

Debugging Machine Learning

Models with Python

Develop high-performance, low-bias, and explainable machine

learning and deep learning models

Ali Madani

BIRMINGHAM—MUMBAI

Debugging Machine Learning Models with Python

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Niranjan Naikwadi

Publishing Product Manager: Anant Jain

Book Project Manager: Hemangi Lotlikar

Senior Editor: Rohit Singh

Technical Editor: Sweety Pagaria

Copy Editor: Safis Editing

Proofreader: Safis Editing

Indexer: Sejal Dsilva

Production Designer: Joshua Misquitta

DevRel Marketing Executive: Vinishka Kalra

First published: Sep 2023

Production reference: 1180823

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-80020-858-2

www.packtpub.com

To my mother, Fatemeh Bekali, and my father, Razi, whose sacrifices and unwavering support have
been my foundation. To my loving partner, Parand, whose constant understanding and love have been

my inspiration and strength.

– Ali Madani

Foreword

Ali Madani is a global expert in ML-based drug discovery, where he has led the development of multiple
robust ML products with real-world applications in the life sciences. Ali is a skilled communicator and
he is passionate about practical applications of ML development. He rose to popularity over social media
through his educational series on applied ML, distilling complex state-of-the-art AI research topics into
brief descriptions and diagrams, which could be easily understood by ML learners and non-technical
professionals interested in the scientific and business applications of new technologies. Through his
role as the Director of Machine Learning at Cyclica (acquired by Recursion Pharmaceuticals), Ali
was involved in all phases of the ML product life cycle, from ideation to continuous development,
field testing, and commercialization. He was a mentor to ML-oriented staff developing their technical
skillsets as well as scientific-oriented staff and field experts seeking to reconcile their interpretation
of ML model evaluations with real-world applications.

In this book, Debugging Machine Learning Models with Python, Ali shares his first-hand experience
with readers, covering the practical elements of ML development that are critical for progressing
ML technologies from first-pass data science experiments into refined, commercial ML solutions,
aimed at real-world performance. This book covers a broad spectrum of topics – from modularizing
components of ML life cycles to correctly assessing the performance of ML models and devising
improvement strategies. This book extends beyond ML model training and testing, and provides you
with technical details on how to detect biases in your models and plan to achieve fairness through
different techniques such as methods aiming for local and global ML explainability. You will also
practice with Deep Learning supervised, generative, and self-supervised modeling for different data
modalities, such as images, texts, and graphs. In this book, you will practice with different Python
libraries, such as scikit-learn, PyTorch, Transformers, Ray, imblearn, Shap, AIF360,
and many more to gain hands-on experience in implementing these techniques and concepts.

With this book, you’ll learn how to maximize the value of ML technologies, leading the way in
developing best-in-class technologies in any domain. Here, Ali provides you with engineering aspects
of ML technology development as well as covers topics, such as data and model versioning to achieve
reproducibility, data, and concept drift detection to have reliable models in production, and test-driven
development to reduce risks of having untrustworthy ML models. You will also learn about different
techniques for increasing the security and privacy of your data and models.

Stephen MacKinnon

Vice President, Digital Chemistry

Contributors

About the author

Ali Madani worked as the Director of Machine Learning at Cyclica Inc, leading AI technology
development front of Cyclica for drug discovery before its acquisition by Recursion Pharmaceuticals,
where Ali continues focusing on the applications of machine learning for drug discovery. Ali completed
his Ph.D. at the University of Toronto, focusing on machine learning modeling in a cancer setting, and
attained a Master of Mathematics degree from the University of Waterloo. As a believer in industry-
oriented education and pro-democratization of knowledge, Ali has actively educated students and
professionals through international workshops and courses on basic and advanced high-quality
machine learning modeling. When not immersed in machine learning modeling and teaching, Ali
enjoys exercising, cooking, and traveling with his partner.

I would like to extend my heartfelt thanks to my partner, Parand, and my parents for their unwavering
support and love. I’m also deeply grateful to my mentors throughout the years, whose wisdom and
guidance have been invaluable. Thank you all for being an essential part of this journey.

About the reviewers

Krishnan Raghavan is an IT Professional with over 20 years of experience in the field of software
development and delivery excellence across multiple domains and technologies, ranging from C++ to
Java, Python, Data Warehousing, and Big Data tools and technologies. In his free time, Krishnan likes
to spend time with his wife and daughter besides reading fiction, non-fiction as well as technical books.
Krishnan tries to give back to the community by being a part of GDG – Pune Volunteer Group and
helping the team in organizing events. Currently, he is unsuccessfully trying to learn to play the guitar.

You can connect with him at mailtokrishnan@gmail.com or via LinkedIn.

I would like to thank my wife, Anita, and daughter, Ananya, for giving me the time and space to
review this book.

Amreth Chandrasehar is a Director at Informatica responsible for ML Engineering, Observability, and
SRE teams. Over the last few years, he has played a key role in Cloud migration, CNCF architecture,
Generative AI, Observability, and machine learning adoption at various organizations. He is also
a co-creator of the Conducktor Platform, serving T-Mobile’s 140+ million customers, and a Tech/
Customer Advisory board member at various companies. He has also co-developed and open sourced
Kardio.io. Amreth has been invited and spoken at several key conferences and has won several awards
within the company. He was recently awarded a Gold Award at the 15th Annual 2023 Golden Bridge
Business and Innovation Awards for his contributions to the field of Observability and Generative AI.

I would like to thank my wife, Ashwinya Mani, and my son, Athvik A, for their patience and support
during my review of this book.

Preface xv

Part 1: Debugging for Machine Learning
Modeling

1

Beyond Code Debugging 3

Technical requirements 4

Machine learning at a glance 4

Types of machine learning
modeling 5

Supervised learning 6

Unsupervised learning 6

Self-supervised learning 6

Semi-supervised learning 7

Reinforcement learning 7

Generative machine learning 7

Debugging in software development 8

Error messages in Python 8

Debugging techniques 11

Debuggers 14

Best practices for high-quality Python

programming 15

Version control 17

Debugging beyond Python 17

Flaws in data used for modeling 18

Data format and structure 18

Data quantity and quality 19

Data biases 19

Model and prediction-centric
debugging 20

Underfitting and overfitting 20

Inference in model testing and

production 21

Data or hyperparameters for changing

landscapes 21

Summary 21

Questions 22

References 22

Table of Contents

Table of Contentsviii

2

Machine Learning Life Cycle 23

Technical requirements 24

Before we start modeling 24

Data collection 25

Data selection 26

Data exploration 27

Data wrangling 27

Structuring 27

Enriching 27

Data transformation 28

Cleaning 30

Modeling data preparation 35

Feature selection and extraction 35

Designing an evaluation and testing

strategy 37

Model training and evaluation 38

Testing the code and the model 41

Model deployment and
monitoring 42

Summary 42

Questions 43

References 43

3

Debugging toward Responsible AI 45

Technical requirements 45

Impartial modeling fairness in
machine learning 46

Data bias 46

Algorithmic bias 48

Security and privacy in machine
learning 48

Data privacy 48

Data poisoning 49

Adversarial attacks 49

Output integrity attacks 50

System manipulation 51

Secure and private machine learning

techniques 51

Transparency in machine learning
modeling 52

Accountable and open to
inspection modeling 53

Data and model governance 55

Summary 56

Questions 56

References 57

Table of Contents ix

Part 2: Improving Machine Learning Models

4

Detecting Performance and Efficiency Issues in Machine

Learning Models 61

Technical requirements 62

Performance and error assessment
measures 62

Classification 62

Regression 70

Clustering 73

Visualization for performance
assessment 75

Summary metrics are not enough 75

Visualizations could be misleading 76

Don’t interpret your plots as you wish 77

Bias and variance diagnosis 77

Model validation strategy 81

Error analysis 84

Beyond performance 85

Summary 87

Questions 87

References 87

5

Improving the Performance of Machine Learning Models 89

Technical requirements 90

Options for improving model
performance 90

Grid search 94

Random search 95

Bayesian search 96

Successive halving 96

Synthetic data generation 97

Oversampling for imbalanced data 97

Improving pre-training data
processing 105

Anomaly detection and outlier removal 105

Benefitting from data of lower quality or

relevance 109

Regularization to improve model
generalizability 110

Summary 116

Questions 116

References 116

Table of Contentsx

6

Interpretability and Explainability in Machine Learning Modeling 119

Technical requirements 119

Interpretable versus black-box
machine learning 120

Interpretable machine learning models 120

Explainability for complex models 121

Explainability methods in machine
learning 122

Local explainability techniques 122

Global explanation 125

Practicing machine learning
explainability in Python 126

Explanations in SHAP 127

Explanations using LIME 133

Counterfactual generation using Diverse

Counterfactual Explanations (DiCE) 138

Reviewing why having
explainability is not enough 140

Summary 140

Questions 140

References 141

7

Decreasing Bias and Achieving Fairness 143

Technical requirements 144

Fairness in machine learning
modeling 144

Proxies for sensitive variables 146

Sources of bias 147

Biases introduced in data generation and

collection 147

Bias in model training and testing 151

Bias in production 151

Using explainability techniques 151

Fairness assessment and
improvement in Python 155

Summary 159

Questions 160

References 160

Part 3: Low-Bug Machine Learning Development
and Deployment

8

Controlling Risks Using Test-Driven Development 163

Technical
requirements 163

Test-driven development for machine
learning modeling 164

Table of Contents xi

Unit testing 164

Machine learning differential
testing 169

Tracking machine learning
experiments 170

Summary 174

Questions 175

References 175

9

Testing and Debugging for Production 177

Technical requirements 178

Infrastructure testing 178

Infrastructure as Code tools 179

Infrastructure testing tools 179

Infrastructure testing using Pytest 180

Integration testing of machine
learning pipelines 180

Integration testing using pytest 182

Monitoring and validating live
performance 184

Model assertion 186

Summary 188

Questions 188

References 188

10

Versioning and Reproducible Machine Learning Modeling 189

Technical requirements 190

Reproducibility in machine
learning 190

Data versioning 191

Model versioning 193

Summary 194

Questions 194

References 195

11

Avoiding and Detecting Data and Concept Drifts 197

Technical requirements 197

Avoiding drifts in your models 198

Avoiding data drift 198

Addressing concept drift 200

Detecting drifts 200

Practicing with alibi_detect for drift

detection 201

Practicing with evidently for drift

detection 203

Summary 206

Questions 206

References 206

Table of Contentsxii

Part 4: Deep Learning Modeling

12

Going Beyond ML Debugging with Deep Learning 209

Technical requirements 209

Introduction to artificial neural
networks 210

Optimization algorithms 212

Frameworks for neural network
modeling 213

PyTorch for deep learning modeling 214

Summary 219

Questions 219

References 219

13

Advanced Deep Learning Techniques 221

Technical requirements 222

Types of neural networks 222

Categorization based on data type 222

Convolutional neural networks for
image shape data 224

Performance assessment 226

CNN modeling using PyTorch 227

Image data transformation and augmentation

for CNNs 229

Using pre-trained models 230

Transformers for language
modeling 231

Tokenization 232

Language embedding 234

Language modeling using pre-trained

models 235

Modeling graphs using deep neural
networks 237

Graph neural networks 238

GNNs with PyTorch Geometric 239

Summary 243

Questions 244

References 244

14

Introduction to Recent Advancements in Machine Learning 249

Technical requirements 250

Generative modeling 250

Generative deep learning techniques 251

Prompt engineering for text-based

generative models 252

Table of Contents xiii

Generative modeling using PyTorch 253

Reinforcement learning 256

Reinforcement learning with human feedback

(RLHF) 256

Self-supervised learning (SSL) 258

Self-supervised learning with PyTorch 259

Summary 261

Questions 262

References 262

Part 5: Advanced Topics in Model Debugging

15

Correlation versus Causality 267

Technical requirements 267

Correlation as part of machine
learning models 268

Causal modeling to reduce risks and
improve performance 269

Assessing causation in machine
learning models 269

Causal inference 270

Causal modeling using Python 273

Using dowhy for causal effect estimation 273

Using bnlearn for causal inference through

Bayesian networks 275

Summary 277

Questions 277

References 278

16

Security and Privacy in Machine Learning 279

Technical requirements 279

Encryption techniques and their use
in machine learning 280

Implementing AES encryption in Python 280

Homomorphic encryption 282

Differential privacy 283

Federated learning 285

Summary 287

Questions 287

References 287

17

Human-in-the-Loop Machine Learning 289

Humans in the machine learning
life cycle 289

Expert feedback collection 291

Human-in-the-loop modeling 292

Table of Contentsxiv

Summary 293

Questions 294

References 294

Assessments 295

Chapter 1 – Beyond Code Debugging 295

Chapter 2 – Machine Learning Life
Cycle 296

Chapter 3 – Debugging toward
Responsible AI 297

Chapter 4 – Detecting Performance
and Efficiency Issues in Machine
Learning Models 298

Chapter 5 – Improving the
Performance of Machine Learning
Models 298

Chapter 6 – Interpretability and
Explainability in Machine Learning
Modeling 299

Chapter 7 – Decreasing Bias and
Achieving Fairness 300

Chapter 8 – Controlling Risks Using
Test-Driven Development 300

Chapter 9 – Testing and Debugging
for Production 301

Chapter 10 – Versioning and
Reproducible Machine Learning
Modeling 302

Chapter 11 – Avoiding and Detecting
Data and Concept Drifts 303

Chapter 12 – Going Beyond ML
Debugging with Deep Learning 303

Chapter 13 – Advanced Deep
Learning Techniques 303

Chapter 14 – Introduction to Recent
Advancements in Machine
Learning 304

Chapter 15 – Correlation versus
Causality 304

Chapter 16 – Security and Privacy
in Machine Learning 305

Chapter 17 – Human-in-the-Loop
Machine Learning 305

Index 307

Other Books You May Enjoy 318

Preface

Welcome to Debugging Machine Learning Models with Python – your comprehensive guide for
mastering machine learning. This book is designed to help you advance from basic concepts in machine
learning to the complexities of expert-level model development, ensuring that your journey is both
educational and practical. In this book, we go beyond simple code snippets, delving into the holistic
process of crafting reliable, industrial-grade models. From the nuances of modular data preparation
to the seamless integration of models into broader technological ecosystems, every chapter is curated
to bridge the gap between basic understanding and advanced expertise.

Our journey doesn’t stop at mere model creation. We’ll dive deep into evaluating model performance,
pinpoint challenges, and provide you with effective solutions. Emphasizing the importance of bringing
and maintaining reliable models in a production environment, this book will equip you with techniques
to tackle data processing and modeling issues. You’ll learn the importance of reproducibility and acquire
skills to achieve it, ensuring that your models are both consistent and trustworthy. Furthermore, we
will underscore the criticality of fairness, the elimination of bias, and the art of model explainability,
ensuring that your machine learning solutions are ethical, transparent, and comprehensible. As we
progress, we’ll also explore the frontier of deep learning and generative modeling, enriched with
hands-on exercises using renowned Python libraries such as PyTorch and scikit-learn.

In the ever-evolving landscape of machine learning, continuous learning and adaptation are essential.
This book not only serves as a repository of knowledge but also as a motivator, inspiring you to
experiment and innovate. As we delve into each topic, I invite you to approach it with curiosity and
a willingness to explore, ensuring that the knowledge you gain is deep and actionable. Together, let’s
shape the future of machine learning, one model at a time.

Who this book is for

This book is for data scientists, analysts, machine learning engineers, Python developers, and students
looking to build reliable, high-performance, reproducible, trustworthy, and explainable machine
learning models for production across diverse industrial applications. Fundamental Python skills are
all you need to dive into the concepts and practical examples covered. Whether you’re new to machine
learning or an experienced practitioner, this book offers a breadth of knowledge and practical insights
to elevate your modeling skills.

What this book covers

Chapter 1, Beyond Code Debugging, covers a brief review of code debugging and why debugging
machine learning models goes beyond that.

Prefacexvi

Chapter 2, Machine Learning Life Cycle, teaches you how to design a modular machine learning life
cycle for your projects.

Chapter 3, Debugging toward Responsible AI, explains concerns, challenges, and some of the techniques
in responsible machine learning modeling.

Chapter 4, Detecting Performance and Efficiency Issues in Machine Learning Models, teaches you how
to correctly assess the performance of your machine learning models.

Chapter 5, Improving the Performance of Machine Learning Models, teaches you different techniques
to improve the performance and generalizability of your machine learning models.

Chapter 6, Interpretability and Explainability in Machine Learning Modeling, covers some machine
learning explainability techniques.

Chapter 7, Decreasing Bias and Achieving Fairness, explains some technical details and tools that you
can use to assess fairness and reduce biases in your models.

Chapter 8, Controlling Risks Using Test-Driven Development, shows how to reduce the risk of unreliable
modeling using test-driven development tools and techniques.

Chapter 9, Testing and Debugging for Production, explains testing and model monitoring techniques
to have reliable models in production.

Chapter 10, Versioning and Reproducible Machine Learning Modeling, teaches you how to use data and
model versioning to achieve reproducibility in your machine learning projects.

Chapter 11, Avoiding and Detecting Data and Concept Drifts, teaches you how to detect drifts in your
machine learning models to have reliable models in production.

Chapter 12, Going Beyond ML Debugging with Deep Learning, covers an introduction to deep
learning modeling.

Chapter 13, Advanced Deep Learning Techniques, covers convolutional neural networks, transformers,
and graph neural networks for deep learning modeling of different data types.

Chapter 14, Introduction to Recent Advancements in Machine Learning, explains an introduction to
recent advancements in generative modeling, reinforcement learning, and self-supervised learning.

Chapter 15, Correlation versus Causality, explains the benefits of, and some practical techniques for,
causal modeling.

Chapter 16, Security and Privacy in Machine Learning, shows some of the challenges in preserving
privacy and ensuring security in machine learning settings, and teaches you a few techniques to tackle
those challenges.

Chapter 17, Human-in-the-Loop Machine Learning, explains the benefits and challenges of
human-in-the-loop modeling.

Preface xvii

To get the most out of this book

In order to follow the instructions given in this book, you will need basic knowledge of the following:

• Access to Python via Integrated Development Environments (IDE), Jupyter notebook, or
Colab notebook.

• Basics of Python programming.

• Basic understanding of machine learning modeling and terminologies, such as supervised
learning, unsupervised learning, and model training and testing.

Having a virtual environment with all the required libraries would help you to run the code in each
chapter, which is provided as Jupyter notebooks in the associated GitHub repository of the book.

The Python libraries required for the book are: sklearn >= 1.2.2, numpy >= 1.22.4, pandas >= 1.4.4,
matplotlib >= 3.5.3, collections >= 3.8.16, xgboost >= 1.7.5, sklearn >= 1.2.2, ray >= 2.3.1, tune_sklearn
>= 0.4.5, bayesian_optimization >= 1.4.2, imblearn, pytest >= 7.2.2, shap >= 0.41.0, aif360 >= 0.5.0,
fairlearn >= 0.8.0, pytest >= 3.6.4, ipytest >= 0.13.0, mlflow >= 2.1.1, libi_detect >= 0.11.1, lightgbm
>= 3.3.5, evidently >= 0.2.8, torch >= 2.0.0, torchvision >= 0.15.1, transformers >= 4.28.0, datasets >=
2.12.0, torch_geometric == 2.3.1, dowhy == 0.5.1, bnlearn == 0.7.16, tenseal >= 0.3.14, pycryptodome
= 3.18.0, pycryptodomex = 3.18.0

Alternatively, you can use online services, such as Colab, and run the notebooks as Colab notebooks.

Software/hardware covered in the book Operating system requirements

Python >=3.6 Windows, macOS, or Linux

DVC >= 1.10.0

Importing the required libraries is omitted for every single code cell to eliminate the repetition and
keep the book as short as possible. Having the GitHub repository of the book on the side will help you
to be sure about the required libraries for each piece of code and learn how to install them. As this
book is not a single command tutorial book, the majority of the examples include multi-line processes.
As a result, you cannot copy-paste individual lines, in most chapters, without paying attention to the
required libraries, their installation, and the code lines before that.

If you are using the digital version of this book, we advise you to type the code yourself or access

the code from the book’s GitHub repository (a link is available in the next section). Doing so will

help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Debugging-Machine-Learning-Models-with-Python. If there’s
an update to the code, it will be updated in the GitHub repository.

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python

Prefacexviii

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount
the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

import pandas as pd

orig_df = pd.DataFrame({

 'age': [45, 43, 54, 56, 54, 52, 41],

 'gender': ['M', 'F', 'F', 'M', 'M', 'F', 'M'],

 'group': ['H1', 'H1', 'H2', 'H3', 'H2', 'H1', 'H3'],

 'target': [0, 0, 1, 0, 1, 1, 0]})

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

in_encrypt = open("molecule_enc.bin", "rb")

nonce, tag, ciphertext = [in_encrypt.read(x) for x in (16, 16, -1)]

in_encrypt.close()

Any command-line input or output is written as follows:

python -m pytest

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “You might be able to find other images
of cracked products or you could generate new images using a process called data augmentation.”

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com

Preface xix

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share your thoughts

Once you’ve read Debugging Machine Learning Models with Python, we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://www.packtpub.com/support/errata
mailto:copyright@packt.com
https://authors.packtpub.com
https://www.packtpub.com/

Prefacexx

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80020-858-2

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-80020-858-2

Part 1:

Debugging for

Machine Learning Modeling

In this part of the book, we will delve into the different aspects of machine learning development
that extend beyond traditional paradigms. The first chapter illuminates the nuances between
conventional code debugging and the specialized realm of machine learning debugging, emphasizing
that the challenges in ML transcend mere code errors. The next chapter provides a comprehensive
overview of the machine learning life cycle, highlighting the role of modularization in streamlining
and enhancing model development. Finally, we will underscore the importance of model debugging
in the pursuit of Responsible AI, emphasizing its role in ensuring ethical, transparent, and effective
machine learning solutions.

This part has the following chapters:

• Chapter 1, Beyond Code Debugging

• Chapter 2, Machine Learning Life Cycle

• Chapter 3, Debugging toward Responsible AI

1
Beyond Code Debugging

Artificial intelligence (AI), like human intelligence, is a capability and tool that can be used for
decision-making and task accomplishment. As humans, we use our intelligence in making our daily
decisions and thinking about the challenges and problems we deal with. We use our brains and central
nervous systems to receive information from our surroundings and process them for decision-making
and reactions.

Machine learning models are the AI techniques that are used nowadays to tackle problems across
healthcare and finance. Machine learning models have been used in robotic systems in manufacturing
facilities to package products or identify products that might have been damaged. They have been used
in our smartphones to identify our faces for security purposes, by e-commerce companies to suggest
the most suited products or movies to us, and even for improving healthcare and drug development
to bring new more effective drugs onto the market for severe diseases.

In this chapter, we will provide a quick review of different types of machine learning modeling. You
will learn about different techniques and challenges in debugging your machine learning code. We
will also discuss why debugging machine learning modeling goes far beyond just code debugging.

We will cover the following topics in this chapter:

• Machine learning at a glance

• Types of machine learning modeling

• Debugging in software development

• Flaws in data used for modeling

• Model and prediction-centric debugging

This chapter is an introduction to this book to prepare you for more advanced concepts that will be
presented later. This will help you improve your models and move toward becoming an expert in the
machine learning era.

Beyond Code Debugging4

Technical requirements

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter01.

Machine learning at a glance

You need three fundamental elements to build a machine learning model: an algorithm, data, and
computing power (Figure 1.1). A machine learning algorithm needs to be fed with the right data and
trained using the necessary computing power. It can then be used to predict what it has been trained
on for unseen data:

Figure 1.1 – The three elements in the machine learning triangle

Machine learning applications can be generally categorized as automation and discovery. In the
automation category, the goal of the machine learning model and the software and hardware systems
built around it is to do the tasks that are possible and usually easy but tedious, repetitive, boring,
or dangerous for human beings. Some examples of this include recognizing damaged products in
manufacturing lines or recognizing employees’ faces at entrances in high-security facilities. Sometimes,
it is not possible to use human beings for some of these tasks, although the task would be easy. For
example, for face recognition on your phone, if your phone was stolen, you would not be there to
recognize that the person who is trying to log into your phone is not you and your phone should be
able to do it by itself. But we cannot come up with a generalizable mathematical formulation for these
tasks to tell the machine what to do in each situation. So, the machine learning model learns how to
come up with its prediction, for example, in terms of recognizing faces, according to the identified
patterns in the data.

On the other hand, in the discovery category of machine learning modeling, we want the models
to provide information and insight about unknowns that are either not easy or fully discovered, or
even impossible, for human experts or non-experts to extract. For example, discovering new drugs

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter01

Types of machine learning modeling 5

for cancer patients is not a task where you can learn all aspects of it by going through a couple of
courses and books. In such cases, machine learning can help us come up with new insights to help
discover new drugs.

For both discovery and automation, different types of machine learning modeling can help us achieve
our goals. We will explore this in the next section.

Types of machine learning modeling

Machine learning contains multiple modeling types that may rely on output data, a variable type of
model output, and learning from prerecorded data or experience. Although the examples in this book
focus on supervised learning, we will review other types of modeling, including unsupervised learning,
self-supervised learning, semi-supervised learning, reinforcement learning (RL), and generative
machine learning to cover the six major categories of machine learning modeling (Figure 1.2). We will
also talk about techniques in machine learning modeling and provide code examples that are not parallel
to these categories, such as active learning, transfer learning, ensemble learning, and deep learning:

Figure 1.2 – Types of machine learning modeling

Self-supervised and semi-supervised learning are sometimes considered sub-categories of supervised
learning. However, we will separate them here so that we can establish the differences between the
usual supervised learning models you are familiar with and these two types of modeling.

Beyond Code Debugging6

Supervised learning

Supervised learning is about identifying the relationship between inputs/features and the output for
each data point. But what do input and output mean?

Imagine that we want to build a machine learning model to predict whether a person is likely to get
breast cancer or not. The output of the model could be 1 for getting breast cancer and 0 for not getting

breast cancer and the inputs could be the characteristics of the people, such as their age, weight, and
whether they smoke or not. There could even be inputs that are measured using advanced technologies,
such as the genetic information of each person. In this case, we want to use our machine learning
model to predict which patient will get cancer in the future.

You can also design a machine learning model to estimate the price of houses in a city. Here, your
model could use characteristics of houses, such as the number of bedrooms and size of the house, the
neighborhood, and access to schools, to estimate house prices.

In both of these examples, we have models trying to identify patterns within input features, such as a
high number of bedrooms but only one bathroom, and associate those with the output. Depending
on the output variable type, your model can be categorized as a classification model, in which the
output is categorical, such as getting or not getting cancer, or a regression model, in which the output
is continuous, such as house prices.

Unsupervised learning

The majority of our life, at least in childhood, has been spent using our five senses (eyesight, hearing,
taste, touch, and smell) to collect information about our surroundings, food, and so on, without us
trying to find supervised learning style relationships such as whether a banana is ripe or not based on
its color and shape. Similarly, in unsupervised learning, we are not seeking to identify the relationship
between the features (input) and the output. Instead, the goal is to identify relationships between data
points, as in clustering, extract new features (that is, embeddings or representations), and, if needed,
reduce the dimensionality (that is, the number of features) of our data without using any output for
the data points.

Self-supervised learning

The third category of machine learning modeling is called self-supervised learning. In this category,
the goal is to identify the relationship between inputs and outputs, but the difference with supervised
learning is the source of outputs. For example, if the goal of the supervised machine learning model
is to translate from English to French, the inputs come from English words and sentences and the
outputs come from French words and sentences. However, we can have a self-supervised learning
model within English sentences to try to predict the next word or a missing word in a sentence. For
example, let’s say we aim to recognize that “talking” is a good candidate to fill the gap in “Jack is ____
with Julie.” Self-supervised learning models have been used in recent years across different fields to

Types of machine learning modeling 7

identify new features. This is commonly called representation learning. We will talk about some examples
of self-supervised learning in Chapter 14, Introduction to Recent Advancements in Machine Learning.

Semi-supervised learning

Semi-supervised learning can help us benefit from supervised learning without throwing out the
data points that don’t have output values. Sometimes, we have data points for which we don’t have
the output values and only their feature values are available. In such cases, semi-supervised learning
helps us use data points with or without output. One simple process to do so is to group data points
that are similar to each other and use known outputs of the data points in each group to assign output
for other data points of the same group that don’t have output value.

Reinforcement learning

In RL, a model is rewarded according to its experience in an environment (real or virtual). In other
words, RL is about identifying relationships with piecewise example addition. In RL, data is not
considered part of the model and is independent of the model itself. We will go through some details
of RL in Chapter 14, Introduction to Recent Advancements in Machine Learning.

Generative machine learning

Generative machine learning modeling helps us develop models that can generate images, text, or
any data point that is close to the probability distribution of data provided in the training process.
ChatGPT is one of the most famous tools that’s built on top of a generative model to generate realistic
and meaningful text in response to user questions and answers (https://openai.com/blog/
chatgpt). We will go through more details about generative modeling and the available tools built
on top of it in Chapter 14, Introduction to Recent Advancements in Machine Learning.

In this section, we provided a brief review of the basic components for building machine learning
models and different types of modeling. But if you want to develop machine learning models for
automation or discovery, for healthcare or any other application, with a low or high number of data
points, on your laptop or the cloud, using a central processing unit (CPU) or graphics processing

unit (GPU), you need to develop high-quality code that works as expected. Although this book is
not a software debugging book, an overview of software debugging challenges and techniques could
help you in developing your machine learning models.

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

Beyond Code Debugging8

Debugging in software development

If you want to use Python and its libraries to build machine learning and deep learning models, you
need to make sure your code works as expected. Let’s consider the following examples of the same
function for returning the multiplication of two variables:

• Correct code:

def multiply(x, y):

 z = x * y

 return z

• Code with a typo:

def multiply(x, y):

 z = x * y

 retunr z

• Code with an indentation issue:

def multiply(x, y):

z = x * y

return z

• Incorrect use of ** for multiplication:

def multiply(x, y):

 z = x ** y

 return z

As you can see, there could be typos in the code and issues with indentation that prevent the code
from running. You might also face issues because of an incorrect operator being used, such as ** for
multiplication instead of *. In this case, your code will run but the expected result will be different
than what the function is supposed to do, which is multiplying the input variables.

Error messages in Python

Sometimes, there are issues with our code that don’t let it continue running. These issues could result
in different error messages in Python. Here are some examples of error messages you might face when
you’re running your Python code:

• SyntaxError: This is a type of error you’ll get when the syntax you used in your code is
not the correct Python syntax. It could be caused by a typo, such as having retunr instead of
return, as shown previously, or using a command that doesn’t exist, such as using giveme
instead of return.

Debugging in software development 9

• TypeError: This error will be raised when your code tries to perform an operation on an
object or variable that cannot be done in Python. For example, if your code tries to multiply
two numbers while the variables are in string format instead of float or integer format.

• AttributeError: This type of error is raised when an attribute is used for an object that it
is not defined for. For example, isnull is not defined for a list. So, my_list.isnull()
results in AttributeError.

• NameError: This error is raised when you try to call a function, class, or other names and
modules that are not defined in your code. For example, if you haven’t defined a neural_
network class in your code but call it in your code as neural_network(), you will get
a NameError message.

• IndentationError: Python is a programming language that relies on correct indentation –
that is, the necessary spaces at the beginning of each line of code – to understand relationships
between the lines. It also helps with code readability. IndentationError is the result of the
wrong type of indentation being used in your code. But not all wrong indentation, based on
the objective you have in mind, results in IndentationError. For example, the following
code examples work without any error, but only the first one meets the objective of counting
the number of odd numbers in a list. The bottom function returns the length of the input list
instead. As a result, if you run the top part of the code, you will get 3 as the output, which is
the total number of odd numbers in the input list, while the bottom part of the code returns 5,
which is the length of the list. These types of errors, which don’t stop the code from running
but generate an incorrect output, are called logical errors.

Here is some example code in which using the wrong indention results in wrong results without any
error message:

def odd_counter(num_list: list):

 """

 :param num_list: list of integers to be checked for identifying
 odd numbers

 :return: return an integer as the number of odd numbers in the
 input list

 """

 odd_count = 0

 for num in num_list:

 if (num % 2) == 0:

 print("{} is even".format(num))

 else:

 print("{} is even".format(num))

 odd_count += 1

 return odd_count

num_list = [1, 2, 5, 8, 9]

Beyond Code Debugging10

print(f'Total number of odd numbers in the list:

 {odd_counter(num_list)}')

The following code runs but generates unintended results:

def odd_counter(num_list: list):

 """

 :param num_list: list of integers to be checked for identifying
 odd numbers

 :return: return an integer as the number of odd numbers in the
 input list

 """

 odd_count = 0

 for num in num_list:

 if (num % 2) == 0:

 print("{} is even".format(num))

 else:

 print("{} is even".format(num))

 odd_count += 1

 return odd_count

num_list = [1, 2, 5, 8, 9]

print(f'Total number of odd numbers in the list:

 {odd_counter(num_list)}')

There are other errors whose meanings are clear based on their name, such as ZeroDivisionError
when your code tries to return division by zero, IndexError if your code tries to get a value based
on an index that is greater than the length of a list, or ImportError when you’re trying to import
a function or class that cannot be found.

In the previous code examples, we used docstring to specify the type of input parameter (that
is, a list) and the intended output. Having this information helps you and new users of your code to
better understand the code and resolve any issue with it quickly.

These are simple examples of issues that can happen in your software and pipelines. In machine learning
modeling, you need to conduct debugging to deal with hundreds or thousands of lines of code and
tens or hundreds of functions and classes. However, debugging could be much more challenging
compared to these examples. It could be even more difficult if you need to start working on a piece of
code that you have not written yourself when, for example, you’re joining a new team in the industry
or academia. You need to use techniques and tools that help you debug your code with minimum
effort and time. Although this book is not designed for code debugging, reviewing some debugging
techniques could help you in developing high-quality code that runs as planned.

Debugging in software development 11

Debugging techniques

There are techniques to help you in the process of debugging a piece of code or software. You might
have used one or more of these techniques, even without remembering or knowing their names. We
will review four of them here.

Traceback

When you get an error message in Python, it usually provides you with the necessary information
to find the issue. This information creates a report-like message about the lines of your code that the
error occurred in, as well as the types of error and function or class calls that resulted in such errors.
This report-like message is called a traceback in Python.

Consider the following code, in which the reverse_multiply function is supposed to return a
list of element-wise multiplication of an input list and its reverse. Here, reverse_multiply uses
the multiply command to multiply the two lists. Since multiply is designed for multiplying two
float numbers, not two lists, the code returns the traceback message with the necessary information
for finding the issue, starting from the bottom operation. It specifies that TypeError occurred on
line 8 within multiply, which is the bottom operation, and then lets us know that this issue results
in an error occurring on line 21, in reverse_multiply, and eventually line 27 in the whole code
module. Both the PyCharm IDE and Jupyter return this information. The following code examples
show you how to use traceback to find necessary information so that you can debug a small and simple
piece of Python code in both PyCharm and Jupyter Notebook:

def multiply(x: float, y: float):

 """

 :param x: input variable of type float

 :param y: input variable of type float

 return: returning multiplications of the input variables

 """

 z = x * y

 return z

def reverse_multiply(num_list: list):

 """

 :param num_list: list of integers to be checked for identifying
 odd numbers

 :return: return a list containing element-wise multiplication of
 the input list and its reverse

 """

 rev_list = num_list.copy()

 rev_list.reverse()

 mult_list = multiply(num_list, rev_list)

 return mult_list

Beyond Code Debugging12

num_list = [1, 2, 5, 8, 9]

print(reverse_multiply(num_list))

The following lines show you the traceback error message when you run the previous code in
Jupyter Notebook:

TypeError Traceback (most recent call last)

<ipython-input-1-4ceb9b77c7b5> in <module>()

 25

 26 num_list = [1, 2, 5, 8, 9]

---> 27 print(reverse_multiply(num_list))

<ipython-input-1-4ceb9b77c7b5> in reverse_multiply(num_list)

 19 rev_list.reverse()

 20

---> 21 mult_list = multiply(num_list, rev_list)

 22

 23 return mult_list

<ipython-input-1-4ceb9b77c7b5> in multiply(x, y)

 6 return: returning multiplications of the input variables

 7 """

----> 8 z = x * y

 9 return z

 10

TypeError: can't multiply sequence by non-int of type 'list'

Traceback error message in Pycharm

Traceback (most recent call last):

 File "<input>", line 27, in <module>

 File "<input>", line 21, in reverse_multiply

 File "<input>", line 8, in multiply

TypeError: can't multiply sequence by non-int of type 'list'

Python traceback messages seem to be very useful for debugging our code. However, they are not
enough for debugging large code bases that contain many functions and classes. You need to use
complementary techniques to help you in the debugging process.

Debugging in software development 13

Induction and deduction

When you have found an error in your code, you can either start by collecting as much information
as you can and try to find potential issues using the information, or you can jump into checking your
suspicions. These two approaches differentiate induction from the deduction process in terms of
code debugging:

• Induction: In the induction process, you start collecting information and data about the
problem in your code that helps you come up with a list of potential issues resulting from the
error. Then, you can narrow the list down and, if necessary, collect more information and data
from the process until you fix the error.

• Deduction: In the deduction process, you come up with a short list of your points of suspicion
regarding the issues in your code and try to find if any one of them is the actual source of the
issue. You continue this process and gather more information and come up with new potential
sources of the problem. You continue this process until you fix the problem.

In both approaches, you go through an iterative process of coming up with potential sources of issues
and building hypotheses and then collect the necessary information until you fix the error in your
code. If a piece of code or software is new to you, this process could take time. In such cases, try to
get help from your teammates with more experience with the code to collect more data and come up
with more relevant hypotheses.

Bug clustering

As stated in the Pareto principle, named after Vilfredo Pareto, a famous Italian sociologist and
economist, 80% of the results originate from 20% of the causes. The exact number is not the point
here. This principle helps us better understand that the majority of the problems and errors in our code
are caused by a minority of its modules. By grouping bugs, we can hit multiple birds with one stone
as resolving an issue in a group of bugs could potentially resolve most others within the same group.

Problem simplification

The idea here is to simplify the code so that you can identify the cause of the error and fix it. You could
replace big data objects with smaller and even synthetic ones or limit function calling in a big module.
This process could help you quickly eliminate the options for identifying the causes of the issues in
your code, or even in the data format you have used as inputs of functions or classes in your code.
Especially in a machine learning setting, where you might deal with complex data processes, big data
files, or streams of data, this simplification process for debugging could be very useful.

Beyond Code Debugging14

Debuggers

Each IDE you might use, such as PyCharm, or if you use Jupyter Notebook to experiment with your
ideas using Python, has built-in features for debugging. There are also free or paid tools you can
benefit from to facilitate your debugging processes. For example, in PyCharm and most other IDEs,
you can use breakpoints as pausing places when running a big piece of code so that you can follow
the operations in your code (Figure 1.3) and eventually find the cause of the issue:

Figure 1.3 – Using breakpoints in PyCharm for code debugging

The breakpoint capabilities in different IDEs are not the same. For example, you can use PyCharm’s
conditional breakpoints to speed up your debugging process, which helps you not execute a line of
code in a loop or repeat function calls manually. Read more about the debugging features of the IDE
you use and consider them as another tool in your toolbox for better and easier Python programming
and machine learning modeling.

The debugging techniques and tools we’ve briefly explained here, or those you already know about,
could help you develop a piece of code that runs and provides the intended results. You could also follow
some best practices for high-quality Python programming and building your machine learning models.

Debugging in software development 15

Best practices for high-quality Python programming

Prevention is better than a cure. There are practices you can follow to prevent or decrease the chance
of bugs occurring in your code. In this section, we will talk about three of those practices: incremental

programming, logging, and defensive programming. Let’s look at each in detail.

Incremental programming

Machine learning modeling in practice, in academia or industry, is beyond writing a few lines of
code to train a simple model such as a logistic regression model using datasets that already exist in
scikit-learn. It requires many modules for processing data, training and testing model and
postprocessing inferences, or predictions to assess the reliability of the models. Writing code for every
small component, then testing it and writing test code using PyTest, for example, could help you
avoid issues with each function or class you wrote. It also helps you make sure that the outputs of one
module that feed another module as its input are compatible. This process is what is called incremental

programming. When you write a piece of software or pipeline, try to write and test it piece by piece.

Logging

Every car has a series of dashboard lights that get turned on when there is a problem with the car.
These problems could stop the car from running or cause serious damage if they’re not acted upon,
such as low gas or engine oil change lights. Now, imagine there was no light or warning, and all of
a sudden, the car you are driving stops or makes a terrible sound, and you don’t know what to do.
When you develop functions and classes in Python, you can benefit from logging to log information,
errors, and other kinds of messages that help you in identifying potential sources of issues when you
get an error message. The following example showcases how to use error and info as two attributes
of logging. You can benefit from different attributes of logging in terms of the functions and classes
you write to improve data and information gathering while running your code. You can also export
the log information in a file using basicConfig(), which does the basic configuration for the
logging system:

import logging

def multiply(x: float, y: float):

 """

 :param x: input variable of type float

 :param y: input variable of type float

 return: returning multiplications of

 the input variables

 """

 if not isinstance(x, (int, float)) or not isinstance(y,

 (int, float)):

 logging.error('Input variables are not of type float or
integer!')

Beyond Code Debugging16

 z = x * y

 return z

def reverse_multiply(num_list: list):

 """

 :param num_list: list of integers to be checked

 for identifying odd numbers

 :return: return a list containing element-wise multiplication

 of the input list and its reverse

 """

 logging.info("Length of {num_list} is {

 list_len}".format(num_list=num_list,

 list_len = len(num_list)))

 rev_list = num_list.copy()

 rev_list.reverse()

 mult_list = [multiply(num_list[iter], rev_list[iter])

 for iter in range(0, len(num_list))]

 return mult_list

num_list = [1, 'no', 5, 8, 9]

print(reverse_multiply(num_list))

When you run the previous code, you will get the following messages and output:

ERROR:root:Input variables are not of type float or integer!

ERROR:root:Input variables are not of type float or integer!

[9, 'nononononononono', 25, 'nononononononono', 9]

The logged error messages are the results of attempting to multiply 'no', which is a string with
another number.

Defensive programming

Defensive programming is about preparing yourself for mistakes that can be made by you, your
teammates, and your collaborators. There are tools, techniques, and Python classes to defend the code
against such mistakes, such as assertions. For example, using the following line in your code stops it,
if the conditions are met, and returns an error message stating AssertionError: Variable
should be of type float:

assert isinstance(num, float), 'Variable should be of type float'

Debugging in software development 17

Version control

The tools and practices we covered here are just examples of how you can improve the quality of
your programming and decrease the amount of time needed to eliminate issues and errors in your
code. Another important tool in improving your machine learning modeling is versioning. We will
talk about data and model versioning in Chapter 10, Versioning and Reproducible Machine Learning

Modeling, but let’s briefly talk about code versioning here.

Version control systems allow you to manage changes in your code and files that exist in a code
base and help you in tracking those changes, gain access to the history of changes, and collaborate
in developing different components of a machine learning pipeline. You can use version control
systems such as Git and its associated hosting services such as GitHub, GitLab, and BitBucket for
your projects. These tools let you and your teammates and collaborators work on different branches
of code without disrupting each other’s work. It also lets you easily go back to the history of changes
and find out when a change happened in the code.

If you have not used version control systems, don’t consider them as a new complicated tool or
programming language you need to start learning. There are a couple of core concepts and terms
you need to learn first, such as commit, push, pull, and merge, when using Git. Using these
functionalities could be even as simple as a few clicks in an IDE such as PyCharm if you don’t want
to or know how to use the command-line interface (CLI).

We reviewed some commonly used techniques and tools to help you in debugging your code and
high-quality Python programming. However, there are more advanced tools built on top of models
such as GPT, such as ChatGPT (https://openai.com/blog/chatgpt) and GitHub Copilot
(https://github.com/features/copilot), that you can use to develop your code faster
and increase the quality of your code and even your code debugging efforts. We will talk about some
of these tools in Chapter 14, Introduction to Recent Advancements in Machine Learning.

Although using the preceding debugging techniques or best practices to avoid issues in your Python
code helps you have a low-bug code base, it doesn’t prevent all the problems with machine learning
models. This book is about going beyond Python programming for machine learning to help you
identify problems with your machine learning models and develop high-quality models.

Debugging beyond Python

Eliminating code issues doesn’t resolve all the issues that may exist in a machine learning model or a
pipeline for data preparation and modeling. There could be issues that don’t result in any error message,
such as problems that originate from data used for modeling, and differences between test data and
production data (that is, data that the model needs to be used for eventually).

https://openai.com/blog/chatgpt
https://github.com/features/copilot

Beyond Code Debugging18

Production versus development environments

The development environment is where we develop our models, such as our computers or
cloud environments we use for development. It is where we develop our code, debug it, process
data, train models, and validate them. But what we do in this stage doesn’t affect users directly.

The production environment is where the model is ready to be used by end users or could
affect them. For example, a model could get into production in the Amazon platform for
recommending products, be delivered to other teams in a banking system for fraud detection,
or even be used in hospitals to help clinicians in diagnosing patients’ conditions better.

Flaws in data used for modeling

Data is one of the core components of machine learning modeling (Figure 1.1). Applications of machine
learning across different industries such as healthcare, finance, automotive, retail, and marketing are
made possible by getting access to the necessary data for training and testing machine learning models.
As the data gets fed into machine learning models for training (that is, identifying optimal model
parameters) and testing, flaws in data could result in problems in models, such as low performance in
training (for example, high bias), low generalizability (for example high variance), or socioeconomic
biases. Here, we will discuss examples of flaws and properties of data that need to be considered when
designing a machine learning model.

Data format and structure

There could be issues with how data is stored, read, and moved through different functions and classes
in your code or pipeline. You might need to work with structured or tabular data or unstructured data
such as videos and text documents. This data could be stored in relational databases such as MySQL
or NoSQL (that is, non-relational) databases, data warehouses, and data lakes, or even stored locally
in different file formats, such as CSV. Either way, the expected and existing file data structure and
formats need to match. For example, if your code is expecting a tab-separated file format but instead
the input file of the corresponding function is comma-separated, then all the columns could be lumped
together. Luckily, most of the time, these kinds of issues result in errors in the code.

There could also be mismatches in the provided and expected data that wouldn’t cause any errors if
the code is not defended against them and not enough information is logged. For example, imagine a
scikit-learn fit function that expects training data with 100 features and at the same time, you have
100 data points. In this case, your code will not return any errors if features are in rows or columns
of an input DataFrame. Then, your code needs to check if each row of an input DataFrame contains
values of one feature across all data points or the feature values of one data point. The following figure
shows how switching features with data points, such as transposing a DataFrame that switches rows
with columns, could provide wrong input files but result in no error. In this figure, we have considered
four columns and rows for simplicity. Here, F and D are used as abbreviations for feature and data
point, respectively:

Flaws in data used for modeling 19

Figure 1.4 – Simplified example showcasing how the transpose of a DataFrame can

be used by mistake in a scikit-learn fit function that expects four features

Data flaws are not restricted to structure and format issues. Some data characteristics need to be
considered when you’re trying to build and improve a machine learning model.

Data quantity and quality

Despite machine learning being a more than half-century-old concept, the rise of excitement around
machine learning started in 2012. Although there were algorithmic advancements for image classification
between 2010 and 2015, it was the availability of 1.2 million high-resolution images in the ImageNet
LSVRC-2010 contest and the necessary computing power that played a crucial role in the development
of the first high-performance image classification models, such as AlexNet (Krizhevsky et al., 2012)
and VGG (Simonyan and Zisserman, 2014).

In addition to data quantity, the quality of the data also plays a very important role. In some applications,
such as clinical cancer settings, a high quantity of high-quality data is not accessible. Benefitting from
both quantity and quality could also become a tradeoff as we could have access to more data but with
lower quality. We can choose to stick to high-quality data or low-quality ones or try to benefit from
both high-quality and low-quality data if possible. Selecting the right approach is domain-specific
and depends on the data and algorithm used for modeling.

Data biases

Machine learning models can have different kinds of biases, depending on the data we feed them.
Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) is a famous
example of machine learning models with reported biases. COMPAS is designed to estimate the
likelihood of a defendant to re-offend based on their response to more than 100 survey questions. A
summary of the responses to the questions results in a risk score, which includes questions such as
whether one of the prisoner’s parents was ever in prison. Although the tool has been successful in many
examples, when it has been wrong in terms of prediction, the results for white and black offenders
were not the same. The developer company of COMPAS presented data that supports its algorithm’s
findings. You can find articles and blog posts to read more about its current status and whether it is
still used or still has biases or not.

Beyond Code Debugging20

These were some examples of issues in data and their consequences in the resulting machine learning
models. But there are other problems in models that do not originate from data.

Model and prediction-centric debugging

The predictions of a model in the training, testing, and production stages could help us detect issues
with the models and find opportunities to improve them. Here, we will briefly review some aspects
of model- and prediction-centric model debugging. You can read more details about these problems
and other considerations in achieving a reliable model, how to identify the source of the issues, and
how to resolve them in future chapters of this book.

Underfitting and overfitting

When we train a model, such as a supervised learning model, the goal is to have high performance not
just in training but also in testing. When a model has low performance even in a training set, we need
to deal with the issue of underfitting. We can develop more complicated models, such as a random
forest or deep learning model, instead of linear and logistic regression models. More complex models
might result in lower underfitting, but they might cause overfitting and result in lower generalizability
of the prediction to test or production data (Figure 1.5):

Figure 1.5 – Schematic illustration of underfitting and overfitting

Algorithm and hyperparameter selection determine the level of complexity and the chance of
underfitting or overfitting when training and testing a machine learning model. For example, by
choosing a model that can learn nonlinear patterns instead of linear models, your model could have
a higher chance of low underfitting as it could identify more complex patterns in training data. But
at the same time, you could increase the chance of overfitting as some of the complex patterns in the
training data might not be generalizable to the test data (Figure 1.5). There are approaches to assess

Summary 21

underfitting and overfitting that will help you develop a high-performance and generalizable model.
We will discuss these in future chapters.

Model hyperparameters

Some parameters can affect the performance of a machine learning model that usually do not
get optimized automatically in the training process. These are called hyperparameters. We will
go through examples of such hyperparameters, such as the number of trees in a random forest
model or the size of hidden layers in neural network models, in future chapters.

Inference in model testing and production

The eventual goal of machine learning modeling is to have a highly effective model in production. When
we test the model, we are assessing its generalizability, but we cannot be sure about its performance
on the data it has not seen. The data that’s used for training machine learning models could become
out of date. For example, the changes in the trends of the clothing market could make predictions of
a model for clothing recommendation unreliable.

There are different concepts in this topic, such as data variance, data drift, and model drift, all of which
we will cover in the next few chapters.

Data or hyperparameters for changing landscapes

When we train a machine learning model with specific training data and a set of hyperparameters, the
values of model parameters get changed so that they’re as close to an optimum point as possible for a
defined objective or loss function. The two other tools to achieve a better model are providing better
data for training and selecting better hyperparameters. Each algorithm has a capacity for performance
improvement. By playing with model hyperparameters alone, you cannot develop the best possible
model. In the same way, by increasing the quality and quantity of your data and keeping your model
hyperparameters the same, you could also not achieve the best performance possible. So, data and
hyperparameters come hand in hand. Before you read the next chapters, remember that by spending
more time and money on hyperparameter optimization alone, you cannot necessarily get a better
model. We will look at this in more detail later in this book.

Summary

In this chapter, we reviewed important concepts and approaches for debugging in software development
and their differences with machine learning model debugging. You learned that debugging in machine
learning modeling is beyond software debugging and how data and algorithms, in addition to code,
could cause flawed or low-performance models and unreliable predictions. You can benefit from these
understandings and the tools and techniques you will learn about throughout this book to develop
reliable machine learning models.

Beyond Code Debugging22

In the next chapter, you will learn about the different components of the machine learning life cycle.
You will also learn how modularizing machine learning modeling with these components helps us in
identifying opportunities for improving our models before and after training and testing.

Questions

1. Could your code have unintended indentation but not return any error message?

2. What is the difference between AttributeError and NameError in Python?

3. How does data dimensionality affect model performance?

4. What information do traceback messages in Python provide you about the errors in your code?

5. Could you explain two best practices for high-quality Python programming?

6. Could you explain why you might have features or data points with different levels of confidence?

7. Could you provide suggestions on how to reduce underfitting or overfitting when building a
model for a given dataset?

8. Could we have a model with significantly lower performance in production than testing?

9. Is it a good idea to focus on hyperparameter optimization when we can also improve the quality
or quantity of the training data?

References

• Widyasari, Ratnadira, et al. BugsInPy: A database of existing bugs in Python programs to

enable controlled testing and debugging studies. Proceedings of the 28th ACM joint meeting
on European software engineering conference and symposium on the foundations of software
engineering. 2020.

• The Art of Software Testing, Second Edition, by Glenford J. Myers, Corey Sandler, Tom Badgett,
Todd M. Thomas.

• Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems 25 (2012).

• Simonyan, Karen, and Andrew Zisserman. “Very deep convolutional networks for large-
scale image recognition.” arXiv preprint arXiv:1409.1556 (2014). https://arxiv.org/
abs/1409.1556.

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556

2
Machine Learning Life Cycle

Machine learning modeling in practice, either at the industrial level or in academic research, is beyond
writing a couple of lines of Python code to train and evaluate a model on a public dataset. Learning
to write a piece of Python program to train a machine learning model using Python and scikit-
learn or a deep learning model using PyTorch is a starting point for becoming a machine learning
developer and specialist. In this chapter, you will learn about the components of the machine learning
life cycle and how, while considering this life cycle when planning for machine learning modeling, it
helps you in designing a valuable and scalable model.

Here are the topics, including the main components of the machine learning life cycle, that will be
covered in this chapter:

• Before we start modeling

• Data collection

• Data selection

• Data exploration

• Data wrangling

• Modeling data preparation

• Model training and evaluation

• Testing the code and the model

• Model deployment and monitoring

By the end of this chapter, you will have learned how to design a machine learning life cycle for your
projects and why modularizing your projects into the components of a life cycle helps you in your
collaborative model developments. You will have also learned about some of the techniques and
their Python implementations for different components of a machine learning life cycle, such as data
wrangling and model training and evaluation.

Machine Learning Life Cycle24

Technical requirements

The following requirements should be considered for this chapter as they will help you better understand
the concepts, use them in your projects, and practice with the provided code:

• Python library requirements:

 � sklearn >= 1.2.2

 � numpy >= 1.22.4

 � pandas >= 1.4.4

 � matplotlib >= 3.5.3

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter02.

Before we start modeling

Before collecting data as the starting point of a machine learning life cycle, you need to know your
objectives. You need to know what problems you want to solve and then define smaller subproblems
that would be machine learning solvable. For example, in the case of a problem such as, “How could

we reduce the number of fragile products returned to a manufacturing facility?,” the subproblems could
be as follows:

• How could we detect the cracks before packaging?

• How could we design better packaging to protect the products and reduce transportation-caused cracks?

• Could we use better materials to reduce the risk of cracking?

• Could we apply small design changes to our product that do not change its functionality but

reduce the risk of cracking?

Once you have identified your subproblems, you can find out how you can use machine learning for
each and go through a machine learning life cycle for the defined subproblems. Each of the subproblems
may need specific data processing and machine learning modeling, and some of them could be easier
to solve compared to the rest.

Figure 2.1 shows the major steps in machine learning life cycles. Some of these names are not universally
defined. For example, data exploration sometimes gets included in data wrangling. But all these steps
are required, even if they are named differently in different resources:

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter02

Data collection 25

Figure 2.1 – Machine learning life cycle

When you rely on a dataset that’s already available in Python, through scikit-learn or PyTorch,
for example, or a dataset that is ready for modeling in public repositories, you don’t need to worry
about the early steps, such as data collection, selection, and wrangling. These steps have already been
taken care of for you. Or if you are just doing modeling for practice and don’t want to provide your
model in a production system, you don’t need to worry about model deployment and monitoring. But
understanding the meaning, importance, and benefits of all these steps helps you develop or design a
functional technology with continuous improvement to be provided for users. It also helps you better
understand your role as a machine learning developer or find your first job or a better job in this field.

Data collection

The first step in the machine learning life cycle is data collection. It could be about collecting data from
different public or commercial databases, storing user data back into your database or any data storage
system you have, or even using commercial entities that take care of data collection and annotation
for you. If you are relying on free resources, the main consideration for you could be the space the
data will get in your local or cloud-based storage system and the time you need to spend to collect
the data and analyze it in future steps. But for paid data, either provided in commercial resources or
generated by data collection, generation, and annotation companies, you need to assess the value of
the data for modeling before you decide to pay for it.

Machine Learning Life Cycle26

Data selection

Depending on the objectives of the corresponding projects, we need to select the required data for model
training and testing. For example, you might have access to information about cancer patients in one
or multiple hospitals, such as their age, gender, whether they smoke or not, their genetic information
if available, their MRI or CT scans if available, history of their medication, their response to cancer
drugs, whether they had surgery or not, their prescriptions, either handwritten or in PDF format, and
much more. When you want to build a machine learning model to predict the response of patients
to therapy using their CT scans, you need to select different data for each patient compared to when
you want to build a model using their information, such as age, gender, and smoking status. You also
need to select patients from whom you have the input and output data available if you are building a
supervised learning model.

Note

It is possible to combine data points with and without outputs in a semi-supervised learning model.

Selecting relevant data for your models is not an easy task as the information that separates data
as relevant and irrelevant from your model objective is not necessarily available in this binary way.
Imagine you need to extract data from a chemical, biological, or physical database, which could be
a collection of data from different smaller datasets, supplementary materials of papers, or even data
coming from within scientific articles. Or perhaps you want to extract information from the medical
records of patients or even from written answers to an economical or sociological survey. In all such
examples, separation of data for your model, or querying relevant data from relevant databases, is not
as simple as searching for one keyword. Each keyword could have synonyms, either in plain English
or in technical terms, could be written in different ways, or even sometimes the relevant information
could exist in different columns of a data file or a relational database. Proper data selection and query
systems provide you with a huge opportunity to improve your models.

You can benefit from a literature review and asking experts, if needed, to extend the keywords you are
using. You can benefit from known data selection methods for specific tasks you have or even license
tools or pay for services to help you in extracting more relevant data for your objectives. There are
also advanced natural language processing techniques to help you in your query system from text. We
will discuss these in Chapter 13, Advanced Deep Learning Techniques, and Chapter 14, Introduction to

Recent Advancements in Machine Learning.

Data exploration 27

Data exploration

In this stage, your data is selected and you can explore the quantity, quality, sparsity, and format of the
data. You can find the number of data points in each class if you have categorical output in supervised
learning, distribution of features, confidence in output variables, if available, and other characteristics
of the data you get out of the data selection stage. This process helps you identify issues with your data
that need to be fixed in data wrangling, which is the next step in the life cycle, or opportunities for
improving your data by revising your data selection process.

Data wrangling

Your data needs to go through structuring and enriching processes and be transformed and cleaned
up, if necessary. All these aspects are part of data wrangling.

Structuring

The raw data might come in different formats and sizes. You might have access to handwritten notes,
Excel sheets, or even images of tables that contain information that needs to be extracted and put in
the right format for further analysis and used for modeling. This process is not about transforming
all data into a table-like format. In the process of data structuring, you need to be careful regarding
information loss. For example, you could have features that are in a specific order, such as based on
time, date, or the sequence of information coming through a device.

Enriching

After structuring and formatting your data, you need to assess whether you have the right data to
build a machine learning model of that cycle. You might identify opportunities to add or generate
new data before continuing the wrangling process. For example, you might find out that in the data
for identifying cracks in images of products in a manufacturing pipeline, you only have 50 out of
10,000 images that are labeled as images of cracked products. You might be able to find other images
of cracked products or you could generate new images using a process called data augmentation.

Data augmentation

Data augmentation is a series of techniques for generating new data points, computationally,
using the original dataset we have at hand. For example, if you rotate your portrait, or change
the quality of an image by adding Gaussian noise to it, the new image will still show your
face. But it could help your model to be more generalizable. We will talk about different data
augmentation techniques in Chapter 5, Improving the Performance of Machine Learning Models.

Machine Learning Life Cycle28

Data transformation

The features and the output of datasets could be different types of variables, including the following:

• Quantitative or numerical:

 � Discrete: For example, the number of houses in a neighborhood

 � Continuous: For example, the age or weight of patients

• Qualitative or categorical:

 � Nominal (no order): For example, different colors of cars

 � Ordinal (qualitative variable with order): For example, grades of students, such as A, B,
C, or D

When we train a machine learning model, the model needs to use numerical values to calculate the
loss function in each iteration of the optimization process. Hence, we need to transform categorical
variables into numerical alternatives. There are multiple feature encoding techniques, three of which
are one-hot encoding, target encoding (Micci-Barreca, 2001), and label encoding. A one-hot, label,
and target encoding calculation for an example matrix of four columns, including age, gender, group,
and target, and seven rows, as seven example data points, is shown in Figure 2.2:

Figure 2.2 – Manual calculations for one-hot, target, and label encoding using

a simple example dataset with four features and seven data points

Data wrangling 29

This is an imaginary dataset for predicting the response of patients to a drug, with the target column
as the output. Variable categories are abbreviated as F: Female, M: Male, H1: Hospital 1, H2: Hospital
2, and H3: Hospital 3. In reality, many more variables need to be considered and more data points are
necessary to have a reliable model for drug response prediction and assess whether there are biases in
the response of patients to drugs between male and female groups or in different hospitals.

Each of these techniques has its benefits and caveats. For example, one-hot encoding increases the
number of features (that is, the dimensionality of the dataset) and increases the chance of overfitting.
Label encoding assigns integer values to each category, which do not necessarily have a meaning.
For example, considering male as 1 and female as 0 is arbitrary and doesn’t have any real meaning.
Target encoding is an alternative approach that considers the probabilities of each category concerning
the target. You can read the mathematical details of this process in Micci-Barreca, 2001. Python’s
implementation of these approaches is provided in the following code snippets.

Let’s define a synthetic DataFrame to use for feature encoding:

import pandas as pd

orig_df = pd.DataFrame({

 'age': [45, 43, 54, 56, 54, 52, 41],

 'gender': ['M', 'F', 'F', 'M', 'M', 'F', 'M'],

 'group': ['H1', 'H1', 'H2', 'H3', 'H2', 'H1', 'H3'],

 'target': [0, 0, 1, 0, 1, 1, 0]})

First, we will use label encoding to encode the categorical features in the defined DataFrame:

encoding using label encoding

from sklearn.preprocessing import LabelEncoder

initializing LabelEncoder

le = LabelEncoder()

encoding gender and group columns

label_encoded_df = orig_df.copy()

label_encoded_df['gender'] = le.fit_transform(

 label_encoded_df.gender)

label_encoded_df['group'] = le.fit_transform(

 label_encoded_df.group)

Then, we will try to perform one-hot encoding for categorical feature transformation:

encoding using one hot encoding

from sklearn.preprocessing import OneHotEncoder

initializing OneHotEncoder

ohe = OneHotEncoder(categories = 'auto')

encoding gender column

gender_ohe = ohe.fit_transform(

 orig_df['gender'].values.reshape(-1,1)).toarray()

Machine Learning Life Cycle30

gender_ohe_df = pd.DataFrame(gender_ohe)

encoding group column

group_ohe = ohe.fit_transform(

 orig_df['group'].values.reshape(-1,1)).toarray()

group_ohe_df = pd.DataFrame(group_ohe)

generating the new dataframe with one hot encoded features

onehot_encoded_df = pd.concat(

 [orig_df, gender_ohe_df, group_ohe_df], axis =1)

onehot_encoded_df = onehot_encoded_df.drop(

 ['gender', 'group'], axis=1)

onehot_encoded_df.columns = [

 'age','target','M', 'F','H1','H2', 'H3']

Now, we will implement target encoding in Python, after installing the category_encoders
library, as the third encoding approach, as follows:

encoding using target encoding

from category_encoders import TargetEncoder

initializing LabelEncoder

te = TargetEncoder()

encoding gender and group columns

target_encoded_df = orig_df.copy()

target_encoded_df['gender'] = te.fit_transform(

 orig_df['gender'], orig_df['target'])

target_encoded_df['group'] = te.fit_transform(

 orig_df['group'], orig_df['target'])

Ordinal variables can also be transformed using the OrdinalEncoder class as part of sklearn.
preprocessing. The difference between ordinal and nominal transformation is the meaning behind
the order of categories in ordinal variables. For example, if we are encoding grades of students, A, B,
C, and D could be transformed into 1, 2, 3, and 4, or 4, 3, 2, and 1, but transforming them into 1, 3, 4,
and 2 will not be acceptable as it is changing the meaning behind the order of the grades.

Output variables can also be categorical. You can use label encoding to transform a nominal output
into a numerical variable for classification models.

Cleaning

After structuring the data, it needs to be cleaned. Cleaning data helps increase the quality of your
data and makes it closer to being ready for modeling. An example of a cleaning process is filling in
missing values in your data. For example, if you want to use patients’ living habits to predict their
risk of getting diabetes using their responses to a survey, you might find out some of the participants
didn’t respond to the questions about their smoking habits.

Data wrangling 31

Feature imputation for filling in missing values

The features of a dataset we have at hand could contain missing values. The majority of machine
learning models and their corresponding Python implementations cannot handle missing values. In
these cases, we need to either remove data points with missing feature values or somehow fill in those
missing values. There are feature imputation techniques we can use to calculate the values of features
that are missing in our dataset. Examples of such methods are shown in Figure 2.3:

Figure 2.3 – Feature imputation techniques for calculating missing feature values

As you can see, either we can use other values of the same features and replace the missing values
with the mean or median of the available values, or we can use other features with low or no missing
values that have a high correlation with the feature with missing values. In the second case, we can
use the feature with the highest correlation, with the target feature with missing values, to build a
linear model. The linear model considers the correlated feature as input and the feature with missing
values as output and then uses the predictions of the linear model to calculate the missing values.

When we use a statistical summary of the values of the same feature, such as the mean or median, we
are reducing the variance of the feature values as those summary values will be used for all the missing
values of the same feature (Figure 2.3). On the other hand, when we use a linear model between the

Machine Learning Life Cycle32

feature with missing values and a highly correlated feature with low or no missing values, we are
assuming a linear relationship between them. Alternatively, we can build more complex models between
features for missing value calculation. All these approaches have their benefits and limitations, and
you need to choose the one that works best for your dataset, depending on the distribution of feature
values, the fraction of data points with missing features values, the correlation range between features,
the existence of features with low or no missing value, and other relevant factors.

We used a very simple case of four features and five data points in Figure 2.3 to showcase the discussed
feature imputation techniques. But in reality, we need to build models with more than four features.
We can use Python libraries such as scikit-learn for feature imputation by using the mean of
the same feature values, as follows. First, we will import the required libraries:

import numpy as np

from sklearn.impute import SimpleImputer

Then, we must define the two-dimensional input list, where each internal list shows the feature values
of a data point:

X = [[5, 1, 2, 8],

 [2, 3, np.nan, 4],

 [5, 4, 4, 6],

 [8, 5, np.nan, 7],

 [7, 8, 8, 3]]

Now, we are ready to fit a SimpleImputer function by specifying what needs to be considered as
a missing value and what strategy to be used for imputation:

strategy options: mean, median, most_frequent, constant

imp = SimpleImputer(missing_values=np.nan, strategy='mean')

imp.fit(X)

calculate missing values of the input

X_no_missing = imp.transform(X)

We can also use scikit-learn to make a linear regression model that calculates missing feature values:

import numpy as np

from sklearn.linear_model import LinearRegression as LR

defining input variables for feature 2 and 3

f2 = np.array([1, 4, 8]).reshape((-1, 1))

f3 = np.array([2, 4, 8])

initializing a linear regression model with sklearn LinearRegression

model = LR()

Data wrangling 33

fitting the linear regression model using f2 and f3 as input and
output variables, respectively

model.fit(f2, f3)

predicting missing values of feature 3

model.predict(np.array([3, 5]).reshape((-1, 1)))

Outlier removal

Numerical variables in our datasets could have values that are far away from the rest of the data.
They could be real values that are dissimilar to the rest of the data points or caused by errors in data
generation, such as in experimental measurement processes. You can visually see and detect them
using a boxplot (Figure 2.4). The circles of the plot are the outliers that get automatically detected by
the plotting functions in Python, such as matplotlib.pyplot.boxplot (Figure 2.4). Although
visualization is a good way of exploring our data and understanding the distribution of numerical
variables, we need to have a quantitative way of detecting outliers without the need to plot the values
of all the variables in our datasets.

The simplest way of detecting outliers is by using quantiles of the distribution of variable values. Data
points that are beyond the upper and lower bounds are considered outliers (Figure 2.4). Lower and
upper bounds can be calculated as Q1 - a.IQR and Q3 - a.IQR, where can be a real value between 1.5
and 3. The common value of a, which is also used by default in drawing boxplots, is 1.5, but having
higher values makes the process of outlier identification less stringent and lets fewer data points be
detected as outliers. For example, by changing the stringency of outlier detection from the default (that
is, a = 1.5) to a = 3, none of the data points in Figure 2.4 would be detected as outliers. This approach
for outlier identification is non-parametric, meaning it doesn’t have any assumptions regarding the
distribution of data points. Hence, it can be applied to non-normal distributions, such as the data
shown in Figure 2.4:

Figure 2.4 – Outliers in histograms and boxplots

In the preceding figure, the plots were generated using the values of features in the diabetes dataset of
the scikit-learn package, which was loaded via sklearn.datasets.load_diabetes().

Machine Learning Life Cycle34

Data scaling

The values of features, either originally numerical or after transformation, could have different ranges.
Many machine learning models perform better, or at least their optimization processes converge faster,
if their feature values get scaled and normalized properly. For example, if you have a feature ranging
from 0.001 to 0.05 and another one from 1,000 to 5,000, bringing both of them to a reasonable range
such as [0, 1] or [-1, 1] could help improve the speed of convergence or the performance of your model.
You need to make sure the scaling and normalizations you implement don’t cause ties in your feature
values, meaning data points don’t lose their difference based on features that went under transformation.

The objective of scaling is to change the range of values of a variable. In normalization, the shape of the
distribution of values could also change. You can use examples of these methods and the corresponding
classes available in scikit-learn in your projects to improve the scale and distribution of your
features (Table 2.1). The resulting scaled variables after using each of these classes have specific
characteristics. For example, the values of a variable after using the StandardScalar class of
scikit-learn will be centered around zero with a standard deviation of one.

Some of these techniques, such as robust scaling, which can be done using the RobustScaler class
of scikit-learn, are less likely to be affected by outliers (Table 2.1). In robust scaling, outliers,
based on the definition we provided, don’t affect how the median and IQR are calculated and, therefore,
do not affect the scaling process. Outliers themselves then be scaled using the calculated median and
IQR. Outliers can be either kept or removed before or after scaling, depending on the machine learning
method used and the task at hand. But the important point is to detect them and be aware of them
when you’re trying to prepare data for modeling and, if required, scale or remove them:

Python Class Mathematical Definition Value Limits

sklearn.preprocessing.

StandardScaler()
Z = (X - u) / s

u: Mean

s: Standard deviation

No limit

>99% of data between -3
and 3

sklearn.preprocessing.

MinMaxScaler()
X_scaled =
(X-X

min
)/(X

max
-X

min
)

[0,1]

sklearn.preprocessing.

MaxAbsScaler()
X_scaled = X/|X|

max
[-1,1]

sklearn.preprocessing.

RobustScaler()
Z

robust
 = (X - Q

2
) / IQR

Q
2
: Median

IQR: Interquartile range

No limit

Majority of data between -3
and 3

Table 2.1 – Example of Python classes for scaling and normalizing feature values

Modeling data preparation 35

Other forms of exploratory data analysis are conducted after data wrangling before machine learning
modeling is started. Domain expertise could also help in identifying patterns whose interpretations
need to be better understood regarding the subject domain for which the problem has been defined.
To increase the likelihood of success for machine learning modeling, you may need feature engineering
to build new features or learn new features through representation learning. These new features could
be as simple as body mass index, defined as the ratio of someone’s weight in kilograms to the square
of their height in meters. Or they could be new features and representations that are learned through
complicated processes or extra machine learning modeling. We will talk about this later in Chapter 14,
Introduction to Recent Advancements in Machine Learning.

Modeling data preparation

In this stage of a machine learning life cycle, we need to finalize the features and data points we want
to use for modeling, as well as our model evaluation and testing strategies.

Feature selection and extraction

The original features that were normalized and scaled in previous steps can be now processed further
to increase the likelihood of having a high-performance model. In general, features can either be
sub-selected, meaning some of the features get thrown out, using a feature selection method, or be
used to generate new features, which is traditionally called feature extraction.

Feature selection

The goal of feature selection is to reduce the number of features, or the dimensionality of your data, and
keep features that are information-rich. For example, if we have 20,000 features and 500 data points,
there is a high chance that most of the original 20,000 features are not informative when used to build
a supervised learning model. The following list explains some simple techniques for feature selection:

• Keeping features with a high variance or MAD across the data points

• Keeping features with the highest number of unique values across the data points

• Keeping representative features from groups of highly correlated features

These processes can be conducted using all the data points or just training data to avoid potential
information leakage between the training and test data.

Feature extraction

Combining original features linearly or nonlinearly could result in more informative features for
building a predictive model. This process is called feature extraction and could be conducted based
on domain knowledge or through different statistical or machine learning models. For example, you
can use principal component analysis or isometric mapping to reduce the dimensionality of your

Machine Learning Life Cycle36

data in a linear or non-linear way, respectively. Then, you can use these new features in your training
and testing process. The Python implementation of these two approaches is provided in the following
code snippets.

First, let’s import the required libraries and load the scikit-learn digit dataset:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

from sklearn.manifold import Isomap

from sklearn.datasets import load_digits

loading digit dataset from sklearn

X, _ = load_digits(return_X_y=True)

print('Number of features: {}'.format(X.shape[1]))

Now, let’s use isomap and pca, both of which are available in scikit-learn:

fitting isomap and build new dataframe of feature with 5 components

embedding = Isomap(n_components=5)

X_transformed_isomap = embedding.fit_transform(X)

print('Number of features: {}'.format(

 X_transformed_isomap.shape[1]))

fitting pca and build new dataframe of feature with 5 components

pca = PCA(n_components=5)

X_transformed_pca = pca.fit_transform(X)

print('Number of features: {}'.format(

 X_transformed_pca.shape[1]))

plotting ratio of variance explained by the first n, being between 1
and 5, components

plt.bar(x = np.arange(0, len(

 pca.explained_variance_ratio_)),

 height = np.cumsum(pca.explained_variance_ratio_))

plt.ylabel('Explained variance ratio')

plt.xlabel('Number of components')

plt.show()

The number of components you can select from each such method can be determined through
different techniques. For example, the explained variance ratio is a commonly used approach to select
the number of principal components. These are identified through principal component analysis and
collectively explain more than a specific percentage, such as 70% of the total variance in a dataset.

There are also more advanced techniques that are part of self-supervised pre-training and representation
learning for identifying new features. In these techniques, large amounts of data are used to calculate
new features, representations, or embeddings. For example, the English version of Wikipedia can be

Modeling data preparation 37

used to come up with better representations of English words rather than performing one-hot encoding
for each word. We will talk about self-supervised learning models in Chapter 14, Introduction to Recent

Advancements in Machine Learning.

Designing an evaluation and testing strategy

We need to specify our testing strategy before we train our model to identify its parameters or optimal
hyperparameters. Model testing could be done by another team on separate datasets if you are working
in a big organization. Alternatively, you can dedicate one or multiple datasets, separate from your
training set, or separate part of your data so that you can test it separately from the training set. You
also need to list the ways you want to assess the performance of your model in the testing stage. For
example, you may need to specify the performance plots or measures you want to use, such as the
receiver operating curve (ROC) and precision-recall (PR) curve, or other criteria, to select a new
classification model.

Once your testing strategy has been defined, you can use the rest of the data to specify training and
validation sets. Validation and training sets don’t need to be one series of fixed data points. We can use
k-fold cross-validation (CV) to split a dataset into k chunks and use one chunk at a time as a validation
set and the rest as the training set. Then, the average of the performance across all k chunks can be
used as a validation set to calculate the validation’s performance. Training performance is important
for finding optimal values for model parameters based on the objective of the model. You can also use
validation performance to identify optimal hyperparameter values. If you specify one validation set
or use k-fold CV, you can use the validation performance of different hyperparameter combinations
to identify the best one. Then, the best hyperparameter set can be used to train the model on all data,
excluding test data, so that you can come up with the final model to be tested in the testing stage.

There are some common practices for each application regarding the number of folds (that is, k) or
fraction of data points to be separated as validation and test sets. For small datasets, 60%, 30%, and 10%
are commonly used to specify the training, validation, and testing fraction of data points, respectively.
But both the number of data points and their diversity are important factors in deciding on the number
of data points within validation and test sets or specifying k in CV. You can also use available Python
classes that perform training and validation using k-fold CV with your choice of k, as follows:

from sklearn.model_selection import cross_val_score,KFold

from sklearn.neighbors import KNeighborsClassifier

from sklearn.datasets import load_breast_cancer

loading breast cancer dataset

X, y = load_breast_cancer(return_X_y=True)

defining the k-fold CV

k_CV = KFold(n_splits=5)

initializing a k nearest neighbor model

Machine Learning Life Cycle38

knn = KNeighborsClassifier()

outputting validation performances using average precision across
different folds of the designed CV

scores = cross_val_score(

 estimator = knn, X = X, y = y, cv = k_CV,

 scoring = 'average_precision')

print("Average cross validation score: {}".format(

 round(scores.mean(),4)))

This returns the following output:

Average Cross Validation score: 0.9496

Note

Preferably, the data you prepared in each of these stages shouldn’t just get dumped in the
cloud or a hard drive, or get added to a database after each of the previous steps in a life cycle.
It is beneficial to have a report attached to the data to track historical efforts in each step and
provide that information for other individuals or teams within your team or organization.
Proper reporting, such as on data wrangling, could provide feedback-seeking opportunities
to help you improve data provided for machine learning modeling.

Model training and evaluation

The process of training and validating or testing a model consists of the following three major steps
if you use scikit-learn or PyTorch and TensorFlow for neural network modeling:

1. Initializing the model: Initializing a model is about specifying the method, its hyperparameters,
and the random state to be used for modeling.

2. Training the model: In model training, the initialized model in Step 1 gets used on the training
data to train a machine learning model.

3. Inference, assignment, and performance assessment: In this step, the trained model can be
used for inference (for example, predicting outputs) in supervised learning or, for example,
assigning new data points to identified clusters in unsupervised learning. In supervised learning,
you can use these predictions for model performance assessment.

These steps are similar for both supervised learning and unsupervised learning models. In Steps 1 and
2, both types of models can be trained. Python’s implementation of these three steps using scikit-
learn is provided in the following code snippets for the random forest classifier and k-means clustering.

Model training and evaluation 39

First, let’s import the required libraries and load the scikit-learn breast cancer dataset:

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

from sklearn import metrics

loading breast cancer dataset

X, y = load_breast_cancer(return_X_y=True)

X_train, X_test, y_train, y_test = train_test_split(X, y,

 test_size=0.30, random_state=5)

Now, we can use a random forest to train and test a supervised learning model:

from sklearn.ensemble import RandomForestClassifier

initializing a random forest model

rf_model = RandomForestClassifier(n_estimators=10,

 max_features=10, max_depth=4)

training the random forest model using training set

rf_model.fit(X_train, y_train)

predicting values of test set using the trained random forest model

y_pred_rf = rf_model.predict(X_test)

assessing performance of the model on test setprint("Balanced
accuracy of the predictions:",

 metrics.balanced_accuracy_score(y_test, y_pred_rf))

This code prints out the following performance on the test set:

Balanced accuracy of the predictions: 0.9572

We can also build a k-means clustering model, as follows:

from sklearn import cluster

initializing a random forest model

kmeans_model = cluster.KMeans(n_clusters=2, n_init = 10)

training the kmeans clustering model using training set

kmeans_model.fit(X_train)

assigning new observations, that are test set datapoints here, to
the identified clusters

y_pred_kmeans = kmeans_model.predict(X_test)

Machine Learning Life Cycle40

If you don’t have enough experience in machine learning modeling, the methodologies and corresponding
Python classes provided in Table 2.2 could be a good starting point:

Type Method Python Class

Classification

Logistic regression sklearn.linear_model.

LogisticRegression()

K-nearest neighbors sklearn.neighbors.

KNeighborsClassifier()

Support vector
machine classifier

sklearn.svm.SVC()

Random forest classifier sklearn.ensemble.

RandomForestClassifier()

XGBoost classifier xgboost.XGBClassifier()

LightGBM classifier Lightgbm.LGBMClassifier()

Regression

Linear regression sklearn.linear_model.

LinearRegression()

Support vector
machine regressor

sklearn.svm.SVR()

Random forest regressor sklearn.ensemble.

RandomForestRegressor()

XGBoost regressor xgboost.XGBRegressor()

LightGBM regressor Lightgbm.LGBMRegressor()

Clustering

K-means clustering sklearn.cluster.KMeans()

Agglomerative clustering sklearn.cluster.

AgglomerativeClustering()

DBSCAN clustering sklearn.cluster.DBSCAN()

UMAP umap.UMAP()

Table 2.2 – Starting methods and their Python classes for your supervised

learning or clustering problems with tabular data

Note

UMAP is a dimensionality reduction approach that provides lower dimensional visualization,
such as a 2D plot of a series of data points. The resulting groups of data points in the lower
dimensional space can also be used as reliable clusters.

Testing the code and the model 41

Testing the code and the model

Although the performance of a machine learning model that is selected and brought to this stage of
the life cycle can be further tested using one or multiple datasets, there are a series of tests that need
to be done in this stage to make sure of this:

• Ensuring the process of deployment and bringing the model into production goes smoothly

• Ensuring the model will work as expected from a performance and computational cost perspective

• Ensuring that using the model in production will not have legal and financial implications

Here are some such tests that can be used in this stage:

• Unit tests: These are fast tests that make sure our code runs correctly. These tests are not specific
to machine learning modeling and not even to this stage. Throughout the life cycle, you need
to design unit tests to make sure your data processing and modeling code runs as expected.

• A/B testing: This type of testing helps you, your team, and your organization in deciding
whether to select a model or reject it. The idea of this test is to assess two possible scenarios,
such as two models, or two different designs of the frontend, and check which one is more
favorable. But you need to quantitatively assess the result by deciding what needs to be measured
and your selection criteria.

• Regression tests: This type of test assesses whether your code and model perform as expected
after a change in dependencies and environment variables. For example, if your version of
Python, scikit-learn, PyTorch, or TensorFlow changes, this test makes sure your code
runs and checks the effects of those changes on model performance and predictions.

• Security tests: Security testing is an important part of programming and modeling at an
industrial level. You need to make sure your code and dependencies are not vulnerable. However,
you need to design a test for advanced adversarial attacks. We will discuss this in Chapter 3,
Debugging toward Responsible AI.

• Responsible AI test: We need to design tests to assess the important factors of responsible
AI, such as transparency, privacy, and fairness. We will go through some important aspects of
responsible AI in the next chapter.

Although these kinds of tests need to be designed for this stage, similar ones could be integrated as
part of previous steps of the life cycle. For example, you can have security testing in all steps of the
life cycle, especially if you are using different tools or code bases. There could be other tests such as
checking the memory size and prediction runtime of a model or whether the format and structure of
data in production and what is expected in the deployed model are the same.

Machine Learning Life Cycle42

Model deployment and monitoring

If you are new to deployment, you might think of it as how to develop a frontend, mobile application,
or API for end users of your models. But that is not what we want to talk about in this book. There are
two important aspects of deployment that we want to cover here and in future chapters: the actions
needed to provide a model in production and integrating a model into a process that is supposed to
benefit the users.

When you deploy your model, your code should run properly in the designated environment and
have access to the required hardware, such as the GPU, and users’ data needs to be accessible in the
right format for your model to work. Some of the tests that we talked about in the testing stage of the
life cycle make sure that your model runs as expected in the production environment.

When we talk about providing a model in a production environment, it either gets used behind the
scenes for the benefit of the user, such as when Netflix and Amazon Prime suggest movies to you using
their machine learning models, or gets used directly by the user as a standalone process or as part
of a bigger system, such as when machine learning models get used in hospitals to help clinicians in
disease diagnosis. The considerations for these two different use cases are not the same. If you want to
deploy a model in hospitals to be used directly by clinicians, you need to consider all the difficulties
and planning needed to set up the proper production environment and all the software dependencies.
You also need to make sure their local system has the necessary hardware requirements. Alternatively,
you can provide your model through web applications. In this case, you need to ensure the security
and privacy of the data that gets uploaded into your database.

Model mentoring is a critical part of the machine learning life cycle when it comes to collecting the
necessary information and feedback. This feedback can then be used to improve or correct the data
that’s used for modeling or improve the model’s training and testing. Monitoring machine learning
models helps us ensure that the models in production provide predictions according to expectations.
Three of the issues that could cause unreliable predictions by a machine learning model are data
variance, data drift, and concept drift. Data drift and concept drift are considered two different types
of model drift. Model drift is about different kinds of changes in the data, either features or output
variables, that make predictions of a model irrelevant or ineffective on the new user data.

We will talk more about model deployment and monitoring and the engineering aspects of the machine
learning life cycles in future chapters of this book, such as Chapter 10, Versioning and Reproducible

Machine Learning Modeling.

Summary

In this chapter, we talked about different components of a machine learning life cycle, from data collection
and selection to model training and evaluation and, finally, model deployment and monitoring. We
also showed how modularizing the data processing, modeling, and deployment aspects of the machine
learning life cycle helps in identifying opportunities for improving machine learning models.

Questions 43

In the next chapter, you will learn about concepts beyond improving the performance of machine
learning models, such as impartial modeling and fairness, accountability, and transparency toward
achieving responsible AI systems.

Questions

1. Can you provide two examples of data cleaning processes?

2. Can you explain the difference between the one-hot and label encoding methods?

3. How can you use quantiles of a distribution to detect its outliers?

4. What comes to your mind regarding the differences between the considerations of deploying
a model locally for doctors versus deploying models behind chatbots in a banking system?

References

• Micci-Barreca, Daniele. A preprocessing scheme for high-cardinality categorical attributes in

classification and prediction problems. ACM SIGKDD Explorations Newsletter 3.1 (2001): 27-32.

• Basu, Anirban, Software Quality Assurance, Testing and Metrics, PRENTICE HALL, January
1, 2015.

3
Debugging toward

Responsible AI

Developing successful machine learning models is not solely about achieving high performance. We
all get excited when we improve the performance of our models. We feel responsible for developing
a high-performance model. But we are also responsible for building fair and secure models. These
goals, which are beyond performance improvement, are among the objectives of responsible machine

learning, or more broadly, responsible artificial intelligence. As part of responsible machine learning
modeling, we should consider transparency and accountability when training and making predictions
for our models and consider governance systems for our data and modeling processes.

In this chapter, we will cover the following topics:

• Impartial modeling fairness in machine learning

• Security and privacy in machine learning

• Transparency in machine learning modeling

• Accountable and open to inspection modeling

• Data and model governance

By the end of this chapter, you will understand the need and different concerns and challenges in
responsible machine learning modeling. You will have also learned about different techniques that
can help us in responsible modeling and ensuring privacy and security while developing machine
learning models.

Technical requirements

You need to understand the components of machine learning life cycles before reading this chapter
as this will help you better understand the concepts and be able to use them in your projects.

Debugging toward Responsible AI46

Impartial modeling fairness in machine learning

Machine learning models make mistakes. But when a mistake happens, they could have biases, such
as in the COMPAS example provided in Chapter 1, Beyond Code Debugging. We need to investigate
our models for the existence of such biases and revise them to eliminate these biases. Let’s go through
more examples to clarify the importance of investigating our data and models for the existence of
such biases.

Recruiting is a challenging process for every company as they must identify the most suitable candidates
to interview from hundreds of applicants who have submitted resumes and cover letters. In 2014,
Amazon started to develop a hiring tool using machine learning to screen job applicants and select
the best ones to pursue based on the information provided in their resumes. This was a text processing
model that used the text in resumes to identify the key information and select the top candidates. But
eventually, Amazon decided to abandon the system as the model was biased in selecting men over
women in the hiring process. The main reason behind this bias was the data, which contained mainly
resumes of men, that was fed into the machine learning model. The model learned how to identify
language and key information in men’s resumes, but it was not effective when it came to women’s
resumes. Hence, the model couldn’t rank candidates for a job application while remaining unbiased
in terms of gender.

Some machine learning models are designed to predict the likelihood of hospitalization. These models
can help reduce individual and population healthcare costs. However, such beneficial models can have
their own biases. For example, hospitalization requires access to and the use of health care services,
which is influenced by differences in socioeconomic conditions. This means that the datasets that are
available for building models to predict the likelihood of hospitalization would have more positive data
on people of high socioeconomic conditions compared to poor families. This inequality could cause
biases in decision-making by machine learning models for hospitalization, which results in limiting
the access of low socioeconomic people to hospitalization even further.

Another example of biases in machine learning applications in the healthcare setting has been in
genetic studies. These studies have been criticized for biases due to them not properly accounting for
diversity in populations, which could result in misdiagnosis in the studied diseases.

Two main sources of bias include data, which either originated from the data source or was introduced
in data processing before model training, and algorithmic bias. Let’s review both.

Data bias

You might have heard of the “garbage in, garbage out” concept in computer science. This concept is
about the fact that if nonsense data gets into a computer tool, such as a machine learning model, the
output will be nonsense. The data that gets fed to help train machine learning algorithms could have
all sorts of issues that eventually result in biases, as mentioned previously. For example, the data could
under-represent a group, similar to women in the hiring data fed into the Amazon model. Recall that
having this biased data shouldn’t stop us from building models, but we have to design our life cycle

Impartial modeling fairness in machine learning 47

components, such as data selection and wrangling or model training, while considering these biases
and testing our models for bias detection before bringing a model into production. The following are
some of the sources of data biases.

Data collection bias

Data that is collected could contain biases, such as gender bias, as in the Amazon applicant sorting
example, race bias, as in COMPAS, socioeconomic biases, as in hospitalization examples, or other
kinds of biases. As another example, imagine that a machine learning model for autonomous driving
is trained only on images of streets, cars, people, and traffic signs taken in the daytime. The model will
be biased and not reliable in the nighttime. This kind of bias can be removed after providing feedback
from data exploration or data wrangling steps to data collection and selection in the machine learning
life cycle. But if it is not revised before a model gets trained, tested, and deployed, then the feedback
needs to be immediately provided from model monitoring, when biases in predictions get detected,
and used in the life cycle to provide less biased data for modeling.

Sampling bias

Another source of data bias could be in the process of sampling data points or sampling the population
in the data collection stage of the life cycle. For example, when sampling students to fill in a survey, our
sampling process could be biased toward girls or boys, rich or poor student families, or high versus
low-grade students. These kinds of biases cannot be easily fixed by adding samples of other groups.
Sampling processes for filling surveys or designing clinical trials for new drug testing on patients are
among examples of data collection processes where adding data to them is not necessarily allowed.
Some of these data collection processes need a prior definition of the population that cannot be changed
in the middle of the process. In such cases, different kinds of possible biases need to be determined
and considered when designing the data sampling process.

Exclusion bias

In the process of data cleaning and wrangling, before you start training and testing a machine learning
model, features could be removed because of statistical reasoning, such as low information content or
variance across data points or not having a desired characteristic. These feature removals can sometimes
cause biases in our modeling. Although not excluded, some of the features could also cause biases in
the eventual machine learning model predictions.

Measurement or labeling bias

Measurement and annotation biases could be caused by issues or differences in terms of technologies,
experts, or non-expert data annotators, who generated or annotated the data that’s used for model
training, testing, and prediction in production. For example, if one camera type is used to collect the
data to train a machine learning model for image classification, predictions in production might have
lower reliability if images in production will be captured by another camera that generates images
with a different quality.

Debugging toward Responsible AI48

Algorithmic bias

There could be systematic errors associated with the algorithm and training process of a machine
learning model. For example, instead of the data being biased to a specific race or skin color in face
recognition tools, the algorithm might result in biased predictions regarding a group with a specific
skin color or race. Keeping the machine learning life cycle in mind, in the modular way it was
presented in Chapter 2, Machine Learning Life Cycle, will help you identify the issues in a stage such
as model monitoring. Then, the feedback can be provided for the relevant step, such as data collection
or data wrangling, to eliminate the identified biases. There are methodologies to detect biases and
resolve them that we will go through in future chapters. For example, we can use machine learning
explainability techniques to identify the contributions of features, or their combinations, that could
cause biases in predictions.

In addition to eliminating biases in our models, we also need to take into account security and privacy
concerns while going through a machine learning life cycle, which is our next topic.

Security and privacy in machine learning

Security is a concern for all businesses with physical or virtual products and services. 60 years ago,
each bank had to ensure the security of physical assets, such as cash and important documents, in its
branches. But after moving to the digital world, they had to build new security systems to make sure
that the data of their clients and their money and assets, which can now be transferred and changed
digitally, were secure. Machine learning products and technologies are no exception and need to
have proper security systems. Security concerns in machine learning settings could be related to the
security of the data, the models themselves, or model predictions. In this section, we will introduce
three important subjects regarding security and privacy in machine learning modeling: data privacy,
data poisoning, and adversarial attacks.

Data privacy

The privacy of the user data in production or the data you have stored and used for model training
and testing is an important aspect of security system design for machine learning technologies. The
data needs to be secure for many reasons:

• If the data includes confidential information of users, people, or organizations the data has
been received from

• If the data is licensed from a commercial data provider under legal contracts and should not
become accessible through your services or technologies with others

• If the data is generated for you and considered one of the assets of your team and organization

Security and privacy in machine learning 49

In all these cases, you need to make sure the data is secure. You can use security systems for your
databases and datasets. You can also design encryption processes on top of this if part of the data
needs to be transferred digitally between two servers, for example.

Data privacy attacks

Some attacks are designed to access private and confidential data in your datasets and databases, such
as patient information in hospitals, customer data in banking systems, or the personal information
of employees of governmental organizations. Three of these attacks are data reconstruction attacks,
identity recognition attacks, and individual tracing attacks, all of which can be done through internet

protocol (IP) tracking, for example.

Data poisoning

Change in the meaning and quality of data is another concern in data security. Data could be poisoned
and the resulting changes in prediction could have drastic consequences financially, legally, and
ethically for individuals, teams, and organizations. Imagine you designed a machine learning model
with your friends for stock market prediction and your model uses news feeds and stock prices in
previous days as input features. This data gets extracted from different resources such as Yahoo Finance
and different sources of news. If your database gets poisoned, by changing the values of some of
the features or changes in the collected data, such as the price history of a piece of stock, you might
go through serious financial losses as your model might suggest that you buy stocks that will lose
their value by more than 50% in a week rather than going up. This is an example that has financial
consequences. However, data poisoning could have life-threatening consequences if, for example, it
happens in healthcare or military systems.

Adversarial attacks

Sometimes, you can fool machine learning models by making very simple changes, such as adding small
amounts of noise or perturbation to feature values. This is the concept behind generating adversarial
examples and adversarial attacks.

For example, in a medical AI system, an image of a benign (that is, not harmful) mole could be
diagnosed as malignant (that is, harmful and dangerous in general terms) by adding adversarial
noise in the image that would not be recognizable by the human eye or simply rotating the image.
Synonymous text substitution such as changing “The patient has a history of back pain and chronic

alcohol abuse and more recently has been seen in several...” to “The patient has a history of lumbago and

chronic alcohol dependence and more recently has been seen in several...” could change the diagnosis
from benign to malignant (Finlayson et al., 2019). In other applications of image classification, such
as in self-driving cars, simple black and white stickers could sometimes fool models into classifying
images of stop signs or frames of videos of stop signs (Eykholt et al., 2018).

Debugging toward Responsible AI50

Adversarial examples could mislead your system in inference or training and validating whether they
get injected into your modeling data and poison it. There are three important aspects of knowing
your adversary that can help you in protecting your systems – that is, the attacker’s goal, knowledge,
and capability (Table 3.1):

Type of Knowledge

about the Adversary

Aspects of Different

Types of Knowledge

Definition

The attacker’s goal Security violation

The attacker tries to do the following:

• Evade detection

• Compromise system functionalities

• Get access to private information

Attack specificity Targeting specific or random data points
to generate wrong results

The attacker’s knowledge

Perfect-knowledge
white-box attacks

The attacker knows everything about
the system

Zero-knowledge
black-box attacks

The attacker doesn’t have any knowledge
of the system itself but collects
information through predictions of the
model in production

Limited-knowledge
gray-box attacks

The attacker has limited knowledge

The attacker’s capability

Attack influence

Causative: Attackers can poison train
data and manipulate test data

Exploratory: The attacker can
manipulate test data only

Data
manipulation constraints

Constraints on data manipulation to
eliminate data manipulation or make
it challenging

Table 3.1 – Types of knowledge about adversaries (Biggio et al., 2018)

Output integrity attacks

This type of attack usually doesn’t affect data processing, model training and testing, or even prediction
in production. It comes between the output of your model and what will be shown to the user. Based
on this definition, this attack is not specific to machine learning settings. But in our machine learning
systems, understanding this type of attack solely based on the outputs shown to the users might be
challenging. For example, if the prediction probabilities or labels of your model in classification settings

Security and privacy in machine learning 51

get changed once in a while, the results that are shown to the users will be wrong, but the user might
accept them if they believe in our systems. It is our responsibility to make sure such kinds of attacks
don’t challenge the integrity of the results of our model in production.

System manipulation

Your machine learning system could be manipulated by intentionally designed synthetic data, which
either does not exist or might not have existed in the model training and test sets. This manipulation
in the prediction level could not only have consequences such as time wasted for investigating wrong
predictions of the model, but it could also poison your models and change the performance of your
model in testing and production if the data enters your training, evaluation, or test data.

Secure and private machine learning techniques

Some techniques help us in developing secure and privacy-preserving processes and tools for data
storage, transfer, and use in machine learning modeling:

• Anonymization: This technique focuses on removing information that helps in identifying
individual data points, such as individual patients, within a healthcare dataset. This information
could be very specific, such as health card numbers, which could have different names in
different countries, or more general information, such as gender and age.

• Pseudonymization: Instead of removing information, as in anonymization, the personally
identifiable data could be replaced with synthetic substitutes as part of pseudonymization.

• Data and algorithm encryption: The encryption process transforms the information – be it
data or an algorithm – into a new (encrypted) form. The encrypted data can be decrypted (so
that it becomes human-readable or machine understandable) if the individual has access to the
encryption key (that is, a password-style key necessary for the decryption process). In this way,
getting access to the data and algorithm without the encryption key will be almost impossible
or very difficult. We will review encryption techniques such as Advanced Encryption Standard
(AES) in Chapter 16, Security and Privacy in Machine Learning.

• Homomorphic encryption: This is an encryption technique that eliminates the need for data
decryption at the time of prediction by a machine learning model. The model uses the encrypted
data for predictions, so the data can be kept encrypted through the whole data transfer and
usage process in a machine learning pipeline.

• Federated machine learning: Federated machine learning relies on the idea of decentralizing
learning, data analysis, and inference, thus allowing the user data to be kept within individual
devices or local databases.

Debugging toward Responsible AI52

• Differential privacy: Differential privacy tries to ensure that the removal or addition of individual
data points does not affect the outcome of modeling. It attempts to learn from patterns within
groups of data points. For example, by adding random noise from a normal distribution, it
tries to make features of individual data points obscure. The effect of noise in learning could
be eliminated based on the law of large numbers (https://www.britannica.com/
science/law-of-large-numbers) if a large number of data points is accessible.

These techniques are not applicable and useful in all settings. For example, federated machine learning
will not be helpful when you have an internal database and need to just be sure about its security.
Differential privacy for small data sources could also be unreliable.

Encryption and decryption processes

Encryption is the process to transform readable data into a human-unreadable form. On the
other hand, decryption is the process of transforming encrypted data back into its original
readable format. You can find more information on this topic at https://docs.oracle.
com/ and https://learn.microsoft.com/en-ca/.

In this section, we talked about privacy and security in machine learning modeling. Even if we build
a secure system with minimum privacy concerns, we need to consider other factors to build trust in
our models. Transparency is one of those factors. We will introduce this next.

Transparency in machine learning modeling

Transparency helps users of your model trust it by helping them understand how it works and how it
was built. It also helps you, your team, your collaborators, and your organization to collect feedback on
different components of your machine learning life cycle. It is worth understanding the transparency
requirements in different stages of a life cycle and the challenges in achieving them:

• Data collection: Transparency in data collection needs to answer two major questions:

 � What data are you collecting?

 � What do you want to use that data for?

For example, when users click on the agreement button for data usage when registering for a
mobile phone app, they are giving consent for the information they provide in the app to be
used. But the agreement needs to be clear on the part of the user data that is going to be used
and for what purposes.

• Data selection and exploration: In these stages of the life cycle, your process of data selection
and how you achieved your exploratory results need to be clear. This helps you collect feedback
from other collaborators and colleagues on your project.

https://www.britannica.com/science/law-of-large-numbers
https://www.britannica.com/science/law-of-large-numbers
https://docs.oracle.com/
https://docs.oracle.com/
https://learn.microsoft.com/en-ca/

Accountable and open to inspection modeling 53

• Data wrangling and modeling data preparation: Before this step, data is almost like the so-called
raw data, without any changes in feature definition or data being split into train and test sets. If
you design these components of the life cycle as a black box and it’s not transparent, you might
lose both trust and the opportunity for feedback from other experts with future access to your
data and results. For example, imagine you are supposed to not use the genetic information of
patients in hospitals, and you provide features called Feature1, Feature2, and so on after these
steps in the life cycle. Without explaining how those features were generated and using what
original features, people cannot be sure if you used patients’ genetic information or not. You
also need to be transparent about how you designed your testing strategy and separated your
training data from validation and testing.

• Model training and evaluation: Transparency in model training helps in understanding
the decision-making and pattern recognition aspects of models when learning from data.
Transparency in both training and evaluation builds trust for direct users, developers, and
auditors to better assess these processes. It is true that, for example, >99% of Amazon Prime
users never want to understand the machine learning modeling behind the scenes. However,
our models are sometimes used directly by users, such as doctors in hospitals for diagnosis
or employees of manufacturing facilities. Explainability, which we will discuss in Chapter 6,
Interpretability and Explainability in Machine Learning Modeling, is an important concept in
machine learning modeling that has a close relationship with transparency and helps users
better understand how the model works.

• Testing: Transparency in decision-making in the testing stage of the life cycle that helps in
better understanding the process of selecting or rejecting a model, or planning for improving
and debugging the related code, data processing, or model training and evaluation.

• Model deployment and monitoring: In addition to getting feedback from other developers
and experts in your organization and team, or public experts, you need to make the effect of
the model in production and what data is collected for monitoring clear for users and auditors
within or outside of your organization.

Despite the need for transparency, an increase in transparency might make your system vulnerable
from the perspectives of security and privacy. So, you cannot aim for maximum transparency without
keeping privacy and security in mind.

Fairness and bias removal, privacy, and transparency are all factors in responsible machine learning
modeling. But we need to remember that the accountability for achieving fair and secure models and
systems is on us.

Accountable and open to inspection modeling

The models we develop as employees of different businesses or incorporations, research institutes or
universities, or as freelancers could eventually get into production in different applications, such as
healthcare, finance, manufacturing, marketing, retail, transportation, media, and entertainment. Our

Debugging toward Responsible AI54

models could use patient data to predict whether they will get cancer or diabetes or whether they will
respond to therapy. Alternatively, they could use the financial history and other information on the
clients of a bank to assess their eligibility for loans. Another example is that our model can use the
history of people’s purchases to recommend new products to them.

As we discussed in this chapter, we have to take care of the privacy of data and models, provide a fair
and impartial model, and make our models as transparent as possible. But we have to remember that
we are accountable for managing all these concerns in developing reliable and responsible machine
learning models. I asked ChatGPT, the famous machine learning chatbot developed by OpenAI, “Are

you accountable for your responses?” It responded as follows:

“As a machine learning model, I do not have the ability to be held accountable for my responses in the

same way that a human would. I am designed to generate responses based on the input I receive, but I

do not have personal beliefs, intentions, and motivations. I am not capable of making decisions or choices

on my own. My responses are a reflection of the training data and algorithms that were used to create

me, and my creators are responsible for ensuring that I am functioning as intended.”

Note

There are quotes in the next few paragraphs of this chapter from legal sources that haven’t been
changed to make sure the legal content is not rephrased inappropriately. However, this is not
a legal book and no content of this book should be considered as legal advice.

But accountability is not optional. There have been legislations and regulations in the last few years
to keep the developers and owners of machine learning models and products accountable regarding
the concerns we talked about in this chapter. For example, the European Union’s (EU’s) General

Data Protection Regulation (GDPR) lists the rights of the individuals whose personal data is being
processed to give them control over their data. It does this through the following aspects:

• The need for an individual’s clear consent to process their data

• Easier access for the data subject to their data

• The rights to rectification, to erasure, and to be forgotten

• The right to object, including to the use of personal data, for profiling

• The right to data portability from one service provider to another

The EU also established a judicial remedy and compensation system (source: https://www.
consilium.europa.eu/en/policies/data-protection/).

The EU later developed the Artificial Intelligence (AI) Act as the first law on AI by a major regulator
(source: https://artificialintelligenceact.eu/).

https://www.consilium.europa.eu/en/policies/data-protection/
https://www.consilium.europa.eu/en/policies/data-protection/
https://artificialintelligenceact.eu/

Data and model governance 55

But these regulations are not limited to the EU. For example, the White House Office of Science and

Technology Policy released the following blueprint for an AI Bill of Rights to protect the American public
in the age of AI (source: https://www.whitehouse.gov/ostp/ai-bill-of-rights/).

Canada also later proposed the C-27 AI law, which “creates its baseline obligations through a set of
primary offenses, protecting citizens from errant AI and a universal record-keeping obligation on the use
of data" (source: https://www.lexology.com/library/detail.aspx?g=4b960447-
6a94-47d1-94e0-db35c72b4624).

The last topic we want to discuss in this chapter is governance in machine learning modeling. In the
next section, you will learn how governance can help you and your organizations in developing your
machine learning models.

Data and model governance

Governance in machine learning modeling is about the use of tools and procedures to help you, your
team, and your organization in developing reliable and responsible machine learning models. You
shouldn’t consider it as any sort of restriction on how to conduct your projects but as an opportunity
to reduce the risk of undetected mistakes. The governance in machine learning is supposed to be
designed to help you and your organization achieve your objectives in helping humanity and business
and avoid processes and models that could have ethical, legal, or financial consequences. Here are
some examples of ways to establish governance systems in a team and organization:

• Define guidelines and protocols: As we want to detect issues in our models and improve our
models in terms of both performance and responsibility, we need to design guidelines and
protocols for simplification and consistency. We need to define criteria and methods for what
are considered issues with models, such as from a security perspective, and what is considered
an opportunity for model improvement that’s worth spending time and effort on. We need
to remember that machine learning modeling, considering the topics we talked about in this
chapter and the different steps of the life cycle, is not an easy task and you shouldn’t expect that
every developer you work with will know all of them like a specialist.

• Training and mentorship: You need to look for mentorship and training programs and read
books and articles, and then provide these opportunities for your team if you are a manager.
But you also need to bring what you or your team learn into practice. Each concept in machine
learning modeling has its challenges. For example, if you decide to use defense mechanisms
against adversarial attacks, it is not as simple as loading a Python library and hoping nothing
happens for eternity. So, practice what you learn and provide opportunities for your team to
bring what they learn into practice.

• Define responsibilities and accountabilities: It is not a one-person job to take care of all aspects
of the machine learning life cycle to build a technology and take care of all the responsibility
topics we talked about in this chapter. That being said, the responsibilities and accountabilities of

https://www.whitehouse.gov/ostp/ai-bill-of-rights/
https://www.lexology.com/library/detail.aspx?g=4b960447-6a94-47d1-94e0-db35c72b4624
https://www.lexology.com/library/detail.aspx?g=4b960447-6a94-47d1-94e0-db35c72b4624

Debugging toward Responsible AI56

individuals within teams and organizations need to be clearly defined to reduce the redundancy
of effort while making sure nothing gets missed.

• Use feedback collection systems: We need to design simple-to-use and preferably automated
systems to collect feedback and act upon it throughout the machine learning life cycle. This
feedback will help developers that are responsible for each step of a life cycle and eventually
result in a better model being brought up in production.

• Use a quality control process: We need quantitative and predefined methods and protocols
to assess the quality of machine learning models after training or in production or to assess
processed data coming out of each stage of a machine learning life cycle. Having the quality
control processes defined and documented help us in attaining a scalable system for a faster
and more consistent quality assessment. However, these processes can be revised and adapted
according to new criteria and the risks associated with data and the corresponding machine
learning models.

Now that we understand the importance of responsible machine learning modeling and reviewed
important factors and techniques to achieve it, we are ready to move on to the next part of this book
and get into more technical details concerning developing reliable, high-performance, and fair machine
learning models and technologies.

Summary

In this chapter, we talked about the different elements of responsible AI, such as data privacy, security
in machine learning systems, the different types of attacks and designing defense systems against
them, transparency and accountability in the machine learning era, and how to use data and model
governance to develop reliable and responsible models in practice.

This chapter and the two previous chapters, which make up Part 1 of this book, introduced important
concepts in machine learning modeling and model debugging. Part 2 includes topics on how to
improve machine learning models.

In the next chapter, you will learn about methods for detecting issues in machine learning models
and opportunities for improving the performance and generalizability of such models. We will cover
statistical, mathematical, and visualization techniques for model debugging with real-life examples to
help you quickly start implementing these methods so that you can investigate and improve your models.

Questions

1. Can you explain two types of data biases?

2. What is the difference between white-box and black-box adversarial attacks?

3. Can you explain how data and algorithm encryption can help in securing the privacy and
security of your systems?

4. Can you explain the difference between differential privacy and federated machine learning?

References 57

5. How does transparency help you in increasing the number of users of your machine
learning models?

References

• Zou, James, and Londa Schiebinger. AI can be sexist and racist – it’s time to make it fair.
(2018): 324-326.

• Nushi, Besmira, Ece Kamar, and Eric Horvitz. Towards accountable ai: Hybrid human-machine

analyses for characterizing system failure. Proceedings of the AAAI Conference on Human
Computation and Crowdsourcing. Vol. 6. 2018.

• Busuioc, Madalina. Accountable artificial intelligence: Holding algorithms to account. Public
Administration Review 81.5 (2021): 825-836.

• Unceta, Irene, Jordi Nin, and Oriol Pujol. Risk mitigation in algorithmic accountability: The role

of machine learning copies. Plos one 15.11 (2020): e0241286.

• Leonelli, Sabina. Data governance is key to interpretation: Reconceptualizing data in data science.
Harvard Data Science Review 1.1 (2019): 10-1162.

• Sridhar, Vinay, et al. Model governance: Reducing the anarchy of production {ML}. 2018 USENIX
Annual Technical Conference (USENIX ATC 18). 2018.

• Stilgoe, Jack. Machine learning, social learning, and the governance of self-driving cars. Social
studies of science 48.1 (2018): 25-56.

• Reddy, Sandeep, et al. A governance model for the application of AI in health care. Journal of
the American Medical Informatics Association 27.3 (2020): 491-497.

• Gervasi, Stephanie S., et al. The Potential For Bias In Machine Learning And Opportunities For

Health Insurers To Address It: Article examines the potential for bias in machine learning and

opportunities for health insurers to address it. Health Affairs 41.2 (2022): 212-218.

• Gianfrancesco, M. A., Tamang, S., Yazdany, J., & Schmajuk, G. (2018). Potential Biases in

Machine Learning Algorithms Using Electronic Health Record Data. JAMA internal medicine,
178(11), 1544.

• Finlayson, Samuel G., et al. Adversarial attacks on medical machine learning. Science 363.6433
(2019): 1287-1289.

• Eykholt, Kevin, et al. Robust physical-world attacks on deep learning visual classification.
Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

• Biggio, Battista, and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine

learning. Pattern Recognition 84 (2018): 317-331.

• Kaissis, Georgios A., et al. Secure, privacy-preserving and federated machine learning in medical

imaging. Nature Machine Intelligence 2.6 (2020): 305-311.

Debugging toward Responsible AI58

• Acar, Abbas, et al. A survey on homomorphic encryption schemes: Theory and implementation.
ACM Computing Surveys (Csur) 51.4 (2018): 1-35.

• Dwork, Cynthia. Differential privacy: A survey of results. International conference on theory
and applications of models of computation. Springer, Berlin, Heidelberg, 2008.

• Abadi, Martin, et al. Deep learning with differential privacy. Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security. 2016.

• Yang, Qiang, et al. Federated machine learning: Concept and applications. ACM Transactions
on Intelligent Systems and Technology (TIST) 10.2 (2019): 1-19.

Part 2:

Improving Machine

Learning Models

This part will help us transition into the critical aspects of refining and understanding machine
learning models. We will start with a deep dive into detecting performance and efficiency bottlenecks
in models, followed by actionable strategies to enhance their performance. The narrative then shifts
to the subject of interpretability and explainability, elucidating the importance of not just building
models that work, but ones we can understand and trust. We will conclude this part by presenting the
methods to reduce bias, emphasizing the imperative of fairness in machine learning.

This part has the following chapters:

• Chapter 4, Detecting Performance and Efficiency Issues in Machine Learning Models

• Chapter 5, Improving the Performance of Machine Learning Models

• Chapter 6, Interpretability and Explainability in Machine Learning Modeling

• Chapter 7, Decreasing Bias and Achieving Fairness

4
Detecting Performance and

Efficiency Issues in Machine

Learning Models

One of the main objectives we must keep in mind is how to build a high-performance machine
learning model with minimal errors on new data we want to use the model for. In this chapter, you
will learn how to properly assess the performance of your models and identify opportunities for
decreasing their errors.

This chapter includes many figures and code examples to help you better understand these concepts
and start benefiting from them in your projects.

We will cover the following topics:

• Performance and error assessment measures

• Visualization

• Bias and variance diagnosis

• Model validation strategy

• Error analysis

• Beyond performance

By the end of this chapter, you will have learned about how to assess the performance of machine
learning models and the benefits, limitations, and wrong usage of visualization in different machine
learning problems. You will have also learned about bias and variance diagnosis and error analysis to
help you identify opportunities so that you can improve your models.

Detecting Performance and Efficiency Issues in Machine Learning Models62

Technical requirements

The following requirements should be considered for this chapter as they will help you better understand
the concepts, use them in your projects, and practice with the provided code:

• Python library requirements:

 � sklearn >= 1.2.2

 � numpy >= 1.22.4

 � pandas >= 1.4.4

 � matplotlib >= 3.5.3

 � collections >= 3.8.16

 � xgboost >= 1.7.5

• You should have basic knowledge of model validation and testing, as well as classification,
regression, and clustering in machine learning

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter04.

Performance and error assessment measures

The metrics we use to assess the performance and calculate errors in our models, and how we interpret
their values, determine the models we select, the decisions we make to improve a component of our
machine learning life cycle, and determine if we have a reliable model to bring into production.
Although many performance metrics can be used in one line of Python code to calculate errors and
performance, we shouldn’t blindly use them or try to improve our performance reports by implementing
many of them together without knowing their limitations and how to correctly interpret them. In
this section, we will talk about metrics for assessing the performance of classification, regression, and
clustering models.

Classification

Each classification model, either binary or multi-class, returns the probability of predictions, a number
between 0 and 1, which then gets transformed into class labels. There are two major categories
of performance metrics: label-based performance metrics, which rely on predicted labels, and
probability-based performance metrics, which use the probability of predictions for performance
or error calculation.

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter04
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter04

Performance and error assessment measures 63

Label-based performance metrics

The predicted probabilities of classification models get transformed into class labels by the Python
classes we use for modeling. We can then use a confusion matrix, as shown in Figure 4.1, to identify
four groups of data points, including true positives (TPs), false positives (FPs), false negatives (FNs),
and true negatives (TNs) for binary classification problems:

Figure 4.1 – Confusion matrix for binary classification

We can use sklearn.metrics.confusion_matrix() to extract these four groups of
data points and then calculate performance metrics such as specificity according to the following
mathematical definition:

Here is the Python implementation of extracting specificity, precision, and recall from a confusion matrix:

from sklearn.metrics import confusion_matrix as cm

def performance_from_cm(y_true, y_pred):

 # Calculating values of confusion matrix

 cm_values = cm(y_true, y_pred)

 # Extracting tn, fp, fn, and tp from calculated confusion matrix

 tn, fp, fn, tp = cm_values.ravel()

 # Calculating specificity

 specificity = tn/(tn+fp)

 # Calculating precision

 precision = tp/(tp+fp)

 # Calculating recall

 recall = tp/(tp+fn)

 return specificity, precision, recall

=
+

Detecting Performance and Efficiency Issues in Machine Learning Models64

We can calculate other performance metrics, such as precision and recall, using TP, TN, FP, and FN,
which have been extracted from the confusion matrix, or directly use functions available in Python
(Table 4.1). In addition to the Python functions to calculate some of the common performance
metrics for classification models, you can also find the mathematical definitions of the metrics and
their interpretations in Table 4.1. This extra information will help you understand how to interpret
each of these metrics and when to use them:

Metric Python

Function

Formula Description

Accuracy metrics.

accuracy_

score()

 TP + TN _ n

 n : Number of data points

Number
of correct

predictions over
the total number

of data points

Range: [0, 1]

Higher
values mean

higher performance

Precision
or positive
predictive

value (PPV)

metrics.

precision_

score()

 TP _
TP + FP

 Fraction of
predicted

positives that
are positive

Range: [0, 1]

Higher
values mean

higher performance

Recall, sensitivity,
or true positive

rate (TPR)

metrics.

recall_

score()

 TP _
TP + FN

 Fraction of
positives that
are predicted

as positive

Range: [0, 1]

Higher
values mean

higher performance

Performance and error assessment measures 65

F1 score and
its derivatives

metrics.

f1_

score()

 Precision * Recall ____________
 Precision + Recall _ 2

 The harmonic
mean of precision

and recall

Range: [0, 1]

Higher
values mean

higher performance

Balanced accuracy metrics.

balanced_

accuracy_

score()

Recall + Specificity

 _____________ 2 Average of
the fraction of
positives and

negatives that are
truly predicted

Range: [0, 1]

Higher
values mean

higher performance

Matthews
correlation

coefficient (MCC)

sklearn.

metrics.

matthews_

corrcoef()

 TP * TN − FP * FN ______________________________
 √

 (TP + FP) (FP + TN) (TN + FN) (FN + TP)
 The numerator

aims to maximize
diagonal and

minimize
off-diagonal
elements of a

confusion matrix

Range: [− 1, 1]

Higher
values mean

higher performance

Table 4.1 – Common metrics for assessing the performance of classification models

One aspect of selecting performance metrics for model selection and reporting is their relevance to
the target problem. For example, if you are building a model for cancer detection, you could aim to
maximize recall by maximizing the identification of all positive class members (that is, cancer patients)
while controlling them for precision. This strategy helps you make sure patients with cancer will not
remain undiagnosed with a deadly disease, although it would be ideal to have a model with high
precision and recall at the same time.

Detecting Performance and Efficiency Issues in Machine Learning Models66

Selecting performance metrics depends on whether we care about the true prediction of all classes with
the same level of importance or whether there are one or more classes that would be more important.
There are algorithmic ways to enforce the model to care more about one or multiple classes. Also, in
reporting performance and model selection, we need to consider this imbalance between the classes
and not solely rely on performance metrics that summarize the prediction performance of all classes
with equal weights.

We also have to note that we define positive and negative classes in the case of binary classification.
The data we generate or collect usually does not have such labeling. For example, your dataset could
have “fraud” versus “not fraud,” “cancer” versus “healthy,” or digit names in strings such as “one,” “two,”
and “three.” So, we need to select the performance metrics according to our definition of classes if
there are one or more we care more or less about.

The other aspect of selecting performance metrics is their reliability, and if they have biases that depend
on the data, we use them for training, validation, or testing. For example, accuracy, one of the widely
used performance metrics for classification models, should not be used on an imbalanced dataset.
Accuracy is defined as the total number of correct predictions over the total number of data points
(Table 4.1). Hence, if a model predicts all data points as the majority class, it returns a high value,
even if it might not be a good model. Figure 4.2 shows the values of different performance metrics,
including accuracy, for a model that predicts all data points as negatives. The accuracy of this bad
model is 0.8 if 80% of the data points in the dataset are negative (Figure 4.2). However, alternative
performance metrics such as balanced accuracy or Matthews correlation coefficient (MCC) remain
unchanged for such a bad model across datasets with different positive data point fractions. Data
balance is only one of the parameters, although an important one, in selecting performance metrics
for classification models.

Some of the performance metrics have derivatives that better behave in situations such as imbalanced
data classification. For example, F1 is a widely used metric that is not the best choice when dealing
with imbalanced data classification (Figure 4.2):

Performance and error assessment measures 67

Figure 4.2 – Values of common classification metrics across different real positive

fractions for a model that returns all predictions as negatives

However, it has a general form of F β where a parameter, β , is used as a weight for increasing the effect
of precision according to its mathematical definition. You can use the sklearn.metrics.fbeta_
score() function to calculate this metric using true and predicted labels of a list of data points:

Probability-based performance metrics

The probability outputs of classification models can be directly used to assess the performance of
models, without the need for transformation to predict labels. An example of such a performance
measure is logistic loss, known as log-loss or cross-entropy loss, which calculates the total loss over
a dataset using probabilities of prediction for each data point and its true label, as follows. Log-loss
is also a loss function that’s used to train classification models:

 L log (y, p) = − (ylog (p) + (1 − y) log (1 − p))

There are other types of probability-based performance assessment methods such as the receiver

operating characteristic (ROC) curve and the precision recall (PR) curve that consider different
cutoffs for transforming probabilities into labels to predict the true positive rate, false positive rate,
precision, and recall. Then, these values, across different cutoffs, get used to generate ROC and PR
curves (Figure 4.3):

=
(1 + 2) +

2 × +

Detecting Performance and Efficiency Issues in Machine Learning Models68

Figure 4.3 – Schematic illustration of ROC and PR curves

It is common to use the area under these curves, referred to as ROC-AUC and PR-AUC, to assess the
performance of classification models. ROC-AUC and PR-AUC range from 0 to 1, with 1 being the
performance of a perfect model.

In Figure 4.2, you saw how some performance metrics return high-performance values for a bad model
that predicts everything as negative due to data imbalance. We can see the extension of this analysis in
Figure 4.4 for different fractions of positive data points among true labels and predicted labels. There is
no training here and the data points are randomly generated to result in the specified fraction of positive
data points in each panel of Figure 4.4. The randomly generated probabilities are then transformed
into labels so that they can be compared with true labels using different performance metrics.

Figures 4.4 and 4.5 show different biases in the performance metrics of classification models. For
example, the median precision of random predictions is equal to the fraction of true positive data
points, while the median recall of random predictions is equal to the fraction of positive predicted
labels. You can also check the behavior of other performance metrics in Figures 4.4 and 4.5 for different
fractions of true or predicted positives:

Performance and error assessment measures 69

Figure 4.4 – Distribution of performance of 1,000 random binary predictions on 1,000 data points (part 1)

Detecting Performance and Efficiency Issues in Machine Learning Models70

Figure 4.5 – Distribution of performance of 1,000 random binary predictions on 1,000 data points (part 2)

A combination of ROC-AUC and PR-AUC, or the use of MCC or balanced accuracy, are common
approaches to have a low bias in performance assessment for classification models. But if you know your
objectives, such as if you care more about precision than recall, then you can choose the performance
metrics that would add the necessary information for decision-making. But avoid reporting 10
performance metrics for your models just for the sake of counting how many of them are better in
one model versus another.

Regression

You can assess the performance of your regression models using metrics that evaluate either the
difference between the continuous predictions of your models and true values, such as Root Mean

Squared Error (RMSE), or the agreement between the predictions and true values, such as the coefficient
of determination R 2 (Table 4.2). Each of the metrics for regression model performance assessment
has its assumptions, interpretation, and limitations. For example, R 2 doesn’t take into account data
dimensionality (that is, the number of features, inputs, or independent variables). So, if you have a
regression model with multiple features, you should use adjusted R 2 instead of R 2 . By adding new
features, R 2 could increase but might not necessarily correspond to a better model. However, adjusted

Performance and error assessment measures 71

R 2 increases when the new inputs improve model performance more than expectation by chance.
This is an important consideration, especially if you want to compare models with different numbers
of inputs for the sample problem:

Metric Python Function Formula Description

Root Mean

Squared

Error (RMSE)

Mean

Squared

Error (MSE)

sklearn.

metrics.

mean_squared_

error()

 MSE = 1 _ n ∑
i=1

n

 (y
i
 − ̂ y

i
) 2

 RMSE = √
_

 MSE

 n : Number of data points

 y
i
 : The true value of the

data point, i

 ̂ y
i
 : The predicted value of

the data point, i

Range: [0, ∞)

Lower values mean
higher performance

Mean

Absolute

Error (MAE)

sklearn.

metrics.mean_

absolute_

error()

 MAE = 1 _ n ∑
i=1

n

 | y
i
 − ̂ y

i
 | Range: [0, ∞)

Lower values mean
higher performance

Coefficient of
determination

(R 2)

sklearn.

metrics.r2_

score()

 R 2 = 1 −
 ∑

i=1
n (y

i
 − ̂ y

i
) 2
 _

 ∑
i=1
n (y

i
 − y _) 2

 ;

 y _ = 1 _ n ∑
i=1

n

 y
i

 y _ : Mean of the true values

 n : Number of data points

 y
i
 : The true value of the

data point, i

 ̂ y
i
 : The predicted value of

the data point, i

Range: [0, 1]

Higher values mean
higher performance

The proportion of the
dependent variable that
can be explained by the
independent variables

Adjusted R 2 Use sklearn.
metrics.

r2_score()
to calculate R 2 ,

then calculate the
adjusted version

using its formula.

 Adj R 2 = 1 − (1 − R 2) (n − 1) ___________
n − m − 1

 n : Number of data points

 m : Number of features

Adjusts to the number
of features

Could be greater than 1
or less than 0 if m is close

to n

Higher values mean
higher performance

Table 4.2 – Common metrics for assessing the performance of regression models

Detecting Performance and Efficiency Issues in Machine Learning Models72

Correlation coefficients are also used to report on the performance of regression models. Correlation
coefficients use the predicted and true continuous values, or a transformation of those, and report
values commonly between -1 and 1, with 1 corresponding to an ideal prediction with 100% agreement
and -1 with full disagreement (Table 4.3). Correlation coefficients also have their own assumptions
and cannot be selected randomly for reporting on the performance of regression models. For example,
Pearson correlation is a parametric test that assumes a linear relationship between predicted and
true continuous values, which does not always hold. Alternatively, the Spearman and Kendall rank
correlations are non-parametric without such assumptions behind the relationship of variables or the
distribution of each variable in comparison. Both the Spearman and Kendall rank correlations rely
on the rank of predicted and true outputs instead of their actual values:

Correlation Coefficient Python Function Formula Description

Pearson correlation
coefficient or

Pearson’s r

scipy.stats.

pearsonr() r =
 ∑

i=1
n (̂ y

i
 − ̂ y _) (y

i
 − y _)

 √

 ∑
i=1
n (̂ y

i
 − ̂ y _) 2 (y

i
 − y _) 2

 n : Number of
data points

 y
i
 : The true value of the

data point, i

 y _ : Mean of the
true values

 ̂ y
i
 : The predicted value
of the data point, i

 ̂ y _ : Mean of the
predicted values

Parametric

Looks for a linear
relationship

between predictions
and true values

Range:

 [− 1, 1]

Spearman’s rank
correlation coefficient

or Spearman
correlation coefficient

scipy.stats.

spearmanr()
 ρ = 1 −

6 ∑
i=1
n d

i
 2
 _

n (n 2 − 1)

 n : Number of
data points

 d
i
 : The difference

between the rank
of the data point, i ,

among true values and
predicted values

Non-parametric

Looks for a
monotonic
relationship

between predictions
and true values

Range:

 [− 1, 1]

Performance and error assessment measures 73

Kendall rank
correlation coefficient

or Kendall’s
τ coefficient

scipy.stats.

kendalltau()

τ = C − D __________________
 √

 (C + D + T) (C + D + c)

 C : Number of
concordant pairs

(for example, y
i
 > y

j

and ̂ y
i
 > ̂ y

j
 ; or y

i
 < y

j

and ̂ y
i
 < ̂ y

j
)

 D : Number of
discordant pairs (for

example, y
i
 > y

j

and ̂ y
i
 < ̂ y

j
 ; or y

i
 < y

j

and ̂ y
i
 > ̂ y

j
)

 T : Number of ties only
in predicted values

 U : Number of ties only
in true values

Non-parametric

Looks for a
monotonic
relationship

between predictions
and true values

Range:

 [− 1, 1]

Table 4.3 – Common correlation coefficients used for assessing the performance of regression models

Clustering

Clustering is an unsupervised learning approach to identify groupings of data points using their feature
values. However, to assess the performance of a clustering model, we need to have a dataset or example
data points with available true labels. We don’t use these labels when training the clustering model,
as in supervised learning; instead, we use them to assess how well similar data points are grouped
and separated from dissimilar data points. You can find some of the common metrics for assessing
the performance of clustering models in Table 4.4. These metrics do not inform you about the quality
of the clustering. For example, homogeneity tells you if the data points that are clustered together
are similar to each other while completeness informs you if similar data points in your dataset are
clustered together. There are also metrics such as V-measure and adjusted mutual information that
try to assess both qualities at the same time:

Detecting Performance and Efficiency Issues in Machine Learning Models74

Metric Python Function Formula Description

Homogeneity sklearn.

metrics.

homogeneity_

score()

Formula (1) provided in Rosenberg et
al., EMNLP-CoNLL 2007

Measures how many
data points within

the same clusters are
similar to each other

Range: [0, 1]

Higher values mean
higher performance

Completeness sklearn.

metrics.

completeness_

score()

Formula (2) provided in Rosenberg et
al., EMNLP-CoNLL 2007

Measures how similar
the data points

that are clustered
together are

Range: [0, 1]

Higher values mean
higher performance

V-measure or
normalized

mutual
information score

sklearn.

metrics.v_

measure_

score()

 v =
 (1 + β) × h × c

 (β × h + c)

 h : Homogeneity

 c : Completeness

 β : Ratio of weight attributed to
homogeneity versus completeness

Measures both
homogeneity and

completeness at the
same time

Range: [0, 1]

Higher values mean
higher performance

Mutual
information

sklearn.

metrics.

mutual_info_

score()

 MI (U, V) = ∑
i=1

 |U|

∑
j=1

 |V|

 | U

i
 ∩ V

j
 |
 _

N
 log

 | U
i
 ∩ V

j
 |
 _ | U

i
 | | V

j
 |

Range:

 [0, 1]

Higher values mean
higher performance

Adjusted mutual
information

sklearn.

metrics.

adjusted_

mutual_info_

score()

 AMI (U, V)

 =
 [MI (U, V) − E (MI (U, V))]

 [avg (H (U) , H (V)) − E (MI (U, V))]

Range:

 [0, 1]

Higher values mean
higher performance

Table 4.4 – Common metrics for assessing the performance of clustering models

Visualization for performance assessment 75

In this section, we discussed the different performance measures for assessing the performance of
machine learning models. But there are other important aspects of performance assessment to consider,
such as data visualization, which we will discuss next.

Visualization for performance assessment

Visualization is an important tool that helps us not only understand the characteristics of our data
for modeling but also better assess the performance of our models. Visualization could provide
complementary information to the aforementioned model performance metrics.

Summary metrics are not enough

There are summary statistics such as ROC-AUC and PR-AUC that provide a one-number summary
of their corresponding curves for assessing the performance of classification models. Although these
summaries are more reliable than many other metrics such as accuracy, they do not completely capture
the characteristics of their corresponding curves. For example, two different models with different
ROC curves can have the same or very close ROC-AUCs (Figure 4.6):

Figure 4.6 – Comparison of two arbitrary models with the same ROC-AUCs and different ROC curves

Comparing ROC-AUCs alone could result in deciding the equivalence of these models. However,
they have different ROC curves and in most applications, a red curve is preferred over a blue one as
it results in a higher true positive rate for low false positive rates such as FPR1.

Detecting Performance and Efficiency Issues in Machine Learning Models76

Visualizations could be misleading

Using the proper visualization technique for your results is the key to analyzing the results of your
models and reporting their performances. Plotting your data without having the model objective in
mind could be misleading. For example, you might see time series plots such as the one shown in
Figure 4.7 that overlay predictions and real values over time in many blog posts. For such time series
models, we want predictions and real values to be as close to each other as possible for each time point.
Although the lines might seem to agree with each other in Figure 4.7, there is a two-time unit delay in
predictions shown in orange compared to the true values shown in blue. This lag in predictions could
have serious consequences in many applications such as stock price prediction:

Figure 4.7 – Laying two time series diagrams on top of each other is misleading – the orange

and blue curves represent predictions and true values for arbitrary time series data

Bias and variance diagnosis 77

Don’t interpret your plots as you wish

Each visualization has its assumptions and right way of interpretation. For example, if you want to
compare the numerical values of data points in a 2D plot, you need to pay attention to the units of the x
and y axes. Or when we use t-distributed Stochastic Neighbor Embedding (t-SNE), a dimensionality
reduction method designed to help in visualizing high dimensional data in low dimensional space,
we have to remind ourselves that large distances between data points and densities of each group are
not representative of the distances and densities in the original high-dimensional space (Figure 4.8):

Figure 4.8 – Schematic t-SNE plots showing (A) three groups of data points with different

distances and (B) two groups with different densities in two dimensions

You can use different performance measures to assess if your models are trained well and generalizable
to new data points, which is the next topic in this chapter.

Bias and variance diagnosis

We aim to have a model with high performance, or low error, in the training set (that is, a low bias
model) while keeping the performance high, or error low, for new data points (that is, a low variance
model). As we don’t have access to unseen new data points, we must use validation and test sets to
assess the variance or generalizability of our models. Model complexity is one of the important factors
in determining the bias and variance of machine learning models. By increasing complexity, we let a
model learn more complex patterns in training data that could reduce training errors or model bias
(Figure 4.9):

Detecting Performance and Efficiency Issues in Machine Learning Models78

Figure 4.9 – Error versus model complexity for (A) high bias, (B) high variance,

and (C, D) two different cases of low bias and low variance models

This decrease in error helps build a better model, even for new data points. However, this trend
changes after a point, and higher complexities could cause overfitting or higher variance and lower
performance in validation and test sets compared to the training set (Figure 4.9). Assessing bias and
variance concerning parameters such as model complexity or dataset size could help us identify
opportunities for model performance improvements in training, validation, and test sets.

Four of the possible dependencies of model error in training and validation sets to model complexity
are shown in Figure 4.9. Although the validation error is usually higher than the training error, you
might experience a lower error in validation sets because of the data points you have in your training
and validation sets. For example, a multiclass classifier could have a lower error in the validation set
because of being better at predicting classes that form the majority of the data points in the validation
set. In such cases, you need to investigate the distribution of data points in the training and validation
sets before reporting performance assessments on training and validation datasets and deciding which
model to select for production.

Let’s practice a bias and variance analysis. You can find the results of training random forest models
with different maximum depths on the breast cancer dataset from scikit-learn (Figure 4.10).
The breast cancer data from scikit-learn is used for training and validating model performance,
with 30% of the data randomly separated as the validation set and the rest kept as the training set. By
increasing the maximum depth of the random forest models, log-loss error in the training set decreases
while balanced accuracy as a measure of model performance increases. Validation errors also decrease
up to a maximum depth of three and start increasing after that as a sign of overfitting. Although error

Bias and variance diagnosis 79

decreases after the maximum depth of three, balanced accuracy can still be increased by increasing
the maximum depth to four and five. The reason is the difference in the definition of log-loss based
on the probability of predictions and the balanced accuracy on predicted labels:

Figure 4.10 – Balanced accuracy (top) and log-loss (bottom) in training and validation sets

separated from the breast cancer dataset of scikit-learn for a random forest model

Here is the code for the results shown in Figure 4.10. First, we must import the necessary Python
libraries and load the breast cancer dataset:

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

from sklearn.metrics import balanced_accuracy_score as bacc

from sklearn.ensemble import RandomForestClassifier as RF

from sklearn.metrics import log_loss

from sklearn.metrics import roc_auc_score

import matplotlib.pyplot as plt

Detecting Performance and Efficiency Issues in Machine Learning Models80

X, y = load_breast_cancer(return_X_y=True)

Then, we must split the data into train and test sets and train multiple random forest models with
different maximum depths allowed for their decision trees:

X_train, X_test, y_train, y_test = train_test_split(X, y,

 test_size = 0.3, random_state=10)

maximum_depth = 15

depth_range = range(1, maximum_depth)

bacc_train = []

bacc_test = []

log_loss_train = []

log_loss_test = []

for depth_iter in depth_range:

initializing an fitting a decision tree model

model_fit = RF(n_estimators = 5, max_depth = depth_iter,

 random_state=10).fit(X_train, y_train)

generating label outputs of train and test set using the trained
model

train_y_labels = model_fit.predict(X_train)

test_y_labels = model_fit.predict(X_test)

generating probability outputs of train and test set using the
trained model

train_y_probs = model_fit.predict_proba(X_train)

test_y_probs = model_fit.predict_proba(X_test)

calculating balanced accuracy

bacc_train.append(bacc(y_train, train_y_labels))

bacc_test.append(bacc(y_test, test_y_labels))

calculating log-loss

log_loss_train.append(log_loss(y_train, train_y_probs))

log_loss_test.append(log_loss(y_test, test_y_probs))

Now that you’ve learned about the concepts of bias and variance, we will introduce different techniques
that you can use to validate your models.

Model validation strategy 81

Model validation strategy

To validate our models, we can use separate datasets or split the dataset we have into training and
validation sets using different techniques, as explained in Table 4.5 and illustrated in Figure 4.11. In
cross-validation strategies, we split the data into different subsets, then the performance score or
error for each subset, since the validation set is calculated using the predictions of the model trained
on the rest of the data. Then, we can use the mean of the performance across the subsets as the
cross-validation performance:

Figure 4.11 – Techniques for separating the validation and training sets within one dataset

Each of these validation techniques has its advantages and limitations. Using cross-validation techniques
instead of hold-out validation has the benefit of covering all or the majority of the data in at least one
validation subset. Stratified k-fold cross-validation (CV) is also a better choice compared to k-fold CV
or leave-one-out CV as it keeps the same balance across the validation subsets as in the whole dataset.

Detecting Performance and Efficiency Issues in Machine Learning Models82

The classification or regression hold-out or CV methods don’t work for time series data. As the order
of data points is important in time series data, shuffling the data or randomly selecting data points is
not suitable in the process of training and validation subset selection. Randomly selecting data points
for validation and training sets results in models trained on some future data points to predict the
outcome in the past, which is not the intention of time series models. Rolling or time series CV is an
appropriate validation technique for time series models as it rolls the validation set over time instead
of randomly selecting the data point (Table 4.5):

Validation Method Python Function Description

Hold-out validation sklearn.model_

selection.train_

test_split()

This splits all the data into one
training and one validation set.
20-40% of the data commonly

gets selected as a validation set but
this percentage could be lower for

large datasets.

k-fold cross-validation sklearn.model_

selection.KFold()
This method splits the data into k

different subsets and uses each as a
validation set and the remaining data

points as a training set.

Stratified
k-fold cross-validation

sklearn.model_

selection.

StratifiedKFold()

This is similar to k-fold CV but
preserves the percentage of samples

for each class, as in the whole dataset,
in each of the k subsets.

Leave-p-out
cross-validation (LOCV)

sklearn.model_

selection.

LeavePOut()

This is similar to k-fold CV, with each
subset having p data points instead of

splitting the dataset into k subsets.

Leave-one-out cross-
validation
(LOOCV)

sklearn.model_

selection.

LeaveOneOut()

This works exactly as k-fold CV, with
k being equal to the total number of
data points. Each validation subset

has one data point that uses LOOCV.

Monte Carlo or
random permutation

cross-validation

sklearn.model_

selection.

ShuffleSplit()

This splits the data randomly into a
training and a validation set, similar
to hold-out validation, and repeats

this process many times. More
iterations result in a better assessment
of performance, although it increases
the computational cost of validation.

Model validation strategy 83

Rolling or
time-based cross-validation

sklearn.model_

selection.

TimeSeriesSplit()

A small subset of data gets selected as
the training set and a smaller subset

gets selected as the validation set. The
validation set gets shifted in time and
the data points that were previously
considered for validation get added

to the training set.

Table 4.5 – Common validation techniques that use one dataset

Here is the Python implementation of hold-out, k-fold CV, and stratified k-fold CV to help you start
using these methods in your projects.

First, we must import the necessary libraries, load the breast cancer dataset, and initialize a random
forest model:

from sklearn.datasets import load_breast_cancer

from sklearn.ensemble import RandomForestClassifier as RF

from sklearn.metrics import roc_auc_score

from sklearn.model_selection import cross_val_score

importing different cross-validation functions

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

from sklearn.model_selection import StratifiedKFold

modle_random_state = 42

X, y = load_breast_cancer(return_X_y=True)

rf_init = RF(random_state=modle_random_state)

Then, we must train and validate different random forest models using each validation technique:

validating using hold-out validation

X_train, X_test, y_train, y_test = train_test_split(X, y,

 test_size = 0.3, random_state=10)

rf_fit = rf_init.fit(X_train, y_train)

validating using k-fold (k=5) cross-validation

kfold_cv = KFold(n_splits = 5, shuffle=True,

 random_state=10)

scores_kfold_cv = cross_val_score(rf_init, X, y,

 cv = kfold_cv, scoring = "roc_auc")

validating using stratified k-fold (k=5) cross-validation

stratified_kfold_cv = StratifiedKFold(n_splits = 5,

 shuffle=True, random_state=10)

Detecting Performance and Efficiency Issues in Machine Learning Models84

scores_strat_kfold_cv = cross_val_score(rf_init, X, y, cv =
stratified_kfold_cv, scoring = "roc_auc")

Error analysis is another technique you can benefit from when seeking to develop reliable machine
learning models, which we will introduce next.

Error analysis

You can use error analysis to find common characteristics between data points with incorrectly
predicted outputs. For example, the majority of images that are misclassified in image classification
models might have darker backgrounds, or a disease diagnostic model might have lower performance
for men compared to women. Although manually investigating the data points with incorrect
predictions could be insightful, this process could cost you a lot of time. Instead, you can try to reduce
the cost programmatically.

Here, we want to practice with a simple case of error analysis in which the number of misclassified
data points from each class is counted for a random forest model that’s been trained and validated
using a 5-fold CV. For error analysis, only predictions for validation subsets are used.

First, we must import the necessary Python libraries and load the wine dataset:

from sklearn.datasets import load_wine

from sklearn.ensemble import RandomForestClassifier as RF

from sklearn.model_selection import KFold

from collections import Counter

loading wine dataset and generating k-fold CV subsets

X, y = load_wine(return_X_y=True)

Then, we must initialize a random forest model and 5-fold CV object:

kfold_cv = KFold(n_splits = 5, shuffle=True,

 random_state=10)

initializing the random forest model

rf_init = RF(n_estimators=3, max_depth=5, random_state=42)

Then, for each fold, we must train a random forest model using all the data, excluding that fold, and
validate the model on the chunk of data considered in that fold:

misclass_ind_list = []

for fold_n, (train_idx, validation_idx) in enumerate(

 kfold_cv.split(X, y)):

 #get train and validation subsets for current fold

 X_train, y_train = X[train_idx], y[train_idx]

 X_validation, y_validation = X[validation_idx],

Beyond performance 85

 y[validation_idx]

 rf_fit = rf_init.fit(X_train, y_train)

 # write results

 match_list = rf_fit.predict(

 X_validation) != y_validation

 wrong_pred_subset = [i for i, x in enumerate(

 match_list) if x]

 misclass_ind_list.extend([validation_idx[

 iter] for iter in wrong_pred_subset])

This analysis shows that class 1 has nine misclassified data points, while classes 2 and 0 have only
three and two misclassified examples, respectively. This simple example helps you start practicing
with error analysis. But error analysis is not only about identifying misclassification count per class.
You can also identify patterns in feature values for misclassified examples by comparing feature values
between misclassified data points and the whole dataset.

There are other important factors, such as computational cost and time, that also need to be considered
when developing machine learning models. Here, we will briefly talk about this important topic, but
the details are beyond the scope of this book.

Beyond performance

Paying any price for improving the performance of machine learning models is not the objective of
modeling as part of bigger pipelines at the industrial level. Increasing the performance of models by
a tenth of a percent could help you win machine learning competitions or publish papers by beating
state-of-the-art models. But not all improvements result in models worth deploying to production.
An example of such efforts, which has been common in machine learning competitions, is model
stacking. Model stacking is about using the output of multiple models to train a secondary model,
which could increase the cost of inference by orders of magnitude. Python’s implementation of stacking
of the logistic regression, k-nearest neighbor, random forest, support vector machine, and XGBoost
classification models on the breast cancer dataset from scikit-learn is shown here. A secondary
logistic regression model uses predictions of each of these primary models as input to come up with
the final prediction of the stacked model:

from sklearn.datasets import load_breast_cancer

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn.ensemble import StackingClassifier

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression as LR

Detecting Performance and Efficiency Issues in Machine Learning Models86

from sklearn.neighbors import KNeighborsClassifier as KNN

from sklearn.svm import LinearSVC

from sklearn.ensemble import RandomForestClassifier as RF

from xgboost import XGBClassifier

X, y = load_breast_cancer(return_X_y=True)

X_train, X_test, y_train, y_test = train_test_split(X, y,

 stratify=y, random_state=123)

estimators = [

 ('lr', make_pipeline(StandardScaler(),

 LR(random_state=123))),

 ('knn', make_pipeline(StandardScaler(), KNN())),

 ('svr', make_pipeline(StandardScaler(),

 LinearSVC(random_state=123))),

 ('rf', RF(random_state=123)),

 ('xgb', XGBClassifier(random_state=123))

]

stacked_model = StackingClassifier(estimators=estimators,

 final_estimator=LR())

stacked_model.fit(X_train, y_train).score(X_test, y_test)

individual_models = [estimators[iter][1].fit(X_train,

 y_train).score(X_test, y_test) for iter in range(

 0, len(estimators))]

In this example, the performance of the stacked model is less than 1% better than the best individual
model, while the inference time could be more than 20 times higher, depending on the hardware
and software configurations you have. Although inference time could be less important, such as in
the case of disease diagnosis or scientific discoveries, it could be of critical importance if your model
needs to provide the output in real time, such as in recommending products to consumers. So, you
need to consider other factors, such as inference or prediction time, when you’re deciding to bring a
model into production or planning for new expensive computational experiments or data collection.

Although inference time or other factors need to be considered in your model building and selection,
it doesn’t mean that you cannot use complex models for real-time output generation. Depending on
the application and your budget, you can use better configurations, for example, on your cloud-based
system, to eliminate the issues that arise due to higher performance but slower models.

Summary 87

Summary

In this chapter, we learned about different performance and error metrics for supervised and
unsupervised learning models. We discussed the limitations of each metric and the right way of
interpreting them. We also reviewed bias and variance analysis and different validation and cross-
validation techniques for assessing the generalizability of models. We also presented error analysis as
an approach for detecting the components of a model that contribute to model overfitting. We went
through Python code examples for these topics to help you practice with them and be able to quickly
use them in your projects.

In the next chapter, we will review techniques to improve the generalizability of machine learning models,
such as synthetic data addition to training data, removing data inconsistencies, and regularization methods.

Questions

1. A classifier is designed to identify if patients of a clinic need to go through the rest of the
diagnostic steps after the first round of testing. What classification metric would be more or
less appropriate? Why?

2. A classifier is designed to assess the risk of investment for different investment options, for a
specific amount of money, and is going to be used to suggest investment opportunities to your
clients. What classification metric would be more or less appropriate? Why?

3. If the calculated ROC-AUCs of two binary classification models on the same validation set are
the same, does it mean that the models are the same?

4. If model A has a lower log-loss compared to model B on the same test set, does it always mean
that the MCC of model A is also higher than model B?

5. If model A has a higher R 2 on the same number of data points compared to model B, could
we claim that model A is better than model B? How does the number of features affect our
comparison between the two models?

6. If model A has higher performance than model B, does it mean that choosing model A is the
right one to bring into production?

References

• Rosenberg, Andrew, and Julia Hirschberg. V-measure: A conditional entropy-based external cluster

evaluation measure. Proceedings of the 2007 joint conference on empirical methods in natural
language processing and computational natural language learning (EMNLP-CoNLL). 2007.

• Vinh, Nguyen Xuan, Julien Epps, and James Bailey. Information theoretic measures for clusterings

comparison: is a correction for chance necessary? Proceedings of the 26th annual international
conference on machine learning. 2009.

Detecting Performance and Efficiency Issues in Machine Learning Models88

• Andrew Ng, Stanford CS229: Machine Learning Course, Autumn 2018.

• Van der Maaten, Laurens, and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine
learning research 9.11 (2008).

• McInnes, Leland, John Healy, and James Melville. Umap: Uniform manifold approximation and

projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018).

5
Improving the Performance of

Machine Learning Models

In the previous chapter, you learned about different techniques for properly validating and assessing
the performance of your machine learning models. The next step is to extend your knowledge of those
techniques for improving the performance of your models.

In this chapter, you will learn about techniques to improve the performance and generalizability of
your models by working on the data or algorithm you select for machine learning modeling.

In this chapter, we will cover the following topics:

• Options for improving model performance

• Synthetic data generation

• Improving pre-training data processing

• Regularization to improve model generalizability

By the end of this chapter, you will be familiar with different techniques to improve the performance and
generalizability of your models and you will know how you can benefit from Python in implementing
them for your projects.

Improving the Performance of Machine Learning Models90

Technical requirements

The following requirements are needed for this chapter as they help you better understand the concepts
and enable you to use them in your projects and practice with the provided code:

• Python library requirements:

 � sklearn >= 1.2.2

 � ray >= 2.3.1

 � tune_sklearn >= 0.4.5

 � bayesian_optimization >= 1.4.2

 � numpy >= 1.22.4

 � imblearn

 � matplotlib >= 3.7.1

• Knowledge of machine learning validation techniques such as k-fold cross-validation

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter05.

Options for improving model performance

The changes we can make to improve the performance of our models could be related to the algorithms
we use or the data we feed them to train our models (see Table 5.1). Adding more data points could
reduce the variance of the model, for example, by adding data close to the decision boundaries of
classification models to increase confidence in the identified boundaries and reduce overfitting.
Removing outliers could reduce both bias and variance by eliminating the effect of distant data points.
Adding more features could help the model to become better at the training stage (that is, lower model
bias), but it might result in higher variance. There could also be features that cause overfitting and
their removal could help to increase model generalizability.

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter05

Options for improving model performance 91

Change Potential effect Description

Adding more training
data points

Reducing variance We could add new data points randomly or try
to add data points with specific feature values,

output values, or labels.

Removing outliers with
lower stringency

Reducing bias
and variance

Removing outliers could reduce errors in the
training set but it could also help in training a

more generalizable model (that is, a model with
lower variance).

Adding more features Reducing bias We could add features that provide unknown
information to the model. For example,

adding the crime rate of a neighborhood for
house price prediction could improve model

performance if that info is not already captured
by existing features.

Removing features Reducing variance Each feature could have a positive effect
on training performance but it might add

information that is not generalizable to new
data points and result in higher variance.

Running optimization
process for

more iterations

Reducing bias Optimizing for more iteration reduces training
error but might result in overfitting.

Using more
complex models

Reducing bias Increasing the depth of decision trees is an
example of an increase in model complexity

that could result in lower model bias but
potentially a higher chance of overfitting.

Table 5.1 – Some of the options to reduce the bias and/or variance of machine learning models

Increasing model complexity could help to reduce bias, as we discussed in the previous chapter, but a
model can have many hyperparameters that affect its complexity or result in improving or lowering model
bias and generalizability. Some of the hyperparameters that you could start with in the optimization
process for the widely used supervised and unsupervised learning methods are provided in Table 5.2.
These hyperparameters should help you to improve the performance of your models, but you don’t
need to write new functions or classes for hyperparameter optimization.

Improving the Performance of Machine Learning Models92

Method Hyperparameter

Logistic regression

sklearn.linear_model.

LogisticRegression()

•	 penalty: Choosing regularization between l1, l2,
elasticnet, and None

•	 class_weight: Associating weights to classes

•	 l1_ratio: The Elastic-Net mixing parameter

K-Nearest Neighbors

sklearn.neighbors.

KNeighborsClassifier()

•	 n_neighbors: Number of neighbors

•	 weights: Choosing between uniform or
distance to use neighbors equally or assign
weights to them based on their distance

Support Vector Machine (SVM)
classifier or regressor

sklearn.svm.SVC()

sklearn.svm.SVR()

•	 C: Inverse strength of regularization with the
l2 penalty

•	 kernel: An SVM kernel with prebuilt kernels
including linear, poly, rbf, sigmoid,
and precomputed

•	 degree (degree of polynomial): Degree of the
polynomial kernel function (poly)

•	 class_weight (only for classification):
Associating weights with classes

Random forest classifier
or regressor

sklearn.ensemble.

RandomForestClassifier()

sklearn.ensemble.

RandomForestRegressor()

•	 n_estimators: Number of trees in the forest

•	 max_depth: Maximum depth of the trees

•	 class_weight: Associating weights with classes

•	 min_samples_split: The minimum number of
samples required to be at a leaf node

XGBoost classifier or regressor

xgboost.XGBClassifier()

xgboost.XGBRegressor()

•	 booster (gbtree, gblinear, or dart)

•	 For a tree booster:

o eta: Step size shrinkage to
prevent overfitting.

o max_depth: Maximum depth of
the trees

o min_child_weight: The minimum
sum of data point weights needed to
continue partitioning

o lambda: L2 regularization factor

o alpha: L1 regularization factor

Options for improving model performance 93

LightGBM classifier or regressor

Lightgbm.

LGBMClassifier()

Lightgbm.

LGBMRegressor()

•	 boosting_type (gbdt, dart, or rf)

•	 num_leaves: Maximum tree leaves

•	 max_depth: Maximum tree depth

•	 n_estimators: Number of boosted trees

•	 reg_alpha: L1 regularization term on weights

•	 reg_lambda: L2 regularization term on weights

K-Means clustering

sklearn.cluster.

KMeans()

•	 n_clusters: Number of clusters

Agglomerative clustering

sklearn.cluster.

AgglomerativeClustering()

•	 n_clusters: Number of clusters

•	 metric: Distance measures with prebuilt measures
including euclidean, l1, l2, manhattan,
cosine, or precomputed

•	 linkage: Linkage criterion with prebuilt methods
including ward, complete, average,
and single

DBSCAN clustering

sklearn.cluster.

DBSCAN()

•	 eps: Maximum allowed distance between data
points for them to be considered neighbors

•	 min_samples: The minimum number of neighbors
a data point needs to be considered a core point

UMAP

umap.UMAP()

•	 n_neighbors: Constraining the size of the local
neighborhood for the learning data structure

•	 min_dist: Controlling the compactness of groups
in low-dimensional space

Table 5.2 – Some of the most important hyperparameters of widely used supervised and

unsupervised machine learning methods to start hyperparameter optimization with

The Python libraries listed in Table 5.3 have modules dedicated to different hyperparameter optimization
techniques such as grid search, random search, Bayesian search, and successive halving.

Improving the Performance of Machine Learning Models94

Library URL

scikit-optimize https://pypi.org/project/scikit-optimize/

Optuna https://pypi.org/project/optuna/

GpyOpt https://pypi.org/project/GPyOpt/

Hyperopt https://hyperopt.github.io/hyperopt/

ray.tune https://docs.ray.io/en/latest/tune/index.

html

Table 5.3 – Commonly used Python libraries for hyperparameter optimization

Let’s talk about each method in detail.

Grid search

This method is about determining a series of hyperparameter nomination sets to be tested one by
one to find the optimum combination. The cost of grid-searching to find an optimal combination
is high. Also, considering there would be a specific set of hyperparameters that mattered for each
problem, grid search with a predetermined set of hyperparameter combinations for all problems is
not an effective approach.

Here is an example of grid search hyperparameter optimization using sklearn.model_selection.
GridSearchCV() for a random forest classifier model. 80% of the data is used for hyperparameter
optimization and the performance of the model is assessed using stratified 5-fold CV:

determining random state for data split and model initialization

random_state = 42

loading and splitting digit data to train and test sets

digits = datasets.load_digits()

x = digits.data

y = digits.target

x_train, x_test, y_train, y_test = train_test_split(

 x, y, random_state= random_state, test_size=0.2)

list of hyperparameters to use for tuning

parameter_grid = {"max_depth": [2, 5, 10, 15, 20],

 "min_samples_split": [2, 5, 7]}

validating using stratified k-fold (k=5) cross-validation

stratified_kfold_cv = StratifiedKFold(

 n_splits = 5, shuffle=True, random_state=random_state)

generating the grid search

start_time = time.time()

sklearn_gridsearch = GridSearchCV(

https://pypi.org/project/scikit-optimize/
https://pypi.org/project/optuna/
https://pypi.org/project/GPyOpt/
https://hyperopt.github.io/hyperopt/
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html

Options for improving model performance 95

 estimator = RFC(n_estimators = 10,

 random_state = random_state),

 param_grid = parameter_grid, cv = stratified_kfold_cv,

 n_jobs=-1)

fitting the grid search cross-validation

sklearn_gridsearch.fit(x_train, y_train)

In this code, 10 estimators are used and different min_samples_split and max_depth values
are considered for the hyperparameter optimization process. You can specify different performance
metrics according to what you learned in the previous chapter using the scoring parameter, as one
of the parameters of sklearn.model_selection.GridSearchCV(). A combination of
max_depth of 10 and min_samples_split of 7 was identified as the best hyperparameter
set in this case, which resulted in 0.948 accuracy using the stratified 5-fold CV. We can extract the
best hyperparameter and corresponding score using sklearn_gridsearch.best_params_
and sklearn_gridsearch.best_score_.

Random search

This method is an alternative to grid search. It randomly tries different combinations of hyperparameter
values. For the same high enough computational budget, it is shown that random search can achieve
a higher performance model compared to grid search, as it can search a larger space (Bergstra and
Bengio, 2012).

Here is an example of random search hyperparameter optimization using sklearn.model_
selection.RandomizedSearchCV() for the same model and data used in the previous code:

generating the grid search

start_time = time.time()

sklearn_randomsearch = RandomizedSearchCV(

 estimator = RFC(n_estimators = 10,

 random_state = random_state),

 param_distributions = parameter_grid,

 cv = stratified_kfold_cv, random_state = random_state,

 n_iter = 5, n_jobs=-1)

fitting the grid search cross-validation

sklearn_randomsearch.fit(x_train, y_train)

With only five iterations, this random search resulted in 0.942 CV accuracy with less than one-third
of running time, which could depend on your local or cloud system configuration. In this case, a
combination of max_depth of 15 and min_samples_split of 7 was identified as the best
hyperparameter set. Comparing the results of grid search and random search, we can conclude that
models with different max_depth values could result in similar CV accuracies for this specific case
of random forest modeling with 10 estimators using the digit dataset from scikit-learn.

Improving the Performance of Machine Learning Models96

Bayesian search

In Bayesian optimization, instead of randomly selecting hyperparameter combinations without checking
the value of previous combination sets, each combination of hyperparameter sets gets selected in an
iteration based on the history of previously tested hyperparameter sets. This process helps to reduce
the computational cost compared to grid search but it doesn’t always beat random search. We want to
use Ray Tune (ray.tune) here for this approach. You can read more about different functionalities
available in Ray Tune such as logging tune runs, how to stop and resume, analyzing tune experiment

results, and deploying tune in the cloud on the tutorial page: https://docs.ray.io/en/latest/
tune/tutorials/overview.html.

The following implementation of Bayesian hyperparameter optimization using ray.tune.
sklearn.TuneSearchCV() for the same random forest model, as explained previously, achieves
0.942 CV accuracy:

start_time = time.time()

tune_bayessearch = TuneSearchCV(

 RFC(n_estimators = 10, random_state = random_state),

 parameter_grid,

 search_optimization="bayesian",

 cv = stratified_kfold_cv,

 n_trials=3, # number of sampled parameter settings

 early_stopping=True,

 max_iters=10,

 random_state = random_state)

tune_bayessearch.fit(x_train, y_train)

Successive halving

The idea behind successive having is to not invest in all hyperparameters equally. Candidate hyperparameter
sets get evaluated using limited resources, for example, using only a fraction of training data or a
limited number of trees in a random forest model in an iteration, and some of them pass to the next
iteration. In later iterations, more resources get used until the last iteration in which all resources,
for example, all training data, get used to evaluate the remaining hyperparameter sets. You can
use HalvingGridSearchCV()and HalvingRandomSearchCV()as part of sklearn.
model_selection to try out successive halving. You can read more about these two Python
modules at https://scikit-learn.org/stable/modules/grid_search.html#id3.

There are other hyperparameter optimization techniques, such as Hyperband (Li et al., 2017) and
BOHB (Falkner et al., 2018) that you can try out, but the general idea behind most advancements
in hyperparameter optimization is to minimize the computational resources necessary to achieve an
optimum hyperparameter set. There are also techniques and libraries for hyperparameter optimization
in deep learning, which we will cover in Chapter 12, Going Beyond ML Debugging with Deep Learning,

https://docs.ray.io/en/latest/tune/tutorials/overview.html
https://docs.ray.io/en/latest/tune/tutorials/overview.html
https://scikit-learn.org/stable/modules/grid_search.html#id3

Synthetic data generation 97

and Chapter 13, Advanced Deep Learning Techniques. Although hyperparameter optimization helps
us to get better models, using the provided data for model training and the selected machine learning
method, we can improve model performance with other approaches, such as generating synthetic
data for model training, which is our next topic.

Synthetic data generation

The data we have access to for training and evaluating our machine learning models may be limited.
For example, in the case of classification models, we might have classes with a limited number of data
points, resulting in lower performance of our models for unseen data points of the same classes. We will
go through a few methods here to help you improve the performance of your models in these situations.

Oversampling for imbalanced data

Imbalanced data classification is challenging due to the dominating effect of majority classes during
training as well as in model performance reporting. For model performance reporting, we discussed
different performance metrics in the previous chapter and how you can select a reliable metric even
in the case of imbalanced data classification. Here, we want to talk about the concept of oversampling
to help you improve the performance of your models by synthetically improving your training data.
The concept of oversampling is to increase the number of data points in your minority classes using
the real data points you have in your dataset. The simplest way of thinking about it is to duplicate
some of the data points in minority classes, which is not a good approach as they will not provide
complementary information to real data in the training process. There are techniques designed for
oversampling processes, such as the Synthetic Minority Oversampling Technique (SMOTE) and
its variations for tabular data, which we will present here.

Undersampling

In classifying imbalanced data, an alternative to oversampling is to decrease the imbalance by
sampling the majority class. This process reduces the ratio of the majority-class to minority-
class data points. As not all the data points get included in one set of sampling, multiple models
can be built by sampling different subsets of majority-class data points and the output of those
models can be combined, for example, through majority voting between the models. This process
is called undersampling. Oversampling usually results in higher performance improvement
compared to undersampling.

SMOTE

SMOTE is an old yet widely used approach to oversampling the minority class, for continuous feature
sets, using the distribution of neighboring data points (Chawla et al., 2022; see Figure 5.1).

Improving the Performance of Machine Learning Models98

Figure 5.1 – Schematic illustration of synthetic data generation

using SMOTE, Borderline-SMOTE, and ADASYN

The steps in generating any synthetic data point using SMOTE can be summarized as follows:

1. Choose a random data point from a minority class.

2. Identify the K-Nearest Neighbors for that data point.

3. Choose one of the neighbors randomly.

4. Generate a synthetic data point at a randomly selected point between the two data points in
the feature space.

SMOTE and two of its variations, Borderline-SMOTE and Adaptive synthetic (ADASYN), are
shown in Figure 5.1. Steps 2 to 4 of SMOTE, Borderline-SMOTE, and ADASYN are similar. However,
Borderline-SMOTE focuses on the real data points that divide the classes and ADASYN focuses on
the data points of the minority class in regions of the feature space dominated by the majority classes.
In this way, Borderline-SMOTE increases the confidence in decision boundary identification to avoid
overfitting and ADASYN improves generalizability for minority-class prediction in the parts of the
space dominated by majority classes.

You can use the imblearn Python library for synthetic data generation using SMOTE, Borderline-
SMOTE, and ADASYN. However, before getting into using these functionalities, we need to write a
plotting function for later use to show the data before and after the oversampling process:

def plot_fun(x_plot: list, y_plot: list, title: str):

 """

Synthetic data generation 99

 Plotting a binary classification dataset

 :param x_plot: list of x coordinates (i.e. dimension 1)

 :param y_plot: list of y coordinates (i.e. dimension 2)

 :param title: title of plot

 """

 cmap, norm = mcolors.from_levels_and_colors([0, 1, 2],

 ['black', 'red'])

 plt.scatter([x_plot[iter][0] for iter in range(

 0, len(x_plot))],

 [x_plot[iter][1] for iter in range(

 0, len(x_plot))],

 c=y_plot, cmap=cmap, norm=norm)

 plt.xticks(fontsize = 12)

 plt.yticks(fontsize = 12)

 plt.xlabel('1st dimension', fontsize = 12)

 plt.ylabel('2nd dimension', fontsize = 12)

 plt.title(title)

 plt.show()

Then, we generate a synthetic dataset with two classes and only two features (that is, two-dimensional
data) and consider it our real dataset. We consider 100 data points in one of the classes as the majority
class, and 10 data points in another class as the minority class:

np.random.seed(12)

minority_sample_size = 10

majority_sample_size = 100

generating random set of x coordinates

group_1_X1 = np.repeat(2,majority_sample_size)+\

np.random.normal(loc=0, scale=1,size=majority_sample_size)

group_1_X2 = np.repeat(2,majority_sample_size)+\

np.random.normal(loc=0, scale=1,size=majority_sample_size)

generating random set of x coordinates

group_2_X1 = np.repeat(4,minority_sample_size)+\

np.random.normal(loc=0, scale=1,size=minority_sample_size)

group_2_X2 = np.repeat(4,minority_sample_size)+\

np.random.normal(loc=0, scale=1,size=minority_sample_size)

X_all = [[group_1_X1[iter], group_1_X2[iter]] for\

 iter in range(0, len(group_1_X1))]+\

 [[group_2_X1[iter], group_2_X2[iter]]\

 for iter in range(0, len(group_2_X1))]

y_all = [0]*majority_sample_size+[1]*minority_sample_size

plotting the randomly generated data

plot_fun(x_plot = X_all, y_plot = y_all,

 title = 'Original')

Improving the Performance of Machine Learning Models100

The resulting data points are shown in the following scatter plot with red and black data points
representing the minority and majority classes, respectively. We are using this synthetic data instead
of a real dataset to visually show you how different synthetic data generation methods work.

Figure 5.2 – Example dataset with two features (that is, dimensions), generated

synthetically, to use for practicing with SMOTE and its alternatives

We now use SMOTE via imblearn.over_sampling.SMOTE(), as shown in the following
code snippet, to generate synthetic data points for the minority class only:

k_neighbors = 5

initializing smote

using 'auto', equivalent to 'not majority',

sampling_strategy that enforces resampling all classes but the
majority class

smote = SMOTE(sampling_strategy='auto',

 k_neighbors=k_neighbors)

fitting smote to oversample the minority class

x_smote, y_smote = smote.fit_resample(X_all, y_all)

plotting the resulted oversampled data

plot_fun(x_plot = x_smote, y_plot = y_smote,

 title = 'SMOTE')

As you can see in the following figure, the new oversampled data points will be within the gaps between
the original data points of the minority class (that is, red data points). However, many of these new
data points don’t help to identify a reliable decision boundary as they are grouped in the very top-right
corner, far from the black data points and potential decision boundaries.

.

Synthetic data generation 101

Figure 5.3 – Visualization of the dataset shown in Figure 5.2 after implementing SMOTE

We use Borderline-SMOTE instead via imblearn.over_sampling.BorderlineSMOTE()
as follows for synthetic data generation:

k_neighbors = 5

using 5 neighbors to determine if a minority sample is in "danger"

m_neighbors = 10

initializing borderline smote

using 'auto', equivalent to 'not majority', sampling_strategy that
enforces resampling all classes but the majority class

borderline_smote = BorderlineSMOTE(

 sampling_strategy='auto',

 k_neighbors=k_neighbors,

 m_neighbors=m_neighbors)

fitting borderline smote to oversample the minority class

x_bordersmote,y_bordersmote =borderline_smote.fit_resample(

 X_all, y_all)

plotting the resulted oversampled data

plot_fun(x_plot = x_bordersmote, y_plot = y_bordersmote,

 title = 'Borderline-SMOTE')

Improving the Performance of Machine Learning Models102

We can see that the new synthetically generated data points are closer to the black data points of the
majority class, which helps with identifying a generalizable decision boundary:

Figure 5.4 – Visualization of the dataset shown in Figure 5.2 after implementing Borderline-SMOTE

We can also use ADASYN via imblearn.over_sampling.ADASYN(), which also generates
more of the new synthetic data close to the black data points as it focuses on the regions with more
majority-class samples:

using 5 neighbors for each datapoint in the oversampling process by
SMOTE

n_neighbors = 5

initializing ADASYN

using 'auto', equivalent to 'not majority', sampling_strategy that
enforces resampling all classes but the majority class

adasyn_smote = ADASYN(sampling_strategy = 'auto',n_neighbors
 = n_neighbors)

fitting ADASYN to oversample the minority class

x_adasyn_smote, y_adasyn_smote = adasyn_smote.fit_resample(X_all, y_
all)

plotting the resulted oversampled data

plot_fun(x_plot = x_adasyn_smote, y_plot = y_adasyn_smote,

 title = "ADASYN")

Synthetic data generation 103

The data including original and synthetically generated data points using ADASYN are shown in
Figure 5.5.

Figure 5.5 – Visualization of the dataset shown in Figure 5.2 after implementing ADASYN

There have been more recent methods built upon SMOTE for synthetic data generation such as
density-based synthetic minority over-sampling technique (DSMOTE) (Xiaolong et al., 2019) and
k-means SMOTE (Felix et al., 2017). Both of these methods try to capture groupings of data points
either within the target minority class or the whole dataset. In DSMOTE, Density-based spatial

clustering of applications with noise (DBSCAN) is used to divide data points of the minority class
into three groups of core samples, borderline samples, and noise (i.e., outlying) samples, and then the
core and borderline samples only get used for oversampling. This approach is shown to work better
than SMOTE and Borderline-SMOTE (Xiaolong et al., 2019). K-means SMOTE is another recent
alternative to SMOTE (Last et al., 2017) that relies on clustering of the whole dataset using a k-means
clustering algorithm before oversampling (see Figure 5.6).

Improving the Performance of Machine Learning Models104

Figure 5.6 – Schematic illustration of the four main steps of k-means SMOTE (Last et al. 2017))

Here are the steps in the k-means SMOTE method for data generation, which you can use via the
kmeans-smote Python library:

1. Identify the decision boundary based on the original data.

2. Cluster data points into k clusters using k-means clustering.

3. Oversample using SMOTE for clusters with an Imbalance Ratio (IR) greater than the Imbalance

Ratio Threshold (IRT).

4. Repeat the decision boundary identification process. (Note: IRT can be chosen by the user or
optimized like a hyperparameter.)

You can practice with different variations of SMOTE and find out which one works best for your
datasets, but Borderline-SMOTE and K-means SMOTE could be good starting points.

Next, you will learn about techniques that help you in improving the quality of your data before
getting into model training.

Improving pre-training data processing 105

Improving pre-training data processing

Data processing in the early stages of a machine learning life cycle, before model training and evaluation,
determines the quality of the data we feed into the training, validation, and testing process, and
consequently our success in achieving a high-performance and reliable model.

Anomaly detection and outlier removal

Anomalies and outliers in your data could decrease the performance and reliability of your models
in production. The existence of outliers in training data, the data you use for model evaluation, and
unseen data in production could have different impacts:

• Outliers in model training: The existence of outliers in the training data for supervised learning
models could result in lower model generalizability. It could cause unnecessarily complex
decision boundaries in classification or unnecessary nonlinearity in regression models.

• Outliers in model evaluation: Outliers in validation and test data could lower the model
performance. As the models are not necessarily designed for outlying data points, they cause the
model performance assessment to be unreliable by impacting the performance of the models,
which cannot predict their labels or continuous values properly. This issue could make the
process of model selection unreliable.

• Outliers in production: Unseen data points in production could be far from the distribution
of training or even test data. Our model may have been designed to identify those anomalies,
as in the case of fraud detection, but if that is not the objective, then we should tag those data
points as samples, which our model is not confident doing or designed for. For example, if
we designed a model to suggest drugs to cancer patients based on the genetic information of
their tumors, our model should report low confidence for patients that need to be considered
as outlier samples, as wrong medication could have life-threatening consequences.

Table 5.4 provides a summary of some of the anomaly detection methods you can use to identify
anomalies in your data and remove outliers if necessary:

Improving the Performance of Machine Learning Models106

Method Article and URL

Isolation Forest (iForest) Liu et al. 2008

https://ieeexplore.ieee.org/abstract/

document/4781136

Lightweight on-line detector of
anomalies (Loda)

Penvy, 2016

https://link.springer.com/

article/10.1007/s10994-015-5521-0

Local outlier factor (LOF) Breunig et al., 2000

https://dl.acm.org/doi/

abs/10.1145/342009.335388

Angle-Based Outlier
Detection (ABOD)

Kriegel et al., 2008

https://dl.acm.org/doi/

abs/10.1145/1401890.1401946

Robust kernel density
estimation (RKDE)

Kim and Scott, 2008

https://ieeexplore.ieee.org/

document/4518376

Support Vector Method for
Novelty Detection

Schölkopf et al., 1999

https://proceedings.neurips.cc/

paper/1999/hash/8725fb777f25776ffa9076e4

4fcfd776-Abstract.html

Table 5.4 – Widely used anomaly detection techniques (Emmott et al., 2013 and 2015)

One of the effective methods for anomaly detection is iForest (Emmott et al., 2013 and 2015; Liu et
al. 2008), which is available as one of the functionalities of scikit-learn. To try it out, we first
generate a synthetic training dataset as follows:

n_samples, n_outliers = 100, 20

rng = np.random.RandomState(12)

Generating two synthetic clusters of datapoints sampled from a
univariate "normal" (Gaussian) distribution of mean 0 and variance 1

cluster_1 = 0.2 * rng.randn(n_samples, 2) + np.array(

 [1, 1])

cluster_2 = 0.3 * rng.randn(n_samples, 2) + np.array(

 [5, 5])

Generating synthetic outliers

https://ieeexplore.ieee.org/abstract/document/4781136
https://ieeexplore.ieee.org/abstract/document/4781136
https://link.springer.com/article/10.1007/s10994-015-5521-0
https://link.springer.com/article/10.1007/s10994-015-5521-0
https://dl.acm.org/doi/abs/10.1145/342009.335388
https://dl.acm.org/doi/abs/10.1145/342009.335388
https://dl.acm.org/doi/abs/10.1145/1401890.1401946
https://dl.acm.org/doi/abs/10.1145/1401890.1401946
https://ieeexplore.ieee.org/document/4518376
https://ieeexplore.ieee.org/document/4518376
https://proceedings.neurips.cc/paper/1999/hash/8725fb777f25776ffa9076e44fcfd776-Abstract.html
https://proceedings.neurips.cc/paper/1999/hash/8725fb777f25776ffa9076e44fcfd776-Abstract.html
https://proceedings.neurips.cc/paper/1999/hash/8725fb777f25776ffa9076e44fcfd776-Abstract.html

Improving pre-training data processing 107

outliers = rng.uniform(low=2, high=4, size=(n_outliers, 2))

X = np.concatenate([cluster_1, cluster_2, outliers])

y = np.concatenate(

 [np.ones((2 * n_samples), dtype=int),

 -np.ones((n_outliers), dtype=int)])

Then, we use IsolationForest() from scikit-learn:

initializing iForest

clf = IsolationForest(n_estimators = 10, random_state=10)

fitting iForest using training data

clf.fit(X)

plotting the results

scatter = plt.scatter(X[:, 0], X[:, 1])

handles, labels = scatter.legend_elements()

disp = DecisionBoundaryDisplay.from_estimator(

 clf,

 X,

 plot_method = "contour",

 response_method="predict",

 alpha=1

)

disp.ax_.scatter(X[:, 0], X[:, 1], s = 10)

disp.ax_.set_title("Binary decision boundary of iForest (

 n_estimators = 10)")

plt.xlabel('Dimension 1', fontsize = 12)

plt.ylabel('Dimension 2', fontsize = 12)

plt.show()

We used 10 decision trees in the previous code using n_estimator = 10 when initializing
IsolationForest(). This is one of the hyperparameters of iForest and we can play with it to get
better results. You can see the resulting boundaries for n_estimator = 10 and n_estimator
= 100 next.

Improving the Performance of Machine Learning Models108

Figure 5.7 – Decision boundaries of iForest using different numbers of estimators

If you accept the result of an anomaly detection method such as iForest without further investigation,
you might decide to use only the data within the shown boundaries. However, there could be issues
with these techniques, as with any other machine method. Although iForest is not a supervised learning
method, the boundaries for identifying anomalies could be prone to overfitting and not generalizable
for further evaluation or use on unseen data in production. Also, the choice of hyperparameters could
result in considering a large fraction of the data points as outliers mistakenly.

Improving pre-training data processing 109

Benefitting from data of lower quality or relevance

When doing supervised machine learning, we would like to ideally have access to a large quantity of
high-quality data. However, features or output values do not have the same level of certainty across
the data points we have access to. For example, in the case of classification, labels might not all have
the same level of validity. In other words, our confidence in the labels of different data points could be
different. Some of the commonly used labeling processes for data points are conducted by averaging
experimental measurements (for example, as in biological or chemical contexts), or by using the
annotations of multiple experts (or non-experts).

You could also have a problem such as predicting the response of breast cancer patients to specific
drugs where you have access to data on patients’ response to the same or similar drugs in other cancer
types. Then, part of your data has a lower level of relevance to the objective of breast cancer patients’
responses to the drug.

We preferably want to rely on high-quality data, or highly confident annotations and labels in these
cases. However, we might have access to large quantities of data points that are either of lower quality,
or lower relevance to the objective we have in mind. There are a few methods we could use to benefit
from these data points of lower quality or relevance, although they are not successful all the time:

• Assigning weight during optimization: You can assign a weight to each data point when
training machine learning models. For example, in scikit-learn, after initializing a random
forest model such as rf_model = RandomForestClassifier(random_state =
42), you can specify the weight of each datapoint in the fitting step as rf_model.fit(X_
train,y_train, sample_weight = weights_array), where weights_array is
an array of weights for each data point in the training set. These weights could be the confidence
scores you have for each data point according to their relevance to the objective in mind or
their quality. For example, if you use 10 different expert annotators for assigning labels to a
series of data points, you can use a fraction of them to agree on a class label as the weight of
each data point. If there is a data point with a class of 1 but only 7 out of 10 annotators agreed
on this class, it will receive a lower weight compared to another class-1 data point for which
all 10 annotators agreed on its label.

• Ensemble learning: If you consider a distribution of the quality of or confidence score for each
data point, then you can build different models using data points of each part of this distribution
and then combine the predictions of the models, for example, using their weighted average
(see Figure 5.8). The weights assigned to each model could be a number, representative of the
quality of the data points used for its training.

• Transfer learning: In transfer learning, we can train a model on a reference task, typically
with many more data points, and then fine-tune it on a smaller task to come up with the task-
specific predictions (Weiss et al., 2016, Madani Tonekaboni et al., 2020). This method can be
used on data with different levels of confidence (Madani Tonekaboni et al., 2020). You can train

Improving the Performance of Machine Learning Models110

a model on a large dataset with different levels of label confidence (see Figure 5.8), excluding
very low-confidence data and then fine-tune it on the very high-confidence part of your dataset.

Figure 5.8 – Techniques for using data points of different quality or relevance

to the target problem in training machine learning models

These methods could help you reduce the need to generate more high-quality data. However, having
more high-quality and highly relevant data is preferred, if possible.

As the final approach we want to go through in this chapter, we will talk about regularization as a
technique to control overfitting and help in generating models with a higher chance of generalizability.

Regularization to improve model generalizability

We learned in the previous chapter that high model complexity could cause overfitting. One of the
approaches to controlling the model complexity and reducing the effect of features that affect model
generalizability is regularization. In the regularization process, we consider a regularization or penalty
term in the loss function to be optimized during the training process. Regularization, in the simple
case of linear modeling, can be added as follows to the loss function during the optimization process:

Regularization to improve model generalizability 111

where the first term is the loss and Ω (W) is the regularization term as a function of model weights, or
parameters, W . However, regularization could be used with different machine learning methods such
as SVMs or LightGBM (refer to Table 5.2). Three of the common regularization terms are shown in
the following table including L1 regularization, L2 regularization, and their combination.

Method Regularization term Parameters

L2 regularization
 Ω (W) = λ ∑

j=1

p

 w
j
 2

 λ : The regularization parameter
that determines the strength

of regularization

L1 regularization
 Ω (W) = λ ∑

j=1

p

 | w
p
 |

 λ : As in L2 regularization

L2 and L1
 Ω (W) = λ (1 − α _ 2 ∑

j=1

p

 w
j
 2 + α

∑
j=1

p

 | w
j
 |)

 λ : As in L1 and L2 regularization

 α : A missing parameter to determine
the effect of L1 versus L2 in the

regularization process

Table 5.5 – Commonly used regularization methods for machine learning modeling

We can consider the process of optimization with regularization as the process of getting as close
as possible to the optimal parameter set ˆ β while keeping the parameters bound to a constrained
region, as shown in Figure 5.9:

Figure 5.9 – Schematic representation of L1 and L2 norm regularizations

for controlling overfitting in a two-dimensional feature space

Improving the Performance of Machine Learning Models112

Corners in parameter-constrained regions of L1 regularization result in the elimination of some of
the parameters, or making their associated weights zero. However, the convexity of the constrained
parameter region for L2 regularization only results in lowering the effect of parameters by decreasing
their weights. This difference usually results in a higher robustness of L1 regularization to outliers.

Linear classification models with L1 regularization and L2 regularization are called Lasso and Ridge
regression, respectively (Tibshirani, 1996). Elastic-Net was proposed later using a combination of
both L1 regularization and L2 regularization terms (Zou et al., 2005). Here, we want to practice using
these three methods, but you can use regularization hyperparameters with other methods, such as an
SVM or XGBoost classifier (see Table 5.2).

We first import the necessary libraries and design a plotting function to visually show the effect of
the regularization parameter values. We also load the digit dataset from scikit-learn to use for
model training and evaluation:

random_state = 42

loading and splitting digit data to train and test sets

digits = datasets.load_digits()

x = digits.data

y = digits.target

using stratified k-fold (k=5) cross-validation

stratified_kfold_cv = StratifiedKFold(n_splits = 5,

 shuffle=True, random_state=random_state)

function for plotting the CV score across different hyperparameter
values

def reg_search_plot(search_fit, parameter: str):

 """

 :param search_fit: hyperparameter search object after model
fitting

 :param parameter: hyperparameter name

 """

 parameters = [search_fit.cv_results_[

 'params'][iter][parameter] for iter in range(

 0,len(search_fit.cv_results_['params']))]

 mean_test_score = search_fit.cv_results_[

 'mean_test_score']

 plt.scatter(parameters, mean_test_score)

 plt.xticks(fontsize = 12)

 plt.yticks(fontsize = 12)

 plt.xlabel(parameter, fontsize = 12)

 plt.ylabel('accuracy', fontsize = 12)

 plt.show()

Regularization to improve model generalizability 113

We can use the GridSearchCV() function to assess the effect of different regularization parameter
values in the following models. In scikit-learn, the regularization parameter is usually named
alpha instead of λ , and the mixing parameter is called l1_ratio instead of α . Here, we first assess
the effect of different alpha values on Lasso models, with L1 regularization, trained and evaluated
using a digit dataset:

Defining hyperparameter grid

parameter_grid = {"alpha": [0, 0.1, 0.2, 0.3, 0.4, 0.5]}

generating the grid search

lasso_search = GridSearchCV(Lasso(

 random_state = random_state),

 parameter_grid,cv = stratified_kfold_cv,n_jobs=-1)

fitting the grid search cross-validation

lasso_search.fit(x, y)

reg_search_plot(search_fit = lasso_search,

 parameter = 'alpha')

The optimum alpha is identified to be 0.1, as shown in the following plot, which results in the highest
accuracy across the considered values. This means that increasing the effect of regularization after an
alpha value of 0.1 increases the model bias, resulting in a model with low performance in training.

Figure 5.10 – Accuracy versus the regularization parameter alpha for a Lasso model

Improving the Performance of Machine Learning Models114

If we assess the effect of different alpha values in a ridge model, with L2 regularization, we can see
that the performance increases as we increase the strength of regularization (see Figure 5.11).

Figure 5.11 – Accuracy versus the regularization parameter alpha for a ridge model

An alternative to these two methods is Elastic-Net, which combines the effect of L1 and L2 regularizations.
In this case, the trend of the effect of alpha on the model performance is more similar to Lasso;
however, the range of accuracy values is narrower in comparison with Lasso, which only relies on L1
regularization (see Figure 5.12).

Figure 5.12 – Accuracy versus the regularization parameter alpha for an Elastic-Net model

Regularization to improve model generalizability 115

If your dataset is not very small, more complex models help you to achieve higher performance. It
would be only in rare cases that you would consider a linear model your ultimate model. To assess
the effect of regularization on more complex models, we chose the SVM classifier and examined the
effect of different values of C as the regularization parameter in sklearn.svm.SVC():

Defining hyperparameter grid

parameter_grid = {"C": [0.01, 0.2, 0.4, 0.6, 0.8, 1]}

generating the grid search

svc_search = GridSearchCV(SVC(kernel = 'poly',

 random_state = random_state),parameter_grid,

 cv = stratified_kfold_cv,n_jobs=-1)

fitting the grid search cross-validation

svc_search.fit(x, y)

reg_search_plot(search_fit = svc_search, parameter = 'C')

As shown next, the range of accuracy for the models is higher, between 0.92 and 0.99, compared to
linear models with an accuracy of lower than 0.6, but higher regularization controls overfitting and
achieves better performance.

Figure 5.13 – Accuracy versus regularization parameter C for an SVM classification model

In Chapter 12, Going Beyond ML Debugging with Deep Learning, you will also learn about regularization
techniques in deep neural network models.

Improving the Performance of Machine Learning Models116

Summary

In this chapter, you learned about techniques to improve the performance of your models and reduce
their bias and variance. You learned about the different hyperparameters of widely used machine
learning methods, other than deep learning, which will be covered later in the book, and Python
libraries to help you in identifying the optimal hyperparameter sets. You learned about regularization
as another technique to help you in training generalizable machine learning models. You also learned
how to increase the quality of the data to be fed into the training process by methods such as synthetic
data generation and outlier detection.

In the next chapter, you will learn about interpretability and explainability in machine learning
modeling and how you can use the related techniques and Python tools to identify opportunities for
improving your models.

Questions

1. Does adding more features and training data points reduce model variance?

2. Could you provide examples of methods to use to combine data with different confidence in
class labels?

3. How could oversampling improve the generalizability of your supervised machine learning models?

4. What is the difference between DSMOTE and Borderline-SMOTE?

5. Do you need to check the effect of every single value of every hyperparameter of a model during
hyperparameter optimization?

6. Could L1 regularization eliminate the contribution of some of the features to supervised
model predictions?

7. Could Lasso and Ridge regression models result in the same performance on the same test data
if trained using the same training data?

References

• Bergstra, James, and Yoshua Bengio. “Random search for hyper-parameter optimization.” Journal

of machine learning research 13.2 (2012).

• Bergstra, James, et al. “Algorithms for hyper-parameter optimization.” Advances in neural

information processing systems 24 (2011).

• Nguyen, Vu. “Bayesian optimization for accelerating hyper-parameter tuning.” 2019 IEEE second

international conference on artificial intelligence and knowledge engineering (AIKE). IEEE (2019).

• Li, Lisha, et al. “Hyperband: A novel bandit-based approach to hyperparameter optimization.”
Journal of Machine Learning Research 18.1 (2017): pp. 6765-6816.

References 117

• Falkner, Stefan, Aaron Klein, and Frank Hutter. “BOHB: Robust and efficient hyperparameter

optimization at scale.” International Conference on Machine Learning. PMLR (2018).

• Ng, Andrew, Stanford CS229: Machine Learning Course, Autumn 2018.

• Wong, Sebastien C., et al. “Understanding data augmentation for classification: when to warp?.”
2016 international conference on digital image computing: techniques and applications (DICTA).
IEEE (2016).

• Mikołajczyk, Agnieszka, and Michał Grochowski. “Data augmentation for improving deep

learning in image classification problem.” 2018 international interdisciplinary PhD workshop

(IIPhDW). IEEE (2018).

• Shorten, Connor, and Taghi M. Khoshgoftaar. “A survey on image data augmentation for deep

learning.” Journal of big data 6.1 (2019): pp. 1-48.

• Taylor, Luke, and Geoff Nitschke. “Improving deep learning with generic data augmentation.”
2018 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE (2018).

• Shorten, Connor, Taghi M. Khoshgoftaar, and Borko Furht. “Text data augmentation for deep

learning.” Journal of big Data 8.1 (2021): pp. 1-34.

• Perez, Luis, and Jason Wang. “The effectiveness of data augmentation in image classification using

deep learning.” arXiv preprint arXiv:1712.04621 (2017).

• Ashrapov, Insaf. “Tabular GANs for uneven distribution.” arXiv preprint arXiv:2010.00638 (2020).

• Xu, Lei, et al. “Modeling tabular data using conditional gan.” Advances in Neural Information

Processing Systems 32 (2019).

• Chawla, Nitesh V., et al. “SMOTE: synthetic minority over-sampling technique.” Journal of artificial

intelligence research 16 (2002): pp. 321-357.

• Han, H., Wang, WY., Mao, BH. (2005). “Borderline-SMOTE: A New Over-Sampling Method

in Imbalanced Data Sets Learning.” In: Huang, DS., Zhang, XP., Huang, GB. (eds) Advances

in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol. 3644. Springer,
Berlin, Heidelberg.

• He, Haibo, Yang Bai, E. A. Garcia, and Shutao Li, “ADASYN: Adaptive synthetic sampling approach

for imbalanced learning.” 2008 IEEE International Joint Conference on Neural Networks (IEEE World

Congress on Computational Intelligence) (2008): pp. 1322-1328, doi: 10.1109/IJCNN.2008.4633969.

• X. Xiaolong, C. Wen, and S. Yanfei, “Over-sampling algorithm for imbalanced data classification,”
in Journal of Systems Engineering and Electronics, vol. 30, no. 6, pp. 1182-1191, Dec. 2019,
doi: 10.21629/JSEE.2019.06.12.

• Last, Felix, Georgios Douzas, and Fernando Bacao. “Oversampling for imbalanced learning

based on k-means and smote.” arXiv preprint arXiv:1711.00837 (2017).

Improving the Performance of Machine Learning Models118

• Emmott, Andrew F., et al. “Systematic construction of anomaly detection benchmarks from real

data.” Proceedings of the ACM SIGKDD workshop on outlier detection and description. 2013.

• Emmott, Andrew, et al. “A meta-analysis of the anomaly detection problem.” arXiv preprint
arXiv:1503.01158 (2015).

• Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation forest.” 2008 eighth IEEE international

conference on data mining. IEEE (2008).

• Pevný, Tomáš. “Loda: Lightweight on-line detector of anomalies.” Machine Learning 102 (2016):
pp. 275-304.

• Breunig, Markus M., et al. “LOF: identifying density-based local outliers.” Proceedings of the 2000

ACM SIGMOD international conference on Management of data (2000).

• Kriegel, Hans-Peter, Matthias Schubert, and Arthur Zimek. “Angle-based outlier detection

in high-dimensional data.” Proceedings of the 14th ACM SIGKDD international conference on

Knowledge discovery and data mining (2008).

• Joo Seuk Kim and C. Scott, “Robust kernel density estimation.” 2008 IEEE International

Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA (2008): pp. 3381-
3384, doi: 10.1109/ICASSP.2008.4518376.

• Schölkopf, Bernhard, et al. “Support vector method for novelty detection.” Advances in neural

information processing systems 12 (1999).

• Weiss, Karl, Taghi M. Khoshgoftaar, and DingDing Wang. “A survey of transfer learning.” Journal

of Big data 3.1 (2016): pp. 1-40.

• Tonekaboni, Seyed Ali Madani, et al. “Learning across label confidence distributions using

Filtered Transfer Learning.” 2020 19th IEEE International Conference on Machine Learning and

Applications (ICMLA). IEEE (2020).

• Tibshirani, Robert. “Regression shrinkage and selection via the lasso.” Journal of the Royal

Statistical Society: Series B (Methodological) 58.1 (1996): pp. 267-288.

• Hastie, Trevor, et al. The elements of statistical learning: data mining, inference, and prediction.
vol. 2. New York: Springer, 2009.

• Zou, Hui, and Trevor Hastie. “Regularization and variable selection via the elastic net.” Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 67.2 (2005): pp. 301-320.

6
Interpretability and

Explainability in Machine

Learning Modeling

The majority of the machine learning models we use or develop are complex and require the use of
explainability techniques to identify opportunities for improving their performance, reducing their
bias, and increasing their reliability.

We will look at the following topics in this chapter:

• Interpretable versus black-box machine learning

• Explainability methods in machine learning

• Practicing machine learning explainability in Python

• Reviewing why having explainability is not enough

By the end of this chapter, you will have learned about the importance of explainability in machine
learning modeling and practiced using some of the explainability techniques in Python.

Technical requirements

The following requirements should be considered for this chapter as they help you better understand
the mentioned concepts, use them in your projects, and practice with the provided code:

• Python library requirements:

 � sklearn >= 1.2.2

 � numpy >= 1.22.4

 � matplotlib >= 3.7.1

Interpretability and Explainability in Machine Learning Modeling120

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter06.

Interpretable versus black-box machine learning

Interpretable and simple models such as linear regression make it easy to assess the possibility of
improving them, finding issues with them such as biases that need to be detected and removed, and
building trust in using such models. However, to achieve higher performance, we usually don’t stop
with these simple models and rely on complex or so-called black-box models. In this section, we will
review some of the interpretable models and then introduce techniques you can use to explain your
black-box models.

Interpretable machine learning models

Linear models such as linear and logistic regression, shallow decision trees, and Naive Bayes classifiers
are examples of simple and interpretable methods (Figure 6.1). We can easily extract the contribution
of features in predictions of outputs for these models and identify opportunities for improving their
performance, such as by adding or removing features or changing feature normalization. We can
also easily identify if there are biases in our models – for example, for a specific race or gender group.
However, these models are very simple, and having access to large datasets of thousands or millions
of samples allows us to train high-performance but complex models:

Figure 6.1 – Examples of interpretable classification methods

Complex models, such as random forest models with many deep decision trees or deep neural networks,
help us in achieving higher performance, although they work almost like black-box systems. To be
able to understand these models and explain how they come up with their predictions, and to build
trust in their utility, we can use machine learning explainability techniques.

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter06

Interpretable versus black-box machine learning 121

Explainability for complex models

Explainability techniques work like bridges between complex machine learning models and users.
They are supposed to provide explainabilities that are faithful to how the models work. And on the
other side, they are supposed to provide explanations that are useful and understandable for the
users. These explanations can be used to identify opportunities for improving model performance,
reducing the sensitivity of models to small feature value changes, increasing data efficiency in model
training, trying to help in proper reasoning in the model and avoid spurious correlations, and helping
in achieving fairness (Weber et al., 2022; Figure 6.2):

Figure 6.2 – Effects of using explainability on machine learning models

Now that you have a better understanding of the importance of explainability in machine learning
modeling, we are ready to get into the details of explainability techniques.

Interpretability and Explainability in Machine Learning Modeling122

Explainability methods in machine learning

We need to keep the following considerations in mind when using or developing explainability
techniques for machine learning modeling (Ribeiro et al., 2016):

• Interpretability: The explanations need to be understandable to users. One of the main objectives
of machine learning explanation is to make complex models understandable for users and, if
possible, provide actionable information.

• Local fidelity (faithfulness): Capturing the complexity of models so that they are completely
faithful and meet global faithfulness criteria can’t be achieved by all techniques. However, an
explanation should be at least locally faithful to the model. In other words, an explanation
needs to properly explain how the model behaves in the close neighborhood of the data point
under investigation.

• Being model-agnostic: Although there are techniques that are designed for specific machine
learning methods, such as random forest, they are supposed to be agnostic to models that are
built with different hyperparameters or for different datasets. An explainability technique needs
to consider the model as a black box and provide explanations for the model either globally
or locally.

Explainability techniques can be categorized into local explainability and global explainability methods.
Local explainability methods aim to meet the previously listed criteria, while global explainability
techniques try to go beyond local explainability and provide global explanations to the models.

Local explainability techniques

Local explainability helps us understand the behavior of a model close to a data point in a feature
space. Although these models meet local fidelity criteria, features identified to be locally important
might not be globally important, and vice versa (Ribeiro et al., 2016). This means that we cannot infer
local explanations from global explanations, and vice versa, easily. In this section, we will discuss five
local explanation techniques:

• Feature importance

• Counterfactuals

• Sample-based explainability

• Rule-based explainability

• Saliency maps

We will also go through a few global explainability techniques after.

Explainability methods in machine learning 123

Feature importance

One of the primary approaches to local explainability is explaining the contribution of each feature
locally in predicting the outcome of the target data points in a neighborhood. Widely used examples
of such methods include SHapley Additive exPlanations (SHAP) (Lundberg et al., 2017) and Local

Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016). Let’s briefly discuss the
theory behind these two methods and practice them in Python.

Local explanation using SHAP

SHAP is a Python framework that was introduced by Scott Lundberg and Su-In Lee (Lundberg and
Lee, 2017). The idea of this framework is based on using the Shapely value, a known concept named
after Lloyd Shapley, an American game theorist and Nobel Prize winner (Winter, 2022). SHAP can
determine the contribution of each feature to a model’s prediction. As features work cooperatively in
determining the decision boundaries of classification models and eventually affecting model predictions,
SHAP tries to first identify the marginal contribution of each feature and then provide Shapely values as
an estimate of the contribution of each feature in cooperation with the whole feature set regarding the
predictions of a model. From a theoretical perspective, these marginal contributions can be calculated
by removing features individually and in different combinations, calculating the effect of each feature
set removal, and then normalizing the contributions. This process can’t be repeated for all possible
feature combinations as the number of possible combinations could grow exponentially to billions,
even for a model with 40 features. Instead, this process is used a limited number of times to come up
with an approximation of Shapely values. Also, since removing features is not possible in most machine
learning models, feature values get replaced by alternative values either from a random distribution
or from a background set of meaningful and possible values for each feature. We don’t want to get
into the theoretical details of this process but we will practice using this approach in the next section.

Local explanation using LIME

LIME is an alternative to SHAP for local explainability that explains the predictions of any classifier
or regressor, in a model-agnostic way, by approximating a model locally with an interpretable model
(Figure 6.3; Ribeiro et al., 2016):

Figure 6.3 – Schematic representation of local interpretable modeling in LIME

Interpretability and Explainability in Machine Learning Modeling124

Some of the advantages of this technique, which were also mentioned in the original paper by Ribeiro
et al., 2016, include the following:

• The theory and the provided explanations are intuitive and easy to understand

• Sparse explanations are provided to increase interpretability

• Works with different types of structured and unstructured data, such as texts and images

Counterfactuals

Counterfactual examples, or explanations, help us identify what needs to be changed in an instance
to change the outcome of a classification model. These counterfactuals could help in identifying
actionable paths in many applications, such as finance, retail, marketing, recruiting, and healthcare.
One example is when suggesting to a bank customer how they can change the rejection to their loan
application (Guidotti, 2022). Counterfactuals could also help in identifying biases in models that help us
improve model performance or eliminate fairness issues in our models. We need to keep the following
considerations in mind while generating and using counterfactual explanations (Guidotti, 2022):

• Validity: A counterfactual example is valid if and only if its classification outcome would be
different from the original sample.

• Similarity: A counterfactual example should be as similar as possible to the original data point.

• Diversity: Although counterfactual examples should be similar to the original samples they
are derived from, they need to be diverse among each other to provide different options (that
is, different possible feature changes).

• Actionability: Not all the feature value changes are actionable. The actionability of the
counterfactuals that are suggested by a counterfactual method is an important factor in
benefitting from them in practice.

• Plausibility: The feature values of a counterfactual example should be plausible. The plausibility
of the counterfactuals increases trust in deriving explanations from them.

We also have to note that counterfactual explainers need to be efficient and fast enough in generating
the counterfactuals and stable in generating counterfactuals for similar data points (Guidotti, 2022).

Sample-based explainability

Another approach to explainability is to rely on the feature values and results of real or synthetic
data points to help in local model explainability. In this category of explainability techniques, we aim
to find out which samples are misclassified and what feature sets result in an increasing chance of
misclassification to help us explain our models. We can also assess which training data points result
in a change in the decision boundary so that we can predict the output of test or production data
points. There are statistical methods such as the Influence function (Koh and Liang 2017), a classical

Explainability methods in machine learning 125

approach for assessing the influence of samples on model parameters, that we can use to identify the
sample’s contribution to the decision-making process of models.

Rule-based explainability

Rule-based methods such as Anchor explanations aim to find the conditions of feature values that
result in a high probability of getting the same output (Ribeiro et al., 2018). For example, in the case of
predicting the salary of individuals in a dataset to be less than or equal to 50k or above 50k, “Education
<= high school to result in <=50k salary” could be considered a rule in rule-based explanation. These
explanations need to be locally faithful.

Saliency maps

The objective of saliency maps is to explain which features contribute more or less to the predicted
outputs for a data point. These methods are commonly used in machine learning or deep learning
models that have been trained on image data (Simonyan et al., 2013). For example, we can use saliency
maps to figure out if a classification model uses a background forest to identify if it is an image of a
bear rather than a teddy bear or uses the components of the bear’s body for it.

Global explanation

Despite the difficulty in achieving a reliable global explanation for machine learning models, it could
increase trust in them (Ribeiro et al., 2016). Performance is not the only aspect of building trust when
developing and deploying machine learning models. And local explanations, although very helpful in
investigating individual samples and providing actionable information, might not be enough for this
trust building. Here, we will discuss three approaches for going beyond local explanation, including
collecting local explanations, knowledge distillation, and summaries of counterfactuals.

Collecting local explanations

Submodular pick LIME (SP-LIME) is a global explanation technique that uses local explanations of
LIME to come up with a global perspective of a model’s behavior (Riberio et al., 2016). As it might
not be feasible to use the local explanations of all data points, SP-LIME picks a representative diverse
set of samples capable of representing the global behavior of the model.

Knowledge distillation

The idea of knowledge distillation is to approximate the behavior of complex models, which was
initially proposed for neural network models, using simpler interpretable models such as decision
trees (Hinton et al., 2015; Frosst and Hinton, 2017). In other words, we aim to build simpler models,
such as decision trees, that approximate the predictions of complex models for a given set of samples.

Interpretability and Explainability in Machine Learning Modeling126

Summaries of counterfactuals

We can use a summary of counterfactuals that’s been generated for multiple data points with correct
and incorrect predicted outcomes to figure out the contribution of features in output prediction and
the sensitivity of a prediction to feature perturbation. We will practice using counterfactuals later in
this chapter, where you will see that not all counterfactuals are acceptable and they need to be chosen
according to the meaning behind features and their values.

Practicing machine learning explainability in Python

There are several Python libraries you can use to extract local and global explanations for your
machine learning models (Table 6.1). Here, we want to practice with a few of the ones that focus on
local model explainability:

Library Library Name

for Importing

and Installation

URL

SHAP Shap https://pypi.org/project/shap/

LIME Lime https://pypi.org/project/lime/

Shapash shapash https://pypi.org/project/

shapash/

ELI5 eli5 https://pypi.org/project/eli5/

Explainer dashboard explainer

dashboard

https://pypi.org/project/

explainerdashboard/

Dalex dalex https://pypi.org/project/dalex/

OmniXAI omnixai https://pypi.org/project/

omnixai/

CARLA carla https://carla-counterfactual-

and-recourse-library.

readthedocs.io/en/latest/

Diverse Counterfactual

Explanations (DiCE)
dice-ml https://pypi.org/project/dice-

ml/

Machine Learning
Library Extensions

mlxtend https://pypi.org/project/

mlxtend/

Anchor anchor https://github.com/marcotcr/

anchor

Table 6.1 – Python libraries or repositories with available functionalities

for machine learning model explainability

https://pypi.org/project/shap/
https://pypi.org/project/lime/
https://pypi.org/project/shapash/
https://pypi.org/project/shapash/
https://pypi.org/project/eli5/
https://pypi.org/project/explainerdashboard/
https://pypi.org/project/explainerdashboard/
https://pypi.org/project/dalex/
https://pypi.org/project/omnixai/
https://pypi.org/project/omnixai/
https://carla-counterfactual-and-recourse-library.readthedocs.io/en/latest/
https://carla-counterfactual-and-recourse-library.readthedocs.io/en/latest/
https://carla-counterfactual-and-recourse-library.readthedocs.io/en/latest/
https://pypi.org/project/dice-ml/
https://pypi.org/project/dice-ml/
https://pypi.org/project/mlxtend/
https://pypi.org/project/mlxtend/
https://github.com/marcotcr/anchor
https://github.com/marcotcr/anchor

Practicing machine learning explainability in Python 127

First, we will practice with SHAP, a widely used technique for machine learning explainability.

Explanations in SHAP

We’ll first look at performing local explanation with SHAP, followed by global explanation later.

Local explanation

In this section, we will practice with SHAP to extract feature importance from our machine learning
models. We will use the University of California Irvine (UCI) adult dataset to predict if people made
over $50k in the 90s; this is also available as the adult income dataset as part of the SHAP library. You
can read about the definition of the features and other information about this dataset at https://
archive.ics.uci.edu/ml/datasets/adult.

First, we need to build a supervised machine learning model using this dataset before using any
explainability method. We will use XGBoost as a high-performance machine learning method for
tabular data to practice with SHAP:

loading UCI adult income dataset

classification task to predict if people made over $50k in the 90s
or not

X,y = shap.datasets.adult()

split the data to train and test sets

X_train, X_test, y_train, y_test = train_test_split(

 X, y, test_size = 0.3, random_state=10)

initializing a XGboost model

xgb_model = xgboost.XGBClassifier(random_state=42)

fitting the XGboost model with training data

xgb_model.fit(X_train, y_train)

generating predictions for the test set

y_pred = xgb_model.predict(X_test)

identifying misclassified datapoints in the test set

misclassified_index = np.where(y_test != y_pred)[0]

calculating roc-auc of predictions

print("ROC-AUC of predictions: {}".format(

 roc_auc_score(y_test, xgb_model.predict_proba(

 X_test)[:, 1])))

print("First 5 misclassified test set datapoints:

 {}".format(misclassified_index[0:5]))

There are different methods to approximate feature importance that are available in the SHAP library, such
as shap.LinearExplainer(), shap.KernelExplainer(), shap.TreeExplainer(),
and shap.DeepExplainer(). You can use shap.TreeExplainer() in the case of tree-based

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult

Interpretability and Explainability in Machine Learning Modeling128

methods such as random forest and XGBoost. Let’s build an explainer object using the trained model
and then extract Shapely values:

generate the Tree explainer

explainer = shap.TreeExplainer(xgb_model)

extract SHAP values from the explainer object

shap_values = explainer.shap_values(X_test)

There are multiple plotting functions in the SHAP library to provide us with visual illustrations of
feature importance using Shapely values. For example, we can use shap.dependence_plot()
to identify the Shapely value for the Education-Num feature:

If interaction_index of "auto" is chosen then

the strongest interaction is used to color the dots.

shap.dependence_plot("Education-Num", shap_values, X_test)

The following dependence plot clearly shows that a higher Education-Num value results in a higher
Shapely value or a greater contribution in predicting a positive outcome (that is, >50k salary):

Figure 6.4 – SHAP values for the Education-Num feature in the test set of the adult income dataset

Practicing machine learning explainability in Python 129

We can repeat this process with other features, such as Age, which results in a similar explanation as
Education-Num. The only difference in using shap.dependence_plot() for Education-Num
and Age is interaction_index, which is specified as None for Age:

generate dependence plot for "Age" feature

shap.dependence_plot("Age", shap_values, X_test,

 interaction_index=None)

Figure 6.5 – SHAP values for the Age feature in the test set of the adult income dataset

If we need to extract an explanation of our model on a specific subset of our dataset, we can use the same
functions but use the subset of data we want to investigate instead of the whole dataset. We can also
use training and test sets to identify explanations in the data that’s used for model training and unseen
data we want to use to evaluate the performance of our model. To showcase this, we will investigate
the importance of Age on a subset of the test set that’s been misclassified using the following code:

generate dependence plot for "Age" feature

shap.dependence_plot("Age",

 shap_values[misclassified_index],

 X_test.iloc[misclassified_index,:],

 interaction_index=None)

Interpretability and Explainability in Machine Learning Modeling130

As you can see, the SHAP values have similar trends for misclassified data points (Figure 6.6) and the
whole dataset (Figure 6.5):

Figure 6.6 – SHAP values for the Age feature for the misclassified

data points in the test set of the adult income dataset

In addition to extracting Shapely values across a series of data points, we also need to investigate how
features contributed to the correct or wrong prediction for a data point. Here, we chose two samples:
sample 12, with the actual label being False or 0 (that is, low income) and the predicted label being
True or 1 (that is, high income), and sample 24, with the actual and predicted labels of True and
False, respectively. Here, we can use shap.plots._waterfall.waterfall_legacy() and
extract the expected values of the input features, as shown in Figure 6.7. In this kind of plotting in
SHAP, for each feature, X, f(X) is the predicted value given X, and E[f(X)] is the expected value of the
target variable (that is, the mean of all predictions, mean(model.predict(X))). This plot shows us how
much a single feature affected the prediction:

extracting expected values

expected_value = explainer.expected_value

generate waterfall plot for observation 12

shap.plots._waterfall.waterfall_legacy(expected_value,

 shap_values[12], features=X_test.iloc[12,:],

 feature_names=X.columns, max_display=15, show=True)

Practicing machine learning explainability in Python 131

generate waterfall plot for observation 24

shap.plots._waterfall.waterfall_legacy(expected_value,

 shap_values[24],features=X_test.iloc[24,:],

 feature_names=X.columns,max_display=15, show=True)

Figure 6.7, which is for sample 12, shows us that Relationship and Education-Num are the features with
the most effect, and Race and Country are the ones with the least effect on the outcome of this sample:

Figure 6.7 – SHAP waterfall plot of sample 12 in the adult income dataset

Relationship and Education-Num are also the features with the most effect for sample 24 (Figure 6.8).
However, the third most contribution in sample 12 is from Hours per week, which has a low
effect on the outcome of sample 24. This is the type of analysis we can do to compare some of the
incorrect predictions and identify potentially actionable suggestions for improving model performance.
Alternatively, we can extract actionable suggestions to improve the future income of individuals in
this dataset:

Interpretability and Explainability in Machine Learning Modeling132

Figure 6.8 – SHAP waterfall plot of sample 24 in the adult income dataset

Despite the easy-to-understand insights provided by SHAP, we need to make sure feature dependencies
in our models don’t lead to confusion when we interpret Shapely values.

Global explanation

Although shap.dependence_plot() might seem to provide a global explanation, as it shows
the effect of a feature across all or a subset of data points, we need explanations across model features
and data points to build trust for our models. shap.summary_plot() is an example of such a
global explanation that summarizes the Shapely values of features across the specified set of data points.
These kinds of summary plots and results are important for identifying the most effective features and
understanding if there are biases, such as concerning race or sex, in our model. With the following
summary plot (Figure 6.9), we can easily see that Sex and Race are not among the features with the
most effect, although their effect is not necessarily negligible and might need further investigation.
We will talk about model bias and fairness in the next chapter:

Practicing machine learning explainability in Python 133

Figure 6.9 – SHAP summary plot for the adult income dataset

Here is the code to generate the previous summary plot:

create a SHAP beeswarm plot (i.e. SHAP summary plot)

shap.summary_plot(shap_values, X_test,plot_type="bar")

Explanations using LIME

Having learned how to perform explanations using SHAP, we will now turn our attention to LIME.
We will start with local explanation first.

Local explanation

LIME is another way to get an easy-to-understand local explanation for individual data points.
We can use the lime Python library to build an explainer object and then use it to identify local
explanations for samples of interest. Here, once again, we will use the XGBoost model we trained for
SHAP and generate explanations for sample 12 and sample 24 to show that their outcomes
were incorrectly predicted.

Interpretability and Explainability in Machine Learning Modeling134

By default, lime uses ridge regression as the interpretable model for generating local explanations.
We can change this method in the lime.lime_tabular.LimeTabularExplainer() class
by changing feature_selection to none for linear modeling without any feature selection, or
lasso_path, which uses lasso_path() from scikit-learn, as another form of supervised
linear modeling with regularization.

Note

The mode fitting line for fitting the XGBoost model for the UCI adult dataset, which was
presented in a previous code snippet, needs to be changed since xgb_model.fit(np.
array(X_train), y_train) makes the model usable for the lime library:

create explainer

explainer = lime.lime_tabular.LimeTabularExplainer(

 np.array(X_train), feature_names=X_train.columns,

 #X_train.to_numpy()

 class_names=['Lower income','Higher income'],

 verbose=True)

visualizing explanation by LIME

print('actual label of sample 12: {}'.format(y_test[12]))

print('prediction for sample 12: {}'.format(y_pred[12]))

exp = explainer.explain_instance(

 data_row = X_test.iloc[12],

 predict_fn = xgb_model.predict_proba)

exp.show_in_notebook(show_table=True)

You can interpret the middle plot in Figure 6.10 for sample 12 as the local contribution of features
in predicting the outcome as Higher income or Lower income. Similar to SHAP, the Education-Num and
Relationship features contribute the most to the sample being incorrectly predicted as Higher income.
On the other hand, Capital Gain and Capital Loss have the maximum contribution in pushing the
prediction of the sample’s output as the other class. But we also have to pay attention to feature values
as both Capital Gain and Capital Loss are zero for this sample:

Practicing machine learning explainability in Python 135

Figure 6.10 – LIME local explanation for sample 12 in the adult income dataset

Similarly, we can investigate the result of LIME for sample 24, as shown in Figure 6.11:

Figure 6.11 – LIME local explanation for sample 24 in the adult income dataset

Interpretability and Explainability in Machine Learning Modeling136

Capital Gain, Education-Num, and Hours per week contribute the most to predicting the output in
positive or negative directions. However, Capital Gain doesn’t affect this specific data point as its
value is zero.

Global explanation

Submodular pick LIME (SP_LIME) is a global explanation method in which a subset of samples get
selected as candidates, and then we can use the explanation of these candidates via LIME so that they’re
representative of the global explanation of the model. We can use lime.submodular_pick.
SubmodularPick() to pick these samples. Here are the parameters of this class that could help
you explain your global regression or classification models:

• predict_fn (prediction function): For ScikitClassifiers, this is classifier.
predict_proba(), while for ScikitRegressors, this is regressor.predict()

• sample_size: The number of data points to explain if method == 'sample' is chosen

• num_exps_desired: The number of explanation objects returned

• num_features: The maximum number of features present in the explanation:

sp_obj = submodular_pick.SubmodularPick(explainer,

 np.array(X_train), xgb_model.predict_proba,

 method='sample', sample_size=3, num_features=8,

 num_exps_desired=5)

showing explanation for the picked instances for explanation if you
are using Jupyter or Colab notebook

[exp.show_in_notebook() for exp in sp_obj.explanations]

Practicing machine learning explainability in Python 137

Figure 6.12 shows the three data points that were picked by SP-LIME:

Figure 6.12 – Data points selected by SPI-LIME for global explainability

But instead of visualizing the picked instances, you can use the as_map() parameter instead of
show_in_notebook() for each explanation object, as part of the explanation objects in sp_obj.
explanations, and then summarize the information for a bigger set of data points instead of
investigating a handful of samples. For such analysis, you can use a small percentage of data points,
such as 1% or lower in the case of very large datasets with tens of thousands of data points or more.

Interpretability and Explainability in Machine Learning Modeling138

Counterfactual generation using Diverse Counterfactual

Explanations (DiCE)

You can use the dice_ml Python library (Mothilal et al., 2020) to generate counterfactuals and
understand how a model can switch from one prediction to another, as explained earlier in this chapter.
First, we must train a model and then make an explanation object using the dice_ml.Dice()
Python class, after installing and importing the dice_ml library, as follows:

This example is taken from https://github.com/interpretml/DiCE

dataset = helpers.load_adult_income_dataset()

target = dataset["income"] # outcome variable

train_dataset, test_dataset, _, _ = train_test_split(

 dataset,target,test_size=0.2,random_state=0,

 stratify=target)

Dataset for training an ML model

d = dice_ml.Data(dataframe=train_dataset,

 continuous_features=['age','hours_per_week'],

 outcome_name='income')

Pre-trained ML model

m = dice_ml.Model(

 model_path=dice_ml.utils.helpers.get_adult_income_modelpath(),

 backend='TF2', func="ohe-min-max")

DiCE explanation instance

exp = dice_ml.Dice(d,m)

Then, we can use the generated explanation object to generate counterfactuals for one or multiple
samples. Here, we are generating 10 counterfactuals for sample 1:

query_instance = test_dataset.drop(columns="income")[0:1]

dice_exp = exp.generate_counterfactuals(query_instance,

 total_CFs=10, desired_class="opposite",

 random_seed = 42)

Visualize counterfactual explanation

dice_exp.visualize_as_dataframe()

Practicing machine learning explainability in Python 139

Figure 6.13 shows both the feature values of the target sample and 10 corresponding counterfactuals:

Figure 6.13 – A selected data point and the generated counterfactuals from the adult income dataset

Although all counterfactuals meet the objective of switching the outcome of the target sample (that
is, sample 1), not all counterfactuals are feasible according to the definition and meaning of each
feature. For example, if we want to suggest to a 29-year-old individual that they change their outcome
from low to high salary, suggesting that they will earn a high salary when they are 80 years old is not
an effective and actionable suggestion. Also, suggesting a change of hours_per_week of work from 38
to >90 is not feasible. You need to use such considerations in rejecting counterfactuals so that you
can identify opportunities for model performance and provide actionable suggestions to users. Also,
you can switch between different techniques to generate more meaningful counterfactuals for your
models and applications.

There are more recent Python libraries such as Dalex (Baniecki et al., 2021) and OmniXA (Yang
et al., 2022) that you can use for model explainability. We will also discuss how these methods and
Python libraries can be used to decrease bias and help us move toward fairness in developing new or
revising our already trained machine learning models.

Interpretability and Explainability in Machine Learning Modeling140

Reviewing why having explainability is not enough

Explainability helps us build trust for the users of our models. As you learned in this chapter, you
can use explainability techniques to understand how your models generate the outputs for one or
multiple instances in a dataset. These explanations could help in improving our models from a
performance and fairness perspective. However, we cannot achieve such improvements by simply
using these techniques blindly and generating some results in Python. For example, as we discussed
in the Counterfactual generation using Diverse Counterfactual Explanations (DiCE) section, some of
the generated counterfactuals might not be reasonable and meaningful and we cannot rely on them.
Or, when generating local explanations for one or multiple data points using SHAP or LIME, we
need to pay attention to the meaning of features, the range of values for each feature and the meaning
behind them, and the characteristics of each data point we investigate. One aspect of decision-making
using explainability is to distinguish the issues with the model and the specific data points in training,
testing, or production that we are investigating. A data point could be an outlier that makes our model
less reliable for it but doesn’t necessarily make our model less reliable as a whole. In the next chapter,
Chapter 7, Decreasing Bias and Achieving Fairness, we will discuss that bias detection is not simply
about identifying if there are features such as age, race, or skin color that our models rely on.

Altogether, these considerations tell us that running a few Python classes to use explainability for
our models is not enough to achieve trust and generate meaningful explanations. There is more to it.

Summary

In this chapter, you learned about interpretable machine learning models and how explainability
techniques could help you in improving the performance and reliability of your models. You learned
about different local and global explainability techniques, such as SHAP and LIME, and practiced
with them in Python. You also had the chance to practice with the provided Python code to learn
how to use machine learning explainability techniques in your projects.

In the next chapter, you will learn about the approaches to detect and decrease biases in your models
and how you can use the available functionalities in Python to meet the necessary fairness criteria
when developing machine learning models.

Questions

1. How could explainability help you improve your model’s performance?

2. What is the difference between local and global explainability?

3. Is it better to use linear models because of their interpretability?

4. Does explainability analysis make a machine learning model more reliable?

5. Could you explain the difference between SHAP and LIME for machine learning explainability?

6. How could you benefit from counterfactuals in developing machine learning models?

References 141

7. Assume a machine learning model is used for loan approval in a bank. Are all suggested
counterfactuals useful in suggesting ways a person could improve their chance of getting approval?

References

• Weber, Leander, et al. Beyond explaining: Opportunities and challenges of XAI-based model

improvement. Information Fusion (2022).

• Linardatos, Pantelis, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explainable AI: A review

of machine learning interpretability methods. Entropy 23.1 (2020): 18.

• Gilpin, Leilani H., et al. Explaining explanations: An overview of interpretability of machine

learning. 2018 IEEE 5th International Conference on data science and advanced analytics
(DSAA). IEEE, 2018.

• Carvalho, Diogo V., Eduardo M. Pereira, and Jaime S. Cardoso. Machine learning interpretability:

A survey on methods and metrics. Electronics 8.8 (2019): 832.

• Winter, Eyal. The Shapley value. Handbook of game theory with economic applications 3
(2002): 2025-2054.

• A Guide to Explainable AI Using Python: https://www.thepythoncode.com/article/
explainable-ai-model-python

• Burkart, Nadia, and Marco F. Huber. A survey on the explainability of supervised machine

learning. Journal of Artificial Intelligence Research 70 (2021): 245-317.

• Guidotti, Riccardo. Counterfactual explanations and how to find them: literature review and

benchmarking. Data Mining and Knowledge Discovery (2022): 1-55.

• Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic

explanations. Proceedings of the AAAI conference on artificial intelligence. Vol. 32. No. 1. 2018.

• Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015).

• Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:

Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013).

• Frosst, Nicholas, and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784 (2017).

• Lundberg, Scott M., and Su-In Lee. A unified approach to interpreting model predictions. Advances
in neural information processing systems 30 (2017).

• Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “Why should I trust you?” Explaining

the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining. 2016.

https://www.thepythoncode.com/article/explainable-ai-model-python
https://www.thepythoncode.com/article/explainable-ai-model-python

Interpretability and Explainability in Machine Learning Modeling142

• Baniecki, Hubert, et al. Dalex: responsible machine learning with interactive explainability and

fairness in Python. The Journal of Machine Learning Research 22.1 (2021): 9759-9765.

• Yang, Wenzhuo, et al. OmniXAI: A Library for Explainable AI. arXiv preprint
arXiv:2206.01612 (2022).

• Hima Lakkaraju, Julius Adebayo, Sameer Singh, AAAI 2021 Tutorial on Explaining Machine

Learning Predictions.

• Mothilal, Ramaravind K., Amit Sharma, and Chenhao Tan. Explaining machine learning

classifiers through diverse counterfactual explanations. Proceedings of the 2020 conference on
fairness, accountability, and transparency. 2020.

7
Decreasing Bias

and Achieving Fairness

Fairness is an important topic when it comes to using machine learning across different industries,
as we discussed in Chapter 3, Debugging toward Responsible AI. In this chapter, we will provide you
with some widely used notions and definitions of fairness in machine learning settings, as well as how
to use fairness and explainability Python libraries that are designed to not only help you in assessing
fairness in your models but also improve them in this regard.

This chapter includes many figures and code examples to help you better understand these concepts
and start benefiting from them in your projects. Note that one chapter is far from enough to make
you an expert on the topic of fairness, but this chapter will provide you with the necessary knowledge
and tools to start practicing this subject in your projects. You can learn more about this topic using
more advanced resources dedicated to machine learning fairness.

We will cover the following topics in this chapter:

• Fairness in machine learning modeling

• Sources of bias

• Using explainability techniques

• Fairness assessment and improvement in Python

By the end of this chapter, you will have learned about some technical details and Python tools that
you can use to assess fairness and reduce biases in your models. You will also learn how to benefit
from the machine learning explainability techniques you learned about in Chapter 6, Interpretability

and Explainability in Machine Learning Modeling.

Decreasing Bias and Achieving Fairness144

Technical requirements

The following requirements should be considered for this chapter as they will help you better understand
the concepts, use them in your projects, and practice with the provided code:

• Python library requirements:

 � sklearn >= 1.2.2

 � numpy >= 1.22.4

 � pytest >= 7.2.2

 � shap >= 0.41.0

 � aif360 >= 0.5.0

 � fairlearn >= 0.8.0

• Basic knowledge of the machine learning explainability concepts discussed in the previous chapter

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter07.

Fairness in machine learning modeling

To assess fairness, we need to have specific considerations in mind and then use proper metrics to
quantify fairness in our models. Table 7.1 provides you with some of the considerations, definitions,
and approaches to either evaluate or achieve fairness in machine learning modeling. We will go
through the mathematical definitions of demographic parity, equality of odds or equalized odds, and
equality of opportunity here as different group fairness definitions. Group fairness definitions ensure
the fairness of groups of people with common attributes and characteristics instead of individuals:

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter07

Fairness in machine learning modeling 145

Topics in Machine Learning Fairness Description

Demographic parity Ensures predictions are not dependent on a given
sensitive attribute, such as ethnicity, sex, or race

Equality of odds Ensures the independence of predictions to a given
sensitive attribute, such as ethnicity, sex, or race
given a true output

Equality of opportunity Ensures the equality of opportunities provided for
individuals or groups of people

Individual fairness Ensures fairness for individuals rather than groups
of people with common attributes

Consistency Provides consistency in decision-making not
only between similar data points or users but also
across time

Fairness through unawareness Achieves fairness if you’re unaware of sensitive
attributes in decision making

Fairness through transparency Improves fairness through transparency and trust
building through explainability

Table 7.1 – Some important topics and considerations in fairness

in machine learning and artificial intelligence

Demographic parity is a group fairness definition that ensures that a model’s predictions are not
dependent on a given sensitive attribute, such as ethnicity or sex. Mathematically, we can define it as
the equality of probability of predicting a class, such as C

i
 , for different groups of a given attribute,

as follows:

 P (C = C
i
 | G = g 1) = P (C = C

i
 | G = g 2)

To better understand the meaning of demographic parity, we can consider the following examples,
which meet fairness according to demographic parity:

• The same percentage of bail denial in each race group in COMPAS. We covered COMPAS in
Chapter 3, Debugging toward Responsible AI.

• The same acceptance rate for loan applications between men and women.

• The same likelihood of hospitalization between poor and rich neighborhoods. We covered
more about this problem in Chapter 3, Debugging toward Responsible AI.

Decreasing Bias and Achieving Fairness146

Disparate impact ratio (DIR) is a metric that quantifies the deviation from equality based on
demographic parity:

 DIR =
P (C = 1 | G = g 1)

P (C = 1 | G = g 2)

The DIR value’s range is [0, ∞) , where a value of 1 satisfies demographic parity while deviation toward
higher or lower values translates to deviation from fairness based on this definition. DIR values of
greater and less than 1 are referred to as negative and positive bias, respectively, considering the group
we use in the numerator.

Despite the importance of demographic parity in fairness, it has its limitations. For example, in the case
of DIR in the data itself (that is, the difference in class prevalence between different groups), a perfect
model will not meet demographic parity criteria. Also, it doesn’t reflect the quality of predictions for
each group. Other definitions help us improve our fairness assessment. Equality of odds or equalized
odds is one such definition. Equalized odds is satisfied when a given prediction is independent of the
group of a given sensitive attribute and the real output:

 P (̂ y | y, G = g 1) = P (̂ y | y, G = g 2) = P (̂ y | y)

The definition of equality of opportunity is very similar to equalized odds, which assesses the
independence of a prediction concerning groups for a given real output. But equality of opportunity
focuses on a particular label of true values. Usually, the positive class is considered the target class and
is representative of providing an opportunity for individuals, such as admission to school or having
a high salary. Here is a formula for equality of opportunity:

 P (̂ y | y = 1, G = g 1) = P (̂ y | y = 1, G = g 2) = P (̂ y | y = 1)

According to these notions of fairness, each could give you a different result. You need to consider
the differences between different notions so that you don’t generalize fairness based on one definition
or another.

Proxies for sensitive variables

One of the challenges in assessing fairness in machine learning models is the existence of proxies
for sensitive attributes such as sex and race. These proxies could be among the major contributors
in generating model outputs and could result in bias in our models to specific groups. However, we
cannot simply remove them as this could have a significant effect on performance. Table 7.2 provides
some examples of these proxies for different sensitive attributes:

Sources of bias 147

Sensitive Variable Example Proxies

Sex Level of education, salary and income (in some countries), occupation,
history of a felony charge, keywords in user-generated content (for
example, in a resume or social media), being a university faculty

Race History of a felony charge, keywords in user-generated content (for
example, in a resume or social media), ZIP or postal code

Disabilities Speed of walking, eye movement, body posture

Marital status Level of education, salary and income (in some countries), and house size
and number of bedrooms

Age Posture and keywords in user-generated content (for example, in a resume
or social media)

Table 7.2 – Examples of proxies for some of the important sensitive

variables, in the context of fairness (Caton and Haas, 2020)

Now that you’ve learned about the importance of fairness and some important definitions under this
topic, let’s review some of the possible sources of bias that play against your goal of achieving fairness
in your models.

Sources of bias

There are different sources of bias in a machine learning life cycle. Bias could exist in the collected
data, introduced in the data subsampling, cleaning and filtering, or model training and selection.
Here, we will review examples of such sources to help you better understand how to avoid or detect
such biases throughout the life cycle of a machine learning project.

Biases introduced in data generation and collection

The data that we feed into our models could be biased by default, even before the modeling starts.
The first source of such biases we want to review here is the issue of dataset size. Consider a dataset
as a sample of a bigger population – for example, a survey of 100 students or the loan application
information of 200 customers of a bank. The small size of these datasets could increase the chance of
bias. Let’s simulate this with a simple random data generation. We will write a function that generates
two vectors of random binary values using np.random.randint() and then calculates DIR
between the two groups of 0 and 1:

np.random.seed(42)

def disparate_impact_randomsample(sample_size,

 sampling_num = 100): disparate_impact = []

 for sam_iter in range(0, sampling_num):

Decreasing Bias and Achieving Fairness148

 # generating random array of 0 and 1 as two groups with
different priviledges (e.g. male versus female)

 group_category = np.random.randint(2,

 size=sample_size)

 # generating random array of 0 and 1 as the output labels (e.g.
accepted for loan or not)

 output_labels = np.random.randint(2, size=sample_size)

 group0_label1 = [iter for iter in range(0, len(

 group_category)) if group_category[iter] == 0

 and output_labels[iter] == 1]

 group1_label1 = [iter for iter in range(0, len(

 group_category)) if group_category[iter] == 1 and

 output_labels[iter] == 1]

 # calculating disparate impact

 disparate_impact.append(len

 (group1_label1)/len(group0_label1))

 return disparate_impact

Now, let’s use this function to calculate DIR for 1,000 different groups of different sizes, including 50,
100, 1000, 10000, and 1000000 data points:

sample_size_list = [50, 100, 1000, 10000, 1000000]

disparate_impact_list = []

for sample_size_iter in sample_size_list:

 disparate_impact_list.append(

 disparate_impact_randomsample(

 sample_size = sample_size_iter,

 sampling_num = 1000))

The following boxplots show the distributions of DIR across different sample sizes. You can see that
lower sample sizes have wider distributions covering very low or high DIR values, distant from the
ideal case of 1:

Sources of bias 149

Figure 7.1 – Distributions of DIR across different sampling sizes

We can also calculate the percentage of sampled groups of different sizes that don’t pass a specific
threshold, such as >=0.8 and <=1.2. Figure 7.2 shows that higher dataset sizes result in a lower chance
of having datasets that have positive or negative bias given a sensitive attribute:

Figure 7.2 – Percentage of sets of samples that don’t pass DIR thresholds

The source of existing bias in datasets might not just be an artifact of a small sample size. For example,
if you were to train a model to predict if an individual will end up in STEM, which is an acronym
for fields of science, technology, engineering, and math, then you must consider the reality of the

Decreasing Bias and Achieving Fairness150

existence of it being imbalanced toward men over women in the corresponding data in fields, such
as engineering, even up until recently (Figure 7.3):

Figure 7.3 – Percentage of women in STEM jobs between 1970 and 2019

Having less than 20% of engineers being women over the years, because of their lower interest, bias
in hiring processes, or stereotypes in society, has resulted in bias in the data on workers in this field.
If this is not rectified with fairness in your data processing and modeling tasks, it could result in
predicting a higher chance for men getting into STEM compared to women, despite their talents,
knowledge, and experience.

There is another category of intrinsic bias in the data, although it needs to be considered when
developing machine learning models. For example, less than 1% of breast cancer cases occur in men
(www.breastcancer.org). This prevalence difference between men and women is not caused by
any sort of bias in data generation or collection or biases that have existed in societies. It is the natural
difference between the prevalence of breast cancer occurrence between men and women. But if you
were responsible for developing a machine learning model to diagnose breast cancer, there could be
a high chance of false negatives (that is, not diagnosing breast cancer) in men. If your model doesn’t
consider the high prevalence of women over men, it will not be a fair model in breast cancer diagnosis
for men. This was a high-level example to clarify this kind of bias. There are many other considerations
in building a machine learning tool for cancer diagnosis.

https://www.breastcancer.org

Using explainability techniques 151

Bias in model training and testing

If a dataset has a high imbalance toward men or women, different ethnicities, or any sort of bias
considering different sensitive attributes, our models could have biases due to the way the corresponding
machine learning algorithms use the features in predicting the outcome of data points. For example,
our models could be highly reliant on sensitive attributes or their proxies (Table 7.2). This is an
important consideration in model selection. In the model selection process, we need to select a model
among the trained models, with different methods or hyperparameters of the same method, to be
pushed for further testing or production. If we base our decision-making solely on performance, then
we might select a model that is not fair. We need to consider both fairness and performance in our
model selection process if we have sensitive attributes and those models will directly or indirectly
affect individuals of different groups.

Bias in production

Bias and unfairness in production could happen because of differences in the distribution of data
between training, testing, and production. For example, women and men could have some differences
in the production stage that don’t exist in your training and test data. This situation could result in
biases in production that might not have been detectable in previous stages of the life cycle. We will
talk about such kinds of differences in more detail in Chapter 11, Avoiding and Detecting Data and

Concept Drifts.

The next step in this chapter is to start practicing with techniques and Python libraries that help you
in detecting and eliminating model biases. First, will practice using the explainability techniques
that were introduced in Chapter 6, Interpretability and Explainability in Machine Learning Modeling.

Using explainability techniques

We can use explainability techniques to identify potential biases in our models and then plan to improve
them toward fairness. Here, we want to practice this concept with SHAP and identify fairness issues
between male and female groups in the adult income dataset we practiced with in the previous chapter.
Using the same SHAP explainer object we built for the XGBoost model we trained on adult income data
in the previous chapter, in the following bar plots, we can see that there is a low, but non-negligible,
dependency on sex regarding the whole dataset or only the incorrectly predicted data points:

Decreasing Bias and Achieving Fairness152

Figure 7.4 – SHAP summary plot for the whole adult income dataset and incorrectly predicted data points

Now, we can extract the fraction of misclassified data points in each sex group, as follows:

X_WithPred.groupby(['Sex', 'Correct Prediction']).size().unstack(fill_
value=0)

This will produce the following result:

Figure 7.5 – Number of males and females among correct and incorrect predictions

Here, we have 6.83% and 20.08% misclassification percentages for female and male groups, respectively.
The ROC-AUC of the predictions of the model for only male and female groups in the test set are
0.90 and 0.94, respectively.

You might consider identifying the correlation between features as an approach to identifying proxies
and potential ways of removing biases in your models. The following code and heatmap (Figure 7.6)
show a correlation between the features of this dataset:

corr_features = X.corr()

corr_features.style.background_gradient(cmap='coolwarm')

Using explainability techniques 153

The output will be as follows:

Figure 7.6 – Correlation DataFrame between the features of the adult income dataset

However, there are disadvantages to using such correlation analysis as the way of approaching the
problem of proxy identification or even for filtering features toward improving performance. Here
are two of these disadvantages:

• You need to consider proper correlation measures for each pair of features. For example, Pearson
correlation cannot be used for all feature pairs as the distribution of data for each pair has to
satisfy the assumptions for this method. Both variables need to follow normal distributions and
data should not have any outliers as two of the assumptions for proper use of Pearson correlation.
This means that to have a proper use of the feature correlation analysis approach, you need to
use proper correlation measures to compare the features. Non-parametric statistical measures
such as Spearman rank correlation could be more suitable as there are fewer assumptions behind
its use across different variable pairs.

• Not all numerical values have the same meaning. Some of the features are categorical and,
through different methods, are transformed into numerical features. Sex is one of those features.
Values of 0 and 1 can be used to show female and male groups but they don’t have any numerical
meaning that you can find in numerical features such as age or salary.

Explainability techniques such as SHAP tell you about dependencies to sensitive attributes and their
contributions to the outcome of data points. However, by default, they don’t offer a way to improve the
models in terms of fairness. In this example, we can try to split the data into male and female groups
for training and testing. The following code shows this approach for the female group. Similarly, you
can repeat this for the male group by separating the train and test input and output data with the Sex
feature of 1. The models that were built separately for male and female groups resulted in 0.90 and

Decreasing Bias and Achieving Fairness154

0.93 ROC-AUCs, respectively, which is almost the same as the performance without the separation
of the groups:

X_train = X_train.reset_index(drop=True)

X_test = X_test.reset_index(drop=True)

training a model only for female category (Sex category of 0 in this
dataset)

X_train_only0 = X_train[X_train['Sex'] == 0]

X_test_only0 = X_test[X_test['Sex'] == 0]

X_only0 = X[X['Sex'] == 0]

y_train_only0 = [y_train[iter] for iter in X_train.index[

 X_train['Sex'] == 0].tolist()]

y_test_only0 = [y_test[iter] for iter in X_test.index[

 X_test['Sex'] == 0].tolist()]

initializing an XGboost model

xgb_model = xgboost.XGBClassifier(random_state=42)

fitting the XGboost model with training data

xgb_model.fit(X_train_only0, y_train_only0)

calculating roc-auc of predictions

print("ROC-AUC of predictions:

 {}".format(roc_auc_score(y_test_only0,

 xgb_model.predict_proba(X_test_only0)[:, 1])))

generate the Tree explainer

explainer_xgb = shap.TreeExplainer(xgb_model)

extract SHAP values from the explainer object

shap_values_xgb = explainer_xgb.shap_values(X_only0)

create a SHAP beeswarm plot (i.e. SHAP summary plot)

shap.summary_plot(shap_values_xgb, X_only0,

 plot_type="bar")

We didn’t remove the Sex feature from the models. This feature cannot contribute to the model’s
performance as there is no difference between the values of this feature across the data points of each
model. This is also shown by zero Shapely values in the bar plots:

Fairness assessment and improvement in Python 155

Figure 7.7 – SHAP summary plot for models trained and tested on female and male groups separately

This approach of separating groups according to a sensitive attribute, although sometimes seen as
taken, is not an ideal way of dealing with the issue of fairness. It might not be an effective approach as
the model could be highly reliant on other sensitive features. Also, we cannot split the data into small
chunks according to all combinations of all sensitive attributes in our dataset. There are fairness tools
that could help you not only assess fairness and detect biases but select a model that better satisfies
fairness notions.

In addition to libraries for explainability, there are Python libraries that are designed specifically for
fairness detection and improvement in machine learning modeling, which we will cover next.

Fairness assessment and improvement in Python

There are few widely used Python libraries to assess fairness in your models (Table 7.3). You can use
these libraries to identify if the model satisfies fairness definitions according to the different sensitive
attributes in a dataset you want to or have used for modeling:

Decreasing Bias and Achieving Fairness156

Library Library Name

for Importing

and Installation

URL

IBM AI Fairness 360 aif360 https://pypi.org/project/

aif360/

Fairlearn fairlearn https://pypi.org/project/

fairlearn/

Black Box Auditing BlackBoxAuditing https://pypi.org/project/

BlackBoxAuditing/

Aequitas aequitas https://pypi.org/project/

aequitas/

Responsible
AI Toolbox

responsibleai https://pypi.org/project/

responsibleai/

Responsibly responsibly https://pypi.org/project/

responsibly/

Amazon
Sagemaker Clarify

smclarify https://pypi.org/project/

smclarify/

Fairness-aware
machine learning

fairness https://pypi.org/project/

fairness/

Bias correction biascorrection https://pypi.org/project/

biascorrection/

Table 7.3 – Python libraries or repositories with available functionalities for machine learning fairness

First, let’s load the adult income dataset, after importing the required libraries, and prepare the training
and test sets, as follows:

loading UCI adult income dataset

classification task to predict if people made over $50k in the 90s
or not

X,y = shap.datasets.adult()

split the data to train and test sets

X_train, X_test, y_train, y_test = train_test_split(

 X, y, test_size = 0.3, random_state=10)

making a dataframe out of y values with "Sex" being their indices

y_train = pd.DataFrame({'label': y_train},

 index = X_train['Sex'])

y_test = pd.DataFrame({'label': y_test},

 index = X_test['Sex'])

https://pypi.org/project/aif360/
https://pypi.org/project/aif360/
https://pypi.org/project/fairlearn/
https://pypi.org/project/fairlearn/
https://pypi.org/project/BlackBoxAuditing/
https://pypi.org/project/BlackBoxAuditing/
https://pypi.org/project/aequitas/
https://pypi.org/project/aequitas/
https://pypi.org/project/responsibleai/
https://pypi.org/project/responsibleai/
https://pypi.org/project/responsibly/
https://pypi.org/project/responsibly/
https://pypi.org/project/smclarify/
https://pypi.org/project/smclarify/
https://pypi.org/project/fairness/
https://pypi.org/project/fairness/
https://pypi.org/project/biascorrection/
https://pypi.org/project/biascorrection/

Fairness assessment and improvement in Python 157

Now, we can train and test an XGBoost model:

xgb_model = xgboost.XGBClassifier(random_state=42)

fitting the XGboost model with training data

xgb_model.fit(X_train, y_train)

calculating roc-auc of predictions

print("ROC-AUC of predictions:

 {}".format(roc_auc_score(y_test,

 xgb_model.predict_proba(X_test)[:, 1])))

generating predictions for the test set

y_pred_train = xgb_model.predict(X_train)

y_pred_test = xgb_model.predict(X_test)

Here, we want to use aif360 to calculate the DIR of real and predicted outcomes in the training and
test data according to the Sex attribute:

calculating disparate impact ratio

di_train_orig = disparate_impact_ratio(y_train,

 prot_attr='Sex', priv_group=1, pos_label=True)

di_test_orig = disparate_impact_ratio(y_test,

 prot_attr='Sex', priv_group=1, pos_label=True)

di_train = disparate_impact_ratio(y_train, y_pred_train,

 prot_attr='Sex', priv_group=1, pos_label=True)

di_test = disparate_impact_ratio(y_test, y_pred_test,

 prot_attr='Sex', priv_group=1, pos_label=True)

The following group bar plot shows that the predictions make the DIR even worse in both the training
and test sets:

Figure 7.8 – Comparison of DIR in the original data and predicted outputs

Decreasing Bias and Achieving Fairness158

We can use reject option classification as an available class in aif360 to improve our models toward
fairness. Reject option classification is a postprocessing technique that gives favorable outcomes to
unprivileged groups and unfavorable outcomes to privileged groups in a confidence band around
the decision boundary with the highest uncertainty (https://aif360.readthedocs.io/,
Kamira et al., 2012). First, let’s import all the necessary libraries and functionalities we need for doing
so in Python:

importing Reject option classification, a post processing technique
that gives favorable outcomes to unprivileged groups and unfavourable
outcomes to

privileged groups in a confidence band around the decision boundary

with the highest uncertainty

from aif360.sklearn.postprocessing import RejectOptionClassifierCV

importing PostProcessingMeta, a meta-estimator which wraps a given

estimator with a post-processing step.

fetching adult dataset from aif360 library

X, y, sample_weight = fetch_adult()

X.index = pd.MultiIndex.from_arrays(X.index.codes,

 names=X.index.names)

y.index = pd.MultiIndex.from_arrays(y.index.codes,

 names=y.index.names)

y = pd.Series(y.factorize(sort=True)[0], index=y.index)

X = pd.get_dummies(X)

Then, we can use RejectOptionClassifierCV()to train and validate a random forest classifier
on the adult dataset available in aif360. We switched from XGBoost to random forest solely for the
sake of practicing with different models. We need to fit a PostProcessingMeta() object with
an initial random forest model and RejectOptionClassifierCV(). 'sex' is considered the
sensitive feature in the process:

metric = 'disparate_impact'

ppm = PostProcessingMeta(RF(n_estimators = 10,

 random_state = 42),

 RejectOptionClassifierCV('sex', scoring=metric,

 step=0.02, n_jobs=-1))

ppm.fit(X, y)

We can then plot the balanced accuracy and DIR across different attempts in the grid search to show
the best-chosen parameters, which is the starred point in the scatter plot in Figure 7.9. The points in
cyan show you the Pareto front for the tradeoff between balanced accuracy and DIR:

https://aif360.readthedocs.io/

Summary 159

Figure 7.9 – Balanced accuracy versus DIR in a grid search

As you can see, there is a compromise between performance and fairness in this case. But in this case,
a less than 4% decrease in performance results in improving DIR from lower than 0.4 to 0.8.

As you saw in this example, we can use aif360 to assess fairness and improve our model’s fairness
with little loss in performance. You can use other libraries in Python similarly. And each one has its
functionality for the two objectives of fairness assessment and improvement in machine learning modeling.

What we provided in this chapter was only the tip of the iceberg of fairness in machine learning. But
at this point, you are ready to try different libraries and techniques and learn about them with the
help of the practices we went through.

Summary

In this chapter, you learned more about the concept of fairness in the machine learning era, as well
as the metrics, definitions, and challenges for assessing fairness. We talked about example proxies
for sensitive attributes such as sex and race. We also talked about possible sources of bias, such as
in data collection or model training. You also learned how you can use Python libraries for model
explainability and fairness to assess fairness or improve it in your models, as well as avoid biases that
not only would be unethical but could have legal and financial consequences for your organization.

In the next chapter, you will learn about test-driven development and concepts such as unit and
differential testing. We will also talk about machine learning experiment tracking and how it helps
us avoid issues in our models in the model training, testing, and selection processes.

Decreasing Bias and Achieving Fairness160

Questions

1. Does fairness depend only on observable features?

2. What are examples of proxy features for 'sex'?

3. If one model is fair according to demographic parity, would it be fair according to other notions
of fairness such as equalized odds?

4. What is the difference between demographic parity and equalized odds as two fairness metrics?

5. If you have a 'sex' feature in your model and your model would have a low dependency on
that, does it mean that your model is fair across different sex groups?

6. How could you use explainability techniques to assess fairness in your models?

References

• Barocas, Solon, Moritz Hardt, and Arvind Narayanan. Fairness in machine learning. Nips
tutorial 1 (2017): 2017.

• Mehrabi, Ninareh, et al. A survey on bias and fairness in machine learning. ACM Computing
Surveys (CSUR) 54.6 (2021): 1-35.

• Caton, Simon, and Christian Haas. Fairness in machine learning: A survey. arXiv preprint
arXiv:2010.04053 (2020).

• Pessach, Dana, and Erez Shmueli. A review on fairness in machine learning. ACM Computing
Surveys (CSUR) 55.3 (2022): 1-44.

• Lechner, Tosca, et al. Impossibility results for fair representations. arXiv preprint
arXiv:2107.03483 (2021).

• McCalman, Lachlan, et al. Assessing AI fairness in finance. Computer 55.1 (2022): 94-97.

• F. Kamiran, A. Karim, and X. Zhang, Decision Theory for Discrimination-Aware Classification.
IEEE International Conference on Data Mining, 2012.

Part 3:

Low-Bug Machine Learning

Development and Deployment

With this part of the book, we will provide the essential practices to ensure the robustness and reliability
of machine learning models, especially in production. We will start with the adoption of Test-Driven
Development, illustrating its crucial role in mitigating risks during model development. Subsequently,
we will delve into the testing techniques and the significance of model monitoring, ensuring that our
models remain dependable when deployed. We will then explain techniques and challenges in achieving
reproducibility in machine learning through code, data, and model versioning. We will conclude this
part by addressing the challenges of data and concept drifts to have reliable models in production.

This part has the following chapters:

• Chapter 8, Controlling Risks Using Test-Driven Development

• Chapter 9, Testing and Debugging for Production

• Chapter 10, Versioning and Reproducible Machine Learning Modeling

• Chapter 11, Avoiding and Detecting Data and Concept Drifts

8
Controlling Risks Using

Test-Driven Development

There are risks, such as selecting unreliable models, associated with creating models and technologies
built on top of our models. The question is, could we avoid them and better manage the risks associated
with machine learning modeling? In this chapter, we will talk about programming strategies such
as unit testing, which could help us not only in developing and selecting better models but also in
reducing risks associated with modeling.

In this chapter, we will cover the following topics:

• Test-driven development

• Machine learning differential testing

• Tracking machine learning experiments

By the end of this chapter, you will have learned how to reduce the risk of unreliable modeling and
software development using unit and differential testing and how to reliably build upon previous
attempts in model training and evaluation using machine learning experiment tracking.

Technical requirements

The following requirements should be considered for this chapter as they will help you better understand
the concepts, use them in your projects, and practice with the provided code:

• Python library requirements:

 � pytest >= 7.2.2

 � ipytest >= 0.13.0

 � mlflow >= 2.1.1

 � aif360 >= 0.5.0

Controlling Risks Using Test-Driven Development164

 � shap >= 0.41.0

 � sklearn >= 1.2.2

 � numpy >= 1.22.4

 � pandas >= 1.4.4

• You will also require basic knowledge of model bias and the definition of bias measures such
as the disparate impact ratio (DIR)

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter08.

Test-driven development for machine learning modeling

One approach to reducing the risks of developing unreliable models and pushing them to production
is test-driven development. We aim to design unit tests (that is, tests designed to test individual
components of software) that reduce the risks of code revision either within the same or in different
life cycles. To better understand this concept, we need to understand what unit tests are and how we
can design and use them in Python.

Unit testing

Unit tests are designed to test the smallest components, or units, in the code and software we design. In
machine learning modeling, we might have many modules taking care of different steps of a machine
learning life cycle, such as data curation and wrangling or model evaluation. Unit tests help us avoid
errors and mistakes, and design our code without the need to worry about whether we made a mistake
that will not be detected early on. Detecting issues in our code early has lower costs and helps us to
avoid error pile-ups, which makes the debugging process easier. Pytest is a Python testing framework
that helps us in designing different tests, including unit tests, in machine learning programming.

Using Pytest

Pytest is a simple-to-use Python library that we can use to design unit tests by performing the
following steps:

1. Identify the component we want to design the unit test for.

2. Define a small operation to be used for testing that component. For example, if the module
is part of data processing, the test can be designed using a very small toy dataset, either real
or synthetic.

3. Design a function starting with "test_" for the corresponding component.

4. Repeat Steps 1 to 3 for all the components of the code for which we want to design unit tests.
It is better to cover as many components as possible.

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter08

Test-driven development for machine learning modeling 165

The designed tests can then be used to test changes in your code. We will practice unit test design
here, using Pytest, for a function that calculates the DIR and returns “unbiased data” or “biased data”
using the input thresholds for DIR for bias detection:

import pandas as pd

from aif360.sklearn.metrics import disparate_impact_ratio

def dir_grouping(data_df: pd.DataFrame,

 sensitive_attr: str, priviledge_group,

 dir_threshold = {'high': 1.2, 'low': 0.8}):

 """

 Categorizing data as fair or unfair according to DIR

 :param data_df: Dataframe of dataset

 :param sensitive_attr: Sensitive attribute under investigation

 :priviledge_group: The category in the sensitive attribute
that needs to be considered as priviledged

 :param dir_threshold:

 """

 dir = disparate_impact_ratio(data_df,

 prot_attr=sensitive_attr,

 priv_group=priviledge_group, pos_label=True)

 if dir < dir_threshold['high'] and dir > dir_threshold[

 'low']:

 assessment = "unbiased data"

 else:

 assessment = "biased data"

 return assessment

Now that we’ve defined an example usage of this function to use for our unit test design, we can select
the first 100 rows of the dataset and calculate the DIR:

calculating DIR for a subset of adult income data in shap library

import shap

X,y = shap.datasets.adult()

X = X.set_index('Sex')

X_subset = X.iloc[0:100,]

According to the calculated DIR, this subset of the data is biased concerning the 'Sex' attribute.
To design the unit tests, we need to import the pytest library. But if you are using Jupyter or Colab
notebooks for prototyping, you can use ipytest to test your code:

import pytest

you can use ipytest if you are using Jupyter or Colab notebook

Controlling Risks Using Test-Driven Development166

import ipytest

ipytest.autoconfig()

We must add %%ipytest -qq if we’re using pytest in a Jupyter or Colab notebook and want to
run the tests using ipytest. Then, we can define our unit test function, test_dir_grouping(),
as follows:

%%ipytest -qq

def test_dir_grouping():

 bias_assessment = dir_grouping(data_df = X_subset,

 sensitive_attr = 'Sex',priviledge_group = 1,

 dir_threshold = {'high':1.2, 'low': 0.8})

 assert bias_assessment == "biased data"

The assert command checks whether the result of the dir_grouping() function is “biased
data,” as it is supposed to be according to our previous analysis, for the first 100 rows of the dataset.
If the result is different, then the test fails.

When you have all the unit tests ready for the components of your software, you can run pytest
in the command-line interface (CLI) for a specific module, directory, or all of your tests (source:
https://docs.pytest.org/en/7.1.x/how-to/usage.html). For example, if you
wrote test_dir_grouping, as shown in the preceding code, within a Python script called
test_script.py, you can only test that script as follows:

pytest test_script.py

Alternatively, you can run pytest in a specific directory. If you have a code base that contains many
different modules, you can organize your tests according to the grouping of your main functions and
classes and then test each directory, as follows:

"testdir" could be a directory containing test scripts

pytest testdir/

Instead, if you simply run pytest, it will execute all the tests in all the files named test_*.py or
*_test.py in the current directory and its subdirectories:

pytest

You can also use a Python interpreter to execute the tests using pytest:

python -m pytest

If you are using Jupyter or Colab Notebook and used ipytest, you can run Pytest as follows:

ipytest.run()

https://docs.pytest.org/en/7.1.x/how-to/usage.html

Test-driven development for machine learning modeling 167

Now, imagine we execute the designed test_dir_grouping() function in one of these ways.
When the test is passed, we will see a message like the following, which tells us 100% of the tests
passed. This is because we are only testing one test and the test passed (Figure 8.1):

Figure 8.1 – The output of Pytest when the designed test passed

If we mistakenly change assessment = "biased data" to assessment = "unbiased
data" in the dir_grouping() function, we get the following result instead, which tells us 100%
of the tests failed. This is because we only have one test, which failed in this case (Figure 8.2):

Figure 8.2 – Failure message after running Pytest

The failure message in pytest contains some complementary information that we can use to debug
our code. In this case, it is telling us that in test_dir_grouping(), it tried to assert the output
of test_dir_grouping(), which was “unbiased data,” with “biased data.”

Pytest fixtures

When programming for data analysis and machine learning modeling, we need to use data that is
in different variables or data objects, comes from a file in our local machine or the cloud, is queried
from a database, or comes from a URL in our tests. Fixtures help us in these processes by removing
the need to repeat the same code across our tests. Attaching a fixture function to a test will run it
and return data to the test before each test runs. Here, we have used examples provided on the Pytest
documentation page for fixtures (source: https://docs.pytest.org/en/7.1.x/how-to/
fixtures.html). First, let’s define two very simple classes called Fruit and FruitSalad:

Example of using Pytest fixtures available in

https://docs.pytest.org/en/7.1.x/how-to/fixtures.html
class Fruit:

https://docs.pytest.org/en/7.1.x/how-to/fixtures.html
https://docs.pytest.org/en/7.1.x/how-to/fixtures.html
https://docs.pytest.org/en/7.1.x/how-to/fixtures.html

Controlling Risks Using Test-Driven Development168

 def __init__(self, name):

 self.name = name

 self.cubed = False

 def cube(self):

 self.cubed = True

class FruitSalad:

 def __init__(self, *fruit_bowl):

 self.fruit = fruit_bowl

 self._cube_fruit()

 def _cube_fruit(self):

 for fruit in self.fruit:

 fruit.cube()

When we use pytest, it looks at the parameters in the test function signature and looks for fixtures
with the same names as those parameters. Pytest then runs those fixtures, captures what they return,
and passes those objects as arguments to the test function. We inform Pytest that a function is a
fixture by decorating it with @pytest.fixture. In the following example, when we run the tests,
test_fruit_salad requests fruit_bowl, and Pytest executes fruit_bowl and passes the
returned object into test_fruit_salad:

Arrange

@pytest.fixture

def fruit_bowl():

 return [Fruit("apple"), Fruit("banana")]

def test_fruit_salad(fruit_bowl):

 # Act

 fruit_salad = FruitSalad(*fruit_bowl)

 # Assert

 assert all(fruit.cubed for fruit in fruit_salad.fruit)

Here are some of the features of fixtures that can help us in designing our tests:

• Fixtures can request other fixtures. This helps us in designing smaller fixtures that can be even
used as part of other fixtures to make more complex tests.

• Fixtures can be reused in different tests. They work like functions to be used in different tests
with their own returned results.

• A test or fixture can request more than one fixture at a time.

• Fixtures can be requested more than once per test.

Machine learning differential testing 169

In test-driven development, we aim to write production-ready code that passes the designed unit
tests. Higher coverage of the modules and components in your code by the designed unit test could
help you in revising your code that’s related to any component of a machine learning life cycle with
peace of mind.

In this section, you learned about unit testing, but other techniques can help us in reliable programming
and machine learning model development, such as differential testing. We will introduce this next.

Machine learning differential testing

Differential testing attempts to check two versions of a piece of software, considered as base and test
versions, on the same input and then compare the outputs. This process helps us identify whether the
outputs are the same and identify unexpected differences (Gulzar et al., 2019; Figure 8.3):

Figure 8.3 – Simplified flowchart of differential testing as a process to test the

outputs of two implementations of the same process on the same data

In differential testing, the base version is already verified and considered the approved version, while
the test version needs to be checked in comparison with the base version in producing the correct
output. In differential testing, we can also aim to assess whether the observed differences between the
outputs of the base and test versions are expected or can be explained.

Controlling Risks Using Test-Driven Development170

In machine learning modeling, we can also benefit from differential testing when comparing two
different implementations of the same algorithms on the same data. For example, we can use it to
compare models built using scikit-learn and Spark MLlib as two different libraries for machine
learning modeling. If we need to recreate a model using scikit-learn and add it to our pipeline
while the original model is built in Spark MLlib, we can use differential testing to assess the outputs
and make sure either there is no difference or the differences are expected (Herbold and Tunkel, 2023).
Table 8.1 provides some examples of algorithms with available classes in both scikit-learn and
Spark MLlib. This approach has been used more extensively to compare models between different
deep learning frameworks, such as TensorFlow and PyTorch:

Method scikit-learn Spark MLlib

Logistic regression LogisticRegression LogisticRegression

Naive Bayes GaussianNB,

MultinomialNB

NaiveBayes

Decision tree DecisionTree

Classifier

DecisionTreeClassifier

Random forest RandomForest

Classifier

RandomForestClassifier

Support vector machine LinearSVC LinearSVC

Multilayer perceptron MLPClassifier MultilayerPerceptron

Classifier

Gradient boosting GradientBoosting

Classifier

GBTClassifier

Table 8.1 – Some of the overlapping algorithms and their class names in scikit-learn and Spark MLlib

Experiment tracking is another technique that we can benefit from besides unit and differential testing
in our machine learning projects.

Tracking machine learning experiments

Keeping track of our machine learning experiments will help us reduce the risks of invalid conclusions
and selecting unreliable models. Experiment tracking in machine learning is about saving the information
about the experiments – for instance, the data that has been used – the testing performance and
the metric used for performance assessment, and the algorithms and the hyperparameters used for
modeling. Here are some of the important considerations for using a machine learning experiment
tracking tool:

• Can you integrate the tool with your continuous integration/continuous development (CI/

CD) pipeline and machine learning modeling frameworks?

Tracking machine learning experiments 171

• Can you reproduce your experiments?

• Can you easily search through the experiments to find the best models or models with bad or
unexpected behaviors?

• Does it cause any security or privacy issues?

• Does the tool help you better collaborate in your machine learning projects?

• Does the tool let you track hardware (for example, memory) consumption?

Some of the commonly used machine learning experiment tracking tools and their URLs are provided
in Table 8.2:

Tool URL

MLflow Tracking https://mlflow.org/docs/latest/tracking.html

DVC https://dvc.org/doc/use-cases/experiment-

tracking

Weights & Biases https://wandb.ai/site/experiment-tracking

Comet ML https://www.comet.com/site/products/

ml-experiment-tracking/

ClearML https://clear.ml/clearml-experiment/

Polyaxon https://polyaxon.com/product/#tracking

TensorBoard https://www.tensorflow.org/tensorboard

Neptune AI https://neptune.ai/product/experiment-tracking

SageMaker https://aws.amazon.com/sagemaker/experiments/

Table 8.2 – Examples of tools for teaching machine learning experiments

Here, we want to practice MLflow Tracking in Python. First, we need to import the required libraries:

import pandas as pd

import numpy as np

from sklearn.metrics import mean_squared_error, roc_auc_score

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier as RF

from sklearn.datasets import load_breast_cancer

import mlflow

import mlflow.sklearn

np.random.seed(42)

https://mlflow.org/docs/latest/tracking.html
https://dvc.org/doc/use-cases/experiment-tracking
https://dvc.org/doc/use-cases/experiment-tracking
https://wandb.ai/site/experiment-tracking
https://www.comet.com/site/products/ml-experiment-tracking/
https://www.comet.com/site/products/ml-experiment-tracking/
https://clear.ml/clearml-experiment/
https://polyaxon.com/product/#tracking
https://www.tensorflow.org/tensorboard
https://neptune.ai/product/experiment-tracking
https://aws.amazon.com/sagemaker/experiments/

Controlling Risks Using Test-Driven Development172

Then, we must define a function for evaluating the results of the models we would like to test:

def eval_metrics(actual, pred, pred_proba):

 rmse = np.sqrt(mean_squared_error(actual, pred))

 roc_auc = roc_auc_score(actual, pred_proba)

 return rmse, roc_auc

Next, we must load the breast cancer dataset from scikit-learn for modeling:

X, y = load_breast_cancer(return_X_y=True)

split the data into training and test sets. (0.7, 0.3) split

X_train, X_test, y_train, y_test = train_test_split(X, y,

 test_size = 0.3, random_state=42)

Now, we are ready to define an experiment using mlflow:

experiment_name = "mlflow-randomforest-cancer"

existing_exp = mlflow.get_experiment_by_name(

 experiment_name)

if not existing_exp:

 experiment_id = mlflow.create_experiment(

 experiment_name, artifact_location="...")

else:

 experiment_id = dict(existing_exp)['experiment_id']

mlflow.set_experiment(experiment_name)

Now, we must go over three different numbers of decision trees, or three different numbers of estimators,
to build, train, and test three different random forest models on the loaded breast cancer dataset. All
the information from these three runs will be stored within the specified experiment but as different
runs. As you can see in the following code, we use different functionalities in mlflow:

• mlflow.start_run: To start a run as part of an experiment

• mlflow.log_param: To log the number of estimators as a hyperparameter of the model

• mlflow.log_metric: To log the calculated metric for the performance of the model on
the defined test set

• mlflow.sklearn.log_model: To log the model:

for idx, n_estimators in enumerate([5, 10, 20]):

 rf = RF(n_estimators = n_estimators, random_state = 42)

 rf.fit(X_train, y_train)

 pred_probs = rf.predict_proba(X_test)

 pred_labels = rf.predict(X_test)

Tracking machine learning experiments 173

 # calculating rmse and roc-auc for the randorm forest

 # model predictions on the test set

 rmse, roc_auc = eval_metrics(actual = y_test,

 pred = pred_labels,pred_proba = [

 iter[1]for iter in pred_probs])

 # start mlflow

 RUN_NAME = f"run_{idx}"

 with mlflow.start_run(experiment_id=experiment_id,

 run_name=RUN_NAME) as run:

 # retrieve run id

 RUN_ID = run.info.run_id

 # track parameters

 mlflow.log_param("n_estimators", n_estimators)

 # track metrics

 mlflow.log_metric("rmse", rmse)

 # track metrics

 mlflow.log_metric("roc_auc", roc_auc)

 # track model

 mlflow.sklearn.log_model(rf, "model")

We can also retrieve an already stored experiment, as follows:

from mlflow.tracking import MlflowClient

esperiment_name = "mlflow-randomforest-cancer"

client = MlflowClient()

retrieve experiment information

experiment_id = client.get_experiment_by_name(

 esperiment_name).experiment_id

Then, we can get information on different runs in that experiment:

retrieve runs information (parameter: 'n_estimators',

 metric: 'roc_auc')

experiment_info = mlflow.search_runs([experiment_id])

extracting run ids for the specified experiment

runs_id = experiment_info.run_id.values

extracting parameters of different runs

runs_param = [client.get_run(run_id).data.params[

 "n_estimators"] for run_id in runs_id]

extracting roc-auc across different runs

runs_metric = [client.get_run(run_id).data.metrics[

 "roc_auc"] for run_id in runs_id]

Controlling Risks Using Test-Driven Development174

We can also identify the best runs according to a metric used for model testing, which is ROC-AUC
in this example:

df = mlflow.search_runs([experiment_id],

 order_by=["metrics.roc_auc"])

best_run_id = df.loc[0,'run_id']

best_model_path = client.download_artifacts(best_run_id,

 "model")

best_model = mlflow.sklearn.load_model(best_model_path)

print("Best model: {}".format(best_model))

This results in the following output:

Best mode: RandomForestClassifier(n_estimators=5,

 random_state=42)

We can also delete runs of a run or an experiment altogether if needed, as follows. But you need to
make sure you wish to delete such information:

delete runs (make sure you are certain about deleting the runs)

for run_id in runs_id:

 client.delete_run(run_id)

delete experiment (make sure you are certain about deleting the
experiment)

client.delete_experiment(experiment_id)

In this section, you learned about experiment tracking in a machine learning setting. You will learn
more about the techniques you can use for risk control in your machine learning projects in the next
two chapters.

Summary

In this chapter, you learned about test-driven development using unit testing to control risks in your
machine learning development projects. You learned about unit testing in Python using the pytest
library. We also briefly reviewed the concept of differential testing, which helps you in comparing
different versions of your machine learning modules and software. Later, you learned about model
experiment tracking as an important tool that not only facilitates your model experimentations and
selection but also helps you in risk control in your machine learning projects. You practiced using
mlflow in Python as one of the widely used machine learning experiment tracking tools. Now, you
know how to develop reliable models and programming modules through test-driven development
and experiment tracking.

In the next chapter, you will learn about strategies to test models, assess their qualities, and monitor
their performance in production. You will learn about practical methods for model monitoring,
integration testing, and model pipeline and infrastructure testing.

Questions 175

Questions

1. How does pytest help you in developing code modules in your machine learning projects?

2. How do pytest fixtures help you in using pytest?

3. What is differential testing and when do you need it?

4. What is mlflow and how does it help you in your machine learning modeling projects?

References

• Herbold, Steffen, and Steffen Tunkel. Differential testing for machine learning: an analysis for

classification algorithms beyond deep learning. Empirical Software Engineering 28.2 (2023): 34.

• Lichman, M. (2013). UCI Machine Learning Repository [https://archive.ics.uci.
edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

• Gulzar, Muhammad Ali, Yongkang Zhu, and Xiaofeng Han. Perception and practices of differential

testing. 2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE, 2019.

https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml

9
Testing and

Debugging for Production

You might have gotten excited about training and testing a machine learning model without thinking
about the unexpected behavior of your model in production and how your model fits into a bigger
technology. Most academic courses don’t go through details of strategies to test models, assess their
qualities, and monitor their performance pre-deployment and in production. There are important
concepts and techniques in testing and debugging models for production that we will review in
this chapter.

In this chapter, we will cover the following topics:

• Infrastructure testing

• Integration testing of machine learning pipelines

• Monitoring and validating live performance

• Model assertion

By the end of this chapter, you will have learned about the importance of infrastructure and integration
testing, as well as model monitoring and assertion. You will have also learned how to use Python
libraries so that you can benefit from them in your projects.

Testing and Debugging for Production178

Technical requirements

The following requirements should be considered for this chapter as they will help you better understand
the concepts, use them in your projects, and practice with the provided code:

• Python library requirements:

 � sklearn >= 1.2.2

 � numpy >= 1.22.4

 � pytest >= 7.2.2

• You must also have basic knowledge of the machine learning life cycle

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter09.

Infrastructure testing

Infrastructure testing refers to the process of verifying and validating the various components and
systems involved in deploying, managing, and scaling machine learning models. This includes testing
software, hardware, and other resources that make up the infrastructure that supports machine
learning workflows. Infrastructure testing in machine learning helps you ensure that models are
trained, deployed, and maintained effectively. It provides you with reliable models in a production
environment. Regular infrastructure testing can help you detect and fix issues early and reduce the
risk of failures during deployment and in the production stage.

Here are some of the important aspects of infrastructure testing in machine learning:

• Data pipeline testing: This ensures that the data pipelines responsible for data collection,
selection, and wrangling are working correctly and efficiently. This helps maintain data quality
and consistency for training, testing, and deploying your machine learning models.

• Model training and evaluation: This validates the functionality of the model training process,
such as hyperparameter tuning and model evaluation. This process eliminates unexpected issues
in training and evaluation to achieve a reliable and responsible model.

• Model deployment and serving: This tests the process of deploying the trained model in a
production environment, ensuring that the serving infrastructure, such as API endpoints, is
working correctly and can handle the expected request load.

• Monitoring and observability: This tests the monitoring and logging systems that provide
insights into the performance and behavior of the machine learning infrastructure.

• Integration testing: This verifies that all components of the machine learning infrastructure,
such as data pipelines, model training systems, and deployment platforms, are working together
seamlessly and without conflicts.

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter09
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter09

Infrastructure testing 179

• Scalability testing: This evaluates the ability of the infrastructure to scale up or down in
response to changing requirements, such as increased data volume, higher user traffic, or more
complex models.

• Security and compliance testing: This ensures that the machine learning infrastructure meets
necessary security requirements, data protection regulations, and privacy standards.

Now that you understand the importance and benefits of infrastructure testing, you are ready to
learn about the related tools that can help you in model deployment and infrastructure management.

Infrastructure as Code tools

Infrastructure as Code (IaC) and configuration management tools such as Chef, Puppet, and
Ansible can be used to automate the deployment, configuration, and management of software and
hardware infrastructures. These tools could help us ensure consistency and reliability across different
environments. Let’s understand how Chef, Puppet, and Ansible work, and how they can help you in
your projects:

• Chef (https://www.chef.io/products/chef-infrastructure-management):
Chef is an open source configuration management tool that relies on a client-server model,
where the Chef server stores the desired configuration, and the Chef client applies it to the nodes.

• Puppet (https://www.puppet.com/): Puppet is another open source configuration
management tool that works in a client-server model or as a standalone application. Puppet
enforces desired configurations across nodes by periodically pulling them from the Puppet
master server.

• Ansible (https://www.ansible.com/): Ansible is an open source and easy-to-use
configuration management, orchestration, and automation tool that communicates and applies
configurations to nodes.

These tools primarily focus on infrastructure management and automation, but they also have modules
or plugins to perform basic testing and validation of the infrastructure.

Infrastructure testing tools

Test Kitchen, ServerSpec, and InSpec are infrastructure testing tools we can use to verify and validate
the desired configuration and behavior of our infrastructures:

• Test Kitchen (https://github.com/test-kitchen/test-kitchen): Test Kitchen
is an integration testing framework mainly used with Chef but can also work with other IaC
tools such as Ansible and Puppet. It allows you to test your infrastructure code on different
platforms and configurations. Test Kitchen creates temporary instances on various platforms
(using drivers such as Docker or cloud providers), converges your infrastructure code, and
runs tests against the configured instances. You can use Test Kitchen with different testing
frameworks, such as ServerSpec or InSpec, to define your tests.

https://www.chef.io/products/chef-infrastructure-management
https://www.puppet.com/
https://www.ansible.com/
https://github.com/test-kitchen/test-kitchen

Testing and Debugging for Production180

• ServerSpec (https://serverspec.org/): ServerSpec is a behavior-driven development
(BDD) testing framework for infrastructure. It allows you to write tests in a human-readable
language. ServerSpec tests the desired state of your infrastructure by executing commands on
the target system and checking the output against the expected results. You can use ServerSpec
with Test Kitchen or other IaC tools to ensure that your infrastructure is configured correctly.

• InSpec (https://github.com/inspec/inspec): InSpec, developed by Chef, is an
open source infrastructure testing framework. It defines tests and compliance rules in a human-
readable language. You can run InSpec tests independently or in conjunction with tools such
as Test Kitchen, Chef, or other IaC platforms.

These tools ensure that our IaC and configuration management setups work as expected before
deployment to achieve consistency and reliability across different environments.

Infrastructure testing using Pytest

We can also use Pytest, which we used for unit testing in the previous chapter for infrastructure testing.
Let’s assume we write test functions that should start with the test_ prefix in a Python file called
test_infrastructure.py. We can use Python libraries such as paramiko, requests, or
socket to interact with our infrastructure (for example, making API calls, connecting to servers,
and so on). For example, we can test whether a web server is responding with status code 200:

import requests

def test_web_server_response():

 url = "http://your-web-server-url.com"

 response = requests.get(url)

 assert response.status_code == 200,

 f"Expected status code 200,

 but got {response.status_code}"

Then, we can run the tests that we explained in the previous chapter.

Other techniques besides infrastructure testing can help you in preparing your models for a successful
deployment, such as integration testing, which we will cover next.

Integration testing of machine learning pipelines

When we train a machine learning model, we need to evaluate how well it interacts with the other
components of a larger system it belongs to. Integration testing helps us in validating that the model
works correctly within the overall application or infrastructure and meets the desired performance
criteria. Some of the important components of integration testing to rely on in our machine learning
projects are as follows:

• Testing data pipelines: We need to evaluate that the data preprocessing components before model
training, such as data wrangling, are consistent between the training and deployment stages.

https://serverspec.org/
https://github.com/inspec/inspec

Integration testing of machine learning pipelines 181

• Testing APIs: If our machine learning model is exposed through an API, we can test the API
endpoints to ensure it handles requests and responses correctly.

• Testing model deployment: We can use integration testing to assess the model’s deployment
process, whether it’s deployed as a standalone service, within a container, or embedded in an
application. This process helps us ensure that the deployment environment provides the necessary
resources, such as CPU, memory, and storage, and that the model can be updated if needed.

• Testing interactions with other components: We need to verify that our machine learning
model works seamlessly with databases, user interfaces, or third-party services. This may
include testing how the model’s predictions are stored, displayed, or used within the application.

• Testing end-to-end functionality: We can use end-to-end tests that simulate real-world
scenarios and user interactions to validate that the model’s predictions are accurate, reliable,
and useful in the context of the overall application.

We can benefit from integration testing to ensure a smooth deployment and reliable operation in
real-world applications. There are several tools and libraries we can use to create robust integration
tests for our machine learning models in Python. Table 9.1 shows some of the popular tools for
integration testing:

Tool Brief Description URL

Pytest A framework widely used for unit and
integration testing in Python

https://docs.pytest.org/

en/7.2.x/

Postman An API testing tool that’s used for
testing the interaction between
machine learning models and
RESTful APIs

https://www.postman.com/

Requests A Python library that tests APIs and
services by sending HTTP requests

https://requests.

readthedocs.io/en/latest/

Locust A load testing tool that allows you
to simulate user behavior and test
the performance and scalability of
your machine learning models under
various load conditions

https://locust.io/

Selenium A browser automation tool you can use
to test the end-to-end functionality of
web applications that utilize machine
learning models

https://www.selenium.dev/

Table 9.1 – Popular tools for integration testing

https://docs.pytest.org/en/7.2.x/
https://docs.pytest.org/en/7.2.x/
https://www.postman.com/
https://requests.readthedocs.io/en/latest/
https://requests.readthedocs.io/en/latest/
https://locust.io/
https://www.selenium.dev/

Testing and Debugging for Production182

Integration testing using pytest

Here, we want to practice integration testing using pytest for a simple Python application with two
components: a database and a service, both of which retrieve data from the database. Let’s assume we
have the database.py and service.py script files:

database.py:

class Database:

 def __init__(self):

 self.data = {"users": [{"id": 1,

 "name": "John Doe"},

 {"id": 2, "name": "Jane Doe"}]}

 def get_user(self, user_id):

 for user in self.data["users"]:

 if user["id"] == user_id:

 return user

 return None

service.py:

from database import Database

class UserService:

 def __init__(self, db):

 self.db = db

 def get_user_name(self, user_id):

 user = self.db.get_user(user_id)

 if user:

 return user["name"]

 return None

Now, we will write an integration test using pytest to ensure that the UserService component
works correctly with the Database component. First, we need to write our tests in a test script file,
called test_integration.py, as follows:

import pytest

from database import Database

from service import UserService

@pytest.fixture

def db():

Integration testing of machine learning pipelines 183

 return Database()

@pytest.fixture

def user_service(db):

 return UserService(db)

def test_get_user_name(user_service):

 assert user_service.get_user_name(1) == "John Doe"

 assert user_service.get_user_name(2) == "Jane Doe"

 assert user_service.get_user_name(3) is None

The defined test_get_user_name function tests the interaction between the UserService
and Database components by checking whether the get_user_name method returns the correct
usernames for different user IDs.

To run the test, we can execute the following command in the Terminal:

pytest test_integration.py

Integration testing using pytest and requests

We can combine the requests and pytest Python libraries to perform integration testing on our
machine learning APIs. We can use the requests library to send HTTP requests and the pytest
library to write test cases. Let’s suppose we have a machine learning API with the following endpoint:

POST http://mldebugging.com/api/v1/predict

Here, the API accepts a JSON payload with input data:

{

 "rooms": 3,

 "square_footage": 1500,

 "location": "suburban"

}

This returns a JSON response with the predicted price:

{

 "predicted_price": 700000

}

Now, we need to create a test script file called test_integration.py:

import requests

import pytest

API_URL = "http://mldebugging.com/api/v1/predict"

Testing and Debugging for Production184

def test_predict_house_price():

 payload = {

 "rooms": 3,

 "square_footage": 1500,

 "location": "suburban"

 }

 response = requests.post(API_URL, json=payload)

 assert response.status_code == 200

 assert response.headers["Content-Type"] == "application/json"

 json_data = response.json()

 assert "predicted_price" in json_data

 assert isinstance(json_data["predicted_price"],

 (int, float))

To run the test, we can execute the following command in the Terminal:

pytest test_integration.py

In this example, we defined a test function called test_predict_house_price that sends a
POST request (that is, an HTTP method used to submit data to a server to create or update a resource)
to the API with the input data as a JSON payload. The test function then checks the API response’s
status code, content type, and predicted price value. If you want to try this with a real API you have,
replace the example URL with the actual API endpoint.

In addition to the testing strategies we covered in this chapter, you can benefit from model monitoring
and assertion to have successful deployments and reliable models in production environments.

Monitoring and validating live performance

We can use monitoring and logging mechanisms during deployment to track the model’s performance
and detect potential issues. We can regularly evaluate the deployed model to ensure it continues to
meet performance criteria, or other criteria, such as being unbiased, that we defined for it. We can
also benefit from the information coming from model monitoring to update or retrain the model as
needed. Here are three important concepts in this subject regarding differences between modeling
before deployment and in production:

• Data variance: The data that is used in model training and testing goes through the steps of data
wrangling and all the cleaning and reformatting needed. However, the data that is given to the
deployed model – that is, the data coming from the user to the model – might not go through
the same data processes, which then causes variations in the model results in production.

Monitoring and validating live performance 185

• Data drift: Data drift happens if the characteristics and meaning of features or independent
variables in production differ from those in the modeling stage. Imagine you used a third-party
tool to generate a score for the health or financial situation of people. The algorithm behind
that tool could change over time, and its range and meaning will not be the same when your
model gets used in production. If you have not updated your model accordingly, then your
model will not work as expected as the meaning of the value of the features will not be the same
between the data used for training and the user data after deployment.

• Concept drift: Concept drift is about any change in the definition of output variables. For
example, real decision boundaries between training data and production could be different
because of concept drift, meaning the effort made in training might result in a decision boundary
far from reality in production.

In addition to MLflow, which was introduced in the previous chapter, there are Python and libraries
tools (as listed in Table 9.2) that you can use to monitor the performance, I/O data, and infrastructure of
machine learning models, helping you maintain model quality and reliability in production environments:

Tool Brief Description URL

Alibi Detect An open source Python library that focuses
on outlier, adversarial, and drift detection

https://github.com/

SeldonIO/alibi-

detect

Evidently An open source Python library for
analyzing and monitoring machine learning
models that offers various model evaluation
techniques, such as data drift detection and
model performance monitoring

https://github.

com/evidentlyai/

evidently

ELK Stack Elasticsearch, Logstash, and Kibana
(ELK) is a popular stack for collecting,
processing, and visualizing logs and metrics
from various sources, including machine
learning models

https://www.elastic.

co/elk-stack

WhyLabs A platform that provides observability and
monitoring for machine learning models

https://whylabs.ai/

Table 9.2 – Popular tools for machine learning model monitoring and drift detection

We can also benefit from some statistical and visualization techniques for detecting and addressing
data and concept drifts. Here are some examples of such methods for data drift evaluation:

• Statistical tests: We can use hypothesis tests, such as the Kolmogorov-Smirnov test, Chi-squared

test, or Mann-Whitney U test, to determine whether the distribution of input data has changed
significantly over time.

https://github.com/SeldonIO/alibi-detect
https://github.com/SeldonIO/alibi-detect
https://github.com/SeldonIO/alibi-detect
https://github.com/evidentlyai/evidently
https://github.com/evidentlyai/evidently
https://github.com/evidentlyai/evidently
https://www.elastic.co/elk-stack
https://www.elastic.co/elk-stack
https://whylabs.ai/

Testing and Debugging for Production186

• Distribution metrics: We can use distribution metrics, such as mean, standard deviation,
quantiles, and other summary statistics, to compare training data and the new data in production.
Significant differences in these metrics may indicate data drift.

• Visualization: We can use visualization techniques such as histograms, boxplots, or scatter
plots for the input features of the training data and the new data in production to help identify
changes in the data distributions.

• Feature importance: We can monitor changes in feature importance values. If feature importance
in the new data differs significantly from those in the training data, it may indicate data drift.

• Distance metrics: We can measure the difference between the training data and the
new data distributions using distance metrics such as Kullback-Leibler divergence or
Jensen-Shannon divergence.

Model assertion is another technique, as you will learn next, that helps you in building and deploying
reliable machine learning models.

Model assertion

We can use traditional programming assertion in machine learning modeling to ensure that the
model is behaving as expected. Model assertions can help us detect issues early on, such as input
data drift or other unexpected behaviors that might affect the model’s performance. We can consider
model assertions as a set of rules that get checked during the model’s training, validation, or even
during deployment to ensure that the model’s predictions meet the predefined conditions. Model
assertions can help us in many ways, such as detecting issues with the model or input data, allowing
us to address them before they impact the model’s performance. They can also help us maintain the
model’s performance. Here are two examples of model assertions:

• Input data assertions: These can check that the input features fall within an expected range or
have the correct data type. For example, if a model predicts house prices based on the number
of rooms, you might assert that the number of rooms is always a positive integer.

• Output data assertions: These can check that the model’s predictions meet certain conditions or
constraints. For example, in a binary classification problem, you might assert that the predicted
probability is between 0 and 1.

Let’s go through a simple example of model assertion in Python. In this example, we will use a simple
linear regression model from scikit-learn to predict house prices based on the number of rooms,
using a toy dataset. First, let’s create a toy dataset and train the linear regression model:

import numpy as np

from sklearn.linear_model import LinearRegression

Toy dataset with number of rooms and corresponding house prices

Model assertion 187

X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)

y = np.array([100000, 150000, 200000, 250000, 300000])

Train the linear regression model

model = LinearRegression()

model.fit(X, y)

Now, let’s define our model assertions so that they do the following:

1. Check that the input (number of rooms) is a positive integer.

2. Check that the predicted house price is within the expected range.

Here’s the code that does these things:

def assert_input(input_data):

 assert isinstance(input_data, int),

 "Input data must be an integer"

 assert input_data > 0, "Number of rooms must be positive"

def assert_output(predicted_price, min_price, max_price):

 assert min_price <= predicted_price <= max_price,

 f"Predicted price should be between {min_price} and

 {max_price}"

Now, we can use the defined model assertion functions, as follows:

Test the assertions with example input and output data

input_data = 3

assert_input(input_data)

predicted_price = model.predict([[input_data]])[0]

assert_output(predicted_price, 50000, 350000)

The assert_input function checks whether the input data (that is, the number of rooms) is an
integer and is positive. The assert_output function checks whether the predicted house price is
within a specified range (for example, between 50,000 and 350,000 in this example). The previous code
doesn’t give any AssertionError assertion as it meets the criteria defined in the model assertion
functions. Let’s say that, instead of 3, which is an integer, we use a string, as follows:

input_data = '3'

assert_input(input_data)

Here, we get the following AssertionError:

AssertionError: Input data must be an integer

Testing and Debugging for Production188

Let’s say we define the output range for assert_output so that it’s between 50000 and 150000
and use the model predictions for a house with 3 bedrooms, as follows:

input_data = 3

predicted_price = model.predict([[input_data]])[0]

assert_output(predicted_price, 50000, 150000)

We will get the following AssertionError:

AssertionError: Predicted price should be between 50000 and 150000

Model assertion is another technique, side by side with model monitoring, that helps ensure the
reliability of our models.

With this, we have come to the end of this chapter.

Summary

In this chapter, you learned about important concepts for test-driven development, including
infrastructure and integration testing. You learned about the available tools and libraries to implement
these two types of testing. We also went through examples in which you learned how to use the pytest
library for both infrastructure and integration testing. You also learned about model monitoring and
model assertion as two other important topics for assessing the behavior of our models before and in
production. These techniques and tools help you in designing strategies so that you have a successful
deployment and reliable models in production environments.

In the next chapter, you will learn about reproducibility, an important concept in proper machine
learning modeling, and how you can use data and model versioning to achieve reproducibility.

Questions

1. Can you explain the difference between data and concept drifts?

2. How can model assertions help you in developing reliable machine learning models?

3. What are some examples of components of integration testing?

4. How can we use Chef, Puppet, and Ansible?

References

• Kang, Daniel, et al. Model assertions for monitoring and improving ML models. Proceedings of
Machine Learning and Systems 2 (2020): 481-496.

10
Versioning and Reproducible

Machine Learning Modeling

Reproducibility is an important topic to help machine learning developers go back to different stages
of the machine learning life cycle and identify opportunities for model improvement. Having access
to different versions of the data and models generated through the machine learning life cycles could
help us in improving the reproducibility of our projects.

In this chapter, you will learn about the meaning and importance of reproducibility in machine learning
modeling. You will learn about tools for incorporating data versioning in machine learning pipelines
to help you attain more effective collaboration in your projects and achieve reproducibility in your
models. You will also learn about different aspects of model versioning and tools for incorporating
it into your pipelines.

We will cover the following topics:

• Reproducibility in machine learning

• Data versioning

• Model versioning

By the end of this chapter, you’ll have learned how to use data and model versioning for your modeling
projects in Python to achieve reproducibility.

Versioning and Reproducible Machine Learning Modeling190

Technical requirements

The following are the requirements for this chapter and will help you better understand the concepts,
use them in your projects, and practice with the provided code:

• Python library requirements:

 � pandas >= 1.4.4

 � sklearn >= 1.2.2

• DVC >= 1.10.0

• You should also have basic knowledge of the machine learning life cycle

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter10.

Reproducibility in machine learning

Lack of reproducibility in your machine learning projects could be a waste of resources and decrease
the credibility of your models and findings in your research projects. Reproducibility is not the only
term used in this context; there are also two other key terms: repeatability and replicability. We don’t
want to get into the details of these differences. Instead, we want to have a definition of reproducibility
to use in this book. We define reproducibility in machine learning as the ability of different individuals
or teams of scientists and developers to achieve the same results using the same dataset, methodology,
and development environment as reported in an original report or study. We can ensure reproducibility
through the proper sharing of code, data, model parameters and hyperparameters, and other relevant
information, which allows others to validate and build upon our findings. Let’s better understand the
importance of reproducibility by going through two examples.

Scientists from a biotechnology company tried to reproduce the findings of 53 cancer studies (Begley
et al., 2012). But they were only able to reproduce the results of 6 out of the 53 studies. These were not
necessarily in the context of reproducibility in machine learning, but it highlights the importance of
reproducibility in scientific research and the potential consequences of basing decisions or further
research and development on irreproducible findings.

Another example of highlighting the importance of reproducibility in the context of data analysis
and data-driven discovery is what is known as the Reinhart-Rogoff Excel Error (Reinhart, C., and
Rogoff, K., 2010). In 2010, the economists Carmen Reinhart and Kenneth Rogoff published a paper
suggesting a negative correlation between high public debt and economic growth. This paper influenced
economic policies worldwide. However, in 2013, other researchers discovered an error in their Excel
calculations, which significantly impacted the results. But later, it was argued that the error was not
the driver behind the conclusions (Maziarz, 2017). Here, we don’t want to focus on their findings
but want to emphasize that the reproducibility of the analysis could eliminate any further argument
regardless of whether or not there was an error or not in the original analysis.

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter10

Data versioning 191

The following three concepts can help you achieve reproducibility in your machine learning
modeling projects:

• Code versioning: Having access to the version of the code used in any given stage of a
machine learning life cycle is fundamentally important to repeat an analysis or training and
evaluation processes

• Data versioning: To achieve reproducibility, we need to have access to the version of the data
that’s used in any given stage of the machine learning life cycle, such as training and testing

• Model versioning: Having a version of your model with frozen parameters and no randomness in
initializing, evaluating, or other processes in modeling, helps you eliminate risks of irreproducibility

We briefly talked about code versioning in Chapter 1, Beyond Code Debugging. Here, we will focus on
data and model versioning to help you in designing reproducible machine learning models.

Data versioning

We have different stages in the machine learning life cycle, from data collection and selection to data
wrangling and transformation, in which the data gets prepared step by step for model training and
evaluation. Data versioning helps us maintain data integrity and reproducibility throughout these
processes. Data versioning is the process of tracking and managing changes in datasets. It involves
keeping a record of different versions or iterations of the data, allowing us to access and compare previous
states or recover earlier versions when needed. We can reduce the risk of data loss or inconsistencies
by ensuring that changes are properly documented and versioned.

There are data versioning tools that can help us in managing and tracking changes in the data we want
to use for machine learning modeling or processes to assess the reliability and fairness of our models.
Here are some popular data-versioning tools:

• MLflow: We introduced MLflow for experiment tracking and model monitoring in previous
chapters, but you can also use it for data versioning (https://mlflow.org/)

• Data Version Control (DVC): This is an open source version control system for managing data,
code, and ML models. It is designed to handle large datasets and integrates with Git (https://
dvc.org/)

• Pachyderm: This is a data-versioning platform that provides reproducibility, provenance, and
scalability in machine learning workflows (https://www.pachyderm.com/)

• Delta Lake: This is an open source storage layer for Apache Spark and big data workloads that
provides data versioning (https://delta.io/)

• Git Large File Storage (Git-LFS): This is an extension of Git that allows the versioning of large
files, such as data files or models, alongside code (https://git-lfs.github.com/)

https://mlflow.org/
https://dvc.org/
https://dvc.org/
https://www.pachyderm.com/
https://delta.io/
https://git-lfs.github.com/

Versioning and Reproducible Machine Learning Modeling192

Each of these tools provides you with different data-versioning capabilities. You can choose the one
that meets your needs considering the size of the data, the nature of the project, and the desired level
of integration with other tools.

Here is an example of using DVC with Python for data versioning. After installing DVC, you can
initialize it by writing the following command in the Terminal:

dvc init

This will create a .dvc directory and set up the necessary configuration. Now, let’s create a small
DataFrame and save it as a CSV file in Python:

import pandas as pd

create a sample dataset

data_df = pd.DataFrame({'feature 1': [0.5, 1.2, 0.4, 0.8],

 'feature 2': [1.1, 1.3, 0.6, 0.1]})

save the dataset to a CSV file

data_df.to_csv('dataset.csv', index=False)

Now, we can add the dataset.csv file to DVC and commit the changes, similar to committing
code changes using Git:

dvc add dataset.csv

git add dataset.csv.dvc .gitignore

git commit -m "add initial dataset"

This creates a data.csv.dvc file that tracks the dataset’s version, and it adds data.csv to
.gitignore so that Git doesn’t track the actual data file. Now, we can modify the dataset as follows
and save it with the same name:

Add a new column to the dataset

data_df['feature 3'] = [0.05, 0.6, 0.4, 0.9]

Save the modified dataset to the same CSV file

data_df.to_csv('dataset.csv', index=False)

We can also commit the changes and save it as a different version:

dvc add dataset.csv

git add dataset.csv.dvc

git commit -m "update dataset with new feature column"

Model versioning 193

Now that we have two versions of the dataset.csv file, we can switch to the previous version or
the latest version of the datasets when needed by using the following commands in the Terminal:

go back to the previous version of the dataset

git checkout HEAD^

dvc checkout

return to the latest version of the dataset

git checkout master

dvc checkout

But if you have many versions of the same file or data, you can use other simple commands available
as part of DVC.

In addition to versioning our data, we need to track and manage different versions of our models
throughout the development life cycle. We will cover this next.

Model versioning

A model that goes to production is the eventual result of a series of experimentation and model
modifications with different versions of training and test data, and different machine learning methods
and their corresponding hyperparameters. Model versioning helps us ensure that changes that are
made to models are traceable, helping to establish reproducibility in our machine learning projects.
It ensures that every version of a model can be easily reproduced by providing a complete snapshot
of the model’s parameters, hyperparameters, and training data at a given point in time. It allows us to
easily roll back to a previous version in case of issues with a newly deployed model or to recover an
older version that may have been unintentionally modified or deleted.

Let’s go through a very simple example to better understand the need for model versioning. Figure 10.1
shows the performance of a random forest model with five estimators, or decision trees, and the different
maximum depths allowed for these decision trees. If we simply change the random states that are used
to split the data into train and test sets, using train_test_split() from scikit-learn,
and perform model initialization for a RandomForestClassifier() model, we get different
log-loss values and dependencies on the maximum depth of the trees in the random forest model:

Figure 10.1 – Log-loss in training and validation sets separated from the breast

cancer dataset using different random states for modeling and data split

Versioning and Reproducible Machine Learning Modeling194

This was a small example to show how such simple changes, which can happen if our models are
not versioned, can have drastic effects on our machine learning modeling. When we use experiment
tracking tools such as MLflow, we have access to all the tracked information for a selected model.

To version our model, we need to make sure of the following:

• We have access to a saved version of the parameters of the corresponding model

• Other necessary information such as model hyperparameters are documented or saved for
model retraining

• The code that needs to be used with the model parameters for inference or even retraining
and testing is versioned

• Processes with randomization, such as model initialization and data split for training and
testing, have specified random states, or seeds

There are different ways of storing your models and their related documentation. For example, you
can store your model using serialization libraries such as pickle alone or in combination with DVC
(https://dvc.org/doc/api-reference/open), as follows:

with dvc.api.open(model_path, mode='w', remote=remote_url) as f:

 pickle.dump(model, f)

For this, you need to specify a local path on which to save the model using pickle.dump and a
remote path for model versioning using DVC.

Summary

In this chapter, you learned about the meaning and importance of reproducibility in machine learning
modeling. You also learned about data and model versioning, which help us to develop more reliable
and reproducible models and data analysis results. Next, you learned about the different tools and
Python libraries you can use to version your data and models. With the concepts and practices
introduced in this chapter, you are ready to ensure reproducibility in your machine learning projects.

In the next chapter, you will learn about techniques you can use to avoid and eliminate data drift
and concept drift, which constitute two differences between the behavior of models before and
after deployment.

Questions

1. What are three examples of tools that you can use for data versioning?

2. When you generate different versions of the same data, such as by using DVC, do you need to
save it with different names?

https://dvc.org/doc/api-reference/open

References 195

3. Can you provide an example where you would use the same method and training and evaluation
data but get different training and evaluation performance?

References

• Reinhart, C., & Rogoff, K. (2010b). Debt and growth revisited. VOX. CEPRs Policy Portal.
Retrieved September 18, 2015.

• Reinhart, C., & Rogoff, K. (2010a). Growth in a time of debt. American Economic Review,
100, 573–578.10.1257/aer.100.2.573.

• Maziarz, Mariusz. The Reinhart-Rogoff controversy as an instance of the ‘emerging contrary result’

phenomenon. Journal of Economic Methodology 24.3 (2017): 213-225.

• Begley, C. G., & Ellis, L. M. (2012). Drug development: Raise standards for preclinical cancer

research. Nature, 483(7391), 531-533.

• Association for Computing Machinery (2016). Artifact Review and Badging. Available online
at https://www.acm.org/publications/policies/artifact-review-
badging (Accessed November 24, 2017).

• Plesser, Hans E. Reproducibility vs. replicability: a brief history of a confused terminology. Frontiers
in neuroinformatics 11 (2018): 76.

• Pineau, J., Vincent, M., Larochelle, H., & Bengio, Y. (2020). Improving reproducibility in

machine learning research (A report from the NeurIPS 2019 reproducibility program). arXiv
preprint arXiv:2003.12206.

• Raff, E., Lemire, D., & Nicholas, C. (2019). A new measure of algorithmic stability for machine

learning. Journal of Machine Learning Research, 20(168), 1-32.

• Gundersen, O. E., & Kjensmo, S. (2018). State of the art: Reproducibility in artificial intelligence.
In Thirty-Second AAAI Conference on Artificial Intelligence.

• Jo, T., & Bengio, Y. (2017). Measuring the tendency of CNNs to Learn Surface Statistical Regularities.
arXiv preprint arXiv:1711.11561.

• Haibe-Kains, B., Adam, G. A., Hosny, A., Khodakarami, F., & Waldron, L. (2020). Transparency

and reproducibility in artificial intelligence. Nature, 586(7829), E14-E16.

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

11
Avoiding and Detecting

Data and Concept Drifts

We talked about the effect of data and concept drifts in machine learning modeling in Chapter 9,
Testing and Debugging for Production. In this chapter, we want to go deeper into these concepts and
practice detecting drifts in Python.

Here, you will learn about the importance of concepts we introduced earlier, such as model versioning
and model monitoring, to avoid drifts and practice with some of the Python libraries for drift detection.

In this chapter, we will cover the following topics:

• Avoiding drifts in your models

• Detecting drifts

By the end of this chapter, you will be able to detect drifts in your machine learning models in Python
and have reliable models in production.

Technical requirements

The following requirements apply to this chapter as they help you better understand the concepts,
allow you to use them in your projects, and to practice with the provided code:

• Python library requirements are as follows:

 � sklearn >= 1.2.2

 � numpy >= 1.22.4

 � pandas >= 1.4.4

Avoiding and Detecting Data and Concept Drifts198

 � alibi_detect >= 0.11.1

 � lightgbm >= 3.3.5

 � evidently >= 0.2.8

• Understanding of the following is required:

 � Data and concept drift

 � Data and model versioning

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter11.

Avoiding drifts in your models

Data and concept drifts challenge the reliability of machine learning models in production. Drifts in
our machine learning projects can have different characteristics. Some of these characteristics that
could help you to detect drifts in your projects and plan to resolve them are as follows:

• Magnitude: We might face magnitudes of difference across the data distribution that result in
drift in our machine learning models. Small changes in the data distribution may be difficult
to detect, while large changes may be more noticeable.

• Frequency: Drifts might occur in different frequencies.

• Gradual versus sudden: Data drift can occur gradually where changes in the data distribution
happen slowly over time, or it can occur suddenly where changes happen quickly and unexpectedly.

• Predictability: Some types of drift may be predictable, such as changes that occur seasonally
or due to external events. Other types of drift may be unpredictable, such as sudden changes
in consumer behavior or market trends.

• Intentionality: Drift can be intentional, such as changes made to the data generation process,
or unintentional, such as changes that occur naturally over time.

We need to use techniques and practices that help us avoid the occurrence and pile-up of drifts in our
machine learning modeling projects.

Avoiding data drift

Having access to different versions of the data in different stages of the machine learning life cycle
of our models can help us to better detect drift by comparing the data in training and production,
assessing data processing pre-training, or identifying data selection criteria that could have caused
drift. Model monitoring also helps us to identify drifts early on and avoid pile-up.

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter11

Avoiding drifts in your models 199

Let’s practice drift monitoring by simply checking the mean of the distribution of features between
versions of data used for model training, and the new data in production. We will first define a class
to monitor for data drift. Here, we consider drift in a feature if the difference between the mean of
the distributions between the two versions of the data is bigger than 0.1:

class DataDriftMonitor:

 def __init__(self, baseline_data: np.array,

 threshold_mean: float = 0.1):

 self.baseline = self.calculate_statistics(

 baseline_data)

 self.threshold_mean = threshold_mean

 def calculate_statistics(self, data: np.array):

 return np.mean(data, axis=0)

 def assess_drift(self, current_data: np.array):

 current_stats = self.calculate_statistics(

 current_data)

 drift_detected = False

 for feature in range(0, len(current_stats)):

 baseline_stat = self.baseline[feature]

 current_stat = current_stats[feature]

 if np.abs(current_stat - baseline_stat) > self.threshold_
mean:

 drift_detected = True

 print('Feature id with drift:

 {}'.format(feature))

 print('Mean of original distribution:

 {}'.format(baseline_stat))

 print('Mean of new distribution:

 {}'.format(current_stat))

 break

 return drift_detected

Then, we use it to identify drift between two synthetic datasets:

np.random.seed(23)

Generating a synthetic dataset, as the original data, with 100
datapoints and 5 features

from a normal distribution centered around 0 with std of 1

baseline_data = np.random.normal(loc=0, scale=1,

 size=(100, 5))

Create a DataDriftMonitor instance

Avoiding and Detecting Data and Concept Drifts200

monitor = DataDriftMonitor(baseline_data,

 threshold_mean=0.1)

Generating a synthetic dataset, as the original data, with 100
datapoints and 5 features from a normal distribution #centered around
0.2 with std of 1

current_data = np.random.normal(loc=0.15, scale=1,

 size=(100, 5))

Assess data drift

drift_detected = monitor.assess_drift(current_data)

if drift_detected:

 print("Data drift detected.")

else:

 print("No data drift detected.")

This generates the following:

Feature id with drift: 1

Mean of original distribution: -0.09990597519469419

Mean of new distribution: 0.09662442557421645

Data drift detected.

Addressing concept drift

We can similarly define classes and functions with criteria to detect concept drift, as we practiced for
data drift detection. But we can also check, either programmatically or as part of quality assurance
when bringing our machine learning models into production, for external factors that might cause
concept drift such as environmental factors, changes in institutional or governmental policies, et cetera.
In addition to monitoring the data, we can benefit from feature engineering to select features that are
more robust to concept drift or ensemble models to be adapted dynamically in case of concept drift.

Although avoiding drift in our models is ideal, we need to be ready to detect and eliminate it in
practice. Next, you will learn techniques to detect drift in your model. From a practical perspective,
avoiding and detecting drifts in your model are very similar. But there are better techniques than
simply checking the mean of feature distributions (as we used for avoiding data drift in this section)
that we will practice in the next section.

Detecting drifts

Avoiding drifts altogether in all our models is not possible, but we can aim to detect them early
on and eliminate them. Here, we are going to practice drift detection with alibi_detect and
evidently in Python.

Detecting drifts 201

Practicing with alibi_detect for drift detection

One of the widely-used Python libraries for drift detection that we want to practice with is alibi_
detect. We will first import the necessary Python functions and classes and generate a synthetic
dataset with 10 features and 10,000 samples using make_classification from scikit-learn:

import numpy as np

import pandas as pd

import lightgbm as lgb

from alibi_detect.cd import KSDrift

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

from sklearn.metrics import balanced_accuracy_score as bacc

Generate synthetic data

X, y = make_classification(n_samples=10000, n_features=10,

 n_classes=2, random_state=42)

Then, we split the data into train and test sets:

Split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

 test_size=0.2, random_state=42)

Then, we train a LightGBM classifier on the training data:

train_data = lgb.Dataset(X_train, label=y_train)

params = {

 "objective": "binary",

 "metric": "binary_logloss",

 "boosting_type": "gbdt"

}

clf = lgb.train(train_set = train_data, params = params,

 num_boost_round=100)

We now evaluate the performance of the model on the test set and define a test label DataFrame to
use for drift detection:

Predict on the test set

y_pred = clf.predict(X_test)

y_pred = [1 if iter > 0.5 else 0 for iter in y_pred]

Calculate the balanced accuracy of the predictions

balanced_accuracy = bacc(y_test, y_pred)

print('Balanced accuracy on the synthetic test set:

Avoiding and Detecting Data and Concept Drifts202

 {}'.format(balanced_accuracy))

Create a DataFrame from the test data and predictions

df = pd.DataFrame(X_test,

 columns=[f"feature_{i}" for i in range(10)])

df["actual"] = y_test

df["predicted"] = y_pred

Now, we use the defined DataFrame of predictions and actual labels of the test data points to detect drift.
We initialize the KSDrift detector from the alibi_detect package and fit it onto the training
data. We use the predict method of the detector to calculate the drift scores and p-values on the
test data. The drift scores indicate the level of drift for each feature, while the p-values indicate the
statistical significance of the drift. If any of the drift scores or p-values are above a certain threshold,
we may consider the model to be experiencing drift and take appropriate action, such as retraining
the model with updated data:

Initialize the KSDrift detector

drift_detector = KSDrift(X_train)

Calculate the drift scores and p-values

drift_scores = drift_detector.predict(X_test)

p_values = drift_detector.predict(X_test,

 return_p_val=True)

Print the drift scores and p-values

print("Drift scores:")

print(drift_scores)

print("P-values:")

print(p_values)

Here are the resulting drift scores and p-values. As all the p-values are greater than 0.1, and considering
the threshold is 0.005, we can say that no drift is detected in this case:

Drift scores:

{'data': {'is_drift': 0, 'distance': array([0.02825 , 0.024625,
0.0225 , 0.01275 , 0.014 , 0.017125,0.01775 , 0.015125, 0.021375,
0.014625], dtype=float32), 'p_val': array([0.15258548, 0.28180763,
0.38703775, 0.95421314, 0.907967 ,0.72927415, 0.68762517, 0.8520056 ,
0.45154762, 0.87837887],dtype=float32), 'threshold': 0.005}, 'meta':
{'name': 'KSDrift', 'online': False, 'data_type': None, 'version':
'0.11.1', 'detector_type': 'drift'}}

P-values:

{'data': {'is_drift': 0, 'distance': array([0.02825 , 0.024625,
0.0225 , 0.01275 , 0.014 , 0.017125,0.01775 , 0.015125, 0.021375,
0.014625], dtype=float32), 'p_val': array([0.15258548, 0.28180763,
0.38703775, 0.95421314, 0.907967 ,0.72927415, 0.68762517, 0.8520056 ,

Detecting drifts 203

0.45154762, 0.87837887],dtype=float32), 'threshold': 0.005}, 'meta':
{'name': 'KSDrift', 'online': False, 'data_type': None, 'version':
'0.11.1', 'detector_type': 'drift'}}

Practicing with evidently for drift detection

Another widely-used Python library for drift detection that we will practice with here is evidently.
After importing the necessary libraries, we load the diabetes dataset from scikit-learn:

import pandas as pd

import numpy as np

from sklearn import datasets

from evidently.report import Report

from evidently.metrics import DataDriftTable

from evidently.metrics import DatasetDriftMetric

diabetes_data = datasets.fetch_openml(name='diabetes',

 version=1, as_frame='auto')

diabetes = diabetes_data.frame

diabetes = diabetes.drop(['class', 'pres'], axis = 1)

The following table shows the features we want to work on from the diabetes dataset for drift detection
and their meanings:

Feature Description

preg Number of times pregnant

plas Plasma glucose concentration after 2 hours in an oral glucose
tolerance test

skin Triceps skinfold thickness (mm)

insu 2-hour serum insulin (mu U/ml)

mass Body mass index (weight in kg/(height in m)^2)

pedi Diabetes pedigree function

Age Age (years)

Table 11.1 – Feature names and their description in diabetes

dataset used for drift detection (Efron et al., 2004)

Avoiding and Detecting Data and Concept Drifts204

We separate two sets of datapoints called reference and current sets, then generate a drift report using
Report() from the evidently.report.Reference set to include all individuals aged less
than or equal to 40 years, and the current set to include others in the dataset aged more than 40 years:

diabetes_reference = diabetes[diabetes.age <= 40]

diabetes_current = diabetes[diabetes.age > 40]

data_drift_dataset_report = Report(metrics=[

 DatasetDriftMetric(),

 DataDriftTable(),

])

data_drift_dataset_report.run(

 reference_data=diabetes_reference,

 current_data=diabetes_current)

Data_drift_dataset_report

The following illustration is of the report we generated for the diabetes dataset, considering the selected
features and separated reference and current sets:

Figure 11.1 – Drift report for the separated reference and current data from the diabetes dataset

Detecting drifts 205

We can see that age, preg, plas, insu, and skin are the features with significant differences
in their distributions between the reference and current sets, which are specified as features with
detected drift in the report shown in Figure 11.1. In spite of the significance of the difference between
the distributions, having complementary statistics such as difference of mean could be helpful to
develop a more reliable drift detection strategy. We can also get the distribution of the features from
the report, such as the distributions of age and preg in the reference and current sets in Figures

11.2 and 11.3, respectively:

Figure 11.2 – Distribution of the age feature in both current and reference data

Figure 11.3 – Distribution of the preg feature in both current and reference data

When we detect drifts in our models, we might need to retrain them by ingesting new data or by
filtering part of the data that might be the source of the drift. We might also need to change model
training if concept drift is detected.

Avoiding and Detecting Data and Concept Drifts206

Summary

In this chapter, you learned about the importance of avoiding drift in your machine learning models,
and how you can benefit from the concepts you learned in previous chapters such as model versioning
and monitoring to do so. You also practiced with two libraries for drift detection in Python: alibi_
detect and evidently. Using these or similar libraries will help you to eliminate drift in your
models and have reliable models in production.

In the next chapter, you will learn about different types of deep neural network models and how to
use PyTorch to develop reliable deep learning models.

Questions

1. Could you explain the difference between magnitude and frequency as two characteristics of
drift in machine learning modeling?

2. What is an example of a statistical test we can use for data drift detection?

References

• Ackerman, Samuel, et al. “Detection of data drift and outliers affecting machine learning model

performance over time.” arXiv preprint arXiv:2012.09258 (2020).

• Ackerman, Samuel, et al. “Automatically detecting data drift in machine learning classifiers.”
arXiv preprint arXiv:2111.05672 (2021).

• Efron, Bradley, Trevor Hastie, Iain Johnstone, and Robert Tibshirani (2004) “Least Angle

Regression,” Annals of Statistics (with discussion), 407-499

• Gama, João, et al. “A survey on concept drift adaptation.” ACM computing surveys (CSUR)
46.4 (2014): 1-37.

• Lu, Jie, et al. “Learning under concept drift: A review.” IEEE transactions on knowledge and data
engineering 31.12 (2018): 2346-2363.

• Mallick, Ankur, et al. “Matchmaker: Data drift mitigation in machine learning for large-scale

systems.” Proceedings of Machine Learning and Systems 4 (2022): 77-94.

• Zenisek, Jan, Florian Holzinger, and Michael Affenzeller. “Machine learning based concept drift

detection for predictive maintenance.” Computers & Industrial Engineering 137 (2019): 106031.

Part 4:

Deep Learning Modeling

In this part of the book, we will lay the foundation with an introduction to the underlying theories of
deep learning, and then transition to hands-on exploration of fully connected neural networks. We will
then learn about more advanced techniques including convolutional neural networks, transformers,
and graph neural networks. Concluding this part, we will spotlight the cutting-edge advancements in
machine learning, with a keen focus on generative modeling and an introduction to reinforcement and
self-supervised learning. Throughout these chapters, practical examples are provided using Python
and PyTorch, ensuring that we gain both theoretical knowledge as well as hands-on experience.

This part has the following chapters:

• Chapter 12, Going Beyond ML Debugging with Deep Learning

• Chapter 13, Advanced Deep Learning Techniques

• Chapter 14, Introduction to Recent Advancements in Machine Learning

12
Going Beyond ML Debugging

with Deep Learning

The most recent advancements in machine learning have been achieved through deep learning
modeling. In this chapter, we will introduce deep learning and PyTorch as a framework to use for
deep learning modeling. As the focus of this book is not on introducing different machine learning
and deep learning algorithms in detail, we will focus on opportunities that deep learning provides
for you to develop high-performance models, or use available ones, that can be built on top of the
techniques reviewed in this chapter and the next two.

In this chapter, we will cover the following topics:

• Introduction to artificial neural networks

• Frameworks for neural network modeling

By the end of this chapter, you will have learned about some theoretical aspects of deep learning
focusing on fully connected neural networks. You will have also practiced with PyTorch, a widely
used deep learning framework.

Technical requirements

The following requirements should be considered for this chapter as they will help you better understand
the concepts, use them in your projects, and practice with the provided code:

• Python library requirements:

 � torch >= 2.0.0

 � torchvision >= 0.15.1

• You will also require basic knowledge of the difference between different types of machine
learning models, such as classification, regression, and clustering

Going Beyond ML Debugging with Deep Learning210

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter12.

Introduction to artificial neural networks

Our natural networks of neurons work as decision-making systems with information processing units
called neurons that help us with, for example, recognizing the faces of our friends. Artificial neural

networks (ANNs) work similarly. Dissimilar to having a giant network of neurons, as in our bodies,
that take care of all decision-making, active or reactive, ANNs are designed to be problem-specific.
For example, we have ANNs for image classification, credit risk estimation, object detection, and
more. We will use neural networks instead of ANNs for simplicity in this book.

First, we want to focus on fully connected neural networks (FCNNs), which work on tabular data
(Figure 12.1). FCNNs and multi-layer perceptrons (MLPs) are used interchangeably in many resources.
To be able to better compare different types of neural networks, we will use FCNNs instead of MLPs
in this book:

Figure 12.1 – Schematic illustration of an FCNN and an individual neuron

FCNNs for supervised learning have one input, one output, and one or multiple hidden (middle)
layers. A neural network with more than three layers, inclusive of the input and the output layers in
supervised models, is called a deep neural network, and deep learning refers to modeling with such
networks (Hinton and Salakhutdinov, 2006).

The input layer is nothing other than the features of data points used for modeling. The number of
neurons in the output layer is also determined based on the problem at hand. For example, in the
case of binary classification, two neurons in the output layer represent two classes. The number and
size of hidden layers are among the hyperparameters of an FCNN and can be optimized to improve
FCNN performance.

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter12

Introduction to artificial neural networks 211

Each neuron in an FCNN receives a weighted sum of output values from neurons in the previous
layer, applies a linear or nonlinear transformation to the received sum of values, and then outputs the
resulting value to other neurons of the next layer. The weights used in the input value calculation of each
neuron are the learned weights (parameters) in the training process. The nonlinear transformations
are applied through predetermined activation functions (Figure 12.2). FCNNs are known for coming
up with complicated nonlinear relationships between input feature values and outputs, which makes
them flexible in figuring out (maybe) different kinds of relationships between inputs and outputs.
In FCNNs, activation functions that are applied to information that’s been received in neurons are
responsible for that complexity or flexibility:

Figure 12.2 – Widely used activation functions in neural network modeling

Each of these activation functions, such as rectified linear unit (ReLU) and exponential linear unit
(ELU), transform the values in a specific way, which makes them suitable for different layers and
provides flexibility in neural network modeling. For example, the sigmoid and softmax functions
are commonly used in output layers to transform the scores of the output neurons into values between
zero and one for classification models; these are known as probabilities of predictions. There are also
other activation functions such as Gaussian error linear unit (GELU) (Hendrycks and Gimpel, 2016)
that have been used in more recent models such as generative pre-trained transformer (GPT), which
will be explained in the next chapter. Here is the formula for GELU:

 GELU (z) = 0.5z (1 + tanh (√
_

 2 _ π (z + 0.044715 z 3)))

Supervised learning has two main processes: predicting outputs and learning from the incorrectness
or correctness of predictions. In FCNNs, predictions happen in forward propagation. The weights

Going Beyond ML Debugging with Deep Learning212

of the FCNNs between the input and first hidden layer are used to calculate the input values of the
neurons of the first hidden layer and similarly for other layers in the FCNN (Figure 12.3). Going from
input to output is called forward propagation or forward pass, which generates the output values
(predictions) for each data point. Then, in the backward propagation (backpropagation) or backward
pass, FCNN uses the predicted outputs and their differences with actual outputs to adjust its weights,
resulting in better predictions:

Figure 12.3 – Schematic illustration of forward propagation and backpropagation

for output prediction and parameter update, respectively

The parameters of a neural network get determined in the training process using an optimization
algorithm. Now, we will review some widely used optimization algorithms in neural network settings.

Optimization algorithms

Optimization algorithms work behind the scenes, trying to minimize the loss function to identify the
optimal parameters when you train a machine learning model. At each step in the training process, an
optimization algorithm decides how to update each of the weights or parameters in a neural network,
or other machine learning models. Most optimization algorithms rely on the gradient vector of the
cost function to update the weights. The main difference is how the gradient vector is used and what
data points are used to calculate it.

In gradient descent, all the data points are used to calculate the gradient of the cost function; then,
the weights of the model get updated in the direction of maximum decrease of cost. Despite the
effectiveness of this method for small datasets, it can become computationally expensive and unsuitable
for large datasets as for every iteration of learning, the cost needs to be calculated for all the data points
simultaneously. The alternative approach is stochastic gradient descent (SGD); instead of all data
points, one data point gets selected in each iteration to calculate the cost and update the weights. But

Frameworks for neural network modeling 213

using one data point at a time causes a highly oscillating behavior in updating weights. Instead, we
can use mini-batch gradient descent, which is commonly called SGD in tutorials and tools, in which
instead of all data points or only one in each iteration, it will use a batch of data points to update the
weights. The mathematics behind these three approaches is shown in Figure 12.4:

Figure 12.4 – Gradient descent, stochastic gradient descent, and mini-

batch gradient descent optimization algorithms

Other optimization algorithms have been suggested in recent years to improve the performance
of neural network models across a variety of applications, such as the Adam optimizer (Kingma
and Ba, 2014). One of the intuitions behind this approach is to avoid diminishing gradients in the
optimization process. Getting further into the details of different optimization algorithms is beyond
the scope of this book.

In neural network modeling, there are two important terms that you need to know the definition
of: epoch and batch size. When training a neural network model using different frameworks, which
we will review in the next section, you need to specify the batch size and the number of epochs. In
each iteration of optimization, a subset of data points, or a mini-batch as in mini-batch gradient
descent (Figure 12.4), gets used to calculate loss; then, the parameters of the model get updated using
backpropagation. This process gets repeated to cover all the data points in the training data. Epoch is
a term we use to specify how many times all the training data is used during the optimization process.
For example, specifying an epoch of 5 means that the model gets trained until all the data points in
the training process are used five times in the optimization process.

Now that you know the basics of neural network modeling, we are ready to introduce frameworks
for neural network modeling.

Frameworks for neural network modeling

Multiple frameworks have been used for neural network modeling:

• PyTorch (https://pytorch.org/)

• TensorFlow (https://www.tensorflow.org/learn)

https://pytorch.org/
https://www.tensorflow.org/learn

Going Beyond ML Debugging with Deep Learning214

• Keras (https://keras.io/)

• Caffe (https://caffe.berkeleyvision.org/)

• MXNet (https://mxnet.apache.org/versions/1.9.1/)

In this book, we will focus on PyTorch in practicing deep learning, but the concepts we’ll introduce
are independent of the framework you use in your projects.

PyTorch for deep learning modeling

PyTorch is an open source deep learning framework, based on the Torch library, developed by
Meta AI. You can easily integrate PyTorch with Python’s scientific computing libraries in your deep
learning projects. Here, we will practice using PyTorch by looking at a simple example of building
an FCNN model using the MNIST digit dataset. It is a commonly used example and the objective
is solely to understand how to train and test a deep learning model using PyTorch if you don’t have
experience with that.

First, we will import the required libraries and load the dataset for training and testing:

import torch

import torchvision

import torchvision.transforms as transforms

torch.manual_seed(10)

Device configuration

device = torch.device(

 'cuda' if torch.cuda.is_available() else 'cpu')

MNIST dataset

batch_size = 100

train_dataset = torchvision.datasets.MNIST(

 root='../../data',train=True,

 transform=transforms.ToTensor(),download=True)

test_dataset = torchvision.datasets.MNIST(

 root='../../data', train=False,

 transform=transforms.ToTensor())

Data loader

train_loader = torch.utils.data.DataLoader(

 dataset=train_dataset,batch_size=batch_size,

 shuffle=True)

test_loader = torch.utils.data.DataLoader(

 dataset=test_dataset, batch_size=batch_size,

 shuffle=False)

https://keras.io/
https://caffe.berkeleyvision.org/
https://mxnet.apache.org/versions/1.9.1/

Frameworks for neural network modeling 215

Next, we will determine the hyperparameters of the model and its input_size, which is the number
of neurons in the input layer; this is the same as the number of features in our data. In this example,
it is equal to the number of pixels in each image as we are considering each pixel as one feature to
build an FCNN model:

input_size = 784

size of hidden layer

hidden_size = 256

number of classes

num_classes = 10

number of epochs

num_epochs = 10

learning rate for the optimization process

learning_rate = 0.001

Then, we will import torch.nn, from which we can add linear neural network layers for our FCNN
model and write a class to determine the architecture of our network, which is a network with one
hidden layer whose size is 256 (with 256 neurons):

import torch.nn as nn

class NeuralNet(nn.Module):

 def __init__(self, input_size, hidden_size,

 num_classes):

 super(NeuralNet, self).__init__()

 Self.fc_layer_1 = nn.Linear(input_size, hidden_size)

 self.fc_layer_2 = nn.Linear(hidden_size, num_classes)

 def forward(self, x):

 out = self.fc_layer_1(x)

 out = nn.ReLU()(out)

 out = self.fc_layer_2(out)

 return out

model = NeuralNet(input_size, hidden_size,

 num_classes).to(device)

The torch.nn.Linear() class adds a linear layer and has two input arguments: the number of
neurons in the current and next layer, respectively. For the first, nn.Linear(), the first argument
has to be equal to the number of features, while the second argument of the last nn.Linear() input
argument in the network initialization class needs to be equal to the number of classes in the data.

Going Beyond ML Debugging with Deep Learning216

Now, we must define our cross-entropy loss function and our optimizer object using the Adam
optimizer from torch.optim():

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(),

 lr=learning_rate)

We are now ready to train our model. As you can see in the following code block, we have a loop over
epochs and another internal loop over each batch. Within the internal loop, we have three important
steps that are common across most supervised models that use PyTorch:

1. Get the output of the model for the data points within the batch.

2. Calculate the loss using the true labels and the predicted output for the data points of that batch.

3. Backpropagate and update the parameters of the model.

Next, we must train the model on the MNIST training set:

total_step = len(train_loader)

for epoch in range(num_epochs):

 for i, (images, labels) in enumerate(train_loader):

 images = images.reshape(-1, 28*28).to(device)

 labels = labels.to(device)

 # Forward pass to calculate output and loss

 outputs = model(images)

 loss = criterion(outputs, labels)

 # Backpropagation and optimization

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

At the end of epoch 10, we have a model with a loss of 0.0214 in the training set. Now, we can use the
following code to calculate the accuracy of the model in the test set:

with torch.no_grad():

 correct = 0

 total = 0

 for images, labels in test_loader:

 images = images.reshape(-1, 28*28).to(device)

 labels = labels.to(device)

 outputs = model(images)

 _, predicted = torch.max(outputs.data, 1)

 total += labels.size(0)

 correct += (predicted == labels).sum().item()

Frameworks for neural network modeling 217

 print('Accuracy of the network on the test images:

 {} %'.format(100 * correct / total))

This results in 98.4% for the model in the MNIST test set.

There are more than 10 different optimization algorithms, including the Adam optimization algorithm,
available in PyTorch (https://pytorch.org/docs/stable/optim.html), which helps
you in training your deep learning models.

Next, we will discuss hyperparameter tuning, model interpretability, and fairness in deep learning
settings. We will also introduce PyTorch Lightning, which will help you in your deep learning projects.

Hyperparameter tuning for deep learning

In deep learning modeling, hyperparameters are key factors in determining its performance. Here
are some of the hyperparameters of FCNNs you can work with to improve the performance of your
deep learning models:

• Architecture: The architecture of an FCNN refers to the number of hidden layers and their
sizes, or the number of neurons. More layers result in higher depth in a deep learning model
and could result in more complex models. Although the depth of neural network models
has been shown to improve performance on large datasets in many cases (Krizhevsky et al.,
2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016), the majority of
the success stories behind the positive effect of higher depth on performance are outside of
FCNNs. But architecture is still an important hyperparameter that needs to be optimized to
find a high-performance model.

• Activation functions: Despite commonly used activation functions in each field and problem,
you can still identify the best one for your problem. Remember that you don’t have to use the
same function across all layers, although we usually stick to one.

• Batch size: Changing batch size changes both the performance and speed of convergence of
your models. But usually, it doesn’t have a significant effect on performance, except in the steep
part of the learning curve in the first few epochs.

• Learning rate: The learning rate determines the speed of convergence. A higher learning rate
causes faster convergence but it might also cause oscillation around the local optimum point or
even divergence. Algorithms such as the Adam optimizer control the diminishing convergence
rate when we get closer to the local optima during the optimization process, but we can still
play with the learning rate as a hyperparameter in deep learning modeling.

• Number of epochs: Deep learning models have a steep learning curve for the first few epochs,
depending on the learning rate and batch size, and then start plateauing on performance. Using
enough epochs is important to make sure you get the best possible model out of your training.

• Regularization: We talked about the importance of regulations in controlling overfitting and
improving generalizability in Chapter 5, Improving the Performance of Machine Learning Models,

https://pytorch.org/docs/stable/optim.html

Going Beyond ML Debugging with Deep Learning218

by preventing the model from heavily relying on individual neurons and potentially improving
generalizability. For example, if dropout is set to 0.2, each neuron has a 20% chance of getting
zero out during training.

• Weight decay: This is a form of L2 regularization that adds a penalty to the weights of the
neural network. We introduced L2 regularization in Chapter 5, Improving the Performance of

Machine Learning Models.

You can use different hyperparameter optimization tools such as Ray Tune alongside PyTorch to train
your deep learning models and optimize their hyperparameters. You can read more about it in this
tutorial available on the PyTorch website: https://pytorch.org/tutorials/beginner/
hyperparameter_tuning_tutorial.html.

In addition to hyperparameter tuning, PyTorch has different functionalities and associated libraries
for tasks such as model interpretability and fairness.

Model interpretability in PyTorch

We introduced multiple explainability techniques and libraries in Chapter 6, Interpretability and

Explainability in Machine Learning Modeling, that can help you in explaining complex machine
learning and deep learning models. Captum AI (https://captum.ai/) is another open source
model interpretability library developed by Meta AI for deep learning projects using PyTorch. You can
easily integrate Captum into your existing or future PyTorch-based machine learning pipelines. You
can benefit from different explainability and interpretability techniques such as integrated gradients,
GradientSHAP, DeepLIFT, and saliency maps through Captum.

Fairness in deep learning models developed by PyTorch

We discussed the importance of fairness and introduced different notions, statistical measures, and
techniques to help you in assessing and eliminating bias in your models as part of Chapter 7, Decreasing

Bias and Achieving Fairness. FairTorch (https://github.com/wbawakate/fairtorch)
and inFairness (https://github.com/IBM/inFairness) are two other libraries you
can use for fairness and bias assessment for your deep learning modeling using PyTorch. You can
benefit from inFairness in auditing, training, and post-processing your models for individual
fairness. Fairtorch also provides you with tools to mitigate bias in classification and regression,
though this is currently limited to binary classification.

PyTorch Lightning

PyTorch Lightning is an open source, high-level framework that simplifies the process of developing and
training deep learning models using PyTorch for you. Here are some of the features of PyTorch Lightning:

• Structured code: PyTorch Lightning organizes code into a Lightning Module that helps you
in separating the model architecture, data handling, and training logic, making the code more
modular and easier to maintain

https://pytorch.org/tutorials/beginner/hyperparameter_tuning_tutorial.html
https://pytorch.org/tutorials/beginner/hyperparameter_tuning_tutorial.html
https://captum.ai/
https://github.com/wbawakate/fairtorch
https://github.com/IBM/inFairness

Summary 219

• Training loop abstraction: You can avoid repetitive code for the training, validation, and
testing loops using PyTorch Lightning

• Distributed training: PyTorch Lightning simplifies the process of scaling deep learning models
across multiple GPUs or nodes

• Experiment tracking and logging: PyTorch Lightning integrates with experiment tracking
and logging tools such as MLflow and Weights & Biases, which make monitoring your deep
learning model training easier for you

• Automatic optimization: PyTorch Lightning automatically handles the optimization process,
manages optimizers and learning rate schedulers, and makes it easier to switch between different
optimization algorithms

Despite all these factors, there is more to deep learning modeling than FCNNs, as we’ll see in the
next chapter.

Summary

In this chapter, you learned about deep learning modeling with FCNNs. We practiced using PyTorch
with a simple deep learning model to help you start performing deep learning modeling using PyTorch
if you haven’t had that experience already. You also learned about the important hyperparameters of
FCNNs, tools for model interpretability and fairness that you can use in deep learning settings, and
PyTorch Lightning as an open source high-level framework to simplify deep learning modeling for
you. You are now ready to learn more about PyTorch, PyTorch Lightning, and deep learning and start
benefitting from them in your problems.

In the next chapter, you will learn about other more advanced types of deep learning models, including
the convolutional neural network, transformer, and graph convolutional network models.

Questions

1. Do the parameters of a neural network model get updated in backpropagation?

2. What is the difference between stochastic and mini-batch gradient descent?

3. Can you explain the difference between a batch and an epoch?

4. Can you provide an example of where you need to use the sigmoid and softmax functions in
your neural network models?

References

• LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature 521.7553 (2015): 436-444.

• Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the Dimensionality of Data with Neural

Networks. Science, 313(5786), 504-507.

Going Beyond ML Debugging with Deep Learning220

• Abiodun, Oludare Isaac, et al. State-of-the-art in artificial neural network applications: A survey.
Heliyon 4.11 (2018): e00938.

• Hendrycks, D., & Gimpel, K. (2016). Gaussian Error Linear Units (GELUs). arXiv
preprint arXiv:1606.08415.

• Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980.

• Kadra, Arlind, et al. Well-tuned simple nets excel on tabular datasets. Advances in neural
information processing systems 34 (2021): 23928-23941.

• Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional

neural networks. In Advances in neural information processing systems (pp. 1097-1105).

• Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

• He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

• Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015).
Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 1-9).

13
Advanced Deep

Learning Techniques

In the previous chapter, we reviewed the concept of neural network modeling and deep learning
while focusing on fully connected neural networks. In this chapter, we will discuss more advanced
techniques that let you use deep learning models across different data types and structures, such as
images, texts, and graphs. These techniques are behind the majority of advancements across industries
through artificial intelligence, such as in chatbots, medical diagnosis, drug discovery, stock trading,
and fraud detection. Although we will present some of the most famous deep learning models across
different data types, this chapter aims to help you understand the concepts and practice with PyTorch,
and not provide you with state-of-the-art models for each data type or subject domain.

In this chapter, we will cover the following topics:

• Types of neural networks

• Convolutional neural networks for image shape data

• Transformers for language modeling

• Modeling graphs using deep neural networks

By the end of this chapter, you will have learned about convolutional neural networks (CNNs),
transformers, and graph neural networks as the three important categories of deep learning modeling
to develop high-performance models in your problems of interest. You will have also learned how to
develop such models using PyTorch and Python.

Advanced Deep Learning Techniques222

Technical requirements

The following requirements should be considered for this chapter as they will help you better understand
the concepts, use them in your projects, and practice with the provided code:

• Python library requirements:

 � torch >= 2.0.0

 � torchvision >= 0.15.1

 � transformers >= 4.28.0

 � datasets >= 2.12.0

 � torch_geometric == 2.3.1

• You will require basic knowledge of the following:

 � Deep learning modeling and fully connected neural networks

 � How to use PyTorch for deep learning modeling

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter13.

Types of neural networks

The examples we have provided so far in this book have focused on tabular data either in machine
learning or in deep learning modeling, as one category of machine learning modeling. However,
machine learning, and especially deep learning, has been successful in tackling problems that deal
with non-tabular, or unstructured, texts, images, and graphs. First, we’ll introduce different problems
that involve such data types in this section; then, we’ll review deep learning techniques that can help
you build reliable models for them.

Categorization based on data type

Structured data, which is also referred to as tabular data, is data that can be organized into spreadsheets
and structured databases. As we have used this data type in this book, we usually have different features
and even output in the columns of a table, matrix, or DataFrame. The rows of a DataFrame represent
different data points in the dataset. However, we have other types of data that are not structured, and
reformatting them into a DataFrame or matrix results in a loss of information. Figure 13.1 shows the
three most important types of unstructured data – that is, sequence data such as text, image shape
data such as family photos, and graphs such as social networks:

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter13
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter13

Types of neural networks 223

Figure 13.1 – Different data types that can be modeled using deep learning

Table 13.1 provides some examples of problems and how their corresponding data fits within each
category mentioned in Figure 13.1:

Data Type Examples

Sequence data

Text

Time-series data such as stock prices

Audio data as a sequence of sound waves

Geolocation data as a sequence of object movement

EEG data as a sequence of electrical activity of the brain

ECG data as a sequence of electrical activity of the heart

Image shape data

Photographs

Security and surveillance images

Medical images such as X-rays or CT scans

Visual arts and images of drawings and paintings

Images captured by satellites, such as weather patterns

Images captured using microscopes, such as images of cells

Graphs

Road networks

Web graphs – connections between web pages

Knowledge graphs – relationships between concepts

Social networks – connections between individuals and groups

Biological networks – connections between genes or other biological entities

Table 13.1 – Examples of problems for each data type

Advanced Deep Learning Techniques224

Some of the challenges and issues with reformatting different data types into tabular data are as follows:

• Reformatting sequence data into a table shape data object results in a loss of information
regarding the order of data, such as words

• Reformatting images into tabular format results in a loss of local patterns, such as the relationship
between pixels of two-dimensional images

• Reformatting graphs into tabular data will eliminate dependency between data points or features

Now that we understand the importance of not reformatting all datasets and data types into tabular
data, we can start working with different deep learning techniques to understand how we can build
successful models for non-tabular data. We will start by looking at image shape data.

Convolutional neural networks for image shape data

CNNs allow us to build deep learning models on image data without the need to reformat images
into a tabular format. The name of this category of deep learning techniques comes from the concept
of convolution, which in deep learning refers to applying a filter to image shape data to produce a
secondary image shape feature map (shown in Figure 13.2):

Figure 13.2 – A simple example of applying a predefined convolution filter to a 3x3 image shape data point

Convolutional neural networks for image shape data 225

When training a deep learning model, for example using PyTorch, a convolution filter or other filters
that we will introduce later in this chapter will not be predefined but rather learned through the learning
process. Convolution and other filters and processes in CNN modeling let us use the methods under
this category of deep learning techniques for different image shape data (as we saw in Figure 13.1).

The application of CNNs is beyond supervised learning for image classification, for which it might be
most famous. CNNs have been used for different problems, including image segmentation, resolution

enhancements, object detection, and more (Figure 13.3):

Figure 13.3 – Some of the successful applications of convolutional neural networks

Table 13.2 provides a list of high-performance models in different applications of CNNs that you can
use in your projects or learn from to build even better models:

Advanced Deep Learning Techniques226

Problem Some of the Widely Used Models and Related Techniques

Image classification ResNet (He et al., 2016); EfficientNets (Tan and Le, 2019);
MobileNets (Howard et al., 2017; Sandler et al., 2018); Xception
(Chollet, 2017)

Image segmentation U-Net (Ronneberger et al., 2015); Mask R-CNN (He et al., 2017);
DeepLab (Chen et al., 2017); PSPNet (Chao et al., 2017)

Object detection Mask R-CNN (He et al., 2017); Faster R-CNN (Ren et al., 2015);
YOLO (Redmon et al., 2016)

Image super-resolution SRCNN (Dong et el., 2015); FSRCNN (Dong et al., 2016); EDSR
(Lim et al., 2017)

Image-to-image
translation

Pix2Pix (Isola et al., 2017); CycleGAN (Zhu et al., 2017)

Style transfer Neural Algorithm of Artistic Style (Gatys et al., 2016); AdaIN-Style
(Huang et al., 2017)

Anomaly detection AnoGAN (Schlegl et al., 2017); RDA (Zhou et al., 2017); Deep
SVDD (Ruff et al., 2018)

Optical character
recognition

EAST (Zhou et al., 2017); CRAFT (Bake et al., 2019)

Table 13.2 – High-performance CNN models across different problems

You can train CNN models on two-dimensional or three-dimensional image shape data. You can also
build models that work on sequences of such data points, such as videos, as sequences of images. Some
of the most famous models or approaches in terms of using CNNs on videos that you can play with are
C3D (Tran et al., 2015), I3D (Carreira and Zisserman, 2017), and SlowFast (Feichtenhofer et al., 2019).

Next, we will learn about some of the ways we can assess the performance of CNN models.

Performance assessment

You can use the performance measures presented in Chapter 4, Detecting Performance and Efficiency

Issues in Machine Learning Models, such as ROC-AUC, PR-AUC, precision, and recall, for CNN
classification models. However, there are other measures more specific to some of the problems
presented in Figure 13.3, as follows:

• Pixel accuracy: This measure is defined as the ratio of correctly classified pixels to the total
number of pixels. This measure works like accuracy and can be misleading when there is a
class imbalance in the pixels.

Convolutional neural networks for image shape data 227

• Jaccard index: The Jaccard index is defined as the intersection over the union and can be used
to calculate the overlap between the predicted segmentation and the ground truth normalized
by their union.

CNN modeling using PyTorch

The process of CNN modeling in PyTorch is very similar to building fully connected neural networks,
as we covered in the previous chapter. It starts with specifying the architecture of the network, then
initializing the optimizer, and finally going through different epochs and batches to learn from training
data points. Here, we want to practice CNN modeling in PyTorch using the German Traffic Sign

Recognition Benchmark (GTSRB) dataset from the torchvision library. Examples of the images
in this dataset are shown in Figure 13.4:

Figure 13.4 – Examples of images in the German Traffic Sign Recognition

Benchmark (GTSRB) dataset from torchvision

There are other filters and layers besides the convolution filter (torch.nn.Conv2d) available in
torch.nn that you can use to train high-performance CNN models. One of those filters that is
widely used besides torch.nn.Conv2d is torch.nn.MaxPool2d, which can be used as a
pooling layer in CNN modeling (LeCun et al., 1989). You can read about the required arguments for
these two filters on the PyTorch website (https://pytorch.org/docs/stable/nn.html).

Let’s start practicing CNN modeling using the GTSRB dataset. First, we must load the data for model
training and testing, and then specify the number of classes in the classification model:

transform = transforms.Compose([

 transforms.Resize((32, 32)),

 transforms.ToTensor(),

 transforms.Normalize((0.3337, 0.3064, 0.3171),

 (0.2672, 0.2564, 0.2629))

])

batch_size = 6

n_class = 43

Loading train and test sets of

German Traffic Sign Recognition Benchmark (GTSRB) Dataset.

trainset = torchvision.datasets.GTSRB(

https://pytorch.org/docs/stable/nn.html

Advanced Deep Learning Techniques228

 root='../../data',split = 'train',

 download=True,transform=transform)

trainloader = torch.utils.data.DataLoader(trainset,

 batch_size=batch_size,shuffle=True, num_workers=2)

testset = torchvision.datasets.GTSRB(

 root='../../data',split = 'test',

 download=True,transform=transform)

testloader = torch.utils.data.DataLoader(testset,

 batch_size=batch_size,shuffle=False,num_workers=2)

Then, we must define a neural network class, called Net, which determines the architecture of the
network, including two layers of convolutional plus pooling filters, followed by ReLU activation
functions, and then three layers of fully connected neural networks with ReLU activation functions:

import torch.nn as nn

import torch.nn.functional as F

class Net(nn.Module):

 def __init__(self):

 super().__init__()

 self.conv1 = nn.Conv2d(3, 6, 5)

 self.pool = nn.MaxPool2d(2, 2)

 self.conv2 = nn.Conv2d(6, 16, 5)

 self.fc1 = nn.Linear(16 * 5 * 5, 128)

 self.fc2 = nn.Linear(128, 64)

 self.fc3 = nn.Linear(64, n_class)

 def forward(self, x):

 x = self.pool(F.relu(self.conv1(x)))

 x = self.pool(F.relu(self.conv2(x)))

 x = torch.flatten(x, 1)

 x = F.relu(self.fc1(x))

 x = F.relu(self.fc2(x))

 x = self.fc3(x)

 return x

Then, we must initialize the network and optimizer, as follows:

import torch.optim as optim

net = Net()

Convolutional neural networks for image shape data 229

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(net.parameters(), lr=0.001,

 momentum=0.9)

Now, we are ready to train the network using the initialized architecture and the optimizer. Here, we
will use three epochs to train the network. The batch sizes don’t need to be specified here as they were
determined when the data was loaded from torchvision, which was specified as 6 in this case
(this can be found in this book’s GitHub repository):

n_epoch = 3

for epoch in range(n_epoch):

 # running_loss = 0.0

 for i, data in enumerate(trainloader, 0):

 # get the input data

 inputs, labels = data

 # zero the parameter gradients

 optimizer.zero_grad()

 # output identification

 outputs = net(inputs)

 # loss calculation and backward propagation for parameter
update

 loss = criterion(outputs, labels)

 loss.backward()

 optimizer.step()

The final calculated loss after 3 epochs is 0.00008.

This was a simple example of using PyTorch for CNN modeling. There are other functionalities in
PyTorch that you can benefit from while building CNN models, such as data augmentation. We will
discuss this next.

Image data transformation and augmentation for CNNs

As part of the pre-training stages of a machine learning life cycle, you might need to transform your
images, such as by cropping them, or implement data augmentation as a series of techniques for
synthetic data generation to improve the performance of your models, as explained in Chapter 5,
Improving the Performance of Machine Learning Models. Figure 13.5 shows some simple examples of
data augmentation, including rotation and scaling, that help you in generating synthetic but highly
relevant data points to help your models:

Advanced Deep Learning Techniques230

Figure 13.5 – Examples of rule-based data augmentation – (A) original

image, (B) rotated image, and (C) scaled image

Although there are simple examples of rules for data augmentation that you can implement in Python,
there are many classes in PyTorch that you can use for both data transformation and augmentation,
as explained at https://pytorch.org/vision/stable/transforms.html.

Using pre-trained models

In a deep learning setting, often, we rely on pre-trained models either for inference or to further
fine-tune for a specific problem we have at hand. CNNs are not an exception and you can find many
pre-trained models in PyTorch for image classification or other applications of CNNs (https://
pytorch.org/vision/stable/models.html). You can also find code examples at the
same URL on how to use these models. You can find the necessary code to teach you how to fine-
tune these models using new data at https://pytorch.org/tutorials/beginner/
finetuning_torchvision_models_tutorial.html.

Although we’ve focused on applying CNNs to image data so far, they can be used to model any image
shape data. For example, audio data can be transformed from the time domain into the frequency
domain, resulting in image shape data that can be modeled using CNNs in combination with sequence
modeling algorithms, as introduced later in this chapter (https://pytorch.org/audio/
main/models.html).

In addition to images and image shape data, deep learning models and algorithms have been developed
to properly model sequence data in a variety of applications, such as in natural language processing
(NLP), which we will refer to as language modeling here for simplicity. In the next section, we will
review transformers for language modeling to help you start benefiting from such models if you have
a relevant idea or project at hand.

https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html
https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html
https://pytorch.org/audio/main/models.html
https://pytorch.org/audio/main/models.html

Transformers for language modeling 231

Transformers for language modeling

Transformers were introduced in a famous paper called Attention is All You Need (Vaswani et al., 2017)
as a new approach for sequence-to-sequence data modeling tasks such as translating statements from
one language into another (that is, machine translation). These models are built on top of the idea of
self-attention, which helps the model pay attention to other important parts of a sentence or sequence
of information in the learning process during training. This attention mechanism helps the models
better understand the relationships between the elements of input sequences – for example, between
the words in the input sequences in language modeling. Models built using transformers usually work
better than ones built using predecessor techniques such as Long Short Term Memory (LSTM) and
Recurrent Neural Networks (RNNs) (Vaswani et al., 2017; Devlin et al., 2018).

Figure 13.6 shows four traditional problems in language modeling that have been tackled successfully
by transformer models:

Figure 13.6 – Four traditional problems in language modeling for which

deep learning techniques have been used successfully

Some famous models have been used either directly or with some modifications across these or other
language modeling tasks. Here are some examples:

• BERT (Devlin et al., 2018; https://github.com/google-research/bert)

• GPT (Radford et al., 2018) and its more recent versions (https://openai.com/product/
gpt-4)

• DistilBERT (Sanh et al., 2019; https://huggingface.co/docs/transformers/
model_doc/distilbert)

https://github.com/google-research/bert
https://openai.com/product/gpt-4
https://openai.com/product/gpt-4
https://huggingface.co/docs/transformers/model_doc/distilbert
https://huggingface.co/docs/transformers/model_doc/distilbert

Advanced Deep Learning Techniques232

• RoBERTa (Liu et al., 2019; https://github.com/facebookresearch/fairseq/
tree/main/examples/roberta)

• BART (Lewis et al., 2019; https://github.com/huggingface/transformers/
tree/main/src/transformers/models/bart)

• XLNet (Yang et al., 2019; https://github.com/zihangdai/xlnet/)

• T5 (Raffel et al., 2020; https://github.com/google-research/text-to-text-
transfer-transformer)

• LLaMA (Touvron et al., 2023; https://github.com/facebookresearch/llama)

Transformer models have also been used in other fields and sequence data, such as for electronic
health records (Li et al., 2020), protein structure prediction (Jumpter et al., 2021), and time-series
anomaly detection (Xu et al., 2021).

Generative modeling is another important concept in machine learning modeling for which transformers
and CNNs have been successfully used. Examples of such models are different versions of GPT, such
as GPT-4 (https://openai.com/product/gpt-4). You will learn about generative modeling
in Chapter 14, Introduction to Recent Advancements in Machine Learning. There is an open Large

Language Model (LLM) leaderboard that provides a list of up-to-date open source LLM models
(https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
You can also check the list of practical guide resources for LLMs at https://github.com/
Mooler0410/LLMsPracticalGuide.

We don’t want to get into the theoretical details behind transformers, but you will learn about the
components of a transformer architecture while building one in PyTorch. However, other widely
used performance measures are used in sequence data and language modeling, such as the following:

• Perplexity (https://torchmetrics.readthedocs.io/en/stable/text/
perplexity.html)

• Bilingual Evaluation Understudy (BLEU) score (https://torchmetrics.readthedocs.
io/en/stable/text/bleu_score.html)

• Recall-Oriented Understudy for Gisting Evaluation (ROUGE) score (https://
torchmetrics.readthedocs.io/en/stable/text/rouge_score.html)

These measures help you in evaluating your sequence models.

Tokenization

Before training and testing transformer models, we need to transform the data into the right format
through a process called tokenization. Tokenization is about chunking data into smaller pieces such as
words, as in word tokenization, or characters, as in character tokenization. For example, the sentence
“I like reading books” can be transformed into its contained words – that is, [“I,” “like,” “reading,”

https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
https://github.com/huggingface/transformers/tree/main/src/transformers/models/bart
https://github.com/huggingface/transformers/tree/main/src/transformers/models/bart
https://github.com/zihangdai/xlnet/
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/facebookresearch/llama
https://openai.com/product/gpt-4
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://github.com/Mooler0410/LLMsPracticalGuide
https://github.com/Mooler0410/LLMsPracticalGuide
https://torchmetrics.readthedocs.io/en/stable/text/perplexity.html
https://torchmetrics.readthedocs.io/en/stable/text/perplexity.html
https://torchmetrics.readthedocs.io/en/stable/text/bleu_score.html
https://torchmetrics.readthedocs.io/en/stable/text/bleu_score.html
https://torchmetrics.readthedocs.io/en/stable/text/rouge_score.html
https://torchmetrics.readthedocs.io/en/stable/text/rouge_score.html

Transformers for language modeling 233

“books”]. When building a tokenizer, the maximum number of allowed tokens needs to be specified.
For example, for a tokenizer with 1,000 tokens, the most frequent 1,000 words get used as tokens
from a text provided to build the tokenizer. Then, each token will be one of those 1,000 most frequent
tokens. After this, these tokens each get an ID; these numbers will be used later by neural network
models for training and testing. The words and characters outside of the tokens of a tokenizer get a
common value of, for example, 0 or 1. Another challenge in text tokenization is the different lengths of
statements and sequences of words. To handle this challenge, a common ID, such as 0, is used before
or after the IDs of tokens of words in each sequence of words or sentences in a process called padding.

The recent LLMs have different numbers of tokens in their tokenization process. For example,
the gpt-4-32k model by OpenAI offers 32,000 tokens (https://help.openai.com/en/
articles/7127966-what-is-the-difference-between-the-gpt-4-models),
while Claude’s LLM offers 100k tokens (https://www.anthropic.com/index/100k-
context-windows). The difference in the number of tokens could impact the performance of the
models in terms of the corresponding text-related tasks.

There are commonly used libraries for tokenization, such as Hugging Face’s transformer (https://
huggingface.co/transformers/v3.5.1/main_classes/tokenizer.html), SpaCy
(https://spacy.io/), and NLTK (https://www.nltk.org/api/nltk.tokenize.html).
Let’s practice with Hugging Face’s transformer library to better understand how tokenization works.

First, let’s import transformers.AutoTokenizer() and then load the bert-base-cased
and gpt2 pre-trained tokenizers:

from transformers import AutoTokenizer

tokenizer_bertcased = AutoTokenizer.from_pretrained(

 'bert-base-cased')

tokenizer_gpt2 = AutoTokenizer.from_pretrained('gpt2')

To practice with these two tokenizers, we must make a list of two statements to use in the
tokenization process:

batch_sentences = ["I know how to use machine learning in my
projects","I like reading books."]

Then, we must use each of the loaded tokenizers to tokenize and encode these two statements to the
corresponding lists of IDs. First, let’s use gpt2, as follows:

encoded_input_gpt2 = tokenizer_gpt2(batch_sentences)

The preceding code converts these two statements into the following two-dimensional lists, which
include IDs for each of the tokens in each statement. For example, as both statements start with “I,”
the first ID for both of them is 40, which is the token for “I” in the gpt2 tokenizer:

[[40, 760, 703, 284, 779, 4572, 4673, 287, 616, 4493],

 [40, 588, 3555, 3835, 13]]

https://help.openai.com/en/articles/7127966-what-is-the-difference-between-the-gpt-4-models
https://help.openai.com/en/articles/7127966-what-is-the-difference-between-the-gpt-4-models
https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/100k-context-windows
https://huggingface.co/transformers/v3.5.1/main_classes/tokenizer.html
https://huggingface.co/transformers/v3.5.1/main_classes/tokenizer.html
https://spacy.io/
https://www.nltk.org/api/nltk.tokenize.html

Advanced Deep Learning Techniques234

Now, we will use bert-base-cased, but this time, we will ask the tokenizer to also use padding
to generate lists of IDs of the same length and return the generated IDs in tensor format, which is
suitable for use later in neural network modeling, such as using PyTorch:

encoded_input_bertcased = tokenizer_bertcased(

 batch_sentences, padding=True, return_tensors="pt")

The following tensor shows the same length for the generated IDs for both sentences:

tensor([[101, 146, 1221, 1293, 1106, 1329, 3395, 3776,

 1107, 1139, 3203, 102],

 [101,146, 1176, 3455, 2146, 119, 102, 0, 0, 0, 0, 0]])

We can also use decoding functionality from each of these tokenizers to convert the IDs back into the
original statements. First, we must decode the generated IDs using gpt2:

[tokenizer_gpt2.decode(input_id_iter) for input_id_iter in encoded_
input_gpt2["input_ids"]]

This generates the following statements, which match the original input statements:

['I know how to use machine learning in my projects', 'I like reading
books.']

However, let’s say we use the bert-base-cased tokenizer for decoding the IDs, as follows:

[tokenizer_bertcased.decode(input_id_iter) for input_id_iter in
encoded_input_bertcased["input_ids"]]

The resulting statements not only contain the original statements but also show how a padding token is
decoded. This is shown as [PAD], [CLS], which is equivalent to the start of a sentence, and [SEP],
which shows where another second sentence starts:

['[CLS] I know how to use machine learning in my projects [SEP]',

 '[CLS] I like reading books. [SEP] [PAD] [PAD] [PAD] [PAD] [PAD]']

Language embedding

We can transform the identified IDs per word, or sentence if we tokenize sentences and statements,
into more information-rich embeddings. The IDs themselves can be used as one-hot encodings, as
discussed in Chapter 4, Detecting Performance and Efficiency Issues in Machine Learning Models,
where each word gets a long vector with zeros for all elements and one for the token dedicated to the
corresponding word. But these one-hot encodings don’t provide us with any relationship between the
words that work like data points in language modeling at the word level.

We can transform the words in a vocabulary into embeddings that can be used to capture semantic
relationships between them and help our machine learning and deep learning models benefit from

Transformers for language modeling 235

the new information-rich features across different language modeling tasks. Although models such as
BERT and GPT-2 are not designed solely for embedding extraction for text, they can be used to generate
embeddings for each word in a corpus of text. But there are other older methods such as Word2Vec
(Mikolov et al., 2013), GloVe (Pennington et al., 2014), and fast-text (Bojanowski et al., 2017) that
are designed for embedding generation. There are also more recent and more comprehensive models
for word embedding such as Cohere (https://txt.cohere.com/embedding-archives-
wikipedia/) that you can use to generate embeddings for text, in different languages, that you aim
to embed and use for modeling.

Language modeling using pre-trained models

There are pre-trained models that we can import into different deep learning frameworks, such as
PyTorch, to use solely for inference or further fine-tuning with new data. Here, we want to practice
this process with DistilBERT (Sanh et al., 2019), which is a faster and lighter version of BERT (Devlin
et al., 2018). Specifically, we want to use DistilBertForSequenceClassification(), a
model based on the DistilBERT architecture, that’s been adapted for sequence classification tasks. In
such processes, the model gets trained and can be used for inference for the task of assigning a label
to a given sentence or statement. Examples of such label assignments are spam detection or semantic
labeling, such as positive, negative, and neutral.

First, we will import the necessary libraries and classes from torch and transformers:

import torch

from torch.utils.data import DataLoader

from transformers import DistilBertTokenizerFast,
DistilBertForSequenceClassification, Trainer, TrainingArguments

Then, we will load the imdb dataset so that we can use it to train a model, as a fine-tuned version
of DistilBertForSequenceClassification():

from datasets import load_dataset

dataset = load_dataset("imdb")

Now, we can define a tokenizer function on top of the DistilBertTokenizerFast() tokenizer
with distilbert-base-uncased as the pre-trained tokenizer:

tokenizer = DistilBertTokenizerFast.from_pretrained(

 "distilbert-base-uncased")

def tokenize(batch):

 return tokenizer(batch["text"], padding=True,

 truncation=True, max_length=512)

https://txt.cohere.com/embedding-archives-wikipedia/
https://txt.cohere.com/embedding-archives-wikipedia/

Advanced Deep Learning Techniques236

After, we can separate a small percentage (1%) of the imdb data for training and testing as we want
to solely practice with this process, and using the whole dataset takes a long time in terms of training
and testing:

train_dataset = dataset["train"].train_test_split(

 test_size=0.01)["test"].map(tokenize, batched=True)

test_dataset = dataset["test"].train_test_split(

 test_size=0.01)["test"].map(tokenize, batched=True)

Now, we can initialize the DistilBertForSequenceClassification() model while
specifying the number of labels in the classification process. Here, this is 2:

model = DistilBertForSequenceClassification.from_pretrained(

 "distilbert-base-uncased", num_labels=2)

Now, we can train the model using separate training data from the imdb dataset for 3 epochs:

training_args = TrainingArguments(output_dir="./results",

 num_train_epochs=3,per_device_train_batch_size=8,

 per_device_eval_batch_size=8, logging_dir="./logs")

trainer = Trainer(model=model, args=training_args,

 train_dataset=train_dataset,eval_dataset=test_dataset)

trainer.train()

With that, the model has been trained and we can evaluate it on the separate test set from the
imdb dataset:

eval_results = trainer.evaluate()

This results in a 0.35 evaluation loss.

There are many other available models you can use in your language modeling or inference tasks (for
example, the PyTorch Transformers library: https://pytorch.org/hub/huggingface_
pytorch-transformers/). There are also other sequence models, outside of language modeling,
for areas such as the following:

• Audio modeling: https://pytorch.org/audio/main/models.html

• Time-series modeling: https://huggingface.co/docs/transformers/model_
doc/time_series_transformer

https://pytorch.org/hub/huggingface_pytorch-transformers/
https://pytorch.org/hub/huggingface_pytorch-transformers/
https://pytorch.org/audio/main/models.html
https://huggingface.co/docs/transformers/model_doc/time_series_transformer
https://huggingface.co/docs/transformers/model_doc/time_series_transformer

Modeling graphs using deep neural networks 237

• Forecasting: https://pytorch-forecasting.readthedocs.io/en/stable/
models.html

• Video modeling: https://pytorchvideo.org/)

You can learn more about transformer modeling and how to make new architectures from scratch
instead of using pre-trained models in PyTorch at https://pytorch.org/tutorials/
beginner/transformer_tutorial.html.

In this section, you learned about modeling text as one type of sequence data. Next, we will cover
modeling graphs, which are more complex data structures.

Modeling graphs using deep neural networks

We can consider graphs as a more general structure of almost all non-tabular data we use for machine
learning and deep learning modeling. Sequences can be considered one-dimensional (1D), while
images or image shape data can be considered two-dimensional (2D) (see Figure 13.7). Earlier in this
chapter, you learned how to start benefiting from CNNs and transformers in Python and PyTorch
for sequence and image shape data. But more general graphs don’t fit into these two graphs, which
have predefined structures (see Figure 13.7), and we cannot simply model them using CNNs or
sequence models:

Figure 13.7 – Graph representation of different unstructured data types

Graphs have two important elements, called nodes and edges. The edges connect the nodes. The
nodes and edges of graphs can have different characteristics that differentiate them from each other
(see Figure 13.8):

https://pytorch-forecasting.readthedocs.io/en/stable/models.html
https://pytorch-forecasting.readthedocs.io/en/stable/models.html
https://pytorchvideo.org/
https://pytorch.org/tutorials/beginner/transformer_tutorial.html
https://pytorch.org/tutorials/beginner/transformer_tutorial.html

Advanced Deep Learning Techniques238

Figure 13.8 – Graph types according to their node and edge characteristics

We can have graphs where nodes have features, edges have weights or features, or edges have directions.
Undirected graphs (graphs with undirected edges), for example, are useful for many applications, such
as social media networks. Assuming each node in the graph of social media is a node, then the edges
can determine which people are connected. The features of nodes in such graphs could be different
characteristics of people in the social media network, such as their age, field of study or job title,
city of residence, and so on. Directed graphs can be used in different applications, such as for causal
modeling, which we’ll discuss in Chapter 15, Correlation versus Causality.

As mentioned at the beginning of this section, techniques such as CNNs and transformers cannot be
used directly on graphs. Due to this, we’ll review other neural network techniques that can help you
in modeling graphs in your projects.

Graph neural networks

Graphs may have complicated structures as opposed to 2D images and 1D sequence data. However, we
can model them using deep neural networks with the same idea as in CNNs and transformer models
to rely on local patterns and relationships in the data. We can rely on local patterns in graphs and let
the neural network learn from neighboring nodes instead of trying to learn information about the
whole graph, which might contain thousands of nodes and millions of edges all at once. This is the
idea behind graph neural networks (GNNs).

Modeling graphs using deep neural networks 239

We can use GNNs for different tasks, such as the following:

• Node classification: We can aim to predict the class of each node in a graph using GNNs. For
example, if you consider a graph of hotels in a city with edges being the shortest route between
them, you can aim to predict which one gets filled in during the holidays. Or if you have a
background in chemistry, you can use node classification to annotate amino acids in proteins
using the 3D structure of proteins (Abdollahi et al., 2023).

• Node selection: Node selection for GNNs is a similar task to object detection for CNNs. We
can design GNNs to identify and select nodes with specific characteristics, such as choosing
people to suggest a product to in a graph of products and consumers.

• Link prediction: We can aim to predict unknown edges between already existing nodes or new
nodes in a graph. For example, in a graph that’s representative of a social media network, link
prediction could be about predicting connections between people. Then, those individuals could
be suggested to each other so that they can add each other to their networks of connections.

• Graph classification: Instead of aiming to predict or select nodes or edges, we can design
GNNs to predict the characteristics of whole graphs (https://chrsmrrs.github.io/
datasets/). In such cases, there could be graphs where each represents a data point, such
as a drug molecule to be used in a GNN model for graph classification.

There are general taxonomies of different GNNs, such as the one suggested by Wu et al. (2020). But
here, we want to focus on examples of widely used methods instead of getting too technical regarding
the different categories of GNNs. Examples of methodologies that have been used successfully for
modeling graphs are Graph Convolutional Networks (GCNs) (Kipf and Welling in 2016), Graph

Sample and Aggregation (GraphSAGE) (Hamilton et al. in 2017), and Graph Attention Networks
(GATs) (Veličković et al. in 2018). While most GNN techniques consider features for nodes, not all
of them consider edge features. Message Passing Neural Networks (MPNNs) is an example of a
technique that considers both node and edge features and was initially designed for producing graphs
of drug molecules (Gilmer et al. in 2017).

You can build graphs from the data you have at hand or use publicly available datasets such as Stanford

Large Network Dataset Collection (SNAP) to practice with different GNN techniques. SNAP has one
of the largest collections of graph datasets you can download and start practicing with (https://
snap.stanford.edu/data/).

Next, we will practice GNN modeling using PyTorch to help you better understand how to build
such models in Python.

GNNs with PyTorch Geometric

PyTorch Geometric is a Python library built upon PyTorch that helps you train and test GNNs.
There is a series of tutorials you can benefit from to learn about GNN modeling using PyTorch
Geometric (https://pytorch-geometric.readthedocs.io/en/latest/notes/

https://chrsmrrs.github.io/datasets/
https://chrsmrrs.github.io/datasets/
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://pytorch-geometric.readthedocs.io/en/latest/notes/colabs.html

Advanced Deep Learning Techniques240

colabs.html). Here, we will practice the problem of node classification with code adapted from
one of these tutorials (https://colab.research.google.com/drive/14OvFnAXgg
xB8vM4e8vSURUp1TaKnovzX?usp=sharing#scrollTo=0YgHcLXMLk4o).

First, let’s import the CiteSeer citation network dataset from Planetoid in PyTorch Geometric
(Yang et al., 2016):

from torch_geometric.datasets import Planetoid

from torch_geometric.transforms import NormalizeFeatures

dataset = Planetoid(root='data/Planetoid', name='CiteSeer',

 transform=NormalizeFeatures())

data = dataset[0]

Now, similar to initializing neural networks for FCNNs and CNNs, we must initialize a GCNet class
for GNN modeling, but instead of using linear and convolutional layers, we will use GCNConv graph
convolutional layers:

import torch

from torch_geometric.nn import GCNConv

import torch.nn.functional as F

torch.manual_seed(123)

class GCNet(torch.nn.Module):

 def __init__(self, hidden_channels):

 super().__init__()

 self.gcn_layer1 = GCNConv(dataset.num_features,

 hidden_channels[0])

 self.gcn_layer2 = GCNConv(hidden_channels[0],

 hidden_channels[1])

 self.gcn_layer3 = GCNConv(hidden_channels[1],

 dataset.num_classes)

 def forward(self, x, edge_index):

 x = self.gcn_layer1(x, edge_index)

 x = x.relu()

 x = F.dropout(x, p=0.3, training=self.training)

 x = self.gcn_layer2(x, edge_index)

 x = x.relu()

 x = self.gcn_layer3(x, edge_index)

 return x

https://pytorch-geometric.readthedocs.io/en/latest/notes/colabs.html
https://colab.research.google.com/drive/14OvFnAXggxB8vM4e8vSURUp1TaKnovzX?usp=sharing#scrollTo=0YgHcLXMLk4o
https://colab.research.google.com/drive/14OvFnAXggxB8vM4e8vSURUp1TaKnovzX?usp=sharing#scrollTo=0YgHcLXMLk4o

Modeling graphs using deep neural networks 241

In the previous class, we used three GCNConv layers in combination with the ReLU activation function
and dropout for regularization.

Now, we can use the defined GCNet class to initialize our model with hidden layers whose sizes are
128 and 16, both of which are arbitrary in this practice code. We must also initialize an optimizer
while specifying the algorithm, which in this case is Adam, and a learning rate of 0.01 and a weight
decay of 1e-4 for regularization:

model = GCNet(hidden_channels=[128, 16])

optimizer = torch.optim.Adam(model.parameters(), lr=0.01,

 weight_decay=1e-4)

criterion = torch.nn.CrossEntropyLoss()

Now, we can define our training function, which will be used for one-epoch training:

def train():

 model.train()

 optimizer.zero_grad()

 out = model(data.x, data.edge_index)

 loss = criterion(out[data.train_mask],

 data.y[data.train_mask])

 loss.backward()

 optimizer.step()

 return loss

With that, we are ready to go through a series of epochs and train the model. Please note that the
following loop for training the model for 400 epochs might take a long time:

import numpy as np

epoch_list = []

loss_list = []

for epoch in np.arange(1, 401):

 loss = train()

 if epoch%20 == 0:

 print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')

 epoch_list.append(epoch)

 loss_list.append(loss.detach().numpy())

Advanced Deep Learning Techniques242

The following plot shows the learning curve (loss versus epoch) in the training process:

Figure 13.9 – The learning curve for the example GCN model on the CiteSeer dataset

We can also test the model on the test portion of the dataset, as follows:

model.eval()

pred = model(data.x, data.edge_index).argmax(dim=1)

test_correct = pred[data.test_mask] ==

 data.y[data.test_mask]

test_acc = int(test_correct.sum()) / int(

 data.test_mask.sum())

This results in an accuracy of 0.655. We can also generate a confusion matrix of the predictions on
the test set:

from sklearn.metrics import confusion_matrix

cf = confusion_matrix(y_true = data.y, y_pred = model(

 data.x, data.edge_index).argmax(dim=1))

import seaborn as sns

sns.set()

sns.heatmap(cf, annot=True, fmt="d")

Summary 243

This results in the following matrix, shown as a heatmap. Although most of the predictions and true
classes of data points match, many of them are misclassified and summarized outside of the diagonal
elements of the confusion matrix:

Figure 13.10 – Confusion matrix of the predictions over the test set

for the example GCN model on the CiteSeer dataset

In this section, we talked about techniques for modeling different data types and problems using
deep learning. Now, you are ready to learn more about these advanced techniques and use them in
your projects.

Summary

In this chapter, you learned about advanced deep learning techniques, including CNNs, transformers,
and GNNs. You were provided with some of the widely used or famous models that have been developed
using each of these techniques. You also practiced building these advanced models either from scratch
or fine-tuning them using Python and PyTorch. This knowledge helped you learn more about these
techniques and start using them in your projects so that you can model images and image shape data,
text and sequence data, and graphs.

In the next chapter, you will learn how recent advancements in generative modeling and prompt
engineering, as well as self-supervised learning, can either help you in developing your projects or
provide you with opportunities to develop interesting and useful tools and applications.

Advanced Deep Learning Techniques244

Questions

1. What are some examples of problems you can use CNNs and GNNs for?

2. Does applying convolution preserve local patterns in images?

3. Could decreasing the number of tokens result in more mistakes in language models?

4. What is padding in the text tokenization process?

5. Are the network architecture classes we build for CNNs and GNNs in PyTorch similar?

6. When do you need edge features to build GNNs?

References

• He, Kaiming, et al. Deep residual learning for image recognition. Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016.

• Tan, Mingxing, and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural

networks. International conference on machine learning. PMLR, 2019.

• Howard, Andrew G., et al. Mobilenets: Efficient convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861 (2017).

• Sandler, Mark, et al. Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the
IEEE conference on computer vision and pattern recognition. 2018.

• Chollet, François. Xception: Deep learning with depthwise separable convolutions. Proceedings
of the IEEE conference on computer vision and pattern recognition. 2017.

• Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical

image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part
III 18. Springer International Publishing, 2015.

• He, Kaiming, et al. Mask r-cnn. Proceedings of the IEEE international conference on computer
vision. 2017.

• Chen, Liang-Chieh, et al. Deeplab: Semantic image segmentation with deep convolutional nets,

atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence 40.4 (2017): 834-848.

• Zhao, Hengshuang, et al. Pyramid scene parsing network. Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017.

• Ren, Shaoqing, et al. Faster r-cnn: Towards real-time object detection with region proposal

networks. Advances in neural information processing systems 28 (2015).

• Redmon, Joseph, et al. You only look once: Unified, real-time object detection. Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016.

References 245

• Dong, Chao, et al. Image super-resolution using deep convolutional networks. IEEE transactions
on pattern analysis and machine intelligence 38.2 (2015): 295-307.

• Dong, Chao, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolutional

neural network. Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part II 14. Springer International Publishing, 2016.

• Lim, Bee, et al. Enhanced deep residual networks for single image super-resolution. Proceedings
of the IEEE conference on computer vision and pattern recognition workshops. 2017.

• Isola, Phillip, et al. Image-to-image translation with conditional adversarial networks. Proceedings
of the IEEE conference on computer vision and pattern recognition. 2017.

• Zhu, Jun-Yan, et al. Unpaired image-to-image translation using cycle-consistent adversarial

networks. Proceedings of the IEEE international conference on computer vision. 2017.

• Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional

neural networks. Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016.

• Huang, Xun, and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance

normalization. Proceedings of the IEEE international conference on computer vision. 2017.

• Schlegl, Thomas, et al. Unsupervised anomaly detection with generative adversarial networks

to guide marker discovery. Information Processing in Medical Imaging: 25th International
Conference, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings. Cham: Springer
International Publishing, 2017.

• Ruff, Lukas, et al. Deep one-class classification. International conference on machine learning.
PMLR, 2018.

• Zhou, Chong, and Randy C. Paffenroth. Anomaly detection with robust deep autoencoders.
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery
and data mining. 2017.

• Baek, Youngmin, et al. Character region awareness for text detection. Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition. 2019.

• Zhou, Xinyu, et al. East: an efficient and accurate scene text detector. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017.

• Tran, Du, et al. Learning spatiotemporal features with 3d convolutional networks. Proceedings
of the IEEE international conference on computer vision. 2015.

• Carreira, Joao, and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics

dataset. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

• Feichtenhofer, Christoph, et al. Slowfast networks for video recognition. Proceedings of the IEEE/
CVF international conference on computer vision. 2019.

Advanced Deep Learning Techniques246

• LeCun, Yann, et al. Handwritten digit recognition with a back-propagation network. Advances
in neural information processing systems 2 (1989).

• Vaswani, Ashish, et al. Attention is all you need. Advances in neural information processing
systems 30 (2017).

• Devlin, Jacob, et al. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

• Touvron, Hugo, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971 (2023).

• Li, Yikuan, et al. BEHRT: transformer for electronic health records. Scientific reports 10.1
(2020): 1-12.

• Jumper, John, et al. Highly accurate protein structure prediction with AlphaFold. Nature 596.7873
(2021): 583-589.

• Xu, Jiehui, et al. Anomaly transformer: Time series anomaly detection with association discrepancy.
arXiv preprint arXiv:2110.02642 (2021).

• Yuan, Li, et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet.
Proceedings of the IEEE/CVF international conference on computer vision. 2021.

• Liu, Yinhan, et al. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692 (2019).

• Lewis, Mike, et al. Bart: Denoising sequence-to-sequence pre-training for natural language

generation, translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019).

• Radford, Alec, et al. Improving language understanding by generative pre-training. (2018).

• Raffel, Colin, et al. Exploring the limits of transfer learning with a unified text-to-text transformer.
The Journal of Machine Learning Research 21.1 (2020): 5485-5551.

• Sanh, Victor, et al. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
arXiv preprint arXiv:1910.01108 (2019).

• Yang, Zhilin, et al. Xlnet: Generalized autoregressive pretraining for language understanding.
Advances in neural information processing systems 32 (2019).

• Mikolov, Tomas, et al. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781 (2013).

• Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. Glove: Global vectors for

word representation. Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). 2014.

• Bojanowski, Piotr, et al. Enriching word vectors with subword information. Transactions of the
association for computational linguistics 5 (2017): 135-146.

References 247

• Wu, Zonghan, et al. A comprehensive survey on graph neural networks. IEEE transactions on
neural networks and learning systems 32.1 (2020): 4-24.

• Abdollahi, Nasim, et al. NodeCoder: a graph-based machine learning platform to predict active

sites of modeled protein structures. arXiv preprint arXiv:2302.03590 (2023).

• Kipf, Thomas N., and Max Welling. Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907 (2016).

• Hamilton, Will, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large

graphs. Advances in neural information processing systems 30 (2017).

• Velickovic, Petar, et al. Graph attention networks. stat 1050.20 (2017): 10-48550.

• Gilmer, Justin, et al. Neural message passing for quantum chemistry. International conference
on machine learning. PMLR, 2017.

• Yang, Zhilin, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning

with graph embeddings. International conference on machine learning. PMLR, 2016.

14
Introduction to

Recent Advancements in

Machine Learning

Supervised learning was the focus of the majority of successful applications of machine learning
across different industries and application domains until 2020. However, other techniques, such as
generative modeling, later caught the attention of developers and users of machine learning. So, an
understanding of such techniques will help you to broaden your understanding of machine learning
capabilities beyond supervised learning.

In this chapter, we will cover the following topics:

• Generative modeling

• Reinforcement learning

• Self-supervised learning

By the end of this chapter, you will have learned about the meaning, widely used techniques, and
benefits of generative modeling, reinforcement learning (RL), and self-supervised learning (SSL).
You will also practice some of these techniques using Python and PyTorch.

Introduction to Recent Advancements in Machine Learning250

Technical requirements

The following requirements are applicable to this chapter as they will help you better understand the
concepts, be able to use them in your projects, and practice with the provided code:

• Python library requirements:

 � torch >= 2.0.0

 � torchvision >= 0.15.1

 � matplotlib >= 3.7.1

You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/
Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter14.

Generative modeling

Generative modeling, or more generally Generative AI, provides you with the opportunity to generate
data that is close to an expected or reference set of data points or distributions, commonly referred
to as realistic data. One of the most successful applications of generative modeling has been in
language modeling. The success story of Generative Pre-trained Transformer (GPT)-4 and ChatGPT
(https://openai.com/blog/chatgpt), a chatbot built on top of GPT-4 and GPT-3.5, and
similar tools such as Perplexity (https://www.perplexity.ai/), resulted in the rise in interest
among engineers, scientists, people in different businesses such as finance and healthcare, and many
other job roles in generative modeling. When using Chat-GPT or GPT-4, you can ask a question or
provide the description of an ask, called a prompt, and then these tools generate a series of statements
or data to provide you with the answer, information, or text you asked for.

In addition to the successful application of generative modeling in text generation, many other
applications of generative modeling can help you in your work or studies. For example, GPT-4 and its
previous versions or other similar models, such as LLaMA (Touvron et al., 2023), can be used for code
generation and completion (https://github.com/features/copilot/ and https://
github.com/sahil280114/codealpaca). You can write the code you are interested in
generating and it generates the corresponding code for you. Although the generated code might not
work as expected all the time, it is usually close to what is expected, at least after a couple of trials.

There have also been many other successful applications of generative modeling, such as in image
generation (https://openai.com/product/dall-e-2), drug discovery (Cheng et al., 2021),
fashion design (Davis et al., 2023), manufacturing (Zhao et al., 2023), and so on.

Beginning in 2023, many traditional commercial tools and services started integrating Generative AI
capabilities. For example, you can now edit photos using Generative AI in Adobe Photoshop simply
by explaining what you need in plain English (https://www.adobe.com/ca/products/
photoshop/generative-fill.html). WolframAlpha also combined its power of symbolic

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter14
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter14
https://openai.com/blog/chatgpt
https://www.perplexity.ai/
https://github.com/features/copilot/
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://openai.com/product/dall-e-2
https://www.adobe.com/ca/products/photoshop/generative-fill.html
https://www.adobe.com/ca/products/photoshop/generative-fill.html

Generative modeling 251

computation with Generative AI, which you can use to ask for specific symbolic processes in plain English
(https://www.wolframalpha.com/input?i=Generative+Adversarial+Networks).
Khan Academy (https://www.khanacademy.org/) designed a strategy to help teachers
and students benefit from Generative AI, specifically ChatGPT, instead of it being harmful to the
education of students.

These success stories have been achieved by relying on different deep learning techniques designed
for generative modeling, which we will briefly review next.

Generative deep learning techniques

There are multiple generative modeling approaches with available the APIs available in PyTorch or
other deep learning frameworks, such as TensorFlow. Here, we will review some of them to help you
start learning more about how they work and how you can use them in Python.

Transformer-based text generation

You already learned that transformers, introduced in 2017 (Vaswani et al., 2017), are used to generate
the most successful recent language models in Chapter 13, Advanced Deep Learning Techniques.
However, these models are not useful only for tasks such as translation, which is traditional in natural
language processing, but can be used in generative modeling to help us generate meaningful text, for
example, in response to a question we ask. This is the approach behind GPT models, Chat-GPT, and
many other generative language models. The process of providing a short text, as an ask or a question,
is also called prompting, in which we need to provide a good prompt to get a good answer. We will
talk about optimal prompting in the Prompt engineering for text-based generative models section.

Variational autoencoders (VAEs)

Autoencoders are techniques with which you can reduce the number of features to an information-
rich set of embeddings, which you can consider a more complicated version of principal component

analysis (PCA) to better understand it. It does that by first attempting to encode the original space
to the new embedding (called encoding), then decode the embeddings, and regenerate the original
features for each data point (called decoding). In a VAE (Kingma and Welling, 2013), instead of one
set of features (embeddings), it generates a distribution for each new feature. For example, instead
of reducing the original 1,000 features to 100 features, each having one float value, you get 100 new
variables, each being a normal (or Gaussian) distribution. The beauty of this process is that then
you can select different values from these distributions for each variable and generate a new set of
100 embeddings. In the process of decoding them, these embeddings get decoded and a new set of
features with the original size (1,000) gets generated. This process can be used for different types of
data such as images (Vahdat et al., 2020) and graphs (Simonovsky et al., 2018; Wengong et al., 2018).
You can find a collection of VAEs implemented in PyTorch at https://github.com/AntixK/
PyTorch-VAE.

https://www.wolframalpha.com/input?i=Generative+Adversarial+Networks
https://www.khanacademy.org/
https://github.com/AntixK/PyTorch-VAE
https://github.com/AntixK/PyTorch-VAE

Introduction to Recent Advancements in Machine Learning252

Generative Adversarial Networks (GANs)

In this technique introduced in 2014 (Goodfellow et al., 2020), a discriminator that works like a
supervised classification model and a generator work alongside each other. The generator, which could
be a neural network architecture for generating the desired data types, such as images, generates images
aiming to fool the discriminator into recognizing the generated data as real data. The discriminator
learns to remain good at distinguishing generated data from real data. The generated data in some
cases is called fake data, as in technologies and models such as deepfakes (https://www.
businessinsider.com/guides/tech/what-is-deepfake). However, the generated
data can be used as opportunities for new data points to be used in different applications, such as
drug discovery (Prykhodko et al., 2019). You can use torchgan to implement GANs (https://
torchgan.readthedocs.io/en/latest/).

As there has been an emerging generation of prompt-based technologies built on top of generative
models, we will provide a better understanding of how to optimally design prompts next.

Prompt engineering for text-based generative models

Prompt engineering is not only a recent topic in machine learning but has also become a highly paid
job title. In prompt engineering, we aim to provide optimal prompts to generate the best possible result
(for example, text, code, and images) and identify issues with the generative models as opportunities
for improving them. A basic understanding of large language and generative models, your language
proficiency, and domain knowledge for domain-specific data generation can help you in better
prompting. There are free resources that you can use to learn about prompt engineering, such as a
course by Andrew Ng and OpenAI (https://www.deeplearning.ai/short-courses/
chatgpt-prompt-engineering-for-developers/) and some introductory content about
prompt engineering released by Microsoft (https://learn.microsoft.com/en-us/azure/
cognitive-services/openai/concepts/prompt-engineering). However, we will
not leave you to learn this topic from scratch by yourself. We will provide you with some guidance
for optimal prompting here that will help you improve your prompting skills.

Targeted prompting

In our daily conversations, either at work, university, or home, there are ways we try to make sure the
person across from us better understands what we mean, and as a result, we get a better response.
For example, if you tell your friend, “Give me that” instead of “Give me that bottle of water on the
desk,” there is a chance that your friend won’t give you the bottle of water or get confused about what
exactly you are referring to. In prompting, you can get better responses and data generated, such as
images, if you clearly explain what you want for a very specific task. Here are a few techniques to use
for better prompting:

• Be specific about the ask: You can provide specific information such as the format of the data
you would like to be generated, such as bullet points or code, and the task you are referring to,
such as writing an email versus a business plan.

https://www.businessinsider.com/guides/tech/what-is-deepfake
https://www.businessinsider.com/guides/tech/what-is-deepfake
https://torchgan.readthedocs.io/en/latest/
https://torchgan.readthedocs.io/en/latest/
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/prompt-engineering
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/prompt-engineering

Generative modeling 253

• Specify who the data is getting generated for: You can even specify an expertise or job title for
whom the data is getting generated, such as generating a piece of text for a machine learning
engineer, business manager, or software developer.

• Specify time: You can specify whether you want information about the date when technology
got released, the first time something was announced, the chronological order of events, the
change in something such as the net worth of a famous rich person such as Elon Musk over
time, and so on.

• Simplify the concepts: You can provide a simplified version of what you ask to make sure the
model doesn’t get confused by the complexity of your prompt.

Although these techniques will help you in better prompting, there is still a chance of getting false
answers with high confidence if you ask for a text response or unrelated data generation. This is
what is usually referred to as a hallucination. One of the ways to decrease the chance of irrelevant or
wrong responses or data generation is to provide tests for the model to use. When we write functions
and classes in Python, we can design unit tests to make sure their output meets the expectation, as
discussed in Chapter 8, Controlling Risks Using Test-Driven Development.

Generative modeling using PyTorch

You can develop generative models based on different techniques discussed earlier in this chapter
using PyTorch. We want to practice with VAEs here. With VAEs, the aim is to identify a probability
distribution for a lower-dimensional representation of data. For example, the model learns about the
mean and variance (or log variance) for the representations of the input parameters, assuming normal
or Gaussian distribution for the latent space (that is, the space of the latent variables or representations).

We first import the required libraries and modules and load the Flowers102 dataset from PyTorch:

transform = transforms.Compose([

 transforms.Resize((32, 32)),

 transforms.ToTensor()

])

train_dataset = datasets.Flowers102(root='./data',

 download=True, transform=transform)

train_loader = DataLoader(train_dataset, batch_size=32,

 shuffle=True)

Introduction to Recent Advancements in Machine Learning254

Then, we define a class for the VAE as follows in which two linear layers are defined to encode the
input pixels of images. Then, the mean and variance of the probability distribution of latent space
are also defined by two linear layers for decoding the latent variables back to the original number of
inputs to generate images similar to the input data. The learned mean and variance of the distribution
in latent space will be then used to generate new latent variables and potentially generate new data:

class VAE(nn.Module):

 def __init__(self):

 super(VAE, self).__init__()

 self.encoder = nn.Sequential(

 nn.Linear(32 * 32 * 3, 512),

 nn.ReLU(),

 nn.Linear(512, 128),

 nn.ReLU(),

)self.fc_mean = nn.Linear(128, 32)

 self.fc_var = nn.Linear(128, 32)

 self.decoder = nn.Sequential(

 nn.Linear(32, 128),

 nn.ReLU(),

 nn.Linear(128, 512),

 nn.ReLU(),

 nn.Linear(512, 32 * 32 * 3),

 nn.Sigmoid(),

)

 def forward(self, x):

 h = self.encoder(x.view(-1, 32 * 32 * 3))

 mean, logvar = self.fc_mean(h), self.fc_var(h)

 std = torch.exp(0.5*logvar)

 q = torch.distributions.Normal(mean, std)

 z = q.rsample()

 return self.decoder(z), mean, logvar

We now initialize the defined VAE class and determine the Adam optimizer as the optimization
algorithm with 0.002 as the learning rate:

model = VAE()

optimizer = optim.Adam(model.parameters(), lr=2e-3)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model.to(device)

Generative modeling 255

We then define a loss function using binary_cross_entropy as follows to compare the regenerated
pixels with the input pixels:

def loss_function(recon_x, x, mu, logvar):

 BCE = nn.functional.binary_cross_entropy(recon_x,

 x.view(-1, 32 * 32 * 3), reduction='sum')

 KLD = -0.5 * torch.sum(

 1 + logvar - mu.pow(2) - logvar.exp())

 return BCE + KLD

Now we are ready to train the model using the Flowers102 dataset we loaded before:

n_epoch = 400

for epoch in range(n_epoch):

 model.train()

 train_loss = 0

 for batch_idx, (data, _) in enumerate(train_loader):

 data = data.to(device)

 optimizer.zero_grad()

 recon_batch, mean, logvar = model(data)

 loss = loss_function(recon_batch, data, mean,

 logvar)

 loss.backward()

 train_loss += loss.item()

 optimizer.step()

 print(f'Epoch: {epoch} Average loss: {

 train_loss / len(train_loader.dataset):.4f}')

We can then use this trained model to generate images that almost look like flowers (see Figure 14.1).
Upon hyperparameter optimization, such as changing the model's architecture, you can achieve better
results. You can review hyperparameter optimization in deep learning in Chapter 12, Going Beyond

ML Debugging with Deep Learning.

Figure 14.1 – Example images generated by the simple VAE we developed earlier

Introduction to Recent Advancements in Machine Learning256

This was a simple example of generative modeling using PyTorch. In spite of the success of generative
modeling, part of the recent success of tools developed using generative models, such as Chat-GPT,
is due to the smart use of reinforcement learning, which we will discuss next.

Reinforcement learning

Reinforcement learning (RL) is not a new idea or technique. The initial idea dates back to the 1950s,
when it was introduced by Richard Bellman with the concept of the Bellman equation (Sutton and
Barto, 2018). However, its recent combination with human feedback, which we will explain in the
next section, provided a new opportunity for its utility in developing machine learning technologies.
The general idea of RL is to learn by experience, or interaction with a specified environment, instead
of using a collected set of data points for training, as in supervised learning. An agent is considered
in RL, which learns how to improve actions to get a greater reward (Kaelbling et al., 1996). The agent
learns to improve its approach to taking action, or policy in more technical terminology, iteratively
after receiving the reward of the action taken in the previous step.

In the history of RL, two important developments and utilities resulted in an increase in its popularity
including the development of Q-learning (Watkins, 1989) and combining RL and deep learning (Mnih
et al., 2013) using Q-learning. In spite of the success stories behind RL and the intuition that it mimics
learning by experience as humans do, it has been shown that deep reinforcement learning is not data
efficient and requires large amounts of data or iterative experience, which makes it fundamentally
different from human learning (Botvinick et al., 2019).

More recently, reinforcement learning with human feedback (RLHF) was used as a successful
application of reinforcement learning to improve the results of generative models, which we will
discuss next.

Reinforcement learning with human feedback (RLHF)

With reinforcement learning with human feedback, the reward is calculated based on the feedback
of humans, either experts or non-experts, depending on the problem. However, the reward is not
like a predefined mathematical formula considering the complexity of the problems such as language
modeling. The feedback provided by humans results in improving the model step by step. For
example, the training process of a RLHF language model can be summarized as follows (https://
huggingface.co/blog/rlhf):

1. Training a language model, which is referred to as pretraining.

2. Data collection and training the reward model.

3. Fine-tuning the language model with reinforcement learning using the reward model.

However, learning how to use PyTorch to design RLHF-based models could be helpful to better
understand this concept.

https://huggingface.co/blog/rlhf
https://huggingface.co/blog/rlhf

Reinforcement learning 257

RLHF with PyTorch

One of the major challenges in benefitting from RLHF is designing an infrastructure for human
feedback collection and curation, then providing them to calculate the reward, and then improving the
main pre-trained model. Here, we don’t want to get into that aspect of RLHF but rather go through a
simple code example to understand how such feedback can be incorporated into a machine learning
model. There are good resources, such as https://github.com/lucidrains/PaLM-rlhf-
pytorch, that can help you to improve your understanding of RLHF and how to implement it using
Python and PyTorch.

Here, we will use GPT-2 (https://huggingface.co/transformers/v1.2.0/_modules/
pytorch_transformers/modeling_gpt2.html) as the pre-trained model. First, we
import the necessary libraries and modules and initialize the model, tokenizer, and optimizer, which
is chosen to be Adam:

import torch

from transformers import GPT2LMHeadModel, GPT2Tokenizer

from torch import optim

from torch.utils.data import DataLoader

Pretrain a GPT-2 language model

tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

model = GPT2LMHeadModel.from_pretrained('gpt2')

optimizer = optim.Adam(model.parameters(), lr=1e-3)

Now, assuming we collected the human feedback and formatted it properly, we can use it to create a
DataLoader from PyTorch:

dataloader = DataLoader(dataset, batch_size=1, shuffle=True)

The next step is to design a reward model, for which we use a two-layer fully connected neural network:

class Reward_Model(torch.nn.Module):

 def __init__(self, input_size, hidden_size, output_size):

 super(RewardModel, self).__init__()

 self.fc_layer1 = torch.nn.Linear(input_size,

 hidden_size)

 self.fc_layer2 = torch.nn.Linear(hidden_size,

 output_size)

 def forward(self, x):

 x = torch.relu(self.fc_layer1(x))

 x = self.fc_layer2(x)

 return x

https://github.com/lucidrains/PaLM-rlhf-pytorch
https://github.com/lucidrains/PaLM-rlhf-pytorch
https://huggingface.co/transformers/v1.2.0/_modules/pytorch_transformers/modeling_gpt2.html
https://huggingface.co/transformers/v1.2.0/_modules/pytorch_transformers/modeling_gpt2.html

Introduction to Recent Advancements in Machine Learning258

We then initialize the reward model using the previously defined class:

reward_model = Reward_Model(input_size, hidden_size, output_size)

We are now ready to improve our pre-trained model using the collected human feedback and the
reward model. If you pay attention to the following code, the main difference between this simple loop
over epochs and batches for model training compared to neural networks without a reward model is
the reward calculation and then using it for loss calculation:

for epoch in range(n_epochs):

 for batch in dataloader:

 input_ids = tokenizer.encode(batch['input'],

 return_tensors='pt')

 output_ids = tokenizer.encode(batch['output'],

 return_tensors='pt')

 reward = reward_model(batch['input'])

 loss = model(input_ids, labels=output_ids).loss * reward

 loss.backward()

 optimizer.step()

 optimizer.zero_grad()

This was a very simple example of designing RLHF-based model improvement, used to help you better
understand the concept. Resources such as https://github.com/lucidrains/PaLM-rlhf-
pytorch will help you to implement more complex ways of incorporating such human feedback
for improving your models.

Next, let’s go through another interesting topic in machine learning, called self-supervised learning.

Self-supervised learning (SSL)

Self-supervised learning (SSL) is not a new concept. It's similar to RL, but it gained attention after its
combination with deep learning due to its effectiveness in learning data representations. Examples of
such models are Word2vec for language modeling (Mikolov et al., 2013) and Meta’s RoBERTa models
trained using SSL, which achieved state-of-the-art performance on several language modeling tasks. The
idea of SSL is to define an objective for the machine learning model that doesn’t rely on pre-labeling or
the quantification of data points – for example, predicting the positions of objects or people in videos
for each time step using previous time steps, masking parts of images or sequence data, and aiming
to refill those masked sections. One of the widely used applications of such models is in RL to learn
representations of images and text, and then use those representations in other contexts, for example,
in supervised modeling of smaller datasets with data labels (Kolesnikov et al., 2019, Wang et al., 2020).

https://github.com/lucidrains/PaLM-rlhf-pytorch
https://github.com/lucidrains/PaLM-rlhf-pytorch

Self-supervised learning (SSL) 259

There are multiple techniques under the umbrella of SSL, three of which are as follows:

• Contrastive learning: The idea of contrastive learning is to learn representations that result
in similar data points being closer to each other compared to dissimilar data points (Jaiswal
et al., 2020).

• Autoregressive models: In autoregressive modeling, the model aims to predict the next data
points, either based on time or a specific sequence order, given the previous ones. This is a very
popular technique in language modeling, where models such as GPT predict the next word in
a sentence (Radford et al., 2019).

• Self-supervision via inpainting: In this approach, we mask parts of the data and train the
models to fill in the missing parts. For example, a portion of an image might be masked, and
the model is trained to predict the masked portion. Masked autoencoder is an example of such
a technique in which the masked portions of images are refilled in the decoding process of the
autoencoder (Zhang et al., 2022).

Next, we will practice with a simple example of self-supervised modeling using Python and PyTorch.

Self-supervised learning with PyTorch

From a programming perspective, the main difference between deep learning for SSL compared to
supervised learning is in defining the objectives and data for training and testing. Here, we want to
practice with self-supervision via inpainting using a masked image autoencoder based on convolutional
layers. We also use the same Flowers102 dataset we used to practice with RLHF.

We first define the neural network class using two encoding and decoding torch.nn.Conv2d()
layers as follows:

class Conv_AE(nn.Module):

 def __init__(self):

 super(Conv_AE, self).__init__()

 # Encoding data

 self.encoding_conv1 = nn.Conv2d(3, 8, 3, padding=1)

 self.encoding_conv2 = nn.Conv2d(8, 32, 3,padding=1)

 self.pool = nn.MaxPool2d(2, 2)

 # Decoding data

 self.decoding_conv1 = nn.ConvTranspose2d(32, 8, 2,

 stride=2)

 self.decoding_conv2 = nn.ConvTranspose2d(8, 3, 2,

 stride=2)

 def forward(self, x):

 # Encoding data

 x = torch.relu(self.encoding_conv1(x))

Introduction to Recent Advancements in Machine Learning260

 x = self.pool(x)

 x = torch.relu(self.encoding_conv2(x))

 x = self.pool(x)

 # Decoding data

 x = torch.relu(self.decoding_conv1(x))

 x = self.decoding_conv2(x)

 x = torch.sigmoid(x)

 return x

We then initialize the model, specify torch.nn.MSELoss() as the criterion for comparison
of predicted and true images, and torch.optim.Adam() as the optimizer with a learning rate
of 0.001:

model = Conv_AE().to(device)

criterion = nn.MSELoss()

optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

The following function helps us to implement masking on random 8x8 portions of each image, which
then the autoencoder learns to fill:

def create_mask(size=(32, 32), mask_size=8):

 mask = np.ones((3, size[0], size[1]), dtype=np.float32)

 height, width = size

 m_height, m_width = mask_size, mask_size

 top = np.random.randint(0, height - m_height)

 left = np.random.randint(0, width - m_width)

 mask[:, top:top+m_height, left:left+m_width] = 0

 return torch.from_numpy(mask)

Then, we train the model for 200 epochs as follows. As you can see in Figure 14.2, the images first get
masked, and then in the decoding step, the autoencoder attempts to rebuild the full image, including
the masked portions:

n_epoch = 200

for epoch in range(n_epoch):

 for data in train_loader:

 img, _ = data

 # Creating mask for small part in training images

 mask = create_mask().to(device)

 img_masked = img * mask

 img = img.to(device)

 img_masked = img_masked.to(device)

 optimizer.zero_grad()

Summary 261

 outputs = model(img_masked)

 loss = criterion(outputs, img)

 loss.backward()

 optimizer.step()

As you can see in the examples of the resulting refilled images shown in Figure 14.2, the model could
find the patterns correctly. However, with proper hyperparameter optimization and designing models
with better neural network architectures, you can achieve higher performance and better models.

Figure 14.2 – Example images (first row), their masked versions (second row), and

regenerated versions (third row) using the convolutional autoencoder model

You can read more about SSL and the other techniques provided in this chapter using the provided
resources and references to better understand these concepts.

Summary

In this chapter, you gained a high-level understanding of recent advancements in machine learning
modeling beyond supervised learning, including generative modeling, reinforcement learning, and
self-supervised learning. You also learned about optimal prompting and prompt engineering to benefit

Introduction to Recent Advancements in Machine Learning262

from tools and applications built on top of generative models that accept text prompts as input from
users. You were provided with the relevant code repositories and functionalities available in Python
and PyTorch that will help you to start learning more about these advanced techniques. This knowledge
helps you not only better understand how they work if you come across them but also start building
models of your own using these advanced techniques.

In the next chapter, you will learn about the benefits of identifying causal relationships in machine
learning modeling and practice with Python libraries that help you in implementing causal modeling.

Questions

1. What are examples of generative deep learning techniques?

2. What are examples of generative text models that use transformers?

3. What are generators and discriminators in GANs?

4. What are some of the techniques you can use for better prompting?

5. Could you explain how RL could be helpful in importing the results of generative models?

6. Briefly explain contrastive learning.

References

• Cheng, Yu, et al. “Molecular design in drug discovery: a comprehensive review of deep generative

models.” Briefings in bioinformatics 22.6 (2021): bbab344.

• Davis, Richard Lee, et al. “Fashioning the Future: Unlocking the Creative Potential of Deep

Generative Models for Design Space Exploration.” Extended Abstracts of the 2023 CHI Conference

on Human Factors in Computing Systems (2023).

• Zhao, Yaoyao Fiona, et al., eds. “Design for Advanced Manufacturing.” Journal of Mechanical

Design 145.1 (2023): 010301.

• Touvron, Hugo, et al. “Llama: Open and efficient foundation language models.” arXiv preprint
arXiv:2302.13971 (2023).

• Vaswani, Ashish, et al. “Attention is all you need.” Advances in neural information processing

systems 30 (2017).

• Kingma, Diederik P., and Max Welling. “Auto-encoding variational bayes.” arXiv preprint
arXiv:1312.6114 (2013).

• Vahdat, Arash, and Jan Kautz. “NVAE: A deep hierarchical variational autoencoder.” Advances

in neural information processing systems 33 (2020): 19667-19679.

References 263

• Simonovsky, Martin, and Nikos Komodakis. “Graphvae: Towards generation of small graphs

using variational autoencoders.” Artificial Neural Networks and Machine Learning–ICANN 2018:

27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27. Springer International Publishing (2018).

• Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. “Junction tree variational autoencoder

for molecular graph generation.” International conference on machine learning. PMLR (2018).

• Goodfellow, Ian, et al. “Generative adversarial networks.” Communications of the ACM 63.11
(2020): 139-144.

• Karras, Tero, Samuli Laine, and Timo Aila. “A style-based generator architecture for generative

adversarial networks.” Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition (2019).

• Prykhodko, Oleksii, et al. “A de novo molecular generation method using latent vector based

generative adversarial network.” Journal of Cheminformatics 11.1 (2019): 1-13.

• Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT
Press (2018).

• Kaelbling, Leslie Pack, Michael L. Littman, and Andrew W. Moore. “Reinforcement learning:

A survey.” Journal of artificial intelligence research 4 (1996): 237-285.

• Watkins, Christopher John Cornish Hellaby. Learning from delayed rewards. (1989).

• Mnih, Volodymyr, et al. “Playing atari with deep reinforcement learning.” arXiv preprint
arXiv:1312.5602 (2013).

• Botvinick, Matthew, et al. “Reinforcement learning, fast and slow.” Trends in cognitive sciences
23.5 (2019): 408-422.

• Kolesnikov, Alexander, Xiaohua Zhai, and Lucas Beyer. “Revisiting self-supervised visual

representation learning.” Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition (2019).

• Wang, Jiangliu, Jianbo Jiao, and Yun-Hui Liu. “Self-supervised video representation learning by

pace prediction.” Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XVII 16. Springer International Publishing (2020).

• Jaiswal, Ashish, et al. “A survey on contrastive self-supervised learning.” Technologies 9.1 (2020): 2.

• Radford, Alec, et al. “Language models are unsupervised multitask learners.” OpenAI blog 1.8
(2019): 9.

• Zhang, Chaoning, et al. “A survey on masked autoencoder for self-supervised learning in vision

and beyond.” arXiv preprint arXiv:2208.00173 (2022).

Part 5:

Advanced Topics

in Model Debugging

In the concluding part of this book, we will address some of the most pivotal topics in machine
learning. We will begin by explaining differences between correlation and causality, shedding light on
their distinct implications in model development. Transitioning to the topic of security and privacy,
we will discuss the pressing concerns, challenges, and techniques that ensure our models are both
robust and respectful of user data. We will wrap up the book with an explanation of human-in-the
-loop machine learning, emphasizing the synergy between human expertise and automated systems,
and how this collaboration paves the way for more effective solutions.

This part has the following chapters:

• Chapter 15, Correlation versus Causality

• Chapter 16, Security and Privacy in Machine Learning

• Chapter 17, Human-in-the-Loop Machine Learning

15
Correlation versus Causality

In previous chapters of this book, you learned how to train, evaluate, and build high-performance
and low-bias machine learning models. However, the algorithms and example methods we used to
practice the concepts that were introduced in this book do not necessarily provide you with a causal
relationship between features and output variables in a supervised learning setting. In this chapter,
we will discuss how causal inference and modeling could help you increase the reliability of your
models in production.

In this chapter, we will cover the following topics:

• Correlation as part of machine learning models

• Causal modeling to reduce risks and improve performance

• Assessing causation in machine learning models

• Causal modeling using Python

By the end of this chapter, you will have learned about the benefits of causal modeling and inference
compared to correlative modeling and practice with available Python functionalities to identify the
causal relationship between features and output variables.

Technical requirements

You need the following for this chapter as they will help you better understand the concepts, use them
in your projects, and practice with the provided code:

• Python library requirements:

 � dowhy == 0.5.1

 � bnlearn == 0.7.16

Correlation versus Causality268

 � sklearn >= 1.2.2

 � d3blocks == 1.3.0

• You will also require basic knowledge of machine learning model training, validation, and testing

The code files for this chapter are available on GitHub at https://github.com/
PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/

main/Chapter15.

Correlation as part of machine learning models

The majority of machine learning modeling and data analysis projects result in correlative relationships
between features and output variables in supervised learning settings and statistical modeling.
Although these relationships are not causal, identifying causal relationships is of high value, even if
it’s not a necessity in most problems we try to solve. For example, we can define medical diagnosis as
“The identification of the diseases that are most likely to be causing the patient’s symptoms, given their

medical history.” (Richens et al., 2020).

Identifying causal relationships resolves issues in identifying misleading relationships between variables.
Relying solely on correlations rather than causality could result in spurious and bizarre associations such
as the following (https://www.tylervigen.com/spurious-correlations; https://
www.buzzfeednews.com/article/kjh2110/the-10-most-bizarre-correlations):

• US spending on science, space, and technology correlates with suicides by hanging, strangulation,
and suffocation

• Total revenue generated by arcades correlates with computer science doctorates awarded in the US

• US crude oil imports from Norway correlates with drivers killed in collisions with railway trains

• Eating organic food correlates with autism

• Obesity correlates with the debt bubble

You can find more of these spurious correlations in the sources for these examples.

Relying on correlations versus causation could decrease the reliability of different aspects of technology
development and improvement processes such as AB testing. For example, understanding “if we get more
visitors to search, we’ll see an increase in purchases and revenue” (https://conversionsciences.
com/correlation-causation-impact-ab-testing/) helps in proper decision-making
and investment in technology development.

Now that you understand the problems with relying solely on correlative relationships, let’s discuss
what causal modeling means in a machine learning setting.

https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter15
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter15
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter15
https://www.tylervigen.com/spurious-correlations
https://www.buzzfeednews.com/article/kjh2110/the-10-most-bizarre-correlations
https://www.buzzfeednews.com/article/kjh2110/the-10-most-bizarre-correlations
https://conversionsciences.com/correlation-causation-impact-ab-testing/
https://conversionsciences.com/correlation-causation-impact-ab-testing/

Causal modeling to reduce risks and improve performance 269

Causal modeling to reduce risks and improve performance

Causal modeling helps in eliminating unreliable correlative relationships between variables. Eliminating
such unreliable relationships reduces the risks of wrong decision-making across different domains
of applications for machine learning, such as healthcare. Decisions in healthcare, such as diagnosing
diseases and assigning effective treatment regimens to patients, have a direct effect on quality of life
and survival. Hence, decisions need to be based on reliable models and relationships in which causal
modeling and inference could help us (Richens et al., 2020; Prosperi et al., 2020; Sanchez et al., 2022).

Causal modeling techniques help in eliminating bias, such as confounding and collider bias, in our
models (Prosperi et al., 2020) (Figure 15.1). An example of such bias is smoking as a confounder of the
relationship between yellow fingers and lung cancer (Prosperi et al., 2020). As shown in Figure 15.1, the
existence of collider variables results in correlative, but biased and unreal, associations between some
of the input variables and outcome. Also, not having some of the variables that could be confounding
in our modeling could result in us concluding other variables are associated with the outcome:

Figure 15.1 – Schematic representation of confounding and collider bias

Next, we will mention some concepts and techniques in causal modeling such as causal inference and
how to test causation in a machine learning model.

Assessing causation in machine learning models

Calculating the correlation between features and outcomes in machine learning modeling has been
a common approach in many fields and industries. For example, we can simply calculate the Pearson
correlation coefficient to identify correlative features with the target variable. There are also features
in many of our machine learning models that contribute to the prediction of outcomes not as causal
but rather as correlative predictors. There are several ways to differentiate between such correlative
and causal features with the available functionalities in Python. Here are a few examples:

• Experimental design: One way to establish causality is to conduct experiments where we measure
the effect of changes in the causal feature on the target variable. However, such experimental
studies may not always be feasible or ethical.

Correlation versus Causality270

• Feature importance: We can use explainability techniques, as presented in Chapter 6, Interpretability

and Explainability in Machine Learning Modeling, to identify feature importance and use such
information to discriminate between correlation and causality.

• Causal inference: Causal inference methods aim to identify the causal relationship between
variables. You can use causal inference to determine whether a change in one variable causes
a change in another variable.

We discussed different explainability techniques such as SHAP, LIME, and counterfactual explanations
in Chapter 6, Interpretability and Explainability in Machine Learning Modeling. You can use these
techniques to identify features that are not causal in your models. For example, features with low SHAP
values most probably are not causal in the model under investigation. If there is a feature with low
importance in the local approximation, according to LIME, then it is likely to not be causal regarding
the output of your model. Or if changing a feature has little or no effect on the output of your model,
through counterfactual analysis, then it is likely not a causal feature.

We can also use another technique, called permutation feature importance, which is also considered
under the umbrella of explainability techniques to identify features with a low chance of being causal.
In this approach, we change the values of a feature and measure the effect of change on the model’s
performance. Then we can identify features with low effects that are likely to not be causal.

We already practiced explainability techniques in Chapter 6, Interpretability and Explainability in

Machine Learning Modeling. We will focus on causal inference for the remainder of this chapter.

Causal inference

In causal inference, we aim to identify and understand the causal relationship between variables in a
dataset or model. In this process, we might rely on different statistical and machine learning techniques
to analyze data and infer causal relationships between variables. Figure 15.2 shows five such methods:
experimental design, observational studies, propensity score matching, instrumental variables,
and machine learning-based methods:

Assessing causation in machine learning models 271

Figure 15.2 – Five causal inference techniques

In experimental design, you design experiments to compare outcome variables for samples with
differences in a treatment variable, or different conditions based on a specific feature or characteristics.
Examples of treatment and outcome variables are provided in Table 15.1 to help you understand the
difference between these two terms:

Treatment Variable Outcome Variable

Education level Income level

Smoking Lung cancer

Physical activity Cardiovascular health

Family income Academic performance

Table 15.1 – Examples of treatment and outcome variables in causal modeling

Correlation versus Causality272

In observational studies, we use observational data, instead of controlled experiments, and try to
identify causal relationships by controlling confounding variables. Propensity score matching matches
treatment and control groups based on the probability of receiving the treatment given the observed
variables. Instrumental variables is used to overcome a common problem in observational studies
where the treatment and outcome variables are jointly determined by other variables, or confounders,
that are not included in the model. This approach starts with identifying an instrument that is correlated
with the treatment variable and uncorrelated with the outcome variable, except through its effect on
the treatment variable. Machine learning-based methods are other categories of techniques where
machine learning methods such as Bayesian networks and decision trees are used to identify causal
relationships between variables and outcomes.

Bayesian networks

You can benefit from Bayesian networks in causal modeling and identifying causal relationships between
variables. Bayesian networks are graphical models that show the relationship between variables through
directed acyclic graphs (DAGs), where each variable, including the input features and outputs, is a
node and directions show the relationship between variables (Figure 15.3):

Figure 15.3 – Illustrating an example Bayesian network

What this network tells us is that higher values of Feature A and Feature B make it more likely for the
outcome to occur. Note that the features could be numerical or categorical. Although the directions,
such as from Feature A to the outcome (Figure 15.3), don’t necessarily mean causality, Bayesian
networks can be used for estimating the causal effects of variables on the outcome while controlling
the confounding variables.

From a probabilistic perspective, the network can be used to simplify the joint probability of all the
variables, including the features and outcome, as follows:

 p (F
A
 , F

B
 , F

C
 , Outcome) = p (Outcome | F

A
 , F

B
) p (F

B
 | F

C
) p (F

C
 | F

A
) p (F

A
)

Here, p (Outcome | F
A
 , F

B
) is the conditional probability distribution (CPD) of the outcome given

the values of Features A and B, p (F
B
 | F

C
) is the CPD of Feature B given Feature C, p (F

C
 | F

A
) is the

CPD of Feature C given Feature A, and p (F
A
) is the probability of Feature A that is not conditional

Causal modeling using Python 273

to other features as no edge is directed toward it in the graph. These CPDs can help us estimate the
effect of change one feature value has on another. It tells us about the likelihood of the occurrence of
one variable given the occurrence of one or more variables. You will learn how to make a Bayesian
network in a data-driven way for a given dataset and how to identify the CPDs of the network using
Python by the end of this chapter.

There are several methods available in Python for causal inference. We’ll cover these next.

Causal modeling using Python

Several Python libraries provide you with easy-to-use functionalities for using causal methods and
conducting causal inference. Some of these are as follows:

• dowhy (https://pypi.org/project/dowhy/)

• pycausalimpact (https://pypi.org/project/pycausalimpact/)

• causalnex (https://pypi.org/project/causalnex/)

• econml (https://pypi.org/project/econml/)

• bnlearn (https://pypi.org/project/bnlearn/)

In the next few subsections, we will review dowhy and bnlearn.

Using dowhy for causal effect estimation

First, we want to practice with a propensity score matching approach that is useful when you have a
treatment variable in mind – for example, when you want to identify the effect of a drug on patients
and have other variables in the model, such as their diet, age, sex, and so on. Here, we will use the breast
cancer dataset of scikit-learn, where the target variable is a binary outcome telling us about
the cells, from masses of breast cancer patients, as being from malignant or benign masses. Here, we
will use the mean radius feature – the mean distance from the center to points on the perimeter – as
the treatment variable.

First, we must import the required libraries and modules in Python:

import pandas as pd

import numpy as np

from sklearn.datasets import load_breast_cancer

import dowhy

from dowhy import CausalModel

Then, we must load the breast cancer dataset and convert it into a DataFrame:

breast_cancer = load_breast_cancer()

data = pd.DataFrame(breast_cancer.data,

https://pypi.org/project/dowhy/
https://pypi.org/project/pycausalimpact/
https://pypi.org/project/causalnex/
https://pypi.org/project/econml/
https://pypi.org/project/bnlearn/

Correlation versus Causality274

 columns=breast_cancer.feature_names)

data['target'] = breast_cancer.target

Now, we need to convert the numerical values of the treatment variable, the mean radius, into a binary
as propensity scoring matching only accepts binary treatment variables:

data['mean radius'] = data['mean radius'].gt(data[

 'mean radius'].values.mean()).astype(int)

data=data.astype({'mean radius':'bool'}, copy=False)

We also need to make a list of common causes, which in this case we consider as being all the other
attributes in the dataset:

common_causes_list = data.columns.values.tolist()

common_causes_list.remove('mean radius')

common_causes_list.remove('target')

Now, we can build a model using CausalModel() from dowhy by specifying the data, treatment,
outcome variable, and common causes. The CausalModel() object helps us estimate the causal
effect of the treatment variable (mean radius) on the outcome variable (target):

model = CausalModel(

 data=data,

 treatment='mean radius',

 outcome='target',

 common_causes=common_causes_list

)

Now, we can estimate the causal effect of the specified treatment variable, the mean radius, on the
target variable. Note that propensity score matching, which we’re using here, is applicable only for
discrete treatment variables:

identified_est = model.identify_effect()

estimate = model.estimate_effect(identified_est,

 method_name='backdoor.propensity_score_matching')

The estimate value is -0.279, which means that the probability of the outcome is decreased by
~28% with the high mean radius as the treatment variable. This propensity score is the conditional
probability of receiving the treatment (high mean radius) given a set of observed covariates. The
backdoor adjustment controls the confounding variables, which are associated with both the treatment
and outcome variables.

We can also use refute_estimate() to assess the validity of our hypothesis regarding the
causal variables and their data-driven estimated effects on the outcome. For example, we can use the
'placebo_treatment_refuter' method, which replaces the specified treatment variable

Causal modeling using Python 275

with an independent random variable. If our assumption of causality between the treatment and
outcome is correct, then the new estimate goes close to zero. Here is the code to check the validity of
our assumption using 'placebo_treatment_refuter':

refute_results = model.refute_estimate(identified_estimand,

 estimate, method_name='placebo_treatment_refuter',

 placebo_type='permute', num_simulations=40)

This results in the new effect of 0.0014, which is an assurance about the validity of our assumption.
However, the p-value estimate, which is another output of this command, is 0.48, which shows the
level of statistical confidence.

A low p-value from refute_estimate() does not mean that the treatment variable is not causal.
A low p-value shows the sensitivity of the estimated causal effect to the specific assumption being
tested. The significance of the refutation result does not imply the absence of a causal relationship
between the treatment variable and the outcome variable.

Using bnlearn for causal inference through Bayesian networks

One of the libraries that exists in both the Python and R programming languages for Bayesian network
learning and inference is bnlearn. We can learn a Bayesian network for a given dataset using this
library and then use the learned graph to infer causal relationships.

To practice with bnlearn, we must install and then import this library and load the Sprinkler dataset
that exists as part of it:

import bnlearn as bn

df = bn.import_example('sprinkler')

Next, we must fit a structure_learning() model to generate a Bayesian network or a DAG:

DAG = bn.structure_learning.fit(df)

Then, we must define the properties of the nodes and visualize the DAG, as follows:

Set some colors to the edges and nodes

node_properties = bn.get_node_properties(DAG)

node_properties['Sprinkler']['node_color']='#00FFFF'

node_properties['Wet_Grass']['node_color']='#FF0000'

node_properties['Rain']['node_color']='#A9A9A9'

node_properties['Cloudy']['node_color']='#A9A9A9'

Plotting the Bayesian Network

bn.plot(DAG,

 node_properties=node_properties,

Correlation versus Causality276

 interactive=True,

 params_interactive={'notebook':True,

 'cdn_resources': 'remote'})

This results in the network shown in Figure 15.4. As shown in this DAG, 'Sprinkler' could be a
causal variable for both cloudy weather and wet grass. And wet grass could be potentially caused by
rain and sprinklers. But there are functionalities to quantify these dependencies:

Figure 15.4 – Learned DAG using bnlearn for the Sprinkler dataset

You can use independence_test() as follows to test the dependency of the variables:

bn.independence_test(DAG, df, test = 'chi_square',

 prune = True)

Table 15.2 includes a summary of the output of the previous command, clearly showing the significance
of the dependency of the paired variables in the DAG:

Source Target p-value (from chi_sqare test) chi-square

Cloudy Rain 1.080606e-87 394.061629

Sprinkler Wet_Grass 1.196919e-23 100.478455

Sprinkler Cloudy 8.383708e-53 233.906474

Rain Wet_Grass 3.886511e-64 285.901702

Table 15.2 – Summary of using bnlearn.independence_test() on the Sprinkler dataset

You can also use bnlearn.parameter_learning.fit() to learn about the CPDs, as follows:

model_mle = bn.parameter_learning.fit(DAG, df,

 methodtype='maximumlikelihood')

Printing the learned Conditional Probability Distribution (CPDs)

bn.print_CPD(model_mle)

Summary 277

Figure 15.5 shows the CPDs of the Cloudy, Rain, and Sprinkler variables. These CPDs, in
combination with the identified DAG (Figure 15.4), provide the required information to not only identify
potentially causal relationships between the variables but also do a quantitative assessment of them:

Figure 15.5 – Examples of CPDs identified by bnlearn for the Sprinkler dataset

In this chapter, you practiced using causal modeling, but there is much more to this topic. This is
one of the most important topics in machine learning and you will benefit from learning more about
this subject.

Summary

In this chapter, you learned about the difference between correlative and causal relationships, the
importance of causal modeling, and techniques such as Bayesian networks for causal inference. Later,
we went through Python practices to help you start working with causal modeling and inference in
your projects so that you can identify more reliable relationships between variables in your datasets
and design reliable models.

In the next chapter, you will learn techniques for preserving privacy and ensuring security while
maximizing the benefits of using private and proprietary data in building reliable machine learning models.

Questions

1. Could you have a feature that is highly correlated with the output but not causal in a supervised
learning model?

2. What is the difference between experimental design and observation studies for causal inference?

Correlation versus Causality278

3. What are the requirements for using instrumental variables for causal inference?

4. Could relationships in a Bayesian network necessarily be considered causal?

References

• Schölkopf, Bernhard. Causality for machine learning. Probabilistic and Causal Inference: The
Works of Judea Pearl. 2022. 765-804.

• Kaddour, Jean, et al. Causal machine learning: A survey and open problems. arXiv preprint
arXiv:2206.15475 (2022).

• Pearl, Judea. Bayesian networks. (2011).

• Richens, Jonathan G., Ciarán M. Lee, and Saurabh Johri. Improving the accuracy of medical

diagnosis with causal machine learning. Nature communications 11.1 (2020): 3923.

• Prosperi, Mattia, et al. Causal inference and counterfactual prediction in machine learning for

actionable healthcare. Nature Machine Intelligence 2.7 (2020): 369-375.

• Sanchez, Pedro, et al. Causal machine learning for healthcare and precision medicine. Royal
Society Open Science 9.8 (2022): 220638.

16
Security and Privacy in

Machine Learning

In the digital world that we live in, preserving the privacy of users’ data and their personal information,
as well as ensuring the security of their digital information and assets, are of great importance in
technology development. This is not an exception for technologies built on top of machine learning
models. We briefly talked about this topic in Chapter 3, Debugging toward Responsible AI. In this
chapter, we will provide you with more details to help you start your journey in learning more about
privacy preservation and ensuring security in developing machine learning models and technologies.

In this chapter, we will cover the following topics:

• Encryption techniques and their use in machine learning

• Homomorphic encryption

• Differential privacy

• Federated learning

By the end of this chapter, you will understand the challenges in preserving privacy and ensuring
security in machine learning settings, and learn a few techniques to tackle those challenges.

Technical requirements

The following requirements are applicable to this chapter as they will help you better understand the
concepts, be able to use them in your projects, and practice with the provided code:

• Python library requirements:

 � numpy >= 1.22.4

 � matplotlib >= 3.7.1

Security and Privacy in Machine Learning280

 � tenseal >= 0.3.14

 � pycryptodome = 3.18.0

 � pycryptodomex = 3.18.0

If you are a Mac user and run into issues with tenseal installation, you can install it directly by
cloning its repository, as explained at https://github.com/OpenMined/TenSEAL/issues.

The code files for this chapter are available on GitHub at https://github.com/
PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/

main/Chapter16.

Encryption techniques and their use in machine learning

We can use different encryption techniques to encrypt raw data, processed data for model training
and inference, model parameters, or other sensitive information that needs to be secured. There is a
term called key, usually a string of numbers or letters, which is important in the majority of encryption
techniques. The key gets processed by encryption algorithms for encoding and decoding data. There
are several encryption techniques, some of which include the following (Bhanot et al., 2015; Dibas
et al., 2021):

• Advanced Encryption Standard (AES): AES is one of the strongest encryption algorithms
that protects data. AES accepts different key sizes: 128, 192, or 256 bits.

• Rivest-Shamir-Adleman (RSA) security: RSA, which is one of the most secure encryption
algorithms, is a public-key encryption algorithm that is widely used for secure data transmission.

• Triple Data Encryption Standard (DES): Triple DES is an encryption method that uses a
56-bit key to encrypt data blocks.

• Blowfish: Blowfish is a symmetric-key encryption technique used as an alternative to the DES
encryption algorithm. Blowfish is fast and highly effective for data encryption. It splits data, for
example, strings and messages, into blocks of 64 bits and encrypts them individually.

• Twofish: Twofish, which is Blowfish’s successor, is a symmetric encryption algorithm that
deciphers 128-bit data blocks.

Next, we are going to use Python to practice the use of AES for data encryption, which is one of the
most common encryption techniques.

Implementing AES encryption in Python

Here we want to practice with AES for data encryption in Python. The sole purpose of this practice
is to help you better understand how you can benefit from Python for data encryption, how easy it is

https://github.com/OpenMined/TenSEAL/issues
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter16
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter16
https://github.com/PacktPublishing/Debugging-Machine-Learning-Models-with-Python/tree/main/Chapter16

Encryption techniques and their use in machine learning 281

to encrypt and decrypt data in Python, and how you can benefit from it to preserve data privacy and
ensure security in machine learning settings.

We first import Cryptodome.Cipher.AES() for ciphering (encrypting) and deciphering
(decrypting) and Cryptodome.Random.get_random_bytes() for key generation:

from Cryptodome.Cipher import AES

from Cryptodome.Random import get_random_bytes

We can use AES for encryption of text such as My name is Ali or other types of information. Here,
we want to use it for encrypting what is called SMILES, which is a sequence representing a chemical
compound. For example, CC(=O)NC1=CC=C(C=C1)O represents a famous drug called Acetaminophen
(source: https://pubchem.ncbi.nlm.nih.gov/compound/Acetaminophen):

data = b'CC(=O)NC1=CC=C(C=C1)O'

key_random = get_random_bytes(16)

cipher_molecule = AES.new(key_random, AES.MODE_EAX)

ciphertext, tag = cipher_molecule.encrypt_and_digest(data)

out_encrypt = open("molecule_enc.bin", "wb")

[out_encrypt.write(x) for x in (cipher_molecule.nonce, tag,

 ciphertext)]

out_encrypt.close()

We can then decrypt and securely load the data back if we have the key:

in_encrypt = open("molecule_enc.bin", "rb")

nonce, tag, ciphertext = [in_encrypt.read(x) for x in (16,

 16, -1)]

in_encrypt.close()

let's assume that the key is somehow available again

decipher_molecule = AES.new(key_random, AES.MODE_EAX,nonce)

data = decipher_molecule.decrypt_and_verify(ciphertext,tag)

print('Decrypted data: {}'.format(data))

This regenerates the sequence we encrypted, CC(=O)NC1=CC=C(C=C1)O.

In this example, AES helped us to encrypt information about drugs, which could be important for
pharmaceutical and biotechnology companies in the process of developing a new drug. However, you
can use AES via Python to encrypt other types of data.

Next, we want to talk about another technique called homomorphic encryption.

https://pubchem.ncbi.nlm.nih.gov/compound/Acetaminophen

Security and Privacy in Machine Learning282

Homomorphic encryption

Another technique that lets us implement computations on encrypted data is called homomorphic

encryption. This capability is helpful in machine learning settings, for example, in using a model for
inference on encrypted data without the need for decryption. However, implementing fully homomorphic
encryption can be complex, computationally expensive, and memory-inefficient (Armknecht et al.,
2015; Gentry et al., 2009; Yousuf et al., 2020).

There are a few Python libraries that can help us practice with homomorphic encryption schemes,
such as the following:

• TenSEAL (https://github.com/OpenMined/TenSEAL), which can be integrated
with PyTorch and NumPy

• PySEAL (https://github.com/Huelse/PySEAL)

• HElib (https://github.com/homenc/HElib)

Let’s see a simple example of using homomorphic encryption using TenSEAL.

We first import the TenSEAL library and generate a context object using tenseal.context().
The context object generates and stores the necessary keys required by an encrypted computation:

import tenseal as ts

context = ts.context(ts.SCHEME_TYPE.BFV,

 poly_modulus_degree=4096, plain_modulus=1032193)

The poly_modulus_degree parameter is used to determine the degree of the polynomial modulus,
which is a polynomial with integer coefficients. The plain_modulus parameter is used to specify
the modulus for encoding plaintext messages into polynomials that can be encrypted and processed
homomorphically. If the plain_modulus parameter is too small, the messages may overflow and
cause incorrect results, while if it is too large, the ciphertexts may become too large and slow down
the homomorphic operations.

In the previous code, we used the Brakerski-Fan-Vercauteren (BFV) scheme. BFV is a homomorphic
encryption scheme that supports integer arithmetic. It consists of different polynomial-time algorithms
for generating the public and secret keys, encrypting a plaintext message, decrypting a ciphertext
message, adding and subtracting two ciphertexts, and multiplying two ciphertexts. The ciphertext is
encrypted information that is unreadable by us or a computer without the proper cipher, or algorithm
for performing encryption or decryption, to decrypt it.

Now we define a list of three numbers:

plain_list = [50, 60, 70]

https://github.com/OpenMined/TenSEAL
https://github.com/Huelse/PySEAL

Differential privacy 283

We then implement decryption using the context object defined before:

encrypted_list = ts.bfv_vector(context, plain_list)

We then first implement an operation process as follows:

add_result = encrypted_vector + [1, 2, 3]

The resulting add_result list would be [51, 62, 73], which is an element-wise summation
of the original list of values [50, 60, 70] and [1, 2, 3].

Although homomorphic encryption, or other encryption techniques, seems to be very secure, it still
requires access to secret keys, for example, on the cloud server, which could lead to security concerns.
There are solutions to reduce such risks, for example, by using key management services such as AWS
KMS (https://aws.amazon.com/kms/) or Multi-Factor Authentication (MFA).

Next, we will briefly review differential privacy (DP) as a technique for preserving the privacy of
individual data points.

Differential privacy

The objective of differential privacy is to ensure that the removal or addition of individual data
points does not affect the outcome of the modeling. For example, by adding random noise to a normal
distribution, it tries to make the features of individual data points obscure. The effect of noise in learning
could be eliminated based on the law of large numbers (Dekking et al., 2005) if a large number of data
points is accessible. To better understand this concept, we want to generate a random list of numbers
and add noise to them from a normal distribution to help you better understand why this technique
works. In this process, we will also define some widely used technical terminology.

We first define a function called gaussian_add_noise() to add Gaussian noise to a query list
of values:

def gaussian_add_noise(query_result: float,

 sensitivity: float, epsilon: float):

 std_dev = sensitivity / epsilon

 noise = np.random.normal(loc=0.0, scale=std_dev)

 noisy_result = query_result + noise

 return noisy_result

https://aws.amazon.com/kms/

Security and Privacy in Machine Learning284

In the previous function, we used sensitivity and epsilon as input arguments of the function,
whose meaning we can simplify as follows:

• sensitivity: The level of noise that is needed in the DP mechanism get determined by
sensitivity parametrizes. Sensitivity tells us about the impact of a change on the result of the
query. Larger sensitivity values result in better privacy but a less accurate response.

• epsilon (Privacy budget): The privacy budget is a parameter that limits the extent
of the deviation between the noisy and query data. A smaller epsilon value will result in
better privacy but a less accurate response.

We then use a simple for loop to generate random values following a normal distribution as query
values and then add noise to them using the defined gaussian_mechanism() function:

query_list = []

noisy_list = []

for iter in range(1000):

 # Generating a random value between 0 and 100

 query_val = np.random.rand()*100

 noisy_val = gaussian_add_noise(query_val, sensitivity,

 epsilon_budget)

 query_list.append(query_val)

 noisy_list.append(noisy_val)

print('Mean of the original distribution:

 {}'.format(np.mean(query_list)))

print('Mean of the nosiy distribution:

 {}'.format(np.mean(noisy_list)))

print('Standard deviation of the original distribution:

 {}'.format(np.std(query_list)))

print('Standard deviation of the nosiy distribution:

 {}'.format(np.std(noisy_list)))

The resulting noisy and query distributions are very similar, with an average of 0.78 and 0.82 and
a standard deviation of 99.32 and 99.67, respectively. Figure 16.1 shows the scatter plot of the two
lists of values. You can change the distance between the query and noisy values by playing with the
sensitivity and epsilon parameters.

Federated learning 285

Figure 16.1 – Comparison of the values of variables before and after noise addition

There are also Python libraries that you can use to implement DP, such as the following:

• IBM Differential Privacy Library (Diffprivlib) (https://github.com/IBM/
differential-privacy-library)

• PyDP (https://github.com/OpenMined/PyDP)

• Opacus (https://github.com/pytorch/opacus)

The last topic we want to introduce in this chapter is called federated learning, which helps us to go
beyond privacy preservation for a central storage system.

Federated learning

Federated learning (FL) relies on the idea of decentralizing learning, data analysis, and inference,
therefore allowing the user data to be kept within individual devices or local databases (Kaissis et al.,
2020; Yang et al., 2019). Through FL, we can benefit from the data of local devices and users, which
cannot be stored in a centralized data storage system, to train and improve our machine learning
models. As shown in Figure 16.2, a local device or user can provide local data to update the global
model and the model we are training and improve the central server. The global model then gets
updated and improved and provides updated inferences to the local users and devices.

https://github.com/IBM/differential-privacy-library
https://github.com/IBM/differential-privacy-library
https://github.com/OpenMined/PyDP
https://github.com/pytorch/opacus

Security and Privacy in Machine Learning286

Figure 16.2 – Schematic representation of updating a model using local data

and feeding the global model back to the local devices and users

There are several Python libraries you can benefit from in implementing FL, such as the following:

• PySyft (https://github.com/OpenMined/PySyft)

• TensorFlow Federated (https://www.tensorflow.org/federated)

• FedML (https://github.com/FedML-AI/FedML)

• Flower (https://github.com/adap/flower)

• FATE (https://github.com/FederatedAI/FATE)

However, the challenge of using FL in practice is beyond programming or infrastructure design. In spite
of this great alternative to storing user data locally, there are still ethical, legal, and business challenges
in benefitting from FL in different applications. Healthcare is a great example of a domain where FL
can benefit the most but legal and ethical challenges still exist, slowing down its implementation in
practice. Many institutes, hospitals, pharmaceutical companies, and government agencies still require
the data used for modeling, even through FL, to go through the usual ethics, legal, and business approval
processes that exist for full access to the data, without the need for FL. However, there is hope that as
FL algorithms and the associated infrastructure get better, agencies, hospitals, and institutions will
also come up with solutions to benefit from this technique.

https://www.tensorflow.org/federated
https://github.com/FedML-AI/FedML
https://github.com/adap/flower
https://github.com/FederatedAI/FATE

Summary 287

In addition to what we covered in this chapter on data privacy and security, you can review the
important topics of attacks in machine learning settings in Chapter 3, Debugging toward Responsible

AI. You can also check other resources such as the great article by Papernot et al., 2018 titled Sok:

Security and privacy in machine learning to learn more about these important topics

Summary

In this chapter, you learned about some of the most important concepts and techniques that help you
in preserving privacy and ensuring security including data encryption techniques, homomorphic
encryption, differential privacy, and federated learning. You learned how homomorphic encryption
provides the possibility of different types of operation and machine learning inference compared to
traditional data encryption techniques. You also learned how we can ensure data privacy by adding
noise to the data, in differential privacy, or work with decentralized data and omit the need to transfer
raw data, as in federated learning. You also practiced some of them in Python. This knowledge could be
a starting point for you to learn about these concepts further and benefit from them in your machine
learning projects.

In the next chapter, you will learn about the importance of integrating human feedback into machine
learning modeling and the techniques that will help you on this topic.

Questions

1. Explain three encryption techniques that could help you in your machine learning projects.

2. What is the benefit of homomorphic encryption in a machine learning setting?

3. What is differential privacy?

4. What are the non-technical challenges in the use of federated learning or differential privacy?

References

• Shafahi, Ali, et al. “Adversarial training for free!.” Advances in Neural Information Processing

Systems 32 (2019).

• Gaur, Shailendra Singh, Hemanpreet Singh Kalsi, and Shivani Gautam. “A Comparative Study

and Analysis of Cryptographic Algorithms: RSA, DES, AES, BLOWFISH, 3-DES, and TWOFISH.”

• Bhanot, Rajdeep, and Rahul Hans. “A review and comparative analysis of various encryption

algorithms.” International Journal of Security and Its Applications 9.4 (2015): 289-306.

• Dibas, Hasan, and Khair Eddin Sabri. “A comprehensive performance empirical study of the

symmetric algorithms: AES, 3DES, Blowfish and Twofish.” International Conference on Information

Technology (ICIT). IEEE (2021).

Security and Privacy in Machine Learning288

• Armknecht, Frederik, et al. “A guide to fully homomorphic encryption.” Cryptology ePrint
Archive (2015).

• Gentry, Craig. A fully homomorphic encryption scheme. Stanford University, 2009.

• Yousuf, Hana, et al. “Systematic review on fully homomorphic encryption scheme and its application.”
Recent Advances in Intelligent Systems and Smart Applications (2020): 537-551.

• Yang, Qiang, et al. “Federated machine learning: Concept and applications.” ACM Transactions

on Intelligent Systems and Technology (TIST) 10.2 (2019): 1-19.

• Abadi, Martin, et al. “Deep learning with differential privacy.” Proceedings of the 2016 ACM

SIGSAC conference on computer and communications security (2016).

• Dekking, Frederik Michel, et al. A Modern Introduction to Probability and Statistics: Understanding

why and how. Vol. 488. London: Springer (2005).

• Kaissis, Georgios A., et al. “Secure, privacy-preserving and federated machine learning in medical

imaging.” Nature Machine Intelligence 2.6 (2020): 305-311.

• Yang, Qiang, et al. “Federated machine learning: Concept and applications.” ACM Transactions

on Intelligent Systems and Technology (TIST) 10.2 (2019): 1-19.

• Papernot, Nicolas, et al. “Sok: Security and privacy in machine learning.” IEEE European

Symposium on Security and Privacy (EuroS&P). IEEE (2018).

17
Human-in-the-Loop

Machine Learning

Machine learning modeling is more than just machine learning developers and engineers sitting
behind their computers to build and revise components of a machine learning life cycle. Incorporating
feedback from domain experts, or even the non-expert crowd, is key in bringing more reliable and
application-oriented models to production. This concept, which is called human-in-the-loop machine
learning, is about benefiting from human intelligence and expert knowledge in different stages of a
life cycle to further improve the performance and reliability of our models.

In this chapter, we will cover the following topics:

• Humans in the machine learning life cycle

• Human-in-the-loop modeling

By the end of this chapter, you will know about the benefits and challenges of incorporating human
intelligence in your machine learning modeling projects.

Humans in the machine learning life cycle

Developing and improving different components of a machine learning life cycle to bring a reliable
and high-performance model to production is a collaborative effort that can benefit from expert and
non-expert human feedback (Figure 17.1):

Human-in-the-Loop Machine Learning290

Figure 17.1 – Humans in the machine learning life cycle

For example, a radiologist can help in annotating radiological images while most people with good
vision capabilities can easily label cat and dog images. But incorporating human feedback is not limited
to data annotation at the beginning of a life cycle.

We can benefit from human intelligence and expertise to improve data preparation, feature engineering,
and representation learning aspects of a life cycle, as well as model training and testing, and eventually
model deployment and monitoring. In each of these stages, human feedback can be incorporated
either passively or actively, which allows us to bring a better model into production.

Passive human-in-the-loop is about collecting feedback and information from experts and non-experts
and benefitting from that the next time we revise components of the corresponding machine learning
modeling system. In this process, the feedback and extra information help in identifying opportunities
for improving the components of the life cycle and identifying data and concept drift to bring a better
model into production. In active human-in-the-loop machine learning, the infrastructure and one or all
of the life cycle components need to be designed in a way that the extra human-in-the-loop information
and data can be actively and continuously incorporated to improve data analysis and modeling.

Humans in the machine learning life cycle 291

First, we will review expert feedback collection and how to effectively benefit from it in improving
our models.

Expert feedback collection

The ultimate goal of building a piece of technology on top of one or multiple machine learning modes
is to provide a tool for users, experts, or non-experts for a specific objective, such as healthcare image
classification, stock price prediction, credit risk estimation, and product recommendation in platforms
such as Amazon. For example, we can collect feedback for data annotation or later in the production
stage for drift detection. We can then use this feedback to improve our models. However, this feedback
could extend beyond the purposes of just data annotation or identifying data and concept drift.

We can incorporate expert feedback for four major purposes: data generation and annotation, data
filtering, model selection, and model monitoring. Expert feedback collection for annotation and
monitoring is generally similar to non-expert data collection except for the fact that in some applications,
expertise is of necessity, such as in classifying radiological images.

For model selection, we can use expert feedback to not need to rely exclusively on the performance
measures we use for model performance assessment and, consequently, select the best model, but to
detect red flags according to wrong predictions or rely on explainability information for our models,
such as if features that contribute the most in terms of predictions are of lowest relevance.

We can also benefit from experts’ feedback in monitoring our models. Drift detection, as discussed in
Chapter 11, Avoiding and Detecting Data and Concept Drifts, is crucial to ensure the reliability of our
models in production. In many applications, users of our models could be experts in specific domains,
such as healthcare and drug discovery. In such cases, we need to make sure we continuously collect
their feedback and use this to detect and eliminate drifts in our models.

Collecting feedback from experts as users of our machine learning models should not be limited to
getting their binary response of “good” versus “bad.” We need to provide enough information about
our models and their predictions and ask experts to provide their feedback, as follows:

• Provide sufficient information: When asking for feedback from expert users of our models, we
need to provide sufficient information to get better and more relevant feedback. For example,
in addition to the performance of our model in testing and production, or wrong and correct
predictions for a specific set of data points, we can also provide explainability information on
how the model came up with its decision for those data points. This type of information could
help the users provide better feedback that will help us in improving our models.

• Don’t ask for translations: Many of the users of our models might have limited statistical and
machine learning modeling knowledge. So, asking them to convert their opinions and ideas
into technical terms would limit efficient feedback collection. You need to provide sufficient
information and ask for their feedback and have a back-and-forth conversation to convert their
insights into actionable items for model improvement.

Human-in-the-Loop Machine Learning292

• Design for automated feedback collection: Although it is better to not ask for translations, as
pointed out earlier, you can move toward more automated feedback collection using clear and
detailed questions and proper infrastructure design to collect the feedback and incorporate it
into your models. For example, you can use machine learning explainability and ask whether
the most informative features used by the model for predicting the output of a specific set of
data points are relevant to the task or not.

Human-in-the-loop has its own challenges, such as in preserving privacy when third-party companies
are needed to monitor models and pipelines, or when there would be specific legal barriers in sharing
data coming from collaborators and business partners with others in our teams and organizations.
We need to keep these challenges in mind when we’re designing so that we can benefit from human
feedback in our machine learning life cycles.

Although we can collect feedback in different stages of the machine learning life cycle to improve our
models, there are techniques such as active learning (which we will cover next) that can help us bring
a better model with lower cost into production.

Human-in-the-loop modeling

Despite more high-quality annotated data points being more valuable, the cost of annotating data,
specifically when domain expertise is of necessity, could be very high. Active learning is a strategy that
helps us in generating and labeling data to improve the performance of our models at a lower cost. In
an active learning setting, we aim to benefit from a model with a limited amount of data and iteratively
select new data points to be labeled, or their continuous value identified, with the aim of achieving
higher performance (Wu et al., 2022; Ren et al., 2021; Burbidge et al., 2007). The model queries new
instances to be annotated by experts or non-experts, or their labels or continuous values are identified
via any computational or experimental technique. However, instead of the instances being selected
randomly, there are techniques for new instance selection to help us in achieving better models with
a lower number of instances and iterations (Table 17.1). Each of these techniques has its advantages
and disadvantages. For example, uncertainty sampling is simple but its effect on performance might be
limited if uncertainty in the predicted output of instances is not highly correlated with model error:

Summary 293

Data-Centric Model-Centric

Uncertainty sampling

Selecting instances with the most uncertainty
(in inference), which could be instances

closest to the decision boundary in
classification problems

Expected model change

Selecting instances that know their labels
results in the biggest impact on the

current model

Density-weighted uncertainty sampling

Selecting instances that not only have the
highest uncertainty but also are representative

of many other data points that rely on the
density of data in feature space

Estimation of error reduction

Selecting instances that know their
labels would result in the biggest future

error reduction

Query-by-committee

Multiple models (the committee) get trained
and instances with the highest disagreement in

their prediction get selected

Variance reduction

Selecting instances that know their labels
would result in the most reduction in the
model’s uncertainty about its parameters

Table 17.1 – Active learning techniques for instance election to be annotated in each step

In this chapter, we focused on introducing concepts and techniques behind human-in-the-loop.
However, there are Python libraries such as modAL (https://modal-python.readthedocs.
io/en/latest/) that can help you in implementing some of these techniques in your projects to
bring human feedback into your machine learning life cycle.

Summary

In this chapter, you learned about some of the important concepts in human-in-the-loop machine
learning, which can help you in better establishing collaboration between you and your team with
experts or non-experts so that you can incorporate their feedback into your machine learning
modeling projects.

This was the last chapter of this book. I hope you learned enough about different approaches to
improve your machine learning models and build better ones so that you can start your journey
toward becoming an expert in this domain.

https://modal-python.readthedocs.io/en/latest/
https://modal-python.readthedocs.io/en/latest/

Human-in-the-Loop Machine Learning294

Questions

1. Is human-in-the-loop machine learning limited to data annotation and labeling?

2. What is the difference between uncertainty sampling and density-weighted uncertainty sampling
in selecting instances in each step of an active learning process?

References

• Amershi, Saleema, et al. Power to the people: The role of humans in interactive machine learning.
Ai Magazine 35.4 (2014): 105-120.

• Wu, Xingjiao, et al. A survey of human-in-the-loop for machine learning. Future Generation
Computer Systems 135 (2022): 364-381.

• Ren, Pengzhen, et al. A survey of deep active learning. ACM computing surveys (CSUR) 54.9
(2021): 1-40.

• Burbidge, Robert, Jem J. Rowland, and Ross D. King. Active learning for regression based on

query by committee. Intelligent Data Engineering and Automated Learning-IDEAL 2007: 8th
International Conference, Birmingham, UK, December 16-19, 2007. Proceedings 8. Springer
Berlin Heidelberg, 2007.

• Cai, Wenbin, Ya Zhang, and Jun Zhou. Maximizing expected model change for active learning

in regression. 2013 IEEE 13th international conference on data mining. IEEE, 2013.

• Roy, Nicholas, and Andrew McCallum. Toward optimal active learning through monte carlo

estimation of error reduction. ICML, Williamstown 2 (2001): 441-448.

• Donmez, Pinar, Jaime G. Carbonell, and Paul N. Bennett. Dual strategy active learning. Machine
Learning: ECML 2007: 18th European Conference on Machine Learning, Warsaw, Poland,
September 17-21, 2007. Proceedings 18. Springer Berlin Heidelberg, 2007.

Assessments

Chapter 1 – Beyond Code Debugging

1. Yes – here is an example that was provided in this chapter:

def odd_counter(num_list: list):

 """

 :param num_list: list of integers to be checked for
identifying odd numbers

 :return: return an integer as the number of odd numbers in
the input list

 """

 odd_count = 0

 for num in num_list:

 if (num % 2) == 0:

 print("{} is even".format(num))

 else:

 print("{} is even".format(num))

 odd_count += 1

 return odd_count

num_list = [1, 2, 5, 8, 9]

print(odd_counter(num_list))

2. Here are their definitions:

 � AttributeError: This type of error is raised when an attribute is used for an object
that it is not defined for. For example, isnull is not defined for a list. So, my_list.
isnull() results in AttributeError.

 � NameError: This error is raised when you try to call a function, class, or other names and
modules that are not defined in your code. For example, if you haven’t defined a neural_
network class in your code but call it in your code as neural_network(), you will
get a NameError message.

3. Higher dimensionality makes a sparser feature space and could reduce the confidence of the
model in identifying generalizable decision boundaries in a classification setting.

Assessments296

4. When you get an error message in Python, it usually provides you with the necessary information
to find the issue. This information creates a report-like message about the lines of your code
that the error occurred in, the types of errors, and the function or class calls that resulted in
such errors. This report-like message is called a traceback in Python.

5. Incremental programming: Writing code for every small component, then testing it and
writing test codes using PyTest, for example, could help you avoid issues with each function or
class you wrote. It also helps you ensure the outputs of one module that feed another module
as its input are compatible.

Logging: When you develop functions and classes in Python, you can benefit from logging
to log information, errors, and other kinds of messages to help you in identifying potential
sources of issues when you get an error message.

6. For example, if you use experts, such as radiologists, to annotate medical images for a cancer
diagnosis, then the confidence on the label of images could be different. And these confidences
could be considered in the modeling phase either in the data collection process, such as by asking
more experts to annotate the same images, or in the modeling process, such as by assigning a
weight to each image based on the confidence in labeling. The features of your data could also
have different qualities. For example, you might have highly sparse features that have mostly
zero values across the data points or features that might have different levels of confidence. For
example, a measurement feature will have lower confidence if you use a measurement tape to
capture millimeter differences between the sizes of objects, such as dice, compared to using the
same tape to capture differences between bigger objects, such as furniture.

7. You can control underfitting and overfitting by controlling model complexity.

8. Yes, it is possible. The data that’s used for training and testing machine learning models could
become out of date. For example, the changes in the trends of the clothing market could make
predictions of a model for clothing recommendation unreliable.

9. By playing with model hyperparameters alone, you can’t develop the best possible model. In
the same way, by increasing the quality and quantity of your data and keeping your model
hyperparameters the same, you also can’t achieve the best performance possible. So, data and
hyperparameters work hand in hand.

Chapter 2 – Machine Learning Life Cycle

1. Examples of cleaning processes are filling in missing values in your data and removing outliers.

2. One-hot encoding generates a new feature for each category of categorical features. Label
encoding keeps the same features and just replaces each category with a number assigned to
that category.

3. The simplest way of detecting outliers is by using quantiles of the distribution of variable values.
Data points that are beyond the upper and lower bounds are considered outliers. The lower
and upper bounds can be calculated as Q1-a.IQR and Q3+a.IQR, where a can be a real value

Chapter 3 – Debugging toward Responsible AI 297

between 1.5 and 3. The common value of a that is also used by default in drawing a boxplot is
1.5, but having higher values makes the process of outlier identification less stringent and lets
fewer data points be detected as outliers.

4. If you want to deploy a model in doctors’ personal computers in hospitals to be used directly
by clinicians, you need to consider all difficulties and planning needed to set up the proper
production environment and all the software dependencies. You also need to make sure their
local system has the necessary hardware requirements. These are not among the considerations
if you want to deploy a model behind chatbots in a banking system.

Chapter 3 – Debugging toward Responsible AI

1. Data collection bias: Data that is collected could have biases such as gender bias, as in Amazon’s
applicant sorting examples, race bias, as in COMPAS, socioeconomic biases, as in hospitalization
examples, or other kinds of biases.

Sampling bias: Another source of data bias could be in the process of sampling data points or
sampling the population in the data collection stage of the life cycle. For example, in sampling
students to fill in a survey, our sampling process could be biased toward girls or boys, rich or
poor student families, or high- versus low-grade students.

2. Perfect-knowledge white-box attacks: The attacker knows everything about the system.

Zero-knowledge black-box attacks: The attacker doesn’t have any knowledge of the system
itself but collects information through predictions of the model in production.

3. The encryption process transforms the information, data, or algorithm into a new (that is,
encrypted) form. The encrypted data can be decrypted (that is, become human-readable or
machine understandable) if the individual has access to the encryption key (that is, a password-
style key necessary for the decryption process). In this way, getting access to the data and
algorithm without the encryption key will be almost impossible or very difficult.

4. Differential privacy tries to ensure that the removal or addition of individual data points does
not affect the outcome of modeling. It attempts to learn from patterns within groups of data
points. For example, by adding random noise from a normal distribution, it tries to make the
features of individual data points obscure. The effect of noise in learning could be eliminated
based on the law of large numbers if a large number of data points will be accessible.

Federated learning relies on the idea of decentralizing learning, data analysis, and inference,
thus allowing the user’s data to be kept within individual devices or local databases.

5. Transparency helps in building trust in users and could potentially increase the number of
users that trust and use your models.

Assessments298

Chapter 4 – Detecting Performance and Efficiency Issues in

Machine Learning Models

1. In a primary diagnostic test, with more accurate follow-up tests, we want to make sure we do
not lose any patients with the disease we are testing for. So, we need to aim to decrease false
negatives, while trying to decrease false positives at the same time. So, we can aim to maximize
recall while controlling for precision and specificity.

2. In such cases, you want to make sure you have the precision to control risks and suggest good
investment opportunities. This might result in a lower recall, which is okay as a bad investment
could result in a significant loss of capital for individual investors. Here, we don’t want to consider
the details of investment risk management and want to have a high-level understanding of how
to select a good performance measure. If you are an expert in this field, consider your knowledge
and select a good performance measure that satisfies the requirements you are aware of.

3. ROC-AUC is a summary measure. Two models with the same ROC-AUCs could have different
predictions for individual data points.

4. MCC focuses on predicted labels, while log-loss cares about predicted probabilities for the
tested data points. So, a lower log-loss does not necessarily result in a lower MCC.

5. Not necessarily. R2 doesn’t take into account data dimensionality (that is, the number of features,
inputs, or independent variables). A model with more features could result in a higher R2, while
it might not necessarily be a better model.

6. It depends on the performance measure and test data used for assessing the generalizability of the
model. We need to use the right performance measure for our objective in production, and use
a set of data points for model testing that will be more reflective of unseen data in production.

Chapter 5 – Improving the Performance of Machine

Learning Models

1. Adding more training data points could help to reduce variance while adding more features
could help to reduce bias. However, there is no guarantee of a reduction of variance through
the addition of new data points or whether new features will be helpful in reducing variance.

Assigning weights during optimization: You can assign a weight to each data point, according
to the confidence of class labels, when training machine learning models.

Ensemble learning: If you consider a distribution of the quality or confidence score of each data
point, then you can build different models using data points from each part of this distribution
and then combine the predictions of the models for example using their weighted average.

Transfer learning: You can train a model on a large dataset with different levels of label
confidence (see Figure 5.3), excluding very low-confidence data and then fine-tune it on the
very high-confidence part of your dataset.

Chapter 6 – Interpretability and Explainability in Machine Learning Modeling 299

2. By increasing confidence in identifying the decision boundary, in a classification setting, where
the minority class is sparse.

3. If we use Borderline-SMOTE, the new synthetically generated data points would be close to
the majority-class data points, which helps in identifying a generalizable decision boundary.

In DSMOTE, DBSCAN is used to divide data points of the minority class into three groups of
core samples, borderline samples, and noise (that is, outlying) samples, and then the core and
borderline samples only get used for oversampling.

4. Searching over the whole possible combinations of hyperparameters is not necessary, as
explained in this chapter.

5. Yes, L1 regularization can eliminate the contribution of features to the regularization process.

6. Yes, it is possible.

Chapter 6 – Interpretability and Explainability in Machine

Learning Modeling

1. Explainability can help improve performance, such as by reducing the sensitivity of models
to small feature value changes, increasing data efficiency in model training, trying to help in
proper reasoning in models, and avoiding spurious correlations.

2. Local explainability helps us understand the behavior of a model close to a data point in feature
space. Although these models meet local fidelity criteria, features that have been identified to
be locally important might not be globally important, and vice versa.

Global explainability techniques try to go beyond local explainability and provide global
explanations to the models.

3. Linear models, although interpretable, usually have low performance. Instead, we could benefit
from more complex models, with higher performance, and use explainability techniques to
understand how the model comes up with its predictions.

4. Yes, it does. Explainability techniques could help us understand what models are major
contributors to predictions for one set of data points.

5. SHAP can determine how each feature contributes to a model’s prediction. As features work
cooperatively in determining the decision boundaries of classification models and eventually
affecting model predictions, SHAP tries to first identify the marginal contribution of each
feature and then provide Shapely values as an estimate of each feature in cooperation with the
whole feature set to predict a model.

LIME is an alternative to SHAP for local explainability that explains the predictions of any
classifier or regressor, in a model-agnostic way, by approximating a model locally with an
interpretable model.

Assessments300

6. Counterfactual examples, or explanations, help us identify what needs to be changed in an
instance to change the outcome of a classification model. These counterfactuals could help in
identifying actionable paths in many applications, such as finance, retail, marketing, recruiting,
and healthcare. For example, we can use them to suggest to a bank customer how they can
change the rejection to their loan application.

7. As presented in the Counterfactual generation using Diverse Counterfactual Explanations

(DiCE) section, not all counterfactuals are feasible according to the definition and meaning
of each feature. For example, if we want to suggest to a 30-year-old individual to change their
outcome, suggesting that they need to wait until they get to their 50s is not an effective and
actionable suggestion. Also, suggesting a change of hours_per_week of work from 38 to
>80 is not feasible.

Chapter 7 – Decreasing Bias and Achieving Fairness

1. No. There might be proxies in our models for sensitive attributes, but not in our models.

2. Salary and income (in some countries), occupation, a history of a felony charge.

3. Not necessarily. Satisfying fairness according to demographic parity wouldn’t necessarily result
in a model being fair according to equalized odds.

4. Demographic parity is a group fairness definition to ensure that a model’s predictions are not
dependent on a given sensitive attribute, such as ethnicity or sex.

Equalized odds is satisfied when a given prediction is independent of the group of a given
sensitive attribute and the real output.

5. Not necessarily. For example, there could be feature proxies for 'sex' among top contributors
to model predictions.

6. We can use explainability techniques to identify potential biases in our models and then plan
to improve them toward fairness. For example, we can identify fairness issues between male
and female groups.

Chapter 8 – Controlling Risks Using Test-Driven

Development

1. pytest is a simple-to-use Python library you can use to design unit tests. The designed tests
can then be simply used to test changes in your code and control risks of potential mistakes
throughout the development process and future changes in your code.

2. In programming for data analysis and machine learning modeling, we need to use data that is
in different variables or data objects, comes from a file in your local machine or the cloud, is
queried from a database, or comes from a URL to our tests. Fixtures help us in these processes
by removing the need to repeat the same code across our tests. Attaching a fixture function

Chapter 9 – Testing and Debugging for Production 301

to a test will run it and return data to the test before each test runs. We can use the examples
provided on the pytest documentation page for fixtures (https://docs.pytest.
org/en/7.1.x/how-to/fixtures.html).

3. Differential testing attempts to check two versions of a piece of software, as base and test
versions, on the same input and compare the outputs. This process helps identify whether
the outputs are the same and identify unexpected differences. In differential testing, the base
version is already verified and considered as the approved version while the test version needs
to be checked against the base version in producing the correct output.

4. mlflow is a widely used machine learning experiment tracking library that we can use in
Python. Keeping track of our machine learning experiments will help us to reduce the risks of
invalid conclusions and selecting unreliable models. Experiment tracking in machine learning
is about saving information about the experiments, such as the data that has been used, the
testing performance and the metric used for performance assessment, and the algorithms and
the hyperparameters used for modeling.

Chapter 9 – Testing and Debugging for Production

1. Data drift: Data drift happens if the characteristics and meaning of features or independent
variables in production differ from the modeling stage. Imagine you used a third-party tool to
generate a score for the health or financial situation of people. The algorithm behind that tool
could change over time, and its range and meaning will not be the same when your model gets
used in production. If you have not updated your model accordingly, then your model will not
work as expected as the meaning of the value of the features will not be the same between the
data used for training and the user data after deployment.

Concept drift: Concept drift is about any change in the definition of output variables. For
example, real decision boundaries between training data and production could be different
because of concept drift, meaning the effort in training might result in a decision boundary
far from reality in production.

2. Model assertions can help you detect issues early on, such as input data drift or other unexpected
behaviors that might affect the model’s performance. We can consider model assertions as a set
of rules that get checked during the model’s training, validation, or even during deployment
to ensure that the model’s predictions meet the predefined conditions. Model assertions can
help us in many ways, such as detecting and diagnosing issues with the model or input data,
allowing us to address them before they impact the model’s performance.

3. Here are some examples of the components of integration testing:

 � Testing data pipelines: We need to evaluate that the data preprocessing components
before model training, such as data wrangling, are consistent between the training and
deployment stages.

https://docs.pytest.org/en/7.1.x/how-to/fixtures.html
https://docs.pytest.org/en/7.1.x/how-to/fixtures.html

Assessments302

 � Testing APIs: If our machine learning model is exposed through an API, we can test the
API endpoints to ensure they handle requests and responses correctly.

 � Testing model deployment: We can use integration testing to assess the model’s deployment
process, whether it’s deployed as a standalone service, within a container, or embedded in
an application. This process helps us ensure that the deployment environment provides the
necessary resources, such as CPU, memory, and storage, and that the model can be updated
if needed.

 � Testing interactions with other components: We need to verify that our machine learning
model works seamlessly with databases, user interfaces, or third-party services. This may
include testing how the model’s predictions are stored, displayed, or used within the application.

 � Testing end-to-end functionality: We can use end-to-end tests that simulate real-world
scenarios and user interactions to validate that the model’s predictions are accurate, reliable,
and useful in the context of the overall application.

4. IaC and configuration management tools such as Chef, Puppet, and Ansible can be used
to automate the deployment, configuration, and management of software and hardware
infrastructures. These tools could help us ensure consistency and reliability across different
environments. First, we need to define two important terminologies, client and server, before
describing what these IaC tools are for us:

 � Chef (https://www.chef.io/products/chef-infrastructure-management):
Chef is an open source configuration management tool that relies on a client-server model,
where the Chef server stores the desired configuration, and the Chef client applies it to
the nodes.

 � Puppet (https://www.puppet.com/): Puppet is another open source configuration
management tool that works in a client-server model or as a standalone application. Puppet
enforces desired configurations across nodes by periodically pulling them from the Puppet
master server.

 � Ansible (https://www.ansible.com/): Ansible is an open source and easy-to-use
configuration management, orchestration, and automation tool that employs an agentless
architecture to communicate and apply configurations to nodes.

Chapter 10 – Versioning and Reproducible Machine

Learning Modeling

1. MLflow: We introduced MLflow for experiment tracking and model monitoring in previous
chapters, but you can also use it for data versioning (https://mlflow.org/).

DVC: An open source version control system for managing data, code, and ML models. It is
designed to handle large datasets and integrates with Git (https://dvc.org/).

https://www.chef.io/products/chef-infrastructure-management
https://www.puppet.com/
https://www.ansible.com/
https://mlflow.org/
https://dvc.org/

Chapter 11 – Avoiding and Detecting Data and Concept Drifts 303

Pachyderm: A data versioning platform that provides reproducibility, provenance, and scalability
in machine learning workflows (https://www.pachyderm.com/).

2. No. Different versions of the same data file could be stored with the same name and restored
and retrieved when needed.

3. A simple change of the random state when splitting data into training and test sets or during
model initialization could result in different parameter values and performances for training
and evaluation sets.

Chapter 11 – Avoiding and Detecting Data and Concept

Drifts

1. Magnitude: We might face different magnitudes of difference in the data distribution resulting
in drift in our machine learning models. Small changes in the data distribution may be difficult
to detect, while large changes may be more noticeable.

Frequency: Drifts might occur in different frequencies.

2. The Kolmogorov–Smirnov test can be used for data drift detection.

Chapter 12 – Going Beyond ML Debugging with Deep

Learning

1. Yes, in the forward pass, parameters that are already calculated get used for output generation;
then, the difference between the real and predicted output gets used in the backpropagation
process to update the weights.

2. In stochastic gradient descent, one data point is used per iteration to optimize and update
the model weights, while in mini-batch gradient descent, a mini-batch (small subset) of data
points gets used.

3. Each batch or mini-batch is a small subset of data points in the training set that gets used to
calculate the loss and update the model’s weights. In each epoch, multiple batches get iterated
to cover all training data.

4. The sigmoid and softmax functions are commonly used in output layers to transform the scores
of the output neurons to values of between zero and one for classification models. This is called
the probability of predictions.

Chapter 13 – Advanced Deep Learning Techniques

1. CNNs can be used for image classification or segmentation – for example, for radiological
images to identify malignancies (tumor regions). On the other hand, GNNs can be used in
social and biological networks.

https://www.pachyderm.com/

Assessments304

2. Yes, it does.

3. It might result in more mistakes.

4. To handle this challenge, a common ID, such as 0, gets used before or after IDs of tokens of
words in each sequence of words or sentences in a process called padding.

5. The classes we build for CNNs and GNNs have similar code structures.

6. Edge features help you include some vital information, depending on the application. For
example, in chemistry, you can determine the type of chemical bond as an edge feature, while
the nodes could be the atoms in the graphs.

Chapter 14 – Introduction to Recent Advancements in

Machine Learning

1. Transformer-based text generation, VAEs, and GANs.

2. Different versions of LLaMA and GPT.

3. The generator, which could be a neural network architecture for generating desired data
types, such as images, generates images aiming to fool the discriminator into recognizing the
generated data as real data. The discriminator learns to remain good at recognizing generated
data compared to real data.

4. You can improve your prompting by being specific about the question and specifying for whom
the data is being generated.

5. In RLHF, the reward is calculated based on the feedback of humans, either experts or non-experts,
depending on the problem. But the reward is not like a predefined mathematical formula
considering the complexity of problems such as language modeling. The feedback provided
by humans results in improving the model step by step.

6. The idea of contrastive learning is to learn representations that result in similar data points
being closer to each other compared to dissimilar data points.

Chapter 15 – Correlation versus Causality

1. Yes. You can have features that are highly correlated with the output in supervised learning
that aren’t causal.

2. One way to establish causality is to conduct experiments, as in experimental design, where
we measure the effect of changes in the causal feature on the target variable. However, such
experimental studies may not always be feasible or ethical. In observational studies, we use
observational data, instead of controlled experiments, and try to identify causal relationships
by controlling confounding variables.

Chapter 16 – Security and Privacy in Machine Learning 305

3. Instrumental variables is used in causal aim to overcome a common problem in observational
studies where the treatment and outcome variables are jointly determined by other variables,
or confounders, that are not included in the model. This approach starts with identifying an
instrument that is correlated with the treatment variable and uncorrelated with the outcome
variable, except through its effect on the treatment variable.

4. The directions, from a feature to the outcome, don’t necessarily mean causality. But Bayesian
networks can be used for estimating the causal effects of variables on the outcome while
controlling the confounding variables.

Chapter 16 – Security and Privacy in Machine Learning

1. Advanced Encryption Standard (AES): AES is one of the strongest encryption algorithms
that protects data. AES accepts different key sizes: 128, 192, or 256 bits.

Triple Data Encryption Standard (DES): Triple DES is an encryption method that uses a
56-bit key to encrypt data blocks.

Blowfish: Blowfish is a symmetric-key encryption technique used as an alternative to the DES
encryption algorithm. Blowfish is fast and highly effective for data encryption. It splits data, for
example, strings and messages, into blocks of 64 bits and encrypts them individually.

2. We can use a model for inference on encrypted data without the need for decryption.

3. The objective of differential privacy (DP) is to ensure that the removal or addition of individual
data points does not affect the outcome of the modeling. For example, by adding random noise
to a normal distribution, it tries to make the features of individual data points obscure.

4. The challenge of using FL or DP in practice goes beyond programming or infrastructure design.
In spite of this great alternative to storing user data locally, there are still ethical, legal, and
business challenges when benefitting from FL in different applications.

Chapter 17 – Human-in-the-Loop Machine Learning

1. No. For example, you can bring human experts into the loop through active learning.

2. In uncertainty sampling, data points get selected solely based on uncertainty in inference.
But in density-weighted uncertainty sampling, instances get selected not only based on their
highest uncertainty but also to be representative of the many other data points that rely on the
density of data in the feature space.

Index

A
A/B testing 41

Adaptive synthetic (ADASYN) 98

Advanced Encryption Standard (AES) 280

implementing, in Python 280, 281
adversarial attacks 49

algorithmic bias 48

alibi_detect

practicing, for drift detection 201, 202
Anchor explanations 125

Ansible 179

reference link 179
Artificial Intelligence (AI) 3

Artificial Intelligence (AI) Act 54

artificial neural networks (ANNs) 210-212

optimization algorithms 212, 213
assertions 16

AttributeError 9

automation 4

autoregressive models 259

B
Bayesian networks 272, 273

causal inference, with bnlearn 275-277
Bayesian search 96

behavior-driven development

(BDD) testing 180

bias

in data generation and collection 147-150
in model training and testing 151
in production 151
sources 147

BitBucket 17

black-box machine learning

versus, interpretable machine learning 120
Blowfish 280

bnlearn

reference link 273
using, for causal inference through

Bayesian networks 275-277

BOHB 96

Borderline-SMOTE 98

Brakerski-Fan-Vercauteren (BFV) 282

bug clustering 13

C
captum AI

URL 218
causal effect estimation

with dowhy 273-275

Index308

causal inference 270

Bayesian networks 272, 273
methods 270
with bnlearn, through Bayesian

networks 275-277

causal modeling

using, to improve performance 269
using, to reduce risks 269
with Python 273

causalnex

reference link 273
character tokenization 232

ChatGPT

reference link 250
Chef 179

reference link 179
classification model 62

label-based performance metrics 63-67
probability-based performance

metrics 67-70

clustering models 73-75

CNN, for image shape data 224-226

performance assessment 226
code versioning 191

command-line interface (CLI) 17, 166

concept drift 185

addressing 200
conditional probability

distribution (CPD) 272

continuous integration/continuous

development (CI/CD) 170

contrastive learning 259

convolutional neural network modeling

with PyTorch 227-229
convolutional neural networks (CNN)

augmentation 229, 230
image data transformation 229, 230
pre-trained models, using 230

Correctional Offender Management

Profiling for Alternative

Sanctions (COMPAS) 19

counterfactual explanations 124

actionability 124
diversity 124
plausibility 124
similarity 124
validity 124

counterfactual generation

DiCE, using 138, 139
cross-entropy loss 67

cross-validation (CV) 37, 81

CSV 18

D
data 18

biases 19
for changing, landscapes 21
quality 19
quantity 19

data augmentation 27

data bias 46

data collection bias 47
exclusion bias 47
measurement or labeling bias 47
sampling bias 47

data cleaning, machine learning life cycle

data scaling 35
feature imputation, for filling

missing values 31, 32

outlier removal 33
performing 30

data collection, machine

learning life cycle 25

data drift 185

avoiding 198-200

Index 309

data exploration, machine

learning life cycle 27

data flaws 18

structure and format issues 18, 19
data preparation modeling, machine

learning life cycle

evaluation strategy, designing 37, 38
feature extraction 35, 36
feature selection 35
testing strategy, designing 37, 38

data privacy 48

attacks 49
security reasons 48, 49

data selection, machine learning life cycle 26

data variance 184

Data Version Control (DVC) 191

URL 191
data versioning 191

example 192, 193
data versioning, tools

Delta Lake 191
Git Large File Storage (Git-LFS) 191
MLflow 191
Pachyderm 191

data wrangling, machine

learning life cycle 27

data cleaning 30
data transformation 28-30
enriching 27
structuring 27

debuggers 14

debugging techniques 11

bug clustering 13
deduction 13
induction 13
problem simplification 13
traceback 11, 12

deduction 13

deepfakes

reference link 252
deep learning modeling

fairness, developing with PyTorch 218
hyperparameters, for improving

performance 217, 218

hyperparameter tuning 217, 218
interpretability, in PyTorch 218
PyTorch 214-217

deep neural networks

used, for modeling graphs 237, 238
defensive programming 16

Delta Lake 191

URL 191
demographic parity 144

density-based spatial clustering of

applications with noise (DBSCAN) 103

density-based synthetic minority over-

sampling technique (DSMOTE) 103

development environment 18

differential privacy (DP) 283-285

differential testing 169

machine learning modeling 170
directed acyclic graphs (DAGs) 272

discovery 4

disparate impact ratio (DIR) 146

Diverse Counterfactual Explanations (DiCE)

used, for counterfactual generation 138, 139
dowhy

reference link 273
using, for causal effect estimation 273-275

drift detection

alibi_detect, practicing 201, 202
evidently, practicing 203-205

drifts 198

characteristics 198
detecting 200

Index310

E
econml

reference link 273
encryption techniques 280

AES 280
Blowfish 280
RSA security 280
Triple DES 280
Twofish 280

epsilon value 284

equality of odds 144

equality of opportunity 144, 146

equalized odds 144

error messages, in Python 10

AttributeError 9
IndentationError 9
NameError 9
SyntaxError 8
TypeError 9

evidently

practicing, for drift detection 203-205
experimental design 271

explainability techniques

using 151-155
explainability techniques, in

machine learning

being model-agnostic 122
global explanation 125
interpretability 122
local explainability techniques 122
local fidelity (faithfulness) 122

explanations, with LIME

global explanation 136, 137
local explanation 133-136

explanations, with SHAP

global explanation 132
local explanation 127-131

exponential linear unit (ELU) 211

F
fairness

assessment and improvement 155-159
in machine learning modeling 144-146

false negatives (FNs) 63

false positives (FPs) 63

federated learning (FL) 285, 287

usage, challenges 286
fully connected neural networks

(FCNNs) 210

G
Gaussian error linear unit (GELU) 211

Generative Adversarial Networks

(GANs) 252

generative deep learning techniques 251

transformer-based text generation 251
variational autoencoders (VAEs) 251

generative machine learning 7

generative modeling 250, 251

developing, with PyTorch 253-256
Generative Pre-trained

Transformer (GPT) 211

Generative Pre-trained Transformer

(GPT)-4 250

German Traffic Sign Recognition

Benchmark (GTSRB) 227

Git 17

GitHub 17

GitLab 17

Git Large File Storage (Git-LFS) 191

URL 191

Index 311

global explanation, machine

learning models 125

counterfactuals 126
knowledge distillation 125
local explanations, collecting 125

gpt-4-32k model 233

Graph Attention Networks (GATs) 239

Graph Convolutional Networks (GCNs) 239

graph neural networks (GNNs) 238

graph classification 239
link prediction 239
using, for node classification 239
using, for node selection 239
with PyTorch Geometric 239-243

graphs

edges 237
nodes 237

Graph Sample and Aggregation

(GraphSAGE) 239

grid-search 94, 95

H
HElib

reference link 282
homomorphic encryption 282, 283

human, in machine learning

life cycle 289, 290

expert feedback collection 291, 292
human-in-the-loop modeling 292

Hyperband 96

hyperparameters 21

for changing, landscapes 21
hyperparameter tuning

for deep learning modeling 217, 218

I
image segmentation 225

imbalanced data

oversampling 97
Imbalance Ratio (IR) 104

Imbalance Ratio Threshold (IRT) 104

impartial modeling fairness 46

algorithmic bias 48
data bias 46

incremental programming 15

IndentationError 9

induction 13

Influence function 124

Infrastructure as Code tools 179

Ansible 179
Chef 179
Puppet 179

infrastructure testing 178

benefits 178, 179
importance 178, 179
Infrastructure as Code tools 179
Pytest, using 180
tools 180

infrastructure testing tools

InSpec 180
ServerSpec 180
Test Kitchen 179

input data assertion 186

InSpec 180

reference link 180
inspection modeling 53-55

instrumental variables 272

integration testing, machine

learning pipelines 180

APIs testing 181
benefits 181
component interactions, testing 181
data pipelines, testing 180

Index312

end-to-end functionality, testing 181
model deployment, testing 181
pytest, using 182, 183
requests and pytest, using 183
tools, using 181

internet protocol (IP) tracking 49

interpretable machine learning 120

examples 120
versus black-box machine learning 120

J
Jaccard index 227

K
key 280

k-means SMOTE 103

knowledge distillation 125

L
L1 regularization 111

L2 regularization 111

label-based performance metrics 63-67

Large Language Model (LLM) 232

Lasso regression 112

LightGBM 111

local explainability techniques 122

counterfactuals 124
feature importance 123
LIME, using 123
rule-based explainability 125
saliency maps 125
sample-based explainability 124
SHAP, using 123

Local Interpretable Model-agnostic

Explanations (LIME) 123

used, for local explanation 123
logging 15, 16

logical errors 9

logistic loss 67

log-loss 67

Long Short Term Memory (LSTMs) 231

M
machine learning 4, 5

impartial modeling fairness 46
security and privacy 48

machine learning-based methods 272

machine learning experiments

tracking 170-174
machine learning explainability

counterfactual generation,
with DiCE 138, 139

for complex models 121
limitations 140
local explanation with LIME 133
local explanation with SHAP 127
practicing 126, 127

machine learning life cycle 23-25

code testing 41
data collection 25
data exploration 27
data preparation modeling 35
data selection 26
data wrangling 27
model deployment 42
model evaluation 39, 40
model monitoring 42
model testing 41
model training 38

Index 313

machine learning modeling

differential testing 170
governance system, establishing 55, 56
test-driven development 164
transparency 52, 53

machine learning modeling, types 5

generative machine learning 7
reinforcement learning 7
self-supervised learning 6, 7
semi-supervised learning 7
supervised learning 6
unsupervised learning 6

machine learning models

bias and variance diagnosis 77-80
causation, assessing 269, 270
correlation 268
error analysis 84, 85
performance and error

assessment measures 62

performance, improving price 85, 86
validation strategy 81-84

machine learning pipelines

integration testing 180
Matthews correlation coefficient (MCC) 66

Message Passing Neural Networks

(MPNNs) 239

MLflow 191

URL 191
MLflow Tracking 171

modAL

reference link 293
model and prediction-centric debugging 20

model assertion 186

example 186-188
input data assertion 186
output data assertion 186

model generalizability

improving, with model
generalizability 110-115

model performance

improving, options 90-93
model’s live performance

monitoring 184, 185
validating 184, 185

model testing 21

model versioning 191, 193

considerations 194
example 193

Multi-Factor Authentication (MFA) 283

multi-layer perceptrons (MLPs) 210

MySQL 18

N
NameError 9

natural language processing (NLP) 230

neural network modeling

frameworks 213
neural networks

categorization, based on data type 222-224
types 222

NoSQL 18

O
object detection 225

observational studies 272

one-dimensional (1D) 237

optimization algorithm 212, 213

output data assertion 186

output integrity attacks 50

overfitting 20, 21

oversampling 97

Index314

P
Pachyderm 191

URL 191
padding 233

passive human-in-the-loop 290

Pearson correlation 153

performance metrics

visualization, using for 75, 77
permutation feature importance 270

Perplexity

reference link 250
precision-recall (PR) curve 37, 67

pre-training data processing

anomaly detection 105-108
benefitting, from data of lower

quality or relevance 109, 110

improving 105
outlier removal 105-108

principal component analysis (PCA) 251

probability-based performance

metrics 67-70

problem simplification 13

production 21

production environment 18

prompt engineering, for text-based

generative models 252

targeted prompting 252, 253
propensity score matching 272

proxies

for sensitive variables 146, 147
Puppet 179

reference link 179
pycausalimpact

reference link 273
PySEAL

reference link 282

Pytest 180

used, for infrastructure testing 180
using 164-167

Pytest fixtures 167-169

features 168
Python

AES encryption, implementing 280, 281
error messages 8-10
using, for causal modeling 273

Python libraries

references 285
Python modules

reference link 96
PyTorch

for deep learning modeling 214-217
model interpretability in 218
used, for convolutional neural

network modeling 227-229

used, for developing fairness in
deep learning models 218

using, for self-supervised
learning (SSL) 259-261

using, to design RLHF 257, 258
using, to develop generative

modeling 253-256

PyTorch Geometric

graph neural networks (GNNs),
using with 239-243

PyTorch Lightning 218

features 218

Q
qualitative or categorical variables

nominal 28
ordinal 28

quantitative or numerical variables

continuous 28
discrete 28

Index 315

R
random search 95

receiver operating characteristic (ROC) 67

receiver operating curve (ROC) 37

rectified linear unit (ReLU) 211

Recurrent Neural Networks (RNNs) 231

regression models 70-73

regression tests 41

regularization 110

used, for improving model
generalizability 110-115

reinforcement learning (RL) 5, 7, 256

reinforcement learning with human

feedback (RLHF) 256

designing, with PyTorch 257, 258
reject option classification 158

repeatability 190

replicability 190

reproducibility

in machine learning 190
resolution enhancements 225

responsible AI test 41

Ridge regression 112

Rivest-Shamir-Adleman (RSA) security 280

Root Mean Squared Error (RMSE) 70

rule-based explainability 125

S
saliency maps 125

sample-based explainability 124

security and privacy

adversarial attacks 49
data poisoning 49
data privacy 48, 49
output integrity attacks 50

system manipulation 51
techniques 51, 52

security tests 41

self-supervised learning (SSL) 6, 7, 258

techniques 259
with PyTorch 259-261

self-supervision via inpainting 259

semi-supervised learning 7

sensitive variables

proxies 146, 147
sensitivity value 284

ServerSpec 180

reference link 180
SHapley Additive exPlanations (SHAP) 123

used, for local explanation 123
software development

debugging 8
Spearman rank correlation 153

Stanford Large Network Dataset

Collection (SNAP) 239

statistical and visualization techniques

distance metrics 186
distribution metrics 186
feature importance 186
statistical tests 185
visualization 186

stochastic gradient descent (SGD) 212

Submodular pick LIME (SP-LIME) 125, 136

successive halving 96

supervised learning 6

SyntaxError 8

synthetic data generation 97

imbalanced data, oversampling 97
Synthetic Minority Oversampling

Technique (SMOTE) 97-104

Adaptive synthetic (ADASYN) 98
Borderline-SMOTE 98

Index316

T
tabular data 222

targeted prompting

techniques 252, 253
t-distributed Stochastic Neighbor

Embedding (t-SNE) 77

techniques, for secure and privacy-

preserving processes

anonymization 51
data and algorithm encryption 51
differential privacy 52
federated machine learning 51
homomorphic encryption 51
pseudonymization 51

TenSEAL

reference link 282
test

A/B testing 41
regression tests 41
responsible AI test 41
security tests 41
unit tests 41

test-driven development

for machine learning modeling 164
Test Kitchen 179

reference link 179
torchgan

reference link 252
traceback 11, 12

transformer-based text generation 251

transformers, for language

modeling 231, 232

language embedding 234
pre-trained models, using 235-237
tokenization 232-234

treatment variable

versus outcome variable 271

Triple Data Encryption Standard (DES) 280

true negatives (TNs) 63

true positives (TPs) 63

two-dimensional (2D) 237

Twofish 280

TypeError 9

U
underfitting 20, 21

undersampling 97

unit tests 41, 164

University of California Irvine (UCI) 127

unsupervised learning 6

V
variable types, data transformation

qualitative or categorical 28
quantitative or numerical 28

variational autoencoders (VAEs) 251

version control 17

versioning 17

visualization

for performance metrics 75-77

W
word tokenization 232

X
XGBoost

using 127

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?

• Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.packtpub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@
packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Machine Learning - Second Edition

Sebastian Raschka, Vahid Mirjalili

ISBN: 978-1-78712-593-3

• Understand the key frameworks in data science, machine learning, and deep learning

• Harness the power of the latest Python open source libraries in machine learning

• Master machine learning techniques using challenging real-world data

• Master deep neural network implementation using the TensorFlow library

• Ask new questions of your data through machine learning models and neural networks

• Learn the mechanics of classification algorithms to implement the best tool for the job

• Predict continuous target outcomes using regression analysis

• Uncover hidden patterns and structures in data with clustering

• Delve deeper into textual and social media data using sentiment analysis

https://www.packtpub.com/product/python-machine-learning-second-edition/9781787125933

Other Books You May Enjoy 319

Python Machine Learning By Example

Yuxi (Hayden) Liu

ISBN: 978-1-78355-311-2

• Exploit the power of Python to handle data extraction, manipulation, and exploration techniques

• Use Python to visualize data spread across multiple dimensions and extract useful features

• Dive deep into the world of analytics to predict situations correctly

• Implement machine learning classification and regression algorithms from scratch in Python

• Be amazed to see the algorithms in action

• Evaluate the performance of a machine learning model and optimize it

• Solve interesting real-world problems using machine learning and Python as the journey unfolds

https://www.packtpub.com/product/python-machine-learning-by-example/9781783553112

320

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi

ISBN: 978-1-78980-845-2

• Use predictive modeling and apply it to real-world problems

• Explore data visualization techniques to interact with your data

• Learn how to build a recommendation engine

• Understand how to interact with text data and build models to analyze it

• Work with speech data and recognize spoken words using Hidden Markov Models

• Get well versed with reinforcement learning, automated ML, and transfer learning

• Work with image data and build systems for image recognition and biometric face recognition

• Use deep neural networks to build an optical character recognition system

https://www.packtpub.com/product/python-machine-learning-cookbook-second-edition/9781789808452

321

Packt is searching for authors like you

If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts

Now you’ve finished Debugging Machine Learning Models with Python, we’d love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the Amazon review page
for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://www.packtpub.com/

322

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80020-858-2

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-80020-858-2

	Cover
	Title Page
	Copyright
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1:
Debugging for
Machine Learning Modeling
	Chapter 1: Beyond Code Debugging
	Technical requirements
	Machine learning at a glance
	Types of machine learning modeling
	Supervised learning
	Unsupervised learning
	Self-supervised learning
	Semi-supervised learning
	Reinforcement learning
	Generative machine learning

	Debugging in software development
	Error messages in Python
	Debugging techniques
	Debuggers
	Best practices for high-quality Python programming
	Version control
	Debugging beyond Python

	Flaws in data used for modeling
	Data format and structure
	Data quantity and quality
	Data biases

	Model and prediction-centric debugging
	Underfitting and overfitting
	Inference in model testing and production
	Data or hyperparameters for changing landscapes

	Summary
	Questions
	References

	Chapter 2: Machine Learning Life Cycle
	Technical requirements
	Before we start modeling
	Data collection
	Data selection
	Data exploration
	Data wrangling
	Structuring
	Enriching
	Data transformation
	Cleaning

	Modeling data preparation
	Feature selection and extraction
	Designing an evaluation and testing strategy

	Model training and evaluation
	Testing the code and the model
	Model deployment and monitoring
	Summary
	Questions
	References

	Chapter 3: Debugging toward Responsible AI
	Technical requirements
	Impartial modeling fairness in machine learning
	Data bias
	Algorithmic bias

	Security and privacy in machine learning
	Data privacy
	Data poisoning
	Adversarial attacks
	Output integrity attacks
	System manipulation
	Secure and private machine learning techniques

	Transparency in machine learning modeling
	Accountable and open to inspection modeling
	Data and model governance
	Summary
	Questions
	References

	Part 2:
Improving Machine
Learning Models
	Chapter 4: Detecting Performance and Efficiency Issues in Machine Learning Models
	Technical requirements
	Performance and error assessment measures
	Classification
	Regression
	Clustering

	Visualization for performance assessment
	Summary metrics are not enough
	Visualizations could be misleading
	Don’t interpret your plots as you wish

	Bias and variance diagnosis
	Model validation strategy
	Error analysis
	Beyond performance
	Summary
	Questions
	References

	Chapter 5: Improving the Performance of Machine Learning Models
	Technical requirements
	Options for improving model performance
	Grid search
	Random search
	Bayesian search
	Successive halving

	Synthetic data generation
	Oversampling for imbalanced data

	Improving pre-training data processing
	Anomaly detection and outlier removal
	Benefitting from data of lower quality or relevance

	Regularization to improve model generalizability
	Summary
	Questions
	References

	Chapter 6: Interpretability and Explainability in Machine Learning Modeling
	Technical requirements
	Interpretable versus black-box machine learning
	Interpretable machine learning models
	Explainability for complex models

	Explainability methods in machine learning
	Local explainability techniques
	Global explanation

	Practicing machine learning explainability in Python
	Explanations in SHAP
	Explanations using LIME
	Counterfactual generation using Diverse Counterfactual Explanations (DiCE)

	Reviewing why having explainability is not enough
	Summary
	Questions
	References

	Chapter 7: Decreasing Bias and Achieving Fairness
	Technical requirements
	Fairness in machine learning modeling
	Proxies for sensitive variables

	Sources of bias
	Biases introduced in data generation and collection
	Bias in model training and testing
	Bias in production

	Using explainability techniques
	Fairness assessment and improvement in Python
	Summary
	Questions
	References

	Part 3:
Low-Bug Machine Learning Development and Deployment
	Chapter 8: Controlling Risks Using Test-Driven Development
	Technical requirements
	Test-driven development for machine learning modeling
	Unit testing

	Machine learning differential testing
	Tracking machine learning experiments
	Summary
	Questions
	References

	Chapter 9: Testing and
Debugging for Production
	Technical requirements
	Infrastructure testing
	Infrastructure as Code tools
	Infrastructure testing tools
	Infrastructure testing using Pytest

	Integration testing of machine learning pipelines
	Integration testing using pytest

	Monitoring and validating live performance
	Model assertion
	Summary
	Questions
	References

	Chapter 10: Versioning and Reproducible Machine Learning Modeling
	Technical requirements
	Reproducibility in machine learning
	Data versioning
	Model versioning
	Summary
	Questions
	References

	Chapter 11: Avoiding and Detecting Data and Concept Drifts
	Technical requirements
	Avoiding drifts in your models
	Avoiding data drift
	Addressing concept drift

	Detecting drifts
	Practicing with alibi_detect for drift detection
	Practicing with evidently for drift detection

	Summary
	Questions
	References

	Part 4:
Deep Learning Modeling
	Chapter 12: Going Beyond ML Debugging with Deep Learning
	Technical requirements
	Introduction to artificial neural networks
	Optimization algorithms

	Frameworks for neural network modeling
	PyTorch for deep learning modeling

	Summary
	Questions
	References

	Chapter 13: Advanced Deep Learning Techniques
	Technical requirements
	Types of neural networks
	Categorization based on data type

	Convolutional neural networks for image shape data
	Performance assessment
	CNN modeling using PyTorch
	Image data transformation and augmentation for CNNs
	Using pre-trained models

	Transformers for language modeling
	Tokenization
	Language embedding
	Language modeling using pre-trained models

	Modeling graphs using deep neural networks
	Graph neural networks
	GNNs with PyTorch Geometric

	Summary
	Questions
	References

	Chapter 14: Introduction to Recent Advancements in Machine Learning
	Technical requirements
	Generative modeling
	Generative deep learning techniques
	Prompt engineering for text-based generative models
	Generative modeling using PyTorch

	Reinforcement learning
	Reinforcement learning with human feedback (RLHF)

	Self-supervised learning (SSL)
	Self-supervised learning with PyTorch

	Summary
	Questions
	References

	Part 5:
Advanced Topics
in Model Debugging
	Chapter 15: Correlation versus Causality
	Technical requirements
	Correlation as part of machine learning models
	Causal modeling to reduce risks and improve performance
	Assessing causation in machine learning models
	Causal inference

	Causal modeling using Python
	Using dowhy for causal effect estimation
	Using bnlearn for causal inference through Bayesian networks

	Summary
	Questions
	References

	Chapter 16: Security and Privacy in Machine Learning
	Technical requirements
	Encryption techniques and their use in machine learning
	Implementing AES encryption in Python

	Homomorphic encryption
	Differential privacy
	Federated learning
	Summary
	Questions
	References

	Chapter 17: Human-in-the-Loop Machine Learning
	Humans in the machine learning life cycle
	Expert feedback collection

	Human-in-the-loop modeling
	Summary
	Questions
	References

	Assessments
	Chapter 1 – Beyond Code Debugging
	Chapter 2 – Machine Learning Life Cycle
	Chapter 3 – Debugging toward Responsible AI
	Chapter 4 – Detecting Performance and Efficiency Issues in Machine Learning Models
	Chapter 5 – Improving the Performance of Machine Learning Models
	Chapter 6 – Interpretability and Explainability in Machine Learning Modeling
	Chapter 7 – Decreasing Bias and Achieving Fairness
	Chapter 8 – Controlling Risks Using Test-Driven Development
	Chapter 9 – Testing and Debugging for Production
	Chapter 10 – Versioning and Reproducible Machine Learning Modeling
	Chapter 11 – Avoiding and Detecting Data and Concept Drifts
	Chapter 12 – Going Beyond ML Debugging with Deep Learning
	Chapter 13 – Advanced Deep Learning Techniques
	Chapter 14 – Introduction to Recent Advancements in Machine Learning
	Chapter 15 – Correlation versus Causality
	Chapter 16 – Security and Privacy in Machine Learning
	Chapter 17 – Human-in-the-Loop Machine Learning

	Index
	About Packt
	Other Books You May Enjoy

