sixth data value of the cycle, 
and one is the reward earned when the cycle ends. Hence,

E [ R] = 1 + p 22 p 2 p 3 + p 1 p 2 p 3 •
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If T is the time of a cycle, then by the renewal reward theorem,

42 p14p22p3 = E [ R] 
E [ T ] ,

yielding that the expected time until the pattern appears is

E[T] =
1

4 2 p41p22p3

+-^+1
p21p2 p1

Let
A(t)=t - SN(t), Y(t)=SN(t)+1 - t.

The random variable A(t), equal to the time at t since the last renewal prior 
to (or at) time t, is called the age of the renewal process at t. The random 
variable Y (t), equal to the time from t until the next renewal, is called the 
excess of the renewal process at t. We now apply renewal reward processes 
to obtain the long-run average values of the age and of the excess as well as 
the long-run proportions of time that the age and the excess are less than x.

The distribution function Fe defined by

„ , . 1 xx ,
Fe(x) = - F(y) dy, x > 0

V J 0

is called the equilibrium distribution of the renewal process.

Proposition 6.12 Let X have distribution F. With a probability of one,

(a) liin - A A(s)ds = lim - E E[A(s)]ds = —E----1
k J t ^ t Jo s J t ^ t J0 1 2V

(b) lim 1 t Y(s)ds = lim 1 t E[Y(s)]ds = EX]
t ! t^ t Jo t^ t J0 2V

(c) lim - I I{A(s)<x} ds = lim - / P(A(s) <x)ds = Fe(x)
k t^ t Jo {A(s)<x} t^ t Jo k e e '

(d) lim - I I{Y(s)<x} ds = lim - P P(Y(s) <x)ds = Fe(x).
v 7 t^ t Jo {Y (s)<x} t^ t Jo

Proof To prove Part (a), imagine that a reward at rate A(s) is earned at 
time s, s > 0. Then, this reward process is a renewal reward process with a 
new cycle beginning each time a renewal occurs. Because the reward rate 
at a time x units into a cycle is x, it follows that ifXis the length of a 
cycle, then T, the total reward earned during a cycle, is

T = xdx =X2 /2.
0
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Because limt .o 1 ft A(s) ds is the long run average reward per unit time, 
Part (a) follows from the renewal reward theorem.

To prove Part (c) imagine that we earn a reward at a rate of one per 
unit time whenever the age of the renewal process is less than x. That 
is, at time s we earn a reward at rate one if A(s) <xand at rate zero 
if A(s) >x. Then this reward process is also a renewal reward process in 
which a new cycle begins whenever a renewal occurs. Because we earn at 
rate one during the first x units of a renewal cycle and at rate zero for the 
remainder of the cycle, it follows that, with T being the total reward earned 
during a cycle,

E[T] = E[min(X, x)]
0 co

= P (min(X, x) >t) dt
JO

= F F(t)dt.
. . J°

Because limt .o 1 Jo I{a(s)<x} ds is the average reward per unit time, 
Part (c) follows from the renewal reward theorem.

We will leave the proofs of Parts (b) and (d) as an exercise.

6.4 Queuing Theory Applications of Renewal 
Reward Processes

Suppose that customers arrive to a system according to a renewal process 
having interarrival distribution F, with mean 1 /X. Each arriving customer 
is eventually served and departs the system. Suppose that at each time 
point the system is in some state, and let S(t) denote the state of the 
system at time t. Suppose that when an arrival finds the system empty 
of other customers the evolution of system states from this point on is 
independent of the past and has the same distribution each time this event 
occurs. (We often say that the state process probabilistically restarts every 
time an arrival finds the system empty.) Suppose that such an event occurs 
at time zero.

If we suppose that each arrival pays an amount to the system, with that 
amount being a function of the state history while that customer is in the 
system, then the resulting reward process is a renewal reward process, with 
a new cycle beginning each time an arrival finds the system empty of other 
customers. Hence, if R(t) denotes the total reward earned by time t, and 
T denotes the length of a cycle, then

, f E[R(T)]average reward per unit time = ———:—. (6.5)
E[T]

Now, let Ri denote the amount of money paid by customer i, for i > 1, 
and let N denote the number of customers served in a cycle. Then this 
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sequence R1 ,R2 ,... can be thought of as the reward sequence of a renewal 
reward process in which Ri is the reward earned during period i and the 
cycle time is N . Hence, by the renewal reward process result,

R1 + '•• + Rn E E i =1 Ri ] lim -------------------=------‘A.------
n -^. n E [ N ] (6.6)

To relate the left-hand sides of Equations 6.5 and 6.6, first note that because 
R(T )and iN=1 Ri both represent the total reward earned in a cycle, they 
must be equal. Thus,

E[R(T)] = E Ri

i=1

Also, with customer 1 being one who found the system empty at the 
arrival time zero, if we let Xi denote the time between the arrivals of cus­
tomers i and i +1, then

T = E X-
i=1

Because the event {N = n} is independent of all the sequence Xk, k > n +1, 
it follows that it is a stopping time for the sequence Xi,i > 1. Thus, Wald’s 
equation gives that

E[T] = E[N]E[X] =
E [ N ]

A
and we have proven the following.

Proposition 6.13

average reward per unit time = AR,

where
R1 + • • • + Rn

R = lim -------------------
n^^^o n

is the average amount that a customer pays.

Corollary 6.14 Let X(t) denote the number of customers in the system at 
time t, and set

1 t t 
L = lim - 

t^^ t 0O
Also, let Wi denote the amount of time that customer i spends in the system, 
and set

s.

W1 + ••• + Wn
W = lim -------------------- .

n^^ n
Then, the preceding limits exist, L and W are both constants, and

L = AW.
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Proof Imagine that each customer pays one per unit time while in the 
system. Then the average reward earned by the system per unit time is L, 
and the average amount a customer pays is W . Consequently, the result 
follows directly from Proposition 6.13. ■

6.5 Blackwell’s Theorem

A discrete interarrival distribution F is said to be lattice with period d if 
n>0>o P(Xi = nd) = 1 and d is the largest value having this property. (Not 
every discrete distribution is lattice. For instance, the two point distribution 
that puts all its weights on the values one and n, or any other irrational 
number, is not lattice.) In this case, renewals can only occur at integral 
multiples of d. By letting d be the new unit of time, we can reduce any 
lattice renewal process to one with interarrival times that put all their 
weight on the nonnegative integers and are such that the greatest common 
divisor of {n : P(Xi = n) > 0} is one. (If ^ was the original mean 
interarrival time then in terms of our new units, the new mean ^ would 
equal ^'/d.) So let us suppose that the interarrival distribution is lattice 
with period one, let pj = P(Xi = j), j > 0, and p ^2j jPj.

Theorem 6.15 Blackwell’s theorem. If the interarrival distribution is lat­
tice with period one, then

lim P(a renewal occurs at time n) =-----P0
n ■ p

and
lim E[number of renewals at time n] —.

Proof With An equal to the age of the renewal process at time n,itis 
easy to see that An ,n > 0, is an irreducible, aperiodic Markov chain with 
transition probabilities

Pi,o = P(X = iX > i) = =p---- = 1 - Pi,i+1, i > 0.
j>j>i pj

The limiting probability that this chain is in state zero is

_ _ 1

n0 = E [X |X > 0].

where X is an interarrival time of the renewal process. (The mean number 
of transitions of the Markov chain between successive visits to state zero 
is E[X|X > 0] because an interarrival that is equal to zero is ignored by 
the chain.) Because a renewal occurs at time n whenever An = 0, the first 
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part of the theorem is proven. The second part of the theorem also follows 
because, conditional on a renewal occurring at time n, the total number of 
renewals that occur at that time is geometric with mean (1 — p0)- 1. ■

6.6 Poisson Process

If the interarrival distribution of a renewal process is exponential with rate 
A, then the renewal process is said to be a Poisson process with rate A. 
Why it is called a Poisson process is answered by the next proposition.

Proposition 6.16 If N(t),t > 0, is a Poisson process having rate A, then 
N(t) =d Poisson(A t).

Proof We will show P(N(t) = k) = e-Xt(At)k/k! by induction on k. Note 
first that P(N(t) = 0) = P(X 1 > t) = e-Xt. For k > 0, we condition on X 1 

to get

/•TO
P (N (t) = k) = / P (N (t) = k\X 1 = x) Ae-Xxdx 

0

= t P(N(t — x)= k — 1)Ae-Xxdx 
0

e-X(t-x)(A(t — x))k-1

(k—1)!
Ae-Xxdx

0

(t — x)k 1 

(k — 1)!
= e-Xt(At)k/k!,

dx

which completes the induction proof. ■

The Poisson process is often used as a model of customer arrivals to 
a queuing system because the process has several properties that might 
be expected of such a customer arrival process. The process N(t), t > 0, 
is said to be a counting process if events are occurring randomly in time 
and N(t) denotes the cumulative number of such events that occur in [0, t]. 
The counting process N(t),t > 0, is said to have stationary increments 
if the distribution of N(t + s) — N(t) does not depend on t and is said 
to have independent increments if N(ti + si) — N(ti), for i =1, 2,..., are 
independent random variables whenever ti+1 >ti + si for all i. Independent 
increments say that customer traffic in one interval of time does not affect 
traffic in another (disjoint) interval of time. Stationary increments say 
that the traffic process is not changing over time. Our next proposition 
shows that the Poisson process is the only possible counting process with 
continuous interarrival times and with both of these properties.
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Proposition 6.17 The Poisson process is the only counting process with 
stationary, independent increments and continuous interarrival times.

Proof Given a counting process N(t) ,t > 0, with continuous interarrival 
times Xi and stationary, independent increments, then

P(X1 >t+s|X1 >t)=P(N(t+s)=0|N(t)=0)
=P(N(t+s) -N(t)=0|N(t)=0)
=P(N(t+s) -N(t)=0)
= P(N(s) = 0) 
= P (X1 >s),

where the third equality follows from independent increments and the fourth 
from stationary increments. Thus, we see that X1 is memoryless. Because 
the only memoryless continuous random variable is the exponential distri­
bution, X1 is exponential. Because

P(X2 > s|X1 =t)=P(N(t +s) - N(t) = 0|X1 = t)
= P(N(t + s) -N(t)=0)
= P(N(s) = 0)
= P (X1 >s),

it follows that X2 is independent of X1 and has the same distribution. Con­
tinuing in this way shows that all the Xi are iid exponentials, so N (t), t > 0, 
is a Poisson process. ■

6.7 Exercises
1. Consider a renewal process N(t) with Bernoulli(p) interevent times.

(a) Compute the distribution of N (t).
(b) With Si ,i > 1 equal to the time of event i, find the conditional 
probability mass function of S1 ,...,Sk given that N (n)=k .

2. For a renewal process with an interevent distribution F with density 
F' = f, prove the renewal equation

m(t) = F(t) + m(t - x)f (x)dx.

3. For a renewal process with an interevent distribution F, show that

P (XN(t)+1 >x) > 1 - F(x).

The preceding states that the length of the renewal interval that con­
tains the point t is stochastically larger than an ordinary renewal 
interval and is called the inspection paradox.
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4. With X 1 ,X2,... independent U(0, 1) random variables with Sn = 
£nn<n Xi and N = min {n : Sn > 1} , show that E[SN] = e/2.

5. A room in a factory has n machines that are always all turned on at 
the same time, and each works an independent exponential time with 
mean m days before breaking down. As soon as k machines break, a 
repairman is called. The repairman takes exactly d days to arrive and 
instantly repairs all the broken machines. Then this cycle repeats. 
(a) How often in the long run does the repairman get called?
(b) What is the distribution of the total number of broken machines 
the repairman finds upon arrival?
(c) What fraction of time in the long run are there more than k broken 
machines in the room?

6. Each item produced is either defective or acceptable. Initially, each 
item is inspected, and this continues until k consecutive acceptable 
items are discovered. At this point, 100% inspection stops and each 
new item produced is, independently, inspected with probability a. 
This continues until a defective item is found, at which point we go 
back to 100% inspection, with the inspection rule repeating itself. If 
each item produced is, independently, defective with probability q, 
what proportion of items are inspected?

7. A system consists of two independent parts, with part i function­
ing for an exponentially distributed time with rate Xi before failing, 
i =1, 2. The system functions as long as at least one of these two parts 
is working. When the system stops functioning, a new system, with 
two working parts, is put into use. A cost K is incurred whenever 
this occurs; also, operating costs at rate c per unit time are incurred 
whenever the system is operating with both parts working, and oper­
ating costs at rate ci are incurred whenever the system is operating 
with only part i working, i =1, 2. Find the long-run average cost per 
unit time.

8. If the interevent times Xi, i > 1, are independent but with X 1 having 
a different distribution from the others, then {Nd(t),t > 0} is called 
a delayed renewal process, where

Nd (t) = sup < n : ^2 Xi — t ( ■ 
i=1

Show that the strong law remains valid for a delayed renewal process.

9. Prove Parts (b) and (d) of Proposition 6.12.

10. Consider a renewal process with continuous interevent times X1, 
X2 ,. .. having distribution F .LetY be independent of the Xi and 
have distribution function Fe . Show that
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E[min{n : Xn >Y}]=sup{x : P (X>x) > 0}/E [X],

where X has distribution F . How can you interpret this result?

11. Someone rolls a die repeatedly and adds up the numbers. Which is 
larger: P (sum ever hits 2) or P (sum ever hits 102)?

12. If {Ni(t), t > 0}, i = 1,..., k are independent Poisson processes with 
respective rates Xi, 1 < i < k, show that ^2k=1 Ni(t),t > 0, is a 
Poisson process with rate X = k= k=1 Xi.

13. A system consists of one server and no waiting space. Customers 
who arrive when the server is busy are lost. There are n types of 
customers: Type i customers arrive according to a Poisson process 
with rate Xi and have a service time distribution that is exponential 
with rate pi, with the n Poisson arrival processes and all the service 
times being independent.
(a) What fraction of time is the server busy?
(b) Let Xn be the type of customer (or zero if no customer) in the 
system immediately prior to the nth arrival. Is this a Markov chain? 
Is it time reversible?

14. Let Xi,i =1,...,nbe iid continuous random variables having density 
function f . Letting

X(i) = ith smallest value of X1 ,. ..,Xn ,

the random variables X(1),...,X(n) are called order statistics. Find 
their joint density function.

15. Let Si be the time of event i of a Poisson process with rate X.
(a) Show that, conditional on N (t) = n, the variables S1 , . . .,Sn 

are distributed as the order statistics of a set of n iid uniform (0, t) 
random variables.
(b) If passengers arrive at a bus stop according to a Poisson process 
with rate X, and the bus arrives at time t, find the expected sum of 
the amounts of times that each boarding customer has spent waiting 
at the stop.

16. Suppose that events occur according to a Poisson process with rate 
X and that an event occurring at time s is, independent of what has 
transpired before time s, classified either as a type 1 or as a type 
2 event, with respective probabilities p1 (s)andp2(s)=1- p1 (s). 
Letting Ni (t) denote the number of type i events by time t, show 
that N1 (t) and N2(t) are independent Poisson random variables with 
means E[Ni (t)] = X 0t pi(s)ds.
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Brownian Motion

7.1 Introduction

One goal of this chapter is to give one of the most beautiful proofs of the 
central limit theorem, one which does not involve characteristic functions. 
To do this, we will give a brief tour of continuous time martingales and 
Brownian motion and demonstrate how the central limit theorem can be 
essentially deduced from the fact that Brownian motion is continuous.

In Section 7.2, we introduce continuous time martingales, and in Sec­
tion 7.3, we demonstrate how to construct Brownian motion, prove it is 
continuous, and show how the self-similar property of Brownian motion 
leads to an efficient way of estimating the price of path-dependent stock 
options using simulation. In Section 7.4, we show how random variables 
can be embedded in Brownian motion, and in Section 7.5, we use this to 
prove a version of the central limit theorem for martingales.

7.2 Continuous Time Martingales

Suppose we have sigma fields Ft indexed by a continuous parameter t so 
that Fs C Ft for all s < t.

Definition 7.1 We say that X(t) is a continuous time martingale for Ft if 
for all t and 0 < s < t we have

1. E|X(t) | < x

2. X (t) e Ft

3. E [X(t)|Fs] = X(s).

163
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Example 7.2 Let N(t) be a Poisson process having rate X, and let Ft = 
a(N(s), 0 < s < t). Then X(t) = N(t) — Xt is a continuous time martingale 
because

E[N(t) — Xt|Fs] = E[N(t) — N(s) — X(t — s)|Fs] + N(s) — Xs 
= N(s) — Xs.

We say a process X(t) has stationary increments if X(t + s) — X(t) =d 

X(s) — X(0) for all t, s > 0. We also say a process X(t) has independent 
increments if X (t1) — X(t0), X(t2) — X(t1),... are independent random 
variables whenever 10 < 11 < • • •.

Although a Poisson process has stationary independent increments, it 
does not have continuous sample paths. We will show here that it is possi­
ble to construct a process with continuous sample paths, called Brownian 
motion, which in fact is the only possible martingale with continuous sam­
ple paths and stationary and independent increments. These properties 
will be key in proving the central limit theorem.

7.3 Constructing Brownian Motion

Brownian motion is a continuous time martingale that produces a randomly 
selected path typically looking something like in Figure 7.1. Here we show 
how to construct Brownian motion B(t)for0< t < 1. To get Brownian 
motion over a wider interval, you can repeat the construction over more unit 
intervals each time continuing the path from where it ends in the previous 
interval.

Given a line segment, we say we “move the midpoint up by the amount 
z” if we are given a line segment connecting the point (a, b) to the point

Figure 7.1 A Brownian motion path.
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Figure 7.2 Moving the midpoint of a segment up by z.

(c, d) with midpoint (a+c, b+d), and we break it into two line segments 
connecting (a,b) to (a+c, b+d + z) to (c, d). This is illustrated in Figure 
7.2. Next let Zk,n be iid N(0, 1) random variables, for all k, n.Weinitiatea 
sequence of paths. The zeroth path consists of the line segment connecting 
the point (0, 0) to (1, Z0,0). For n > 1, path n will consist of 2n connected 
line segments, which can be numbered from left to right. To go from path 
n - 1topathn, simply move the midpoint of the kth line segment of path 
n — 1 up by the amount Zk,n/(x/2)n + 1, k = 1,..., 2n- 1. Letting fn(t) be 
the equation of the nth path, then the random function

B(t) = lim fn (t) 
n^^

is called standard Brownian motion.
For example, if Z0,0 = 2 then path zero would be the line segment 

connecting (0, 0) to (1, 2). This looks like Figure 7.3. Then, if Z 1,1 /(//2)2 = 
1, we would move the midpoint (1, 1) up to (|, 2) and thus path one would 
consist of the two line segments connecting (0, 0) to (1,2) to (1, 2). This 
then gives us the path in Figure 7.4.

If Z 1,2/(V2)3 = -1 and Z2,2/(/2)3 = 1, then the next path is obtained 
by replacing these two line segments with the four line segments connecting 
(0, 0) to (41, 0) to (1,2) to (44, 3) to (1, 2). This gives us the path in Figure 
7.5. Then the next path would have eight line segments and so on.

Remark 7.3 By this recursive construction, it can immediately be seen that 
B(t) is “self similar” in the sense that {B(t/2n)(/2)n, 0 < t < 1} has the 
same distribution as {B(t), 0 < t < 1}. This is the famous fractal property 
of Brownian motion.
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Figure 7.3 Path 0.

Figure 7.4 Path 1.
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Proposition 7.4 Brownian motion B(t) is a martingale with stationary, 
independent increments and B (t) ~ N(0,t).

Before we prove this, we need a lemma.

Lemma 7.5 If X and Y are iid mean zero normal random variables, then 
the pair Y + X and Y - X are also iid mean zero normal random variables.

Proof Because X, Y are independent, the pair X, Y has a bivariate normal 
distribution. Consequently, X - Y and X + Y have a bivariate normal 
distribution, and thus it’s immediate that Y + X and Y - X are identically 
distributed normal. Then

Cov(Y +X,Y -X)=E[(Y + X)(Y -X)] = E[Y2 -X2]=0

gives the result (because uncorrelated bivariate normal random variables 
are independent). ■

Proof Proof of Proposition 7.4. Letting

b(k, n) = B(k/2n) - B((k - 1)/2n),

we will prove that for any n the random variables

b(1, n), b(2, n), ..., b(2n, n)

are iid Normal(0, 1/2n ) random variables. After we prove that Brownian 
motion is a continuous function, which we do in the proposition immediately 
following this proof, we can then write
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B(t) - B(s) = lim b(k, n).
n^-tt 

k:s+1/2n<k/2n<t

It will then follow that B(t) —B(s) ~ N(0,t-s) for t > s and that Brownian 
motion has stationary, independent increments and is a martingale.

We will complete the proof by induction on n. By the first step of 
the construction, we get b(1, 0) ~ Normal(0, 1). We then assume as our 
induction hypothesis that

b(1,n- 1),b(2,n- 1),..., b(2n-1, n - 1)

are iid Normal(0, 1/2n-1) random variables. Following the rules of the 
construction, we have

b(2k - 1 ,n) = b(k, n - 1)/2 + Z2kn/(V2)n + 1

and

b(2k,n)=b(k,n- 1) - b(2k - 1,n)

= b(k,n — 1) /2 — Z2k,n/ ( V2)n +1 ,

which is also illustrated in Figure 7.6. In the figure, we write Z = 
Z2k,n/(V2)n+1. Because b(k,n — 1)/2 and Z2k,n/(V^)n +1 are iid Normal 
(0, 1/2n+1) random variables, we then apply the previous lemma to obtain

Figure 7.6 One step of the construction of Brownian motion.
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that b(2k - 1,n) and b(2k, n) are iid Normal(0, 1/2n) random variables. 
Because b(2k - 1,n) and b(2k, n) are independent of b(j, n - 1),j = k,we 
get that

b(1, n), b(2, n), ..., b(2n, n)

are iid Normal(0, 1 /2n) random variables. ■

And even though each function fn(t) is continuous, it is not immediately 
obvious that the limit B (t) is continuous. For example, if we instead always 
moved midpoints by a nonrandom amount x, we would have supt A B(t) — 
inftEA B(t) > x for any interval A, and thus B(t) would not be a continuous 
function. We next show that Brownian motion is a continuous function.

Proposition 7.6 Brownian motion is a continuous function with a proba­
bility of one.

Proof Note that

P (B(t) is not continuous)
co

< P(B (t) has a discontinuity larger than 1 /i),
i=1

so the theorem will be proved if we show, for any e > 0,

P(B(t) has a discontinuity larger than e) = 0;

see the remark immediately following this proof for a discussion of a mea­
surability subtlety.

Because by construction fm is continuous for any given m, in order for 
B (t) to have a discontinuity larger than e, we must have

sup IB(t) — fm(t)| > e/2 
0 <t< 1

or else B (t) would necessarily always be within e/2 of the known continuous 
function fm, and it would be impossible for B (t) to have a discontinuity 
larger than e. Letting

dn = sup |fn-1(t) — fn(t)| 
0<t<1

be the largest difference between the function at stage n and stage n +1, 
we must then have

dn > e(3/4)n/8 for some n > m
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because otherwise it would mean

sup \B(t) - fm (t) | < V dn < e/2 V (3/4)n/4 < e/2.
0—t—1 n>m n>m

Next note by the construction we have

P(dn >x)= Pl sup \Zkn/(V2)n +1 | >xj
1-k-2n-1

< 2nP [\Z| > (V2)n+1 x)

< exp(n — (V2)n+1 x),

where the last line is for sufficiently large n and we use 2n <en and 
P(|Z| >x) < e-x for sufficiently large x (see Example 4.5).

This together means, for sufficiently large m,

P(B (t) has a discontinuity larger than e)

< £ P(dn > e(3/4)n/8)

< exp(n — e(3V2/4)n/8),

which because the final sum is finite, can be made arbitrarily close to zero 
as m increases. ■

Remark 7.7 The argument in the previous proposition shows that the event

{B(t) is not continuous}

is a subset of an event having probability zero. You might now be won­
dering if this event itself is measurable because the first example in this 
book shows that there are some seemingly innocent events that are sub­
sets of measurable events but can’t have probabilities assigned to them in 
a consistent way. It turns out this in fact can be a measurable event; the 
general principle is that any subset of an event having zero probability can 
be measurable simply by assigning a zero probability to it - and this won’t 
cause any inconsistencies.

For example, consider the set of family heads in the circle as defined in 
Section 1.2 of this book. Now suppose instead of picking a random point 
in this circle, you decide to pick a random point in a different circle with 
no family heads. In this case, the chance you get a family head is zero, and 
adding up the chances you are i steps away from a family head still adds 
up to zero without any inconsistency. This means that getting a point in 
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the same family heads set can be made measurable if it is a subset of an 
event that already has zero probability assigned to it.

The inconsistency in the first example of this book was caused by having 
a countably infinite number of disjoint events with the same probability that 
should have probabilities that add up to one, which is impossible. If the 
probabilities should add up to zero, as would be the case with subsets of an 
event having probability zero, we can just assign a zero probability to all 
such events without any inconsistencies. This is made rigorous, with some 
additional reasoning, by adding all subsets of zero probability events into 
the initial collection of events that generate the sigma field.

Remark 7.8 You may notice that the only property of the standard normal 
random variable Z used in the proof is that P (Z | > x) < e-x for suffi­
ciently large x. This means we could have instead constructed a process 
starting with Zk,n having an exponential distribution, and we would get a 
different limiting process with continuous paths. We would not, however, 
have stationary and independent increments.

As it does for Markov chains, the strong Markov property holds for 
Brownian motion. This means that {B(T + t) - B(T ), 0 < t} has the same 
distribution as {B(t), 0 < t} for finite stopping times T < to. We leave 
a proof of this as Exercise 8 at the end of the chapter. An easy result 
using the continuity of Brownian motion and the strong Markov property 
for Brownian motion involves the suprememum of Brownian motion.

Proposition 7.9 P(sup0<s<t B(s) > x) = 2P(B(t) > x).

Proof Let T = inf{t > 0:B(t)=x}, and note that continuity of Brownian 
motion gives the first line here:

P (B(t) > x) = P(B(t) >x,T<t)
= P(T < t)P(B(t) - B(T) > 0|T<t)
= P (T <t) /2

= P sup B(s) >x /2, 
\0 <s<t /

Also note the strong Markov property gives the third line. ■

Example 7.10 Path-dependent stock options. It is most common that the 
payoff from exercising a stock option depends on the price of a stock at a 
fixed point in time. If it depends on the price of a stock at several points 
in time, it is usually called a path-dependent option. Although there are 
many formulas for estimating the value of various different types of stock 
options, many path-dependent options are commonly valued using Monte 
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Carlo simulation. Here we give an efficient way to do this using simulation 
and the self-similarity property of Brownian motion.

Let
Y = fn(B(1),B(2),..., B(n))

be the payoff you get when exercising a path-dependent stock option for 
standard Brownian motion B(t) and some given function fn; our goal is to 
estimate E[Y].

The process X(t) = exp{at+bB(t)} is called geometric Brownian motion 
with drift, and it is commonly used in finance as a model for a stock’s price 
for the purpose of estimating the value of stock options. One example of a 
path-dependent option is the lookback option, with payoff function

Y = max (exp{at + bB(t)} - k)+ .
t=1,2,...,n

Another example, the knockout option, is automatically canceled if some 
condition is satisfied. For example, you may have the option to purchase a 
share of stock during period n for the price k, provided the price has never 
gone above a during periods one through n. This gives a payoff function

Y = (exp {an + bB (n)} — k)+ x I< max exp {at + bB (t)} <a>, 
t=1,2,...,n

which is also path-dependent.
The usual method for simulation is to generate Y1, Y2, ...,Yn iid ~ Y, 

and use the estimator Y 1=1 Yi having Var(Y) = 1 Var(Y). The control
variates approach, on the other hand, is to find another variable X with 
E [X] = 0 and r = corr(X, Y) = 0 and use the estimator Y' = 1= 1=1 (Yi — 
mXi), where m = r Var(Y)/Var(X) is the slope of the regression line for 
predicting Y from X . The quantity m is typically estimated from a short 
preliminary simulation. Because

Var(Y') = (1 — r2)-Var(Y) < Var(Y), 
n

we get a reduction in variance and less error for the same length simulation 
run.

Consider the simple example where

Y = max{B(1),B(2), ..., B(100)},

and we want to compute E[Y]. For each replication, simulate Y, then

1. Compute X' = max{B(10), B(20),..., B(100)}.
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2. Compute
X0 = ^10max{B(1), B(2), ...,B(10)}
X 1 = VT0(max{B(11), B(12),..., B(20)} - B(10)) 
. . .
X9 = VW(max{B(91), B(92),..., B(100)} - B(90)), 
and note that self similarity of Brownian motion means that the Xi 

are iid ~ X'.

3. Use the control variate X = X' — 10 ^29=0 Xi.

Your estimate for that replication is Y - mX .

Because E[X]=0andX and Y are expected to be highly positively 
correlated, we should get a low variance estimator.

7.4 Embedding Variables in Brownian Motion

Using the fact that both Brownian motion B(t) and (B(t))2 -t are martin­
gales (we ask you to prove that (B(t))2 - t is a martingale in the exercises 
at the end of the chapter) with continuous paths, the following stopping 
theorem can be proven.

Proposition 7.11 With a < 0 < b and T = inf{t > 0 : B(t) = a or 
B(t) = b}, then E[B(T)] = 0 and E[(B(T))2] = E[T].

Proof Because B(n2-m) for n =0, 1, ... is a martingale (we ask you to 
prove this in the exercises at the end of the chapter) and E[\B(2-m) |] < to, 
we see that for finite stopping times Condition 3 of Proposition 3.14 (the 
martingale stopping theorem) holds. If we use the stopping time Tm = 
2-m l2mT + 1 j, this then gives us the first equality of

0 = E [B(min(t, Tm))] ^ E [B(min(t, T))] ^ E [B(T)], 

where the first arrow is as m ^ to and follows from the dominated conver­
gence theorem (using continuity of B(t) and Tm ^ T to get B(min(t, Tm)) ^ 
B(min(t,T)) and using the bound \B(min(t,Tm))| < sup0<s<t IB(s)|; this 
bound has finite mean by Proposition 7.9, and the second arrow is as t ^ to 
and follows again from the dominated convergence theorem (using conti­
nuity of B(t) and min(t, T) ^ T to get B(min(t, T)) ^ B(T) and also 
using the bound IB(min(t, T))I<b - a), and hence the first part of the 
result. The argument is similar for the second claim of the proposition, by 
starting with the discrete time martingale (B(n2-m))2 - n2-m,n=0, 1, ...
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Proposition 7.12 With the definitions from the previous proposition, 
P(B(T) = a) = b/(b - a) and E[T] = -ab.

Proof By the previous proposition,

0 = E[B(T)] =aP(B(T)=a)+b(1 - P(B(T) = a))

and

E[T] = E[(B(T))2] = a2P(B(T) = a) + b2(1 - P(B(T) = a)),

which when simplified and combined give the proposition. ■

Proposition 7.13 Given a random variable X having E[X]=0and Var(X) 
= a2, there exists a stopping time T for Brownian motion such that B (T) = d 

X and E [T] = a2.

You might initially think of using the obvious stopping time T = inf {t > 0 : 
B(t) = X}, but it turns out this gives E[T] = to. Here is a better approach.

Proof We give a proof for the case where X is a continuous random variable 
having density function f , and it can be shown that the general case follows 
using a similar argument.

Let Y, Z be random variables having joint density function

g(y, z)=(z - y)f(z)f(y)/E[X+], for y<0 <z.

This function is a density because

Z
0 0m 00 0m

g(y, z)dzdy = (z - y)f (z)f (y)/E[X+]dzdy
m 0 -m 0

Z
0 m m

f (y)dy zf (z)dz/E[X+]
m0

- f (z)dz yf (y)dy/E[X+]
0 -m

= P(X<0) + P(X > 0)E[X-]/E[X+]
=1,

where we use E[X-] = E[X+] in the last line.
Then let T = inf{t > 0:B(t)=Y or B(t) = Z}. We then obtain 

B(T) =d X by first letting x<0 and using the previous proposition in the 
second line here:
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O CO 0 0
P(B(T) < x)= I P(B(T) < x\ Y = y,Z = z)g(y,z)dydz

0 -O

0 O fx z
= -------g (y, z) dydz

0 -O z - y
=LO EX+j L f (y) dydz

=P (X < x )L ° fX+]dz
= P(X< x),

note that a similar argument works for the case where x> 0.
To obtain E [T] = a2, note that the previous proposition gives

E[T = E[-Y Z

-yzg (y, z)dydz

yz (y - z) f (z) f (y) 
E [ X+]

dydz

x2 f (x)dx + x2 f (x)dx

= a2.

Remark 7.14 It turns out that the first part of the previous result works 
with any martingale M(t) having continuous paths. It can be shown, with 
a < 0 < b and T = inf{t > 0 : M(t) = a or M (t) = b}, that E [M (T) = 0] 
and thus we can construct another stopping time T as in the previous 
proposition to get M(T) =d X. We do not, however, necessarily get E[T] = 
a2 .

7.5 Central Limit Theorem

We are now ready to state and prove a generalization of the central limit 
theorem. Because a sequence of iid random variables is stationary and 
ergodic, the central limit then follows from the following proposition.

Proposition 7.15 Suppose X1 ,X2 ... is a stationary and ergodic sequence 
of random variables with Fn = a(X1, ..., Xn) and such that E[Xi |Fi-1] = 0 
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and E[X2 \Fi-1] = 1. With Sn = n= n= Xi, then we have Sn/Vn ^d 

N(0, 1) as n ^ to.

Proof By the previous proposition and the strong Markov property, there 
must exist stopping times T1,T2,...where the Di = Ti+1 -Ti are stationary 
and ergodic, and where Sn = B(Tn) for Brownian motion B(t). The ergodic 
theorem says Tm/m ^ 1 a.s., so that given e > 0 we have

Ne = min {n : "rn > n, m(1 — e) < Tm < m(1 + e)} < to,

and so

p (sn/Vn < x) = p ( b (Tn)/Vn < x)

< P(B(Tn)/Jn < x, N < n) + P(N > n)

< p( inf B(n(1 + 6))/Jn < x ) + P(N > n)
\ |<5|< J

= Pl inf B (1 + 6) < x ) + P (N > n) 
\M< J

^ P (B (1) < x)

because e ^ 0 and n ^ to and using the fact that B (t) is continuous in 
the last line. Because the same argument can be applied to the sequence 
—X1 , —X2 , ..., we obtain the corresponding lower bound and thus the con­
clusion of the proposition. ■

7.6 Exercises
1. Show that if X (t) ,t > 0 is a continuous time martingale then X (ti) ,i > 

0 is a discrete time martingale whenever 11 < 12 < • • • < to are in­
creasing stopping times.

2. If B (t) is standard Brownian motion, show for any a>0thatB (at)/ 
ya, t > 0 is a continuous time martingale with stationary independent 
increments and B (at) / yfa = d B (t).

3. If B (t) is standard Brownian motion, compute Cov(B (t), B(s)).

4. If B (t) is standard Brownian motion, which of the following is a con­
tinuous time martingale with stationary independent increments? (a) 
VtB(1), (b) B(31) — B(21), or (c) — B(21)/V2.

5. If B(t) is standard Brownian motion, show that (B(t))2 —t and B3(t)— 
3tB(t) are continuous time martingales.

6. If B(t) is standard Brownian motion and T =inf{t>0:B(t) < 0}, 
compute E[T].
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7. Is (N(t))2 — AN(t) a martingale when N(t) is a Poisson process with 
rate A?

8. Prove the strong Markov property for Brownian motion as follows: (a) 
First prove for discrete stopping times T using the same argument as 
the strong Markov property for Markov chains. (b) Extend this to 
arbitrary stopping times T < to using the dominated convergence 
theorem and the sequence of stopping times Tn = (2nTJ + 1) / 2n. 
(c) Apply the extension theorem to show that Brownian motion after 
a stopping time is the same as Brownian motion.
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