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Introduction

This book is intended to be used as a rather informal, and surely not complete, text-
book on the subjects indicated in the title. It collects my lecture notes held during three
academic years at the University of Siena for a one-semester course on “basic mathe-
matical physics,” and is organized as a short presentation of a few important points on
the arguments indicated in the title, the interested audience being advanced (third year)
undergraduate or first year postgraduate students inmathematics, physics, or engineer-
ing.

Chapter 1 and Chapter 4 of this book are devoted to, respectively, completing the stu-
dents’ basic knowledge on ordinary differential equations (ODEs), dealing in particular
with those of higher order, and providing an elementary presentation of the partial dif-
ferential equations (PDEs) of mathematical physics, by means of the classical methods
of separation of variables and Fourier series. For a reasonable and consistent discussion
of the latter argument, some elementary results on Hilbert spaces and series expansion
in orthonormal vectors are treated with some detail in Chapter 3.

In brief, my hope is that the present notes can serve as a second quick reading on
the theme of ODEs and as a first introductory reading on Fourier series and Hilbert
spaces and on PDEs. A complete discussion of the results on ODEs and PDEs that are
here just sketched is to be found in other books, specifically andmore deeply devoted to
these subjects, some of which are listed in the Bibliography (see for instance [1] and [2],
respectively; see also the recent [3], covering both subjects).

Prerequisites for a satisfactory reading of the present notes are not only a course of
calculus for functions of one or several variables and linear algebra (as treated, for in-
stance, in [4]), but also a course in mathematical analysis where – among others – some
basic knowledge of the topology of normed spaces is supposed to be included. At any
rate, during the final preparation of themanuscript I decided to insert a further chapter
dealing with metric and normed spaces, adding it to the originally planned three chap-
ters of the book whose content I have indicated before. The goal of this addition is also
that of preparing the possibly interested student (typically, a mathematics undergradu-
ate) to follow in his subsequent career a course in functional analysis; some familiarity
with metric and normed spaces is clearly a conditio sine qua non to appreciate the con-
tent of such kind of course. In any case, the study of this additional chapter (appearing
in the book as Chapter 2) is in no way strictly necessary for the understanding of the re-
maining three chapters; I have paid particular attention to organize things so that this
study be confined to the role of additional sources of information for those interested
in a deeper analysis of the statements and results shown in Chapters 1, 3, and 4.

Siena, May 2023 Raffaele Chiappinelli
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Preliminaries

Topology inℝn: balls, interior points, open sets
For each vector x = (x1, . . . , xn) ∈ ℝ

n put

‖x‖ = √
n
∑
i=1

x2i (0.0.1)

and call ‖x‖ the (Euclidean) norm of x. Recall that:
– ‖x‖ ≥ 0 for all x ∈ ℝn, and ‖x‖ = 0 iff x = 0;
– ‖λx‖ = |λ|‖x‖ for all λ ∈ ℝ and all x ∈ ℝn;
– ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ ℝn.

Of the above three properties of the norm, the last is called the triangle property and is
the only one non-trivial to check on the sole basis of (0.0.1). In fact, it is a consequence
of the Cauchy–Schwarz inequality:

|x ⋅ y| ≤ ‖x‖‖y‖, (0.0.2)

where x ⋅ y is the scalar product of x and y, defined putting

x ⋅ y =
n
∑
i=1

xiyi

for x = (x1, . . . , xn) and y = (y1, . . . , yn); these statements will be proved in the more
general context of inner product spaces (Chapter 3, Section 3.1).

We see from (0.0.1) that

|xi| ≤ ‖x‖ ∀i = 1, . . . , n. (0.0.3)

Given x0 ∈ ℝ
n and r > 0, the set

B(x0, r) = {x ∈ ℝ
n : ‖x − x0‖ < r}

is called the spherical neighborhood (or simply the ball) of center x0 and radius r. Thus,
when n = 1, B(x0, r) is merely the interval ]x0 − r, x0 + r[. A point x ∈ ℝn is said to be
interior to a subset A of ℝn if there exists an r > 0 such that B(x, r) ⊂ A. A is said to be
open if any point of A is interior to A.

Example 0.0.1. The set

A = {x = (x, y) ∈ ℝ2 : x > 0, y > 0}
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X � Preliminaries

is open; indeed, given any x0 = (x0, y0) ∈ A, letting r0 = min{x0, y0}, we check that
B(x0, r0) ⊂ A. To see this, note that if x = (x, y) ∈ B(x0, r0), then by (0.0.3) we have

|x − x0| ≤
󵄩󵄩󵄩󵄩(x, y) − (x0, y0)

󵄩󵄩󵄩󵄩 < r0 ≤ x0

and therefore −x0 < x − x0 < x0, whence in particular x > 0. Similarly we check that
y > 0, so that (x, y) ∈ A.

Continuous functions fromℝn toℝm

Definition 0.0.1. Let A ⊂ ℝn, let f : A→ ℝm, and let x0 ∈ A. We say that f is continuous
at the point x0 if given any ϵ > 0, there exists a δ > 0 such that for any x ∈ A ∩ B(x0, δ)
we have f (x) ∈ B(f (x0), ϵ).

Definition 0.0.1 immediately implies a basic property of continuous functions. Recall
that given any three sets A, B, and C and given any two functions f : A→ B and g : B→
C, the composition of g with f , denoted g ∘ f , is the map defined on A putting

(g ∘ f )(x) = g(f (x)), x ∈ A.

In order for the above definition to make sense, it is clearly enough that g be defined on
the subset f (A) of B.

Theorem 0.0.1. Let A ⊂ ℝn, let f : A → ℝm, and let g : B → ℝp with f (A) ⊂ B ⊂ ℝm. If f
is continuous at x0 ∈ A and g is continuous at f (x0), then g ∘ f is continuous at x0.

Proof. Let ϵ > 0 be given. As g is continuous at y0 = f (x0), there is an r > 0 so that
for any y ∈ B ∩ B(y0, r) we have g(y) ∈ B(g(y0), ϵ). In turn, the continuity of f at x0
guarantees that, for some δ > 0, f (x) ∈ B(y0, r) for any x ∈ A ∩ B(x0, δ). It follows that
for any such x we have g(f (x)) ∈ B(g(y0), ϵ), whence the result.

As a consequence of Theorem 0.0.1 and of the continuity in ℝ2 = ℝ × ℝ of the alge-
braic operations x = (x, y) → x + y and x = (x, y) → xy (or by direct application of the
definition), we obtain in particular the following theorem.

Theorem 0.0.2. Let A ⊂ ℝn and let f , g : A→ ℝ. If f and g are continuous at x0 ∈ A, then
also f + g and fg are continuous at x0.

Werecall the following fundamental result, whichwill be proved inmore generality
in Section 2.5 of Chapter 2. A subset A ⊂ ℝn is closed if its complement Ac ≡ ℝn \ A is
open. A is said to be bounded if it is contained in some ball.

Theorem 0.0.3 (Weierstrass theorem). Let K ⊂ ℝn be closed and bounded and let f :
K → ℝ be continuous. Then f attains its maximum and minimum values in K; that is,
there exist points x0, x1 ∈ K such that

f (x0) ≤ f (x) ≤ f (x1) ∀x ∈ K .
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Differential calculus for functions of several variables: partial and directional
derivatives
Definition 0.0.2. Let A ⊂ ℝn, let f : A→ ℝ, and let x0 be an interior point of A. Given a
vector v ∈ ℝn, v ̸= 0, if the limit

𝜕f
𝜕v
(x0) ≡ limt→0

f (x0 + tv) − f (x0)
t

(0.0.4)

exists and is finite, we call it the directional derivative of f at x0 along the direction v.

Remark 0.0.1. As x0 is assumed to be interior to A, there is an r > 0 such that
B(x0, r) ⊂ A. Thus, for t ∈ ℝ such that |t| < r/‖v‖, we have x0 + tv ∈ A, for

‖x0 + tv − x0‖ = ‖tv‖ = |t|‖v‖ < r.

This shows that the map

ϕv : t → f (x0 + tv)

is well defined in the neighborhood Jv ≡] − r/‖v‖, r/‖v‖[ of t = 0, and (0.0.4) then shows
that

𝜕f
𝜕v
(x0) = limt→0

ϕv(t) − ϕv(0)
t

=
dϕv
dt
(0) = ϕ′v(0). (0.0.5)

In other words, the directional derivative of f at x0 along the direction v is nothing
but the derivative at t = 0 of the auxiliary function ϕv, which in turn represents the
restriction of f to the straight line x0 + tv passing through the point x0 with direction v.

When v = ei, the ith unit vector of the canonical basis of ℝ
n, one writes 𝜕f𝜕xi rather

than 𝜕f𝜕ei and calls
𝜕f
𝜕xi

the ithpartial derivative of f . Assuming that all partial derivatives
of f exist at the point x0, one puts

∇f (x0) = (
𝜕f
𝜕x1
(x0), . . . ,

𝜕f
𝜕xn
(x0))

and calls ∇f (x0) the gradient of f at x0.

Differentials
Definition 0.0.3. Let A ⊂ ℝn, let f : A → ℝ, and let x0 be an interior point of A. We
say that f is differentiable at x0 if there exists a linear map L : ℝn → ℝ such that
f (x0 + h) = f (x0) + L(h) + o(‖h‖) as h→ 0, that is to say, such that

lim
h→0

f (x0 + h) − f (x0) − L(h)
‖h‖

= 0.

In this case the map L (which is unique) is called the differential of f at the point x0.
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It is easy to check that if n = 1, i. e., if f is a function of one variable, then differen-
tiability at a point x0 is equivalent to the existence of the derivative f

′(x0) at that point
(and in this case, the linear map L : ℝ → ℝ indicated in Definition 0.0.3 is simply the
map h → f ′(x0)h). In the general case, differentiability is a stronger property than the
mere existence of the partial derivatives, as shown by the next theorem (which we re-
port without proof) and by the existence of counterexamples to the reverse implication.

Theorem 0.0.4. Let A ⊂ ℝn, let f : A → ℝ, and let x0 be an interior point of A. If f is
differentiable at x0, then f has directional derivative at x0 along any direction v, and

𝜕f
𝜕v
(x0) = L(v),

where L is the differential of f at x0. In particular,
𝜕f
𝜕xi
(x0) = L(ei) for i = 1, . . . , n, and

therefore

L(v) = ∇f (x0) ⋅ v (v ∈ ℝ
n).

Theorem 0.0.4 tells us that the differential of f at x0 is represented by the gradient
vector ∇f (x0).

The next result we recall says that if the existence of the partial derivatives is ac-
companied by their continuity, then we regain differentiability.

Theorem 0.0.5. Let A ⊂ ℝn, let f : A → ℝ, and let x0 be an interior point of A. Sup-
pose that f possesses all partial derivatives in a neighborhood of x0 and that they are all
continuous at x0. Then f is differentiable at x0.

A function f defined in an open subsetA ofℝn possessing continuous partial deriva-
tives in the whole of A is said to be of class C1 in A.

By virtue of the definitions and theorems recalled above, many important results
from the differential calculus for functions of one variable can be extended to functions
of several variables. We illustrate this with two important examples.

Theorem 0.0.6 (Fermat’s theorem). Let A ⊂ ℝn and let f : A→ ℝ. Suppose that f attains
a local maximum or minimum at the point x0 ∈ A. Then, if x0 is interior to A and f has
partial derivatives at x0, we have ∇f (x0) = 0.

Proof. Suppose for instance that x0 is a (local) minimum point for f ; this means that
there is an r > 0 such that B(x0, r) ⊂ A and

f (x) ≥ f (x0) ∀x ∈ B(x0, r).

Fix an index i ∈ {1, . . . , n} and observe that x0 + tei ∈ B(x0, r) for any t ∈ ]−r, r[, whence

h(t) ≡ f (x0 + tei) ≥ f (x0) = h(0)
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for all such t, showing that the function h has a local minimum at t = 0.
Therefore, h′(0) = 𝜕f𝜕xi (x0) = 0, and as this holds for all i the result follows.

Theorem 0.0.7 (Mean value theorem). Let A be an open subset ofℝn and let f : A→ ℝ be
of class C1 in A. Let x, y be two points in A and suppose that the segment joining x and y
lies in A. Then there is a point z on the segment such that

f (y) − f (x) = ∇f (z) ⋅ (y − x).

Proof. By the assumption on the pair x, y we know that

x + t(y − x) ∈ A for every t ∈ [0, 1].

Now reason as before: put v = y − x and consider the function g defined in [0, 1] by the
equality

g(t) = f (x + tv). (0.0.6)

We claim that g is differentiable in [0, 1] and that

g′(t0) =
𝜕f
𝜕v
(x + t0v) ∀t0 ∈ [0, 1]. (0.0.7)

Indeed,

g′(t0) = limh→0
g(t0 + h) − g(t0)

h
= lim

h→0

f (x + (t0 + h)v) − f (x + t0v)
h

,

so we obtain (0.0.7) by Definition 0.0.2 of the directional derivative and the assumption
that f is of class C1 in thewhole open setA, which allows to use Theorems 0.0.4 and 0.0.5;
by the former of these, we also know that

𝜕f
𝜕v
(x + t0v) = ∇f (x + t0v) ⋅ v. (0.0.8)

Now return to our auxiliary function g. By Lagrange’s mean value theorem, we know
that there is a ̂t ∈ ]0, 1[ such that

g(1) − g(0) = g′( ̂t),

and if we rewrite this equality using (0.0.6), (0.0.7), and (0.0.8), we obtain

f (y) − f (x) = ∇f (x + ̂t(y − x)) ⋅ (y − x).

Putting z = x + ̂t(y − x), this ends the proof of Theorem 0.0.7.





Notations

List of most frequently used notations
– The symbols x, y (or x, y) are reserved to vectors ofℝn(n > 1).
– I , J will always denote intervals (bounded or not, closed or not) inℝ.
– The symbols s, t are reserved to real numbers, and in particular they are used in Chapter 1 to denote the

independent variable in ODEs.
– x′(t), dxdt (t), and (Dx)(t) denote the derivative of the function x = x(t) of the real variable t.
– ∫ x(t)dt (indefinite integral of the function x = x(t)) denotes any primitive of the function x = x(t) (that

is, any function F such that F ′ = x).
– A × B ≡ {(a, b) : a ∈ A, b ∈ B} is the Cartesian product of the sets A, B.
– B(x0, r) = {x ∈ X : d(x, x0) < r} is the (open) ball of center x0 ∈ X in a metric space (X , d).
– Ω will usually denote a bounded open set inℝn.
– C(A,ℝm), with A ⊂ ℝn, denotes the set of all continuous functions from A to ℝm. In case m = 1, we write

C(A) rather than C(A,ℝ). A similar proviso holds for other function spaces too.
– 𝜕f
𝜕xi
(x0), fxi (x0) denote the partial derivative of f = f (x) = f (x1, . . . , xn) with respect to xi at the point x0.

– ∇f (x0) = (
𝜕f
𝜕x1
(x0), . . . ,

𝜕f
𝜕xn
(x0)) is the gradient of f = f (x) = f (x1, . . . , xn) at x0.

– Δf = 𝜕
2 f
𝜕x21
+ ⋅ ⋅ ⋅ + 𝜕

2 f
𝜕x2n

is the Laplacian of f .

https://doi.org/10.1515/9783111302522-203
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1 Ordinary differential equations

Introduction

This chapter begins with the well-known formula (see, e. g., Apostol’s book Calculus [4])

x(t) = c e∫ a(t) dt + e∫ a(t) dt ∫ e−∫ a(t) dtb(t)dt, (1.0.1)

giving the explicit solutions of the linear equation x′ = a(t)x+b(t), and one of its targets
is to lead the reader to the extension of (1.0.1) to first-order linear systems such as

X ′ = A(t)X + B(t), (1.0.2)

whereA,B are, respectively, an n×nmatrix and an n-columnvectorwith real continuous
elements. As will be clear from the discussion in Section 1.3, this generalization is based
on the fusion (if we can say so) between some well-known and basic facts from linear
algebra on the one hand and the (global) existence theorem for the Cauchy problem
attached to (1.0.2) (see Lemma 1.3.1) on the other hand.

In this presentation, two intermediate steps need to be made for the described ex-
tension of (1.0.1) to (1.0.2). The first consists in passing from the linear equation x′ =
a(t)x + b(t) to the general first-order equation (in normal form)

x′ = f (t, x). (1.0.3)

We do this in Section 1.1 with a quick look at the main existence and uniqueness theo-
rems concerning the initial value problem (IVP) for (1.0.3); practically no proofs will be
given for the statements involved, and we refer since this very beginning to for instance
the books of Hale [5] or Walter [1] for an adequate treatment of this topic. The second
intermediate step consists of course in passing from the first-order equation (1.0.3) to
first-order general systems X ′ = F(t,X), and this is sketched in a straightforward way in
Section 1.2.

Section 1.4 deals with the important case in which the matrix A in (1.0.2) is inde-
pendent from t (linear systems with constant coefficients) and gives the opportunity to
discuss a nice and conceptually important extension of the familiar Taylor series expan-
sion

ex = 1 + x + x
2

2!
+ ⋅ ⋅ ⋅ =

of the exponential function of the real variable x to the case where x is replaced by an
n-by-nmatrix A.

The final Sections 1.5 and 1.6 of this chapter deal with higher-order differential
equations, with the declared target of gaining some familiarity with second-order linear
equations. Giving special importance to the second-order equation

https://doi.org/10.1515/9783111302522-001
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2 � 1 Ordinary differential equations

x′′ = f (t, x, x′) (1.0.4)

is justified not only by its importance in physics coming from the fundamental principle
of dynamics

F = ma

and thus from the classical paradigm stating the uniqueness of the motion of a particle
with given initial position and velocity, but also by the fact that (1.0.4) are the simplest to
examine from the point of view of boundary value problems (BVPs), in which the initial
conditions on x and x′ at a given point t0 belonging to the interval I = [a, b] (assuming f
is defined on I ×ℝ2) are replaced by conditions involving x and/or x′ at the endpoints a
and b of the interval. Such kind of problems (i) yield a good starting point for the study
of nonlinear operator equations and (ii) give rise to the classical theory of Sturm and
Liouville for linear equations, which will be cited with some details in the Additions
to Chapter 3. Finally, they serve as an introduction to the much more difficult BVPs for
second-order partial differential equations (PDEs), in particular those of mathematical
physics, which we shall synthetically discuss in Chapter 4.

1.1 Ordinary differential equations (ODEs) of the first order

Example 1.1.1. The first-order linear equation

x′ = a(t)x + b(t), (1.1.1)

with coefficients a, b ∈ C(I), can be solved by means of the explicit formula

x(t) = c e∫ a(t) dt + e∫ a(t) dt ∫ e−∫ a(t) dtb(t)dt, (1.1.2)

where for f ∈ C(I), the symbol ∫ f (t) dt denotes an arbitrarily chosen primitive of f in I .
For instance, the equation

x′ = −x
t
+ 1, t ∈ ]0, +∞[ ≡ I ,

has the solutions x(t) = c/t + t/2, c ∈ ℝ.

Example 1.1.2. Some simple nonlinear equations can also be solved explicitly. For in-
stance, consider

x′ = a(t)h(x),
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where h ∈ C(B), B ⊂ ℝ. If along a solution x(t) we have h(x(t)) ̸= 0, then x′(t)/h(x(t)) =
a(t), and integrating both members of this equality gives x(t) itself if one is able to find
a primitive of 1/h. For instance, the equations

(i) x′ = 3x 2
3 , (ii) x′ = −2tx2, (iii) x′ = x(1 − x)

can be solved to yield respectively

(i) x(t) = (t + k)3, (ii) x(t) = 1
t2 + k
, (iii) x(t) = et

et + k
,

with k ∈ ℝ. The three equations all have in addition the solution x ≡ 0; moreover, (iii)
has a second “trivial” solution, namely, x ≡ 1.

Consider now a first-order differential equation in general (normal) form:

x′ = f (t, x), (1.1.3)

where f = f (t, x) is a real-valued function defined in a subset A ofℝ2. To study (1.1.3) we
first need to define precisely what is a solution of it.

Definition 1.1.1. A solution of the differential equation (1.1.3) is a function u = u(t), de-
fined in some interval J = Ju ⊂ ℝ, such that:
(a) u is differentiable in J ,
(b) (t, u(t)) ∈ A for all t ∈ J , and
(c) u′(t) = f (t, u(t)) for all t ∈ J .
Exercise 1.1.1. Prove that if f is continuous on its domain A, then any solution of (1.1.3)
is of class C1 on its interval of definition.

Remark on the notations. In order to emphasize and clarify the concept of solution,
we have employed in Definition 1.1.1 a different symbol for the unknown (x) of the dif-
ferential equation and for a solution (u) of it. Of course, this is simply amatter of taste in
the use of notations, and throughout these Notes we will ourselves use the same symbol
with both meanings (as already done in the examples displayed above).

These examples suggest that we have to expect infinitelymany solutions of an equa-
tion like (1.1.3). A fundamental remark is that in Example 1.1.1, there is exactly one solu-
tion satisfying a given “initial” condition of the form x(t0) = x0: just impose that condi-
tion in (1.1.2) to obtain uniquely c. One can check that it is the same for equations (ii) and
(iii) in Example 1.1.2, but it is not the same for (i) if we take the initial condition x(t0) = 0,
for we have in this case the two different solutions u1(t) = (t − t0)

3 and u2(t) = 0.
Driven by these remarks, we shall study fromnow on the initial value problem (IVP),

also called Cauchy problem, for the differential equation (1.1.3), which is written
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{
x′ = f (t, x)
x(t0) = x0

(1.1.4)

and consists in finding a solution u of the differential equation, defined in an interval J
containing the point t0 and such that u(t0) = x0. Of course the point (t0, x0) ∈ A, and we
shall look for assumptions on f which guarantee for any such initial point the existence
and uniqueness of a solution to (1.1.4) at least in a “small” interval around t0.

The first assumption onemakes about f is that it be continuous on its domain A. For
such f , consider the integral equation (relative to the point (t0, x0) ∈ A)

x = x0 +
t

∫
t0

f (s, x) ds (1.1.5)

and define a solution of (1.1.5) to be a continuous function u, defined on some interval J
containing t0 and satisfying the equation in J , meaning that (t, u(t)) ∈ A for t ∈ J and

u(t) = x0 +
t

∫
t0

f (s, u(s)) ds ∀t ∈ J . (1.1.6)

Lemma 1.1.1. Suppose that f : A→ ℝ is continuous. Then the IVP (1.1.4) is equivalent to
the integral equation (1.1.5), in the sense that any solution of (1.1.4) is a solution of (1.1.5)
in the same interval, and vice versa.

Proof. This is amere consequence of the definitions, Exercise 1.1.1, and the fundamental
theorem of calculus.

Consider now the special case in which A is a strip in the plane parallel to the x-axis,
i. e., A = I ×ℝwith I ⊂ ℝ an interval. This geometrical assumption helps to make it clear
that the solutions of (1.1.5) – that is, of (1.1.4) – are precisely thefixedpoints of a particular
map F . Indeed, first note that given anymap u : J → ℝ, the condition (t, u(t)) ∈ A = I ×ℝ
– required to give meaning to f (t, u(t)) – simply means that J ⊂ I . Moreover, by (1.1.6)
we have the following lemma.

Lemma 1.1.2. Suppose that f : I × ℝ → ℝ is continuous. Let (t0, x0) ∈ I × ℝ and let J be
an interval containing t0. Finally, let F : C(J) → C(J) be the mapping defined as follows:
for u ∈ C(J),

F(u)(t) = x0 +
t

∫
t0

f (s, u(s)) ds, t ∈ J . (1.1.7)

Then u is a solution of (1.1.5) in the interval J if and only if F(u) = u.

Remark 1.1.1. That the map F defined in (1.1.7) operates in C(J) follows from the con-
tinuity of f , which was already employed before. F is directly related to the map Nf
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acting in C(J) and defined by the equality Nf (u)(t) = f (t, u(t)); this is sometimes called
the Nemytskii operator induced by the function f . The study of Nemytskii’s operator is
fundamentalwhen dealingwith nonlinear problems. To see explicitly how F works, take
for instance J = I = ℝ, f (t, x) = x3, (t0, x0) = (0, 0). Then

F(u)(t) =
t

∫
0

u3(s) ds, t ∈ ℝ.

If we take for instance u(t) = sin t, then it is easily checked that

F(u)(t) = − cos t + (cos t)
3

3
+
2
3
.

Local existence and uniqueness of solutions to the IVP
In the remaining of this section,we statewithout proof somebasic existence andunique-
ness results for solutions of the IVP (1.1.4); proofs of these statements can be found, for
instance, in the book [1]. First, some more definitions are needed.

Definition 1.1.2. A function f : A ⊂ ℝ2 → ℝ is said to be Lipschitzian with respect to the
second variable in A if there exists a constant L > 0 such that

󵄨󵄨󵄨󵄨f (t, x) − f (t, y)
󵄨󵄨󵄨󵄨 ≤ L|x − y| ∀(t, x), (t, y) ∈ A. (1.1.8)

Definition 1.1.3. Let A be an open subset of ℝ2. A map f : A ⊂ ℝ2 → ℝ is said to be
locally Lipschitzian with respect to the second variable in A if each point (t0, x0) ∈ A has
a neighborhood U = U(t0, x0) ⊂ A in which f is Lipschitzian.

Here we provide the standard form of the local existence and uniqueness principle
for solutions of (1.1.4).

Theorem 1.1.1. Let f : A→ ℝ with A an open subset of ℝ2. Assume that:
(a) f is continuous in A;
(b) f is locally Lipschitzian with respect to the second variable in A.

Then given any (t0, x0) ∈ A, there exists a neighborhood I0 of t0 such that (1.1.4) has a
unique solution defined in I0.

Example 1.1.3. The system

{
x′ = sin(a(t)x)
x(t0) = x0,

(1.1.9)

where a is continuous on an interval I , can be solved uniquely for each point x0 ∈ ℝ
and near each point t0 ∈ I . Indeed, letting I0 be a closed, bounded neighborhood of t0
contained in I , we have
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󵄨󵄨󵄨󵄨sin(a(t)x) − sin(a(t)y)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨a(t)
󵄨󵄨󵄨󵄨|x − y| ≤ L|x − y|,

with L = maxt∈I0 |a(t)|.
In practice, to check the local Lipschitz condition (b) in Theorem 1.1.1 is an easy

task when (as in the example above) f = f (t, x) has a continuous partial derivative with
respect to x inA. Indeed, recall that if g is a differentiable function defined on an interval
I ⊂ ℝ, then given any two points x and y in I we have g(x) − g(y) = g′(z)(x − y) for some
z between x and y (mean value theorem). Then we have the following proposition.

Proposition 1.1.1. Suppose that f : A → ℝ (with A open in ℝ2) satisfies the following
conditions:
(i) the partial derivative 𝜕f𝜕x (t, x) exists at each point (t, x) ∈ A;
(ii) the function 𝜕f𝜕x : A→ ℝ is continuous in A.
Then f is locally Lipschitzian with respect to x in A.

Proof. Pick a point (t0, x0) ∈ A and let R = [a, b] × [c, d] be a rectangular neighborhood
of (t0, x0) contained in A. Then for any (t, x), (t, y) ∈ R there exists a z between x and y
such that

󵄨󵄨󵄨󵄨f (t, x) − f (t, y)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕f
𝜕x
(t, z)(x − y)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ K |x − y|,

with K = max(t,x)∈R | 𝜕f𝜕x (t, x)|; K is well defined because of (ii) and the Weierstrass theo-
rem (Theorem 0.0.3) on continuous functions over compact sets.

Example 1.1.4. The equations

x′ = tex − log x, x′ = arctan(tx)
log(1 − (t2 + x2))

can be solved uniquely near each point (t0, x0) belonging respectively to the half-space
{(t, x) : x > 0} or to the punctured ball {(t, x) ∈ ℝ2 : 0 < t2 + x2 < 1}, which both are open
subsets of ℝ2.

Exercise 1.1.2. With reference to (i) of Example 1.1.2, show that the function f :
ℝ × ℝ → ℝ defined putting

f (t, x) = x
2
3

is not locally Lipschitzian.

Continuation of solutions, maximal solutions, global solutions
Definition 1.1.4. Let u and v be two solutions of x′ = f (t, x) in the intervals Iu and Iv,
respectively.We say that v is a continuation of u if Iu ⊂ Iv and v = u in Iu. The continuation
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is said to be proper if Iu ⊂ Iv properly. A solution is said to bemaximal if it has no proper
continuation.

Lemma 1.1.3. Suppose that the assumptions of Theorem 1.1.1 are satisfied and let u and v
be two solutions of x′ = f (t, x) defined in the same interval J. If u( ̂t) = v( ̂t) for some ̂t ∈ J ,
then u(t) = v(t) for all t ∈ J .

Theorem 1.1.2. Suppose that the assumptions of Theorem 1.1.1 are satisfied. Then any
solution of x′ = f (t, x) has a unique maximal continuation.

Now let (t0, x0) ∈ A and let u be the “local” solution of the corresponding IVP (1.1.4),
whose existence is granted by Theorem 1.1.1 and defined in a neighborhood I0 of t0. The
theorem just stated ensures that u0 can be uniquely continued to a maximal interval
containing I0. Therefore, we have the following theorem.

Theorem 1.1.3. Suppose that the assumptions of Theorem 1.1.1 are satisfied. Then for any
(t0, x0) ∈ A, the IVP (1.1.4) has a uniquemaximal solution.

Question: where are the (maximal) solutions of an ODE defined?
On the basis of Theorem 1.1.2, when speaking of a solution of x′ = f (t, x), one always
means a maximal solution. Now, the question written above has no definite meaning
in general, but it does when A = I × ℝ, in which case it is natural to ask whether the
solutions are defined on the whole of I .

Definition 1.1.5. Let f : I × ℝ → ℝ. A solution of x′ = f (t, x) is said to be global if it is
defined on the whole of I .

For instance, looking at the three equations appearing in Example 1.1.2 (in all of
which I = ℝ), we see that the solutions of (i) are all global, while for (ii) and (iii) some of
them are global and some others (precisely, those for k < 0) are not. Moreover, we can
consider for instance the equation x′ = x2, having the global (trivial) solution u ≡ 0 and
the solutions

u(t) = − 1
t + k
,

none of which is global. It is therefore natural to ask which additional conditions one
has to impose on f in order to guarantee that all solutions of x′ = f (t, x) are global.
Definition 1.1.6. A map f : I × ℝ → ℝ is said to be sublinear with respect to the second
variable if there exist α, β ∈ C(I) such that

󵄨󵄨󵄨󵄨f (t, x)
󵄨󵄨󵄨󵄨 ≤ α(t)|x| + β(t) (1.1.10)

for all t ∈ I and x ∈ ℝ.
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Examples.
(i) If f (t, x) = a(t)x + b(t) with a, b ∈ C(I), then f is sublinear.
(ii) If f (t, x) = √|x|, then f is sublinear since√|x| ≤ |x| + 1 for all x ∈ ℝ.
(iii) If f (t, x) = x2, it is easy to check that f is not sublinear.

Theorem 1.1.4. Let f : I × ℝ → ℝ with I an open interval in ℝ. Assume that:
(a) f is continuous in I × ℝ;
(b) f is locally Lipschitzian with respect to the second variable in I × ℝ;
(c) f is sublinear with respect to the second variable in I × ℝ.

Then given any (t0, x0) ∈ I × ℝ, the maximal solution of (1.1.4) is defined on I. In other
words, for any (t0, x0) the IVP (1.1.4) has a unique global solution.

1.2 Systems of first-order differential equations

A system of two differential equations of the first order in the two unknowns x, y has
the form

{
x′ = f (t, x, y)
y′ = g(t, x, y), (1.2.1)

where f , g : A ⊂ ℝ3 → ℝ are given functions. For instance,

{
x′ = x(a − by)
y′ = y(−c + dx), (1.2.2)

where a, b, c, d are all positive constants, is the Lotka–Volterra system modeling prey–
predator competition. In general, a system of n first-order differential equations has the
form

{{{{
{{{{
{

x′1 = f1(t, x1, x2, . . . , xn)
x′2 = f2(t, x1, x2, . . . , xn)
. . .
x′n = fn(t, x1, x2, . . . , xn),

(1.2.3)

where f1, . . . , fn are given real-valued functions defined in a subset A ofℝ
n+1 and can be

written in vector form as

X ′ = F(t,X), (1.2.4)

where X = (x1, x2, . . . xn) ∈ ℝ
n and F = F(t,X) : A → ℝn is the vector-valued function,

defined in A, whose component functions are (f1, f2, . . . , fn).
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The vector form (1.2.4) of the system (1.2.3) allows for an almost immediate extension
of the definitions and results already seen for the scalar equation x′ = f (t, x). Here, we
just resume themain points of this extension and refer again to [1] for details and proofs.

A. Solution of (1.2.4)
A solution of (1.2.4) is a function U , defined in an interval JU ⊂ ℝ, that is differentiable
in JU such that, for all t ∈ JU ,

(t,U(t)) ∈ A and U ′(t) = F(t,U(t)).
B. The IVP for (1.2.4)
The IVP for (1.2.4) is written

{
X ′ = F(t,X)
X(t0) = X0,

(1.2.5)

where (t0,X0) ∈ A, and consists in finding a solution U of (1.2.4) defined in a neighbor-
hood of t0 such that U(t0) = X0.

C. Lipschitz and locally Lipschitz functions F : A ⊂ ℝn+1 → ℝm

Definition 1.2.1. Let A be an open subset of ℝn+1. A map F = F(t,X) : A→ ℝm is said to
be locally Lipschitzianwith respect to X in A if each point (t0,X0) ∈ A has a neighborhood
U = U(t0,X0) ⊂ A where F is Lipschitzian with respect to X , that is, it satisfies the
inequality

󵄩󵄩󵄩󵄩F(t,X) − F(t, Y )
󵄩󵄩󵄩󵄩 ≤ L‖X − Y‖ (1.2.6)

for some L > 0 and for all (t,X), (t, Y ) ∈ U .

In (1.2.6), the symbol ‖.‖ stands for the Euclidean norm in ℝn:

‖X‖ = √
n
∑
i=1 x2i if X = (x1, . . . , xn).

D. Local existence and uniqueness of solutions of the IVP (1.2.5)
Theorem 1.2.1. Let F : A→ ℝn with A an open subset of ℝn+1. Assume that:
(a) F is continuous in A;
(b) F is locally Lipschitzian with respect to the second variable X in A.

Then given any (t0,X0) ∈ A, there exists a neighborhood I0 of t0 such that (1.2.5) has a
unique solution defined in I0.
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The following propositions are helpful to check that condition (b) in Theorem 1.2.1
is satisfied.

Proposition 1.2.1. F = (f1, . . . , fm) : A→ ℝ
m is Lipschitz (locally Lipschitz) in A ⊂ ℝn+1 if

and only if for each i = 1, . . . ,m, fi : A→ ℝ is Lipschitz (locally Lipschitz) in A.

Proposition 1.2.2. f : A → ℝ is locally Lipschitz in A ⊂ ℝn+1 provided that for each
i = 1, . . . , n, the partial derivative 𝜕f𝜕xi exists and is continuous in A.
Example 1.2.1. Given any t0 ̸= 0 and any x0, y0 ∈ ℝ, the system

{{
{{
{

x′ = x log y ≡ f (t, x, y)
y′ = (x2 + y2)/t ≡ g(t, x, y)
x(t0) = x0, y(t0) = y0

(1.2.7)

has a unique solution defined in an appropriately small neighborhood of t0, for the func-
tions f and g are plainly continuous in their (open) domain of definition A ≡ (ℝ \ {0}) ×
ℝ × ]0, +∞[, and so are the partial derivatives

𝜕f
𝜕x
(x, y) = log y, 𝜕f

𝜕y
(x, y) = x

y
,
𝜕g
𝜕x
(x, y) = 2x

t
,
𝜕g
𝜕y
(x, y) = 2y

t
.

In fact, in this simple example f , g are of class C1 in A. The same can be said for the
system

{{
{{
{

x′ = tx sin y
y′ = 1√1−t2 y

1+x2
x(t0) = x0, y(t0) = y0.

(1.2.8)

E. Global solutions of (1.2.4) (when A = I × ℝn)
Definition 1.2.2. A map F : I × ℝn → ℝm is said to be sublinear with respect to the
second variable if there exist α, β ∈ C(I) such that

󵄩󵄩󵄩󵄩F(t,X)
󵄩󵄩󵄩󵄩 ≤ α(t)‖X‖ + β(t) (1.2.9)

for all t ∈ I and X ∈ ℝn.

As in Proposition 1.2.1, F = (f1, . . . , fm) : A → ℝ
m is sublinear if and only if each fi

is sublinear. With these definitions for the vector case at hand, we can state the general
form of the global existence and uniqueness theorem.

Theorem 1.2.2. Let F : I × ℝn → ℝn with I an open interval in ℝ. If F is continuous,
locally Lipschitzian with respect to X and sublinear with respect to X in I ×ℝn, then given
any (t0,X0) ∈ I × ℝ

n, the IVP (1.2.5) has a unique solution defined on all of I.
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For instance, the system (1.2.8) has a unique solution defined on ]−1, 1[; likewise, the
problem

{{{
{{{
{

x′ = tx arctan xy + 1
y′ = 1

t
xy
1+x2 + etx

x(1) = 0, y(1) = 1

(1.2.10)

has a unique solution defined on ]0, +∞[, for the inequality |x|/1 + x2 ≤ 1 holding for all
x ∈ ℝ shows that the right-hand member of the second equation in (1.2.10) is sublinear
in each of the strips ]0, +∞[ × ℝ2, ]−∞, 0[ × ℝ2.

Exercise 1.2.1. Show that the system

{{{{
{{{{
{

x′ = tx sin y + 1 ≡ f (t, x, y)
y′ = √x2+y2t ≡ g(t, x, y)

x(1) = 0, y(1) = 1

(1.2.11)

has a unique solution defined on ]0, +∞[. In this example, the function g does not have
partial derivatives in its domain of definitionA = (ℝ\{0})×ℝ2, but is nonetheless locally
Lipschitzian with respect to X = (x, y) in A because of the inequality

󵄨󵄨󵄨󵄨‖X‖ − ‖Y‖
󵄨󵄨󵄨󵄨 ≤ ‖X − Y‖, (1.2.12)

which holds for any norm by virtue of the triangle inequality.

Remark 1.2.1. The definitions and results given in Section 1.1 about the continuation of
solutions and related questions remain valid also for systems of ODEs. In particular, it
follows that when F : I ×ℝn → ℝn satisfies the assumptions of Theorem 1.2.2, then every
(maximal) solution of the system X ′ = F(t,X) is global. Indeed, any solution U : JU → ℝ
of this system is in particular a solution of the IVP (1.2.5), with t0 any point of JU and
X0 = U(t0). Now if we denote with Z : I → ℝn the global solution of the IVP (1.2.5) given
by Theorem 1.2.2, it follows first (from Lemma 1.1.3) that Z is a continuation of U and
then that JU = I , for otherwise U would not be maximal.

1.3 Linear systems of first-order ODEs
Consider now the following special form of (1.2.1):

{
x′ = a(t)x + b(t)y + c(t)
y′ = d(t)x + e(t)y + f (t), (1.3.1)

where a, b, c, d, e, f are real-vaued functions defined in an interval I , called the coeffi-
cients of the system (1.3.1). In general, a linear system of n first-order differential equa-
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tions has the form

{{{{
{{{{
{

x′1 = a11(t)x1 + a12(t)x2 + ⋅ ⋅ ⋅ + a1n(t)xn + b1(t)
x′2 = a21(t)x1 + a22(t)x2 + ⋅ ⋅ ⋅ + a2n(t)xn + b2(t)
. . .
x′n = an1(t)x1 + an2(t)x2 + ⋅ ⋅ ⋅ + ann(t)xn + bn(t).

(1.3.2)

Putting

X = (

x1
x2
..
xn

), A = (

a11 . . . a1n
a21 . . . a2n
.. . . . ..
an1 . . . ann

), B = (

x1
x2
. . .
xn

), (1.3.3)

(1.3.2) can be written

X ′ = A(t)X + B(t). (1.3.4)

Consider the homogeneous system associated with (1.3.4):

X ′ = A(t)X . (1.3.5)

Also, consider the initial value problem (IVP) associated with (1.3.4):

{
X ′ = A(t)X + B(t)
X(t0) = X0.

(1.3.6)

Lemma 1.3.1. If the coefficient functions aij and bi are continuous on I, then for any
(t0,X0) ∈ I × ℝ

n the maximal solution of (1.3.6) is defined on all of I. In other words, for
any (t0,X0) ∈ I × ℝ

n, the IVP (1.3.6) has a unique global solution.

Proof. Wecanapply Theorem1.2.2 becausewithF(t,X) = A(t)X+B(t), it is easily checked
that F is:
– continuous,
– locally Lipschitzian,
– sublinear.

Indeed, the ith (i = 1, . . . , n) component fi of F has the explicit form

fi(t,X) = fi(t, x1, . . . , xn) = ai1(t)x1 + ai2(t)x2 + ⋅ ⋅ ⋅ + ain(t)xn + bi(t),

so that the continuity of fi is evident from its special dependence on X and the continuity
of the coefficients ai,j and bi; as to local Lipschitzianity, just observe that

𝜕fi
𝜕xj
(t,X) = aij(t) (t,X) ∈ I × ℝ

n, i, j = 1, . . . , n.

Finally, the sublinearity of fi follows from the inequality
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󵄨󵄨󵄨󵄨fi(t,X)
󵄨󵄨󵄨󵄨 ≤

n
∑
j=1 󵄨󵄨󵄨󵄨aij(t)xj + bi(t)󵄨󵄨󵄨󵄨 ≤ α(t)‖X‖ + β(t),

where α(t) = ∑nj=1 |aij(t)| and β(t) = |bi(t)|.
Remark 1.3.1. It follows from Lemma 1.3.1 (and Exercise 1.1.1!) that every solution
of (1.3.4) belongs to the vector space C1(I , ℝn) of all ℝn-valued functions defined on I
and continuous on I together with their first derivative.

Wewill now seewhat special properties the solution sets of (1.3.4) and of (1.3.5) have.

Lemma 1.3.2. Let S and S0 be respectively the set of all solutions of (1.3.4) and the set of
all solutions of the homogeneous system (1.3.5), or in symbols,

S = {U ∈ C1(I , ℝn) : U ′(t) = A(t)U(t) + B(t), t ∈ I}, (1.3.7)

S0 = {U ∈ C
1(I , ℝn) : U ′(t) = A(t)U(t), t ∈ I}. (1.3.8)

Then:
(i) S0 is a vector subspace of C

1(I , ℝn);
(ii) S = S0 + X0 ≡ {U + X0 : U ∈ S0}, where X0 ∈ S is arbitrarily fixed.

Proof. Let T be the map defined putting, for U ∈ C1(I , ℝn),

T(U)(t) = U ′(t) − A(t)U(t), t ∈ I .

It is easy to check that T is a linearmap of E ≡ C1(I , ℝn) into F ≡ C(I , ℝn). Now since

S0 = {U ∈ E : T(U) = 0},

(i) follows immediately (S0 is just the kernel Ker T of T ). On the other hand,

S = {U ∈ E : T(U) = B},

so that statement (ii) is another elementary fact from linear algebra.

Proposition 1.3.1. Let E, F be vector spaces and let T be a linear map of E into F. If the
equation

Tx = y (y ∈ F) (1.3.9)

has a solution x0, then the set Sy ≡ {x ∈ E : Tx = y} of all solutions of (1.3.9) is given by

Sy = Ker T + x0.

Proof. This is left as an exercise.
In brief, the statements of Lemma 1.3.2 are straightforward consequences of the lin-

earity of the system (1.3.4). This same fact, used in conjunction with the existence and
uniqueness of solutions of the IVP for first-order linear systems, stated before for con-
venience as Lemma 1.3.1, implies other and fundamental properties of the solution sets
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for equations (1.3.4) and (1.3.5). To fully appreciate this statement, let us recall formally
a second fact from linear algebra.

Proposition 1.3.2. Let E, F be vector spaces and let T be a linear map of E into F. If T is
bijective (i. e., it is an isomorphism) and E has dimension n, then also F has dimension n.

Proof. This is left as an exercise.

Theorem 1.3.1. The set of all solutions of the homogeneous system (1.3.5) is a vector sub-
space of dimension n of C1(I , ℝn).

Proof. Fix a point t0 ∈ I and consider the mapHt0 of C
1(I , ℝn) intoℝn defined as follows

for every U ∈ C1(I , ℝn):

Ht0 (U) = U(t0).

Ht0 is evidently linear; we could call Ht0 the evaluation map at t0. Consider now the
restriction Kt0 of Ht0 to S0: we claim that Kt0 is a bijectivemap of S0 onto ℝ

n. Indeed, let
X0 ∈ ℝ

n; by the existence and uniqueness lemma, Lemma 1.3.1 (used with B = 0), there
is a unique U0 ∈ C

1(I , ℝn) that is a solution of the IVP

{
X ′ = A(t)X
X(t0) = X0.

(1.3.10)

In other words, there is a unique U0 ∈ S0 such that Kt0 (U) = U(t0) = X0, so that Kt0
is in fact an isomorphism of S0 onto ℝ

n. The statement in Theorem 1.3.1 thus follows
from Proposition 1.3.2 – or, more literally, from the equivalent statement in which it is
assumed that the target space F has dimension n.

Fundamental system of solutions of (1.3.5). Fundamental matrix
Definition 1.3.1. A fundamental system of solutions of (1.3.5) is any set of n linearly in-
dependent solutions of (1.3.5), or equivalently (in view of Theorem 1.3.1) any basis of the
vector space S0 defined in (1.3.8).

It follows that if V1,V2, . . . ,Vn are n linearly independent solutions of (1.3.5), then
any solution U of (1.3.5) can be written in a unique way as a linear combination

U = c1V1 + ⋅ ⋅ ⋅ cnVn (ci ∈ ℝ). (1.3.11)

The following proposition is useful when checking the linear independence (l. i.) of
n solutions of (1.3.5).

Proposition 1.3.3. Let V1,V2, . . . ,Vn be n solutions of (1.3.5). The following statements are
equivalent:
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(i) there exists a ̂t ∈ I such that V1( ̂t),V2( ̂t), . . . ,Vn( ̂t) are l. i. vectors of ℝ
n;

(ii) V1,V2, . . . ,Vn are l. i. vectors of C
1(I ; ℝn);

(iii) for every t ∈ I, V1(t),V2(t), . . . ,Vn(t) are l. i. vectors of ℝ
n.

Proof. This is left as an exercise.

Definition 1.3.2. A fundamental matrix of (1.3.5) is the n × nmatrix formed by a funda-
mental system of solutions of (1.3.5).

Notation. Given an n × nmatrix A, we denote by Ai its ith column and write

A = (A1| . . . |An).

With this notation, if we display a vector X = (x1, . . . , xn) ∈ ℝ
n as a column vector as

in (1.3.3), by the usual rules of product of matrices we see that

AX = x1A
1 + ⋅ ⋅ ⋅ xnA

n.

If V1,V2, . . . ,Vn are n linearly independent solutions of (1.3.5), let E denote the cor-
responding fundamental matrix:

E = (V1| . . . |Vn),

constructed putting Ei = Vi. With these notations, looking at formula (1.3.11) we see that
the content of Theorem 1.3.1 can be resumed saying that any solution U of (1.3.5), i. e.,
any U ∈ S0, can be written

U = EC (C ∈ ℝn). (1.3.12)

We now return to the inhomogeneous equation (1.3.4) and to its solution set S.
Lemma 1.3.2, part (ii), tells us that it is enough to have one solution X0 of (1.3.4) to have
all solutions of it, because S = S0 + X0; and by what has just been said above about S0,
we conclude that the solutions of (1.3.4) are all given by the formula

U = EC + X0 (C ∈ ℝ
n).

To find an X0 ∈ S, one uses the method of variation of constants, which consists
in looking for an X0 of the form

X0(t) = E(t)C(t), (1.3.13)

with E a fundamental matrix of (1.3.5); the terminology (due to Lagrange) explains that
we are replacing in (1.3.12) the constant C with a function C = C(t) to be determined. To
do this, impose that EC be a solution of (1.3.4); this means that
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d
dt
(E(t)C(t)) = A(t)E(t)C(t) + B(t) (t ∈ I). (1.3.14)

It is easy to check that

d
dt
(E(t)C(t)) = E′(t)C(t) + E(t)C′(t)

and that

E′(t) = A(t)E(t)
(which shows that E is a matrix solution of (1.3.5)); using these two relations in (1.3.14)
yields the following condition on C:

E(t)C′(t) = B(t).
Thanks to the invertibility of E, this is equivalent to the condition C′ = E−1B and can be
satisfied taking for C any primitive of the (continuous) vector function E−1B.

We can finally resume the information about the linear systems (1.3.4) in the follow-
ing theorem.

Theorem 1.3.2. The solutions of the linear system (1.3.4) are all given by the formula

U(t) = E(t)C + E(t) ∫[E(t)]−1B(t) dt, (1.3.15)

where E is a fundamental matrix of the homogeneous system (1.3.5), C ∈ ℝn, and for
F ∈ C(I , ℝn), the symbol ∫ F(t) dt denotes an arbitrarily chosen primitive of F in I.

Remark 1.3.2. The reader is invited to appreciate both the beauty of formula (1.3.15) and
its strength as an extension of formula (1.1.2) with which this chapter has begun.

1.4 Linear systems with constant coefficients. The exponential
matrix

Recall that for every x ∈ ℝ,

ex =
∞
∑
n=0 xnn! = 1 + x + x22! + ⋅ ⋅ ⋅ . (1.4.1)

Definition 1.4.1. Given any n × nmatrix A, define

eA =
∞
∑
n=0 Ann! = I + A + A22! + ⋅ ⋅ ⋅ , (1.4.2)

where An = A × ⋅ ⋅ ⋅ × A is the n-times usual product row by columns of A times itself.
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In this section, we show that etA is a fundamental matrix for the system of ODEs

X ′ = AX (1.4.3)

so that, on the basis of Theorem 1.3.2, the solutions of the system

X ′ = AX + B(t) (1.4.4)

will be given by the formula

U(t) = etAC + etA ∫ e−tAB(t) dt (C ∈ ℝn). (1.4.5)

Recall that in explicit form, if A = (aij), 1 ≤ i, j ≤ n, (1.4.4) is written

{{{{
{{{{
{

x′1 = a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn + b1(t)
x′2 = a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn + b2(t)
. . .
x′n = an1x1 + an2x2 + ⋅ ⋅ ⋅ + annxn + bn(t).

(1.4.6)

Two points have to be discussed:
– the actual convergence of the series of matrices (1.4.2);
– the verification of etA being a fundamental matrix for (1.4.3).

A. Series of matrices and their convergence
Let

Mn ≡ {A = (aij), 1 ≤ i, j ≤ n} (1.4.7)

denote the set of all n×n real matrices.Mn becomes a vector space when equipped with
the usual operations of sum and product by a real number. A norm in this vector space
can be introduced in a natural way putting

‖A‖ = √
n
∑
i,j=1 a2i,j . (1.4.8)

A very useful criterion for the convergence of series in a Banach space, which is a
complete normed vector space (see Section 2.4 of Chapter 2), is given by the following
theorem, which extends the well-known criterion of the absolute convergence for a
numerical series.

Theorem 1.4.1. Let E be a Banach space and let (xn) be a sequence in E. If the numerical
series ∑∞n=1 ‖xn‖ converges, then the series ∑∞n=1 xn converges in E.
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The proof of Theorem 1.4.1 is essentially the same as that for numerical series, and
can be seen in Chapter 2, Section 2.4.

Consider the particular spaceMn of the real matrices, normed via (1.4.8). First note
that this is a Banach space as it is isometrically isomorphic to ℝn

2
. Moreover, here we

have an additional and useful property of the norm.

Lemma 1.4.1. Let A,B ∈ Mn. Then

‖AB‖ ≤ ‖A‖‖B‖. (1.4.9)

Proof. This is left as an exercise (recall that (AB)ij = Ai ⋅B
j and use Schwarz’ inequality).

Proposition 1.4.1. For any A ∈ Mn, the series∞
∑
n=1 Ann! = I + A + A22! + ⋅ ⋅ ⋅

converges in the normed spaceMn. Its sum is denotedwith eA and is called the exponential
matrix of A.

Proof. On the basis of Theorem 1.4.1 and the completeness of Mn, it is enough to show
that the series ∞

∑
n=0 ‖An‖n! = 1 + ‖A‖ + ⋅ ⋅ ⋅ + ‖An‖n! + ⋅ ⋅ ⋅ (1.4.10)

converges. However, by virtue of Lemma 1.4.1 we have

󵄩󵄩󵄩󵄩A
n󵄩󵄩󵄩󵄩 ≤ ‖A‖

n (n ∈ ℕ)

so that the series (1.4.10) is term-by-termmajorizedby the convergent series∑∞n=0 ‖A‖n/n!
(whose sum is e‖A‖, see (1.4.1)), and thus converges by the familiar comparison criterion
for series with non-negative entries.

B. The exponential matrix etA as a fundamental matrix for X ′ = AX
Let us first remark some properties of the matrices of solutions of a general linear
homogeneous system

X ′ = A(t)X . (1.4.11)

Proposition 1.4.2. Let V1,V2, . . . ,Vn ∈ C
1(I , ℝn) and let E denote the corresponding ma-

trix

E = (V1| . . . |Vn)
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constructed putting Ei = Vi (1 ≤ i ≤ n). Then the following properties are equivalent:
(i) V1,V2, . . . ,Vn are solutions of (1.4.11);
(ii) E is amatrix solution of (1.4.11), that is,

E′(t) = A(t)E(t) ∀t ∈ I ; (1.4.12)

(iii) for every C ∈ ℝn, X(t) = E(t)C is a solution of (1.4.11).

Proof. (i)⇒ (ii) (already seen in themethod of variation of constants): Thematrix equal-
ity in (1.4.12) can be verified “by columns” and – since (AB)i = ABi for any A,B ∈ Mn – is
thus equivalent to statement (i).

(ii)⇒ (iii): If (1.4.12) holds, then

d
dt
(E(t)C) = E′(t)C = A(t)E(t)C ∀t ∈ I .

(iii) ⇒ (i): By assumption, E(t)C = c1V1 + ⋅ ⋅ ⋅ cnVn is a solution of (1.4.11) for every
C ∈ ℝn. Thus, taking in particular C = ei, it follows that Vi is a solution for every i.

Proposition 1.4.3. If E = E(t) is a matrix solution of (1.4.11), then E is fundamental⇐⇒
E(t) is invertible ∀t ∈ I ⇐⇒∃ ̂t ∈ I : E( ̂t) is invertible.

Proof. This follows from Proposition 1.3.3, which gives equivalent criteria for the linear
independence of n solutions of (1.4.11).

Let us go back to the exponential matrix. By Proposition 1.4.1, we can consider for
every t ∈ ℝ the matrix

etA =
∞
∑
n=0 (tA)nn!

= I + tA + t
2A2

2!
+ ⋅ ⋅ ⋅ +

tkAk

k!
+ ⋅ ⋅ ⋅ . (1.4.13)

Theorem 1.4.2. Given the linear system with constant coefficients X ′ = AX, the matrix
E(t) = etA is a fundamental matrix for it. Therefore, the general solution of X ′ = AX is

X(t) = etAC, C ∈ ℝn. (1.4.14)

Proof. Due to Propositions 1.4.2 and 1.4.3, it will be enough to show that
– d

dt (e
tA) = AetA ∀t ∈ ℝ;

– etA|t=0 = I .
While the second equality is an immediate consequence of the definition (1.4.13), the
first requires some more care. For every i, j with 1 ≤ i, j ≤ n we have

[
d
dt
(etA)]

ij
=

d
dt
(etA)ij =

d
dt
(
∞
∑
n=0 (tA)nn!

)
ij
=

d
dt
(
∞
∑
n=0 tnn! (An)ij)
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=
∞
∑
n=0 d

dt
(
tn

n!
(An)ij) =

∞
∑
n=1 n tn−1n!

(An)ij =
∞
∑
k=0 tkk! (Ak+1)ij

= (
∞
∑
k=0 tkk! (Ak+1))ij ,

the equality sign between the first and the second line being allowed because power
series can be differentiated term-by-term, as will be recalled in Section 2.7 of Chapter 2.
Therefore,

d
dt
(etA) =

∞
∑
k=0 tkk!Ak+1 = A ∞∑k=0 tkk!Ak = AetA.

Computation of etA

In order for formula (1.4.14) to be of practical use, methods for computing etA start-
ing from a given A are necessary. The simplest case is when A is diagonal, for if A =
diag(a1, . . . , an), then

Ak = (

ak1 . . . 0
0 . . . 0
.. . . . ..
0 . . . akn

),

so

etA = (

eta1 . . . 0
0 . . . 0
.. . . . ..
0 . . . etan

), (1.4.15)

because

(eA)ij =
∞
∑
k=0(Akk! )ij = { ∑∞k=0 ai

k

k! = eai (i = j)
0 (i ̸= j).

The next case is when A is diagonable, that is, when A is similar to a diagonal
matrix, this in turn meaning that there is an invertible matrix P such that

P−1AP = D, (1.4.16)

with D diagonal. Indeed, the definition (1.4.2) shows that if A,B ∈ Mn are similar, then so
are their exponentials eA, eB, for if B = P−1AP for some invertible P, then

Bk = B ⋅ B ⋅ ⋅ ⋅ ⋅ ⋅ B = (P−1AP) ⋅ (P−1AP) ⋅ ⋅ ⋅ ⋅ ⋅ (P−1AP) = P−1AkP,
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so that using (1.4.2) we obtain eB = P−1eAP. Therefore, (1.4.16) implies that etD = P−1etAP,
whence

etA = PetDP−1, (1.4.17)

so that, utilizing (1.4.15) for etD and knowing the similarity matrix P, one can recover
etA. However, knowing the similarity matrix P and the resulting diagonal matrix D
amounts to knowing the eigenvectors of A and the corresponding eigenvalues. In-
deed, provided that P is invertible we can write the equivalences

P−1AP = D⇔ AP = PD⇔ (AP)i = (PD)i ⇔ APi = PDi (1 ≤ i ≤ n),

so that, putting Vi = P
i and D = diag(λ1, . . . , λn), we arrive at

AVi = λiVi (1 ≤ i ≤ n). (1.4.18)

The condition of invertibility on P is equivalent to the condition that Vi be linearly
independent, that is, that they form a basis ofℝn (assuming, as we are doing for simplic-
ity, that A be diagonable in the real field, so that P and D are real matrices).

Theorem 1.4.3. Suppose that A ∈ Mn is diagonable in the real field and let V1, . . . ,Vn be
n linearly independent eigenvectors of A corresponding to the eigenvalues λ1, . . . , λn as
in (1.4.18). Then the general solution of X ′ = AX is

X(t) = k1e
λ1tV1 + ⋅ ⋅ ⋅ kne

λntVn (k1, . . . , kn ∈ ℝ). (1.4.19)

In other words, the functions

X1(t) = e
λ1tV1, . . . ,Xn(t) = e

λntVn

form a fundamental system of solutions of X ′ = AX.
Proof. From Theorem 1.4.2 and formula (1.4.17) we have, putting K = P−1C,

X(t) = etAC = PetDP−1C = PetDK . (1.4.20)

However,

etD = (

eλ1t . . . 0
0 . . . 0
.. . . . ..
0 . . . eλnt

), (1.4.21)

so that, with K = (k1, . . . , kn),

etDK = k1e
λ1te1 + ⋅ ⋅ ⋅ kne

λnten.



22 � 1 Ordinary differential equations

Putting this in (1.4.20) we obtain (1.4.19), since Pei = P
i = Vi.

Remark 1.4.1. For the sake of simplicity, we will not deal with the important case in
which the (real) coefficient matrix A has some complex (and necessarily conjugate)
eigenvalues. Of course, A could still be diagonalized in the complex field, in which case
Theorem 1.4.3 remains essentially unaltered: we refer for this to Hale [5] or Walter [1].

1.5 Higher-order ODEs

A. An ordinary differential equation of order n (briefly, an nth-order ODE) has the form

x(n) = f (t, x, x′, . . . , x(n−1)), (1.5.1)

where f : A→ ℝ with A ⊂ ℝn+1. A solution of (1.5.1) is a function u such that

u(n)(t) = f (t, u(t), u′(t), . . . , u(n−1)(t)) ∀t ∈ Ju, (1.5.2)

where Ju ⊂ ℝ is an interval. For this definition to make sense, it is of course re-
quired that u be n times differentiable in Ju and that the (n + 1)-tuple of real numbers
(t, u(t), u′(t), . . . , u(n−1)(t)) belong to A for every t ∈ Ju.

Example 1.5.1. Consider the following:

x′′ = 0, u(t) = ct + d,

x′′ = g = const., u(t) = 1
2
gt2 + ct + d.

Example 1.5.2. More generally, given g ∈ C(I),

x′′ = g(t), u(t) =
t

∫
t0

(
s

∫
t0

g(y)dy)ds + ct + d,

where t0 is any point of I .

Example 1.5.3. Consider

mx′′ = −kx, u(t) = c cosωt + d sinωt, (ω = √ k
m
).

In the above examples, we see that the solution depends upon two arbitrary con-
stants c and d, so that the solution will be uniquely determined if we assign two initial
conditions (“initial position and velocity” in the mechanical interpretation).

The concepts ofmaximal solution and global solution (when A = I ×ℝn) of (1.5.1)
are given in the same way as for the case n = 1.
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Likewise, here too we observe the regularization property of solutions of an ODE:
equality (1.5.2) shows that if f is continuous, then any solution u of (1.5.1) has a neces-
sarily continuous nth derivative, so that u ∈ Cn(Ju).

B. The IVP problem (Cauchy problem) for (1.5.1)
Definition 1.5.1. The initial value problem (IVP) for the nth-order ODE (1.5.1) consists –
given an (n + 1)-tuple of real numbers (t0, x

0
1 , x

0
2 , . . . , x

0
n) ∈ A – in finding a solution u

of (1.5.1) such that:
(i) u is defined in a neighborhood of t0;
(ii) u(t0) = x

0
1 , u
′(t0) = x02 , . . . , u(n−1)(t0) = x0n .

For instance, the IVP for a third-order ODE will be written as

{{{{
{{{{
{

x′′′ = f (t, x, x′, x′′)
x(t0) = x0
x′(t0) = y0
x′′(t0) = z0, (1.5.3)

where (t0, x0, y0, z0) is a given point in A ≡ dom(f ) ⊂ ℝ
4.

Exercise 1.5.1. Check that the IVP

{{
{{
{

x′′ = t
x(t0) = x0
x′(t0) = y0 (1.5.4)

has a unique solution, which is given by the formula

u(t) = 1
6
(t3 − t30) −

1
2
t20(t − t0) + ty0 + (x0 − t0y0).

Question. Dowe have general existence and uniqueness results for solutions of the IVP
for (1.5.1)? The next step will help to answer this question.

C. Equivalence between an nth-order ODE and a first-order system
Proposition 1.5.1. The nth-order ODE (1.5.1) is equivalent to the system

{{{{
{{{{
{

x′1 = x2
x′2 = x3
. . .
x′n = f (t, x1, x2, . . . , xn)

(1.5.5)

in the following precise sense:
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(a) if u : Ju → ℝ is a solution of (1.5.1), then the vector function U ≡ (u, u
′, . . . , u(n−1)) is

a solution of (1.5.5);
(b) vice versa, if U = (u1, u2, . . . , un) : JU → ℝ

n is a solution of (1.5.5), then its first
component u1 is a solution of (1.5.1).

Proof (for the case n = 2). (a) Let u : Ju → ℝ be a solution of (1.5.1). Then, by definition,

u′′(t) = f (t, u(t), u′(t)), t ∈ Ju. (1.5.6)

Consider the vector function U = (u, u′). Then U satisfies trivially the first equation of
the system

{
x′1 = x2
x′2 = f (t, x1, x2), (1.5.7)

while the second one is satisfied by virtue of (1.5.6).
The verification of (b) is equally simple.

D. Existence and uniqueness theorems for the IVP
Write (1.5.5) in the vector form X ′ = F(t,X), where F = (F1, . . . , Fn) : A→ ℝn+1 is defined
putting, for X = (x1, . . . , xn),

{
Fi(t,X) = xi+1, 1 ≤ i ≤ n − 1
Fn(t,X) = f (t, x1, . . . , xn).

(1.5.8)

Now observe that:
– F continuous⇔ f continuous,
– F locally Lipschitz⇔ f locally Lipschitz,
– F sublinear⇔ f sublinear,

because for every 1 ≤ i ≤ n − 1, Fi trivially satisfies these conditions.
Therefore, all existence and uniqueness theorems for the IVP for the system X ′ =

F(t,X) translate into existence and uniqueness theorems for the IVP for (1.5.1), under
the corresponding assumptions (continuity, etc.) upon f .

For instance, for the case n = 2 we have the following theorem.

Theorem 1.5.1. Consider the IVP

{
x′′ = f (t, x, x′)
x(t0) = x0, x′(t0) = y0, (1.5.9)

where f = f (t, x, y) is a real-valued function defined in an open subset A ⊂ ℝ3. Suppose
that f is:
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(a) continuous in A;
(b) locally Lipschitz with respect to X = (x, y) in A.

Then for every (t0, x0, y0) ∈ A, there exists an r0 > 0 such that the IVP (1.5.9) has a unique
solution defined in the neighborhood ]t0 − r0, t0 + r0[ of t0.

Proof. The equation x′′ = f (t, x, x′) is equivalent to the system
{
x′ = y
y′ = f (t, x, y). (1.5.10)

As remarked before, our assumptions on f are inherited from the function F : A → ℝ2

defined putting

F(t, x, y) = (y, f (t, x, y))

and therefore, by virtue of the local existence and uniqueness theorem, Theorem 1.2.1,
for first-order systems, the IVP

{
X ′ = F(t,X)
X(t0) = (x0, y0)

(1.5.11)

has a unique solutionU defined in a neighborhood I0 of t0. By the special form of (1.5.10),
we have

U = (u, v) = (u, u′).
By Proposition 1.5.1, part (b), u is a solution of x′′ = f (t, x, x′); moreover, since

U(t0) = (u(t0), u
′(t0) = (x0, y0)

we conclude that u : I0 → ℝ solves our original problem (1.5.9).

Example 1.5.4. Check the applicability of Theorem 1.5.1 for the equations

(i) x′′ = x2 + x′ 2, (ii) x′′ = t sin(xx′), (iii) x′′ = (sin x)x′
√1 − t2

.

Exercise 1.5.2.
– State and prove (following the same pattern shown in the proof of Theorem 1.5.1)

an existence and uniqueness theorem for global solutions of (1.5.9).
– Where are themaximal solutions of equations (ii) and (iii) in Example 1.5.4 defined?

Exercise 1.5.3. Consider the equation

x′′ = a(t)√x2 + x′ 2, (1.5.12)
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where a ∈ C(I).
(a) Write the first-order system equivalent to (1.5.12).
(b) Show that the IVP for (1.5.12) – whatever the initial conditions – has a unique global

solution.
(c) What is the solution u of (1.5.12) such that u(1) = u′(1) = 0?
1.6 Linear ODEs of higher order

A linear ordinary differential equation of order n is usually written as

x(n) + a1(t)x(n−1) + ⋅ ⋅ ⋅ + an(t)x = b(t), (1.6.1)

where the coefficient functions ai (1 ≤ i ≤ n) and b are real-valued functions defined on
an interval I ⊂ ℝ.

Example 1.6.1. Consider

x′′′ + (t ln t)x′ + x
√1 − t2

= 1, I = ]0, 1[.

The first-order system equivalent to (1.6.1) is

{{{{{{
{{{{{{
{

x′1 = x2
x′2 = x3
. . .
x′n−1 = xn
x′n = −a1(t)xn + ⋅ ⋅ ⋅ − an(t)x1 + b(t) ≡ f (t, x1, x2, . . . , xn),

(1.6.2)

with f : I × ℝn → ℝ. As usual, we write the system (1.6.2) in vector form:

X ′ = A(t)X + B(t),
with

A =(

0 1 0 . . . 0
0 0 1 . . . 0
.. .. .. . . . ..
0 0 0 . . . 1
−an −an−1 .. −a2 −a1

), B =(

0
0
. . .
0
b

).

Thus, we shall use (i) the results about the equivalence between an nth-order ODE
and a first-order system and (ii) the results about linear systems.
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Proposition 1.6.1. Let

A = {u : u is a solution of (1.5.1)},
Â = {U : U is a solution of (1.5.5)}

and let G : A→ Â, H : Â→ A be the maps defined as follows:

G(u) = (u, u′, . . . , u(n−1)) (u ∈ A), (1.6.3)
H(U) = u1 (U = (u1, . . . , un) ∈ Â). (1.6.4)

Then

H(G(u)) = u ∀u ∈ A and G(H(U)) = U ∀U ∈ Â. (1.6.5)

In other words, G is a bijectivemap of A onto Â, whose inverse map is H.

Proof. Use Proposition 1.5.1 and check the equalities in (1.6.5), using in particular the
fact that, due to the special form of the system (1.5.5), we have

U = (u1, u2, . . . , un) = (u1, u
′
1, . . . , u

(n−1)
1 )

for any U ∈ Â.
From now on, we shall always suppose that the coefficients ai and b of (1.6.1) are

continuous on I . It then follows that any (maximal) solution u of (1.6.1) is (i) defined on
I and (ii) of class Cn; that is, u ∈ Cn(I).

As done with first-order linear equations and systems, we consider the homo-
geneous equation associated with (1.6.1):

x(n) + a1(t)xn−1 + ⋅ ⋅ ⋅ + an(t)x = 0, (1.6.6)

which is equivalent to the homogeneous linear system

X ′ = A(t)X . (1.6.7)

Theorem 1.6.1. The set of all solutions of (1.6.6) is a vector space of dimension n. More
precisely, it is an n-dimensional vector subspace of Cn(I).

Proof. (a) Let S0 and Ŝ0 be the sets of solutions of (1.6.6) and (1.6.7), respectively. They
are both vector spaces (precisely, subspaces of Cn(I) and C1(I , ℝn), respectively) by the
linearity and homogeneity of the equations involved.

(b) The map G : S0 → Ŝ0 defined in Proposition 1.6.1 putting

G(u) = (u, u′, . . . , u(n−1)) (u ∈ S0)
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is evidently linear, and by the same proposition is thus an isomorphism of S0 onto Ŝ0.
Since dim Ŝ0 = n (by Theorem 1.3.1), we conclude that also dim S0 = n.

General solution of (1.6.1) and its relation with the general solution of the
homogeneous equation
It follows from Theorem 1.6.1 that if v1, . . . vn are n linearly independent solutions
of (1.6.6), then any solution u of this equation is a linear combination of them:

u = c1v1 + ⋅ ⋅ ⋅ cnvn.

As to the non-homogeneous equation (1.6.1), by the same argument used for linear
systems (that is, on the basis of Proposition 1.3.1), we have the following corollary.

Corollary 1.6.1. If v1, . . . vn are linearly independent solutions of (1.6.6) and z is a solution
of (1.6.1), then any solution u of (1.6.1) can be written as

u = c1v1 + ⋅ ⋅ ⋅ cnvn + z,

with c1, . . . , cn ∈ ℝ.

Criterion for the linear independence of solutions: Wronskian determinant
Proposition 1.6.2. Let v1, . . . vn ∈ C

n(I) be n solutions of the homogeneous equation (1.6.6)
and let W be theirWronskian determinant, defined putting

W (t) = det(

v1(t) . . . vn(t)
v′1(t) . . . v′n(t)
.. . . . ..

v(n−1)1 (t) . . . v(n−1)(t)n

), t ∈ I . (1.6.8)

Then v1, . . . vn are linearly independent if and only if, for any t ∈ I, W (t) ̸= 0.

Proof. Given v1, . . . vn, put

Vi = (vi, . . . v
(n−1)
i ), 1 ≤ i ≤ n − 1,

so that Vi is the ith column of the n-by-nmatrix in (1.6.8). From the properties of themap
G defined in (1.6.3), we know that

v1, . . . vn linearly independent solutions of (1.6.6)⇔
V1 = G(v1), . . . ,Vn = G(vn) linearly independent solutions of (1.6.7).

Moreover, from Proposition 1.3.3, we know that

V1, . . . ,Vn linearly independent solutions of (1.6.7)⇔
∀t ∈ I ,V1(t), . . . ,Vn(t) linearly independent vectors of ℝ

n,
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so that the conclusion of Proposition 1.6.2 follows from the familiar criterion of l. i. of
vectors in ℝn via determinants, since

W (t) = det(V1(t)| . . . |Vn(t)).

Moreover, we have (again by Proposition 1.3.3)

W (t) ̸= 0 ∀t ∈ I ⇔ ∃ ̂t ∈ I : W ( ̂t) ̸= 0.

Example 1.6.2. Consider

x′′ − 2x
t2
= t, t ∈ ]0, +∞[ ≡ I . (1.6.9)

If we consider the homogeneous equation associated with (1.6.9) and look for solutions
of the form tα, we easily find the two solutions

v1(t) = t
2, v2(t) =

1
t
,

which are linearly independent, because for all t

W (t) = −3.

On the basis of Corollary 1.6.1, in order to find all solutions of (1.6.9) it remains to find
one particular solution of the same equation. We do this using the method of variation
of constants, discussed for linear systems in Section 1.3.

Let us see here how themethod of variation of constantsworks for second-order
linear ODEs

x′′ + a1(t)x′ + a2(t)x = b(t). (1.6.10)

Let v1, v2 be two linearly independent solutions of the homogeneous equation

x′′ + a1(t)x′ + a2(t)x = 0. (1.6.11)

The system of two first-order equations equivalent to (1.6.10) is (see (1.6.2))

{
x′ = y
y′ = −a2(t)x − a1(t)y + b(t). (1.6.12)

We have

v1, v2 l. i. solutions of (1.6.11)⇔ V1 ≡ (
v1
v′1),V2 ≡ (v1v′1) l. i. solutions of
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the homogeneous system corresponding to (1.6.12). Now recall from the section on linear
systems (Section 1.3) that a solution X0 of (1.6.12) is obtained by the formula

X0(t) = E(t) ∫[E(t)]
−1B(t) dt,

where E is a fundamental matrix. In our case, we take

E = (V1|V2) = (
v1 v2
v′1 v′2).

Recall that if

A = (a b
c d
)

with detA ̸= 0, then the inverse matrix A−1 is given by
A−1 = 1

detA
(
d −b
−c a
).

Therefore,

E−1 = 1
W
(
v′2 −v2
−v′1 v1

) ,

E−1B = 1
W
(
v′2 −v2
−v′1 v1

)(
0
b
) =

1
W
(
−v2b
v1b
) ,

X0 = E ∫ E
−1B = (v1 v2

v′1 v′2)∫ 1
W
(
−v2b
v1b
) =

= (
v1 ∫

1
W (−v2b) + v2 ∫

1
W (v1b)

. . .
).

The first component z of X0 is a solution of (1.6.10):

z(t) = v1(t) ∫
−v2(t)b(t)
W (t)

dt + v2(t) ∫
v1(t)b(t)
W (t)

dt. (1.6.13)

Using formula (1.6.13) in Example 1.6.2, we easily find that z(t) = t3/4, so that the
general solution of (1.6.9) is given by

u(t) = ct2 + d
t
+
t3

4
(c, d ∈ ℝ).

We give the following exercises on second-order linear ODEs:

x′′ + a1(t)x′ + a2(t)x = b(t), (1.6.14)
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x′′ + a1(t)x′ + a2(t)x = 0. (1.6.15)

We have seen that if v1, v2 are l. i. solutions of (1.6.15), then the general solution of (1.6.14)
is

u(t) = cv1(t) + dv2(t) + z(t),

where c, d ∈ ℝ and z is given by (1.6.13).
Consider the special case in which (1.6.15) has constant coefficients:

x′′ + a1x′ + a2x = 0. (1.6.16)

Then there is a simple rule (that canbe recovered for instance by the results of Section 1.4
on systems) to find two independent solutions v1, v2: consider the characteristic equa-
tion associated with (1.6.16),

λ2 + a1λ + a2 = 0,

and let λ1, λ2 be its roots. Then if these are real and distinct, take

v1(t) = e
λ1t , v2(t) = e

λ2t .

If they are complex conjugate, so that λ1,2 = α ± iβ (β ̸= 0), take
v1(t) = e

αt cos βt, v2(t) = e
αt sin βt.

Finally, if λ1 = λ2 ≡ λ, take

v1(t) = e
λt , v2(t) = te

λt .

Using these simple rules and (1.6.13), solve the following exercises.

Exercise 1.6.1. Check that the general solution of the equation

x′′ − x = 1
1 + et

(1.6.17)

is

u(t) = cet + de−t + et
2
[−t − e−t + ln(1 + et)] − e−t

2
ln(1 + et).

Exercise 1.6.2. Write the general solution of the following equations:

x′′ − 3x′ + 2x = t, (1.6.18)

x′′ + 4x = tan t (0 < t < π
2
). (1.6.19)
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1.7 Additions and exercises

A1. Boundary value problems for linear second-order ODEs
In this chapter, we have taken as a starting point for our study of ODEs the Cauchy prob-
lem (or initial value problem [IVP]) – that is, the question of the existence of a solution
to the differential equation that satisfies additional condition(s) in a given point t0 be-
longing to the domain of the independent variable t. For this kind of problem, we have
recalled or established existence and uniqueness results for the solution and studied
the implications of this in particular to linear equations and systems; for instance, the
“dimensional theorem,” Theorem 1.3.1, is a nearly immediate, but nonetheless funda-
mental, consequence of these results.

If we look in particular at second-order linear equations, the IVP for them has the
form

{{
{{
{

x′′ + a1(t)x′ + a2(t)x = y(t), t ∈ I
x(t0) = α
x′(t0) = β, (1.7.1)

where I is the interval on which the coefficients a1, a2 are defined and continuous and
t0 ∈ I . By the arguments discussed in Sections 1.5 and 1.6 (see in particular Exercise 1.5.2
applied to linear equations) we conclude that (1.7.1) has – for each given α, β ∈ ℝ and
y ∈ C(I) – a unique solution that is defined on the whole of I .

The situation just described may change quite dramatically if we add to the equa-
tion different kinds of supplementary conditions to be satisfied by the solution, as the
following very simple examples show.

Example 1.7.1. The problem

{{
{{
{

x′′ = k (= const .)
x(0) = α
x(1) = β

has a unique solution whatever α and β; it is given by

x(t) = (β − α − k
2
)t + α + k

2
t2.

Example 1.7.2. The problem

{{
{{
{

x′′ + x = 0
x(0) = 0
x(π) = 0

has infinitely many solutions:
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x(t) = C sin t, C ∈ ℝ.

Example 1.7.3. The problem

{{
{{
{

x′′ + x = sin t
x(0) = 0
x(π) = 0

has no solution whatsoever. Indeed, if there were such a solution x, then multiplying
both members of the equation (which has become an equality!) by sin t and integrating
we would have

π

∫
0

[x′′(t) + x(t)] sin tdt = π

∫
0

sin2 tdt = π
2
. (1.7.2)

However, a repeated integration by parts yields

π

∫
0

x′′(t) sin tdt = [x′(t) sin t]π0 − [x(t) cos t]π0 − π

∫
0

x(t) sin tdt

= −
π

∫
0

x(t) sin tdt.

Hence the left-hand side in equality (1.7.2) is 0, contradicting the equality itself.

In order to understand this variety of situations, we simply have to go back to what
we have seen in Section 1.6 about the general solution of linear second-order equations.
For the sequel of this section we put

Lx = x′′ + a1(t)x′ + a2(t)x, (1.7.3)

where a1, a2 ∈ C([a, b]), and consider the problems

(BVP)
{{
{{
{

Lx = y(t), a < t < b
x(a) = α
x(b) = β,

(BVP0)
{{
{{
{

Lx = 0, a < t < b
x(a) = 0
x(b) = 0.

Theorem 1.7.1. The problem (BVP) has a solution for any given y ∈ C([a, b]) and any
given α, β ∈ ℝ if and only if the homogeneous problem (BVP0) has only the trivial solu-
tion u ≡ 0. Moreover, in this case, the solution to (BVP) is unique.

Proof. As we have seen in Corollary 1.6.1, the solutions of the second-order linear differ-
ential equation Lx = y(t) are all given by the formula

u(t) = cv1(t) + dv2(t) + z(t) c, d ∈ ℝ, (1.7.4)
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where v1, v2 are any two linearly independent solutions of the homogeneous equation
Lx = 0 and z is any particular solution of Lx = y. So the question is: in equation (1.7.4),
can we find c, d ∈ ℝ so that u satisfies also the boundary conditions in (BVP)? This
is quite easy to answer, for imposing the boundary conditions on u we find the linear
algebraic system

{
cv1(a) + dv2(a) = α − z(a)
cv1(b) + dv2(b) = β − z(b)

and this will have a (unique) solution (c, d) for any given α, β and z if and only if the
homogeneous system

{
cv1(a) + dv2(a) = 0
cv1(b) + dv2(b) = 0

has only the solution c = d = 0. However, this is precisely the case in which (BVP0) has
only the trivial solution u = 0.

Remark 1.7.1. The proof of Theorem 1.7.1 shows that using formula (1.7.4), representing
the “general solution” of a second-order linear differential equation, the existence (and
uniqueness) problem for (BVP) reduces to recalling the basic property of linear maps of
ℝn into itself of being surjective if and only if they are injective.

Remark 1.7.2. The proof also shows that it works for more general BVPs such as

(BVP)
{{
{{
{

Lx = y(t) a < t < b
Ba[x] = α
Bb[x] = β,

where Ba,Bb are linear boundary operators acting on x of the form

Ba(x) = px(a) + qx
′(a) (p, q ∈ ℝ)

and similarly for Bb.

Exercise 1.7.1. Interpret Examples 1.7.1 to 1.7.3 in the light of Theorem 1.7.1.

Exercises

E1. Solutions of some of the exercises given in the text
Section 1.1
Exercise 1.1
By Definition 1.1.1, if we say u : Ju → ℝ is a solution of the differential equation x′ =
f (t, x), this means that u is differentiable in Ju and that u

′ = zu, with zu(t) = f (t, u(t)) for
t ∈ Ju.
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Now the map zu of Ju into ℝ can be written as the composition zu = f ∘ H , where
H : Ju → ℝ

2 is defined via

H(t) = (t, u(t)), t ∈ Ju.

Note that the composition is well defined because, by proviso (b) of Definition 1.1.1,
H(t) ∈ A (the domain of f ) for every t ∈ Ju.

As u (being differentiable) is continuous, it follows that H is continuous; and since
we know that the composition of continuous functions is a continuous function (as re-
called in Theorem 0.0.1 of the Preliminaries), the continuity of zu – that is, of u

′ – follows
from that of f . Therefore, in this case u is not only differentiable, but of class C1 in Ju.

Section 1.2
Exercise 2.1
The domain of definition of the given F ,

F(t, x, y) = (tx sin y + 1,
√x2 + y2

t
) ≡ (f (t, x, y), g(t, x, y)),

is the open set A = (ℝ \ {0}) × ℝ2. Moreover, f and g are continuous in A and have
continuous partial derivatives in the open set

A0 = (ℝ \ {0}) × (ℝ
2 \ {(0, 0)}).

This guarantees the existence and uniqueness of a local solution to the differential sys-
tem for any initial condition

x(t0) = x0, y(t0) = y0 with t0 ̸= 0 and (x0, y0) ̸= (0, 0).

However, this does not prove the statement contained in the text of Exercise 1.2.1. To this
purpose, since t0 = 1 in equation (1.2.11), it is useful to consider the strip

S = ]0, +∞[ × ℝ2 ⊂ A.

As noted in the text of Exercise 1.2.1, the lack of partial derivatives of g in S is overcome
by the fact that g (and therefore F) is locally Lipschitz continuous with respect to X =
(x, y) in S; indeed,

󵄨󵄨󵄨󵄨g(t,X) − g(t, Y )
󵄨󵄨󵄨󵄨 ≤

1
|t|
‖X − Y‖ ∀t ̸= 0, ∀X , Y ∈ ℝ2,

so that

󵄨󵄨󵄨󵄨g(t,X) − g(t, Y )
󵄨󵄨󵄨󵄨 ≤ K‖X − Y‖
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as long as t varies in a small neighborhood of a point t0 ̸= 0.
Finally, f and g are both sublinear with respect to X in S, for we have

󵄨󵄨󵄨󵄨f (t,X)
󵄨󵄨󵄨󵄨 = |tx sin y + 1| ≤ |t||x| + 1 ≤ |t|‖X‖ + 1 ≡ α(t)‖X‖ + β(t)

and

󵄨󵄨󵄨󵄨g(t,X)
󵄨󵄨󵄨󵄨 =
‖X‖
|t|
≡ γ(t)‖X‖.

The desired statement is now proved by applying the global existence theorem, Theo-
rem 1.2.2.

Section 1.3
Proof of Proposition 1.3.1
In the statement of Proposition 1.3.1 and related results, we use the notation A + B (with
A,B subsets of a given vector space E) in the obvious way, that is,

A + B ≡ {a + b | a ∈ A, b ∈ B}.

In case B is the singleton {c}, we write for convenience A + c rather than A + {c}.
(i) Let us first prove that Sy ⊂ ker T + x0, with x0 a fixed element in Sy. Pick x ∈ Sy

(thus by definition of Sy, Tx = Tx0 = y) and write x = x − x0 + x0 ≡ z + x0. Now z ∈ ker T ,
for

Tz = T(x − x0) = Tx − Tx0 = y − y = 0.

This shows that x = z + x0 ∈ ker T + x0.
(ii) Vice versa, to show that ker T + x0 ⊂ Sy, let x ∈ ker T + x0, so that x = z + x0 for

some z ∈ ker T . Then

Tx = Tz + Tx0 = y

so that x ∈ Sy.

Proof of Proposition 1.3.2
Let the vectors x1, . . . , xn form a basis of E; we claim that if T : E → F is an isomorphism,
then the vectors yi ≡ Txi (i = 1, . . . , n) form a basis of F .

(a) y1, . . . , yn are linearly independent vectors of F , for if c1y1 + ⋅ ⋅ ⋅ cnyn = 0 for some
c1, . . . , cn ∈ ℝ, then

0 = c1Tx1 + ⋅ ⋅ ⋅ cnTxn = T(c1x1 + ⋅ ⋅ ⋅ cnxn) ≡ Tz.
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As T is injective, this implies that z = 0, and the l. i. of x1, . . . , xn then implies that c1 =
⋅ ⋅ ⋅ = cn = 0.

(b) y1, . . . , yn also generate F . Indeed, let y ∈ F and (by the surjectivity of T ) let x ∈ E
be such that y = Tx. Write x = c1x1 + ⋅ ⋅ ⋅ cnxn for suitable c1, . . . , cn and see that

y = T(c1x1 + ⋅ ⋅ ⋅ cnxn) = c1y1 + ⋅ ⋅ ⋅ cnyn,

showing that y is a linear combination of y1, . . . , yn.

Proof of Proposition 1.3.3
(i)⇒ (ii): Suppose that V1( ̂t),V2( ̂t), . . . ,Vn( ̂t) are l. i. and let c1, . . . , cn ∈ ℝ be such that

c1V1 + ⋅ ⋅ ⋅ cnVn = 0. (1.7.5)

This is an equality between vectors of C1(I ; ℝn), which are functions defined on I , and
thus (1.7.5) means precisely that

c1V1(t) + ⋅ ⋅ ⋅ cnVn(t) = 0 ∀t ∈ I . (1.7.6)

Note that the same symbol 0 denotes in (1.7.5) the zero of the vector space C1(I ; ℝn) and
in (1.7.6) the zero of the vector space ℝn. Taking t = ̂t in (1.7.6), we conclude from our
assumption that c1 = ⋅ ⋅ ⋅ = cn = 0, thus proving the l. i. of the vectors Vi.

(ii)⇒ (iii): Suppose now thatV1,V2, . . . ,Vn are l. i. vectors of C
1(I ; ℝn). Take any t0 ∈ I

and let c1, . . . , cn ∈ ℝ be such that

c1V1(t0) + ⋅ ⋅ ⋅ cnVn(t0) = 0. (1.7.7)

We want to show that ci = 0 for all i. Indeed, consider the function

Z ≡ c1V1 + ⋅ ⋅ ⋅ cnVn,

and consider that (a) Z is a solution of (1.3.5) and (b) Z(t0) = 0. Thus, by the uniqueness
theorem, Zmust be the identically zero solution; that is, Z = 0 in C1(I ; ℝn). The definition
of Z and our assumption now imply that ci = 0 for all i.

The implication (iii)⇒ (i) is obvious.

Section 1.5
Exercise 5.2
1. Assuming that the domain A of the definition of f is a “solid strip” I × ℝ2 in ℝ3, a con-
dition to be added to assumptions (a) and (b) of Theorem 1.5.1 in order to have solutions
of x′′ = f (t, x, x′) defined on I is that f be sublinear in X = (x, y), meaning that it satisfies
in the strip an inequality of the form
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󵄨󵄨󵄨󵄨f (t,X)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨f (t, x, y)

󵄨󵄨󵄨󵄨 ≤ α(t)√x2 + y2 + β(t) (1.7.8)

for suitable α, β ∈ C(I); the term√x2 + y2 in (1.7.8) can of course be replaced by |x| + |y|.
2. The functions appearing in equations (ii) and (iii) of Example 1.5.4 are respectively

f (t, x, y) = t sin(xy) and f (t, x, y) = (sin x)y
√1 − t2

and evidently satisfy the sublinearity condition (1.7.8); the maximal solutions are thus
defined on ℝ and ]−1, 1[, respectively.

Section 1.6
Exercise 6.1
Two independent solutions of the homogeneous equation x′′ − x = 0 are

v1(t) = e
t , v2(t) = e

−t ,
and their Wronskian determinant isW (t) = −2.

To find a solution of the given equation x′′ − x = 1/(1 + et) we use formula (1.6.13),
which yields in our case

z(t) = et ∫ −e
−t
(−2)

1
1 + et

dt + e−t ∫ et

(−2)
1

1 + et
dt.

Thus, we need solve the two integrals

c(t) ≡ ∫ 1
et(1 + et)

dt

and

d(t) ≡ ∫ et

1 + et
dt.

The latter can be solved immediately, as we have

∫
et

1 + et
dt = ∫ d(1 + e

t)
1 + et

= ln(1 + et) + K .

As to the former, we first put y = et – so that dy = ydt – to obtain

∫
1

et(1 + et)
dt = ∫ 1

y(1 + y)
1
y
dy.

Now we use the decomposition of fractions into simpler fractions to write

1
y2(1 + y)

=
A
y
+
B
y2
+

C
1 + y
= −

1
y
+

1
y2
+

1
1 + y
.
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This yields

∫
1

y2(1 + y)
dy = − ln y − 1

y
+ ln(1 + y) + H ,

so that

c(t) = ∫ 1
et(1 + et)

dt = −t − e−t + ln(1 + et) + H .
Choosing H = K = 0, we finally have

z(t) = e
t

2
c(t) − e

−t
2
d(t) = e

t

2
[−t − e−t + ln(1 + et)] − e−t

2
ln(1 + et).

E2. Further exercises
Exercise 1.7.2. Obtain the explicit solutions in Example 1.1.2 following the path indi-
cated in the text itself of the example.
(i) x′ = 3x2/3
x = x(t) being a solution of (i) means that x′(t) = 3(x(t))2/3 for all t in some interval J .
Therefore,

x′(t)
(x(t))2/3 = 3 (t ∈ J)

provided that x(t) ̸= 0 for t ∈ J . Integrating both members of the above equality we
obtain

∫
x′(t)
(x(t))2/3 dt = ∫ 3 dt = 3t + C,

whence, making in the first integral the substitution x(t) = y and recalling that ∫ yαdy =
yα+1
α+1 for each real α ̸= −1, we get (putting for convenience C = 3k)

3(x(t))1/3 = 3t + 3k,
which yields the solutions

x(t) = (t + k)3 (k ∈ ℝ).

It is clear that the solution x ≡ 0 must be considered separately.
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(ii) x′ = −2tx2
Proceeding as before, we write

∫
x′(t)
(x(t))2

dt = ∫(−2t) dt = −t2 + C.

Since ∫ 1/y2 = −1/y, we then have (putting C = −k)

−
1

x(t)
= −t2 − k

and we conclude with the formula

x(t) = 1
t2 + k
,

which yields all solutions of (ii) except the trivial one x ≡ 0.
(iii) x′ = x(1 − x)
Here we have two “trivial” solutions, x ≡ 0 and x ≡ 1.

Consider the more general form x′ = ax(1 − bx) of (iii) (with a, b > 0). We check to
have the solutions

x(t) = Keat

1 + Kbeat
(K ∈ ℝ). (1.7.9)

Indeed, using the identity

1
ax(1 − bx)

=
1
ax
+
b
a

1
(1 − bx)

we see that a solution x = x(t)must satisfy the equality

∫
x′(t)
x(t)

dt + b∫ x′(t)
1 − bx(t)

dt = ∫ a dt = at + C,

which leads to

ln 󵄨󵄨󵄨󵄨x(t)
󵄨󵄨󵄨󵄨 − ln
󵄨󵄨󵄨󵄨1 − bx(t)

󵄨󵄨󵄨󵄨 = ln
|x(t)|
|1 − bx(t)|

= at + C,

whence

x(t)
1 − bx(t)

= Keat (K ∈ ℝ). (1.7.10)

We can now recover x(t) from (1.7.10), obtaining (1.7.9).
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Exercise 1.7.3. Solve the IVPs

{
x′ = −4t3x2
x(0) = −1

and { x′ = x
t + 3t

2et

x(1) = 0

and for each of them check if the (maximal) solution is global or not.
– The answer to the second problem is a priori immediate, as it concerns a linear

equation. Using the solution formula (1.1.2), we find explicitly

x(t) = 3(t2 − t)et .

– As to the first problem, since f (t, x) = −4t3x2 is defined on ℝ2 = ℝ × ℝ, it follows
that global solutions of the given equation are those defined on thewhole ofℝ. Now,
except for the trivial solution x ≡ 0, the other solutions are obtained writing

∫
x′(t)
x2(t)

dt = −4∫ t3 dt = −t4 + K ,

whence

−
1

x(t)
= −t4 − H (H = −K),

which finally yields

x(t) = 1
t4 + H
.

This shows that only the solutions with H > 0 are global. For H = 0 we have two
maximal solutions (differing only for the interval of definition, respectively J1 =
]−∞, 0[ and J2 = ]0, +∞[) and similarly forH < 0 we have three maximal solutions.
The (unique) maximal solution of the given Cauchy problem is

x(t) = 1
t4 − 1
, t ∈ J = ]−1, 1[,

and is therefore not global.

Systems of linear equations with constant coefficients (Section 1.4)
Here we give a few simple examples (some of them taken from Apostol’s book Calculus
[4]) that illustrate formula (1.4.19) giving the general solution in terms of the eigenval-
ues and eigenvectors of the matrix coefficients in the case that A is diagonable in the
real field. (Note: as already done in the text, when not necessary we will not distinguish
between a vector of ℝn being displayed as a row vector or as a column vector.)
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Exercise 1.7.4. Consider the system

{
x′ = 5x + 4y
y′ = x + 2y. (1.7.11)

The eigenvalues of the coefficient matrix A are given by the equation

det(A − λI) = det(5 − λ 4
1 2 − λ

) = (5 − λ)(2 − λ) = λ2 − 7λ − 4 = 0,

yielding λ1 = 6, λ2 = 1. The eigenvectors corresponding to λ1 are the non-zero solutions
of the equation (A − 6I)X = 0 (I being the identity matrix), that is,

(
−1 4
1 −4
)(

x
y
) = (

0
0
) ,

yielding y = x/4. Therefore, we can take V1 = (4, 1) as an eigenvector to λ1. Similarly we
find that V2 = (1, −1) is as eigenvector associated with λ2. Applying formula (1.4.19) we
thus find

X(t) = k1e
λ1tV1 + k2e

λ2tV2 = k1e
6t (

4
1
) + k2e

t (
1
−1
) = (

4k1e
6t + k2e

t

k1e
6t − k2e

t ) ≡ (
x(t)
y(t)
)

as solutions of the system (1.7.11). The solution ismade unique by imposing an initial con-
dition; for instance, the solution of (1.7.11) satisfying the condition X(0) = (x(0), y(0)) =
(2, 3) is given by

{
x(t) = 4e6t − 2et

y(t) = e6t + 2et .

Exercise 1.7.5. Consider now the following slight modification of (1.7.11):

{{
{{
{

x′ = 5x + 4y
y′ = x + 2y
z′ = x + 2y + 2z. Here A = (

5 4 0
1 2 0
1 2 2

), (1.7.12)

for which we find the eigenvalues

λ1 = 6, λ2 = 1, λ3 = 2

and the corresponding eigenvectors

V1 = (8, 2, 3), V2 = (1, −1, 1), V3 = (0, 0, 1).

It follows that the general solution of (1.7.12) is
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{{
{{
{

x(t) = 8k1e
6t + k2e

t

y(t) = 2k1e
6t − k2e

t

z(t) = 3k1e
6t + k2e

t − k3e
2t ,

(1.7.13)

and for instance the solution that satisfies the initial condition X(0) = (0, 0, 1) = e3 is
X(t) = (0, 0, e2t).

Exercise 1.7.6. Find the general solutions of the systems

(A) { x′ = x + y
y′ = x − y and (B) { x′ = x

y′ = x + 2y. (1.7.14)

Also, find the solution of the system (B) satisfying the initial condition x(1) = 1, y(1) = 10.

Exercise 1.7.7. Consider the three matrices

A = (1 0
1 1
) , B = (0 1

1 0
) , C = ( 0 1

−1 0
) (1.7.15)

and establish which of them is diagonable in the real field.

Exercise 1.7.8. Consider the matrices

A = (
1 0 0
0 1 0
1 1 2

), B = (
1 0 0
1 1 0
0 0 2

)

and check that A is diagonable, while B is not.

Exercise 1.7.9. The matrix

A = (
2 1 1
2 3 2
3 3 4

)

has the eigenvalues

λ1 = 1, λ2 = 1, λ3 = 7.

(We have repeated λ1 because of its appearance with algebraic multiplicity 2.)
Show that A is diagonable.





2 Metric and normed spaces

Introduction

The goal of this chapter is that of helping to bridge the gap that a student may find be-
tween a basic course of calculus, where one typically learns to manage and compute
derivatives and integrals of real-valued functions of one or several real variables and to
solve some elementary differential equations, and a course in functional analysis, which
one will very likely have to follow in a Master on pure and/or applied mathematics. To
do this, he/she must necessarily gain – among others – elementary knowledge of:
– Banach and Hilbert spaces;
– some concrete function spaces.

While Hilbert spaces will be treated in the next chapter in connection with the study of
Fourier series, a good common frame for the presentation of the remaining arguments
is provided by the study of normed vector spaces; however, this would by far not be
sufficient for the study of weak topologies, which is a necessary ingredient of a course in
functional analysis and applications to PDEs. Therefore, we choose the context of metric
spaces (Section 2.2) as a good intermediate step between general topological spaces and
normed vector spaces; this should provide a quite general and flexible frame both to
serve the scope of this book and to prepare the reader to make further steps on his/her
own account when needed.

A beautiful illustration of the abstract, but intuitive, language of metric spaces –
which is largely taken from that of the familiar Euclidean space – and in particular of the
idea of metric completeness is given for instance by the contraction mapping theorem
(Theorem 2.2.4), one of the simplest, yet most useful, fixed point theorems in analysis.

In order to appreciate further the quite general context ofmetric spaces, we include
in this chapter – besides the strictly necessary Sections 2.3 and 2.4 – two final sections,
devoted to compactness (Section 2.5) and connectedness (Section 2.6), with the aim of
giving not only the basic facts about these two important topological concepts, but also
more general versions of two of the most famous and useful theorems in analysis, both
known in their simplest form to first year mathematics students: the Weierstrass theo-
rem on the achievement of

min
x∈[a,b]

f (x), max
x∈[a,b]

f (x)

for a continuous real-valued function f on a bounded closed interval [a, b] and the “in-
termediate value theorem,” which asserts that any continuous function that changes
sign on an interval must necessarily have a zero.

On the other hand, as a motivation for the study of metric spaces we find it good
to start this chapter dealing concretely with the convergence of sequences and series of

https://doi.org/10.1515/9783111302522-002
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functions (Section 2.1). Our order of presentation aims at rendering more transparent
the concept of uniform convergence for them in the light of the distance

d(f , g) = sup
x∈A

󵄨󵄨󵄨󵄨f (x) − g(x)
󵄨󵄨󵄨󵄨 (∗)

that equips the space (B(A), d) of bounded real functions defined on A; see Sections 2.3
and 2.4. This also makes clear, via the alternative idea of convergence in the mean, in-
duced by the distance

d1(f , g) =
b

∫
a

󵄨󵄨󵄨󵄨f (x) − g(x)
󵄨󵄨󵄨󵄨 dx,

that we can have on the same function space (in this example, C([a, b])), and generally
speaking on the same set, two or many different distances, and we are therefore stimu-
lated to study the connections between the various types of convergence.

2.1 Sequences and series of functions. Uniform convergence

A sequence (fn) of real-valued functions defined in a set A is said to converge point-
wisely in A if for every x ∈ A, the numerical sequence (fn(x)) is convergent. In this case,
the function f : A→ ℝ defined putting

f (x) = lim
n→∞

fn(x) (x ∈ A)

is called the pointwise limit function of the sequence (fn).

Exercise 2.1.1. For n ∈ ℕ and x ∈ ℝ put

fn(x) = arctan nx, fn(x) =
sin2 nx
1 + nx2
, fn(x) =

nx
1 + enx
.

For each of the three cases, compute the set of convergence of the sequence (fn) (that is,
the set A = {x ∈ ℝ : (fn(x)) converges}) and the pointwise limit function of the sequence.

Exercise 2.1.1 shows, among others, that the pointwise limit of a sequence of con-
tinuous functions need not be continuous itself. To understand this fact, the concept
of uniform convergence of a sequence of functions is crucial, and we are now going to
introduce it.

Bounded functions
Let A be any set. A real-valued function f defined on A is said to be bounded if its image
f (A) = {f (x) : x ∈ A} is a bounded subset of ℝ, that is, if there exists a constant k such
that |f (x)| ≤ k for all x ∈ A. Therefore, for such an f , the number
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sup
x∈A

󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 = min{k ∈ ℝ :

󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 ≤ k ∀x ∈ A}

is well defined, and it is characterized by the following two properties:

󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 ≤ sup

x∈A

󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 ∀x ∈ A, (2.1.1)

(󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 ≤ k ∀x ∈ A) ⇒ sup

x∈A

󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 ≤ k. (2.1.2)

Definition 2.1.1. Let A be any set. A sequence (fn) of real-valued, bounded functions
defined in A is said to converge uniformly to the (bounded) function f : A→ ℝ if

lim
n→∞

sup
x∈A

󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨 = 0.

Clearly, if (fn) converges uniformly to f , then it converges pointwisely to f , for

󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨 ≤ sup

x∈A

󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨 (x ∈ A, n ∈ ℕ).

This – together with the uniqueness of the limit of real sequences – implies in particular
that the uniform limit function of (fn) (when it exists) is unique and coincides with its
pointwise limit.

Example 2.1.1. The sequence (arctan nx) converges pointwisely, but not uniformly, on
ℝ to the function

f (x) =
{{
{{
{

π
2 x > 0
0 x = 0
− π2 x < 0.

Indeed,

sup
x∈ℝ

󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨 =

π
2
∀n ∈ ℕ.

Example 2.1.2. The sequence nx
n2+x2 converges uniformly to 0 on [0, 1], for

sup
[0,1]

nx
n2 + x2

≤
1
n
.

On the other hand, the sequence nx
1+n2x2 converges pointwisely, but not uniformly, to 0 on

[0, 1], because

sup
[0,1]

nx
1 + n2x2

= max
[0,1]

nx
1 + n2x2

=
1
2
, for all n ∈ ℕ.
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The following statement shows the importance of uniform convergence as far as
the continuity of the limit function is concerned.

Theorem 2.1.1. Let (fn) be a sequence of real-valued, bounded functions defined in A ⊂ ℝ
and converging uniformly to the (bounded) function f : A → ℝ. If each fn is continuous
in A, then so is the limit function f .

The proof of Theorem 2.1.1 could be given right now, but we prefer to postpone it
for a while (see Theorem 2.3.2) because it gains clarity and conciseness in the context
of metric function spaces. On the other hand, when applied in case A is an interval,
Theorem 2.1.1 implies in turn two more basic statements concerning the limit function
of a sequence: the first is known as passage to the limit under the sign of integral and
the second as passage to the limit under the sign of derivative.

Theorem 2.1.2. Let (fn) be a sequence of real-valued, continuous functions defined in the
interval [a, b] and converging uniformly to the function f : [a, b] → ℝ. Then

lim
n→∞

b

∫
a

fn(x) dx =
b

∫
a

f (x) dx.

Proof. First, f is continuous on the basis of Theorem 2.1.1. Next, for each n ∈ ℕwe have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b

∫
a

fn(x) dx −
b

∫
a

f (x) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

b

∫
a

󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨 dx ≤ Ln(b − a), (2.1.3)

with Ln = supx∈[a,b] |fn(x) − f (x)|. Since by assumption Ln → 0 as n→∞, it follows that
the left-hand side of (2.1.3) also does so, proving the result.

Note. From now on, when speaking of uniform convergence of a sequence (fn), we tac-
itly assume that both the fn’s and the limit f are bounded functions.

Theorem 2.1.3. Let (fn) be a sequence of real-valued C
1 functions defined on some interval

I ⊂ ℝ. Suppose that:
(i) the real sequence (fn(x)) converges for at least one x ∈ I;
(ii) the sequence (f ′n ) of the derivatives converges uniformly on I to a function g.

Then (fn) converges pointwisely on I to a limit function f which is itself of class C
1 on I,

and we have

f ′(x) = g(x)

for every x ∈ I. Finally, if I is bounded, then the convergence of (fn) to f is uniform.

Proof. Let x0 ∈ I be such that (fn(x0)) converges and put l = limn→∞ fn(x0). As fn is of
class C1, by the fundamental theorem of calculus we can write
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fn(x) = fn(x0) +
x

∫
x0

f ′n (t) dt (x ∈ I , n ∈ ℕ). (2.1.4)

Letting n→∞ in (2.1.4) and using Theorem 2.1.1 for the sequence (f ′n ) on [x0, x], we see
that (fn(x)) converges for any x ∈ I (that is, (fn) converges pointwisely on I) and precisely
that

f (x) ≡ lim
n→∞

fn(x) = l +
x

∫
x0

g(t) dt (x ∈ I). (2.1.5)

This shows that f ∈ C1(I) and that f ′ = g in I . Thus, it remains only to show that (fn)
converges uniformly to g in case I = (a, b) is a bounded interval. However, for x ∈ I , if
for example x > x0, we have

󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
fn(x0) +

x

∫
x0

f ′n (t) dx − l −
x

∫
x0

g(t) dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨fn(x0) − l
󵄨󵄨󵄨󵄨 +

x

∫
x0

󵄨󵄨󵄨󵄨f
′
n (t) − g(t)

󵄨󵄨󵄨󵄨 dt

≤ 󵄨󵄨󵄨󵄨fn(x0) − l
󵄨󵄨󵄨󵄨 + Hn(b − a),

with Hn = supx∈I |f
′
n (x) − f

′(x)|. Therefore,

Ln = sup
x∈[a,b]

󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨fn(x0) − l

󵄨󵄨󵄨󵄨 + Hn(b − a).

Letting n→∞ the result follows.

The following simplified form of Theorem 2.1.3 is often useful.

Corollary 2.1.1. Let (fn) ⊂ C
1(I) and suppose that as n→∞

fn → f , f ′n → g uniformly on I .

Then f ∈ C1(I) and f ′ = g.

Series of functions
The importance of uniform convergence can be seen even better by looking at series of
functions. Let again (fn) be a sequence of real-valued functions defined inA and suppose
that the numerical series ∑∞n=1 fn(x) converges for each x ∈ A – in other words, that
∑∞n=1 fn converges pointwisely onA. Thenwe can consider the sum function of the series,
defined by putting



50 � 2 Metric and normed spaces

f (x) =
∞
∑
n=1

fn(x) (x ∈ A), (2.1.6)

and ask as above if, for instance, f is continuous (or Ck ) if so are all fn. This problem is of
high interest in practice, partly because (except for a few special cases) we do not know
explicitly the function f and partly because in many applications we obtain the solution
of a problem – for example, of a differential equation – precisely in the form (2.1.6),
where fn (n ∈ ℕ) are “elementary” solutions of the problem.

Example 2.1.3 (The Dirichlet problem for the Laplace equation in a rectangle). Let R =
{(x, y) ∈ ℝ2 : 0 < x < π, 0 < y < 1}, let R = {(x, y) ∈ ℝ2 : 0 ≤ x ≤ π, 0 ≤ y ≤ 1},
and let h ∈ C([0, π]) be such that h(0) = h(π) = 0. The problem is to find a function
u ∈ C(R) ∩ C2(R) – that is, twice continuously differentiable in the open rectangle R and
continuous up to the boundary of R – which satisfies the boundary value problem

{{
{{
{

Δu = 𝜕
2u
𝜕x2 +
𝜕2u
𝜕y2 = 0 (x, y) ∈ R

u(π, y) = u(x, 1) = u(0, y) = 0 0 ≤ x ≤ π, 0 ≤ y ≤ 1
u(x, 0) = h(x) 0 ≤ x ≤ π.

(2.1.7)

Using separation of variables, a solution u of (2.1.7) can be found in the form

u(x, y) =
∞
∑
n=1

cn sin nx
sinh n(1 − y)

sinh n
, (2.1.8)

where for z ∈ ℝ we put sinh z = (ez − e−z)/2 and for n ∈ ℕ

cn =
2
π

π

∫
0

h(x) sin nx dx.

One has to check not only that the definition of u is sensible – i. e., that the series defin-
ing u is convergent at any point of R – but also that the resulting u has the necessary
regularity properties (that is, u ∈ C(R) ∩ C2(R)) required to be a solution of (2.1.7); this
will be discussed in some detail in Chapter 4, Section 4.4.

Returning in general to the continuity of an f defined as in (2.1.6), thiswill be granted
by Theorem 2.1.1 provided that each fn is (bounded and) continuous on A and that the
series converges uniformly in A, meaning by definition that the sequence (sn) of the
finite sums

sn =
n
∑
k=1

fk (n ∈ ℕ)

does so.
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Auseful criterion to check the uniformconvergence of a series is the popularWeier-
strass M-test, which is stated as follows.

Proposition 2.1.1. Suppose that (fn) is a sequence of bounded functions defined on a set
A and suppose that there exists a sequence (Mn), with Mn ≥ 0 for all n ∈ ℕ, such that:
(i) |fn(x)| ≤ Mn for all x ∈ A and all n ∈ ℕ;
(ii) the series ∑∞n=1Mn is convergent.

Then the series ∑∞n=1 fn converges uniformly in A.

The Weierstrass M-test is a simple consequence of a general result (Theorem 2.4.1)
that will be given later in this chapter in the context of Banach spaces. However, in order
to appreciate its usefulness we shall start employing it in the examples that follow. One
thing to observe immediately is that assumptions (i) and (ii) of Proposition 2.1.1 imply
convergence of the series

∞
∑
n=1

fn(x)

for every x ∈ A – that is, pointwise convergence on A of ∑∞n=1 fn – by virtue of the com-
parison test for numerical series.

We now state for further use the specific form that Theorem 2.1.2 and Theorem 2.1.3,
or more precisely its Corollary 2.1.1, take for series of functions.

Corollary 2.1.2 (Term-by-term integration of a series of functions). Let (fn) be a sequence
of real-valued, continuous functions defined in the interval [a, b]. Suppose that the series
∑∞n=1 fn converges uniformly to the function f : [a, b] → ℝ. Then

b

∫
a

∞
∑
n=1

fn(x) dx =
∞
∑
n=1

b

∫
a

fn(x) dx.

Corollary 2.1.3 (Term-by-term derivation of a series of functions). Let (fn) be a sequence of
real-valued, C1 functions defined in an interval I ⊂ ℝ. Suppose that the two series

∞
∑
n=1

fn,
∞
∑
n=1

f ′n

converge uniformly on I to the functions f and g, respectively. Then f ∈ C1(I) and f ′ = g;
that is,

D(
∞
∑
n=1

fn)(x) =
∞
∑
n=1

Dfn(x).
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Example 2.1.4. The series

∞
∑
n=1

1
√n + ln n

ln( 1 + nx
nx
)

converges for any x > 0, and its sum function is C1 on ]0,∞[. Indeed, if a is any positive
number, we have for x ≥ a

1
√n + ln n

ln(1 + 1
nx
) ≤

1
√n

ln(1 + 1
na
) ∼

1
n3/2
,

where an ∼ bn means that limn→∞ an/bn = 1. As to the derivatives, note that for x ≥ a

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
D(ln(1 + 1

nx
))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

1
1 + 1

nx

1
nx2
≤

1
na2
,

showing that also the series ∑∞n=1 |f
′
n (x)| is uniformly dominated by ∑

∞
n=1

1
n3/2 . Thus, by

the Weierstrass M-test, both series ∑∞n=1 fn and ∑
∞
n=1 f
′
n converge uniformly in [a,∞[. As

this holds for any a > 0, it follows that the sum function is C1 on ]0,∞[.

Example: power series
A power series is a series of the form

∞
∑
0
an(x − x0)

n, (2.1.9)

where x0 ∈ ℝ is called the center of the series and (an) is a sequence of real numbers. (To
be better understood, power series should indeed be considered in the complex plane,
where they are at the basis of the theory of analytic functions of a complex variable; see
for instance Rudin [6].) Putting y = x − x0, we see that it is enough to consider power
series of the form

∞
∑
0
anx

n (2.1.10)

having center x0 = 0. The basic example is, of course, the geometric series ∑∞0 xn,
which we know, by explicit calculation of its nth partial sum,

sn =
n−1
∑
0
xi = 1 + x + ⋅ ⋅ ⋅ + xn−1 = 1 − x

n

1 − x
,

to converge exactly for those x belonging to the interval ]−1, 1[. The special feature of
power series is precisely that kind of behavior; indeed, we are going to show that –
except if the series converges only for x = 0 (for example, ∑∞0 nnxn) or for every x ∈ ℝ
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(for example,∑∞0
xn
n! ) – there exists a number R > 0 such that (2.1.10) converges if |x| < R

and does not converge if |x| > R; the behavior at the points x = ±Rmust be checked in
each case. To prove this statement, the key point is the following result.

Theorem 2.1.4. Suppose that the series ∑∞0 anx
n converges in a point x1 ̸= 0. Then:

(i) the series converges absolutely in every point x with |x| < |x1|;
(ii) the series converges uniformly on every interval [−r, r] with r < |x1|.

Proof. (i) Fix an x with |x| < |x1|. We have

󵄨󵄨󵄨󵄨anx
n󵄨󵄨󵄨󵄨 = |an||x|

n = |an||x1|
n(
|x|
|x1|
)
n

≤ M( |x|
|x1|
)
n

(2.1.11)

for someM > 0 and all n ∈ ℕ, because anx
n
1 → 0 for n→∞, as a necessary consequence

of the assumed convergence of the series∑∞0 anx
n
1 . Thus, the series∑

∞
0 |anx

n| converges,
because it is term-by-termmajorized by the geometrical series∑∞0 anq

n, q ≡ |x|/|x1| < 1.
(ii) Work as before improving inequality (2.1.11) to

󵄨󵄨󵄨󵄨anx
n󵄨󵄨󵄨󵄨 ≤ M(

|x|
|x1|
)
n

≤ M( r
|x1|
)
n

(2.1.12)

holding for all x ∈ [−r, r] and all n ∈ ℕ, and then use the Weierstrass M-test (Proposi-
tion 2.1.1) withMn ≡ M(r/|x1|)

n.

Remark 2.1.1. It follows from Theorem 2.1.4 that if the series (2.1.10) does not converge
in a point x2, then it cannot converge in any point x with |x| > |x2|.

Proposition 2.1.2. Suppose that the series (2.1.10) converges at some x = x1 ̸= 0 and does
not converge at some x = x2. Then there exists a real number R > 0 such that:
– (2.1.10) converges if |x| < R;
– (2.1.10) does not converge if |x| > R.

Proof. Let

S ≡ {x ∈ ℝ :
∞
∑
0
anx

n converges} (2.1.13)

and put R ≡ supx∈S |x| (note that by our assumptions, S is non-empty and bounded, for
necessarily |x| ≤ |x2| if x ∈ S; see Remark 2.1.1). Now simply use the properties of the
supremum to prove both statements in Proposition 2.1.2 (in particular, if |x| < R, there
must be an x1 ∈ S such that |x| < |x1|; then use Theorem 2.1.4).

Definition 2.1.2. The radius of convergence of the power series (2.1.10) is the extended
non-negative number R defined as follows:
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– R = 0 if (2.1.10) converges only for x = 0;
– R = +∞ if (2.1.10) converges for every x ∈ ℝ;
– R ≡ supx∈S (with S as in (2.1.13)) in the other cases.

The radius of convergence can be explicitly computed if we know the coefficients
an and especially their asymptotic behavior: this, together with further information on
power series, is shortly indicated in the final section of this chapter. An excellent refer-
ence for a complete discussion of power series is, for instance, Rudin’s book [6]; for an
even more general approach, see Dieudonné [7].

2.2 Metric spaces and continuous functions

Distance. Open sets. Interior of a set
Definition 2.2.1. Let X be a non-empty set. A distance (or metric) on X is a function d :
X × X → ℝ satisfying the following properties:
(i) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X ;
(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X (“triangle inequality”).

Ametric space is a pair (X , d), where d is a distance on X .

Example 2.2.1. X = ℝn is a metric space endowed with the usual Euclidean distance

d(x, y) = ‖x − y‖ = √
n
∑
i=1
(xi − yi)2 (2.2.1)

between the points x = (x1, . . . xn) and y = (y1, . . . , yn) of ℝ
n. If n = 1, (2.2.1) reduces to

the absolute value |x − y| of x − y.

Example 2.2.2. More generally, let E be a real vector space. Suppose E is equipped with
a norm, that is, a function ‖.‖ from E to ℝ, satisfying the following properties:
(i) ‖x‖ ≥ 0 for all x ∈ 𝔼, and ‖x‖ = 0 iff x = 0;
(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ ℝ and all x ∈ E;
(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ E.

Then E is called a normed vector space, and it is easily checked that the function d :
E × E → ℝ defined by putting

d(x, y) ≡ ‖x − y‖ (x, y ∈ E) (2.2.2)

is a distance on E, which is said to be induced by the norm.
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Exercise 2.2.1. Consider the function space C([a, b]) and show that the usual algebraic
operations of pointwise sum and product by a real number make it into a vector space,
which can be normed putting

‖x‖1 ≡
b

∫
a

󵄨󵄨󵄨󵄨x(t)
󵄨󵄨󵄨󵄨 dt. (2.2.3)

The distance induced by this norm is therefore

d1(x, y) =
b

∫
a

󵄨󵄨󵄨󵄨x(t) − y(t)
󵄨󵄨󵄨󵄨 dt. (2.2.4)

Exercise 2.2.2. Let X be any set and let d : X × X → ℝ be defined as follows:

{
d(x, y) = 1 if x ̸= y
d(x, y) = 0 if x = y.

(2.2.5)

Show that d is a distance on X .

In the following definitions, we assume that (X , d) is a metric space.

Definition 2.2.2. For x ∈ X and r > 0, the set

B(x, r) = {y ∈ X : d(y, x) < r}

is called the ball (or spherical neighborhood) of center x and radius r.

Note that B(x, r) is non-empty as it contains x; however, it may be reduced to {x}
itself (see Exercise 2.2.2). If X = ℝ, then B(x, r) is the interval ]x − r, x + r[; if X = ℝ2 and
z = (x0, y0), then B(z, r) is the circle defined by the inequality

(x − x0)
2 + (y − y0)

2 < r2.

Definition 2.2.3. Let A be a non-empty subset of X . A point x ∈ A is said to be interior to
A if B(x, r) ⊂ A for some r > 0. A is said to be open if each of its points is interior to A.

The whole space X is evidently open; the empty set is open by definition.

Exercise 2.2.3. The union of any family of open sets is open. The intersection of a finite
family of open sets is open.

Exercise 2.2.4. A ball is an open set. Show that for each x ∈ B(x0, r), one has B(x, r(x)) ⊂
B(x0, r), where r(x) = r − d(x, x0) > 0.

Exercise 2.2.5. The interval ]a, +∞[ = {x ∈ ℝ : x > a} is open in ℝ.
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Given a subsetA ofX , the set of all pointswhich are interior toA is called the interior
ofA and is denoted intA.Wehave intA ⊂ A, and it follows byDefinition 2.2.3 that intA = A
if and only if A is open.

Exercise 2.2.6. Show that for any A ⊂ X , intA is an open set (use Exercise 2.2.4).

Remark 2.2.1. If X is a metric space with distance d, any non-empty subset F of X be-
comes itself a metric space with distance dF ≡ d|F×F (restriction of d to F × F); this
distance is said to be induced on F by that of X . Thus, it makes perfectly sense to speak,
for instance, of the metric space [0, 1] (where, without further mention, the distance is
that induced by the Euclidean distance on ℝ).

Convergent sequences and Cauchy sequences. Complete metric spaces
Definition 2.2.4. A sequence (xn) of points of X is said to converge to the point x0 ∈ X if
given any ϵ > 0, there exists an integer n0 such that d(xn, x0) < ϵ for all n ≥ n0.

In other words, (xn) converges to x0 if any given neighborhood of x0 contains all xn
except for a finite number of indices. It follows by the properties of the distance d on X
that there is at most one point x0 to which a sequence (xn) can converge; it is called the
limit of the sequence (xn), and in this case we write

lim
n→∞

xn = x0 or xn → x0.

Definition 2.2.5. A sequence (xn) of points of X is said to be a Cauchy sequence if given
any ϵ > 0, there exists an integer n0 such that d(xn, xm) < ϵ for all n,m ≥ n0.

Exercise 2.2.7. Any convergent sequence is a Cauchy sequence.

Definition 2.2.6. A metric space (X , d) is said to be complete if any Cauchy sequence in
X converges to a point of X .

Example 2.2.3. The Euclidean space ℝn (see Example 2.2.1) is complete. The set ℚ of
rational numbers, equipped with the distance inherited by ℝ, is not complete.

Example 2.2.4. Let X = C([a, b]) with the distance induced by the norm

‖x‖ = max
t∈[a,b]
󵄨󵄨󵄨󵄨x(t)
󵄨󵄨󵄨󵄨.

Aswill be shown– in amore general context – in Corollary 2.3.1, this is a completemetric
space. On the other hand, if C([a, b]) is equipped with the integral norm considered in
Exercise 2.2.1, the resulting metric space is not complete.

Continuous functions between metric spaces
Definition 2.2.7. Let (X , d) and (Y , d′) be metric spaces and let f : X → Y . We say that f
is continuous at the point x0 ∈ X if given any ϵ > 0, there exists an r > 0 such that for
every x ∈ X with d(x, x0) < r we have
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d′(f (x), f (x0)) < ϵ.

In terms of neighborhoods, this is the same as saying that given ϵ > 0, there is an
r > 0 such that f (B(x0, r)) ⊂ B(f (x0), ϵ).

By virtue of Remark 2.2.1, the same definition applies with the obvious changes if f
is only defined on a subset A of X .

Theorem 2.2.1. Let X , Y , Z be three metric spaces and let f : X → Y and g : Y → Z. If f is
continuous at x0 ∈ X and g is continuous at f (x0), then g ∘ f is continuous at x0.

Proof. The proof is the same as that of Theorem 0.0.1 given in the Preliminaries.

Theorem 2.2.2. Let X and Y be metric spaces and let f : X → Y. Then f is continuous
at x0 ∈ X if and only if for any sequence (xn) ⊂ X convergent to x0, the sequence (f (xn))
converges to f (x0).

Proof. (a) Suppose that f is continuous at x0 ∈ X , and given ϵ > 0 let r > 0be such that for
every x ∈ B(x0, r) we have f (x) ∈ B(f (x0), ϵ). Take a sequence (xn) ⊂ X converging to x0
and let n0 ∈ ℕ be such that xn ∈ B(x0, r) for n ≥ n0; then it follows that f (xn) ∈ B(f (x0), ϵ)
for n ≥ n0, proving the result.

(b) Assume that f (xn) → f (x0)whenever xn → x0 and suppose by way of contradic-
tion that f is not continuous at x0. Thus, there is an ϵ0 > 0 such that, for any δ > 0, we
can find an x ∈ B(x0, δ) such that f (x) ∉ B(f (x0), ϵ0). Taking δn =

1
n (n ∈ ℕ), we construct

a sequence (xn) that converges to x0, but such that f (xn) ∉ B(f (x0), ϵ0) for any n ∈ ℕ.
In particular, (f (xn)) cannot converge to f (x0), contradicting our assumption and thus
proving the result.

Example 2.2.5. Let X = C([a, b]) normed as in Example 2.2.4 and let F : X → ℝ be
defined as follows:

F(x) =
b

∫
a

x(t) dt (x ∈ X).

If we take any two functions x, y ∈ X , we have

󵄨󵄨󵄨󵄨F(x) − F(y)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

b

∫
a

(x(t) − y(t)) dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

b

∫
a

󵄨󵄨󵄨󵄨x(t) − y(t)
󵄨󵄨󵄨󵄨 dt ≤ (b − a)‖x − y‖,

which shows that F is not only continuous, but indeed Lipschitz continuous (see Defini-
tion 2.2.9 below). By virtue of Theorem 2.2.2, it follows that if (xn) ⊂ X converges in X –
that is, uniformly on [a, b], see Definition 2.1.1 – to x ∈ X , then F(xn) → F(x). We thus
find the content of Theorem 2.1.2.

A function f : X → Y is said to be continuous if it is continuous at every point of X .
As shown by the next theorem, such a global continuity can be characterized via the
preimages
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f −1(V ) ≡ {x ∈ X : f (x) ∈ V}

through f of the open sets V ⊂ Y .

Theorem 2.2.3. Let X and Y be metric spaces and let f : X → Y. Then f is continuous if
and only if for any open set V ⊂ Y, f −1(V ) is an open set in X.

Proof. (a) Suppose that f is continuous and letV ⊂ Y be open. Pick any point x0 ∈ f
−1(V );

we need to show that x0 is interior to f
−1(V ). However, as f (x0) ∈ V and V is open, there

is an ϵ > 0 so that B(f (x0), ϵ) ⊂ V . Moreover, the continuity of f at x0 shows that there is
an r > 0 so that f (B(x0, r)) ⊂ B(f (x0), ϵ). Therefore, f (B(x0, r)) ⊂ V , which is equivalent
to saying that B(x0, r) ⊂ f

−1(V ).
(b) Suppose that for any open subset V of Y , f −1(V ) is open in X . Let x0 ∈ X and ϵ > 0

be given; then as B(f (x0), ϵ) is open (Exercise 2.2.4) our assumption implies that

U ≡ f −1(B(f (x0), ϵ))

is open in X , and evidently x0 ∈ U . Thus, there is a ball B(x0, r) ⊂ U , and by the definition
of U this is equivalent to saying that f (B(x0), r) ⊂ B(f (x0), ϵ), q.e.d.

Uniformly continuous and Lipschitz continuous functions
Definition 2.2.8. Let X and Y bemetric spaces with distances d and d′, respectively, and
let f : X → Y . We say that f isuniformly continuous onX if given any ϵ > 0, there exists
an r > 0 such that for every x, y ∈ X with d(x, y) < r we have

d′(f (x), f (y)) < ϵ.

It is clear that a uniformly continuous function is a fortiori continuous (roughly
speaking, we say that in the former case “given ϵ, the corresponding r does not depend
on the point x0”). The reverse statement is not true in general; see for instance Exam-
ple 2.5.2 in this chapter.

Exercise 2.2.8. Prove that if f : X → Y is uniformly continuous, then for any Cauchy
sequence (xn) ⊂ X , (f (xn)) is a Cauchy sequence in Y .

A further strengthening of the continuity property is obtained considering the Lip-
schitz continuous functions, which we define next.

Definition 2.2.9. Let X and Y be metric spaces with distances d and d′, respectively,
and let f : X → Y . We say that f is Lipschitz continuous (or Lipschitzian) on X if there
exists a constant k ≥ 0 such that

d′(f (x), f (y)) ≤ kd(x, y) (2.2.6)

for every x, y ∈ X .
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Exercise 2.2.9. Check that if f : X → Y is Lipschitzian, then it is uniformly continuous.

When it is useful, an f satisfying (2.2.6) is said to be Lipschitzian of constant k. The
importance of the best constant k for which a condition like (2.2.6) holds is seen by one
of the most famous theorems in analysis, the contraction mapping theorem, which we
state and prove below. Before that, let us consider in the next examples two important
classes of functions satisfying the Lipschitz condition.

Example 2.2.6. Let I = [a, b] be a closed bounded interval ofℝ and suppose that f : I →
ℝ is of class C1. Then f is Lipschitzian in I . Indeed, if we take any two points x, y ∈ I we
have

f (x) − f (y) = f ′(c)(x − y)

for some c between x and y (Lagrange’s theorem). As f ′ is bounded by the Weierstrass
theorem (Theorem 0.0.3), it follows that for some k > 0, we have

󵄨󵄨󵄨󵄨f (x) − f (y)
󵄨󵄨󵄨󵄨 ≤ k|x − y| ∀x, y ∈ I .

Note that the assumptions made on f are in fact stronger than necessary: irrespective of
the interval I (closed or not, bounded or not), what we really need is that the derivative
of f be bounded in I .

The importance of this example lies in the fact that using differential calculus for
functions of several variables, it can be easily extended to such functions, with some
restriction on the sets to be considered. For instance, if A ⊂ ℝn is open and convex
(meaning that for any two points x, y ∈ A the whole segment joining them stays in A)
and f : A→ ℝ is of class C1, then the mean value theorem (Theorem 0.0.7 in the Prelim-
inaries) tells us that given any two points x, y ∈ A we have

f (x) − f (y) = ∇f (z) ⋅ (x − y)

for some z on the segment joining them. Then – using the Cauchy–Schwarz inequality
– it follows as before that if ‖∇f (z)‖ ≤ K for some K ≥ 0 and for all z ∈ A (that is to say,
if the partial derivatives of f are all bounded in A), then

󵄨󵄨󵄨󵄨f (x) − f (y)
󵄨󵄨󵄨󵄨 ≤ K‖x − y‖ ∀x, y ∈ A.

Example 2.2.7 (Bounded linear operators). Let E, F be real vector spaces and let T : E →
F be a linear map. T is said to be bounded if there exists a constant k ≥ 0 such that

󵄩󵄩󵄩󵄩T(x)
󵄩󵄩󵄩󵄩 ≤ k‖x‖ ∀x ∈ E. (2.2.7)
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This property means that T maps bounded subsets of E into bounded subsets of F; this
justifies the name (though it contrasts with the usualmeaning of bounded function). The
linearity of T immediately proves that then T is Lipschitzian of constant k:

󵄩󵄩󵄩󵄩T(x) − T(y)
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩T(x − y)

󵄩󵄩󵄩󵄩 ≤ k‖x − y‖ ∀x, y ∈ E.

On the other hand, it is fundamental to note that if a linear map T : E → F is continuous
at a point x0 ∈ E, then it satisfies a condition like (2.2.7) (and is thus Lipschitzian on the
whole E, as already said). To see this, just write down the definition of continuity of T at
x0: fixing for instance ϵ = 1, there will be an r > 0 such that

󵄩󵄩󵄩󵄩T(x) − T(x0)
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩T(x − x0)

󵄩󵄩󵄩󵄩 ≤ 1 for all x ∈ E with ‖x − x0‖ ≤ r.

(We have used for convenience the symbol ≤ rather than the strict <; it is easy to see
that using either of them in Definition 2.2.7 is equivalent.) Making the change of variable
y = x − x0, we thus see that ‖T(y)‖ ≤ 1 if ‖y‖ ≤ r. However, given any z ∈ E, z ̸= 0, putting
y = rz/‖z‖ we see that ‖y‖ = r and therefore

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
T( rz
‖z‖
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
=

r
‖z‖
󵄩󵄩󵄩󵄩T(z)
󵄩󵄩󵄩󵄩 ≤ 1 ∀z ∈ E, z ̸= 0,

whence we conclude that T satisfies inequality (2.2.7) with k = 1/r (note that for x = 0,
(2.2.7) is trivially satisfied since T(0) = 0). These arguments show that linear maps are
quite special in that for them (Lipschitz) continuity, continuity at a single point, and the
property (2.2.7) are all equivalent.

Example 2.2.8. The map F considered in Example 2.2.5 is a bounded linear map of X =
C([a, b]) (with the sup norm) into ℝ. By the same argument we can check that the map
G defined on X putting

G(x)(t) =
t

∫
a

x(s)ds (x ∈ X)

is a bounded linear map of X into itself.

Further examples of bounded linear operators are given in the Additions to this
chapter.

The contraction mapping theorem
Definition 2.2.10. A mapping F : X → X is said to be a contraction if there exists a
constant α, 0 < α < 1, such that

d(F(x), F(y)) ≤ αd(x, y) ∀x, y ∈ X . (2.2.8)
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In other words, a contraction is a Lipschitz function with Lipschitz constant less
than 1.

Theorem 2.2.4. Let X be a complete metric space and let F : X → X be a contraction.
Then there exists a unique x ∈ X such that F(x) = x.

Remark. For a map F : X → X (with X any non-empty set), a point x ∈ X such that
F(x) = x is called a fixed point of F . Thus, Theorem 2.2.4 says that if X is a complete
metric space, then a contraction of X into itself possesses a unique fixed point.

Proof of Theorem 2.2.4
Let x0 be any point of X and define by recurrence a sequence (xn) in X on putting x1 =
F(x0), x2 = F(x1), . . . ; that is,

xn = F(xn−1), n ∈ ℕ. (2.2.9)

We claim that (xn) is a Cauchy sequence. To show this, first use (2.2.8) to prove by induc-
tion the inequality

d(xn, xn−1) ≤ α
n−1d(x1, x0), n ∈ ℕ. (2.2.10)

Next, let sn = ∑
n−1
k=0 α

k be the nth partial sum of the geometric series∑∞k=0 α
k and observe

that

d(xn, xm) ≤ d(x1, x0)|sn − sm|, n,m ∈ ℕ. (2.2.11)

This follows by the triangle inequality and (2.2.10), for we have (assuming, e. g., that
n > m)

d(xn, xm) ≤ d(xn, xn−1) + ⋅ ⋅ ⋅ d(xm+1, xm). (2.2.12)

Inequality (2.2.11), together with the convergence of the series ∑∞k=0 α
k , shows that (xn)

is a Cauchy sequence and therefore (as X is complete) that xn → x for some x ∈ X .
From (2.2.9) we then have

x = lim
n→∞

xn = lim
n→∞

F(xn−1) = F(x), (2.2.13)

where for the last equality we have used Theorem 2.2.2. Finally, to show the uniqueness
of the fixed point x, assume by way of contradiction that there is an y ∈ X with y ̸= x
such that F(y) = y. Then by (2.2.8) we have

d(x, y) = d(F(x), F(y)) ≤ αd(x, y) < d(x, y),

which is absurd. This completes the proof of Theorem 2.2.4.
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More on metric spaces
Closed sets. Closure of a set
Let (X , d) be a metric space.

Definition 2.2.11. A subset A ⊂ X is said to be closed if its complement Ac = X \ A is
open.

It follows thatX itself and the empty set 0 are closed, and so is a finite union of closed
sets and an arbitrary intersection of closed sets. The interval [a, b] = {x ∈ ℝ : a ≤ x ≤ b}
is a closed subset of ℝ, for ℝ \ [a, b] = ]−∞, a[ ∪ ]b, +∞[. More generally, consider the
following.

Exercise 2.2.10. Show that the closed ball B′(x, r) = {y ∈ X : d(y, x) ≤ r} is a closed set.

Proposition 2.2.1. In a metric space, a subset A is closed if and only if for any convergent
sequence (xn) ⊂ A we have lim xn ∈ A.

Proof. Assumefirst thatA is closed and suppose byway of contradiction that there exists
a sequence (xn) ⊂ A which is convergent but such that x ≡ lim xn ∉ A. Then x ∈ A

c , and
as Ac is open it follows that B(x, r) ⊂ Ac for some r > 0. As xn → x, we also have
xn ∈ B(x, r) for n sufficiently large, thus contradicting the fact that (xn) ⊂ A.

Suppose now that for any convergent sequence (xn) ⊂ A we have lim xn ∈ A. We
claim thatA is thennecessarily closed, for otherwiseAcwouldnot be open, and therefore
there would be a point z ∈ Ac not interior to Ac . Thus, for any r > 0, B(z, r) ̸⊂ Ac , that is,
B(z, r) ∩ A ̸= 0. Therefore, taking r = 1

n (n ∈ ℕ) we obtain in particular

∀n ∈ ℕ ∃xn ∈ A : d(xn, z) <
1
n
.

We have thus constructed a sequence (xn) ⊂ A which is convergent, but whose limit
z ∉ A, contradicting our assumption.

Definition 2.2.12. Given a subset A of X , a point x ∈ X is said to be a cluster point of A if
any neighborhood of x contains points of A, that is, if

B(x, r) ∩ A ̸= 0 for any r > 0.

The set of all cluster points of A is called the closure of A and is denoted with A.

Example 2.2.9. Let A ⊂ ℝ be bounded from above; then L = supA is a cluster point
of A (which may or may not belong to A; in the former case, it is the maximum of A).
Similarly, if A is bounded from below, then infA ∈ A.

Evidently, we have A ⊂ A. Further properties of A can be gained through the follow-
ing exercises.

Exercise 2.2.11. For any set A ⊂ X , we have (A)c = int(Ac).
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Using the corresponding statements concerning open sets and the interior of a set
(see in particular Exercise 2.2.6), we then have the following proposition.

Proposition 2.2.2. The closure A of a set A is a closed set. A is closed if and only if A = A.

Exercise 2.2.12. If A ⊂ B, then A ⊂ B.

Exercise 2.2.13. It follows in particular from Exercises 2.2.10 and 2.2.12 and Proposi-
tion 2.2.2 that B(x, r) ⊂ B′(x, r). Give an example in which strict inclusion holds and
show that on the other hand B(x, r) = B′(x, r) if X = ℝn.

Finally, arguing as in Proposition 2.2.1, we easily get a characterization of A via con-
vergent sequences.

Proposition 2.2.3. Let A ⊂ X and let x ∈ X. Then x ∈ A if and only if there exists a
sequence (xn) ⊂ A such that lim xn = x.

Bounded sets. Diameter of a set
Recall that a subset A ⊂ ℝ is said to be bounded if it is bounded from above and from
below, that is, if there exist m,M ∈ ℝ such that m ≤ x ≤ M for all x ∈ A. Taking
R = max{|m|, |M |}, we then easily verify that |x| ≤ R for all x ∈ A and in turn that
|x − y| ≤ 2R for any x, y ∈ A.

Definition 2.2.13. A subset A of a metric space X with distance d is said to be bounded
if there exists k > 0 such that d(x, y) ≤ k for all x, y ∈ A. In this case the number
d(A) ≡ sup{d(x, y) : x, y ∈ A} is called the diameter of A.

For instance, d(B(x, r)) ≤ 2r. The expected equality d(B(x, r)) = 2r holds if X = ℝn

or, more generally, if X is a normed vector space.

Proposition 2.2.4. Let A ⊂ X. Then the following properties are equivalent:
(i) A ⊂ B(x,R) for some x ∈ X and some R > 0;
(ii) A is bounded;
(iii) for any x ∈ X, there exists an R > 0 such that A ⊂ B(x,R).

Proof. This is left as an exercise.
A sequence (xn) ⊂ X is said to be bounded if the set of its points {xn : n ∈ ℕ} is a

bounded subset of X . More generally, a function f of a set S into a metric space X is said
to be bounded if the image f (S) = {f (x) : x ∈ S} is a bounded subset of X .

Exercise 2.2.14. Any convergent sequence is bounded.

Exercise 2.2.15. If a subset V of X is unbounded, then there exists a sequence (xn) ⊂ V
such that d(xn, z) → ∞, where z is any chosen point of X . (Use the fact that the inclusion
V ⊂ B(z, n) is false for every n ∈ ℕ.)
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Exercise 2.2.16. Any bounded closed subset A of ℝ has a minimum and maximum; in-
deed, supA and infA are cluster points of A (Example 2.2.9), and therefore by Proposi-
tion 2.2.2 they belong to A because A is closed.

2.3 Some function spaces

Let A be any set. We denote with B(A) the set of all bounded real-valued functions de-
fined on A:

B(A) = {f : A→ ℝ | f is bounded}.

For f , g ∈ B(A) put

d(f , g) = sup
x∈A

󵄨󵄨󵄨󵄨f (x) − g(x)
󵄨󵄨󵄨󵄨. (2.3.1)

Then d(f , g) is well defined and indeed we have the following proposition.

Proposition 2.3.1. The mapping d defined by (2.3.1) on B(A) × B(A) is a distance on B(A).

The proof of Proposition 2.3.1 (that is, the verification of properties (i), (ii), and (iii)
of Definition 2.2.1) follows by the properties (2.1.1) and (2.1.2) of the lowest upper bound
and by the properties of the absolute value |.| in ℝ, and is left as an exercise.

The significance of the metric d introduced in (2.3.1) becomes clear if we go back to
the definition of uniform convergence (Definition 2.1.1).

Proposition 2.3.2. Let (fn) be a sequence in B(A) and let f ∈ B(A). Then fn → f in the
metric space (B(A), d) if and only if fn → f uniformly on A.

The implications of the uniform convergence rest, to a good extent, on the following
two theorems.

Theorem 2.3.1. The metric space (B(A), d), with d given by (2.3.1), is complete.

Proof. Let (fn) be a Cauchy sequence in B(A); we need to prove that there exists f ∈ B(A)
such that fn → f in B(A).

(a) By (2.3.1), we have

∀x ∈ A, ∀n,m ∈ ℕ 󵄨󵄨󵄨󵄨fn(x) − fm(x)
󵄨󵄨󵄨󵄨 ≤ d(fn, fm). (2.3.2)

Hence, for any x ∈ A, (fn(x)) is a Cauchy sequence inℝ, and therefore it converges inℝ.
We can thus define a function f : A→ ℝ by the rule

f (x) ≡ lim
n→∞

fn(x) (x ∈ A); (2.3.3)

f is precisely the pointwise limit of the sequence (fn) (Section 2.1).
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(b) We now claim that f ∈ B(A) and that d(fn, f ) → 0. To this purpose fix ϵ > 0 and
let n0 ∈ ℕ be such that d(fn, fm) < ϵ for any n,m ∈ ℕ with n,m ≥ n0. Then by (2.3.2),

∀x ∈ A, ∀n,m ≥ n0
󵄨󵄨󵄨󵄨fn(x) − fm(x)

󵄨󵄨󵄨󵄨 < ϵ, (2.3.4)

whence, lettingm→∞ and using the definition (2.3.3) of f , we have

∀x ∈ A, ∀n ≥ n0
󵄨󵄨󵄨󵄨fn(x) − f (x)

󵄨󵄨󵄨󵄨 ≤ ϵ. (2.3.5)

This first shows that f is bounded, for

󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨f (x) − fn0 (x)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨fn0 (x)
󵄨󵄨󵄨󵄨 ≤ ϵ + K0

for all x ∈ A and some K0 ∈ ℝ. Moreover, (2.3.5) also yields

d(fn, f ) = sup
x∈A

󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨 ≤ ϵ

for all n ≥ n0, showing that (fn) converges to f in B(A).

Suppose now that A ⊂ ℝ and set

CB(A) = C(A) ∩ B(A),

where C(A) = {f : A→ ℝ|f is continuous}. We then have the following theorem.

Theorem 2.3.2. The metric space (CB(A), d), with d given by (2.3.1), is complete.

Proof. Let (fn) be a Cauchy sequence in CB(A); then it is a Cauchy sequence in B(A) and
therefore, by Theorem 2.3.1, it converges to an f ∈ B(A) in the metric (2.3.1). It remains
to show that f is continuous in A. To this purpose, fix a point x0 ∈ A and an ϵ > 0. Then
because of the uniform convergence of fn to f , there exists an index n0 ∈ ℕ such that
d(fn, f ) < ϵ/3 for any n ≥ n0. On the other hand, as each fn is continuous by assumption,
there also exists a δ(= δn0 ) > 0 such that |fn0 (x) − fn0 (x0)| < ϵ/3 whenever x ∈ A and
|x − x0| < δ. It follows that for such points x we have

󵄨󵄨󵄨󵄨f (x) − f (x0)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨f (x) − fn0 (x)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨fn0 (x) − fn0 (x0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨fn0 (x0) − f (x0)

󵄨󵄨󵄨󵄨 < ϵ,

which shows the continuity of f at x0 and thus ends the proof of Theorem 2.3.2.

It is convenient to state, independently from completeness, the basic relation be-
tween uniform convergence and continuity that comes to light in the proof of Theo-
rem 2.3.2:

Proposition 2.3.3. If a sequence of bounded continuous functions from A to ℝ converges
uniformly on A to a bounded function f , then f is continuous.
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Remark 2.3.1. Theorem 2.3.2 and Proposition 2.3.3 hold unaltered if A is a subset of ℝn

(or in fact of any metric space): in the proof, we just have to replace the interval ]x0 −
δ, x0 + δ[ with the ball B(x0, δ). Now if we take in particular A ⊂ ℝn to be closed and
bounded, then we can invoke the Weierstrass theorem, Theorem 0.0.3, to ensure that
any continuous function defined on A is bounded and in fact attains its maximum and
minimum value; therefore, in such case we have

CB(A) = C(A)

and the distance (2.3.1) becomes

d(f , g) = max
x∈A
󵄨󵄨󵄨󵄨f (x) − g(x)

󵄨󵄨󵄨󵄨. (2.3.6)

We thus have the following result.

Corollary 2.3.1. If K ⊂ ℝn is closed and bounded, then C(K) – equipped with the dis-
tance (2.3.6) – is a complete metric space.

Application: local existence and uniqueness of solutions to the IVP for first-order
ODEs
With the help of the previous two sections, we are ready to state and prove one of the
simplest existence and uniqueness results for solutions of the IVP (Chapter 1, Section 1.1)

{
x′ = f (t, x)
x(t0) = x0,

(2.3.7)

where f is a real function defined on an open set A ⊂ ℝ2 and (t0, x0) ∈ A. Recall that f is
said to be Lipschitzian with respect to the second variable in A if there exists a constant
L > 0 such that

󵄨󵄨󵄨󵄨f (t, x) − f (t, y)
󵄨󵄨󵄨󵄨 ≤ L|x − y| ∀(t, x), (t, y) ∈ A. (2.3.8)

We consider the particular case in which A is an (open) strip in the plane: this geomet-
rical assumption helps to make transparent the proof of the statement below.

Theorem 2.3.3. Let f : I × ℝ → ℝ, with I an open interval in ℝ. Assume that:
(a) f is continuous in I × ℝ;
(b) f is Lipschitzian with respect to the second variable in I × ℝ.

Then given any (t0, x0) ∈ I ×ℝ, there exists a neighborhood I0 of t0, I0 ⊂ I, such that (2.3.7)
has a unique solution defined in I0.

Proof. Fix (t0, x0) ∈ I × ℝ and let r1 > 0 be such that ]t0 − r1, t0 + r1[ ⊂ I . Then let r0 be
such that 0 < r0 < min{r1, 1/L}, where L is as in (2.3.8), and put I0 = [t0 − r0, t0 + r0]. By
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Lemma 1.1.2, proving the theorem is equivalent to proving the existence and uniqueness
of a fixed point for the map F : C(I0) → C(I0) defined in (1.1.7) and relative to I0, that is,

F(u)(t) = x0 +
t

∫
t0

f (s, u(s)) ds, t ∈ I0. (2.3.9)

However, by Corollary 2.3.1, X = C(I0) – equipped with the distance (2.3.6) relative to I0
– is a complete metric space and thus by the contraction mapping theorem, it will be
enough to show that

d(F(u), F(v)) ≤ αd(u, v) (2.3.10)

for some α with 0 < α < 1 and for all u, v ∈ X . Indeed, this follows from the inequalities
(holding for all t ∈ I0 with t > t0)

󵄨󵄨󵄨󵄨F(u)(t) − F(v)(t)
󵄨󵄨󵄨󵄨 ≤

t

∫
t0

󵄨󵄨󵄨󵄨f (s, u(s)) − f (s, v(s))
󵄨󵄨󵄨󵄨 ds (2.3.11)

≤
t

∫
t0

L󵄨󵄨󵄨󵄨u(s) − v(s)
󵄨󵄨󵄨󵄨 ds ≤ Ld(u, v)|t − t0| ≤ Lr0d(u, v).

Arguing similarly for the case t < t0 and taking the sup of the first term in this chain of
inequalities, we obtain (2.3.10) with α = Lr0 < 1, whence the conclusion follows.

Theorem 2.3.3 can be greatly improved to give the standard form of the local exis-
tence and uniqueness principle for solutions of (2.3.7), which requires merely that f be
locally Lipschitzian with respect to the second variable and puts no restriction on the
open set A where f is defined; see the statement given in Chapter 1, Theorem 1.1.1, and
see for instance Hale [5], Walter [1], and Dieudonné [7] for proofs of it.

2.4 Banach spaces

Definition 2.4.1. A Banach space is a normed vector space E that is complete as ametric
space with the distance induced by the norm (see (2.2.2)),

d(x, y) ≡ ‖x − y‖ (x, y ∈ E). (2.4.1)

Example 2.4.1. ℝn endowed with the Euclidean norm ‖x‖ = (∑n1 x
2
i )

1
2 (or with any other

norm, see Exercise 2.7.8) is a Banach space.

Example 2.4.2. The function spaces B(A), CB(A) considered in Section 3.3 equippedwith
the norm



68 � 2 Metric and normed spaces

‖f ‖ = sup
x∈A

󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 (2.4.2)

inducing the distance (2.3.1) of the uniform convergence in A are Banach spaces, as
shown in Theorems 2.3.1 and 2.3.2.

The latter example can be generalized in two directions. The first is about the do-
main and range of the functions that one needs to deal with, for we can consider the
space

B(A; ℝm) = {f : A→ ℝm | f is bounded} (2.4.3)

with A any set and the space

CB(A; ℝ
m) = {f : A→ ℝm | f is bounded and continuous} (2.4.4)

with A ⊂ ℝn. Equipped with the norm

‖f ‖ = sup
x∈A

󵄩󵄩󵄩󵄩f (x)
󵄩󵄩󵄩󵄩,

these are Banach spaces by virtue of the completeness of the target spaceℝm, as becomes
clear by inspecting the proof of Theorems 2.3.1 and 2.3.2. Actually, the same arguments
yield – more generally – the completeness of the spaces

B(A; E) and CB(A; E),

which are defined in complete analogywith (2.4.3) and (2.4.4), respectively, replacing the
target space ℝm with a general Banach space E. In the same vein, one might consider
CB(A; E) when A is a subset of any metric space, and so on, if useful or necessary.

The second line to follow in order to obtain new Banach spaces from classes of func-
tions concerns their regularity, meaning their property of being differentiable up to a
given order. Consider first the space

C1([a, b]) ≡ {f : [a, b] → ℝ : f is differentiable in [a, b] and f ′ is continuous in [a, b]}.
(2.4.5)

It is easily checked that this is a vector space and that

‖f ‖1 ≡ ‖f ‖ +
󵄩󵄩󵄩󵄩f
′󵄩󵄩󵄩󵄩 (2.4.6)

is a norm on it. We ask whether this is a Banach space, which we know to be true for
C([a, b]). The affirmative answer to this question rests on Theorem 2.1.3 and its Corol-
lary 2.1.1. Indeed, let (fn) ⊂ C

1([a, b]) be a Cauchy sequence. By (2.4.6), we see that both
(fn) and (f

′
n ) are Cauchy sequences in C([a, b]). As this is complete, we thus find two con-

tinuous functions f , g on [a, b] such that
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fn → f , f ′n → g in C([a, b]),

that is, uniformly on [a, b]. However, Corollary 2.1.1 then ensures that f ∈ C1(I) and
f ′ = g; using this and (2.4.6), we conclude that

‖fn − f ‖1 ≡ ‖fn − f ‖ +
󵄩󵄩󵄩󵄩f
′
n − f
′󵄩󵄩󵄩󵄩 → 0 (2.4.7)

as n → ∞, proving that (fn) converges to f in C
1([a, b]) and thus proving the complete-

ness of the latter. In the same way one proves that given any k ∈ ℕ, the space of k-times
continuously differentiable functions on [a, b]

Ck([a, b]) ≡ {f : [a, b] → ℝ : f is k times diff. in [a, b] and f ′i ∈ C([a, b]) ∀i = 1, . . . , k}
(2.4.8)

is a Banach space for the norm

‖f ‖k ≡ ‖f ‖ +
󵄩󵄩󵄩󵄩f
′󵄩󵄩󵄩󵄩 + ⋅ ⋅ ⋅ +

󵄩󵄩󵄩󵄩f
′
k
󵄩󵄩󵄩󵄩. (2.4.9)

The spaces Ck(Ω),Ω ⊂ ℝn

The discussion provided so far for continuous or regular (real-valued) functions of one
real variable can be naturally extended to functions of several real variables, replac-
ing the open bounded interval ]a, b[ ⊂ ℝ with an open bounded subset Ω ⊂ ℝn. Thus,
starting with the space

C(Ω) = {f : Ω→ ℝ | f continuous}, (2.4.10)

which is a Banach space for the norm (2.4.2), we will also meet the spaces Ck(Ω) (k ≥ 1)
of k-times continuously differentiable functions on Ω; each of them is a Banach space
when equipped with the norm similar to (2.4.9) and involving all partial derivatives up
to and including those of order k of f . For instance, the norm in C1(Ω) is given by

‖f ‖C1(Ω) ≡ ‖f ‖ +
n
∑
i=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕f
𝜕xi

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
. (2.4.11)

Note that the partial derivatives at points of the boundary 𝜕Ω of Ω must be defined ap-
propriately. See Section 4.1 of Chapter 4 for some remarks on this issue.

Convergence of series in normed and Banach spaces
In a vector space E, we can by definition make the sum of two, and therefore of a fi-
nite number of, vectors of E. It is important (both conceptually and practically) to give
meaning to “infinite sums” of vectors. If we have a norm in E, this can be plainly done
in complete analogy with the limit process that we use for series of real numbers.
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Definition 2.4.2. Let E be a normed vector space with norm ‖.‖. If (xn) is a sequence of
vectors of E, we say that the series ∑∞n=1 xn converges if the sequence (sn) of the partial
sums of the series, defined putting

sn =
n
∑
i=1

xi (n ∈ ℕ),

converges in E; that is, if there exists an s ∈ E such that sn → s, i. e., ‖sn − s‖ → 0, as
n→∞. In this case we write

s =
∞
∑
n=1

xn (2.4.12)

and call s the sum of the series ∑∞n=1 xn.

Theorem 2.4.1. Let E be a Banach space and let (xn) ⊂ E. If the numerical series∑
∞
n=1 ‖xn‖

converges, then the series ∑∞n=1 xn converges in E.

Proof. Let (sn), sn = ∑
n
i=1 xi (n ∈ ℕ), be the sequence of the partial sums of the series

∑∞n=1 xn. For any n,m ∈ ℕ we have, assuming for instance that n > m,

‖sn − sm‖ =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

n
∑
i=1

xi −
m
∑
i=1

xi
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

n
∑

i=m+1
xi
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤

n
∑

i=m+1
‖xi‖,

so that, putting tn = ∑
n
i=1 ‖xi‖, we conclude that

‖sn − sm‖ ≤
n
∑

i=m+1
‖xi‖ = |tn − tm| ∀n,m ∈ ℕ. (2.4.13)

Our assumption implies that (tn) is a convergent sequence, and (2.4.13) thus implies that
(sn) ⊂ E is a Cauchy sequence and therefore converges in E as E is complete by assump-
tion.

We have seen a first application of Theorem 2.4.1 in Section 1.4 of Chapter 1, dealing with
the definition of the exponentialmatrix eA of a givenmatrixA, and showing its relevance
for first-order systems of linear ODEs with constant coefficients. A second fundamental
consequence is discussed next.

Total convergence of a series of bounded functions
Suppose that (fn) is a sequence of bounded real functions defined in a set A and suppose
that the numerical series

∞
∑
n=1
‖fn‖, ‖fn‖ = sup

x∈A

󵄨󵄨󵄨󵄨fn(x)
󵄨󵄨󵄨󵄨 (2.4.14)
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is convergent, in which case the series ∑∞n=1 fn is said to be totally convergent. Then
∑∞n=1 fn converges uniformly in A; this follows immediately on applying Theorem 2.4.1 to
the Banach space E = B(A) recalled in Example 2.4.2. An equivalent way of saying that
the total convergence implies uniform convergence is of course given by theWeierstrass
M-test, statedwithout proof in Proposition 2.1.1. It also follows fromProposition 2.3.3 (ap-
plied to the sequence (sn) of the partial sums of the series∑

∞
n=1 fn) that if each function fn

of a totally convergent series is continuous, then so is the sum f of the series; moreover,
the series can be integrated term-by-term as stated in Corollary 2.1.2. Likewise, on the
basis of Corollary 2.1.3, the property that f ∈ C1(I) if each term fn ∈ C

1(I) is granted if
the two series

∞
∑
n=1
‖fn‖,

∞
∑
n=1

󵄩󵄩󵄩󵄩f
′
n
󵄩󵄩󵄩󵄩

are both convergent.

2.5 Compactness
Subsequences
Given a sequence (xn)n∈ℕ of points of a setX and a strictly increasingmapping k → nk of
ℕ into itself, we say that the sequence (xnk )k∈ℕ is a subsequence of (xn)n∈ℕ. For example,
( 1k2 ) is a subsequence of (

1
n ); likewise, (xk3 ), (x2k), (x2k−1) – and of course (xk) itself – are

subsequences of the given sequence (xn).

Proposition 2.5.1. Let (X , d) be a metric space, let (xn) ⊂ X, and let x0 ∈ X. If xn → x0 as
n→∞, then xnk → x0 as k →∞ for any subsequence (xnk ) of (xn).

The proof of Proposition 2.5.1 follows immediately from the definitions and the in-
equality nk ≥ k(k ∈ ℕ), which is easily proven to hold for any strictly increasing map-
ping k → nk ofℕ intoℕ.

The Bolzano–Weierstrass theorem
Theorem 2.5.1. Any sequence of points in a closed, bounded interval of the real line con-
tains a convergent subsequence.

Proof. Let [a, b] ⊂ R be as in the statement and let (xn) be any sequence with values in
[a, b]. We first show that there exists a sequence (Tk)k∈ℕ of closed subintervals of [a, b],

Tk = [ak , bk] ⊂ [a, b] ≡ T0

having the following properties:
(i) Tk ⊂ Tk−1;
(ii) bk − ak =

b−a
2k ;

(iii) the set of indices Ik ≡ {n ∈ ℕ : xn ∈ Tk} is infinite.
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To construct the sequence (Tk), start cutting [a, b] = T0 in its midpoint obtaining two in-
tervals of equal length b−a

2 ; at least one of them contains the points xn for infinitelymany
indices n ∈ ℕ; choose it and call it T1, and then iterate the procedure. We now construct
a subsequence (xnk )k∈ℕ of (xn) as follows. Let n1 = min I1 and for each integer k > 1 put

nk = min{n ∈ Ik : n > nk−1} = min{n ∈ ℕ : xn ∈ Tk and n > nk−1}.

In particular, xnk ∈ Tk for each k ∈ ℕ. We claim that the sequence (xnk )k∈ℕ has the
following property: for any k0 ∈ ℕ and any k, h ∈ ℕ with k, h ≥ k0 we have

|xnk − xnh | ≤
b − a
2k0
. (2.5.1)

Indeed, if k ≥ k0, then by (i) xnk ∈ Tk0 , and similarly for xnh ; therefore, |xnk − xnh | ≤
bk0 − ak0 , and thus (ii) yields (2.5.1). The latter inequality shows that (xnk ) is a Cauchy
sequence of real numbers, and the completeness of ℝ proves that (xnk ) converges to
some x0 ∈ ℝ; however, as [a, b] is a closed subset of ℝ, it follows that x0 ∈ [a, b]. This
ends the proof of Theorem 2.5.1.

Compact sets
Definition 2.5.1. A subset K of a metric space X is said to be compact if any sequence
(xn) ⊂ K contains a subsequence converging to a point of K .

The whole space X may be compact; we then speak of a compact metric space.
Theorem 2.5.1 can then be rephrased as follows.

Theorem 2.5.2. Any closed, bounded interval [a, b] is a compact subset of ℝ.

The next two statements show some basic properties of compact sets.

Theorem 2.5.3. Let X be a metric space and let K ⊂ X. Then:
(a) if K is compact, then K is closed and bounded;
(b) if F ⊂ X is compact, K ⊂ F, and K is closed, then K is compact.

Proof. This is left as an exercise.
Let us now go back to the special case X = ℝn, in which – by virtue of the Bolzano–

Weierstrass theorem – one can characterize the compact sets. An n-dimensional (closed
and bounded) interval is by definition a subset I ⊂ ℝn of the form

I = [a1, b1] × [a2, b2] × ⋅ ⋅ ⋅ × [an, bn].

Proposition 2.5.2. Any n-dimensional interval is a compact subset of ℝn.

Proof. It is enough to deal with the case n = 2. Let (zn) be any sequence in I = [a, b] ×
[c, d]. Put zn = (xn, yn) and let (xnk ) be a subsequence of (xn) that converges to a point
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x0 ∈ [a, b] (Theorem 2.5.2). Consider the corresponding subsequence (ynk ) of (yn); again
by Theorem 2.5.2, this will contain a further subsequence (ynki ) converging to some y0 ∈
[c, d]. Now the subsequence (znki ) of (zn),

znki = (xnki , ynki ),

will converge to z0 ≡ (x0, y0) ∈ I , and this proves our claim.

Theorem 2.5.4. Any closed and bounded subset of ℝn is compact.

Proof. If K ⊂ ℝn is bounded, we can find an n-dimensional interval I such that K ⊂ I .
As I is compact by Proposition 2.5.2, it follows by part (b) of Theorem 2.5.3 that K too is
compact if it is further assumed to be closed, as we do.

Using also part (a) of Theorem 2.5.3, we therefore conclude that a subset of ℝn is
compact if and only if it is closed and bounded.

Compactness and continuity
Theorem 2.5.5. Let X , Y be metric spaces, let K ⊂ X, and let f : K → Y. If f is continuous
and K is compact, then f (K) is a compact subset of Y .

Proof. Let (yn) be a sequence in f (K), and for each n ∈ ℕ let xn ∈ K be such that
f (xn) = yn. As K is compact, the sequence (xn) contains a subsequence (xnk ) converging
to some x0 ∈ K . Using the continuity of f and Theorem 2.2.2, it follows that f (xnk ) → f (x0)
as k → ∞. That is to say, the subsequence (ynk ) of (yn) converges to f (x0) ∈ f (K), as de-
sired.

Theorem 2.5.6. Let X be a metric space, let K ⊂ X, and let f : K → ℝ. If f is continuous
and K is compact, then f attains its minimum and its maximum value in K; that is, there
exist x1, x2 ∈ K such that

f (x1) ≤ f (x) ≤ f (x2) ∀x ∈ K . (2.5.2)

Proof. Indeed, it follows by Theorem2.5.5 andby (a) of Theorem2.5.3 that f (K) is a closed
bounded subset ofℝ. Therefore – see Exercise 2.2.16 – there exist y1, y2 ∈ f (K) such that
y1 ≤ y ≤ y2 for all y ∈ f (K), whence (2.5.2) follows on putting yi = f (xi) with xi ∈ K
(i = 1, 2).

As a special case, we obtain the familiar Weierstrass theorem recalled in the Pre-
liminaries (Theorem 0.0.3).

Theorem 2.5.7. Let K ⊂ ℝn and let f : K → ℝ. If f is continuous and K is closed and
bounded, then f attains its minimum and its maximum value in K.

Example 2.5.1 (Not every closed bounded set is compact). Let X = C([0, 1]) with the
norm ‖x‖ = max0≤t≤1 |x(t)|. The closed ball B′(0, 1) = {x ∈ X : ‖x‖ ≤ 1} is closed
and bounded, but not compact. To see this, consider for instance the sequence (xn) ⊂
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K ≡ B′(0, 1) defined putting xn(t) = t
n for 0 ≤ t ≤ 1 and n ∈ ℕ. Then (xn) contains no

convergent subsequence, for if it did, calling (xnk ) this subsequence and x0 ∈ X its limit,
we should have in particular

lim
k→∞

xnk (t) = x0(t) ∀t ∈ [0, 1],

which leads to a contradiction, since x0 should be continuous on [0, 1] while x0(t) = 0
for 0 ≤ t < 1 and x0(1) = 1.

Evidently, any bounded sequence (xn) in C([a, b]) converging pointwisely to a dis-
continuous function would equally well serve as a counterexample to the statement
“K closed and bounded⇒ K compact.”

Compactness and uniform continuity (Heine–Cantor’s theorem)
Theorem 2.5.8. Let X , Y be metric spaces, let K ⊂ X, and let f : K → Y. If f is continuous
and K is compact, then f is uniformly continuous.

Proof. Suppose by way of contradiction that f is not uniformly continuous, so that (by
Definition 2.2.8) for some ϵ0 > 0, it happens that

∀δ > 0, ∃x, y ∈ K : d(x, y) < δ and d′(f (x), f (y)) ≥ ϵ0.

Choosing δ = 1
n (n ∈ ℕ), we find therefore two sequences (xn), (yn) ⊂ K such that

d(xn, yn) <
1
n

and d′(f (xn), f (yn)) ≥ ϵ0, ∀n ∈ ℕ. (2.5.3)

Let (xnk ) be a subsequence of (xn) converging to a point x0 ∈ K . As d(xnk , ynk ) ≤
1
nk
and

nk ≥ k for all k ∈ ℕ, it follows that also the subsequence (ynk ) of (yn) converges to x0.
Therefore, again by Theorem 2.2.2, it follows that, as k →∞,

f (xnk ) → f (x0) and f (ynk ) → f (x0).

In turn, this implies by the triangle inequality that d′(f (xnk ), f (ynk )) → 0 as k → ∞.
However, this contradicts the second inequality in (2.5.3) and thus proves the theorem.

Example 2.5.2. When the domain K of f is not compact, f may be continuous but not
uniformly continuous, as the following example shows. Let X = ℝ, let K = ]0, 1], and let
f (x) = 1

x for x ∈ K . Then f is not uniformly continuous in K , because for any δ > 0 we
can find x, y ∈ K with |x − y| < δ but |f (x) − f (y)| ≥ 1. To see this it is enough, given any
δ > 0, to take x with 0 < x < min{δ, 1} and y = x

2 ; we then have

|x − y| = x
2
< x < δ and

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
x
−
1
y

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
x
−
2
x

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
1
x
> 1.
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Example 2.5.3 (Continuity of the Nemytskii operator). Let X = C([a, b]) equipped with
the norm ‖x‖ = maxa≤t≤b |x(t)|, let f : [a, b] × ℝ → ℝ be continuous, and let Nf : X → X
be the Nemytskii operator induced by f (Remark 1.1.1). Then Nf is continuous. To prove
this, we can invoke once more Theorem 2.2.2 and show that for any sequence (xn) ⊂ X
convergent to some x0, (Nf (xn)) converges to Nf (x0) in X . To this purpose, fix ϵ > 0; we
need to find an n0 ∈ ℕ such that for every n ≥ n0 we have

󵄨󵄨󵄨󵄨Nf (xn)(t) − Nf (x0)(t)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨f (t, xn(t)) − f (t, x0(t))

󵄨󵄨󵄨󵄨 < ϵ ∀t ∈ [a, b]. (2.5.4)

Fix R > 0 and let K = [−R,R]. By Heine–Cantor’s theorem, f is uniformly continuous
in [a, b] × K , and thus there is a δ > 0 such that for any (t, x), (s, y) ∈ [a, b] × K with
|t − s| + |x − y| < δ, we have |f (t, x) − f (s, y)| < ϵ. In particular, for any x, y ∈ K with
|x − y| < δ we have

󵄨󵄨󵄨󵄨f (t, x) − f (t, y)
󵄨󵄨󵄨󵄨 < ϵ ∀t ∈ [a, b]. (2.5.5)

We can assume that δ ≤ R, and as (xn) converges uniformly to x0, we can find an n0 ∈ ℕ
such that, for every n ≥ n0, the inequality

󵄨󵄨󵄨󵄨xn(t) − x0(t)
󵄨󵄨󵄨󵄨 < δ (2.5.6)

is satisfied for every t ∈ [a, b]; using this in (2.5.5), we obtain (2.5.4) and thus prove that
(Nf (xn)) converges to Nf (x0) uniformly on [a, b], as desired.

2.6 Connectedness
Definition 2.6.1. A metric space X is said to be disconnected if there exist two subsets
A,B of X such that:
(i) A ̸= 0,B ̸= 0;
(ii) A ∩ B = 0, A ∪ B = X ;
(iii) both A and B are open.

In other words, X is disconnected if it is the union of two open, non-empty, disjoint
subsets of X .

Remark 2.6.1. It follows immediately from this definition that X is disconnected if and
only if it has a subset A with A ̸= 0, A ̸= X , and A is both open and closed in X .

Of course Definition 2.6.1 applies also to a subset F of X , meaning that the metric
space (F , dF ) is disconnected, with dF being the restriction to F × F of the distance d
given on X . This amounts to requiring that F is the disjoint union of two non-empty
subsets A and B of F which are open in (F , dF ), or – as is usually said – open relative to F .
There is an easy characterization of the relatively open subsets of a given set F in X .

Proposition 2.6.1. Let F ⊂ X. A subset A of F is open relative to F iff there exists an open
subset U of X such that A = F ∩ U.
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Proof. In (F , dF ), the open ball of center x ∈ F and radius r > 0 is the set

BF (x, r) = {y ∈ F : d(y, x) < r} = F ∩ B(x, r).

If A ⊂ F is open in F , then by definition for any x ∈ A there exists an r = rx > 0 such
that BF (x, rx) = F ∩B(x, rx) ⊂ A. Let U = ⋃x∈A B(x, rx); then U is open in X and F ∩U ⊂ A.
The reverse inclusion evidently holds, and therefore A = F ∩U . Vice versa, assume that
A = F ∩ U for some open U ⊂ X . Then for any x ∈ A there exists an r > 0 such that
B(x, r) ⊂ U ; therefore BF (x, r) ⊂ F ∩ U = A, proving that A is open relative to F .

Examples.
(i) If A ⊂ F is open (in X), then it is open relative to F .
(ii) [0, 1[ is open in [0,∞[ and in [0, 2], but not in ℝ.
(iii) The set {(x, y) ∈ ℝ2 : x ≥ 0, y ≥ 0, x2 + y2 < 1} = F ∩ B(0, 1) is open in the “first

quadrant” F = {(x, y) ∈ ℝ2 : x ≥ 0, y ≥ 0}, but not in ℝ2.

With the help of Proposition 2.6.1 we can easily give examples of disconnected sub-
sets in any metric space X . Indeed, let F ⊂ X be such that F = A ∪ B with A ̸= 0,B ̸= 0
and suppose that A and B can be separated by means of two open subsets U and V of X ,
in the sense that A ⊂ U , B ⊂ V , and U ∩ V = 0. Then F is disconnected, for A and B are
open relative to F; indeed, the stated assumptions imply that A = F ∩ U , B = F ∩ V .

Examples.
(i) F = [0, 1] ∪ [2, 3] is a disconnected subset of ℝ.
(ii) F = [1, 2[∪]2, 3] is disconnected. More generally, if J = (a, b) ⊂ ℝ is any interval and

x0 is any interior point of J , then F = J \{x0} = (a, x0[∪]x0, b) is disconnected; indeed,
(a, x0[= F∩] −∞, x0[ is open relative to F , and similarly for ]x0, b).

(iii) F = {(x, y) ∈ ℝ2 : xy > 0} is a disconnected subset of ℝ2, for F is the union of two
disjoint non-empty open sets in ℝ2.

Definition 2.6.2. A metric space X is said to be connected if it is not disconnected.

Thus, one way to express the connectedness of X is that X has no subsets which are
both open and closed except X itself and the empty set 0.

Theorem 2.6.1. Let F ⊂ ℝ. Then F is connected if and only if F is an interval.

Proof. (a) Observe first that F is an interval if and only if for any x, y ∈ F such that x < y
one has [x, y] ⊂ F . Therefore, saying that F is not an interval means that there exist
points x0, y0 ∈ F and a point z0 such that x0 < z0 < y0 and z0 ∉ F . Then put

Az0 = F⋂]−∞, z0[, Bz0 = F⋂]z0, +∞[

to obtain two non-empty, disjoint, relatively open subsets of F whose union gives all of F ,
proving that F is disconnected.
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(b) We prove the reverse implication in Theorem 2.6.1 in the case F = ℝ. (The proof
in the general case is essentially the same, with the addition of some technicalities.)
Assume thus by way of contradiction that ℝ = A ∪ B for some non-empty disjoint open
sets A,B ⊂ ℝ. Pick an x ∈ A and an y ∈ B and assume for instance that x < y. Put

q = sup(A⋂[x, y]).

Then we have

x ≤ q ≤ y and q ∈ A,

the last assertion following by Example 2.2.9. However, A is closed, so q ∈ A. As y ∈ B, it
follows first that necessarily q < y. Moreover, as A is open, we have ]q − r, q + r[⊂ A for
some r > 0, and diminishing r if necessary we can also assume that q+ r < y. Therefore,
[q, q + r[⊂ A ∩ [x, y], implying that

q + r = sup[q, q + r[ ≤ sup(A⋂[x, y]) = q,

which is absurd. This contradiction proves that ℝ is connected and ends the proof of
Theorem 2.6.1.

Connectedness and continuity
Theorem 2.6.2. Let X , Y be metric spaces and let f : X → Y. If f is continuous and X is
connected, then f (X) is a connected subset of Y .

Proof. Suppose by way of contradiction that f (X) is disconnected and let A′,B′ be rela-
tively open subsets of f (X) such that

A′ ̸= 0, B′ ̸= 0; A′ ∩ B′ = 0; A′ ∪ B′ = f (X).

Let A = f −1(A′) = {x ∈ X : f (x) ∈ A′} and similarly let B = f −1(B′). Then it is readily
verified (see Exercise 2.6.1 below) that

A ̸= 0, B ̸= 0; A ∩ B = 0; A ∪ B = X .

Let us now show that A and B are open subsets of X , proving that X is disconnected,
contrary to the assumption. Indeed, as A′ is open in f (X), there exists an open subset V
of Y such that A′ = f (X) ∩ V (Proposition 2.6.1). Therefore,

A = f −1(A′) = f −1(f (X) ∩ V) = f −1(V )

and since f is continuous by assumption, the result follows by the characterization of
such property via the inverse images given in Theorem 2.2.3. For the last equality in the
formula above, see again Exercise 2.6.1 below.
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Exercise 2.6.1. Let X , Y be any two sets and let f be any map of X into Y . Check that for
any subsets H and K of Y one has

f −1(H ∪ K) = f −1(H) ∪ f −1(K) and f −1(H ∩ K) = f −1(H) ∩ f −1(K).

Deduce from this the following:
(i) Any partition of f (X) induces a partition of X via the inverse images through f of

the sets of the partition.
(ii) For any set V ⊂ X , one has f −1(f (X) ∩ V ) = f −1(V ).

Exercise 2.6.2. Using Proposition 2.6.1 and (ii) of Exercise 2.6.1, prove that if X , Y are
metric spaces, then f : X → Y is continuous iff it is continuous as a map of X into the
metric space f (X).

The two theorems just proved allow to construct further examples of connected
spaces and sets.

Definition 2.6.3. A curve in a metric space X is a continuous map of an interval I ⊂ ℝ
into X . If γ : I → X is a curve in X , its image γ(I) ⊂ X is called the support of γ. In case
I = [a, b], the points x = γ(a), y = γ(b) are called the endpoints of γ and we say that γ
joins x and y in X .

In view of Theorems 2.6.1 and 2.6.2, this definition immediately implies the follow-
ing.

Proposition 2.6.2. The support of a curve in X is a connected subset of X.

Definition 2.6.4. A metric space X is said to be path-connected if any two of its points
can be joined by a curve in X ; in symbols,

∀x, y ∈ X ∃[a, b] ⊂ ℝ and a continuous γ : [a, b] → X : x = γ(a), y = γ(b).

Theorem 2.6.3. A path-connected metric space is connected.

Proof. Suppose by contradiction that a path-connected space X is the disjoint union of
two non-empty open sets A and B. Pick a point x ∈ A and a point y ∈ B and join them
with a curve γ defined in the interval [a, b], say. Then considering the sets

γ([a, b]) ∩ A, γ([a, b]) ∩ B

we obtain a partition of γ([a, b]) into two relatively open sets, which contradicts the
connectedness of γ([a, b]) ensured by Proposition 2.6.2.

Corollary 2.6.1. The Euclidean space ℝn is connected.

Indeed,ℝn is path-connected, because any two points x, y ∈ ℝn can be joined by the
line segment
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x + t(y − x), t ∈ [0, 1].

The support of this curve is denoted with the symbol [x, y]. Note that in case n = 1,
this symbol is already used with a different meaning, so we need to verify that they
define the same object.

Exercise 2.6.3. Check that if x, y ∈ ℝ, then

{z = x + t(y − x), t ∈ [0, 1]} = {z : x ≤ z ≤ y}.

Definition 2.6.5. A subset K of ℝn (or, more generally, of a vector space) is said to be
convex if any two of its points can be joined in K with the line segment of endpoints x
and y; in symbols,

∀x, y ∈ K ∀t ∈ [0, 1] x + t(y − x) ∈ K .

Exercise 2.6.4.
(i) Any open (or closed) ball is convex.
(ii) Any vector subspace is convex.
(iii) The intersection of any family of convex sets is convex.

We finally come to the consequences that the connectedness of a domain space X
and the continuity of a real-valued function defined on X have on the image set f (X).
Loosely speaking, it follows from Theorems 2.6.1 and 2.6.2 that in this case f (X) is one of
the intervals (a, b) of endpoints a = inf f (x), b = sup f (x) (including the cases a = −∞ or
b = +∞). Here are some more precise statements.

Theorem 2.6.4. Let X be a connectedmetric space and let f be a continuous real-valued
function defined on X. Then f takes all values between any two of its values.

Proof. Let u, v ∈ f (X) with u < v and let z ∈ ℝ be such that u < z < v. Since f (X) is an
interval, we have [u, v] ⊂ f (X), so that there is an x ∈ X such that f (x) = z.

Corollary 2.6.2. Let f : X → ℝ be continuous. If X is connected and f changes sign in X,
then f vanishes at some point of X.

Proof. The assumption is that there exist points x0 and x1 in X such that f (x0)f (x1) < 0.
Suppose for instance that f (x0) < 0 < f (x1); then it follows by Theorem 2.6.4 that there
exists an x ∈ X such that f (x) = 0.

Corollary 2.6.3. Let f : X → ℝ be continuous. If X is compact and connected, then f takes
all values between its minimum and maximum values.

Proof. f attains its minimum and maximum values on X by virtue of the Weierstrass
theorem. The conclusion thus follows again from Theorem 2.6.4.
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2.7 Additions and exercises

A1. Further properties of power series
Radius of convergence
Simple methods for the computation of the convergence radius R (Definition 2.1.2) for a
given power series – that is, for a given sequence (an) of the coefficients in (2.1.10) – are
provided by the elementary convergence rules for numerical series. One such criterion
says the following.

Lemma 2.7.1. Let∑∞0 cn be anumerical series and suppose that the limit b ≡ limn→∞|cn|
1
n

exists (finite or not). Then if b < 1, the series converges absolutely, while if b > 1, the series
does not converge.

To prove the lemma, we just have to play with the fact that given any ϵ > 0, the
inequalities b − ϵ < |cn|

1
n < b + ϵ will hold for n large enough. Thus, if b < 1 and we pick

an ϵ > 0 such that b + ϵ < 1, we will have

|cn| < (b + ϵ)
n

forn larger than somen0, ensuring the convergence of∑
∞
0 |cn|by comparisonwith (once

again!) the geometrical series, while if b > 1 and ϵ > 0 is such that b − ϵ > 1, the bound
|cn| > (b − ϵ)

n > 1 shows that cn cannot tend to zero as n →∞, and therefore the series
cannot converge.

As a consequence of Lemma 2.7.1 we have the following theorem.

Theorem 2.7.1. Given the series (2.1.10), assume that the limit

L = lim
n→∞
(|an|)

1
n (2.7.1)

exists. Then we have R = 1/L, where we put R = 0 if L = +∞ and R = +∞ if L = 0.

Proof. Simply apply Lemma 2.7.1 to (2.1.10), noting that

lim
n→∞
󵄨󵄨󵄨󵄨anx

n󵄨󵄨󵄨󵄨
1
n = L|x|.

Indeed, consider first the case 0 < L < +∞. Then if |x| < 1/L, we have L|x| < 1, so
by Lemma 1.1.1, the series ∑∞0 anx

n converges, while if |x| > 1/L, we have L|x| > 1 and
therefore the series will not converge. The extreme cases L = 0 and L = +∞ can be dealt
with in a similar way.

Exercise 2.7.1. Compute the radii of convergence of the following series:

+∞
∑
n=0

xn

nα
(α ∈ ℝ),

∞
∑
1

xn

an + bn
(a > 0, b > 0),

∞
∑
n=1

2n − 1
n2 + √n + 10

xn.
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Regularity properties of the function sum of a power series
Given the series (2.1.10) with a radius of convergence R > 0, we can consider the prop-
erties of the function defined putting

f (x) =
∞
∑
0
anx

n (−R < x < R). (2.7.2)

From Theorem 2.1.4 and Definition 2.1.2 it follows that the series in (2.7.2) converges
uniformly on each interval [−r, r] with 0 < r < R. This implies in particular that f is
continuous in the whole open interval ]−R,R[ and that we can integrate term-by-term
(Corollary 2.1.2) a power series in each interval [a, b] ⊂ ]−R,R[; in particular, we have

x

∫
0

f (t) dt = a0x + a1
x2

2
+ ⋅ ⋅ ⋅ an

xn+1

n + 1
+ ⋅ ⋅ ⋅ (2.7.3)

for every x with |x| < R. For instance, the equality 1/(1 + x) = ∑∞0 (−1)
nxn implies that

log(1 + x) =
∞
∑
0
(−1)n x

n+1

n + 1
= x − x

2

2
+
x3

3
+ ⋅ ⋅ ⋅ (|x| < 1).

We are now going to see – using the “series derivation” Corollary 2.1.3 – that the
sum of a power series has much stronger regularity properties than mere continuity.

Theorem 2.7.2. Let f be as in (2.7.2). Then f ∈ C∞(]−R,R[) and, for every k ∈ ℕ, we have

(Dk f )(x) =
∞
∑
n=k

n(n − 1) . . . (n − k + 1)anx
n−k . (2.7.4)

Proof. Fix k ∈ ℕ. Note that the expression appearing under the sum in (2.7.4) is nothing
but the kth derivative of the nth term fn(x) ≡ anx

n (n ≥ k) of the power series; thus, our
aim is to prove that for |x| < R we have

(Dk f )(x) =
∞
∑
n=k
(Dk fn)(x) =

∞
∑
n=0
(Dk fn)(x)

(note that Dk(anx
n) = 0 if n < k). However, this follows from a repeated use of Corol-

lary 2.1.3 oncewe note that the series on the right-hand side of (2.7.4) has the same radius
of convergence R as the original series in (2.7.2). To see this, multiply each term of the
series in (2.7.4) by the fixed term xk – which will not change its radius of convergence –
to obtain the conveniently modified series

∞
∑
n=k

n(n − 1) . . . (n − k + 1)anx
n (2.7.5)
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and now use Theorem 2.7.1 to compute its radius of convergence; recalling that

lim
n→∞

n
1
n = ⋅ ⋅ ⋅ = lim

n→∞
(n − k + 1)

1
n = 1

we obtain the equality

lim
n→∞
(n(n − 1) . . . (n − k + 1)|an|)

1
n = lim

n→∞
|an|

1
n = R,

proving our claim and thus proving Theorem 2.7.2.

Example 2.7.1. Theorem 2.7.2 permits to differentiate term-by-term a power series as
many times as we like within its interval of convergence. For instance, from the equality
1/(1 − x) = ∑∞k=0 x

k we derive

1
(1 − x)2

=
∞
∑
k=1

kxk−1 =
∞
∑
k=0
(k + 1)xk = 1 + 2x + 3x2 + ⋅ ⋅ ⋅ (|x| < 1),

and iterating this procedure, we can expand 1/(1 − x)3, and so on.

Taylor expansion
Putting x = 0 in (2.7.4) – so that only the first term does not vanish – we see that

ak =
Dk f (0)
k!
=
f (k)(0)
k!
∀k ∈ ℕ.

Given a function f of class C∞ in a neighborhood I = ]−a, a[ of x = 0, the series

∞
∑
k=0

f (k)(0)
k!

xk

is called the Taylor series of f centered at 0, and amain question is to see if it converges
to f in I (or a smaller neighborhood of x = 0). Simple examples show that this is not
always true, and we conclude this quick account reporting a simple criterion ensuring
that the power series expansion of a C∞ function takes place.

Theorem 2.7.3. Let f ∈ C∞(]−r, r[). Suppose that f has uniformly bounded deriva-
tives in (]−r, r[) in the sense that there is an M > 0 such that

󵄨󵄨󵄨󵄨f
(n)(x)󵄨󵄨󵄨󵄨 ≤ M ∀x ∈ ]−r, r[, ∀n ∈ ℕ. (2.7.6)

Then f can be expanded in power series in ]−r, r[; that is to say, we have

f (x) =
∞
∑
n=0

f (n)(0)
n!

xn ∀x ∈ ]−r, r[. (2.7.7)



2.7 Additions and exercises � 83

Proof. It is a matter of using Taylor’s formula for f , which tells us that for every n ∈ ℕ
we have

f (x) =
n
∑
k=0

f (k)(0)
k!

xk + Rn(x) ∀x ∈ ]−r, r[, (2.7.8)

where the remainder term Rn(x) is o(|x|
n) as x → 0, meaning that Rn(x)/|x|

n tends to
0 as n →∞. It is convenient to use the Lagrange expression for the remainder, which
tells us that for some z ∈ ]−r, r[,

Rn(x) =
f (n+1)(z)
(n + 1)!

xn+1.

Now our assumption (2.7.6) implies that

󵄨󵄨󵄨󵄨Rn(x)
󵄨󵄨󵄨󵄨 ≤ M

rn+1

(n + 1)!
→ 0 as n→∞

(uniformly for x ∈ ]−r, r[), so that the conclusion (2.7.7) follows on letting n → ∞ in
Taylor’s formula (2.7.8).

Example 2.7.2. The condition (2.7.6) applies of course to the functions sin x and cos x
with r = ∞ and thus justifies their well-known Taylor expansions on ℝ. But it also
applies to the function ex , which does not have bounded derivatives on all of ℝ, but
does so on each arbitrarily fixed interval ]−r, r[. This allows for the expansion

ex =
∞
∑
n=0

xn

n!
= 1 + x + x

2

2!
+ ⋅ ⋅ ⋅ , (2.7.9)

which is valid for every x ∈ ℝ and is used as starting point to define and deal with the
exponential matrix eA (Chapter 1, Section 1.4).

A2. Equivalent norms in a vector space
Definition 2.7.1. Given a vector space E, two norms ‖ ⋅ ‖1 and ‖ ⋅ ‖2 in E are said to be
equivalent if there exist constants c > 0, d > 0 such that

c‖x‖1 ≤ ‖x‖2 ≤ d‖x‖1 (2.7.10)

for every x ∈ E.

The same definition could clearly be given, more generally, for two distances on any
set.

Exercise 2.7.2. Prove that if two norms on a vector space E are equivalent, then the open
sets of E1 ≡ (E, ‖ ⋅ ‖1) and E2 ≡ (E, ‖ ⋅ ‖2) are the same and thus define the same topology
on E.
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Theorem 2.7.4. If E is a finite-dimensional vector space, then any two norms on E are
equivalent.

Theorem 2.7.4 is a consequence of the following structural fact concerning finite-
dimensional normed vector spaces. If dim E = n and {v1, . . . , vn} is a basis of E, we know
by the definition of basis that the linear map

H : ℝn → E : x = (x1, . . . , xn) → x1v1 + ⋅ ⋅ ⋅ xnvn

is bijective and hence an isomorphism of ℝn onto E in the purely algebraic sense; in
fact, we say briefly that every n-dimensional vector space is isomorphic toℝn. If we put
a norm ‖ ⋅ ‖ on E, what can we say about the continuity ofH andH−1? The continuity of
H is straightforward to check, for we have (denoting here by ‖ ⋅ ‖2 the Euclidean norm
in ℝn)

󵄩󵄩󵄩󵄩H(x)
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

n
∑
i=1

xivi
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤

n
∑
i=1
|xi|‖vi‖ ≤ ‖x‖2

n
∑
i=1
‖vi‖ ≡ K‖x‖2 (x ∈ ℝ

n). (2.7.11)

The proof of the continuity of H−1 is more delicate and can be done for instance by
induction on the dimension n of E (see Dieudonné [7]). A bijective map between metric
(or more generally, topological) spaces that is continuous together with its inverse is
called a homeomorphism. We can therefore state the following.

Theorem 2.7.5. Every n-dimensional normed vector space is linearly homeomorphic
to ℝn.

Some authors (for instance, Taylor [8]) use the term topological isomorphism rather
than linear homeomorphism.

Exercise 2.7.3. Prove (without making reference to the theorems stated above) that in
ℝn any two norms are equivalent.

Hint: It is clearly enough to prove that any norm ‖ ⋅ ‖ in ℝn is equivalent to the
Euclidean norm ‖ ⋅ ‖2. To see this, first check (as in (2.7.11)) that ‖x‖ ≤ C‖x‖2 for some
C > 0 and all x ∈ ℝn. Deduce from this that

󵄨󵄨󵄨󵄨‖x‖ − ‖y‖
󵄨󵄨󵄨󵄨 ≤ C‖x − y‖2 (x, y ∈ ℝ

n)

and finally apply the Weierstrass theorem (Theorem 2.5.7) to conclude that ‖x‖ ≥ c for
some c > 0 and all x ∈ S ≡ {x ∈ ℝn : ‖x‖2 = 1}, whence it follows that ‖x‖ ≥ c‖x‖2 for
every x, giving the result.

A3. Further examples of bounded linear Operators
1. (Linear operators on finite-dimensional spaces) Let T be a linear map of a finite-
dimensional normed vector space E into a normed vector space F . Then T is bounded
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(in the sense of Example 2.2.7). Indeed, assuming dim E = n, fix a basis v1, . . . , vn of E and
represent every x ∈ E in this basis writing x = x1v1 + ⋅ ⋅ ⋅ xnvn; also put

‖x‖1 ≡
n
∑
i=1
|xi|.

Then we have

‖T(x) = ‖T(x1v1 + ⋅ ⋅ ⋅ + xnvn‖ =
󵄩󵄩󵄩󵄩x1T(v1) + ⋅ ⋅ ⋅ + xnT(vn)

󵄩󵄩󵄩󵄩

≤ |x1|
󵄩󵄩󵄩󵄩T(v1)
󵄩󵄩󵄩󵄩 + ⋅ ⋅ ⋅ |xn|

󵄩󵄩󵄩󵄩T(vn)
󵄩󵄩󵄩󵄩 ≤ K

n
∑
i=1
|xi| = K‖x‖1 ≤ K

′‖x‖,

where K = ∑ni=1 ‖T(vi)‖ and we have used the fact that in E all norms are equivalent by
Theorem 2.7.4.

2. (Linear integral operators) Let E = C([a, b]) equipped with the sup norm ‖x‖ =
supa≤t≤b |x(t)| for x ∈ E and let T be the linear operator of E into itself defined putting

T(x)(s) =
d

∫
c

k(s, t)x(t) dt (a ≤ s ≤ b) (2.7.12)

for every x ∈ E, where k is a continuous real-valued function defined in the rectangle
R = [a, b] × [c, d], called the kernel of the integral operator T . To check that the function
T(x) defined on [a, b] through formula (2.7.12) is continuous (i. e., belongs to E), consider
that the continuity of k and the compactness of R = [a, b] × [c, d] imply the uniform
continuity of k on R by the Heine–Cantor theorem (Theorem 2.5.8). In particular, this
ensures that given any ϵ > 0, there is a δ > 0 so that

∀s, s′ ∈ [a, b], 󵄨󵄨󵄨󵄨s − s
′󵄨󵄨󵄨󵄨 < δ ⇒

󵄨󵄨󵄨󵄨k(s, t) − k(s
′, t)󵄨󵄨󵄨󵄨 < ϵ ∀t ∈ [c, d]. (2.7.13)

Using (2.7.13) in (2.7.12), the continuity of T(x) follows immediately.
To check that the linear operator T : E → E is bounded, write

󵄨󵄨󵄨󵄨T(x)(s)
󵄨󵄨󵄨󵄨 ≤

d

∫
c

󵄨󵄨󵄨󵄨k(s, t)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨x(t)
󵄨󵄨󵄨󵄨 dt ≤ M

d

∫
c

󵄨󵄨󵄨󵄨x(t)
󵄨󵄨󵄨󵄨 dt ≤ M(d − c)‖x‖, (2.7.14)

whereM = sup(s,t)∈R |k(s, t)|; and as (2.7.14) holds for every s ∈ [a, b], we conclude that

󵄩󵄩󵄩󵄩T(x)
󵄩󵄩󵄩󵄩 ≤ M(d − c)‖x‖ (x ∈ E).

3. (Compact linear operators) Let E, F be normed linear spaces and let T : E → F
be a bounded linear operator. T is said to be compact if for every bounded sequence
(xn) ⊂ E, there is a subsequence (xnk ) such that T(xnk ) converges in F . Some remarks
about this definition follow:
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(i) Using the definitions and results given in Section 2.5, it is not hard to check that
the property stated above is equivalent to the fact that for every bounded subset B of E,
the image set T(B) is (not only bounded, but also) relatively compact, meaning that
the closure T(B) is compact. Since every compact set is bounded, we can then first note
that there is no need to specify in advance that T is a bounded linear operator; in other
words, compactness of a linear operator implies per se its boundedness.

(ii) Every bounded linear operator of a normed space E into a finite-dimensional
normed space F is compact. Indeed, assume first that F = ℝn and observe that for any
bounded subset B of E, the subset T(B) ⊂ ℝn will be bounded by the assumption on T
and therefore also relatively compact by Theorem 2.5.4. To deal with the general case,
use Theorem 2.7.5.

Example 2.7.3. The linear integral operator T acting in E = C([a, b]) defined in (2.7.12) is
compact. This fact rests on a fundamental result in function theory, the Ascoli–Arzelà
theorem, which characterizes the relatively compact subsets B of C([a, b]) asking that
they should be bounded and equicontinuous, meaning that given ϵ > 0 there exists a
δ > 0 such that for every s, t ∈ [a, b] with |s − t| < δ and every x ∈ B we have

󵄨󵄨󵄨󵄨x(s) − x(t)
󵄨󵄨󵄨󵄨 < ϵ.

References for the statement and proof of Ascoli–Arzelà’s theorem are for instance
Dieudonné [7] and Kolmogorov–Fomin [9]. To show that the set T(B) is equicontinuous
if B ⊂ E is bounded, we use again the uniform continuity of k in [a, b] × [c, d] to ensure
that given ϵ > 0, there is a δ > 0 so that (2.7.13) holds. Then the definition (2.7.12) of T
shows that if |s − s′| < δ,

󵄨󵄨󵄨󵄨T(x)(s) − T(x)(s
′)󵄨󵄨󵄨󵄨 ≤

d

∫
c

󵄨󵄨󵄨󵄨k(s, t) − k(s
′, t)‖x(t)󵄨󵄨󵄨󵄨 dt ≤ ϵ

d

∫
c

󵄨󵄨󵄨󵄨x(t)
󵄨󵄨󵄨󵄨dt ≤ ϵ(d − c)‖x‖

and thus proves that the functions of the family T(B) are equicontinuous, since ‖x‖ ≤ C
for some C > 0 and for all x ∈ B.

4. (Orthogonal projection onto a closed subspace) Aswe shall see in the next chapter
(Corollary 3.4.2), given a closed vector subspaceM of a Hilbert space H , it is possible to
decompose every vector x of H in the form

x = y + z, y ∈ M , z ⊥ M , (2.7.15)

where z ⊥ M means that the scalar product ⟨z, v⟩ = 0 for every v ∈ M ; moreover, the de-
composition in (2.7.15) is unique. The vector y ∈ M corresponding to x is the orthogonal
projection of x ontoM and denoted for instance Px; this defines amap P ofH intoH . Us-
ing the uniqueness of the decomposition as in (2.7.15) and the Pythagoras identity (3.1.4),
it is easily seen that P is a bounded linear operator in H .
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Exercises

There aremany exercises spread out over the various sections of this chapter. Purposely,
no solutions are given here, as the reader of the present chapter is invited to solve them
entirely by him/herself. A few additional exercises are given below.

Further exercises
Exercise 2.7.4. Given the series

∞
∑
1
arctan xn (x ∈ ℝ),

first find its (pointwise) convergence set A and then show that the sum function is of
class C1 in A.

Exercise 2.7.5.
(i) Let f : ℝn → ℝ be continuous. Prove that if f (x0) > 0 for some x0, then f (x) > 0 for

every x in some neighborhood of x0. Also prove that if f (x) ̸= 0 for every x ∈ ℝ
n,

then either f (x) > 0 for every x ∈ ℝn or f (x) < 0 for every x ∈ ℝn.
(ii) Show that the set A = { 1n : n ∈ ℕ} is not closed in ℝ, while the rectangle R =
[0, 1] × [0, 1] is closed in ℝ2.

(iii) If R is as in (ii), determine the image f (R) of R through the function f : ℝ2 → ℝ
defined putting f (x, y) = √x2 + y2exy. For the same f , determine the preimage f −1(V )
with V = ]0, +∞[ and with V = [−1, 0].

(iv) Is the set

A = {(x, y) ∈ ℝ2 : exy > 1, y ≤ −1}

open? Is it compact? Is it connected? Explain.

Exercise 2.7.6. Let (E, ‖.‖) be a normed vector space. Given x0 ∈ E and r > 0, let x ∈ E
be such that ‖x − x0‖ = r. Putting

xn = x0 + tn(x − x0), where 0 < tn < 1 ∀n ∈ ℕ,

check that (xn) ⊂ B(x0, r) and that xn → x if tn → 1. Deduce from this that x ∈ B(x0, r)
and conclude that

B(x0, r) = B
′(x0, r) ≡ {x ∈ 𝔼 : ‖x − x0‖ ≤ r}.

Exercise 2.7.7. Let E = C([a, b])with the sup norm ‖x‖ = supa≤t≤b |x(t)| for x ∈ E. Check
that if f : A ≡ [a, b] × ℝ → ℝ is continuous in A and Lipschitzian with respect to the
second variable in A (Definition 1.1.2), then the Nemytskii operator Nf induced by f and
defined putting
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Nf (u)(t) = f (t, u(t)) for u ∈ E and t ∈ [a, b]

(Remark 1.1.1) is a Lipschitzmap from E to E. Does this still hold if in E the uniform norm
‖ ⋅ ‖ is replaced with the integral norm ‖ ⋅ ‖1 defined in (2.2.3)?

Exercise 2.7.8. Use Theorem 2.7.5 to prove that every finite-dimensional normed space
is a Banach space.



3 Fourier series and Hilbert spaces

Introduction

A good part of this chapter – beginning with Section 3.1 – is devoted to showing the
advantages of having an inner product in a vector space: this permits to approach in an
abstract setting concepts like that of orthogonality and consequently that of projection
onto a subspace, which closely remind us of the concept of perpendicularity and that of
projection onto a line (or a plane), which we learn from the elementary geometry of the
three-dimensional space and then review in linear algebra.

The concept of orthogonal projection onto a subspace (Section 3.1) establishes a
strict and efficient connection between the geometric notion of orthogonality and the
metric notion of nearest point in a subspace to a given point. More explicitly, given a
subspace M of an inner product space E and given x ∈ E, the characterization of the
orthogonal projection of x ontoM as the unique y ∈ M such that

x − y ⊥ M or equivalently ‖x − y‖ ≤ ‖x − z‖ ∀z ∈ M

proves to be extremely fruitful and is used at several points throughout the whole chap-
ter, beginning with Section 3.2, where it is used to characterize the finite sums of the
Fourier series of a periodic f as the trigonometric polynomials of best approximation
to f in the quadratic mean, which is a crucial point for the convergence of the Fourier
series of f to f itself.

Section 3.3 is devoted to the study of orthonormal systems and their special proper-
ties, leading to famous results such as Bessel’s inequality or Parseval’s identity,which are
frequently used in applications and especially in approximation theory. Due evidence
is given to the property of totality, or completeness, of an orthonormal system (en) in an
inner product space E and to the consequent possibility of expanding every vector x ∈ E
in the form

x =
∞
∑
n=1⟨x, en⟩en. (∗)

Finally, in Section 3.4, we let themetric completeness come in as a final ingredient to
present the Hilbert spaces. In order to illustrate their importance and use, we first give a
rapid description of the space L2 of square-integrable functions (and more generally of
theLp spaceswith 1 ≤ p < ∞) and, before that, of themore intuitive sequence space l2. As
a next step, besides discussing basic results such as the Fischer–Riesz theorem, we focus
especially on the existence and uniqueness of the nearest point in a closed convex set to
a given point, which greatly extends that of the orthogonal projection onto a subspace.
Besides showing once more the power of the inner product, this result can be taken as
a starting point for the study of minimization problems and of the role of convexity in
this context.
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In the additional Section 3.5, aside from discussing as usual a few exercises, we take
some space to present the spectral theory of Sturm–Liouville operators, with the aim of
indicating their connectionwith the study of Fourier ormore general expansions like (*)
as eigenfunction expansions, in view of their importance for the method of separation
of variables, which will be concretely used in the problems of PDEs to be studied in the
final Chapter 4.

3.1 Inner product spaces. Orthogonal projection onto a subspace

Definition 3.1.1. Let E be a real vector space. An inner product (or scalar product) in E
is a mapping s of E×E intoℝ such that the following properties hold for every x, y, z ∈ E
and every α ∈ ℝ:
(i) s(x + y, z) = s(x, z) + s(y, z),
(ii) s(αx, y) = αs(x, y),
(iii) s(x, y) = s(y, x),
(iv) s(x, x) ≥ 0 and s(x, x) = 0 if and only if x = 0.

In words, we say that s is a positive definite, symmetric, bilinear form on E × E. A vector
space equipped with an inner product is called an inner product space.

Note that the bilinearity of s is a consequence of its linearity in the first argument
and its symmetry. That is to say, using properties (i), (ii), and (iii) we also have

s(x, αy + βz) = αs(x, y) + βs(x, z)

for every x, y, z ∈ E and every α, β ∈ ℝ.
Given twovectors x, y ∈ E, the real number s(x, y) is called the inner product between

x and y.

Notation. We shall write ⟨x, y⟩ instead of s(x, y).

Example 3.1.1. Let E = ℝn. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ ℝ
n, put

⟨x, y⟩ =
n
∑
i=1 xiyi. (3.1.1)

Example 3.1.2. Let E = C([a, b]). For f , g ∈ E, put

⟨f , g⟩ =
b

∫
a

f (x)g(x) dx. (3.1.2)

Exercise 3.1.1. Check that (3.1.2) defines an inner product in C([a, b]). To verify property
(iv) in Definition 3.1.1, the following proposition is needed.
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Proposition 3.1.1. Let g ∈ C([a, b]) with g ≥ 0 in [a, b]. If ∫ba g(x)dx = 0, then g(x) = 0
for every x ∈ [a, b].

The Cauchy–Schwarz inequality
Proposition 3.1.2. Let E be a vector space with inner product ⟨., .⟩. Then

󵄨󵄨󵄨󵄨⟨x, y⟩
󵄨󵄨󵄨󵄨 ≤ √⟨x, x⟩√⟨y, y⟩ (3.1.3)

for every x, y ∈ E.

Proof. Given any x, y ∈ E, using properties (i)–(iv) of Definition 3.1.1 we have for any
t ∈ ℝ

⟨x − ty, x − ty⟩ = ⟨x, x − ty⟩ + ⟨−ty, x − ty⟩ = ⟨x, x⟩ − t⟨x, y⟩ − t⟨y, x⟩ + t2⟨y, y⟩
= ⟨x, x⟩ − 2t⟨x, y⟩ + t2⟨y, y⟩
≡ A − 2tB + t2C ≥ 0.

It then follows that

B2 ≤ AC

or equivalently that |B| ≤ √A√C, which is (3.1.3).

Proposition 3.1.3. Let E be a vector space with inner product ⟨., .⟩. Then putting

‖x‖ = √⟨x, x⟩ (3.1.4)

we have a norm on E, which is said to be induced by the inner product.

Proof. First note that the definition (3.1.4) makes sense by virtue of property (iv) of the
inner product. Likewise, using also properties (ii) and (iii), it follows at once that
– ‖x‖ ≥ 0 ∀x ∈ E and ‖x‖ = 0⇔ x = 0;
– ‖αx‖ = |α|‖x‖ ∀x ∈ E, ∀α ∈ ℝ.

As to the triangle inequality, given any x, y ∈ E, we have by the definition (3.1.4)

‖x + y‖2 = ⟨x + y, x + y⟩ = ⟨x, x⟩ + 2⟨x, y⟩ + ⟨y, y⟩,

whence, using the Cauchy–Schwarz inequality (3.1.3), it follows that

‖x + y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2 = (‖x‖ + ‖y‖)2,

so that finally

‖x + y‖ ≤ ‖x‖ + ‖y‖.
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Examples. The norm induced on E = ℝn by the scalar product (3.1.1) is the Euclidean
norm

‖x‖ = √
n
∑
i=1 x2i ≡ ‖x‖2 (3.1.5)

(which has to be distinguished by other possible norms onℝn, such as for instance ‖x‖1 ≡
∑ni=1 |xi|).

The norm induced on E = C([a, b]) by the scalar product (3.1.2) is

‖f ‖ = √
b

∫
a

f 2(x) dx = (
b

∫
a

f 2(x) dx)
1/2
≡ ‖f ‖2 (3.1.6)

and has to be distinguished by other norms on C([a, b]), such as for instance the norm
‖f ‖ = supx∈[a,b] |f (x)| of uniform convergence, mostly considered in Chapter 2 and often
denoted ‖f ‖∞.
Remark 3.1.1. It follows from Proposition 3.1.3 that any inner product space E becomes
in a canonical way a normed space, and thus in turn – as any normed space, see Ex-
ample 2.2.2 – it has to be considered ametric space with the distance induced by the
norm, defined putting

d(x, y) = ‖x − y‖ (x, y ∈ E).

Therefore, every concept known formetric spaces (neighborhoods, open and closed sets,
convergent and Cauchy sequences, compactness, continuity – in a word, the topology
of metric spaces) applies in particular to inner product spaces using the norm (3.1.4).

Remark 3.1.2. It follows in particular that when C([a, b]) is equipped with the inner
product (3.1.2), the distance between two functions f , g ∈ C([a, b]) is the distance in the
quadratic mean

d2(f , g) = ‖f − g‖2 = (
b

∫
a

󵄨󵄨󵄨󵄨f (x) − g(x)
󵄨󵄨󵄨󵄨
2 dx)

1/2
.

Therefore, the convergence of a sequence (fn) ⊂ C([a, b]) to an f ∈ C([a, b]) in this
normed space means that

d2(fn, f ) = ‖fn − f ‖2 = (
b

∫
a

󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨
2 dx)

1/2
→ 0 (n→∞)

and is expressed by saying that (fn) converges to f in the quadratic mean, or in the
sense of least squares (see, e. g., Weinberger [2]).
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Orthogonality
Definition 3.1.2. Let E be a vector space with inner product ⟨., .⟩. Two vectors x, y ∈ E
are said to be orthogonal if

⟨x, y⟩ = 0. (3.1.7)

We also say that x is orthogonal to y (which is the same as saying that y is orthogonal
to x) and write

x ⊥ y.

It follows by the definition of inner product (Definition 3.1.1) that:
– every vector x ∈ E is orthogonal to the vector 0;
– the only vector orthogonal to itself is the vector x = 0, whence it follows that the

only vector orthogonal to all vectors of E is x = 0.

Proposition 3.1.4. Let E be a vector space with inner product ⟨., .⟩ and let x, y be any two
vectors of E. Then

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2. (3.1.8)

Moreover, if x, y are orthogonal, then

‖x + y‖2 = ‖x‖2 + ‖y‖2. (3.1.9)

Proof. This is left as an exercise.
Equalities (3.1.8) and (3.1.9) are called respectively the parallelogram law and the

Pythagoras identity.
The concept of orthogonality can be extended to any (finite or infinite) sequence (vi)

of vectors of E, meaning that

⟨vi, vj⟩ = 0 ∀i ̸= j.

Proposition 3.1.5. If (vi)1≤i≤n are orthogonal vectors of an inner product space E with
vi ̸= 0 (1 ≤ i ≤ n), then they are linearly independent.

Proof. This is left as an exercise.

Definition 3.1.3. A (finite or infinite) sequence (en)n=1,2,... of vectors of an inner product
space E is said to be orthonormal if

{
⟨ei, ej⟩ = 0 (i ̸= j)
⟨ei, ei⟩ = 1.

(3.1.10)

We also say that the vectors (en)n=1,2,... are orthonormal.
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Thus, orthonormal vectors are norm-one eigenvectors that are orthogonal to each
other. It is also clear that any sequence (vi) of orthogonal vectors with vi ̸= 0 for every
i can be turned into a sequence of orthonormal vectors just normalizing them, that is,
considering the vectors ui = vi/‖vi‖.

Orthogonal projection onto a finite-dimensional subspace
Theorem 3.1.1. Let e1, . . . , en be orthonormal vectors of an inner product space E and let
M = [e1, . . . , en] denote the vector subspace spanned by these vectors. Then for every x ∈ E,
there is a unique y ∈ M such that

x − y ⊥ M (3.1.11)

and we have the explicit expression

y =
n
∑
i=1⟨x, ei⟩ei. (3.1.12)

Moreover, y satisfies the inequality

‖x − y‖ ≤ ‖x − z‖ ∀z ∈ M , (3.1.13)

where strict inequality holds for z ̸= y. Finally, we have

‖x − y‖2 = ‖x‖2 −
n
∑
i=1⟨x, ei⟩2. (3.1.14)

The vector y is called the orthogonal projection of x onto the subspaceM.

Proof. (i) The notation v ⊥ M means (of course) that v ⊥ z for every z ∈ M ; it can be
used for any subsetM of E, and not only for vector subspaces. Given x ∈ E, we prove at
once the existence and uniqueness of y with the property (3.1.11), as well as its explicit
expression (3.1.12), as follows. As y ∈ M , we need to have y = ∑ni=1 ciei for some ci ∈
ℝ (1 ≤ i ≤ n) to be determined; moreover, the condition (3.1.11) will be satisfied iff x − y
is orthogonal to each of the spanning vectors ei ofM . Therefore, we must have

⟨x −
n
∑
i=1 ciei, ej⟩ = 0 ∀j = 1, . . . , n,

whence – using the orthonormality relations (3.1.10) – it follows that

⟨x, ej⟩ = cj ∀j = 1, . . . , n,

proving the first statement of Theorem 3.1.1.
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(ii) To prove the minimal property (3.1.13), take any z ∈ M and write

‖x − z‖2 = ‖x − y + y − z‖2 = ‖x − y‖2 + ‖y − z‖2 ≥ ‖x − y‖2,

the second equality being justified by (3.1.9), for x − y ⊥ M while y − z ∈ M .
(iii) Finally, to prove (3.1.14), write – using once again (3.1.11) –

‖x − y‖2 = ⟨x − y, x − y⟩ = ⟨x, x − y⟩ = ⟨x, x⟩ − ⟨x, y⟩.

Moreover, by (3.1.12) we have

⟨x, y⟩ = ⟨x,
n
∑
i=1⟨x, ei⟩ei⟩ = n

∑
i=1⟨x, ei⟩2

so that the result follows.

Additional remarks
Remark 3.1.3. Given x ∈ E, the uniqueness of a y ∈ M with the orthogonality prop-
erty (3.1.11) holds independently of the representation ofM bymeans of an orthonormal
basis and holds in fact ifM is any vector subspace of E. Let us state this formally.

Proposition 3.1.6. Let x ∈ E and let M be a vector subspace of E. Then there exists at
most one y ∈ M such that

x − y ⊥ M .

Proof. Let x ∈ E and suppose that y1, y2 ∈ M satisfy the property above. Then, by linear-
ity of the inner product,

x − y1 − (x − y2) = y2 − y1 ⊥ M .

However, y2−y1 ∈ M becauseM is a subspace; thus, y2−y1 ⊥ y2−y1, whence y2 = y1.

Remark 3.1.4. The “optimality” property (3.1.13) says that given x ∈ E (and a subspace
M of E), its orthogonal projection y on M has a distance from x that is minimal with
respect to any other point z ofM ; briefly, y is the nearest point to x inM . It is important
to know that this property characterizes the orthogonal projection of x onM , that is to
say, if y ∈ M satisfies (3.1.13), then necessarily

x − y ⊥ M .

Thus, we conclude that the orthogonality property (3.1.11) and the nearest point prop-
erty (3.1.13) are equivalent to each other. Again we state this formally.
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Proposition 3.1.7. Let x ∈ E and let M be a vector subspace of E. If y ∈ M has the nearest
point property (3.1.13), that is, it is such that

‖x − y‖ ≤ ‖x − z‖ ∀z ∈ M , (3.1.15)

then necessarily x − y ⊥ M.

Proof. Let v ∈ M . We need to prove that ⟨x − y, v⟩ = 0. For this purpose, consider that
for every t ∈ ℝ the vector y + tv ∈ M ; therefore, by (3.1.15) we have

‖x − y‖2 ≤ 󵄩󵄩󵄩󵄩x − (y + tv)
󵄩󵄩󵄩󵄩
2

= 󵄩󵄩󵄩󵄩(x − y) − tv
󵄩󵄩󵄩󵄩
2 = ‖x − y‖2 − 2t⟨x − y, v⟩ + t2‖v‖2 ≡ h(t).

The inequality above shows that the function h has an absolute minimum at t = 0;
therefore,

h′(0) = (2t‖v‖2 − 2⟨x − y, v⟩)t=0 = −2⟨x − y, v⟩ = 0.
Some questions
– Given x ∈ E and any vector subspace M of E, can one prove the existence of the

orthogonal projection of x onto M – that is, of an y ∈ M enjoying the (equivalent)
properties (3.1.11) and (3.1.13)?

– Given x ∈ E and a subset K ⊂ E, can we prove the existence of a nearest point in K
to x for more general sets K than just vector subspaces?

As we shall see in Section 3.4 of the present chapter, an affirmative answer to the first
question can be given if we require the completeness of the inner product space E –
that is, if we require that E be what is called a Hilbert space – and the closedness of
the subspaceM .

The secondquestion is, in a sense, just amore general version of the first, and indeed
they will be answered together in the context of Hilbert spaces, giving full evidence of
the importance of the convexity (and closedness) of the set K . For the time being, we
can content ourselves with the following statement, which holds in Euclidean spaces.

Proposition 3.1.8. Let K be a closed subset of ℝn. Then, given any x ∈ ℝn, there exists a
point y ∈ K nearest to x, that is, such that

‖x − y‖ ≤ ‖x − z‖ ∀z ∈ K .

Proof. Given x ∈ ℝn, put

δ = inf
z∈K ‖x − z‖. (3.1.16)
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It is a matter of proving that the infimum defined in (3.1.16) is actually a minimum, that
is, it is attained at some point y ∈ K . At any rate, there exists a sequence (zn) ⊂ K such
that

‖x − zn‖ → δ (n→∞). (3.1.17)

The sequence (zn) is necessarily bounded (for otherwise, there would be a subsequence,
still denoted (zn) for convenience, such that ‖zn‖ → ∞ and therefore also ‖x−zn‖ → ∞,
contradicting (3.1.17)). Therefore, by the Bolzano–Weierstrass theorem, (zn) contains a
convergent subsequence, which we call (znk ); and if we put

z0 = lim
k→∞ znk ,

then we have:
– z0 ∈ K (because K is closed);
– ‖x − z0‖ = δ (because of (3.1.17) and the continuity of the norm).

Thus, z0 has the required properties, and this ends the proof of Proposition 3.1.8.

Exercise 3.1.2. Let X be a metric space and let K ⊂ X . Prove that if K is closed, then for
any convergent sequence (xn) ⊂ K we have

lim
n→∞ xn ∈ K . (3.1.18)

Vice versa, if (3.1.18) holds whenever (xn) ⊂ K and (xn) converges, then K is closed.

Exercise 3.1.3. Let E be a vector space with a norm denoted ‖ ⋅ ‖. Prove that the map

‖ ⋅ ‖ : E → ℝ

is continuous.

Exercise 3.1.4. Let A be any set and let f : A → ℝ be bounded from below. Prove that
there exists a sequence (xn) ⊂ A such that

lim
n→∞ f (xn) = c ≡ infx∈A f (x),

a similar property holding if f is bounded from above, with C ≡ supx∈A f (x).
3.2 Fourier series

A function f : ℝ → ℝ is said to be periodic of period T > 0 (or briefly, T -periodic) if

f (x + T) = f (x) ∀x ∈ ℝ.
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For instance, the trigonometric functions

sin x, cos x, sin 2x, cos 2x, . . . sin nx, cos nx, . . . , (3.2.1)

where n ∈ ℕ, are all 2π-periodic.

Question. If we take an f : ℝ → ℝ that is 2π-periodic and – for instance – continu-
ous, can we expand f in series of the trigonometric functions (3.2.1)? That is, does the
equality

f (x) = a0 +
∞
∑
k=1(ak cos kx + bk sin kx) (3.2.2)

hold for a suitable choice of the real constants a0, ak , bk (k ∈ ℕ)?

Definition 3.2.1. Given f : ℝ → ℝ, which is 2π-periodic and continuous, the numbers

a0 =
1
2π

2π

∫
0

f (x) dx, ak =
1
π

2π

∫
0

f (x) cos kx dx, bk =
1
π

2π

∫
0

f (x) sin kx dx, (3.2.3)

where k ∈ ℕ, are called the Fourier coefficients of f . The series (3.2.2)with the coefficients
given by (3.2.3) is called the Fourier series of f .

Our question now becomes: given f , does its Fourier series converge to f ?
We meet a similar question if we wish to expand f into power series near a point

x0 ∈ ℝ: in this case one writes down (provided f is of class C
∞) the Taylor series of f

centered at x0 and asks – taking, for instance, x0 = 0 – if

f (x) =
∞
∑
k=0 akxk , where ak =

f (k)(0)
k!
.

One main point to discuss is in what sense the convergence of the Fourier series to
f (that is, the equality in (3.2.2)) takes place. Themost elementarymeaningwould be that
for each fixed x ∈ ℝ, the numerical series in (3.2.2) converges precisely to the value f (x)
of f at x; this is pointwise convergence. However, this turns out to be quite delicate to
prove and requires further assumptions on f , as can be seen in Section 4.3 of Chapter 4.

A stronger type of convergence would be uniform convergence (Chapter 2, Sec-
tion 2.1).

One more type of convergence, which is particularly useful when dealing with
Fourier series, is convergence in the mean – more precisely, in the quadratic mean,
or mean of order 2, already introduced in Remark 3.1.2 and repeated here for the
reader’s convenience.

Definition 3.2.2. Let (fn) be a sequence in C([a, b]). We say that (fn) converges in the
mean to f ∈ C([a, b]) on the interval [a, b] if
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b

∫
a

󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨
2 dx → 0 as n→∞.

Remark 3.2.1. The definition above makes sense also in the more general case that the
functions fn (n ∈ ℕ) and f are merely integrable on [a, b].

Example 3.2.1. Let fn(x) = x
n (n ∈ ℕ). We claim that (fn) converges in the mean to f = 0

on the interval [0, 1]. Indeed,

b

∫
a

󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨
2 dx =

1

∫
0

x2n dx = [x
(2n+1)
2n + 1
]
1

0
=

1
2n + 1
→ 0.

Note that the sequence (xn) does not converge pointwisely to 0 on [0, 1], for
limn→∞ xn = 1 if x = 1. In fact, in a sense, convergence in the mean is independent
from pointwise convergence, as shown also by the next exercise.

Exercise 3.2.1. Let fn(x) = √n2xe−nx (n ∈ ℕ). We clearly have

lim
n→∞ fn(x) = 0 ∀x ∈ [0, 1].

However, (fn) does not converge in the mean to 0 on the interval [0, 1], for

lim
n→∞ 1

∫
0

n2xe−nx dx ̸= 0.
Remark 3.2.2. Definition 3.2.2 is useful and important also in other fields related to
mathematical analysis, such as numerical analysis and probability theory. It can be gen-
eralized as follows: given a sequence (fn) in C([a, b]) and given any p ∈ ℝwith p ≥ 1, we
say that (fn) converges in the mean of order p to f ∈ C([a, b]) on the interval [a, b] if

b

∫
a

󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨
p dx → 0 as n→∞.

One main result about the convergence of Fourier series that can be simply stated
is the following.

Theorem 3.2.1. Let f : ℝ → ℝ be 2π-periodic and continuous. Then its Fourier series
converges in the mean to f on [0, 2π]; that is,

2π

∫
0

󵄨󵄨󵄨󵄨sn(x) − f (x)
󵄨󵄨󵄨󵄨
2 dx → 0 as n→∞,

where
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sn(x) = a0 +
n
∑
k=1(ak cos kx + bk sin kx) (n ∈ ℕ),

with a0, ak , bk (k ∈ ℕ) as in (3.2.3).

However, the proof of Theorem 3.2.1 is far from simple. One of its main ingredients
will be the following relations, holding for n,m ∈ ℕ:

2π

∫
0

sin nx dx =
2π

∫
0

cos nx dx = 0, (3.2.4)

2π

∫
0

sin2 nx dx =
2π

∫
0

cos2 nx dx = π, (3.2.5)

2π

∫
0

sin nx sinmx dx =
2π

∫
0

cos nx cosmx dx = 0 (n ̸= m), (3.2.6)

2π

∫
0

sin nx cosmx dx = 0. (3.2.7)

Exercise 3.2.2. To prove the orthogonality relations (3.2.4)–(3.2.7), first recall that

{
cos2 x + sin2 x = 1
cos2 x − sin2 x = cos 2x,

whence

2 cos2 x = 1 + cos 2x, 2 sin2 x = 1 − cos 2x, (3.2.8)

so that

∫ cos2 x dx = 1
2
[x + sin 2x

2
],

∫ sin2 x dx = 1
2
[x − sin 2x

2
].

From these, integrating from 0 to 2π yields (3.2.5).
Note that (3.2.8) are special cases of the following relations:

{{
{{
{

2 cos α cos β = cos(α − β) + cos(α + β)
2 sin α sin β = cos(α − β) − cos(α + β)
2 sin α cos β = sin(α − β) + sin(α + β),

(3.2.9)

which in turn follow from the formulae for sin(α + β) and cos(α + β).
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From (3.2.9) we obtain, for instance, the equality

∫ sin nx sinmx dx = 1
2
∫ cos(n −m)x dx − 1

2
∫ cos(n +m)x dx,

which explains the first of (3.2.6). The second is obtained similarly. Finally, the last equa-
tion in (3.2.9) yields (3.2.7).

Definition 3.2.3. A trigonometric polynomial of degree ≤ n (n ∈ ℕ) is an expression
of the form

P(x) = a0 +
n
∑
k=1(ak cos kx + bk sin kx), (3.2.10)

where a0, ak , bk ∈ ℝ. The polynomial (3.2.10) is said to be of degree n if an and/or bn are
different from 0.

Fix an integer n ∈ ℕ and define

Qn ≡ {P | P is a trigonometric polynomial of degree ≤ n}. (3.2.11)

We note the following:
– Qn is a vector subspace of C2π(ℝ), where

C2π(ℝ) ≡ {f : ℝ → ℝ | f is continuous and 2π-periodic}.

– Precisely, Qn is the vector subspace spanned by the functions

1, cos x, sin x, cos 2x, sin 2x, . . . , cos nx, sin nx. (3.2.12)

– Using the orthogonality relations (3.2.4)–(3.2.7), it follows that the functions above
are linearly independent, and therefore dimQn = 2n + 1.

Given f ∈ C2π(ℝ), the nth partial sum Sn of its Fourier series,

Sn(x) = a0 +
n
∑
k=1(ak cos kx + bk sin kx) (n ∈ ℕ), (3.2.13)

where a0, ak , bk are as in (3.2.3), belongs to Qn.
For the proof of Theorem 3.2.1, one key step will be the following fact.

Proposition 3.2.1. Let f ∈ C2π(ℝ) be given. Then among all trigonometric polynomials of
degree ≤ n, Sn is the nearest to f ; here “near” means in the sense of the distance given
by the quadratic mean
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d2(f , g) = ‖f − g‖2 = (
2π

∫
0

󵄨󵄨󵄨󵄨f (x) − g(x)
󵄨󵄨󵄨󵄨
2 dx)

1/2
.

In other words, Sn is the best approximation to f among all vectors of Qn:

‖f − Sn‖2 ≤ ‖f − P‖2 ∀P ∈ Qn. (3.2.14)

Enlarging the space of 2π-periodic functions: from C2π(ℝ) to ̂C2π(ℝ)
The requirement of continuity is unnecessarily strong for the study of Fourier series.
Here we consider some extensions, first considering functions defined in a bounded
closed interval [a, b] and then moving on to functions defined on the whole of ℝ.

Piecewise continuous functions
Definition 3.2.4. A function f : [a, b] → ℝ is said to be piecewise continuous in [a, b]
if it is continuous at every point of [a, b] except at most in a finite number of them, call
them x1, . . . , xn, in which however there exist and are finite the left and right limits

f (x−i ) ≡ lim
x→x−i f (x), f (x+i ) ≡ lim

x→x+i f (x)
if a < xi < b; we have a similar requirement if x1 = a or xn = b.

Figures 3.1 and 3.2 help to visualize the character of piecewise continuous functions.

Remark 3.2.3. If f : [a, b] → ℝ is piecewise continuous, then f is (i) bounded and (ii)
integrable on [a, b].

Example 3.2.2. A very simple – though very useful in approximation theory – class of
piecewise continuous functions is that of piecewise linear functions; these are the spe-
cial f ’s whose restriction to each of the intervals [xi, xi+1] is linear (see Figure 3.3):

f (x) = aix + bi (xi < x < xi+1).
We have in this case

f (x−i ) = ai−1xi + bi−1, f (x+i ) = aixi + bi.
Definition 3.2.5. A piecewise continuous function f : [a, b] → ℝ is said to be regular if
for every point x0 ∈ ]a, b[,

f (x0) =
f (x+0 ) + f (x−0 )

2
. (3.2.15)
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Figure 3.1: A piecewise continuous f .

Figure 3.2: An f that is not piecewise continuous.
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Figure 3.3: A piecewise linear f .

It is clear from the above definitions that:
– If f is continuous in [a, b], then it is piecewise continuous and regular.
– If f ismerely piecewise continuous in [a, b], then it can always be regularized – that

is, made regular – just changing its values in the (finitely many) points of disconti-
nuity xi, that is, putting by definition f (xi) equal to the mean value of f (x

−
i ), f (x

+
i )

as prescribed by (3.2.15).

Back to the 2π-periodic functions
Definition 3.2.6. A function f : ℝ → ℝ is said to be piecewise continuous (resp. regular)
if it is piecewise continuous (resp. regular) on every closed bounded interval [a, b].

Here and henceforth we put

Ĉ2π(ℝ) ≡ {f : ℝ → ℝ : f is 2π-periodic, piecewise continuous, and regular}

Of course, the trigonometric functions in (3.2.1) are the most familiar representa-
tives of Ĉ2π(ℝ). Figure 3.4 gives an idea of how to createmany new examples of functions
belonging to this space.

More formally, we have the following.

Example 3.2.3. Let f : [a, a+2π] → ℝ. If f ∈ Ĉ[a, a+2π], then its 2π-periodic extension
̂f defined putting

̂f (x + 2kπ) = f (x), x ∈ [a, a + 2π[,

belongs to Ĉ2π(ℝ).

A few specific examples now follow.
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Figure 3.4: The periodic extension ̂f of f .

Figure 3.5: f (x) = x, −π ≤ x ≤ π.

Figure 3.6: f (x) = −1 (−π < x < 0); f (x) = 1 (0 < x < π).
Example 3.2.4. Consider first the 2π-periodic extension of f (x) = x, |x| ≤ π (see Fig-
ure 3.5).

Example 3.2.5. Consider now the 2π-periodic extension of the so-called Heaviside func-
tion: f (x) = −1 (−π < x < 0); f (x) = 1 (0 < x < π); see Figure 3.6.
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Figure 3.7: f (x) = |x|, −π ≤ x ≤ π.
Example 3.2.6. Consider finally ̂f when f is the absolute value function (again for
|x| ≤ π): f (x) = |x|, −π ≤ x ≤ π; see Figure 3.7.

Exercise 3.2.3. For each of Examples 3.2.4, 3.2.5, and 3.2.6 compute the respective Fourier
series. The computations can be easily performed and give respectively the following
results:

a0 = ak = 0, bk = (−1)
k+1 2

k
(k ∈ ℕ),

a0 = ak = 0, bk =
2
kπ
[1 − (−1)k] (k ∈ ℕ),

a0 =
π
2
, ak = −

2
k2π
[1 − (−1)k], bk = 0 (k ∈ ℕ).

In order to handle Exercise 3.2.3 or similar – and in general, in order to compute the
Fourier coefficients (3.2.3) of a given function – the following three remarks turn out to
be useful.

Remark 3.2.4. If f ∈ Ĉ2π(ℝ), then

2π

∫
0

f (x) dx =
a+2π
∫
a

f (x) dx ∀a ∈ ℝ.

Indeed,

a+2π
∫
a

f (x) dx =
0

∫
a

+
2π

∫
0

+
a+2π
∫
2π

. (3.2.16)

In the last integral, make the change of variable x = y + 2π and use the 2π-periodicity of
f to obtain

a+2π
∫
2π

f (x) dx =
a

∫
0

f (y + 2π) dx =
a

∫
0

f (y) dy
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so that the last integral in (3.2.16) will cancel with the first.

Remark 3.2.5. Modifying a piecewise continuous f : [a, b] → ℝ in a finite number
of points does not change its integral on [a, b]. In particular, in the computation of the
Fourier coefficients a0, ak , bk we need not worry if f has been regularized or not.

Remark 3.2.6. Let f : [−a, a] → ℝ be piecewise continuous. Then if f is odd (that is,
f (−x) = −f (x)), we have

a

∫−a f (x) dx = 0,
while if f is even (that is, f (−x) = f (x)), we have

a

∫−a f (x) dx = 2
a

∫
0

f (x) dx.

Now since – by Remark 3.2.4 – we can compute the integrals defining the Fourier coeffi-
cients a0, ak , bk of an f ∈ Ĉ2π(ℝ) integrating on [−π, π] rather than on [0, 2π], it follows
in particular that if f is odd, then

{
a0 =

1
2π ∫

π−π f (x) dx = 0, ak =
1
π ∫

π−π f (x) cos kx dx = 0
bk =

1
π ∫

π−π f (x) sin kx dx = 2
π ∫

π
0 f (x) sin kx dx

(3.2.17)

so that the Fourier series of f will contain only sine terms, that is, it will be a Fourier
sine series, while if f is even, then it will be developed into a Fourier cosine series.

Inner product for piecewise continuous functions
Given an interval [a, b], put

Ĉ[a, b] ≡ {f : [a, b] → ℝ : f is piecewise continuous and regular}.

Evidently, Ĉ[a, b] is a vector space. Moreover, we can extend to this vector space the
scalar product defined in C[a, b] (Example 3.1.2), for we have the following proposition.

Proposition 3.2.2. Given f , g ∈ Ĉ[a, b], put

⟨f , g⟩ ≡
b

∫
a

f (x)g(x) dx. (3.2.18)

Then (3.2.18) defines an inner product in Ĉ[a, b].
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In order to verify the positive definiteness of the inner product (3.2.18), the following
extension of Proposition 3.1.1 is useful.

Proposition 3.2.3. Let g : [a, b] → ℝ be continuous in ]a, b[ and have finite one-sided
limits g(a+), g(b−) at the endpoints a and b. If g ≥ 0 in [a, b] and ∫ba g(x)dx = 0, then
g(x) = 0 for every x ∈ ]a, b[, so that also g(a+), g(b−) = 0.

In turn, we can extend Proposition 3.2.3 to a piecewise continuous regular func-
tion g defined in [a, b] and such that g ≥ 0 in [a, b] and ∫ba g(x)dx = 0. Indeed, let
a ≤ x1 ≤ x2 ⋅ ⋅ ⋅ ≤ xn ≤ b be the discontinuity points of g, in which by assumption
there exist the finite left and right limits g(x−i ), g(x+i ). We have (putting for convenience
x0 ≡ a, xn+1 ≡ b)

b

∫
a

g(x)dx =
n
∑
i=0

xi+1
∫
xi

g(x) dx,

and by our assumptions, each term in the sum of the right-hand side is equal to zero.
Applying Proposition 3.2.3 to each of the intervals [xi, xi+1], it follows that g = 0 in each
of the open intervals ]xi, xi+1[, and therefore necessarily g(x−i ) = g(x+i ) = 0 for every
i = 1, . . . , n. Since g is regular, it then follows that g(xi) = 0 for every i, so that g ≡ 0 in
[a, b].

Given f ∈ Ĉ[a, b], the remarks above explain the implication ⟨f , f ⟩ = 0⇒ f = 0 and
thus clarify and complete the statement of Proposition 3.2.2.

We conclude these technical but necessary remarks with an explicit statement that
is just the “2π-periodic version” of Proposition 3.2.2.

Proposition 3.2.4. Given f , g ∈ Ĉ2π(ℝ), put

⟨f , g⟩ ≡
2π

∫
0

f (x)g(x) dx. (3.2.19)

Then (3.2.19) defines an inner product in Ĉ2π(ℝ).

Back to Fourier series
Recall the orthogonality relations for the trigonometric functions:

2π

∫
0

sin nx dx =
2π

∫
0

cos nx dx = 0, (3.2.20)

2π

∫
0

sin2 nx dx =
2π

∫
0

cos2 nx dx = π, (3.2.21)
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2π

∫
0

sin nx sinmx dx =
2π

∫
0

cos nx cosmx dx = 0 (n ̸= m), (3.2.22)

2π

∫
0

sin nx cosmx dx = 0. (3.2.23)

We use the following notations:

e0 =
1
√2π
, e1(x) =

cos x
√π
, e2(x) =

sin x
√π
, e3(x) =

cos 2x
√π
, e4(x) =

sin 2x
√π
, . . . ,

(3.2.24)

that is,

e0 =
1
√2π
, e2k−1(x) = cos kx√π , e2k(x) =

sin kx
√π
(k ∈ ℕ). (3.2.25)

With these notations, the orthogonality relations (3.2.20)–(3.2.23) can be resumed in
the following statement.

Proposition 3.2.5. The family {en | n = 0, 1, . . . } defined in (3.2.25) forms an orthonormal
sequence in Ĉ2π(ℝ).

Proof. First, we have

‖en‖ = 1 ∀k = 0, 1, 2, . . . .

This is evident for n = 0, while for n ∈ ℕwe use (3.2.21) to see that if, e. g., n = 2k − 1
is an odd integer,

‖en‖
2 =

1
π

2π

∫
0

cos2 kx dx = 1
π
π = 1.

Moreover, we have

⟨en, em⟩ = 0 ∀n ̸= m. (3.2.26)

Indeed, if n = 0 andm ∈ ℕ we use (3.2.20) to see that if, e. g.,m = 2k is even,

⟨e0, em⟩ =
2π

∫
0

1
√2π

sin kx
√π

dx = 0.

If n,m ≥ 1, then (3.2.26) follows from (3.2.22) and (3.2.23).
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We can now use the general results about inner product spaces discussed in Sec-
tion 3.1 of this chapter, in particular Theorem 3.1.1. We have indeed the following propo-
sition.

Proposition 3.2.6. Given f ∈ Ĉ2π(ℝ), the nth partial sum Sn of its Fourier series is the
orthogonal projection of f on the subspace Qn defined in (3.2.11), that is,

Qn ≡ {P | P is a trigonometric polynomial of degree ≤ n}.

Proof. Let Pn(f ) denote the orthogonal projection of f onto Qn. By Proposition 3.2.5 and
the definition of Qn,

e0, e1, e2, . . . , e2n−1, e2n
is an orthonormal basis forQn. Therefore, by formula (3.1.12) of Theorem 3.1.1 – inwhich
we take E = Ĉ2π(ℝ) andM = Qn (n is fixed) – we have

Pn(f ) =
2n
∑
i=0⟨f , ei⟩ei = ⟨f , e0⟩e0 + ⟨f , e1⟩e1 + ⋅ ⋅ ⋅ + ⟨f , e2n⟩e2n. (3.2.27)

Recall the definition (3.2.3) of the Fourier coefficients of f :

a0 =
1
2π

2π

∫
0

f (x) dx, ak =
1
π

2π

∫
0

f (x) cos kx dx, bk =
1
π

2π

∫
0

f (x) sin kx dx.

Looking at these and at the definition (3.2.25) of ei, we see that

⟨f , e0⟩ = √2πa0, ⟨f , ei⟩ = {
√πak , i = 2k − 1
√πbk , i = 2k.

(3.2.28)

Using these equalities in (3.2.27), we then have

Pn(f ) = √2πa0
1
√2π
+ √πa1

cos x
√π
+ ⋅ ⋅ ⋅ + √πbn

sin nx
√π

= a0 +
n
∑
k=1(ak cos kx + bk sin kx) = Sn.

The proposition above implies, again by Theorem 3.1.1, the best approximation
property indicated for Sn by Proposition 3.2.1, which we report here practically unal-
tered, save replacing C2π(ℝ) with the larger space Ĉ2π(ℝ).

Proposition 3.2.7. Let f ∈ Ĉ2π(ℝ) be given. Then among all trigonometric polynomials of
degree ≤ n, Sn is the nearest to f in the sense of the distance given by the quadratic
mean
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d2(f , g) = ‖f − g‖2 = (
2π

∫
0

󵄨󵄨󵄨󵄨f (x) − g(x)
󵄨󵄨󵄨󵄨
2 dx)

1/2
.

In other words, Sn is the best approximation to f among all vectors of Qn:

‖f − Sn‖2 ≤ ‖f − P‖2 ∀P ∈ Qn. (3.2.29)

Proof. Take E = Ĉ2π(ℝ),M = Qn and use formula (3.1.13) in Theorem 3.1.1, exploiting the
characterization of Sn given by Proposition 3.2.6 above.

We are now in a position to prove Theorem 3.2.1, and in fact itsmore general version
extended to piecewise continuous functions. Here is the formal statement.

Theorem 3.2.2. Let f ∈ Ĉ2π(ℝ). Then its Fourier series converges in the quadraticmean
to f on [0, 2π]; that is,

lim
n→∞ 2π

∫
0

󵄨󵄨󵄨󵄨Sn(x) − f (x)
󵄨󵄨󵄨󵄨
2 dx = 0, (3.2.30)

where

Sn(x) = a0 +
n
∑
k=1(ak cos kx + bk sin kx) (n ∈ ℕ)

(with a0, ak , bk as in (3.2.3)) is the nth partial sum of the Fourier series of f .

The proof of Theorem 3.2.2 rests on the characterization of Sn just found in Propo-
sition 3.2.7 and on the following two lemmas about the approximation of functions: the
first is related to the Weierstrass theorem on the uniform approximation of a contin-
uous function by polynomials, while the second allows to approximate in the mean a
piecewise continuous function with a continuous one.

Lemma 3.2.1. Let f ∈ C2π(ℝ). Then there exists a sequence (Tn)n∈ℕ of trigonometric poly-
nomials, with Tn ∈ Qn ∀n ∈ ℕ, such that Tn → f uniformly on [0, 2π], that is,

lim
n→∞ ‖Tn − f ‖∞ = lim

n→∞( supx∈[0,2π] 󵄨󵄨󵄨󵄨Tn(x) − f (x)󵄨󵄨󵄨󵄨) = 0. (3.2.31)

Remark 3.2.7. Lemma 3.2.1 is an important result on approximation by polynomials:
it can be viewed as the “periodic version” of the famousWeierstrass approximation
theorem, stating that any continuous function on an interval [a, b] is the limit of a se-
quence of polynomials which converges uniformly in [a, b]. For a proof of these results,
the interested reader can look into W. Rudin’s books [10] and [6]; see also Chapter VII,
Section 4 of Dieudonné [7].
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Remark 3.2.8. The uniform convergence of a sequence of continuous (or, more gener-
ally, integrable) functions on an interval [a, b] implies its convergence in the mean of
any order p; indeed, we have

b

∫
a

󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨
p dx ≤

b

∫
a

( sup
x∈[a,b] 󵄨󵄨󵄨󵄨fn(x) − f (x)󵄨󵄨󵄨󵄨)p dx = ‖fn − f ‖p∞(b − a).

Lemma 3.2.2. Let f ∈ Ĉ2π(ℝ). Then given any ϵ > 0, there exists a g ∈ C2π(ℝ) such that

‖f − g‖2 < ϵ. (3.2.32)

Proof. Let f ∈ Ĉ2π(ℝ). By definition, f has at most a finite number of points of disconti-
nuity x1, . . . , xn in the interval [0, 2π], and the one-sided limits at these points exist and
are finite. Suppose for simplicity that f has only one such discontinuity point x1 and that
x1 ∈ ]0, 2π[.

Fix ϵ > 0. Let δ > 0 be such that [x1 − δ, x1 + δ] ⊂ ]0, 2π[ and define gδ in [0, 2π] as
follows (see Figure 3.8):

gδ(x) = {
f (x), |x − x1| > δ
ax + b, |x − x1| ≤ δ,

(3.2.33)

where a, b are chosen so that gδ is continuous in [0, 2π], that is, a and b are determined
by the equations

{
a(x1 − δ) + b = f (x1 − δ)
a(x1 + δ) + b = f (x1 + δ).

(3.2.34)

Let g be the 2π-periodic extension of gδ to all ofℝ. Then (since gδ(0) = gδ(2π)) g ∈ C2π(ℝ).
Also note that by construction, |gδ(x)| ≤ K ≡ supx∈[0,2π] |f (x)|; therefore, we have

‖f − g‖22 =
2π

∫
0

󵄨󵄨󵄨󵄨f (x) − gδ(x)
󵄨󵄨󵄨󵄨
2 dx =

x1+δ
∫

x1−δ 󵄨󵄨󵄨󵄨f (x) − gδ(x)󵄨󵄨󵄨󵄨2 dx ≤ 8δK2

so that (3.2.32) will be satisfied as soon as δ is taken so small that 8δK2 < ϵ2.
We can now conclude the proof of Theorem 3.2.2.
We need to prove that given any f ∈ Ĉ2π(ℝ), one has ‖Sn − f ‖2 → 0 as n→∞, where

Sn is the nth partial sum of the Fourier series of f ; that is, given any ϵ > 0, we need to
find an n̂ ∈ ℕ such that

‖Sn − f ‖2 < ϵ ∀n ∈ ℕ, n ≥ n̂. (3.2.35)

By virtue of Lemma 3.2.2, we first find a g ∈ C2π(ℝ) such that
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Figure 3.8: Correcting a discontinuity.

‖f − g‖2 <
ϵ
2
. (3.2.36)

Next, on the basis of Lemma 3.2.1, there exists a sequence (Tn) of trigonometric polyno-
mials, with Tn ∈ Qn ∀n ∈ ℕ, converging uniformly (and therefore also in the quadratic
mean, see Remark 3.2.8) to g; thus, we find an n0 ∈ ℕ such that

‖g − Tn‖2 <
ϵ
2
∀n ∈ ℕ, n ≥ n0. (3.2.37)

Using (3.2.36) and (3.2.37) we thus have

‖f − Tn‖2 < ϵ ∀n ∈ ℕ, n ≥ n0. (3.2.38)

However, by Proposition 3.2.7 and in particular by formula (3.2.29) we have

‖f − Sn‖2 ≤ ‖f − Tn‖2 ∀n ∈ ℕ

so that the conclusion (that is, the proof of our claim (3.2.35)) follows from (3.2.38) on
taking n̂ = n0.
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Remark 3.2.9. Beware that (3.2.38) does notmean that ‖f −Tn‖2 → 0 as n→∞. Indeed,
(Tn) depends upon g, and therefore upon ϵ!

Remark 3.2.10. Lemma 3.2.2 shows, more generally, that a piecewise continuous func-
tion can be approximated in themean as closely aswewish by continuous functions. On
the other hand, note that it is not possible to approximate uniformly a discontinuous
function with continuous ones (see Proposition 2.3.3).

Remark 3.2.11. To better appreciate the meaning of the term “approximation” used in
many statements of this section, it is useful to reason in general terms and carry out
the following exercise. Let (X , d) be a metric space, let A ⊂ X , and let x0 ∈ X . Then the
following are equivalent:
(i) for any ϵ > 0, there exists an x ∈ A such that d(x, x0) < ϵ;
(ii) there exists a sequence (xn) ⊂ A such that limn→∞ xn = x0.
Such property of x0 is expressed by saying that x0 is a cluster point of A. The set of all
cluster points of A is denoted with A and called the closure of A. These definitions and
concepts were proposed also in Chapter 2, Section 2.2; see in particular Proposition 2.2.3.

The final part of this section is devoted to some important and useful consequences
of the basic Theorem 3.2.2.

Corollary 3.2.1 (Parseval’s identity). Let f ∈ Ĉ2π(ℝ) and let a0, ak , bk (k ∈ ℕ) be its Fourier
coefficients as defined in (3.2.3). Then

2π

∫
0

f 2(x) dx = 2πa20 + π
∞
∑
k=1(a2k + b2k). (3.2.39)

Proof. We have seen in Theorem 3.1.1, and especially in formula (3.1.14), that if y is the
orthogonal projection of x onto the subspaceM = [e1, . . . , en], then

‖x − y‖2 = ‖x‖2 −
n
∑
i=1⟨x, ei⟩2. (3.2.40)

In our case we have

‖f − Sn‖
2
2 = ‖f ‖

2
2 −

2n
∑
i=0⟨f , ei⟩2. (3.2.41)

Equality (3.2.41) holds for every n ∈ ℕ (for we can project orthogonally f on every sub-
space in the increasing sequence (Qn)n∈ℕ). Moreover, from (3.2.28) we have

⟨f , e0⟩ = √2πa0, ⟨f , ei⟩ = {
√πak , i = 2k − 1
√πbk , i = 2k

(3.2.42)
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so that (3.2.41) yields

‖f − Sn‖
2
2 = ‖f ‖

2
2 − (2πa

2
0 + π

n
∑
k=1(a2k + b2k)). (3.2.43)

This first shows that

(2πa20 + π
n
∑
k=1(a2k + b2k)) ≤ ‖f ‖22

for every n ∈ ℕ and thus proves that the numerical series in (3.2.39) is convergent;
moreover, writing (3.2.43) as

‖f ‖22 = (2πa
2
0 + π

n
∑
k=1(a2k + b2k)) + ‖f − Sn‖22 (3.2.44)

and letting n→∞, we obtain (3.2.39) as a consequence of (3.2.30) in Theorem 3.2.2.

Corollary 3.2.2. Let f , g ∈ Ĉ2π(ℝ). If f and g have the same Fourier coefficients, then they
are equal.

Proof. Let h = f − g. Then h ∈ Ĉ2π(ℝ) and

ak(h) =
1
π

2π

∫
0

(f (x) − g(x)) cos kx dx = ak(f ) − ak(g) = 0 (k ∈ ℕ)

and similarly for a0(h) and bk(h). It then follows from (3.2.39) that

2π

∫
0

h2(x) dx = 0

and therefore h(x) = 0 ∀x ∈ [0, 2π], whence the result.

Corollary 3.2.3 (Riemann–Lebesgue’s lemma). Let f ∈ Ĉ2π(ℝ). Then

lim
k→∞ 2π

∫
0

f (x) cos kx dx = lim
k→∞ 2π

∫
0

f (x) sin kx dx = 0. (3.2.45)

Proof. This is an immediate consequence of the convergence of the series in (3.2.39);
indeed, we have

0 ≤ a2k , b
2
k ≤ a

2
k + b

2
k → 0 (k →∞),

whence
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lim
k→∞ ak = lim

k→∞ bk = 0.
Further questions to discuss about Fourier series
1. Pointwise and uniform convergence of Fourier series
The convergence in the mean of the Fourier series of f ∈ Ĉ2π(ℝ) to f itself proved in
Theorem 3.2.2 does not tell us anything about its pointwise convergence, neither a for-
tiori about its uniform convergence. As these forms of convergence will be useful in the
construction of series solutions to some BVPs for PDEs, we shall resume these questions
– under stronger regularity assumptions on f , in particular some differentiability prop-
erty – in the next chapter (Section 4.3) when discussing PDEs.

2. Abstract (i. e., general) versions of the results discussed in this section
To a good extent, the results about the convergence in the mean of the Fourier series
are due to the inner product space structure of the space Ĉ2π(ℝ), a leading role having
been played by the orthonormality of the trigonometric system and by the concept of
orthogonal projection onto a subspace. Could anything similar be established for general
orthonormal systems in any inner product space? The next section is devoted precisely
to answering this question. In the subsequent section (Section 3.4) we shall see what
more can be said in the case of complete inner product spaces, that is, Hilbert spaces.

3.3 Orthonormal systems in inner product spaces. Sequence
spaces

1. A useful equality
Let e1, . . . , en be orthonormal vectors of an inner product space E. Then for every x ∈ E,

󵄩󵄩󵄩󵄩x −
n
∑
i=1⟨x, ei⟩ei󵄩󵄩󵄩󵄩2 = ‖x‖2 − n

∑
i=1⟨x, ei⟩2. (3.3.1)

We have already proved equality (3.3.1) in the course of Theorem 3.1.1: recall that
∑ni=1⟨x, ei⟩ei is precisely the orthogonal projection of x onto the subspace spanned by
the vectors e1, . . . , en. However, it can be useful to have a direct proof of (3.3.1), based on
an immediate use of the properties of the inner product.

For any c1, . . . , cn ∈ ℝ we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
x −

n
∑
i=1 ciei
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= ⟨x −
n
∑
i=1 ciei, x − n

∑
i=1 ciei⟩

= ⟨x, x⟩ − ⟨x,
n
∑
i=1 ciei⟩−⟨ n

∑
i=1 ciei, x⟩+⟨ n

∑
i=1 ciei, n∑j=1 cjej⟩
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= ‖x‖2 − 2
n
∑
i=1 ci⟨x, ei⟩ + n

∑
i=1 n
∑
j=1 cicj⟨ei, ej⟩

= ‖x‖2 − 2
n
∑
i=1 ci⟨x, ei⟩ + n

∑
i=1 c2i .

Taking ci = ⟨x, ei⟩ we obtain (3.3.1).
Let us now consider the properties of orthonormal infinite sequences, often called

(countable) orthonormal systems.

2. Bessel’s inequality and Parseval’s identity
Proposition 3.3.1 (Bessel’s inequality). Let (en)n∈ℕ be an orthonormal sequence in an in-
ner product space E and let x ∈ E. Then the series ∑∞i=1⟨x, ei⟩2 converges, and moreover
we have ∞

∑
i=1⟨x, ei⟩2 ≤ ‖x‖2. (3.3.2)

Proof. Equality (3.3.1) holds for each n ∈ ℕ and shows that

n
∑
i=1⟨x, ei⟩2 ≤ ‖x‖2 (n ∈ ℕ). (3.3.3)

Letting n→∞, the statements in Proposition 3.3.1 follow immediately.

Two problems
Question A
Given x ∈ E, does the series ∑∞i=1⟨x, ei⟩ei of vectors of E converge?
Question B
Does the series above converge tox? In this case, that is, when the equality∑∞i=1⟨x, ei⟩ei =
x holds, we speak of a series expansion of x into the orthonormal sequence (en)n∈ℕ.
Proposition 3.3.2. Let (en)n∈ℕ be an orthonormal sequence in an inner product space E
and let x ∈ E. Then the following statements are equivalent:

(a)
∞
∑
i=1⟨x, ei⟩ei = x, (3.3.4)

(b)
∞
∑
i=1⟨x, ei⟩2 = ‖x‖2. (3.3.5)

Proof. This follows again from (3.3.1), just letting n→∞.
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Remark. The equality in (3.3.5) is called Parseval’s identity and represents the special
case in which Bessel’s inequality becomes in fact an equality.

3. Total orthonormal systems
We recall (see Remark 3.2.11) that if (X , d) is any metric space and A ⊂ X , the set of all
cluster points of A is denoted with A and called the closure of A.

Definition 3.3.1. A set A ⊂ X is said to be dense in X if A = X .

Thus, saying that A is dense in X means that every point of X is a cluster point of A,
or in symbols

∀x ∈ X ∀ϵ > 0 ∃z ∈ A : d(z, x) < ϵ.

For example, the setℚ of the rational numbers is a dense subset of ℝ.

Theorem 3.3.1. Let (en)n∈ℕ be an orthonormal sequence in an inner product space E.
Suppose that (en)n∈ℕ is total, that is, the vector subspace spanned by (en)n∈ℕ is dense
in E. Then ∞

∑
i=1⟨x, ei⟩ei = x ∀x ∈ E. (3.3.6)

Proof. The proof consists in using the totality of (en)n∈ℕ together with the best approx-
imation property of the orthogonal projection.

Let x ∈ E. To prove (3.3.6), we need to show that

∀ϵ > 0 ∃n0 ∈ ℕ : ∀n ≥ n0
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
x −

n
∑
i=1⟨x, ei⟩ei

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< ϵ. (3.3.7)

LetM be the vector subspace of E spanned by (en)n∈ℕ, that is,
M = {

n
∑
i=1 ciei | ci ∈ ℝ, n ∈ ℕ} = ∞⋃n=1Mn,

where

Mn = span(e1, . . . , en).

Fix ϵ > 0. SinceM is dense in E by assumption, there exist an n̂ ∈ ℕ and coefficients
ci ∈ ℝ (i = 1, . . . , n̂) such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
x −

n̂
∑
i=1 ciei
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< ϵ. (3.3.8)
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However, by the nearest point property of the orthogonal projection, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
x −

n̂
∑
i=1⟨x, ei⟩ei

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
x −

n̂
∑
i=1 ciei
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
. (3.3.9)

Moreover, by the same reason for every n ≥ n̂, sinceMn̂ ⊂ Mn,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
x −

n
∑
i=1⟨x, ei⟩ei

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
x −

n̂
∑
i=1⟨x, ei⟩ei

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
. (3.3.10)

Using (3.3.8), (3.3.9), and (3.3.10), the result follows.

Remark 3.3.1. If ∑∞i=1⟨x, ei⟩ei = x for every x ∈ E, then necessarily the vector subspace
M spanned by (en)n∈ℕ is dense in E; indeed, consider that this equality, which corre-
sponds to (3.3.7), gives much more detailed information than just the density of M . In
conclusion, the validity of (3.3.6) is equivalent to the totality of (en)n∈ℕ (and, on the
other side, to the validity of Parseval’s identity (3.3.5) for every x ∈ E).

Remark 3.3.2. We have shown practically all the results above in the special case of the
trigonometric system. In particular, among the results of the previous section (Fourier
series), we have shown that the vector space spanned by the trigonometric functions,
that is, the set of all the trigonometric polynomials, is dense in Ĉ2π(ℝ); in other words,
the trigonometric system is total.

The sequence spaces lp

Consider the set S of all real sequences

a = (a1, a2, . . . , an, . . . ), ai ∈ ℝ ∀i ∈ ℕ.

S has a natural structure of real vector space, forwe candefine the sum of two sequences
and the product of a sequence by a scalar in the obvious way, that is, componentwise:
if a = (a1, a2, . . . , an, . . . ) and b = (b1, b2, . . . , bn, . . . ), then

a + b ≡ (a1 + b1, a2 + b2, . . . , an + bn, . . . )

and

λa ≡ (λa1, λa2, . . . , λan, . . . ).

Some vector subspaces of S are of interest. Given any real number p with p ≥ 1, set

lp = {a = (an) ∈ S :
∞
∑
n=1 |an|p < +∞}.

It is customary to consider also the case p = ∞, which is defined in a different way:
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l∞ = {a = (an) ∈ S : (an) is bounded}.
Exercise 3.3.1. Prove that for any p : 1 < p < ∞ we have

l1 ⊂ lp ⊂ l∞.
More generally, if 1 ≤ p, q ≤ ∞ and p < q, then lp ⊂ lq.

Question. Is lp a vector space?

The answer to this question rests on the following important inequality holding for
non-negative sequences (an), (bn) and for any p ≥ 1:

(
∞
∑
n=1(an + bn)p)

1
p

≤ (
∞
∑
n=1 apn)

1
p

+ (
∞
∑
n=1 bpn)

1
p

. (3.3.11)

Inequality (3.3.11) is the special version for series of the famous Minkowski inequality
(see equation (3.4.3)), holding in general Lp spaces. It follows that setting, for a ∈ lp,

‖a‖p ≡ (
∞
∑
n=1 |an|p)

1
p

(3.3.12)

we get not only the fact that a + b ∈ lp if a, b ∈ lp, but also that (3.3.12) defines a norm in
the vector space lp.

In fact, one proves the following result, which will also be stated in more general
form in the next section.

Theorem 3.3.2. For every p with 1 ≤ p < ∞, equipped with the norm (3.3.12), lp is a
Banach space.

Remark 3.3.3. Also l∞ is a Banach space when equipped with the norm

‖a‖∞ ≡ sup
n∈ℕ |an|.

Indeed, this is nothing but the special case A = ℕ of the Banach space (B(A), ‖ ⋅ ‖), with

‖f ‖ = sup
x∈A 󵄨󵄨󵄨󵄨f (x)󵄨󵄨󵄨󵄨 for f ∈ B(A).

The special case p = 2
We have

l2 = {a = (an) ∈ S :
∞
∑
n=1 a2n < +∞}.
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Inner product in l2

Proposition 3.3.3. For every a = (an), b = (bn) ∈ l
2 put

⟨a, b⟩ ≡
∞
∑
n=1 anbn. (3.3.13)

Then (3.3.13) defines an inner product in l2.

Proof. This is left as an exercise. One has first to check that (3.3.13) is a good definition,
namely, that the series in (3.3.13) is convergent. In fact, we can see that it is absolutely
convergent, for using the inequality

|xy| ≤ 1
2
(x2 + y2) (x, y ∈ ℝ)

it follows that ∞
∑
n=1 |anbn| ≤ 12(∞∑n=1 a2n + ∞∑n=1 b2n) < ∞.

Norm induced by the inner product
We have

‖a‖ = √⟨a, a⟩ = √
∞
∑
n=1 a2n = ‖a‖2. (3.3.14)

That this is a norm follows directly from the general properties of the inner product
and does not require to be proved independently as for the case p ̸= 2.

A prototype orthonormal system
For every n ∈ ℕ, put

en = (0, 0, . . . , 0, 1, 0, . . . ),

where the number 1 appears only at the nth place of the sequence, that is, (en)j = 0 if
j ̸= n and (en)j = 1 if j = n.

It is clear from (3.3.13) and (3.3.14) that

{
⟨en, em⟩ = 0, (n ̸= m)
⟨en, en⟩ = ‖en‖

2 = 1
(3.3.15)

so that (en)n∈ℕ is an orthonormal system in l2, which we can see as the l2 version of the
familiar orthonormal basis (e1, . . . , ek) of ℝ

k .
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Moreover, this orthonormal system is total: in fact, for every a = (an) ∈ l
2 we have

⟨a, en⟩ = an ∀n ∈ ℕ

so that

‖a‖2 =
∞
∑
n=1 a2n = ∞∑n=1⟨a, en⟩2. (3.3.16)

This shows that Parseval’s identity (3.3.5) holds for every a ∈ l2 and thus proves the
claim.

Exercise 3.3.2. Show that the orthogonal projection of a = (an)n∈ℕ ∈ l2 onto the sub-
space spanned by the first k vectors e1, . . . , ek of the sequence (en)n∈ℕ is

(a1, a2, . . . , ak , 0, 0 . . . ).

3.4 Hilbert spaces. Projection onto a closed convex set
Definition 3.4.1. AHilbert space is an inner product space that is completewith respect
to the distance induced by the inner product.

Example 3.4.1 (See Example 3.1.1). The basic example of Hilbert space is provided by the
Euclidean space ℝn equipped with the inner product (3.1.1).

Example 3.4.2 (See Example 3.1.2). The space C([a, b]), equipped with the inner product

⟨f , g⟩ =
b

∫
a

f (x)g(x) dx, (3.4.1)

is not complete (the sequence (arctan nx) yields an example of a Cauchy sequence in
C([−1, 1]) that does not converge). In order to complete it, it is necessary to enlarge the
class of functions to be considered, first generalizing the definition of integral and then
introducing the Lp spaces. To learn about these fundamental extensions, a classical ref-
erence is W. Rudin’s book [6] (see also [10]); for the reader’s convenience we only list
some basic definitions and ideas in this context.

The Lebesgue integral and the Lp spaces
1. Measure and integration
Ameasure space is a triple (X ,M , μ) where:
– X is a non-empty set;
– M is a σ-algebra of subsets of X , that is, a family of subsets of X containing X itself

and closed with respect to the set operations of complement and countable union;
the elements ofM are called themeasurable subsets of X ;
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– μ is a measure onM , that is, a function μ : M → [0, +∞] that is countably additive,
i. e., such that

μ(
∞
⋃
n=1 En) = ∞∑n=1 μ(En)

whenever (En) is a sequence of measurable sets with En ∩ Em = 0 ∀n ̸= m.

A function f : X → ℝ is said to bemeasurable if the inverse image

f −1(V ) ≡ {x ∈ X : f (x) ∈ V}
is a measurable set for any open subset V ⊂ ℝ.

Given a measurable f : X → ℝ with f ≥ 0 on X , it is possible to define the

integral ∫
E

f dμ

of f on themeasurable set E ⊂ X with respect to themeasure μ: it is either a non-negative
number (when, for instance, f is bounded and themeasure μ(E) of E is finite) or+∞; one
then defines the integral for sign-changing functions. The integral so defined not only
possesses all the usual properties of the Riemann integral (linearity, monotonicity with
respect to the function, monotonicity with respect to the set, etc.) but is in fact much
more general and flexible than the Riemann integral. Moreover, it reduces to it when
considered for a continuous function on a compact interval ofℝ and when one employs
the Lebesgue measure of the (Lebesgue measurable) subsets of ℝ, constructed starting
from the intervals and puttingm(I) = b − a if I is an interval of endpoints a < b.

2. The Lp spaces
Given any measure space (X ,M , μ) and any real number p with p ≥ 1, set

Lp(X ,M , μ) = {f : X → ℝ|f measurable, ∫
X

|f |p dμ < ∞}.

More generally, one can define Lp(A,MA, μA), where A is a measurable subset of X (i. e.,
A ∈ M) and

MA ≡ {E ∈ M : E ⊂ A}, μA ≡ μ|MA
.

We have two fundamental inequalities (called respectively Hölder’s inequality and
Minkowski’s inequality) holding for any two non-negative measurable functions f , g :
X → ℝ and for any p > 1:
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∫
X

fg dμ ≤ (∫
X

f p dμ)
1
p

(∫
X

gq dμ)
1
q

, (3.4.2)

where q is the conjugate exponent to p, in the sense that 1
p +

1
q = 1, and

(∫
X

(f + g)p dμ)
1
p

≤ (∫
X

f p dμ)
1
p

+ (∫
X

gp dμ)
1
p

. (3.4.3)

The Minkowski inequality clearly holds also for p = 1 and shows first that, for every
fixed p ≥ 1, f + g ∈ Lp if f , g ∈ Lp; moreover, it proves that setting, for f ∈ Lp,

‖f ‖p ≡ (∫
X

|f |p dμ)
1
p

, (3.4.4)

we define a norm in the vector space Lp. Actually, to obtain this (and in particular the
implication ‖f ‖p = 0 ⇔ f = 0) one must identify functions that are equal almost every-
where on X ; two measurable functions f , g are said to have this property if

μ({x ∈ X : f (x) ̸= g(x)}) = 0.

In fact one proves the following.

Theorem 3.4.1. For every measure space (X ,M , μ) and for every p with 1 ≤ p < ∞, the
space Lp(X ,M , μ), equipped with the norm (3.4.4), is a Banach space.

Special cases
– Take X = ℝn and

M = L ≡ {E ⊂ ℝn : E is Lebesgue measurable},

μ = m : L→ [0,∞] ≡ the Lebesgue measure .

Open sets (and hence also closed sets) inℝn are all Lebesgue measurable. It follows
that any continuous function f : ℝn → ℝ is Lebesgue measurable.

– Take X = ℕ and

M = M0 ≡ {E|E ⊂ ℕ},

μ = ν ≡ the counting measure,

that is, ν(E) equals the number of elements of E if E is finite, while ν(E) = +∞
if E is infinite. One checks that, for this measure space and for any non-negative
a : ℕ → ℝ, that is, for any real sequence (an), one has
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∫
ℕ

adν =
∞
∑
n=1 an

and it then follows that

Lp(ℕ,M0, ν) = l
p ∀p ≥ 1,

where the sequence spaces lp have been defined in the previous section.

Remark 3.4.1. If Ω is a bounded open set inℝn and C(Ω) is defined as in (2.4.10), we have

C(Ω) ⊂ Lp(Ω) for every p ≥ 1. (3.4.5)

Indeed, if f ∈ C(Ω), f is measurable as already noted above, andmoreover (as |f (x)| ≤ K
in Ω for some K ≥ 0) we also have

∫
Ω

|f |p dm ≤ ∫
Ω

Kp dm = Kpm(Ω) < ∞ (3.4.6)

because the Lebesgue measure of a (measurable) bounded set is finite. One fundamen-
tal property of the inclusion (3.4.5) is that for every p ≥ 1, C(Ω) is a dense subset of
Lp(Ω); this means (see Remark 3.2.11 and Definition 3.3.1) that every f ∈ Lp(Ω) can be
approximated as closely as we wish (in the Lp norm!) with a function g ∈ C(Ω).

Remark 3.4.2. Consider again a bounded open set Ω ⊂ ℝn. Using Hölder’s inequality it
is easy to see that

Lp(Ω) ⊂ Lq(Ω) if q < p (3.4.7)

and, in particular, that

‖f ‖q ≤ C‖f ‖q ∀f ∈ L
p(Ω), C = m(Ω)

1
q− 1p . (3.4.8)

Indeed, using (3.4.2) with conjugate exponents p
q and

p
p−q we have

∫
Ω

|f |q dm ≤ (∫
Ω

|f |p dm)
q
p

(∫
Ω

1 dm)
p−q
p

= ‖f ‖qpm(Ω)
p−q
p ,

whence we obtain (3.4.8). It is clear that the same conclusions hold, more generally,
whenever Ω is a measure space with measure μ(Ω) < ∞.

Exercise 3.4.1. Give examples showing that the inclusion (3.4.7) is false if the bounded-
ness assumption on Ω is dropped.
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3. The special case p = 2
We have

L2(X ,M , μ) = {f : X → ℝ|f measurable, ∫
X

f 2 dμ < ∞}.

Inner product in L2: This is defined putting for every f , g ∈ L2

⟨f , g⟩ ≡ ∫
X

fg dμ. (3.4.9)

Note that the norm induced by the inner product, that is,

‖f ‖ = √⟨f , f ⟩ = √∫
X

f 2 dμ, (3.4.10)

equals the norm ‖f ‖2 defined in (3.4.4). Therefore, Theorem 3.4.1 yields the following
corollary.

Corollary 3.4.1. For every measure space (X ,M , μ), the space L2(X ,M , μ), equipped with
the inner product (3.4.9), is a Hilbert space.

In particular, the sequence space l2 considered in Section 3.3 is a Hilbert space.

Additional results for Hilbert spaces
In the next few pages we discuss some results holding in the context of Hilbert spaces
and complementing those seen in the previous sections about the existence of the near-
est point in a set K to a given point x, and in particular of the orthogonal projection of x
onto a subspaceM , and the properties of countable orthonormal systems (en)n∈ℕ. Each
of the two main results that we are going to prove, Theorem 3.4.2 and Theorem 3.4.3,
will clearly display the role played by the completeness of the space.

Recall that a subset K of a vector space E is said to be convex if for any two points
x, y ∈ K we have

(1 − t)x + ty ∈ K ∀t ∈ [0, 1].

Geometrically, this means that the whole segment of endpoints x, y is contained in
K if x, y ∈ K .

Any vector subspace of E is convex. If E has a norm, then any open ball and any
closed ball in E is convex.

Theorem 3.4.2 (Existence and uniqueness of the nearest point in a closed convex set). Let
H be a Hilbert space and let K be a closed and convex subset of H. Then for every x ∈ H,
there exists a unique z0 ∈ K such that
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‖x − z0‖ ≤ ‖x − z‖ ∀z ∈ K . (3.4.11)

The theorem says that given any fixed x ∈ H , the function f of H into ℝ defined
putting

f (z) = ‖x − z‖

attains its minimum on K at a unique point z0 ∈ K . Thus, we need to concentrate on
the non-negative number

δ ≡ inf
z∈K ‖x − z‖, (3.4.12)

usually called the distance of x from K , and see if this infimum is actually attained
at some z0 ∈ K , so as to satisfy (3.4.11). With the help of Exercise 3.1.3 (ensuring that
f is continuous), the Weierstrass theorem immediately guarantees this provided that
H = ℝn and K is closed and bounded; in fact, Proposition 3.1.8 proves that closedness
is enough in this case. How to proceed in the general case? Compactness would work;
however, there are “few” compact sets in infinite dimensions. The completeness of H
and the convexity of K will be the key ingredients for the proof of Theorem 3.4.2.

Lemma 3.4.1. Let E be an inner product space and let K be a convex subset of E. Given
x ∈ E, let δ be its distance from K defined in (3.4.12). Then we have

‖z1 − z2‖
2 ≤ 2‖x − z1‖

2 + 2‖x − z2‖
2 − 4δ2 ∀z1, z2 ∈ K . (3.4.13)

Proof. Start from the parallelogram law

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 (3.4.14)

and rewrite it in the form

‖x − y‖2 = 2‖x‖2 + 2‖y‖2 − 4‖x + y
2
‖2. (3.4.15)

Writing this with x − z1 in place of x and x − z2 in place of y we obtain

‖z1 − z2‖
2 = 2‖x − z1‖

2 + 2‖x − z2‖
2 − 4‖x − z1 + z2

2
‖2, (3.4.16)

whence we obtain (3.4.13) by virtue of the convexity of K .

Proof of Theorem 3.4.2
Given x ∈ H , let again δ = infz∈K ‖x − z‖ be its distance from K defined in (3.4.12).

1. (Existence) There exists a sequence (zn) ⊂ K such that

‖x − zn‖ → δ as n→∞ (3.4.17)
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(see Exercise 3.1.4). We claim that (zn) is a Cauchy sequence; indeed, (3.4.13) shows that

‖zn − zm‖
2 ≤ 2‖x − zn‖

2 + 2‖x − zm‖
2 − 4δ2 ∀n,m ∈ ℕ. (3.4.18)

Using (3.4.17) we then see that

‖zn − zm‖ → 0 as n,m→∞,

so that our claim is proved. Thus, by the completeness of H , there is a z0 ∈ H such that

zn → z0 (n→∞).

However, K is a closed set by assumption, so z0 ∈ K (Exercise 3.1.2).
Moreover, by continuity of the norm we have

‖x − zn‖ → ‖x − z0‖ (n→∞)

so that using again (3.4.17), we finally obtain ‖x − z0‖ = δ, whence the result follows.
2. (Uniqueness) Suppose that there exist z1, z2 ∈ K such that

‖x − z1‖ = ‖x − z2‖ = δ.

Then using (3.4.13) we see immediately that z1 = z2.

Corollary 3.4.2 (Orthogonal projection onto a closed subspace). Let H be a Hilbert space
and let M be a closed vector subspace of H. Then for every x ∈ H, there exists a unique
y ∈ M such that

‖x − y‖ ≤ ‖x − z‖ ∀z ∈ M . (3.4.19)

Moreover, y is characterized by the property that

x − y ⊥ M . (3.4.20)

Proof. The first statement is just the special case of Theorem 3.4.2 where K is a vec-
tor subspace of H . The second statement is a mere repetition of the equivalence be-
tween (3.4.19) and (3.4.20) already proved in Section 3.1; see in particular Remark 3.1.4
and Proposition 3.1.7.

Orthonormal systems in a Hilbert space
Let (en)n∈ℕ be an orthonormal system in a Hilbert space. What can be added to the re-
sults seen in the previous section in the context of inner product spaces? The next theo-
rem shows the role played by completeness in the convergence of the series of interest.
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Theorem 3.4.3 (Fischer–Riesz theorem). Let (en)n∈ℕ be an orthonormal sequence in a
Hilbert space H. Then for every x ∈ H, the series ∑∞n=1⟨x, en⟩en converges in H, and
moreover putting

p(x) ≡
∞
∑
n=1⟨x, en⟩en (3.4.21)

we have

⟨p(x), ei⟩ = ⟨x, ei⟩ ∀i ∈ ℕ. (3.4.22)

Proof.
– We first prove the following statement: for every a = (an) ∈ l

2, the series ∑∞n=1 anen
converges in H , and if p = ∑∞n=1 anen, then

⟨p, ei⟩ = ai ∀i ∈ ℕ. (3.4.23)

To do this, set

sn =
n
∑
i=1 aiei, tn =

n
∑
i=1 a2i (n ∈ ℕ).

We have, assuming for instance n > m,

‖sn − sm‖
2 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

n
∑
i=1 aiei − m

∑
i=1 aiei
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

n
∑

i=m+1 aiei
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=
n
∑

i=m+1 ‖aiei‖2 = n
∑

i=m+1 |ai|2 = |tn − tm|.
By the assumption on a, this shows that (sn) is a Cauchy sequence inH and therefore
converges. Equality (3.4.23) is a consequence of the continuity of the scalar product;
see Exercise 3.4.2 below.

– Now let x ∈ H . By Bessel’s inequality (Proposition 3.3.1), we know that the sequence
(⟨x, en⟩)n∈ℕ ∈ l2; therefore, the statements in the theorem follow as a special case
from the above discussion.

Exercise 3.4.2. Let E be an inner product space.
– The inequality

󵄨󵄨󵄨󵄨⟨x − y, a⟩
󵄨󵄨󵄨󵄨 ≤ ‖x − y‖‖a‖

shows that the (linear) map x → ⟨x, a⟩ (a ∈ E fixed) of E into ℝ is continuous.
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– It follows that for any convergent series ∑∞n=1 xn in E and for every fixed a ∈ E, we
have

⟨
∞
∑
n=1 xn, a⟩ = ∞∑n=1⟨xn, a⟩.

Exercise 3.4.3. The closure M of a vector subspace M of a normed vector space is a
closed vector subspace (use Remark 3.2.11).

Corollary 3.4.3. Let (en)n∈ℕ be an orthonormal sequence in a Hilbert space H and let
x ∈ H. Then the vector p(x) defined by formula (3.4.21) is the orthogonal projection of x
onto the closure M of the vector subspace M spanned by (en)n∈ℕ.
Proof. Given x ∈ H , the existence and uniqueness of its orthogonal projection onto M
is established by Corollary 3.4.2. To prove our assertion, it is therefore enough to show
that

x − p(x) ⊥ M . (3.4.24)

In fact, using (3.4.22) we have

⟨x − p(x), ei⟩ = ⟨x, ei⟩ − ⟨p(x), ei⟩ = ⟨x, ei⟩ − ⟨x, ei⟩ = 0

for every i ∈ ℕ, which shows that x − p(x) ⊥ M . Formula (3.4.24) follows on using once
again the continuity of the inner product (Exercise 3.4.2).

As a special case we obtain the following statement, which is a weaker form of The-
orem 3.3.1 on the series expansion of every vector of the space.

Corollary 3.4.4. Let (en)n∈ℕ be an orthonormal sequence in a Hilbert space H. Suppose
that (en)n∈ℕ is total, that is, the vector subspace spanned by (en)n∈ℕ is dense in E. Then
for every x ∈ H we have ∞

∑
i=1⟨x, ei⟩ei = x. (3.4.25)

Proof. The assumption on (en)n∈ℕ means thatM = H , and it is clear that the orthogonal
projection p(x) of x onto H is x itself.

Remark 3.4.3. In the light of the results discussed in this section, it is remarkable that
Theorem 3.3.1 holds independently of the completeness of the space.

Exercise 3.4.4. Let (en)n∈ℕ be an orthonormal sequence in a Hilbert space H . Define a
map F of H into the space S of all real sequences as follows:

F(x) ≡ (⟨x, en⟩)n∈N .
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Show the following:
– F is a map of H into l2;
– F : H → l2 is linear and continuous;
– F is surjective.

Moreover, if (en)n∈ℕ is total (in which case it is sometimes called a Hilbert basis of H),
then F is also injective, and thus an isomorphism of H onto l2. This shows that every
Hilbert space with a (countable) Hilbert basis is isomorphic to l2, which also shows the
peculiar importance of this sequence space.

3.5 Additions and exercises
A1. Some remarks on orthonormal systems
1. In Section 3.2 of the present chapter we have seen by direct computation that the (full)
trigonometric system

e0 =
1
√2π
, e2k−1(x) = cos kx√π , e2k(x) =

sin kx
√π
(k ∈ ℕ) (3.5.1)

is orthonormal in C([0, 2π]) (or C([−π, π])) equipped with the scalar product

⟨f , g⟩ =
2π

∫
0

f (x)g(x) dx, (3.5.2)

and we have also seen (essentially, if not in all details) that this system is total (or com-
plete, as is often said); these two properties are at the basis of the Fourier expansion of
2π-periodic functions.

2. The (only sine, partial) trigonometric system

√ 2
π
sin nx, n ∈ ℕ, (3.5.3)

is a total orthonormal system in C([0, π]) – if we take of course as scalar product the
integral in (3.5.2) extended from 0 to π. This can be checked by methods entirely similar
to those recalled in 1., that is, first direct computation, checking that

π

∫
0

sin2 nx dx = π
2
∀n ∈ ℕ,

π

∫
0

sin nx sinmx dx = 0 (n ̸= m),

and then via the use of approximation methods based on the Weierstrass theorem.
A slightly different method to verify the desired properties of the system (3.5.3) would
consist in considering the odd reflection fd of a function f ∈ C([0, π]) to [−π, π] so as
to return to 1. and then reach the conclusions using the fact that the cosine coefficients
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ak of fd are all 0; this is precisely the argument that we shall follow in Section 4.3 of
Chapter 4.

In any case we obtain, using the orthonormality and totality of the system (3.5.3),
the expansion

f =
∞
∑
n=1⟨f , en⟩en, en(x) = √

2
π
sin nx, n ∈ ℕ, (3.5.4)

which we can explicitly write as

f (x) =
∞
∑
n=1(

π

∫
0

f (x) √ 2
π
sin nx dx) ⋅ √ 2

π
sin nx,

that is, as

f (x) =
∞
∑
n=1 bn sin nx, with bn =

2
π

π

∫
0

f (x) sin nx dx (n ∈ ℕ). (3.5.5)

It should be clear to us that equality (3.5.5) cannot be interpreted literally as saying “for
every x ∈ [0, π], the series on the right-hand side of equation (3.5.5) converges to the
sum f (x)” – that is, as asserting the pointwise convergence of the series to the given f ;
indeed, the general formula in (3.5.4) establishes the convergence of the series in the
norm of the given inner product space, and thus in our case, the convergence is in
the quadratic mean – not implying necessarily the pointwise convergence.

The pointwise, and in fact uniform, convergence of the series in (3.5.5) can be estab-
lished if we assume further conditions on f besides the mere continuity; for instance, it
will be shown in Proposition 4.4.2 that this is true if f ∈ C10[0, π].

A quite different method to establish the properties of the system (3.5.3) is based
on the following fundamental remark. As we are going to see in the next exercise, the
functions {sin nx : n ∈ ℕ} are the (non-normalized) eigenfunctions of the boundary
value problem (BVP)

{
u′′ + λu = 0 (0 < x < π)

u(0) = u(π) = 0.

Exercise 3.5.1. Consider the BVP

(A) { u′′ + λu = 0 (a < x < b)
u(a) = u(b) = 0.

– Prove that (A) has solutions u ̸= 0 iff

λ = λk = (
πk
b − a
)
2

(k = 1, 2, . . . ). (3.5.6)
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– Prove that the solutions corresponding to λk are given by

uk(x) = C sinωk(x − a), C ∈ ℝ (ωk = √λk). (3.5.7)

(i) The characteristic equation of the differential equation is μ2 + λ = 0. For λ = 0,
(A) clearly only has the solution u = 0. Thus, consider the different cases:

(a) λ < 0: Then μ2 = −λ > 0, so μ = ±√−λ ≡ ±α, α = √−λ > 0.

The solutions of the differential equation are

u(x) = Ceαx + De−αx .
Imposing the boundary conditions

{
u(a) = Ceαa + De−αa = 0
u(b) = Ceαb + De−αb = 0,

we see that the determinant of the coefficientmatrix is eα(a−b)−e−α(a−b) ̸= 0, so C = D = 0.
(b) λ > 0: Then μ2 = −λ < 0, so μ = ±i√λ ≡ ±iω, ω = √λ > 0.

The solutions of the differential equation are

u(x) = C cosωx + D sinωx. (3.5.8)

Impose the boundary conditions

{
u(a) = C cosωa + D sinωa = 0
u(b) = C cosωb + D sinωb = 0.

(3.5.9)

The determinant of the coefficient matrix is

cosωa sinωb − sinωa cosωb = sinω(b − a)

so that it equals zero iff

sinω(b − a) = 0⇔ ω(b − a) = kπ (k ∈ ℕ),

whence we finally get

ω = kπ
b − a
≡ ωk (k ∈ ℕ).

As ω = √λ, this gives (3.5.6).
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(ii) From the first equation in (3.5.9) we obtain (assuming for instance cosωa ̸= 0)
C = −D sinωa

cosωa , and putting this in (3.5.8) we have

u(x) = −D sinωa
cosωa

cosωx + D sinωx (3.5.10)

= D(− sinωa cosωx + sinωx cosωa
cosωa

)

=
D

cosωa
sinω(x − a) ≡ D′ sinω(x − a).

For ω = ωk , we thus obtain (3.5.7).

The connection between total orthonormal systems and BVPs for second-order lin-
ear ODEs shown by Exercise 3.5.1 is far from being accidental: it is rather at the basis of
what is called the spectral theory of (second-order) ordinary differential operators. We
shall say something on this in the next Addition A2, while here below we just cite some
keywords often encountered in the study of orthonormal systems.

3. Gram–Schmidt orthogonalization method: This is a standard constructive
method – based on the properties of the orthogonal projection onto a subspace dis-
cussed in Section 3.1 of this chapter – allowing to pass from a set of linearly independent
vectors {x1, . . . , xn} in a inner product space E to a set of orthonormal vectors {u1, . . . , un}
spanning the same subspace as the xi; see, for instance, Chapter 3 of Kolmogorov–Fomin
[9] or Chapter 3 of Taylor [8].

4. Special functions: It is fair to mention here some important orthonormal sys-
tems, useful in approximation theory and numerical analysis, some of which originate
as eigenfunctions of (regular or singular) second-order linear ODEs; see, for instance,
Chapter 7 of Kolmogorov–Fomin [9] or Chapter 7 of Weinberger [2].
(i) Legendre polynomials: These are obtained via orthogonalization of the functions

1, x, x2, . . . on the interval [−1, 1].
(ii) Hermite polynomials: These are obtained via orthogonalization on the interval

]−∞, +∞[ of the functions xne− x22 (that is to say, the same functions considered

in (i) multiplied by the weight e− x22 , which allows these functions to be square
integrable on ℝ).

(iii) Laguerre polynomials: Like in (ii), these are obtained once more by the integer
power functions xn, each multiplied by the weight e−x and orthogonalized on
[0, +∞[.

A2. Some spectral theory for ordinary differential operators
We resume the notation and context of Addition A1 to Chapter 1, save that here – also in
preparation for the content of Chapter 4 – wewill denote the independent variable with
x (rather than with t) and the unknown function in the ODE with u (rather than with x).
Thus, put
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Lu = u′′ + a1(x)u′ + a2(x)u, (3.5.11)

where a1, a2 ∈ C[a, b] ≡ C([a, b]); in this addition, we use the simplified symbol for our
convenience. Consider the homogeneous problem, depending on the (real) parameter λ,

{{
{{
{

Lu − λu = 0 a < x < b
u(a) = 0
u(b) = 0.

(3.5.12)

For every λ ∈ ℝ, (3.5.12) possesses of course the trivial solution u = 0. Values of λ for
which (3.5.12) possesses also non-trivial solutions are called eigenvalues of the prob-
lem (3.5.12) (or eigenvalues of L with Dirichlet boundary conditions [BCs] on u), and the
corresponding non-trivial solutions are called eigenfunctions.

Different boundary conditions can be considered; for instance, one can require that
u′(a) = u′(b) = 0 (Neumann BCs) or that u(a) = u′(b) = 0, and so on. It is convenient
to consider in general linear conditions involving u and u′ at each endpoint of [a, b]
(separated boundary conditions) and thus consider the following more general form
of (3.5.12):

{{
{{
{

Lu − λu = 0 a < x < b
αu(a) + βu′(a) = 0
γu(b) + δu′(b) = 0, (3.5.13)

where

(α, β) ̸= (0, 0) and (γ, δ) ̸= (0, 0). (3.5.14)

From the discussion in Addition A1 to Chapter 1, we gain immediately the following re-
sult concerning the non-homogeneous problem attached to (3.5.13).

Proposition 3.5.1. Suppose that λ is not an eigenvalue of (3.5.13). Then the non-homoge-
neous problem

{{
{{
{

Lu − λu = y(x) a < x < b
αu(a) + βu′(a) = m
γu(b) + δu′(b) = n (3.5.15)

has a solution for any given y ∈ C[a, b] and any given m, n ∈ ℝ.

The definitions given above and the statement in Proposition 3.5.1 immediately open
various questions, which we can roughly simplify as follows:
– Do there exist eigenvalues of the problem (3.5.13)? If so, “how many”?
– Which properties do the eigenfunctions attached to a given eigenvalue possess, and

what can we say about the totality of them?
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– What can we say about the solvability of problem (3.5.15) when λ is an eigenvalue
of (3.5.13)?

The study of these questions, and of similar ones for much more general situations re-
garding linear operators in normed spaces, goes under the name of spectral theory
[7, 11]. About (3.5.15), two simple points can be established right now, which are plain
consequences of some linear algebra and what we have seen in Chapter 1.

(a)The set of all eigenfunctions corresponding to a given eigenvalue λ, togetherwith
the zero function, forms a vector space that is called the eigenspace corresponding to
the eigenvalue λ. In our case, an eigenspace is a vector subspace of C2[a, b]:

E(λ) = {u ∈ C2[a, b]|u is a solution of problem (3.5.13)},

and on the basis of the “dimensional theorem” (Theorem 1.3.1) we have

1 ≤ dim E(λ) ≤ 2.

However, it is easily seen that dim E(λ) = 1, for dim E(λ) = 2 would mean that every
solution of the linear second-order ODE Lu = λu has to satisfy the boundary conditions
in (3.5.13), which is not true because the existence and uniqueness theorem for the IVP
guarantees that we can choose the initial conditions without any constraint – indeed for
instance, the solution z of the equation such that z(a) = α, z′(a) = β does not satisfy the
BC at a.

(b) If λ is an eigenvalue of (3.5.13) and the problem (3.5.15) has a solution for a given y,
then we are far away from uniqueness of this solution, for there are infinitely many of
them; precisely, if we call x such a solution, then all functions in the “affine subspace”

Sy ≡ x + E(λ)

have the same property. Of course, this is true for any equation of the type A(x)−λx = y,
with A a linear operator acting in a vector space E.

Much more can be said about the Sturm–Liouville eigenvalue problems.
These are of the form (3.5.13), with the following special type of differential opera-

tor L:

Lu = −(p(x)u′)′ + q(x)u, (3.5.16)

where the coefficient functions satisfy the conditions

p ∈ C1[a, b], q ∈ C[a, b], p(x) > 0 ∀x ∈ [a, b].

It is useful to put
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a(u, v) =
b

∫
a

p(x)u′(x)v′(x) dx + b

∫
a

q(x)u(x)v(x)dx (u, v ∈ C1[a, b]); (3.5.17)

a is often called the Dirichlet form corresponding to the differential operator L. Note
that

a(u, v) = a(v, u) ∀u, v

so that a is a symmetricbilinear formon the vector spaceC1[a, b]; note in particular that
– unlike L, which is naturally defined on C2[a, b] – a contains only first-order derivatives
of the functions involved and is therefore well defined on the larger space C1[a, b]. The
relation between L and a – and the name of the latter – is made clear by the following.

Proposition 3.5.2. We have

⟨Lu, v⟩ = a(u, v) for u, v ∈ C20[a, b], (3.5.18)

where

C20[a, b] ≡ {u ∈ C
2[a, b] : u(a) = u(b) = 0}.

Proof. Omitting for simplicity the x-dependence in the functions to be integrated, we
can write

⟨Lu, v⟩ =
b

∫
a

[−(pu′)′ + qu]v dx = − b

∫
a

(pu′)′v + b

∫
a

quv dx

= −pu′v]x=bx=a + b

∫
a

pu′v′ dx + b

∫
a

quv dx = a(u, v), (3.5.19)

because the boundary term

B(u, v) ≡ pu′v]x=bx=a = p(b)u′(b)v(b) − p(a)u′(a)v(a)
vanishes, since v(b) = v(a) = 0.

Note that only the boundary condition on vwas used to obtain (3.5.18). Likewise, we
see at once that B(u, v) = 0 for all v if u satisfies the (zero) Neumann BCs:

u′(a) = u′(b) = 0,
producing again equality (3.5.18). However, we look now for symmetric conditions on u
and v ensuring the important property (3.5.18). Here the Sturm–Liouville separated BCs
come into play, in view of the following remark.
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Remark 3.5.1. If u, v ∈ C1[a, b] both satisfy a condition of the type

αu(x0) + βu
′(x0) = 0 (3.5.20)

for some x0 ∈ [a, b] and some (α, β) ̸= (0, 0), then

u′(x0)v(x0) = u(x0)v′(x0). (3.5.21)

One way to verify the statement above is just considering the linear algebraic sys-
tem consisting of (3.5.20) and the same equation written for v, and concluding that the
coefficient matrix must have determinant equal to zero.

Let us go back to the relation between L and a. Equation (3.5.19) shows that in gen-
eral we have

⟨Lu, v⟩ = −B(u, v) + a(u, v). (3.5.22)

Suppose now that the functions u, v satisfy both boundary conditions in (3.5.13). Then
using the necessary condition (3.5.21) both at b and at a we get

B(u, v) = p(b)u′(b)v(b) − p(a)u′(a)v(a)
= p(b)u(b)v′(b) − p(a)u(a)v′(a) = B(v, u)

and see that alsoB is symmetric in this case. The conclusion can then be stated as follows.

Proposition 3.5.3. Let F be the vector subspace of C2[a, b] consisting of those functions
satisfying both boundary conditions in (3.5.13). Then

⟨Lu, v⟩ = ⟨Lv, u⟩ (3.5.23)

for every u, v ∈ F; in words, the bilinear form (u, v) → ⟨Lu, v⟩ is symmetric on F.

The symmetry property (3.5.23) is crucial in dealing with the Sturm–Liouville eigen-
value problem (3.5.13) and also with the associated non-homogeneous problem (3.5.15).
About the latter, we have the following statement.

Proposition 3.5.4. Suppose that λ is an eigenvalue of (3.5.13). Then the non-homogeneous
problem

{{
{{
{

Lu − λu = y a < x < b
αu(a) + βu′(a) = 0
γu(b) + δu′(b) = 0 (3.5.24)

can have a solution only if y is orthogonal to the solutions of the homogeneous prob-
lem (3.5.13), that is, to the eigenfunctions corresponding to the eigenvalue λ.
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Proof. Suppose that u is a solution of (3.5.24) and let z be a solution of (3.5.13). Then

⟨y, z⟩ = ⟨Lu − λu, z⟩ = ⟨Lu, z⟩ − λ⟨u, z⟩

= ⟨Lz, u⟩ − λ⟨z, u⟩ = ⟨Lz − λz, u⟩ = 0.

Exercise 3.5.2. Interpret Example 1.7.3 of Chapter 1 in the light of Proposition 3.5.4.

Remark 3.5.2. It can be shown that the orthogonality condition stated in Proposi-
tion 3.5.4 is also sufficient for the solvability of (3.5.24).

The next result about (3.5.13) reminds us very neatly of an important property of
the eigenvectors of real symmetric n × nmatrices.

Proposition 3.5.5. Eigenfunctions corresponding to different eigenvalues of (3.5.13) are
orthogonal.

Proof. We wish to prove that if

(∗)
{{
{{
{

Lu = λu
αu(a) + βu′(a) = 0
γu(b) + δu′(b) = 0 and (∗∗)

{{
{{
{

Lv = μv
αv(a) + βv′(a) = 0
γv(b) + δv′(b) = 0

with λ ̸= μ, then

⟨u, v⟩ =
b

∫
a

u(x)v(x) dx = 0.

Indeed, taking the scalar product by v of both members in the differential equation in
(*) we have

⟨Lu, v⟩ = λ⟨u, v⟩ (3.5.25)

and doing similar work with (**) we have

⟨Lv, u⟩ = μ⟨v, u⟩. (3.5.26)

However, by virtue of equality (3.5.23) proved in Proposition 3.5.3, the first members
in (3.5.25) and (3.5.26) are equal, implying that

(λ − μ)⟨u, v⟩ = 0,

whence the desired conclusion follows.
On the basis of Proposition 3.5.5,we can thus say that the (normalized) eigenfunctions

of the Sturm–Liouville problem (3.5.13) form an orthonormal system in C[a, b]; but this is
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evidently a vacuous statement until we are able to prove that eigenvalues to (3.5.13)
actually exist!

Existence of the eigenvalues
To answer this question, in the first instance one tries to extend what has been done
in the basic Exercise 3.5.1. Consider for instance the more general eigenvalue prob-
lem (3.5.12) and let, for each λ ∈ ℝ, uλ and vλ be two independent solutions of the
equation Lu = λu, so that the general solution of this equation is

u = cuλ + dvλ (c, d ∈ ℝ).

Impose the boundary conditions to determine c and d; for the Dirichlet BCs assigned
in (3.5.12) we will write

{
cuλ(a) + dvλ(a) = 0
cuλ(b) + dvλ(b) = 0.

(3.5.27)

The linear algebraic system (3.5.27) can either have only the trivial solution c = d = 0
(meaning that λ is not an eigenvalue) or else have solutions (c, d) ̸= (0, 0); this happens
precisely when

D(λ) = det(uλ(a) vλ(a)
uλ(b) vλ(b)

) = 0. (3.5.28)

It is thus a matter of studying the zeros of the function D. For instance, in Exer-
cise 3.5.1 we had

uλ(x) = cos√λx, vλ(x) = sin√λx

so that

D(λ) = det(cos
√λ a sin√λ a

cos√λ b sin√λ b
) = sin√λ(b − a)

producing through its zero the eigenvalues λk = (
πk
b−a )2, k ∈ ℕ.

Does a result like this hold for the general Sturm–Liouville problems (3.5.12)
or (3.5.13)? The answer to this question is positive, but unfortunately this cannot be
proved by the elementary methods used in this book. We can only indicate below some
ways leading to the result.

One method is based on the theory of analytic functions of a complex variable.
Widening the study of the ODE x′ = f (t, x) to the complex field ℂ, that is, studying the
equation z′ = f (t, z), where now f is a function defined in a subset A ⊂ ℝ × ℂ and
with values in ℂ, one may prove existence results for the solutions similar to those in-
dicated in this book; references for this are, for instance, Coddington–Levinson [12] and
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Dieudonné [7]. In particular, if f is analytic as a function of z, then the solution will de-
pend analytically on the initial value z0 ([12], Theorem 8.4) and on complex parameters λ
appearing analytically in the equation. Applying this enlarged theory to equations such
as that in (3.5.13), where now λ runs into the complex numbers, one proves that the so-
lutions uλ, vλ depend analytically on λ for fixed t and are in fact entire functions of λ. It
follows that the same is true for the determinant function D(λ) defined in (3.5.28). In the
words of [12], “This function can have only real zeros because (3.5.13) has no non-real
eigenvalues. Thus, D is an entire function of λ which is not identically zero. Its zeros,
which are the eigenvalues of (3.5.13), can therefore cluster only at +∞.”

Proofs of the statements above would clearly require a much deeper study of the
matter, but we are not far from the truth saying that this method – due to the nature
of the analytic functions as sum of convergent power series – is in principle the same
that we use to show that a real symmetric matrix A has n real eigenvalues (counting
multiplicities) appealing to the fact that the determinant

d(λ) ≡ det(A − λI)

is a polynomial of degree n in λ and so, by the fundamental theorem of algebra, it will
have n zeros belonging to the complex field, which however will all lie in ℝ due to the
symmetry of A.

In the middle course of this quite informal discussion, it is now good and satisfying
to state a standard form of themain results about (3.5.13), which gives a rather complete
answer to our questions.

The spectral theorem for Sturm–Liouville eigenvalue problems
Theorem 3.5.1. The Sturm–Liouville eigenvalue problem (3.5.13) has an infinite sequence
(λk) of eigenvalues, which can be arranged in increasing order of magnitude,

λ1 < λ2 < ⋅ ⋅ ⋅ < λk < ⋅ ⋅ ⋅ ,

and are such that λk → +∞ as k → ∞. Each eigenvalue λk has multiplicity 1 (that is,
eigenfunctions corresponding to λk are multiples of each other), and if uk denotes a nor-
malized eigenfunction corresponding to λk , then the (uk) form a total orthonormal system
in the space C([a, b]) equipped with the scalar product

⟨u, v⟩ =
b

∫
a

u(x)v(x) dx.

A detailed proof of Theorem 3.5.1 can be found, for instance, in Dieudonné [7].
A more informal and computational approach is followed by H. Weinberger [2], which
we now briefly discuss. First put
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E0 = {u ∈ C([a, b]) | u is piecewise C
1 and u(a) = u(b) = 0}, (3.5.29)

where piecewiseC1 functions are defined inDefinition 4.3.1. ThenE0 is a vector subspace
of C([a, b]) and is equipped with the scalar product ⟨u, v⟩ = ∫ba u(x)v(x) dx inherited by
that of C([a, b]). We rewrite for convenience (3.5.13) as

(EVP) { Lu = λu in ]a, b[
u(a) = u(b) = 0.

(3.5.30)

1. The (possible) eigenvalues λ of (EVP) are all > 0
Indeed, suppose that (3.5.30) is satisfied by some λ ∈ ℝ and u ̸= 0. Thenmultiplying both
members of the equation by v ∈ E0 and integrating, we have

a(u, v) = λ⟨u, v⟩ ∀v ∈ E0, (3.5.31)

where a is the Dirichlet form associated with L (see (3.5.17)), which is well defined also
for piecewise C1 functions. Taking in particular v = u in (3.5.31) yields

λ = a(u, u)

∫ba u
2dx
=
∫ba [pu

′ 2 + qu2] dx
∫ba u

2dx
≡ Q(u). (3.5.32)

Since p > 0 and q ≥ 0 in [a, b], it follows that the ratio Q appearing in (3.5.32) – which is
called the Rayleigh quotient of L – is > 0 for every u ∈ E0, u ̸= 0. Thus, eigenvalues of
(EVP) are values of the Rayleigh quotient and are a priori > 0.

2. The key point for the existence of the eigenvalues
If the greatest lower bound of the Rayleigh quotient

λ1 = infu∈E1 a(u, u)∫ba u
2dx
= inf

u∈E1 Q(u), E1 = {u ∈ E0 : u ̸= 0}

is attained, then λ1 is the smallest eigenvalue, and the minimizing functions u1 (i. e., the
functions u1 ∈ E1 such that Q(u1) = λ1) are eigenfunctions corresponding to λ1. This goes
as follows: it is clear from point 1. that λ1 is the smallest possible eigenvalue. Moreover,
the minimum conditions defining λ1 and u1 can be written as

a(u, u) − λ1⟨u, u⟩ ≥ 0 ∀u ∈ E0 and a(u1, u1) − λ1⟨u1, u1⟩ = 0

and imply that a(u1, v) = λ1⟨u1, v⟩ for all v ∈ E0; this is a sort of Fermat theorem (Theo-
rem 0.0.6) adapted to the present situation. Assuming in addition that u1 ∈ C

2, this last
equality is equivalent to
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⟨Lu1 − λ1u1, v⟩ = 0 ∀v ∈ E0,

and from this one can conclude that Lu1 − λ1u1 = 0, which proves our statement.
Once this first step is done, repeat it but considering functions orthogonal to u1; that

is, define

λ2 = infu∈E2 a(u, u)∫ba u
2dx
= inf

u∈E2 Q(u), E2 = {u ∈ E0 : u ̸= 0, u ⊥ u1}.

Then if λ2 is attained, λ2 is an eigenvalue of (EVP) and the functions u2 ∈ E2 such that
Q(u2) = λ2 are eigenfunctions corresponding to λ2. Clearly, λ2 ≥ λ1, but in fact strict
inequality holds, for if λ2 = λ1 we would have two orthogonal (and hence l. i.) eigen-
functions u1, u2 corresponding to the same eigenvalue, which is excluded by what we
have seen in point (a) of the comments to Proposition 3.5.1. Therefore, λ2 > λ1, and this
gives full strength to the statement that λ2 is the second eigenvalue of (EVP).

Now iterate the procedure to find an increasing infinite sequence of eigenvalues λk
with

λk = infu∈Ek a(u, u)

∫ba u
2dx
, Ek = {u ∈ E0 : u ̸= 0, u ⊥ u1, . . . , uk−1}.

The hard part in this construction consists precisely in proving that the successive
infima defined above are attained; for this delicate pointWeinberger refers to Courant’s
book [13]. We will return briefly to this in Remark 3.5.3.

3. The Green’s function
Since by point 1. the problem (EVP) has for λ = 0 only the solution u = 0, it is possible to
construct (see [2]) a continuous function G = G(s, t) defined in the square [a, b] × [a, b]
such that the unique solution of the problem

{
Lu = v in ]a, b[
u(a) = u(b) = 0

(3.5.33)

is given by

u(x) =
b

∫
a

G(x, y)v(y) dy.

It follows that (EVP) is equivalent to the integral equation

u(x) = λ
b

∫
a

G(x, y)u(y) dy. (3.5.34)
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Using the properties of the Green’s function G, Weinberger first shows that:
(a) λn →∞ as n→∞;
(b) from (a), it follows that the eigenfunctions (un) are complete for functions in E0

(that is, the subspace spanned by them is dense in E0), and from this, by an ap-
proximation argument similar to that used in Lemma 3.2.2, it follows that they are
complete in the whole space C([a, b]);

(c) moreover, using again the properties of the Green’s function, it also follows that for
functions u ∈ E0 –which are bothmore regular and satisfy the boundary conditions
– the convergence to u of its generalized Fourier series∞

∑
1
⟨u, un⟩un

is uniform on [a, b].

4. Further properties of eigenvalues and eigenfunctions

(i) The first eigenfunction does not vanish for a < x < b.
(ii) Monotonicity theorem: The eigenvalues of (EVP) depend monotonically on the

interval and on the coefficients; more precisely, each eigenvalue λk increases if the
length b − a of the interval [a, b] decreases or if the coefficients p, q of L increase.

(iii) We have the separation theorem between consecutive zeros of an eigenfunction;
see [2].

(iv) Oscillation theorem: The kth eigenfunction uk has exactly k − 1 zeros in the open
interval ]a, b[.

A more systematic and comprehensive approach to the Sturm–Liouville problem and
similar ones requires advanced tools from functional analysis, and in particular the
framework of Sobolev spaces and operator theory. The matter is as important as tech-
nically heavy, and here again we will only indicate a few points of this approach, with
the proviso that many definitions and results are given in an incomplete and possibly
imprecise fashion. Our goal is mainly to invite the interested reader to further study
the subject, referring for instance to the particularly clear and systematic treatment in
Brezis [14].

(a) A new function space
Put

H1(a, b) = {u ∈ L2(a, b) | u′ exists and u′ ∈ L2(a, b)}. (3.5.35)
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In (3.5.35), u′ denotes the weak derivative (or derivative in the sense of distributions)
of u, which extends the ordinary derivative and coincides with it for differentiable func-
tions. The inner product in H1(a, b) is defined as

⟨u, v⟩ =
b

∫
a

u′v′ dx + b

∫
a

uv dx. (3.5.36)

H1(a, b) is complete with respect to the norm induced by the inner product (3.5.36) and
hence is a Hilbert space. Also put

H1
0(a, b) = {u ∈ H

1(a, b) : u(a) = u(b) = 0}. (3.5.37)

H1
0(a, b) is a closed subspace ofH

1(a, b), and therefore is itself a Hilbert space, whichwill
be henceforth denoted with H .

Remark: In a sense, the space H1
0(a, b) takes here the role of the space E defined

in (3.5.29): it is a larger space and has the advantage of being a Hilbert space.

(b) Reduction of (EVP) to its weak form
(EVP) is shown to be equivalent to itsweak form, which consists in finding a u ∈ H , u ̸= 0,
such that

a(u, v) = λ
b

∫
a

uv dx ∀v ∈ H , (3.5.38)

where a is theDirichlet formassociatedwith our problem, introduced in (3.5.17) andwell
defined also for functions in H1(a, b). Since in our assumptions a is a positive definite,
symmetric, bilinear form onH×H , it can be taken as a new inner product inH (inducing
an equivalent norm), and we put

⟨u, v⟩1 = a(u, v) (u, v ∈ H). (3.5.39)

(c) Operator form of (EVP)
It is possible to introduce a linear operator K : H → H such that

b

∫
a

uv dx = ⟨Ku, v⟩1 ∀u, v ∈ H (3.5.40)

so that, using also (3.5.39), the problem (3.5.38) can be written

⟨u − λKu, v⟩1 = 0 ∀v ∈ H , (3.5.41)
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that is, u − λKu = 0, or, putting μ = 1/λ (recall that λ = 0 is not an eigenvalue of (EVP)),

Ku = μu, u ̸= 0, (3.5.42)

so that our original problem has been transformed into the eigenvalue problem for
the operator K .

Properties of K
K is symmetric – that is, ⟨Ku, v⟩1 = ⟨Kv, u⟩1 for all u, v ∈ H – as is evident from (3.5.40);
moreover, K is compact (which is not surprising if we think of K as being essentially
the integral operator induced by the Green’s function [see equation (3.5.34)] and recall
Example 2.7.3 in the Appendix to Chapter 2); finally, K is (strictly) positive in the sense
that ⟨Ku, u⟩1 > 0 ∀u ∈ H , u ̸= 0.

(d) The spectral theorem for compact, symmetric, positive operators in Hilbert space
Theorem 3.5.2. Let K be a linear compact, symmetric, positive operator acting in a real
infinite-dimensional Hilbert space H. Then:
(i) K possesses an infinite sequence (μk) of eigenvalues, with μk > 0 for every k and μk →

0 as k →∞. Each eigenvalue μk has finite geometric multiplicity (i. e., the associated
eigenspace is finite-dimensional) and the unit eigenvectors (uk) corresponding to the
eigenvalues form a total orthonormal system in H.

(ii) Moreover, the eigenvalues can be naturally arranged in a decreasing sequence,

μ1 ≥ μ2 . . . ...μk ≥ . . . ,

where each eigenvalue is repeated as many times as its multiplicity; in addition, they
enjoy (together with the corresponding eigenfunctions (uk)) a variational charac-
terization based on the following iterative process:

μ1 = maxu∈S ⟨Ku, u⟩ = ⟨Ku1, u1⟩, (3.5.43)

where S = {u ∈ H : ‖u‖ = 1} is the unit sphere in H and, for k > 1,

μk = maxu∈Sk ⟨Ku, u⟩ = ⟨Kuk , uk⟩, where Sk = {u ∈ S : u ⊥ u1, . . . , uk−1}. (3.5.44)

Remark 3.5.3. In the statement of Theorem 3.5.2, one relevant point comprises the fact
that the successive maxima defined in (3.5.43) and (3.5.44) are achieved; this is due pre-
cisely to the compactness of the operatorK and to theHilbert structure of the underlying
space.

Remark 3.5.4. More refined and complete forms of Theorem 3.5.2 – which in particu-
lar do not require the positive (or negative) definiteness of K , thus giving rise to the
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existence of eigenvalues of opposite sign – are to be found in Brezis [14] and also, for
instance, in Dieudonné [7] and Edmunds–Evans [11]. We also note that in the literature
similar results are stated and proved in the more general context of complex Hilbert
spaces, in which case they refer to self-adjoint (rather than symmetric) operators.

Exercises

E1. Solutions of some of the exercises given in the text
Section 3.1
Exercise 1.1
Properties (i), (ii), and (iii) of a scalar product (Definition 3.1.1) are immediately verified
using the properties of the integral, for we know that given any three functions f , g,
and h in C([a, b]) and any α ∈ ℝwe have (omitting for simplicity the x-variable in these
functions)

b

∫
a

(f + g)h dx =
b

∫
a

(fh + gh) dx =
b

∫
a

fh dx +
b

∫
a

gh dx

b

∫
a

αfg dx = α
b

∫
a

fg dx

b

∫
a

gf dx =
b

∫
a

fg dx.

Moreover, ∫ba f
2 dx ≥ 0 for every f ∈ C([a, b]), and if this integral is 0, then on the basis

of Proposition 3.1.1 we have necessarily (f 2(x) = 0 and hence) f (x) = 0 for every x ∈
[a, b]. To prove Proposition 3.1.1, argue by contradiction and suppose on the contrary
that g(x0) > 0 for some x0 ∈ [a, b]; then – assuming for instance that x0 is interior to
[a, b] – we have g(x) > 0 for every x in a neighborhood [x0 − δ, x0 + δ] ⊂ [a, b] of x0. By
the Weierstrass theorem (Theorem 0.0.3), we will then have g(x) ≥ K > 0 for some K
and for all x ∈ [x0−δ, x0+δ], and therefore (by themonotonicity property of the integral
of a positive function with respect to the interval of integration)

b

∫
a

g dx ≥
x0+δ
∫

x0−δ g dx ≥ 2δK > 0,
contradicting the assumption that ∫ba g dx = 0.

Exercise 1.2
For the solution of this exercise, see Proposition 2.2.1 in Chapter 2.
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Exercise 1.3
The triangle property of the norm (property (iii) in Example 2.2.2) says that

‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ E.

It follows that

‖x‖ = ‖x − y + y‖ ≤ ‖x − y‖ + ‖y‖

and hence that

‖x‖ − ‖y‖ ≤ ‖x − y‖ ∀x, y ∈ E. (3.5.45)

Interchanging the roles of x and y in (3.5.45) yields

‖y‖ − ‖x‖ ≤ ‖y − x‖ = ‖x − y‖ ∀x, y ∈ E. (3.5.46)

Putting together (3.5.45) and (3.5.46) we have

−‖x − y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x − y‖,

which is equivalent to

󵄨󵄨󵄨󵄨‖x‖ − ‖y‖
󵄨󵄨󵄨󵄨 ≤ ‖x − y‖.

This shows that the norm function is not only continuous, but Lipschitzian (Defini-
tion 2.2.9) of constant 1 on E.

Exercise 1.4
Recall that c = infx∈A f (x) is by definition the greatest lower bound of the set f (A) ⊂ ℝ,
so that we have f (x) ≥ c for every x ∈ A and

∀ϵ > 0, ∃x ∈ A : f (x) < c + ϵ.

Using these two properties with ϵ = 1
n (n ∈ ℕ) we prove the existence of a sequence

(xn) ⊂ A such that

c ≤ f (xn) < c +
1
n
, n ∈ ℕ,

whence the conclusion follows on letting n→∞.
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Section 3.2
Exercise 2.1
We have

∫ xe−nxdx = 1
n2
∫ nxe−nxd(nx) = 1

n2
(∫ ye−ydy)

y=nx .
However,

∫ ye−ydy = −ye−y + ∫ e−ydy = −e−y(y + 1) + C.
Therefore,

∫ xe−nxdx = −e−nx
n2
(nx + 1) + C,

so that finally

1

∫
0

n2xe−nxdx = −[e−nx(nx + 1)]x=1x=0 = −[e−n(n + 1) − 1] → 1 (n→∞).

Exercise 2.2
Example 3.2.4: f (x) = x (|x| ≤ π)
As f is an odd function, the coefficients a0 = ak = 0 ∀k ∈ ℕ, while

bk =
1
π

π

∫−π f (x) sin kx dx = 2π
π

∫
0

x sin kx dx.

However, for k ∈ ℕ,

π

∫
0

x sin kx dx = [−x cos kx
k
]
x=π
x=0 +

π

∫
0

cos kx
k

dx

= −
π cos kπ

k
+
1
k
[
sin kx
k
]
x=π
x=0 = −πk (−1)k = (−1)k+1 πk .

Hence,

bk =
2
π
(−1)k+1 π

k
= (−1)k+1 2

k
.
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Example 3.2.6: f (x) = |x| (|x| ≤ π)
As f is an even function, the coefficients bk = 0 ∀k ∈ ℕ, while

a0 =
1
2π

π

∫−π f (x)dx = 1π
π

∫
0

x dx = π
2

and, for k ∈ ℕ,

ak =
1
π

π

∫−π f (x) cos kx dx = 2π
π

∫
0

x cos kx dx.

However, for k ∈ ℕ,

π

∫
0

x cos kx dx = [x sin kx
k
]
x=π
x=0 −

π

∫
0

sin kx
k

dx

=
1
k
[
cos kx
k
]
x=π
x=0 = 1

k2
[(−1)k − 1].

Hence,

ak =
2
π
1
k2
[(−1)k − 1] = − 2

k2π
[1 − (−1)k].

Section 3.3
Exercise 3.1
The key point for this exercise consists simply in recalling the basic fact that if a series
∑∞n=1 an converges, then an → 0 as n → ∞, so that in particular the sequence (an)
is bounded. Note that these assertions hold for series of vectors in any normed space
(Definition 2.4.2), and not only for series with real entries. This property of convergent
series immediately proves the inclusion lp ⊂ l∞. Also to prove that l1 ⊂ lp, take x =
(xn) ∈ l

1; write

|xn|
p = |xn|

p−1|xn| ≤ C|xn|
for some positive constant C and use the comparison criterion for series with non-
negative terms to reach the conclusion that x ∈ lp.

The same argument proves that more generally, if 1 ≤ p, q ≤ ∞ and p < q, then
lp ⊂ lq: just write (for x = (xn))

|xn|
q = |xn|

q−p|xn|p ≤ C|xn|p
to conclude by comparison that the convergence of the series ∑∞n=1 |xn|q is implied by
that of the series ∑∞n=1 |xn|p.
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Of course, the same conclusions can be reached observing that, if p < q, then

|xn|
q ≤ |xn|

p

for a given x = (xn) and sufficiently large n, because xn → 0 as n → ∞, implying that
|xn| < 1 for large n.

The interest of this exercise lies also in the fact that the situation can be quite dif-
ferent for the general spaces Lp, as far as inclusions between them are concerned; see
Remark 3.4.2 (and consider that in the present situation the measure is not finite).

Exercise 3.2
This is a direct application of formula (3.1.12),

y =
n
∑
i=1⟨x, ei⟩ei,

giving (in any inner product space E) the orthogonal projection y of a vector x ∈ E onto
the subspaceM spannedbyn orthonormal vectors e1, . . . , en ofE. Indeed, if a = (an)n∈ℕ ∈
E = l2 – equipped with the scalar product (3.3.13) – and for each n ∈ ℕ, en is defined via

en = (0, 0, . . . , 0, 1, 0, . . . ),

where the number 1 appears only at the nth place of the sequence, then

⟨a, ei⟩ = ai ∀i ∈ ℕ

so that

k
∑
i=1⟨a, ei⟩ei = a1e1 + ⋅ ⋅ ⋅ akek

= a1(1, 0, 0, . . . ) + a2(0, 1, 0, . . . ) + ⋅ ⋅ ⋅ + ak(0, 0, . . . , 1, 0 . . . )

= (a1, a2, . . . , ak , 0, 0 . . . ).

Section 3.4
Exercise 4.1
The relations +∞

∫−∞ 1
√1 + x2

dx = +∞,
+∞
∫−∞ 1

1 + x2
dx = π

show an f ∈ L2(ℝ) which does not belong to L1(ℝ).
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Exercise 4.2
Put f (x) = ⟨x, a⟩ for x ∈ E. Given a convergent series ∑∞n=1 xn of vectors of E, put

sk =
k
∑
n=1 xn (k ∈ ℕ), s =

∞
∑
n=1 xn (3.5.47)

so that sk → s in E as k →∞ by definition. Since

f (sk) = ⟨sk , a⟩ =
k
∑
n=1⟨xn, a⟩ ∀k ∈ ℕ, (3.5.48)

letting k → ∞ and using the continuity of f on E we see that the numerical series
∑∞n=1⟨xn, a⟩ converges and its sum is f (s), as desired.

Exercise 4.3
Let x, y belong to the closureM of the vector subspaceM of a normed space E. To show
that x + y ∈ M , let (xn), (yn) be sequences inM such that xn → x, yn → y as n→∞. Then
xn + yn → x + y, as follows from the inequality

󵄩󵄩󵄩󵄩(xn + yn) − (x + y)
󵄩󵄩󵄩󵄩 ≤ ‖xn − x‖ + ‖yn − y‖.

Since xn + yn ∈ M for every n, it follows that x + y ∈ M . Similarly, one checks that αx ∈ M
if x ∈ M and α ∈ ℝ.

Exercise 4.4
Let F(x) = (⟨x, en⟩)n∈ℕ, where x ∈ H and (en) is orthonormal. Then:
– F(x) ∈ l2 by virtue of Bessel’s inequality:

󵄩󵄩󵄩󵄩F(x)
󵄩󵄩󵄩󵄩l2 =
∞
∑
n=1 |⟨x, en⟩|2 ≤ ‖x‖2. (3.5.49)

– For x, y ∈ H we have, by the properties of the inner product and the definition of
sum of two sequences,

F(x + y) = (⟨x + y, en⟩)n∈ℕ = (⟨x, en⟩)n∈ℕ + (⟨y, en⟩)n∈ℕ = F(x) + F(y),
so that F is continuous (F is a bounded linear operator of H into l2 in the sense of
Example 2.2.7).

– Saying that F is surjective means that for every a = (an)n∈ℕ ∈ l2, there is an x ∈ H
such that F(x) = (⟨x, en⟩)n∈ℕ = a, i. e., ⟨x, en⟩ = an ∀n ∈ ℕ. As shown in the proof
of the Fischer–Riesz theorem, this holds taking
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x =
∞
∑
n=1 anen.

– Suppose in addition that the orthonormal system is total. Then if F(x) =
(⟨x, en⟩)n∈ℕ = 0 (that is, if ⟨x, en⟩ = 0 ∀n ∈ ℕ), it follows by the expansion
x = ∑∞n=1⟨x, en⟩en (Corollary 3.4.4) that x = 0. Thus, in this case F is also injec-
tive.





4 Partial differential equations

Introduction

The purpose of this chapter is that of accompanying the student in his/her very first steps
into the extremely vast field of PDEs. While Chapter 1 of this book could be taken as a
brief résumé of some relevant facts concerning ODEs (at least for the practice if not for
the theory), this cannot be the case for the present chapter about PDEs, the reason being
the elementary nature of the present book on one side and the intrinsic complexity and
variety of PDEs themselves on the other. To have an idea of this complexity, just con-
sider that the relatively narrow field of linear equations of second order with constant
coefficients (which for ODEs can be treated on one page) needs the fundamental and
classical separation into elliptic, parabolic, and hyperbolic equations even to formulate
local existence results for the Cauchy problem for them.

Thus,we shall here restrict ourselves to presenting some classical examples of PDEs,
which indeed many science students meet in one form or another mainly from physics.
For instance, we learn from the study of electromagnetism that the electric field E =
E(x, y, z) satisfies the law

divE = ρ, (4.0.1)

where ρ = ρ(x, y, z) is the electric charge density which is distributed in a region Ω of
the physical spaceℝ3. On the other hand, E is a conservative field, which means that it
comes from an electric potential ϕ:

E = gradϕ = ∇ϕ. (4.0.2)

Since divE = 𝜕E1𝜕x +
𝜕E2
𝜕y +
𝜕E3
𝜕z (where E1, E2, E3 are the components of E), (4.0.1) and (4.0.2)

give the equation for the electric potential:

𝜕2ϕ
𝜕x2
+
𝜕2ϕ
𝜕y2
+
𝜕2ϕ
𝜕z2
= ρ. (4.0.3)

This is the famous Poisson equation, which must be solved if we want to know the
spatial distribution in Ω of the electric potential ϕ. If our electrically conducting body
Ω ⊂ ℝ3 is bounded by a surface 𝜕Ω, it is usually required that ϕ be heldfixed at a certain
level on 𝜕Ω:

ϕ|𝜕Ω = const = K , (4.0.4)

or more generally, that it equals an assigned function ϕ0 on 𝜕Ω. Equations (4.0.3)
and (4.0.4) constitute one of the classical BVPs of mathematical physics, and solving
it requires finding a function that is regular enough (C2) in Ω to satisfy the differential
equation (4.0.3) and takes on with continuity its value K on the limiting surface 𝜕Ω.
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The difficulty in solving this problem depends verymuch also on the geometry of Ω,
and a solution can be constructed by the elementary methods of separation of vari-
ables in case Ω is a ball, so that 𝜕Ω is a spherical surface; this leads in particular to the
study of the spherical harmonics, as is well explained in Weinberger’s classic book [2],
which contains a rich amount of information on the entire field of linear second-order
PDEs.

A good part (Sections 4.2 and 4.4) of this chapter, whose level is definitely elemen-
tary, is devoted to discussing the simplest case of this problem, in which we have only
two variables and Ω is a rectangle. The deliberate reduction of the technical and com-
putational complexity should hopefully permit a better understanding of the method
of separation of variables and eigenfunction expansion (which includes an additional
study of Fourier series, see Section 4.3) and thus invite to a further and technically more
adequate study of this and companion problems.

Section 4.1 of this chapter presents a few generalities and some simple examples of
PDEs, paving the way to introduce the BVPs and IVPs of mathematical physics involv-
ing the Poisson, heat, and wave equations. Mention is made of Gauss’ theorem and an
example of its use to prove uniqueness in some of the cited problems is given.

The final Section 4.5 aims at testing the utility and flexibility of the method seen in
Sections 4.2 and 4.4 in order to deal with the heat equation. We try to make it clear that
a key point for this approach is the spectral theorem for the Laplacian, giving rise to a
complete orthonormal system of eigenfunctions along with Courant–Hilbert’s famous
result [13].

Classical references for the study of PDEs are, among others, the books of Lions [15],
Trèves [16], and Gilbarg and Trudinger [17]. To these, we add the more recent one by
Brezis [14] recommending it for his high clarity and organization in this complex, vast,
and delicate matter.

4.1 Partial differential equations (PDEs). The PDEs of
mathematical physics

PDEs are differential equations in which the unknown function depends upon several
variables (rather than just one, as in the case of ODEs); hence, theywill contain – besides
the independent variables – the unknown function and its partial derivatives up to
some order, which will be the order of the PDE.

Recall that the general form of a first-order ODE is

F(x, u, u′) = 0, (4.1.1)

though usually one considers the special “normal form” of (4.1.1),

u′ = f (x, u).
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The general form of a first-order PDE in two variables is

F(x, y, u, 𝜕u
𝜕x
,
𝜕u
𝜕y
) = 0, (4.1.2)

where F is a given real-valued function defined in a set D ⊂ ℝ5. Note that there is no
“normal form” for PDEs. A solution of (4.1.2) is a real-valued function u defined in a
(usually open and connected) subset A ⊂ ℝ2 that satisfies pointwisely (4.1.2) in A, that
is, it is such that

F(x, y, u(x, y), 𝜕u
𝜕x
(x, y), 𝜕u
𝜕y
(x, y)) = 0 ∀(x, y) ∈ A; (4.1.3)

of course, one must pre-require that u has partial derivatives ux , uy at every point of A
and that the argument (x, y, u(x, y), ux(x, y), uy(x, y)) of F appearing in (4.1.3) belongs to
its domain of definition D for every (x, y) ∈ A. As a matter of fact, it is usually required
that u ∈ C1(A).

Example 4.1.1. Consider the equation

y𝜕u
𝜕x
− x 𝜕u
𝜕y
= 0. (4.1.4)

Here we have F(x, y, u, p, q) = yp− xq, and the function u(x, y) = x2 + y2 is a solution
of (4.1.4). This is an example of a linear first-order equation, the general form of these
being as follows:

a(x, y)𝜕u
𝜕x
+ b(x, y)𝜕u

𝜕y
+ c(x, y)u = d(x, y), (4.1.5)

where the coefficient functions a, b, c, d are defined in some A0 ⊂ ℝ
2, so that – with

reference to (4.1.2) – here the function F has the form

F(x, y, u, p, q) = a(x, y)p + b(x, y)q + c(x, y)u − d(x, y)

and is defined on D = A0 × ℝ
3.

On the other hand, the equation

𝜕u
𝜕x
+ u𝜕u
𝜕y
= 0

is a simple example of a nonlinear first-order PDE.
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PDEs of the second order
A second-order PDE in two variables will have the form

F(x, y, u, 𝜕u
𝜕x
,
𝜕u
𝜕y
,
𝜕2u
𝜕x2
,
𝜕2u
𝜕x𝜕y
,
𝜕2u
𝜕y2
) = 0. (4.1.6)

Here F = F(x, y, u, p, q, r, s, t) : D ⊂ ℝ8 → ℝ. The concept of solution will be given
accordingly as a function u ∈ C2(A), with A ⊂ ℝ2 open and connected, satisfying point-
wisely (4.1.6).

Example 4.1.2. Consider the following equations:

𝜕2u
𝜕x2
+
𝜕2u
𝜕y2
= f (x, y) (Poisson equation), (4.1.7)

𝜕2u
𝜕x2
𝜕2u
𝜕y2
− (
𝜕2u
𝜕x𝜕y
)
2

= f (x, y) (Monge–Ampère equation), (4.1.8)

or

detH(u) = uxxuyy − (uxy)
2 = f (x, y).

Formula (4.1.7) is a linear equation, while (4.1.8) is nonlinear.
If f ≡ 0, then

u(x, y) = ln√x2 + y2, (x, y) ̸= (0, 0), (4.1.9)

is a solution of the first. This example shows that, unlike the case n = 1, the solutions of
linear equations with constant coefficients are not defined everywhere.

Of course one canwrite these and similar equations inmore than two variables. For
instance, the three-dimensional version of (4.1.7) is

𝜕2u
𝜕x2
+
𝜕2u
𝜕y2
+
𝜕2u
𝜕z2
= f (x, y, z) (4.1.10)

and for f = 0 has the elementary solution

u(x, y, z) = 1

√x2 + y2 + z2
=

1
‖x‖
, x ̸= 0. (4.1.11)

Exercise 4.1.1. Check that the functions u given in (4.1.9) and (4.1.11) are solutions of
the homogeneous Poisson equation (which is named the Laplace equation) in two and
three variables, respectively. Apart from a constant factor, they are the so-called funda-
mental solutions of the Laplace equation.
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Explicit resolution of PDEs
Finding the “general solution” of a PDE, that is, finding all of its solutions, can be done
only in a few very simple cases. For instance, the first-order PDEs

𝜕u
𝜕x
= 0, 𝜕u
𝜕y
= 0 (4.1.12)

have respectively as solutions

u(x, y) = c(y), u(x, y) = d(x), (4.1.13)

where c and d are arbitrary functions.

Examples. Consider the following equations and their solutions:

𝜕u
𝜕x
−
𝜕u
𝜕t
= 0, u(x, t) = f (x + t) (f arbitrary), (4.1.14)

𝜕2u
𝜕x2
= 0, u(x, y) = c(y)x + d(y) (c, d arbitrary), (4.1.15)

𝜕2u
𝜕x𝜕y
= 0, u(x, y) = f (x) + g(y) (f , g arbitrary), (4.1.16)

𝜕2u
𝜕t2
− v2 𝜕

2u
𝜕x2
= 0, u(x, t) = f (x + tv) + g(x − tv) (f , g arbitrary). (4.1.17)

To solve (4.1.14), make the change of variables

{
x + t = p
x − t = q.

Let ω : ℝ2 → ℝ be such that

u(x, t) = ω(p, q) = ω(x + t, x − t). (4.1.18)

Then by the chain rule we have

{
{
{

𝜕u
𝜕x =
𝜕ω
𝜕p
𝜕p
𝜕x +
𝜕ω
𝜕q
𝜕q
𝜕x =
𝜕ω
𝜕p +
𝜕ω
𝜕q

𝜕u
𝜕t =
𝜕ω
𝜕p
𝜕p
𝜕t +
𝜕ω
𝜕q
𝜕q
𝜕t =
𝜕ω
𝜕p −
𝜕ω
𝜕q

so that

𝜕u
𝜕x
−
𝜕u
𝜕t
= 2𝜕ω
𝜕q
,

showing that in the new variables p, q equation (4.1.14) is transformed to

𝜕ω
𝜕q
= 0,
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whence we get ω(p, q) = f (p)with arbitrary f , and finally returning to the old variables
– that is, using (4.1.18) – we conclude that

u(x, t) = f (x + t).

As to (4.1.15), from 𝜕
2u
𝜕x2 =

𝜕
𝜕x (
𝜕u
𝜕x ) = 0 we first obtain

𝜕u
𝜕x
= c(y),

and integrating again with respect to x, it follows that u(x, y) = c(y)x + d(y).
Likewise for (4.1.16), from 𝜕

2u
𝜕x𝜕y =

𝜕
𝜕x (
𝜕u
𝜕y ) = 0 we first obtain

𝜕u
𝜕y
= c(y),

whence integrating with respect to y, we have u(x, y) = C(y) + D(x) with C a primitive
of c.

Exercise 4.1.2. The solution of (4.1.17) is obtained making essentially the same change
of variables used for (4.1.14), or more precisely, putting x + tv = p, x − tv = q. Also check
that any u of the form written in (4.1.17) – with f , g : ℝ → ℝ twice differentiable, of
course – satisfies the equation.

Linear PDEs of the second order
A linear PDE of the second order (in two variables) has the form

{
{
{

a(x, y) 𝜕
2u
𝜕x2 + 2b(x, y)

𝜕2u
𝜕x𝜕y + c(x, y)

𝜕2u
𝜕y2 +

+ d(x, y) 𝜕u𝜕x + e(x, y)
𝜕u
𝜕y + f (x, y)u = g(x, y),

(4.1.19)

where the coefficient functions a, b, c . . . , g are defined and continuous in an open sub-
set A0 of ℝ

2. A special case of (4.1.19) are the linear PDEs with constant coefficients:

a𝜕
2u
𝜕x2
+ 2b 𝜕

2u
𝜕x𝜕y
+ c 𝜕

2u
𝜕y2
+ +d 𝜕u
𝜕x
+ e𝜕u
𝜕y
+ fu = g. (4.1.20)

The classification of linear second-order PDEs with constant coefficients is made
on the basis of the top order coefficients a, b, c appearing in (4.1.20) as follows:

{{
{{
{

ac − b2 > 0 elliptic
ac − b2 = 0 parabolic
ac − b2 < 0 hyperbolic.

(4.1.21)

Examples of equations falling in each of the three classes are:
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– the Poisson equation,

𝜕2u
𝜕x2
+
𝜕2u
𝜕y2
= g, (4.1.22)

– the heat equation,

𝜕u
𝜕t
−
𝜕2u
𝜕x2
= g, (4.1.23)

– the wave equation,

𝜕2u
𝜕t2
−
𝜕2u
𝜕x2
= g. (4.1.24)

These three equations are usually called the PDEs of mathematical physics.
We shall study the equations of mathematical physics accompanied by supple-

mentary conditions upon the unknown function u and/or its first-order partial deriva-
tives.

These problems will have the following common structure:

{
L[u] = f
BC/IC,

(4.1.25)

where in the first rowwe have the PDE itself, represented by a linear differential oper-
ator L acting on the function u (f is given), and in the second row the term BC/IC stands
for boundary conditions and/or initial conditions, the last appearing if the time vari-
able appears in the equation.

Specific examples now follow.

A. The Poisson equation
Consider the BVP

{
{
{

Δu ≡ 𝜕
2u
𝜕x2 +
𝜕2u
𝜕y2 = f (x, y) (x, y) ∈ Ω

u = g(x, y) (x, y) ∈ 𝜕Ω,
(4.1.26)

where Ω is a bounded open set inℝ2 with boundary 𝜕Ω,while f : Ω→ ℝ and g : 𝜕Ω→ ℝ
are given continuous functions. The set Ω and the functions f , g are the data, while u
is the unknown of the problem (4.1.26). This is called the Dirichlet problem for the
Poisson equation and consists in finding a function u : Ω = Ω ∪ 𝜕Ω→ ℝ such that

u ∈ C2(Ω) ∩ C(Ω)
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and u satisfies pointwisely both the equation and the boundary condition in (4.1.26). It
will be usually written more briefly as

{
𝜕2u
𝜕x2 +
𝜕2u
𝜕y2 = f in Ω,
u = g on 𝜕Ω.

(4.1.27)

Another kind of BVP for the Poisson equation is the Neumann problem, which is
written

{
{
{

𝜕2u
𝜕x2 +
𝜕2u
𝜕y2 = f in Ω
𝜕u
𝜕ν = g on 𝜕Ω

(4.1.28)

and consists in finding a function u : Ω = Ω ∪ 𝜕Ω→ ℝ such that

u ∈ C2(Ω) ∩ C1(Ω)

and u satisfies pointwisely both the equation and the boundary condition in (4.1.28).
The latter is given on the outer normal derivative 𝜕u𝜕ν of u on 𝜕Ω, that is, the directional
derivative of u in the direction of the normal unit vector ν on 𝜕Ω pointing to the exterior
of Ω. Some remarks follow.
– The same problems can be considered in three variables (Ω ⊂ ℝ3) and in fact in any

number n of variables (Ω ⊂ ℝn).
– For the Neumann problem (4.1.28), it is necessary to assume that 𝜕Ω is a regular

curve (if n = 2) or a regular surface (if n = 3); this ensures that for any x ∈ 𝜕Ω,
there is the tangent line (resp. the tangent plane) to 𝜕Ωat the pointx, and therefore
also the normal unit vector ν(x) to 𝜕Ω at the point x. Moreover, the solution u is
required to belong to C1(Ω), in such a way that the normal derivative of u,

𝜕u
𝜕ν
(x) = ∇u(x) ⋅ ν(x),

exists at every point x ∈ 𝜕Ω.
– Given any open Ω ⊂ ℝn, while the definition of C1(Ω) (and more generally of Ck(Ω))

is clear, e. g.,

C1(Ω) = {u ∈ C(Ω) : ∀i : 1, . . . , n 𝜕u
𝜕xi

(exists and) belongs to C(Ω)},

the definition of C1(Ω) requires some explanation. We put

C1(Ω) = {u ∈ C1(Ω) : u, 𝜕u
𝜕xi
(i = 1, . . . , n) can be extended by continuity to Ω}.
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Thus, we require that for every x ∈ 𝜕Ω, the limits

lim
y→x,y∈Ω

𝜕u
𝜕xi
(y) (i = 1, . . . , n) (4.1.29)

exist and arefinite, andwedefine 𝜕u𝜕xi (x) via the limit in (4.1.29). Note that ifn = 1 and
Ω = ]a, b[, we have two possible definitions of derivative at the boundary points:

(i) u′(a) = lim
t→a+ u(t) − u(a)t − a

or (ii) u′(a) = lim
t→a+ u′(t)

(provided of course that the above limits are finite). However, using the L’Hopital
rule, we see that if the limit in (ii) exists, then also the limit in (i) exists and they are
equal.

B. The heat equation
This is the equation

𝜕u
𝜕t
− Δxu = f (x, t) (x, t) ∈ Ω × ]0, +∞[, (4.1.30)

where t is the time variable, while Δx stands for the Laplacian in the space variable
x = (x1, . . . , xn):
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Δx =
n
∑
i=1

𝜕2u
𝜕x2i
.

If n = 1, 2, 3, u(x, t) represents the temperature at the point x and time t in a (one-, two-,
or three-dimensional) body Ω.

Problem. Determine the temperature in the body Ω knowing:
(a) the initial temperature (t = 0) of Ω and
(b) the temperature on the boundary 𝜕Ω for all t > 0:

{
u(x, 0) = u0(x) x ∈ Ω (initial condition)
u(x, t) = g(x, t) x ∈ 𝜕Ω, t > 0 (boundary condition).

(4.1.31)

Equation (4.1.30), accompanied by the conditions in (4.1.31), is called the Cauchy–
Dirichlet problem for the heat equation.
We can change condition (b) above to the following: (b’)

𝜕u
𝜕ν
(x, t) = h(x, t) x ∈ 𝜕Ω, t > 0,

thus obtaining the Cauchy–Neumann problem for the heat equation.

C. The wave equation
This is the equation

𝜕2u
𝜕t2
− Δxu = f in Ω × ]0, +∞[. (4.1.32)

For n = 2 we have the equation of the vibrating membrane, in which u(x, t) = u(x, y, t)
represents the vertical displacement (“displacement along the z-axis”) at time t of that
point of the membrane Ω in the plane that at rest has coordinates (x, y):

(x, y, 0) → (x, y, u(x, y, t)).

We can in particular consider the following IVP/BVP:

{{{{{
{{{{{
{

𝜕2u
𝜕t2 − (

𝜕2u
𝜕x2 +
𝜕2u
𝜕y2 ) = f (x, y, t) (x, y) ∈ Ω, t > 0

u(x, y, 0) = u0(x, y) (x, y) ∈ Ω
ut(x, y, 0) = v0(x, y) (x, y) ∈ Ω
u(x, y, t) = 0 (x, y) ∈ 𝜕Ω, t > 0,

(4.1.33)

in which u0 and v0 are the initial position and velocity of the membrane (initial condi-
tions), while the last condition means that the boundary of the membrane is being held
fixed in the plane z = 0 for all time t > 0 (boundary condition).
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General features of the BVP/IVP under study
Before studying the various problems presented above, it is convenient to make some
general remarks valid for any of these problems; these remarks are all based on the
circumstance that they are all linear problems. To see this in some detail, consider
again (4.1.25), which we rewrite in the form

{
L[u] = f (equation)
B[u] = g (boundary and/or initial conditions).

(4.1.34)

Specifically, both the differential operator L and the boundary value/initial value
operator B appearing in (4.1.34) are linear operators when considered among the ap-
propriate function spaces acting as domain and codomain.

Common problems to be considered about (4.1.34) include:
– existence of a solution;
– uniqueness of the solution;
– continuous dependence of the solution u upon the data f and g.

Three general remarks
1. (Uniqueness)
If the homogeneous problem

{
L[u] = 0 (homogeneous equation)
B[u] = 0 (homogeneous BC and/or IC)

(4.1.35)

has only the solution u = 0, then the inhomogeneous problem (4.1.34) has at most one
solution. More generally, if

S ≡ {u : u is a solution of (4.1.34)},
S0 ≡ {u : u is a solution of (4.1.35)},

and z is a (possible) solution of (4.1.34) – that is, z ∈ S – then

S = S0 + z.

The statements above are proved in exactly the sameway aswe didwhen discussing
linear ODEs and systems, on relating the solution set of the “complete” (i. e., inhomoge-
neous) equation with that of the homogeneous one; see Lemma 1.3.2.

2. (“Superposition principle”)
To illustrate this, suppose for instance that u1 is a solution of the problem

{
L[u] = f
B[u] = 0

(4.1.36)
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and that u2 is a solution of the problem

{
L[u] = 0
B[u] = g.

(4.1.37)

Then u = u1 + u2 is a solution of (4.1.34) (the solution of (4.1.34) if 1. holds).

3. (Series solution of (4.1.34))
Consider again the partially homogeneous problem (4.1.37) and suppose that we have a
sequence (un) of “elementary” solutions of L[u] = 0. Then for any choice of the coeffi-
cients cn, the superposition

u =
∞

∑
n=1

cnun (4.1.38)

will be itself a solution of (4.1.37), provided that the convergence problems involved in
the series are overcome,whichmeans checkingnot only thatu iswell definedvia (4.1.38),
but also the validity of the desired equality

L[u] =
∞

∑
n=1

cnL[un] = 0.

Likewise, if the equality

B[u] =
∞

∑
n=1

cnB[un]

ismeaningful andpermitted, thenwe see that the coefficients (cn)must be chosen so that
the sum of the series above is equal to g, in order to satisfy the side condition in (4.1.37)
and hence to have a solution of that problem (the solution if 1. holds).

The Dirichlet and Neumann problems for Poisson’s equation
Consider the problems

(D) { Δu = f in Ω
u = g on 𝜕Ω,

(N) { Δu = f in Ω
𝜕u
𝜕ν = g on 𝜕Ω.

(4.1.39)

We assume that:
– Ω is an open, bounded, connected subset of ℝn(n = 2, 3).
– f : Ω→ ℝ and g : 𝜕Ω→ ℝ are given continuous functions.
– Moreover, for problem (N), we assume that the boundary 𝜕Ω is a regular curve or

surface (depending on whether n = 2 or n = 3, resp.).
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A solution of (D) is a function

u ∈ C2(Ω) ∩ C(Ω)

satisfying pointwisely both the equation in Ω and the boundary condition on 𝜕Ω. Simi-
larly, a solution of (N) is a function

u ∈ C2(Ω) ∩ C1(Ω)

satisfying pointwisely both the equation in Ω and the boundary condition on 𝜕Ω.
On the basis of “General Remark” 1., we study the homogeneous problems associ-

ated with (D) and (N), namely,

(D0) { Δu = 0 in Ω
u = 0 on 𝜕Ω,

(N0) { Δu = 0 in Ω
𝜕u
𝜕ν = 0 on 𝜕Ω.

(4.1.40)

We are going to show that:
(i) (D0) has only the solution u = 0;
(ii) (N0) has only the solutions u = const.

The proof of the statements above is based on the divergence theorem and on the for-
mula of integration by parts (for functions of several variables), which is one of its nu-
merous consequences.

To motivate the use of the latter in the study of differential equations, consider the
very simple one-dimensional BVP

{
u′′ = 0 in ]a, b[
u(a) = u(b) = 0,

(4.1.41)

whose unique solution is u = 0. One way to prove this fact is precisely using integration
by parts, for if u solves (4.1.41), then

0 =
b

∫
a

u′′(x)u(x)dx = [u′(x)u(x)]ba −
b

∫
a

u′ 2(x) dx,

whence the last integral is zero, implying that u′ = 0 in [a, b] and therefore that u = 0
by the conditions at the endpoints.

Remarks on the assumptions on Ω
– Ω bounded⇒ Ω closed + bounded⇒ Ω compact.
– Ω open⇒Ω = Ω∪𝜕Ω (disjointunion); recall that in general, Ω = Ω∪𝜕Ω = int(Ω)∪𝜕Ω,

where the latter – but not necessarily the former – union is disjoint.
– Ω is connected.
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Remarks on connectedness
Recall that a set A ⊂ ℝn is said to be disconnected if it is the union of two relatively
open, non-empty, disjoint subsets; it is said to be connected if it is not disconnected.
Among the important properties of the connected subsets of ℝn we list the following:
– If A is convex (or, more generally, pathwise connected), then it is connected.
– A ⊂ ℝ is connected if and only if it is an interval.
– If f : A→ ℝ is continuous and A is connected, then f (A) is connected and hence an

interval. It follows that f takes on every value z lying between any two of its values
f (x), f (y) (“intermediate value theorem”).

Proofs of the above statements can be found, for instance, in Chapter 2, Section 2.6.
We add here without proof a useful statement, generalizing to functions of several

variables the well-known fact that a differentiable function having derivative zero on
an interval is constant.

Proposition 4.1.1. IfΩ ⊂ ℝn is open and connected and f : Ω→ ℝ has partial derivatives
𝜕f
𝜕xi

equal to zero in Ω for every i, 1 ≤ i ≤ n, then f is constant.

The divergence theorem (Gauss’ theorem)
Theorem 4.1.1. Let Ω be an open bounded connected subset of ℝn (n = 2, 3) with suffi-
ciently regular boundary 𝜕Ω and let F ∈ C1(Ω; ℝn). Then

∫

Ω

div F dx = ∫
𝜕Ω

F ⋅ ν dσ, (4.1.42)

where ν is the outward pointing normal versor to 𝜕Ω.

Remark. By “sufficiently regular” boundary 𝜕Ω we mean for instance:
– (n = 2) 𝜕Ω is a simple closed regular curve;
– (n = 3) 𝜕Ω is a simple closed regular orientable surface, the latter meaning that

there exists a continuous function ν : 𝜕Ω→ ℝn representing the outward pointing
normal versor to 𝜕Ω.

Moreover, in the above, the word closed does not refer to its usual (metric/topological)
sense, but to the (geometric-differential) sense of “closed curve” or “boundaryless sur-
face,” the easiest examples of these being respectively a circle (n = 2) or a spherical
surface (n = 3).

Remark. Formula (4.1.42) relates:
– (n = 2) a double integral with a line integral,
– (n = 3) a triple integral with a surface integral.



4.1 Partial differential equations (PDEs). The PDEs of mathematical physics � 169

We can ideally complete the above equalities with that holding for the case n = 1, that
is, with the familiar integration formula

b

∫
a

f ′(x) dx = f (b) − f (a),

which holds for every f ∈ C1([a, b]).

Remark. For a proof of the divergence theorem, see for instance [18] or [19].

Theorem 4.1.2. Let Ω be an open, bounded, and connected subset of ℝn (n = 2, 3) for
which the divergence theorem holds. Then:
– (D0) has only the solution u = 0;
– (N0) has only the solutions u = const.

Consequently, on the basis of “General Remark” 1.,
– (D) has at most one solution;
– If (N) has a solution, this is not unique but is determinedmodulo an additive constant.

The proof of Theorem 4.1.2 rests on the formula of integration by parts for func-
tions of several variables, which is obtained as a consequence of the divergence theorem
(Theorem 4.1.1).

Exercise 4.1.3. Check that

div(vz) = ∇v ⋅ z + v(div z) (4.1.43)

for any v ∈ C1(Ω), z ∈ C1(Ω, ℝn).

Exercise 4.1.4 (Formula of integration by parts). Let v ∈ C1(Ω), z ∈ C1(Ω, ℝn). Then

∫

Ω

∇v ⋅ z dx = ∫
𝜕Ω

vz ⋅ ν dσ − ∫
Ω

v(div z) dx. (4.1.44)

This follows immediately from (4.1.43), on integrating over Ω and using the diver-
gence theorem.

Now let u ∈ C2(Ω) and take z = ∇u in (4.1.44). Then we obtain the formula

∫

Ω

∇v ⋅ ∇u dx = ∫
𝜕Ω

v𝜕u
𝜕ν

dσ − ∫
Ω

v(Δu) dx,

which can also be written as

∫

Ω

(Δu)v dx = ∫
𝜕Ω

𝜕u
𝜕ν

v dσ − ∫
Ω

∇u ⋅ ∇v dx (4.1.45)
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and holds for any pair of functions u, v with u ∈ C2 and v ∈ C1; it is usually called the
Green’s formula. In particular, putting v = u in (4.1.45), we have

∫

Ω

(Δu)u dx = ∫
𝜕Ω

𝜕u
𝜕ν

u dσ − ∫
Ω

‖∇u‖2 dx (4.1.46)

for any u ∈ C2(Ω).

Proof of Theorem 4.1.2
Let u be a solution of either (D0) or (N0). We suppose, in addition to the stated hypothe-
ses, that u ∈ C2(Ω).

From (4.1.46), necessarily ∫Ω ‖∇u‖
2 dx = 0. By the continuity of ∇u and the n-dimen-

sional version of Proposition 3.1.1, it thus follows that

∇u(x) = 0 ∀x ∈ Ω.

As Ω is connected by assumption, it first follows that

u(x) = const ≡ C ∀x ∈ Ω

and then, by continuity, that

u(x) = C ∀x ∈ Ω.

Thus, we conclude that any solution u of either (D0) or (N0) is necessarily constant in Ω.
If in particular u is a solution of (D0), so that u = 0 on 𝜕Ω, it follows that u = 0 on Ω.

4.2 The Dirichlet problem for the Laplace equation in a
rectangle (I)

Consider the problem

(D) { Δu = f in Ω
u = g on 𝜕Ω

(4.2.1)

where Ω is an open bounded connected subset of ℝn(n = 2, 3) with sufficiently regular
boundary 𝜕Ω,while f : Ω→ ℝ and g : 𝜕Ω→ ℝ are given continuous functions: these are
the data of the problem (D). A solution of (D) is a function u ∈ C2(Ω) ∩ C(Ω) satisfying
pointwisely both the equation in Ω and the boundary condition on 𝜕Ω.

As we have seen, problem (D) has at most one solution.

Question. Does there actually exist a solution of (D)?
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This is not a simple problem to solve in general: the (affirmative) answer requires
advancedmethods of functional analysis, in particular the study of Sobolev spaces; see,
for instance, [14].

One can prove the existence of a solution (and in fact construct it explicitly) by ele-
mentary methods in some particular situation:
– f = 0 (that is, the homogeneous equation, named the Laplace equation);
– n = 2;
– Ω is a rectangle or a circle.

Methods: separation of variables + Fourier series
Consider the case

Ω = an open rectangle R = ]a, b[ × ]c, d[

so that

Ω = the closed rectangle R = [a, b] × [c, d],

𝜕Ω = 𝜕R ≡ K =
4
⋃
i=1

Ki.
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Summarizing, our problem is

(D) { Δu = 0 in R
u = g on K

(4.2.2)

and we look for a solution u ∈ C2(R) ∩ C(R).
On the basis of the “superposition principle” (“General Remark” 2.) it will be enough

to solve simpler problems such as

(D1)
{{
{{
{

Δu = 0 in R
u = g on K1
u = 0 on K2 ∪ K3 ∪ K4.

(4.2.3)

Indeed, suppose that u1 is a solution of (D1) and let u2, u3, u4 be solutions of, respec-
tively, the problems

(D2)
{{
{{
{

Δu = 0 in R
u = g on K2
u = 0 on K \ K2,

(D3)
{{
{{
{

Δu = 0 in R
u = g on K3
u = 0 on K \ K3,

(D4)
{{
{{
{

Δu = 0 in R
u = g on K4
u = 0 on K \ K4.

Then u = u1 + u2 + u3 + u4 is (the) solution of (D); indeed,

{
Δu(x) = 0 ∀x ∈ R
u(x) = u1(x) + u2(x) + u3(x) + u4(x) = g(x) ∀x ∈ K ,

the second equality holding because every x ∈ K belongs to precisely one Ki; in the
corner points x of K we require that g(x) = 0, so as to have continuous boundary data
in the subproblems (D1)–(D4).

We consider thus (D1) and suppose for convenience that

R = ]0, π[ × ]0, 1[

so that our problem becomes explicitly (writing f rather than g)

(D)
{{
{{
{

Δu = 0 in R (E)
u(x, 0) = f (x) 0 ≤ x ≤ π (C1)
u(π, y) = u(x, 1) = u(0, y) = 0. (C2)

(4.2.4)

Let us consider first the differential equation (E). We seek solutions u of the form

u(x, y) = X(x)Y (y)

(separation of variables), so that assuming in addition that u(x, y) ̸= 0 ∀(x, y) ∈ Rwe
have
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Δu = 0⇔ X ′′Y + XY ′′ = 0⇔ X ′′

X
+
Y ′′

Y
= 0

⇔
X ′′

X
= const. = −λ, Y ′′

Y
= λ.

Therefore, under separation of variables (E) is equivalent to the system of ODEs

{
X ′′ + λX = 0 0 < x < π
Y ′′ − λY = 0 0 < y < 1.

These are coupled equations, for λ is the same in the two equations.

Boundary conditions
We have

(C1) X(x)Y (0) = f (x) 0 ≤ x ≤ π,

(C2)
{{
{{
{

X(π)Y (y) = 0 0 ≤ y ≤ 1
X(x)Y (1) = 0 0 ≤ x ≤ π
X(0)Y (y) = 0 0 ≤ y ≤ 1.

(C2) is satisfied requiring that X(π) = X(0) = 0 and that Y (1) = 0.
Summing up, we see that (E) and (C2) are satisfied by u(x, y) = X(x)Y (y) if X and Y

satisfy respectively the problems

(A) { X ′′ + λX = 0 0 < x < π
X(0) = X(π) = 0,

(B) { Y ′′ − λY = 0 0 < y < 1
Y (1) = 0.

Question. Do there exist non-zero solutions of A and B?

It is shown in Exercise 3.5.1 that
(A) has solutions ̸= 0 if and only if λ = λn = n

2, and the corresponding
solutions are

Xn(x) = C sin nx.

Moreover, we will soon check (Exercise 4.2.1) that for λ = λn, the solutions of (B) are

Yn(x) = C sinh n(1 − y).

Conclusion
For every n ∈ ℕ, the function

un(x, y) = sin nx sinh n(1 − y)
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is a solution of (E) + (C2).
It follows that any finite sum sN = ∑

N
n=1 cnun has the same property.

We look for a solution of the form

u(x, y) =
∞

∑
n=1

cnun(x, y) =
∞

∑
n=1

cn sin nx sinh n(1 − y) (4.2.5)

(see “General Remark” 3.), where the constants cn(n ∈ ℕ) have to be chosen in such a
way that:
– the series (4.2.5) is convergent at every point of (x, y) ∈ R;
– the condition (C1) is satisfied.

After that, it will be necessary to verify that the sum function u is actually a solution of
(D), that is,
(i) u ∈ C(R) and satisfies (C1) and (C2);
(ii) u ∈ C2(R) and satisfies (E).

Let us impose formally on u that it satisfies (C1):

u(x, 0) =
∞

∑
n=1

cn sin nx sinh n = f (x), 0 ≤ x ≤ π. (4.2.6)

Definition 4.2.1. Given f : [0, π] → ℝ, f piecewise continuous in [0, π], the series

∞

∑
n=1

bn sin nx, bn =
2
π

π

∫
0

f (x) sin nx dx (n ∈ ℕ) (4.2.7)

is called the sine Fourier series of f .

We shall choose the coefficients cn so that the series in (4.2.6) is the sine Fourier
series of f :

cn sinh n = bn =
2
π

π

∫
0

f (x) sin nx dx (n ∈ ℕ). (4.2.8)

The condition (4.2.6) (that is, C1) means that this series must converge to f point-
wisely on [0, π].

Remark 4.2.1. The Fourier sine series of an f : [0, π] → ℝ is nothing but the Fourier
series of the odd extension fd of f to [−π, π], further extended by 2π-periodicity to all
ofℝ (see Figure 4.1). Consistently with the notations formerly employed, we shall denote
with ̂fd such extension of f .
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Figure 4.1: Extending f to fd and then to ̂fd .

Exercise 4.2.1. Consider the problem

(B) { Y ′′ − λY = 0 (0 < y < 1)
Y (1) = 0.

We are interested in solving (B) for λ > 0. Putting β = √λ, the general
solution of the differential equation in (B) is

Y (y) = Ceβy + De−βy (C,D ∈ ℝ).

Imposing the condition at y = 1, we have

Y (1) = Ceβ + De−β = 0 󳨐⇒ D = −Ce2β,

so that

Y (y) = C[eβy − e2βe−βy]
= Ceβ[e−βeβy − eβe−βy]

= 2Ceβ [e
−β(1−y) − eβ(1−y)]

2
= C′ sinh β(1 − y) (C′ = −2Ceβ),
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where the hyperbolic sine of x, sinh x, is defined by the equation

sinh x ≡ e
x − e−x

2
(x ∈ ℝ).

Thus, for λ = λn = n
2, the solutions of (B) are

Yn(y) = C sinh n(1 − y).

4.3 Pointwise and uniform convergence of Fourier series

In order to guarantee the pointwise and unifom convergence of the Fourier series of a
2π-periodic function f , the assumption that f ∈ Ĉ2π(ℝ), or even that f ∈ C2π(ℝ), is not
enough; some form of differentiability is required.

In this section, we state two theorems regarding these questions. For the first (re-
garding pointwise convergence) we give no proof but just some comments and exam-
ples; the second one, concerning uniform convergence, will instead be proved as it em-
ploys in a nice way much of the information previously acquired.

Theorem 4.3.1. Let f ∈ Ĉ2π(ℝ) and suppose that at the point x0 ∈ ℝ there exist and are
finite the limits

f ′(x−0 ) ≡ lim
x→x−0

f (x) − f (x−0 )
x − x0

, f ′(x+0 ) ≡ lim
x→x+0

f (x) − f (x+0 )
x − x0

, (4.3.1)

called respectively the left- and right-pseudoderivative of f at x0. Then the Fourier se-
ries of f evaluated at the point x0 converges to f (x0).

For a proof of Theorem 4.3.1 see, e. g., [9]. Figure 4.2 shows an f that does not satisfy
the assumptions of this theorem at the point x0 = 0 – even if we regularize it putting
f (0) = 1/2.

Figure 4.2: f (x) = 1 (−1 ≤ x < 0), = √x (0 < x ≤ 1).
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Figure 4.3: f (x) = |x|, −π ≤ x ≤ π.

Remark 4.3.1. If f is continuous at x0, the limits in (4.3.1) (when they exist) are the left-
and right-derivative of f at x0. In particular, f is differentiable at x0 󳨐⇒ f is continuous
at x0 and f

′(x−0 ) = f
′(x+0 ) = f

′(x0) 󳨐⇒ the Fourier series of f converges in x0 to f (x0).

Remark 4.3.2. If the assumptions of Theorem 4.3.1 hold except that f is not regular at x0,
then the Fourier series of f converges in x0 to the mean value

f (x+0 ) + f (x
−
0 )

2
.

Remark 4.3.3. If f is differentiable in ]x0 − δ, x0[ (δ > 0) and there exists the limit
limx→x−0 f ′(x), then f ′(x−0 ) exists too, and they are equal; this follows at once applying
the L’Hopital rule. (Note that we would usually define f ′(x−0 ) and f ′(x+0 ) precisely via
these limits, rather than through the formulae in (4.3.1).)

Examples with numerical applications
Exercise 4.3.1. In the light of Theorem 4.3.1 and of the above remarks, discuss the point-
wise convergence of the Fourier series of the functions considered in Examples 3.2.4
and 3.2.5.

Example 4.3.1. Consider ̂f when f is the absolute value function for |x| ≤ π (see Fig-
ure 4.3).

For this ̂f we have seen in Example 3.2.6 that bk = 0 ∀k ∈ ℕ, while

a0 =
π
2
, ak = −

2
k2π
[1 − (−1)k] = {

0 (k even)
− 4
k2π (k odd).

Therefore, using Theorem 4.3.1 at x0 = 0, we obtain

0 = π
2
−
∞

∑
k=1

4
(2k + 1)2π

,

whence
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∞

∑
k=1

1
(2k + 1)2

=
π2

8
.

Suppose now that the hypotheses of Theorem 4.3.1 are satisfied at each point of ℝ,
so that we have pointwise convergence of the Fourier series of f to f itself. What further
condition must we impose on f in order to have uniform convergence?

Remark. The properties of uniform convergence imply that if f is not continuous at just
one point x0, then the Fourier series of f cannot converge uniformly to f . In otherwords,
a necessary condition for uniform convergence is that f ∈ C2π(ℝ).

Remark. For periodic functions, the uniform convergence onℝ is the same as uniform
convergence on [0, 2π] (or any interval of length 2π); indeed, for such functions,

sup
x∈ℝ

󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨 = sup

x∈[0,2π]

󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨.

Piecewise C1 functions
Definition 4.3.1. A function f : [a, b] → ℝ is said to be piecewise of class C1 (briefly,
piecewise C1) in [a, b] if:
(i) f is continuous in [a, b];
(ii) f is differentiable in [a, b] except at most in a finite number of points x1, . . . , xn of
[a, b];

(iii) the derivative f ′ of f is continuous in [a, b] \ {x1, . . . , xn} and the limits

lim
x→x±i f ′(x) (i = 1, . . . , n) (4.3.2)

exist and are finite.

For instance, the function shown in Figure 4.4 is not piecewise C1, while the function
f (x) = |x| is. More generally, the “broken lines” (see Figure 4.5) are graphs of piecewise

Figure 4.4:√|x|.
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Figure 4.5: A broken line.

C1 functions. In more precise terms, continuous, piecewise linear functions are (basic)
examples of piecewise C1 functions.

Remark 4.3.4. InDefinition 4.3.1, someauthors replace the requirement (i) of continuity
with that of piecewise continuity.

Proposition 4.3.1. Let f ∈ Ĉ2π(ℝ). If f is piecewise C
1, then its Fourier series converges

pointwisely to f on ℝ.

Proof. Indeed, if f is piecewise C1, then by definition for every x0 ∈ ℝ the limits

lim
x→x−0 f ′(x), lim

x→x+0 f ′(x)
exist and are finite. Therefore, on the basis of Remark 4.3.3, it follows that also the limits
f ′(x−0 ), f

′(x+0 ) defined in (4.3.1) exist and are equal to the previous ones. Thus, by Theo-
rem 4.3.1, the Fourier series of f in x0 converges to f (x0).

Remark 4.3.5. Let f ∈ Ĉ2π(ℝ). If f is piecewise C
1, then its derivative f ′ can be defined

also at the finitely many points x1, . . . , xn ∈ [0, 2π] in which f is not differentiable, by
assigning to f ′(xi) the mean value of the limits in (4.3.2) and thus obtaining a regular f

′.
Moreover, the f ′ thus obtained is also 2π-periodic, for
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f ′(x0 + 2π) = limh→0
f (x0 + 2π + h) − f (x0 + 2π)

h
= f ′(x0).

In conclusion, f ′ ∈ Ĉ2π(ℝ), so we can consider the Fourier series of f
′.

Lemma 4.3.1. Let f ∈ Ĉ2π(ℝ) and suppose in addition that f is piecewise C1. Let
a0, ak , bk(k ∈ ℕ) be the Fourier coefficients of f and let α0, αk , βk(k ∈ ℕ) be the Fourier
coefficients of f ′:

α0 =
1
2π

2π

∫
0

f ′(x) dx, αk =
1
π

2π

∫
0

f ′(x) cos kx dx, βk =
1
π

2π

∫
0

f ′(x) sin kx dx. (4.3.3)

Then

{
{
{

α0 = 0
αk = kbk
βk = −kak .

(4.3.4)

Proof. This is left as an exercise.

Remark 4.3.6. The rule of integration by parts for two functions f , g holds not only if
f , g ∈ C1[a, b], but also, more generally, if f , g are piecewise C1 in [a, b].

Theorem 4.3.2. Let f ∈ Ĉ2π(ℝ). If in addition f is piecewise C
1, then its Fourier series

converges uniformly to f on ℝ.

Proof. On the basis of Proposition 4.3.1, we know already that the Fourier series of f
converges pointwisely to f onℝ. To prove that the convergence is uniform, we apply to
the Fourier series of f the “Weierstrass M-test” (see Proposition 2.1.1), stating that given
a sequence (fn) of bounded functions defined on a set A, if there exists a sequence (Mn),
withMn ≥ 0 for all n ∈ ℕ, such that:
(i) |fn(x)| ≤ Mn for all x ∈ A and all n ∈ ℕ and
(ii) the series ∑∞n=1Mn is convergent,

then the series ∑∞n=1 fn converges uniformly in A.
The Fourier series of f is∑∞k=0 fk with fk(x) = ak cos kx+bk sin kx. Using Lemma 4.3.1

we have for every x ∈ ℝ and every k ∈ ℕ

󵄨󵄨󵄨󵄨fk(x)
󵄨󵄨󵄨󵄨 = |ak cos kx + bk sin kx| ≤ |ak | + |bk | =

|βk |
k
+
|αk |
k
,

whence, recalling the inequality 2cd ≤ c2 + d2, we obtain

󵄨󵄨󵄨󵄨fk(x)
󵄨󵄨󵄨󵄨 ≤

1
2
(
1
k2
+ β2k) +

1
2
(
1
k2
+ α2k) =

1
k2
+
1
2
(α2k + β

2
k) ≡ Mk .

Now the conclusion follows on recalling that, by Parseval’s identity applied to f ′, the
series
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∞

∑
k=1
(α2k + β

2
k)

is convergent.

Exercise 4.3.2. Let f (x) = x2 (|x| ≤ π) and let ̂f be its 2π-periodic extension to ℝ (see
Figure 4.6). Prove that

̂f (x) = π
2

3
+ 4
∞

∑
k=1

(−1)k

k2
cos kx (x ∈ ℝ). (4.3.5)

In particular, taking x = 0 and then x = π in (4.3.5), one obtains

∞

∑
k=1

(−1)k

k2
= −

π2

12
,
∞

∑
k=1

1
k2
=
π2

6
.

Figure 4.6: f (x) = x2, |x| ≤ π.

4.4 The Dirichlet problem for the Laplace equation
in a rectangle (II)

In order to complete our discussion of problem (D), it is useful to gain somemore infor-
mation on Fourier series, which should be added to Theorem 4.3.2.
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Sine and cosine Fourier series
Let f : [0, π] → ℝ be piecewise continuous. Then f can be expanded into a cosine
Fourier series and/or into a sine Fourier series. In fact, f can be continued to [−π, π]
as an even function fp or as an odd function fd as follows:

fp(x) = {
f (x) 0 ≤ x ≤ π
f (−x) −π ≤ x < 0,

fd(x) = {
f (x) 0 ≤ x ≤ π
−f (−x) −π ≤ x < 0.

(4.4.1)
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Remark. f piecewise continuous on [0, π] 󳨐⇒ fp, fd piecewise continuous on [−π, π] 󳨐⇒
̂fp, ̂fd piecewise continuous on ℝ.

We can thus consider the Fourier series of ̂fp, ̂fd .

Definition 4.4.1. Let f : [0, π] → ℝ be piecewise continuous. The Fourier series of ̂fp, ̂fd
are called respectively the cosine Fourier series and the sine Fourier series of f .

With respect to the continuity of ̂fp, ̂fd , observe that

f continuous on [0, π] 󳨐⇒ { fp continuous on [−π, π]
fd continuous on [−π, π] ⇔ f (0) = 0.

(4.4.2)

It follows in particular that

{
f piecewise C1 on [0, π]
f (0) = 0

󳨐⇒ fd piecewise C1 on [−π, π]

󳨐⇒ ̂fd piecewise C1 on ℝ iff fd(−π) = fd(π).

However, the last equality means −f (π) = f (π), that is, f (π) = 0.
Summarizing, we have the following statement.

Proposition 4.4.1. Let f : [0, π] → ℝ be piecewise C1. If f (0) = f (π) = 0, then its odd and
2π-periodic extension to the whole of ℝ, ̂fd , is piecewise C

1.
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Let us introduce a useful notation. Given any interval [a, b] ⊂ ℝ, we put

C10[a, b] = {f ∈ C
1[a, b] : f (a) = f (b) = 0}.

As a special case of Proposition 4.4.1, we then get the following statement.

Lemma 4.4.1. Let f ∈ C10[0, π]. Then its odd and 2π-periodic extension to the whole of ℝ,
̂fd , is piecewise C

1.

Thus, if we consider functions in C10[0, π], the previous discussion on their sine
Fourier series and the uniform convergence theorem (Theorem 4.3.2) yield the following
result.

Proposition 4.4.2. Let f ∈ C10[0, π] and let bn =
2
π ∫

π
0 f (x) sin nx dx (n ∈ ℕ). Then we have

∞

∑
n=1

bn sin nx = f (x) for every x ∈ [0, π]. (4.4.3)

Moreover, the convergence of the series in (4.4.3) is uniform in [0, π].

Let us return to the series in the two variables x, y presented in equation (4.2.5),

∞

∑
n=1

cnun(x, y) =
∞

∑
n=1

cn sin nx sinh n(1 − y), (4.4.4)

as a candidate solution for our problem (D). We now know that taking
f ∈ C10[0, π] in (D) and taking cn determined by the condition

cn sinh n = bn =
2
π

π

∫
0

f (x) sin nx dx (n ∈ ℕ), (4.4.5)

that is, considering the series
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∞

∑
n=1

bn sin nx
sinh n(1 − y)

sinh n
, (4.4.6)

this converges (to f ) on the “lower side” K1 of the closed rectangle R.

Problem. Do we have convergence in R?

Proposition 4.4.3. Let f ∈ C10[0, π] and let bn =
2
π ∫

π
0 f (x) sin nx dx (n ∈ ℕ). Thenwe have

∞

∑
n=1
|bn| < ∞. (4.4.7)

This follows from Lemma 4.4.1 and from a more careful use of Theorem 4.3.2. In-
deed, in that theorem we have proved that if h ∈ Ĉ2π(ℝ) is piecewise of class C

1, then its
Fourier coefficients an, bn satisfy the condition

∞

∑
n=1
(|an| + |bn|) < ∞, (4.4.8)

as a consequence of the Parseval identity. Now if we start from a function f ∈ C10[0, π],
by Lemma 4.4.1 its odd 2π-periodic extension ̂fd is piecewise C

1; therefore, its Fourier
coefficients will enjoy the property (4.4.8), which in fact reduces to (4.4.7) because an = 0
by virtue of the oddness of ̂fd .

We can now answer the convergence question positively. We have indeed the fol-
lowing corollary.

Corollary 4.4.1. Let f ∈ C10[0, π]. Then the series

∞

∑
n=1

bn sin nx
sinh n(1 − y)

sinh n
, bn =

2
π

π

∫
0

f (x) sin nx dx, (4.4.9)

converges uniformly in [0, π] × [0, 1] = R.

Proof. This follows from Proposition 4.4.3 and from theWeierstrass M-test (in two vari-
ables); indeed, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
bn sin nx

sinh n(1 − y)
sinh n

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ K |bn| ∀(x, y) ∈ R (4.4.10)

for all n ∈ ℕ and for some K > 0, because we have

0 ≤ sinh n(1 − y)
sinh n

≤ Ke−ny ≤ K (4.4.11)

as follows from the relations (holding for 0 ≤ y ≤ 1)
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sinh n(1 − y)
sinh n

=
en(1−y) − e−n(1−y)

en − e−n

=
en(1−y)[1 − e−2n(1−y)]

en[1 − e−2n]
= e−ny [.]
[.]
≤

e−ny

1 − e−2
≡ Ke−ny.

It is now time to collect the results obtained so far about problem (D), and also some
still to be proved, in a comprehensive statement.

Theorem 4.4.1. Let f ∈ C10[0, π] and let u be the function defined in R = [0, π] × [0, 1]
putting

u(x, y) =
∞

∑
n=1

bn sin nx
sinh n(1 − y)

sinh n
, (x, y) ∈ R, (4.4.12)

where bn =
2
π ∫

π
0 f (x) sin nx dx. Then u is (the) solution of (D).

Proof. (i) u is continuous in R by Corollary 4.4.1 and by the properties of uniform con-
vergence. Moreover, u satisfies by construction the boundary conditions (C1), (C2); for
instance,

u(π, y) =
∞

∑
n=1

bn sin nπ
sinh n(1 − y)

sinh n
= 0, 0 ≤ y ≤ 1,

and so forth.
(ii) u is of class C2 in the open rectangle R and satisfies the differential equation (E);

indeed,

u =
∞

∑
n=1

bnvn with vn ∈ C
2(R) and Δvn = 0 ∀n ∈ ℕ

so that we will have

Δu = Δ(
∞

∑
n=1

bnvn) =
∞

∑
n=1

bnΔvn = 0

provided we check that u has actually partial derivatives up to the second order and
that the intermediate equality is true.

Following H. Weinberger’s book [2], we can say that “the series for

𝜕u
𝜕x
,
𝜕u
𝜕y
,
𝜕2u
𝜕x2
,
𝜕2u
𝜕y2
,
𝜕2u
𝜕x𝜕y

are all dominated by∑∞n=1 n
2e−ny and therefore converge uniformly for y ≥ y0, whatever

is y0 > 0. It follows that these derivatives of u exist in R and may be obtained by term-
by term differentiation of the series (4.4.12). Since each term of the series satisfies the
Laplace equation, the same is true for u.”



4.4 The Dirichlet problem for the Laplace equation in a rectangle (II) � 187

Rather than proving the above statement in all details, we illustrate the underlying
main idea using the remarks that follow.

1. Regularity of functions defined as the sum of a series
The basic result on “term-by-term differentiation” of a series of functions is Corol-
lary 2.1.3, stated and proved in the section dealing with uniform convergence and its
consequences (Chapter 2, Section 2.1).

The corresponding result in two variables reads as follows.

Theorem 4.4.2. Let (fn) ⊂ C
1(A), A an open subset of ℝ2. Suppose that:

– ∑∞n=1 fn converges uniformly in A; let f (x, y) = ∑
∞
n=1 fn(x, y);

– the two series ∑∞n=1
𝜕fn
𝜕x , ∑
∞
n=1
𝜕fn
𝜕y converge uniformly in A.

Then f ∈ C1(A) and we have

{
{
{

𝜕f
𝜕x = ∑

∞
n=1
𝜕fn
𝜕x

𝜕f
𝜕y = ∑

∞
n=1
𝜕fn
𝜕y

in A. (4.4.13)

2. Specific bounds for the derivatives in problem (D)
In our case we have

u =
∞

∑
n=1

fn =
∞

∑
n=1

bnvn, vn(x, y) = sin nx
sinh n(1 − y)

sinh n
.

Hence,

𝜕u
𝜕x
:
𝜕fn
𝜕x
(x, y) = bnn cos nx

sinh n(1 − y)
sinh n

so that, putting β = 2
π ∫

2π
0 |f (x)| dx and using (4.4.11), we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕fn
𝜕x
(x, y)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ |bn|nKe

−ny ≤ βnKe−ny ≡ K ′ne−ny.

Likewise,

𝜕u
𝜕y
:
𝜕fn
𝜕y
(x, y) = bn sin nx

cosh n(1 − y)
sinh n

(−n).

However, working as we did for the bound (4.4.11), we easily find that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

cosh n(1 − y)
sinh n

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ e−ny 2

1 − e−2
≡ He−ny

and therefore



188 � 4 Partial differential equations

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕fn
𝜕y
(x, y)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ |bn|nHe

−ny ≤ βnHe−ny ≡ H′ne−ny.

Similarly one checks that the second-order derivatives are all dominated by∑∞n=1 n
2e−ny.

3. Uniform bounds in the whole domain is sometimes too much
Evidently, there are no chances of dominating a series of the form ∑∞n=1 n

2e−ny with a
convergent numerical series in the whole rectangle R = ]0, π[ × ]0, +∞[. However, this
is not strictly necessary to get the desired regularity of u. To understand this point, it is
enough to consider functions of one variable, taking for instance the series

∞

∑
n=1

e−nx .

This series converges pointwisely in I = ]0, +∞[ (thus defining a sum function f on the
whole of I) and converges uniformly for x ≥ x0, whatever is x0 > 0; indeed,

∞

∑
n=1

e−nx ≤
∞

∑
n=1

e−nx0 ≡
∞

∑
n=1

Mn < +∞ (x ∈ Ix0 ≡ [x0, +∞[).

This is enough to conclude that f is continuous in the whole of I : for any given x̂ ∈ I ,
choose an x0 with 0 < x0 < x̂; by the above, f is continuous in Ix0 = [x0, +∞[ and
therefore in x̂. The series of the derivatives is ∑∞n=1(−n)e

−nx , and as

∞

∑
n=1

󵄨󵄨󵄨󵄨 − ne
−nx 󵄨󵄨󵄨󵄨 ≤

∞

∑
n=1

ne−nx0 ≡
∞

∑
n=1

Kn < +∞ (x ∈ Ix0 = [x0, +∞[),

it follows, reasoning as before, that f ∈ C1(I). Iterating this procedure, one concludes in
fact that f ∈ C∞(I).

Note that a similar reasoning is required, for instance, to ensure that the sum f of a
power series ∑∞n=0 anx

n is of class C∞ in its interval of convergence (Theorem 2.7.2).

4.5 The Cauchy–Dirichlet problem for the heat equation
We first consider the heat equation in one space dimension. That is, we take Ω =
]a, b[ ⊂ ℝ, and putting for convenience ]a, b[ = ]0, π[ we consider specifically the
Cauchy–Dirichlet problem in R = Ω × ]0, +∞[ (see Figure 4.7)

(CD)
{{
{{
{

𝜕u
𝜕t −
𝜕2u
𝜕x2 = 0 0 < x < π, t > 0 (E)

u(x, 0) = u0(x) 0 ≤ x ≤ π (IC)
u(0, t) = u(π, t) = 0 t ≥ 0, (BC)

(4.5.1)

where u0 ∈ C0[0, π].
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Figure 4.7: R = Ω × ]0, +∞[.

In the above system (CD), u(x, t) has the physical meaning of the temperature at
the point x and time t in a metallic wire occupying the segment [0, π] of the x-axis, u0
representing the initial distribution of the temperature in the wire. The endpoints of
the wire are held at temperature 0 for all time t, and the absence of a term f ̸= 0 on the
right-hand side of the differential equation means that no external heat source is being
provided to our one-dimensional body.

As we did for the problem (D), it can be shown (see, e. g., [19]) that if u0 = 0 – that is,
for the homogeneous problem associated with (CD) – the only solution is u = 0, so that
(CD) has at most one solution. We are going to actually find it by the same techniques
of separation of variables and Fourier series.

A. Separation of variables+boundary condition+series solution
Seeking elementary solutions of the differential equation of the form u(x, t) = X(x)T(t)
that also satisfy the boundary condition (BC) and then making an “infinite superposi-
tion” of these, one finds as candidate solution

u(x, t) =
∞

∑
n=1

bn sin nxe
−n2t ≡

∞

∑
n=1

bnvn(x, t), (4.5.2)

with (x, t) ∈ R = [0, π]× [0, +∞[. See below for a full andmore general discussion of this
point.

B. Imposition of the initial condition
Imposing formally (IC) in (4.5.2), we find

u(x, 0) =
∞

∑
n=1

bn sin nx = u0(x) (0 ≤ x ≤ π). (4.5.3)
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Choose the coefficients bn
We have

bn =
2
π

π

∫
0

u0(x) sin nx dx (n ∈ ℕ), (4.5.4)

so that the series in (4.5.3) is the sine Fourier series of u0.

Proposition 4.5.1. Let u0 ∈ C
1
0[0, π] and let (bn) be as in (4.5.4). Then the series in (4.5.3)

converges pointwisely to u0 in [0, π]; that is, (4.5.3) is satisfied. Moreover, the convergence
of the series in [0, π] is uniform. Finally, also the series in two variables

∞

∑
n=1

bn sin nxe
−n2t

converges uniformly in R = [0, π] × [0, +∞[.

Proof. The proof is identical to that of Propositions 4.4.2 and 4.4.3 and Corollary 4.4.1; in
fact, it is easier, because here we have immediately

󵄨󵄨󵄨󵄨bn sin nxe
−n2t󵄨󵄨󵄨󵄨 ≤ |bn| ∀(x, t) ∈ [0, π] × [0, +∞[.

Theorem 4.5.1. Let u0 ∈ C
1
0[0, π] and let u be the function defined in R = [0, π] × [0, +∞[

putting

u(x, t) =
∞

∑
n=1

bn sin nxe
−n2t , bn =

2
π

π

∫
0

u0(x) sin nx dx. (4.5.5)

Then u is (the) solution of (CD).

Proof. (i) u is continuous in R by Proposition 4.5.1 and by the properties of uniform con-
vergence. Moreover, u satisfies by construction the initial condition (IC) and the bound-
ary condition (BC).

(ii) In the open rectangle R, u is of class C2 with respect to x and of class C1 with
respect to t and satisfies the differential equation (E); indeed,

u =
∞

∑
n=1

bnvn with 𝜕vn
𝜕t
−
𝜕2vn
𝜕x2
= 0 ∀n ∈ ℕ,

so that, by term-by-term differentiation of the series (4.5.5), we will also have 𝜕u𝜕t −
𝜕2u
𝜕x2 = 0. The possibility of term-by-term differentiation is checked by the same means
indicated in the proof of Theorem 4.4.1 and is based on the fact that the series for
𝜕u
𝜕t ,
𝜕u
𝜕x ,
𝜕2u
𝜕x2 are all dominated by
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∞

∑
n=1

n2e−n
2t

and therefore converge uniformly in Rt0 ≡ [0, π] × [t0, +∞[, whatever is t0 > 0.

Exercise 4.5.1. Prove that

u(x, t) → 0 as t → +∞, ∀x ∈ [0, π]. (4.5.6)

Extension to any number of space variables
The method of constructing a solution by separation of variables and Fourier series can
be partly extended to any number of space variables. We see here the main points. Let
Ω be a bounded, open, connected subset of ℝn and consider the heat equation

𝜕u
𝜕t
− Δxu = f (x, t) (x, t) ∈ Ω × ]0, +∞[, (4.5.7)

where t is the time variable, while Δx stands for the Laplacian in the space variable
x = (x1, . . . , xn):

Δx =
n
∑
i=1

𝜕2u
𝜕x2i
.

We deal in particular with the Cauchy–Dirichlet problem for the (homogeneous)
heat equation, which consists in finding a function u = u(x, t) : Ω × [0, +∞[ → ℝ such
that

(CD)
{{
{{
{

𝜕u
𝜕t − Δxu = 0 x ∈ Ω, t > 0 (E)
u(x, 0) = u0(x) x ∈ Ω (IC)
u(x, t) = 0 x ∈ 𝜕Ω, t ≥ 0, (BC)

(4.5.8)

where u0 (the initial data) is a given function in C(Ω) with u0 = 0 on 𝜕Ω.
Let us start with (E). From now on, we simply write Δ rather than Δx . Seeking solu-

tions of the form u(x, t) = X(x)T(t) and assuming that u(x, t) ̸= 0 for (x, t) ∈ Ω×]0, +∞[,
one finds

𝜕u
𝜕t
− Δu = 0⇔ XT ′ − (ΔX)T = 0⇔ T ′

T
−
ΔX
X
= 0

⇔
T ′

T
=
ΔX
X
= const . ≡ −λ.

Therefore,

(E) ⇐⇒ { ΔX + λX = 0 x ∈ Ω
T ′ + λT = 0 t ∈ ]0, +∞[.
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These are two coupled equations, for λ is the same in the two equations.
The second equation has for any λ the solutions

T(t) = Ce−λt (C ∈ ℝ).

Consider now the initial and boundary conditions in (CD):

{
u(x, 0) = X(x)T(0) = u0(x) x ∈ Ω (IC)
u(x, t) = X(x)T(t) = 0 x ∈ 𝜕Ω, t ≥ 0. (BC)

(4.5.9)

Equation (BC) is satisfied if X(x) = 0 ∀x ∈ 𝜕Ω.
Summing up, we see that (E) + (BC) are satisfied by u(x, t) = X(x)T(t) if T(t) = Ce−λt

and X is a solution of the problem

(EV) { ΔX + λX = 0 in Ω
X = 0 on 𝜕Ω.

Question. Do there exist non-zero solutions of (EV)? More precisely, do there exist val-
ues of λ such that (EV) has solutions X ̸= 0?

In this case, they are called respectively eigenvalues and eigenfunctions of the
Laplace operator (the Laplacian) Δ in Ω with Dirichlet boundary conditions (more pre-
cisely, of −Δ, for the equation in (EV) can be written in the form −ΔX = λX , which is
more consistent with the usual way of writing eigenvalue problems).

We have answered this question in case n = 1, where it is possible to solve explicitly
(EV); we have found indeed (Exercise 3.5.1) that the problem

{
−X ′′ = λX in ]a, b[
X(a) = X(b) = 0

has the following eigenvalues and eigenfunctions:

λk = (
kπ
b − a
)
2

, Xk(x) = C sinωk(x − a) (k ∈ ℕ),

with ωk = √λk .
A classical and fundamental result in bothmathematical analysis andmathematical

physics (see, e. g., [14] or [13]) ensures that, essentially, this remains true in any space
dimension.

Theorem 4.5.2. There exists an infinite sequence of positive eigenvalues λk of (EV). They
form a strictly increasing sequence going to +∞:

0 < λ1 < λ2 < ⋅ ⋅ ⋅ < λk < λk+1 . . . , λk →∞(k →∞).
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Let Xk denote a norm-one solution corresponding to λk . Then the sequence (Xk) of the nor-
malized eigenfunctions of the (Dirichlet) Laplacian in Ω forms an orthonormal sequence
in C(Ω), this space being equipped with the inner product

⟨f , g⟩ = ∫
Ω

f (x)g(x) dx. (4.5.10)

Moreover, the sequence (Xk) is total in this space, so that every function u ∈ C(Ω) can be
expanded in series (in the sense of the convergence in the quadratic mean on Ω) of the
eigenfunctions Xk .

Conclusion (about (CD))
For every k ∈ ℕ, the function

uk(x, t) = Xk(x)e
−λk t

is a solution of (E) + (BC). Therefore (see “General Remark” 3.), we look for a solution of
the form

u(x, t) =
∞

∑
k=1

ckuk(x, t) =
∞

∑
k=1

ckXk(x)e
−λk t , (4.5.11)

where the constants ck(k ∈ ℕ) have to be chosen in such a way that:
– the series (4.5.11) is (uniformly) convergent in Ω × [0, +∞[;
– the condition (IC) is satisfied.

Imposing formally (IC), we find

u(x, 0) =
∞

∑
k=1

ckXk(x) = u0(x), x ∈ Ω. (4.5.12)

Thepossibility of satisfying this condition anddetermining the constants ck amounts
to the possibility of expanding u0 in series of the eigenfunctions Xk . This is granted
by our assumption that u0 ∈ C(Ω) and by the totality of the (Xk) stated in Theorem 4.5.2.
Note that – as should be clear from the statement of this theorem – the eigenfunction
expansion stated above refers to the convergence of the series in the quadratic mean
induced by the inner product (4.5.10).

Remark 4.5.1. The proof of Theorem 4.5.2 requires advanced results from functional
analysis [14] involving the spectral properties of compact symmetric operators inHilbert
spaces, as sketched in Theorem 3.5.2 after the discussion of Sturm–Liouville eigenvalue
problems. Here, however, handling functions of several variables requires amuch heav-
ier technical apparatus, startingwith the construction and properties of the appropriate
Sobolev spaces.
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4.6 Additions and exercises

A1. The wave equation
As to the wave equation, one might in general consider the following IVP/BVP: given an
open set Ω ⊂ ℝn with boundary 𝜕Ω, find a function

u = u(x, t) : Ω × [0, +∞[ → ℝ

satisfying the following Cauchy–Dirichlet problem:

{{{{{{
{{{{{{
{

𝜕2u
𝜕t2 − Δxu = f (x, t) in Ω × ]0, +∞[
u(x, 0) = u0(x) x ∈ Ω
ut(x, 0) = v0(x) x ∈ Ω
u(x, t) = g(x, t) x ∈ 𝜕Ω, t ≥ 0.

(4.6.1)

In (4.6.1), f , g, u0, v0 are given functions, with u0 and v0 representing the initial condi-
tions (Cauchy conditions) imposed on the unknown function u, while the last condition
is a Dirichlet boundary condition imposed on u; it could be replaced for instance by
the Neumann boundary condition, where the exterior normal derivative of u on 𝜕Ω is
assigned instead of u.

Here we will only say something on the Cauchy–Dirichlet problem for the homo-
geneous wave equation and with zero Dirichlet boundary condition, that is, on the fol-
lowing simplified form of (4.6.1):

(CD)

{{{{{{
{{{{{{
{

𝜕2u
𝜕t2 − Δxu = 0 x ∈ Ω, t > 0 (E)
u(x, 0) = u0(x) x ∈ Ω (IC1)
𝜕u
𝜕t (x, 0) = v0(x) x ∈ Ω (IC2)
u(x, t) = 0 x ∈ 𝜕Ω, t ≥ 0, (BC)

(4.6.2)

where the initial data u0 and v0 are given function in C(Ω), with u0 = 0 on 𝜕Ω.

Physical interpretation
As already mentioned in Section 4.1 of this Chapter, for n = 2 equation (E) models the
motion of a vibratingmembrane onwhich no external force is exerted, and (BC)means
that the membrane is held fixed on its boundary for all time. Likewise if n = 1, in which
case (E) reduces to

𝜕2u
𝜕t2
−
𝜕2u
𝜕x2
= 0 x ∈ Ω = ]a, b[, t > 0. (4.6.3)

This represents the vibrations of an elastic string without external force; u(x, t) repre-
sents the vertical displacement (“displacement along the y-axis”) at time t of that point
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of the string that at rest has coordinate x ∈ Ω; thus, in the plane (x, y), at time t the
configuration of the string can be described by the arrow

x ≡ (x, 0) → (x, u(x, t)), a ≤ x ≤ b,

that is, by the graph of the function u(., t) : x → u(x, t) : [a, b] → ℝ. In the full problem
(CD), u0 = u0(x) and v0 = v0(x) represent respectively the initial position and velocity
of the string, while – if Ω = ]a, b[ is bounded – (BC) writes u(a, t) = u(b, t) = 0 for all t,
which means that the endpoints of the string are fixed on the x-axis (y = 0) for all time.

D’Alembert solution of the wave equation
Remaining for a while in the case n = 1, it is interesting and historically important to
look first at (CD)when Ω = ℝ, in which case the boundary condition vanishes. Recalling
that the solutions of (4.6.3) are of the form

u(x, t) = f (x + t) + g(x − t), (4.6.4)

with f , g : ℝ → ℝ arbitrary (it is often said that every solution u is the sum of a pro-
gressing wave and of a regressing wave), D’Alembert found the solution

u(x, t) = 1
2
[u0(x + t) + u0(x − t)] +

x+t

∫
x−t

v0(s) ds (4.6.5)

of (CD). It is clear that (4.6.5) is of the form (4.6.4), and it is easily checked that the initial
conditions (IC1) and (IC2) are also satisfied.

If Ω = ]a, b[ is bounded, theD’Alembert solution (4.6.5) can still be used to construct a
solution of (CD); this requires careful and rather lengthy manipulations that are shown
for instance in Weinberger [2] and in Pagani–Salsa [19].

Solution of (CD) by eigenfunction expansion
Let us now briefly discuss the case n ≥ 1 proceeding by separation of variables and
series expansion as we did with the heat equation. Assuming that u(x, t) = X(x)T(t) and
writing Δ rather than Δx , we find that (E) splits into the system

{
ΔX + λX = 0 x ∈ Ω
T ′′ + λT = 0 t ∈ ]0, +∞[.

Consider first in (4.6.2) the boundary condition (BC); this is satisfied by u(x, t) = X(x)T(t)
if X(x) = 0 ∀x ∈ 𝜕Ω, irrespective of T . Therefore, as to X , again we have to deal with the
eigenvalue problem
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(EV) { ΔX + λX = 0 in Ω
X = 0 on 𝜕Ω,

and assuming the truth of the spectral theorem for the Dirichlet Laplacian, Theo-
rem 4.5.2, we find the existence of infinitely many distinct eigenvalues λk > 0 (k ∈ ℕ)
with corresponding eigenfunctions Xk . The eigenvalues λk are the only values of the
parameter λ thatmatter in our construction, for otherwise the unique solution of (EV) is
X = 0, making u(x, t) = X(x)T(t) = 0, which of course does not solve our problem (4.6.2)
except in the trivial case in which u0 = v0 = 0. The differential equation that we must
consider for T is therefore

T ′′ + λkT = 0, t > 0,

whose general solution is, for each fixed k ∈ ℕ,

T(t) = C cos μkt + D sin μkt, μk = √λk , C,D ∈ ℝ.

Summing up, the elementary solutions of (E) + (BC) in our problem (4.6.2) are given
by

uk(x, t) = [Ck cos μkt + Dk sin μkt]Xk(x), k ∈ ℕ, (4.6.6)

and we search as usual the solution in the form

u(x, t) =
∞

∑
k=1

uk(x, t). (4.6.7)

Impose (at least formally) the initial conditions (IC1) and (IC2):

u(x, 0) =
∞

∑
k=1

CkXk(x) = u0(x), (4.6.8)

𝜕u
𝜕t
(x, 0) =

∞

∑
k=1

DkμkXk(x) = v0(x). (4.6.9)

These two conditions demand that u0 and v0 be expanded in series of the eigenfunctions
Xk of the Laplacian, and this is ensured – at least as to the convergence in the quadratic
mean – by our assumptions that u0 and v0 are in C(Ω) and by the completeness of the
(Xk). Then the above equations (4.6.8) and (4.6.9) determine uniquely the coefficients Ck
and Dk , respectively, and therefore the solution u via (4.6.6) and (4.6.7). The quality of
the convergence of the series in (4.6.7) (ensuring that its sum is actually a solution of
(CD)) will – roughly speaking – depend on the higher regularity of u0 and v0.
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Exercises

E1. Solutions of some of the exercises given in the text
Section 4.1
Exercise 1.1 (Fundamental solutions of the Laplace equation)
Case N = 2
Consider

u(x, y) = ln√x2 + y2, (x, y) ̸= (0, 0). (4.6.10)

For (x, y) ̸= (0, 0), we have

𝜕
𝜕x

ln√x2 + y2 = 1

√x2 + y2
𝜕
𝜕x
√x2 + y2 = x

x2 + y2
,

whence

𝜕2

𝜕x2
ln√x2 + y2 = 𝜕

𝜕x
[

x
x2 + y2
] =
(x2 + y2) − x.2x
(x2 + y2)2

=
y2 − x2

(x2 + y2)2
.

Similarly,

𝜕2

𝜕y2
ln√x2 + y2 = x2 − y2

(x2 + y2)2
,

so that

(
𝜕2

𝜕x2
+
𝜕2

𝜕y2
) ln√x2 + y2 = 0.

Case N = 3
Consider

u(x, y, z) = 1

√x2 + y2 + z2
=

1
‖x‖
, x ̸= 0. (4.6.11)

Put r = r(x) = ‖x‖, so that u(x) = 1
r =

1
r(x) . Then by the chain rule,

𝜕u
𝜕x
=
𝜕u
𝜕r
𝜕r
𝜕x
= −

1
r2
𝜕r
𝜕x
= −

x
r3

because

𝜕r
𝜕x
=
𝜕
𝜕x
√x2 + y2 + z2 = x

r
.



198 � 4 Partial differential equations

Moreover,

𝜕2u
𝜕x2
=
𝜕
𝜕x
(
𝜕u
𝜕x
) = −
𝜕
𝜕x
(
x
r3
) = −[

1
r3
+ x 𝜕
𝜕x
(
1
r3
)]

= −[
1
r3
−
3x
r4
𝜕r
𝜕x
] = −

1
r3
+
3x2

r5
,

similar expressions holding for the remaining partial derivatives. Summing up, for
(x, y, z) ̸= (0, 0, 0) we have

𝜕2u
𝜕x2
+
𝜕2u
𝜕y2
+
𝜕2u
𝜕z2
= −

3
r3
+
3
r5
(x2 + y2 + z2) = − 3

r3
+
3
r3
= 0.

Similar computations show that in fact, for any N ≥ 3, the function

u(x) = 1
‖x‖N−2
=

1
rN−2

solves the Laplace equation in ℝN \ {0}.

Exercise 1.2
Iterating the computations based on the chain rule and displayed after equation (4.1.18),
we find that

𝜕2u
𝜕t2
− v2 𝜕

2u
𝜕x2
= −4v2 𝜕

2ω
𝜕p𝜕q
,

showing that in the new variables p, q the one-dimensional wave equation (4.1.17) be-
comes

𝜕2ω
𝜕p𝜕q
= 0,

whence ω(p, q) = f (p) + g(q) by (4.1.16), and therefore

u(x, t) = ω(x + tv, x − tv) = f (x + tv) + g(x − tv).

Vice versa, if u(x, t) = f (x + tv) + g(x − tv), where f , g : ℝ → ℝ are twice differentiable
arbitrary functions, then

𝜕2u
𝜕x2
= f ′′(x + tv) + g′′(x + tv)

and

𝜕2u
𝜕t2
= f ′′(x + tv)v2 + g′′(x + tv)v2,
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whence

𝜕2u
𝜕t2
− v2 𝜕

2u
𝜕x2
= 0 ∀(t, x) ∈ ℝ2.

Exercise 1.3
Let v ∈ C1(Ω), z ∈ C1(Ω, ℝn). Writing z = (z1, . . . , zn), we have

div(vz) =
n
∑
i=1

𝜕
𝜕xi
(vzi) =

n
∑
i=1
(
𝜕v
𝜕xi

zi + v
𝜕zi
𝜕xi
) = ∇v ⋅ z + v(div z).

Section 4.3
Exercise 3.1
To solve this exercise, follow the pattern shown in Exercise 3.2 below, save that the two
functions indicated in the text of the exercise are not piecewise of class C1, and thus
Proposition 4.3.1 cannot be used. In particular, the presence of discontinuities rules out
the possibility that the convergence of their Fourier series be uniform.

Exercise 3.2
(a) First compute the Fourier coefficients of the 2π-periodic extension f of the function
x → x2, |x| ≤ π. We have bk = 0 for every k ∈ ℕ, while

a0 =
1
π

π

∫
0

x2 dx = π
2

3

and

ak =
2
π

π

∫
0

x2 cos kx dx = 4
k2
(−1)k (k ∈ ℕ),

as follows for instance by repeated integration by parts:

π

∫
0

x2 cos kx dx = 1
k
[x2 sin x]π0 +

2
k2
[x cos kx]π0 −

2
k2
[sin kx]π0

=
2
k2
π cos kπ = 2

k2
π(−1)k .

(b) In order to prove the pointwise convergence of the Fourier series of f to f itself,
and thus in particular the validity of the formula

x2 = π
2

3
+ 4
∞

∑
k=1

(−1)k

k2
cos kx, x ∈ [−π, π], (4.6.12)
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we should check that the hypotheses of Theorem 4.3.1 are satisfied. Now, our f is contin-
uous on all of ℝ and differentiable at each point of ℝ except at the points

π ± 2kπ (k ∈ ℕ).

However, at these points, the left- and right-derivatives of f exist; this can be checked
directly by the definitions or via Remark 4.3.3, as we have for instance

lim
x→π− f ′(x) = lim

x→π− 2x = 2π, lim
x→π+ f ′(x) = lim

x→π+ 2(x − 2π) = −2π.
We have thus verified that f is piecewise of class C1 onℝ (meaning that it is so on each
interval [a, b] ⊂ ℝ), and the pointwise convergence to f of the series at the right-hand
side of (4.6.12) is thus proved via Proposition 4.3.1.

In fact, the very same properties of f imply, via Theorem 4.3.2, that the convergence
is uniform.

Section 4.5
Exercise 5.1 (Exponential decay of the temperature)
Recall that

u(x, t) =
∞

∑
n=1

bn sin nxe
−n2t , bn =

2
π

π

∫
0

u0(x) sin nx dx. (4.6.13)

Thus, we have

󵄨󵄨󵄨󵄨u(x, t)
󵄨󵄨󵄨󵄨 ≤ C

∞

∑
n=1

e−n
2t

for some C > 0 and for all (x, t) ∈ [0, π] × [0, +∞[. Now fix a t0 > 0 and write, for t > t0,

e−n
2t = e−n

2(t−t0)e−n
2t0 ≤ e−(t−t0)e−n

2t0 ,

whence

󵄨󵄨󵄨󵄨u(x, t)
󵄨󵄨󵄨󵄨 ≤ Ce

−(t−t0)
∞

∑
n=1

e−n
2t0 ≡ Ke−(t−t0)

for t > t0 and for all x ∈ [0, π]. This shows that the asymptotic behavior (4.5.6) of the
temperature holdswith an exponential decay, anduniformlywith respect to x ∈ [0, π].
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