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PREFACE

“We see that the theory of probability is at bottom only common sense reduced
to calculation; it makes us appreciate with exactitude what reasonable minds feel
by a sort of instinct, often without being able to account for it. . . . It is remarkable
that this science, which originated in the consideration of games of chance, should
have become the most important object of human knowledge. . . .The most impor-
tant questions of life are, for the most part, really only problems of probability.” So
said the famous French mathematician and astronomer (the “Newton of France”)
Pierre-Simon, Marquis de Laplace. Although many people believe that the famous
marquis, who was also one of the great contributors to the development of probabil-
ity, might have exaggerated somewhat, it is nevertheless true that probability theory
has become a tool of fundamental importance to nearly all scientists, engineers, med-
ical practitioners, jurists, and industrialists. In fact, the enlightened individual had
learned to ask not “Is it so?” but rather “What is the probability that it is so?”

General Approach and Mathematical Level
This book is intended as an elementary introduction to the theory of probability
for students in mathematics, statistics, engineering, and the sciences (including com-
puter science, biology, the social sciences, and management science) who possess the
prerequisite knowledge of elementary calculus. It attempts to present not only the
mathematics of probability theory, but also, through numerous examples, the many
diverse possible applications of this subject.

Content and Course Planning
Chapter 1 presents the basic principles of combinatorial analysis, which are most
useful in computing probabilities.

Chapter 2 handles the axioms of probability theory and shows how they can be
applied to compute various probabilities of interest.

Chapter 3 deals with the extremely important subjects of conditional probability
and independence of events. By a series of examples, we illustrate how conditional
probabilities come into play not only when some partial information is available,
but also as a tool to enable us to compute probabilities more easily, even when
no partial information is present. This extremely important technique of obtaining
probabilities by “conditioning” reappears in Chapter 7, where we use it to obtain
expectations.

The concept of random variables is introduced in Chapters 4, 5, and 6. Discrete
random variables are dealt with in Chapter 4, continuous random variables in
Chapter 5, and jointly distributed random variables in Chapter 6. The important con-
cepts of the expected value and the variance of a random variable are introduced in
Chapters 4 and 5, and these quantities are then determined for many of the common
types of random variables.

8
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Additional properties of the expected value are considered in Chapter 7. Many
examples illustrating the usefulness of the result that the expected value of a sum
of random variables is equal to the sum of their expected values are presented.
Sections on conditional expectation, including its use in prediction, and on moment-
generating functions are contained in this chapter. In addition, the final section intro-
duces the multivariate normal distribution and presents a simple proof concerning
the joint distribution of the sample mean and sample variance of a sample from a
normal distribution.

Chapter 8 presents the major theoretical results of probability theory. In par-
ticular, we prove the strong law of large numbers and the central limit theorem.
Our proof of the strong law is a relatively simple one that assumes that the random
variables have a finite fourth moment, and our proof of the central limit theorem
assumes Levy’s continuity theorem. This chapter also presents such probability
inequalities as Markov’s inequality, Chebyshev’s inequality, and Chernoff bounds.
The final section of Chapter 8 gives a bound on the error involved when a probability
concerning a sum of independent Bernoulli random variables is approximated by the
corresponding probability of a Poisson random variable having the same expected
value.

Chapter 9 presents some additional topics, such as Markov chains, the Poisson
process, and an introduction to information and coding theory, and Chapter 10 con-
siders simulation.

As in the previous edition, three sets of exercises are given at the end of each
chapter. They are designated asProblems, Theoretical Exercises, and Self-Test Prob-
lems and Exercises. This last set of exercises, for which complete solutions appear in
Solutions to Self-Test Problems and Exercises, is designed to help students test their
comprehension and study for exams.

Changes for the Tenth Edition
The tenth edition continues the evolution and fine tuning of the text. Aside from a
multitude of small changes made to increase the clarity of the text, the new edition
includes many new and updated problems, exercises, and text material chosen both
for inherent interest and for their use in building student intuition about probability.
Illustrative of these goals are Examples 4n of Chapter 3, which deals with comput-
ing NCAA basketball tournament win probabilities, and Example 5b of Chapter 4,
which introduces the friendship paradox. There is also new material on the Pareto
distribution (introduced in Section 5.6.5), on Poisson limit results (in Section 8.5),
and on the Lorenz curve (in Section 8.7).
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This page intentionally left blank 



Chapter

COMBINATORIAL ANALYSIS 1
Contents
1.1 Introduction
1.2 The Basic Principle of Counting
1.3 Permutations
1.4 Combinations

1.5 Multinomial Coefficients
1.6 The Number of Integer Solutions of

Equations

1.1 Introduction
Here is a typical problem of interest involving probability: A communication system
is to consist of n seemingly identical antennas that are to be lined up in a linear order.
The resulting system will then be able to receive all incoming signals—and will be
called functional—as long as no two consecutive antennas are defective. If it turns
out that exactly m of the n antennas are defective, what is the probability that the
resulting system will be functional? For instance, in the special case where n = 4 and
m = 2, there are 6 possible system configurations, namely,

0 1 1 0
0 1 0 1
1 0 1 0
0 0 1 1
1 0 0 1
1 1 0 0

where 1 means that the antenna is working and 0 that it is defective. Because the
resulting system will be functional in the first 3 arrangements and not functional in
the remaining 3, it seems reasonable to take 3

6 = 1
2 as the desired probability. In

the case of general n and m, we could compute the probability that the system is
functional in a similar fashion. That is, we could count the number of configurations
that result in the system’s being functional and then divide by the total number of all
possible configurations.

From the preceding discussion, we see that it would be useful to have an effec-
tive method for counting the number of ways that things can occur. In fact, many
problems in probability theory can be solved simply by counting the number of dif-
ferent ways that a certain event can occur. The mathematical theory of counting is
formally known as combinatorial analysis.

13



14 Chapter 1 Combinatorial Analysis

1.2 The Basic Principle of Counting
The basic principle of counting will be fundamental to all our work. Loosely put, it
states that if one experiment can result in any ofm possible outcomes and if another
experiment can result in any of n possible outcomes, then there are mn possible
outcomes of the two experiments.

The basic principle of counting
Suppose that two experiments are to be performed. Then if experiment 1 can
result in any one ofm possible outcomes and if, for each outcome of experiment
1, there are n possible outcomes of experiment 2, then together there are mn
possible outcomes of the two experiments.

Proof of the Basic Principle: The basic principle may be proven by enumerating all
the possible outcomes of the two experiments; that is,

(1, 1), (1, 2), . . . , (1,n)
(2, 1), (2, 2), . . . , (2,n)

#
#
#

(m, 1), (m, 2), . . . , (m, n)

where we say that the outcome is (i, j) if experiment 1 results in its ith possible
outcome and experiment 2 then results in its jth possible outcome. Hence, the set of
possible outcomes consists of m rows, each containing n elements. This proves the
result.

Example
2a

A small community consists of 10 women, each of whom has 3 children. If one
woman and one of her children are to be chosen as mother and child of the year,
how many different choices are possible?

Solution By regarding the choice of the woman as the outcome of the first experi-
ment and the subsequent choice of one of her children as the outcome of the second
experiment, we see from the basic principle that there are 10 * 3 = 30 possible
choices. .

When there are more than two experiments to be performed, the basic principle
can be generalized.

The generalized basic principle of counting
If r experiments that are to be performed are such that the first one may result
in any of n1 possible outcomes; and if, for each of these n1 possible outcomes,
there are n2 possible outcomes of the second experiment; and if, for each of the
possible outcomes of the first two experiments, there are n3 possible outcomes
of the third experiment; and if . . . , then there is a total of n1· n2 · · ·nr possible
outcomes of the r experiments.
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Example
2b

A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors, and 2
seniors. A subcommittee of 4, consisting of 1 person from each class, is to be chosen.
How many different subcommittees are possible?

Solution We may regard the choice of a subcommittee as the combined outcome of
the four separate experiments of choosing a single representative from each of the
classes. It then follows from the generalized version of the basic principle that there
are 3 * 4 * 5 * 2 = 120 possible subcommittees. .

Example
2c

How many different 7-place license plates are possible if the first 3 places are to be
occupied by letters and the final 4 by numbers?

Solution By the generalized version of the basic principle, the answer is 26 · 26 ·
26 · 10 · 10 · 10 · 10 = 175,760,000. .

Example
2d

How many functions defined on n points are possible if each functional value is
either 0 or 1?

Solution Let the points be 1, 2, . . . ,n. Since f (i) must be either 0 or 1 for each i =
1, 2, . . . ,n, it follows that there are 2n possible functions. .

Example
2e

In Example 2c, howmany license plates would be possible if repetition among letters
or numbers were prohibited?

Solution In this case, there would be 26 · 25 · 24 · 10 · 9 · 8 · 7 = 78,624,000
possible license plates. .

1.3 Permutations
Howmany different ordered arrangements of the letters a, b, and c are possible?
By direct enumeration we see that there are 6, namely, abc, acb, bac, bca, cab,
and cba. Each arrangement is known as a permutation. Thus, there are 6 possible
permutations of a set of 3 objects. This result could also have been obtained
from the basic principle, since the first object in the permutation can be any of
the 3, the second object in the permutation can then be chosen from any of the
remaining 2, and the third object in the permutation is then the remaining 1.
Thus, there are 3 · 2 · 1 = 6 possible permutations.

Suppose now that we have n objects. Reasoning similar to that we have just used
for the 3 letters then shows that there are

n(n − 1)(n − 2) · · · 3 · 2 · 1 = n!

different permutations of the n objects.

Whereas n! (read as “n factorial”) is defined to equal 1 · 2 · · · n when n is a
positive integer, it is convenient to define 0! to equal 1.

Example
3a

How many different batting orders are possible for a baseball team consisting of 9
players?

Solution There are 9! = 362,880 possible batting orders. .
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Example
3b

A class in probability theory consists of 6 men and 4 women. An examination is
given, and the students are ranked according to their performance. Assume that no
two students obtain the same score.

(a) How many different rankings are possible?
(b) If the men are ranked just among themselves and the women just among them-

selves, how many different rankings are possible?

Solution (a) Because each ranking corresponds to a particular ordered arrangement
of the 10 people, the answer to this part is 10! = 3,628,800.

(b) Since there are 6! possible rankings of the men among themselves and 4!
possible rankings of the women among themselves, it follows from the basic principle
that there are (6!)(4!) = (720)(24) = 17,280 possible rankings in this case. .

Example
3c

Ms. Jones has 10 books that she is going to put on her bookshelf. Of these, 4 aremath-
ematics books, 3 are chemistry books, 2 are history books, and 1 is a language book.
Ms. Jones wants to arrange her books so that all the books dealing with the same
subject are together on the shelf. How many different arrangements are possible?

Solution There are 4! 3! 2! 1! arrangements such that the mathematics books are
first in line, then the chemistry books, then the history books, and then the language
book. Similarly, for each possible ordering of the subjects, there are 4! 3! 2! 1! pos-
sible arrangements. Hence, as there are 4! possible orderings of the subjects, the
desired answer is 4! 4! 3! 2! 1! = 6912. .

We shall now determine the number of permutations of a set of n objects when
certain of the objects are indistinguishable from one another. To set this situation
straight in our minds, consider the following example.

Example
3d

How many different letter arrangements can be formed from the letters PEPPER?

Solution We first note that there are 6! permutations of the letters P1E1P2P3E2R
when the 3P’s and the 2E’s are distinguished from one another. However, consider
any one of these permutations—for instance, P1P2E1P3E2R. If we now permute the
P’s among themselves and theE’s among themselves, then the resultant arrangement
would still be of the form PPEPER. That is, all 3! 2! permutations

P1P2E1P3E2R P1P2E2P3E1R
P1P3E1P2E2R P1P3E2P2E1R
P2P1E1P3E2R P2P1E2P3E1R
P2P3E1P1E2R P2P3E2P1E1R
P3P1E1P2E2R P3P1E2P2E1R
P3P2E1P1E2R P3P2E2P1E1R

are of the form PPEPER. Hence, there are 6!/(3! 2!) = 60 possible letter arrange-
ments of the letters PEPPER. .

In general, the same reasoning as that used in Example 3d shows that there are

n!
n1! n2! · · · nr!

different permutations of n objects, of which n1 are alike, n2 are alike, . . . ,nr are
alike.
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Example
3e

A chess tournament has 10 competitors, of which 4 are Russian, 3 are from the
United States, 2 are from Great Britain, and 1 is from Brazil. If the tournament
result lists just the nationalities of the players in the order in which they placed, how
many outcomes are possible?

Solution There are
10!

4! 3! 2! 1!
= 12,600

possible outcomes. .

Example
3f

How many different signals, each consisting of 9 flags hung in a line, can be made
from a set of 4 white flags, 3 red flags, and 2 blue flags if all flags of the same color
are identical?

Solution There are
9!

4! 3! 2!
= 1260

different signals. .

1.4 Combinations
We are often interested in determining the number of different groups of r objects
that could be formed from a total of n objects. For instance, how many different
groups of 3 could be selected from the 5 items A, B, C, D, and E? To answer this
question, reason as follows: Since there are 5 ways to select the initial item, 4 ways to
then select the next item, and 3 ways to select the final item, there are thus 5 · 4 · 3
ways of selecting the group of 3 when the order in which the items are selected is
relevant. However, since every group of 3—say, the group consisting of items A, B,
and C—will be counted 6 times (that is, all of the permutations ABC, ACB, BAC,
BCA, CAB, and CBA will be counted when the order of selection is relevant), it
follows that the total number of groups that can be formed is

5 · 4 · 3
3 · 2 · 1

= 10

In general, as n(n − 1) · · · (n − r + 1) represents the number of different ways that
a group of r items could be selected from n items when the order of selection is
relevant, and as each group of r items will be counted r! times in this count, it follows
that the number of different groups of r items that could be formed from a set of n
items is

n(n − 1) · · · (n − r + 1)
r!

= n!
(n − r)! r!

Notation and terminology

We define

(
n
r

)
, for r … n, by

(
n
r

)
= n!

(n − r)! r!
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and say that

(
n
r

)
(read as “n choose r”) represents the number of possible

combinations of n objects taken r at a time.

Thus,

(
n
r

)
represents the number of different groups of size r that could be

selected from a set of n objects when the order of selection is not considered relevant.

Equivalently,

(
n
r

)
is the number of subsets of size r that can be chosen from

a set of size n. Using that 0! = 1, note that

(
n
n

)
=

(
n
0

)
=

n!
0!n!

= 1, which is

consistent with the preceding interpretation because in a set of size n there is exactly
1 subset of size n (namely, the entire set), and exactly one subset of size 0 (namely

the empty set). A useful convention is to define

(
n
r

)
equal to 0 when either r > n

or r < 0.

Example
4a

A committee of 3 is to be formed from a group of 20 people. How many different
committees are possible?

Solution There are

(
20
3

)
= 20 · 19 · 18

3 · 2 · 1
= 1140 possible committees. .

Example
4b

From a group of 5 women and 7 men, how many different committees consisting of
2 women and 3 men can be formed? What if 2 of the men are feuding and refuse to
serve on the committee together?

Solution As there are

(
5
2

)
possible groups of 2 women, and

(
7
3

)
possible groups

of 3 men, it follows from the basic principle that there are

(
5
2

) (
7
3

)
= 5 · 4

2 · 1
.

7 · 6 · 5
3 · 2 · 1

= 350 possible committees consisting of 2 women and 3 men.

Now suppose that 2 of the men refuse to serve together. Because a total of(
2
2

)(
5
1

)
= 5 out of the

(
7
3

)
= 35 possible groups of 3 men contain both of

the feuding men, it follows that there are 35 − 5 = 30 groups that do not contain

both of the feuding men. Because there are still

(
5
2

)
= 10 ways to choose the 2

women, there are 30 · 10 = 300 possible committees in this case. .

Example
4c

Consider a set of n antennas of which m are defective and n − m are functional
and assume that all of the defectives and all of the functionals are considered indis-
tinguishable. How many linear orderings are there in which no two defectives are
consecutive?

Solution Imagine that the n − m functional antennas are lined up among them-
selves. Now, if no two defectives are to be consecutive, then the spaces between the
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^ 1 ^ 1 ^ 1 . . . ^ 1 ^ 1 ^

1 5 functional

^ 5 place for at most one defective

Figure 1.1 No consecutive defectives.

functional antennas must each contain at most one defective antenna. That is, in the
n − m + 1 possible positions—represented in Figure 1.1 by carets—between the
n − m functional antennas, we must select m of these in which to put the defective

antennas. Hence, there are

(
n − m + 1

m

)
possible orderings in which there is at

least one functional antenna between any two defective ones. .

A useful combinatorial identity, known as Pascal’s identity, is(
n
r

)
=
(
n − 1
r − 1

)
+
(
n − 1
r

)
1 … r … n (4.1)

Equation (4.1) may be proved analytically or by the following combinatorial argu-
ment: Consider a group of n objects, and fix attention on some particular one of

these objects—call it object 1. Now, there are

(
n − 1
r − 1

)
groups of size r that con-

tain object 1 (since each such group is formed by selecting r − 1 from the remaining

n − 1 objects). Also, there are

(
n − 1
r

)
groups of size r that do not contain object

1. As there is a total of

(
n
r

)
groups of size r, Equation (4.1) follows.

The values

(
n
r

)
are often referred to as binomial coefficients because of their

prominence in the binomial theorem.

The binomial theorem

(x + y)n =
n∑

k=0

(
n
k

)
xkyn−k (4.2)

We shall present two proofs of the binomial theorem. The first is a proof by
mathematical induction, and the second is a proof based on combinatorial consider-
ations.

Proof of the Binomial Theorem by Induction: When n = 1, Equation (4.2) reduces to

x + y =
(
1
0

)
x0y1 +

(
1
1

)
x1y0 = y + x
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Assume Equation (4.2) for n − 1. Now,

(x + y)n = (x + y)(x + y)n−1

= (x + y)
n−1∑
k=0

(
n − 1
k

)
xkyn−1−k

=
n−1∑
k=0

(
n − 1
k

)
xk+1yn−1−k +

n−1∑
k=0

(
n − 1
k

)
xkyn−k

Letting i = k + 1 in the first sum and i = k in the second sum, we find that

(x + y)n =
n∑
i=1

(
n − 1
i − 1

)
xiyn−i +

n−1∑
i=0

(
n − 1

i

)
xiyn−i

=
n−1∑
i=1

(
n − 1
i − 1

)
xiyn−i + xn + yn +

n−1∑
i=1

(
n − 1

i

)
xiyn−i

= xn +
n−1∑
i=1

⎡
⎣( n − 1

i − 1

)
+
(
n − 1

i

)⎤⎦ xiyn−i + yn

= xn +
n−1∑
i=1

(
n
i

)
xiyn−i + yn

=
n∑
i=0

(
n
i

)
xiyn−i

where the next-to-last equality follows by Equation (4.1). By induction, the theorem
is now proved.

Combinatorial Proof of the Binomial Theorem: Consider the product

(x1 + y1)(x2 + y2) · · · (xn + yn)

Its expansion consists of the sum of 2n terms, each term being the product of n fac-
tors. Furthermore, each of the 2n terms in the sum will contain as a factor either xi
or yi for each i = 1, 2, . . . ,n. For example,

(x1 + y1)(x2 + y2) = x1x2 + x1y2 + y1x2 + y1y2

Now, how many of the 2n terms in the sum will have k of the xi’s and (n − k) of
the yi’s as factors? As each term consisting of k of the xi’s and (n − k) of the yi’s
corresponds to a choice of a group of k from the n values x1, x2, . . . , xn, there are(
n
k

)
such terms. Thus, letting xi = x, yi = y, i = 1, . . . ,n, we see that

(x + y)n =
n∑

k=0

(
n
k

)
xkyn−k
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Example
4d

Expand (x + y)3.

Solution

(x + y)3 =
(
3
0

)
x0y3 +

(
3
1

)
x1y2 +

(
3
2

)
x2y1 +

(
3
3

)
x3y0

= y3 + 3xy2 + 3x2y + x3 .

Example
4e

How many subsets are there of a set consisting of n elements?

Solution Since there are

(
n
k

)
subsets of size k, the desired answer is

n∑
k=0

(
n
k

)
= (1 + 1)n = 2n

This result could also have been obtained by assigning either the number 0 or the
number 1 to each element in the set. To each assignment of numbers, there cor-
responds, in a one-to-one fashion, a subset, namely, that subset consisting of all
elements that were assigned the value 1. As there are 2n possible assignments, the
result follows.

Note that we have included the set consisting of 0 elements (that is, the null set)
as a subset of the original set. Hence, the number of subsets that contain at least 1
element is 2n − 1. .

1.5 Multinomial Coefficients
In this section, we consider the following problem: A set of n distinct items is to be
divided into r distinct groups of respective sizes n1,n2, . . . ,nr, where

∑r
i=1 ni = n.

How many different divisions are possible? To answer this question, we note that

there are

(
n
n1

)
possible choices for the first group; for each choice of the first group,

there are

(
n − n1
n2

)
possible choices for the second group; for each choice of the

first two groups, there are

(
n − n1 − n2

n3

)
possible choices for the third group; and

so on. It then follows from the generalized version of the basic counting principle
that there are(

n
n1

)(
n − n1
n2

)
· · ·
(
n − n1 − n2 − · · · − nr−1

nr

)

= n!
(n − n1)! n1!

(n − n1)!
(n − n1 − n2)! n2!

· · · (n − n1 − n2 − · · · − nr−1)!
0! nr!

= n!
n1! n2! · · ·nr!

possible divisions.
Another way to see this result is to consider the n values 1, 1, . . . , 1, 2, . . . , 2, . . . ,

r, . . . , r, where i appears ni times, for i = 1, . . . , r. Every permutation of these values
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corresponds to a division of the n items into the r groups in the following manner:
Let the permutation i1, i2, . . . , in correspond to assigning item 1 to group i1, item 2 to
group i2, and so on. For instance, if n = 8 and if n1 = 4, n2 = 3, and n3 = 1, then
the permutation 1, 1, 2, 3, 2, 1, 2, 1 corresponds to assigning items 1, 2, 6, 8 to the first
group, items 3, 5, 7 to the second group, and item 4 to the third group. Because every
permutation yields a division of the items and every possible division results from
some permutation, it follows that the number of divisions of n items into r distinct
groups of sizes n1,n2, . . . ,nr is the same as the number of permutations of n items
of which n1 are alike, and n2 are alike, . . ., and nr are alike, which was shown in

Section 1.3 to equal
n!

n1!n2! · · · nr!
.

Notation

If n1 + n2 + · · · + nr = n, we define

(
n

n1,n2, . . . ,nr

)
by

(
n

n1,n2, . . . ,nr

)
= n!
n1! n2! · · · nr!

Thus,

(
n

n1,n2, . . . ,nr

)
represents the number of possible divisions of n distinct

objects into r distinct groups of respective sizes n1,n2, . . . ,nr.

Example
5a

A police department in a small city consists of 10 officers. If the department policy is
to have 5 of the officers patrolling the streets, 2 of the officers working full time at the
station, and 3 of the officers on reserve at the station, how many different divisions
of the 10 officers into the 3 groups are possible?

Solution There are
10!

5! 2! 3!
= 2520 possible divisions. .

Example
5b

Ten children are to be divided into an A team and a B team of 5 each. The A team
will play in one league and the B team in another. How many different divisions are
possible?

Solution There are
10!
5! 5!

= 252 possible divisions. .

Example
5c

In order to play a game of basketball, 10 children at a playground divide themselves
into two teams of 5 each. How many different divisions are possible?

Solution Note that this example is different fromExample 5b because now the order
of the two teams is irrelevant. That is, there is no A or B team, but just a division
consisting of 2 groups of 5 each. Hence, the desired answer is

10!/(5! 5!)
2!

= 126 .

The proof of the following theorem, which generalizes the binomial theorem, is
left as an exercise.
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The multinomial theorem

(x1 + x2 + · · · + xr)n =
∑

(n1, . . . ,nr) :
n1 + · · · + nr = n

(
n

n1,n2, . . . ,nr

)
xn11 x

n2
2 · · · xnrr

That is, the sum is over all nonnegative integer-valued vectors (n1,n2, . . . ,nr)
such that n1 + n2 + · · · + nr = n.

The numbers

(
n

n1,n2, . . . ,nr

)
are known as multinomial coefficients.

Example
5d

In the first round of a knockout tournament involving n = 2m players, the n players
are divided into n/2 pairs, with each of these pairs then playing a game. The losers
of the games are eliminated while the winners go on to the next round, where the
process is repeated until only a single player remains. Suppose we have a knockout
tournament of 8 players.

(a) How many possible outcomes are there for the initial round? (For instance,
one outcome is that 1 beats 2, 3 beats 4, 5 beats 6, and 7 beats 8.)

(b) How many outcomes of the tournament are possible, where an outcome gives
complete information for all rounds?

Solution One way to determine the number of possible outcomes for the initial
round is to first determine the number of possible pairings for that round. To do so,
note that the number of ways to divide the 8 players into a first pair, a second pair, a

third pair, and a fourth pair is
(

8
2, 2, 2, 2

)
= 8!

24
. Thus, the number of possible pair-

ings when there is no ordering of the 4 pairs is
8!

24 4!
. For each such pairing, there are

2 possible choices from each pair as to the winner of that game, showing that there

are
8!24

24 4!
= 8!

4!
possible results of round 1. [Another way to see this is to note that

there are
(
8
4

)
possible choices of the 4 winners and, for each such choice, there are

4! ways to pair the 4 winners with the 4 losers, showing that there are 4!
(
8
4

)
= 8!

4!
possible results for the first round.]

Similarly, for each result of round 1, there are
4!
2!

possible outcomes of round 2,

and for each of the outcomes of the first two rounds, there are
2!
1!

possible outcomes

of round 3. Consequently, by the generalized basic principle of counting, there are
8!
4!

4!
2!

2!
1!

= 8! possible outcomes of the tournament. Indeed, the same argument

can be used to show that a knockout tournament of n = 2m players has n! possible
outcomes.

Knowing the preceding result, it is not difficult to come up with a more direct
argument by showing that there is a one-to-one correspondence between the set of
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possible tournament results and the set of permutations of 1, . . . ,n. To obtain such
a correspondence, rank the players as follows for any tournament result: Give the
tournament winner rank 1, and give the final-round loser rank 2. For the two play-
ers who lost in the next-to-last round, give rank 3 to the one who lost to the player
ranked 1 and give rank 4 to the one who lost to the player ranked 2. For the four play-
ers who lost in the second-to-last round, give rank 5 to the one who lost to player
ranked 1, rank 6 to the one who lost to the player ranked 2, rank 7 to the one who
lost to the player ranked 3, and rank 8 to the one who lost to the player ranked 4.
Continuing on in this manner gives a rank to each player. (A more succinct descrip-
tion is to give the winner of the tournament rank 1 and let the rank of a player who
lost in a round having 2k matches be 2k plus the rank of the player who beat him, for
k = 0, . . . ,m − 1.) In this manner, the result of the tournament can be represented
by a permutation i1, i2, . . . , in, where ij is the player who was given rank j. Because
different tournament results give rise to different permutations, and because there is
a tournament result for each permutation, it follows that there are the same number
of possible tournament results as there are permutations of 1, . . . ,n. .

Example
5e

(x1 + x2 + x3)
2 =

(
2

2, 0, 0

)
x21x

0
2x

0
3 +

(
2

0, 2, 0

)
x01x

2
2x

0
3

+
(

2
0, 0, 2

)
x01x

0
2x

2
3 +

(
2

1, 1, 0

)
x11x

1
2x

0
3

+
(

2
1, 0, 1

)
x11x

0
2x

1
3 +

(
2

0, 1, 1

)
x01x

1
2x

1
3

= x21 + x22 + x23 + 2x1x2 + 2x1x3 + 2x2x3 .

*1.6 The Number of Integer Solutions of Equations
An individual has gone fishing at Lake Ticonderoga, which contains four types of
fish: lake trout, catfish, bass, and bluefish. If we take the result of the fishing trip to
be the numbers of each type of fish caught, let us determine the number of possible
outcomes when a total of 10 fish are caught. To do so, note that we can denote the
outcome of the fishing trip by the vector (x1, x2, x3, x4) where x1 is the number of
trout that are caught, x2 is the number of catfish, x3 is the number of bass, and x4 is
the number of bluefish. Thus, the number of possible outcomes when a total of 10 fish
are caught is the number of nonnegative integer vectors (x1, x2, x3, x4) that sum to 10.

More generally, if we supposed there were r types of fish and that a total of n
were caught, then the number of possible outcomes would be the number of non-
negative integer-valued vectors x1, . . . , xr such that

x1 + x2 + . . . + xr = n (6.1)

To compute this number, let us start by considering the number of positive integer-
valued vectors x1, . . . , xr that satisfy the preceding. To determine this number, sup-
pose that we have n consecutive zeroes lined up in a row:

0 0 0 . . . 0 0

∗ Asterisks denote material that is optional.
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0 ^ 0 ^ 0 ^ . . . ^ 0 ^ 0

n objects 0

Choose r 2 1 of the spaces ^.

Figure 1.2 Number of positive solutions.

Note that any selection of r − 1 of the n − 1 spaces between adjacent zeroes (see
Figure 1.2) corresponds to a positive solution of (6.1) by letting x1 be the number of
zeroes before the first chosen space, x2 be the number of zeroes between the first
and second chosen space, . . ., and xn being the number of zeroes following the last
chosen space.
For instance, if we have n = 8 and r = 3, then (with the choices represented by dots)
the choice

0 . 0 0 0 0 . 0 0 0

corresponds to the solution x1 = 1, x2 = 4, x3 = 3. As positive solutions of (6.1)
correspond, in a one-to-one fashion, to choices of r − 1 of the adjacent spaces, it
follows that the number of differerent positive solutions is equal to the number of
different selections of r − 1 of the n − 1 adjacent spaces. Consequently, we have
the following proposition.

Proposition
6.1

There are

(
n − 1
r − 1

)
distinct positive integer-valued vectors (x1, x2, . . . , xr) sat-

isfying the equation

x1 + x2 + · · · + xr = n, xi > 0, i = 1, . . . , r

To obtain the number of nonnegative (as opposed to positive) solutions, note
that the number of nonnegative solutions of x1 + x2 + · · · + xr = n is the same
as the number of positive solutions of y1 + · · · + yr = n + r (seen by letting
yi = xi + 1, i = 1, . . . , r). Hence, from Proposition 6.1, we obtain the following
proposition.

Proposition
6.2

There are

(
n + r − 1
r − 1

)
distinct nonnegative integer-valued vectors (x1, x2, . . . , xr)

satisfying the equation

x1 + x2 + · · · + xr = n

Thus, using Proposition 6.2, we see that there are

(
13
3

)
= 286 possible outcomes

when a total of 10 Lake Ticonderoga fish are caught.
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Example
6a

Howmany distinct nonnegative integer-valued solutions of x1 + x2 = 3 are possible?

Solution There are

(
3 + 2 − 1

2 − 1

)
= 4 such solutions: (0, 3), (1, 2), (2, 1), (3, 0). .

Example
6b

An investor has $20,000 to invest among 4 possible investments. Each investment
must be in units of $1000. If the total $20,000 is to be invested, how many different
investment strategies are possible? What if not all the money needs to be invested?

Solution If we let xi, i = 1, 2, 3, 4, denote the number of thousands invested in
investment i, then, when all is to be invested, x1, x2, x3, x4 are integers satisfying the
equation

x1 + x2 + x3 + x4 = 20 xi Ú 0

Hence, by Proposition 6.2, there are

(
23
3

)
= 1771 possible investment strategies. If

not all of the money needs to be invested, then if we let x5 denote the amount kept in
reserve, a strategy is a nonnegative integer-valued vector (x1, x2, x3, x4, x5) satisfying
the equation

x1 + x2 + x3 + x4 + x5 = 20

Hence, by Proposition 6.2, there are now

(
24
4

)
= 10,626 possible strategies. .

Example
6c

How many terms are there in the multinomial expansion of (x1 + x2 + · · · + xr)n?

Solution

(x1 + x2 + · · · + xr)n =
∑(

n
n1, . . . ,nr

)
xn11 · · · xnrr

where the sum is over all nonnegative integer-valued (n1, . . . ,nr) such that n1 + · · · +
nr = n. Hence, by Proposition 6.2, there are

(
n + r − 1
r − 1

)
such terms. .

Example
6d

Let us consider again Example 4c, in which we have a set of n items, of which m are
(indistinguishable and) defective and the remaining n − m are (also indistinguish-
able and) functional. Our objective is to determine the number of linear orderings
in which no two defectives are next to each other. To determine this number, let us
imagine that the defective items are lined up among themselves and the functional
ones are now to be put in position. Let us denote x1 as the number of functional
items to the left of the first defective, x2 as the number of functional items between
the first two defectives, and so on. That is, schematically, we have

x1 0 x2 0 · · · xm 0 xm+1

Now, there will be at least one functional item between any pair of defectives as long
as xi > 0, i = 2, . . . ,m. Hence, the number of outcomes satisfying the condition is
the number of vectors x1, . . . , xm+1 that satisfy the equation

x1 + · · · + xm+1 = n − m, x1 Ú 0, xm+1 Ú 0, xi > 0, i = 2, . . . , m
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But, on letting y1 = x1 + 1, yi = xi, i = 2, . . . ,m, ym+1 = xm+1 + 1, we see that
this number is equal to the number of positive vectors (y1, . . . , ym+1) that satisfy the
equation

y1 + y2 + · · · + ym+1 = n − m + 2

Hence, by Proposition 6.1, there are

(
n − m + 1

m

)
such outcomes, in agreement

with the results of Example 4c.
Suppose now that we are interested in the number of outcomes in which each

pair of defective items is separated by at least 2 functional items. By the same rea-
soning as that applied previously, this would equal the number of vectors satisfying
the equation

x1 + · · · + xm+1 = n − m, x1 Ú 0, xm+1 Ú 0, xi Ú 2, i = 2, . . . , m

Upon letting y1 = x1 + 1, yi = xi − 1, i = 2, . . . ,m, ym+1 = xm+1 + 1, we see that
this is the same as the number of positive solutions of the equation

y1 + · · · + ym+1 = n − 2m + 3

Hence, from Proposition 6.1, there are

(
n − 2m + 2

m

)
such outcomes. .

Summary

The basic principle of counting states that if an experiment
consisting of two phases is such that there are n possible
outcomes of phase 1 and, for each of these n outcomes,
there are m possible outcomes of phase 2, then there are
nm possible outcomes of the experiment.

There are n! = n(n − 1) · · · 3 · 2 · 1 possible linear
orderings of n items. The quantity 0! is defined to equal 1.

Let (
n
i

)
= n!

(n − i)! i!

when 0 … i … n, and let it equal 0 otherwise. This quan-
tity represents the number of different subgroups of size i
that can be chosen from a set of size n. It is often called a

binomial coefficient because of its prominence in the bino-
mial theorem, which states that

(x + y)n =
n∑
i=0

(
n
i

)
xiyn−i

For nonnegative integers n1, . . . ,nr summing to n,

(
n

n1,n2, . . . ,nr

)
= n!
n1!n2! · · · nr!

is the number of divisions of n items into r distinct
nonoverlapping subgroups of sizes n1,n2 . . . ,nr. These
quantities are called multinomial coefficients.

Problems

1. (a)How many different 7-place license plates are possi-
ble if the first 2 places are for letters and the other 5 for
numbers?
(b) Repeat part (a) under the assumption that no letter or
number can be repeated in a single license plate.

2. How many outcome sequences are possible when a die
is rolled four times, where we say, for instance, that the
outcome is 3, 4, 3, 1 if the first roll landed on 3, the second
on 4, the third on 3, and the fourth on 1?

3. Ten employees of a company are to be assigned to 10
different managerial posts, one to each post. In how many
ways can these posts be filled?

4. John, Jim, Jay, and Jack have formed a band con-
sisting of 4 instruments. If each of the boys can play
all 4 instruments, how many different arrangements are
possible? What if John and Jim can play all 4 instru-
ments, but Jay and Jack can each play only piano and
drums?
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5. A safe can be opened by inserting a code consisting of
three digits between 0 and 9. How many codes are possi-
ble? How many codes are possible with no digit repeated?
How many codes starting with a 1 are possible?

6. A well-known nursery rhyme starts as follows:
“As I was going to St. Ives
I met a man with 7 wives.
Each wife had 7 sacks.
Each sack had 7 cats.
Each cat had 7 kittens. . .”
How many kittens did the traveler meet?

7. (a) In howmany ways can 3 boys and 3 girls sit in a row?
(b) In how many ways can 3 boys and 3 girls sit in a row if
the boys and the girls are each to sit together?
(c) In how many ways if only the boys must sit together?
(d) In howmany ways if no two people of the same sex are
allowed to sit together?

8. When all letters are used, how many different letter
arrangements can be made from the letters

(a) Partying?
(b)Dancing?
(c)Acting?
(d) Singing?

9. A box contains 13 balls, of which 4 are yellow, 4 are
green, 3 are red, and 2 are blue. Find the number of ways
in which these balls can be arranged in a line.

10. In how many ways can 8 people be seated in a row if

(a) there are no restrictions on the seating arrangement?
(b) persons A and B must sit next to each other?
(c) there are 4men and 4 women and no 2men or 2 women
can sit next to each other?
(d) there are 5 men and they must sit next to one another?
(e) there are 4 married couples and each couple must sit
together?

11. In how many ways can 3 novels, 2 mathematics books,
and 1 chemistry book be arranged on a bookshelf if

(a) the books can be arranged in any order?
(b) the mathematics books must be together and the nov-
els must be together?
(c) the novels must be together, but the other books can
be arranged in any order?

12.How many 3 digit numbers xyz, with x, y, z all ranging
from 0 to 9 have at least 2 of their digits equal. How many
have exactly 2 equal digits.

13.How many different letter configurations of length
4 or 5 can be formed using the letters of the word
ACHIEVE?

14. Five separate awards (best scholarship, best leadership
qualities, and so on) are to be presented to selected stu-
dents from a class of 30. How many different outcomes
are possible if

(a) a student can receive any number of awards?
(b) each student can receive at most 1 award?

15. Consider a group of 20 people. If everyone shakes
hands with everyone else, how many handshakes take
place?

16.How many distinct triangles can be drawn by joining
any 8 dots on a piece of paper? Note that the dots are in
such a way that no 3 of them form a straight line.

17.A dance class consists of 22 students, of which 10 are
women and 12 are men. If 5 men and 5 women are to be
chosen and then paired off, howmany results are possible?

18.A team consisting of 5 players is to be chosen from
a class of 12 boys and 9 girls. How many choices are
possible if

(a) all players are of the same gender?
(b) the team includes both genders?

19. Seven different gifts are to be distributed among 10
children. How many distinct results are possible if no child
is to receive more than one gift?

20.A team of 9, consisting of 2 mathematicians, 3 statisti-
cians, and 4 physicists, is to be selected from a faculty of 10
mathematicians, 8 statisticians, and 7 physicists. Howmany
teams are possible?

21. From a group of 8 women and 6 men, a committee con-
sisting of 3 men and 3 women is to be formed. How many
different committees are possible if

(a) 2 of the men refuse to serve together?
(b) 2 of the women refuse to serve together?
(c) 1 man and 1 woman refuse to serve together?

22.A person has 8 friends, of whom 5 will be invited to a
party.

(a)Howmany choices are there if 2 of the friends are feud-
ing and will not attend together?
(b)How many choices if 2 of the friends will only attend
together?

23. Consider the grid of points shown at the top of the
next column. Suppose that, starting at the point labeled
A, you can go one step up or one step to the right at each
move. This procedure is continued until the point labeled
B is reached. How many different paths from A to B are
possible?



A First Course in Probability 29

Hint: Note that to reach B from A, you must take 4 steps
to the right and 3 steps upward.

B

A

24. In Problem 23, how many different paths are there
from A to B that go through the point circled in the fol-
lowing lattice?

B

A

25.A psychology laboratory conducting dream research
contains 3 rooms, with 2 beds in each room. If 3 sets of
identical twins are to be assigned to these 6 beds so that
each set of twins sleeps in different beds in the same room,
how many assignments are possible?

26. (a) Show
∑n

k=0
(n
k

)
2k = 3n

(b) Simplify
∑n

k=0
(n
k

)
xk

27. Expand (4x − 3y)4.

28. The game of bridge is played by 4 players, each of
whom is dealt 13 cards. How many bridge deals are pos-
sible?

29. Expand (x1 + 2x2 + 3x3)4.

30. If 12 people are to be divided into 3 committees
of respective sizes 3, 4, and 5, how many divisions are
possible?

31. If 10 gifts are to be distributed among 3 friends,
how many distributions are possible? What if each friend
should receive at least 3 gifts?

32. Ten weight lifters are competing in a team weight-
lifting contest. Of the lifters, 3 are from the United States,
4 are from Russia, 2 are from China, and 1 is from Canada.
If the scoring takes account of the countries that the lifters
represent, but not their individual identities, how many
different outcomes are possible from the point of view
of scores? How many different outcomes correspond to
results in which the United States has 1 competitor in the
top three and 2 in the bottom three?

33.Delegates from 10 countries, including Russia, France,
England, and the United States, are to be seated in a row.
How many different seating arrangements are possible if
the French and English delegates are to be seated next to
each other and the Russian and U.S. delegates are not to
be next to each other?

*34. If 8 identical blackboards are to be divided among 4
schools, how many divisions are possible? How many if
each school must receive at least 1 blackboard?

*35.An elevator starts at the basement with 8 people (not
including the elevator operator) and discharges them all by
the time it reaches the top floor, number 6. In how many
ways could the operator have perceived the people leaving
the elevator if all people look alike to him? What if the 8
people consisted of 5 men and 3 women and the operator
could tell a man from a woman?

*36.We have $20,000 that must be invested among 4 pos-
sible opportunities. Each investment must be integral in
units of $1000, and there are minimal investments that
need to be made if one is to invest in these opportuni-
ties. The minimal investments are $2000, $2000, $3000,
and $4000. How many different investment strategies are
available if

(a) an investment must be made in each opportunity?
(b) investments must be made in at least 3 of the 4 oppor-
tunities?

*37. Suppose that 10 fish are caught at a lake that contains
5 distinct types of fish.

(a)How many different outcomes are possible, where an
outcome specifies the numbers of caught fish of each of
the 5 types?
(b)Howmany outcomes are possible when 3 of the 10 fish
caught are trout?
(c) How many when at least 2 of the 10 are trout?
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Theoretical Exercises

1. Prove the generalized version of the basic counting prin-
ciple.

2. Two experiments are to be performed. The first can
result in any one ofm possible outcomes. If the first exper-
iment results in outcome i, then the second experiment
can result in any of ni possible outcomes, i = 1, 2, . . . ,m.
What is the number of possible outcomes of the two exper-
iments?

3. In howmany ways can r objects be selected from a set of
n objects if the order of selection is considered relevant?

4. There are
(
n
r

)
different linear arrangements of n balls

of which r are black and n − r are white. Give a combina-
torial explanation of this fact.

5. Determine the number of vectors (x1, . . . , xn), such that
each xi is either 0 or 1 and

n∑
i=1

xi Ú k

6. How many vectors x1, . . . , xk are there for which each xi
is a positive integer such that 1 … xi … n and x1 < x2 <

· · · < xk?

7. Give an analytic proof of Equation (4.1).

8. Prove that(
n + m

r

)
=
(
n
0

)(
m
r

)
+
(
n
1

)(
m

r − 1

)

+ · · · +
(
n
r

)(
m
0

)

Hint: Consider a group of nmen andmwomen. Howmany
groups of size r are possible?

9. Use Theoretical Exercise 8 to prove that

(
2n
n

)
=

n∑
k=0

(
n
k

)2

10. From a group of n people, suppose that we want to
choose a committee of k, k … n, one of whom is to be des-
ignated as chairperson.

(a) By focusing first on the choice of the committee and

then on the choice of the chair, argue that there are
(
n
k

)
k

possible choices.
(b) By focusing first on the choice of the nonchair
committee members and then on the choice of the chair,

argue that there are
(

n
k − 1

)
(n − k + 1) possible

choices.
(c) By focusing first on the choice of the chair and then
on the choice of the other committee members, argue that

there are n
(
n − 1
k − 1

)
possible choices.

(d) Conclude from parts (a), (b), and (c) that

k

(
n
k

)
= (n − k + 1)

(
n

k − 1

)
= n

(
n − 1
k − 1

)

(e)Use the factorial definition of
(
m
r

)
to verify the iden-

tity in part (d).

11. The following identity is known as Fermat’s combina-
torial identity:

(
n
k

)
=

n∑
i=k

(
i − 1
k − 1

)
n Ú k

Give a combinatorial argument (no computations are
needed) to establish this identity.
Hint: Consider the set of numbers 1 through n. How many
subsets of size k have i as their highest numberedmember?

12. Consider the following combinatorial identity:

n∑
k=1

k
(
n
k

)
= n · 2n−1

(a) Present a combinatorial argument for this identity by
considering a set of n people and determining, in two ways,
the number of possible selections of a committee of any
size and a chairperson for the committee.
Hint:

(i) Howmany possible selections are there of a commit-
tee of size k and its chairperson?

(ii) How many possible selections are there of a chair-
person and the other committee members?

(b) Verify the following identity for n = 1, 2, 3, 4, 5:

n∑
k=1

(
n
k

)
k2 = 2n−2n(n + 1)

For a combinatorial proof of the preceding, consider a set
of n people and argue that both sides of the identity rep-
resent the number of different selections of a committee,
its chairperson, and its secretary (possibly the same as the
chairperson).
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Hint:
(i) How many different selections result in the commit-

tee containing exactly k people?
(ii) How many different selections are there in which

the chairperson and the secretary are the same?
(ANSWER: n2n−1.)

(iii) Howmany different selections result in the chairper-
son and the secretary being different?

(c) Now argue that

n∑
k=1

(
n
k

)
k3 = 2n−3n2(n + 3)

13. Show that, for n > 0,

n∑
i=0

(−1)i
(
n
i

)
= 0

Hint: Use the binomial theorem.

14. From a set of n people, a committee of size j is to be
chosen, and from this committee, a subcommittee of size
i, i … j, is also to be chosen.

(a)Derive a combinatorial identity by computing, in two
ways, the number of possible choices of the committee and
subcommittee—first by supposing that the committee is
chosen first and then the subcommittee is chosen, and sec-
ond by supposing that the subcommittee is chosen first and
then the remaining members of the committee are chosen.
(b)Use part (a) to prove the following combinatorial iden-
tity:

n∑
j=i

(
n
j

)(
j
i

)
=
(
n
i

)
2n−i i … n

(c) Use part (a) and Theoretical Exercise 13 to show that

n∑
j=i

(
n
j

)(
j
i

)
(−1)n−j = 0 i < n

15. Let Hk(n) be the number of vectors x1, . . . , xk for
which each xi is a positive integer satisfying 1 … xi … n
and x1 … x2 … · · · … xk.

(a)Without any computations, argue that

H1(n) = n

Hk(n) =
n∑
j=1

Hk−1( j ) k > 1

Hint: How many vectors are there in which xk = j?
(b)Use the preceding recursion to computeH3(5).
Hint: First compute H2(n) for n = 1, 2, 3, 4, 5.

16. Consider a tournament of n contestants in which the
outcome is an ordering of these contestants, with ties
allowed. That is, the outcome partitions the players into
groups, with the first group consisting of the players who
tied for first place, the next group being those who tied
for the next-best position, and so on. Let N(n) denote
the number of different possible outcomes. For instance,
N(2) = 3, since, in a tournament with 2 contestants, player
1 could be uniquely first, player 2 could be uniquely first,
or they could tie for first.

(a) List all the possible outcomes when n = 3.
(b)With N(0) defined to equal 1, argue, without any com-
putations, that

N(n) =
n∑
i=1

(
n
i

)
N(n − i)

Hint: How many outcomes are there in which i players tie
for last place?
(c) Show that the formula of part (b) is equivalent to the
following:

N(n) =
n−1∑
i=0

(
n
i

)
N(i)

(d)Use the recursion to find N(3) and N(4).

17. Present a combinatorial explanation of why
(
n
r

)
=(

n
r,n − r

)
.

18.Argue that(
n

n1,n2, . . . ,nr

)
=
(

n − 1
n1 − 1, n2, . . . ,nr

)

+
(

n − 1
n1,n2 − 1, . . . ,nr

)
+ · · ·

+
(

n − 1
n1,n2, . . . ,nr − 1

)

Hint: Use an argument similar to the one used to establish
Equation (4.1).

19. Prove the multinomial theorem.

*20. In how many ways can n identical balls be distributed
into r urns so that the ith urn contains at least mi balls, for
each i = 1, . . . , r? Assume that n Ú

∑r
i=1mi.

*21.Argue that there are exactly
(
r
k

)(
n − 1

n − r + k

)
solutions of

x1 + x2 + · · · + xr = n

for which exactly k of the xi are equal to 0.
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*22. Consider a function f (x1, . . . , xn) of n variables. How
many different partial derivatives of order r does f
possess?

*23.Determine the number of vectors (x1, . . . , xn) such that
each xi is a nonnegative integer and

n∑
i=1

xi … k

Self-Test Problems and Exercises

1.How many different linear arrangements are there of
the letters A, B, C, D, E, F for which

(a)A and B are next to each other?
(b)A is before B?
(c)A is before B and B is before C?
(d)A is before B and C is before D?
(e)A and B are next to each other and C and D are also
next to each other?
(f) E is not last in line?

2. If 4 Americans, 3 French people, and 3 British people
are to be seated in a row, how many seating arrangements
are possible when people of the same nationality must sit
next to each other?

3. A president, treasurer, and secretary, all different, are to
be chosen from a club consisting of 10 people. How many
different choices of officers are possible if

(a) there are no restrictions?
(b) A and B will not serve together?
(c) C andD will serve together or not at all?
(d) E must be an officer?
(e) F will serve only if he is president?

4. A student is to answer 7 out of 10 questions in an exami-
nation. How many choices has she? How many if she must
answer at least 3 of the first 5 questions?

5. In how many ways can a man divide 7 gifts among his 3
children if the eldest is to receive 3 gifts and the others 2
each?

6. How many different 7-place license plates are possible
when 3 of the entries are letters and 4 are digits? Assume
that repetition of letters and numbers is allowed and that
there is no restriction on where the letters or numbers can
be placed.

7. Give a combinatorial explanation of the identity(
n
r

)
=
(

n
n − r

)

8. Consider n-digit numbers where each digit is one of the
10 integers 0, 1, . . . , 9. How many such numbers are there
for which

(a) no two consecutive digits are equal?
(b) 0 appears as a digit a total of i times, i = 0, . . . ,n?

9. Consider three classes, each consisting of n students.
From this group of 3n students, a group of 3 students is
to be chosen.

(a)How many choices are possible?
(b)Howmany choices are there in which all 3 students are
in the same class?
(c) How many choices are there in which 2 of the 3 stu-
dents are in the same class and the other student is in a
different class?
(d)Howmany choices are there in which all 3 students are
in different classes?
(e)Using the results of parts (a) through (d), write a com-
binatorial identity.

10.How many 5-digit numbers can be formed from the
integers 1, 2, . . . , 9 if no digit can appear more than twice?
(For instance, 41434 is not allowed.)

11. From 10 married couples, we want to select a group of
6 people that is not allowed to contain a married couple.
(a)How many choices are there?
(b)How many choices are there if the group must also
consist of 3 men and 3 women?

12.A committee of 6 people is to be chosen from a group
consisting of 7 men and 8 women. If the committee must
consist of at least 3 women and at least 2 men, how many
different committees are possible?

*13.An art collection on auction consisted of 4 Dalis, 5 van
Goghs, and 6 Picassos. At the auction were 5 art collectors.
If a reporter noted only the number of Dalis, van Goghs,
and Picassos acquired by each collector, how many differ-
ent results could have been recorded if all of the works
were sold?
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*14.Determine the number of vectors (x1, . . . , xn) such that
each xi is a positive integer and

n∑
i=1

xi … k

where k Ú n.

15.A total of n students are enrolled in a review
course for the actuarial examination in probability. The
posted results of the examination will list the names of
those who passed, in decreasing order of their scores.
For instance, the posted result will be “Brown, Cho”
if Brown and Cho are the only ones to pass, with
Brown receiving the higher score. Assuming that all
scores are distinct (no ties), how many posted results are
possible?

16.How many subsets of size 4 of the set S = {1, 2, . . . , 20}
contain at least one of the elements 1, 2, 3, 4, 5?

17.Give an analytic verification of

(
n
2

)
=
(
k
2

)
+ k(n − k) +

(
n − k

2

)
, 1 … k … n

Now, give a combinatorial argument for this identity.

18. In a certain community, there are 3 families consisting
of a single parent and 1 child, 3 families consisting of a sin-
gle parent and 2 children, 5 families consisting of 2 parents
and a single child, 7 families consisting of 2 parents and 2
children, and 6 families consisting of 2 parents and 3 chil-
dren. If a parent and child from the same family are to be
chosen, how many possible choices are there?

19. If there are no restrictions on where the digits and let-
ters are placed, how many 8-place license plates consisting
of 5 letters and 3 digits are possible if no repetitions of
letters or digits are allowed? What if the 3 digits must be
consecutive?

20. Verify the identity

∑
x1+...+xr=n, xiÚ0

n!
x1!x2! · · · xr!

= rn

(a) by a combinatorial argument that first notes that rn

is the number of different n letter sequences that can be
formed from an alphabet consisting of r letters, and then
determines how many of these letter sequences have let-
ter 1 a total of x1 times and letter 2 a total of x2 times and
... and letter r a total of xr times;
(b) by using the multinomial theorem.

21. Simplify n − (n
2

) + (n
3

) − . . . + (−1)n+1(n
n

)
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2.1 Introduction
In this chapter, we introduce the concept of the probability of an event and then
show how probabilities can be computed in certain situations. As a preliminary,
however, we need to discuss the concept of the sample space and the events of an
experiment.

2.2 Sample Space and Events
Consider an experiment whose outcome is not predictable with certainty. However,
although the outcome of the experiment will not be known in advance, let us suppose
that the set of all possible outcomes is known. This set of all possible outcomes of
an experiment is known as the sample space of the experiment and is denoted by S.
Following are some examples:

1. If the outcome of an experiment consists of the determination of the sex of a
newborn child, then

S = {g,b}

where the outcome g means that the child is a girl and b that it is a boy.
2. If the outcome of an experiment is the order of finish in a race among the 7

horses having post positions 1, 2, 3, 4, 5, 6, and 7, then

S = {all 7! permutations of (1, 2, 3, 4, 5, 6, 7)}

The outcome (2, 3, 1, 6, 5, 4, 7) means, for instance, that the number 2 horse
comes in first, then the number 3 horse, then the number 1 horse, and so on.

34
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3. If the experiment consists of flipping two coins, then the sample space consists
of the following four points:

S = {(h,h), (h, t), (t,h), (t, t)}
The outcome will be (h, h) if both coins are heads, (h, t) if the first coin is heads
and the second tails, (t, h) if the first is tails and the second heads, and (t, t) if
both coins are tails.

4. If the experiment consists of tossing two dice, then the sample space consists
of the 36 points

S = {(i, j): i, j = 1, 2, 3, 4, 5, 6}
where the outcome (i, j) is said to occur if i appears on the leftmost die and j
on the other die.

5. If the experiment consists of measuring (in hours) the lifetime of a transistor,
then the sample space consists of all nonnegative real numbers; that is,

S = {x: 0 … x < q}

Any subset E of the sample space is known as an event. In other words, an event
is a set consisting of possible outcomes of the experiment. If the outcome of the
experiment is contained in E, then we say that E has occurred. Following are some
examples of events.

In the preceding Example 1, if E = {g}, then E is the event that the child is a
girl. Similarly, if F = {b}, then F is the event that the child is a boy.

In Example 2, if

E = {all outcomes in S starting with a 3}
then E is the event that horse 3 wins the race.

In Example 3, if E = {(h,h), (h, t)}, then E is the event that a head appears on
the first coin.

In Example 4, if E = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, then E is the event
that the sum of the dice equals 7.

In Example 5, if E = {x: 0 … x … 5}, then E is the event that the transistor does
not last longer than 5 hours.

For any two events E and F of a sample space S, we define the new event E ∪ F
to consist of all outcomes that are either in E or in F or in both E and F. That is, the
event E ∪ F will occur if either E or F occurs. For instance, in Example 1, if E = {g}
is the event that the child is a girl and F = {b} is the event that the child is a boy,
then

E ∪ F = {g,b}
is the whole sample space S. In Example 3, if E = {(h,h), (h, t)} is the event that the
first coin lands heads, and F = {(t,h), (h,h)} is the event that the second coin lands
heads, then

E ∪ F = {(h,h), (h, t), (t,h)}
is the event that at least one of the coins lands heads and thus will occur provided
that both coins do not land tails.

The event E ∪ F is called the union of the event E and the event F.
Similarly, for any two events E and F, we may also define the new event EF,

called the intersection of E and F, to consist of all outcomes that are both in E and
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in F. That is, the eventEF (sometimes writtenE ∩ F) will occur only if bothE and F
occur. For instance, in Example 3, if E = {(h,h), (h, t), (t,h)} is the event that at least
1 head occurs and F = {(h, t), (t,h), (t, t)} is the event that at least 1 tail occurs, then

EF = {(h, t), (t,h)}
is the event that exactly 1 head and 1 tail occur. In Example 4, if E = {(1, 6), (2, 5),
(3, 4), (4, 3), (5, 2), (6, 1)} is the event that the sum of the dice is 7 and F = {(1, 5), (2, 4),
(3, 3), (4, 2), (5, 1)} is the event that the sum is 6, then the event EF does not contain
any outcomes and hence could not occur. To give such an event a name, we shall refer
to it as the null event and denote it by Ø. (That is, Ø refers to the event consisting of
no outcomes.) If EF = Ø, then E and F are said to be mutually exclusive.

We define unions and intersections of more than two events in a similar manner.
If E1,E2, . . . are events, then the union of these events, denoted by

q⋃
n=1

En, is defined

to be that event that consists of all outcomes that are in En for at least one value

of n = 1, 2, . . . . Similarly, the intersection of the events En, denoted by
q⋂
n=1

En, is

defined to be the event consisting of those outcomes that are in all of the events
En,n = 1, 2, . . . .

Finally, for any event E, we define the new event Ec, referred to as the com-
plement of E, to consist of all outcomes in the sample space S that are not in E.
That is, Ec will occur if and only if E does not occur. In Example 4, if event E =
{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, then Ec will occur when the sum of the dice
does not equal 7. Note that because the experiment must result in some outcome, it
follows that Sc = Ø.

For any two events E and F, if all of the outcomes in E are also in F, then we
say that E is contained in F, or E is a subset of F, and write E ( F (or equivalently,
F ) E, which we sometimes say as F is a superset of E). Thus, if E ( F, then the
occurrence of E implies the occurrence of F. If E ( F and F ( E, we say that E
and F are equal and write E = F.

A graphical representation that is useful for illustrating logical relations among
events is the Venn diagram. The sample space S is represented as consisting of
all the outcomes in a large rectangle, and the events E,F,G, . . . are represented
as consisting of all the outcomes in given circles within the rectangle. Events of
interest can then be indicated by shading appropriate regions of the diagram. For
instance, in the three Venn diagrams shown in Figure 2.1, the shaded areas represent,
respectively, the events E ∪ F,EF, andEc. The Venn diagram in Figure 2.2 indicates
that E ( F.

The operations of forming unions, intersections, and complements of events
obey certain rules similar to the rules of algebra. We list a few of these rules:

Commutative laws E∪F = F ∪E EF = FE

Associative laws (E∪F)∪G = E∪ (F ∪G) (EF)G = E(FG)

Distributive laws (E∪F)G = EG∪FG EF ∪G = (E∪G)(F ∪G)

These relations are verified by showing that any outcome that is contained in the
event on the left side of the equality sign is also contained in the event on the
right side, and vice versa. One way of showing this is by means of Venn diagrams.
For instance, the distributive law may be verified by the sequence of diagrams in
Figure 2.3.
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E F E F

S S

(a) Shaded region: E < F. (b) Shaded region: EF.

S

(c) Shaded region: Ec.

E

Figure 2.1 Venn diagrams.

S

F

E

Figure 2.2 E ( F.

E F

(a) Shaded region: EG.

G

E F

(b) Shaded region: FG.

G

E F

(c) Shaded region: (E < F )G.

G

Figure 2.3 (E∪F)G = EG ∪ FG.
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The following useful relationships among the three basic operations of forming
unions, intersections, and complements are known asDeMorgan’s laws:⎛

⎝ n⋃
i=1

Ei

⎞
⎠
c

=
n⋂
i=1

Eci

⎛
⎝ n⋂
i=1

Ei

⎞
⎠
c

=
n⋃
i=1

Eci

For instance, for two events E and F, DeMorgan’s laws state that

(E ∪ F)c = EcFc and (EF)c = Ec ∪ Fc

which can be easily proven by using Venn diagrams (see Theoretical Exercise 7).
To prove DeMorgan’s laws for general n, suppose first that x is an outcome of(

n⋃
i=1

Ei

)c
. Then x is not contained in

n⋃
i=1

Ei, which means that x is not contained

in any of the events Ei, i = 1, 2, . . . ,n, implying that x is contained in Eci for all

i = 1, 2, . . . ,n and thus is contained in
n⋂
i=1

Eci . To go the other way, suppose that x is

an outcome of
n⋂
i=1

Eci . Then x is contained in Eci for all i = 1, 2, . . . ,n, which means

that x is not contained in Ei for any i = 1, 2, . . . ,n, implying that x is not contained

in
n⋃
i
Ei, in turn implying that x is contained in

(
n⋃
1
Ei

)c
. This proves the first of

DeMorgan’s laws.
To prove the second of DeMorgan’s laws, we use the first law to obtain⎛

⎝ n⋃
i=1

Eci

⎞
⎠
c

=
n⋂
i=1

(Eci )
c

which, since (Ec)c = E, is equivalent to⎛
⎝ n⋃

1

Eci

⎞
⎠
c

=
n⋂
1

Ei

Taking complements of both sides of the preceding equation yields the result we
seek, namely,

n⋃
1

Eci =
⎛
⎝ n⋂

1

Ei

⎞
⎠
c

2.3 Axioms of Probability
One way of defining the probability of an event is in terms of its long run relative
frequency. Such a definition usually goes as follows: We suppose that an experiment,
whose sample space is S, is repeatedly performed under exactly the same conditions.
For each event E of the sample space S, we define n(E) to be the number of times
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in the first n repetitions of the experiment that the event E occurs. Then P(E), the
probability of the event E, is defined as

P(E) = lim
n→q

n(E)

n

That is, P(E) is defined as the (limiting) proportion of time that E occurs. It is thus
the limiting relative frequency of E.

Although the preceding definition is certainly intuitively pleasing and should
always be kept in mind by the reader, it possesses a serious drawback: How do we
know that n(E)/n will converge to some constant limiting value that will be the same
for each possible sequence of repetitions of the experiment? For example, suppose
that the experiment to be repeatedly performed consists of flipping a coin. How do
we know that the proportion of heads obtained in the first n flips will converge to
some value as n gets large? Also, even if it does converge to some value, how do we
know that, if the experiment is repeatedly performed a second time, we shall obtain
the same limiting proportion of heads?

Proponents of the relative frequency definition of probability usually answer
this objection by stating that the convergence of n(E)/n to a constant limiting value
is an assumption, or an axiom, of the system. However, to assume that n(E)/n will
necessarily converge to some constant value seems to be an extraordinarily compli-
cated assumption. For, although we might indeed hope that such a constant limiting
frequency exists, it does not at all seem to be a priori evident that this need be the
case. In fact, would it not be more reasonable to assume a set of simpler and more
self-evident axioms about probability and then attempt to prove that such a con-
stant limiting frequency does in some sense exist? The latter approach is the modern
axiomatic approach to probability theory that we shall adopt in this text. In partic-
ular, we shall assume that, for each event E in the sample space S, there exists a
value P(E), referred to as the probability of E. We shall then assume that all these
probabilities satisfy a certain set of axioms, which, we hope the reader will agree, is
in accordance with our intuitive notion of probability.

Consider an experiment whose sample space is S. For each eventE of the sample
space S, we assume that a number P(E) is defined and satisfies the following three
axioms:

The three axioms of probability

Axiom 1

0 … P(E) … 1

Axiom 2

P(S) = 1

Axiom 3
For any sequence of mutually exclusive events E1,E2, . . . (that is, events for
which EiEj = Ø when i Z j),

P

⎛
⎝ q⋃
i=1

Ei

⎞
⎠ =

q∑
i=1

P(Ei)

We refer to P(E) as the probability of the event E.
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Thus, Axiom 1 states that the probability that the outcome of the experiment is
an outcome in E is some number between 0 and 1. Axiom 2 states that, with proba-
bility 1, the outcome will be a point in the sample space S. Axiom 3 states that, for
any sequence of mutually exclusive events, the probability of at least one of these
events occurring is just the sum of their respective probabilities.

If we consider a sequence of events E1,E2, . . ., where E1 = S and Ei = Ø for

i > 1, then, because the events are mutually exclusive and because S =
q⋃
i=1

Ei, we

have, from Axiom 3,

P(S) =
q∑
i=1

P(Ei) = P(S) +
q∑
i=2

P(Ø)

implying that
P(Ø) = 0

That is, the null event has probability 0 of occurring.
Note that it follows that, for any finite sequence of mutually exclusive events E1,

E2, . . . ,En,

P

⎛
⎝ n⋃

1

Ei

⎞
⎠ =

n∑
i=1

P(Ei) (3.1)

This equation follows from Axiom 3 by defining Ei as the null event for all values
of i greater than n. Axiom 3 is equivalent to Equation (3.1) when the sample space
is finite. (Why?) However, the added generality of Axiom 3 is necessary when the
sample space consists of an infinite number of points.

Example
3a

If our experiment consists of tossing a coin and if we assume that a head is as likely
to appear as a tail, then we would have

P({H}) = P({T}) = 1
2

On the other hand, if the coin were biased and we believed that a head were twice
as likely to appear as a tail, then we would have

P({H}) = 2
3

P({T}) = 1
3

.

Example
3b

If a die is rolled and we suppose that all six sides are equally likely to appear, then
we would have P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1

6 . From
Axiom 3, it would thus follow that the probability of rolling an even number would
equal

P({2, 4, 6}) = P({2}) + P({4}) + P({6}) = 1
2

.

The assumption of the existence of a set function P, defined on the events of
a sample space S and satisfying Axioms 1, 2, and 3, constitutes the modern math-
ematical approach to probability theory. It is hoped that the reader will agree that
the axioms are natural and in accordance with our intuitive concept of probability as
related to chance and randomness. Furthermore, using these axioms, we shall be able
to prove that if an experiment is repeated over and over again, then, with probability
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1, the proportion of time during which any specific event E occurs will equal P(E).
This result, known as the strong law of large numbers, is presented in Chapter 8.
In addition, we present another possible interpretation of probability—as being a
measure of belief—in Section 2.7.

Technical Remark. We have supposed that P(E) is defined for all the events E
of the sample space. Actually, when the sample space is an uncountably infinite set,
P(E) is defined only for a class of events calledmeasurable. However, this restriction
need not concern us, as all events of any practical interest are measurable.

2.4 Some Simple Propositions
In this section, we prove some simple propositions regarding probabilities. We first
note that since E and Ec are always mutually exclusive and since E ∪ Ec = S, we
have, by Axioms 2 and 3,

1 = P(S) = P(E ∪ Ec) = P(E) + P(Ec)

Or, equivalently, we have Proposition 4.1.

Proposition
4.1

P(Ec) = 1 − P(E)

In words, Proposition 4.1 states that the probability that an event does not occur
is 1 minus the probability that it does occur. For instance, if the probability of obtain-
ing a head on the toss of a coin is 3

8 , then the probability of obtaining a tail must be 5
8 .

Our second proposition states that if the event E is contained in the event F,
then the probability of E is no greater than the probability of F.

Proposition
4.2

If E ( F, then P(E) … P(F).

Proof Since E ( F, it follows that we can express F as

F = E ∪ EcF

Hence, because E and EcF are mutually exclusive, we obtain, from Axiom 3,

P(F) = P(E) + P(EcF)

which proves the result, since P(EcF) Ú 0.

Proposition 4.2 tells us, for instance, that the probability of rolling a 1 with a die
is less than or equal to the probability of rolling an odd value with the die.

The next proposition gives the relationship between the probability of the union
of two events, expressed in terms of the individual probabilities, and the probability
of the intersection of the events.

Proposition
4.3

P(E ∪ F) = P(E) + P(F) − P(EF)

Proof To derive a formula for P(E ∪ F), we first note that E ∪ F can be written as
the union of the two disjoint events E and EcF. Thus, from Axiom 3, we obtain

P(E ∪ F) = P(E ∪ EcF)

= P(E) + P(EcF)
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Furthermore, since F = EF ∪ EcF, we again obtain from Axiom 3

P(F) = P(EF) + P(EcF)

or, equivalently,
P(EcF) = P(F) − P(EF)

thereby completing the proof.

Proposition 4.3 could also have been proved by making use of the Venn diagram
in Figure 2.4.

Let us divideE ∪ F into threemutually exclusive sections, as shown in Figure 2.5.
In words, section I represents all the points in E that are not in F (that is, EFc),
section II represents all points both in E and in F (that is, EF), and section III rep-
resents all points in F that are not in E (that is, EcF).

From Figure 2.5, we see that

E ∪ F = I ∪ II ∪ III

E = I ∪ II

F = II ∪ III

As I, II, and III are mutually exclusive, it follows from Axiom 3 that

P(E ∪ F) = P(I) + P(II) + P(III)

P(E) = P(I) + P(II)

P(F) = P(II) + P(III)

which shows that
P(E ∪ F) = P(E) + P(F) − P(II)

and Proposition 4.3 is proved, since II = EF.

E F

Figure 2.4 Venn diagram.

E F

I IIIII

Figure 2.5 Venn diagram in sections.



A First Course in Probability 43

Example
4a

J is taking two books along on her holiday vacation. With probability .5, she will like
the first book; with probability .4, she will like the second book; and with probabil-
ity .3, she will like both books. What is the probability that she likes neither book?

Solution Let Bi denote the event that J likes book i, i = 1, 2. Then the probability
that she likes at least one of the books is

P(B1 ∪ B2) = P(B1) + P(B2) − P(B1B2) = .5 + .4 − .3 = .6

Because the event that J likes neither book is the complement of the event that she
likes at least one of them, we obtain the result

P(Bc1B
c
2) = P

(
(B1 ∪ B2)

c) = 1 − P(B1 ∪ B2) = .4 .

We may also calculate the probability that any one of the three events E, F, and
G occurs, namely,

P(E ∪ F ∪ G) = P[(E ∪ F) ∪ G]

which, by Proposition 4.3, equals

P(E ∪ F) + P(G) − P[(E ∪ F)G]

Now, it follows from the distributive law that the events (E ∪ F)G and EG ∪ FG
are equivalent; hence, from the preceding equations, we obtain

P(E ∪ F ∪ G)

= P(E) + P(F) − P(EF) + P(G) − P(EG ∪ FG)

= P(E) + P(F) − P(EF) + P(G) − P(EG) − P(FG) + P(EGFG)

= P(E) + P(F) + P(G) − P(EF) − P(EG) − P(FG) + P(EFG)

In fact, the following proposition, known as the inclusion–exclusion identity, can
be proved by mathematical induction:

Proposition
4.4 P(E1 ∪ E2 ∪ · · · ∪ En) =

n∑
i=1

P(Ei) −
∑
i1<i2

P(Ei1Ei2) + · · ·

+ (−1)r+1
∑

i1<i2<···<ir
P(Ei1Ei2 · · ·Eir)

+ · · · + (−1)n+1P(E1E2 · · ·En)

The summation
∑

i1<i2<···<ir
P(Ei1Ei2 · · ·Eir) is taken over all of the

(
n
r

)
possible sub-

sets of size r of the set {1, 2, . . . ,n}.
In words, Proposition 4.4 states that the probability of the union of n events

equals the sum of the probabilities of these events taken one at a time, minus the
sum of the probabilities of these events taken two at a time, plus the sum of the
probabilities of these events taken three at a time, and so on.

Remarks 1. For a noninductive argument for Proposition 4.4, note first that if an
outcome of the sample space is not a member of any of the sets Ei, then its probabil-
ity does not contribute anything to either side of the equality. Now, suppose that an
outcome is in exactly m of the events Ei, where m > 0. Then, since it is in

⋃
i
Ei, its
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probability is counted once in P

(⋃
i
Ei

)
; also, as this outcome is contained in

(
m
k

)
subsets of the type Ei1Ei2 · · ·Eik , its probability is counted(

m
1

)
−
(
m
2

)
+
(
m
3

)
− · · · ;

(
m
m

)

times on the right of the equality sign in Proposition 4.4. Thus, for m > 0, we must
show that

1 =
(
m
1

)
−
(
m
2

)
+
(
m
3

)
− · · · ;

(
m
m

)

However, since 1 =
(
m
0

)
, the preceding equation is equivalent to

m∑
i=0

(
m
i

)
(−1)i = 0

and the latter equation follows from the binomial theorem, since

0 = (−1 + 1)m =
m∑
i=0

(
m
i

)
(−1)i(1)m−i

2. The following is a succinct way of writing the inclusion–exclusion identity:

P(∪n
i=1Ei) =

n∑
r=1

(−1)r+1
∑

i1<···<ir
P(Ei1 · · ·Eir)

3. In the inclusion–exclusion identity, going out one term results in an upper
bound on the probability of the union, going out two terms results in a lower bound
on the probability, going out three terms results in an upper bound on the proba-
bility, going out four terms results in a lower bound, and so on. That is, for events
E1, . . . ,En, we have

P(∪n
i=1Ei) …

n∑
i=1

P(Ei) (4.1)

P(∪n
i=1Ei) Ú

n∑
i=1

P(Ei) −
∑
j<i

P(EiEj) (4.2)

P(∪n
i=1Ei) …

n∑
i=1

P(Ei) −
∑
j<i

P(EiEj) +
∑
k<j<i

P(EiEjEk) (4.3)

and so on. To prove the validity of these bounds, note the identity

∪n
i=1Ei = E1 ∪ Ec1E2 ∪ Ec1E

c
2E3 ∪ · · · ∪ Ec1 · · ·Ecn−1En

That is, at least one of the events Ei occurs if E1 occurs, or if E1 does not occur but
E2 does, or if E1 and E2 do not occur but E3 does, and so on. Because the right-hand
side is the union of disjoint events, we obtain
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P(∪n
i=1Ei) = P(E1) + P(Ec1E2) + P(Ec1E

c
2E3) + . . . + P(Ec1 · · ·Ecn−1En)

= P(E1) +
n∑
i=2

P(Ec1 · · ·Eci−1Ei) (4.4)

Now, let Bi = Ec1 · · ·Eci−1 = (∪j<iEj)c be the event that none of the first i − 1
events occurs. Applying the identity

P(Ei) = P(BiEi) + P(Bci Ei)

shows that
P(Ei) = P(Ec1 · · ·Eci−1Ei) + P(Ei ∪j<i Ej)

or, equivalently,
P(Ec1 · · ·Eci−1Ei) = P(Ei) − P(∪j<iEiEj)

Substituting this equation into (4.4) yields

P(∪n
i=1Ei) =

∑
i

P(Ei) −
∑
i

P(∪j<iEiEj) (4.5)

Because probabilities are always nonnegative, Inequality (4.1) follows directly from
Equation (4.5). Now, fixing i and applying Inequality (4.1) to P(∪j<iEiEj) yields

P(∪j<iEiEj) …
∑
j<i

P(EiEj)

which, by Equation (4.5), gives Inequality (4.2). Similarly, fixing i and applying
Inequality (4.2) to P(∪j<iEiEj) yields

P(∪j<iEiEj) Ú
∑
j<i

P(EiEj) −
∑
k<j<i

P(EiEjEiEk)

=
∑
j<i

P(EiEj) −
∑
k<j<i

P(EiEjEk)

which, by Equation (4.5), gives Inequality (4.3). The next inclusion–exclusion
inequality is now obtained by fixing i and applying Inequality (4.3) to P(∪j<iEiEj),
and so on.

The first inclusion-exclusion inequality, namely that

P(∪n
i=1Ei) …

n∑
i=1

P(Ei)

is known as Boole’s inequality.

2.5 Sample Spaces Having Equally Likely Outcomes
In many experiments, it is natural to assume that all outcomes in the sample space
are equally likely to occur. That is, consider an experiment whose sample space S is
a finite set, say, S = {1, 2, . . . ,N}. Then, it is often natural to assume that

P({1}) = P({2}) = · · · = P({N})
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which implies, from Axioms 2 and 3 (why?), that

P({i}) = 1
N

i = 1, 2, . . . ,N

From this equation, it follows from Axiom 3 that, for any event E,

P(E) = number of outcomes in E
number of outcomes in S

In words, if we assume that all outcomes of an experiment are equally likely to occur,
then the probability of any event E equals the proportion of outcomes in the sample
space that are contained in E.

Example
5a

If two dice are rolled, what is the probability that the sum of the upturned faces will
equal 7?

Solution We shall solve this problem under the assumption that all of the 36 possible
outcomes are equally likely. Since there are 6 possible outcomes—namely, (1, 6),
(2, 5), (3, 4), (4, 3), (5, 2), and (6, 1)—that result in the sum of the dice being equal
to 7, the desired probability is 6

36 = 1
6 . .

Example
5b

If 3 balls are “randomly drawn” from a bowl containing 6 white and 5 black balls,
what is the probability that one of the balls is white and the other two black?

Solution If we regard the balls as being distinguishable and the order in which they
are selected as being relevant, then the sample space consists of 11 · 10 · 9 = 990
outcomes. Furthermore, there are 6 · 5 · 4 = 120 outcomes in which the first ball
selected is white and the other two are black; 5 · 6 · 4 = 120 outcomes in which
the first is black, the second is white, and the third is black; and 5 · 4 · 6 = 120 in
which the first two are black and the third is white. Hence, assuming that “randomly
drawn” means that each outcome in the sample space is equally likely to occur, we
see that the desired probability is

120 + 120 + 120
990

= 4
11

This problem could also have been solved by regarding the outcome of the
experiment as the unordered set of drawn balls. From this point of view, there are(
11
3

)
= 165 outcomes in the sample space. Now, each set of 3 balls corresponds

to 3! outcomes when the order of selection is noted. As a result, if all outcomes
are assumed equally likely when the order of selection is noted, then it follows that
they remain equally likely when the outcome is taken to be the unordered set of
selected balls. Hence, using the latter representation of the experiment, we see that
the desired probability is (

6
1

)(
5
2

)
(
11
3

) = 4
11

which, of course, agrees with the answer obtained previously. .
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When the experiment consists of a random selection of k items from a set of n
items, we have the flexibility of either letting the outcome of the experiment be the
ordered selection of the k items or letting it be the unordered set of items selected.
In the former case, we would assume that each new selection is equally likely to be
any of the so far unselected items of the set, and in the latter case, we would assume
that all

(n
k

)
possible subsets of k items are equally likely to be the set selected. For

instance, suppose 5 people are to be randomly selected from a group of 20 individu-
als consisting of 10 married couples, and we want to determine P(N), the probability
that the 5 chosen are all unrelated. (That is, no two are married to each other.)
If we regard the sample space as the set of 5 people chosen, then there are

(20
5

)
equally likely outcomes. An outcome that does not contain a married couple can
be thought of as being the result of a six-stage experiment: In the first stage, 5 of
the 10 couples to have a member in the group are chosen; in the next 5 stages, 1
of the 2 members of each of these couples is selected. Thus, there are

(10
5

)
25 possi-

ble outcomes in which the 5 members selected are unrelated, yielding the desired
probability of

P(N) =

(
10
5

)
25(

20
5

)

In contrast, we could let the outcome of the experiment be the ordered selection
of the 5 individuals. In this setting, there are 20 · 19 · 18 · 17 · 16 equally likely
outcomes, of which 20 · 18 · 16 · 14 · 12 outcomes result in a group of 5 unrelated
individuals, yielding the result

P(N) = 20 · 18 · 16 · 14 · 12
20 · 19 · 18 · 17 · 16

We leave it for the reader to verify that the two answers are identical.

Example
5c

A committee of 5 is to be selected from a group of 6 men and 9 women. If the
selection is made randomly, what is the probability that the committee consists of 3
men and 2 women?

Solution Because each of the
(15
5

)
possible committees is equally likely to be selected,

the desired probability is

(
6
3

)(
9
2

)
(
15
5

) = 240
1001

.

Example
5d

An urn contains n balls, one of which is special. If k of these balls are withdrawn one
at a time, with each selection being equally likely to be any of the balls that remain
at the time, what is the probability that the special ball is chosen?
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Solution Since all of the balls are treated in an identical manner, it follows that the

set of k balls selected is equally likely to be any of the

(
n
k

)
sets of k balls. Therefore,

P{special ball is selected} =

(
1
1

)(
n − 1
k − 1

)
(
n
k

) = k
n

We could also have obtained this result by lettingAi denote the event that the special
ball is the ith ball to be chosen, i = 1, . . . ,k. Then, since each one of the n balls is
equally likely to be the ith ball chosen, it follows that P(Ai) = 1/n. Hence, because
these events are clearly mutually exclusive, we have

P{special ball is selected} = P

⎛
⎝ k⋃
i=1

Ai

⎞
⎠ =

k∑
i=1

P(Ai) = k
n

We could also have argued that P(Ai) = 1/n, by noting that there are n(n − 1) · · ·
(n − k + 1) = n!/(n − k)! equally likely outcomes of the experiment, of which
(n − 1)(n − 2) · · · (n − i + 1)(1)(n − i) · · · (n − k + 1) = (n − 1)!/(n − k)! result
in the special ball being the ith one chosen. From this reasoning, it follows that

P(Ai) = (n − 1)!
n!

= 1
n

.

Example
5e

Suppose that n + m balls, of which n are red andm are blue, are arranged in a linear
order in such a way that all (n + m)! possible orderings are equally likely. If we
record the result of this experiment by listing only the colors of the successive balls,
show that all the possible results remain equally likely.

Solution Consider any one of the (n + m)! possible orderings, and note that any per-
mutation of the red balls among themselves and of the blue balls among themselves
does not change the sequence of colors. As a result, every ordering of colorings cor-
responds to n! m! different orderings of the n + m balls, so every ordering of the
colors has probability n!m!

(n+m)! of occurring.
For example, suppose that there are 2 red balls, numbered r1, r2, and 2 blue balls,

numbered b1,b2. Then, of the 4! possible orderings, there will be 2! 2! orderings that
result in any specified color combination. For instance, the following orderings result
in the successive balls alternating in color, with a red ball first:

r1,b1, r2,b2 r1,b2, r2,b1 r2,b1, r1,b2 r2,b2, r1,b1

Therefore, each of the possible orderings of the colors has probability 4
24 = 1

6 of
occurring. .

Example
5f

A poker hand consists of 5 cards. If the cards have distinct consecutive values and
are not all of the same suit, we say that the hand is a straight. For instance, a hand
consisting of the five of spades, six of spades, seven of spades, eight of spades, and
nine of hearts is a straight. What is the probability that one is dealt a straight?
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Solution We start by assuming that all

(
52
5

)
possible poker hands are equally

likely. To determine the number of outcomes that are straights, let us first deter-
mine the number of possible outcomes for which the poker hand consists of an ace,
two, three, four, and five (the suits being irrelevant). Since the ace can be any 1 of the
4 possible aces, and similarly for the two, three, four, and five, it follows that there
are 45 outcomes leading to exactly one ace, two, three, four, and five. Hence, since
in 4 of these outcomes all the cards will be of the same suit (such a hand is called a
straight flush), it follows that there are 45 − 4 hands that make up a straight of the
form ace, two, three, four, and five. Similarly, there are 45 − 4 hands that make up a
straight of the form ten, jack, queen, king, and ace. Thus, there are 10(45 − 4) hands
that are straights, and it follows that the desired probability is

10(45 − 4)(
52
5

) L .0039 .

Example
5g

A 5-card poker hand is said to be a full house if it consists of 3 cards of the same
denomination and 2 other cards of the same denomination (of course, different from
the first denomination). Thus, a full house is three of a kind plus a pair. What is the
probability that one is dealt a full house?

Solution Again, we assume that all

(
52
5

)
possible hands are equally likely. To

determine the number of possible full houses, we first note that there are

(
4
2

)(
4
3

)
different combinations of, say, 2 tens and 3 jacks. Because there are 13 different
choices for the kind of pair and, after a pair has been chosen, there are 12 other
choices for the denomination of the remaining 3 cards, it follows that the probability
of a full house is

13 · 12 ·
(
4
2

)(
4
3

)
(
52
5

) L .0014 .

Example
5h

In the game of bridge, the entire deck of 52 cards is dealt out to 4 players. What is
the probability that

(a) one of the players receives all 13 spades;
(b) each player receives 1 ace?

Solution (a) Letting Ei be the event that hand i has all 13 spades, then

P(Ei) = 1(52
13

) , i = 1, 2, 3, 4
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Because the events Ei, i = 1, 2, 3, 4, are mutually exclusive, the probability that one
of the hands is dealt all 13 spades is

P(∪4
i=1Ei) =

4∑
i=1

P(Ei) = 4/
(
52
13

)
L 6.3 * 10−12

(b) Let the outcome of the experiment be the sets of 13 cards of each of the
players 1, 2, 3, 4. To determine the number of outcomes in which each of the dis-
tinct players receives exactly 1 ace, put aside the aces and note that there are(

48
12, 12, 12, 12

)
possible divisions of the other 48 cards when each player is to

receive 12. Because there are 4! ways of dividing the 4 aces so that each player
receives 1, we see that the number of possible outcomes in which each player receives

exactly 1 ace is 4!

(
48

12, 12, 12, 12

)
.

As there are
( 52
13,13,13,13

)
possible hands, the desired probability is thus

4!
( 48
12,12,12,12

)
( 52
13,13,13,13

) L .1055 .

Some results in probability are quite surprising when initially encountered. Our
next two examples illustrate this phenomenon.

Example
5i

If n people are present in a room, what is the probability that no two of them cele-
brate their birthday on the same day of the year? How large need n be so that this
probability is less than 1

2?

Solution As each person can celebrate his or her birthday on any one of 365 days,
there are a total of (365)n possible outcomes. (We are ignoring the possibility of
someone having been born on February 29.) Assuming that each outcome is equally
likely, we see that the desired probability is (365)(364)(363) . . . (365 − n + 1)/(365)n.
It is a rather surprising fact that when n Ú 23, this probability is less than 1

2 . That is, if
there are 23 or more people in a room, then the probability that at least two of them
have the same birthday exceeds 1

2 . Many people are initially surprised by this result,
since 23 seems so small in relation to 365, the number of days of the year. However,

every pair of individuals has probability
365

(365)2
= 1

365
of having the same birthday,

and in a group of 23 people, there are

(
23
2

)
= 253 different pairs of individuals.

Looked at this way, the result no longer seems so surprising.
When there are 50 people in the room, the probability that at least two share the

same birthday is approximately .970, and with 100 persons in the room, the odds are

better than 3,000,000:1. (That is, the probability is greater than
3 * 106

3 * 106 + 1
that at

least two people have the same birthday.) .

Example
5j

A deck of 52 playing cards is shuffled, and the cards are turned up one at a time until
the first ace appears. Is the next card—that is, the card following the first ace—more
likely to be the ace of spades or the two of clubs?
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Solution To determine the probability that the card following the first ace is the
ace of spades, we need to calculate how many of the (52)! possible orderings of the
cards have the ace of spades immediately following the first ace. To begin, note that
each ordering of the 52 cards can be obtained by first ordering the 51 cards different
from the ace of spades and then inserting the ace of spades into that ordering. Fur-
thermore, for each of the (51)! orderings of the other cards, there is only one place
where the ace of spades can be placed so that it follows the first ace. For instance, if
the ordering of the other 51 cards is

4c, 6h, Jd, 5s, Ac, 7d, . . . ,Kh

then the only insertion of the ace of spades into this ordering that results in its fol-
lowing the first ace is

4c, 6h, Jd, 5s, Ac, As, 7d, . . . ,Kh

Therefore, there are (51)! orderings that result in the ace of spades following the first
ace, so

P{the ace of spades follows the first ace} = (51)!
(52)!

= 1
52

In fact, by exactly the same argument, it follows that the probability that the two
of clubs (or any other specified card) follows the first ace is also 1

52 . In other words,
each of the 52 cards of the deck is equally likely to be the one that follows the first
ace!

Many people find this result rather surprising. Indeed, a common reaction is to
suppose initially that it is more likely that the two of clubs (rather than the ace of
spades) follows the first ace, since that first ace might itself be the ace of spades. This
reaction is often followed by the realization that the two of clubs might itself appear
before the first ace, thus negating its chance of immediately following the first ace.
However, as there is one chance in four that the ace of spades will be the first ace
(because all 4 aces are equally likely to be first) and only one chance in five that
the two of clubs will appear before the first ace (because each of the set of 5 cards
consisting of the two of clubs and the 4 aces is equally likely to be the first of this set
to appear), it again appears that the two of clubs is more likely. However, this is not
the case, and our more complete analysis shows that they are equally likely. .

Example
5k

A football team consists of 20 offensive and 20 defensive players. The players are to
be paired in groups of 2 for the purpose of determining roommates. If the pairing is
done at random, what is the probability that there are no offensive–defensive room-
mate pairs? What is the probability that there are 2i offensive–defensive roommate
pairs, i = 1, 2, . . . , 10?

Solution There are (
40

2, 2, . . . , 2

)
= (40)!

(2!)20

ways of dividing the 40 players into 20 ordered pairs of two each. (That is, there
are (40)!/220 ways of dividing the players into a first pair, a second pair, and so on.)
Hence, there are (40)!/220(20)! ways of dividing the players into (unordered) pairs of
2 each. Furthermore, since a division will result in no offensive–defensive pairs if the
offensive (and defensive) players are paired among themselves, it follows that there
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are [(20)!/210(10)!]2 such divisions. Hence, the probability of no offensive–defensive
roommate pairs, call it P0, is given by

P0 =

(
(20)!

210(10)!

)2

(40)!
220(20)!

= [(20)!]3

[(10)!]2(40)!

To determine P2i, the probability that there are 2i offensive–defensive pairs, we first

note that there are

(
20
2i

)2

ways of selecting the 2i offensive players and the 2i defen-

sive players who are to be in the offensive–defensive pairs. These 4i players can then
be paired up into (2i)! possible offensive–defensive pairs. (This is so because the
first offensive player can be paired with any of the 2i defensive players, the second
offensive player with any of the remaining 2i − 1 defensive players, and so on.)
As the remaining 20 − 2i offensive (and defensive) players must be paired among
themselves, it follows that there are(

20
2i

)2

(2i)!
[

(20 − 2i)!
210−i(10 − i)!

]2

divisions that lead to 2i offensive–defensive pairs. Hence,

P2i =

(
20
2i

)2

(2i)!
[

(20 − 2i)!
210−i(10 − i)!

]2
(40)!

220(20)!

i = 0, 1, . . . , 10

The P2i, i = 0, 1, . . . , 10, can now be computed, or they can be approximated by
making use of a result of Stirling, which shows that n! can be approximated by
nn+1/2e−n

√
2π . For instance, we obtain

P0 L 1.3403 * 10−6

P10 L .345861

P20 L 7.6068 * 10−6 .

Our next three examples illustrate the usefulness of the inclusion–exclusion iden-
tity (Proposition 4.4). In Example 5l, the introduction of probability enables us to
obtain a quick solution to a counting problem.

Example
5l

A total of 36 members of a club play tennis, 28 play squash, and 18 play badminton.
Furthermore, 22 of the members play both tennis and squash, 12 play both tennis
and badminton, 9 play both squash and badminton, and 4 play all three sports. How
many members of this club play at least one of three sports?

Solution Let N denote the number of members of the club, and introduce probabil-
ity by assuming that a member of the club is randomly selected. If, for any subset C
of members of the club, we let P(C) denote the probability that the selected member
is contained in C, then

P(C) = number of members in C
N
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Now, with T being the set of members that plays tennis, S being the set that plays
squash, and B being the set that plays badminton, we have, from Proposition 4.4,

P(T ∪ S ∪ B)

= P(T) + P(S) + P(B) − P(TS) − P(TB) − P(SB) + P(TSB)

= 36 + 28 + 18 − 22 − 12 − 9 + 4
N

= 43
N

Hence, we can conclude that 43 members play at least one of the sports. .

The next example in this section not only possesses the virtue of giving rise to a
somewhat surprising answer, but is also of theoretical interest.

Example
5m

The matching problem

Suppose that each of N men at a party throws his hat into the center of the room.
The hats are first mixed up, and then each man randomly selects a hat. What is the
probability that none of the men selects his own hat?

Solution Wefirst calculate the complementary probability of at least oneman select-
ing his own hat. Let us denote by Ei, i = 1, 2, . . . ,N the event that the ith man selects

his own hat. Now, by the inclusion-exclusion identity P

(
N⋃
i=1

Ei

)
, the probability that

at least one of the men selects his own hat, is given by

P

⎛
⎝ N⋃
i=1

Ei

⎞
⎠ =

N∑
i=1

P(Ei) −
∑
i1<i2

P(Ei1Ei2) + · · ·

+ (−1)n+1
∑

i1<i2···<in
P(Ei1Ei2 · · ·Ein)

+ · · · + (−1)N+1P(E1E2 · · ·EN)

If we regard the outcome of this experiment as a vector of N numbers, where the ith
element is the number of the hat drawn by the ith man, then there are N! possible
outcomes. [The outcome (1, 2, 3, . . . ,N)means, for example, that eachman selects his
own hat.] Furthermore, Ei1Ei2 . . .Ein , the event that each of the n men i1, i2, . . . , in
selects his own hat, can occur in any of (N − n)(N − n − 1) · · · 3 · 2 · 1 = (N − n)!
possible ways; for, of the remaining N − n men, the first can select any of N − n
hats, the second can then select any of N − n − 1 hats, and so on. Hence, assuming
that all N! possible outcomes are equally likely, we see that

P(Ei1Ei2 · · ·Ein) = (N − n)!
N!

Also, as there are

(
N
n

)
terms in

∑
i1<i2···<in

P(Ei1Ei2 · · ·Ein), it follows that

∑
i1<i2···<in

P(Ei1Ei2 · · ·Ein) = N!
(N − n)!n!

(N − n)!
N!

= 1
n!
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Thus,

P

⎛
⎝ N⋃
i=1

Ei

⎞
⎠ = 1 − 1

2!
+ 1

3!
− · · · + (−1)N+1 1

N!

Hence, the probability that none of the men selects his own hat is

1 − 1 + 1
2!

− 1
3!

+ . . . + (−1)N

N!
=

N∑
i=0

(−1)i/i!

Upon letting x = −1 in the identity ex =
q∑
i=0

xi/i!, the preceding probability when N

is large is seen to be approximately equal to e−1 L .3679. In other words, forN large,
the probability that none of the men selects his own hat is approximately .37. (How
many readers would have incorrectly thought that this probability would go to 1 as
N→q?) .

For another illustration of the usefulness of the inclusion-exclusion identity, con-
sider the following example.

Example
5n

Compute the probability that if 10 married couples are seated at random at a round
table, then no wife sits next to her husband.

Solution If we let Ei, i = 1, 2, . . . , 10 denote the event that the ith couple sit next to

each other, it follows that the desired probability is 1 − P

(
10⋃
i=1

Ei

)
. Now, from the

inclusion-exclusion identity,

P

⎛
⎝ 10⋃

1

Ei

⎞
⎠ =

10∑
1

P(Ei) − · · · + (−1)n+1
∑

i1<i2<···<in
P(Ei1Ei2 · · ·Ein)

+ · · · − P(E1E2 · · ·E10)

To compute P(Ei1Ei2 · · ·Ein), we first note that there are 19! ways of arranging
20 people around a round table. (Why?) The number of arrangements that result in
a specified set of nmen sitting next to their wives can most easily be obtained by first
thinking of each of the n married couples as being single entities. If this were the
case, then we would need to arrange 20 − n entities around a round table, and there
are clearly (20 − n − 1)! such arrangements. Finally, since each of the n married
couples can be arranged next to each other in one of two possible ways, it follows
that there are 2n(20 − n − 1)! arrangements that result in a specified set of n men
each sitting next to their wives. Therefore,

P(Ei1Ei2 · · ·Ein) = 2n(19 − n)!
(19)!

Thus, from Proposition 4.4, we obtain that the probability that at least one married
couple sits together is(
10
1

)
21

(18)!
(19)!

−
(
10
2

)
22

(17)!
(19)!

+
(
10
3

)
23

(16)!
(19)!

− · · · −
(
10
10

)
210

9!
(19)!

L .6605

and the desired probability is approximately .3395. .
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∗Example
5o

Runs

Consider an athletic team that had just finished its season with a final record of n
wins and m losses. By examining the sequence of wins and losses, we are hoping to
determine whether the team had stretches of games in which it was more likely to
win than at other times. One way to gain some insight into this question is to count
the number of runs of wins and then see how likely that result would be when all
(n + m)!/(n!m!) orderings of the n wins andm losses are assumed equally likely. By
a run of wins, wemean a consecutive sequence of wins. For instance, if n = 10,m = 6,
and the sequence of outcomes wasWWLLWWWLWLLLWWWW, then there would
be 4 runs of wins—the first run being of size 2, the second of size 3, the third of size
1, and the fourth of size 4.

Suppose now that a team has n wins and m losses. Assuming that all (n + m)!/

(n! m!) =
(
n + m

n

)
orderings are equally likely, let us determine the probability

that there will be exactly r runs of wins. To do so, consider first any vector of positive
integers x1, x2, . . . , xr with x1 + · · · + xr = n, and let us see how many outcomes
result in r runs of wins in which the ith run is of size xi, i = 1, . . . , r. For any such
outcome, if we let y1 denote the number of losses before the first run of wins, y2 the
number of losses between the first 2 runs of wins, . . . , yr+1 the number of losses after
the last run of wins, then the yi satisfy

y1 + y2 + · · · + yr+1 = m y1 Ú 0, yr+1 Ú 0, yi > 0, i = 2, . . . , r

and the outcome can be represented schematically as

LL . . .L︸ ︷︷ ︸
y1

WW . . .W︸ ︷︷ ︸
x1

L . . .L︸ ︷︷ ︸
y2

WW . . .W︸ ︷︷ ︸
x2

· · · WW︸︷︷︸
xr

L . . .L︸ ︷︷ ︸
yr+1

Hence, the number of outcomes that result in r runs of wins—the ith of size xi, i =
1, . . . r—is equal to the number of integers y1, . . . , yr+1 that satisfy the foregoing, or,
equivalently, to the number of positive integers

y1 = y1 + 1 yi = yi, i = 2, . . . , r, yr+1 = yr+1 + 1

that satisfy

y1 + y2 + · · · + yr+1 = m + 2

By Proposition 6.1 in Chapter 1, there are

(
m + 1

r

)
such outcomes. Hence, the

total number of outcomes that result in r runs of wins is

(
m + 1

r

)
multiplied by the

number of positive integral solutions of x1 + · · · + xr = n. Thus, again from Propo-

sition 6.1, there are

(
m + 1

r

)(
n − 1
r − 1

)
outcomes resulting in r runs of wins. As

there are

(
n + m

n

)
equally likely outcomes, it follows that
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P({r runs of wins}) =

(
m + 1

r

)(
n − 1
r − 1

)
(
m + n

n

) r Ú 1

For example, if n = 8 and m = 6, then the probability of 7 runs is

(
7
7

) (
7
6

)/
(
14
8

)
= 1/429 if all

(
14
8

)
outcomes are equally likely. Hence, if the outcome

wasWLWLWLWLWWLWLW, then we might suspect that the team’s probability of
winning was changing over time. (In particular, the probability that the team wins
seems to be quite high when it lost its last game and quite low when it won its last
game.) On the other extreme, if the outcome wereWWWWWWWWLLLLLL, then

there would have been only 1 run, and as P({1 run}) =
(
7
1

)(
7
0

)/( 14
8

)
=

1/429, it would thus again seem unlikely that the team’s probability of winning
remained unchanged over its 14 games. .

*2.6 Probability as a Continuous Set Function
A sequence of events {En,n Ú 1} is said to be an increasing sequence if

E1 ( E2 ( · · · ( En ( En+1 ( · · ·

whereas it is said to be a decreasing sequence if

E1 ) E2 ) · · · ) En ) En+1 ) · · ·

If {En,n Ú 1} is an increasing sequence of events, then we define a new event,
denoted by lim

n→q
En, by

lim
n→q

En =
q⋃
i=1

Ei

Similarly, if {En,n Ú 1} is a decreasing sequence of events, we define lim
n→q

En, by

lim
n→q

En =
q⋂
i=1

Ei

We now prove the following Proposition 6.1:

Proposition
6.1

If {En,n Ú 1} is either an increasing or a decreasing sequence of events, then

lim
n→q

P(En) = P( lim
n→q

En)
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Proof Suppose, first, that {En,n Ú 1} is an increasing sequence, and define the events
Fn,n Ú 1, by

F1 = E1

Fn = En

⎛
⎝n−1⋃

1

Ei

⎞
⎠
c

= EnEcn−1 n > 1

where we have used the fact that
n−1⋃
1
Ei = En−1, since the events are increasing. In

words, Fn consists of those outcomes in En that are not in any of the earlier Ei, i < n.
It is easy to verify that the Fn are mutually exclusive events such that

q⋃
i=1

Fi =
q⋃
i=1

Ei and
n⋃
i=1

Fi =
n⋃
i=1

Ei for all n Ú 1

Thus,

P

⎛
⎝ q⋃

1

Ei

⎞
⎠ = P

⎛
⎝ q⋃

1

Fi

⎞
⎠

=
q∑
1

P(Fi) (by Axiom 3)

= lim
n→q

n∑
1

P(Fi)

= lim
n→q

P

⎛
⎝ n⋃

1

Fi

⎞
⎠

= lim
n→q

P

⎛
⎝ n⋃

1

Ei

⎞
⎠

= lim
n→q

P(En)

which proves the result when {En,n Ú 1} is increasing.
If {En,n Ú 1} is a decreasing sequence, then {Ecn,n Ú 1} is an increasing sequence;

hence, from the preceding equations,

P

⎛
⎝ q⋃

1

Eci

⎞
⎠ = lim

n→q
P(Ecn)

However, because
q⋃
1
Eci =

(
q⋂
1
Ei

)c
, it follows that

P

⎛
⎜⎝
⎛
⎝ q⋂

1

Ei

⎞
⎠
c
⎞
⎟⎠ = lim

n→q
P(Ecn)
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or, equivalently,

1 − P

⎛
⎝ q⋂

1

Ei

⎞
⎠ = lim

n→q
[1 − P(En)] = 1 − lim

n→q
P(En)

or

P

⎛
⎝ q⋂

1

Ei

⎞
⎠ = lim

n→q
P(En)

which proves the result.

Example
6a

Probability and a “paradox”

Suppose that we possess an infinitely large urn and an infinite collection of balls
labeled ball number 1, number 2, number 3, and so on. Consider an experiment
performed as follows: At 1 minute to 12 P.M., balls numbered 1 through 10 are placed
in the urn and ball number 10 is withdrawn. (Assume that the withdrawal takes no
time.) At 1

2 minute to 12 P.M., balls numbered 11 through 20 are placed in the urn and
ball number 20 is withdrawn. At 1

4 minute to 12 P.M., balls numbered 21 through 30
are placed in the urn and ball number 30 is withdrawn. At 1

8 minute to 12 P.M., and
so on. The question of interest is, How many balls are in the urn at 12 P.M.?

The answer to this question is clearly that there is an infinite number of
balls in the urn at 12 P.M., since any ball whose number is not of the form 10n,
n Ú 1, will have been placed in the urn and will not have been withdrawn before
12 P.M. Hence, the problem is solved when the experiment is performed as described.

However, let us now change the experiment and suppose that at 1 minute to
12 P.M., balls numbered 1 through 10 are placed in the urn and ball number 1 is with-
drawn; at 1

2 minute to 12 P.M., balls numbered 11 through 20 are placed in the urn
and ball number 2 is withdrawn; at 1

4 minute to 12 P.M., balls numbered 21 through
30 are placed in the urn and ball number 3 is withdrawn; at 1

8 minute to 12 P.M., balls
numbered 31 through 40 are placed in the urn and ball number 4 is withdrawn, and
so on. For this new experiment, how many balls are in the urn at 12 P.M.?

Surprisingly enough, the answer now is that the urn is empty at 12 P.M. For, con-
sider any ball—say, ball number n. At some time prior to 12 P.M. [in particular, at(
1
2

)n−1
minutes to 12 P.M.], this ball would have been withdrawn from the urn. Hence,

for each n, ball number n is not in the urn at 12 P.M.; therefore, the urn must be empty
at that time.

Because for all n, the number of balls in the urn after the nth interchange is
the same in both variations of the experiment, most people are surprised that the
two scenarios produce such different results in the limit. It is important to recognize
that the reason the results are different is not because there is an actual paradox, or
mathematical contradiction, but rather because of the logic of the situation, and also
that the surprise results because one’s initial intuition when dealing with infinity is
not always correct. (This latter statement is not surprising, for when the theory of
the infinite was first developed by the mathematician Georg Cantor in the second
half of the nineteenth century, many of the other leading mathematicians of the day
called it nonsensical and ridiculed Cantor for making such claims as that the set of
all integers and the set of all even integers have the same number of elements.)
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We see from the preceding discussion that the manner in which the balls are
withdrawn makes a difference. For, in the first case, only balls numbered 10n,n Ú 1,
are ever withdrawn, whereas in the second case all of the balls are eventually with-
drawn. Let us now suppose that whenever a ball is to be withdrawn, that ball is
randomly selected from among those present. That is, suppose that at 1 minute to
12 P.M. balls numbered 1 through 10 are placed in the urn and a ball is randomly
selected and withdrawn, and so on. In this case, how many balls are in the urn at
12 P.M.?

Solution We shall show that, with probability 1, the urn is empty at 12 P.M. Let us
first consider ball number 1. Define En to be the event that ball number 1 is still in
the urn after the first n withdrawals have been made. Clearly,

P(En) = 9 · 18 · 27 · · · (9n)
10 · 19 · 28 · · · (9n + 1)

[To understand this equation, just note that if ball number 1 is still to be in the
urn after the first n withdrawals, the first ball withdrawn can be any one of 9, the
second any one of 18 (there are 19 balls in the urn at the time of the second with-
drawal, one of which must be ball number 1), and so on. The denominator is similarly
obtained.]

Now, the event that ball number 1 is in the urn at 12 P.M. is just the event
q⋂
n=1

En.

Because the events En,n Ú 1, are decreasing events, it follows from Proposition 6.1
that

P{ball number 1 is in the urn at 12 P.M.}

= P

⎛
⎝ q⋂
n=1

En

⎞
⎠

= lim
n→q

P(En)

=
q∏
n=1

(
9n

9n + 1

)

We now show that

q∏
n=1

9n
9n + 1

= 0

Since

q∏
n=1

(
9n

9n + 1

)
=
⎡
⎣ q∏
n=1

(
9n + 1

9n

)⎤⎦
−1

this is equivalent to showing that

q∏
n=1

(
1 + 1

9n

)
= q
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Now, for all m Ú 1,
q∏
n=1

(
1 + 1

9n

)
Ú

m∏
n=1

(
1 + 1

9n

)

=
(
1 + 1

9

)(
1 + 1

18

)(
1 + 1

27

)
· · ·
(
1 + 1

9m

)

>
1
9

+ 1
18

+ 1
27

+ · · · + 1
9m

= 1
9

m∑
i=1

1
i

Hence, letting m→q and using the fact that
q∑
i=1

1/i = q yields

q∏
n=1

(
1 + 1

9n

)
= q

Thus, letting Fi denote the event that ball number i is in the urn at 12 P.M., we have
shown that P(F1) = 0. Similarly, we can show that P(Fi) = 0 for all i.

(For instance, the same reasoning shows that P(Fi) =
q∏
n=2

[9n/(9n + 1)] for

i = 11, 12, . . . , 20.) Therefore, the probability that the urn is not empty at 12 P.M.,

P

(
q⋃
1
Fi

)
, satisfies

P

⎛
⎝ q⋃

1

Fi

⎞
⎠ …

q∑
1

P(Fi) = 0

by Boole’s inequality.
Thus, with probability 1, the urn will be empty at 12 P.M. .

2.7 Probability as a Measure of Belief
Thus far we have interpreted the probability of an event of a given experiment as
being a measure of how frequently the event will occur when the experiment is
continually repeated. However, there are also other uses of the term probability.
For instance, we have all heard such statements as “It is 90 percent probable that
Shakespeare actually wroteHamlet” or “The probability that Oswald acted alone in
assassinating Kennedy is .8.” How are we to interpret these statements?

The most simple and natural interpretation is that the probabilities referred to
are measures of the individual’s degree of belief in the statements that he or she
is making. In other words, the individual making the foregoing statements is quite
certain that Oswald acted alone and is even more certain that Shakespeare wrote
Hamlet. This interpretation of probability as being a measure of the degree of one’s
belief is often referred to as the personal or subjective view of probability.

It seems logical to suppose that a “measure of the degree of one’s belief” should
satisfy all of the axioms of probability. For example, if we are 70 percent certain that
Shakespeare wrote Julius Caesar and 10 percent certain that it was actually Mar-
lowe, then it is logical to suppose that we are 80 percent certain that it was either
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Shakespeare or Marlowe. Hence, whether we interpret probability as a measure of
belief or as a long-run frequency of occurrence, its mathematical properties remain
unchanged.

Example
7a

Suppose that in a 7-horse race, you believe that each of the first 2 horses has a 20
percent chance of winning, horses 3 and 4 each have a 15 percent chance, and the
remaining 3 horses have a 10 percent chance each. Would it be better for you to
wager at even money that the winner will be one of the first three horses or to wager,
again at even money, that the winner will be one of the horses 1, 5, 6, and 7?

Solution On the basis of your personal probabilities concerning the outcome of the
race, your probability of winning the first bet is .2 + .2 + .15 = .55, whereas
it is .2 + .1 + .1 + .1 = .5 for the second bet. Hence, the first wager is more
attractive. .

Note that in supposing that a person’s subjective probabilities are always consis-
tent with the axioms of probability, we are dealing with an idealized rather than an
actual person. For instance, if we were to ask someone what he thought the chances
were of

(a) rain today,
(b) rain tomorrow,
(c) rain both today and tomorrow,
(d) rain either today or tomorrow,

it is quite possible that, after some deliberation, he might give 30 percent, 40 percent,
20 percent, and 60 percent as answers. Unfortunately, such answers (or such subjec-
tive probabilities) are not consistent with the axioms of probability. (Why not?) We
would of course hope that after this was pointed out to the respondent, he would
change his answers. (One possibility we could accept is 30 percent, 40 percent, 10
percent, and 60 percent.)

Summary

Let S denote the set of all possible outcomes of an exper-
iment. S is called the sample space of the experiment. An
event is a subset of S. If Ai, i = 1, . . . ,n, are events, then
n⋃
i=1

Ai, called the union of these events, consists of all out-

comes that are in at least one of the events Ai, i = 1, . . . ,n.

Similarly,
n⋂
i=1

Ai, sometimes written as A1 · · ·An, is called

the intersection of the events Ai and consists of all out-
comes that are in all of the events Ai, i = 1, . . . ,n.

For any event A, we define Ac to consist of all out-
comes in the sample space that are not in A. We call Ac

the complement of the event A. The event Sc, which is
empty of outcomes, is designated by Ø and is called the
null set. IfAB = Ø, then we say thatA and B aremutually
exclusive.

For each event A of the sample space S, we suppose
that a number P(A), called the probability of A, is defined
and is such that

(i) 0 … P(A) … 1
(ii) P(S) = 1
(iii) For mutually exclusive events Ai, i Ú 1,

P

⎛
⎝ q⋃
i=1

Ai

⎞
⎠ =

q∑
i=1

P(Ai)

P(A) represents the probability that the outcome of the
experiment is in A.

It can be shown that

P(Ac) = 1 − P(A)

A useful result is that

P(A ∪ B) = P(A) + P(B) − P(AB)

which can be generalized to give
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P

⎛
⎝ n⋃
i=1

Ai

⎞
⎠ =

n∑
i=1

P(Ai) −
∑∑

i<j

P(AiAj)

+
∑∑∑

i<j<k

P(AiAjAk)

+ · · · + (−1)n+1P(A1 · · ·An)

This result is known as the inclusion–exclusion identity.

If S is finite and each one point set is assumed to have
equal probability, then

P(A) = |A|
|S|

where |E| denotes the number of outcomes in the event E.
P(A) can be interpreted either as a long-run relative

frequency or as a measure of one’s degree of belief.

Problems

1.Organizers of a three-day conference are considering
food items for lunch. The two available options are either
fish or meat. Set up a set as the sample space for all possi-
bilities. How would the set change if the organizers insist
that the same food item not be served on two consecutive
days?

2. In a session, an archer shoots rounds of 3 arrows. The
session is terminated when the target is hit with all three
arrows in one round. Set up a set to serve as the sample
space. Let An denote the event comprising sessions with
durations longer than n. Determine the event

⋂q
n=1An.

3. Two football teams are playing. Let A be the event that
the match ends in a draw, and let B be the event that the
home team wins. Assuming that not more than 6 goals
are scored in all, list the sample space and the following
events:A ∩ B andA ∪ B. Let C be the event that the away
team scores. List the elements of A ∪ Cc, Ac ∩ B ∩ C.
Show directly that A ∩ (Bc ∪ C ) = A.

4. A, B, and C take turns flipping a coin. The first one to
get a head wins. The sample space of this experiment can
be defined by

S =
{
1, 01, 001, 0001, . . . ,
0000 · · ·

(a) Interpret the sample space.
(b)Define the following events in terms of S:

(i) A wins = A.
(ii) B wins = B.
(iii) (A ∪ B)c.

Assume that A flips first, then B, then C, then A,
and so on.

5. A system is composed of 5 components, each of which
is either working or failed. Consider an experiment that
consists of observing the status of each component, and

let the outcome of the experiment be given by the vec-
tor (x1, x2, x3, x4, x5), where xi is equal to 1 if compo-
nent i is working and is equal to 0 if component i is
failed.

(a)How many outcomes are in the sample space of this
experiment?
(b) Suppose that the system will work if components 1 and
2 are both working, or if components 3 and 4 are both
working, or if components 1, 3, and 5 are all working. Let
W be the event that the system will work. Specify all the
outcomes inW.
(c) Let A be the event that components 4 and 5 are
both failed. How many outcomes are contained in the
event A?
(d)Write out all the outcomes in the event AW.

6.A hospital administrator codes incoming patients suf-
fering gunshot wounds according to whether they have
insurance (coding 1 if they do and 0 if they do not) and
according to their condition, which is rated as good (g), fair
(f), or serious (s). Consider an experiment that consists of
the coding of such a patient.

(a)Give the sample space of this experiment.
(b) Let A be the event that the patient is in serious condi-
tion. Specify the outcomes in A.
(c) LetB be the event that the patient is uninsured. Specify
the outcomes in B.
(d)Give all the outcomes in the event Bc ∪ A.

7.A bus departs from Bus Stop 16 with 20 passengers. The
bus’s journey will end at Bus Stop 20. Passengers can leave
the bus at any stop, but no passengers can board. Work out
the number of possibilities in

(a) the whole sample space.
(b) the event that no passenger leaves at Bus Stops 16
or 18.
(c) the event that half of the passengers leave by Bus
Stop 18.
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8. The union of events A and Bmake up the whole sample
space �. If P(A) = .6 and P(B) = .8, find the probabil-
ity of

(a) the event of all the possibilities that A shares with B.
(b) the event of those possibilities that are exclusively A’s.
(c) the events whose possibilities are either those of A’s or
those of B’s that it does not share with A.

9. In a school, three-quarters of students are involved in
sports, half are involved in cultural activities, and one-
eighth are involved in neither. Calculate the probability
that a student is involved in

(a) either sports or in cultural activities.
(b) both sports and cultural activities.
(c) cultural activities but not sports.

10.A restaurant manager was listing the type of items not
ordered by her clients, 80 percent of whom have meat. Ten
percent do not have meat or dessert, and 25 percent do
not have any dessert at all. What is the probability that a
customer will have

(a) either meat or dessert or both?
(b)meat but not dessert?
(c) meat and dessert?

11.Of 120 persons applying for a job, 80 have work expe-
rience, 60 have qualifications, and 40 experienced appli-
cants have no qualifications. An auditor randomly selects
an applicant. What is the probability that this applicant is

(a) qualified and experienced?
(b) neither qualified nor experienced?

12. Trincas Tours offers three add-ons to their holiday
packages: meals (M), sightseeing trips (S), and theater
visits (T). Past records show that 31 percent of clients
chose only meals, 18 percent only sightseeing, and 7 per-
cent only theatre. Nine percent chose all three options.
Eleven percent chose meals and sightseeing only, 8 per-
cent chose sightseeing and theatre only, and 7 percent
chose meals and theater only. What is the probability that
a client

(a) chooses exactly two options?
(b) chooses one or more options excluding theatre?
(c) refuses all options?

13.A certain town with a population of 100,000 has 3
newspapers: I, II, and III. The proportions of townspeople
who read these papers are as follows:

I: 10 percent I and II: 8 percent I and II and
III: 1 percent

II: 30 percent I and III: 2 percent
III: 5 percent II and III: 4 percent

(The list tells us, for instance, that 8000 people read news-
papers I and II.)

(a) Find the number of people who read only one newspa-
per.
(b)How many people read at least two newspapers?
(c) If I and III are morning papers and II is an evening
paper, how many people read at least one morning paper
plus an evening paper?
(d)How many people do not read any newspapers?
(e)How many people read only one morning paper and
one evening paper?

14.A bistro owner was taking stock of 1101 orders
received on a particular day. Four hundred and eleven
persons ordered only drinks, 231 only food, and 62 only
sweets. Forty five had drinks and sweets but no food, 312
had food and drinks but no sweets, and 11 had sweets
and food but no drinks. Forty one customers had all three.
However, the owner has a feeling that he has recorded one
figure incorrectly. The other set of more precise data that
he has is that the number of customers who chose drinks,
food, and sweets were 797, 595, and 147, respectively. Trans-
late the numbers above into probabilities and establish
which number is incorrect.

15. Each of five contestants competing in a quiz are asked
10 quick-fire questions, and their answers may be correct
or incorrect with equal probability. The score of each con-
testant depends on the number of correct answers. What is
the probability that

(a) all contestants get a different score?
(b) exactly 2 of them get the same score?
(c) exactly 3 of them get the same score?

16. Poker dice is played by simultaneously rolling 5 dice.
Show that

(a) P{no two alike} = .0926;
(b) P{one pair} = .4630;
(c) P{two pair} = .2315;
(d) P{three alike} = .1543;
(e) P{full house} = .0386;
(f) P{four alike} = .0193;
(g) P{five alike} = .0008.

17. Twenty five people, consisting of 15 women and 10 men
are lined up in a random order. Find the probability that
the ninth woman to appear is in position 17. That is, find
the probability there are 8 women in positions 1 thru 16
and a woman in position 17.

18. Each of 20 families selected to take part in a trea-
sure hunt consist of a mother, father, son, and daughter.
Assuming that they look for the treasure in pairs that are
randomly chosen from the 80 participating individuals and
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that each pair has the same probability of finding the trea-
sure, calculate the probability that the pair that finds the
treasure includes a mother but not her daughter.

19.An urn contains 11 red, 4 blue, and 7 black balls, while
another urn contains 5 red, 3 yellow, and 6 black balls.
What is the probability that a blindfolded person who
picks one ball from each urn chooses either two balls of
the same color or two balls of colors that are exclusive to
each urn?

20. Suppose that you are playing blackjack against a
dealer. In a freshly shuffled deck, what is the probability
that neither you nor the dealer is dealt a blackjack?

21. Chocolate bars can be bought from Nejku’s Confec-
tionery as singles or in packs of either two, four, ten, or
twenty. Nejku knows that last week he sold 23 singles, 45
packs of two bars, 33 packs of four bars, 12 packs of ten
bars, and 11 packs of twenty bars. Customers return wrap-
pers to Nejku so that they win customer points.

(a)What is the probability that a customer chosen at ran-
dom would buy a single bar or a pack with 2, 4, 10, and 20
bars, respectively?
(b) If a returned chocolate wrapper is chosen at random,
what is the probability that it belonged to a customer who
bought a single bar or a pack with 2, 4, 10, and 20 bars,
respectively?

22. Each of 52 people are given a deck of cards, which they
are asked to shuffle independent of each other. What is the
probability that

(a) the order of the cards in each shuffled deck is unique?
(b) there is exactly one card that occupies the same posi-
tion in the shuffled decks received from all 52 persons?
(c) all cards occupy the same position in all the shuffled
decks?

23. Two numbers from 1 to 10 are selected randomly in
succession.What is the probability that their product is less
than or equal to 50?

24.Urn 1 has 4 red and 3 white balls. Urn 2 has 4 red
and 5 white balls. One ball is taken from each urn and
exchanged. Which configuration is more probable after 2
exchanges?

25. In each round, an archer shoots two arrows at a tar-
get that has an outer ring, an inner ring, and a bullseye.
The archer will stop shooting once she hits bullseye twice,
or the inner ring twice, or the bullseye and the inner ring
once each. The probabilities of hitting the inner ring and
the bullseye are .5 and .1 respectively.

(a)What is the probability she will never stop shooting?
(b)What is the probability she will stop shooting for hav-
ing hit bullseye twice?

26. The game of craps is played as follows: A player rolls
two dice. If the sum of the dice is either a 2, 3, or 12, the
player loses; if the sum is either a 7 or an 11, the player
wins. If the outcome is anything else, the player continues
to roll the dice until she rolls either the initial outcome or a
7. If the 7 comes first, the player loses, whereas if the initial
outcome reoccurs before the 7 appears, the player wins.
Compute the probability of a player winning at craps.
Hint: Let Ei denote the event that the initial outcome is

i and the player wins. The desired probability is
12∑
i=2

P(Ei).

To compute P(Ei), define the events Ei,n to be the event
that the initial sum is i and the player wins on the nth roll.

Argue that P(Ei) =
q∑
n=1

P(Ei,n).

27.An urn contains 3 red and 7 black balls. Players A and
B withdraw balls from the urn consecutively until a red
ball is selected. Find the probability that A selects the red
ball. (A draws the first ball, then B, and so on. There is no
replacement of the balls drawn.)

28.An urn contains 5 red, 6 blue, and 8 green balls. If a set
of 3 balls is randomly selected, what is the probability that
each of the balls will be (a) of the same color? (b) of differ-
ent colors? Repeat under the assumption that whenever a
ball is selected, its color is noted and it is then replaced in
the urn before the next selection. This is known as sam-
pling with replacement.

29.An urn contains nwhite andm black balls, where n and
m are positive numbers.

(a) If two balls are randomly withdrawn, what is the prob-
ability that they are the same color?
(b) If a ball is randomly withdrawn and then replaced
before the second one is drawn, what is the probability that
the withdrawn balls are the same color?
(c) Show that the probability in part (b) is always larger
than the one in part (a).

30. The chess clubs of two schools consist of, respectively,
8 and 9 players. Four members from each club are ran-
domly chosen to participate in a contest between the two
schools. The chosen players from one team are then ran-
domly paired with those from the other team, and each
pairing plays a game of chess. Suppose that Rebecca and
her sister Elise are on the chess clubs at different schools.
What is the probability that

(a) Rebecca and Elise will be paired?
(b) Rebecca and Elise will be chosen to represent their
schools but will not play each other?
(c) either Rebecca or Elise will be chosen to represent her
school?
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31.A 3-person basketball team consists of a guard, a for-
ward, and a center.

(a) If a person is chosen at random from each of three dif-
ferent such teams, what is the probability of selecting a
complete team?
(b)What is the probability that all 3 players selected play
the same position?

32.A group of individuals containing b boys and g girls
is lined up in random order; that is, each of the (b + g)!
permutations is assumed to be equally likely. What is the
probability that the person in the ith position, 1 … i … b+ g,
is a girl?

33.A forest contains 20 elk, of which 5 are captured,
tagged, and then released. A certain time later, 4 of the
20 elk are captured. What is the probability that 2 of
these 4 have been tagged? What assumptions are you
making?

34. The second Earl of Yarborough is reported to have bet
at odds of 1000 to 1 that a bridge hand of 13 cards would
contain at least one card that is ten or higher. (By ten or
higher we mean that a card is either a ten, a jack, a queen,
a king, or an ace.) Nowadays, we call a hand that has no
cards higher than 9 a Yarborough. What is the probability
that a randomly selected bridge hand is a Yarborough?

35. Seven balls are randomly withdrawn from an urn that
contains 12 red, 16 blue, and 18 green balls. Find the prob-
ability that

(a) 3 red, 2 blue, and 2 green balls are withdrawn;
(b) at least 2 red balls are withdrawn;
(c) all withdrawn balls are the same color;
(d) either exactly 3 red balls or exactly 3 blue balls are
withdrawn.

36. Two cards are chosen at random from a deck of 52 play-
ing cards. What is the probability that they

(a) are both aces?
(b) have the same value?

37.An instructor gives her class a set of 10 problems with
the information that the final exam will consist of a ran-
dom selection of 5 of them. If a student has figured out
how to do 7 of the problems, what is the probability that
he or she will answer correctly

(a) all 5 problems?
(b) at least 4 of the problems?

38. There are n socks, 3 of which are red, in a drawer. What
is the value of n if, when 2 of the socks are chosen ran-
domly, the probability that they are both red is 1

2?

39. There are 5 hotels in a certain town. If 3 people check
into hotels in a day, what is the probability that they each
check into a different hotel? What assumptions are you
making?

40. If 4 balls are randomly chosen from an urn containing
4 red, 5 white, 6 blue, and 7 green balls, find the probability
that

(a) at least one of the 4 balls chosen is green;
(b) one ball of each color is chosen.

41. If a die is rolled 4 times, what is the probability that 6
comes up at least once?

42. Two dice are thrown n times in succession. Compute
the probability that double 6 appears at least once. How
large need n be to make this probability at least 1

2?

43. (a) If N people, including A and B, are randomly
arranged in a line, what is the probability that A and B
are next to each other?
(b)What would the probability be if the people were ran-
domly arranged in a circle?

44. Five people, designated as A, B, C, D, E, are arranged
in linear order. Assuming that each possible order is
equally likely, what is the probability that

(a) there is exactly one person between A and B?
(b) there are exactly two people between A and B?
(c) there are three people between A and B?

45.Awoman has n keys, of which one will open her door.

(a) If she tries the keys at random, discarding those that
do not work, what is the probability that she will open the
door on her kth try?
(b)What if she does not discard previously tried keys?

46.How many people have to be in a room in order that
the probability that at least two of them celebrate their
birthday in the same month is at least 1

2? Assume that all
possible monthly outcomes are equally likely.

47. Suppose that 5 of the numbers 1, 2, . . . , 14 are chosen.
Find the probability that 9 is the third smallest value cho-
sen.

48.Given 20 people, what is the probability that among
the 12 months in the year, there are 4 months containing
exactly 2 birthdays and 4 containing exactly 3 birthdays?

49.A group of 6 men and 6 women is randomly divided
into 2 groups of size 6 each. What is the probability that
both groups will have the same number of men?

50. In a hand of bridge, find the probability that you have
5 spades and your partner has the remaining 8.
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51. Suppose that n balls are randomly distributed into N
compartments. Find the probability that m balls will fall
into the first compartment. Assume that all Nn arrange-
ments are equally likely.

52.A closet contains 10 pairs of shoes. If 8 shoes are ran-
domly selected, what is the probability that there will be

(a) no complete pair?
(b) exactly 1 complete pair?

53. If 8 people, consisting of 4 couples, are randomly
arranged in a row, find the probability that no person is
next to their partner.

54. Compute the probability that a bridge hand is void in
at least one suit. Note that the answer is not(

4
1

)(
39
13

)
(
52
13

)

(Why not?)
Hint: Use Proposition 4.4.

55. Compute the probability that a hand of 13 cards
contains

(a) the ace and king of at least one suit;
(b) all 4 of at least 1 of the 13 denominations.

56. Two players play the following game: PlayerA chooses
one of the three spinners pictured in Figure 2.6, and then
player B chooses one of the remaining two spinners. Both
players then spin their spinner, and the one that lands on
the higher number is declared the winner. Assuming that
each spinner is equally likely to land in any of its 3 regions,
would you rather be player A or player B? Explain your
answer!

9 5

1

a
3 8

4

b

7 6

2

c

Figure 2.6 Spinners.
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Theoretical Exercises

Prove the following relations:

1. EF ( E ( E ∪ F.

2. If E ( F, then Fc ( Ec.

3. F = FE ∪ FEc and E ∪ F = E ∪ EcF.

4.

(
q⋃
1
Ei

)
F =

q⋃
1
EiF and

(
q⋂
1
Ei

)
∪ F =

q⋂
1

(Ei ∪ F).

5. For any sequence of events E1,E2, . . ., define a new
sequence F1,F2, . . . of disjoint events (that is, events such
that FiFj = Ø whenever i Z j) such that for all n Ú 1,

n⋃
1

Fi =
n⋃
1

Ei

6. Let E, F, and G be three events. Find expressions for
the events so that, of E, F, andG,

(a) only E occurs;
(b) both E and G, but not F, occur;
(c) at least one of the events occurs;
(d) at least two of the events occur;
(e) all three events occur;
(f) none of the events occurs;
(g) at most one of the events occurs;
(h) at most two of the events occur;
(i) exactly two of the events occur;
(j) at most three of the events occur.

7. Use Venn diagrams

(a) to simplify the expression (E ∪ F)(E ∪ Fc);
(b) to prove DeMorgan’s laws for events E and F. [That is,
prove (E ∪ F)c = EcFc, and (EF)c = Ec ∪ Fc.]

8. Let S be a given set. If, for some k > 0, S1,S2, . . . ,Sk
are mutually exclusive nonempty subsets of S such that
k⋃
i=1

Si = S, then we call the set {S1,S2, . . . ,Sk} a parti-

tion of S. Let Tn denote the number of different parti-
tions of {1, 2, . . . ,n}. Thus, T1 = 1 (the only partition
being S1 = {1}) and T2 = 2 (the two partitions being
{{1, 2, }}, {{1}, {2}}).
(a) Show, by computing all partitions, that T3= 5,T4= 15.

(b) Show that

Tn+1 = 1 +
n∑

k=1

(
n
k

)
Tk

and use this equation to compute T10.
Hint: One way of choosing a partition of n + 1 items is to
call one of the items special. Then we obtain different par-
titions by first choosing k, k = 0, 1, . . . ,n, then a subset of
size n − k of the nonspecial items, and then any of the Tk
partitions of the remaining k nonspecial items. By adding
the special item to the subset of size n − k, we obtain a
partition of all n + 1 items.

9. Suppose that an experiment is performed n times. For
any event E of the sample space, let n(E) denote the num-
ber of times that eventE occurs and define f (E) = n(E)/n.
Show that f (·) satisfies Axioms 1, 2, and 3.

10. Prove that P(E ∪ F ∪ G) = P(E) + P(F) + P(G) −
P(EcFG) − P(EFcG) − P(EFGc) − 2P(EFG).

11. If P(E) = .9 and P(F) = .8, show that P(EF) Ú .7. In
general, prove Bonferroni’s inequality, namely,

P(EF) Ú P(E) + P(F) − 1

12. Show that the probability that exactly one of the events
E or F occurs equals P(E) + P(F) − 2P(EF).

13. Prove that P(EFc) = P(E) − P(EF).

14. Prove Proposition 4.4 by mathematical induction.

15.An urn contains M white and N black balls. If a ran-
dom sample of size r is chosen, what is the probability that
it contains exactly k white balls?

16.Use induction to generalize Bonferroni’s inequality to
n events. That is, show that

P(E1E2 · · ·En) Ú P(E1) + · · · + P(En) − (n − 1)

17. Consider the matching problem, Example 5m, and
define AN to be the number of ways in which the N
men can select their hats so that no man selects his own.
Argue that
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AN = (N − 1)(AN−1 + AN−2)

This formula, along with the boundary conditions A1 = 0,
A2 = 1, can then be solved for AN , and the desired proba-
bility of no matches would be AN/N!.
Hint: After the first man selects a hat that is not his own,
there remain N − 1 men to select among a set of N − 1
hats that does not contain the hat of one of these men.
Thus, there is one extra man and one extra hat. Argue that
we can get no matches either with the extra man select-
ing the extra hat or with the extra man not selecting the
extra hat.

18. Let fn denote the number of ways of tossing a coin n
times such that successive heads never appear. Argue that

fn = fn−1 + fn−2 n Ú 2, where f0 K 1, f1 K 2

Hint: Howmany outcomes are there that start with a head,
and how many start with a tail? If Pn denotes the proba-
bility that successive heads never appear when a coin is
tossed n times, find Pn (in terms of fn) when all possible
outcomes of the n tosses are assumed equally likely. Com-
pute P10.

19.An urn contains n red andm blue balls. They are with-
drawn one at a time until a total of r, r … n, red balls have

been withdrawn. Find the probability that a total of k balls
are withdrawn.
Hint: A total of k balls will be withdrawn if there are r − 1
red balls in the first k − 1 withdrawals and the kth with-
drawal is a red ball.

20. Consider an experiment whose sample space consists
of a countably infinite number of points. Show that not all
points can be equally likely. Can all points have a positive
probability of occurring?

*21. Consider Example 5o, which is concerned with the
number of runs of wins obtained when n wins andm losses
are randomly permuted. Now consider the total number of
runs—that is, win runs plus loss runs—and show that

P{2k runs} = 2

(
m − 1
k − 1

)(
n − 1
k − 1

)
(
m + n

n

)
P{2k + 1 runs}

=

(
m − 1
k − 1

)(
n − 1
k

)
+
(
m − 1

k

)(
n − 1
k − 1

)
(
m + n

n

)

Self-Test Problems and Exercises

1.A cafeteria offers a three-course meal consisting of an
entree, a starch, and a dessert. The possible choices are
given in the following table:

Course Choices

Entree Chicken or roast beef
Starch Pasta or rice or potatoes
Dessert Ice cream or Jello or apple pie or a peach

A person is to choose one course from each category.

(a)How many outcomes are in the sample space?
(b) LetA be the event that ice cream is chosen. Howmany
outcomes are in A?
(c) Let B be the event that chicken is chosen. How many
outcomes are in B?
(d) List all the outcomes in the event AB.
(e) Let C be the event that rice is chosen. How many out-
comes are in C?
(f) List all the outcomes in the event ABC.

2. A customer visiting the suit department of a certain
store will purchase a suit with probability .22, a shirt with

probability .30, and a tie with probability .28. The customer
will purchase both a suit and a shirt with probability .11,
both a suit and a tie with probability .14, and both a shirt
and a tie with probability .10. A customer will purchase all
3 items with probability .06. What is the probability that a
customer purchases

(a) none of these items?
(b) exactly 1 of these items?

3.A deck of cards is dealt out. What is the probability that
the 14th card dealt is an ace? What is the probability that
the first ace occurs on the 14th card?

4. Let A denote the event that the midtown temperature
in Los Angeles is 70◦F, and let B denote the event that
the midtown temperature in New York is 70◦F. Also, let
C denote the event that the maximum of the midtown
temperatures in New York and in Los Angeles is 70◦F. If
P(A) = .3,P(B) = .4, and P(C) = .2, find the probabil-
ity that the minimum of the two midtown temperatures is
70◦F.

5.An ordinary deck of 52 cards is shuffled. What is the
probability that the top four cards have

(a) different denominations?
(b) different suits?
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6. Urn A contains 3 red and 3 black balls, whereas urn
B contains 4 red and 6 black balls. If a ball is randomly
selected from each urn, what is the probability that the
balls will be the same color?

7. In a state lottery, a player must choose 8 of the num-
bers from 1 to 40. The lottery commission then performs
an experiment that selects 8 of these 40 numbers. Assum-
ing that the choice of the lottery commission is equally

likely to be any of the
(
40
8

)
combinations, what is the

probability that a player has

(a) all 8 of the numbers selected by the lottery
commission?

(b) 7 of the numbers selected by the lottery commission?
(c) at least 6 of the numbers selected by the lottery
commission?

8. From a group of 3 first-year students, 4 sophomores, 4
juniors, and 3 seniors, a committee of size 4 is randomly
selected. Find the probability that the committee will con-
sist of

(a) 1 from each class;
(b) 2 sophomores and 2 juniors;
(c) only sophomores or juniors.

9. For a finite set A, let N(A) denote the number of ele-
ments in A.

(a) Show that

N(A ∪ B) = N(A) + N(B) − N(AB)

(b)More generally, show that

N

⎛
⎝ n⋃
i=1

Ai

⎞
⎠ =

∑
i

N(Ai) −
∑∑

i<j

N(AiAj)

+ · · · + (−1)n+1N(A1 · · ·An)

10. Consider an experiment that consists of 6 horses, num-
bered 1 through 6, running a race, and suppose that the
sample space consists of the 6! possible orders in which the
horses finish. Let A be the event that the number-1 horse
is among the top three finishers, and letB be the event that
the number-2 horse comes in second. Howmany outcomes
are in the event A ∪ B?

11.A 5-card hand is dealt from a well-shuffled deck of 52
playing cards. What is the probability that the hand con-
tains at least one card from each of the four suits?

12.A basketball team consists of 6 frontcourt and 4
backcourt players. If players are divided into roommates
at random, what is the probability that there will be exactly
two roommate pairs made up of a backcourt and a front-
court player?

13. Suppose that a person chooses a letter at random from
R E S E R V E and then chooses one at random from
V E R T I C A L. What is the probability that the same
letter is chosen?

14. Prove Boole’s inequality:

P

⎛
⎝ q⋃
i=1

Ai

⎞
⎠ …

q∑
i=1

P(Ai)

15. Show that ifP(Ai) = 1 for all i Ú 1, thenP

(
q⋂
i=1

Ai

)
= 1.

16. Let Tk(n) denote the number of partitions of the set
{1, . . . ,n} into k nonempty subsets, where 1 … k … n. (See
Theoretical Exercise 8 for the definition of a partition.)
Argue that

Tk(n) = kTk(n − 1) + Tk−1(n − 1)

Hint: In how many partitions is {1} a subset, and in how
many is 1 an element of a subset that contains other
elements?

17. Five balls are randomly chosen, without replacement,
from an urn that contains 5 red, 6 white, and 7 blue balls.
Find the probability that at least one ball of each color is
chosen.

18. Four red, 8 blue, and 5 green balls are randomly
arranged in a line.

(a)What is the probability that the first 5 balls are blue?
(b)What is the probability that none of the first 5 balls is
blue?
(c)What is the probability that the final 3 balls are of dif-
ferent colors?
(d)What is the probability that all the red balls are
together?

19. Ten cards are randomly chosen from a deck of 52 cards
that consists of 13 cards of each of 4 different suits. Each
of the selected cards is put in one of 4 piles, depending on
the suit of the card.

(a)What is the probability that the largest pile has 4 cards,
the next largest has 3, the next largest has 2, and the small-
est has 1 card?
(b)What is the probability that two of the piles have 3
cards, one has 4 cards, and one has no cards?

20. Balls are randomly removed from an urn initially con-
taining 20 red and 10 blue balls. What is the probability
that all of the red balls are removed before all of the blue
ones have been removed?
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3.1 Introduction
In this chapter, we introduce one of the most important concepts in probability
theory, that of conditional probability. The importance of this concept is twofold. In
the first place, we are often interested in calculating probabilities when some partial
information concerning the result of an experiment is available; in such a situation,
the desired probabilities are conditional. Second, even when no partial information
is available, conditional probabilities can often be used to compute the desired prob-
abilities more easily.

3.2 Conditional Probabilities
Suppose that we toss 2 dice, and suppose that each of the 36 possible outcomes is
equally likely to occur and hence has probability 1

36 . Suppose further that we observe
that the first die is a 3. Then, given this information, what is the probability that the
sum of the 2 dice equals 8? To calculate this probability, we reason as follows: Given
that the initial die is a 3, there can be at most 6 possible outcomes of our experiment,
namely, (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), and (3, 6). Since each of these outcomes
originally had the same probability of occurring, the outcomes should still have equal
probabilities. That is, given that the first die is a 3, the (conditional) probability of
each of the outcomes (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), and (3, 6) is 1

6 , whereas the
(conditional) probability of the other 30 points in the sample space is 0. Hence, the
desired probability will be 1

6 .
If we let E and F denote, respectively, the event that the sum of the dice is 8

and the event that the first die is a 3, then the probability just obtained is called the
conditional probability that E occurs given that F has occurred and is denoted by

P(E|F)

70
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A general formula for P(E|F) that is valid for all events E and F is derived in the
same manner: If the event F occurs, then, in order for E to occur, it is necessary
that the actual occurrence be a point both in E and in F; that is, it must be in EF.
Now, since we know that F has occurred, it follows that F becomes our new, or
reduced, sample space; hence, the probability that the event EF occurs will equal
the probability of EF relative to the probability of F. That is, we have the following
definition.

Definition

If P(F) > 0, then

P(E|F) = P(EF)

P(F)
(2.1)

Example
2a

Joe is 80 percent certain that his missing key is in one of the two pockets of his
hanging jacket, being 40 percent certain it is in the left-hand pocket and 40 percent
certain it is in the right-hand pocket. If a search of the left-hand pocket does not find
the key, what is the conditional probability that it is in the other pocket?

Solution If we let L be the event that the key is in the left-hand pocket of the jacket,
and R be the event that it is in the right-hand pocket, then the desired probability
P(R|Lc) can be obtained as follows:

P(R|Lc) = P(RLc)
P(Lc)

= P(R)

1 − P(L)

= 2/3 .

If each outcome of a finite sample space S is equally likely, then, conditional on
the event that the outcome lies in a subset F ( S, all outcomes in F become equally
likely. In such cases, it is often convenient to compute conditional probabilities of
the form P(E|F) by using F as the sample space. Indeed, working with this reduced
sample space often results in an easier and better understood solution. Our next two
examples illustrate this point.

Example
2b

A coin is flipped twice. Assuming that all four points in the sample space S =
{(h, h), (h, t), (t,h), (t, t)} are equally likely, what is the conditional probability that
both flips land on heads, given that (a) the first flip lands on heads? (b) at least one
flip lands on heads?

Solution Let B = {(h,h)} be the event that both flips land on heads; let F = {(h,h),
(h, t)} be the event that the first flip lands on heads; and letA = {(h,h), (h, t), (t,h)} be
the event that at least one flip lands on heads. The probability for (a) can be obtained
from

P(B|F) = P(BF)

P(F)

= P({(h, h)})
P({(h, h), (h, t)})

= 1/4
2/4

= 1/2
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For (b), we have

P(B|A) = P(BA)

P(A)

= P({(h, h)})
P({(h, h), (h, t), (t,h)})

= 1/4
3/4

= 1/3

Thus, the conditional probability that both flips land on heads given that the first
one does is 1/2, whereas the conditional probability that both flips land on heads
given that at least one does is only 1/3. Many students initially find this latter result
surprising. They reason that given that at least one flip lands on heads, there are two
possible results: Either they both land on heads or only one does. Their mistake,
however, is in assuming that these two possibilities are equally likely. Initially there
are 4 equally likely outcomes. Because the information that at least one flip lands on
heads is equivalent to the information that the outcome is not (t, t), we are left with
the 3 equally likely outcomes (h,h), (h, t), (t,h), only one of which results in both flips
landing on heads. .

Example
2c

In the card game bridge, the 52 cards are dealt out equally to 4 players—called East,
West, North, and South. If North and South have a total of 8 spades among them,
what is the probability that East has 3 of the remaining 5 spades?

Solution Probably the easiest way to compute the desired probability is to work
with the reduced sample space. That is, given that North–South have a total of 8
spades among their 26 cards, there remains a total of 26 cards, exactly 5 of them
being spades, to be distributed among the East–West hands. Since each distribution
is equally likely, it follows that the conditional probability that East will have exactly
3 spades among his or her 13 cards is(

5
3

)(
21
10

)
(
26
13

) L .339 .

Multiplying both sides of Equation (2.1) by P(F ), we obtain

P(EF ) = P(F)P(E|F ) (2.2)

In words, Equation (2.2) states that the probability that both E and F occur is equal
to the probability that F occurs multiplied by the conditional probability of E given
that F occurred. Equation (2.2) is often quite useful in computing the probability of
the intersection of events.

Example
2d

Celine is undecided as to whether to take a French course or a chemistry course. She
estimates that her probability of receiving an A grade would be 1

2 in a French course
and 2

3 in a chemistry course. If Celine decides to base her decision on the flip of a
fair coin, what is the probability that she gets an A in chemistry?

Solution Let C be the event that Celine takes chemistry and A denote the event
that she receives an A in whatever course she takes, then the desired probability is
P(CA), which is calculated by using Equation (2.2) as follows:
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P(CA) = P(C)P(A|C)

=
(
1
2

)(
2
3

)
= 1

3
.

Example
2e

Suppose that an urn contains 8 red balls and 4 white balls. We draw 2 balls from the
urn without replacement. (a) If we assume that at each draw, each ball in the urn is
equally likely to be chosen, what is the probability that both balls drawn are red? (b)
Now suppose that the balls have different weights, with each red ball having weight
r and each white ball having weight w. Suppose that the probability that a given ball
in the urn is the next one selected is its weight divided by the sum of the weights of
all balls currently in the urn. Now what is the probability that both balls are red?

Solution Let R1 and R2 denote, respectively, the events that the first and second
balls drawn are red. Now, given that the first ball selected is red, there are 7 remaining
red balls and 4 white balls, so P(R2|R1) = 7

11 . As P(R1) is clearly 8
12 , the desired

probability is

P(R1R2) = P(R1)P(R2|R1)

=
(
2
3

)(
7
11

)
= 14

33

Of course, this probability could have been computed by P(R1R2) = (8
2

)
/
(12
2

)
.

For part (b), we again let Ri be the event that the ith ball chosen is red and use

P(R1R2) = P(R1)P(R2|R1)

Now, number the red balls, and let Bi, i = 1, . . . , 8 be the event that the first ball
drawn is red ball number i. Then

P(R1) = P(∪8
i=1Bi) =

8∑
i=1

P(Bi) = 8
r

8r + 4w

Moreover, given that the first ball is red, the urn then contains 7 red and 4 white
balls. Thus, by an argument similar to the preceding one,

P(R2|R1) = 7r
7r + 4w

Hence, the probability that both balls are red is

P(R1R2) = 8r
8r + 4w

7r
7r + 4w

.

A generalization of Equation (2.2), which provides an expression for the proba-
bility of the intersection of an arbitrary number of events, is sometimes referred to
as themultiplication rule.

The multiplication rule

P(E1E2E3 · · ·En) = P(E1)P(E2|E1)P(E3|E1E2) · · ·P(En|E1 · · ·En−1)
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In words, the multiplication rule states that P(E1E2 · · ·En), the probability that
all of the events E1,E2, . . . ,En occur, is equal to P(E1), the probability that E1
occurs, multiplied by P(E2|E1), the conditional probability that E2 occurs given
that E1 has occurred, multiplied by P(E3|E1E2), the conditional probability that E3
occurs given that both E1 and E2 have occurred, and so on.

To prove the multiplication rule, just apply the definition of conditional proba-
bility to its right-hand side, giving

P(E1)
P(E1E2)

P(E1)

P(E1E2E3)

P(E1E2)
· · · P(E1E2 · · ·En)

P(E1E2 · · ·En−1)
= P(E1E2 · · ·En)

Example
2f

In the match problem stated in Example 5m of Chapter 2, it was shown that PN , the
probability that there are no matches when N people randomly select from among
their own N hats, is given by

PN =
N∑
i=0

(−1)i/i!

What is the probability that exactly k of the N people have matches?

Solution Let us fix our attention on a particular set of k people and determine the
probability that these k individuals have matches and no one else does. Letting E
denote the event that everyone in this set has a match, and letting G be the event
that none of the other N − k people have a match, we have

P(EG) = P(E )P(G|E )

Now, let Fi, i = 1, . . . ,k, be the event that the ith member of the set has a match.
Then

P(E ) = P(F1F2 · · ·Fk)
= P(F1)P(F2|F1)P(F3|F1F2) · · ·P(Fk|F1 · · ·Fk−1)

= 1
N

1
N − 1

1
N − 2

· · · 1
N − k + 1

= (N − k)!
N!

Given that everyone in the set of k has a match, the other N − k people will be
randomly choosing among their own N − k hats, so the probability that none of
them has a match is equal to the probability of no matches in a problem having
N − k people choosing among their own N − k hats. Therefore,

P(G|E ) = PN−k =
N−k∑
i=0

(−1)i/i!

showing that the probability that a specified set of k people have matches and no
one else does is

P(EG) = (N − k)!
N!

PN−k
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Because there will be exactly k matches if the preceding is true for any of the
(N
k

)
sets of k individuals, the desired probability is

P(exactly k matches) =
(
N
k

)
P(EG)

= PN−K/K!

L e−1/k! when N is large .

Example
2g

An ordinary deck of 52 playing cards is randomly divided into 4 piles of 13 cards
each. Compute the probability that each pile has exactly 1 ace.

Solution Define events Ei, i = 1, 2, 3, 4, as follows:

E1 = {the ace of spades is in any one of the piles}
E2 = {the ace of spades and the ace of hearts are in different piles}
E3 = {the aces of spades, hearts, and diamonds are all in different piles}
E4 = {all 4 aces are in different piles}

The desired probability is P(E1E2E3E4), and by the multiplication rule,

P(E1E2E3E4) = P(E1)P(E2|E1)P(E3|E1E2)P(E4|E1E2E3)

Now,
P(E1) = 1

since E1 is the sample space S. To determine P(E2|E1), consider the pile that con-
tains the ace of spades. Because its remaining 12 cards are equally likely to be any
12 of the remaining 51 cards, the probability that the ace of hearts is among them is
12/51, giving that

P(E2|E1) = 1 − 12
51

= 39
51

Also, given that the ace of spades and ace of hearts are in different piles, it follows
that the set of the remaining 24 cards of these two piles is equally likely to be any set
of 24 of the remaining 50 cards. As the probability that the ace of diamonds is one of
these 24 is 24/50, we see that

P(E3|E1E2) = 1 − 24
50

= 26
50

Because the same logic as used in the preceding yields that

P(E4|E1E2E3) = 1 − 36
49

= 13
49

the probability that each pile has exactly 1 ace is

P(E1E2E3E4) = 39 · 26 · 13
51 · 50 · 49

L .105

That is, there is approximately a 10.5 percent chance that each pile will contain an
ace. (Problem 13 gives another way of using the multiplication rule to solve this
problem.) .

Example
2h

Four of the eight teams in the quarterfinal round of the 2016 European Cham-
pions League Football (soccer) tournament were the acknowledged strong teams



76 Chapter 3 Conditional Probability and Independence

Barcelona, Bayern Munich, Real Madrid, and Paris St-Germain. The pairings in this
round are supposed to be totally random, in the sense that all possible pairings are
equally likely. Assuming this is so, find the probability that none of the strong teams
play each other in this round. (Surprisingly, it seems to be a common occurrence
in this tournament that, even though the pairings are supposedly random, the very
strong teams are rarely matched against each other in this round.)

Solution If we number the four strong teams 1 through 4, and then let Wi, i =
1, 2, 3, 4, be the event that team i plays one of the four weak teams, then the desired
probability is P(W1W2W3W4). By the multiplication rule

P(W1W2W3W4) = P(W1)P(W2|W1)P(W3|W1W2)P(W4|W1W2W3)

= (4/7)(3/5)(2/3)(1)

= 8/35

The preceding follows by first noting that because team 1 is equally likely to be
matched with any of the other 7 teams, we have that P(W1) = 4/7. Now, given that
W1 occurs, team 2 is equally likely to be matched with any of five teams: namely,
teams 3, 4, or any of the three weak teams not matched with team 1. As three of
these five teams are weak, we see that P(W2|W1) = 3/5. Similarly, given that events
W1 and W2 have occurred, team 3 is equally likely to be matched with any from a
set of three teams, consisting of team 4 and the remaining two weaker teams not
matched with 1 or 2. Hence, P(W3|W1W2) = 2/3. Finally, given thatW1,W2, andW3
all occur, team 4 will be matched with the remaining weak team not matched with
any of 1, 2, 3, giving that P(W4|W1W2W3) = 1. .

Remarks Our definition ofP(E|F) is consistent with the interpretation of probability
as being a long-run relative frequency. To see this, suppose that n repetitions of the
experiment are to be performed, where n is large. We claim that if we consider only
those experiments in which F occurs, then P(E|F) will equal the long-run propor-
tion of them in which E also occurs. To verify this statement, note that since P(F)

is the long-run proportion of experiments in which F occurs, it follows that in the n
repetitions of the experiment, F will occur approximately nP(F) times. Similarly, in
approximately nP(EF) of these experiments, both E and F will occur. Hence, out of
the approximately nP(F) experiments in which F occurs, the proportion of them in
which E also occurs is approximately equal to

nP(EF)

nP(F)
= P(EF)

P(F)

Because this approximation becomes exact as n becomes larger and larger, we have
the appropriate definition of P(E|F).

3.3 Bayes’s Formula
Let E and F be events. We may express E as

E = EF ∪ EFc

for, in order for an outcome to be in E, it must either be in both E and F or be in
E but not in F. (See Figure 3.1.) As EF and EFc are clearly mutually exclusive, we
have, by Axiom 3,
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P(E ) = P(EF ) + P(EFc)
= P(E|F )P(F ) + P(E|Fc)P(Fc)
= P(E|F )P(F ) + P(E|Fc)[1 − P(F)]

(3.1)

Equation (3.1) states that the probability of the event E is a weighted average of the
conditional probability of E given that F has occurred and the conditional proba-
bility of E given that F has not occurred—each conditional probability being given
as much weight as the event on which it is conditioned has of occurring. This is an
extremely useful formula, because its use often enables us to determine the prob-
ability of an event by first “conditioning” upon whether or not some second event
has occurred. That is, there are many instances in which it is difficult to compute the
probability of an event directly, but it is straightforward to compute it once we know
whether or not some second event has occurred. We illustrate this idea with some
examples.

E F

EFEF c

Figure 3.1 E = EF ∪ EFc. EF = Shaded Area; EFc = Striped Area.

Example
3a

(Part 1)

An insurance company believes that people can be divided into two classes: those
who are accident prone and those who are not. The company’s statistics show that
an accident-prone person will have an accident at some time within a fixed 1-year
period with probability .4, whereas this probability decreases to .2 for a person who
is not accident prone. If we assume that 30 percent of the population is accident
prone, what is the probability that a new policyholder will have an accident within a
year of purchasing a policy?

Solution We shall obtain the desired probability by first conditioning upon whether
or not the policyholder is accident prone. Let A1 denote the event that the policy-
holder will have an accident within a year of purchasing the policy, and let A denote
the event that the policyholder is accident prone. Hence, the desired probability is
given by

P(A1) = P(A1|A)P(A) + P(A1|Ac)P(Ac)

= (.4)(.3) + (.2)(.7) = .26 .

Example
3a

(Part 2)

Suppose that a new policyholder has an accident within a year of purchasing a policy.
What is the probability that he or she is accident prone?



78 Chapter 3 Conditional Probability and Independence

Solution The desired probability is

P(A|A1) = P(AA1)

P(A1)

= P(A)P(A1|A)

P(A1)

= (.3)(.4)
.26

= 6
13

.

Example
3b

Consider the following game played with an ordinary deck of 52 playing cards: The
cards are shuffled and then turned over one at a time. At any time, the player can
guess that the next card to be turned over will be the ace of spades; if it is, then the
player wins. In addition, the player is said to win if the ace of spades has not yet
appeared when only one card remains and no guess has yet been made. What is a
good strategy? What is a bad strategy?

Solution Every strategy has probability 1/52 of winning! To show this, we will use
induction to prove the stronger result that for an n card deck, one of whose cards
is the ace of spades, the probability of winning is 1/n, no matter what strategy is
employed. Since this is clearly true for n = 1, assume it to be true for an n − 1
card deck, and now consider an n card deck. Fix any strategy, and let p denote the
probability that the strategy guesses that the first card is the ace of spades. Given
that it does, the player’s probability of winning is 1/n. If, however, the strategy does
not guess that the first card is the ace of spades, then the probability that the player
wins is the probability that the first card is not the ace of spades, namely, (n − 1)/n,
multiplied by the conditional probability of winning given that the first card is not
the ace of spades. But this latter conditional probability is equal to the probability of
winning when using an n − 1 card deck containing a single ace of spades; it is thus,
by the induction hypothesis, 1/(n − 1). Hence, given that the strategy does not guess
the first card, the probability of winning is

n − 1
n

1
n − 1

= 1
n

Thus, letting G be the event that the first card is guessed, we obtain

P{win} = P{win|G}P(G) + P{win|Gc}(1 − P(G)) = 1
n
p + 1

n
(1 − p)

= 1
n

.

Example
3c

In answering a question on a multiple-choice test, a student either knows the answer
or guesses. Let p be the probability that the student knows the answer and 1 − p
be the probability that the student guesses. Assume that a student who guesses at
the answer will be correct with probability 1/m, where m is the number of multiple-
choice alternatives.What is the conditional probability that a student knew the answer
to a question given that he or she answered it correctly?

Solution Let C and K denote, respectively, the events that the student answers the
question correctly and the event that he or she actually knows the answer.
Now,
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P(K|C ) = P(KC )

P(C )

= P(C|K )P(K )

P(C|K )P(K ) + P(C|Kc)P(Kc)

= p
p + (1/m)(1 − p)

= mp
1 + (m − 1)p

For example, if m = 5,p = 1
2 , then the probability that the student knew the answer

to a question he or she answered correctly is 5
6 . .

Example
3d

A laboratory blood test is 95 percent effective in detecting a certain disease when it
is, in fact, present. However, the test also yields a “false positive” result for 1 percent
of the healthy persons tested. (That is, if a healthy person is tested, then, with prob-
ability .01, the test result will imply that he or she has the disease.) If .5 percent of
the population actually has the disease, what is the probability that a person has the
disease given that the test result is positive?

Solution Let D be the event that the person tested has the disease and E the event
that the test result is positive. Then the desired probability is

P(D|E) = P(DE)

P(E)

= P(E|D)P(D)

P(E|D)P(D) + P(E|Dc)P(Dc)

= (.95)(.005)
(.95)(.005) + (.01)(.995)

= 95
294

L .323

Thus, only 32 percent of those persons whose test results are positive actually have
the disease. Many students are often surprised at this result (they expect the per-
centage to be much higher, since the blood test seems to be a good one), so it is
probably worthwhile to present a second argument that, although less rigorous than
the preceding one, is probably more revealing. We now do so.

Since .5 percent of the population actually has the disease, it follows that, on
the average, 1 person out of every 200 tested will have it. The test will correctly
confirm that this person has the disease with probability .95. Thus, on the average,
out of every 200 persons tested, the test will correctly confirm that .95 person has
the disease. On the other hand, out of the (on the average) 199 healthy people, the
test will incorrectly state that (199)(.01) of these people have the disease. Hence,
for every .95 diseased persons that the test correctly states is ill, there are (on the
average) (199)(.01) healthy persons who the test incorrectly states are ill. Thus, the
proportion of time that the test result is correct when it states that a person is ill is

.95
.95 + (199)(.01)

= 95
294

L .323 .

Equation (3.1) is also useful when one has to reassess one’s personal probabili-
ties in the light of additional information. For instance, consider the examples that
follow.
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Example
3e

Consider a medical practitioner pondering the following dilemma: “If I’m at least 80
percent certain that my patient has this disease, then I always recommend surgery,
whereas if I’m not quite as certain, then I recommend additional tests that are expen-
sive and sometimes painful. Now, initially I was only 60 percent certain that Jones
had the disease, so I ordered the series A test, which always gives a positive result
when the patient has the disease and almost never does when he is healthy. The test
result was positive, and I was all set to recommend surgery when Jones informed me,
for the first time, that he was diabetic. This information complicates matters because,
although it doesn’t change my original 60 percent estimate of his chances of having
the disease in question, it does affect the interpretation of the results of the A test.
This is so because the A test, while never yielding a positive result when the patient
is healthy, does unfortunately yield a positive result 30 percent of the time in the case
of diabetic patients who are not suffering from the disease. Now what do I do? More
tests or immediate surgery?”

Solution In order to decide whether or not to recommend surgery, the doctor should
first compute her updated probability that Jones has the disease given that the A test
result was positive. LetD denote the event that Jones has the disease andE the event
that the A test result is positive. The desired conditional probability is then

P(D|E) = P(DE)

P(E)

= P(D)P(E|D)

P(E|D)P(D) + P(E|Dc)P(Dc)

= (.6)1
1(.6) + (.3)(.4)

= .833

Note that we have computed the probability of a positive test result by condition-
ing on whether or not Jones has the disease and then using the fact that because
Jones is a diabetic, his conditional probability of a positive result given that he
does not have the disease, P(E|Dc), equals .3. Hence, as the doctor should now
be more than 80 percent certain that Jones has the disease, she should recommend
surgery. .

Example
3f

At a certain stage of a criminal investigation, the inspector in charge is 60 percent
convinced of the guilt of a certain suspect. Suppose, however, that a new piece of
evidence which shows that the criminal has a certain characteristic (such as left-
handedness, baldness, or brown hair) is uncovered. If 20 percent of the population
possesses this characteristic, how certain of the guilt of the suspect should the inspec-
tor now be if it turns out that the suspect has the characteristic?

Solution Letting G denote the event that the suspect is guilty and C the event that
he possesses the characteristic of the criminal, we have

P(G|C) = P(GC)

P(C)

= P(C|G)P(G)

P(C|G)P(G) + P(C|Gc)P(Gc)
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= 1(.6)
1(.6) + (.2)(.4)

L .882

where we have supposed that the probability of the suspect having the characteristic
if he is, in fact, innocent is equal to .2, the proportion of the population possessing
the characteristic. .

Example
3g

In the world bridge championships held in Buenos Aires in May 1965, the famous
British bridge partnership of Terrence Reese and Boris Schapiro was accused of
cheating by using a system of finger signals that could indicate the number of hearts
held by the players. Reese and Schapiro denied the accusation, and eventually a
hearing was held by the British bridge league. The hearing was in the form of a
legal proceeding with prosecution and defense teams, both having the power to call
and cross-examine witnesses. During the course of the proceeding, the prosecutor
examined specific hands played by Reese and Schapiro and claimed that their play-
ing these hands was consistent with the hypothesis that they were guilty of having
illicit knowledge of the heart suit. At this point, the defense attorney pointed out
that their play of these hands was also perfectly consistent with their standard line of
play. However, the prosecution then argued that as long as their play was consistent
with the hypothesis of guilt, it must be counted as evidence toward that hypothesis.
What do you think of the reasoning of the prosecution?

Solution The problem is basically one of determining how the introduction of new
evidence (in this example, the playing of the hands) affects the probability of a par-
ticular hypothesis. If we letH denote a particular hypothesis (such as the hypothesis
that Reese and Schapiro are guilty) and E the new evidence, then

P(H|E) = P(HE)

P(E)

= P(E|H)P(H)

P(E|H)P(H) + P(E|Hc)[1 − P(H)]
(3.2)

where P(H) is our evaluation of the likelihood of the hypothesis before the intro-
duction of the new evidence. The new evidence will be in support of the hypothesis
whenever it makes the hypothesis more likely—that is, whenever P(H|E) Ú P(H).
From Equation (3.2), this will be the case whenever

P(E|H) Ú P(E|H)P(H) + P(E|Hc)[1 − P(H)]

or, equivalently, whenever

P(E|H) Ú P(E|Hc)

In other words, any new evidence can be considered to be in support of a particular
hypothesis only if its occurrence is more likely when the hypothesis is true than when
it is false. In fact, the new probability of the hypothesis depends on its initial proba-
bility and the ratio of these conditional probabilities, since, from Equation (3.2),

P(H|E) = P(H)

P(H) + [1 − P(H)]
P(E|Hc)

P(E|H)
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Hence, in the problem under consideration, the play of the cards can be con-
sidered to support the hypothesis of guilt only if such play would have been more
likely if the partnership were cheating than if it were not. As the prosecutor never
made this claim, his assertion that the evidence is in support of the guilt hypothesis
is invalid. .

Example
3h

Twins can be either identical or fraternal. Identical, also called monozygotic, twins
form when a single fertilized egg splits into two genetically identical parts. Con-
sequently, identical twins always have the same set of genes. Fraternal, also called
dizygotic, twins develop when two eggs are fertilized and implant in the uterus. The
genetic connection of fraternal twins is no more or less the same as siblings born at
separate times. A Los Angeles County, California, scientist wishing to know the cur-
rent fraction of twin pairs born in the county that are identical twins has assigned a
county statistician to study this issue. The statistician initially requested each hospital
in the county to record all twin births, indicating whether or not the resulting twins
were identical. The hospitals, however, told her that to determine whether newborn
twins were identical was not a simple task, as it involved the permission of the twins’
parents to perform complicated and expensive DNA studies that the hospitals could
not afford. After some deliberation, the statistician just asked the hospitals for data
listing all twin births along with an indication as to whether the twins were of the
same sex. When such data indicated that approximately 64 percent of twin births
were same-sexed, the statistician declared that approximately 28 percent of all twins
were identical. How did she come to this conclusion?

Solution The statistician reasoned that identical twins are always of the same sex,
whereas fraternal twins, having the same relationship to each other as any pair of
siblings, will have probability 1/2 of being of the same sex. Letting I be the event
that a pair of twins is identical, and SS be the event that a pair of twins is of the same
sex, she computed the probability P(SS) by conditioning on whether the twin pair
was identical. This gave

P(SS) = P(SS|I)P(I) + P(SS|Ic)P(Ic)

or

P(SS) = 1 * P(I) + 1
2

* [1 − P(I)] = 1
2

+ 1
2
P(I)

which, using that P(SS) L .64 yielded the result

P(I) L .28 .

The change in the probability of a hypothesis when new evidence is introduced
can be expressed compactly in terms of the change in the odds of that hypothesis,
where the concept of odds is defined as follows.

Definition
The odds of an event A are defined by

P(A)

P(Ac)
= P(A)

1 − P(A)
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That is, the odds of an event A tell how much more likely it is that the event A
occurs than it is that it does not occur. For instance, if P(A) = 2

3 , then P(A) =
2P(Ac), so the odds are 2. If the odds are equal to α, then it is common to say
that the odds are “α to 1” in favor of the hypothesis.

Consider now a hypothesis H that is true with probability P(H), and suppose
that new evidence E is introduced. Then, the conditional probabilities, given the
evidence E, that H is true and that H is not true are respectively given by

P(H|E) = P(E|H)P(H)

P(E)
P(Hc|E) = P(E|Hc)P(Hc)

P(E)

Therefore, the new odds after the evidence E has been introduced are

P(H|E)

P(Hc|E)
= P(H)

P(Hc)

P(E|H)

P(E|Hc)
(3.3)

That is, the new value of the odds ofH is the old value multiplied by the ratio of the
conditional probability of the new evidence given that H is true to the conditional
probability given thatH is not true. Thus, Equation (3.3) verifies the result of Exam-
ple 3f, since the odds, and thus the probability ofH, increase whenever the new evi-
dence is more likely whenH is true than when it is false. Similarly, the odds decrease
whenever the new evidence is more likely when H is false than when it is true.

Example
3i

An urn contains two typeA coins and one typeB coin. When a typeA coin is flipped,
it comes up heads with probability 1/4, whereas when a type B coin is flipped, it
comes up heads with probability 3/4. A coin is randomly chosen from the urn and
flipped. Given that the flip landed on heads, what is the probability that it was a type
A coin?

Solution Let A be the event that a type A coin was flipped, and let B = Ac be the
event that a type B coin was flipped. We want P(A|heads), where heads is the event
that the flip landed on heads. From Equation (3.3), we see that

P(A|heads)
P(Ac|heads) = P(A)

P(B)

P(heads|A)

P(heads|B)

= 2/3
1/3

1/4
3/4

= 2/3

Hence, the odds are 2/3 : 1, or, equivalently, the probability is 2/5 that a type A coin
was flipped. .

Equation (3.1) may be generalized as follows: Suppose that F1,F2, . . . ,Fn are
mutually exclusive events such that

n⋃
i=1

Fi = S

In other words, exactly one of the events F1,F2, . . . ,Fn must occur. By writing

E =
n⋃
i=1

EFi



84 Chapter 3 Conditional Probability and Independence

and using the fact that the events EFi, i = 1, . . . ,n are mutually exclusive, we obtain

P(E) =
n∑
i=1

P(EFi)

=
n∑
i=1

P(E|Fi)P(Fi) (3.4)

Thus, Equation (3.4), often referred to as the law of total probability, shows how,
for given events F1,F2, . . . ,Fn, of which one and only one must occur, we can com-
pute P(E) by first conditioning on which one of the Fi occurs. That is, Equation (3.4)
states that P(E) is equal to a weighted average of P(E|Fi), each term being weighted
by the probability of the event on which it is conditioned.

Example
3j

In Example 5j of Chapter 2, we considered the probability that, for a randomly shuf-
fled deck, the card following the first ace is some specified card, and we gave a
combinatorial argument to show that this probability is 1

52 . Here is a probabilistic
argument based on conditioning: Let E be the event that the card following the first
ace is some specified card, say, card x. To compute P(E), we ignore card x and con-
dition on the relative ordering of the other 51 cards in the deck. Letting O be the
ordering gives

P(E) =
∑
O

P(E|O)P(O)

Now, given O, there are 52 possible orderings of the cards, corresponding to having
card x being the ith card in the deck, i = 1,..., 52. But because all 52! possible order-
ings were initially equally likely, it follows that, conditional on O, each of the 52
remaining possible orderings is equally likely. Because card x will follow the first ace
for only one of these orderings, we have P(E|O) = 1/52, implying that P(E) = 1/52.

.
Again, let F1,...,Fn be a set of mutually exclusive and exhaustive events (mean-

ing that exactly one of these events must occur).
Suppose now that E has occurred and we are interested in determining which

one of the Fj also occurred. Then, by Equation (3.4), we have the following proposi-
tion.

Proposition
3.1 P(Fj|E) = P(EFj)

P(E)

= P(E|Fj)P(Fj)
n∑
i=1

P(E|Fi)P(Fi)

(3.5)

Equation (3.5) is known as Bayes’s formula, after the English philosopher Thomas
Bayes. If we think of the events Fj as being possible “hypotheses” about some sub-
ject matter, then Bayes’s formula may be interpreted as showing us how opinions
about these hypotheses held before the experiment was carried out [that is, the
P(Fj)] should be modified by the evidence produced by the experiment.
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Example
3k

A plane is missing, and it is presumed that it was equally likely to have gone down in
any of 3 possible regions. Let 1 − βi, i = 1, 2, 3, denote the probability that the plane
will be found upon a search of the ith region when the plane is, in fact, in that region.
(The constants βi are called overlook probabilities, because they represent the prob-
ability of overlooking the plane; they are generally attributable to the geographical
and environmental conditions of the regions.) What is the conditional probability
that the plane is in the ith region given that a search of region 1 is unsuccessful?

Solution Let Ri, i = 1, 2, 3, be the event that the plane is in region i, and let E be
the event that a search of region 1 is unsuccessful. From Bayes’s formula, we obtain

P(R1|E) = P(ER1)

P(E)

= P(E|R1)P(R1)

3∑
i=1

P(E|Ri)P(Ri)

= (β1)
1
3

(β1)
1
3 + (1) 13 + (1) 13

= β1

β1 + 2

For j = 2, 3,

P(Rj|E) = P(E|Rj)P(Rj)

P(E)

= (1) 13
(β1)

1
3 + 1

3 + 1
3

= 1
β1 + 2

j = 2, 3

Note that the updated (that is, the conditional) probability that the plane is in
region j, given the information that a search of region 1 did not find it, is greater than
the initial probability that it was in region jwhen j Z 1 and is less than the initial prob-
ability when j = 1. This statement is certainly intuitive, since not finding the plane
in region 1 would seem to decrease its chance of being in that region and increase
its chance of being elsewhere. Further, the conditional probability that the plane is
in region 1 given an unsuccessful search of that region is an increasing function of
the overlook probability β1. This statement is also intuitive, since the larger β1 is, the
more it is reasonable to attribute the unsuccessful search to “bad luck” as opposed
to the plane’s not being there. Similarly, P(Rj|E), j Z 1, is a decreasing function of
β1. .

The next example has often been used by unscrupulous probability students to
win money from their less enlightened friends.

Example
3l

Suppose that we have 3 cards that are identical in form, except that both sides of the
first card are colored red, both sides of the second card are colored black, and one
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side of the third card is colored red and the other side black. The 3 cards are mixed
up in a hat, and 1 card is randomly selected and put down on the ground. If the upper
side of the chosen card is colored red, what is the probability that the other side is
colored black?

Solution Let RR, BB, and RB denote, respectively, the events that the chosen card
is all red, all black, or the red–black card. Also, let R be the event that the upturned
side of the chosen card is red. Then, the desired probability is obtained by

P(RB|R) = P(RB ∩ R)

P(R)

= P(R|RB)P(RB)

P(R|RR)P(RR) + P(R|RB)P(RB) + P(R|BB)P(BB)

=
(
1
2

) (
1
3

)
(1)
(
1
3

)
+
(
1
2

) (
1
3

)
+ 0

(
1
3

) = 1
3

Hence, the answer is 1
3 . Some students guess 1

2 as the answer by incorrectly reasoning
that given that a red side appears, there are two equally likely possibilities: that the
card is the all-red card or the red–black card. Their mistake, however, is in assuming
that these two possibilities are equally likely. For, if we think of each card as con-
sisting of two distinct sides, then we see that there are 6 equally likely outcomes of
the experiment—namely, R1,R2,B1,B2,R3,B3—where the outcome is R1 if the first
side of the all-red card is turned face up, R2 if the second side of the all-red card
is turned face up, R3 if the red side of the red–black card is turned face up, and so
on. Since the other side of the upturned red side will be black only if the outcome is
R3, we see that the desired probability is the conditional probability of R3 given that
either R1 or R2 or R3 occurred, which obviously equals 1

3 . .

Example
3m

A new couple, known to have two children, has just moved into town. Suppose that
the mother is encountered walking with one of her children. If this child is a girl,
what is the probability that both children are girls?

Solution Let us start by defining the following events:

G1: the first (that is, the oldest) child is a girl.
G2: the second child is a girl.
G: the child seen with the mother is a girl.

Also, let B1,B2, and B denote similar events, except that “girl” is replaced by “boy.”
Now, the desired probability is P(G1G2|G), which can be expressed as
follows:

P(G1G2|G) = P(G1G2G)

P(G)

= P(G1G2)

P(G)
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Also,

P(G) = P(G|G1G2)P(G1G2) + P(G|G1B2)P(G1B2)

+ P(G|B1G2)P(B1G2) + P(G|B1B2)P(B1B2)

= P(G1G2) + P(G|G1B2)P(G1B2) + P(G|B1G2)P(B1G2)

where the final equation used the results P(G|G1G2) = 1 and P(G|B1B2) = 0. If we
now make the usual assumption that all 4 gender possibilities are equally likely, then
we see that

P(G1G2|G) =
1
4

1
4 + P(G|G1B2)/4 + P(G|B1G2)/4

= 1
1 + P(G|G1B2) + P(G|B1G2)

Thus, the answer depends on whatever assumptions we want to make about the con-
ditional probabilities that the child seen with the mother is a girl given the event
G1B2 and that the child seen with the mother is a girl given the event G2B1. For
instance, if we want to assume, on the one hand, that, independently of the gen-
ders of the children, the child walking with the mother is the elder child with some
probability p, then it would follow that

P(G|G1B2) = p = 1 − P(G|B1G2)

implying under this scenario that

P(G1G2|G) = 1
2

If, on the other hand, we were to assume that if the children are of different genders,
then the mother would choose to walk with the girl with probability q, independently
of the birth order of the children, then we would have

P(G|G1B2) = P(G|B1G2) = q

implying that

P(G1G2|G) = 1
1 + 2q

For instance, if we took q = 1, meaning that the mother would always choose to walk
with a daughter, then the conditional probability that she has two daughters would
be 1

3 , which is in accord with Example 2b because seeing the mother with a daughter
is now equivalent to the event that she has at least one daughter.

Hence, as stated, the problem is incapable of solution. Indeed, even when the
usual assumption about equally likely gender probabilities is made, we still need to
make additional assumptions before a solution can be given. This is because the sam-
ple space of the experiment consists of vectors of the form s1, s2, i, where s1 is the
gender of the older child, s2 is the gender of the younger child, and i identifies the
birth order of the child seen with the mother. As a result, to specify the probabilities
of the events of the sample space, it is not enough to make assumptions only about
the genders of the children; it is also necessary to assume something about the con-
ditional probabilities as to which child is with the mother given the genders of the
children. .
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Example
3n

A bin contains 3 types of disposable flashlights. The probability that a type 1 flash-
light will give more than 100 hours of use is .7, with the corresponding probabilities
for type 2 and type 3 flashlights being .4 and .3, respectively. Suppose that 20 per-
cent of the flashlights in the bin are type 1, 30 percent are type 2, and 50 percent are
type 3.

(a) What is the probability that a randomly chosen flashlight will give more than
100 hours of use?

(b) Given that a flashlight lastedmore than 100 hours, what is the conditional prob-
ability that it was a type j flashlight, j = 1, 2, 3?

Solution (a) Let A denote the event that the flashlight chosen will give more than
100 hours of use, and let Fj be the event that a type j flashlight is chosen, j = 1, 2, 3.
To compute P(A), we condition on the type of the flashlight, to obtain

P(A) = P(A|F1)P(F1) + P(A|F2)P(F2) + P(A|F3)P(F3)

= (.7)(.2) + (.4)(.3) + (.3)(.5) = .41

There is a 41 percent chance that the flashlight will last for more than 100 hours.
(b) The probability is obtained by using Bayes’s formula:

P(Fj|A) = P(AFj)

P(A)

= P(A|Fj)P(Fj)

.41

Thus,

P(F1|A) = (.7)(.2)/.41 = 14/41

P(F2|A) = (.4)(.3)/.41 = 12/41

P(F3|A) = (.3)(.5)/.41 = 15/41

For instance, whereas the initial probability that a type 1 flashlight is chosen is only
.2, the information that the flashlight has lasted more than 100 hours raises the prob-
ability of this event to 14/41 L .341. .

Example
3o

A crime has been committed by a solitary individual, who left some DNA at the
scene of the crime. Forensic scientists who studied the recovered DNA noted that
only five strands could be identified and that each innocent person, independently,
would have a probability of 10−5 of having his or her DNAmatch on all five strands.
The district attorney supposes that the perpetrator of the crime could be any of the
1 million residents of the town. Ten thousand of these residents have been released
from prison within the past 10 years; consequently, a sample of their DNA is on file.
Before any checking of the DNA file, the district attorney thinks that each of the
10,000 ex-criminals has probability α of being guilty of the new crime, whereas each
of the remaining 990,000 residents has probability β, where α = cβ. (That is, the
district attorney supposes that each recently released convict is c times as likely to
be the crime’s perpetrator as is each town member who is not a recently released
convict.) When the DNA that is analyzed is compared against the database of the
10,000 ex-convicts, it turns out that A. J. Jones is the only one whose DNA matches
the profile. Assuming that the district attorney’s estimate of the relationship between
α and β is accurate, what is the probability that A. J. is guilty?
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Solution To begin, note that because probabilities must sum to 1, we have

1 = 10,000α + 990,000β = (10,000c + 990,000)β

Thus,

β = 1
10,000c + 990,000

, α = c
10,000c + 990,000

Now, let G be the event that A. J. is guilty, and let M denote the event that A. J. is
the only one of the 10,000 on file to have a match. Then,

P(G|M) = P(GM)

P(M)

= P(G)P(M|G)

P(M|G)P(G) + P(M|Gc)P(Gc)

On the one hand, if A. J. is guilty, then he will be the only one to have a DNAmatch
if none of the others on file have a match. Therefore,

P(M|G) = (1 − 10−5)9999

On the other hand, if A. J. is innocent, then in order for him to be the only match, his
DNAmust match (which will occur with probability 10−5), all others in the database
must be innocent, and none of these others can have a match. Now, given that A. J.
is innocent, the conditional probability that all the others in the database are also
innocent is

P(all others innocent|AJ innocent) = P(all in database innocent)
P(AJ innocent)

= 1 − 10,000α
1 − α

Also, the conditional probability, given their innocence, that none of the others in
the database will have a match is (1 − 10−5)9999. Therefore,

P(M|Gc) = 10−5
(
1 − 10,000α

1 − α

)
(1 − 10−5)9999

Because P(G) = α, the preceding formula gives

P(G|M) = α

α + 10−5(1 − 10,000α)
= 1

.9 + 10−5

α

Thus, if the district attorney’s initial thoughts were that an arbitrary ex-convict was
100 times more likely to have committed the crime than was a nonconvict (that is,
c = 100), then α = 1

19,900 and

P(G|M) = 1
1.099

L 0.9099

If the district attorney initially thought that the appropriate ratio was c = 10, then

α = 1
109, 000

and

P(G|M) = 1
1.99

L 0.5025
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If the district attorney initially thought that the criminal was equally likely to be any
of the members of the town (c = 1), then α = 10−6 and

P(G|M) = 1
10.9

L 0.0917

Thus, the probability ranges from approximately 9 percent when the district attor-
ney’s initial assumption is that all the members of the population have the same
chance of being the perpetrator to approximately 91 percent when she assumes
that each ex-convict is 100 times more likely to be the criminal than is a specified
townsperson who is not an ex-convict. .

3.4 Independent Events
The previous examples in this chapter show that P(E|F), the conditional probability
of E given F, is not generally equal to P(E), the unconditional probability of E.
In other words, knowing that F has occurred generally changes the chances of E’s
occurrence. In the special cases where P(E|F) does in fact equal P(E), we say that E
is independent of F. That is, E is independent of F if knowledge that F has occurred
does not change the probability that E occurs.

Since P(E|F) = P(EF)/P(F), it follows that E is independent of F if

P(EF) = P(E)P(F) (4.1)

The fact that Equation (4.1) is symmetric in E and F shows that whenever E is inde-
pendent of F, F is also independent of E. We thus have the following definition.

Definition
Two events E and F are said to be independent if Equation (4.1) holds.
Two events E and F that are not independent are said to be dependent.

Example
4a

A card is selected at random from an ordinary deck of 52 playing cards. If E is the
event that the selected card is an ace and F is the event that it is a spade, then E
and F are independent. This follows because P(EF) = 1

52 , whereas P(E) = 4
52 and

P(F) = 13
52 . .

Example
4b

Two coins are flipped, and all 4 outcomes are assumed to be equally likely. If E is
the event that the first coin lands on heads and F the event that the second lands
on tails, then E and F are independent, since P(EF) = P({(H,T)}) = 1

4 , whereas
P(E) = P({(H,H), (H,T)}) = 1

2 and P(F) = P({(H,T), (T,T)}) = 1
2 . .

Example
4c

Suppose that we toss 2 fair dice. Let E1 denote the event that the sum of the dice is
6 and F denote the event that the first die equals 4. Then

P(E1F) = P({(4, 2)}) = 1
36

whereas

P(E1)P(F) =
(

5
36

)(
1
6

)
= 5

216
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Hence, E1 and F are not independent. Intuitively, the reason for this is clear because
if we are interested in the possibility of throwing a 6 (with 2 dice), we shall be quite
happy if the first die lands on 4 (or, indeed, on any of the numbers 1, 2, 3, 4, and 5),
for then we shall still have a possibility of getting a total of 6. If, however, the first
die landed on 6, we would be unhappy because we would no longer have a chance
of getting a total of 6. In other words, our chance of getting a total of 6 depends on
the outcome of the first die; thus, E1 and F cannot be independent.

Now, suppose that we let E2 be the event that the sum of the dice equals 7. Is E2
independent of F? The answer is yes, since

P(E2F) = P({(4, 3)}) = 1
36

whereas

P(E2)P(F) =
(
1
6

)(
1
6

)
= 1

36

We leave it for the reader to present the intuitive argument why the event that
the sum of the dice equals 7 is independent of the outcome on the first die. .

Example
4d

If we let E denote the event that the next president is a Republican and F the event
that there will be a major earthquake within the next year, then most people would
probably be willing to assume that E and F are independent. However, there would
probably be some controversy over whether it is reasonable to assume that E is
independent of G, where G is the event that there will be a recession within two
years after the election. .

We now show that if E is independent of F, then E is also independent of Fc.

Proposition
4.1

If E and F are independent, then so are E and Fc.

Proof Assume that E and F are independent. Since E = EF ∪ EFc and EF and EFc

are obviously mutually exclusive, we have

P(E) = P(EF) + P(EFc)

= P(E)P(F) + P(EFc)

or, equivalently,

P(EFc) = P(E)[1 − P(F)]

= P(E)P(Fc)

and the result is proved.

Thus, ifE is independent of F, then the probability ofE’s occurrence is unchanged
by information as to whether or not F has occurred.

Suppose now that E is independent of F and is also independent of G. Is E
then necessarily independent of FG? The answer, somewhat surprisingly, is no, as
the following example demonstrates.

Example
4e

Two fair dice are thrown. Let E denote the event that the sum of the dice is 7. Let F
denote the event that the first die equals 4 and G denote the event that the second
die equals 3. From Example 4c, we know that E is independent of F, and the same
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reasoning as applied there shows that E is also independent of G; but clearly, E is
not independent of FG [since P(E|FG) = 1]. .

It would appear to follow from Example 4e that an appropriate definition of the
independence of three events E, F, and G would have to go further than merely

assuming that all of the

(
3
2

)
pairs of events are independent. We are thus led to the

following definition.

Definition
Three events E, F, and G are said to be independent if

P(EFG) = P(E)P(F)P(G)

P(EF) = P(E)P(F)

P(EG) = P(E)P(G)

P(FG) = P(F)P(G)

Note that if E, F, and G are independent, then E will be independent of any
event formed from F and G. For instance, E is independent of F ∪ G, since

P[E(F ∪ G)] = P(EF ∪ EG)

= P(EF) + P(EG) − P(EFG)

= P(E)P(F) + P(E)P(G) − P(E)P(FG)

= P(E)[P(F) + P(G) − P(FG)]

= P(E)P(F ∪ G)

Of course, we may also extend the definition of independence to more than
three events. The events E1,E2, . . . ,En are said to be independent if for every subset
E1′ ,E2′ , . . . ,Er′ , r … n of these events,

P(E1′E2′ · · ·Er′) = P(E1′)P(E2′) · · ·P(Er′)

Finally, we define an infinite set of events to be independent if every finite subset of
those events is independent.

Sometimes, a probability experiment under consideration consists of performing
a sequence of subexperiments. For instance, if the experiment consists of continually
tossing a coin, we may think of each toss as being a subexperiment. In many cases,
it is reasonable to assume that the outcomes of any group of the subexperiments
have no effect on the probabilities of the outcomes of the other subexperiments. If
such is the case, we say that the subexperiments are independent. More formally,
we say that the subexperiments are independent if E1,E2, . . . ,En, . . . is necessarily
an independent sequence of events whenever Ei is an event whose occurrence is
completely determined by the outcome of the ith subexperiment.

If each subexperiment has the same set of possible outcomes, then the subex-
periments are often called trials.

Example
4f

An infinite sequence of independent trials is to be performed. Each trial results in a
success with probability p and a failure with probability 1 − p. What is the proba-
bility that

(a) at least 1 success occurs in the first n trials;
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(b) exactly k successes occur in the first n trials;
(c) all trials result in successes?

Solution In order to determine the probability of at least 1 success in the first n
trials, it is easiest to compute first the probability of the complementary event: that
of no successes in the first n trials. If we let Ei denote the event of a failure on the ith
trial, then the probability of no successes is, by independence,

P(E1E2 · · ·En) = P(E1)P(E2) · · ·P(En) = (1 − p)n

Hence, the answer to part (a) is 1 − (1 − p)n.
To compute the answer to part (b), consider any particular sequence of the first

n outcomes containing k successes and n − k failures. Each one of these sequences
will, by the assumed independence of trials, occur with probability pk(1 − p)n−k.

Since there are

(
n
k

)
such sequences [there are n!/k!(n − k)! permutations of k

successes and n − k failures], the desired probability in part (b) is

P{exactly k successes} =
(
n
k

)
pk(1 − p)n−k

To answer part (c), we note that, by part (a), the probability of the first n trials
all resulting in success is given by

P(Ec1E
c
2 · · ·Ecn) = pn

Thus, using the continuity property of probabilities (Section 2.6), we see that the
desired probability is given by

P

⎛
⎝ q⋂
i=1

Eci

⎞
⎠ = P

⎛
⎝ lim
n→q

n⋂
i=1

Eci

⎞
⎠

= lim
n→q

P

⎛
⎝ n⋂
i=1

Eci

⎞
⎠

= lim
n
pn =

{
0 if p < 1
1 if p = 1 .

Example
4g

A system composed of n separate components is said to be a parallel system if it
functions when at least one of the components functions. (See Figure 3.2.) For such
a system, if component i, which is independent of the other components, functions
with probability pi, i = 1, . . . ,n, what is the probability that the system functions?

Solution Let Ai denote the event that component i functions. Then,

P{system functions} = 1 − P{system does not function}
= 1 − P{all components do not function}

= 1 − P

⎛
⎝⋂

i

Ac
i

⎞
⎠

= 1 −
n∏
i=1

(1 − pi) by independence .
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A B

1

2

3

n

Figure 3.2 Parallel System: Functions if Current Flows from A to B.

Example
4h

Independent trials consisting of rolling a pair of fair dice are performed. What is the
probability that an outcome of 5 appears before an outcome of 7 when the outcome
of a roll is the sum of the dice?

Solution If we let En denote the event that no 5 or 7 appears on the first n − 1 trials
and a 5 appears on the nth trial, then the desired probability is

P

⎛
⎝ q⋃
n=1

En

⎞
⎠ =

q∑
n=1

P(En)

Now, since P{5 on any trial} = 4
36 and P{7 on any trial} = 6

36 , we obtain, by the
independence of trials,

P(En) =
(
1 − 10

36

)n−1 4
36

Thus,

P

⎛
⎝ q⋃
n=1

En

⎞
⎠ = 1

9

q∑
n=1

(
13
18

)n−1

= 1
9

1

1 − 13
18

= 2
5

This result could also have been obtained by the use of conditional probabilities.
If we let E be the event that a 5 occurs before a 7, then we can obtain the desired
probability, P(E), by conditioning on the outcome of the first trial, as follows: Let
F be the event that the first trial results in a 5, let G be the event that it results in
a 7, and let H be the event that the first trial results in neither a 5 nor a 7. Then,
conditioning on which one of these events occurs gives

P(E) = P(E|F)P(F) + P(E|G)P(G) + P(E|H)P(H)

However,

P(E|F) = 1

P(E|G) = 0

P(E|H) = P(E)
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The first two equalities are obvious. The third follows because if the first outcome
results in neither a 5 nor a 7, then at that point the situation is exactly as it was when
the problem first started—namely, the experimenter will continually roll a pair of fair
dice until either a 5 or 7 appears. Furthermore, the trials are independent; therefore,
the outcome of the first trial will have no effect on subsequent rolls of the dice. Since
P(F) = 4

36 ,P(G) = 6
36 , and P(H) = 26

36 , it follows that

P(E) = 1
9

+ P(E)
13
18

or

P(E) = 2
5

The reader should note that the answer is quite intuitive. That is, because a 5
occurs on any roll with probability 4

36 and a 7 with probability 6
36 , it seems intuitive

that the odds that a 5 appears before a 7 should be 6 to 4 against. The probability
should then be 4

10 , as indeed it is.
The same argument shows that if E and F are mutually exclusive events of an

experiment, then, when independent trials of the experiment are performed, the
event E will occur before the event F with probability

P(E)

P(E) + P(F)
.

Example
4i

Suppose there are n types of coupons and that each new coupon collected is, inde-
pendent of previous selections, a type i coupon with probability pi,

∑n
i=1 pi = 1.

Suppose k coupons are to be collected. If Ai is the event that there is at least one
type i coupon among those collected, then, for i Z j, find

(a) P(Ai)

(b) P(Ai ∪ Aj)

(c) P(Ai|Aj)

Solution

P(Ai) = 1 − P(Ac
i )

= 1 − P{no coupon is type i}
= 1 − (1 − pi)k

where the preceding used that each coupon is, independently, not of type iwith prob-
ability 1 − pi. Similarly,

P(Ai ∪ Aj) = 1 − P
((
Ai ∪ Aj

)c)
= 1 − P{no coupon is either type i or type j}
= 1 − (1 − pi − pj)k

where the preceding used that each coupon is, independently, neither of type i nor
type j with probability 1 − pi − pj.

To determine P(Ai|Aj), we will use the identity

P(Ai ∪ Aj) = P(Ai) + P(Aj) − P(AiAj)
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which, in conjunction with parts (a) and (b), yields

P(AiAj) = 1 − (1 − pi)k + 1 − (1 − pj)k − [1 − (1 − pi − pj)k]

= 1 − (1 − pi)k − (1 − pj)k + (1 − pi − pj)k

Consequently,

P(Ai|Aj) = P(AiAj)

P(Aj)
= 1 − (1 − pi)k − (1 − pj)k + (1 − pi − pj)k

1 − (1 − pj)k
.

The next example presents a problem that occupies an honored place in the his-
tory of probability theory. This is the famous problem of the points. In general terms,
the problem is this: Two players put up stakes and play some game, with the stakes
to go to the winner of the game. An interruption requires them to stop before either
has won and when each has some sort of a “partial score.” How should the stakes be
divided?

This problem was posed to the French mathematician Blaise Pascal in 1654 by
the Chevalier de Méré, who was a professional gambler at that time. In attacking
the problem, Pascal introduced the important idea that the proportion of the prize
deserved by the competitors should depend on their respective probabilities of win-
ning if the game were to be continued at that point. Pascal worked out some special
cases and, more importantly, initiated a correspondence with the famous French-
man Pierre de Fermat, who had a reputation as a great mathematician. The resulting
exchange of letters not only led to a complete solution to the problem of the points,
but also laid the framework for the solution to many other problems connected with
games of chance. This celebrated correspondence, considered by some as the birth
date of probability theory, was also important in stimulating interest in probability
among the mathematicians in Europe, for Pascal and Fermat were both recognized
as being among the foremost mathematicians of the time. For instance, within a short
time of their correspondence, the young Dutch mathematician Christiaan Huygens
came to Paris to discuss these problems and solutions, and interest and activity in
this new field grew rapidly.

Example
4j

The problem of the points

Independent trials resulting in a success with probability p and a failure with proba-
bility 1 − p are performed. What is the probability that n successes occur before m
failures? If we think of A and B as playing a game such that A gains 1 point when a
success occurs and B gains 1 point when a failure occurs, then the desired probability
is the probability that A would win if the game were to be continued in a position
where A needed n and B needed m more points to win.

Solution We shall present two solutions. The first comes from Pascal and the second
from Fermat.

Let us denote by Pn,m the probability that n successes occur before m failures.
By conditioning on the outcome of the first trial, we obtain

Pn,m = pPn−1,m + (1 − p)Pn,m−1 n Ú 1,m Ú 1

(Why? Reason it out.) Using the obvious boundary conditions Pn, 0 = 0,P0,m = 1,
we can solve these equations for Pn,m. Rather than go through the tedious details,
let us instead consider Fermat’s solution.
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Fermat argued that in order for n successes to occur before m failures, it is nec-
essary and sufficient that there be at least n successes in the first m + n − 1 trials.
(Even if the game were to end before a total ofm + n − 1 trials were completed, we
could still imagine that the necessary additional trials were performed.) This is true,
for if there are at least n successes in the first m + n − 1 trials, there could be at
mostm − 1 failures in thosem + n − 1 trials; thus, n successes would occur before
m failures. If, however, there were fewer than n successes in the first m + n − 1
trials, there would have to be at least m failures in that same number of trials; thus,
n successes would not occur before m failures.

Hence, since, as shown in Example 4f, the probability of exactly k successes in

m + n − 1 trials is

(
m + n − 1

k

)
pk(1 − p)m+n−1−k, it follows that the desired

probability of n successes before m failures is

Pn,m =
m+n−1∑
k=n

(
m + n − 1

k

)
pk(1 − p)m+n−1−k .

The following example gives another instance where determining the probability
that a player wins a match is made easier by assuming that the play continues even
after the match winner has been determined.

Example
4k

Service protocol in a serve and rally game

Consider a serve and rally match (such as volleyball, badminton, or squash) between
two players, A and B. The match consists of a sequence of rallies, with each rally
beginning with a serve by one of the players and continuing until one of the players
has won the rally. The winner of the rally receives a point, and the match ends when
one of the players has won a total of n points, with that player being declared the
winner of the match. Suppose whenever a rally begins with A as the server, that A
wins that rally with probability pA and that B wins it with probability qA = 1 − pA,
and that a rally that begins with B as the server is won by A with probability pB and
by B with probability qB = 1 − pB. Player A is to be the initial server. There are
two possible server protocols that are under consideration: “winner serves,” which
means that the winner of a rally is the server for the next rally, or “alternating serve,”
which means that the server alternates from rally to rally, so that no two consecutive
rallies have the same server. Thus, for instance, if n = 3, then the successive servers
under the “winner serves” protocol would be A,A,B,A,A if A wins the first point,
thenB the next, thenAwins the next two. On the other hand, the sequence of servers
under the “alternating serve” protocol will always beA,B,A,B,A, ... until the match
winner is decided. If you were player A, which protocol would you prefer?

Solution Surprisingly, it turns out that it makes no difference, in that the probability
that A is the match winner is the same under either protocol. To show that this is
the case, it is advantageous to suppose that the players continue to play until a total
of 2n − 1 rallies have been completed. The first player to win n rallies would then
be the one who has won at least n of the 2n − 1 rallies. To begin, note that if the
alternating serve protocol is being used, then player A will serve exactly n times and
player B will serve exactly n − 1 times in the 2n − 1 rallies.

Now consider the winner serve protocol, again assuming that the players con-
tinue to play until 2n − 1 rallies have been completed. Because it makes no differ-
ence who serves the “extra rallies” after the match winner has been decided, suppose
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that at the point at which the match has been decided (because one of the players
has won n points), the remainder (if there are any) of the 2n − 1 rallies are all served
by the player who lost the match. Note that this modified service protocol does not
change the fact that the winner of the match will still be the player who wins at least
n of the 2n − 1 rallies. We claim that under this modified service protocol, A will
always serve n times and B will always serve n − 1 times. Two cases show this.

Case 1: A wins the match.
Because A serves first, it follows that A’s second serve will immediately follow A’s
first point;A’s third serve will immediately followA’s second point; and, in particular,
A’s nth serve will immediately followA’s (n − 1) point. But this will be the last serve
ofA before the match result is decided. This is so because eitherA will win the point
on that serve and so have n points, or A will lose the point and so the serve will
switch to, and remain with, B until A wins point number n. Thus, provided that A
wins the match, it follows that A would have served a total of n times at the moment
the match is decided. Because, by the modified service protocol, A will never again
serve, it follows in this case that A serves exactly n times.

Case 2: B wins the match.
Because A serves first, B’s first serve will come immediately after B’s first point; B’s
second serve will come immediately after B’s second point; and, in particular, B’s
(n − 1) serve will come immediately after B’s (n − 1) point. But that will be the
last serve of B before the match is decided because either B will win the point on
that serve and so have n points, or B will lose the point and so the serve will switch
to, and remain with, A until B wins point number n. Thus, provided that B wins the
match, we see that B would have served a total of n − 1 times at the moment the
match is decided. Because, by the modified service protocol,Bwill never again serve,
it follows in this case that B serves exactly n − 1 times, and, as there are a total of
2n − 1 rallies, that A serves exactly n times.

Thus, we see that under either protocol, A will always serve n times and B will
serve n − 1 times and the winner of the match will be the one who wins at least
n points. But since A wins each rally that he serves with probability pA and wins
each rally that B serves with probability pB it follows that the probability that A is
the match winner is, under either protocol, equal to the probability that there are at
least n successes in 2n − 1 independent trials, when n of these trials result in a success
with probability pA and the other n − 1 trials result in a success with probability pB.

Consequently, the win probabilities for both protocols are the same. .

Our next two examples deal with gambling problems, with the first having a
surprisingly elegant analysis.∗

Example
4l

Suppose that initially there are r players, with player i having ni units, ni > 0, i =
1, . . . , r. At each stage, two of the players are chosen to play a game, with the winner
of the game receiving 1 unit from the loser. Any player whose fortune drops to 0 is
eliminated, and this continues until a single player has all n K

∑r
i=1 ni units, with

that player designated as the victor. Assuming that the results of successive games
are independent and that each game is equally likely to be won by either of its two
players, find Pi, the probability that player i is the victor.

Solution To begin, suppose that there are n players, with each player initially having
1 unit. Consider player i. Each stage she plays will be equally likely to result in her
either winning or losing 1 unit, with the results from each stage being independent.

∗The remainder of this section should be considered optional.
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In addition, she will continue to play stages until her fortune becomes either 0 or
n. Because this is the same for all n players, it follows that each player has the same
chance of being the victor, implying that each player has probability 1/n of being the
victor. Now, suppose these n players are divided into r teams, with team i containing
ni players, i = 1, . . . , r. Then, the probability that the victor is a member of team i is
ni/n. But because

(a) team i initially has a total fortune of ni units, i = 1, . . . , r, and
(b) each game played by members of different teams is equally likely to be won

by either player and results in the fortune of members of the winning team
increasing by 1 and the fortune of the members of the losing team decreasing
by 1,

it is easy to see that the probability that the victor is from team i is exactly the prob-
ability we desire. Thus, Pi = ni/n. Interestingly, our argument shows that this result
does not depend on how the players in each stage are chosen. .

In the gambler’s ruin problem, there are only 2 gamblers, but they are not assumed
to be of equal skill.

Example
4m

The gambler’s ruin problem

Two gamblers, A and B, bet on the outcomes of successive flips of a coin. On each
flip, if the coin comes up heads, A collects 1 unit from B, whereas if it comes up tails,
A pays 1 unit to B. They continue to do this until one of them runs out of money.
If it is assumed that the successive flips of the coin are independent and each flip
results in a head with probability p, what is the probability that A ends up with all
the money if he starts with i units and B starts with N − i units?

Solution Let E denote the event that A ends up with all the money when he starts
with i and B starts with N − i, and to make clear the dependence on the initial
fortune of A, let Pi = P(E). We shall obtain an expression for P(E) by conditioning
on the outcome of the first flip as follows: Let H denote the event that the first flip
lands on heads; then

Pi = P(E) = P(E|H)P(H) + P(E|Hc)P(Hc)

= pP(E|H) + (1 − p)P(E|Hc)

Now, given that the first flip lands on heads, the situation after the first bet is that
A has i + 1 units and B hasN − (i + 1). Since the successive flips are assumed to be
independent with a common probability p of heads, it follows that from that point
on, A’s probability of winning all the money is exactly the same as if the game were
just starting with A having an initial fortune of i + 1 and B having an initial fortune
of N − (i + 1). Therefore,

P(E|H) = Pi+1

and similarly,
P(E|Hc) = Pi−1

Hence, letting q = 1 − p, we obtain

Pi = pPi+1 + qPi−1 i = 1, 2, . . . ,N − 1 (4.2)
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By making use of the obvious boundary conditions P0 = 0 and PN = 1, we shall
now solve Equation (4.2). Since p + q = 1, these equations are equivalent to

pPi + qPi = pPi+1 + qPi−1

or
Pi+1 − Pi = q

p
(Pi − Pi−1) i = 1, 2, . . . ,N − 1 (4.3)

Hence, since P0 = 0, we obtain, from Equation (4.3),

P2 − P1 = q
p

(P1 − P0) = q
p
P1

P3 − P2 = q
p

(P2 − P1) =
(
q
p

)2

P1

.

.

. (4.4)

Pi − Pi−1 = q
p

(Pi−1 − Pi−2) =
(
q
p

)i−1

P1

.

.

.

PN − PN−1 = q
p

(PN−1 − PN−2) =
(
q
p

)N−1

P1

Adding the first i − 1 equations of (4.4) yields

Pi − P1 = P1

[(
q
p

)
+
(
q
p

)2

+ · · · +
(
q
p

)i−1
]

or

Pi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − (q/p)i

1 − (q/p)
P1 if

q
p

Z 1

iP1 if
q
p

= 1

Using the fact that PN = 1, we obtain

P1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − (q/p)
1 − (q/p)N

if p Z 1
2

1
N

if p = 1
2

Hence,

Pi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − (q/p)i

1 − (q/p)N
if p Z 1

2

i
N

if p = 1
2

(4.5)

Let Qi denote the probability that B winds up with all the money when A starts
with i and B starts withN − i. Then, by symmetry to the situation described, and on
replacing p by q and i by N − i, it follows that
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Qi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − (p/q)N−i

1 − (p/q)N
if q Z 1

2

N − i
N

if q = 1
2

Moreover, since q = 1
2 is equivalent to p = 1

2 , we have, when q Z 1
2 ,

Pi + Qi = 1 − (q/p)i

1 − (q/p)N
+ 1 − (p/q)N−i

1 − (p/q)N

= pN − pN(q/p)i

pN − qN
+ qN − qN(p/q)N−i

qN − pN

= pN − pN−iqi − qN + qipN−i

pN − qN

= 1

This result also holds when p = q = 1
2 , so

Pi + Qi = 1

In words, this equation states that with probability 1, either A or B will wind
up with all of the money; in other words, the probability that the game continues
indefinitely with A’s fortune always being between 1 and N − 1 is zero. (The reader
must be careful because, a priori, there are three possible outcomes of this gambling
game, not two: Either A wins, or B wins, or the game goes on forever with nobody
winning. We have just shown that this last event has probability 0.)

As a numerical illustration of the preceding result, if A were to start with 5 units
and B with 10, then the probability of A’s winning would be 1

3 if p were 1
2 , whereas

it would jump to

1 −
(
2
3

)5
1 −

(
2
3

)15 L .87

if p were .6.
A special case of the gambler’s ruin problem, which is also known as the prob-

lem of duration of play, was proposed to Huygens by Fermat in 1657. The version
Huygens proposed, which he himself solved, was that A and B have 12 coins each.
They play for these coins in a game with 3 dice as follows: Whenever 11 is thrown (by
either—it makes no difference who rolls the dice), A gives a coin to B. Whenever 14
is thrown, B gives a coin to A. The person who first wins all the coins wins the game.
Since P{roll 11} = 27

216 and P{roll 14} = 15
216 , we see from Example 4h that, forA, this

is just the gambler’s ruin problem with p = 15
42 , i = 12, and N = 24. The general form

of the gambler’s ruin problem was solved by the mathematician James Bernoulli and
published 8 years after his death in 1713.

For an application of the gambler’s ruin problem to drug testing, suppose that
two new drugs have been developed for treating a certain disease. Drug i has a cure
rate pi, i = 1, 2, in the sense that each patient treated with drug i will be cured with
probability pi. These cure rates are, however, not known, and we are interested in
finding a method for deciding whether p1 > p2 or p2 > p1. To decide on one of these
alternatives, consider the following test: Pairs of patients are to be treated sequen-
tially, with one member of the pair receiving drug 1 and the other drug 2. The results
for each pair are determined, and the testing stops when the cumulative number of
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cures from one of the drugs exceeds the cumulative number of cures from the other
by some fixed, predetermined number. More formally, let

Xj =
{
1 if the patient in the jth pair that receives drug 1 is cured
0 otherwise

Yj =
{
1 if the patient in the jth pair that receives drug 2 is cured
0 otherwise

For a predetermined positive integer M, the test stops after pair N, where N is
the first value of n such that either

X1 + · · · + Xn − (Y1 + · · · + Yn) = M

or
X1 + · · · + Xn − (Y1 + · · · + Yn) = −M

In the former case, we assert that p1 > p2 and in the latter that p2 > p1.
In order to help ascertain whether the foregoing is a good test, one thing we

would like to know is the probability that it leads to an incorrect decision. That
is, for given p1 and p2, where p1 > p2, what is the probability that the test will
incorrectly assert that p2 > p1? To determine this probability, note that after each
pair is checked, the cumulative difference of cures using drug 1 versus drug 2 will go
up by 1 with probability p1(1 − p2)—since this is the probability that drug 1 leads to
a cure and drug 2 does not—or go down by 1 with probability (1 − p1)p2, or remain
the same with probability p1p2 + (1 − p1)(1 − p2). Hence, if we consider only those
pairs in which the cumulative difference changes, then the difference will go up by 1
with probability

p = P{up 1|up 1 or down 1}
= p1(1 − p2)
p1(1 − p2) + (1 − p1)p2

and down by 1 with probability

1 − p = p2(1 − p1)
p1(1 − p2) + (1 − p1)p2

Thus, the probability that the test will assert that p2 > p1 is equal to the prob-
ability that a gambler who wins each (one-unit) bet with probability p will go down
M before going up M. But Equation (4.5), with i = M,N = 2M, shows that this
probability is given by

p = P{test asserts that p2 > p1}

= 1 −
1 −

(
1 − p
p

)M

1 −
(
1 − p
p

)2M

= 1 − 1

1 +
(
1 − p
p

)M

= 1
1 + γM
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where

γ = p
1 − p

= p1(1 − p2)
p2(1 − p1)

For instance, if p1 = .6 and p2 = .4, then the probability of an incorrect decision is
.017 whenM = 5 and reduces to .0003 whenM = 10. .

Example
4n

A total of 64 teams are selected to play in the end of season NCAA college basket-
ball tournament. These 64 are divided into four groups, called brackets, of size 16
each, with the teams in each bracket being given seedings ranging from 1 (the top
rated team in the bracket) to 16 (the lowest rated team in the bracket). The teams in
each bracket play each other in a knockout style tournament, meaning a loss knocks
a team out of the tournament. Naming a team by its seeding, the schedule of games
to be played by the teams in a bracket is as given by the following graph:

(1,16)

(8,9)

(5,12)

(4,13)

(6,11)

(3,14)

(7,10)

(2,15)

Figure 3.3 NCAA Tournament Bracket Format
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Thus, for instance, teams 1 and 16 play a game in round one, as do teams 8
and 9, with the winners of these games then playing each other in round two. Let
r(i, j) = r(j, i), i Z j denote the round in which i and j would play if both teams win
up to that point. That is, r(i, j) = k if i and j would play in round k if each won its first
k − 1 games. For instance, r(1, 16) = 1, r(1, 8) = 2, r(1, 5) = 3, r(1, 6) = 4.

Let us focus on a single one of the brackets, and let us suppose that, no mat-
ter what has previously occurred, if i and j ever play each other then i will win with
probability pi,j = 1 − pj,i. Let Pi be the probability that team i is the winner of the
bracket, i = 1, . . . , 16. Because Pi is the probability that i wins 4 games, we will com-
pute the values P1, . . . ,P16 by determining the quantities Pi(k), i = 1, . . . , 16, where
Pi(k) is defined to be the probability that i wins its first k games. The probabilities
Pi(k) will be determined recursively, first for k = 1, then for k = 2, then for k = 3,
and finally for k = 4 which will yield Pi = Pi(4).

Let Oi(k) = {j : (r(i, j) = k} be the set of possible opponents of i in round k. To
compute Pi(k), we will condition on which of the teams in Oi(k) reaches round k.
Because a team will reach round k if that team wins its first k − 1 games, this gives

Pi(k) =
∑

j∈Oi(k)

P(i wins its first k games|j reaches round k)Pj(k − 1) (4.6)

Now, because any team that plays a team in Oi(k) in any of rounds 1, . . . ,k − 1 is a
possible opponent of team i in round k, it follows that all games in rounds 1, . . . ,k − 1
involving a team inOi(k) will be against another team in that set, and thus the results
of these games do not affect which teams i would play in its first k − 1 games.
Consequently, whether team i reaches round k is independent of which team inOi(k)
reaches round k. Hence, for j ∈ Oi(k)

P(i wins its first k games|j reaches round k)
= P(i wins its first k − 1 games, i beats j |j reaches round k)
= P(i wins its first k − 1 games)P(i beats j|i and j reach round k)

= Pi(k − 1)pi,j

where the next to last equality follows because whether i wins its first k − 1 games
is independent of the event that j wins its first k − 1 games. Hence, from (4.6) and
the preceding equation, we have that

Pi(k) =
∑

j∈Oi(k)

Pi(k − 1)pi,j Pj(k − 1)

= Pi(k − 1)
∑

j∈Oi(k)

Pj(k − 1)pi,j (4.7)

Starting with Pi(0) = 1, the preceding enables us to determine Pi(1) for all i, which
then enables us to determine Pi(2) for all i, and so on, up to Pi = Pi(4).

To indicate how to apply the recursive equations (4.7), suppose that pi,j = j
i+j .

Thus, for instance, the probability that team 2 (the second seed) beats team 7 (the
seventh seed) is p2,7 = 7/9. To compute, Pi = Pi(4), the probability that i wins the
bracket, start with the quantities Pi(1), i = 1, . . . , 16, equal to the probabilities that
each team wins its first game.
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P1(1) = p1,16 = 16/17 = 1 − P16(1)

P2(1) = p2,15 = 15/17 = 1 − P15(1)

P3(1) = p3,14 = 14/17 = 1 − P14(1)

P4(1) = p4,13 = 13/17 = 1 − P13(1)

P5(1) = p5,12 = 12/17 = 1 − P12(1)

P6(1) = p6,11 = 11/17 = 1 − P11(1)

P7(1) = p7,10 = 10/17 = 1 − P10(1)

P8(1) = p8,9 = 9/17 = 1 − P9(1)

The quantities Pi(2) are then obtained by using the preceding along with the
recursion (4.7). For instance, because the set of possible opponents of team 1 in
round 2 isO1(2) = {8, 9}, we have that

P1(2) = P1(1)
(
P8(1)p1,8 + P9(1)p1,9

) = 16
17

(
9
17

8
9

+ 8
17

9
10

)
L .8415

The other quantities Pi(2), . . . ,P16(2) are obtained similarly, and are used to obtain
the quantities Pi(3), i = 1, . . . , 16, which are then used to obtain Pi = Pi(4),
i = 1, . . . , 16. .

Suppose that we are presented with a set of elements and we want to deter-
mine whether at least one member of the set has a certain property. We can attack
this question probabilistically by randomly choosing an element of the set in such a
way that each element has a positive probability of being selected. Then the original
question can be answered by a consideration of the probability that the randomly
selected element does not have the property of interest. If this probability is equal
to 1, then none of the elements of the set has the property; if it is less than 1, then at
least one element of the set has the property.

The final example of this section illustrates this technique.

Example
4o

The complete graph having n vertices is defined to be a set of n points (called ver-

tices) in the plane and the

(
n
2

)
lines (called edges) connecting each pair of vertices.

The complete graph having 3 vertices is shown in Figure 3.4. Suppose now that each
edge in a complete graph having n vertices is to be colored either red or blue. For a
fixed integer k, a question of interest is, Is there a way of coloring the edges so that

no set of k vertices has all of its

(
k
2

)
connecting edges the same color? It can be

shown by a probabilistic argument that if n is not too large, then the answer is yes.

Figure 3.4

The argument runs as follows: Suppose that each edge is, independently, equally
likely to be colored either red or blue. That is, each edge is red with probability 1

2 .
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Number the

(
n
k

)
sets of k vertices and define the events Ei, i = 1, . . . ,

(
n
k

)
as

follows:

Ei = {all of the connecting edges of the ith set
of k vertices are the same color}

Now, since each of the

(
k
2

)
connecting edges of a set of k vertices is equally likely

to be either red or blue, it follows that the probability that they are all the same
color is

P(Ei) = 2
(
1
2

)k(k−1)/2

Therefore, because

P

⎛
⎝⋃

i

Ei

⎞
⎠ …

∑
i

P(Ei) (Boole’s inequality)

we find that P

(⋃
i
Ei

)
, the probability that there is a set of k vertices all of whose

connecting edges are similarly colored, satisfies

P

⎛
⎝⋃

i

Ei

⎞
⎠ …

(
n
k

)(
1
2

)k(k−1)/2−1

Hence, if (
n
k

)(
1
2

)k(k−1)/2−1

< 1

or, equivalently, if (
n
k

)
< 2k(k−1)/2−1

then the probability that at least one of the

(
n
k

)
sets of k vertices has all of its

connecting edges the same color is less than 1. Consequently, under the preceding
condition on n and k, it follows that there is a positive probability that no set of k
vertices has all of its connecting edges the same color. But this conclusion implies
that there is at least one way of coloring the edges for which no set of k vertices has
all of its connecting edges the same color. .

Remarks (a) Whereas the preceding argument established a condition on n and k
that guarantees the existence of a coloring scheme satisfying the desired property, it
gives no information about how to obtain such a scheme (although one possibility
would be simply to choose the colors at random, check to see if the resulting coloring
satisfies the property, and repeat the procedure until it does).

(b) The method of introducing probability into a problem whose statement is
purely deterministic has been called the probabilistic method.† Other examples of
this method are given in Theoretical Exercise 24 and Examples 2t and 2u of Chapter 7.

†See N. Alon, J. Spencer, and P. Erdos, The Probabilistic Method (New York: John Wiley & Sons, Inc., 1992).
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3.5 P(·|F) Is a Probability
Conditional probabilities satisfy all of the properties of ordinary probabilities, as is
proved by Proposition 5.1, which shows that P(E|F) satisfies the three axioms of a
probability.

Proposition
5.1

(a) 0 … P(E|F) … 1.
(b) P(S|F) = 1.
(c) If Ei, i = 1, 2, . . ., are mutually exclusive events, then

P

⎛
⎝ q⋃
i=1

Ei|F
⎞
⎠ =

q∑
i=1

P(Ei|F)

Proof To prove part (a), we must show that 0 … P(EF)/P(F) … 1. The left-side
inequality is obvious, whereas the right side follows because EF ( F, which implies
that P(EF) … P(F). Part (b) follows because

P(S|F) = P(SF)

P(F)
= P(F)

P(F)
= 1

Part (c) follows from

P

⎛
⎝ q⋃
i=1

Ei|F
⎞
⎠ =

P

⎛
⎝( q⋃

i=1
Ei

)
F

⎞
⎠

P(F)

=
P

(
q⋃
1
EiF

)

P(F)
since

⎛
⎝ q⋃

1

Ei

⎞
⎠F =

q⋃
1

EiF

=

q∑
1

P(EiF)

P(F)

=
q∑
1

P(Ei|F)

where the next-to-last equality follows because EiEj = Ø implies that EiFEjF =
Ø.

If we define Q(E) = P(E|F), then, from Proposition 5.1, Q(E) may be regarded
as a probability function on the events of S. Hence, all of the propositions previously
proved for probabilities apply toQ(E). For instance, we have

Q(E1 ∪ E2) = Q(E1) + Q(E2) − Q(E1E2)

or, equivalently,

P(E1 ∪ E2|F) = P(E1|F) + P(E2|F) − P(E1E2|F)

Also, if we define the conditional probabilityQ(E1|E2) byQ(E1|E2) = Q(E1E2)/Q(E2),
then, from Equation (3.1), we have
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Q(E1) = Q(E1|E2)Q(E2) + Q(E1|Ec2)Q(Ec2) (5.1)

Since

Q(E1|E2) = Q(E1E2)

Q(E2)

= P(E1E2|F)

P(E2|F)

=
P(E1E2F)

P(F)

P(E2F)

P(F)

= P(E1|E2F)

Equation (5.1) is equivalent to

P(E1|F) = P(E1|E2F)P(E2|F) + P(E1|Ec2F)P(Ec2|F)

Example
5a

Consider Example 3a, which is concerned with an insurance company that believes
that people can be divided into two distinct classes: those who are accident prone
and those who are not. During any given year, an accident-prone person will have an
accident with probability .4, whereas the corresponding figure for a person who is not
prone to accidents is .2. What is the conditional probability that a new policyholder
will have an accident in his or her second year of policy ownership, given that the
policyholder has had an accident in the first year?

Solution If we let A be the event that the policyholder is accident prone and we let
Ai, i = 1, 2, be the event that he or she has had an accident in the ith year, then the
desired probability P(A2|A1) may be obtained by conditioning on whether or not
the policyholder is accident prone, as follows:

P(A2|A1) = P(A2|AA1)P(A|A1) + P(A2|AcA1)P(Ac|A1)

Now,

P(A|A1) = P(A1A)

P(A1)
= P(A1|A)P(A)

P(A1)

However, P(A) is assumed to equal 3
10 , and it was shown in Example 3a that

P(A1) = .26. Hence,

P(A|A1) = (.4)(.3)
.26

= 6
13

Thus,

P(Ac|A1) = 1 − P(A|A1) = 7
13

Since P(A2|AA1) = P(A2|A) = .4 and P(A2|AcA1) = P(A2|Ac) = .2, it follows that

P(A2|A1) = (.4)
6
13

+ (.2)
7
13

L .29 .

Example
5b

A female chimp has given birth. It is not certain, however, which of two male chimps
is the father. Before any genetic analysis has been performed, it is believed that
the probability that male number 1 is the father is p and the probability that male
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number 2 is the father is 1 − p. DNA obtained from the mother, male number 1,
and male number 2 indicates that on one specific location of the genome, the mother
has the gene pair (A,A), male number 1 has the gene pair (a, a), and male number 2
has the gene pair (A, a). If a DNA test shows that the baby chimp has the gene pair
(A, a), what is the probability that male number 1 is the father?

Solution Let all probabilities be conditional on the event that the mother has the
gene pair (A,A), male number 1 has the gene pair (a, a), and male number 2 has
the gene pair (A, a). Now, let Mi be the event that male number i, i = 1, 2, is the
father, and let BA,a be the event that the baby chimp has the gene pair (A, a). Then,
P(M1|BA,a) is obtained as follows:

P(M1|BA,a) = P(M1BA,a)

P(BA,a)

= P(BA,a|M1)P(M1)

P(BA,a|M1)P(M1) + P(BA,a|M2)P(M2)

= 1 · p
1 · p + (1/2)(1 − p)

= 2p
1 + p

Because 2p
1+p > p when p < 1, the information that the baby’s gene pair is (A, a)

increases the probability that male number 1 is the father. This result is intuitive
because it is more likely that the baby would have gene pair (A, a) ifM1 is true than
ifM2 is true (the respective conditional probabilities being 1 and 1/2). .

The next example deals with a problem in the theory of runs.

Example
5c

Independent trials, each resulting in a success with probability p or a failure with
probability q = 1 − p, are performed.We are interested in computing the probability
that a run of n consecutive successes occurs before a run ofm consecutive failures.

Solution LetE be the event that a run of n consecutive successes occurs before a run
of m consecutive failures. To obtain P(E), we start by conditioning on the outcome
of the first trial. That is, letting H denote the event that the first trial results in a
success, we obtain

P(E) = pP(E|H) + qP(E|Hc) (5.2)

Now, given that the first trial was successful, one way we can get a run of n
successes before a run of m failures would be to have the next n − 1 trials all result
in successes. So, let us condition on whether or not that occurs. That is, letting F be
the event that trials 2 through n all are successes, we obtain

P(E|H) = P(E|FH)P(F|H) + P(E|FcH)P(Fc|H) (5.3)

On the one hand, clearly, P(E|FH) = 1; on the other hand, if the event FcH occurs,
then the first trial would result in a success, but there would be a failure some time
during the next n − 1 trials. However, when this failure occurs, it would wipe out all
of the previous successes, and the situation would be exactly as if we started out with
a failure. Hence,

P(E|FcH) = P(E|Hc)
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Because the independence of trials implies that F andH are independent, and because
P(F) = pn−1, it follows from Equation (5.3) that

P(E|H) = pn−1 + (1 − pn−1)P(E|Hc) (5.4)

We now obtain an expression for P(E|Hc) in a similar manner. That is, we let G
denote the event that trials 2 through m are all failures. Then,

P(E|Hc) = P(E|GHc)P(G|Hc) + P(E|GcHc)P(Gc|Hc) (5.5)

Now, GHc is the event that the first m trials all result in failures, so P(E|GHc) = 0.
Also, if GcHc occurs, then the first trial is a failure, but there is at least one success
in the next m − 1 trials. Hence, since this success wipes out all previous failures, we
see that

P(E|GcHc) = P(E|H)

Thus, because P(Gc|Hc) = P(Gc) = 1 − qm−1, we obtain, from (5.5),

P(E|Hc) = (1 − qm−1)P(E|H) (5.6)

Solving Equations (5.4) and (5.6) yields

P(E|H) = pn−1

pn−1 + qm−1 − pn−1qm−1

and

P(E|Hc) = (1 − qm−1)pn−1

pn−1 + qm−1 − pn−1qm−1

Thus,

P(E) = pP(E|H) + qP(E|Hc)

= pn + qpn−1(1 − qm−1)

pn−1 + qm−1 − pn−1qm−1

= pn−1(1 − qm)

pn−1 + qm−1 − pn−1qm−1
(5.7)

It is interesting to note that by the symmetry of the problem, the probability
of obtaining a run of m failures before a run of n successes would be given by
Equation (5.7) with p and q interchanged and n and m interchanged. Hence, this
probability would equal

P{run ofm failures before a run of n successes}

= qm−1(1 − pn)

qm−1 + pn−1 − qm−1pn−1
(5.8)

Since Equations (5.7) and (5.8) sum to 1, it follows that, with probability 1, either a
run of n successes or a run ofm failures will eventually occur.

As an example of Equation (5.7), we note that, in tossing a fair coin, the proba-
bility that a run of 2 heads will precede a run of 3 tails is 7

10 . For 2 consecutive heads
before 4 consecutive tails, the probability rises to 5

6 . .

In our next example, we return to the matching problem and obtain a solution
by using conditional probabilities.
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Example
5d

At a party, n people take off their hats. The hats are then mixed up, and each person
randomly selects one. We say that a match occurs if a person selects his or her own
hat. What is the probability of

(a) no matches?
(b) exactly k matches? .

Solution (a) Let E denote the event that no matches occur, and to make explicit
the dependence on n, write Pn = P(E). We start by conditioning on whether or not
the first person selects his or her own hat—call these eventsM andMc, respectively.
Then,

Pn = P(E) = P(E|M)P(M) + P(E|Mc)P(Mc)

Clearly, P(E|M) = 0, so

Pn = P(E|Mc)
n − 1
n

(5.9)

Now, P(E|Mc) is the probability of no matches when n − 1 people select from a set
of n − 1 hats, when one person, called the “extra” person, does not have their hat
in the collection, and one hat, called the “extra” hat, does not belong to any of the
people. This can happen in either of two mutually exclusive ways: Either there are
no matches and the extra person does not select the extra hat (this being the hat of
the person who chose first) or there are no matches and the extra person does select
the extra hat. The probability of the first of these events is just Pn−1, which is seen
by regarding the extra hat as “belonging” to the extra person. Because the second
event has probability [1/(n − 1)]Pn−2, we have

P(E|Mc) = Pn−1 + 1
n − 1

Pn−2

Thus, from Equation (5.9),

Pn = n − 1
n

Pn−1 + 1
n
Pn−2

or, equivalently,

Pn − Pn−1 = −1
n

(Pn−1 − Pn−2) (5.10)

However, since Pn is the probability of no matches when n people select among their
own hats, we have

P1 = 0 P2 = 1
2

So, from Equation (5.10),

P3 − P2 = − (P2 − P1)

3
= − 1

3!
or P3 = 1

2!
− 1

3!

P4 − P3 = − (P3 − P2)

4
= 1

4!
or P4 = 1

2!
− 1

3!
+ 1

4!

and, in general,

Pn = 1
2!

− 1
3!

+ 1
4!

− · · · + (−1)n

n!
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(b) To obtain the probability of exactly k matches, we consider any fixed group
of k people. The probability that they, and only they, select their own hats is

1
n

1
n − 1

· · · 1
n − (k − 1)

Pn−k = (n − k)!
n!

Pn−k

where Pn−k is the conditional probability that the other n − k people, selecting

among their own hats, have no matches. Since there are

(
n
k

)
choices of a set of k

people, the desired probability of exactly k matches is

Pn−k
k!

=
1
2! − 1

3! + · · · + (−1)n−k

(n − k)!
k!

.

An important concept in probability theory is that of the conditional indepen-
dence of events. We say that the events E1 and E2 are conditionally independent
given F if given that F occurs, the conditional probability thatE1 occurs is unchanged
by information as to whether or not E2 occurs. More formally, E1 and E2 are said to
be conditionally independent given F if

P(E1|E2F) = P(E1|F) (5.11)

or, equivalently,
P(E1E2|F) = P(E1|F)P(E2|F) (5.12)

The notion of conditional independence can easily be extended to more than
two events, and this extension is left as an exercise.

The reader should note that the concept of conditional independence was implic-
itly employed in Example 5a, where it was assumed that the events that a poli-
cyholder had an accident in his or her ith year, i = 1, 2, . . ., were conditionally
independent given whether or not the person was accident prone. The following
example, sometimes referred to as Laplace’s rule of succession, further illustrates
the concept of conditional independence.

Example
5e

Laplace’s rule of succession

There are k + 1 coins in a box. When flipped, the ith coin will turn up heads with
probability i/k, i = 0, 1, . . . ,k. A coin is randomly selected from the box and is then
repeatedly flipped. If the first n flips all result in heads, what is the conditional prob-
ability that the (n + 1) flip will do likewise?

Solution LettingHn denote the event that the first n flips all land heads, the desired
probability is

P(Hn+1|Hn) = P(Hn+1Hn)

P(Hn)
= P(Hn+1)

P(Hn)

To compute P(Hn), we condition on which coin is chosen. That is, letting Ci denote
the event that coin i is selected, we have that

P(Hn) =
k∑
i=0

P(Hn|Ci)P(Ci)

Now, given that coin i is selected, it is reasonable to assume that the outcomes will
be conditionally independent, with each one resulting in a head with probability i/k.
Hence,
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P(Hn|Ci) = (i/k)n

As P(Ci) = 1
k+1 , this yields that

P(Hn) = 1
k + 1

k∑
i=0

(i/k)n

Thus,

P(Hn+1|Hn) =
∑k

i=0(i/k)
n+1∑k

i=0(i/k)
n

If k is large, we can use the integral approximations

1
k

k∑
i=0

(
i
k

)n+1

L
∫ 1

0
xn+1dx = 1

n + 2

1
k

k∑
j=0

(
j
k

)n
L
∫ 1

0
xndx = 1

n + 1

So, for k large,

P(Hn+1|Hn) L
n + 1
n + 2

Example
5f

Updating information sequentially

Suppose there are n mutually exclusive and exhaustive possible hypotheses, with
initial (sometimes referred to as prior) probabilities P(Hi),

∑n
i=1 P(Hi) = 1. Now, if

information that the event E has occurred is received, then the conditional probabil-
ity that Hi is the true hypothesis (sometimes referred to as the updated or posterior
probability of Hi) is

P(Hi|E) = P(E|Hi)P(Hi)∑
j P(E|Hj)P(Hj)

(5.13)

Suppose now that we learn first that E1 has occurred and then that E2 has occurred.
Then, given only the first piece of information, the conditional probability that Hi is
the true hypothesis is

P(Hi|E1) = P(E1|Hi)P(Hi)

P(E1)
= P(E1|Hi)P(Hi)∑

j P(E1|Hj)P(Hj)

whereas given both pieces of information, the conditional probability that Hi is the
true hypothesis is P(Hi|E1E2), which can be computed by

P(Hi|E1E2) = P(E1E2|Hi)P(Hi)∑
j P(E1E2|Hj)P(Hj)

One might wonder, however, when one can compute P(Hi|E1E2) by using the right
side of Equation (5.13) with E = E2 and with P(Hj) replaced by P(Hj|E1),
j = 1, . . . ,n. That is, when is it legitimate to regard P(Hj|E1), j Ú 1, as the prior
probabilities and then use (5.13) to compute the posterior probabilities?

Solution The answer is that the preceding is legitimate, provided that for each
j = 1, . . . ,n, the events E1 and E2 are conditionally independent, given Hj. For if
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this is the case, then

P(E1E2|Hj) = P(E2|Hj)P(E1|Hj), j = 1, . . . ,n

Therefore,

P(Hi|E1E2) = P(E2|Hi)P(E1|Hi)P(Hi)

P(E1E2)

= P(E2|Hi)P(E1Hi)

P(E1E2)

= P(E2|Hi)P(Hi|E1)P(E1)

P(E1E2)

= P(E2|Hi)P(Hi|E1)

Q(1, 2)

where Q(1, 2) = P(E1E2)
P(E1)

. Since the preceding equation is valid for all i, we obtain,
upon summing,

1 =
n∑
i=1

P(Hi|E1E2) =
n∑
i=1

P(E2|Hi)P(Hi|E1)

Q(1, 2)

showing that

Q(1, 2) =
n∑
i=1

P(E2|Hi)P(Hi|E1)

and yielding the result

P(Hi|E1E2) = P(E2|Hi)P(Hi|E1)∑n
i=1 P(E2|Hi)P(Hi|E1)

For instance, suppose that one of two coins is chosen to be flipped. Let Hi be the
event that coin i, i = 1, 2, is chosen, and suppose that when coin i is flipped, it lands
on heads with probability pi, i = 1, 2. Then, the preceding equations show that to
sequentially update the probability that coin 1 is the one being flipped, given the
results of the previous flips, all that must be saved after each new flip is the condi-
tional probability that coin 1 is the coin being used. That is, it is not necessary to
keep track of all earlier results. .

Summary

For events E and F, the conditional probability of E given
that F has occurred is denoted by P(E|F) and is defined by

P(E|F) = P(EF)

P(F)

The identity

P(E1E2 · · ·En) = P(E1)P(E2|E1) · · ·P(En|E1 · · ·En−1)

is known as the multiplication rule of probability.

A valuable identity is

P(E) = P(E|F)P(F) + P(E|Fc)P(Fc)

which can be used to compute P(E) by “conditioning” on
whether F occurs.

P(H)/P(Hc) is called the odds of the event H. The
identity

P(H|E)

P(Hc|E)
= P(H) P(E|H)

P(Hc)P(E|Hc)
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shows that when new evidence E is obtained, the value of
the odds ofH becomes its old value multiplied by the ratio
of the conditional probability of the new evidence whenH
is true to the conditional probability when H is not true.

Let Fi, i = 1, . . . ,n, be mutually exclusive events
whose union is the entire sample space. The identity

P(Fj|E) = P(E|Fj)P(Fj)
n∑
i=1

P(E|Fi)P(Fi)

is known as Bayes’s formula. If the events Fi, i = 1, . . . ,n,
are competing hypotheses, then Bayes’s formula shows
how to compute the conditional probabilities of these
hypotheses when additional evidence E becomes avail-
able.

The denominator of Bayes’s formula uses that

P(E) =
n∑
i=1

P(E|Fi)P(Fi)

which is called the law of total probability.
If P(EF) = P(E)P(F), then we say that the events

E and F are independent. This condition is equivalent to
P(E|F) = P(E) and to P(F|E) = P(F). Thus, the events E
and F are independent if knowledge of the occurrence of
one of them does not affect the probability of the other.

The events E1, . . . ,En are said to be independent if,
for any subset Ei1 , . . . ,Eir of them,

P(Ei1 · · ·Eir) = P(Ei1) · · ·P(Eir)

For a fixed event F, P(E|F) can be considered to be a prob-
ability function on the events E of the sample space.

Problems

3.1.Mary thinks of a number from 1 to 9 and John tries to
guess it. Set up a sample space and compute the probabil-
ity that John’s guess is correct.

3.2. Lobsters are caught in morning and afternoon ses-
sions. The number of lobsters that can be caught in each
session are 0, 1, 2, 3, 4, or 5, each with probability 1/6.
Find the probability of at least one lobster being caught
in the afternoon given that more lobsters were caught in
the morning.

3.3.Use Equation (2.1) to compute in a hand of bridge
the conditional probability that East has 3 spades given
that North and South have a combined total of 8
spades.

3.4.What is the probability that at least one of a pair of
fair dice lands on 6, given that the sum of the dice is i,
i = 2, 3, . . . , 12?

3.5.An urn contains 6 white and 9 black balls. If 4 balls are
to be randomly selected without replacement, what is the
probability that the first 2 selected are white and the last 2
black?

3.6. Consider an urn containing 12 balls, of which 8 are
white. A sample of size 4 is to be drawn with replacement
(without replacement). What is the conditional probabil-
ity (in each case) that the first and third balls drawn will be
white given that the sample drawn contains exactly 3 white
balls?

3.7. The king comes from a family of 2 children. What is
the probability that the other child is his sister?

3.8.A couple has 2 children. What is the probability that
both are girls if the older of the two is a girl?

3.9. Consider 3 urns. Urn A contains 2 white and 4 red
balls, urnB contains 8 white and 4 red balls, and urnC con-
tains 1 white and 3 red balls. If 1 ball is selected from each
urn, what is the probability that the ball chosen from urn
A was white given that exactly 2 white balls were selected?

3.10. Three cards are randomly selected, without replace-
ment, from an ordinary deck of 52 playing cards. Compute
the conditional probability that the first card selected is a
spade given that the second and third cards are spades.

3.11. Two cards are randomly chosen without replacement
from an ordinary deck of 52 cards. Let B be the event that
both cards are aces, let As be the event that the ace of
spades is chosen, and let A be the event that at least one
ace is chosen. Find

(a) P(B|As)

(b) P(B|A)

3.12. Suppose distinct values are written on each of 3
cards, which are then randomly given the designations A,
B, and C. Given that card A’s value is less than card B’s
value, find the probability it is also less than card C’s value.

3.13.A recent college graduate is planning to take the first
three actuarial examinations in the coming summer. She
will take the first actuarial exam in June. If she passes that
exam, then she will take the second exam in July, and if
she also passes that one, then she will take the third exam
in September. If she fails an exam, then she is not allowed
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to take any others. The probability that she passes the first
exam is .9. If she passes the first exam, then the conditional
probability that she passes the second one is .8, and if she
passes both the first and the second exams, then the condi-
tional probability that she passes the third exam is .7.

(a)What is the probability that she passes all three exams?
(b)Given that she did not pass all three exams, what is the
conditional probability that she failed the second exam?

3.14. Suppose that an ordinary deck of 52 cards (which
contains 4 aces) is randomly divided into 4 hands of 13
cards each. We are interested in determining p, the prob-
ability that each hand has an ace. Let Ei be the event
that the ith hand has exactly one ace. Determine p =
P(E1E2E3E4) by using the multiplication rule.

3.15.An urn initially contains 5 white and 7 black balls.
Each time a ball is selected, its color is noted and it is
replaced in the urn along with 2 other balls of the same
color. Compute the probability that

(a) the first 2 balls selected are black and the next 2 are
white;
(b) of the first 4 balls selected, exactly 2 are black.

3.16.An ectopic pregnancy is twice as likely to develop
when the pregnant woman is a smoker as it is when she is a
nonsmoker. If 32 percent of women of childbearing age are
smokers, what percentage of women having ectopic preg-
nancies are smokers?

3.17. Ninety-eight percent of all babies survive delivery.
However, 15 percent of all births involve Cesarean (C)
sections, and when a C section is performed, the baby sur-
vives 96 percent of the time. If a randomly chosen pregnant
woman does not have a C section, what is the probability
that her baby survives?

3.18. In a certain community, 36 percent of the families
own a dog and 22 percent of the families that own a dog
also own a cat. In addition, 30 percent of the families own
a cat. What is

(a) the probability that a randomly selected family owns
both a dog and a cat?
(b) the conditional probability that a randomly selected
family owns a dog given that it owns a cat?

3.19.A total of 46 percent of the voters in a certain city
classify themselves as Independents, whereas 30 percent
classify themselves as Liberals and 24 percent say that they
are Conservatives. In a recent local election, 35 percent
of the Independents, 62 percent of the Liberals, and 58
percent of the Conservatives voted. A voter is chosen at
random. Given that this person voted in the local election,
what is the probability that he or she is

(a) an Independent?

(b) a Liberal?
(c) a Conservative?
(d)What percent of voters participated in the local
election?

3.20.A total of 48 percent of the women and 37 per-
cent of the men who took a certain “quit smoking” class
remained nonsmokers for at least one year after complet-
ing the class. These people then attended a success party
at the end of a year. If 62 percent of the original class was
male,

(a) what percentage of those attending the party were
women?
(b) what percentage of the original class attended the
party?

3.21. Fifty-two percent of the students at a certain college
are females. Five percent of the students in this college
are majoring in computer science. Two percent of the stu-
dents are women majoring in computer science. If a stu-
dent is selected at random, find the conditional probability
that

(a) the student is female given that the student is majoring
in computer science;
(b) this student is majoring in computer science given that
the student is female.

3.22.A total of 500 married working couples were polled
about their annual salaries, with the following information
resulting:

Husband

Wife Less than More than
$125,000 $125,000

Less than $125,000 212 198
More than $125,000 36 54

For instance, in 36 of the couples, the wife earned more
and the husband earned less than $125,000. If one of the
couples is randomly chosen, what is

(a) the probability that the husband earns less than
$125,000?
(b) the conditional probability that the wife earns more
than $125,000 given that the husband earns more than this
amount?
(c) the conditional probability that the wife earns more
than $125,000 given that the husband earns less than this
amount?

3.23.A red die, a blue die, and a yellow die (all six sided)
are rolled. We are interested in the probability that the
number appearing on the blue die is less than that appear-
ing on the yellow die, which is less than that appearing on
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the red die. That is, with B, Y, and R denoting, respec-
tively, the number appearing on the blue, yellow, and red
die, we are interested in P(B < Y < R).

(a)What is the probability that no two of the dice land on
the same number?
(b)Given that no two of the dice land on the same num-
ber, what is the conditional probability that B < Y < R?
(c)What is P(B < Y < R)?

3.24.Urn I contains 2 white and 4 red balls, whereas urn II
contains 1 white and 1 red ball. A ball is randomly chosen
from urn I and put into urn II, and a ball is then randomly
selected from urn II. What is

(a) the probability that the ball selected from urn II is
white?
(b) the conditional probability that the transferred ball
was white given that a white ball is selected from urn II?

3.25.Maqsuma goes to Charlie’s to buy groceries and
to Macellu to buy meat. Charlie’s gives gift tokens to
customers 10 percent of the times they visit the outlet,
whereas Macellu offers gift tokens to customers 5 percent
of the time. Both outlets offer tokens to Maqsuma. For
every 5 visits to Charlie’s, she goes to Macellu once. Given
that she is coming home with a token, what is the proba-
bility that she is coming from Macellu?

3.26. Each of 2 balls is painted either black or gold and
then placed in an urn. Suppose that each ball is colored
black with probability 1

2 and that these events are inde-
pendent.
(a) Suppose that you obtain information that the gold
paint has been used (and thus at least one of the balls is
painted gold). Compute the conditional probability that
both balls are painted gold.
(b) Suppose now that the urn tips over and 1 ball falls out.
It is painted gold. What is the probability that both balls
are gold in this case? Explain.

3.27. The following method was proposed to estimate the
number of people over the age of 50 who reside in a town
of known population 100,000: “As you walk along the
streets, keep a running count of the percentage of people
you encounter who are over 50. Do this for a few days;
then multiply the percentage you obtain by 100,000 to
obtain the estimate.” Comment on this method.
Hint: Let p denote the proportion of people in the town
who are over 50. Furthermore, let α1 denote the propor-
tion of time that a person under the age of 50 spends in
the streets, and let α2 be the corresponding value for those
over 50. What quantity does the method suggested esti-
mate? When is the estimate approximately equal to p?

3.28. Suppose that 5 percent of men and 0.25 percent of
women are color blind. A color-blind person is chosen

at random. What is the probability of this person being
male? Assume that there are an equal number of males
and females. What if the population consisted of twice as
many males as females?

3.29. Xiku Road has n1, n2, n3, and n4 houses with 1, 2,
3, and 4 occupants, respectively. Two random selection
without replacement strategies are being contemplated to
obtain a sample of the residents. In the first strategy, res-
idents are selected with equal probability. In the second
strategy, houses are first randomly selected and then resi-
dents from these houses are selected.
Work out, in terms of n1, n2, n3, and n4, the condi-
tional probability of a resident from a 3-occupant house
being selected given that the first selection came from a
4-occupant residence under both strategies.

3.30. Suppose that an ordinary deck of 52 cards is shuffled
and the cards are then turned over one at a time until the
first ace appears. Given that the first ace is the 20th card
to appear, what is the conditional probability that the card
following it is the
(a) ace of spades?
(b) two of clubs?

3.31. Twenty persons are attending a meeting in a hall,
8 of whom left the hall and have returned at least once
so far. Four persons have just left and are coming back.
This coincides with the selection of a subcommittee of 4
persons who will be chosen by everyone. What is the prob-
ability that all subcommittee members will have never left
the hall?

3.32. Consider two boxes, one containing 1 black and 1
white marble, the other 2 black and 1 white marble. A
box is selected at random, and a marble is drawn from
it at random. What is the probability that the marble is
black? What is the probability that the first box was the
one selected given that the marble is white?

3.33.Ms. Aquina has just had a biopsy on a possibly can-
cerous tumor. Not wanting to spoil a weekend family
event, she does not want to hear any bad news in the next
few days. But if she tells the doctor to call only if the news
is good, then if the doctor does not call, Ms. Aquina can
conclude that the news is bad. So, being a student of prob-
ability, Ms. Aquina instructs the doctor to flip a coin. If it
comes up heads, the doctor is to call if the news is good and
not call if the news is bad. If the coin comes up tails, the
doctor is not to call. In this way, even if the doctor doesn’t
call, the news is not necessarily bad. Let α be the proba-
bility that the tumor is cancerous; let β be the conditional
probability that the tumor is cancerous given that the doc-
tor does not call.

(a)Which should be larger, α or β?
(b) Find β in terms of α, and prove your answer in part (a).
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3.34. Patients are randomly allocated in KGV hospital
wards subject to the availability of beds. Wards 1, 2, 3, 4,
and 5 can accommodate 25, 30, 65, 40, and 30 beds, respec-
tively. Records reveal that the probabilities of a patient
leaving a ward dead are given by .43, .49, .49, .54, and .44,
respectively.

(a)What is the probability that a patient who is admitted
to KGV hospital dies?
(b)What is the probability that a patient who has died was
admitted in ward 3?

3.35.Gloria or Dominic often misplaces a key that should
be kept in the bedroom. The probability that Gloria leaves
the key in the kitchen is .3, and the probability that
Dominic forgets it in the conservatory is .45. Gloria uses
the key twice as frequently as Dominic.

(a)What is the probability that the key is in its proper
place?
(b)Given that the key is not in the bedroom, what is the
probability that Gloria has misplaced it?

3.36. In Example 3f, suppose that the new evidence is sub-
ject to different possible interpretations and in fact shows
only that it is 90 percent likely that the criminal pos-
sesses the characteristic in question. In this case, how likely
would it be that the suspect is guilty (assuming, as before,
that he has the characteristic)?

3.37.With probability .6, the present was hidden by mom;
with probability .4, it was hidden by dad. When mom hides
the present, she hides it upstairs 70 percent of the time and
downstairs 30 percent of the time. Dad is equally likely to
hide it upstairs or downstairs.

(a)What is the probability that the present is upstairs?
(b)Given that it is downstairs, what is the probability it
was hidden by dad?

3.38. Stores A, B, and C have 50, 75, and 100 employees,
respectively, and 50, 60, and 70 percent of them respec-
tively are women. Resignations are equally likely among
all employees, regardless of sex. One woman employee
resigns. What is the probability that she works in store C?

3.39. Three finalists of a song festival comprise a female
soloist, a male soloist, and a female duo. It is also known
that the male soloist did not win.

(a)What is the probability that the festival was won by the
duo?
(b)What is the probability that the duo finished third?

3.40.Urn A has 5 white and 7 black balls. Urn B has 3
white and 12 black balls. We flip a fair coin. If the outcome
is heads, then a ball from urn A is selected, whereas if the
outcome is tails, then a ball from urn B is selected. Sup-
pose that a white ball is selected. What is the probability
that the coin landed tails?

3.41. In Example 3a, what is the probability that someone
has an accident in the second year given that he or she had
no accidents in the first year?

3.42. Consider a sample of size 3 drawn in the following
manner: We start with an urn containing 5 white and 7 red
balls. At each stage, a ball is drawn and its color is noted.
The ball is then returned to the urn, along with an addi-
tional ball of the same color. Find the probability that the
sample will contain exactly

(a) 0 white balls;
(b) 1 white ball;
(c) 3 white balls;
(d) 2 white balls.

3.43.A deck of cards is shuffled and then divided into two
halves of 26 cards each. A card is drawn from one of the
halves; it turns out to be an ace. The ace is then placed in
the second half-deck. The half is then shuffled, and a card
is drawn from it. Compute the probability that this drawn
card is an ace.
Hint: Condition on whether or not the interchanged card
is selected.

3.44. Twelve percent of all U.S. households are in
California. A total of 1.3 percent of all U.S. households
earn more than $250,000 per year, while a total of 3.3 per-
cent of all California households earn more than $250,000
per year.

(a)What proportion of all non-California households earn
more than $250,000 per year?
(b)Given that a randomly chosen U.S. household earns
more than $250,000 per year, what is the probability it is a
California household?

3.45. There are 3 coins in a box. One is a two-headed coin,
another is a fair coin, and the third is a biased coin that
comes up heads 75 percent of the time. When one of the
3 coins is selected at random and flipped, it shows heads.
What is the probability that it was the two-headed coin?

3.46. Three prisoners are informed by their jailer that one
of them has been chosen at random to be executed and
the other two are to be freed. Prisoner A asks the jailer to
tell him privately which of his fellow prisoners will be set
free, claiming that there would be no harm in divulging
this information because he already knows that at least
one of the two will go free. The jailer refuses to answer the
question, pointing out that if A knew which of his fellow
prisoners were to be set free, then his own probability of
being executed would rise from 1

3 to 1
2 because he would

then be one of two prisoners. What do you think of the
jailer’s reasoning?



A First Course in Probability 119

3.47. There is a 30 percent chance thatA can fix her busted
computer. If A cannot, then there is a 40 percent chance
that her friend B can fix it.

(a) Find the probability it will be fixed by either A or B.
(b) If it is fixed, what is the probability it will be fixed by B.

3.48. In any given year, a male automobile policyholder
will make a claim with probability pm and a female pol-
icyholder will make a claim with probability pf , where
pf Z pm. The fraction of the policyholders that are male
is α, 0 < α < 1. A policyholder is randomly chosen. If Ai
denotes the event that this policyholder will make a claim
in year i, show that

P(A2|A1) > P(A1)

Give an intuitive explanation of why the preceding
inequality is true.

3.49.An urn contains 5 white and 10 black balls. A fair die
is rolled and that number of balls is randomly chosen from
the urn.What is the probability that all of the balls selected
are white? What is the conditional probability that the die
landed on 3 if all the balls selected are white?

3.50. Each of 2 cabinets identical in appearance has 2
drawers. Cabinet A contains a silver coin in each drawer,
and cabinet B contains a silver coin in one of its draw-
ers and a gold coin in the other. A cabinet is randomly
selected, one of its drawers is opened, and a silver coin is
found. What is the probability that there is a silver coin in
the other drawer?

3.51. Prostate cancer is the most common type of cancer
found in males. As an indicator of whether a male has
prostate cancer, doctors often perform a test that mea-
sures the level of the prostate-specific antigen (PSA) that is
produced only by the prostate gland. Although PSA levels
are indicative of cancer, the test is notoriously unreliable.
Indeed, the probability that a noncancerous man will have
an elevated PSA level is approximately .135, increasing to
approximately .268 if the man does have cancer. If, on the
basis of other factors, a physician is 70 percent certain that
a male has prostate cancer, what is the conditional proba-
bility that he has the cancer given that

(a) the test indicated an elevated PSA level?
(b) the test did not indicate an elevated PSA level?

Repeat the preceding calculation, this time assuming that
the physician initially believes that there is a 30 percent
chance that the man has prostate cancer.

3.52. Suppose that an insurance company classifies people
into one of three classes: good risks, average risks, and bad
risks. The company’s records indicate that the probabilities
that good-, average-, and bad-risk persons will be involved
in an accident over a 1-year span are, respectively, .05, .15,

and .30. If 20 percent of the population is a good risk, 50
percent an average risk, and 30 percent a bad risk, what
proportion of people have accidents in a fixed year? If
policyholder A had no accidents in 2012, what is the prob-
ability that he or she is a good risk? is an average risk?

3.53.A worker has asked her supervisor for a letter of
recommendation for a new job. She estimates that there
is an 80 percent chance that she will get the job if she
receives a strong recommendation, a 40 percent chance if
she receives a moderately good recommendation, and a
10 percent chance if she receives a weak recommendation.
She further estimates that the probabilities that the rec-
ommendation will be strong, moderate, and weak are .7, .2,
and .1, respectively.

(a)How certain is she that she will receive the new job
offer?
(b)Given that she does receive the offer, how likely should
she feel that she received a strong recommendation? a
moderate recommendation? a weak recommendation?
(c) Given that she does not receive the job offer, how
likely should she feel that she received a strong recommen-
dation? a moderate recommendation? a weak recommen-
dation?

3.54. Players A, B, C, D are randomly lined up. The first
two players in line then play a game; the winner of that
game then plays a game with the person who is third in
line; the winner of that game then plays a game with the
person who is fourth in line. The winner of that last game
is considered the winner of the tournament. If A wins each
game it plays with probability p, determine the probability
that A is the winner of the tournament.

3.55. Players 1, 2, 3 are playing a tournament. Two of these
three players are randomly chosen to play a game in round
one, with the winner then playing the remaining player in
round two. The winner of round two is the tournament vic-
tor. Assume that all games are independent and that iwins
when playing against j with probability i

i+j .

(a) Find the probability that 1 is the tournament victor.
(b) If 1 is the tournament victor, find the conditional prob-
ability that 1 did not play in round one.

3.56. Suppose there are two coins, with coin 1 landing
heads when flipped with probability .3 and coin 2 with
probability .5. Suppose also that we randomly select one
of these coins and then continually flip it. Let Hj denote
the event that flip j, j Ú 1, lands heads. Also, let Ci be the
event that coin i was chosen, i = 1, 2.

(a) Find P(H1).
(b) Find P(H2|H1).
(c) Find P(C1|H1).
(d) Find P(H2H3H4|H1).
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3.57. In a 7 game series played with two teams, the first
team to win a total of 4 games is the winner. Suppose that
each game played is independently won by team A with
probability p.

(a)Given that one team leads 3 to 0, what is the probabil-
ity that it is team A that leads.
(b)Given that one team leads 3 to 0, what is the probabil-
ity that team wins the series.

3.58.A parallel system functions whenever at least one
of its components works. Consider a parallel system of
n components, and suppose that each component works
independently with probability 1

2 . Find the conditional
probability that component 1 works given that the system
is functioning.

3.59. If you had to construct a mathematical model for
events E and F, as described in parts (a) through (e),
would you assume that they were independent events?
Explain your reasoning.

(a) E is the event that a businesswoman has blue eyes, and
F is the event that her secretary has blue eyes.
(b) E is the event that a professor owns a car, and F is the
event that he is listed in the telephone book.
(c) E is the event that a man is under 6 feet tall, and F is
the event that he weighs more than 200 pounds.
(d) E is the event that a woman lives in the United States,
and F is the event that she lives in the Western Hemi-
sphere.
(e) E is the event that it will rain tomorrow, and F is the
event that it will rain the day after tomorrow.

3.60. In a class, there are 4 first-year boys, 6 first-year girls,
and 6 sophomore boys. How many sophomore girls must
be present if sex and class are to be independent when a
student is selected at random?

3.61. Suppose that you continually collect coupons and
that there are m different types. Suppose also that each
time a new coupon is obtained, it is a type i coupon with
probability pi, i = 1, . . . ,m. Suppose that you have just col-
lected your nth coupon. What is the probability that it is a
new type?
Hint: Condition on the type of this coupon.

3.62.A simplified model for the movement of the price of
a stock supposes that on each day the stock’s price either
moves up 1 unit with probability p or moves down 1 unit
with probability 1 − p. The changes on different days are
assumed to be independent.

(a)What is the probability that after 2 days the stock will
be at its original price?
(b)What is the probability that after 3 days the stock’s
price will have increased by 1 unit?

(c) Given that after 3 days the stock’s price has increased
by 1 unit, what is the probability that it went up on the first
day?

3.63. Suppose that we want to generate the outcome of the
flip of a fair coin, but that all we have at our disposal is a
biased coin that lands on heads with some unknown proba-
bility p that need not be equal to 1

2 . Consider the following
procedure for accomplishing our task:

1. Flip the coin.
2. Flip the coin again.
3. If both flips land on heads or both land on tails, return

to step 1.
4. Let the result of the last flip be the result of the experi-

ment.

(a) Show that the result is equally likely to be either heads
or tails.
(b) Could we use a simpler procedure that continues to flip
the coin until the last two flips are different and then lets
the result be the outcome of the final flip?

3.64. Independent flips of a coin that lands on heads with
probability p are made. What is the probability that the
first four outcomes are

(a)H, H, H, H?
(b) T, H, H, H?
(c)What is the probability that the pattern T, H, H, H
occurs before the pattern H, H, H, H?

Hint for part (c): How can the pattern H, H, H, H occur
first?

3.65. The color of a person’s eyes is determined by a single
pair of genes. If they are both blue-eyed genes, then the
person will have blue eyes; if they are both brown-eyed
genes, then the person will have brown eyes; and if one
of them is a blue-eyed gene and the other a brown-eyed
gene, then the person will have brown eyes. (Because of
the latter fact, we say that the brown-eyed gene is domi-
nant over the blue-eyed one.) A newborn child indepen-
dently receives one eye gene from each of its parents, and
the gene it receives from a parent is equally likely to be
either of the two eye genes of that parent. Suppose that
Smith and both of his parents have brown eyes, but Smith’s
sister has blue eyes.

(a)What is the probability that Smith possesses a blue-
eyed gene?
(b) Suppose that Smith’s wife has blue eyes. What is the
probability that their first child will have blue eyes?
(c) If their first child has brown eyes, what is the probabil-
ity that their next child will also have brown eyes?
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3.66.Genes relating to albinism are denoted by A and a.
Only those people who receive the a gene from both par-
ents will be albino. Persons having the gene pair A, a are
normal in appearance and, because they can pass on the
trait to their offspring, are called carriers. Suppose that a
normal couple has two children, exactly one of whom is
an albino. Suppose that the nonalbino child mates with a
person who is known to be a carrier for albinism.

(a)What is the probability that their first offspring is an
albino?
(b)What is the conditional probability that their second
offspring is an albino given that their firstborn is not?

3.67. Barbara and Dianne go target shooting. Suppose that
each of Barbara’s shots hits a wooden duck target with
probability p1, while each shot of Dianne’s hits it with
probability p2. Suppose that they shoot simultaneously at
the same target. If the wooden duck is knocked over (indi-
cating that it was hit), what is the probability that

(a) both shots hit the duck?
(b) Barbara’s shot hit the duck?

What independence assumptions have you made?

3.68. A and B are involved in a duel. The rules of the duel
are that they are to pick up their guns and shoot at each
other simultaneously. If one or both are hit, then the duel
is over. If both shots miss, then they repeat the process.
Suppose that the results of the shots are independent and
that each shot ofA will hit B with probability pA, and each
shot of B will hit A with probability pB. What is

(a) the probability that A is not hit?
(b) the probability that both duelists are hit?
(c) the probability that the duel ends after the nth round
of shots?

(d) the conditional probability that the duel ends after the
nth round of shots given that A is not hit?
(e) the conditional probability that the duel ends after the
nth round of shots given that both duelists are hit?

3.69.Assume, as in Example 3h, that 64 percent of twins
are of the same sex. Given that a newborn set of twins is of
the same sex, what is the conditional probability that the
twins are identical?

3.70. The probability of the closing of the ith relay in the
circuits shown in Figure 3.5 is given by pi, i = 1, 2, 3, 4, 5.
If all relays function independently, what is the probability
that a current flows between A and B for the respective
circuits?

Hint for (b): Condition on whether relay 3 closes.

3.71.An engineering system consisting of n components
is said to be a k-out-of-n system (k … n) if the system
functions if and only if at least k of the n components func-
tion. Suppose that all components function independently
of one another.

(a) If the ith component functions with probability Pi, i =
1, 2, 3, 4, compute the probability that a 2-out-of-4 system
functions.
(b) Repeat part (a) for a 3-out-of-5 system.
(c) Repeat for a k-out-of-n system when all the Pi equal p
(that is, Pi = p, i = 1, 2, . . . ,n).

3.72. In Problem 3.70a, find the conditional probability
that relays 1 and 2 are both closed given that a current
flows from A to B.

3.73.A certain organism possesses a pair of each of 5 dif-
ferent genes (which we will designate by the first 5 letters
of the English alphabet). Each gene appears in 2 forms

A B

1 4

2 5

3

A B

1

3

2

4

5

(a)

(b)

Figure 3.5 Circuits for Problem 3.70
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(which we designate by lowercase and capital letters). The
capital letter will be assumed to be the dominant gene, in
the sense that if an organism possesses the gene pair xX,
then it will outwardly have the appearance of the X gene.
For instance, if X stands for brown eyes and x for blue
eyes, then an individual having either gene pair XX or xX
will have brown eyes, whereas one having gene pair xx will
have blue eyes. The characteristic appearance of an organ-
ism is called its phenotype, whereas its genetic constitution
is called its genotype. (Thus, 2 organisms with respective
genotypes aA, bB, cc, dD, ee andAA, BB, cc, DD, eewould
have different genotypes but the same phenotype.) In a
mating between 2 organisms, each one contributes, at ran-
dom, one of its gene pairs of each type. The 5 contributions
of an organism (one of each of the 5 types) are assumed
to be independent and are also independent of the con-
tributions of the organism’s mate. In a mating between
organisms having genotypes aA, bB, cC, dD, eE and aa,
bB, cc, Dd, ee what is the probability that the progeny will
(i) phenotypically and (ii) genotypically resemble

(a) the first parent?
(b) the second parent?
(c) either parent?
(d) neither parent?

3.74. There is a 50–50 chance that the queen carries the
gene for hemophilia. If she is a carrier, then each prince
has a 50–50 chance of having hemophilia. If the queen has
had three princes without the disease, what is the proba-
bility that the queen is a carrier? If there is a fourth prince,
what is the probability that he will have hemophilia?

3.75.A town council of 7 members contains a steering
committee of size 3. New ideas for legislation go first to the
steering committee and then on to the council as a whole
if at least 2 of the 3 committee members approve the leg-
islation. Once at the full council, the legislation requires a
majority vote (of at least 4) to pass. Consider a new piece
of legislation, and suppose that each town council member
will approve it, independently, with probability p. What
is the probability that a given steering committee mem-
ber’s vote is decisive in the sense that if that person’s vote
were reversed, then the final fate of the legislation would
be reversed? What is the corresponding probability for a
given council member not on the steering committee?

3.76. Suppose that each child born to a couple is equally
likely to be a boy or a girl, independently of the sex dis-
tribution of the other children in the family. For a couple
having 5 children, compute the probabilities of the follow-
ing events:
(a)All children are of the same sex.
(b) The 3 eldest are boys and the others girls.
(c) Exactly 3 are boys.
(d) The 2 oldest are girls.

(e) There is at least 1 girl.

3.77. A and B alternate rolling a pair of dice, stopping
either when A rolls the sum 9 or when B rolls the sum
6. Assuming that A rolls first, find the probability that the
final roll is made by A.

3.78. In a certain village, it is traditional for the eldest son
(or the older son in a two-son family) and his wife to be
responsible for taking care of his parents as they age. In
recent years, however, the women of this village, not want-
ing that responsibility, have not looked favorably upon
marrying an eldest son.
(a) If every family in the village has two children, what
proportion of all sons are older sons?
(b) If every family in the village has three children, what
proportion of all sons are eldest sons?
Assume that each child is, independently, equally likely to
be either a boy or a girl.

3.79. Suppose that E and F are mutually exclusive events
of an experiment. Show that if independent trials of this
experiment are performed, thenEwill occur before F with
probability P(E)/[P(E) + P(F)].

3.80. Consider an unending sequence of independent tri-
als, where each trial is equally likely to result in any of the
outcomes 1, 2, or 3. Given that outcome 3 is the last of the
three outcomes to occur, find the conditional probability
that
(a) the first trial results in outcome 1;
(b) the first two trials both result in outcome 1.

3.81. A and B play a series of games. Each game is inde-
pendently won by A with probability p and by B with
probability 1 − p. They stop when the total number of
wins of one of the players is two greater than that of the
other player. The player with the greater number of total
wins is declared the winner of the series.
(a) Find the probability that a total of 4 games are played.
(b) Find the probability that A is the winner of the series.

3.82. In successive rolls of a pair of fair dice, what is the
probability of getting 2 sevens before 6 even numbers?

3.83. In a certain contest, the players are of equal skill and
the probability is 1

2 that a specified one of the two contes-
tants will be the victor. In a group of 2n players, the players
are paired off against each other at random. The 2n−1 win-
ners are again paired off randomly, and so on, until a single
winner remains. Consider two specified contestants,A and
B, and define the events Ai, i … n,E by

Ai : A plays in exactly i contests

E : A and B never play each other

(a) Find P(Ai), i = 1, . . . , n.
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(b) Find P(E).
(c) Let Pn = P(E). Show that

Pn = 1
2n − 1

+ 2n − 2
2n − 1

(
1
2

)2

Pn−1

and use this formula to check the answer you obtained in
part (b).
Hint: Find P(E) by conditioning on which of the events
Ai, i = 1, . . . ,n occur. In simplifying your answer, use the
algebraic identity

n−1∑
i=1

ixi−1 = 1 − nxn−1 + (n − 1)xn

(1 − x)2

For another approach to solving this problem, note that
there are a total of 2n − 1 games played.
(d) Explain why 2n − 1 games are played.
Number these games, and let Bi denote the event that A
and B play each other in game i, i = 1, . . . , 2n − 1.
(e)What is P(Bi)?
(f) Use part (e) to find P(E).

3.84.An investor owns shares in a stock whose present
value is 25. She has decided that she must sell her stock if it
goes either down to 10 or up to 40. If each change of price
is either up 1 point with probability .55 or down 1 point
with probability .45, and the successive changes are inde-
pendent, what is the probability that the investor retires a
winner?

3.85. A and B flip coins. A starts and continues flipping
until a tail occurs, at which point B starts flipping and con-
tinues until there is a tail. ThenA takes over, and so on. Let
P1 be the probability of the coin landing on heads when A
flips and P2 when B flips. The winner of the game is the
first one to get

(a) 2 heads in a row;
(b) a total of 2 heads;
(c) 3 heads in a row;
(d) a total of 3 heads.
In each case, find the probability that A wins.

3.86.Die A has 4 red and 2 white faces, whereas die B has
2 red and 4 white faces. A fair coin is flipped once. If it
lands on heads, the game continues with die A; if it lands
on tails, then die B is to be used.

(a) Show that the probability of red at any throw is 1
2 .

(b) If the first two throws result in red, what is the proba-
bility of red at the third throw?
(c) If red turns up at the first two throws, what is the prob-
ability that it is die A that is being used?

3.87.An urn contains 12 balls, of which 4 are white. Three
players—A, B, and C—successively draw from the urn, A
first, then B, then C, then A, and so on. The winner is the
first one to draw a white ball. Find the probability of win-
ning for each player if
(a) each ball is replaced after it is drawn;
(b) the balls that are withdrawn are not replaced.

3.88. Repeat Problem 3.87 when each of the 3 players
selects from his own urn. That is, suppose that there are
3 different urns of 12 balls with 4 white balls in each urn.

3.89. Let S = {1, 2, . . . ,n} and suppose that A and B are,
independently, equally likely to be any of the 2n subsets
(including the null set and S itself) of S.

(a) Show that

P{A ( B} =
(
3
4

)n
Hint: Let N(B) denote the number of elements in B. Use

P{A ( B} =
n∑
i=0

P{A ( B|N(B) = i}P{N(B) = i}

Show that P{AB = Ø} =
(
3
4

)n
.

3.90. Consider an eight team tournament with the format
given in Figure 3.6. If the probability that team i beats
team j if they play is j

i+j , find the probability that team 1
wins the tournament.

3.91. Consider Example 2a, but now suppose that when
the key is in a certain pocket, there is a 10 percent chance
that a search of that pocket will not find the key. Let R
and L be, respectively, the events that the key is in the
right-hand pocket of the jacket and that it is in the left-
hand pocket. Also, let SR be the event that a search of
the right-hand jacket pocket will be successful in finding
the key, and let UL be the event that a search of the left-
hand jacket pocket will be unsuccessful and, thus, not find
the key. Find P(SR|UL), the conditional probability that a
search of the right-hand pocket will find the key given that
a search of the left-hand pocket did not, by

(a) using the identity

P(SR|UL) = P(SRUL)

P(UL)

determining P(SRUL) by conditioning on whether or not
the key is in the right-hand pocket, and determining P(UL)

by conditioning on whether or not the key is in the left-
hand pocket;

(b) using the identity

P(SR|UL) = P(SR|RUL)P(R|UL)

+ P(SR|RcUL)P(Rc|UL)
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(1,8)

(4,5)

(3,6)

(2,7)

Figure 3.6

3.92. In Example 5e, what is the conditional probability
that the ith coin was selected given that the first n trials
all result in heads?

3.93. In Laplace’s rule of succession (Example 5e), are the
outcomes of the successive flips independent? Explain.

3.94.A person tried by a 3-judge panel is declared guilty if
at least 2 judges cast votes of guilty. Suppose that when the
defendant is in fact guilty, each judge will independently
vote guilty with probability .7, whereas when the defen-
dant is in fact innocent, this probability drops to .2. If 70
percent of defendants are guilty, compute the conditional
probability that judge number 3 votes guilty given that

(a) judges 1 and 2 vote guilty;
(b) judges 1 and 2 cast 1 guilty and 1 not guilty vote;
(c) judges 1 and 2 both cast not guilty votes.

LetEi, i = 1, 2, 3 denote the event that judge i casts a guilty
vote. Are these events independent? Are they condition-
ally independent? Explain.

3.95. Each of nworkers is independently qualified to do an
incoming job with probability p. If none of them is quali-
fied then the job is rejected; otherwise the job is assigned
to a randomly chosen one of the qualified workers. Find

the probability that worker 1 is assigned to the first incom-
ing job. Hint: Condition on whether or not at least one
worker is qualified.

3.96. Suppose in the preceding problem that n = 2 and
that worker i is qualified with probability pi, i = 1, 2.

(c) Find the probability that worker 1 is assigned to the
first incoming job.

(b) Given that worker 1 is assigned to the first job, find
the conditional probability that worker 2 was quali-
fied for that job.

3.97. Each member of a population of size n is, indepen-
dently of other members, female with probability p or
male with probability 1 − p. Two individuals of the same
sex will, independently of other pairs, be friends with prob-
ability α; whereas two individuals of opposite sex will be
friends with probability β. Let Ak,r be the event that per-
sons k and r are friends.

(a) Find P(A1,2).
(b)Are A1,2 and A1,3 independent.
(c)Are A1,2 and A1,3 conditionally independent given the
sex of person 1.
(d) Find P(A1,2A1,3).
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Theoretical Exercises

3.1. Show that if P(A ∩ B) > 0, then

P(A ∪ B|A ∩ B) Ú P(A ∩ B|A ∪ B)

3.2. Events A and B are mutually exclusive. Work out the
following:

P(A|B), P(A ∪ B|A), P(B|Ac), P(A ∪ B|A ∩ B)

3.3.A continent-wide television game show involves N
countries. Country i nominates ni cities including its capital
city. Two selection processes are being considered to select
the city that will participate first. Process 1 entails select-
ing a country first and then picking a city of that country.
Process 2 entails selecting one city from a pool of all partic-
ipating cities. Considering that the producers of the show
would prefer selecting cities that are not capitals, which
process should they choose? You may use the following
inequality:

N∑
i=1

ni
N∑
i=1

1
ni

Ú N2

3.4.A ball is in any one of n boxes and is in the ith box
with probability pi. If the ball is in box i, a search of that
box will uncover it with probability αi. Show that the con-
ditional probability that the ball is in box j, given that a
search of box i did not uncover it, is

pj
1 − αipi

if j Z i

(1 − αi)pi
1 − αipi

if j = i

3.5. (a) Prove that if E and F are mutually exclusive, then

P(E|E ∪ F) = P(E)

P(E) + P(F)

(b) Prove that if Ei, i Ú 1 are mutually exclusive, then

P(Ej| ∪q
i=1 Ei) = P(Ej)∑q

i=1 P(Ei)

3.6. A and B are independent events. Show that

P(Ac ∩ Bc) = P(Ac)P(Bc)

Show that A and Ac are not independent when 0 <

P(A) < 1.

3.7. (a)m females and n males attend a meeting in a hall.
They leave randomly at the end of themeeting.What is the
probability the first person to leave is of the same gender
as the last one to leave?

(b) Three species of rats, R1, R2, and R3 whose corre-
sponding abundances are given by r1, r2, and r3, are being
eradicated from a confined rural space. Assuming that rat
elimination occurs randomly, what is the probability that
R3 is the last species to be eradicated?

3.8. Consider three events A, B, and C with P(B) > 0.
(a)Given that

P(A|B) Ú P(C|B)

show that P(Ac|B) … P(Cc|B) using direct definitions.
(b) Show using direct definitions that under independence
of events A and B,

P(Ac|Bc) = P(Ac)

is valid.

(c) Show by counterexample that the independence con-
dition in (b) is necessary. You may consider the situation
of two completely disconnected persons who are asked to
randomly pick one integer from 1 to 10. Youmay then con-
struct events A and B for whom the condition you elicit
does not apply, and also for which the equation above is
not valid.

3.9. Consider two independent tosses of a fair coin. Let
A be the event that the first toss results in heads, let B
be the event that the second toss results in heads, and let
C be the event that in both tosses the coin lands on the
same side. Show that the events A, B, and C are pairwise
independent—that is, A and B are independent, A and C
are independent, and B and C are independent—but not
independent.

3.10. Two percent of women age 45 who participate in rou-
tine screening have breast cancer. Ninety percent of those
with breast cancer have positive mammographies. Eight
percent of the women who do not have breast cancer will
also have positive mammographies. Given that a woman
has a positive mammography, what is the probability she
has breast cancer?

3.11. In each of n independent tosses of a coin, the coin
lands on heads with probability p. How large need n be
so that the probability of obtaining at least one head is at
least 1

2?
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3.12. Show that 0 … ai … 1, i = 1, 2, . . ., then

q∑
i=1

⎡
⎢⎣ai i−1∏

j=1

(1 − aj)

⎤
⎥⎦ +

q∏
i=1

(1 − ai) = 1

Hint: Suppose that an infinite number of coins are to be
flipped. Let ai be the probability that the ith coin lands on
heads, and consider when the first head occurs.

3.13.A system moves probabilistically amongst states i =
1, 2, ...M. Let pni,j be the probability that the system moves
from state i to state j in n steps. Show that:

PNi,j =
M∑
k=1

p1i,k p
n−1
k,j

*3.14. Job assignments in a pool of n workers are affected
each time a worker is replaced in course of repeated ran-
dom selections. By conditioning on a particular person
being chosen twice before anyone else, show that the prob-
ability that exactly one person chosen twice in k selections
is

(k − 1)
(n − 1)(n − 2)...(n − k + 2)

nk−1

3.15. Independent trials that result in a success with prob-
ability p are successively performed until a total of r suc-
cesses is obtained. Show that the probability that exactly n
trials are required is(

n − 1
r − 1

)
pr(1 − p)n−r

Use this result to solve the problem of the points (Exam-
ple 4j).

Hint: In order for it to take n trials to obtain r successes,
how many successes must occur in the first n − 1 trials?

3.16. Independent trials that result in a success with prob-
ability p and a failure with probability 1 − p are called
Bernoulli trials. Let Pn denote the probability that n
Bernoulli trials result in an even number of successes (0
being considered an even number). Show that

Pn = p(1 − Pn−1) + (1 − p)Pn−1 n Ú 1

and use this formula to prove (by induction) that

Pn = 1 + (1 − 2p)n

2

3.17. Suppose that n independent trials are performed,
with trial i being a success with probability 1/(2i + 1).

Let Pn denote the probability that the total number of suc-
cesses that result is an odd number.
(a) Find Pn for n = 1, 2, 3, 4, 5.
(b) Conjecture a general formula for Pn.
(c) Derive a formula for Pn in terms of Pn−1.

(d) Verify that your conjecture in part (b) satisfies the
recursive formula in part (c). Because the recursive for-
mula has a unique solution, this then proves that your
conjecture is correct.

3.18. Let Qn denote the probability that no run of 3 con-
secutive heads appears in n tosses of a fair coin. Show that

Qn = 1
2
Qn−1 + 1

4
Qn−2 + 1

8
Qn−3

Q0 = Q1 = Q2 = 1

Find Q8.

Hint: Condition on the first tail.

3.19. Consider the gambler’s ruin problem, with the
exception that A and B agree to play no more than n
games. Let Pn,i denote the probability that A winds up
with all the money when A starts with i and B starts with
N − i. Derive an equation for Pn,i in terms of Pn−1, i+1 and
Pn−1, i−1, and compute P7, 3, N = 5.

3.20. Consider two urns, each containing both white and
black balls. The probabilities of drawing white balls from
the first and second urns are, respectively, p and p′. Balls
are sequentially selected with replacement as follows:
With probability α, a ball is initially chosen from the first
urn, and with probability 1 − α, it is chosen from the sec-
ond urn. The subsequent selections are then made accord-
ing to the rule that whenever a white ball is drawn (and
replaced), the next ball is drawn from the same urn, but
when a black ball is drawn, the next ball is taken from the
other urn. Let αn denote the probability that the nth ball
is chosen from the first urn. Show that

αn+1 = αn(p + p′ − 1) + 1 − p′ n Ú 1

and use this formula to prove that

αn = 1 − p′

2 − p − p′ +
(

α − 1 − p′

2 − p − p′

)

* (p + p′ − 1)n−1

Let Pn denote the probability that the nth ball selected
is white. Find Pn. Also, compute limn→q αn and
limn→q Pn.
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3.21. The Ballot Problem. In an election, candidate A
receives n votes and candidate B receives m votes, where
n > m. Assuming that all of the (n + m)!/n!m! orderings
of the votes are equally likely, let Pn,m denote the proba-
bility that A is always ahead in the counting of the votes.
(a) Compute P2,1,P3,1,P3,2,P4,1,P4,2,P4,3.
(b) Find Pn,1,Pn,2.
(c) On the basis of your results in parts (a) and (b), con-
jecture the value of Pn,m.
(d)Derive a recursion for Pn,m in terms of Pn−1,m and
Pn,m−1 by conditioning on who receives the last vote.
(e)Use part (d) to verify your conjecture in part (c) by an
induction proof on n + m.

3.22.As a simplified model for weather forecasting, sup-
pose that the weather (either wet or dry) tomorrow will
be the same as the weather today with probability p. Show
that the weather is dry on January 1, then Pn, the proba-
bility that it will be dry n days later, satisfies

Pn = (2p − 1)Pn−1 + (1 − p) n Ú 1

P0 = 1

Prove that

Pn = 1
2

+ 1
2
(2p − 1)n n Ú 0

3.23.A bag contains a white and b black balls. Balls are
chosen from the bag according to the following method:

1. A ball is chosen at random and is discarded.
2. A second ball is then chosen. If its color is different

from that of the preceding ball, it is replaced in the
bag and the process is repeated from the beginning. If
its color is the same, it is discarded and we start from
step 2.

In other words, balls are sampled and discarded until a
change in color occurs, at which point the last ball is
returned to the urn and the process starts anew. Let Pa,b
denote the probability that the last ball in the bag is white.
Prove that

Pa,b = 1
2

Hint: Use induction on k K a + b.

*3.24.A round-robin tournament of n contestants is a tour-

nament in which each of the
(
n
2

)
pairs of contestants

play each other exactly once, with the outcome of any

play being that one of the contestants wins and the other
loses. For a fixed integer k, k < n, a question of interest is
whether it is possible that the tournament outcome is such
that for every set of k players, there is a player who beat
each member of that set. Show that if

(
n
k

)[
1 −

(
1
2

)k]n−k
< 1

then such an outcome is possible.

Hint: Suppose that the results of the games are indepen-
dent and that each game is equally likely to be won by

either contestant. Number the
(
n
k

)
sets of k contestants,

and let Bi denote the event that no contestant beat all of
the k players in the ith set. Then use Boole’s inequality to

bound P

(⋃
i
Bi

)
.

3.25. Prove directly that

P(E|F) = P(E|FG)P(G|F) + P(E|FGc)P(Gc|F)

3.26. Prove the equivalence of Equations (5.11) and
(5.12).

3.27. Extend the definition of conditional independence to
more than 2 events.

3.28. Prove or give a counterexample. If E1 and E2 are
independent, then they are conditionally independent
given F.

3.29. In Laplace’s rule of succession (Example 5e), show
that if the first n flips all result in heads, then the
conditional probability that the next m flips also result in
all heads is approximately (n + 1)/(n + m − 1) when k
is large.

3.30. In Laplace’s rule of succession (Example 5e), sup-
pose that the first n flips resulted in r heads and n − r
tails. Show that the probability that the (n + 1) flip turns
up heads is (r + 1)/(n + 2). To do so, you will have to
prove and use the identity

∫ 1

0
yn(1 − y)mdy = n!m!

(n + m + 1)!

Hint: To prove the identity, letC(n,m) = ∫ 1
0 y

n(1 − y)mdy.
Integrating by parts yields

C(n,m) = m
n + 1

C(n + 1,m − 1)
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Starting with C(n, 0) = 1/(n + 1), prove the identity by
induction on m.

3.31. Suppose that a nonmathematical, but philosophically
minded, friend of yours claims that Laplace’s rule of suc-
cession must be incorrect because it can lead to ridiculous
conclusions. “For instance,” says he, “the rule states that

if a boy is 10 years old, having lived 10 years, the boy
has probability 11

12 of living another year. On the other
hand, if the boy has an 80-year-old grandfather, then, by
Laplace’s rule, the grandfather has probability 81

82 of sur-
viving another year. However, this is ridiculous. Clearly,
the boy is more likely to survive an additional year than
the grandfather is.” How would you answer your friend?

Self-Test Problems and Exercises

3.1. In a game of bridge, West has no aces. What is the
probability of his partner’s having (a) no aces? (b) 2 or
more aces? (c) What would the probabilities be if West
had exactly 1 ace?

3.2. The probability that a new car battery functions for
more than 10,000 miles is .8, the probability that it func-
tions for more than 20,000 miles is .4, and the probability
that it functions for more than 30,000 miles is .1. If a new
car battery is still working after 10,000 miles, what is the
probability that

(a) its total life will exceed 20,000 miles?
(b) its additional life will exceed 20,000 miles?

3.3.How can 20 balls, 10 white and 10 black, be put into
two urns so as to maximize the probability of drawing a
white ball if an urn is selected at random and a ball is
drawn at random from it?

3.4.UrnA contains 2 white balls and 1 black ball, whereas
urn B contains 1 white ball and 5 black balls. A ball is
drawn at random from urn A and placed in urn B. A ball
is then drawn from urn B. It happens to be white. What is
the probability that the ball transferred was white?

3.5.An urn has r red and w white balls that are randomly
removed one at a time. Let Ri be the event that the ith ball
removed is red. Find

(a) P(Ri)
(b) P(R5|R3)

(c) P(R3|R5)

3.6.An urn contains b black balls and r red balls. One of
the balls is drawn at random, but when it is put back in
the urn, c additional balls of the same color are put in with
it. Now, suppose that we draw another ball. Show that the
probability that the first ball was black, given that the sec-
ond ball drawn was red, is b/(b + r + c).

3.7.A friend randomly chooses two cards, without replace-
ment, from an ordinary deck of 52 playing cards. In each of
the following situations, determine the conditional proba-
bility that both cards are aces.

(a) You ask your friend if one of the cards is the ace of
spades, and your friend answers in the affirmative.
(b) You ask your friend if the first card selected is an ace,
and your friend answers in the affirmative.
(c) You ask your friend if the second card selected is an
ace, and your friend answers in the affirmative.
(d) You ask your friend if either of the cards selected is an
ace, and your friend answers in the affirmative.

3.8. Show that

P(H|E)

P(G|E)
= P(H)

P(G)

P(E|H)

P(E|G)

Suppose that, before new evidence is observed, the
hypothesis H is three times as likely to be true as is the
hypothesis G. If the new evidence is twice as likely when
G is true than it is whenH is true, which hypothesis is more
likely after the evidence has been observed?

3.9. You ask your neighbor to water a sickly plant while
you are on vacation. Without water, it will die with prob-
ability .8; with water, it will die with probability .15. You
are 90 percent certain that your neighbor will remember
to water the plant.

(a)What is the probability that the plant will be alive when
you return?
(b) If the plant is dead upon your return, what is the prob-
ability that your neighbor forgot to water it?

3.10. Six balls are to be randomly chosen from an urn con-
taining 8 red, 10 green, and 12 blue balls.

(a)What is the probability at least one red ball is chosen?
(b)Given that no red balls are chosen, what is the con-
ditional probability that there are exactly 2 green balls
among the 6 chosen?

3.11.A type C battery is in working condition with proba-
bility .7, whereas a type D battery is in working condition
with probability .4. A battery is randomly chosen from a
bin consisting of 8 type C and 6 type D batteries.

(a)What is the probability that the battery works?
(b)Given that the battery does not work, what is the con-
ditional probability that it was a type C battery?
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3.12.Maria will take two books with her on a trip. Sup-
pose that the probability that she will like book 1 is .6, the
probability that she will like book 2 is .5, and the probabil-
ity that she will like both books is .4. Find the conditional
probability that she will like book 2 given that she did not
like book 1.

3.13.A detective has evidence that 2 persons were
involved in the crime he is investigating. Three suspects
with very similar criminal records were seen close to the
crime scene. Two of them are believed to be guilty. What
is the probability that the first suspect being interviewed is
guilty?
Considering that the detective has managed to confirm
one interviewee as having been involved in committing the
crime, what is the probability that the next person to be
interviewed is innocent?

3.14.A coin having probability .8 of landing on heads is
flipped. A observes the result—either heads or tails—and
rushes off to tell B. However, with probability .4, A will
have forgotten the result by the time he reaches B. If A
has forgotten, then, rather than admitting this to B, he is
equally likely to tell B that the coin landed on heads or
that it landed tails. (If he does remember, then he tells B
the correct result.)

(a)What is the probability that B is told that the coin
landed on heads?
(b)What is the probability thatB is told the correct result?
(c) Given thatB is told that the coin landed on heads, what
is the probability that it did in fact land on heads?

3.15. In a certain species of rats, black dominates over
brown. Suppose that a black rat with two black parents
has a brown sibling.

(a)What is the probability that this rat is a pure black
rat (as opposed to being a hybrid with one black and one
brown gene)?
(b) Suppose that when the black rat is mated with a brown
rat, all 5 of their offspring are black. Now what is the prob-
ability that the rat is a pure black rat?

3.16. (a) In Problem 3.70b, find the probability that a cur-
rent flows from A to B, by conditioning on whether relay
1 closes.
(b) Find the conditional probability that relay 3 is closed
given that a current flows from A to B.

3.17. For the k-out-of-n system described in Problem 3.71,
assume that each component independently works with
probability 1

2 . Find the conditional probability that com-
ponent 1 is working, given that the system works,
when

(a) k = 1, n = 2;
(b) k = 2, n = 3.

3.18.Mr. Jones has devised a gambling system for win-
ning at roulette. When he bets, he bets on red and places
a bet only when the 10 previous spins of the roulette have
landed on a black number. He reasons that his chance of
winning is quite large because the probability of 11 con-
secutive spins resulting in black is quite small. What do
you think of this system?

3.19. Three players simultaneously toss coins. The coin
tossed by A(B)[C] turns up heads with probability
P1(P2)[P3]. If one person gets an outcome different from
those of the other two, then he is the odd man out. If there
is no oddman out, the players flip again and continue to do
so until they get an odd man out. What is the probability
that A will be the odd man?

3.20. Suppose that there are n possible outcomes of a
trial, with outcome i resulting with probability pi, i =
1, . . . ,n,

n∑
i=1

pi = 1. If two independent trials are observed,

what is the probability that the result of the second trial is
larger than that of the first?

3.21. If A flips n + 1 and B flips n fair coins, show that the
probability that A gets more heads than B is 1

2 .

Hint: Condition on which player has more heads after each
has flipped n coins. (There are three possibilities.)

3.22. Prove or give counterexamples to the following
statements:

(a) If E is independent of F and E is independent of G,
then E is independent of F ∪ G.
(b) If E is independent of F, and E is independent of G,
and FG = Ø, then E is independent of F ∪ G.
(c) If E is independent of F, and F is independent of G,
and E is independent of FG, thenG is independent of EF.

3.23. Let A and B be events having positive probability.
State whether each of the following statements is (i) nec-
essarily true, (ii) necessarily false, or (iii) possibly true.

(a) If A and B are mutually exclusive, then they are inde-
pendent.
(b) If A and B are independent, then they are mutually
exclusive.
(c) P(A) = P(B) = .6, andA andB are mutually exclusive.
(d) P(A) = P(B) = .6, and A and B are independent.

3.24. Rank the following from most likely to least likely to
occur:

1. A fair coin lands on heads.
2. Three independent trials, each of which is a success with

probability .8, all result in successes.
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3. Seven independent trials, each of which is a success with
probability .9, all result in successes.

3.25. Two local factories, A and B, produce radios. Each
radio produced at factory A is defective with probability
.05, whereas each one produced at factory B is defective
with probability .01. Suppose you purchase two radios that
were produced at the same factory, which is equally likely
to have been either factoryA or factoryB. If the first radio
that you check is defective, what is the conditional proba-
bility that the other one is also defective?

3.26. Show that if P(A|B) = 1, then P(Bc|Ac) = 1.

3.27.An urn initially contains 1 red and 1 blue ball. At
each stage, a ball is randomly withdrawn and replaced by
two other balls of the same color. (For instance, if the red
ball is initially chosen, then there would be 2 red and 1
blue balls in the urn when the next selection occurs.) Show
by mathematical induction that the probability that there
are exactly i red balls in the urn after n stages have been
completed is 1

n+1 , 1 … i … n + 1.

3.28.A total of 2n cards, of which 2 are aces, are to be ran-
domly divided among two players, with each player receiv-
ing n cards. Each player is then to declare, in sequence,
whether he or she has received any aces. What is the condi-
tional probability that the second player has no aces, given
that the first player declares in the affirmative, when (a)
n = 2? (b) n = 10? (c) n = 100? To what does the proba-
bility converge as n goes to infinity? Why?

3.29. There are n distinct types of coupons, and each
coupon obtained is, independently of prior types collected,
of type i with probability pi,

∑n
i=1 pi = 1.

(a) If n coupons are collected, what is the probability that
one of each type is obtained?
(b) Now suppose that p1 = p2 = · · · = pn = 1/n. Let Ei
be the event that there are no type i coupons among the
n collected. Apply the inclusion–exclusion identity for the
probability of the union of events to P(∪iEi) to prove the
identity

n! =
n∑

k=0

(−1)k
(
n
k

)
(n − k)n

3.30. Show that for any events E and F,

P(E|E ∪ F) Ú P(E|F)

Hint: Compute P(E|E ∪ F) by conditioning on whether F
occurs.

3.31. (a) If the odds ofA is 2/3, what is the probability that
A occurs.
(b) If the odds of A is 5, what is the probability that A
occurs.

3.32.A fair coin is flipped 3 times. Let E be the event that
all flips land heads.

(a)What is the odds of the event E.
(b)What is the conditional odds of the event E given that
at least one of the coins landed heads.

3.33. If the events E, F, G are independent, show that
P(E|FGc) = P(E).

3.34. Players 1, 2, 3 are in a contest. Two of them are ran-
domly chosen to play a game in round one, with the winner
then playing the remaining player in round two. The win-
ner of the round two game is the winner of the contest.
Assuming that all games are independent and that i wins
when playing against j with probability i

i+j , find the proba-
bility that 1 is the winner of the contest. Given that 1 is the
winner, what is the conditional probability that 1 did not
play in the first round.

3.35. If 4 balls are randomly chosen from an urn contain-
ing 4 red, 5 white, 6 blue, and 7 green balls, find the condi-
tional probability they are all white given that all balls are
of the same color.

3.36. In a 4 player tournament, player 1 plays player 2,
player 3 plays player 4, with the winners then playing for
the championship. Suppose that a game between player i
and player j is won by player i with probability i

i+j . Find
the probability that player 1 wins the championship.

3.37. In a tournament involving players 1, . . . ,n, players 1
and 2 play a game, with the loser departing and the winner
then playing against player 3, with the loser of that game
departing and the winner then playing player 4, and so on.
The winner of the game against player n is the tournament
winner. Suppose that a game between players i and j is won
by player i with probability i

i+j .

(a) Find the probability that player 3 is the tournament
winner.
(b) If n = 4, find the probability that player 4 is the tour-
nament winner.
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4.1 Random Variables
When an experiment is performed, we are frequently interestedmainly in some func-
tion of the outcome as opposed to the actual outcome itself. For instance, in tossing
dice, we are often interested in the sum of the two dice and are not really concerned
about the separate values of each die. That is, we may be interested in knowing
that the sum is 7 and may not be concerned over whether the actual outcome was
(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), or (6, 1). Also, in flipping a coin, we may be inter-
ested in the total number of heads that occur and not care at all about the actual
head–tail sequence that results. These quantities of interest, or, more formally, these
real-valued functions defined on the sample space, are known as random variables.

Because the value of a random variable is determined by the outcome of the
experiment, we may assign probabilities to the possible values of the random
variable.

Example
1a

Suppose that our experiment consists of tossing 3 fair coins. If we let Y denote the
number of heads that appear, thenY is a random variable taking on one of the values
0, 1, 2, and 3 with respective probabilities

P{Y = 0} = P{(t, t, t)} = 1
8

P{Y = 1} = P{(t, t,h), (t,h, t), (h, t, t)} = 3
8

P{Y = 2} = P{(t,h,h), (h, t,h), (h,h, t)} = 3
8

P{Y = 3} = P{(h, h,h)} = 1
8

131
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Since Y must take on one of the values 0 through 3, we must have

1 = P

⎛
⎝ 3⋃
i=0

{Y = i}
⎞
⎠ =

3∑
i=0

P{Y = i}

which, of course, is in accord with the preceding probabilities. .

Example
1b

A life insurance agent has 2 elderly clients, each of whom has a life insurance policy
that pays $100,000 upon death. Let Y be the event that the younger one dies in the
following year, and let O be the event that the older one dies in the following year.
Assume that Y andO are independent, with respective probabilities P(Y) = .05 and
P(O) = .10. If X denotes the total amount of money (in units of $100, 000) that
will be paid out this year to any of these clients’ beneficiaries, then X is a random
variable that takes on one of the possible values 0, 1, 2 with respective probabilities

P{X = 0} = P(YcOc) = P(Yc)P(Oc) = (.95)(.9) = .855

P{X = 1} = P(YOc) + P(YcO) = (.05)(.9) + (.95)(.1) = .140

P{X = 2} = P(YO) = (.05)(.1) = .005 .

Example
1c

Four balls are to be randomly selected, without replacement, from an urn that con-
tains 20 balls numbered 1 through 20. IfX is the largest numbered ball selected, then
X is a random variable that takes on one of the values 4, 5, . . . , 20. Because each of
the
(20
4

)
possible selections of 4 of the 20 balls is equally likely, the probability thatX

takes on each of its possible values is

P{X = i} =
(i−1

3

)
(20
4

) , i = 4, . . . , 20

This is so because the number of selections that result in X = i is the number of
selections that result in ball numbered i and three of the balls numbered 1 through
i − 1 being selected. As there are

(1
1

)(i−1
3

)
such selections, the preceding equation

follows.
Suppose now that we want to determine P{X > 10}. One way, of course, is to

just use the preceding to obtain

P{X > 10} =
20∑
i=11

P{X = i} =
20∑
i=11

(i−1
3

)
(20
4

)
However, a more direct approach for determining P(X > 10) would be to use

P{X > 10} = 1 − P{X … 10} = 1 −
(10
4

)
(20
4

)
where the preceding results because X will be less than or equal to 10 when the 4
balls chosen are among balls numbered 1 through 10. .

Example
1d

Independent trials consisting of the flipping of a coin having probability p of coming
up heads are continually performed until either a head occurs or a total of n flips is
made. If we letX denote the number of times the coin is flipped, thenX is a random
variable taking on one of the values 1, 2, 3, . . . ,n with respective probabilities
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P{X = 1} = P{h} = p

P{X = 2} = P{(t,h)} = (1 − p)p

P{X = 3} = P{(t, t,h)} = (1 − p)2p

#
#
#

P{X = n − 1} = P{(t, t, . . . , t,︸ ︷︷ ︸
n−2

h)} = (1 − p)n−2p

P{X = n} = P{(t, t, . . . , t,︸ ︷︷ ︸
n−1

t), (t, t, . . . , t,︸ ︷︷ ︸
n−1

h)} = (1 − p)n−1

As a check, note that

P

⎛
⎝ n⋃
i=1

{X = i}
⎞
⎠ =

n∑
i=1

P{X = i}

=
n−1∑
i=1

p(1 − p)i−1 + (1 − p)n−1

= p

[
1 − (1 − p)n−1

1 − (1 − p)

]
+ (1 − p)n−1

= 1 − (1 − p)n−1 + (1 − p)n−1

= 1 .

Example
1e

Suppose that there are r distinct types of coupons and that each time one obtains a
coupon, it is, independently of previous selections, equally likely to be any one of the
r types. One random variable of interest is T, the number of coupons that need to be
collected until one obtains a complete set of at least one of each type. Rather than
derive P{T = n} directly, let us start by considering the probability that T is greater
than n. To do so, fix n and define the events A1,A2, . . . ,Ar as follows: Aj is the event
that no type j coupon is contained among the first n coupons collected, j = 1, . . . , r.
Hence, by the inclusion-exclusion identity

P{T > n} = P

⎛
⎜⎝ r⋃
j=1

Aj

⎞
⎟⎠

=
∑
j

P(Aj) −
∑∑
j1<j2

P(Aj1Aj2) + · · ·

+ (−1)k+1
∑∑∑

j1<j2<···<jk
P(Aj1Aj2 · · ·Ajk) · · ·

+ (−1)r+1P(A1A2 · · ·Ar)
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Now, Aj will occur if each of the n coupons collected is not of type j. Since each of
the coupons will not be of type j with probability (r − 1)/r, we have, by the assumed
independence of the types of successive coupons,

P(Aj) =
(
r − 1
r

)n
Also, the event Aj1Aj2 will occur if none of the first n coupons collected is of either
type j1 or type j2. Thus, again using independence, we see that

P(Aj1Aj2) =
(
r − 2
r

)n
The same reasoning gives

P(Aj1Aj2 · · ·Ajk) =
(
r − k
r

)n
and we see that for n > 0,

P{T > n} = r
(
r − 1
r

)n
−
(
r
2

)(
r − 2
r

)n
+
(
r
3

)(
r − 3
r

)n
− · · ·

+ (−1)r
(

r
r − 1

)(
1
r

)n

=
r−1∑
i=1

(
r
i

)(
r − i
r

)n
(−1)i+1 (1.1)

The probability that T equals n can now be obtained from the preceding formula by
the use of

P{T > n − 1} = P{T = n} + P{T > n}
or, equivalently,

P{T = n} = P{T > n − 1} − P{T > n}
Another random variable of interest is the number of distinct types of coupons

that are contained in the first n selections—call this random variableDn. To compute
P{Dn = k}, let us start by fixing attention on a particular set of k distinct types,
and let us then determine the probability that this set constitutes the set of distinct
types obtained in the first n selections. Now, in order for this to be the situation, it is
necessary and sufficient that of the first n coupons obtained,

A : each is one of these k types

B : each of these k types is represented

Now, each coupon selected will be one of the k types with probability k/r, so the
probability that A will be valid is (k/r)n. Also, given that a coupon is of one of the
k types under consideration, it is easy to see that it is equally likely to be of any one
of these k types. Hence, the conditional probability of B given that A occurs is the
same as the probability that a set of n coupons, each equally likely to be any of k
possible types, contains a complete set of all k types. But this is just the probability
that the number needed to amass a complete set, when choosing among k types, is
less than or equal to n and is thus obtainable from Equation (1.1) with k replacing r.
Thus, we have
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P(A) =
(
k
r

)n

P(B|A) = 1 −
k−1∑
i=1

(
k
i

)(
k − i
k

)n
(−1)i+1

Finally, as there are

(
r
k

)
possible choices for the set of k types, we arrive at

P{Dn = k} =
(
r
k

)
P(AB)

=
(
r
k

)(
k
r

)n⎡⎣1 −
k−1∑
i=1

(
k
i

)(
k − i
k

)n
(−1)i+1

⎤
⎦

Remark We can obtain a useful bound on P(T > n) = P(∪r
j=1Aj) by using Boole’s

inequality along with the inequality e−x Ú 1 − x.

P(T > n) = P(∪r
j=1Aj)

…
r∑
j=1

P(Aj)

= r(1 − 1
r
)n

… re−n/r

The first inequality is Boole’s inequality, which says that the probability of the union
of events is always less than or equal to the sum of the probabilities of these events,
and the last inequality uses that e−1/r Ú 1 − 1/r. .

For a random variable X, the function F defined by

F(x) = P{X … x} − q < x < q

is called the cumulative distribution function or, more simply, the distribution func-
tion ofX. Thus, the distribution function specifies, for all real values x, the probability
that the random variable is less than or equal to x.

Now, suppose that a … b. Then, because the event {X … a} is contained in the
event {X … b}, it follows that F(a), the probability of the former, is less than or equal
to F(b), the probability of the latter. In other words, F(x) is a nondecreasing function
of x. Other general properties of the distribution function are given in Section 4.10.

4.2 Discrete Random Variables
A random variable that can take on at most a countable number of possible values is
said to be discrete. For a discrete random variable X, we define the probability mass
function p(a) of X by

p(a) = P{X = a}
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The probability mass function p(a) is positive for at most a countable number of
values of a. That is, if X must assume one of the values x1, x2, . . . , then

p(xi) Ú 0 for i = 1, 2, . . .

p(x) = 0 for all other values of x

Since X must take on one of the values xi, we have

q∑
i=1

p(xi) = 1

It is often instructive to present the probability mass function in a graphical
format by plotting p(xi) on the y-axis against xi on the x-axis. For instance, if the
probability mass function of X is

p(0) = 1
4

p(1) = 1
2

p(2) = 1
4

we can represent this function graphically as shown in Figure 4.1. Similarly, a graph
of the probability mass function of the random variable representing the sum when
two dice are rolled looks like Figure 4.2.
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Example
2a

The probability mass function of a random variable X is given by p(i) = cλi/i!,
i = 0, 1, 2, . . . , where λ is some positive value. Find (a) P{X = 0} and (b) P{X > 2}.

Solution Since
q∑
i=0

p(i) = 1, we have

c
q∑
i=0

λi

i!
= 1

which, because e x =
q∑
i=0

xi/i!, implies that

ceλ = 1 or c = e−λ

Hence,

(a) P{X = 0} = e−λλ0/0! = e−λ

(b) P{X > 2} = 1 − P{X … 2} = 1 − P{X = 0} − P{X = 1}
− P{X = 2}

= 1 − e−λ − λe−λ − λ2e−λ

2 .

The cumulative distribution function F can be expressed in terms of p(a) by

F(a) =
∑

all x … a

p(x)

If X is a discrete random variable whose possible values are x1, x2, x3, . . . , where
x1 < x2 < x3 < · · · , then the distribution function F of X is a step function. That
is, the value of F is constant in the intervals (xi−1, xi) and then takes a step (or jump)
of size p(xi) at xi. For instance, if X has a probability mass function given by

p(1) = 1
4

p(2) = 1
2

p(3) = 1
8

p(4) = 1
8

then its cumulative distribution function is

F(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 a < 1
1
4 1 … a < 2

3
4 2 … a < 3

7
8 3 … a < 4

1 4 … a

This function is depicted graphically in Figure 4.3.
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Note that the size of the step at any of the values 1, 2, 3, and 4 is equal to the
probability that X assumes that particular value.

4.3 Expected Value
One of the most important concepts in probability theory is that of the expectation
of a random variable. If X is a discrete random variable having a probability mass
function p(x), then the expectation, or the expected value, of X, denoted by E[X], is
defined by

E[X] =
∑

x:p(x)>0

xp(x)

In words, the expected value of X is a weighted average of the possible values that
X can take on, each value being weighted by the probability that X assumes it. For
instance, on the one hand, if the probability mass function of X is given by

p(0) = 1
2

= p(1)

then

E[X] = 0
(
1
2

)
+ 1

(
1
2

)
= 1

2

is just the ordinary average of the two possible values, 0 and 1, that X can assume.
On the other hand, if

p(0) = 1
3

p(1) = 2
3

then

E[X] = 0
(
1
3

)
+ 1

(
2
3

)
= 2

3

is a weighted average of the two possible values 0 and 1, where the value 1 is given
twice as much weight as the value 0, since p(1) = 2p(0).

Another motivation of the definition of expectation is provided by the frequency
interpretation of probabilities. This interpretation (partially justified by the strong
law of large numbers, to be presented in Chapter 8) assumes that if an infinite
sequence of independent replications of an experiment is performed, then, for any
event E, the proportion of time that E occurs will be P(E). Now, consider a random
variable X that must take on one of the values x1, x2, . . . xn with respective probabil-
ities p(x1), p(x2), . . . ,p(xn), and think of X as representing our winnings in a single
game of chance. That is, with probability p(xi), we shall win xi units i = 1, 2, . . . ,n. By
the frequency interpretation, if we play this game continually, then the proportion of
time that we win xi will be p(xi). Since this is true for all i, i = 1, 2, . . . ,n, it follows
that our average winnings per game will be

n∑
i=1

xip(xi) = E[X]

Example
3a

Find E[X], where X is the outcome when we roll a fair die.
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Solution Since p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1
6 , we obtain

E[X] = 1
(
1
6

)
+ 2

(
1
6

)
+ 3

(
1
6

)
+ 4

(
1
6

)
+ 5

(
1
6

)
+ 6

(
1
6

)
= 7

2 .

Example
3b

We say that I is an indicator variable for the event A if

I =
{
1 if A occurs
0 if Ac occurs

Find E[I].

Solution Since p(1) = P(A), p(0) = 1 − P(A), we have

E[I] = P(A)

That is, the expected value of the indicator variable for the event A is equal to the
probability that A occurs. .

Example
3c

Acontestant on a quiz show is presented with two questions, questions 1 and 2, which
he is to attempt to answer in some order he chooses. If he decides to try question i
first, then he will be allowed to go on to question j, j Z i, only if his answer to question
i is correct. If his initial answer is incorrect, he is not allowed to answer the other
question. The contestant is to receive Vi dollars if he answers question i correctly,
i = 1, 2. For instance, he will receive V1 + V2 dollars if he answers both questions
correctly. If the probability that he knows the answer to question i is Pi, i = 1, 2,
which question should he attempt to answer first so as to maximize his expected
winnings? Assume that the events Ei, i = 1, 2, that he knows the answer to question
i are independent events.
Solution On the one hand, if he attempts to answer question 1 first, then he will win

0 with probability 1 − P1
V1 with probability P1(1 − P2)

V1 + V2 with probability P1P2

Hence, his expected winnings in this case will be

V1P1(1 − P2) + (V1 + V2)P1P2

On the other hand, if he attempts to answer question 2 first, his expected winnings
will be

V2P2(1 − P1) + (V1 + V2)P1P2

Therefore, it is better to try question 1 first if

V1P1(1 − P2) Ú V2P2(1 − P1)

or, equivalently, if
V1P1

1 − P1
Ú

V2P2

1 − P2

For example, if he is 60 percent certain of answering question 1, worth $200, correctly
and he is 80 percent certain of answering question 2, worth $100, correctly, then he
should attempt to answer question 2 first because
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400 = (100)(.8)
.2

>
(200)(.6)

.4
= 300 .

Example
3d

A school class of 120 students is driven in 3 buses to a symphonic performance. There
are 36 students in one of the buses, 40 in another, and 44 in the third bus. When the
buses arrive, one of the 120 students is randomly chosen. Let X denote the number
of students on the bus of that randomly chosen student, and find E[X].

Solution Since the randomly chosen student is equally likely to be any of the 120
students, it follows that

P{X = 36} = 36
120

P{X = 40} = 40
120

P{X = 44} = 44
120

Hence,

E[X] = 36
(

3
10

)
+ 40

(
1
3

)
+ 44

(
11
30

)
= 1208

30
= 40.2667

However, the average number of students on a bus is 120/3 = 40, showing that
the expected number of students on the bus of a randomly chosen student is larger
than the average number of students on a bus. This is a general phenomenon, and
it occurs because the more students there are on a bus, the more likely it is that
a randomly chosen student would have been on that bus. As a result, buses with
many students are given more weight than those with fewer students. (See Self-Test
Problem 4.4) .

Remark The probability concept of expectation is analogous to the physical con-
cept of the center of gravity of a distribution of mass. Consider a discrete random
variableX having probability mass function p(xi), i Ú 1. If we now imagine a weight-
less rod in which weights with mass p(xi), i Ú 1, are located at the points xi, i Ú 1
(see Figure 4.4), then the point at which the rod would be in balance is known as the
center of gravity. For those readers acquainted with elementary statics, it is now a
simple matter to show that this point is at E[X].† .

21 0 2^ 1

p(21) 5 .10, p(0) 5 .25, p(2) 5 .35p(1) 5 .30,

^ 5 center of gravity 5 .9

Figure 4.4

4.4 Expectation of a Function of a Random Variable
Suppose that we are given a discrete random variable along with its probability mass
function and that we want to compute the expected value of some function ofX, say,
g(X). How can we accomplish this? One way is as follows: Since g(X) is itself a dis-
crete random variable, it has a probability mass function, which can be determined
from the probability mass function of X. Once we have determined the probability

†To prove this, we must show that the sum of the torques tending to turn the point around E[X] is equal to 0.
That is, we must show that 0 =∑

i
(xi − E[X])p(xi), which is immediate.
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mass function of g(X), we can compute E[g(X)] by using the definition of expected
value.

Example
4a

Let X denote a random variable that takes on any of the values −1, 0, and 1 with
respective probabilities

P{X = −1} = .2 P{X = 0} = .5 P{X = 1} = .3

Compute E[X2].

Solution Let Y = X2. Then the probability mass function of Y is given by

P{Y = 1} = P{X = −1} + P{X = 1} = .5

P{Y = 0} = P{X = 0} = .5

Hence,

E[X2] = E[Y] = 1(.5) + 0(.5) = .5

Note that

.5 = E[X2] Z (E[X])2 = .01 .

Although the preceding procedure will always enable us to compute the expec-
ted value of any function of X from a knowledge of the probability mass function
of X, there is another way of thinking about E[g(X)]: Since g(X) will equal g(x)
wheneverX is equal to x, it seems reasonable that E[g(X)] should just be a weighted
average of the values g(x), with g(x) being weighted by the probability thatX is equal
to x. That is, the following result is quite intuitive.

Proposition
4.1

If X is a discrete random variable that takes on one of the values xi, i Ú 1, with
respective probabilities p(xi), then, for any real-valued function g,

E[g(X)] =
∑
i

g(xi)p(xi)

Before proving this proposition, let us check that it is in accord with the results of
Example 4a. Applying it to that example yields

E{X2} = (−1)2(.2) + 02(.5) + 12(.3)

= 1(.2 + .3) + 0(.5)

= .5

which is in agreement with the result given in Example 4a.

Proof of Proposition 4.1 The proof of Proposition 4.1 proceeds, as in the preceding
verification, by grouping together all the terms in

∑
i
g(xi)p(xi) having the same value

of g(xi). Specifically, suppose that yj, j Ú 1, represent the different values of g(xi), i Ú
1. Then, grouping all the g(xi) having the same value gives
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∑
i

g(xi)p(xi) =
∑
j

∑
i:g(xi)=yj

g(xi)p(xi)

=
∑
j

∑
i:g(xi)=yj

yjp(xi)

=
∑
j

yj
∑

i:g(xi)=yj
p(xi)

=
∑
j

yjP{g(X) = yj}

= E[g(X)] �
Example

4b
A product that is sold seasonally yields a net profit of b dollars for each unit sold and
a net loss of � dollars for each unit left unsold when the season ends. The number
of units of the product that are ordered at a specific department store during any
season is a random variable having probability mass function p(i), i Ú 0. If the store
must stock this product in advance, determine the number of units the store should
stock so as to maximize its expected profit.

Solution Let X denote the number of units ordered. If s units are stocked, then the
profit—call it P(s)—can be expressed as

P(s) = bX − (s − X)� if X … s

= sb if X > s

Hence, the expected profit equals

E[P(s)] =
s∑
i=0

[bi − (s − i)�]p(i) +
q∑

i=s+1

sbp(i)

= (b + �)

s∑
i=0

ip(i) − s�
s∑
i=0

p(i) + sb

⎡
⎣1 −

s∑
i=0

p(i)

⎤
⎦

= (b + �)

s∑
i=0

ip(i) − (b + �)s
s∑
i=0

p(i) + sb

= sb + (b + �)

s∑
i=0

(i − s)p(i)

To determine the optimum value of s, let us investigate what happens to the profit
when we increase s by 1 unit. By substitution, we see that the expected profit in this
case is given by

E[P(s + 1)] = b(s + 1) + (b + �)

s+1∑
i=0

(i − s − 1)p(i)

= b(s + 1) + (b + �)

s∑
i=0

(i − s − 1)p(i)

Therefore,

E[P(s + 1)] − E[P(s)] = b − (b + �)

s∑
i=0

p(i)
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Thus, stocking s + 1 units will be better than stocking s units whenever

s∑
i=0

p(i) <
b

b + �
(4.1)

Because the left-hand side of Equation (4.1) is increasing in s while the right-hand
side is constant, the inequality will be satisfied for all values of s … s∗, where s∗ is the
largest value of s satisfying Equation (4.1). Since

E[P(0)] < · · · < E[P(s∗)] < E[P(s∗ + 1)] > E[P(s∗ + 2)] > · · ·

it follows that stocking s∗ + 1 items will lead to a maximum expected profit. .

Example
4c

Utility

Suppose that you must choose one of two possible actions, each of which can result
in any of n consequences, denoted as C1, . . . ,Cn. Suppose that if the first action is
chosen, then consequence Ci will result with probability pi, i = 1, . . . ,n, whereas
if the second action is chosen, then consequence Ci will result with probability qi,

i = 1, . . . ,n, where
n∑
i=1

pi =
n∑
i=1

qi = 1. The following approach can be used to deter-

mine which action to choose: Start by assigning numerical values to the different
consequences. First, identify the least and the most desirable consequences—call
them c and C, respectively; give consequence c the value 0 and give C the value 1.
Now consider any of the other n − 2 consequences, say, Ci. To value this conse-
quence, imagine that you are given the choice between either receiving Ci or taking
part in a random experiment that either earns you consequence C with probabil-
ity u or consequence c with probability 1 − u. Clearly, your choice will depend on
the value of u. On the one hand, if u = 1, then the experiment is certain to result
in consequence C, and since C is the most desirable consequence, you will prefer
participating in the experiment to receiving Ci. On the other hand, if u = 0, then
the experiment will result in the least desirable consequence—namely, c—so in this
case you will prefer the consequence Ci to participating in the experiment. Now,
as u decreases from 1 to 0, it seems reasonable that your choice will at some point
switch from participating in the experiment to the certain return of Ci, and at that
critical switch point you will be indifferent between the two alternatives. Take that
indifference probability u as the value of the consequence Ci. In other words, the
value of Ci is that probability u such that you are indifferent between either receiv-
ing the consequence Ci or taking part in an experiment that returns consequence C
with probability u or consequence c with probability 1 − u. We call this indifference
probability the utility of the consequence Ci, and we designate it as u(Ci).

To determine which action is superior, we need to evaluate each one. Consider
the first action, which results in consequence Ci with probability pi, i = 1, . . . ,n. We
can think of the result of this action as being determined by a two-stage experiment.
In the first stage, one of the values 1, . . . ,n is chosen according to the probabilities
p1, . . . ,pn; if value i is chosen, you receive consequence Ci. However, since Ci is
equivalent to obtaining consequence C with probability u(Ci) or consequence c with
probability 1 − u(Ci), it follows that the result of the two-stage experiment is equiv-
alent to an experiment in which either consequence C or consequence c is obtained,
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with C being obtained with probability

n∑
i=1

piu(Ci)

Similarly, the result of choosing the second action is equivalent to taking part in an
experiment in which either consequence C or consequence c is obtained, with C
being obtained with probability

n∑
i=1

qiu(Ci)

Since C is preferable to c, it follows that the first action is preferable to the
second action if

n∑
i=1

piu(Ci) >

n∑
i=1

qiu(Ci)

In other words, the worth of an action can be measured by the expected value of the
utility of its consequence, and the action with the largest expected utility is the most
preferable. .

A simple logical consequence of Proposition 4.1 is Corollary 4.1.

Corollary
4.1

If a and b are constants, then

E[aX + b] = aE[X] + b

Proof

E[aX + b] =
∑

x:p(x)>0

(ax + b)p(x)

= a
∑

x:p(x)>0

xp(x) + b
∑

x:p(x)>0

p(x)

= aE[X] + b

The expected value of a random variableX,E[X], is also referred to as themean
or the first moment of X. The quantity E[Xn],n Ú 1, is called the nth moment of X.
By Proposition 4.1, we note that

E[Xn] =
∑

x:p(x)>0

xnp(x)

4.5 Variance
Given a random variable X along with its distribution function F, it would be
extremely useful if we were able to summarize the essential properties of F by cer-
tain suitably definedmeasures. One suchmeasure would beE[X], the expected value
of X. However, although E[X] yields the weighted average of the possible values of
X, it does not tell us anything about the variation, or spread, of these values. For
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instance, although random variablesW, Y, and Z having probability mass functions
determined by

W = 0 with probability 1

Y =
⎧⎨
⎩

−1 with probability 1
2

+1 with probability 1
2

Z =
⎧⎨
⎩

−100 with probability 1
2

+100 with probability 1
2

all have the same expectation—namely, 0—there is a much greater spread in the
possible values of Y than in those of W (which is a constant) and in the possible
values of Z than in those of Y.

Because we expect X to take on values around its mean E[X], it would appear
that a reasonable way of measuring the possible variation of X would be to look
at how far apart X would be from its mean, on the average. One possible way to
measure this variation would be to consider the quantity E[|X − μ|], where μ =
E[X]. However, it turns out to be mathematically inconvenient to deal with this
quantity, so a more tractable quantity is usually considered—namely, the expectation
of the square of the difference between X and its mean. We thus have the following
definition.

Definition
If X is a random variable with mean μ, then the variance of X, denoted by
Var(X), is defined by

Var(X) = E[(X − μ)2]

An alternative formula for Var(X) is derived as follows:

Var(X) = E[(X − μ)2]

=
∑
x

(x − μ)2p(x)

=
∑
x

(x2 − 2μx + μ2)p(x)

=
∑
x

x2p(x) − 2μ
∑
x

xp(x) + μ2
∑
x

p(x)

= E[X2] − 2μ2 + μ2

= E[X2] − μ2

That is,

Var(X) = E[X2] − (E[X])2

In words, the variance ofX is equal to the expected value ofX2 minus the square
of its expected value. In practice, this formula frequently offers the easiest way to
compute Var(X).

Example
5a

Calculate Var(X) if X represents the outcome when a fair die is rolled.
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Solution It was shown in Example 3a that E[X] = 7
2 . Also,

E[X2] = 12
(
1
6

)
+ 22

(
1
6

)
+ 32

(
1
6

)
+ 42

(
1
6

)
+ 52

(
1
6

)
+ 62

(
1
6

)

=
(
1
6

)
(91)

Hence,

Var(X) = 91
6

−
(
7
2

)2
= 35

12
.

Because Var(X) = E[(X − μ)2] =∑x(x − μ)2P(X = x) is the sum of nonnegative
terms, it follows that Var(X) Ú 0 or equivalently, that

E[X2] Ú (E[X])2

That is, the expected value of the square of a random variable is at least as large as
the square of its expected value.

Example
5b

The friendship paradox is often expressed as saying that on average your friends
have more friends than you do. More formally, suppose that there are n people in a
certain population, labeled 1, 2, . . . ,n, and that certain pairs of these individuals are
friends. This friendship network can be graphically represented by having a circle for
each person and then having a line between circles to indicate that those people are
friends. For instance, Figure 4.5 indicates that there are 4 people in the community
and that persons 1 and 2 are friends, persons 1 and 3 are friends, persons 1 and 4 are
friends, and persons 2 and 4 are friends.

Let f (i) denote the number of friends of person i and let f = ∑n
i=1 f (i). (Thus,

for the network of Figure 4.5, f (1) = 3, f (2) = 2, f (3) = 1, f (4) = 2 and f = 8.) Now,
let X be a randomly chosen individual, equally likely to be any of 1, 2, . . . ,n. That is,

P(X = i) = 1/n, i = 1, . . . ,n.

1 2

3 4

Figure 4.5 A Friendship Graph
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Letting g(i) = f (i) in Proposition 4.1, it follows that E[f (X)], the expected number
of friends of X, is

E[f (X)] =
n∑
i=1

f (i)P(X = i) =
n∑
i=1

f (i)/n = f/n

Also, letting g(i) = f 2(i), it follows from Proposition 4.1 that E[f 2(X)], the expected
value of the square of the number of friends of X, is

E[f 2(X)] =
n∑
i=1

f 2(i)P(X = i) =
n∑
i=1

f 2(i)/n

Consequently, we see that

E[f 2(X)]
E[f (X)]

=
∑n

i=1 f
2(i)

f
(5.1)

Now suppose that each of the n individuals writes the names of all their friends,
with each name written on a separate sheet of paper. Thus, an individual with k
friends will use k separate sheets. Because person i has f (i) friends, there will be
f = ∑n

i=1 f (i) separate sheets of paper, with each sheet containing one of the n
names. Now choose one of these sheets at random and let Y denote the name on
that sheet. Let us compute E[f (Y)], the expected number of friends of the person
whose name is on the chosen sheet. Now, because person i has f (i) friends, it follows
that i is the name on f (i) of the sheets, and thus i is the name on the chosen sheet
with probability f (i)

f . That is,

P(Y = i) = f (i)
f

, i = 1, . . . ,n.

Consequently,

E[f (Y)] =
n∑
i=1

f (i)P(Y = i) =
n∑
i=1

f 2(i)/f (5.2)

Thus, from (5.1), we see that

E[f (Y)] = E[f 2(X)]
E[f (X)]

Ú E[f (X)]

where the inequality follows because the expected value of the square of any random
variable is always at least as large as the square of its expectation. Thus, E[f (X)] …
E[f (Y)], which says that the average number of friends that a randomly chosen indi-
vidual has is less than (or equal to if all the individuals have the same number of
friends) the average number of friends of a randomly chosen friend.

Remark The intuitive reason for the friendship paradox is that X is equally likely
to be any of the n individuals. On the other hand Y is chosen with a probability
proportional to its number of friends; that is, the more friends an individual has the
more likely that individual will be Y. Thus, Y is biased towards individuals with a
large number of friends and so it is not surprising that the average number of friends
that Y has is larger than the average number of friends that X has. .
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The following is a further example illustrating the usefulness of the inequality
that the expected value of a square is at least as large as the square of the expected
value.

Example
5c

Suppose there are m days in a year, and that each person is independently born on
day rwith probability pr, r = 1, . . . ,m,

∑m
r=1 pr = 1. LetAi,j be the event that persons

i and j are born on the same day.
(a) Find P(A1,3)

(b) Find P(A1,3|A1,2)

(c) Show P(A1,3|A1,2) Ú P(A1,3)

Solution

(a) Because the event that 1 and 3 have the same birthday is the union of the m
mutually exclusive events that they were both born on day r, r = 1, . . . ,m, we
have that

P(A1,3) =
∑
r

p2r .

(b) Using the definition of conditional probability we obtain that

P(A1,3|A1,2) = P(A1,2A1,3)

P(A1,2)

=
∑

r p
3
r∑

r p2r

where the preceding used that A1,2A1,3 is the union of themmutually exclusive
events that 1, 2, 3 were all born on day r, r = 1, . . . ,m.

(c) It follows from parts (a) and (b) that P(A1,3|A1,2) Ú P(A1,3) is equivalent to∑
r p

3
r Ú (

∑
r p

2
r )

2. To prove this inequality, let X be a random variable that is
equal to pr with probability pr. That is, P(X = pr) = pr, r = 1, . . . ,m. Then

E[X] =
∑
r

prP(X = pr) =
∑
r

p2r , E[X2] =
∑
r

p2rP(X = pr) =
∑
r

p3r

and the result follows because E[X2] Ú (E[X])2.

Remark The intuitive reason for why part (c) is true is that if the “popular days”
are the ones whose probabilities are relatively large, then knowing that 1 and 2 share
the same birthday makes it more likely (than when we have no information) that the
birthday of 1 is a popular day and that makes it more likely that 3 will have the same
birthday as does 1.

.
A useful identity is that for any constants a and b,

Var(aX + b) = a2Var(X)
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To prove this equality, let μ = E[X] and note from Corollary 4.1 that E[aX + b] =
aμ + b. Therefore,

Var(aX + b) = E[(aX + b − aμ − b)2]

= E[a2(X − μ)2]

= a2E[(X − μ)2]

= a2Var(X)

Remarks (a) Analogous to the means being the center of gravity of a distribution
of mass, the variance represents, in the terminology of mechanics, the moment of
inertia.

(b) The square root of the Var(X) is called the standard deviation of X, and we
denote it by SD(X). That is,

SD(X) =
√
Var(X)

Discrete random variables are often classified according to their probability mass
functions. In the next few sections, we consider some of the more common types.

4.6 The Bernoulli and Binomial Random Variables
Suppose that a trial, or an experiment, whose outcome can be classified as either a
success or a failure is performed. If we let X = 1 when the outcome is a success and
X = 0 when it is a failure, then the probability mass function of X is given by

p(0) = P{X = 0} = 1 − p

p(1) = P{X = 1} = p
(6.1)

where p, 0 … p … 1, is the probability that the trial is a success.
A random variable X is said to be a Bernoulli random variable (after the Swiss

mathematician James Bernoulli) if its probability mass function is given by Equa-
tions (6.1) for some p ∈ (0, 1).

Suppose now that n independent trials, each of which results in a success with
probability p or in a failure with probability 1 − p, are to be performed. If X repre-
sents the number of successes that occur in the n trials, thenX is said to be a binomial
random variable with parameters (n, p). Thus, a Bernoulli random variable is just a
binomial random variable with parameters (1, p).

The probability mass function of a binomial random variable having parameters
(n, p) is given by

p(i) =
(
n
i

)
pi(1 − p)n−i i = 0, 1, . . . ,n (6.2)

The validity of Equation (6.2) may be verified by first noting that the probability of
any particular sequence of n outcomes containing i successes and n − i failures is, by
the assumed independence of trials, pi(1 − p)n−i. Equation (6.2) then follows, since

there are

(
n
i

)
different sequences of the n outcomes leading to i successes and

n − i failures. This perhaps can most easily be seen by noting that there are

(
n
i

)
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different choices of the i trials that result in successes. For instance, if n = 4, i = 2,

then there are

(
4
2

)
= 6 ways in which the four trials can result in two successes,

namely, any of the outcomes (s, s, f , f ), (s, f , s, f ), (s, f , f , s), (f , s, s, f ), (f , s, f , s), and
(f , f , s, s), where the outcome (s, s, f , f ) means, for instance, that the first two trials
are successes and the last two failures. Since each of these outcomes has probability
p2(1 − p)2 of occurring, the desired probability of two successes in the four trials

is

(
4
2

)
p2(1 − p)2.

Note that, by the binomial theorem, the probabilities sum to 1; that is,

q∑
i=0

p(i) =
n∑
i=0

(
n
i

)
pi(1 − p)n−i = [p + (1 − p)]n = 1

Example
6a

Five fair coins are flipped. If the outcomes are assumed independent, find the prob-
ability mass function of the number of heads obtained.

Solution If we let X equal the number of heads (successes) that appear, then X
is a binomial random variable with parameters

(
n = 5, p = 1

2

)
. Hence, by Equa-

tion (6.2),

P{X = 0} =
(
5
0

)(
1
2

)0 (1
2

)5
= 1

32

P{X = 1} =
(
5
1

)(
1
2

)1 (1
2

)4
= 5

32

P{X = 2} =
(
5
2

)(
1
2

)2 (1
2

)3
= 10

32

P{X = 3} =
(
5
3

)(
1
2

)3 (1
2

)2
= 10

32

P{X = 4} =
(
5
4

)(
1
2

)4 (1
2

)1
= 5

32

P{X = 5} =
(
5
5

)(
1
2

)5 (1
2

)0
= 1

32
.

Example
6b

It is known that screws produced by a certain company will be defective with prob-
ability .01, independently of one another. The company sells the screws in packages
of 10 and offers a money-back guarantee that at most 1 of the 10 screws is defective.
What proportion of packages sold must the company replace?

Solution If X is the number of defective screws in a package, then X is a binomial
random variable with parameters (10, .01). Hence, the probability that a package
will have to be replaced is

1 − P{X = 0} − P{X = 1} = 1 −
(
10
0

)
(.01)0(.99)10 −

(
10
1

)
(.01)1(.99)9

L .004

Thus, only .4 percent of the packages will have to be replaced. .
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Example
6c

The following gambling game, known as the wheel of fortune (or chuck-a-luck), is
quite popular at many carnivals and gambling casinos: A player bets on one of the
numbers 1 through 6. Three dice are then rolled, and if the number bet by the player
appears i times, i = 1, 2, 3, then the player wins i units; if the number bet by the player
does not appear on any of the dice, then the player loses 1 unit. Is this game fair to
the player? (Actually, the game is played by spinning a wheel that comes to rest on
a slot labeled by three of the numbers 1 through 6, but this variant is mathematically
equivalent to the dice version.)

Solution If we assume that the dice are fair and act independently of one another,
then the number of times that the number bet appears is a binomial random variable
with parameters

(
3, 16
)
. Hence, letting X denote the player’s winnings in the game,

we have

P{X = −1} =
(
3
0

)(
1
6

)0 (5
6

)3
= 125

216

P{X = 1} =
(
3
1

)(
1
6

)1 (5
6

)2
= 75

216

P{X = 2} =
(
3
2

)(
1
6

)2 (5
6

)1
= 15

216

P{X = 3} =
(
3
3

)(
1
6

)3 (5
6

)0
= 1

216

In order to determine whether or not this is a fair game for the player, let us
calculate E[X]. From the preceding probabilities, we obtain

E[X] = −125 + 75 + 30 + 3
216

= −17
216

Hence, in the long run, the player will lose 17 units per every 216 games he plays. .

In the next example, we consider the simplest form of the theory of inheritance
as developed by Gregor Mendel (1822–1884).

Example
6d

Suppose that a particular trait (such as eye color or left-handedness) of a person is
classified on the basis of one pair of genes, and suppose also that d represents a domi-
nant gene and r a recessive gene. Thus, a person with dd genes is purely dominant,
one with rr is purely recessive, and one with rd is hybrid. The purely dominant and
the hybrid individuals are alike in appearance. Children receive 1 gene from each
parent. If, with respect to a particular trait, 2 hybrid parents have a total of 4 children,
what is the probability that 3 of the 4 children have the outward appearance of the
dominant gene?

The preceding Figure 4.6a and b shows what can happen when hybrid yellow (dom-
inant) and green (recessive) seeds are crossed.

Solution If we assume that each child is equally likely to inherit either of 2 genes
from each parent, the probabilities that the child of 2 hybrid parents will have dd,
rr, and rd pairs of genes are, respectively, 1

4 ,
1
4 , and

1
2 . Hence, since an offspring will

have the outward appearance of the dominant gene if its gene pair is either dd or rd,
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(a) (b)

Pure yellow

Yellow hybrid

y, y g, g

y, g

Pure green

Pure yellow Hybrid

Hybrid Hybrid

Hybrid

y1, g1

1
4

y1, g2y1, y2 y2, g1

y2, g2

g1, g2

Pure green

1
4

1
4

1
4

Figure 4.6 (a) Crossing pure yellow seeds with pure green seeds; (b) Crossing hybrid
first-generation seeds.

it follows that the number of such children is binomially distributed with parameters(
4, 34
)
. Thus, the desired probability is

(
4
3

)(
3
4

)3 (1
4

)1
= 27

64 .

Example
6e

Consider a jury trial in which it takes 8 of the 12 jurors to convict the defendant;
that is, in order for the defendant to be convicted, at least 8 of the jurors must vote
him guilty. If we assume that jurors act independently and that whether or not the
defendant is guilty, each makes the right decision with probability θ , what is the
probability that the jury renders a correct decision?

Solution The problem, as stated, is incapable of solution, for there is not yet enough
information. For instance, if the defendant is innocent, the probability of the jury
rendering a correct decision is

12∑
i=5

(
12
i

)
θ i(1 − θ)12−i

whereas, if he is guilty, the probability of a correct decision is

12∑
i=8

(
12
i

)
θ i(1 − θ)12−i

Therefore, if α represents the probability that the defendant is guilty, then, by condi-
tioning on whether or not he is guilty, we obtain the probability that the jury renders
a correct decision:

α

12∑
i=8

(
12
i

)
θ i(1 − θ)12−i + (1 − α)

12∑
i=5

(
12
i

)
θ i(1 − θ)12−i .
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Example
6f

A communication system consists of n components, each of which will, indepen-
dently, function with probability p. The total system will be able to operate effec-
tively if at least one-half of its components function.

(a) For what values of p is a 5-component systemmore likely to operate effectively
than a 3-component system?

(b) In general, when is a (2k + 1)-component system better than a (2k − 1)-
component system?

Solution (a) Because the number of functioning components is a binomial random
variable with parameters (n, p), it follows that the probability that a 5-component
system will be effective is

(
5
3

)
p3(1 − p)2 +

(
5
4

)
p4(1 − p) + p5

whereas the corresponding probability for a 3-component system is

(
3
2

)
p2(1 − p) + p3

Hence, the 5-component system is better if

10p3(1 − p)2 + 5p4(1 − p) + p5 > 3p2(1 − p) + p3

which reduces to

3(p − 1)2(2p − 1) > 0

or

p >
1
2

(b) In general, a system with 2k + 1 components will be better than one with
2k − 1 components if (and only if) p > 1

2 . To prove this, consider a system of 2k + 1
components and let X denote the number of the first 2k − 1 that function. Then

P2k+1(effective) = P{X Ú k + 1} + P{X = k}(1 − (1 − p)2)

+ P{X = k − 1}p2

which follows because the (2k + 1)-component system will be effective if either

(i) X Ú k + 1;
(ii) X = k and at least one of the remaining 2 components function; or
(iii) X = k − 1 and both of the next 2 components function.

Since

P2k−1(effective) = P{X Ú k}
= P{X = k} + P{X Ú k + 1}
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we obtain

P2k+1(effective) − P2k−1(effective)

= P{X = k − 1}p2 − (1 − p)2P{X = k}

=
(
2k − 1
k − 1

)
pk−1(1 − p)kp2 − (1 − p)2

(
2k − 1

k

)
pk(1 − p)k−1

=
(
2k − 1

k

)
pk(1 − p)k[ p − (1 − p)] since

(
2k − 1
k − 1

)
=
(
2k − 1

k

)

> 0 3 p >
1
2

.

4.6.1 Properties of Binomial Random Variables
We will now examine the properties of a binomial random variable with parameters
n and p. To begin, let us compute its expected value and variance. To begin, note that

E[Xk] =
n∑
i=0

ik
(
n
i

)
pi(1 − p)n−i

=
n∑
i=1

ik
(
n
i

)
pi(1 − p)n−i

Using the identity

i

(
n
i

)
= n

(
n − 1
i − 1

)

gives

E[Xk] = np
n∑
i=1

ik−1

(
n − 1
i − 1

)
pi−1(1 − p)n−i

= np
n−1∑
j=0

(j + 1)k−1

(
n − 1

j

)
pj(1 − p)n−1−j by letting

j = i − 1

= npE[(Y + 1)k−1]

where Y is a binomial random variable with parameters n − 1, p. Setting k = 1 in
the preceding equation yields

E[X] = np

That is, the expected number of successes that occur in n independent trials when
each is a success with probability p is equal to np. Setting k = 2 in the preced-
ing equation and using the preceding formula for the expected value of a binomial
random variable yields

E[X2] = npE[Y + 1]

= np[(n − 1)p + 1]
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Since E[X] = np, we obtain

Var(X) = E[X2] − (E[X])2

= np[(n − 1)p + 1] − (np)2

= np(1 − p)

Summing up, we have shown the following:
If X is a binomial random variable with parameters n and p, then

E[X] = np

Var(X) = np(1 − p)

The following proposition details how the binomial probability mass function
first increases and then decreases.

Proposition
6.1

If X is a binomial random variable with parameters (n, p), where 0 < p < 1, then
as k goes from 0 to n,P{X = k} first increases monotonically and then decreases
monotonically, reaching its largest value when k is the largest integer less than or
equal to (n + 1)p.

Proof We prove the proposition by considering P{X = k}/P{X = k − 1} and deter-
mining for what values of k it is greater or less than 1. Now,

P{X = k}
P{X = k − 1} =

n!
(n − k)!k!

pk(1 − p)n−k

n!
(n − k + 1)!(k − 1)!

pk−1(1 − p)n−k+1

= (n − k + 1)p
k(1 − p)

Hence, P{X = k} Ú P{X = k − 1} if and only if

(n − k + 1)p Ú k(1 − p)

or, equivalently, if and only if
k … (n + 1)p

and the proposition is proved. �
As an illustration of Proposition 6.1, consider Figure 4.7, the graph of the prob-

ability mass function of a binomial random variable with parameters (10, 12 ).

Example
6g

In a U.S. presidential election, the candidate who gains the maximum number of
votes in a state is awarded the total number of electoral college votes allocated to
that state. The number of electoral college votes of a given state is roughly propor-
tional to the population of that state—that is, a state with population n has roughly
nc electoral votes. (Actually, it is closer to nc + 2, as a state is given an electoral
vote for each member it has in the House of Representatives, with the number of
such representatives being roughly proportional to the population of the state, and
one electoral college vote for each of its two senators.) Let us determine the average
power of a citizen in a state of size n in a close presidential election, where, by aver-
age power in a close election, we mean that a voter in a state of size n = 2k + 1 will be
decisive if the other n − 1 voters split their votes evenly between the two candidates.
(We are assuming here that n is odd, but the case where n is even is quite similar.)
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0
k

1024 3 p(k)

1 2 3 4 5 6 7 8 9 10

10

45

120

210

252

1

Figure 4.7 Graph of p(k) = (10k ) ( 12)10.

Because the election is close, we shall suppose that each of the other n − 1 = 2k
voters acts independently and is equally likely to vote for either candidate. Hence,
the probability that a voter in a state of size n = 2k + 1 will make a difference to the
outcome is the same as the probability that 2k tosses of a fair coin land heads and
tails an equal number of times. That is,

P{voter in state of size 2k + 1 makes a difference}

=
(
2k
k

)(
1
2

)k (1
2

)k

= (2k)!
k!k!22k

To approximate the preceding equality, we make use of Stirling’s approximation,
which says that for k large,

k! ∼ kk+1/2e−k
√
2π

where we say that ak ∼ bk when the ratio ak/bk approaches 1 as k approaches q.
Hence, it follows that

P{voter in state of size 2k + 1 makes a difference}

∼

(2k)2k+1/2e−2k
√
2π

k2k+1e−2k(2π)22k
= 1√

kπ

Because such a voter (if he or she makes a difference) will affect nc electoral votes,
the expected number of electoral votes a voter in a state of size n will affect—or the
voter’s average power—is given by

average power = ncP{makes a difference}
∼

nc√
nπ/2

= c
√
2n/π
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Thus, the average power of a voter in a state of size n is proportional to the square
root of n, showing that in presidential elections, voters in large states have more
power than do those in smaller states. .

4.6.2 Computing the Binomial Distribution Function
Suppose that X is binomial with parameters (n, p). The key to computing its distri-
bution function

P{X … i} =
i∑

k=0

(
n
k

)
pk(1 − p)n−k i = 0, 1, . . . ,n

is to utilize the following relationship between P{X = k + 1} and P{X = k}, which
was established in the proof of Proposition 6.1:

P{X = k + 1} = p
1 − p

n − k
k + 1

P{X = k} (6.3)

Example
6h

Let X be a binomial random variable with parameters n = 6, p = .4. Then, starting
with P{X = 0} = (.6)6 and recursively employing Equation (6.3), we obtain

P{X = 0} = (.6)6 L .0467

P{X = 1} = 4
6
6
1
P{X = 0} L .1866

P{X = 2} = 4
6
5
2
P{X = 1} L .3110

P{X = 3} = 4
6
4
3
P{X = 2} L .2765

P{X = 4} = 4
6
3
4
P{X = 3} L .1382

P{X = 5} = 4
6
2
5
P{X = 4} L .0369

P{X = 6} = 4
6
1
6
P{X = 5} L .0041 .

A computer program that utilizes the recursion (6.3) to compute the binomial
distribution function is easily written. To compute P{X … i}, the program should
first compute P{X = i} and then use the recursion to successively compute P{X =
i − 1},P{X = i − 2}, and so on.

Historical note
Independent trials having a common probability of success p were first stud-
ied by the Swiss mathematician Jacques Bernoulli (1654–1705). In his book Ars
Conjectandi (The Art of Conjecturing), published by his nephew Nicholas eight
years after his death in 1713, Bernoulli showed that if the number of such trials
were large, then the proportion of them that were successes would be close to p
with a probability near 1.
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Jacques Bernoulli was from the first generation of the most famous mathe-
matical family of all time. Altogether, there were between 8 and 12 Bernoullis,
spread over three generations, who made fundamental contributions to proba-
bility, statistics, and mathematics. One difficulty in knowing their exact number
is the fact that several had the same name. (For example, two of the sons of
Jacques’s brother Jean were named Jacques and Jean.) Another difficulty is that
several of the Bernoullis were known by different names in different places.
Our Jacques (sometimes written Jaques) was, for instance, also known as Jakob
(sometimes written Jacob) and as James Bernoulli. But whatever their num-
ber, their influence and output were prodigious. Like the Bachs of music, the
Bernoullis of mathematics were a family for the ages!

Example
6i

If X is a binomial random variable with parameters n = 100 and p = .75, find
P{X = 70} and P{X … 70}.
Solution A binomial calculator can be used to obtain the following solutions:

Enter Value For p:.75

Enter Value For n:100

Enter Value For i:70

Binomial Distribution

Start

Quit

Probability (Number of Successes = i) = .04575381
Probability (Number of Successes < = i) = .14954105

Figure 4.8

4.7 The Poisson Random Variable
A random variableX that takes on one of the values 0, 1, 2, . . . is said to be a Poisson
random variable with parameter λ if, for some λ > 0,

p(i) = P{X = i} = e−λ λi

i!
i = 0, 1, 2, . . . (7.1)

Equation (7.1) defines a probability mass function, since
q∑
i=0

p(i) = e−λ
q∑
i=0

λi

i!
= e−λeλ = 1

The Poisson probability distribution was introduced by Siméon Denis Poisson in a
book he wrote regarding the application of probability theory to lawsuits, criminal
trials, and the like. This book, published in 1837, was entitled Recherches sur la prob-
abilité des jugements en matière criminelle et en matière civile (Investigations into the
Probability of Verdicts in Criminal and Civil Matters).
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The Poisson random variable has a tremendous range of applications in diverse
areas because it may be used as an approximation for a binomial random variable
with parameters (n, p) when n is large and p is small enough so that np is of moderate
size. To see this, suppose thatX is a binomial random variable with parameters (n, p),
and let λ = np. Then

P{X = i} = n!
(n − i)!i!

pi(1 − p)n−i

= n!
(n − i)!i!

(
λ

n

)i (
1 − λ

n

)n−i

= n(n − 1) · · · (n − i + 1)
ni

λi

i!
(1 − λ/n)n

(1 − λ/n)i

Now, for n large and λ moderate,

(
1 − λ

n

)n
L e−λ n(n − 1) · · · (n − i + 1)

ni
L 1

(
1 − λ

n

)i
L 1

Hence, for n large and λ moderate,

P{X = i} L e−λ λi

i!

In other words, if n independent trials, each of which results in a success with
probability p, are performed, then when n is large and p is small enough to make
np moderate, the number of successes occurring is approximately a Poisson random
variable with parameter λ = np. This value λ (which will later be shown to equal the
expected number of successes) will usually be determined empirically.

Some examples of random variables that generally obey the Poisson probability
law [that is, they obey Equation (7.1)] are as follows:

1. The number of misprints on a page (or a group of pages) of a book
2. The number of people in a community who survive to age 100
3. The number of wrong telephone numbers that are dialed in a day
4. The number of packages of dog biscuits sold in a particular store each day
5. The number of customers entering a post office on a given day
6. The number of vacancies occurring during a year in the federal judicial system
7. The number of α-particles discharged in a fixed period of time from some

radioactive material

Each of the preceding and numerous other random variables are approximately
Poisson for the same reason—namely, because of the Poisson approximation to the
binomial. For instance, we can suppose that there is a small probability p that each
letter typed on a page will be misprinted. Hence, the number of misprints on a page
will be approximately Poisson with λ = np, where n is the number of letters on a
page. Similarly, we can suppose that each person in a community has some small
probability of reaching age 100. Also, each person entering a store may be thought
of as having some small probability of buying a package of dog biscuits, and so on.
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Example
7a

Suppose that the number of typographical errors on a single page of this book has a
Poisson distribution with parameter λ = 1

2 . Calculate the probability that there is at
least one error on this page.

Solution Letting X denote the number of errors on this page, we have

P{X Ú 1} = 1 − P{X = 0} = 1 − e−1/2 L .393 .

Example
7b

Suppose that the probability that an item produced by a certain machine will be
defective is .1. Find the probability that a sample of 10 items will contain at most 1
defective item.

Solution The desired probability is

(
10
0

)
(.1)0(.9)10 +

(
10
1

)
(.1)1(.9)9 = .7361,

whereas the Poisson approximation yields the value e−1 + e−1 L .7358. .

Example
7c

Consider an experiment that consists of counting the number of α particles given
off in a 1-second interval by 1 gram of radioactive material. If we know from past
experience that on the average, 3.2 such α particles are given off, what is a good
approximation to the probability that no more than 2 α particles will appear?

Solution If we think of the gram of radioactive material as consisting of a large
number n of atoms, each of which has probability of 3.2/n of disintegrating and send-
ing off an α particle during the second considered, then we see that to a very close
approximation, the number of α particles given off will be a Poisson random variable
with parameter λ = 3.2. Hence, the desired probability is

P{X … 2} = e−3.2 + 3.2e−3.2 + (3.2)2

2
e−3.2

L .3799 .

Before computing the expected value and variance of the Poisson random vari-
able with parameter λ, recall that this random variable approximates a binomial
random variable with parameters n and p when n is large, p is small, and λ = np.
Since such a binomial random variable has expected value np = λ and variance
np(1 − p) = λ(1 − p) L λ (since p is small), it would seem that both the expected
value and the variance of a Poisson random variable would equal its parameter λ.
We now verify this result:

E[X] =
q∑
i=0

ie−λλi

i!

= λ

q∑
i=1

e−λλi−1

(i − 1)!

= λe−λ
q∑
j=0

λj

j!
by letting
j = i − 1

= λ since
q∑
j=0

λj

j!
= eλ
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Thus, the expected value of a Poisson random variable X is indeed equal to its
parameter λ. To determine its variance, we first compute E[X2]:

E[X2] =
q∑
i=0

i2e−λλi

i!

= λ

q∑
i=1

ie−λλi−1

(i − 1)!

= λ

q∑
j=0

(j + 1)e−λλj

j!
by letting
j = i − 1

= λ

⎡
⎢⎣ q∑
j=0

je−λλj

j!
+

q∑
j=0

e−λλj

j!

⎤
⎥⎦

= λ(λ + 1)

where the final equality follows because the first sum is the expected value of a
Poisson random variable with parameter λ and the second is the sum of the prob-
abilities of this random variable. Therefore, since we have shown that E[X] = λ, we
obtain

Var(X) = E[X2] − (E[X])2

= λ

Hence, the expected value and variance of a Poisson random variable are both
equal to its parameter λ.

We have shown that the Poisson distribution with parameter np is a very good
approximation to the distribution of the number of successes in n independent trials
when each trial has probability p of being a success, provided that n is large and p
small. In fact, it remains a good approximation even when the trials are not inde-
pendent, provided that their dependence is weak. For instance, recall the matching
problem (Example 5m of Chapter 2) in which nmen randomly select hats from a set
consisting of one hat from each person. From the point of view of the number of
men who select their own hat, we may regard the random selection as the result of n
trials where we say that trial i is a success if person i selects his own hat, i = 1, . . . ,n.
Defining the events Ei, i = 1, . . . ,n, by

Ei = {trial i is a success}
it is easy to see that

P{Ei} = 1
n

and P{Ei|Ej} = 1
n − 1

, j Z i

Thus, we see that although the events Ei, i = 1, . . . ,n are not independent, their
dependence, for large n, appears to be weak. Because of this, it seems reasonable to
expect that the number of successes will approximately have a Poisson distribution
with parameter n * 1/n = 1 and indeed this is verified in Example 5m of Chapter 2.

For a second illustration of the strength of the Poisson approximation when the
trials are weakly dependent, let us consider again the birthday problem presented in
Example 5i of Chapter 2. In this example, we suppose that each of n people is equally
likely to have any of the 365 days of the year as his or her birthday, and the problem
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is to determine the probability that a set of n independent people all have different
birthdays. A combinatorial argument was used to determine this probability, which
was shown to be less than 1

2 when n = 23.
We can approximate the preceding probability by using the Poisson approxima-

tion as follows: Imagine that we have a trial for each of the

(
n
2

)
pairs of individuals

i and j, i Z j, and say that trial i, j is a success if persons i and j have the same
birthday. If we let Eij denote the event that trial i, j is a success, then, whereas the(
n
2

)
events Eij, 1 … i < j … n, are not independent (see Theoretical Exercise 4.21),

their dependence appears to be rather weak. (Indeed, these events are even pair-
wise independent, in that any 2 of the events Eij and Ekl are independent—again, see
Theoretical Exercise 4.21). Since P(Eij) = 1/365, it is reasonable to suppose that the
number of successes should approximately have a Poisson distribution with mean(
n
2

)/
365 = n(n − 1)/730. Therefore,

P{no 2 people have the same birthday} = P{0 successes}
L exp

{−n(n − 1)
730

}

To determine the smallest integer n for which this probability is less than 1
2 , note that

exp
{−n(n − 1)

730

}
…

1
2

is equivalent to

exp
{
n(n − 1)

730

}
Ú 2

Taking logarithms of both sides, we obtain

n(n − 1) Ú 730 log 2

L 505.997

which yields the solution n = 23, in agreement with the result of Example 5i of
Chapter 2.

Suppose now that we wanted the probability that among the n people, no 3 of
them have their birthday on the same day. Whereas this now becomes a difficult
combinatorial problem, it is a simple matter to obtain a good approximation. To

begin, imagine that we have a trial for each of the

(
n
3

)
triplets i, j, k, where 1 … i <

j < k … n, and call the i, j, k trial a success if persons i, j, and k all have their birthday
on the same day. As before, we can then conclude that the number of successes is
approximately a Poisson random variable with parameter(

n
3

)
P{i, j,k have the same birthday} =

(
n
3

)(
1
365

)2

= n(n − 1)(n − 2)
6 * (365)2
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Hence,

P{no 3 have the same birthday} L exp
{−n(n − 1)(n − 2)

799350

}

This probability will be less than 1
2 when n is such that

n(n − 1)(n − 2) Ú 799350 log 2 L 554067.1

which is equivalent to n Ú 84. Thus, the approximate probability that at least 3 people
in a group of size 84 or larger will have the same birthday exceeds 1

2 .
For the number of events to occur to approximately have a Poisson distribution,

it is not essential that all the events have the same probability of occurrence, but
only that all of these probabilities be small. The following is referred to as the Pois-
son paradigm.

Poisson Paradigm. Consider n events, with pi equal to the probability that
event i occurs, i = 1, . . . ,n. If all the pi are “small” and the trials are either
independent or at most “weakly dependent,” then the number of these events
that occur approximately has a Poisson distribution with mean

∑n
i=1 pi.

Our next example not only makes use of the Poisson paradigm, but also illus-
trates a variety of the techniques we have studied so far.

Example
7d

Length of the longest run

A coin is flipped n times. Assuming that the flips are independent, with each one
coming up heads with probability p, what is the probability that there is a string of k
consecutive heads?

Solution We will first use the Poisson paradigm to approximate this probability.
Now, if for i = 1, . . . ,n − k + 1, we letHi denote the event that flips i, i + 1, . . . , i +
k − 1 all land on heads, then the desired probability is that at least one of the events
Hi occur. Because Hi is the event that starting with flip i, the next k flips all land
on heads, it follows that P(Hi) = pk. Thus, when pk is small, we might think that
the number of the Hi that occur should have an approximate Poisson distribution.
However, such is not the case, because, although the events all have small proba-
bilities, some of their dependencies are too great for the Poisson distribution to be
a good approximation. For instance, because the conditional probability that flips
2, . . . ,k + 1 are all heads given that flips 1, . . . ,k are all heads is equal to the proba-
bility that flip k + 1 is a head, it follows that

P(H2|H1) = p

which is far greater than the unconditional probability of H2.
The trick that enables us to use a Poisson approximation is to note that there

will be a string of k consecutive heads either if there is such a string that is imme-
diately followed by a tail or if the final k flips all land on heads. Consequently, for
i = 1, . . . ,n − k, let Ei be the event that flips i, . . . , i + k − 1 are all heads and flip
i + k is a tail; also, let En−k+1 be the event that flips n − k + 1, . . . ,n are all heads.
Note that
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P(Ei) = pk(1 − p), i … n − k

P(En−k+1) = pk

Thus, when pk is small, each of the events Ei has a small probability of occurring.
Moreover, for i Z j, if the eventsEi andEj refer to nonoverlapping sequences of flips,
then P(Ei|Ej) = P(Ei); if they refer to overlapping sequences, then P(Ei|Ej) = 0.
Hence, in both cases, the conditional probabilities are close to the unconditional
ones, indicating that N, the number of the events Ei that occur, should have an
approximate Poisson distribution with mean

E[N] =
n−k+1∑
i=1

P(Ei) = (n − k)pk(1 − p) + pk

Because there will not be a run of k heads if (and only if) N = 0, the preceding gives

P(no head strings of length k) = P(N = 0) L exp{−(n − k)pk(1 − p) − pk}

If we let Ln denote the largest number of consecutive heads in the n flips, then,
because Ln will be less than k if (and only if) there are no head strings of length k,
the preceding equation can be written as

P{Ln < k} L exp{− (n − k)pk(1 − p) − pk}

Now, let us suppose that the coin being flipped is fair; that is, suppose that p = 1/2.
Then the preceding gives

P{Ln < k} L exp
{
− n − k + 2

2k+1

}
L exp

{
− n

2k+1

}

where the final approximation supposes that e
k−2
2k+1 L 1 (that is, that k−2

2k+1 L 0). Let
j = log2 n, and assume that j is an integer. For k = j + i,

n

2k+1
= n

2j2i+1
= 1

2i+1

Consequently,

P{Ln < j + i} L exp{−(1/2)i+1}

which implies that

P{Ln = j + i} = P{Ln < j + i + 1} − P{Ln < j + i}
L exp{−(1/2)i+2} − exp{−(1/2)i+1}

For instance,
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P{Ln < j − 3} L e−4 L .0183

P{Ln = j − 3} L e−2 − e−4 L .1170

P{Ln = j − 2} L e−1 − e−2 L .2325

P{Ln = j − 1} L e−1/2 − e−1 L .2387

P{Ln = j} L e−1/4 − e−1/2 L .1723

P{Ln = j + 1} L e−1/8 − e−1/4 L .1037

P{Ln = j + 2} L e−1/16 − e−1/8 L .0569

P{Ln = j + 3} L e−1/32 − e−1/16 L .0298

P{Ln Ú j + 4} L 1 − e−1/32 L .0308

Thus, we observe the rather interesting fact that no matter how large n is, the length
of the longest run of heads in a sequence of n flips of a fair coin will be within 2 of
log2(n) − 1 with a probability approximately equal to .86.

We now derive an exact expression for the probability that there is a string of
k consecutive heads when a coin that lands on heads with probability p is flipped
n times. With the events Ei, i = 1, . . . ,n − k + 1, as defined earlier, and with Ln
denoting, as before, the length of the longest run of heads,

P(Ln Ú k) = P(there is a string of k consecutive heads) = P(∪n−k+1
i=1 Ei)

The inclusion–exclusion identity for the probability of a union can be written as

P(∪n−k+1
i=1 Ei) =

n−k+1∑
r=1

(−1)r+1
∑

i1<···<ir
P(Ei1 · · ·Eir)

Let Si denote the set of flip numbers to which the event Ei refers. (So, for instance,
S1 = {1, . . . ,k + 1}.) Now, consider one of the r-way intersection probabilities that
does not include the event En−k+1. That is, consider P(Ei1 · · ·Eir) where i1 < · · · <

ir < n − k + 1. On the one hand, if there is any overlap in the sets Si1 , . . . ,Sir
then this probability is 0. On the other hand, if there is no overlap, then the events
Ei1 , . . . ,Eir are independent. Therefore,

P(Ei1 · · ·Eir) =
{
0, if there is any overlap in Si1 , . . . ,Sir
prk(1 − p)r, if there is no overlap

Wemust now determine the number of different choices of i1 < · · · < ir < n − k + 1
for which there is no overlap in the sets Si1 , . . . ,Sir . To do so, note first that each
of the Sij , j = 1, . . . , r, refer to k + 1 flips, so, without any overlap, they together
refer to r(k + 1) flips. Now consider any permutation of r identical letters a and
of n − r(k + 1) identical letters b. Interpret the number of b’s before the first a
as the number of flips before Si1 , the number of b’s between the first and second
a as the number of flips between Si1 and Si2 , and so on, with the number of b’s
after the final a representing the number of flips after Sir . Because there are

(n−rk
r

)
permutations of r letters a and of n − r(k + 1) letters b, with every such permuta-
tion corresponding (in a one-to-one fashion) to a different nonoverlapping choice, it
follows that ∑

i1<···<ir<n−k+1

P(Ei1 · · ·Eir) =
(
n − rk

r

)
prk(1 − p)r
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We must now consider r-way intersection probabilities of the form

P(Ei1 · · ·Eir−1En−k+1),

where i1 < · · · < ir−1 < n − k + 1. Now, this probability will equal 0 if there
is any overlap in Si1 , . . . ,Sir−1 ,Sn−k; if there is no overlap, then the events of the
intersection will be independent, so

P(Ei1 · · ·Eir−1En−k+1) = [pk(1 − p)]r−1pk = pkr(1 − p)r−1

By a similar argument as before, the number of nonoverlapping sets Si1 , . . . ,Sir−1 ,
Sn−k will equal the number of permutations of r − 1 letters a (one for each of the
sets Si1 , . . . ,Sir−1) and of n − (r − 1)(k + 1) − k = n − rk − (r − 1) letters b (one
for each of the trials that are not part of any of Si1 , . . . ,Sir−1 ,Sn−k+1). Since there are(n−rk
r−1

)
permutations of r − 1 letters a and of n − rk − (r − 1) letters b, we have

∑
i1<...<ir−1<n−k+1

P(Ei1 · · ·Eir−1En−k+1) =
(
n − rk
r − 1

)
pkr(1 − p)r−1

Putting it all together yields the exact expression, namely,

P(Ln Ú k) =
n−k+1∑
r=1

(−1)r+1

[(
n − rk

r

)
+ 1

p

(
n − rk
r − 1

)]
pkr(1 − p)r

where we utilize the convention that
(m
j

) = 0 if m < j.
From a computational point of view, a more efficient method for computing the

desired probability than the use of the preceding identity is to derive a set of recur-
sive equations. To do so, let An be the event that there is a string of k consecutive
heads in a sequence of n flips, and let Pn = P(An). We will derive a set of recursive
equations for Pn by conditioning on when the first tail appears. For j = 1, . . . ,k, let
Fj be the event that the first tail appears on flip j, and let H be the event that the
first k flips are all heads. Because the events F1, . . . ,Fk,H are mutually exclusive and
exhaustive (that is, exactly one of these events must occur), we have

P(An) =
k∑
j=1

P(An|Fj)P(Fj) + P(An|H)P(H)

Now, given that the first tail appears on flip j, where j < k, it follows that those j
flips are wasted as far as obtaining a string of k heads in a row; thus, the conditional
probability of this event is the probability that such a string will occur among the
remaining n − j flips. Therefore,

P(An|Fj) = Pn−j

Because P(An|H) = 1, the preceding equation gives

Pn = P(An)

=
k∑
j=1

Pn−j P(Fj) + P(H)

=
k∑
j=1

Pn−j p j−1(1 − p) + pk
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Starting with Pj = 0, j < k, and Pk = pk, we can use the latter formula to recur-
sively compute Pk+1,Pk+2, and so on, up to Pn. For instance, suppose we want the
probability that there is a run of 2 consecutive heads when a fair coin is flipped 4
times. Then, with k = 2, we have P1 = 0, P2 = (1/2)2. Because, when p = 1/2, the
recursion becomes

Pn =
k∑
j=1

Pn−j (1/2)j + (1/2)k

we obtain

P3 = P2(1/2) + P1(1/2)2 + (1/2)2 = 3/8

and

P4 = P3(1/2) + P2(1/2)2 + (1/2)2 = 1/2

which is clearly true because there are 8 outcomes that result in a string of 2 consecu-
tive heads: hhhh, hhht, hhth, hthh, thhh, hhtt, thht, and tthh. Each of these outcomes
occurs with probability 1/16. .

Another use of the Poisson probability distribution arises in situations where
“events” occur at certain points in time. One example is to designate the occurrence
of an earthquake as an event; another possibility would be for events to correspond
to people entering a particular establishment (bank, post office, gas station, and so
on); and a third possibility is for an event to occur whenever a war starts. Let us
suppose that events are indeed occurring at certain (random) points of time, and let
us assume that for some positive constant λ, the following assumptions hold true:

1. The probability that exactly 1 event occurs in a given interval of length h is
equal to λh + o(h), where o(h) stands for any function f (h) for which
lim
h→0

f (h)/h = 0. [For instance, f (h) = h2 is o(h), whereas f (h) = h is not.]

2. The probability that 2 or more events occur in an interval of length h is equal
to o(h).

3. For any integers n, j1, j2, . . . , jn and any set of n nonoverlapping intervals, if
we define Ei to be the event that exactly ji of the events under consideration
occur in the ith of these intervals, then events E1,E2, . . . ,En are independent.

Loosely put, assumptions 1 and 2 state that for small values of h, the probability
that exactly 1 event occurs in an interval of size h equals λh plus something that is
small compared with h, whereas the probability that 2 or more events occur is small
compared with h. Assumption 3 states that whatever occurs in one interval has no
(probability) effect on what will occur in other, nonoverlapping intervals.

We now show that under assumptions 1, 2, and 3, the number of events occurring
in any interval of length t is a Poisson random variable with parameter λt. To be
precise, let us call the interval [0, t] and denote the number of events occurring in
that interval by N(t). To obtain an expression for P{N(t) = k}, we start by breaking
the interval [0, t] into n nonoverlapping subintervals, each of length t/n (Figure 4.9).

0
t–
n

2t—
n

3t—
n

t–
n(n 2 1)

nt—
n5t

Figure 4.9
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Now,

P{N(t) = k} = P{k of the n subintervals contain exactly 1 event

and the other n − k contain 0 events} (7.2)

+ P{N(t) = k and at least 1 subinterval contains

2 or more events}
The preceding equation holds because the event on the left side of Equation (7.2),
that is, {N(t) = k}, is clearly equal to the union of the two mutually exclusive events
on the right side of the equation. LettingA and B denote the two mutually exclusive
events on the right side of Equation (7.2), we have

P(B) … P{at least one subinterval contains 2 or more events}

= P

⎛
⎝ n⋃
i=1

{ith subinterval contains 2 or more events}
⎞
⎠

…
n∑
i=1

P{ith subinterval contains 2 or more events} by Boole’s
inequality

=
n∑
i=1

o
(
t
n

)
by assumption 2

= no
(
t
n

)

= t
[
o(t/n)
t/n

]

Now, for any t, t/n→0 as n→q, so o(t/n)/(t/n)→0 as n→q, by the definition of
o(h). Hence,

P(B)→0 as n→q (7.3)

Moreover, since assumptions 1 and 2 imply that†

P{0 events occur in an interval of length h}
= 1 − [λh + o(h) + o(h)] = 1 − λh − o(h)

we see from the independence assumption (number 3) that

P(A) = P{k of the subintervals contain exactly 1 event and the other

n − k contain 0 events}

=
(
n
k

)[
λt
n

+ o
(
t
n

)]k [
1 −

(
λt
n

)
− o

(
t
n

)]n−k

However, since

n

[
λt
n

+ o
(
t
n

)]
= λt + t

[
o(t/n)
t/n

]
→λt as n→q

†The sum of two functions, both of which are o(h), is also o(h). This is so because if limh→0 f (h)/h =
limh→0 g(h)/h = 0, then limh→0[f (h) + g(h)]/h = 0.
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it follows, by the same argument that verified the Poisson approximation to the bino-
mial, that

P(A)→e−λt (λt)
k

k!
as n→q (7.4)

Thus, from Equations (7.2), (7.3), and (7.4), by letting n→q, we obtain

P{N(t) = k} = e−λt (λt)
k

k!
k = 0, 1, . . . (7.5)

Hence, if assumptions 1, 2, and 3 are satisfied, then the number of events occur-
ring in any fixed interval of length t is a Poisson random variable with mean λt, and
we say that the events occur in accordance with a Poisson process having rate λ. The
value λ, which can be shown to equal the rate per unit time at which events occur, is
a constant that must be empirically determined.

The preceding discussion explains why a Poisson random variable is usually a
good approximation for such diverse phenomena as the following:

1. The number of earthquakes occurring during some fixed time span
2. The number of wars per year
3. The number of electrons emitted from a heated cathode during a fixed time

period
4. The number of deaths, in a given period of time, of the policyholders of a life

insurance company

Example
7e

Suppose that earthquakes occur in the western portion of the United States in accor-
dance with assumptions 1, 2, and 3, with λ = 2 and with 1 week as the unit of time.
(That is, earthquakes occur in accordance with the three assumptions at a rate of 2
per week.)

(a) Find the probability that at least 3 earthquakes occur during the next 2 weeks.
(b) Find the probability distribution of the time, starting from now, until the next

earthquake.

Solution (a) From Equation (7.5), we have

P{N(2) Ú 3} = 1−P{N(2) = 0} − P{N(2) = 1} − P{N(2) = 2}

= 1 − e−4 − 4e−4 − 42

2
e−4

= 1 − 13e−4

(b) Let X denote the amount of time (in weeks) until the next earthquake.
Because X will be greater than t if and only if no events occur within the next t
units of time, we have, from Equation (7.5),

P{X > t} = P{N(t) = 0} = e−λt

so the probability distribution function F of the random variable X is given by

F(t) = P{X … t} = 1 − P{X > t} = 1 − e−λt

= 1 − e−2t .
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4.7.1 Computing the Poisson Distribution Function
If X is Poisson with parameter λ, then

P{X = i + 1}
P{X = i} = e−λλi+1/(i + 1)!

e−λλi/i!
= λ

i + 1
(7.6)

Starting with P{X = 0} = e−λ, we can use (7.6) to compute successively

P{X = 1} = λP{X = 0}
P{X = 2} = λ

2
P{X = 1}

.

.

.

P{X = i + 1} = λ

i + 1
P{X = i}

We can use a module to compute the Poisson probabilities for Equation (7.6).

Example
7f

(a) Determine P{X … 90} when X is Poisson with mean 100.
(b) Determine P{Y … 1075} when Y is Poisson with mean 1000.

Solution Using the Poisson calculator of StatCrunch yields the solutions:

(a) P{X … 90} = .17138
(b) P{Y … 1075} = .99095 .

4.8 Other Discrete Probability Distributions
4.8.1 The Geometric Random Variable
Suppose that independent trials, each having a probability p, 0 < p < 1, of being a
success, are performed until a success occurs. If we let X equal the number of trials
required, then

P{X = n} = (1 − p)n−1p n = 1, 2, . . . (8.1)

Equation (8.1) follows because, in order for X to equal n, it is necessary and suffi-
cient that the first n − 1 trials are failures and the nth trial is a success. Equation (8.1)
then follows, since the outcomes of the successive trials are assumed to be indepen-
dent.

Since
q∑
n=1

P{X = n} = p
q∑
n=1

(1 − p)n−1 = p
1 − (1 − p)

= 1

it follows that with probability 1, a success will eventually occur. Any random vari-
able X whose probability mass function is given by Equation (8.1) is said to be a
geometric random variable with parameter p.
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Example
8a

An urn contains N white and M black balls. Balls are randomly selected, one at a
time, until a black one is obtained. If we assume that each ball selected is replaced
before the next one is drawn, what is the probability that

(a) exactly n draws are needed?
(b) at least k draws are needed?

Solution If we let X denote the number of draws needed to select a black ball, then
X satisfies Equation (8.1) with p = M/(M + N). Hence,

(a)

P{X = n} =
(

N
M + N

)n−1 M
M + N

= MNn−1

(M + N)n

(b)

P{X Ú k} = M
M + N

q∑
n=k

(
N

M + N

)n−1

=
(

M
M + N

)(
N

M + N

)k−1
/[

1 − N
M + N

]

=
(

N
M + N

)k−1

Of course, part (b) could have been obtained directly, since the probability that at
least k trials are necessary to obtain a success is equal to the probability that the first
k − 1 trials are all failures. That is, for a geometric random variable,

P{X Ú k} = (1 − p)k−1 .

Example
8b

Find the expected value of a geometric random variable.

Solution With q = 1 − p, we have

E[X] =
q∑
i=1

iqi−1p

=
q∑
i=1

(i − 1 + 1)qi−1p

=
q∑
i=1

(i − 1)qi−1p +
q∑
i=1

qi−1p

=
q∑
j=0

jqjp + 1

= q
q∑
j=1

jqj−1p + 1

= qE[X] + 1

Hence,
pE[X] = 1
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yielding the result

E[X] = 1
p

In other words, if independent trials having a common probability p of being success-
ful are performed until the first success occurs, then the expected number of required
trials equals 1/p. For instance, the expected number of rolls of a fair die that it takes
to obtain the value 1 is 6. .

Example
8c

Find the variance of a geometric random variable.

Solution To determine Var(X), let us first compute E[X2]. With q = 1 − p, we have

E[X2] =
q∑
i=1

i2qi−1p

=
q∑
i=1

(i − 1 + 1)2qi−1p

=
q∑
i=1

(i − 1)2qi−1p +
q∑
i=1

2(i − 1)qi−1p +
q∑
i=1

qi−1p

=
q∑
j=0

j2qjp + 2
q∑
j=1

jqjp + 1

= qE[X2] + 2qE[X] + 1

Using E[X] = 1/p, the equation for E[X2] yields

pE[X2] = 2q
p

+ 1

Hence,

E[X2] = 2q + p
p2

= q + 1
p2

giving the result

Var(X) = q + 1
p2

− 1
p2

= q
p2

= 1 − p
p2

.

4.8.2 The Negative Binomial Random Variable
Suppose that independent trials, each having probability p, 0 < p < 1, of being a
success are performed until a total of r successes is accumulated. If we let X equal
the number of trials required, then

P{X = n} =
(
n − 1
r − 1

)
pr(1 − p)n−r n = r, r + 1, . . . (8.2)

Equation (8.2) follows because, in order for the rth success to occur at the nth trial,
there must be r−1 successes in the first n−1 trials and the nth trial must be a success.
The probability of the first event is
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(
n − 1
r − 1

)
pr−1(1 − p)n−r

and the probability of the second is p; thus, by independence, Equation (8.2) is estab-
lished. To verify that a total of r successes must eventually be accumulated, either
we can prove analytically that

q∑
n=r

P{X = n} =
q∑
n=r

(
n − 1
r − 1

)
pr(1 − p)n−r = 1 (8.3)

or we can give a probabilistic argument as follows: The number of trials required
to obtain r successes can be expressed as Y1 + Y2 + · · · + Yr, where Y1 equals
the number of trials required for the first success, Y2 the number of additional trials
after the first success until the second success occurs, Y3 the number of additional
trials until the third success, and so on. Because the trials are independent and all
have the same probability of success, it follows that Y1,Y2, . . . ,Yr are all geometric

random variables. Hence, each is finite with probability 1, so
r∑
i=1

Yi must also be finite,

establishing Equation (8.3).
Any random variable X whose probability mass function is given by

Equation (8.2) is said to be a negative binomial random variable with parameters
(r, p). Note that a geometric random variable is just a negative binomial with param-
eter (1, p).

In the next example, we use the negative binomial to obtain another solution of
the problem of the points.

Example
8d

If independent trials, each resulting in a success with probability p, are performed,
what is the probability of r successes occurring before s failures?

Solution The solution will be arrived at by noting that r successes will occur before
s failures if and only if the rth success occurs no later than the (r + s − 1) trial. This
follows because if the rth success occurs before or at the (r + s − 1) trial, then it must
have occurred before the sth failure, and conversely. Hence, fromEquation (8.2), the
desired probability is

r+s−1∑
n=r

(
n − 1
r − 1

)
pr(1 − p)n−r .

Example
8e

The Banach match problem

At all times, a pipe-smoking mathematician carries 2 matchboxes—1 in his left-hand
pocket and 1 in his right-hand pocket. Each time he needs a match, he is equally
likely to take it from either pocket. Consider the moment when the mathematician
first discovers that one of his matchboxes is empty. If it is assumed that both match-
boxes initially contained N matches, what is the probability that there are exactly k
matches, k = 0, 1, . . . ,N, in the other box?

Solution Let E denote the event that the mathematician first discovers that the
right-hand matchbox is empty and that there are k matches in the left-hand box
at the time. Now, this event will occur if and only if the (N + 1) choice of the right-
hand matchbox is made at the (N + 1 + N − k) trial. Hence, from Equation (8.2)
(with p = 1

2 , r = N + 1, and n = 2N − k + 1), we see that
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P(E) =
(
2N − k

N

)(
1
2

)2N−k+1

Since there is an equal probability that it is the left-hand box that is first discovered
to be empty and there are k matches in the right-hand box at that time, the desired
result is

2P(E) =
(
2N − k

N

)(
1
2

)2N−k
.

Example
8f

Compute the expected value and the variance of a negative binomial random vari-
able with parameters r and p.

Solution We have

E[Xk] =
q∑
n=r

nk
(
n − 1
r − 1

)
pr(1 − p)n−r

= r
p

q∑
n=r

nk−1

(
n
r

)
pr+1(1 − p)n−r since n

(
n − 1
r − 1

)
= r

(
n
r

)

= r
p

q∑
m=r+1

(m − 1)k−1

(
m − 1

r

)
pr+1(1 − p)m−(r+1)

by setting
m = n + 1

= r
p
E[(Y − 1)k−1]

where Y is a negative binomial random variable with parameters r + 1,p. Setting
k = 1 in the preceding equation yields

E[X] = r
p

Setting k = 2 in the equation for E[Xk] and using the formula for the expected value
of a negative binomial random variable gives

E[X2] = r
p
E[Y − 1]

= r
p

(
r + 1
p

− 1
)

Therefore,

Var(X) = r
p

(
r + 1
p

− 1
)

−
(
r
p

)2

= r(1 − p)
p2

.

Thus, from Example 8f, if independent trials, each of which is a success with
probability p, are performed, then the expected value and variance of the number of
trials that it takes to amass r successes is r/p and r(1 − p)/p2, respectively.

Since a geometric random variable is just a negative binomial with parameter
r = 1, it follows from the preceding example that the variance of a geometric random
variable with parameter p is equal to (1 − p)/p2, which checks with the result of
Example 8c.
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Example
8g

Find the expected value and the variance of the number of times one must throw a
die until the outcome 1 has occurred 4 times.

Solution Since the random variable of interest is a negative binomial with parame-
ters r = 4 and p = 1

6 , it follows that

E[X] = 24

Var(X) =
4
(
5
6

)
(
1
6

)2 = 120 .

Now, let us suppose that the independent trials are not ended when there have been
a total of r successes, but that they continue on. Aside from X, the number of trials
until there have been r successes, some other random variables of interest are, for
s > 0,

Y : the number of trials until there have been s failures;
V : the number of trials until there have been either r successes or s failures;
Z : the number of trials until there have been both at least r successes and at least

s failures.

Because each trial is independently a failure with probability 1 − p, it follows
that Y is a negative binomial random variable with probability mass function

P(Y = n) =
(
n − 1
s − 1

)
(1 − p)spn−s , n Ú s

To determine the probability mass function of V = min(X,Y), note that the possible
values of V are all less than r + s. Suppose n < r + s. If either the rth success or the
sth failure occurs at time n then, because n < r + s, the other event would not yet
have occurred. Consequently, V will equal n if either X or Y is equal to n. Because
we cannot have both that X = n and that Y = n, this yields

P(V = n) = P(X = n) + P(Y = n)

=
(
n − 1
r − 1

)
pr(1 − p)n−r +

(
n − 1
s − 1

)
(1 − p)spn−s , n < r + s

To determine the probability mass function of Z = max(X,Y), note that Z Ú r + s.
For n Ú r + s, if either the rth success or the sth failure occurs at time n then the
other event must have already occurred by time n. Consequently, for n Ú r + s, Z
will equal n if either X or Y is equal to n. This gives

P(Z = n) = P(X = n) + P(Y = n)

=
(
n − 1
r − 1

)
pr(1 − p)n−r +

(
n − 1
s − 1

)
(1 − p)spn−s , n Ú r + s

4.8.3 The Hypergeometric Random Variable
Suppose that a sample of size n is to be chosen randomly (without replacement)
from an urn containing N balls, of whichm are white and N − m are black. If we let
X denote the number of white balls selected, then
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P{X = i} =

(
m
i

)(
N − m
n − i

)
(
N
n

) i = 0, 1, . . . ,n (8.4)

A random variableX whose probability mass function is given by Equation (8.4) for
some values of n, N, m is said to be a hypergeometric random variable.

Remark Although we have written the hypergeometric probability mass function
with i going from 0 to n,P{X = i} will actually be 0, unless i satisfies the inequalities
n − (N − m) … i … min(n,m). However, Equation (8.4) is always valid because of

our convention that

(
r
k

)
is equal to 0 when either k < 0 or r < k. .

Example
8h

An unknown number, say, N, of animals inhabit a certain region. To obtain some
information about the size of the population, ecologists often perform the follow-
ing experiment: They first catch a number, say, m, of these animals, mark them in
some manner, and release them. After allowing the marked animals time to disperse
throughout the region, a new catch of size, say, n, is made. Let X denote the number
of marked animals in this second capture. If we assume that the population of ani-
mals in the region remained fixed between the time of the two catches and that each
time an animal was caught it was equally likely to be any of the remaining uncaught
animals, it follows that X is a hypergeometric random variable such that

P{X = i} =

(
m
i

)(
N − m
n − i

)
(
N
n

) K Pi(N)

Suppose now that X is observed to equal i. Then, since Pi(N) represents the
probability of the observed event when there are actually N animals present in the
region, it would appear that a reasonable estimate of N would be the value of N
that maximizes Pi(N). Such an estimate is called a maximum likelihood estimate.
(See Theoretical Exercises 13 and 18 for other examples of this type of estimation
procedure.)

The maximization of Pi(N) can be done most simply by first noting that

Pi(N)

Pi(N − 1)
= (N − m)(N − n)
N(N − m − n + i)

Now, the preceding ratio is greater than 1 if and only if

(N − m)(N − n) Ú N(N − m − n + i)

or, equivalently, if and only if

N …
mn
i

Thus, Pi(N) is first increasing and then decreasing and reaches its maximum value at
the largest integral value not exceeding mn/i. This value is the maximum
likelihood estimate of N. For example, suppose that the initial catch consisted of
m = 50 animals, which are marked and then released. If a subsequent catch consists
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of n = 40 animals of which i = 4 are marked, then we would estimate that there are
some 500 animals in the region. (Note that the preceding estimate could also have
been obtained by assuming that the proportion of marked animals in the region,
m/N, is approximately equal to the proportion of marked animals in our second
catch, i/n.) .

Example
8i

A purchaser of electrical components buys them in lots of size 10. It is his policy
to inspect 3 components randomly from a lot and to accept the lot only if all 3 are
nondefective. If 30 percent of the lots have 4 defective components and 70 percent
have only 1, what proportion of lots does the purchaser reject?

Solution Let A denote the event that the purchaser accepts a lot. Now,

P(A) = P(A|lot has 4 defectives) 3
10

+ P(A|lot has 1 defective) 7
10

=

(
4
0

)(
6
3

)
(
10
3

) (
3
10

)
+

(
1
0

)(
9
3

)
(
10
3

) (
7
10

)

= 54
100

Hence, 46 percent of the lots are rejected. .

If n balls are randomly chosen without replacement from a set of N balls of
which the fraction p = m/N is white, then the number of white balls selected is
hypergeometric. Now, it would seem that when m and N are large in relation to
n, it shouldn’t make much difference whether the selection is being done with or
without replacement, because, no matter which balls have previously been selected,
when m and N are large, each additional selection will be white with a probability
approximately equal to p. In other words, it seems intuitive that when m and N are
large in relation to n, the probability mass function of X should approximately be
that of a binomial random variable with parameters n and p. To verify this intuition,
note that if X is hypergeometric, then, for i … n,

P{X = i} =

(
m
i

)(
N − m
n − i

)
(
N
n

)

= m!
(m − i)! i!

(N − m)!
(N − m − n + i)! (n − i)!

(N − n)! n!
N!

=
(
n
i

)
m
N
m − 1
N − 1

· · · m − i + 1
N − i + 1

N − m
N − i

N − m − 1
N − i − 1

· · · N − m − (n − i − 1)
N − i − (n − i − 1)

L

(
n
i

)
pi(1 − p)n−i

when p = m/N and m and N are
large in relation to n and i
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Example
8j

Determine the expected value and the variance ofX, a hypergeometric random vari-
able with parameters n, N, and m.

Solution

E[Xk] =
n∑
i=0

ikP{X = i}

=
n∑
i=1

ik
(
m
i

)(
N − m
n − i

)/(
N
n

)

Using the identities

i

(
m
i

)
= m

(
m − 1
i − 1

)
and n

(
N
n

)
= N

(
N − 1
n − 1

)

we obtain

E[Xk] = nm
N

n∑
i=1

ik−1

(
m − 1
i − 1

)(
N − m
n − i

)/(
N − 1
n − 1

)

= nm
N

n−1∑
j=0

(j + 1)k−1

(
m − 1

j

)(
N − m

n − 1 − j

)/(
N − 1
n − 1

)

= nm
N

E[(Y + 1)k−1]

where Y is a hypergeometric random variable with parameters n − 1, N − 1, and
m − 1. Hence, upon setting k = 1, we have

E[X] = nm
N

In words, if n balls are randomly selected from a set of N balls, of whichm are white,
then the expected number of white balls selected is nm/N.

Upon setting k = 2 in the equation for E[Xk], we obtain

E[X2] = nm
N

E[Y + 1]

= nm
N

[
(n − 1)(m − 1)

N − 1
+ 1

]

where the final equality uses our preceding result to compute the expected value of
the hypergeometric random variable Y.

Because E[X] = nm/N, we can conclude that

Var(X) = nm
N

[
(n − 1)(m − 1)

N − 1
+ 1 − nm

N

]

Letting p = m/N and using the identity

m − 1
N − 1

= Np − 1
N − 1

= p − 1 − p
N − 1
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shows that

Var(X) = np[(n − 1)p − (n − 1)
1 − p
N − 1

+ 1 − np]

= np(1 − p)
(
1 − n − 1

N − 1

)
.

Remark We have shown in Example 8j that if n balls are randomly selected without
replacement from a set ofN balls, of which the fraction p are white, then the expected
number of white balls chosen is np. In addition, if N is large in relation to n [so that
(N − n)/(N − 1) is approximately equal to 1], then

Var(X) L np(1 − p)

In other words, E[X] is the same as when the selection of the balls is done with
replacement (so that the number of white balls is binomial with parameters n
and p), and if the total collection of balls is large, then Var(X) is approximately equal
to what it would be if the selection were done with replacement. This is, of course,
exactly what we would have guessed, given our earlier result that when the number
of balls in the urn is large, the number of white balls chosen approximately has the
mass function of a binomial random variable. .

4.8.4 The Zeta (or Zipf) Distribution
A random variable is said to have a zeta (sometimes called the Zipf) distribution if
its probability mass function is given by

P{X = k} = C

kα+1
k = 1, 2, . . .

for some value of α > 0. Since the sum of the foregoing probabilities must equal 1,
it follows that

C =
⎡
⎣ q∑
k=1

(
1
k

)α+1
⎤
⎦

−1

The zeta distribution owes its name to the fact that the function

ζ(s) = 1 +
(
1
2

)s
+
(
1
3

)s
+ · · · +

(
1
k

)s
+ · · ·

is known in mathematical disciplines as the Riemann zeta function (after the
German mathematician G. F. B. Riemann).

The zeta distribution was used by the Italian economist V. Pareto to describe
the distribution of family incomes in a given country. However, it was G. K. Zipf
who applied zeta distribution to a wide variety of problems in different areas and, in
doing so, popularized its use.

4.9 Expected Value of Sums of Random Variables
A very important property of expectations is that the expected value of a sum of
random variables is equal to the sum of their expectations. In this section, we will
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prove this result under the assumption that the set of possible values of the proba-
bility experiment—that is, the sample space S—is either finite or countably infinite.
Although the result is true without this assumption (and a proof is outlined in the
theoretical exercises), not only will the assumption simplify the argument, but it will
also result in an enlightening proof that will add to our intuition about expectations.
So, for the remainder of this section, suppose that the sample space S is either a finite
or a countably infinite set.

For a random variable X, let X(s) denote the value of X when s ∈ S is the
outcome of the experiment. Now, if X and Y are both random variables, then so
is their sum. That is, Z = X + Y is also a random variable. Moreover, Z(s) =
X(s) + Y(s).

Example
9a

Suppose that the experiment consists of flipping a coin 5 times, with the outcome
being the resulting sequence of heads and tails. Suppose X is the number of heads
in the first 3 flips and Y is the number of heads in the final 2 flips. Let Z = X + Y.

Then, for instance, for the outcome s = (h, t,h, t,h),

X(s) = 2

Y(s) = 1

Z(s) = X(s) + Y(s) = 3

meaning that the outcome (h, t,h, t,h) results in 2 heads in the first three flips, 1 head
in the final two flips, and a total of 3 heads in the five flips. .

Let p(s) = P({s}) be the probability that s is the outcome of the experiment.
Because we can write any event A as the finite or countably infinite union of the
mutually exclusive events {s}, s ∈ A, it follows by the axioms of probability that

P(A) =
∑
s∈A

p(s)

When A = S, the preceding equation gives

1 =
∑
s∈S

p(s)

Now, let X be a random variable, and consider E[X]. Because X(s) is the value of X
when s is the outcome of the experiment, it seems intuitive that E[X]—the weighted
average of the possible values ofX, with each value weighted by the probability that
X assumes that value—should equal a weighted average of the values X(s), s ∈ S,
with X(s) weighted by the probability that s is the outcome of the experiment. We
now prove this intuition.

Proposition
9.1 E[X] =

∑
s∈S

X(s) p(s)

Proof Suppose that the distinct values of X are xi, i Ú 1. For each i, let Si be the
event that X is equal to xi. That is, Si = {s : X(s) = xi}. Then,
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E[X] =
∑
i

xiP{X = xi}

=
∑
i

xiP(Si)

=
∑
i

xi
∑
s∈Si

p(s)

=
∑
i

∑
s∈Si

xip(s)

=
∑
i

∑
s∈Si

X(s)p(s)

=
∑
s∈S

X(s)p(s)

where the final equality follows because S1,S2, . . . are mutually exclusive events
whose union is S.

Example
9b

Suppose that two independent flips of a coin that comes up heads with probability p
are made, and let X denote the number of heads obtained. Because

P(X = 0) = P(t, t) = (1 − p)2,

P(X = 1) = P(h, t) + P(t,h) = 2p(1 − p)

P(X = 2) = P(h,h) = p2

it follows from the definition of expected value that

E[X] = 0 · (1 − p)2 + 1 · 2p(1 − p) + 2 · p2 = 2p

which agrees with

E[X] =X(h,h)p2 + X(h, t)p(1 − p) + X(t,h)(1 − p)p + X(t, t)(1 − p)2

= 2p2 + p(1 − p) + (1 − p)p

= 2p .

We now prove the important and useful result that the expected value of a sum of
random variables is equal to the sum of their expectations.

Corollary
9.2

For random variables X1,X2, . . . ,Xn,

E

⎡
⎣ n∑
i=1

Xi

⎤
⎦ =

n∑
i=1

E[Xi]

Proof Let Z =∑n
i=1Xi. Then, by Proposition 9.1,

E[Z] =
∑
s∈S

Z(s)p(s)

=
∑
s∈S

(
X1(s) + X2(s) + . . . + Xn(s)

)
p(s)
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=
∑
s∈S

X1(s)p(s) +
∑
s∈S

X2(s)p(s) + . . . +
∑
s∈S

Xn(s)p(s)

= E[X1] + E[X2] + . . . + E[Xn]

.

Example
9c

Find the expected value of the sum obtained when n fair dice are rolled.

Solution Let X be the sum. We will compute E[X] by using the representation

X =
n∑
i=1

Xi

where Xi is the upturned value on die i. Because Xi is equally likely to be any of the
values from 1 to 6, it follows that

E[Xi] =
6∑
i=1

i(1/6) = 21/6 = 7/2

which yields the result

E[X] = E

⎡
⎣ n∑
i=1

Xi

⎤
⎦ =

n∑
i=1

E[Xi] = 3.5n .

Example
9d

Find the expected total number of successes that result from n trials when trial i is a
success with probability pi, i = 1, . . . ,n.

Solution Letting

Xi =
{
1, if trial i is a success
0, if trial i is a failure

we have the representation
X =

n∑
i=1

Xi

Consequently,
E[X] =

n∑
i=1

E[Xi] =
n∑
i=1

pi

Note that this result does not require that the trials be independent. It includes as a
special case the expected value of a binomial random variable, which assumes inde-
pendent trials and all pi = p, and thus hasmean np. It also gives the expected value of
a hypergeometric random variable representing the number of white balls selected
when n balls are randomly selected, without replacement, from an urn of N balls of
whichm are white. We can interpret the hypergeometric as representing the number
of successes in n trials, where trial i is said to be a success if the ith ball selected is
white. Because the ith ball selected is equally likely to be any of the N balls and thus
has probability m/N of being white, it follows that the hypergeometric is the num-
ber of successes in n trials in which each trial is a success with probability p = m/N.
Hence, even though these hypergeometric trials are dependent, it follows from the
result of Example 9d that the expected value of the hypergeometric is np = nm/N. .
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Example
9e

Derive an expression for the variance of the number of successful trials in Exam-
ple 9d, and apply it to obtain the variance of a binomial random variable with param-
eters n and p, and of a hypergeometric random variable equal to the number of white
balls chosen when n balls are randomly chosen from an urn containing N balls of
which m are white.

Solution Letting X be the number of successful trials, and using the same represen-
tation for X—namely, X =∑n

i=1Xi—as in the previous example, we have

E[X2] = E

⎡
⎢⎢⎣
⎛
⎝ n∑
i=1

Xi

⎞
⎠
⎛
⎜⎝ n∑
j=1

Xj

⎞
⎟⎠
⎤
⎥⎥⎦

= E

⎡
⎢⎣ n∑
i=1

Xi

⎛
⎝Xi +

∑
jZi

Xj

⎞
⎠
⎤
⎥⎦

= E

⎡
⎣ n∑
i=1

X2
i +

n∑
i=1

∑
jZi

XiXj

⎤
⎦

=
n∑
i=1

E[X2
i ] +

n∑
i=1

∑
jZi

E[XiXj]

=
∑
i

pi +
n∑
i=1

∑
jZi

E[XiXj]

where the final equation used that X2
i = Xi. However, because the possible values

of both Xi and Xj are 0 or 1, it follows that

XiXj =
{
1, if Xi = 1,Xj = 1
0, otherwise

Hence,

E[XiXj] = P{Xi = 1,Xj = 1} = P(trials i and j are successes)

Thus, with pi,j = P(Xi = 1,Xj = 1), the preceding and the result of Example 9d yield
that

Var(X) =
n∑
i=1

pi +
n∑
i=1

∑
jZi

pi,j − (

n∑
i=1

pi)2 (9.1)

If X is binomial with parameters n, p, then pi = p and, by the independence of
trials, pi,j = p2, i Z j. Consequently, Equation (9.1) yields that

Var(X) = np + n(n − 1)p2 − n2p2 = np(1 − p)

On the other hand, if X is hypergeometric, then as each of the N balls is equally
likely to be the ith ball chosen, it follows that pi = m/N. Also, for i Z j

pi,j = P(Xi = 1,Xj = 1) = P(Xi = 1)P(Xj = 1|Xi = 1) = m
N

m − 1
N − 1
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which follows because given that the ith ball selected is white, each of the otherN − 1
balls, of which m − 1 are white, is equally likely to be the jth ball selected. Conse-
quently, (9.1) yields that

Var(X) = nm
N

+ n(n − 1)
m
N

m − 1
N − 1

−
(
nm
N

)2
which, as shown in Example 8j, can be simplified to yield

Var(X) = np(1 − p)
(
1 − n − 1

N − 1

)

where p = m/N. .

4.10 Properties of the Cumulative Distribution Function
Recall that for the distribution function F ofX, F(b) denotes the probability that the
random variable X takes on a value that is less than or equal to b. The following are
some properties of the cumulative distribution function (c.d.f.) F:

1. F is a nondecreasing function; that is, if a < b, then F(a) … F(b).
2. lim

b→q
F(b) = 1.

3. lim
b→−q

F(b) = 0.

4. F is right continuous. That is, for any b and any decreasing sequence bn,n Ú 1,
that converges to b, lim

n→q
F(bn) = F(b).

Property 1 follows, as was noted in Section 4.1, because, for a < b, the event
{X … a} is contained in the event {X … b} and so cannot have a larger probabil-
ity. Properties 2, 3, and 4 all follow from the continuity property of probabilities
(Section 2.6). For instance, to prove property 2, we note that if bn increases to q,
then the events {X … bn}, n Ú 1, are increasing events whose union is the event
{X < q}. Hence, by the continuity property of probabilities,

lim
n→q

P{X … bn} = P{X < q} = 1

which proves property 2.
The proof of property 3 is similar and is left as an exercise. To prove property 4,

we note that if bn decreases to b, then {X … bn}, n Ú 1, are decreasing events whose
intersection is {X … b}. The continuity property then yields

lim
n→q

P{X … bn} = P{X … b}

which verifies property 4.
All probability questions about X can be answered in terms of the c.d.f., F. For

example,
P{a < X … b} = F(b) − F(a) for all a < b (10.1)

This equation can best be seen to hold if we write the event {X … b} as the union of
the mutually exclusive events {X … a} and {a < X … b}. That is,

{X … b} = {X … a} ∪ {a < X … b}
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so
P{X … b} = P{X … a} + P{a < X … b}

which establishes Equation (10.1).
If we want to compute the probability that X is strictly less than b, we can again

apply the continuity property to obtain

P{X < b} = P

(
lim
n→q

{
X … b − 1

n

})

= lim
n→q

P
(
X … b − 1

n

)

= lim
n→q

F
(
b − 1

n

)

Note that P{X < b} does not necessarily equal F(b), since F(b) also includes the
probability that X equals b.

Example
10a

The distribution function of the random variable X is given by

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 0
x
2

0 … x < 1

2
3

1 … x < 2

11
12

2 … x < 3

1 3 … x

A graph of F(x) is presented in Figure 4.10. Compute (a) P{X < 3}, (b) P{X = 1},
(c) P{X > 1

2 }, and (d) P{2 < X … 4}.

Solution (a) P{X < 3} = lim
n
P
{
X … 3 − 1

n

}
= lim

n
F
(
3 − 1

n

)
= 11

12

(b) P{X = 1} = P{X … 1} − P{X < 1}
= F(1) − lim

n
F
(
1 − 1

n

)
= 2

3
− 1

2
= 1

6

(c) P
{
X >

1
2

}
= 1 − P

{
X …

1
2

}

= 1 − F
(
1
2

)
= 3

4

(d) P{2 < X … 4} = F(4) − F(2)

= 1
12

.
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1–
2

2–
3

1
11—
12

1 2 3
x

F(x)

Figure 4.10 Graph of F(x).

Summary

A real-valued function defined on the outcome of a prob-
ability experiment is called a random variable.

If X is a random variable, then the function F(x)
defined by

F(x) = P{X … x}
is called the distribution function of X. All probabilities
concerning X can be stated in terms of F.

A random variable whose set of possible values is
either finite or countably infinite is called discrete. IfX is a
discrete random variable, then the function

p(x) = P{X = x}
is called the probability mass function ofX. Also, the quan-
tity E[X] defined by

E[X] =
∑

x:p(x)>0

xp(x)

is called the expected value of X. E[X] is also commonly
called themean or the expectation of X.

A useful identity states that for a function g,

E[g(X)] =
∑

x:p(x)>0

g(x)p(x)

The variance of a random variable X, denoted by Var(X),
is defined by

Var(X) = E[(X − E[X])2]

The variance, which is equal to the expected square of
the difference between X and its expected value, is a mea-
sure of the spread of the possible values of X. A useful
identity is

Var(X) = E[X2] − (E[X])2

The quantity
√
Var(X) is called the standard deviation

of X.
We now note some common types of discrete random

variables. The random variable X whose probability mass
function is given by

p(i) =
(
n
i

)
pi(1 − p)n−i i = 0, . . . ,n

is said to be a binomial random variable with parameters n
and p. Such a random variable can be interpreted as being
the number of successes that occur when n independent
trials, each of which results in a success with probability p,
are performed. Its mean and variance are given by

E[X] = np Var(X) = np(1 − p)

The random variableX whose probability mass function is
given by

p(i) = e−λλi

i!
i Ú 0

is said to be a Poisson random variable with parameter λ.
If a large number of (approximately) independent trials
are performed, each having a small probability of being
successful, then the number of successful trials that result
will have a distribution that is approximately that of a Pois-
son random variable. The mean and variance of a Poisson
random variable are both equal to its parameter λ. That is,

E[X] = Var(X) = λ

The random variableX whose probability mass function is
given by

p(i) = p(1 − p)i−1 i = 1, 2, . . .
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is said to be a geometric random variable with parameter
p. Such a random variable represents the trial number of
the first success when each trial is independently a success
with probability p. Its mean and variance are given by

E[X] = 1
p

Var(X) = 1 − p
p2

The random variableX whose probability mass function is
given by

p(i) =
(
i − 1
r − 1

)
pr(1 − p)i−r i Ú r

is said to be a negative binomial random variable with
parameters r and p. Such a random variable represents the
trial number of the rth success when each trial is indepen-
dently a success with probability p. Its mean and variance
are given by

E[X] = r
p

Var(X) = r(1 − p)
p2

A hypergeometric random variable X with parameters n,
N, and m represents the number of white balls selected
when n balls are randomly chosen from an urn that con-
tains N balls of which m are white. The probability mass
function of this random variable is given by

p(i) =

(
m
i

)(
N − m
n − i

)
(
N
n

) i = 0, . . . ,m

With p = m/N, its mean and variance are

E[X] = np Var(X) = N − n
N − 1

np(1 − p)

An important property of the expected value is that the
expected value of a sum of random variables is equal to
the sum of their expected values. That is,

E

⎡
⎣ n∑
i=1

Xi

⎤
⎦ =

n∑
i=1

E[Xi]

Problems

4.1. Sophie is choosing two coins randomly from a box
containing four $2, five $1, eight 50¢, and three 20¢ coins.
Let X denote Sophie’s income. What are the possible val-
ues of X, and what are the probabilities associated with
each value?

4.2. Two fair dice are rolled. Let X equal the ratio of the
value on the first die to that on the second die. Find the
probabilities attached to the possible values that X can
take on.

4.3. Three fair dice are rolled. Assume that all 63 = 216
possible outcomes are equally likely. LetX equal the prod-
uct of the 3 dice. Find the probabilities attached to the
possible values that X can take on.

4.4. Six men and 4 women are ranked according to the
time they took to complete a 5-mile trail run. Assume that
no two individuals took the same time and that all 10! pos-
sible rankings are equally likely. What is the probability
that at least one out of the three highest ranking individu-
als is a woman?

4.5. Let X represent the difference between the number
of heads and the number of tails obtained when a coin is
tossed n times. What are the possible values of X?

4.6. In Problem 4.5, for n = 3, if the coin is assumed fair,
what are the probabilities associated with the values that
X can take on?

4.7. Suppose that a die is rolled twice. What are the
possible values that the following random variables can
take on:

(a) the maximum value to appear in the two rolls;
(b) the minimum value to appear in the two rolls;
(c) the sum of the two rolls;
(d) the value of the first roll minus the value of the second
roll?

4.8. If the die in Problem 4.7 is assumed fair, calculate the
probabilities associated with the random variables in parts
(a) through (d).

4.9. Repeat Example 1c when the balls are selected with
replacement.

4.10. Let X be the winnings of a gambler. Let p(i) =
P(X = i) and suppose that

p(0) = 1/3;p(1) = p(−1) = 13/55;
p(2) = p(−2) = 1/11;p(3) = p(−3) = 1/165

Compute the conditional probability that the gambler wins
i, i = 1, 2, 3, given that he wins a positive amount.

4.11. The random variable X is said to follow the distribu-
tion of Benford’s Law if

P(X = i) = log10(
i + 1
i

), i = 1, 2, 3, . . . , 9
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It has been shown to be a good fit for the distribution of
the first digit of many real life data values.

(a) Verify that the preceding is a probability mass function
by showing that

∑9
i=1 P(X = i) = 1.

(b) Find P(X … j).

4.12. In the game of Two-Finger Morra, 2 players show 1
or 2 fingers and simultaneously guess the number of fin-
gers their opponent will show. If only one of the players
guesses correctly, he wins an amount (in dollars) equal to
the sum of the fingers shown by him and his opponent. If
both players guess correctly or if neither guesses correctly,
then no money is exchanged. Consider a specified player,
and denote by X the amount of money he wins in a single
game of Two-Finger Morra.
(a) If each player acts independently of the other, and if
each player makes his choice of the number of fingers he
will hold up and the number he will guess that his oppo-
nent will hold up in such a way that each of the 4 possibili-
ties is equally likely, what are the possible values of X and
what are their associated probabilities?

(b) Suppose that each player acts independently of the
other. If each player decides to hold up the same number
of fingers that he guesses his opponent will hold up, and
if each player is equally likely to hold up 1 or 2 fingers,
what are the possible values of X and their associated
probabilities?

4.13.A man wants to buy tablets for his two daughters as
Christmas gifts. He goes to an electronics shop that has the
two latest models. The probability that Sabrina, the older
daughter, will accept the gift is .9, whereas the probability
that Samantha, the younger daughter, will accept the gift
is .7. These two probabilities are independent. There is a .8
probability that Sabrina will choose the first model, which
costs $600, and a .2 probability that she chooses the second
model, which costs $450. Samantha is equally likely to opt
for either model. Determine the expected total cost that
will be incurred by the man.

4.14. Five distinct numbers are randomly distributed to
players numbered 1 through 5. Whenever two players
compare their numbers, the one with the higher one is
declared the winner. Initially, players 1 and 2 compare
their numbers; the winner then compares her number with
that of player 3, and so on. Let X denote the number of
times player 1 is a winner. Find P{X = i}, i = 0, 1, 2, 3, 4.

4.15.A state wants to select 10 players along with a goal-
keeper from 9 football teams who will represent their state
in the national league. An urn consisting of 45 balls is
used for the selection of the players. Each of the balls is
inscribed with the name of a team: 9 balls have the name
of the best-performing team, 8 balls have the name of the
second best-performing team, and so on (with 1 ball for

the worst-performing team). A ball is chosen at random,
and the team whose name is on the ball is instructed to
pick a player who will join the state’s team. Another ball is
then chosen at random and the team named on the ball
is asked to pick a player. A third ball is randomly cho-
sen and the team named on the ball (provided that not
all 3 chosen balls are of the same team) is asked to choose
the third player. If 3 balls are chosen from the same team,
the third ball is replaced and another one is chosen. This
continues until a ball from another team is chosen. The 7
remaining players are then picked in a way from the teams
that were not picked from the urn such that all 9 teams
are represented at least once. If all 3 chosen balls are of
a different team, then 2 out of the 7 remaining players
are selected out of the best-performing team which was
not chosen from the urn. What is the probability that the
third best-performing team in the competition will have
two representative players?

4.16.A deck of n cards numbered 1 through n are to be
turned over one a time. Before each card is shown you are
to guess which card it will be. After making your guess,
you are told whether or not your guess is correct but not
which card was turned over. It turns out that the strategy
that maximizes the expected number of correct guesses
fixes a permutation of the n cards, say 1, 2, . . . ,n, and then
continually guesses 1 until it is correct, then continually
guesses 2 until either it is correct or all cards have been
turned over, and then continually guesses 3, and so on. Let
G denote the number of correct guesses yielded by this
strategy. Determine P(G = k).

Hint: In order forG to be at least kwhat must be the order
of cards 1, . . . ,k.

4.17. Suppose that the distribution function of the random
variable X is given by

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 0
x
2

0 … x < 1

x + 1
4

1 … x < 3

1 x Ú 3

(a) Find P{X < 1}.
(b) Find P{X > 2}.
(c) Find P

{
1
3 < X < 5

3

}
.

4.18.During a tournament, a football team plays a match
against 3 different teams. The probabilities that this team
wins against the first, second, and third teams are .8, .65,
and .3, respectively, and are independent. Let X denote
the number of wins obtained. Calculate the probability
mass function of X.
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4.19. If the distribution function of the random variable X
is given by

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 1
1
4

1 … x < 3

5
8

3 … x < 4

3
4

4 … x < 6

7
8

6 … x < 7

1 x Ú 7

calculate the probability mass function of X.

4.20.A gambling book recommends the following “win-
ning strategy” for the game of roulette: Bet $1 on red. If
red appears

(
which has probability 18

38

)
, then take the $1

profit and quit. If red does not appear and you lose this bet(
which has probability 20

38 of occurring
)
, make additional

$1 bets on red on each of the next two spins of the roulette
wheel and then quit. Let X denote your winnings when
you quit.
(a) Find P{X > 0}.
(b)Are you convinced that the strategy is indeed a “win-
ning” strategy? Explain your answer!
(c) Find E[X].

4.21. Four buses carrying 148 students from the same
school arrive at a football stadium. The buses carry, respec-
tively, 40, 33, 25, and 50 students. One of the students is
randomly selected. Let X denote the number of students
who were on the bus carrying the randomly selected stu-
dent. One of the 4 bus drivers is also randomly selected.
Let Y denote the number of students on her bus.
(a)Which of E[X] or E[Y] do you think is larger? Why?
(b) Compute E[X] and E[Y].

4.22. Suppose that two teams play a series of games that
ends when one of them has won i games. Suppose that
each game played is, independently, won by team A with
probability p. Find the expected number of games that are
played when (a) i = 2 and (b) i = 3. Also, show in both
cases that this number is maximized when p = 1

2 .

4.23. You have $1000, and a certain commodity presently
sells for $2 per ounce. Suppose that after one week the
commodity will sell for either $1 or $4 an ounce, with these
two possibilities being equally likely.
(a) If your objective is to maximize the expected amount
of money that you possess at the end of the week, what
strategy should you employ?

(b) If your objective is to maximize the expected amount
of the commodity that you possess at the end of the week,
what strategy should you employ?

4.24. A and B play the following game: A writes down
either number 1 or number 2, and B must guess which
one. If the number that A has written down is i and B has
guessed correctly, B receives i units from A. If B makes a
wrong guess, B pays 3

4 unit to A. If B randomizes his deci-
sion by guessing 1 with probability p and 2 with probability
1 − p, determine his expected gain if (a) A has written
down number 1 and (b) A has written down number 2.
What value of pmaximizes the minimum possible value

of B’s expected gain, and what is this maximin value?
(Note that B’s expected gain depends not only on p, but
also on what A does.)

Consider now player A. Suppose that she also random-
izes her decision, writing down number 1 with probability
q. What is A’s expected loss if (c) B chooses number 1 and
(d) B chooses number 2?
What value of qminimizesA’s maximum expected loss?

Show that the minimum of A’s maximum expected loss
is equal to the maximum of B’s minimum expected gain.
This result, known as the minimax theorem, was first
established in generality by the mathematician John von
Neumann and is the fundamental result in the mathemati-
cal discipline known as the theory of games. The common
value is called the value of the game to player B.

4.25. Four coins are flipped. The first two coins are fair,
whereas the third and fourth coins are biased. The latter
coins land on heads with probabilities .7 and .4, respec-
tively. Assume that the outcomes of the flips are indepen-
dent. Find the probability that
(a) exactly one head appears;
(b) two heads appear.

4.26.One of the numbers 1 through 10 is randomly cho-
sen. You are to try to guess the number chosen by asking
questions with “yes–no” answers. Compute the expected
number of questions you will need to ask in each of the
following two cases:
(a) Your ith question is to be “Is it i?” i =
1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
(b)With each question you try to eliminate one-half of the
remaining numbers, as nearly as possible.

4.27.An insurance company writes a policy to the effect
that an amount of money A must be paid if some event
E occurs within a year. If the company estimates that E
will occur within a year with probability p, what should it
charge the customer in order that its expected profit will
be 10 percent of A?

4.28.A teacher selects a group of 5 students at random
from her class consisting of 11 female students and 10 male
students. Find the expected number of female students in
the group.
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4.29. There are two possible causes for a breakdown of a
machine. To check the first possibility would cost C1 dol-
lars, and, if that were the cause of the breakdown, the
trouble could be repaired at a cost of R1 dollars. Similarly,
there are costs C2 and R2 associated with the second pos-
sibility. Let p and 1 − p denote, respectively, the probabil-
ities that the breakdown is caused by the first and second
possibilities. Under what conditions on p,Ci,Ri, i = 1, 2,
should we check the first possible cause of breakdown
and then the second, as opposed to reversing the check-
ing order, so as to minimize the expected cost involved in
returning the machine to working order?
Note: If the first check is negative, we must still check the
other possibility.

4.30.A person tosses a fair coin until a tail appears for the
first time. If the tail appears on the nth flip, the person wins
2n dollars. Let X denote the player’s winnings. Show that
E[X] = +q. This problem is known as the St. Petersburg
paradox.
(a)Would you be willing to pay $1 million to play this
game once?
(b)Would you be willing to pay $1 million for each game
if you could play for as long as you liked and only had to
settle up when you stopped playing?

4.31. Each night different meteorologists give us the prob-
ability that it will rain the next day. To judge howwell these
people predict, we will score each of them as follows: If a
meteorologist says that it will rain with probability p, then
he or she will receive a score of

1 − (1 − p)2 if it does rain
1 − p2 if it does not rain

We will then keep track of scores over a certain time span
and conclude that the meteorologist with the highest aver-
age score is the best predictor of weather. Suppose now
that a given meteorologist is aware of our scoring mecha-
nism and wants to maximize his or her expected score. If
this person truly believes that it will rain tomorrow with
probability p∗, what value of p should he or she assert so
as to maximize the expected score?

4.32. To determine whether they have a certain disease,
100 people are to have their blood tested. However, rather
than testing each individual separately, it has been decided
first to place the people into groups of 10. The blood sam-
ples of the 10 people in each group will be pooled and
analyzed together. If the test is negative, one test will suf-
fice for the 10 people, whereas if the test is positive, each
of the 10 people will also be individually tested and, in all,
11 tests will be made on this group. Assume that the prob-
ability that a person has the disease is .1 for all people,
independently of one another, and compute the expected
number of tests necessary for each group. (Note that we

are assuming that the pooled test will be positive if at least
one person in the pool has the disease.)

4.33.A newsboy purchases papers at 10 cents and sells
them at 15 cents. However, he is not allowed to return
unsold papers. If his daily demand is a binomial random
variable with n = 10,p = 1

3 , approximately how many
papers should he purchase so as to maximize his expected
profit?

4.34. In Example 4b, suppose that the department store
incurs an additional cost of c for each unit of unmet
demand. (This type of cost is often referred to as a
goodwill cost because the store loses the goodwill of
those customers whose demands it cannot meet.) Com-
pute the expected profit when the store stocks s units,
and determine the value of s that maximizes the expected
profit.

4.35. Two cards are drawn at random from an ordinary
deck of 52 playing cards. If the two cards display the same
suit, you win $2. If they are of the same color only, you win
$1. Otherwise, you lose 50¢. Calculate
(a) the expected value of the amount you win;
(b) the variance of the amount you win.

4.36. Consider the friendship network described by
Figure 4.5. Let X be a randomly chosen person and let
Z be a randomly chosen friend of X. With f (i) equal to
the number of friends of person i, show that E[f (Z)] Ú
E[f (X)].

4.37. Consider Problem 4.22 with i = 2. Find the variance
of the number of games played, and show that this number
is maximized when p = 1

2 .

4.38. Find Var(X) and Var(Y) for X and Y as given in
Problem 4.21.

4.39. If E[X] = 3 and Var(X) = 1, find

(a) E[(4X − 1)2];
(b) Var(5 − 2X).

4.40.A card is drawn at random from an ordinary deck of
52 playing cards. After the card is drawn, it is replaced. The
deck is reshuffled and another card is drawn at random.
This process goes on indefinitely. What is the probability
that exactly 3 out of the first 5 cards that have been drawn
are red?

4.41.On a multiple-choice test with 3 possible answers for
each of the 8 questions, what is the probability that a stu-
dent who has not studied for the test will guess at least 6
correct answers?

4.42.A fair die is tossed 10 times consecutively. What is
the probability that at most 6 out of the 10 tosses result in
an even number?
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4.43. A and B will take the same 10-question examination.
Each question will be answered correctly by A with prob-
ability .7, independently of her results on other questions.
Each question will be answered correctly by B with prob-
ability .4, independently both of her results on the other
questions and on the performance of A.

(a) Find the expected number of questions that are
answered correctly by both A and B.
(b) Find the variance of the number of questions that are
answered correctly by either A or B.

4.44.A communications channel transmits the digits 0 and
1. However, due to static, the digit transmitted is incor-
rectly received with probability .2. Suppose that we want
to transmit an important message consisting of one binary
digit. To reduce the chance of error, we transmit 00000
instead of 0 and 11111 instead of 1. If the receiver of the
message uses “majority” decoding, what is the probabil-
ity that the message will be wrong when decoded? What
independence assumptions are you making?

4.45.A satellite system consists of n components and
functions on any given day if at least k of the n com-
ponents function on that day. On a rainy day, each of
the components independently functions with probability
p1, whereas on a dry day, each independently functions
with probability p2. If the probability of rain tomorrow
is α, what is the probability that the satellite system will
function?

4.46.A student is getting ready to take an important oral
examination and is concerned about the possibility of hav-
ing an “on” day or an “off” day. He figures that if he has
an on day, then each of his examiners will pass him, inde-
pendently of one another, with probability .8, whereas if
he has an off day, this probability will be reduced to .4.
Suppose that the student will pass the examination if a
majority of the examiners pass him. If the student believes
that he is twice as likely to have an off day as he is to have
an on day, should he request an examination with 3 exam-
iners or with 5 examiners?

4.47. Suppose that it takes at least 9 votes from a 12-
member jury to convict a defendant. Suppose also that the
probability that a juror votes a guilty person innocent is
.2, whereas the probability that the juror votes an innocent
person guilty is .1. If each juror acts independently and if
65 percent of the defendants are guilty, find the probability
that the jury renders a correct decision. What percentage
of defendants is convicted?

4.48. In some military courts, 9 judges are appointed.
However, both the prosecution and the defense attorneys
are entitled to a peremptory challenge of any judge, in
which case that judge is removed from the case and is

not replaced. A defendant is declared guilty if the major-
ity of judges cast votes of guilty, and he or she is declared
innocent otherwise. Suppose that when the defendant is,
in fact, guilty, each judge will (independently) vote guilty
with probability .7, whereas when the defendant is, in fact,
innocent, this probability drops to .3.
(a)What is the probability that a guilty defendant is
declared guilty when there are (i) 9, (ii) 8, and (iii) 7
judges?
(b) Repeat part (a) for an innocent defendant.
(c) If the prosecuting attorney does not exercise the right
to a peremptory challenge of a judge, and if the defense
is limited to at most two such challenges, how many chal-
lenges should the defense attorney make if he or she is 60
percent certain that the client is guilty?

4.49.A company sells LED bulbs in packages of 20 for
$25. From past records, it knows that a bulb will be defec-
tive with probability .01. The company agrees to pay a full
refund if a customer finds more than 1 defective bulb in a
pack. If the company sells 100 packs, how much should it
expect to refund?

4.50.When coin 1 is flipped, it lands on heads with prob-
ability .4; when coin 2 is flipped, it lands on heads with
probability .7. One of these coins is randomly chosen and
flipped 10 times.

(a)What is the probability that the coin lands on heads on
exactly 7 of the 10 flips?
(b)Given that the first of these 10 flips lands heads, what
is the conditional probability that exactly 7 of the 10 flips
land on heads?

4.51. Each member of a population of size n is, indepen-
dently, female with probability p or male with probability
1 − p. Let X be the number of the other n − 1 members
of the population that are the same sex as is person 1. (So
X = n − 1 if all n people are of the same sex.)

(a) Find P(X = i), i = 0, . . . ,n − 1.

Now suppose that two people of the same sex will, inde-
pendently of other pairs, be friends with probability α;
whereas two persons of opposite sexes will be friends with
probability β. Find the probability mass function of the
number of friends of person 1.

4.52. In a tournament involving players 1, 2, 3, 4, players 1
and 2 play a game, with the loser departing and the win-
ner then playing against player 3, with the loser of that
game departing and the winner then playing player 4. The
winner of the game involving player 4 is the tournament
winner. Suppose that a game between players i and j is
won by player i with probability i

i+j .
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(a) Find the expected number of games played by player 1.
(b) Find the expected number of games played by player 3.

4.53. Suppose that Harry plays 10 rounds of tennis against
Smith and wins with probability p during each round.
Given that Harry has won a total of 7 rounds, find the con-
ditional probability that his outcomes in the first 3 rounds
are
(a) win,win, lose;
(b) lose,win, lose.

4.54. The expected number of dancers falling on stage dur-
ing a contest is .3. What is the probability that during the
next contest, (a) no dancer falls on stage and (b) 3 or more
dancers fall on stage? Explain your reasoning.

4.55. The monthly worldwide average number of airplane
crashes of commercial airlines is 3.5. What is the probabil-
ity that there will be
(a) at least 2 such accidents in the next month;
(b) at most 1 accident in the next month?
Explain your reasoning!

4.56.Approximately 80,000 marriages took place in the
state of New York last year. Estimate the probability that
for at least one of these couples,
(a) both partners were born on April 30;
(b) both partners celebrated their birthday on the same
day of the year.
State your assumptions.

4.57. Suppose that the average number of follower
requests that an advertising page receives weekly is 50.
Approximate the probability that the page will receive
(a) exactly 35 follower requests in the next week;
(b) at least 40 follower requests in the next week.

4.58.An examination board appoints two vetters. The
average number of errors per exam paper found by the
first vetter is 4, and the average number of errors per exam
paper found by the second vetter is 5. If an examiner’s
paper is equally likely to be vetted by either vetter, approx-
imate the probability that it will have no errors.

4.59.Howmany people are needed so that the probability
that at least one of them has the same first and last name
initials as you is at least 3

4?

4.60. Suppose that the number of weekly traffic accidents
occurring in a small town is a Poisson random variable with
parameter λ = 7.
(a)What is the probability that at least 4 accidents occur
(until) this week?
(b)What is the probability that at most 5 accidents occur
(until) this week given that at least 1 accident will occur
today?

4.61. Compare the Poisson approximation with the correct
binomial probability for the following cases:
(a) P{X = 2} when n = 8, p = .1;
(b) P{X = 9} when n = 10, p = .95;
(c) P{X = 0} when n = 10, p = .1;
(d) P{X = 4} when n = 9, p = .2.

4.62. If you buy a lottery ticket in 50 lotteries, in each of
which your chance of winning a prize is 1

100 , what is the
(approximate) probability that you will win a prize
(a) at least once?
(b) exactly once?
(c) at least twice?

4.63. The number of times that a person contracts a cold
in a given year is a Poisson random variable with param-
eter λ = 5. Suppose that a new wonder drug (based on
large quantities of vitamin C) has just been marketed that
reduces the Poisson parameter to λ = 3 for 75 percent
of the population. For the other 25 percent of the popu-
lation, the drug has no appreciable effect on colds. If an
individual tries the drug for a year and has 2 colds in that
time, how likely is it that the drug is beneficial for him or
her?

4.64.While driving along a long route that has 5,000 inter-
sections, the probability of encountering a red light at any
intersection is .001. Find an approximation for the proba-
bility that a driver will encounter at least 2 red lights.

4.65. Consider n independent trials, each of which results
in one of the outcomes 1, . . . ,k with respective probabil-
ities p1, . . . ,pk,

∑k
i=1 pi = 1. Show that if all the pi are

small, then the probability that no trial outcome occurs
more than once is approximately equal to exp(−n(n − 1)∑

i p
2
i /2).

4.66. Customers enter a supermarket located on a busy
street at a rate of 2 every 3 minutes.
(a)What is the probability that no customer enters the
supermarket between 07:00 and 07:06?
(b)What is the probability that at least 5 customers enter
during this time?

4.67. In a certain country, babies are born at an approx-
imate rate of 6.94 births per 1,000 inhabitants per year.
Assume that the total population is 40,000.
(a)What is the probability that there will be more than 60
births in this country during a 3-month period?
(b)What is the probability that there will be more than 60
births in at least 2 phases of 3 months during the next year?
(c) If the present season (a 3-month period) is identified
as Season 1, what is the probability that the first season to
have more than 60 births will be Season i (i = 1, 2, 3, 4)?



A First Course in Probability 193

4.68. Each of 500 soldiers in an army company indepen-
dently has a certain disease with probability 1/103. This
disease will show up in a blood test, and to facilitate mat-
ters, blood samples from all 500 soldiers are pooled and
tested.
(a)What is the (approximate) probability that the blood
test will be positive (that is, at least one person has the
disease)?
Suppose now that the blood test yields a positive result.

(b)What is the probability, under this circumstance, that
more than one person has the disease?
Now, suppose one of the 500 people is Jones, who knows
that he has the disease.

(c)What does Jones think is the probability that more than
one person has the disease?
Because the pooled test was positive, the authorities have
decided to test each individual separately. The first i − 1
of these tests were negative, and the ith one—which was
on Jones—was positive.
(d)Given the preceding scenario, what is the probability,
as a function of i, that any of the remaining people have
the disease?

4.69.A total of 2n people, consisting of n married cou-
ples, are randomly seated (all possible orderings being
equally likely) at a round table. Let Ci denote the event
that the members of couple i are seated next to each other,
i = 1, . . . ,n.
(a) Find P(Ci).
(b) For j Z i, find P(Cj|Ci).
(c)Approximate the probability, for n large, that there are
no married couples who are seated next to each other.

4.70. Repeat the preceding problem when the seating is
random but subject to the constraint that the men and
women alternate.

4.71. In response to an attack of 10 missiles, 500 antiballis-
tic missiles are launched. The missile targets of the antibal-
listic missiles are independent, and each antiballstic missile
is equally likely to go towards any of the target missiles. If
each antiballistic missile independently hits its target with
probability .1, use the Poisson paradigm to approximate
the probability that all missiles are hit.

4.72.A fair coin is flipped 10 times. Find the probability
that there is a string of 4 consecutive heads by
(a) using the formula derived in the text;
(b) using the recursive equations derived in the text.
(c) Compare your answer with that given by the Poisson
approximation.

4.73.At time 0, a coin that comes up heads with proba-
bility p is flipped and falls to the ground. Suppose it lands

on heads. At times chosen according to a Poisson process
with rate λ, the coin is picked up and flipped. (Between
these times, the coin remains on the ground.) What is the
probability that the coin is on its head side at time t?
Hint: What would be the conditional probability if there
were no additional flips by time t, and what would it be if
there were additional flips by time t?

4.74. Consider a roulette wheel consisting of 38 numbers 1
through 36, 0, and double 0. If Smith always bets that the
outcome will be one of the numbers 1 through 12, what is
the probability that
(a) Smith will lose his first 5 bets;
(b) his first win will occur on his fourth bet?

4.75. Two athletic teams play a series of games; the first
team to win 4 games is declared the overall winner. Sup-
pose that one of the teams is stronger than the other and
wins each game with probability .6, independently of the
outcomes of the other games. Find the probability, for
i = 4, 5, 6, 7, that the stronger team wins the series in
exactly i games. Compare the probability that the stronger
team wins with the probability that it would win a 2-out-
of-3 series.

4.76. Suppose in Problem 4.75 that the two teams are
evenly matched and each has probability 1

2 of win-
ning each game. Find the expected number of games
played.

4.77.An interviewer is given a list of people she can inter-
view. If the interviewer needs to interview 5 people, and
if each person (independently) agrees to be interviewed
with probability 2

3 , what is the probability that her list of
people will enable her to obtain her necessary number
of interviews if the list consists of (a) 5 people and (b) 8
people? For part (b), what is the probability that the inter-
viewer will speak to exactly (c) 6 people and (d) 7 people
on the list?

4.78.During assembly, a product is equipped with 5 con-
trol switches, each of which has probability .04 of being
defective. What is the probability that 2 defective switches
are encountered before 5 nondefective ones?

4.79. Solve the Banach match problem (Example 8e)
when the left-hand matchbox originally contained N1
matches and the right-hand box contained N2 matches.

4.80. In the Banach matchbox problem, find the probabil-
ity that at the moment when the first box is emptied (as
opposed to being found empty), the other box contains
exactly k matches.

4.81.An urn contains 4 red, 4 green, and 4 blue balls. We
randomly choose 6 balls. If exactly two of them are red,
we stop. Otherwise, we replace the balls in the urn and
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randomly choose 6 balls again. What is the probability that
we shall stop exactly after n selections?

4.82. Suppose that a class of 50 students has appeared for
a test. Forty-one students have passed this test while the
remaining 9 students have failed. Find the probability that
in a group of 10 students selected at random

(a) none have failed the test;
(b) at least 3 students have failed the test.

4.83.Agame popular in Nevada gambling casinos is Keno,
which is played as follows: Twenty numbers are selected at
random by the casino from the set of numbers 1 through
80. A player can select from 1 to 15 numbers; a win occurs
if some fraction of the player’s chosen subset matches any
of the 20 numbers drawn by the house. The payoff is a
function of the number of elements in the player’s selec-
tion and the number of matches. For instance, if the player
selects only 1 number, then he or she wins if this number is
among the set of 20, and the payoff is $2.20 won for every
dollar bet. (As the player’s probability of winning in this
case is 1

4 , it is clear that the “fair” payoff should be $3 won
for every $1 bet.) When the player selects 2 numbers, a
payoff (of odds) of $12 won for every $1 bet is made when
both numbers are among the 20.

(a)What would be the fair payoff in this case?
Let Pn, k denote the probability that exactly k of the n
numbers chosen by the player are among the 20 selected
by the house.
(b) Compute Pn, k
(c) The most typical wager at Keno consists of selecting 10
numbers. For such a bet, the casino pays off as shown in
the following table. Compute the expected payoff:

Keno Payoffs in 10 Number Bets

Number of matches Dollars won for each $1 bet

0–4 –1
5 1
6 17
7 179
8 1, 299
9 2, 599
10 24, 999

4.84. In Example 8i, what percentage of i defective lots
does the purchaser reject? Find it for i = 1, 4. Given that
a lot is rejected, what is the conditional probability that it
contained 4 defective components?

4.85.An automotive manufacturing company produces
brake pads in lots of 100. This company inspects 15 brake
pads from each lot and accepts the whole lot only if all
15 brake pads pass the inspection test. Each brake pad
is, independently of the others, faulty with probability .09.
What proportion of the lots does the company reject?

4.86.A neighborhood consists of five streets. Assume
that the numbers of daily traffic accidents that occur on
these streets are Poisson random variables with respective
parameters .45, .2, .4, .5, and .35. What is the expected
number of traffic accidents that will occur in this neigh-
borhood next Monday?

4.87. Suppose that a group of 15 female students is select-
ing one shop out of the 6 available shops nearby to buy
their prom dress. Each student, independently of the oth-
ers, selects shop i with probability pi, where

∑6
i=1 pi = 1.

(a)What is the expected number of shops that will not be
visited by any student from this group?
(b)What is the expected number of shops that will be vis-
ited by exactly 3 students from this group?

4.88.Martha makes a necklace by randomly selecting n
beads from a large jar containing beads of k different col-
ors. Independently of the selection of the previous bead,
Martha selects a bead of color i with probability pi, where∑k

i=1 pi = 1. What is the expected number of different
colored beads in the necklace?

4.89.An urn contains 10 red, 8 black, and 7 green balls.
One of the colors is chosen at random (meaning that the
chosen color is equally likely to be any of the 3 colors), and
then 4 balls are randomly chosen from the urn. Let X be
the number of these balls that are of the chosen color.

(a) Find P(X = 0).
(b) Let Xi equal 1 if the ith ball selected is of the cho-
sen color, and let it equal 0 otherwise. Find P(Xi = 1),
i = 1, 2, 3, 4.
(c) Find E[X].

Hint: Express X in terms of X1, X2, X3, X4.

Theoretical Exercises

4.1. There are N distinct types of coupons, and each time
one is obtained it will, independently of past choices, be
of type i with probability Pi, i = 1, . . . ,N. Let T denote the
number one need select to obtain at least one of each type.
Compute P{T = n}.

Hint: Use an argument similar to the one used in Exam-
ple 1e.

4.2. If X has distribution function F, what is the distribu-
tion function of eX?
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4.3. If X has distribution function F, what is the distribu-
tion function of the random variable αX + β, where α and
β are constants, α Z 0?

4.4. The random variable X is said to have the Yule-
Simons distribution if

P{X = n} = 4
n(n + 1)(n + 2)

, n Ú 1

(a) Show that the preceding is actually a probability mass
function. That is, show that

∑q
n=1 P{X = n} = 1.

(b) Show that E[X] = 2.
(c) Show that E[X2] = q.

Hint: For (a), first use that 1
n(n+ 1)(n+ 2) = 1

n(n+ 1) −
1

n(n+ 2) , then use that k
n(n+k) = 1

n − 1
n+ k .

4.5. Let N be a nonnegative integer-valued random vari-
able. For nonnegative values aj, j Ú 1, show that

q∑
j=1

(a1 + . . . + aj)P{N = j} =
q∑
i=1

aiP{N Ú i}

Then show that

E[N] =
q∑
i=1

P{N Ú i}

and

E[N(N + 1)] = 2
q∑
i=1

iP{N Ú i}

4.6. The distribution of a random variable X, whose range
is {−a, 0, a}, is given by

P{X = −a} = p1, P{X = a} = p2

Given thatX has mean 0 and variance 1, work out the val-
ues of p1, p2 in terms of a.

4.7. LetX be a random variable with mean μ and variance
σ 2. Prove that

E[(X − μ)3] = E[X3] − 3σ 2μ − μ3

4.8. Find the first three moments and the variance of a ran-
dom variable X with distribution

P{X = i} = i
10

, i = 1, 2, 3, 4

4.9. Show how the derivation of the binomial probabilities

P{X = i} =
(
n
i

)
pi(1 − p)n−i, i = 0, . . . ,n

leads to a proof of the binomial theorem

(x + y)n =
n∑
i=0

(
n
i

)
xiyn−i

when x and y are nonnegative.
Hint: Let p = x

x+y .

4.10. Let X be a binomial random variable with parame-
ters n and p. Show that:

E[(1 − p)X ] = (1 − p2)n

4.11. LetX be the number of successes that result from 2n
independent trials, when each trial is a success with prob-
ability p. Show that P(X = n) is a decreasing function of
n.

4.12.A random walk Sn consists of sums of successive
steps Xi, each of which can be ;1 with probability p for
Xi = 1 such that Sn = ∑n

i=1Xi. Show that (Sn + n)/2 is
binomially distributed and work out its mean and variance.

4.13. There are n components lined up in a linear arrange-
ment. Suppose that each component independently func-
tions with probability p. What is the probability that no 2
neighboring components are both nonfunctional?
Hint: Condition on the number of defective components
and use the results of Example 4c of Chapter 1.

4.14. Let X be a binomial random variable with param-
eters (n, p). What value of p maximizes P{X = k}, k =
0, 1, . . . ,n? This is an example of a statistical method used
to estimate p when a binomial (n, p) random variable is
observed to equal k. If we assume that n is known, then
we estimate p by choosing that value of p that maximizes
P{X = k}. This is known as the method of maximum like-
lihood estimation.

4.15.A family has n children with probability αpn,n Ú 1,
where α … (1 − p)/p.
(a)What proportion of families has no children?
(b) If each child is equally likely to be a boy or a girl
(independently of each other), what proportion of families
consists of k boys (and any number of girls)?

4.16. Suppose that n independent tosses of a coin having
probability p of coming up heads are made. Show that
the probability that an even number of heads results is
1
2 [1 + (q − p)n], where q = 1 − p. Do this by proving
and then utilizing the identity

[n/2]∑
i=0

(
n
2i

)
p2iqn−2i = 1

2

[
(p + q)n + (q − p)n

]

where [n/2] is the largest integer less than or equal to
n/2. Compare this exercise with Theoretical Exercise 3.5
of Chapter 3.
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4.17. Let X be a Poisson random variable with parameter
λ. Show that P{X = i} increases monotonically and then
decreases monotonically as i increases, reaching its maxi-
mum when i is the largest integer not exceeding λ.
Hint: Consider P{X = i}/P{X = i − 1}.
4.18. Let X be a Poisson random variable with parame-
ter λ.
(a) Show that

P{X is even} = 1
2

[
1 + e−2λ

]
by using the result of Theoretical Exercise 4.15 and the
relationship between Poisson and binomial random vari-
ables.
(b) Verify the formula in part (a) directly by making use of
the expansion of e−λ + eλ.

4.19. Let X be a Poisson random variable with parameter
λ. What value of λ maximizes P{X = k}, k Ú 0?

4.20. Show that X is a Poisson random variable with
parameter λ, then

E[Xn] = λE[(X + 1)n−1]

Now use this result to compute E[X3].

4.21. Consider n coins, each of which independently comes
up heads with probability p. Suppose that n is large and p
is small, and let λ = np. Suppose that all n coins are tossed;
if at least one comes up heads, the experiment ends; if not,
we again toss all n coins, and so on. That is, we stop the first
time that at least one of the n coins come up heads. Let
X denote the total number of heads that appear. Which
of the following reasonings concerned with approximating
P{X = 1} is correct (in all cases, Y is a Poisson random
variable with parameter λ)?
(a) Because the total number of heads that occur when all
n coins are rolled is approximately a Poisson random vari-
able with parameter λ,

P{X = 1} L P{Y = 1} = λe−λ

(b) Because the total number of heads that occur when all
n coins are rolled is approximately a Poisson random vari-
able with parameter λ, and because we stop only when this
number is positive,

P{X = 1} L P{Y = 1|Y > 0} = λe−λ

1− e−λ

(c) Because at least one coin comes up heads, X will equal
1 if none of the other n − 1 coins come up heads. Because
the number of heads resulting from these n − 1 coins is
approximately Poisson with mean (n − 1)p L λ,

P{X = 1} L P{Y = 0} = e−λ

4.22. From a set of n randomly chosen people, let Eij
denote the event that persons i and j have the same birth-
day. Assume that each person is equally likely to have any
of the 365 days of the year as his or her birthday. Find
(a) P(E3,4|E1,2);
(b) P(E1,3|E1,2);
(c) P(E2,3|E1,2 ∩ E1,3).
What can you conclude from your answers to parts (a)–(c)

about the independence of the
(
n
2

)
events Eij?

4.23.An urn contains 2n balls, of which 2 are numbered 1,
2 are numbered 2, . . . , and 2 are numbered n. Balls are suc-
cessively withdrawn 2 at a time without replacement. Let
T denote the first selection in which the balls withdrawn
have the same number (and let it equal infinity if none of
the pairs withdrawn has the same number). We want to
show that, for 0 < α < 1,

lim
n
P{T > αn} = e−α/2

To verify the preceding formula, letMk denote the number
of pairs withdrawn in the first k selections, k = 1, . . . ,n.
(a)Argue that when n is large,Mk can be regarded as the
number of successes in k (approximately) independent tri-
als.
(b)Approximate P{Mk = 0} when n is large.
(c)Write the event {T > αn} in terms of the value of one
of the variablesMk.
(d) Verify the limiting probability given for P{T > αn}.
4.24. Consider a random collection of n individuals. In
approximating the probability that no 3 of these individ-
uals share the same birthday, a better Poisson approxima-
tion than that obtained in the text (at least for values of n
between 80 and 90) is obtained by letting Ei be the event
that there are at least 3 birthdays on day i, i = 1, . . . , 365.
(a) Find P(Ei).
(b)Give an approximation for the probability that no 3
individuals share the same birthday.
(c) Evaluate the preceding when n = 88. (The exact prob-
ability is derived in Example 1g of Chapter 6.)

4.25.Here is another way to obtain a set of recursive equa-
tions for determining Pn, the probability that there is a
string of k consecutive heads in a sequence of n flips of
a fair coin that comes up heads with probability p:

(a)Argue that for k < n, there will be a string of k con-
secutive heads if either

1. there is a string of k consecutive heads within the
first n − 1 flips, or

2. there is no string of k consecutive heads within the
first n − k − 1 flips, flip n − k is a tail, and flips
n − k + 1, . . . ,n are all heads.



A First Course in Probability 197

(b)Using the preceding, relate Pn to Pn−1. Starting with
Pk = pk, the recursion can be used to obtain Pk+1, then
Pk+2, and so on, up to Pn.

4.26. Suppose that the number of events that occur in a
specified time is a Poisson random variable with parameter
λ. If each event is counted with probability p, indepen-
dently of every other event, show that the number of
events that are counted is a Poisson random variable with
parameter λp. Also, give an intuitive argument as to why
this should be so. As an application of the preceding result,
suppose that the number of distinct uranium deposits in
a given area is a Poisson random variable with param-
eter λ = 10. If, in a fixed period of time, each deposit
is discovered independently with probability 1

50 , find the
probability that (a) exactly 1, (b) at least 1, and (c) at most
1 deposit is discovered during that time.

4.27. Prove

n∑
i=0

e−λ λi

i!
= 1
n!

∫ q

λ

e−xxndx

Hint: Use integration by parts.

4.28. If X is a geometric random variable, show analyti-
cally that

P{X = n + k|X > n} = P{X = k}
Using the interpretation of a geometric random variable,
give a verbal argument as to why the preceding equation
is true.

4.29. Let X be a negative binomial random variable with
parameters r and p, and let Y be a binomial random vari-
able with parameters n and p. Show that

P{X > n} = P{Y < r}
Hint: Either one could attempt an analytical proof of the
preceding equation, which is equivalent to proving the
identity

q∑
i=n+1

(
i − 1
r − 1

)
pr(1 − p)i−r =

r−1∑
i=0

(
n
i

)

* pi(1 − p)n−i

or one could attempt a proof that uses the probabilistic
interpretation of these random variables. That is, in the
latter case, start by considering a sequence of independent
trials having a common probability p of success. Then try
to express the events {X > n} and {Y < r} in terms of the
outcomes of this sequence.

4.30. For a hypergeometric random variable, determine

P{X = k + 1}/P{X = k}

4.31. Balls numbered 1 through N are in an urn. Suppose
that n, n … N, of them are randomly selected without
replacement. Let Y denote the largest number selected.

(a) Find the probability mass function of Y.
(b)Derive an expression for E[Y] and then use Fer-
mat’s combinatorial identity (see Theoretical Exercise 11
of Chapter 1) to simplify the expression.

4.32.A jar contains m + n chips, numbered 1, 2, . . . ,
n + m. A set of size n is drawn. If we let X denote the
number of chips drawn having numbers that exceed each
of the numbers of those remaining, compute the probabil-
ity mass function of X.

4.33.A jar contains n chips. Suppose that a boy succes-
sively draws a chip from the jar, each time replacing the
one drawn before drawing another. The process continues
until the boy draws a chip that he has previously drawn.
Let X denote the number of draws, and compute its prob-
ability mass function.

4.34. Repeat Theoretical Exercise 4.33, this time assuming
that withdrawn chips are not replaced before the next
selection.

4.35. From a set of n elements, a nonempty subset is cho-
sen at random in the sense that all of the nonempty subsets
are equally likely to be selected. LetX denote the number
of elements in the chosen subset. Using the identities given
in Theoretical Exercise 12 of Chapter 1, show that

E[X] = n

2 −
(
1
2

)n−1

Var(X) = n · 22n−2 − n(n + 1)2n−2

(2n − 1)2

Show also that for n large,

Var(X) � n
4

in the sense that the ratio Var(X) to n/4 approaches 1 as
n approaches q. Compare this formula with the limiting
form of Var(Y) when P{Y = i} = 1/n, i = 1, . . . ,n.

4.36.An urn initially contains one red and one blue ball.
At each stage, a ball is randomly chosen and then replaced
along with another of the same color. Let X denote the
selection number of the first chosen ball that is blue. For
instance, if the first selection is red and the second blue,
then X is equal to 2.

(a) Find P{X > i}, i Ú 1.
(b) Show that with probability 1, a blue ball is eventually
chosen. (That is, show that P{X < q} = 1.)
(c) Find E[X].
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4.37. Suppose the possible values of X are {xi}, the possi-
ble values of Y are {yj}, and the possible values of X + Y
are {zk}. Let Ak denote the set of all pairs of indices (i, j)
such that xi + yj = zk; that is, Ak = {(i, j) : xi + yj = zk}.
(a)Argue that

P{X + Y = zk} =
∑

(i,j)∈Ak

P{X = xi,Y = yj}

(b) Show that

E[X + Y] =
∑
k

∑
(i,j)∈Ak

(xi + yj)P{X = xi,

Y = yj}

(c) Using the formula from part (b), argue that

E[X + Y] =
∑
i

∑
j

(xi + yj)P{X = xi,

Y = yj}

(d) Show that

P(X = xi) =
∑
j

P(X = xi,Y = yj),

P(Y = yj) =
∑
i

P{X = xi,Y = yj}

(e) Prove that

E[X + Y] = E[X] + E[Y]

Self-Test Problems and Exercises

4.1. Suppose that the random variable X is equal to the
number of hits obtained by a certain baseball player in his
next 3 at bats. If P{X = 1} = .3,P{X = 2} = .2, and
P{X = 0} = 3P{X = 3}, find E[X].

4.2. Suppose that X takes on one of the values 0, 1, and 2.
If for some constant c,P{X = i} = cP{X = i − 1}, i = 1, 2,
find E[X].

4.3.A coin that when flipped comes up heads with prob-
ability p is flipped until either heads or tails has occurred
twice. Find the expected number of flips.

4.4.A certain community is composed of m families, ni of

which have i children,
r∑
i=1

ni = m. If one of the families is

randomly chosen, let X denote the number of children in

that family. If one of the
r∑
i=1

ini children is randomly cho-

sen, letY denote the total number of children in the family
of that child. Show that E[Y] Ú E[X].

4.5. Suppose that P{X = 0} = 1 − P{X = 1}. If E[X] =
3Var(X), find P{X = 0}.
4.6. There are 2 coins in a bin.When one of them is flipped,
it lands on heads with probability .6, and when the other is
flipped, it lands on heads with probability .3. One of these
coins is to be randomly chosen and then flipped. Without
knowing which coin is chosen, you can bet any amount up
to $10, and you then either win that amount if the coin
comes up heads or lose it if it comes up tails. Suppose, how-
ever, that an insider is willing to sell you, for an amount
C, the information as to which coin was selected. What is
your expected payoff if you buy this information? Note
that if you buy it and then bet x, you will end up either

winning x − C or −x − C (that is, losing x + C in the lat-
ter case). Also, for what values ofC does it pay to purchase
the information?

4.7.A philanthropist writes a positive number x on a piece
of red paper, shows the paper to an impartial observer,
and then turns it face down on the table. The observer
then flips a fair coin. If it shows heads, she writes the
value 2x and, if tails, the value x/2, on a piece of blue
paper, which she then turns face down on the table. With-
out knowing either the value x or the result of the coin
flip, you have the option of turning over either the red or
the blue piece of paper. After doing so and observing the
number written on that paper, you may elect to receive
as a reward either that amount or the (unknown) amount
written on the other piece of paper. For instance, if you
elect to turn over the blue paper and observe the value
100, then you can elect either to accept 100 as your reward
or to take the amount (either 200 or 50) on the red paper.
Suppose that you would like your expected reward to be
large.

(a)Argue that there is no reason to turn over the red
paper first, because if you do so, then no matter what
value you observe, it is always better to switch to the blue
paper.
(b) Let y be a fixed nonnegative value, and consider the
following strategy: Turn over the blue paper, and if its
value is at least y, then accept that amount. If it is less
than y, then switch to the red paper. Let Ry(x) denote the
reward obtained if the philanthropist writes the amount
x and you employ this strategy. Find E[Ry(x)]. Note that
E[R0(x)] is the expected reward if the philanthropist writes
the amount x when you employ the strategy of always
choosing the blue paper.
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4.8. LetB(n, p) represent a binomial random variable with
parameters n and p. Argue that

P{B(n,p) … i} = 1 − P{B(n, 1 − p) … n − i − 1}

Hint: The number of successes less than or equal to i is
equivalent to what statement about the number of fail-
ures?

4.9. If X is a binomial random variable with expected
value 6 and variance 2.4, find P{X = 5}.
4.10.An urn contains n balls numbered 1 through n. If
you withdraw m balls randomly in sequence, each time
replacing the ball selected previously, find P{X = k}, k =
1, . . . ,m, where X is the maximum of the m chosen
numbers.
Hint: First find P{X … k}.
4.11. Teams A and B play a series of games, with the first
team to win 3 games being declared the winner of the
series. Suppose that teamA independently wins each game
with probability p. Find the conditional probability that
team A wins
(a) the series given that it wins the first game;
(b) the first game given that it wins the series.

4.12.A local soccer team has 5 more games left to play.
If it wins its game this weekend, then it will play its final
4 games in the upper bracket of its league, and if it loses,
then it will play its final games in the lower bracket. If it
plays in the upper bracket, then it will independently win
each of its games in this bracket with probability .4, and
if it plays in the lower bracket, then it will independently
win each of its games with probability .7. If the probability
that the team wins its game this weekend is .5, what is the
probability that it wins at least 3 of its final 4 games?

4.13. Each of the members of a 7-judge panel indepen-
dently makes a correct decision with probability .7. If the
panel’s decision is made by majority rule, what is the prob-
ability that the panel makes the correct decision? Given
that 4 of the judges agreed, what is the probability that the
panel made the correct decision?

4.14.On average, 5.2 hurricanes hit a certain region in a
year. What is the probability that there will be 3 or fewer
hurricanes hitting this year?

4.15. The number of eggs laid on a tree leaf by an insect
of a certain type is a Poisson random variable with param-
eter λ. However, such a random variable can be observed
only if it is positive, since if it is 0, then we cannot know
that such an insect was on the leaf. If we let Y denote the
observed number of eggs, then

P{Y = i} = P{X = i|X > 0}

where X is Poisson with parameter λ. Find E[Y].

4.16. Each of n boys and n girls, independently and ran-
domly, chooses a member of the other sex. If a boy and
girl choose each other, they become a couple. Number the
girls, and let Gi be the event that girl number i is part of a
couple. Let P0 = 1 − P(∪n

i=1Gi) be the probability that no
couples are formed.

(a)What is P(Gi)?
(b)What is P(Gi|Gj)?
(c)When n is large, approximate P0.
(d)When n is large, approximate Pk, the probability that
exactly k couples are formed.
(e)Use the inclusion–exclusion identity to evaluate P0.

4.17.A total of 2n people, consisting of nmarried couples,
are randomly divided into n pairs. Arbitrarily number the
women, and letWi denote the event that woman i is paired
with her husband.

(a) Find P(Wi).
(b) For i Z j, find P(Wi|Wj).

(c)When n is large, approximate the probability that no
wife is paired with her husband.
(d) If each pairing must consist of a man and a woman,
what does the problem reduce to?

4.18.A casino patron will continue to make $5 bets on red
in roulette until she has won 4 of these bets.

(a)What is the probability that she places a total of 9
bets?
(b)What are her expected winnings when she stops?
Remark: On each bet, she will either win $5 with probabil-
ity 18

38 or lose $5 with probability 20
38 .

4.19.When three friends go for coffee, they decide who
will pay the check by each flipping a coin and then letting
the “odd person” pay. If all three flips produce the same
result (so that there is no odd person), then they make a
second round of flips, and they continue to do so until there
is an odd person. What is the probability that

(a) exactly 3 rounds of flips are made?
(b)more than 4 rounds are needed?

4.20. Show that if X is a geometric random variable with
parameter p, then

E[1/X] = −p log(p)
1 − p

Hint: You will need to evaluate an expression of the form
q∑
i=1

ai/i. To do so, write ai/i = ∫ a
0 x

i−1dx, and then inter-

change the sum and the integral.
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4.21. Suppose that

P{X = a} = p, P{X = b} = 1 − p

(a) Show that X−b
a−b is a Bernoulli random variable.

(b) Find Var(X).

4.22. Each game you play is a win with probability p. You
plan to play 5 games, but if you win the fifth game, then
you will keep on playing until you lose.
(a) Find the expected number of games that you play.
(b) Find the expected number of games that you lose.

4.23. Balls are randomly withdrawn, one at a time without
replacement, from an urn that initially has N white and
M black balls. Find the probability that n white balls are
drawn beforem black balls, n … N,m … M.

4.24. Ten balls are to be distributed among 5 urns, with
each ball going into urn i with probability pi,

∑5
i=1 pi = 1.

Let Xi denote the number of balls that go into urn i.
Assume that events corresponding to the locations of dif-
ferent balls are independent.
(a)What type of random variable is Xi? Be as specific as
possible.
(b) For i Z j, what type of random variable is Xi + Xj?
(c) Find P{X1 + X2 + X3 = 7}.
4.25. For the match problem (Example 5m in Chapter 2),
find
(a) the expected number of matches.
(b) the variance of the number of matches.

4.26. Let α be the probability that a geometric random
variable X with parameter p is an even number.
(a) Find α by using the identity α = ∑q

i=1 P{X = 2i}.
(b) Find α by conditioning on whether X = 1 or X > 1.

4.27. Two teams will play a series of games, with the winner
being the first team to win a total of 4 games. Suppose that,
independently of earlier results, team 1 wins each game it
plays with probability p, 0 < p < 1. Let N denote the
number of games that are played.

(a) Show that P(N = 6) Ú P(N = 7) with equality only
when p = 1/2.
(b)Give an intuitive explanation for why equality results
when p = 1/2.

Hint: Consider what needs to be true in order for the num-
ber of games to be either 6 or 7.
(c) If p = 1/2, find the probability that the team that wins
the first game wins the series.

4.28.An urn has n white and m black balls. Balls are ran-
domly withdrawn, without replacement, until a total of
k, k … n white balls have been withdrawn. The random
variable X equal to the total number of balls that are
withdrawn is said to be a negative hypergeometric random
variable.

(a) Explain how such a random variable differs from a neg-
ative binomial random variable.
(b) Find P{X = r}.
Hint for (b): In order for X = r to happen, what must be
the results of the first r − 1 withdrawals?

4.29. There are 3 coins which when flipped come up heads,
respectively, with probabilities 1/3, 1/2, 3/4. One of these
coins is randomly chosen and continually flipped.

(a) Find the probability that there are a total of 5 heads in
the first 8 flips.
(b) Find the probability that the first head occurs on flip 5.

4.30. If X is a binomial random variable with parameters
n and p, what type of random variable is n − X.

4.31. Let X be the ith smallest number in a random sam-
ple of n of the numbers 1, . . . ,n + m. Find the probability
mass function of X.

4.32. Balls are randomly removed from an urn consisting
of n red andm blue balls. LetX denote the number of balls
that have to be removed until a total of r red balls have
been removed. X is said to be a negative hypergeometric
random variable.

(a) Find the probability mass function of X.
(b) Find the probability mass function of V, equal to the
number of balls that have to be removed until either r red
balls or s blue balls have been removed.
(c) Find the probability mass function of Z, equal to the
number of balls that have to be removed until both at least
r red balls and at least s blue balls have been removed.
(d) Find the probability that r red balls are removed before
s blue balls have been removed.
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5.1 Introduction
In Chapter 4, we considered discrete random variables—that is, random variables
whose set of possible values is either finite or countably infinite. However, there also
exist random variables whose set of possible values is uncountable. Two examples
are the time that a train arrives at a specified stop and the lifetime of a transistor.
Let X be such a random variable. We say that X is a continuous † random variable
if there exists a nonnegative function f , defined for all real x ∈ (−q,q), having the
property that for any set B of real numbers, ‡

P{X ∈ B} =
∫
B
f (x)dx (1.1)

The function f is called the probability density function of the random variable X.
(See Figure 5.1.)

In words, Equation (1.1) states that the probability that X will be in B may be
obtained by integrating the probability density function over the set B. SinceX must
assume some value, f must satisfy

1 = P{X ∈ (−q,q)} =
∫ q

−q
f (x)dx

All probability statements aboutX can be answered in terms of f . For instance, from
Equation (1.1), letting B = [a, b], we obtain

P{a … X … b} =
∫ b

a
f (x)dx (1.2)

†Sometimes called absolutely continuous.
‡Actually, for technical reasons, Equation (1.1) is true only for themeasurable sets B, which, fortunately, include
all sets of practical interest.
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x
ba

f

P(a # X # b) 5 area of shaded region

Figure 5.1 Probability density function f .

If we let a = b in Equation (1.2), we get

P{X = a} =
∫ a

a
f (x)dx = 0

In words, this equation states that the probability that a continuous random variable
will assume any fixed value is zero. Hence, for a continuous random variable,

P{X < a} = P{X … a} = F(a) =
∫ a

−q
f (x)dx

Example
1a

Suppose that X is a continuous random variable whose probability density function
is given by

f (x) =
{
C(4x − 2x2) 0 < x < 2
0 otherwise

(a) What is the value of C?
(b) Find P{X > 1}.
Solution (a) Since f is a probability density function, we must have

∫q
−q f (x)dx = 1,

implying that

C
∫ 2

0
(4x − 2x2)dx = 1

or

C

[
2x2 − 2x3

3

] ∣∣∣∣∣
x=2

x=0

= 1

or
C = 3

8

Hence,

(b) P{X > 1} = ∫q
1 f (x)dx = 3

8

∫ 2
1 (4x − 2x2)dx = 1

2 .

Example
1b

The amount of time in hours that a computer functions before breaking down is a
continuous random variable with probability density function given by

f (x) =
{

λe−x/100 x Ú 0
0 x < 0
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What is the probability that

(a) a computer will function between 50 and 150 hours before breaking down?
(b) it will function for fewer than 100 hours?

Solution (a) Since

1 =
∫ q

−q
f (x)dx = λ

∫ q

0
e−x/100 dx

we obtain

1 = −λ(100)e−x/100
∣∣q
0 = 100λ or λ = 1

100

Hence, the probability that a computer will function between 50 and 150 hours
before breaking down is given by

P{50 < X < 150} =
∫ 150

50

1
100

e−x/100 dx = −e−x/100∣∣15050

= e−1/2 − e−3/2 L .383

(b) Similarly,

P{X < 100} =
∫ 100

0

1
100

e−x/100 dx = −e−x/100∣∣1000 = 1 − e−1 L .632

In other words, approximately 63.2 percent of the time, a computer will fail before
registering 100 hours of use. .

Example
1c

The lifetime in hours of a certain kind of radio tube is a random variable having a
probability density function given by

f (x) =

⎧⎪⎨
⎪⎩

0 x … 100
100
x2

x > 100

What is the probability that exactly 2 of 5 such tubes in a radio set will have to
be replaced within the first 150 hours of operation? Assume that the events Ei, i =
1, 2, 3, 4, 5, that the ith such tube will have to be replaced within this time are
independent.

Solution From the statement of the problem, we have

P(Ei) =
∫ 150

0
f (x)dx

= 100
∫ 150

100
x−2 dx

= 1
3

Hence, from the independence of the events Ei, it follows that the desired probabil-
ity is (

5
2

)(
1
3

)2 (2
3

)3

= 80
243

.
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The relationship between the cumulative distribution F and the probability den-
sity f is expressed by

F(a) = P{X ∈ (−q, a]} =
∫ a

−q
f (x)dx

Differentiating both sides of the preceding equation yields

d
da
F(a) = f (a)

That is, the density is the derivative of the cumulative distribution function. A some-
what more intuitive interpretation of the density function may be obtained from
Equation (1.2) as follows:

P
{
a − ε

2
… X … a + ε

2

}
=
∫ a+ε/2

a−ε/2
f (x)dx L εf (a)

when ε is small and when f (·) is continuous at x = a. In other words, the probability
thatX will be contained in an interval of length ε around the point a is approximately
εf (a). From this result, we see that f (a) is a measure of how likely it is that the
random variable will be near a.

Example
1d

If X is continuous with distribution function FX and density function fX , find the
density function of Y = 2X.

Solution We will determine fY in two ways. The first way is to derive, and then dif-
ferentiate, the distribution function of Y:

FY(a) = P{Y … a}
= P{2X … a}
= P{X … a/2}
= FX(a/2)

Differentiation gives

fY(a) = 1
2
fX(a/2)

Another way to determine fY is to note that

εfY(a) L P
{
a − ε

2
… Y … a + ε

2

}

= P
{
a − ε

2
… 2X … a + ε

2

}

= P
{
a
2

− ε

4
… X …

a
2

+ ε

4

}

L
ε

2
fX(a/2)

Dividing through by ε gives the same result as before. .
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5.2 Expectation and Variance of Continuous Random Variables
In Chapter 4, we defined the expected value of a discrete random variable X by

E[X] =
∑
x

xP{X = x}

If X is a continuous random variable having probability density function f (x), then,
because

f (x)dx L P{x … X … x + dx} for dx small

it is easy to see that the analogous definition is to define the expected value of X by

E[X] =
∫ q

−q
x f (x)dx

Example
2a

Find E[X] when the density function of X is

f (x) =
{
2x if 0 … x … 1
0 otherwise

Solution

E[X] =
∫
xf (x)dx

=
∫ 1

0
2x2 dx

= 2
3

.

Example
2b

The density function of X is given by

f (x) =
{
1 if 0 … x … 1
0 otherwise

Find E[eX ].

Solution Let Y = eX . We start by determining FY , the cumulative distribution func-
tion of Y. Now, for 1 … x … e,

FY(x) = P{Y … x}
= P{eX … x}
= P{X … log(x)}

=
∫ log(x)

0
f (y)dy

= log(x)

By differentiating FY(x), we can conclude that the probability density function of Y
is given by

fY(x) = 1
x

1 … x … e

Hence,
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E[eX ] = E[Y] =
∫ q

−q
x fY(x)dx

=
∫ e

1
dx

= e − 1 .

Although the method employed in Example 2b to compute the expected value
of a function of X is always applicable, there is, as in the discrete case, an alternative
way of proceeding. The following is a direct analog of Proposition 4.1 of Chapter 4.

Proposition
2.1

IfX is a continuous random variable with probability density function f (x), then, for
any real-valued function g,

E[g(X)] =
∫ q

−q
g(x) f (x)dx

An application of Proposition 2.1 to Example 2b yields

E[eX ] =
∫ 1

0
ex dx since f (x) = 1, 0 < x < 1

= e − 1

which is in accord with the result obtained in that example.
The proof of Proposition 2.1 is more involved than that of its discrete random

variable analog. We will present such a proof under the provision that the random
variable g(X) is nonnegative. (The general proof, which follows the argument in the
case we present, is indicated in Theoretical Exercises 5.2 and 5.3.) We will need the
following lemma, which is of independent interest.

Lemma
2.1

For a nonnegative random variable Y,

E[Y] =
∫ q

0
P{Y > y}dy

Proof We present a proof when Y is a continuous random variable with probability
density function fY . We have

∫ q

0
P{Y > y}dy =

∫ q

0

∫ q

y
fY(x)dx dy

where we have used the fact that P{Y > y} = ∫q
y fY(x)dx. Interchanging the order

of integration in the preceding equation yields

∫ q

0
P{Y > y}dy =

∫ q

0

(∫ x

0
dy
)
fY(x)dx

=
∫ q

0
xfY(x)dx

= E[Y]
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Proof of Proposition 2.1 From Lemma 2.1, for any function g for which g(x) Ú 0,

E[g(X)] =
∫ q

0
P{g(X) > y}dy

=
∫ q

0

∫
x:g(x)>y

f (x)dx dy

=
∫
x:g(x)>0

∫ g(x)

0
dy f (x)dx

=
∫
x:g(x)>0

g(x) f (x)dx

which completes the proof.

Example
2c

A stick of length 1 is split at a point U having density function f (u) = 1, 0 < u < 1.
Determine the expected length of the piece that contains the point p, 0 … p … 1.

Solution Let Lp(U) denote the length of the substick that contains the point p, and
note that

Lp(U) =
{
1 − U U < p
U U > p

(See Figure 5.2.) Hence, from Proposition 2.1,

E[Lp(U)] =
∫ 1

0
Lp(u)du

=
∫ p

0
(1 − u)du +

∫ 1

p
u du

= 1
2

− (1 − p)2

2
+ 1

2
− p2

2

= 1
2

+ p(1 − p)

0 U p 1
(a)

0 Up 1
(b)

1 2 U

U

Figure 5.2 Substick containing point p: (a) U < p; (b) U > p.

Since p(1 − p) is maximized when p = 1
2 , it is interesting to note that the expected

length of the substick containing the point p is maximized when p is the midpoint of
the original stick. .

Example
2d

Suppose that if you are s minutes early for an appointment, then you incur the cost
cs, and if you are s minutes late, then you incur the cost ks. Suppose also that the
travel time from where you presently are to the location of your appointment is a
continuous random variable having probability density function f . Determine the
time at which you should depart if you want to minimize your expected cost.
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Solution Let X denote the travel time. If you leave t minutes before your appoint-
ment, then your cost—call it Ct(X)—is given by

Ct(X) =
{
c(t − X) if X … t
k(X − t) if X Ú t

Therefore,

E[Ct(X)] =
∫ q

0
Ct(x) f (x)dx

=
∫ t

0
c(t − x)f (x)dx +

∫ q

t
k(x − t)f (x)dx

= ct
∫ t

0
f (x)dx − c

∫ t

0
x f (x)dx + k

∫ q

t
x f (x)dx − kt

∫ q

t
f (x)dx

The value of t that minimizes E[Ct(X)] can now be obtained by calculus. Differenti-
ation yields

d
dt
E[Ct(X)] = ct f (t) + cF(t) − ct f (t) − kt f (t) + kt f (t) − k[1 − F(t)]

= (k + c)F(t) − k

Equating the rightmost side to zero shows that the minimal expected cost is obtained
when you leave t∗ minutes before your appointment, where t∗ satisfies

F(t∗) = k
k + c

.

As in Chapter 4, we can use Proposition 2.1 to show the following.

Corollary
2.1

If a and b are constants, then

E[aX + b] = aE[X] + b

The proof of Corollary 2.1 for a continuous random variable X is the same as
the one given for a discrete random variable. The only modification is that the sum
is replaced by an integral and the probability mass function by a probability density
function.

The variance of a continuous random variable is defined exactly as it is for a
discrete random variable, namely, if X is a random variable with expected value μ,
then the variance of X is defined (for any type of random variable) by

Var(X) = E[(X − μ)2]

The alternative formula,

Var(X) = E[X2] − (E[X])2

is established in a manner similar to its counterpart in the discrete case.

Example
2e

Find Var(X) for X as given in Example 2a.
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Solution We first compute E[X2].

E[X2] =
∫ q

−q
x2f (x)dx

=
∫ 1

0
2x3 dx

= 1
2

Hence, since E[X] = 2
3 , we obtain

Var(X) = 1
2

−
(
2
3

)2

= 1
18

.

It can be shown that, for constants a and b,

Var(aX + b) = a2Var(X)

The proof mimics the one given for discrete random variables.
There are several important classes of continuous random variables that appear

frequently in applications of probability; the next few sections are devoted to a study
of some of them.

5.3 The Uniform Random Variable
A random variable is said to be uniformly distributed over the interval (0, 1) if its
probability density function is given by

f (x) =
{
1 0 < x < 1
0 otherwise (3.1)

Note that Equation (3.1) is a density function, since f (x) Ú 0 and
∫q
−q f (x)dx =∫ 1

0 dx = 1. Because f (x) > 0 only when x ∈ (0, 1), it follows that X must assume a
value in interval (0, 1). Also, since f (x) is constant for x ∈ (0, 1), X is just as likely to
be near any value in (0, 1) as it is to be near any other value. To verify this statement,
note that for any 0 < a < b < 1,

P{a … X … b} =
∫ b

a
f (x)dx = b − a

In other words, the probability that X is in any particular subinterval of (0, 1) equals
the length of that subinterval.

In general, we say that X is a uniform random variable on the interval (α,β) if
the probability density function of X is given by

f (x) =

⎧⎪⎨
⎪⎩

1
β − α

if α < x < β

0 otherwise
(3.2)
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a

f(a)

1——–
   –   

(a)

a

F(a)

(b)

1

baba

b a

Figure 5.3 Graph of (a) f (a) and (b) F(a) for a uniform (α,β) random variable.

Since F(a) = ∫ a
−q f (x)dx, it follows from Equation (3.2) that the distribution func-

tion of a uniform random variable on the interval (α,β) is given by

F(a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 a … α

a − α

β − α
α < a < β

1 a Ú β

Figure 5.3 presents a graph of f (a) and F(a).

Example
3a

Let X be uniformly distributed over (α,β). Find (a) E[X] and (b) Var(X).

Solution (a)

E[X] =
∫ q

−q
x f (x)dx

=
∫ β

α

x
β − α

dx

= β2 − α2

2(β − α)

= β + α

2

In words, the expected value of a random variable that is uniformly distributed
over some interval is equal to the midpoint of that interval.

(b) To find Var(X), we first calculate E[X2].

E[X2] =
∫ β

α

1
β − α

x2 dx

= β3 − α3

3(β − α)

= β2 + αβ + α2

3

Hence,

Var(X) = β2 + αβ + α2

3
− (α + β)2

4

= (β − α)2

12
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Therefore, the variance of a random variable that is uniformly distributed over
some interval is the square of the length of that interval divided by 12. .

Example
3b

If X is uniformly distributed over (0, 10), calculate the probability that (a) X < 3,
(b) X > 6, and (c) 3 < X < 8.

Solution (a) P{X < 3} =
∫ 3

0

1
10

dx = 3
10

(b) P{X > 6} =
∫ 10

6

1
10

dx = 4
10

(c) P{3 < X < 8} =
∫ 8

3

1
10

dx = 1
2

.

Example
3c

Buses arrive at a specified stop at 15-minute intervals starting at 7 A.M. That is, they
arrive at 7, 7:15, 7:30, 7:45, and so on. If a passenger arrives at the stop at a time that
is uniformly distributed between 7 and 7:30, find the probability that he waits

(a) less than 5 minutes for a bus;
(b) more than 10 minutes for a bus.

Solution Let X denote the number of minutes past 7 that the passenger arrives at
the stop. Since X is a uniform random variable over the interval (0, 30), it follows
that the passenger will have to wait less than 5 minutes if (and only if) he arrives
between 7:10 and 7:15 or between 7:25 and 7:30. Hence, the desired probability for
part (a) is

P{10 < X < 15} + P{25 < X < 30} =
∫ 15

10

1
30

dx +
∫ 30

25

1
30

dx = 1
3

Similarly, he would have to wait more than 10 minutes if he arrives between 7 and
7:05 or between 7:15 and 7:20, so the probability for part (b) is

P{0 < X < 5} + P{15 < X < 20} = 1
3

.

The next example was first considered by the French mathematician Joseph
L. F. Bertrand in 1889 and is often referred to as Bertrand’s paradox. It represents
our initial introduction to a subject commonly referred to as geometrical probability.

Example
3d

Consider a random chord of a circle. What is the probability that the length of the
chord will be greater than the side of the equilateral triangle inscribed in that circle?

Solution As stated, the problem is incapable of solution because it is not clear what
is meant by a random chord. To give meaning to this phrase, we shall reformulate
the problem in two distinct ways.

The first formulation is as follows: The position of the chord can be determined
by its distance from the center of the circle. This distance can vary between 0 and
r, the radius of the circle. Now, the length of the chord will be greater than the side
of the equilateral triangle inscribed in the circle if the distance from the chord to
the center of the circle is less than r/2. Hence, by assuming that a random chord
is a chord whose distance D from the center of the circle is uniformly distributed
between 0 and r, we see that the probability that the length of the chord is greater
than the side of an inscribed equilateral triangle is

P
{
D <

r
2

}
= r/2

r
= 1

2
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A
u

Figure 5.4

For our second formulation of the problem, consider an arbitrary chord of the
circle; through one end of the chord, draw a tangent. The angle θ between the chord
and the tangent, which can vary from 0◦ to 180◦, determines the position of the chord.
(See Figure 5.4.) Furthermore, the length of the chord will be greater than the side
of the inscribed equilateral triangle if the angle θ is between 60◦ and 120◦. Hence,
assuming that a random chord is a chord whose angle θ is uniformly distributed
between 0◦ and 180◦, we see that the desired answer in this formulation is

P{60 < θ < 120} = 120 − 60
180

= 1
3

Note that random experiments could be performed in such a way that 1
2 or 1

3 would
be the correct probability. For instance, if a circular disk of radius r is thrown on a
table ruled with parallel lines a distance 2r apart, then one and only one of these
lines would cross the disk and form a chord. All distances from this chord to the
center of the disk would be equally likely, so that the desired probability that the
chord’s length will be greater than the side of an inscribed equilateral triangle is 1

2 .
In contrast, if the experiment consisted of rotating a needle freely about a point A
on the edge (see Figure 5.4) of the circle, the desired answer would be 1

3 . .

5.4 Normal Random Variables
We say that X is a normal random variable, or simply that X is normally distributed,
with parameters μ and σ 2 if the density of X is given by

f (x) = 1√
2πσ

e−(x−μ)2/2σ 2 − q < x < q

This density function is a bell-shaped curve that is symmetric about μ. (See
Figure 5.5.)

The normal distribution was introduced by the French mathematician Abraham
DeMoivre in 1733, who used it to approximate probabilities associated with bino-
mial random variables when the binomial parameter n is large. This result was later
extended by Laplace and others and is now encompassed in a probability theorem
known as the central limit theorem, which is discussed in Chapter 8. The central limit
theorem, one of the two most important results in probability theory,† gives a theo-
retical base to the often noted empirical observation that, in practice, many random
phenomena obey, at least approximately, a normal probability distribution. Some

†The other is the strong law of large numbers.
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(b)

m – 2s

3

(a)

–3 –2 –1 0 1 2

.399

.399——–

m + 2s

m – s m + s

s

m

Figure 5.5 Normal density function: (a) μ = 0, σ = 1; (b) arbitrary μ, σ 2.

examples of random phenomena obeying this behavior are the height of a man or
woman, the velocity in any direction of a molecule in gas, and the error made in
measuring a physical quantity.

To prove that f (x) is indeed a probability density function, we need to show that

1√
2πσ

∫ q

−q
e−(x−μ)2/2σ 2

dx = 1

Making the substitution y = (x − μ)/σ , we see that

1√
2πσ

∫ q

−q
e−(x−μ)2/2σ 2

dx = 1√
2π

∫ q

−q
e−y

2/2 dy

Hence, we must show that

∫ q

−q
e−y

2/2 dy =
√
2π

Toward this end, let I = ∫q
−q e−y2/2 dy. Then

I2 =
∫ q

−q
e−y

2/2 dy
∫ q

−q
e−x

2/2 dx

=
∫ q

−q

∫ q

−q
e−(y2+x2)/2 dy dx

We now evaluate the double integral by means of a change of variables to polar
coordinates. (That is, let x = r cos θ , y = r sin θ , and dy dx = r dθ dr.) Thus,



214 Chapter 5 Continuous Random Variables

I2 =
∫ q

0

∫ 2π

0
e−r

2/2r dθ dr

= 2π
∫ q

0
r e−r

2/2 dr

= −2πe−r
2/2∣∣q

0

= 2π

Hence, I = √
2π , and the result is proved.

An important fact about normal random variables is that if X is normally dis-
tributed with parameters μ and σ 2, then Y = aX + b is normally distributed with
parameters aμ + b and a2σ 2. To prove this statement, suppose that a > 0. (The
proof when a < 0 is similar.) Let FY denote the cumulative distribution function of
Y. Then

FY(x) = P{Y … x}
= P{aX + b … x}
= P

{
X …

x − b
a

}

= FX

(
x − b
a

)

where FX is the cumulative distribution function ofX. By differentiation, the density
function of Y is then

fY(x) = 1
a
fX

(
x − b
a

)

= 1√
2πaσ

exp

{
−
(
x − b
a

− μ

)2/
2σ 2

}

= 1√
2πaσ

exp{−(x − b − aμ)2/2(aσ)2}

which shows that Y is normal with parameters aμ + b and a2σ 2.
An important implication of the preceding result is that if X is normally dis-

tributed with parameters μ and σ 2, then Z = (X − μ)/σ is normally distributed
with parameters 0 and 1. Such a random variable is said to be a standard, or a unit,
normal random variable.

We now show that the parameters μ and σ 2 of a normal random variable repre-
sent, respectively, its expected value and variance.

Example
4a

Find E[X] and Var(X) when X is a normal random variable with parameters μ

and σ 2.
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Solution Let us start by finding the mean and variance of the standard normal ran-
dom variable Z = (X − μ)/σ . We have

E[Z] =
∫ q

−q
x fZ(x)dx

= 1√
2π

∫ q

−q
x e−x

2/2 dx

= − 1√
2π

e−x
2/2|q−q

= 0

Thus,

Var(Z) = E[Z2]

= 1√
2π

∫ q

−q
x2e−x

2/2 dx

Integration by parts (with u = x and dv = xe−x2/2) now gives

Var(Z) = 1√
2π

(
−xe−x2/2|q−q +

∫ q

−q
e−x

2/2 dx

)

= 1√
2π

∫ q

−q
e−x

2/2 dx

= 1

Because X = μ + σZ, the preceding yields the results

E[X] = μ + σE[Z] = μ

and
Var(X) = σ 2Var(Z) = σ 2 .

It is customary to denote the cumulative distribution function of a standard nor-
mal random variable by 
(x). That is,


(x) = 1√
2π

∫ x

−q
e−y

2/2 dy

The values of 
(x) for nonnegative x are given in Table 5.1. For negative values of x,

(x) can be obtained from the relationship


(−x) = 1 − 
(x) − q < x < q (4.1)

The proof of Equation (4.1), which follows from the symmetry of the standard nor-
mal density, is left as an exercise. This equation states that if Z is a standard normal
random variable, then

P{Z … −x} = P{Z > x} − q < x < q

SinceZ = (X − μ)/σ is a standard normal random variable wheneverX is normally
distributed with parameters μ and σ 2, it follows that the distribution function of X
can be expressed as
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Table 5.1 Area 
(x) Under the Standard Normal Curve to the Left of X.

X .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

FX(a) = P{X … a} = P
(
X − μ

σ
…

a − μ

σ

)
= 


(
a − μ

σ

)

Example
4b

If X is a normal random variable with parameters μ = 3 and σ 2 = 9, find
(a) P{2 < X < 5}; (b) P{X > 0}; (c) P{|X − 3| > 6}.
Solution (a)

P{2 < X < 5} = P
{
2 − 3

3
<

X − 3
3

<
5 − 3

3

}

= P
{
−1
3

< Z <
2
3

}
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= 


(
2
3

)
− 


(
−1
3

)

= 


(
2
3

)
−

[
1 − 


(
1
3

)]
L .3779

(b)

P{X > 0} = P
{
X − 3

3
>

0 − 3
3

}
= P{Z > −1}
= 1 − 
(−1)

= 
(1)

L .8413

(c)

P{|X − 3| > 6} = P{X > 9} + P{X < −3}
= P

{
X − 3

3
>

9 − 3
3

}
+ P

{
X − 3

3
<

−3 − 3
3

}
= P{Z > 2} + P{Z < −2}
= 1 − 
(2) + 
(−2)

= 2[1 − 
(2)]

L .0456 .

Example
4c

An examination is frequently regarded as being good (in the sense of determining
a valid grade spread for those taking it) if the test scores of those taking the exami-
nation can be approximated by a normal density function. (In other words, a graph
of the frequency of grade scores should have approximately the bell-shaped form of
the normal density.) The instructor often uses the test scores to estimate the normal
parameters μ and σ 2 and then assigns the letter grade A to those whose test score
is greater than μ + σ , B to those whose score is between μ and μ + σ , C to those
whose score is between μ − σ and μ, D to those whose score is between μ − 2σ
and μ − σ , and F to those getting a score below μ − 2σ . (This strategy is sometimes
referred to as grading “on the curve.”) Since

P{X > μ + σ } = P
{
X − μ

σ
> 1

}
= 1 − 
(1) L .1587

P{μ < X < μ + σ } = P
{
0 <

X − μ

σ
< 1

}
= 
(1) − 
(0) L .3413

P{μ − σ < X < μ} = P
{
−1 <

X − μ

σ
< 0

}
= 
(0) − 
(−1) L .3413

P{μ − 2σ < X < μ − σ } = P
{
−2 <

X − μ

σ
< −1

}
= 
(2) − 
(1) L .1359

P{X < μ − 2σ } = P
{
X − μ

σ
< −2

}
= 
(−2) L .0228
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it follows that approximately 16 percent of the class will receive an A grade on the
examination, 34 percent a B grade, 34 percent a C grade, and 14 percent a D grade;
2 percent will fail. .

Example
4d

An expert witness in a paternity suit testifies that the length (in days) of human
gestation is approximately normally distributed with parameters μ = 270 and σ 2 =
100. The defendant in the suit is able to prove that he was out of the country during
a period that began 290 days before the birth of the child and ended 240 days before
the birth. If the defendant was, in fact, the father of the child, what is the probability
that the mother could have had the very long or very short gestation indicated by
the testimony?

Solution Let X denote the length of the gestation, and assume that the defendant
is the father. Then the probability that the birth could occur within the indicated
period is

P{X > 290 or X < 240} = P{X > 290} + P{X < 240}
= P

{
X − 270

10
> 2

}
+ P

{
X − 270

10
< −3

}
= 1 − 
(2) + 1 − 
(3)

L .0241 .

Example
4e

Suppose that a binary message—either 0 or 1—must be transmitted by wire from
location A to location B. However, the data sent over the wire are subject to a chan-
nel noise disturbance, so, to reduce the possibility of error, the value 2 is sent over
the wire when the message is 1 and the value −2 is sent when the message is 0. If
x, x = ;2, is the value sent at location A, then R, the value received at location B, is
given by R = x + N, where N is the channel noise disturbance. When the message
is received at location B, the receiver decodes it according to the following rule:

If R Ú .5, then 1 is concluded.
If R < .5, then 0 is concluded.

Because the channel noise is often normally distributed, we will determine the error
probabilities when N is a standard normal random variable.

Two types of errors can occur: One is that the message 1 can be incorrectly deter-
mined to be 0, and the other is that 0 can be incorrectly determined to be 1. The first
type of error will occur if the message is 1 and 2 + N < .5, whereas the second will
occur if the message is 0 and −2 + N Ú .5. Hence,

P{error|message is 1} = P{N < −1.5}
= 1 − 
(1.5) L .0668

and

P{error|message is 0} = P{N Ú 2.5}
= 1 − 
(2.5) L .0062 .

Example
4f

Value at Risk (VAR) has become a key concept in financial calculations. The VAR of
an investment is defined as that value v such that there is only a 1 percent chance that
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the loss from the investment will be greater than v. IfX, the gain from an investment,
is a normal random variable with mean μ and variance σ 2, then because the loss is
equal to the negative of the gain, the VAR of such an investment is that value v such
that

.01 = P{−X > ν}
Using that −X is normal with mean −μ and variance σ 2, we see that

.01 = P
{−X + μ

σ
>

ν + μ

σ

}

= 1 − 


(
v + μ

σ

)

Because, as indicated by Table 5.1, 
(2.33) = .99, we see that

ν + μ

σ
= 2.33

That is,
ν = VAR = 2.33σ − μ

Consequently, among a set of investments all of whose gains are normally distributed,
the investment having the smallest VAR is the one having the largest value of
μ − 2.33σ. .

5.4.1 The Normal Approximation to the Binomial Distribution
An important result in probability theory known as the DeMoivre–Laplace limit
theorem states that when n is large, a binomial random variable with parameters n
and p will have approximately the same distribution as a normal random variable
with the same mean and variance as the binomial. This result was proved originally
for the special case of p = 1

2 by DeMoivre in 1733 and was then extended to gen-
eral p by Laplace in 1812. It formally states that if we “standardize” the binomial by
first subtracting its mean np and then dividing the result by its standard deviation√
np(1 − p), then the distribution function of this standardized random variable

(which has mean 0 and variance 1) will converge to the standard normal distribution
function as n→q.

The DeMoivre–Laplace limit theorem
If Sn denotes the number of successes that occur when n independent trials, each
resulting in a success with probability p, are performed, then, for any a < b,

P

{
a …

Sn − np√
np(1 − p)

… b

}
→
(b) − 
(a)

as n→q.

Because the preceding theorem is only a special case of the central limit theo-
rem, which is presented in Chapter 8, we shall not present a proof.

Note that we now have two possible approximations to binomial probabilities:
the Poisson approximation, which is good when n is large and p is small, and the
normal approximation, which can be shown to be quite good when np(1 − p) is
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Figure 5.6 The probability mass function of a binomial (n, p) random variable becomes
more and more “normal” as n becomes larger and larger.

large. (See Figure 5.6.) [The normal approximation will, in general, be quite good
for values of n satisfying np(1 − p) Ú 10.]

Example
4g

Let X be the number of times that a fair coin that is flipped 40 times lands on heads.
Find the probability that X = 20. Use the normal approximation and then compare
it with the exact solution.

Solution To employ the normal approximation, note that because the binomial is
a discrete integer-valued random variable, whereas the normal is a continuous ran-
dom variable, it is best to write P{X = i} as P{i − 1/2 < X < i + 1/2} before
applying the normal approximation (this is called the continuity correction). Doing
so gives

P{X = 20} = P{19.5 < X < 20.5}

= P

{
19.5 − 20√

10
<

X − 20√
10

<
20.5 − 20√

10

}

L P

{
−.16 <

X − 20√
10

< .16

}

L 
(.16) − 
(−.16) L .1272

The exact result is

P{X = 20} =
(
40
20

)(
1
2

)40

L .1254 .

Example
4h

The ideal size of a first-year class at a particular college is 150 students. The college,
knowing from past experience that, on the average, only 30 percent of those accepted
for admission will actually attend, uses a policy of approving the applications of 450
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students. Compute the probability that more than 150 first-year students attend this
college.

Solution IfX denotes the number of students who attend, thenX is a binomial ran-
dom variable with parameters n = 450 and p = .3. Using the continuity correction,
we see that the normal approximation yields

P{X Ú 150.5} = P

{
X − (450)(.3)√

450(.3)(.7)
Ú

150.5 − (450)(.3)√
450(.3)(.7)

}

L 1 − 
(1.59)

L .0559

Hence, less than 6 percent of the time do more than 150 of the first 450 accepted
actually attend. (What independence assumptions have we made?) .

Example
4i

To determine the effectiveness of a certain diet in reducing the amount of cholesterol
in the bloodstream, 100 people are put on the diet. After they have been on the diet
for a sufficient length of time, their cholesterol count will be taken. The nutritionist
running this experiment has decided to endorse the diet if at least 65 percent of the
people have a lower cholesterol count after going on the diet. What is the proba-
bility that the nutritionist endorses the new diet if, in fact, it has no effect on the
cholesterol level?

Solution Let us assume that if the diet has no effect on the cholesterol count, then,
strictly by chance, each person’s count will be lower than it was before the diet with
probability 1

2 . Hence, if X is the number of people whose count is lowered, then the
probability that the nutritionist will endorse the diet when it actually has no effect
on the cholesterol count is

100∑
i=65

(
100
i

)(
1
2

)100

= P{X Ú 64.5}

= P

⎧⎪⎨
⎪⎩
X − (100)( 12 )√

100( 12 )(
1
2 )

Ú 2.9

⎫⎪⎬
⎪⎭

L 1 − 
(2.9)

L .0019 .

Example
4j

Fifty-two percent of the residents of NewYork City are in favor of outlawing cigarette
smoking on university campuses. Approximate the probability that more than 50
percent of a random sample of n people from New York are in favor of this prohibi-
tion when

(a) n = 11
(b) n = 101
(c) n = 1001

How large would n have to be to make this probability exceed .95?

Solution Let N denote the number of residents of New York City. To answer the
preceding question, we must first understand that a random sample of size n is a

sample such that the n people were chosen in such a manner that each of the

(
N
n

)



222 Chapter 5 Continuous Random Variables

subsets of n people had the same chance of being the chosen subset. Consequently,
Sn, the number of people in the sample who are in favor of the smoking prohibition,
is a hypergeometric random variable. That is, Sn has the same distribution as the
number of white balls obtained when n balls are chosen from an urn of N balls, of
which .52N are white. But becauseN and .52N are both large in comparison with the
sample size n, it follows from the binomial approximation to the hypergeometric (see
Section 4.8.3) that the distribution of Sn is closely approximated by a binomial dis-
tribution with parameters n and p = .52. The normal approximation to the binomial
distribution then shows that

P{Sn > .5n} = P

{
Sn − .52n√
n(.52)(.48)

>
.5n − .52n√
n(.52)(.48)

}

= P

{
Sn − .52n√
n(.52)(.48)

> −.04
√
n

}

L 
(.04
√
n)

Thus,

P{Sn > .5n} L

⎧⎪⎨
⎪⎩


(.1328) = .5528, if n = 11

(.4020) = .6562, if n = 101

(1.2665) = .8973, if n = 1001

In order for this probability to be at least .95, we would need 
(.04
√
n) > .95.

Because 
(x) is an increasing function and 
(1.645) = .95, this means that

.04
√
n > 1.645

or
n Ú 1691.266

That is, the sample size would have to be at least 1692. .

Historical notes concerning the normal distribution
The normal distribution was introduced by the French mathematician Abra-
ham DeMoivre in 1733. DeMoivre, who used this distribution to approximate
probabilities connected with coin tossing, called it the exponential bell-shaped
curve. Its usefulness, however, became truly apparent only in 1809, when the
famous German mathematician Karl Friedrich Gauss used it as an integral part
of his approach to predicting the location of astronomical entities. As a result, it
became common after this time to call it theGaussian distribution.

During the mid- to late 19th century, however, most statisticians started to
believe that the majority of data sets would have histograms conforming to the
Gaussian bell-shaped form. Indeed, it came to be accepted that it was “normal”
for any well-behaved data set to follow this curve. As a result, following the lead
of the British statistician Karl Pearson, people began referring to the Gaussian
curve by calling it simply the normal curve. (A partial explanation as to why
so many data sets conform to the normal curve is provided by the central limit
theorem, which is presented in Chapter 8.)
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Abraham DeMoivre (1667–1754)
Today there is no shortage of statistical consultants, many of whom ply their
trade in the most elegant of settings. However, the first of their breed worked,
in the early years of the 18th century, out of a dark, grubby betting shop in
Long Acres, London, known as Slaughter’s Coffee House. He was Abraham
DeMoivre, a Protestant refugee from Catholic France, and, for a price, he would
compute the probability of gambling bets in all types of games of chance.

Although DeMoivre, the discoverer of the normal curve, made his living at
the coffee shop, he was a mathematician of recognized abilities. Indeed, he was
a member of the Royal Society and was reported to be an intimate of Isaac
Newton.

Listen to Karl Pearson imagining DeMoivre at work at Slaughter’s Coffee
House: “I picture DeMoivre working at a dirty table in the coffee house with a
broken-down gambler beside him and Isaac Newton walking through the crowd
to his corner to fetch out his friend. It would make a great picture for an inspired
artist.”

Karl Friedrich Gauss
Karl Friedrich Gauss (1777–1855), one of the earliest users of the normal curve,
was one of the greatest mathematicians of all time. Listen to the words of the
well-known mathematical historian E. T. Bell, as expressed in his 1954 book
Men of Mathematics: In a chapter entitled “The Prince of Mathematicians,” he
writes, “Archimedes, Newton, and Gauss; these three are in a class by themselves
among the great mathematicians, and it is not for ordinary mortals to attempt to
rank them in order of merit. All three started tidal waves in both pure and applied
mathematics. Archimedes esteemed his pure mathematics more highly than its
applications;
Newton appears to have found the chief justification for his mathematical inven-
tions in the scientific uses to which he put them; while Gauss declared it was all
one to him whether he worked on the pure or on the applied side.”

5.5 Exponential Random Variables
A continuous random variable whose probability density function is given, for some
λ > 0, by

f (x) =
{

λe−λx if x Ú 0
0 if x < 0

is said to be an exponential random variable (or, more simply, is said to be exponen-
tially distributed) with parameter λ. The cumulative distribution function F(a) of an
exponential random variable is given by

F(a) = P{X … a}
=
∫ a

0
λe−λx dx

= −e−λx∣∣a
0

= 1 − e−λa a Ú 0
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Note that F(q) = ∫q
0 λe−λx dx = 1, as, of course, it must. The parameter λ will now

be shown to equal the reciprocal of the expected value.

Example
5a

Let X be an exponential random variable with parameter λ. Calculate (a) E[X] and
(b) Var(X).

Solution (a) Since the density function is given by

f (x) =
{

λe−λx x Ú 0
0 x < 0

we obtain, for n > 0,

E[Xn] =
∫ q

0
xnλe−λx dx

Integrating by parts (with λe−λx = dv and u = xn) yields

E[Xn] = −xne−λx|q0 +
∫ q

0
e−λxnxn−1 dx

= 0 + n
λ

∫ q

0
λe−λxxn−1 dx

= n
λ
E[Xn−1]

Letting n = 1 and then n = 2 gives

E[X] = 1
λ

E[X2] = 2
λ
E[X] = 2

λ2

(b) Hence,

Var(X) = 2
λ2

−
(
1
λ

)2

= 1
λ2

Thus, the mean of the exponential is the reciprocal of its parameter λ, and the vari-
ance is the mean squared. .

In practice, the exponential distribution often arises as the distribution of the
amount of time until some specific event occurs. For instance, the amount of time
(starting from now) until an earthquake occurs, or until a new war breaks out, or
until a telephone call you receive turns out to be a wrong number are all random
variables that tend in practice to have exponential distributions. (For a theoretical
explanation of this phenomenon, see Section 4.7.)

Example
5b

Suppose that the length of a phone call in minutes is an exponential random variable
with parameter λ = 1

10 . If someone arrives immediately ahead of you at a public
telephone booth, find the probability that you will have to wait

(a) more than 10 minutes;
(b) between 10 and 20 minutes.

Solution Let X denote the length of the call made by the person in the booth. Then
the desired probabilities are



A First Course in Probability 225

(a)

P{X > 10} = 1 − F(10)

= e−1 L .368

(b)

P{10 < X < 20} = F(20) − F(10)

= e−1 − e−2 L .233 .

We say that a nonnegative random variable X ismemoryless if

P{X > s + t | X > t} = P{X > s} for all s, t Ú 0 (5.1)

If we think of X as being the lifetime of some instrument, Equation (5.1) states that
the probability that the instrument survives for at least s+ t hours, given that it has
survived t hours, is the same as the initial probability that it survives for at least
s hours. In other words, if the instrument is alive at age t, the distribution of the
remaining amount of time that it survives is the same as the original lifetime distri-
bution. (That is, it is as if the instrument does not “remember” that it has already
been in use for a time t.)

Equation (5.1) is equivalent to

P{X > s + t,X > t}
P{X > t} = P{X > s}

or
P{X > s + t} = P{X > s}P{X > t} (5.2)

Since Equation (5.2) is satisfied when X is exponentially distributed (for e−λ(s+t) =
e−λse−λt), it follows that exponentially distributed random variables are memoryless.

Example
5c

Consider a post office that is staffed by two clerks. Suppose that when Mr. Smith
enters the system, he discovers that Ms. Jones is being served by one of the clerks
and Mr. Brown by the other. Suppose also that Mr. Smith is told that his service will
begin as soon as either Ms. Jones or Mr. Brown leaves. If the amount of time that
a clerk spends with a customer is exponentially distributed with parameter λ, what
is the probability that of the three customers, Mr. Smith is the last to leave the post
office?

Solution The answer is obtained by reasoning as follows: Consider the time at which
Mr. Smith first finds a free clerk. At this point, either Ms. Jones or Mr. Brown would
have just left, and the other one would still be in service. However, because the
exponential is memoryless, it follows that the additional amount of time that this
other person (either Ms. Jones or Mr. Brown) would still have to spend in the post
office is exponentially distributed with parameter λ. That is, it is the same as if service
for that person were just starting at this point. Hence, by symmetry, the probability
that the remaining person finishes before Smith leaves must equal 1

2 . .

It turns out that not only is the exponential distribution memoryless, but it is
also the unique distribution possessing this property. To see this, suppose that X is
memoryless and let F(x) = P{X > x}. Then, by Equation (5.2),

F(s + t) = F(s)F(t)
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That is, F(·) satisfies the functional equation
g(s + t) = g(s)g(t)

However, it turns out that the only right continuous solution of this functional
equation is†

g(x) = e−λx (5.3)

and, since a distribution function is always right continuous, we must have

F(x) = e−λx or F(x) = P{X … x} = 1 − e−λx

which shows that X is exponentially distributed.

Example
5d

Suppose that the number of miles that a car can run before its battery wears out is
exponentially distributed with an average value of 10,000 miles. If a person desires
to take a 5000-mile trip, what is the probability that he or she will be able to com-
plete the trip without having to replace the car battery? What can be said when the
distribution is not exponential?

Solution It follows by the memoryless property of the exponential distribution that
the remaining lifetime (in thousands of miles) of the battery is exponential with
parameter λ = 1

10 . Hence, the desired probability is

P{remaining lifetime > 5} = 1 − F(5) = e−5λ = e−1/2 L .607

However, if the lifetime distribution F is not exponential, then the relevant proba-
bility is

P{lifetime > t + 5|lifetime > t} = 1 − F(t + 5)
1 − F(t)

where t is the number of miles that the battery had been in use prior to the start of
the trip. Therefore, if the distribution is not exponential, additional information is
needed (namely, the value of t) before the desired probability can be calculated. .

A variation of the exponential distribution is the distribution of a random vari-
able that is equally likely to be either positive or negative and whose absolute value
is exponentially distributed with parameter λ, #λ Ú 0. Such a random variable is said
to have a Laplace distribution,‡ and its density is given by

f (x) = 1
2
λe−λ|x| − q < x < q

†One can prove Equation (5.3) as follows: If g(s + t) = g(s)g(t), then

g
(
2
n

)
= g

(
1
n

+ 1
n

)
= g2

(
1
n

)

and repeating this yields g(m/n) = gm(1/n). Also,

g(1) = g
(
1
n

+ 1
n

+ · · · + 1
n

)
= gn

(
1
n

)
or g

(
1
n

)
= (g(1))1/n

Hence, g(m/n) = (g(1))m/n, which, since g is right continuous, implies that g(x) = (g(1))x. Because g(1) =(
g
(
1
2

))2

Ú 0, we obtain g(x) = e−λx, where λ = − log(g(1)).

‡It also is sometimes called the double exponential random variable.
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Its distribution function is given by

F(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

∫ x

−q
λeλy dy x < 0

1
2

∫ 0

−q
λeλy dy + 1

2

∫ x

0
λe−λy dy x > 0

=

⎧⎪⎪⎨
⎪⎪⎩

1
2
eλx x < 0

1 − 1
2
e−λx x > 0

Example
5e

Consider again Example 4e, which supposes that a binary message is to be transmit-
ted from A to B, with the value 2 being sent when the message is 1 and −2 when it
is 0. However, suppose now that rather than being a standard normal random vari-
able, the channel noise N is a Laplacian random variable with parameter λ = 1.
Suppose again that if R is the value received at location B, then the message is
decoded as follows:

If R Ú .5, then 1 is concluded.
If R < .5, then 0 is concluded.

In this case, where the noise is Laplacian with parameter λ = 1, the two types of
errors will have probabilities given by

P{error|message 1 is sent} = P{N < −1.5}
= 1

2
e−1.5

L .1116

P{error|message 0 is sent} = P{N Ú 2.5}
= 1

2
e−2.5

L .041

On comparing this with the results of Example 4e, we see that the error probabilities
are higher when the noise is Laplacian with λ = 1 than when it is a standard normal
variable.

5.5.1 Hazard Rate Functions
Consider a positive continuous random variable X that we interpret as being the
lifetime of some item. Let X have distribution function F and density f . The hazard
rate (sometimes called the failure rate) function λ(t) of F is defined by

λ(t) = f (t)

F(t)
, where F = 1 − F

To interpret λ(t), suppose that the item has survived for a time t and we desire the
probability that it will not survive for an additional time dt. That is, consider P{X ∈
(t, t + dt)|X > t}. Now,
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P{X ∈ (t, t + dt)|X > t} = P{X ∈ (t, t + dt),X > t}
P{X > t}

= P{X ∈ (t, t + dt)}
P{X > t}

L
f (t)

F(t)
dt

Thus, λ(t) represents the conditional probability intensity that a t-unit-old item will
fail.

Suppose now that the lifetime distribution is exponential. Then, by the memory-
less property, it follows that the distribution of remaining life for a t-year-old item is
the same as that for a new item. Hence, λ(t) should be constant. In fact, this checks
out, since

λ(t) = f (t)

F(t)

= λe−λt

e−λt

= λ

Thus, the failure rate function for the exponential distribution is constant. The param-
eter λ is often referred to as the rate of the distribution.

It turns out that the failure rate function λ(s), s Ú 0, uniquely determines the
distribution function F. To prove this, we integrate λ(s) from 0 to t to obtain∫ t

0
λ(s) ds =

∫ t

0

f (s)
1 − F(s)

ds

= − log(1 − F(s))|t0
= − log(1 − F(t)) + log(1 − F(0))

= − log(1 − F(t))

where the second equality used that f (s) = d
dsF(s) and the final equality used that

F(0) = 0. Solving the preceding equation for F(t) gives

F(t) = 1 − exp

{
−
∫ t

0
λ(s)ds

}
(5.4)

Hence, a distribution function of a positive continuous random variable can be
specified by giving its hazard rate function. For instance, if a random variable has a
linear hazard rate function—that is, if

λ(t) = a + bt

then its distribution function is given by

F(t) = 1 − e−at−bt
2/2

and differentiation yields its density, namely,

f (t) = (a + bt)e−(at+bt2/2) t Ú 0

When a = 0, the preceding equation is known as the Rayleigh density function.



A First Course in Probability 229

Example
5f

One often hears that the death rate of a person who smokes is, at each age, twice that
of a nonsmoker. What does this mean? Does it mean that a nonsmoker has twice the
probability of surviving a given number of years as does a smoker of the same age?

Solution If λs(t) denotes the hazard rate of a smoker of age t and λn(t) that of a
nonsmoker of age t, then the statement at issue is equivalent to the statement that

λs(t) = 2λn(t)

The probability that an A-year-old nonsmoker will survive until age B, A < B, is

P{A-year-old nonsmoker reaches age B}
= P{nonsmoker’s lifetime > B|nonsmoker’s lifetime > A}
= 1 − Fnon(B)

1 − Fnon(A)

=
exp

{
−
∫ B

0
λn(t)dt

}

exp

{
−
∫ A

0
λn(t)dt

} from (5.4)

= exp

{
−
∫ B

A
λn(t)dt

}

whereas the corresponding probability for a smoker is, by the same reasoning,

P{A-year-old smoker reaches age B} = exp

{
−
∫ B

A
λs(t)dt

}

= exp

{
−2

∫ B

A
λn(t)dt

}

=
⎡
⎣exp

{
−
∫ B

A
λn(t)dt

}⎤⎦
2

In other words, for two people of the same age, one of whom is a smoker and
the other a nonsmoker, the probability that the smoker survives to any given age
is the square (not one-half) of the corresponding probability for a nonsmoker. For
instance, if λn(t) = 1

30 , 50 … t … 60, then the probability that a 50-year-old nonsmoker
reaches age 60 is e−1/3 L .7165, whereas the corresponding probability for a smoker
is e−2/3 L .5134. .

Equation (5.4) can be used to show that only exponential random variables are
memoryless. For if a random variable has a memoryless distribution then the remain-
ing life of a s year old must be the same for all s. That is, if X is memoryless, then
λ(s) = c. But, by Equation (5.4), this implies that the distribution function of X is
F(t) = 1 − e−ct, showing that X is exponential with rate c.
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5.6 Other Continuous Distributions
5.6.1 The Gamma Distribution
A random variable is said to have a gamma distribution with parameters (α, λ), λ > 0,
α > 0, if its density function is given by

f (x) =

⎧⎪⎨
⎪⎩

λe−λx(λx)α−1

�(α)
x Ú 0

0 x < 0

where �(α), called the gamma function, is defined as

�(α) =
∫ q

0
e−yyα−1 dy

Integration of �(α) by parts yields

�(α) = −e−yyα−1
∣∣∣q
0

+
∫ q

0
e−y(α − 1)yα−2 dy

= (α − 1)
∫ q

0
e−yyα−2 dy (6.1)

= (α − 1)�(α − 1)

For integral values of α, say, α = n, we obtain, by applying Equation (6.1) repeatedly,

�(n) = (n − 1)�(n − 1)

= (n − 1)(n − 2)�(n − 2)

= · · ·
= (n − 1)(n − 2) · · · 3 · 2�(1)

Since �(1) = ∫q
0 e−x dx = 1, it follows that, for integral values of n,

�(n) = (n − 1)!

When α is a positive integer, say, α = n, the gamma distribution with parameters
(α, λ) often arises, in practice as the distribution of the amount of time one has to
wait until a total of n events has occurred. More specifically, if events are occurring
randomly and in accordance with the three axioms of Section 4.7, then it turns out
that the amount of time one has to wait until a total of n events has occurred will
be a gamma random variable with parameters (n, λ). To prove this, let Tn denote the
time at which the nth event occurs, and note that Tn is less than or equal to t if and
only if the number of events that have occurred by time t is at least n. That is, with
N(t) equal to the number of events in [0, t],

P{Tn … t} = P{N(t) Ú n}

=
q∑
j=n

P{N(t) = j}

=
q∑
j=n

e−λt(λt)j

j!
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where the final identity follows because the number of events in [0, t] has a
Poisson distribution with parameter λt. Differentiation of the preceding now yields
the density function of Tn:

f (t) =
q∑
j=n

e−λtj(λt)j−1λ

j!
−

q∑
j=n

λe−λt(λt)j

j!

=
q∑
j=n

λe−λt(λt)j−1

(j − 1)!
−

q∑
j=n

λe−λt(λt)j

j!

= λe−λt(λt)n−1

(n − 1)!

Hence, Tn has the gamma distribution with parameters (n, λ). (This distribution is
often referred to in the literature as the n-Erlang distribution.) Note that when n = 1,
this distribution reduces to the exponential distribution.

The gamma distribution with λ = 1
2 and α = n/2, n a positive integer, is called

the χ2
n (read “chi-squared”) distribution with n degrees of freedom. The chi-squared

distribution often arises in practice as the distribution of the error involved in
attempting to hit a target in n-dimensional space when each coordinate error is nor-
mally distributed. This distribution will be studied in Chapter 6, where its relation to
the normal distribution is detailed.

Example
6a

Let X be a gamma random variable with parameters α and λ. Calculate (a) E[X]
and (b) Var(X).

Solution (a)

E[X] = 1
�(α)

∫ q

0
λxe−λx(λx)α−1 dx

= 1
λ�(α)

∫ q

0
λe−λx(λx)α dx

= �(α + 1)
λ�(α)

= α

λ
by Equation (6.1)

(b) By first calculating E[X2], we can show that

Var(X) = α

λ2

The details are left as an exercise. .

5.6.2 The Weibull Distribution
The Weibull distribution is widely used in engineering practice due to its versatil-
ity. It was originally proposed for the interpretation of fatigue data, but now its use
has been extended to many other engineering problems. In particular, it is widely
used in the field of life phenomena as the distribution of the lifetime of some object,
especially when the “weakest link” model is appropriate for the object. That is, con-
sider an object consisting of many parts, and suppose that the object experiences
death (failure) when any of its parts fails. It has been shown (both theoretically
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and empirically) that under these conditions, a Weibull distribution provides a close
approximation to the distribution of the lifetime of the item.

The Weibull distribution function has the form

F(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x … ν

1 − exp

{
−
(
x − ν

α

)β
}

x > ν
(6.2)

A random variable whose cumulative distribution function is given by Equation (6.2)
is said to be aWeibull random variable with parameters ν,α, and β. Differentiation
yields the density:

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x … ν

β

α

(
x − ν

α

)β−1

exp

{
−
(
x − ν

α

)β
}

x > ν

5.6.3 The Cauchy Distribution
A random variable is said to have a Cauchy distribution with parameter θ ,
−q < θ < q, if its density is given by

f (x) = 1
π

1
1 + (x − θ)2

− q < x < q

Example
6b

Suppose that a narrow-beam flashlight is spun around its center, which is located a
unit distance from the x-axis. (See Figure 5.7.) Consider the point X at which the
beam intersects the x-axis when the flashlight has stopped spinning. (If the beam is
not pointing toward the x-axis, repeat the experiment.)

1

0 X x-axis

u

Figure 5.7

As indicated in Figure 5.7, the pointX is determined by the angle θ between the
flashlight and the y-axis, which, from the physical situation, appears to be uniformly
distributed between −π/2 and π/2. The distribution function of X is thus given by

F(x) = P{X … x}
= P{tan θ … x}
= P{θ … tan−1 x}
= 1

2
+ 1

π
tan−1 x
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where the last equality follows since θ , being uniform over (−π/2,π/2), has
distribution

P{θ … a} = a − (−π/2)
π

= 1
2

+ a
π

− π

2
< a <

π

2

Hence, the density function of X is given by

f (x) = d
dx
F(x) = 1

π(1 + x2)
− q < x < q

and we see that X has the Cauchy distribution.† .

5.6.4 The Beta Distribution
A random variable is said to have a beta distribution if its density is given by

f (x) =

⎧⎪⎨
⎪⎩

1
B(a,b)

xa−1(1 − x)b−1 0 < x < 1

0 otherwise

where
B(a,b) =

∫ 1

0
xa−1(1 − x)b−1 dx

The beta distribution can be used to model a random phenomenon whose set
of possible values is some finite interval [c, d]—which, by letting c denote the origin
and taking d − c as a unit measurement, can be transformed into the interval [0, 1].

When a = b, the beta density is symmetric about 1
2 , giving more and more

weight to regions about 1
2 as the common value a increases. When a = b = 1, the

beta distribution reduces to the uniform (0, 1) distribution. (See Figure 5.8.) When
b > a, the density is skewed to the left (in the sense that smaller values becomemore
likely), and it is skewed to the right when a > b. (See Figure 5.9.)

The relationship

B(a,b) = �(a)�(b)
�(a + b)

(6.3)

can be shown to exist between

B(a,b) =
∫ 1

0
xa−1(1 − x)b−1 dx

and the gamma function.
Using Equation (6.3) along with the identity �(x + 1) = x�(x), which was given

in Equation (6.1) it follows that

B(a + 1,b)
B(a,b)

= �(a + 1)�(b)
�(a + b + 1)

�(a + b)
�(a)�(b)

= a
a + b

†That d
dx (tan−1 x) = 1/(1 + x2) can be seen as follows: If y = tan−1 x, then tan y = x, so

1 = d
dx

(tan y) = d
dy

(tan y)
dy
dx

= d
dy

(
sin y
cos y

)
dy
dx

=
(
cos2 y + sin2 y

cos2 y

)
dy
dx

or
dy
dx

= cos2 y

sin2 y + cos2 y
= 1

tan2 y + 1
= 1

x2 + 1
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f(x)

x
1–
2

0 1

1–
4a 5

a 5 3

a 5 10

a 5 1

Figure 5.8 Beta densities with parameters (a, b) when a = b.

f(x)

x

3–
2a 5

a 5 6

Figure 5.9 Beta densities with parameters (a, b) when a/(a + b) = 1/20.

The preceding enables us to easily derive the mean and variance of a beta random
variable with parameters a and b. For if X is such a random variable, then

E[X] = 1
B(a,b)

∫ 1

0
xa(1 − x)b−1dx

= B(a + 1,b)
B(a,b)

= a
a + b

Similarly, it follows that
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E[X2] = 1
B(a,b)

∫ 1

0
xa+1(1 − x)b−1dx

= B(a + 2,b)
B(a,b)

= B(a + 2,b)
B(a + 1,b)

B(a + 1,b)
B(a,b)

= (a + 1)a
(a + b + 1)(a + b)

The identity Var(X) = E[X2] − (E[X])2 now yields

Var(X) = a(a + 1)
(a + b)(a + b + 1)

− (
a

a + b
)2

= ab
(a + b)2(a + b + 1)

Remark A verification of Equation (6.3) appears in Example 7c of Chapter 6. .

5.6.5 The Pareto Distribution
If X is an exponential random variable with rate λ and a > 0, then

Y = a eX

is said to be a Pareto random variable with parameters a and λ. The parameter
λ > 0 is called the index parameter, and a is called the minimum parameter (because
P{Y > a} = 1). The distribution function of Y is derived as follows: For y Ú a,

P(Y > y) = P(a eX > y)

= P(eX > y/a)

= P(X > log(y/a))

= e−λ log(y/a)

= e− log((y/a)λ)

= (a/y)λ

Hence, the distribution function of Y is

FY(y) = 1 − P(Y > y) = 1 − aλy−λ , y Ú a

Differentiating the distribution function yields the density function of Y:

fY(y) = λaλy−(λ+1) , y Ú a

When λ … 1 it is easily checked that E[Y] = q. When λ > 1,
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E[Y] =
∫ q

a
λaλy−λ dy

= λaλ y1−λ

1 − λ
|qa

= λaλ a1−λ

λ − 1

= λa
λ − 1

E[Y2] will be finite only when λ > 2. In this case,

E[Y2] =
∫ q

a
λaλy1−λ dy

= λaλ y2−λ

2 − λ
|qa

= λa2

λ − 2

Hence, when λ > 2

Var(Y) = λa2

λ − 2
− λ2a2

(λ − 1)2
= λa2

(λ − 2)(λ − 1)2

Remarks (a) We could also have derived the moments of Y by using the represen-
tation Y = aeX , where X is exponential with rate λ. This yields, for λ > n,

E[Yn] = anE[enX ] = an
∫ q

0
enxλe−λxdx = an

∫ q

0
λe−(λ−n)xdx = λan

λ − n

(b)Where the density function f (y) of the Pareto is positive (that is, when y > a )
it is a constant times a power of y, and for this reason it is called a power law density.

(c) The Pareto distribution has been found to be useful in applications relating
to such things as

(i) the income or wealth of members of a population;
(ii) the file size of internet traffic (under the TCP protocol);
(iii) the time to compete a job assigned to a supercomputer;
(iv) the size of a meteorite;
(v) the yearly maximum one day rainfalls in different regions.

Further properties of the Pareto distribution will be developed in later chapters.

5.7 The Distribution of a Function of a Random Variable
Often, we know the probability distribution of a random variable and are interested
in determining the distribution of some function of it. For instance, suppose that we
know the distribution of X and want to find the distribution of g(X). To do so, it is
necessary to express the event that g(X) … y in terms of X being in some set. We
illustrate with the following examples.
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Example
7a

LetX be uniformly distributed over (0, 1). We obtain the distribution of the random
variable Y, defined by Y = Xn, as follows: For 0 … y … 1,

FY(y) = P{Y … y}
= P{Xn … y}
= P{X … y1/n}
= FX(y1/n)

= y1/n

For instance, the density function of Y is given by

fY(y) =

⎧⎪⎨
⎪⎩

1
n
y1/n−1 0 … y … 1

0 otherwise
.

Example
7b

If X is a continuous random variable with probability density fX , then the distribu-
tion of Y = X2 is obtained as follows: For y Ú 0,

FY(y) = P{Y … y}
= P{X2 … y}
= P{−√

y … X …
√
y}

= FX(
√
y) − FX(−√

y)

Differentiation yields

fY(y) = 1
2
√
y
[fX(

√
y) + fX(−√

y)] .

Example
7c

IfX has a probability density fX , thenY = |X| has a density function that is obtained
as follows: For y Ú 0,

FY(y) = P{Y … y}
= P{|X| … y}
= P{−y … X … y}
= FX(y) − FX(−y)

Hence, on differentiation, we obtain

fY(y) = fX(y) + fX(−y) y Ú 0 .

The method employed in Examples 7a through 7c can be used to prove Theo-
rem 7.1.

Theorem
7.1

Let X be a continuous random variable having probability density function fX .
Suppose that g(x) is a strictly monotonic (increasing or decreasing), differen-
tiable (and thus continuous) function of x. Then the random variable Y defined
by Y = g(X) has a probability density function given by

fY(y) =
⎧⎨
⎩ fX [g−1(y)]

∣∣∣∣ ddyg−1(y)

∣∣∣∣ if y = g(x) for some x

0 if y Z g(x) for all x

where g−1(y) is defined to equal that value of x such that g(x) = y.
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We shall prove Theorem 7.1 when g(x) is an increasing function.

Proof Suppose that y = g(x) for some x. Then, with Y = g(X),

FY(y) = P{g(X) … y}
= P{X … g−1(y)}
= FX(g−1(y))

Differentiation gives

fY(y) = fX(g−1(y))
d
dy
g−1(y) .

which agrees with Theorem 7.1, since g−1(y) is nondecreasing, so its derivative is
nonnegative.
When y Z g(x) for any x, then FY(y) is either 0 or 1, and in either case fY(y) = 0.

Example
7d

Let X be a continuous nonnegative random variable with density function f , and let
Y = Xn. Find fY , the probability density function of Y.

Solution If g(x) = xn, then
g−1(y) = y1/n

and
d
dy

{g−1(y)} = 1
n
y1/n−1

Hence, from Theorem 7.1, we obtain, for y Ú 0,

fY(y) = 1
n
y1/n−1f (y1/n)

For n = 2, this gives

fY(y) = 1
2
√
y
f (

√
y)

which (since X Ú 0) is in agreement with the result of Example 7b. .

Example
7e

The Lognormal Distribution If X is a normal random variable with mean μ and vari-
ance σ 2, then the random variable

Y = eX

is said to be a lognormal random variable with parameters μ and σ 2. Thus, a random
variableY is lognormal if log(Y) is a normal random variable. The lognormal is often
used as the distribution of the ratio of the price of a security at the end of one day
to its price at the end of the prior day. That is, if Sn is the price of some security at
the end of day n, then it is often supposed that Sn

Sn−1
is a lognormal random variable,

implying that X K log
(

Sn
Sn−1

)
is normal. Thus, to assume that Sn

Sn−1
is lognormal is to

assume that
Sn = Sn−1e

X

where X is normal.
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Let us now use Theorem 7.1 to derive the density of a lognormal random variable
Y with parameters μ and σ 2. Because Y = eX , where X is normal with mean μ and
variance σ 2, we need to determine the inverse of the function g(x) = ex. Because

y = g(g−1(y)) = eg
−1(y)

we obtain upon taking logarithms that

g−1(y) = log(y)

Using that d
dyg

−1(y) = 1/y, Theorem 7.1 yields the density:

fY(y) = 1√
2π σy

exp{−(log(y) − μ)2/2σ 2} , y > 0 .

Summary

A random variable X is continuous if there is a nonnega-
tive function f , called the probability density function ofX,
such that, for any set B,

P{X ∈ B} =
∫
B
f (x)dx

If X is continuous, then its distribution function F will be
differentiable and

d
dx
F(x) = f (x)

The expected value of a continuous random variable X is
defined by

E[X] =
∫ q

−q
xf (x)dx

A useful identity is that for any function g,

E[g(X)] =
∫ q

−q
g(x)f (x)dx

As in the case of a discrete random variable, the variance
of X is defined by

Var(X) = E[(X − E[X])2]

A random variable X is said to be uniform over the inter-
val (a, b) if its probability density function is given by

f (x) =

⎧⎪⎨
⎪⎩

1
b − a

a … x … b

0 otherwise

Its expected value and variance are

E[X] = a + b
2

Var(X) = (b − a)2

12

A random variableX is said to be normal with parameters
μ and σ 2 if its probability density function is given by

f (x) = 1√
2πσ

e−(x−μ)2/2σ 2 − q < x < q

It can be shown that

μ = E[X] σ 2 = Var(X)

If X is normal with mean μ and variance σ 2, then Z,
defined by

Z = X − μ

σ

is normal with mean 0 and variance 1. Such a random
variable is said to be a standard normal random vari-
able. Probabilities about X can be expressed in terms of
probabilities about the standard normal variable Z, whose
probability distribution function can be obtained either
from Table 5.1, the normal calculator on StatCrunch, or
a website.

When n is large, the probability distribution function
of a binomial random variable with parameters n and p
can be approximated by that of a normal random variable
having mean np and variance np(1 − p).

A random variable whose probability density function
is of the form

f (x) =
{
λe−λx x Ú 0

0 otherwise

is said to be an exponential random variable with parame-
ter λ. Its expected value and variance are, respectively,

E[X] = 1
λ

Var(X) = 1
λ2

A key property possessed only by exponential random
variables is that they arememoryless, in the sense that, for
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positive s and t,

P{X > s + t|X > t} = P{X > s}
If X represents the life of an item, then the memoryless
property states that for any t, the remaining life of a t-year-
old item has the same probability distribution as the life of
a new item. Thus, one need not remember the age of an
item to know its distribution of remaining life.

Let X be a nonnegative continuous random variable
with distribution function F and density function f . The
function

λ(t) = f (t)
1 − F(t)

t Ú 0

is called the hazard rate, or failure rate, function of F. If
we interpret X as being the life of an item, then for small
values of dt, λ(t)dt is approximately the probability that a
t-unit-old item will fail within an additional time dt. If F is
the exponential distribution with parameter λ, then

λ(t) = λ t Ú 0

In addition, the exponential is the unique distribution hav-
ing a constant failure rate.

A random variable is said to have a gamma distri-
bution with parameters α and λ if its probability density
function is equal to

f (x) = λe−λx(λx)α−1

�(α)
x Ú 0

and is 0 otherwise. The quantity �(α) is called the gamma
function and is defined by

�(α) =
∫ q

0
e−xxα−1 dx

The expected value and variance of a gamma random vari-
able are, respectively,

E[X] = α

λ
Var(X) = α

λ2

A random variable is said to have a beta distribution
with parameters (a, b) if its probability density function
is equal to

f (x) = 1
B(a,b)

xa−1(1 − x)b−1 0 … x … 1

and is equal to 0 otherwise. The constantB(a, b) is given by

B(a,b) =
∫ 1

0
xa−1(1 − x)b−1 dx

The mean and variance of such a random variable are,
respectively,

E[X] = a
a + b

Var(X) = ab
(a + b)2(a + b + 1)

Problems

5.1. Let X be a random variable with probability density
function

f (x) =
{
c
(
x − 3

x2

)
2 < x < 4

0 otherwise

(a)What is the value of c?
(b)What is the cumulative distribution function of X?

5.2.A group of construction workers take time X (in
hours) to finish a task. The density function of time X is

f (x) =
{
cxe−

√
x x Ú 0

0 otherwise

What is the probability that the workers will take more
than 10 hours to complete the task?

5.3. For positive c, could the function

f (x) =
{
c(6x2 − 5x) 0 < x < 2

3
0 otherwise

be a probability density function? If yes, determine the
value of c. Repeat for

f (x) =
{
c(6x2 − 5x) 1 < x < 4

3
0 otherwise

5.4. The probability density function of X, the lifetime of
a certain type of electronic device (measured in hours), is
given by

f (x) =

⎧⎪⎨
⎪⎩
10
x2

x > 10

0 x … 10

(a) Find P{X > 20}.
(b)What is the cumulative distribution function of X?
(c)What is the probability that of 6 such types of devices,
at least 3 will function for at least 15 hours? What assump-
tions are you making?

5.5.A filling station is supplied with gasoline once a week.
If its weekly volume of sales in thousands of gallons is a
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random variable with probability density function

f (x) =
{
5(1 − x)4 0 < x < 1
0 otherwise

what must the capacity of the tank be so that the prob-
ability of the supply being exhausted in a given week
is .01?

5.6. Compute E[X] if X has a density function given by

(a) f (x) =

⎧⎪⎨
⎪⎩
1
4
xe−x/2 x > 0

0 otherwise
;

(b) f (x) =
{
c(1 − x2) −1 < x < 1
0 otherwise

;

(c) f (x) =

⎧⎪⎨
⎪⎩

5
x2

x > 5

0 x … 5
.

5.7. The density function of X is given by

f (x) =
{
a + bx3 1 … x … 3
0 otherwise

If E(X) = 5, find a and b.

5.8. The wind speed, measured in miles per hour, expe-
rienced at a particular site is a random variable having a
probability density function given by

f (x) = 3x2e−x
3

x > 0

What is the expected wind velocity?

5.9. Consider Example 4b of Chapter 4, but now suppose
that the seasonal demand is a continuous random variable
having probability density function f . Show that the opti-
mal amount to stock is the value s∗ that satisfies

F(s∗) = b
b + �

where b is net profit per unit sale, � is the net loss per unit
unsold, and F is the cumulative distribution function of the
seasonal demand.

5.10. Trains headed for destination A arrive at the train
station at 15-minute intervals starting at 7 A.M., whereas
trains headed for destination B arrive at 15-minute inter-
vals starting at 7:05 A.M.

(a) If a certain passenger arrives at the station at a time
uniformly distributed between 7 and 8 A.M. and then gets
on the first train that arrives, what proportion of time does
he or she go to destination A?
(b)What if the passenger arrives at a time uniformly dis-
tributed between 7:10 and 8:10 A.M.?

5.11.A point is chosen at random on a line segment of
length L. Interpret this statement, and find the probability
that the ratio of the shorter to the longer segment is less
than 1

4 .

5.12.A bus travels between the two cities A and B, which
are 100 miles apart. If the bus has a breakdown, the dis-
tance from the breakdown to city A has a uniform distri-
bution over (0, 100). There is a bus service station in cityA,
in B, and in the center of the route between A and B. It is
suggested that it would be more efficient to have the three
stations located 25, 50, and 75 miles, respectively, from A.
Do you agree? Why?

5.13.A shuttle train completes the journey from an airport
to a nearby city and back every 15 minutes.

(a) If the waiting time has a uniform distribution, what is
the probability that a passenger has to wait more than 6
minutes for a shuttle train?
(b)Given that a passenger has already waited for 8 min-
utes, what is the probability that he or she has to wait an
additional 2 minutes or more for a shuttle train?

5.14. LetX be a uniform (0, 1) random variable. Compute
E[Xn] by using Proposition 2.1, and then check the result
by using the definition of expectation.

5.15. The height X, in centimeters, of adult women is nor-
mally distributed with mean 165 centimeters and standard
deviation 6.5 centimeters. Compute

(a) P{X > 160};
(b) P{163 < X < 167};
(c) P{X < 164};
(d) P{X > 171};
(e) P{X < 168}.
5.16. The annual rainfall (in inches) in a certain region is
normally distributed with μ = 40 and σ = 4. What is the
probability that starting with this year, it will take more
than 10 years before a year occurs having a rainfall of more
than 50 inches? What assumptions are you making?

5.17. The salaries of physicians in a certain speciality are
approximately normally distributed. If 25 percent of these
physicians earn less than $180,000 and 25 percent earn
more than $320,000, approximately what fraction earn
(a) less than $200,000?
(b) between $280,000 and $320,000?

5.18. Suppose that X is a normally distributed random
variable with mean μ and variance σ 2. If P{X < 10} = .67
and P{X < 20} = .975, approximate μ and σ 2.

5.19. Let X be an exponentially distributed random vari-
able with mean 1/2. Find the value of c for which
P{X > c} = .25.
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5.20. In a city, 55 percent of the population is in favor of
constructing a new shopping center. If a random sample of
400 people is selected, find the probability that
(a) at least 200 support the construction of the new shop-
ping center;
(b) people between 250 and 350 support the construction
of the new shopping center;
(c) at most 225 support the construction of the new shop-
ping center.

5.21. The weight of a group of people is independently
and normally distributed, with mean 70 kg and standard
deviation 4 kg. What percentage of individuals from this
group weigh less than 75 kg? What percentage of individ-
uals from this group weigh more than 67 kg?

5.22. Tom is throwing darts at a dartboard repeatedly.
Each of his throws, independently of all previous throws,
has a success probability of .05 of hitting the bullseye.
What is the approximate probability that Tom takes more
than 50 throws to hit the bullseye?

5.23.A card is picked at random from a shuffled card deck
for 500 consecutive times.

(a)What is the approximate probability that a red card will
be picked between 250 and 300 times inclusively?
(b)What is the approximate probability that an even-
numbered card will be picked more than 200 times?

5.24. The lifetimes of interactive computer chips produced
by a certain semiconductor manufacturer are normally dis-
tributed with parameters μ = 1.4 * 106 hours and σ =
3 * 105 hours. What is the approximate probability that a
batch of 100 chips will contain at least 20 whose lifetimes
are less than 1.8 * 106?

5.25.A die is biased in such a way that even numbers are
three times as likely to be rolled as odd numbers. Approxi-
mate the probability that the number 5 will appear at most
15 times in 100 throws.

5.26. Two types of coins are produced at a factory: a fair
coin and a biased one that comes up heads 55 percent of
the time. We have one of these coins but do not know
whether it is a fair coin or a biased one. In order to ascer-
tain which type of coin we have, we shall perform the fol-
lowing statistical test: We shall toss the coin 1000 times. If
the coin lands on heads 525 or more times, then we shall
conclude that it is a biased coin, whereas if it lands on
heads fewer than 525 times, then we shall conclude that
it is a fair coin. If the coin is actually fair, what is the prob-
ability that we shall reach a false conclusion? What would
it be if the coin were biased?

5.27. In 10,000 independent tosses of a coin, the coin
landed on heads 5800 times. Is it reasonable to assume that
the coin is not fair? Explain.

5.28.About 17 percent of the world’s population has blue
eyes. What is the approximate probability of spotting at
least 40 blue-eyed individuals in a crowd of 300 people?
State your assumptions.

5.29.A model for the movement of a stock supposes that
if the present price of the stock is s, then after one period,
it will be either us with probability p or ds with probability
1 − p. Assuming that successive movements are indepen-
dent, approximate the probability that the stock’s price
will be up at least 30 percent after the next 1000 periods if
u = 1.012,d = .990, and p = .52.

5.30.An image is partitioned into two regions, one white
and the other black. A reading taken from a randomly cho-
sen point in the white section will be normally distributed
with μ = 4 and σ 2 = 4, whereas one taken from a ran-
domly chosen point in the black region will have a nor-
mally distributed reading with parameters (6, 9). A point
is randomly chosen on the image and has a reading of 5. If
the fraction of the image that is black is α, for what value
of α would the probability of making an error be the same,
regardless of whether one concluded that the point was in
the black region or in the white region?

5.31. (a)A fire station is to be located along a road of
length A,A < q. If fires occur at points uniformly cho-
sen on (0, A), where should the station be located so as
to minimize the expected distance from the fire? That is,
choose a so as to

minimize E[|X − a|]
when X is uniformly distributed over (0, A).
(b) Now suppose that the road is of infinite length—
stretching from point 0 outward to q. If the distance of
a fire from point 0 is exponentially distributed with rate λ,
where should the fire station now be located? That is, we
want to minimize E[|X − a|], whereX is now exponential
with rate λ.

5.32. The time X (in minutes) between customer arrivals
at a bank is exponentially distributed with mean 1.5
minutes.

(a) If a customer has just arrived, what is the probability
that no customer will arrive in the next 2 minutes?
(b)What is the probability that no customer will arrive
within the next minute, given that no customer had arrived
in the past minute?

5.33. Suppose that U is a uniform random variable on
(0, 1). What is the distribution of V = aU− 1

λ for a, λ > 0?

5.34. Jones figures that the total number of thousands of
miles that a racing auto can be driven before it would
need to be junked is an exponential random variable with
parameter 1

20 . Smith has a used car that he claims has been
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driven only 10,000 miles. If Jones purchases the car, what
is the probability that she would get at least 20,000 addi-
tional miles out of it? Repeat under the assumption that
the lifetime mileage of the car is not exponentially dis-
tributed, but rather is (in thousands of miles) uniformly
distributed over (0, 40).

5.35. Suppose that X is an exponential random variable
with parameter λ. Find the probability density function of
Y = √

X. What kind of random variable is Y?

5.36. The hazard rate λ(t) of divorce after t years of mar-
riage is such that

λ(t) = 1
2t

t > 0.

What is the probability that a couple who have been mar-
ried for 5 years will (a) celebrate their tenth wedding
anniversary, and (b) celebrate their twenty-fifth wedding
anniversary?

5.37. Suppose that the lifetime of an electronic light bulb
has the hazard rate function λ(t) = .25 + .14t2, t > 0. What
is the probability that

(a) the light bulb survives to age 4?
(b) the light bulb’s lifetime is between 2.3 and 3.7 years?
(c) a 2-year-old light bulb will survive to age 5?

5.38. If X is uniformly distributed on (1, 5), find

(a) the probability density function of Y = log(X);

(b) P
{
1
3 < Y < 2

3

}
.

5.39. If Y is uniformly distributed over (0, 5), what is the
probability that the roots of the equation 4x2 + 4xY +
Y + 2 = 0 are both real?

5.40. Suppose that X is an exponential random variable
with parameter λ. What is the probability density function
of Y = e−λX?

5.41. Suppose that X has a beta distribution with E[X] =
1/9 and Var(X) = 1/81. Find the parameters (a, b) corre-
sponding to X.

5.42. If X is uniformly distributed over (a, b), a < b, what
is the probability density function of Y = cX + d for any
constants c and d?

5.43. Find the distribution of R = A sin θ , where A
is a fixed constant and θ is uniformly distributed on
(−π/2,π/2). Such a random variable R arises in the the-
ory of ballistics. If a projectile is fired from the origin at
an angle α from the earth with a speed ν, then the point
R at which it returns to the earth can be expressed as
R = (v2/g) sin 2α, where g is the gravitational constant,
equal to 980 centimeters per second squared.

5.44. Let Y be a lognormal random variable (see Exam-
ple 7e for its definition) and let c > 0 be a constant.
Answer true or false to the following, and then give an
explanation for your answer.

(a) cY is lognormal;
(b) c + Y is lognormal.

Theoretical Exercises

5.1. The speed of a molecule in a uniform gas at equilib-
rium is a random variable whose probability density func-
tion is given by

f (x) =
{
ax2e−bx2 x Ú 0
0 x < 0

where b = m/2kT and k, T, and m denote, respectively,
Boltzmann’s constant, the absolute temperature of the gas,
and the mass of the molecule. Evaluate a in terms of b.

5.2. Show that

E[Y] =
∫ q

0
P{Y > y}dy −

∫ q

0
P{Y < −y}dy

Hint: Show that∫ q

0
P{Y < −y}dy = −

∫ 0

−q
xfY(x)dx∫ q

0
P{Y > y}dy =

∫ q

0
xfY(x)dx

5.3. Show that if X has density function f , then

E[g(X)] =
∫ q

−q
g(x)f (x)dx

Hint: Using Theoretical Exercise 5.2, start with

E[g(X)] =
∫ q

0
P{g(X) > y}dy −

∫ q

0
P{g(X) < −y}dy

and then proceed as in the proof given in the text when
g(X) Ú 0.

5.4. Prove Corollary 2.1.

5.5.Use the result that for a nonnegative random vari-
able Y,

E[Y] =
∫ q

0
P{Y > t}dt

to show that for a nonnegative random variable X,

E[Xn] =
∫ q

0
nxn−1P{X > x}dx
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Hint: Start with

E[Xn] =
∫ q

0
P{Xn > t}dt

and make the change of variables t = xn.

5.6.Define a collection of events Ea, 0 < a < 1, having

the property that P(Ea) = 1 for all a but P

(⋂
a
Ea

)
= 0.

Hint: Let X be uniform over (0, 1) and define each Ea in
terms of X.

5.7. The standard deviation of X, denoted SD(X), is
given by

SD(X) =
√
Var(X)

Find SD(aX + b) if X has variance σ 2.

5.8. Let X be a random variable that takes on values
between 0 and c. That is, P{0 … X … c} = 1. Show that

Var(X) …
c2

4

Hint: One approach is to first argue that

E[X2] … cE[X]

and then use this inequality to show that

Var(X) … c2[α(1 − α)] where α = E[X]
c

5.9. Show that Z is a standard normal random variable;
then, for x > 0,

(a) P{Z > x} = P{Z < −x};
(b) P{|Z| > x} = 2P{Z > x};
(c) P{|Z| < x} = 2P{Z < x} − 1.

5.10. Let f (x) denote the probability density function of
a normal random variable with mean μ and variance σ 2.
Show that μ − σ and μ + σ are points of inflection of this
function. That is, show that f ′′(x) = 0 when x = μ − σ or
x = μ + σ .

5.11. Let Z be a standard normal random variable Z, and
let g be a differentiable function with derivative g′.

(a) Show that E[g′(Z)] = E[Zg(Z)];
(b) Show that E[Zn+1] = nE[Zn−1].
(c) Find E[Z4].

5.12.Use the identity of Theoretical Exercise 5.5 to derive
E[X2] when X is an exponential random variable with
parameter λ.

5.13. The median of a continuous random variable having
distribution function F is that valuem such that F(m) = 1

2 .

That is, a random variable is just as likely to be larger than
its median as it is to be smaller. Find the median of X if
X is

(a) uniformly distributed over (a, b);
(b) normal with parameters μ, σ 2;
(c) exponential with rate λ.

5.14. The mode of a continuous random variable having
density f is the value of x for which f (x) attains its maxi-
mum. Compute the mode of X in cases (a), (b), and (c) of
Theoretical Exercise 5.13.

5.15. If X is an exponential random variable with parame-
ter λ, and c > 0, show that cX is exponential with param-
eter λ/c.

5.16. Compute the hazard rate function of X when X is
uniformly distributed over (0, a).

5.17. IfX has hazard rate function λX(t), compute the haz-
ard rate function of aX where a is a positive constant.

5.18. Verify that the gamma density function integrates
to 1.

5.19. If X is an exponential random variable with mean
1/λ, show that

E[Xk] = k!
λk

k = 1, 2, . . .

Hint: Make use of the gamma density function to evaluate
E[Xk].

5.20. Verify that
Var(X) = α

λ2

when X is a gamma random variable with parameters α

and λ.

5.21. Show that �
(
1
2

)
= √

π .

Hint: �
(
1
2

)
= ∫q

0 e−xx−1/2 dx. Make the change of vari-

ables y = √
2x and then relate the resulting expression to

the normal distribution.

5.22. Compute the hazard rate function of a gamma ran-
dom variable with parameters (α, λ) and show it is increas-
ing when α Ú 1 and decreasing when α … 1.

5.23. Compute the hazard rate function of a Weibull ran-
dom variable and show it is increasing when β Ú 1 and
decreasing when β … 1.

5.24. Show that a plot of log(log(1 − F(x))−1) against log
x will be a straight line with slope β when F(·) is a Weibull
distribution function. Show also that approximately 63.2
percent of all observations from such a distribution will be
less than α. Assume that v = 0.
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5.25. Let

Y =
(
X − ν

α

)β

Show that if X is a Weibull random variable with parame-
ters ν,α, and β, then Y is an exponential random variable
with parameter λ = 1 and vice versa.

5.26. Let F be a continuous distribution function. If U is
uniformly distributed on (0, 1), find the distribution func-
tion of Y = F−1(U), where F−1 is the inverse function of
F. (That is, y = F−1(x) if F(y) = x.)

5.27. If X is uniformly distributed over (a, b), what ran-
dom variable, having a linear relation with X, is uniformly
distributed over (0, 1)?

5.28. Consider the beta distribution with parameters
(a, b). Show that

(a) when a > 1 and b > 1, the density is unimodal (that
is, it has a unique mode) with mode equal to (a − 1)/(a +
b − 2);
(b) when a … 1,b … 1, and a + b < 2, the density is either
unimodal with mode at 0 or 1 or U-shaped with modes at
both 0 and 1;
(c) when a = 1 = b, all points in [0, 1] are modes.

5.29. Let X be a continuous random variable having
cumulative distribution function F. Define the random
variable Y by Y = F(X). Show that Y is uniformly dis-
tributed over (0, 1).

5.30. Let X have probability density fX . Find the proba-
bility density function of the random variable Y defined
by Y = aX + b.

5.31. Find the probability density function ofY = eX when
X is normally distributed with parameters μ and σ 2. The
random variable Y is said to have a lognormal distribution
(since log Y has a normal distribution) with parameters μ

and σ 2.

5.32. Let X and Y be independent random variables that
are both equally likely to be either 1, 2, . . . , (10)N , whereN
is very large. LetD denote the greatest common divisor of
X and Y, and let Qk = P{D = k}.
(a)Give a heuristic argument thatQk = 1

k2
Q1.

Hint: Note that in order for D to equal k, k must divide
both X and Y and also X/k, and Y/k must be relatively
prime. (That is, X/k, and Y/k must have a greatest com-
mon divisor equal to 1.)
(b)Use part (a) to show that

Q1 = P{X and Y are relatively prime}

= 1
q∑
k=1

1/k2

It is a well-known identity that
q∑
1
1/k2 = π2/6, so Q1 =

6/π2. (In number theory, this is known as the Legendre
theorem.)
(c) Now argue that

Q1 =
q∏
i=1

(
P2
i − 1

P2
i

)

where Pi is the ith-smallest prime greater than 1.
Hint:X andY will be relatively prime if they have no com-
mon prime factors. Hence, from part (b), we see that

q∏
i=1

(
P2
i − 1

P2
i

)
= 6

π2

5.33. Prove Theorem 7.1 when g(x) is a decreasing
function.

Self-Test Problems and Exercises

5.1. The number of minutes of playing time of a certain
high school basketball player in a randomly chosen game
is a random variable whose probability density function is
given in the following figure:

.025

.050

10 20 30 40

Find the probability that the player plays

(a)more than 15 minutes;
(b) between 20 and 35 minutes;
(c) less than 30 minutes;
(d)more than 36 minutes.

5.2. For some constant c, the random variable X has the
probability density function

f (x) =
{
cxn 0 < x < 1
0 otherwise
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Find (a) c and (b) P{X > x}, 0 < x < 1.

5.3. For some constant c, the random variable X has the
probability density function

f (x) =
{
cx4 0 < x < 2
0 otherwise

Find (a) E[X] and (b) Var(X).

5.4. The random variable X has the probability density
function

f (x) =
{
ax + bx2 0 < x < 1
0 otherwise

If E[X] = .6, find (a) P{X < 1
2 } and (b) Var(X).

5.5. The random variableX is said to be a discrete uniform
random variable on the integers 1, 2, . . . ,n if

P{X = i} = 1
n

i = 1, 2, . . . ,n

For any nonnegative real number x, let Int(x) (sometimes
written as [x]) be the largest integer that is less than or
equal to x. Show that if U is a uniform random variable on
(0, 1), thenX = Int(nU) + 1 is a discrete uniform random
variable on 1, . . . ,n.

5.6. Your company must make a sealed bid for a construc-
tion project. If you succeed in winning the contract (by
having the lowest bid), then you plan to pay another firm
$100,000 to do the work. If you believe that the minimum
bid (in thousands of dollars) of the other participating
companies can be modeled as the value of a random vari-
able that is uniformly distributed on (70, 140), how much
should you bid to maximize your expected profit?

5.7. To be a winner in a certain game, you must be success-
ful in three successive rounds. The game depends on the
value ofU, a uniform random variable on (0, 1). IfU > .1,
then you are successful in round 1; if U > .2, then you are
successful in round 2; and ifU > .3, then you are successful
in round 3.

(a) Find the probability that you are successful in round 1.
(b) Find the conditional probability that you are successful
in round 2 given that you were successful in round 1.
(c) Find the conditional probability that you are success-
ful in round 3 given that you were successful in rounds 1
and 2.
(d) Find the probability that you are a winner.

5.8.A randomly chosen IQ test taker obtains a score that
is approximately a normal random variable with mean 100
and standard deviation 15. What is the probability that the

score of such a person is (a) more than 125; (b) between
90 and 110?

5.9. Suppose that the travel time from your home to your
office is normally distributed with mean 40 minutes and
standard deviation 7 minutes. If you want to be 95 percent
certain that you will not be late for an office appointment
at 1 P.M., what is the latest time that you should leave
home?

5.10. The life of a certain type of automobile tire is nor-
mally distributed with mean 34,000 miles and standard
deviation 4000 miles.

(a)What is the probability that such a tire lasts more than
40,000 miles?
(b)What is the probability that it lasts between 30,000 and
35,000 miles?
(c) Given that it has survived 30,000 miles, what is the con-
ditional probability that the tire survives another 10,000
miles?

5.11. The annual rainfall in Cleveland, Ohio, is approxi-
mately a normal random variable with mean 40.2 inches
and standard deviation 8.4 inches. What is the probabil-
ity that

(a) next year’s rainfall will exceed 44 inches?
(b) the yearly rainfalls in exactly 3 of the next 7 years will
exceed 44 inches?

Assume that if Ai is the event that the rainfall exceeds 44
inches in year i (from now), then the events Ai, i Ú 1, are
independent.

5.12. The following table uses 1992 data concerning the
percentages of male and female full-time workers whose
annual salaries fall into different ranges:

Percentage Percentage
Earnings range of females of males

…9999 8.6 4.4
10,000–19,999 38.0 21.1
20,000–24,999 19.4 15.8
25,000–49,999 29.2 41.5
Ú50,000 4.8 17.2

Suppose that random samples of 200 male and 200 female
full-time workers are chosen. Approximate the probabil-
ity that

(a) at least 70 of the women earn $25,000 or more;
(b) at most 60 percent of the men earn $25,000 or more;
(c) at least three-fourths of the men and at least half the
women earn $20,000 or more.
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5.13.At a certain bank, the amount of time that a cus-
tomer spends being served by a teller is an exponential
random variable with mean 5 minutes. If there is a cus-
tomer in service when you enter the bank, what is the
probability that he or she will still be with the teller after
an additional 4 minutes?

5.14. Suppose that the cumulative distribution function of
the random variable X is given by

F(x) = 1 − e−x
2

x > 0

Evaluate (a) P{X > 2}; (b) P{1 < X < 3}; (c) the hazard
rate function of F; (d) E[X]; (e) Var(X).

Hint: For parts (d) and (e), you might want to make use of
the results of Theoretical Exercise 5.5.

5.15. The number of years that a washing machine func-
tions is a random variable whose hazard rate function is
given by

λ(t) =
⎧⎨
⎩

.2 0 < t < 2

.2 + .3(t − 2) 2 … t < 5
1.1 t > 5

(a)What is the probability that the machine will still be
working 6 years after being purchased?
(b) If it is still working 6 years after being purchased, what
is the conditional probability that it will fail within the next
2 years?

5.16.A standard Cauchy random variable has density
function

f (x) = 1
π(1 + x2)

− q < x < q

Show that if X is a standard Cauchy random
variable, then 1/X is also a standard Cauchy random vari-
able.

5.17.A roulette wheel has 38 slots, numbered 0, 00, and
1 through 36. If you bet 1 on a specified number, then
you either win 35 if the roulette ball lands on that num-
ber or lose 1 if it does not. If you continually make such
bets, approximate the probability that

(a) you are winning after 34 bets;
(b) you are winning after 1000 bets;
(c) you are winning after 100,000 bets.

Assume that each roll of the roulette ball is equally likely
to land on any of the 38 numbers.

5.18. There are two types of batteries in a bin.When in use,
type i batteries last (in hours) an exponentially distributed
time with rate λi, i = 1, 2. A battery that is randomly cho-
sen from the bin will be a type i battery with probability

pi,
2∑
i=1

pi = 1. If a randomly chosen battery is still operating

after t hours of use, what is the probability that it will still
be operating after an additional s hours?

5.19. Evidence concerning the guilt or innocence of a
defendant in a criminal investigation can be summarized
by the value of an exponential random variable X whose
mean μ depends on whether the defendant is guilty. If
innocent, μ = 1; if guilty, μ = 2. The deciding judge will
rule the defendant guilty ifX > c for some suitably chosen
value of c.

(a) If the judge wants to be 95 percent certain that an inno-
cent man will not be convicted, what should be the value
of c?
(b)Using the value of c found in part (a), what is the
probability that a guilty defendant will be convicted?

5.20. For any real number y, define y+ by

y+ = y, if y Ú 0
0, if y < 0

Let c be a constant.

(a) Show that

E[(Z − c)+] = 1√
2π

e−c
2/2 − c(1 − 
(c))

when Z is a standard normal random variable.
(b) Find E[(X − c)+] when X is normal with mean μ and
variance σ 2.

5.21.With 
(x) being the probability that a normal ran-
dom variable with mean 0 and variance 1 is less than x,
which of the following are true:

(a) 
(−x) = 
(x)
(b) 
(x) + 
(−x) = 1
(c) 
(−x) = 1/
(x)

5.22. Let U be a uniform (0, 1) random variable, and let
a < b be constants.

(a) Show that if b > 0, then bU is uniformly distributed
on (0,b), and if b < 0, then bU is uniformly distributed on
(b, 0).
(b) Show that a + U is uniformly distributed on (a, 1 + a).
(c)What function of U is uniformly distributed on (a, b)?
(d) Show that min(U, 1 − U) is a uniform (0, 1/2) random
variable.
(e) Show that max(U, 1 − U) is a uniform (1/2, 1) random
variable.
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5.23. Let

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
3 e

x, if x < 0
1
3 if 0 … x < 1
1
3 e

−(x−1) if x Ú 1

(a) Show that f is a probability density function. (That is,
show that f (x) Ú 0, and

∫q
−q f (x)dx = 1.)

(b) If X has density function f , find E[X].

5.24. Let

f (x) = θ2

1 + θ
(1 + x)e−θx , x > 0

where θ > 0.
(a) Show that f (x) is a density function. That is, show that
f (x) Ú 0, and that

∫q
0 f (x)dx = 1.

(b) Find E[X]
(c) Find Var(X).
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6.1 Joint Distribution Functions
Thus far, we have concerned ourselves only with probability distributions for single
random variables. However, we are often interested in probability statements con-
cerning two or more random variables. In order to deal with such probabilities, we
define, for any two random variables X and Y, the joint cumulative probability dis-
tribution function of X and Y by

F(a,b) = P{X … a,Y … b} − q < a,b < q

All joint probability statements about X and Y can, in theory, be answered in terms
of their joint distribution function. For instance,

P(a1 < X … a2, b1 < Y … b2) = F(a2,b2) + F(a1,b1) − F(a1,b2) − F(a2,b1) (1.1)

whenever a1 < a2, b1 < b2. To verify Equation (1.1), note that for a1 < a2,

P(X … a2, Y … b) = P(X … a1, Y … b) + P(a1 < X … a2, Y … b)

giving that

P(a1 < X … a2, Y … b) = F(a2,b) − F(a1,b) (1.2)

Also, because for b1 < b2,

P(a1 < X … a2, Y … b2) = P(a1 < X … a2, Y … b1) + P(a1 < X … a2, b1 < Y … b2)

249
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we have that when a1 < a2, b1 < b2

P(a1 < X … a2, b1 < Y … b2) = P(a1 < X … a2, Y … b2)

−P(a1 < X … a2, Y … b1)

= F(a2,b2) − F(a1,b2) − F(a2,b1) + F(a1,b1)

where the final equality used Equation (1.2).
When X and Y are discrete random variables, with X taking on one of the values xi,
i Ú 1, and Y one of the values yj, j Ú 1, it is convenient to define the joint probability
mass function of X and Y by

p(x, y) = P(X = x,Y = y)

Using that the event {X = x} is the union of the mutually exclusive events {X =
x,Y = yj}, j Ú 1, it follows that the probability mass function of X can be obtained
from the joint probability mass function by

pX(x) = P(X = x)

= P(∪j{X = x,Y = yj})
=
∑
j

P(X = x,Y = yj)

=
∑
j

p(x, yj)

Similarly, the probability mass function of Y is obtained from

pY(y) =
∑
i

p(xi, y)

Example
1a

Suppose that 3 balls are randomly selected from an urn containing 3 red, 4 white, and
5 blue balls. If we letX andY denote, respectively, the number of red and white balls
chosen, then the joint probability mass function ofX andY,p(i, j) = P{X = i,Y = j},
is obtained by noting thatX = i, Y = j if, of the 3 balls selected, i are red, j are white,
and 3 − i − j are blue. Because all subsets of size 3 are equally likely to be chosen,
it follows that

p(i, j) =
(3
i

)(4
j

)( 5
3−i−j

)
(12
3

)
Consequently,

p(0, 0) =
(
5
3

)/(
12
3

)
= 10

220

p(0, 1) =
(
4
1

)(
5
2

)/(
12
3

)
= 40

220

p(0, 2) =
(
4
2

)(
5
1

)/(
12
3

)
= 30

220
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p(0, 3) =
(
4
3

)/(
12
3

)
= 4

220

p(1, 0) =
(
3
1

)(
5
2

)/(
12
3

)
= 30

220

p(1, 1) =
(
3
1

)(
4
1

)(
5
1

)/(
12
3

)
= 60

220

p(1, 2) =
(
3
1

)(
4
2

)/(
12
3

)
= 18

220

p(2, 0) =
(
3
2

)(
5
1

)/(
12
3

)
= 15

220

p(2, 1) =
(
3
2

)(
4
1

)/(
12
3

)
= 12

220

p(3, 0) =
(
3
3

)/(
12
3

)
= 1

220

These probabilities can most easily be expressed in tabular form, as in Table 6.1. The
reader should note that the probability mass function ofX is obtained by computing
the row sums, whereas the probability mass function of Y is obtained by comput-
ing the column sums. Because the individual probability mass functions of X and Y
thus appear in the margin of such a table, they are often referred to as the marginal
probability mass functions of X and Y, respectively. .

Table 6.1 P{X = i,Y = j}.

i

j

0 1 2 3 Row sum = P{X = i}

0
10
220

40
220

30
220

4
220

84
220

1
30
220

60
220

18
220

0
108
220

2
15
220

12
220

0 0
27
220

3
1
220

0 0 0
1

220

Column sum = P{Y = j} 56
220

112
220

48
220

4
220

Example
1b

Suppose that 15 percent of the families in a certain community have no children, 20
percent have 1 child, 35 percent have 2 children, and 30 percent have 3. Suppose
further that in each family each child is equally likely (independently) to be a boy or
a girl. If a family is chosen at random from this community, then B, the number of
boys, and G, the number of girls, in this family will have the joint probability mass
function shown in Table 6.2.
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Table 6.2 P{B = i,G = j}.

i

j

0 1 2 3 Row sum = P{B = i}

0 .15 .10 .0875 .0375 .3750

1 .10 .175 .1125 0 .3875

2 .0875 .1125 0 0 .2000

3 .0375 0 0 0 .0375

Column sum = P{G = j} .3750 .3875 .2000 .0375

The probabilities shown in Table 6.2 are obtained as follows:

P{B = 0,G = 0} = P{no children} = .15

P{B = 0,G = 1} = P{1 girl and total of 1 child}
= P{1 child}P{1 girl|1 child} = (.20)

(
1
2

)
P{B = 0,G = 2} = P{2 girls and total of 2 children}

= P{2 children}P{2 girls|2 children} = (.35)
(
1
2

)2

We leave the verification of the remaining probabilities in the table to the reader. .

Example
1c

Consider independent trials where each trial is a success with probability p. Let Xr
denote the number of trials until there have been r successes, and let Ys denote the
number of trials until there have been s failures. Suppose we want to derive their
joint probability mass function P(Xr = i,Ys = j). To do so, first consider the case
i < j. In this case, write

P(Xr = i,Ys = j) = P(Xr = i)P(Ys = j|Xr = i)

Now, if there have been r successes after trial i then there have been i − r failures
by that point. Hence, the conditional distribution of Ys, given that Xr = i, is the
distribution of i plus the number of additional trials after trial i until there have been
an additional s − i + r failures. Hence,

P(Xr = i,Ys = j) = P(Xr = i)P(Ys−i+r = j − i) , i < j

BecauseXr is a negative binomial random variable with parameters (r,p) and Ys−i+r
is a negative binomial random variable with parameters (s − i + r, 1 − p), the
preceding yields

P(Xr = i,Ys = j) =
(
i − 1
r − 1

)
pr(1 − p)i−r

(
j − i − 1

s − i + r − 1

)
(1 − p)s−i+rpj−s−r , i< j

We leave it as an exercise to determine the analogous expression when j < i. .
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We say that X and Y are jointly continuous if there exists a function f (x, y),
defined for all real x and y, having the property that for every set C of pairs of real
numbers (that is, C is a set in the two-dimensional plane),

P{(X,Y) ∈ C} =
∫∫

(x,y)∈C
f (x, y)dx dy (1.3)

The function f (x, y) is called the joint probability density function of X and Y. If A
and B are any sets of real numbers, then by defining C = {(x, y) : x ∈ A, y ∈ B}, we
see from Equation (1.3) that

P{X ∈ A,Y ∈ B} =
∫
B

∫
A
f (x, y)dx dy (1.4)

Because

F(a,b) = P{X ∈ (−q, a],Y ∈ (−q,b]}

=
∫ b

−q

∫ a

−q
f (x, y)dx dy

it follows, upon differentiation, that

f (a,b) = ∂2

∂a∂b
F(a,b)

wherever the partial derivatives are defined. Another interpretation of the joint den-
sity function, obtained from Equation (1.4), is

P{a < X < a + da,b < Y < b + db} =
∫ d+db

b

∫ a+da

a
f (x, y)dx dy

L f (a,b)da db

when da and db are small and f (x, y) is continuous at a, b. Hence, f (a,b) is a measure
of how likely it is that the random vector (X, Y) will be near (a, b).

If X and Y are jointly continuous, they are individually continuous, and their
probability density functions can be obtained as follows:

P{X ∈ A} = P{X ∈ A,Y ∈ (−q,q)}
=
∫
A

∫ q

−q
f (x, y)dy dx

=
∫
A
fX(x)dx

where
fX(x) =

∫ q

−q
f (x, y)dy

is thus the probability density function of X. Similarly, the probability density func-
tion of Y is given by
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fY(y) =
∫ q

−q
f (x, y)dx

Example
1d

The joint density function of X and Y is given by

f (x, y) =
{
2e−xe−2y 0 < x < q, 0 < y < q
0 otherwise

Compute (a) P{X > 1,Y < 1}, (b) P{X < Y}, and (c) P{X < a}.
Solution

(a) P(X > 1, Y < 1) =
∫ 1

0

∫ q

1
2e−xe−2y dx dy

Now, ∫ q

1
e−xdx = −e−x|q1 = e−1

giving that

P(X > 1, Y < 1) = e−1
∫ 1

0
2e−2ydy = e−1(1 − e−2)

(b) P{X < Y} =
∫ ∫

(x,y):x<y

2e−xe−2y dx dy

=
∫ q

0

∫ y

0
2e−xe−2y dx dy

=
∫ q

0
2e−2y(1 − e−y)dy

=
∫ q

0
2e−2ydy −

∫ q

0
2e−3ydy

= 1 − 2
3

= 1
3

(c) P{X < a} =
∫ a

0

∫ q

0
2e−2ye−x dy dx

=
∫ a

0
e−x dx

= 1 − e−a .

Example
1e

Consider a circle of radius R, and suppose that a point within the circle is randomly
chosen in such a manner that all regions within the circle of equal area are equally
likely to contain the point. (In other words, the point is uniformly distributed within
the circle.) If we let the center of the circle denote the origin and define X and Y
to be the coordinates of the point chosen (Figure 6.1), then, since (X, Y) is equally
likely to be near each point in the circle, it follows that the joint density function of
X and Y is given by
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(0, 0)

(X, Y)

R

x

y

Figure 6.1 Joint probability distribution.

f (x, y) =
{
c if x2 + y2 … R2

0 if x2 + y2 > R2

for some value of c.
(a) Determine c.
(b) Find the marginal density functions of X and Y.
(c) Compute the probability that D, the distance from the origin of the point

selected, is less than or equal to a.
(d) Find E [D].

Solution
(a) Because ∫ q

−q

∫ q

−q
f (x, y)dy dx = 1

it follows that

c
∫∫

x2+y2…R2

dy dx = 1

We can evaluate
∫∫
x2+y2…R2 dy dx either by using polar coordinates or,

more simply, by noting that it represents the area of the circle and is thus equal
to πR2. Hence,

c = 1
πR2

(b) fX(x) =
∫ q

−q
f (x, y)dy

= 1
πR2

∫
x2+y2…R2

dy

= 1
πR2

∫ a

−a
dy, where a =

√
R2 − x2

= 2
πR2

√
R2 − x2, x2 … R2
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and it equals 0 when x2 > R2. By symmetry, the marginal density of Y is
given by

fY(y) = 2
πR2

√
R2 − y2, y2 … R2

= 0 y2 > R2

(c) The distribution function of D =
√
X2 + Y2, the distance from the origin, is

obtained as follows: For 0 … a … R,

FD(a) = P{
√
X2 + Y2 … a}

= P{X2 + Y2 … a2}
=

∫∫
x2+y2 … a2

f (x, y)dy dx

= 1
πR2

∫ ∫
x2+y2 … a2

dy dx

= πa2

πR2

= a2

R2

where we have used the fact that
∫∫
x2+y2 … a2 dy dx is the area of a circle of

radius a and thus is equal to πa2.
(d) From part (c), the density function of D is

fD(a) = 2a
R2 0 … a … R

Hence,

E[D] = 2
R2

∫ R

0
a2da = 2R

3
.

Example
1f

The joint density of X and Y is given by

f (x, y) =
{
e−(x+y) 0 < x < q, 0 < y < q
0 otherwise

Find the density function of the random variable X/Y.
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Solution We start by computing the distribution function of X/Y. For a > 0,

FX/Y(a) = P
{
X
Y

… a
}

=
∫ ∫
x/y … a

e−(x+y) dx dy

=
∫ q

0

∫ ay

0
e−(x+y) dx dy

=
∫ q

0
(1 − e−ay)e−ydy

=
{

−e−y + e−(a+1)y

a + 1

}∣∣∣∣∣∣
q

0

= 1 − 1
a + 1

Differentiation shows that the density function of X/Y is given by fX/Y(a) = 1/
(a + 1)2, 0 < a < q. .

We can also define joint probability distributions for n random variables in
exactly the samemanner as we did for n = 2. For instance, the joint cumulative prob-
ability distribution function F(a1, a2, . . . , an) of the n random variablesX1,X2, . . . ,Xn
is defined by

F(a1, a2, . . . , an) = P{X1 … a1,X2 … a2, . . . ,Xn … an}

Further, the n random variables are said to be jointly continuous if there exists a
function f (x1, x2, . . . , xn), called the joint probability density function, such that, for
any set C in n-space,

P{(X1,X2, . . . ,Xn) ∈ C} =
∫∫

· · ·
∫

(x1,...,xn)∈C
f (x1, . . . , xn)dx1dx2 · · ·dxn

In particular, for any n sets of real numbers A1,A2, . . . ,An,

P{X1 ∈ A1,X2 ∈ A2, . . . ,Xn ∈ An}
=
∫
An

∫
An−1

· · ·
∫
A1

f (x1, . . . , xn)dx1dx2 · · · dxn
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Example
1g

The multinomial distribution

One of the most important joint distributions is the multinomial distribution, which
arises when a sequence of n independent and identical experiments is performed.
Suppose that each experiment can result in any one of r possible outcomes, with

respective probabilities p1,p2, . . . ,pr,
r∑
i=1

pi = 1. If we let Xi denote the number of

the n experiments that result in outcome number i, then

P{X1 = n1,X2 = n2, . . . ,Xr = nr} = n!
n1!n2! · · · nr!

pn11 p
n2
2 · · ·pnrr (1.5)

whenever
r∑
i=1

ni = n.

Equation (1.5) is verified by noting that any sequence of outcomes for the n
experiments that leads to outcome i occurring ni times for i = 1, 2, . . . , r will, by
the assumed independence of experiments, have probability pn11 p

n2
2 . . . pnrr of occur-

ring. Because there are n!/(n1!n2! . . . nr!) such sequences of outcomes (there are
n!/n1! . . . nr! different permutations of n things of which n1 are alike, n2 are alike,
. . . ,nr are alike), Equation (1.5) is established. The joint distribution whose joint
probability mass function is specified by Equation (1.5) is called the multinomial
distribution. Note that when r = 2, the multinomial reduces to the binomial dis-
tribution.

Note also that any sum of a fixed set of the X ′
i s will have a binomial distribu-

tion. That is, if N ( {1, 2, . . . , r}, then ∑
i∈N Xi will be a binomial random variable

with parameters n and p = ∑
i∈N pi. This follows because

∑
i∈N Xi represents the

number of the n experiments whose outcome is inN, and each experiment will inde-
pendently have such an outcome with probability

∑
i∈N pi.

As an application of the multinomial distribution, suppose that a fair die is rolled
9 times. The probability that 1 appears three times, 2 and 3 twice each, 4 and 5 once
each, and 6 not at all is

9!
3!2!2!1!1!0!

(
1
6

)3 (1
6

)2 (1
6

)2 (1
6

)1 (1
6

)1 (1
6

)0

= 9!
3!2!2!

(
1
6

)9

We can also use the multinomial distribution to analyze a variation of the classical
birthday problem which asks for the probability that no 3 people in a group of size
n have the same birthday when the birthdays of the n people are independent and
each birthday is equally likely to be any of the 365 days of the year. Because this
probability is 0 when n > 730 (why is this), we will suppose that n … 730. To find
the desired probability, note that there will be no set of 3 people having the same
birthday if each of the 365 days of the year is the birthday of at most 2 persons. Now,
this will be the case if for some i … n/2 the event Ai occurs, where Ai is the event
that the 365 days of the year can be partitioned into three groups of respective sizes
i, n − 2i, and 365 − n + i such that every day in the first group is the birthday of
exactly 2 of the n individuals, every day in the second group is the birthday of exactly
1 of the n individuals, and every day in the third group is the birthday of none of the
n individuals. Now, because each day of the year is equally likely to be the birthday
of an individual, it follows, for a given partition of the 365 days into three groups of
respective sizes i, n − 2i, and 365 − n + i, that the probability each day in the first
group is the birthday of exactly 2 of the n individuals, each day in the second group
is the birthday of exactly 1 of the n individuals, and each day in the third group is the
birthday of none of the n individuals is equal to the multinomial probability
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n!
(2!)i(1!)n−2i(0!)365−n+i

(
1
365

)n.

As the number of partitions of the 365 days of the year into 3 groups of respective
sizes i, n − 2i, 365 − n + i is 365!

i!(n−2i)!(365−n+i)! , it follows that

P(Ai) = 365!
i!(n − 2i)!(365 − n + i)!

n!
2i

(
1
365

)n , i … n/2

As the events Ai, i … n/2, are mutually exclusive we have that

P{no set of three with same birthday} =
[n/2]∑
i=0

365!
i!(n − 2i)!(365 − n + i)!

n!
2i

(
1
365

)n

When n = 88, the preceding gives

P{no set of three with same birthday} =
44∑
i=0

365!
i!(88 − 2i)!(277 + i)!

88!
2i

(
1
365

)88 L .504

.

6.2 Independent Random Variables
The random variables X and Y are said to be independent if, for any two sets of real
numbers A and B,

P{X ∈ A,Y ∈ B} = P{X ∈ A}P{Y ∈ B} (2.1)

In other words, X and Y are independent if, for all A and B, the events EA =
{X ∈ A} and FB = {Y ∈ B} are independent.

It can be shown by using the three axioms of probability that Equation (2.1) will
follow if and only if, for all a, b,

P{X … a,Y … b} = P{X … a}P{Y … b}
Hence, in terms of the joint distribution function F of X and Y, X and Y are inde-
pendent if

F(a,b) = FX(a)FY(b) for all a,b

When X and Y are discrete random variables, the condition of independence (2.1)
is equivalent to

p(x, y) = pX(x)pY(y) for all x, y (2.2)

The equivalence follows because, if Equation (2.1) is satisfied, then we obtain Equa-
tion (2.2) by lettingA and B be, respectively, the one-point setsA = {x} and B = {y}.
Furthermore, if Equation (2.2) is valid, then for any sets A,B,

P{X ∈ A,Y ∈ B} =
∑
y∈B

∑
x∈A

p(x, y)

=
∑
y∈B

∑
x∈A

pX(x)pY(y)

=
∑
y∈B

pY(y)
∑
x∈A

pX(x)

= P{Y ∈ B}P{X ∈ A}
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and Equation (2.1) is established.
In the jointly continuous case, the condition of independence is equivalent to

f (x, y) = fX(x)fY(y) for all x, y

Thus, loosely speaking, X and Y are independent if knowing the value of one
does not change the distribution of the other. Random variables that are not inde-
pendent are said to be dependent.

Example
2a

Suppose that n + m independent trials having a common probability of success p are
performed. If X is the number of successes in the first n trials, and Y is the number
of successes in the final m trials, then X and Y are independent, since knowing the
number of successes in the first n trials does not affect the distribution of the number
of successes in the final m trials (by the assumption of independent trials). In fact,
for integral x and y,

P{X = x,Y = y} =
(
n
x

)
px(1 − p)n−x

(
m
y

)
py(1 − p)m−y 0 … x … n,

0 … y … m

= P{X = x}P{Y = y}
In contrast, X and Z will be dependent, where Z is the total number of successes in
the n + m trials. (Why?) .

Example
2b

Suppose that the number of people who enter a post office on a given day is a Pois-
son random variable with parameter λ. Show that if each person who enters the post
office is a male with probability p and a female with probability 1 − p, then the num-
ber of males and females entering the post office are independent Poisson random
variables with respective parameters λp and λ(1 − p).

Solution Let X and Y denote, respectively, the number of males and females that
enter the post office. We shall show the independence of X and Y by establish-
ing Equation (2.2). To obtain an expression for P{X = i,Y = j}, we condition on
whether or not X + Y = i + j. This gives:

P{X = i,Y = j} = P{X = i,Y = j|X + Y = i + j}P{X + Y = i + j}
+ P{X = i,Y = j|X + Y Z i + j}P{X + Y Z i + j}

[Note that this equation is merely a special case of the formulaP(E) = P(E|F)P(F) +
P(E|Fc)P(Fc).]

Since P{X = i,Y = j|X + Y Z i + j} is clearly 0, we obtain

P{X = i,Y = j} = P{X = i,Y = j|X + Y = i + j}P{X + Y = i + j} (2.3)

Now, because X + Y is the total number of people who enter the post office, it
follows, by assumption, that

P{X + Y = i + j} = e−λ λi+j

(i + j)!
(2.4)

Furthermore, given that i + j people do enter the post office, since each person
entering will be male with probability p, it follows that the probability that exactly
i of them will be male (and thus j of them female) is just the binomial probability(
i + j
i

)
pi(1 − p)j. That is,
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P{X = i,Y = j|X + Y = i + j} =
(
i + j
i

)
pi(1 − p)j (2.5)

Substituting Equations (2.4) and (2.5) into Equation (2.3) yields

P{X = i,Y = j} =
(
i + j
i

)
pi(1 − p)je−λ λi+j

(i + j)!

= e−λ (λp)i

i!j!
[λ(1 − p)]j

= e−λp(λp)i

i!
e−λ(1−p) [λ(1 − p)]j

j!
(2.6)

Hence,

P{X = i} = e−λp (λp)i

i!

∑
j

e−λ(1−p) [λ(1 − p)]j

j!
= e−λp (λp)i

i!
(2.7)

and similarly,

P{Y = j} = e−λ(1−p) [λ(1 − p)]j

j!
(2.8)

Equations (2.6), (2.7), and (2.8) establish the desired result. .

Example
2c

A man and a woman decide to meet at a certain location. If each of them indepen-
dently arrives at a time uniformly distributed between 12 noon and 1 P.M., find the
probability that the first to arrive has to wait longer than 10 minutes.

Solution If we let X and Y denote, respectively, the time past 12 that the man and
the woman arrive, thenX and Y are independent random variables, each of which is
uniformly distributed over (0, 60). The desired probability, P{X + 10 < Y} + P{Y +
10 < X}, which, by symmetry, equals 2P{X + 10 < Y}, is obtained as follows:

2P{X + 10 < Y} = 2
∫ ∫

x+10<y

f (x, y)dx dy

= 2
∫ ∫

x+10<y

fX(x)fY(y)dx dy

= 2
∫ 60

10

∫ y−10

0

(
1
60

)2

dx dy

= 2
(60)2

∫ 60

10
(y − 10)dy

= 25
36

.

Our next example presents the oldest problem dealing with geometrical prob-
abilities. It was first considered and solved by Buffon, a French naturalist of the
eighteenth century, and is usually referred to as Buffon’s needle problem.
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Example
2d

Buffon’s needle problem

A table is ruled with equidistant parallel lines a distanceD apart. A needle of length L,
where L … D, is randomly thrown on the table. What is the probability that the nee-
dle will intersect one of the lines (the other possibility being that the needle will be
completely contained in the strip between two lines)?

Solution Let us determine the position of the needle by specifying (1) the distance X
from the middle point of the needle to the nearest parallel line and (2) the angle θ

between the needle and the projected line of length X. (See Figure 6.2.) The needle
will intersect a line if the hypotenuse of the right triangle in Figure 6.2 is less than
L/2—that is, if

X
cos θ

<
L
2

or X <
L
2
cos θ

Figure 6.2

As X varies between 0 andD/2 and θ between 0 and π/2, it is reasonable to assume
that they are independent, uniformly distributed random variables over these respec-
tive ranges. Hence,

P
{
X <

L
2
cos θ

}
=

∫ ∫
x<L/2 cos y

fX(x)fθ (y)dx dy

= 4
πD

∫ π/2

0

∫ L/2 cos y

0
dx dy

= 4
πD

∫ π/2

0

L
2
cos y dy

= 2L
πD

.

∗Example
2e

Characterization of the normal distribution

Let X and Y denote the horizontal and vertical miss distances when a bullet is fired
at a target, and assume that

1. X and Y are independent continuous random variables having differentiable
density functions.

2. The joint density f (x, y) = fX(x)fY(y) of X and Y depends on (x, y) only
through x2 + y2.

Loosely put, assumption 2 states that the probability of the bullet landing on any
point of the x–y plane depends only on the distance of the point from the target and
not on its angle of orientation. An equivalent way of phrasing this assumption is to
say that the joint density function is rotation invariant.
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It is a rather interesting fact that assumptions 1 and 2 imply that X and Y are
normally distributed random variables. To prove this, note first that the assumptions
yield the relation

f (x, y) = fX(x)fY(y) = g(x2 + y2) (2.9)

for some function g. Differentiating Equation (2.9) with respect to x yields

f ′X(x)fY(y) = 2x g′(x2 + y2) (2.10)

Dividing Equation (2.10) by Equation (2.9) gives

f ′X(x)

fX(x)
= 2x g′(x2 + y2)

g(x2 + y2)

or
f ′X(x)

2x fX(x)
= g′(x2 + y2)

g(x2 + y2)
(2.11)

Because the value of the left-hand side of Equation (2.11) depends only on x,
whereas the value of the right-hand side depends on x2 + y2, it follows that the left-
hand side must be the same for all x. To see this, consider any x1, x2 and let y1, y2 be
such that x21 + y21 = x22 + y22. Then, from Equation (2.11), we obtain

f ′X(x1)

2x1 fX(x1)
= g′(x21 + y21)

g(x21 + y21)
= g′(x22 + y22)

g(x22 + y22)
= f ′X(x2)

2x2 fX(x2)

Hence,
f ′X(x)

x fX(x)
= c or

d
dx

(log fX(x)) = cx

which implies, upon integration of both sides, that

log fX(x) = a + cx2

2
or fX(x) = kecx

2/2

Since
∫q
−q fX(x)dx = 1, it follows that c is necessarily negative, and we may write

c = −1/σ 2. Thus,

fX(x) = ke−x
2/2σ 2

That is, X is a normal random variable with parameters μ = 0 and σ 2. A similar
argument can be applied to fY(y) to show that

fY(y) = 1√
2π σ

e−y
2/2σ 2

Furthermore, it follows from assumption 2 that σ 2 = σ 2 and that X and Y are thus
independent, identically distributed normal random variables with parametersμ = 0
and σ 2. .

A necessary and sufficient condition for the random variables X and Y to be
independent is for their joint probability density function (or joint probability mass
function in the discrete case) f (x, y) to factor into two terms, one depending only on
x and the other depending only on y.
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Proposition
2.1

The continuous (discrete) random variables X and Y are independent if and only if
their joint probability density (mass) function can be expressed as

fX,Y(x, y) = h(x) g(y) −q < x < q,−q < y < q

Proof Let us give the proof in the continuous case. First, note that independence
implies that the joint density is the product of the marginal densities of X and Y, so
the preceding factorization will hold when the random variables are independent.
Now, suppose that

fX,Y(x, y) = h(x) g(y)

Then

1 =
∫ q

−q

∫ q

−q
fX,Y(x, y)dx dy

=
∫ q

−q
h(x)dx

∫ q

−q
g(y)dy

= C1C2

where C1 = ∫q
−q h(x)dx and C2 = ∫q

−q g(y)dy. Also,

fX(x) =
∫ q

−q
fX,Y(x, y)dy = C2 h(x)

fY(y) =
∫ q

−q
fX,Y(x, y)dx = C1 g(y)

Since C1C2 = 1, it follows that

fX,Y(x, y) = fX(x)fY(y)

and the proof is complete.

Example
2f

If the joint density function of X and Y is

f (x, y) = 6e−2xe−3y 0 < x < q, 0 < y < q

and is equal to 0 outside this region, are the random variables independent? What if
the joint density function is

f (x, y) = 24xy 0 < x < 1, 0 < y < 1, 0 < x + y < 1

and is equal to 0 otherwise?

Solution In the first instance, the joint density function factors, and thus the random
variables, are independent (with one being exponential with rate 2 and the other
exponential with rate 3). In the second instance, because the region in which the
joint density is nonzero cannot be expressed in the form x ∈ A, y ∈ B, the joint
density does not factor, so the random variables are not independent. This can be
seen clearly by letting

I(x, y) =
{
1 if 0 < x < 1, 0 < y < 1, 0 < x + y < 1
0 otherwise

and writing
f (x, y) = 24xy I(x, y)
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which clearly does not factor into a part depending only on x and another depending
only on y. .

The concept of independence may, of course, be defined for more than two
random variables. In general, the n random variables X1,X2, . . . ,Xn are said to be
independent if, for all sets of real numbers A1,A2, . . . ,An,

P{X1 ∈ A1,X2 ∈ A2, . . . ,Xn ∈ An} =
n∏
i=1

P{Xi ∈ Ai}

As before, it can be shown that this condition is equivalent to

P{X1 … a1,X2 … a2, . . . ,Xn … an}

=
n∏
i=1

P{Xi … ai} for all a1, a2, . . . , an

Finally, we say that an infinite collection of random variables is independent if every
finite subcollection of them is independent.

Example
2g

How can a computer choose a random subset?

Most computers are able to generate the value of, or simulate, a uniform (0, 1)
random variable by means of a built-in subroutine that (to a high degree of approxi-
mation) produces such “random numbers.” As a result, it is quite easy for a computer
to simulate an indicator (that is, a Bernoulli) random variable. Suppose I is an indi-
cator variable such that

P{I = 1} = p = 1 − P{I = 0}
The computer can simulate I by choosing a uniform (0, 1) random number U and
then letting

I = 1 if U < p
0 if U Ú p

Suppose that we are interested in having the computer select k,k … n, of the num-

bers 1, 2, . . . ,n in such a way that each of the

(
n
k

)
subsets of size k is equally likely

to be chosen. We now present a method that will enable the computer to solve this
task. To generate such a subset, we will first simulate, in sequence, n indicator vari-
ables I1, I2, . . . , In, of which exactly k will equal 1. Those i for which Ii = 1 will then
constitute the desired subset.

To generate the random variables I1, . . . , In, start by simulating n independent
uniform (0, 1) random variables U1,U2, . . . ,Un. Now define

I1 =

⎧⎪⎨
⎪⎩

1 if U1 <
k
n

0 otherwise

and then, once I1, . . . , Ii are determined, recursively set

Ii+1 =

⎧⎪⎨
⎪⎩

1 if Ui+1 <
k − (I1 + · · · + Ii)

n − i
0 otherwise
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In words, at the (i + 1)th stage, we set Ii+1 equal to 1 (and thus put i + 1 into
the desired subset) with a probability equal to the remaining number of places in

the subset

⎛
⎝namely,k −

i∑
j=1

Ij

⎞
⎠, divided by the remaining number of possibilities

(namely, n − i). Hence, the joint distribution of I1, I2, . . . , In is determined from

P{I1 = 1} = k
n

P{Ii+1 = 1|I1, . . . , Ii} =
k −

i∑
j=1

Ij

n − i
1 < i < n

The proof that the preceding formula results in all subsets of size k being equally
likely to be chosen is by induction on k + n. It is immediate when k + n = 2 (that
is, when k = 1,n = 1), so assume it to be true whenever k + n … l. Now, suppose
that k + n = l + 1, and consider any subset of size k—say, i1 … i2 … · · · … ik—and
consider the following two cases.

Case 1: i1 = 1

P{I1 = Ii2 = · · · = Iik = 1, Ij = 0 otherwise}
= P{I1 = 1}P{Ii2 = · · · = Iik = 1, Ij = 0 otherwise|I1 = 1}

Now given that I1 = 1, the remaining elements of the subset are chosen as if a
subset of size k − 1 were to be chosen from the n − 1 elements 2, 3, . . . ,n. Hence, by
the induction hypothesis, the conditional probability that this will result in a given

subset of size k − 1 being selected is 1/

(
n − 1
k − 1

)
. Hence,

P{I1 = Ii2 = · · · = Iik = 1, Ij = 0 otherwise}
= k
n

1(
n − 1
k − 1

) = 1(
n
k

)

Case 2: i1 Z 1

P{Ii1 = Ii2 = · · · = Iik = 1, Ij = 0 otherwise}
= P{Ii1 = · · · = Iik = 1, Ij = 0 otherwise|I1 = 0}P{I1 = 0}
= 1(

n − 1
k

) (
1 − k

n

)
= 1(

n
k

)

where the induction hypothesis was used to evaluate the preceding conditional prob-
ability.

Thus, in all cases, the probability that a given subset of size k will be the subset

chosen is 1
/( n

k

)
. .

Remark The foregoing method for generating a random subset has a very low
memory requirement. A faster algorithm that requires somewhat more memory is
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presented in Section 10.1. (The latter algorithm uses the last k elements of a random
permutation of 1, 2, . . . ,n.) .

Example
2h

Let X, Y, Z be independent and uniformly distributed over (0, 1). Compute
P{X Ú YZ}.
Solution Since

fX,Y,Z(x, y, z) = fX(x) fY(y) fZ(z)

= 1, 0 … x … 1, 0 … y … 1, 0 … z … 1

we have

P{X Ú YZ} =
∫ ∫ ∫
xÚyz

fX, Y, Z(x, y, z)dx dy dz

=
∫ 1

0

∫ 1

0

∫ 1

yz
dx dy dz

=
∫ 1

0

∫ 1

0
(1 − yz)dy dz

=
∫ 1

0

(
1 − z

2

)
dz

= 3
4

.

Example
2i

Probabilistic interpretation of half-life

Let N(t) denote the number of nuclei contained in a radioactive mass of material at
time t. The concept of half-life is often defined in a deterministic fashion by stating
this it is an empirical fact that, for some value h, called the half-life,

N(t) = 2−t/hN(0) t > 0

[Note that N(h) = N(0)/2.] Since the preceding implies that, for any nonnegative s
and t,

N(t + s) = 2−(s+t)/hN(0) = 2−t/hN(s)

it follows that no matter how much time s has already elapsed, in an additional time
t, the number of existing nuclei will decrease by the factor 2−t/h.

Because the deterministic relationship just given results from observations of
radioactive masses containing huge numbers of nuclei, it would seem that it might
be consistent with a probabilistic interpretation. The clue to deriving the appropriate
probability model for half-life resides in the empirical observation that the propor-
tion of decay in any time interval depends neither on the total number of nuclei at
the beginning of the interval nor on the location of this interval [sinceN(t + s)/N(s)
depends neither onN(s) nor on s]. Thus, it appears that the individual nuclei act inde-
pendently and with a memoryless life distribution. Consequently, since the unique
life distribution that is memoryless is the exponential distribution, and since exactly
one-half of a given amount of mass decays every h time units, we propose the fol-
lowing probabilistic model for radioactive decay.

Probabilistic interpretation of the half-life h: The lifetimes of the individual nuclei
are independent random variables having a life distribution that is exponential with
median equal to h. That is, if L represents the lifetime of a given nucleus, then
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P{L < t} = 1 − 2−t/h

(Because P{L < h} = 1
2 and the preceding can be written as

P{L < t} = 1 − exp
{
−t log 2

h

}

it can be seen that L indeed has an exponential distribution with median h.)
Note that under the probabilistic interpretation of half-life just given, if one

starts with N(0) nuclei at time 0, then N(t), the number of nuclei that remain at
time t will have a binomial distribution with parameters n = N(0) and p = 2−t/h.
Results of Chapter 8 will show that this interpretation of half-life is consistent with
the deterministic model when considering the proportion of a large number of nuclei
that decay over a given time frame. However, the difference between the determinis-
tic and probabilistic interpretation becomes apparent when one considers the actual
number of decayed nuclei. We will now indicate this with regard to the question of
whether protons decay.

There is some controversy over whether or not protons decay. Indeed, one the-
ory predicts that protons should decay with a half-life of about h = 1030 years. To
check this prediction empirically, it has been suggested that one follow a large num-
ber of protons for, say, one or two years and determine whether any of them decay
within that period. (Clearly, it would not be feasible to follow a mass of protons for
1030 years to see whether one-half of it decays.) Let us suppose that we are able to
keep track of N(0) = 1030 protons for c years. The number of decays predicted by
the deterministic model would then be given by

N(0) − N(c) = h(1 − 2−c/h)

= 1 − 2−c/h

1/h

L lim
x→0

1 − 2−cx

x
since

1
h

= 10−30 L 0

= lim
x→0

(c2−cx log 2) by L’Hôpital’s rule

= c log 2 L .6931c

For instance, the deterministic model predicts that in 2 years there should be 1.3863
decays, and it would thus appear to be a serious blow to the hypothesis that protons
decay with a half-life of 1030 years if no decays are observed over those 2 years.

Let us now contrast the conclusions just drawn with those obtained from the
probabilistic model. Again, let us consider the hypothesis that the half-life of
protons is h = 1030 years, and suppose that we follow h protons for c years. Since
there is a huge number of independent protons, each of which will have a very small
probability of decaying within this time period, it follows that the number of protons
that decay will have (to a very strong approximation) a Poisson distribution with
parameter equal to h(1 − 2−c/h) L c log 2. Thus,

P{0 decays} = e−c log 2

= e− log(2c) = 1
2c

and, in general,

P{n decays} = 2−c[c log 2]n

n!
n Ú 0
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Thus, we see that even though the average number of decays over 2 years is (as
predicted by the deterministic model) 1.3863, there is 1 chance in 4 that there will
not be any decays, thereby indicating that such a result in no way invalidates the
original hypothesis of proton decay. .

Remark Independence is a symmetric relation. The random variables X and Y are
independent if their joint density function (or mass function in the discrete case) is
the product of their individual density (or mass) functions. Therefore, to say thatX is
independent of Y is equivalent to saying that Y is independent of X—or just that X
and Y are independent. As a result, in considering whetherX is independent of Y in
situations where it is not at all intuitive that knowing the value of Y will not change
the probabilities concerning X, it can be beneficial to interchange the roles of X
and Y and ask instead whether Y is independent of X. The next example illustrates
this point. .

Example
2j

If the initial throw of the dice in the game of craps results in the sum of the dice
equaling 4, then the player will continue to throw the dice until the sum is either 4
or 7. If this sum is 4, then the player wins, and if it is 7, then the player loses. Let N
denote the number of throws needed until either 4 or 7 appears, and letX denote the
value (either 4 or 7) of the final throw. IsN independent ofX? That is, does knowing
which of 4 or 7 occurs first affect the distribution of the number of throws needed
until that number appears? Most people do not find the answer to this question to
be intuitively obvious. However, suppose that we turn it around and ask whether X
is independent of N. That is, does knowing how many throws it takes to obtain a
sum of either 4 or 7 affect the probability that that sum is equal to 4? For instance,
suppose we know that it takes n throws of the dice to obtain a sum of either 4 or
7. Does this affect the probability distribution of the final sum? Clearly not, since
all that is important is that its value is either 4 or 7, and the fact that none of the
first n − 1 throws were either 4 or 7 does not change the probabilities for the nth
throw. Thus, we can conclude that X is independent of N, or equivalently, that N is
independent of X.

As another example, letX1,X2, . . . be a sequence of independent and identically
distributed continuous random variables, and suppose that we observe these random
variables in sequence. If Xn > Xi for each i = 1, . . . ,n − 1, then we say that Xn is
a record value. That is, each random variable that is larger than all those preceding
it is called a record value. Let An denote the event that Xn is a record value. Is An+1
independent ofAn? That is, does knowing that the nth random variable is the largest
of the first n change the probability that the (n + 1) random variable is the largest
of the first n + 1? While it is true that An+1 is independent of An, this may not be
intuitively obvious. However, if we turn the question around and ask whether An is
independent of An+1, then the result is more easily understood. For knowing that
the (n + 1) value is larger than X1, . . . ,Xn clearly gives us no information about
the relative size of Xn among the first n random variables. Indeed, by symmetry, it is
clear that each of these n random variables is equally likely to be the largest of this
set, so P(An|An+1) = P(An) = 1/n. Hence, we can conclude that An and An+1 are
independent events. .

Remark It follows from the identity

P{X1 … a1, . . . ,Xn … an}
= P{X1 … a1}P{X2 … a2|X1 … a1} · · ·P{Xn … an|X1 … a1, . . . ,Xn−1 … an−1}
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that the independence of X1, . . . ,Xn can be established sequentially. That is, we can
show that these random variables are independent by showing that

X2 is independent of X1
X3 is independent of X1,X2
X4 is independent of X1,X2,X3

···
Xn is independent of X1, . . . ,Xn−1

6.3 Sums of Independent Random Variables
It is often important to be able to calculate the distribution of X + Y from the
distributions of X and Y when X and Y are independent. Suppose that X and Y are
independent, continuous random variables having probability density functions fX
and fY . The cumulative distribution function of X + Y is obtained as follows:

FX+Y(a) = P{X + Y … a}
=

∫ ∫
x+y…a

fX(x)fY(y)dx dy

=
∫ q

−q

∫ a−y

−q
fX(x)fY(y)dx dy

=
∫ q

−q

∫ a−y

−q
fX(x)dxfY(y)dy

=
∫ q

−q
FX(a − y)fY(y)dy (3.1)

The cumulative distribution function FX+Y is called the convolution of the distribu-
tions FX and FY (the cumulative distribution functions of X and Y, respectively).

By differentiating Equation (3.1), we find that the probability density function
fX+Y of X + Y is given by

fX+Y(a) = d
da

∫ q

−q
FX(a − y)fY(y)dy

=
∫ q

−q

d
da
FX(a − y)fY(y)dy

=
∫ q

−q
fX(a − y)fY(y)dy (3.2)

6.3.1 Identically Distributed Uniform Random Variables
It is not difficult to determine the density function of the sum of two independent
uniform (0, 1) random variables.

Example
3a

Sum of two independent uniform random variables

If X and Y are independent random variables, both uniformly distributed on (0, 1),
calculate the probability density of X + Y.
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Solution From Equation (3.2), since

fX(a) = fY(a) =
{
1 0 < a < 1
0 otherwise

we obtain

fX+Y(a) =
∫ 1

0
fX(a − y)dy

For 0 … a … 1, this yields

fX+Y(a) =
∫ a

0
dy = a

For 1 < a < 2, we get

fX+Y(a) =
∫ 1

a−1
dy = 2 − a

Hence,

fX+Y(a) =

⎧⎪⎨
⎪⎩
a 0 … a … 1
2 − a 1 < a < 2
0 otherwise

Because of the shape of its density function (see Figure 6.3), the random variable
X + Y is said to have a triangular distribution. .

Now, suppose that X1,X2, . . . ,Xn are independent uniform (0, 1) random variables,
and let

Fn(x) = P{X1 + . . . + Xn … x}

Whereas a general formula for Fn(x) is messy, it has a particularly nice form when
x … 1. Indeed, we now use mathematical induction to prove that

Fn(x) = xn/n! , 0 … x … 1

Because the proceeding equation is true for n = 1, assume that

Fn−1(x) = xn−1/(n − 1)! , 0 … x … 1

1

1 2
a

f(a)

0

Figure 6.3 Triangular density function.
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Now, writing
n∑
i=1

Xi =
n−1∑
i=1

Xi + Xn

and using the fact that the Xi are all nonnegative, we see from Equation 3.1 that, for
0 … x … 1,

Fn(x) =
∫ 1

0
Fn−1(x − y)fXn(y)dy

= 1
(n − 1)!

∫ x

0
(x − y)n−1 dy by the induction hypothesis

= 1
(n − 1)!

∫ x

0
wn−1dw (by w = x − y)

= xn/n!

which completes the proof.
For an interesting application of the preceding formula, let us use it to determine

the expected number of independent uniform (0, 1) random variables that need to
be summed to exceed 1. That is, with X1,X2, . . . being independent uniform (0, 1)
random variables, we want to determine E[N], where

N = min{n : X1 + . . . + Xn > 1}
Noting that N is greater than n > 0 if and only if X1 + . . . + Xn … 1, we see that

P{N > n} = Fn(1) = 1/n! , n > 0

Because
P{N > 0} = 1 = 1/0!

we see that, for n > 0,

P{N = n} = P{N > n − 1} − P{N > n} = 1
(n − 1)!

− 1
n!

= n − 1
n!

Therefore,

E[N] =
q∑
n=1

n(n − 1)
n!

=
q∑
n=2

1
(n − 2)!

= e

That is, the mean number of independent uniform (0, 1) random variables that must
be summed for the sum to exceed 1 is equal to e.

6.3.2 Gamma Random Variables
Recall that a gamma random variable has a density of the form

f (y) = λe−λy(λy)t−1

�(t)
0 < y < q
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An important property of this family of distributions is that for a fixed value of λ, it
is closed under convolutions.

Proposition
3.1

If X and Y are independent gamma random variables with respective parameters
(s, λ) and (t, λ), then X + Y is a gamma random variable with parameters (s + t, λ).

Proof Using Equation (3.2), we obtain

fX+Y(a) = 1
�(s)�(t)

∫ a

0
λe−λ(a−y)[λ(a − y)]s−1λe−λy(λy)t−1 dy

= Ke−λa
∫ a

0
(a − y)s−1yt−1dy

= Ke−λaas+t−1
∫ 1

0
(1 − x)s−1xt−1 dx by letting x = y

a

= Ce−λaas+t−1

where C is a constant that does not depend on a. But, as the preceding is a density
function and thus must integrate to 1, the value of C is determined, and we have

fX+Y(a) = λe−λa(λa)s+t−1

�(s + t)

Hence, the result is proved.

It is now a simple matter to establish, by using Proposition 3.1 and induction,
that if Xi, i = 1, . . . ,n are independent gamma random variables with respective

parameters (ti, λ), i = 1, . . . ,n, then
n∑
i=1

Xi is gamma with parameters

(
n∑
i=1

ti, λ

)
. We

leave the proof of this statement as an exercise.

Example
3b

Let X1,X2, . . . ,Xn be n independent exponential random variables, each having
parameter λ. Then, since an exponential random variable with parameter λ is the
same as a gamma random variable with parameters (1, λ), it follows from Proposi-
tion 3.1 that X1 + X2 + · · · + Xn is a gamma random variable with parameters
(n, λ). .

If Z1,Z2, . . . ,Zn are independent standard normal random variables, then Y K
n∑
i=1

Z2
i is said to have the chi-squared (sometimes seen as χ2) distribution with n

degrees of freedom. Let us compute the density function of Y. When n = 1,Y = Z2
1,

and from Example 7b of Chapter 5, we see that its probability density function is
given by

fZ2(y) = 1
2
√
y
[fZ(

√
y) + fZ(−√

y)]

= 1
2
√
y

2√
2π

e−y/2

=
1
2e

−y/2(y/2)1/2−1

√
π

But we recognize the preceding as the gamma distribution with parameters
(
1
2 ,

1
2

)
.

[A by-product of this analysis is that �
(
1
2

)
= √

π .] But since each Z2
i is gamma
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(
1
2 ,

1
2

)
, it follows from Proposition 3.1 that the chi-squared distribution with n degrees

of freedom is just the gamma distribution with parameters
(
n/2, 12

)
and hence has a

probability density function given by

fY (y) =
1
2
e−y/2

(
y
2

)n/2−1

�

(
n
2

) y > 0

= e−y/2yn/2−1

2n/2�
(
n
2

) y > 0

When n is an even integer, �(n/2) = [(n/2) − 1]!, whereas when n is odd, �(n/2) can
be obtained from iterating the relationship �(t) = (t − 1)�(t − 1) and then using
the previously obtained result that �

(
1
2

)
= √

π . [For instance, �
(
5
2

)
= 3

2�
(
3
2

)
=

3
2
1
2�

(
1
2

)
= 3

4
√

π .]
In practice, the chi-squared distribution often arises as the distribution of the

square of the error involved when one attempts to hit a target in n-dimensional space
when the coordinate errors are taken to be independent standard normal random
variables. It is also important in statistical analysis.

6.3.3 Normal Random Variables
We can also use Equation (3.2) to prove the following important result about normal
random variables.

Proposition
3.2

If Xi, i = 1, . . . ,n, are independent random variables that are normally distributed

with respective parameters μi, σ 2
i , i = 1, . . . ,n, then

n∑
i=1

Xi is normally distributed

with parameters
n∑
i=1

μi and
n∑
i=1

σ 2
i .

Proof of Proposition 3.2: To begin, let X and Y be independent normal random
variables with X having mean 0 and variance σ 2 and Y having mean 0 and variance
1. We will determine the density function of X + Y by utilizing Equation (3.2).
Now, with

c = 1
2σ 2 + 1

2
= 1 + σ 2

2σ 2

we have

fX(a − y)fY(y) = 1√
2πσ

exp

{
− (a − y)2

2σ 2

}
1√
2π

exp

{
−y2

2

}

= 1
2πσ

exp

{
− a2

2σ 2

}
exp

{
−cy2 + ay

σ 2

}

= 1
2πσ

exp

{
− a2

2σ 2 − c
(
y2 − 2ay

1 + σ 2

)}



A First Course in Probability 275

where the preceding follows because 2c
1+σ 2 = 1

σ 2 . Now,

a2

2σ 2 + c
(
y2 − 2ya

1 + σ 2

)
= a2

2σ 2 + c
(
y − a

1 + σ 2

)2

− c
a2

(1 + σ 2)2

= a2

2σ 2 + c
(
y − a

1 + σ 2

)2

− a2

2σ 2(1 + σ 2)

= a2

2σ 2

(
1 − 1

1 + σ 2

)
+ c

(
y − a

1 + σ 2

)2

= a2

2(1 + σ 2)
+ c

(
y − a

1 + σ 2

)2

Hence,

fX(a − y)fY(y) = 1
2πσ

exp{− a2

2(1 + σ 2)
} exp{−c(y − a

1 + σ 2 )2}

From Equation (3.2), we obtain that

fX+Y(a) = 1
2πσ

exp{− a2

2(1 + σ 2)
}
∫ q

−q
exp{−c (y − a

1 + σ 2 )2} dy

= 1
2πσ

exp{− a2

2(1 + σ 2)
}
∫ q

−q
exp{−cx2} dx

= C exp{− a2

2(1 + σ 2)
}

where C does not depend on a. But this implies that X + Y is normal with mean 0
and variance 1 + σ 2.

Now, suppose thatX1 andX2 are independent normal random variables withXi
having mean μi and variance σ 2

i , i = 1, 2. Then

X1 + X2 = σ2

(
X1 − μ1

σ2
+ X2 − μ2

σ2

)
+ μ1 + μ2

But since (X1 − μ1)/σ2 is normal with mean 0 and variance σ 2
1 /σ 2

2 , and (X2 − μ2)/σ2
is normal with mean 0 and variance 1, it follows from our previous result that (X1 −
μ1)/σ2 + (X2 − μ2)/σ2 is normal with mean 0 and variance 1 + σ 2

1 /σ 2
2 , implying

thatX1 + X2 is normal with mean μ1 + μ2 and variance σ 2
2 (1 + σ 2

1 /σ 2
2 ) = σ 2

1 + σ 2
2 .

Thus, Proposition 3.2 is established when n = 2. The general case now follows by
induction. That is, assume that Proposition 3.2 is true when there are n − 1 random
variables. Now consider the case of n, and write

n∑
i=1

Xi =
n−1∑
i=1

Xi + Xn

By the induction hypothesis,
n−1∑
i=1

Xi is normal with mean
n−1∑
i=1

μi and variance
n−1∑
i=1

σ 2
i .

Therefore, by the result for n = 2,
n∑
i=1

Xi is normal with mean
n∑
i=1

μi and variance

n∑
i=1

σ 2
i .
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Example
3c

A basketball team will play a 44-game season. Twenty-six of these games are against
class A teams and 18 are against class B teams. Suppose that the team will win each
game against a class A team with probability .4 and will win each game against a
class B team with probability .7. Suppose also that the results of the different games
are independent. Approximate the probability that
(a) the team wins 25 games or more;
(b) the team wins more games against class A teams than it does against class B

teams.

Solution (a) LetXA andXB respectively denote the number of games the teamwins
against class A and against class B teams. Note that XA and XB are independent
binomial random variables and

E[XA] = 26(.4) = 10.4 Var(XA) = 26(.4)(.6) = 6.24

E[XB] = 18(.7) = 12.6 Var(XB) = 18(.7)(.3) = 3.78

By the normal approximation to the binomial, XA and XB will have
approximately the same distribution as would independent normal random variables
with the preceding expected values and variances. Hence, by Proposition 3.2, XA +
XB will have approximately a normal distribution with mean 23 and variance 10.02.
Therefore, letting Z denote a standard normal random variable, we have

P{XA + XB Ú 25} = P{XA + XB Ú 24.5}

= P

{
XA + XB − 23√

10.02
Ú

24.5 − 23√
10.02

}

L P

{
Z Ú

1.5√
10.02

}

L 1 − P{Z < .4739}

L .3178

(b) We note that XA − XB will have approximately a normal distribution with
mean −2.2 and variance 10.02. Hence,

P{XA − XB Ú 1} = P{XA − XB Ú .5}

= P

{
XA − XB + 2.2√

10.02
Ú

.5 + 2.2√
10.02

}

L P

{
Z Ú

2.7√
10.02

}

L 1 − P{Z < .8530}
L .1968

Therefore, there is approximately a 31.78 percent chance that the team will win at
least 25 games and approximately a 19.68 percent chance that it will win more games
against class A teams than against class B teams. .
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The random variable Y is said to be a lognormal random variable with param-
eters μ and σ if log (Y) is a normal random variable with mean μ and variance σ 2.
That is, Y is lognormal if it can be expressed as

Y = eX

where X is a normal random variable.

Example
3d

Starting at some fixed time, let S(n) denote the price of a certain security at the
end of n additional weeks, n Ú 1. A popular model for the evolution of these prices
assumes that the price ratios S(n)/S(n − 1),n Ú 1, are independent and identically
distributed lognormal random variables. Assuming this model, with parameters μ =
.0165, σ = .0730, what is the probability that

(a) the price of the security increases over each of the next two weeks?
(b) the price at the end of two weeks is higher than it is today?

Solution Let Z be a standard normal random variable. To solve part (a), we use the
fact that log(x) increases in x to conclude that x > 1 if and only if log(x) > log(1) = 0.
As a result, we have

P
{
S(1)
S(0)

> 1
}

= P

{
log

(
S(1)
S(0)

)
> 0

}

= P
{
Z >

−.0165
.0730

}

= P{Z < .2260}
= .5894

In other words, the probability that the price is up after one week is .5894. Since the
successive price ratios are independent, the probability that the price increases over
each of the next two weeks is (.5894)2 = .3474.

To solve part (b), we reason as follows:

P
{
S(2)
S(0)

> 1
}

= P
{
S(2)
S(1)

S(1)
S(0)

> 1
}

= P

{
log

(
S(2)
S(1)

)
+ log

(
S(1)
S(0)

)
> 0

}

However, log
(
S(2)
S(1)

)
+ log

(
S(1)
S(0)

)
, being the sum of two independent normal random

variables with a common mean .0165 and a common standard deviation .0730, is a
normal random variable with mean .0330 and variance 2(.0730)2. Consequently,

P
{
S(2)
S(0)

> 1
}

= P

{
Z >

−.0330

.0730
√
2

}

= P{Z < .31965}
= .6254 .
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6.3.4 Poisson and Binomial Random Variables
Rather than attempt to derive a general expression for the distribution of X + Y in
the discrete case, we shall consider some examples.

Example
3e

Sums of independent Poisson random variables

IfX and Y are independent Poisson random variables with respective parameters λ1
and λ2, compute the distribution of X + Y.

Solution Because the event {X + Y = n} may be written as the union of the disjoint
events {X = k,Y = n − k}, 0 … k … n, we have

P{X + Y = n} =
n∑

k=0

P{X = k,Y = n − k}

=
n∑

k=0

P{X = k}P{Y = n − k}

=
n∑

k=0

e−λ1
λk1
k!
e−λ2

λn−k2
(n − k)!

= e−(λ1+λ2)
n∑

k=0

λk1λ
n−k
2

k!(n − k)!

= e−(λ1+λ2)

n!

n∑
k=0

n!
k!(n − k)!

λk1λ
n−k
2

= e−(λ1+λ2)

n!
(λ1 + λ2)

n

Thus, X + X has a Poisson distribution with parameter λ1 + λ2. .

Example
3f

Sums of independent binomial random variables

Let X and Y be independent binomial random variables with respective parameters
(n, p) and (m, p). Calculate the distribution of X + Y.

Solution Recalling the interpretation of a binomial random variable, and without
any computation at all, we can immediately conclude that X + Y is binomial with
parameters (n + m,p). This follows becauseX represents the number of successes in
n independent trials, each of which results in a success with probability p; similarly,
Y represents the number of successes in m independent trials, each of which results
in a success with probability p. Hence, given thatX and Y are assumed independent,
it follows that X + Y represents the number of successes in n + m independent
trials when each trial has a probability p of resulting in a success. Therefore, X + Y
is a binomial random variable with parameters (n + m,p). To check this conclusion
analytically, note that

P{X + Y = k} =
n∑
i=0

P{X = i,Y = k − i}

=
n∑
i=0

P{X = i}P{Y = k − i}
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=
n∑
i=0

(
n
i

)
piqn−i

(
m

k − i

)
pk−iqm−k+i

where q = 1 − p and where

(
r
j

)
= 0 when j < 0. Thus,

P{X + Y = k} = pkqn+m−k
n∑
i=0

(
n
i

)(
m

k − i

)

and the conclusion follows upon application of the combinatorial identity

(
n + m

k

)
=

n∑
i=0

(
n
i

)(
m

k − i

)
.

6.4 Conditional Distributions: Discrete Case
Recall that for any two events E and F, the conditional probability of E given F is
defined, provided that P(F) > 0, by

P(E|F) = P(EF)

P(F)

Hence, if X and Y are discrete random variables, it is natural to define the condi-
tional probability mass function of X given that Y = y, by

pX|Y(x|y) = P{X = x|Y = y}
= P{X = x,Y = y}

P{Y = y}
= p(x, y)

pY(y)

for all values of y such that pY(y) > 0. Similarly, the conditional probability distri-
bution function of X given that Y = y is defined, for all y such that pY(y) > 0, by

FX|Y(x|y) = P{X … x|Y = y}
=
∑
a…x

pX|Y(a|y)

In other words, the definitions are exactly the same as in the unconditional case,
except that everything is now conditional on the event that Y = y. If X is indepen-
dent of Y, then the conditional mass function and the distribution function are the
same as the respective unconditional ones. This follows because if X is independent
of Y, then
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pX|Y(x|y) = P{X = x|Y = y}
= P{X = x,Y = y}

P{Y = y}
= P{X = x}P{Y = y}

P{Y = y}
= P{X = x}

Example
4a

Suppose that p(x, y), the joint probability mass function of X and Y, is given by

p(0, 0) = .4 p(0, 1) = .2 p(1, 0) = .1 p(1, 1) = .3

Calculate the conditional probability mass function of X given that Y = 1.

Solution We first note that

pY(1) =
∑
x

p(x, 1) = p(0, 1) + p(1, 1) = .5

Hence,

pX|Y(0|1) = p(0, 1)
pY(1)

= 2
5

and
pX|Y(1|1) = p(1, 1)

pY(1)
= 3

5
.

Example
4b

IfX and Y are independent Poisson random variables with respective parameters λ1
and λ2, calculate the conditional distribution of X given that X + Y = n.

Solution We calculate the conditional probability mass function ofX given thatX +
Y = n as follows:

P{X = k|X + Y = n} = P{X = k,X + Y = n}
P{X + Y = n}

= P{X = k,Y = n − k}
P{X + Y = n}

= P{X = k}P{Y = n − k}
P{X + Y = n}

where the last equality follows from the assumed independence of X and Y. Recall-
ing (Example 3e) thatX + Y has a Poisson distribution with parameter λ1 + λ2, we
see that the preceding equals

P{X = k|X + Y = n} = e−λ1λk1
k!

e−λ2λn−k2
(n − k)!

[
e−(λ1+λ2)(λ1 + λ2)

n

n!

]−1

= n!
(n − k)! k!

λk1λ
n−k
2

(λ1 + λ2)
n

=
(
n
k

)(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n−k

In other words, the conditional distribution of X given that X + Y = n is the bino-
mial distribution with parameters n and λ1/(λ1 + λ2). .
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We can also talk about joint conditional distributions, as is indicated in the next
two examples.

Example
4c

Consider the multinomial distribution with joint probability mass function

P{Xi = ni, i = 1, . . . ,k} = n!
n1! · · · nk!

pn11 · · · pnkk , ni Ú 0,
k∑
i=1

ni = n

Such a mass function results when n independent trials are performed, with each
trial resulting in outcome i with probability pi,

∑k
i=1 pi = 1. The random variables

Xi, i = 1, . . . ,k, represent, respectively, the number of trials that result in outcome i,
i = 1, . . . ,k. Suppose we are given that nj of the trials resulted in outcome j, for
j = r + 1, . . . ,k, where

∑k
j=r+1 nj = m … n. Then, because each of the other n −

m trials must have resulted in one of the outcomes 1, . . . , r, it would seem that the
conditional distribution ofX1, . . . ,Xr is the multinomial distribution on n − m trials
with respective trial outcome probabilities

P{outcome i|outcome is not any of r + 1, . . . ,k} = pi
Fr

, i = 1, . . . , r

where Fr = ∑r
i=1 pi is the probability that a trial results in one of the outcomes

1, . . . , r.

Solution To verify this intuition, let n1, . . . ,nr, be such that
∑r

i=1 ni = n − m. Then

P{X1 = n1, . . . ,Xr = nr|Xr+1 = nr+1, . . .Xk = nk}
= P{X1 = n1, . . . ,Xk = nk}
P{Xr+1 = nr+1, . . .Xk = nk}

=
n!

n1!···nk!p
n1
1 · · ·pnrr pnr+1

r+1 · · · pnkk
n!

(n−m)!nr+1!···nk!F
n−m
r pnr+1

r+1 · · · pnkk
where the probability in the denominator was obtained by regarding outcomes
1, . . . , r as a single outcome having probability Fr, thus showing that the probability
is a multinomial probability on n trials with outcome probabilities Fr,pr+1, . . . ,pk.
Because

∑r
i=1 ni = n − m, the preceding can be written as

P{X1 = n1, . . . ,Xr = nr|Xr+1 = nr+1, . . .Xk = nk}

= (n − m)!
n1! · · · nr!

(
p1
Fr

)n1
· · ·

(
pr
Fr

)nr

and our intuition is upheld. .

Example
4d

Consider n independent trials, with each trial being a success with probability p.
Given a total of k successes, show that all possible orderings of the k successes and
n − k failures are equally likely.

Solution We want to show that given a total of k successes, each of the
(n
k

)
possible

orderings of k successes and n − k failures is equally likely. LetX denote the number
of successes, and consider any ordering of k successes and n − k failures, say, o =
(s, . . . , s, f , . . . , f ). Then
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P(o|X = k) = P(o,X = k)
P(X = k)

= P(o)

P(X = k)

= pk(1 − p)n−k(n
k

)
pk(1 − p)n−k

= 1(n
k

) .

6.5 Conditional Distributions: Continuous Case
If X and Y have a joint probability density function f (x, y), then the conditional
probability density function of X given that Y = y is defined, for all values of y such
that fY(y) > 0, by

fX|Y(x|y) = f (x, y)
fY(y)

To motivate this definition, multiply the left-hand side by dx and the right-hand side
by (dx dy)/dy to obtain

fX|Y(x|y)dx = f (x, y)dx dy
fY(y)dy

L
P{x … X … x + dx, y … Y … y + dy}

P{y … Y … y + dy}
= P{x … X … x + dx|y … Y … y + dy}

In other words, for small values of dx and dy, fX|Y(x|y)dx represents the conditional
probability that X is between x and x + dx given that Y is between y and y + dy.

The use of conditional densities allows us to define conditional probabilities of
events associated with one random variable when we are given the value of a second
random variable. That is, if X and Y are jointly continuous, then, for any set A,

P{X ∈ A|Y = y} =
∫
A
fX|Y(x|y)dx

In particular, by letting A = (−q, a) we can define the conditional cumulative dis-
tribution function of X given that Y = y by

FX|Y(a|y) K P{X … a|Y = y} =
∫ a

−q
fX|Y(x|y)dx

The reader should note that by using the ideas presented in the preceding discussion,
we have been able to give workable expressions for conditional probabilities, even
though the event on which we are conditioning (namely, the event {Y = y}) has
probability 0.

If X and Y are independent continuous random variables, the conditional den-
sity of X given that Y = y is just the unconditional density of X. This is so because,
in the independent case,

fX|Y(x|y) = f (x, y)
fY(y)

= fX(x)fY(y)
fY(y)

= fX(x)
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Example
5a

The joint density of X and Y is given by

f (x, y) =
{

12
5 x(2 − x − y) 0 < x < 1, 0 < y < 1

0 otherwise

Compute the conditional density of X given that Y = y, where 0 < y < 1.

Solution For 0 < x < 1, 0 < y < 1, we have

fX|Y(x|y) = f (x, y)
fY(y)

= f (x, y)∫q
−q f (x, y)dx

= x(2 − x − y)∫ 1
0 x(2 − x − y)dx

= x(2 − x − y)
2
3 − y/2

= 6x(2 − x − y)
4 − 3y

.

Example
5b

Suppose that the joint density of X and Y is given by

f (x, y) =

⎧⎪⎨
⎪⎩
e−x/ye−y

y
0 < x < q, 0 < y < q

0 otherwise

Find P{X > 1|Y = y}.

Solution We first obtain the conditional density of X given that Y = y.

fX|Y(x|y) = f (x, y)
fY(y)

= e−x/ye−y/y
e−y

∫q
0 (1/y)e−x/y dx

= 1
y
e−x/y

Hence,

P{X > 1|Y = y} =
∫ q

1

1
y
e−x/y dx

= −e−x/y
∣∣∣q
1

= e−1/y .

Example
5c

The t-distribution

IfZ andY are independent, withZ having a standard normal distribution andY hav-
ing a chi-squared distribution with n degrees of freedom, then the random variable
T defined by
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T = Z√
Y/n

= √
n

Z√
Y

is said to have a t-distributionwith n degrees of freedom.As will be seen in Section 7.8,
the t-distribution has important applications in statistical inference. At present, we
will content ourselves with computing its density function. This will be accomplished
by using the conditional density of T givenY to obtain the joint density function of T
and Y, from which we will then obtain the marginal density of T. To begin, note that
because of the independence of Z and Y, it follows that the conditional distribution
of T given that Y = y is the distribution of

√
n/yZ, which is normal with mean 0 and

variance n/y. Hence, the conditional density of T given that Y = y is

fT|Y(t|y) = 1√
2πn/y

e−t
2y/2n , −q < t < q

Using the preceding, along with the following formula for the chi-squared density
given in Example 3b of this chapter,

fY(y) = e−y/2yn/2−1

2n/2 �(n/2)
, y > 0

we obtain that the joint density of T,Y is

fT,Y(t, y) = 1√
2πn 2n/2 �(n/2)

e−t
2y/2ne−y/2y(n−1)/2

= 1√
πn 2(n+1)/2 �(n/2)

e−
t2+n
2n y y(n−1)/2 , y > 0, −q < t < q

Letting c = t2+n
2n , and integrating the preceding over all y, gives

fT(t) =
∫ q

0
fT,Y(t, y)dy

= 1√
πn 2(n+1)/2 �(n/2)

∫ q

0
e−cy y(n−1)/2 dy

= c−(n+1)/2
√

πn 2(n+1)/2 �(n/2)

∫ q

0
e−xx(n−1)/2 dx (by letting x = cy)

=
n(n+1)/2 �

(
n+1
2

)
√

πn (t2 + n)(n+1)/2 �
(
n
2

) (
because

1
c

= 2n
t2 + n

)

=
�
(
n+1
2

)
√

πn �
(
n
2

)
(
1 + t2

n

)−(n+1)/2

, −q < t < q

Example
5d

The bivariate normal distribution

One of the most important joint distributions is the bivariate normal distribution.
We say that the random variables X,Y have a bivariate normal distribution if, for
constants μx,μy, σx > 0, σy > 0, −1 < ρ < 1, their joint density function is given,
for all −q < x, y < q, by
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f (x, y) = 1

2πσxσy
√
1 − ρ2

exp

⎧⎨
⎩− 1

2(1 − ρ2)

[(
x − μx

σx

)2

+
(
y − μy

σy

)2

− 2ρ
(x − μx)(y − μy)

σxσy

⎤
⎦
⎫⎪⎬
⎪⎭

We now determine the conditional density of X given that Y = y. In doing so, we
will continually collect all factors that do not depend on x and represent them by the
constantsCi. The final constant will then be found by using that

∫q
−q fX|Y(x|y)dx = 1.

We have

fX|Y(x|y) = f (x, y)
fY(y)

= C1f (x, y)

= C2 exp

⎧⎨
⎩− 1

2(1 − ρ2)

[(
x − μx

σx

)2

− 2ρ
x(y − μy)

σxσy

]⎫⎬
⎭

= C3 exp

⎧⎪⎨
⎪⎩− 1

2σ 2
x (1 − ρ2)

⎡
⎣x2 − 2x

(
μx + ρ

σx

σy
(y − μy)

)⎤⎦
⎫⎪⎬
⎪⎭

= C4 exp

⎧⎪⎨
⎪⎩− 1

2σ 2
x (1 − ρ2)

⎡
⎣x −

(
μx + ρ

σx

σy
(y − μy)

)⎤⎦
2
⎫⎪⎬
⎪⎭

Recognizing the preceding equation as a normal density, we can conclude that given
Y = y, the random variableX is normally distributed with mean μx + ρ σx

σy
(y − μy)

and variance σ 2
x (1 − ρ2). Also, because the joint density of Y,X is exactly the same

as that of X,Y, except that μx, σx are interchanged with μy, σy, it similarly follows
that the conditional distribution of Y given X = x is the normal distribution with
mean μy + ρ

σy
σx

(x − μx) and variance σ 2
y (1 − ρ2). It follows from these results that

the necessary and sufficient condition for the bivariate normal random variables X
and Y to be independent is that ρ = 0 (a result that also follows directly from their
joint density, because it is only when ρ = 0 that the joint density factors into two
terms, one depending only on x and the other only on y).

With C = 1
2πσxσy

√
1−ρ2

, the marginal density of X can be obtained from

fX(x) =
∫ q

−q
f (x, y)dy

= C
∫ q

−q
exp

⎧⎪⎨
⎪⎩− 1

2(1 − ρ2)

⎡
⎣(x − μx

σx

)2

+
(
y − μy

σy

)2

−2ρ
(x − μx)(y − μy)

σxσy

]⎫⎬
⎭ dy
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Now, with w = y−μy
σy

,

(
x − μx

σx
)2 + (

y − μy

σy
)2 − 2ρ(x − μx)(y − μy)

σxσy

= (
x − μx

σx
)2 + w2 − 2ρ(x − μx)w

σx

= (w − ρ(x − μx)

σx
)2 + (1 − ρ2)(

x − μx

σx
)2

Hence, making the change of variable w = y−μy
σy

yields that

fX(x) = Cσye−(x−μx)
2/2σ 2

x

∫ q

−q
exp{− 1

2(1 − ρ2)
(w − ρ(x − μx)

σx
)2}dw

= Cσye−(x−μx)
2/2σ 2

x

∫ q

−q
exp{− v2

2(1 − ρ2)
}dv by letting v = w − ρ(x − μx)

σx

= Ke−(x−μx)
2/2σ 2

x

where K does not depend on x. But this shows that X is normal with mean μx
and variance σ 2

x . Similarly, we can show that Y is normal with mean μy and variance
σ 2
y . .

We can also talk about conditional distributions when the random variables are
neither jointly continuous nor jointly discrete. For example, suppose that X is a con-
tinuous random variable having probability density function f and N is a discrete
random variable, and consider the conditional distribution of X given that N = n.
Then

P{x < X < x + dx|N = n}
dx

= P{N = n|x < X < x + dx}
P{N = n}

P{x < X < x + dx}
dx

and letting dx approach 0 gives

lim
dx→0

P{x < X < x + dx|N = n}
dx

= P{N = n|X = x}
P{N = n} f (x)

thus showing that the conditional density of X given that N = n is given by

fX|N(x|n) = P{N = n|X = x}
P{N = n} f (x)

Example
5e

Consider n + m trials having a common probability of success. Suppose, however,
that this success probability is not fixed in advance but is chosen from a uniform
(0, 1) population. What is the conditional distribution of the success probability
given that the n + m trials result in n successes?

Solution If we let X denote the probability that a given trial is a success, then X
is a uniform (0, 1) random variable. Also, given that X = x, the n + m trials are
independent with common probability of success x, so N, the number of successes,
is a binomial random variable with parameters (n + m, x). Hence, the conditional
density of X given that N = n is
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fX|N(x|n) = P{N = n|X = x}fX(x)
P{N = n}

=

(
n + m

n

)
xn(1 − x)m

P{N = n} 0 < x < 1

= cxn(1 − x)m

where c does not depend on x. Thus, the conditional density is that of a beta random
variable with parameters n + 1,m + 1.

The preceding result is quite interesting, for it states that if the original or prior
(to the collection of data) distribution of a trial success probability is uniformly
distributed over (0, 1) [or, equivalently, is beta with parameters (1, 1)], then the
posterior (or conditional) distribution given a total of n successes in n + m trials is
beta with parameters (1 + n, 1 + m). This is valuable, for it enhances our intuition
as to what it means to assume that a random variable has a beta distribution. .

We are often interested in the conditional distribution of a random variable X
given that X lies in some set A. When X is discrete, the conditional probability mass
function is given by

P(X = x|X ∈ A) = P(X = x,X ∈ A)

P(X ∈ A)
=
{

P(X=x)
P(X∈A)

, if x ∈ A
0, if x /∈ A

Similarly, whenX is continuous with density function f , the conditional density func-
tion of X given that X ∈ A is

fX|X∈A(x) = f (x)
P(X ∈ A)

= f (x)∫
A f (y)dy

, x ∈ A

Example
5f

A Pareto random variable with positive parameters a, λ has distribution function

F(x) = 1 − aλx−λ , x > a

and density function

f (x) = λaλx−λ−1 , x > a

An important feature of Pareto distributions is that for x0 > a the conditional distri-
bution of a Pareto random variable X with parameters a and λ, given that it exceeds
x0, is the Pareto distribution with parameters x0 and λ. This follows because

fX|X>x0(x) = f (x)
P{X > x0}

= λaλx−λ−1

aλx−λ
0

= λ xλ
0 x

−λ−1, x > x0

thus verifying that the conditional distribution is Pareto with parameters x0 and λ. .
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*6.6 Order Statistics
Let X1,X2, . . . ,Xn be n independent and identically distributed continuous random
variables having a common density f and distribution function F. Define

X(1) = smallest of X1, X2, . . . , Xn

X(2) = second smallest of X1, X2, . . . , Xn

#
#
#

X(j) = jth smallest of X1, X2, . . . , Xn

#
#
#

X(n) = largest of X1, X2, . . . , Xn

The ordered values X(1) … X(2) … · · · … X(n) are known as the order statistics corre-
sponding to the random variables X1,X2, . . . ,Xn. In other words, X(1), . . . ,X(n) are
the ordered values of X1, . . . ,Xn.

The joint density function of the order statistics is obtained by noting that the
order statistics X(1), . . . ,X(n) will take on the values x1 … x2 … · · · … xn if and only
if, for some permutation (i1, i2, . . . , in) of (1, 2, . . . ,n),

X1 = xi1 ,X2 = xi2 , . . . ,Xn = xin

Since, for any permutation (i1, . . . , in) of (1, 2, . . . ,n),

P
{
xi1 − ε

2
< X1 < xi1 + ε

2
, . . . , xin − ε

2
< Xn < xin + ε

2

}
L εnfX1,··· ,Xn(xi1 , . . . , xin)

= εnf (xi1) · · · f (xin)
= εnf (x1) · · · f (xn)

it follows that, for x1 < x2 < · · · < xn,

P
{
x1 − ε

2
< X(1) < x1 + ε

2
, . . . , xn − ε

2
< X(n) < xn + ε

2

}
L n! εnf (x1) · · · f (xn)

Dividing by εn and letting ε→0 yields

fX(1),...,X(n) (x1, x2, . . . , xn) = n!f (x1) · · · f (xn) x1 < x2 < · · · < xn (6.1)

Equation (6.1) is most simply explained by arguing that, in order for the vector
〈X(1), . . . ,X(n)〉 to equal 〈x1, . . . , xn〉, it is necessary and sufficient for 〈X1, . . . ,Xn〉
to equal one of the n! permutations of 〈x1, . . . , xn〉. Since the probability (density)
that 〈X1, . . . ,Xn〉 equals any given permutation of 〈x1, . . . , xn〉 is just f (x1) · · · f (xn),
Equation (6.1) follows.
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Example
6a

Along a road 1 mile long are 3 people “distributed at random.” Find the probability
that no 2 people are less than a distance of d miles apart when d … 1

2 .

Solution Let us assume that “distributed at random” means that the positions of the
3 people are independent and uniformly distributed over the road. If Xi denotes the
position of the ith person, then the desired probability is P{X(i) > X(i−1) + d, i =
2, 3}. Because

fX(1),X(2),X(3) (x1, x2, x3) = 3! 0 < x1 < x2 < x3 < 1

it follows that

P{X(i) > X(i−1) + d, i = 2, 3} =
∫ ∫ ∫

xi>xj−1+d
fX(1),X(2),X(3) (x1, x2, x3)dx1 dx2 dx3

= 3!
∫ 1−2d

0

∫ 1−d

x1+d

∫ 1

x2+d
dx3 dx2 dx1

= 6
∫ 1−2d

0

∫ 1−d

x1+d
(1 − d − x2)dx2 dx1

= 6
∫ 1−2d

0

∫ 1−2d−x1

0
y2 dy2 dx1

where we have made the change of variables y2 = 1 − d − x2. Continuing the string
of equalities yields

= 3
∫ 1−2d

0
(1 − 2d − x1)

2 dx1

= 3
∫ 1−2d

0
y21 dy1

= (1 − 2d)3

Hence, the desired probability that no 2 people are within a distance d of each
other when 3 people are uniformly and independently distributed over an interval
of size 1 is (1 − 2d)3 when d … 1

2 . In fact, the same method can be used to prove
that when n people are distributed at random over the unit interval, the desired
probability is

[1 − (n − 1)d]n when d …
1

n − 1

The proof is left as an exercise. .

The density function of the jth-order statisticX(j) can be obtained either by inte-
grating the joint density function (6.1) or by direct reasoning as follows: In order for
X(j) to equal x, it is necessary for j − 1 of the n values X1, . . . ,Xn to be less than
x,n − j of them to be greater than x, and 1 of them to equal x. Now, the probability
density that any given set of j − 1 of the Xi’s are less than x, another given set of
n − j are all greater than x, and the remaining value is equal to x equals

[F(x)]j−1[1 − F(x)]n−jf (x)

Hence, since there are(
n

j − 1,n − j, 1

)
= n!

(n − j)!(j − 1)!
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different partitions of the n random variables X1, . . . ,Xn into the preceding three
groups, it follows that the density function of X(j) is given by

fX(j) (x) = n!
(n − j)!(j − 1)!

[F(x)]j−1[1 − F(x)]n−jf (x) (6.2)

Example
6b

When a sample of 2n + 1 random variables (that is, when 2n + 1 independent and
identically distributed random variables) is observed, the (n + 1) smallest is called
the sample median. If a sample of size 3 from a uniform distribution over (0, 1) is
observed, find the probability that the sample median is between 1

4 and 3
4 .

Solution From Equation (6.2), the density of X(2) is given by

fX(2) (x) = 3!
1!1!

x(1 − x) 0 < x < 1

Hence,

P
{
1
4

< X(2) <
3
4

}
= 6

∫ 3/4

1/4
x(1 − x)dx

= 6

{
x2

2
− x3

3

}∣∣∣∣∣∣
x=3/4

x=1/4

= 11
16

.

The cumulative distribution function of X(j) can be found by integrating Equa-
tion (6.2). That is,

FX(j) (y) = n!
(n − j)!(j − 1)!

∫ y

−q
[F(x)]j−1[1 − F(x)]n−jf (x)dx (6.3)

However, FX(j) (y) could also have been derived directly by noting that the jth order
statistic is less than or equal to y if and only if there are j or more of the Xi’s that are
less than or equal to y. Thus, because the number of Xi’s that are less than or equal
to y is a binomial random variable with parameters n,p = F(y), it follows that

FX(j) (y) = P{X(j) … y} = P{j or more of the Xi’s are … y}

=
n∑
k=j

(
n
k

)
[F(y)]k[1 − F(y)]n−k (6.4)

If, in Equations (6.3) and (6.4), we take F to be the uniform (0, 1) distribution
[that is, f (x) = 1, 0 < x < 1], then we obtain the interesting analytical identity

n∑
k=j

(
n
k

)
yk(1 − y)n−k = n!

(n − j)!(j − 1)!

∫ y

0
xj−1(1 − x)n−j dx 0 … y … 1 (6.5)
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We can employ the same type of argument that we used in establishing Equation
(6.2) to find the joint density of X(i) and X(j), the ith and jth smallest of the values
X1, . . . ,Xn. For suppose that i < j and xi < xj. Then the event thatX(i) = xi,X(j) = xj
is equivalent to the event that the n data values can be divided into 5 groups of
respective sizes i − 1, 1, j − i − 1, 1, n − j, that satisfy the condition that all i − 1
members of the first group have values less than xi, the one member of the second
group has value xi, all j − i − 1 members of the third group have values between xi
and xj, the one member of the fourth group has value xj, and all n − jmembers of the
last group have values greater than xj. Now, for any specified division of the n values
into 5 such groups, the preceding condition will hold with probability (density)

Fi−1(xi)f (xi)
(
F(xj) − F(xi)

)j−i−1 f (xj)
(
1 − F(xj)

)n−j
As there are n!

(i−1)!1!(j−i−1)!1!(n−j)! such divisions of the n values, and as the condition
cannot hold for more than one of these divisions, it follows, for i < j, xi < xj, that

fX(i),X(j) (xi, xj) = (6.6)

n!
(i − 1)!(j − i − 1)!(n − j)!

Fi−1(xi)f (xi)[F(xj) − F(xi)]j−i−1f (xj)[1 − F(xj)]n−j

Example
6c

Distribution of the range of a random sample

Suppose that n independent and identically distributed random variablesX1,X2, . . . ,
Xn are observed. The random variable R defined by R = X(n) − X(1) is called the
range of the observed random variables. If the random variablesXi have distribution
function F and density function f , then the distribution of R can be obtained from
Equation (6.6) as follows: For a Ú 0,

P{R … a} = P{X(n) − X(1) … a}
=

∫ ∫
xn−x1…a

fX(1),X(n) (x1, xn)dx1 dxn

=
∫ q

−q

∫ x1+a

x1

n!
(n − 2)!

[F(xn) − F(x1)]n−2f (x1)f (xn)dxn dx1

Making the change of variable y = F(xn) − F(x1), dy = f (xn)dxn yields

∫ x1+a

x1
[F(xn) − F(x1)]n−2f (xn)dxn =

∫ F(x1+a)−F(x1)

0
yn−2dy

= 1
n − 1

[F(x1 + a) − F(x1)]n−1

Thus,

P{R … a} = n
∫ q

−q
[F(x1 + a) − F(x1)]n−1f (x1)dx1 (6.7)

Equation (6.7) can be evaluated explicitly only in a few special cases. One such case
is when the Xi’s are all uniformly distributed on (0, 1). In this case, we obtain, from
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Equation (6.7), that for 0 < a < 1,

P{R < a} = n
∫ 1

0
[F(x1 + a) − F(x1)]n−1f (x1)dx1

= n
∫ 1−a

0
an−1 dx1 + n

∫ 1

1−a
(1 − x1)

n−1 dx1

= n(1 − a)an−1 + an

Differentiation yields the density function of the range: given in this case by

fR(a) =
{
n(n − 1)an−2(1 − a) 0 … a … 1
0 otherwise

That is, the range of n independent uniform (0, 1) random variables is a beta random
variable with parameters n − 1, 2. .

6.7 Joint Probability Distribution of Functions of Random Variables
Let X1 and X2 be jointly continuous random variables with joint probability density
function fX1,X2 . It is sometimes necessary to obtain the joint distribution of the ran-
dom variablesY1 andY2, which arise as functions ofX1 andX2. Specifically, suppose
that Y1 = g1(X1,X2) and Y2 = g2(X1,X2) for some functions g1 and g2.

Assume that the functions g1 and g2 satisfy the following conditions:

1. The equations y1 = g1(x1, x2) and y2 = g2(x1, x2) can be uniquely solved for x1
and x2 in terms of y1 and y2, with solutions given by, say, x1 = h1(y1, y2), x2 =
h2(y1, y2).

2. The functions g1 and g2 have continuous partial derivatives at all points (x1, x2)
and are such that the 2 * 2 determinant

J(x1, x2) =

∣∣∣∣∣∣∣∣∣

∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣∣∣∣∣∣∣∣∣
K

∂g1
∂x1

∂g2
∂x2

− ∂g1
∂x2

∂g2
∂x1

Z 0

at all points (x1, x2).

Under these two conditions, it can be shown that the random variables Y1 and
Y2 are jointly continuous with joint density function given by

fY1Y2(y1, y2) = fX1,X2(x1, x2)|J(x1, x2)|−1 (7.1)

where x1 = h1(y1, y2), x2 = h2(y1, y2).
A proof of Equation (7.1) would proceed along the following lines:

P{Y1 … y1,Y2 … y2} =
∫ ∫

(x1, x2) :
g1(x1, x2) … y1
g2(x1, x2) … y2

fX1,X2(x1, x2)dx1 dx2 (7.2)

The joint density function can now be obtained by differentiating Equation (7.2) with
respect to y1 and y2. That the result of this differentiation will be equal to the right-
hand side of Equation (7.1) is an exercise in advanced calculus whose proof will not
be presented in this book.
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Example
7a

LetX1 andX2 be jointly continuous random variables with probability density func-
tion fX1,X2 . Let Y1 = X1 + X2,Y2 = X1 − X2. Find the joint density function of Y1
and Y2 in terms of fX1,X2 .

Solution Let g1(x1, x2) = x1 + x2 and g2(x1, x2) = x1 − x2. Then

J(x1, x2) =
∣∣∣∣∣ 1 1
1 −1

∣∣∣∣∣ = −2

Also, since the equations y1 = x1 + x2 and y2 = x1 − x2 have x1 = (y1 + y2)/2, x2 =
(y1 − y2)/2 as their solution, it follows fromEquation (7.1) that the desired density is

fY1,Y2(y1, y2) = 1
2
fX1,X2

(
y1 + y2

2
,
y1 − y2

2

)

For instance, if X1 and X2 are independent uniform (0, 1) random variables, then

fY1,Y2(y1, y2) =
{

1
2 0 … y1 + y2 … 2, 0 … y1 − y2 … 2

0 otherwise

or ifX1 andX2 are independent exponential random variables with respective param-
eters λ1 and λ2, then

fY1,Y2(y1, y2)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1λ2

2
exp

{
−λ1

(
y1 + y2

2

)
− λ2

(
y1 − y2

2

)}
y1 + y2 Ú 0, y1 − y2 Ú 0

0 otherwise

Finally, if X1 and X2 are independent standard normal random variables, then

fY1,Y2(y1, y2) = 1
4π

e−[(y1+y2)2/8+(y1−y2)2/8]

= 1
4π

e−(y21+y22)/4

= 1√
4π

e−y
2
1/4

1√
4π

e−y
2
2/4

Y

X

R

U

Figure 6.4 • = Random point. (X,Y) = (R, Θ).
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Thus, not only do we obtain (in agreement with Proposition 3.2) that both X1 + X2
andX1 − X2 are normal with mean 0 and variance 2, but we also conclude that these
two random variables are independent. (In fact, it can be shown that if X1 and X2
are independent random variables having a common distribution function F, then
X1 + X2 will be independent of X1 − X2 if and only if F is a normal distribution
function.) .

Example
7b

Let (X, Y) denote a random point in the plane, and assume that the rectangular
coordinates X and Y are independent standard normal random variables. We are
interested in the joint distribution of R, Θ , the polar coordinate representation of
(x, y). (See Figure 6.4.)

Suppose first that X and Y are both positive. For x and y positive, letting r =
g1(x, y) =

√
x2 + y2 and θ = g2(x, y) = tan−1 y/x, we see that

∂g1
∂x

= x√
x2 + y2

∂g1
∂y

= y√
x2 + y2

∂g2
∂x

= 1
1 + (y/x)2

(−y
x2

)
= −y
x2 + y2

∂g2
∂y

= 1
x[1 + (y/x)2]

= x
x2 + y2

Hence,

J(x, y) = x2

(x2 + y2)3/2
+ y2

(x2 + y2)3/2
= 1√

x2 + y2
= 1

r

Because the conditional joint density function of X, Y given that they are both
positive is

f (x, y|X > 0,Y > 0) = f (x, y)
P(X > 0,Y > 0)

= 2
π
e−(x2+y2)/2, x > 0, y > 0

we see that the conditional joint density function of R =
√
X2 + Y2 and � =

tan−1(Y/X), given that X and Y are both positive, is

f (r, θ |X > 0,Y > 0) = 2
π
re−r

2/2
, 0 < θ < π/2, 0 < r < q

Similarly, we can show that

f (r, θ |X < 0,Y > 0) = 2
π
re−r

2/2
, π/2 < θ < π , 0 < r < q

f (r, θ |X < 0,Y < 0) = 2
π
re−r

2/2
, π < θ < 3π/2, 0 < r < q

f (r, θ |X > 0,Y < 0) = 2
π
re−r

2/2
, 3π/2 < θ < 2π , 0 < r < q

As the joint density is an equally weighted average of these four conditional joint
densities, we obtain that the joint density of R,Θ is given by

f (r, θ) = 1
2π

re−r
2/2 0 < θ < 2π , 0 < r < q
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Now, this joint density factors into the marginal densities for R and Θ , so R and Θ

are independent random variables, with Θ being uniformly distributed over (0, 2π)

and R having the Rayleigh distribution with density

f (r) = re−r
2/2 0 < r < q

(For instance, when one is aiming at a target in the plane, if the horizontal and verti-
cal miss distances are independent standard normals, then the absolute value of the
error has the preceding Rayleigh distribution.)

This result is quite interesting, for it certainly is not evident a priori that a ran-
dom vector whose coordinates are independent standard normal random variables
will have an angle of orientation that not only is uniformly distributed, but also is
independent of the vector’s distance from the origin.

If we wanted the joint distribution of R2 and Θ , then, since the transformation
d = g1(x, y) = x2 + y2 and θ = g2(x, y) = tan−1 y/x has the Jacobian

J =

∣∣∣∣∣∣∣
2x 2y
−y

x2 + y2
x

x2 + y2

∣∣∣∣∣∣∣ = 2

it follows that

f (d, θ) = 1
2
e−d/2

1
2π

0 < d < q, 0 < θ < 2π

Therefore, R2 and Θ are independent, with R2 having an exponential distribution
with parameter 1

2 . But because R
2 = X2 + Y2, it follows by definition that R2 has

a chi-squared distribution with 2 degrees of freedom. Hence, we have a verification
of the result that the exponential distribution with parameter 1

2 is the same as the
chi-squared distribution with 2 degrees of freedom.

The preceding result can be used to simulate (or generate) normal random vari-
ables by making a suitable transformation on uniform random variables. Let U1 and
U2 be independent random variables, each uniformly distributed over (0, 1). We will
transform U1,U2 into two independent standard normal random variables X1 and
X2 by first considering the polar coordinate representation (R,Θ) of the random
vector (X1,X2). From the preceding, R2 and Θ will be independent, and, in addi-
tion, R2 = X2

1 + X2
2 will have an exponential distribution with parameter λ = 1

2 .
But −2 logU1 has such a distribution, since, for x > 0,

P{−2 logU1 < x} = P
{
logU1 > −x

2

}
= P{U1 > e−x/2}
= 1 − e−x/2

Also, because 2πU2 is a uniform (0, 2π) random variable, we can use it to gener-
ate Θ . That is, if we let

R2 = −2 logU1

Θ = 2πU2

then R2 can be taken to be the square of the distance from the origin and θ can be
taken to be the angle of orientation of (X1,X2). Now, since X1 = R cosΘ ,X2 =
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R sinΘ , it follows that

X1 =
√

−2 logU1 cos(2πU2)

X2 =
√

−2 logU1 sin(2πU2)

are independent standard normal random variables. .

Example
7c

If X and Y are independent gamma random variables with parameters (α, λ) and
(β, λ), respectively, compute the joint density of U = X + Y and V = X/(X + Y).

Solution The joint density of X and Y is given by

fX,Y(x, y) = λe−λx(λx)α−1

�(α)

λe−λy(λy)β−1

�(β)

= λα+β

�(α)�(β)
e−λ(x+y)xα−1yβ−1

Now, if g1(x, y) = x + y, g2(x, y) = x/(x + y), then

∂g1
∂x

= ∂g1
∂y

= 1
∂g2
∂x

= y
(x + y)2

∂g2
∂y

= − x
(x + y)2

so

J(x, y) =

∣∣∣∣∣∣∣
1 1
y

(x + y)2
−x

(x + y)2

∣∣∣∣∣∣∣ = − 1
x + y

Finally, as the equations u = x + y, v = x/(x + y) have as their solutions x = uv,
y = u(1 − v), we see that

fU,V(u, v) = fX,Y[uv,u(1 − v)]u

= λe−λu(λu)α+β−1

�(α + β)

vα−1(1 − v)β−1�(α + β)

�(α)�(β)

Hence, X + Y and X/(X + Y) are independent, with X + Y having a gamma dis-
tribution with parameters (α + β, λ) andX/(X + Y) having a beta distribution with
parameters (α,β). The preceding reasoning also shows that B(α,β), the normalizing
factor in the beta density, is such that

B(α,β) K
∫ 1

0
vα−1(1 − v)β−1dv

= �(α)�(β)

�(α + β)

This entire result is quite interesting. For suppose there are n + m jobs to be per-
formed, each (independently) taking an exponential amount of time with rate λ to
be completed and suppose that we have two workers to perform these jobs. Worker
I will do jobs 1, 2, . . . ,n, and worker II will do the remaining m jobs. If we let X and
Y denote the total working times of workers I and II, respectively, then (either from
the foregoing result or from Example 3b) X and Y will be independent gamma ran-
dom variables having parameters (n, λ) and (m, λ), respectively. It then follows that
independently of the working time needed to complete all n + m jobs (that is, of
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X + Y), the proportion of this work that will be performed by worker I has a beta
distribution with parameters (n,m). .

When the joint density function of the n random variablesX1,X2, . . . ,Xn is given
and we want to compute the joint density function of Y1,Y2, . . . ,Yn, where

Y1 = g1(X1, . . . ,Xn) Y2 = g2(X1, . . . ,Xn), . . . Yn = gn(X1, . . . ,Xn)

the approach is the same—namely, we assume that the functions gi have continuous
partial derivatives and that the Jacobian determinant

J(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xn

∂g2
∂x1

∂g2
∂x2

· · · ∂g2
∂xn

∂gn
∂x1

∂gn
∂x2

· · · ∂gn
∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Z 0

at all points (x1, . . . , xn). Furthermore, we suppose that the equations y1 =
g1(x1, . . . , xn), y2 = g2(x1, . . . , xn), . . . , yn = gn(x1, . . . , xn) have a unique solution,
say, x1 = h1(y1, . . . , yn), . . . , xn = hn(y1, . . . , yn). Under these assumptions, the joint
density function of the random variables Yi is given by

fY1,...,Yn(y1, . . . , yn) = fX1,...,Xn(x1, . . . , xn)|J(x1, . . . , xn)|−1 (7.3)

where xi = hi(y1, . . . , yn), i = 1, 2, . . . ,n.

Example
7d

LetX1,X2, andX3 be independent standard normal random variables. If Y1 = X1 +
X2 + X3,Y2 = X1 − X2, and Y3 = X1 − X3, compute the joint density function
of Y1,Y2,Y3.

Solution Letting Y1 = X1 + X2 + X3,Y2 = X1 − X2,Y3 = X1 − X3, the Jacobian
of these transformations is given by

J =

∣∣∣∣∣∣∣
1 1 1
1 −1 0
1 0 −1

∣∣∣∣∣∣∣ = 3

As the preceding transformations yield that

X1 = Y1 + Y2 + Y3

3
X2 = Y1 − 2Y2 + Y3

3
X3 = Y1 + Y2 − 2Y3

3

we see from Equation (7.3) that

fY1,Y2,Y3(y1, y2, y3)

= 1
3
fX1,X2,X3

(
y1 + y2 + y3

3
,
y1 − 2y2 + y3

3
,
y1 + y2 − 2y3

3

)

Hence, as

fX1,X2,X3(x1, x2, x3) = 1
(2π)3/2

e−
∑3

i=1 x
2
i /2
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we see that

fY1,Y2,Y3(y1, y2, y3) = 1
3(2π)3/2

e−Q(y1, y2, y3)/2

where

Q(y1, y2, y3)

=
(
y1 + y2 + y3

3

)2

+
(
y1 − 2y2 + y3

3

)2

+
(
y1 + y2 − 2y3

3

)2

= y21
3

+ 2
3
y22 + 2

3
y23 − 2

3
y2y3 .

Example
7e

Let X1,X2, . . . ,Xn be independent and identically distributed exponential random
variables with rate λ. Let

Yi = X1 + · · · + Xi i = 1, . . . ,n

(a) Find the joint density function of Y1, . . . ,Yn.
(b) Use the result of part (a) to find the density of Yn.
(c) Find the conditional density of Y1, . . . ,Yn−1 given that Yn = t.

Solution (a) The Jacobian of the transformations Y1 = X1, Y2 = X1 + X2, . . .,
Yn = X1 + · · · + Xn is

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 1 1 0 · · · 0

· · · · · ·
· · · · · ·
1 1 1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
Since only the first term of the determinant will be nonzero, we have J = 1.
Now, the joint density function of X1, . . . ,Xn is given by

fX1,...,Xn(x1, . . . , xn) =
n∏
i=1

λe−λxi 0 < xi < q, i = 1, . . . ,n

Hence, because the preceding transformations yield

X1 = Y1,X2 = Y2 − Y1, . . . ,Xi = Yi − Yi−1, . . . ,Xn = Yn − Yn−1

it follows from Equation (7.3) that the joint density function of Y1, . . . ,Yn is

fY1,...,Yn(y1, . . . , yn) = fX1,...,Xn(y1, y2 − y1, . . . , yn − yn−1)

= λn exp

⎧⎪⎨
⎪⎩−λ

⎡
⎣y1 +

n∑
i=2

(yi − yi−1)

⎤
⎦
⎫⎪⎬
⎪⎭

= λne−λyn 0 < y1, 0 < yi − yi−1, i = 2, . . . ,n

= λne−λyn 0 < y1 < y2 < · · · < yn
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(b) To obtain the marginal density of Yn, let us integrate out the other variables
one at a time. Doing this gives

fY2,...,Yn(y2, . . . , yn) =
∫ y2

0
λne−λyndy1

= λny2e
−λyn 0 < y2 < y3 < · · · < yn

Continuing, we obtain

fY3,...,Yn(y3, . . . , yn) =
∫ y3

0
λny2e

−λyndy2

= λn
y23
2
e−λyn 0 < y3 < y4 < · · · < yn

The next integration yields

fY4,...,Yn(y4, . . . , yn) = λn
y34
3!
e−λyn 0 < y4 < · · · < yn

Continuing in this fashion gives

fYn(yn) = λn
yn−1
n

(n − 1)!
e−λyn 0 < yn

which, in agreement with the result obtained in Example 3b, shows that X1 +
· · · + Xn is a gamma random variable with parameters n and λ.

(c) The conditional density of Y1, . . . ,Yn−1 given that Yn = t is, for 0 < y1 < . . . <

yn−1 < t,

fY1,...,Yn−1|Yn(y1, . . . , yn−1|t) = fY1,...,Yn−1,Yn(y1, . . . , yn−1, t)

fYn(t)

= λne−λt

λe−λt(λt)n−1/(n − 1)!

= (n − 1)!
tn−1

Because f (y) = 1/t, 0 < y < t, is the density of a uniform random variable on
(0, t), it follows that conditional on Yn = t, Y1, . . . ,Yn−1 are distributed as the
order statistics of n − 1 independent uniform (0, t) random variables. .

*6.8 Exchangeable Random Variables
The random variablesX1,X2, . . . ,Xn are said to be exchangeable if, for every permu-
tation i1, . . . , in of the integers 1, . . . ,n,

P{Xi1 … x1,Xi2 … x2, . . . ,Xin … xn} = P{X1 … x1,X2 … x2, . . . ,Xn … xn}
for all x1, . . . , xn. That is, the n random variables are exchangeable if their joint dis-
tribution is the same no matter in which order the variables are observed.

Discrete random variables will be exchangeable if

P{Xi1 = x1,Xi2 = x2, . . . ,Xin = xn} = P{X1 = x1,X2 = x2, . . . ,Xn = xn}
for all permutations i1, . . . , in, and all values x1, . . . , xn. This is equivalent to stating
that p(x1, x2, . . . , xn) = P{X1 = x1, . . . ,Xn = xn} is a symmetric function of the
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vector (x1, . . . , xn), which means that its value does not change when the values of
the vector are permuted.

Example
8a

Suppose that balls are withdrawn one at a time and without replacement from an
urn that initially contains n balls, of which k are considered special, in such a man-
ner that each withdrawal is equally likely to be any of the balls that remains in the
urn at the time. Let Xi = 1 if the ith ball withdrawn is special and let Xi = 0 oth-
erwise. We will show that the random variables X1, . . . ,Xn are exchangeable. To
do so, let (x1, . . . , xn) be a vector consisting of k ones and n − k zeros. However,
before considering the joint mass function evaluated at (x1, . . . , xn), let us try to gain
some insight by considering a fixed such vector—for instance, consider the vector
(1, 1, 0, 1, 0, . . . , 0, 1), which is assumed to have k ones and n − k zeros. Then

p(1, 1, 0, 1, 0, . . . , 0, 1) = k
n
k − 1
n − 1

n − k
n − 2

k − 2
n − 3

n − k − 1
n − 4

· · · 1
2
1
1

which follows because the probability that the first ball is special is k/n, the con-
ditional probability that the next one is special is (k − 1)/(n − 1), the conditional
probability that the next one is not special is (n − k)/(n − 2), and so on. By the same
argument, it follows that p(x1, . . . , xn) can be expressed as the product of n fractions.
The successive denominator terms of these fractions will go from n down to 1. The
numerator term at the location where the vector (x1, . . . , xn) is 1 for the ith time is
k − (i − 1), and where it is 0 for the ith time it is n − k − (i − 1). Hence, since
the vector (x1, . . . , xn) consists of k ones and n − k zeros, we obtain

p(x1, . . . , xn) = k!(n − k)!
n!

xi = 0, 1,
n∑
i=1

xi = k

Since this is a symmetric function of (x1, . . . , xn), it follows that the random variables
are exchangeable. .

Remark Another way to obtain the preceding formula for the joint probability
mass function is to regard all the n balls as distinguishable from one another. Then,
since the outcome of the experiment is an ordering of these balls, it follows that
there are n! equally likely outcomes. Finally, because the number of outcomes having
special and nonspecial balls in specified places is equal to the number of ways of
permuting the special and the nonspecial balls among themselves, namely k!(n − k)!,
we obtain the preceding mass function. .

It is easily seen that if X1,X2, . . . ,Xn are exchangeable, then each Xi has the
same probability distribution. For instance, if X and Y are exchangeable discrete
random variables, then

P{X = x} =
∑
y

P{X = x,Y = y} =
∑
y

P{X = y,Y = x} = P{Y = x}

For example, it follows from Example 8a that the ith ball withdrawn will be special
with probability k/n, which is intuitively clear, since each of the n balls is equally
likely to be the ith one selected.

Example
8b

In Example 8a, letY1 denote the selection number of the first special ball withdrawn,
letY2 denote the additional number of balls that are then withdrawn until the second
special ball appears, and, in general, let Yi denote the additional number of balls
withdrawn after the (i − 1) special ball is selected until the ith is selected, i = 1, . . . ,k.
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For instance, if n = 4,k = 2 and X1 = 1,X2 = 0,X3 = 0,X4 = 1, then Y1 = 1,Y2 =
3. Now, Y1 = i1,Y2 = i2, . . . ,Yk = ik 3 Xi1 = Xi1+i2 = · · · = Xi1+···+ik = 1,Xj = 0,
otherwise; thus, from the joint mass function of the Xi, we obtain

P{Y1 = i1,Y2 = i2, . . . ,Yk = ik} = k!(n − k)!
n!

i1 + · · · + ik … n

Hence, the random variables Y1, . . . ,Yk are exchangeable. Note that it follows from
this result that the number of cards one must select from a well-shuffled deck until
an ace appears has the same distribution as the number of additional cards one must
select after the first ace appears until the next one does, and so on. .

Example
8c

The following is known as Polya’s urn model: Suppose that an urn initially con-
tains n red and m blue balls. At each stage, a ball is randomly chosen, its color is
noted, and it is then replaced along with another ball of the same color. Let Xi = 1
if the ith ball selected is red and let it equal 0 if the ith ball is blue, i Ú 1. To
obtain a feeling for the joint probabilities of these Xi, note the following special
cases:

P{X1 = 1,X2 = 1,X3 = 0,X4 = 1,X5 = 0}
= n
n + m

n + 1
n + m + 1

m
n + m + 2

n + 2
n + m + 3

m + 1
n + m + 4

= n(n + 1)(n + 2)m(m + 1)
(n + m)(n + m + 1)(n + m + 2)(n + m + 3)(n + m + 4)

and

P{X1 = 0,X2 = 1,X3 = 0,X4 = 1,X5 = 1}
= m
n + m

n
n + m + 1

m + 1
n + m + 2

n + 1
n + m + 3

n + 2
n + m + 4

= n(n + 1)(n + 2)m(m + 1)
(n + m)(n + m + 1)(n + m + 2)(n + m + 3)(n + m + 4)

By the same reasoning, for any sequence x1, . . . , xk that contains r ones and k − r
zeros, we have

P{X1 = x1, . . . ,Xk = xk}
= n(n + 1) · · · (n + r − 1)m(m + 1) · · · (m + k − r − 1)

(n + m) · · · (n + m + k − 1)

Therefore, for any value of k, the random variables X1, . . . ,Xk are exchangeable.
An interesting corollary of the exchangeability in this model is that the prob-

ability that the ith ball selected is red is the same as the probability that the first
ball selected is red, namely, n

n+m . (For an intuitive argument for this initially non-
intuitive result, imagine that all the n + m balls initially in the urn are of different
types. That is, one is a red ball of type 1, one is a red ball of type 2, . . ., one is a
red ball type of n, one is a blue ball of type 1, and so on, down to the blue ball of
type m. Suppose that when a ball is selected it is replaced along with another of
its type. Then, by symmetry, the ith ball selected is equally likely to be of any of
the n + m distinct types. Because n of these n + m types are red, the probability
is n

n+m .) .
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Our final example deals with continuous random variables that are exchangeable.

Example
8d

LetX1,X2, . . . ,Xn be independent uniform (0, 1) random variables, and denote their
order statistics by X(1), . . . ,X(n). That is, X(j) is the jth smallest of X1,X2, . . . ,Xn.
Also, let

Y1 = X(1),

Yi = X(i) − X(i−1), i = 2, . . . n

Show that Y1, . . . ,Yn are exchangeable.

Solution The transformations

y1 = x1, yi = xi − xi−1, i = 2, . . . ,n

yield
xi = y1 + · · · + yi i = 1, . . . ,n

As it is easy to see that the Jacobian of the preceding transformations is equal to 1,
so, from Equation (7.3), we obtain

fY1,...,Yn(y1, y2, . . . , yn) = f (y1, y1 + y2, . . . , y1 + · · · + yn)

where f is the joint density function of the order statistics. Hence, fromEquation (6.1),
we obtain that

fY1,...,Yn(y1, y2, . . . , yn) = n! 0 < y1 < y1 + y2 < · · · < y1 + · · · + yn < 1

or, equivalently,

fY1,...,Yn(y1, y2, . . . , yn) = n! 0 < yi < 1, i = 1, . . . ,n, y1 + · · · + yn < 1

Because the preceding joint density is a symmetric function of y1, . . . , yn, we see that
the random variables Y1, . . . ,Yn are exchangeable. .

Summary

The joint cumulative probability distribution function of
the pair of random variables X and Y is defined by

F(x, y) = P{X … x,Y … y} −q < x, y < q

All probabilities regarding the pair can be obtained from
F. To find the individual probability distribution functions
of X and Y, use

FX(x) = lim
y→q

F(x, y) FY(y) = lim
x→q

F(x, y)

If X and Y are both discrete random variables, then
their joint probability mass function is defined by

p(i, j) = P{X = i,Y = j}

The individual mass functions are

P{X = i} =
∑
j

p(i, j) P{Y = j} =
∑
i

p(i, j)

The random variables X and Y are said to be
jointly continuous if there is a function f (x, y), called the
joint probability density function, such that for any two-
dimensional set C,

P{(X,Y) ∈ C} =
∫ ∫
C

f (x, y)dx dy

It follows from the preceding formula that

P{x < X < x + dx, y < Y < y + dy} L f (x, y)dx dy
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If X and Y are jointly continuous, then they are individu-
ally continuous with density functions

fX(x) =
∫ q

−q
f (x, y)dy fY(y) =

∫ q

−q
f (x, y)dx

The random variables X and Y are independent if, for
all sets A and B,

P{X ∈ A,Y ∈ B} = P{X ∈ A}P{Y ∈ B}
If the joint distribution function (or the joint probability
mass function in the discrete case, or the joint density func-
tion in the continuous case) factors into a part depending
only on x and a part depending only on y, then X and Y
are independent.

In general, the random variables X1, . . . ,Xn are inde-
pendent if, for all sets of real numbers A1, . . . ,An,

P{X1 ∈ A1, . . . ,Xn ∈ An} = P{X1 ∈ A1} · · ·P{Xn ∈ An}
If X and Y are independent continuous random vari-

ables, then the distribution function of their sum can be
obtained from the identity

FX+Y(a) =
∫ q

−q
FX(a − y)fY(y)dy

If Xi, i = 1, . . . ,n, are independent normal ran-
dom variables with respective parameters μi and σ 2

i , i =
1, . . . ,n, then

n∑
i=1

Xi is normal with parameters
n∑
i=1

μi and

n∑
i=1

σ 2
i .

If Xi, i = 1, . . . ,n, are independent Poisson random
variables with respective parameters λi, i = 1, . . . ,n, then
n∑
i=1

Xi is Poisson with parameter
n∑
i=1

λi.

If X and Y are discrete random variables, then the
conditional probability mass function of X given that Y =
y is defined by

P{X = x|Y = y} = p(x, y)
pY(y)

where p is their joint probability mass function. Also, if X
and Y are jointly continuous with joint density function f ,
then the conditional probability density function ofX given
that Y = y is given by

fX|Y(x|y) = f (x, y)
fY(y)

The ordered values X(1) … X(2) … · · · … X(n) of a set of
independent and identically distributed random variables
are called the order statistics of that set. If the random vari-
ables are continuous and have density function f , then the
joint density function of the order statistics is

f (x1, . . . , xn) = n!f (x1) · · · f (xn) x1 … x2 … · · · … xn

The random variables X1, . . . ,Xn are called exchangeable
if the joint distribution ofXi1 , . . . ,Xin is the same for every
permutation i1, . . . , in of 1, . . . ,n.

Problems

6.1.A coin is tossed three times. Find the joint probability
mass function of X and Y when

(a) X is the number of heads in all three tosses, and Y is
the number of tails;
(b) X is the number of heads on the first two tosses, and Y
is the number of heads on all three tosses;
(c) X is the absolute difference between the number of
heads and the number of tails in all three tosses, and Y
is the number of tails.

6.2. Suppose that 3 balls are chosen without replacement
from an urn consisting of 5 white and 8 red balls. Let Xi
equal 1 if the ith ball selected is white, and let it equal 0
otherwise. Give the joint probability mass function of

(a) X1,X2;
(b) X1,X2,X3.

6.3. In Problem 6.2, suppose that the white balls are num-
bered, and letYi equal 1 if the ith white ball is selected and
0 otherwise. Find the joint probability mass function of

(a) Y1,Y2;
(b) Y1,Y2,Y3.

6.4. Repeat Problem 6.2 when the ball selected is replaced
in the urn before the next selection.

6.5. Repeat Problem 6.3a when the ball selected is
replaced in the urn before the next selection.

6.6. The severity of a certain cancer is designated by one
of the grades 1, 2, 3, 4 with 1 being the least severe and 4
the most severe. If X is the score of an initially diagnosed
patient and Y the score of that patient after three months
of treatment, hospital data indicates that p(i, j) = P(X =
i,Y = j) is given by

p(1, 1) = .08, p(1, 2) = .06, p(1, 3) = .04, p(1, 4) = .02
p(2, 1) = .06, p(2, 2) = .12, p(2, 3) = .08, p(2, 4) = .04
p(3, 1) = .03, p(3, 2) = .09, p(3, 3) = .12, p(3, 4) = .06
p(4, 1) = .01, p(4, 2) = .03, p(4, 3) = .07, p(4, 4) = .09
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(a) Find the probability mass functions of X and of Y;
(b) Find E[X] and E[Y].
(c) Find Var(X) and Var(Y).

6.7. Consider a sequence of independent Bernoulli trials,
each of which is a success with probability p. LetX1 be the
number of failures preceding the first success, and let X2
be the number of failures between the first two successes.
Find the joint mass function of X1 and X2.

6.8. The joint probability density function of X and Y is
given by

f (x, y) = c(x + y3) 0 … x … 1, 0 … y … 1

(a) Find c.
(b) Find the marginal densities of X and Y.
(c) Find E[XY].

6.9. The joint probability density function of X and Y is
given by

f (x, y) = cxe−y, 0 … y … x … 1

(a) Find c.
(b) Find the marginal density of X.
(c) Find the marginal density of Y.
(d) Find P{Y < 1

3 |X < 1
2 }.

(e) Find E[X].
(f) Find E[Y].

6.10. The joint probability density function of X and Y is
given by

f (x, y) = 4(ln 2)22−(x+y), 0 … x < 1, 0 … y … 1

Find (a) P{X < a} and (b) P{X + Y < 1
2 }.

6.11. In Example 1d, verify that f (x, y) = 2e−xe−2y, 0 <

x < q, 0 < y < q, is indeed a joint density. function.
That is, check that f (x, y) Ú 0, and that∫q
−q

∫q
−q f (x, y)dx dy = 1.

6.12. The number of claims received by a car insurance
company in a month is a Poisson random variable with
mean 20. Seventy percent of policies pertain to vehicle
type A, and 30 percent of policies pertain to vehicle type
B. Compute the conditional probability that more than 10
claims received are for vehicle type A given that at least 5
of the claims received are for vehicle type B.What assump-
tions have you made?

6.13.A man and a woman agree to meet at a certain loca-
tion about 12:30 P.M. If the man arrives at a time uni-
formly distributed between 12:15 and 12:45, and if the
woman independently arrives at a time uniformly dis-
tributed between 12:00 and 1 P.M., find the probability that
the first to arrive waits no longer than 5 minutes. What is
the probability that the man arrives first?

6.14.An ambulance travels back and forth at a constant
speed along a road of length L. At a certain moment of

time, an accident occurs at a point uniformly distributed on
the road. [That is, the distance of the point from one of the
fixed ends of the road is uniformly distributed over (0, L).]
Assuming that the ambulance’s location at the moment of
the accident is also uniformly distributed, and assuming
independence of the variables, compute the distribution of
the distance of the ambulance from the accident.

6.15. The random vector (X,Y) is said to be uniformly dis-
tributed over a region R in the plane if, for some constant
c, its joint density is

f (x, y) =
{
c if(x, y) ∈ R
0 otherwise

(a) Show that 1/c = area of region R.

Suppose that (X, Y) is uniformly distributed over the
square centered at (0, 0) and with sides of length 2.
(b) Show that X and Y are independent, with each being
distributed uniformly over (−1, 1).
(c)What is the probability that (X, Y) lies in the cir-
cle of radius 1 centered at the origin? That is, find
P{X2 + Y2 … 1}.

6.16. Suppose that n points are independently chosen at
random on the circumference of a circle, and we want the
probability that they all lie in some semicircle. That is, we
want the probability that there is a line passing through the
center of the circle such that all the points are on one side
of that line, as shown in the following diagram:

Let P1, . . . ,Pn denote the n points. LetA denote the event
that all the points are contained in some semicircle, and
let Ai be the event that all the points lie in the semi-
circle beginning at the point Pi and going clockwise for
180◦, i = 1, . . . ,n.

(a) Express A in terms of the Ai.
(b)Are the Ai mutually exclusive?
(c) Find P(A).

6.17.A circle of radius R is divided into four equally
sized sectors. Pick three independently and uniformly dis-
tributed points in the circle. What is the probability that
the three points lie in different sectors?
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6.18. Let X1 and X2 be independent Poisson random vari-
ables with each Xi having parameter λi. Find

(a) P(X1X2 = 0);
(b) P(X1 + X2 = 1);
(c) P(X1 + X2 > 1).

6.19. Show that f (x, y) = x(1−x)
B(3, 2) , 0 < y < x < 1, where

B(3, 2) is the beta function evaluated at 3 and 2, is a joint
density function for two random variables X and Y. Find

(a) the marginal density of X;
(b) the marginal density of Y;
(c) E[X];
(d) E[Y].

6.20. The joint density of X and Y is given by

f (x, y) =
{
xe−(x+y) x > 0, y > 0
0 otherwise

Are X and Y independent? If, instead, f (x, y) were
given by

f (x, y) =
{
2 0 < x < y, 0 < y < 1
0 otherwise

would X and Y be independent?

6.21. Let

f (x, y) = 1
2
sin(x + y), 0 … x …

π

2
, 0 … y …

π

2

(a) Show that f (x, y) is a joint probability density function.
(b) Find E[X].
(c) Find E[cosY].

6.22. The joint density function of X and Y is

f (x, y) =

⎧⎪⎨
⎪⎩
x + y 0 < x < 1, 0 < y < 1
0 otherwise

(a)Are X and Y independent?
(b) Find the density function of X.
(c) Find P{X + Y < 1}.
6.23. The random variables X and Y have joint density
function

f (x, y) = 12xy(1 − x) 0 < x < 1, 0 < y < 1

and equal to 0 otherwise.

(a)Are X and Y independent?
(b) Find E[X].

(c) Find E[Y].
(d) Find Var(X).
(e) Find Var(Y).

6.24. Consider independent trials, each of which results in
outcome 0, with probability p, and a non-zero outcome
with value, with probability 1 − p. Let N represent the
number of trials needed to obtain a number that is not
equal to 0, and let X = 1/N be that outcome.

(a) Find P(N Ú n).
(b) Show that E[X] = (−p ln p)/((1 − p)).
(c)What is probability P(N … n,X Ú x)?
(d)What is probability P(N … n|X Ú x)?

6.25. Suppose that 106 people arrive at a service station
at times that are independent random variables, each of
which is uniformly distributed over (0, 106). Let N denote
the number that arrive in the first hour. Find an approxi-
mation for P{N = i}.

6.26. Suppose that A, B, C, are independent random vari-
ables, each being uniformly distributed over (0, 1).

(a)What is the joint cumulative distribution function ofA,
B, C?
(b)What is the probability that all of the roots of the equa-
tion Ax2 + Bx + C = 0 are real?

6.27. Let X1 and X2 be independent and uniformly dis-
tributed on [0, 1]. Find the cumulative distribution func-
tion of Z = X1X2 and P{Z > .5}.

6.28. The time that it takes to service a car is an exponen-
tial random variable with rate 1.

(a) If A. J. brings his car in at time 0 and M. J. brings her
car in at time t, what is the probability that M. J.’s car is
ready before A. J.’s car? (Assume that service times are
independent and service begins upon arrival of the car.)
(b) If both cars are brought in at time 0, with work start-
ing onM. J.’s car only when A. J.’s car has been completely
serviced, what is the probability that M. J.’s car is ready
before time 2?

6.29. The total rain water collected in a reservoir in a
year is gamma distributed with mean 1000 liters and stan-
dard deviation 200. Assuming that the rain water collected
yearly is independent, what is the probability that

(a) the total rainwater collected by the reservoir in 2 years
is less than 2500?
(b)more than average collection of rain water happens in
at least 3 of the next 5 years?

6.30.A manufacturing plant uses two machines in two
stages. The service time (in minutes) of the first machine
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is normally distributed with mean 1 and standard devia-
tion .05. Independent of the first machine, the service time
of the second is normally distributed with mean .95 and
standard deviation .02. Find the probability that

(a) the first machine finishes the task faster than the sec-
ond machine;
(b) the total service time for both machines is less than 2.1.

6.31.According to the U.S. National Center for Health
Statistics, 25.2 percent of males and 23.6 percent of females
never eat breakfast. Suppose that random samples of 200
men and 200 women are chosen. Approximate the proba-
bility that

(a) at least 110 of these 400 people never eat breakfast;
(b) the number of the women who never eat breakfast is
at least as large as the number of the men who never eat
breakfast.

6.32.Daily log returns on stock are independent normal
random variables with mean 0 and standard deviation .01.

(a) Find the probability that gains are made on each of 4
consecutive days.
(b) Find the probability that the total log returns on 4 con-
secutive days is greater than .02.

6.33. Let X1 and X2 both be the sum of 10000 Bernoulli
trials, with the probability of a successful outcome being
1
2 . Use the normal approximation to the binomial to deter-
mine which probability is larger

(a) P(X1 < 5000) or P(X1 + X2 < 10000);
(b) P(X1 > 5100) or P(X1 + X2 > 10300).

6.34. Suppose X and Y are independent normal random
variables with parameters (μ1, σ1) and (μ2, σ2), respec-
tively. Find x such that P(X − Y > x) = P(X + Y > a)
for some a.

6.35. Teams 1, 2, 3, 4 are all scheduled to play each of the
other teams 10 times. Whenever team i plays team j, team
i is the winner with probability Pi,j, where

P1,2 = .6, P1,3 = .7, P1,4 = .75

P2,1 = .4, P2,3 = .6, P2,4 = .70

(a)Approximate the probability that team 1 wins at least
20 games.
Suppose we want to approximate the probability that team
2 wins at least as many games as does team 1. To do so, let
X be the number of games that team 2 wins against team
1, let Y be the total number of games that team 2 wins
against teams 3 and 4, and let Z be the total number of
games that team 1 wins against teams 3 and 4.

(b)Are X,Y,Z independent.

(c) Express the event that team 2 wins at least as many
games as does team 1 in terms of the random variables
X,Y,Z.

(d)Approximate the probability that team 2 wins at least
as many games as team 1.

Hint: Approximate the distribution of any binomial ran-
dom variable by a normal with the same mean and vari-
ance.

6.36. Let X1, . . . ,X10 be independent with the same con-
tinuous distribution function F, and let m be the median
of that distribution. That is, F(m) = .5.

(a) If N is the number of the values X1, . . . ,X10 that are
less thanm, what type of random variable is N.
(b) LetX(1) < X(2) < · · · < X(10) be the valuesX1, . . . ,X10
arranged in increasing order. That is, X(i) is, for i =
1, . . . , 10, the ith smallest ofX1, . . . ,X10. FindP(X(2) <m<

X(8)).

6.37.An experiment is successful with probability .8.
(a)What is the probability that 2 runs of the experiment
yield no success?
(b)What is the probability that 10 runs of the exper-
iment yield higher-than-average success? Explain your
reasoning.

6.38. The number of defects in a piece of fabric is Poisson
with an average of 2 per square meter. What is

(a) the probability that there are no defects on one square
meter of the fabric?
(b) the probability that there are more than 5 defects on 5
square meters of the fabric?
(c) the expected number of defects in 2 square meters of
fabric given that there is one?

6.39. In Problem 6.4, calculate the conditional probability
mass function of X1 given that

(a) X2 = 1;
(b) X2 = 0.

6.40. In Problem 6.3, calculate the conditional probability
mass function of Y1 given that

(a) Y2 = 1;
(b) Y2 = 0.

6.41. The discrete integer valued random variablesX,Y,Z
are independent if for all i, j,k

P(X = i,Y = j,Z = k) = P(X = i)P(Y = j)P(Z = k)

Show that if X,Y,Z are independent then X and Y are
independent. That is, show that the preceding implies that

P(X = i,Y = j) = P(X = i)P(Y = j)
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6.42. Choose a number X using a standard normal dis-
tribution. Choose a second number Y using a truncated
normal distribution on (−q,X).

(a) Find the joint density function of X and Y.
(b)Deduce the marginal density function of Y.
(c) Confirm that the marginal density in (b) integrates to 1.

6.43. Let X and Y be, respectively, the smallest and the
largest values of two uniformly distributed values on (0,1).
Find the conditional density function of Y given X = x,
x ∈ (0, 1). Also, show that X and Y are not independent.

6.44. The joint probability mass function of X and Y is
given by

p(1, 1) = .9, p(1, 2) = .04

p(2, 1) = .03, p(2, 2) = .03

(a) Compute the conditional mass function of X given
Y = i, i = 1, 2.
(b)Are X and Y independent?
(c) Compute P{X − Y = 0},P{X + Y … 3}, and P{XY … 1}.
6.45. The joint density function of X and Y is given by

f (x, y) = xe−x(y+1) x > 0, y > 0

(a) Find the conditional density ofX, given Y=y, and that
of Y, given X = x.
(b) Find the density function of Z = XY.

6.46. The joint density of X and Y is

f (x, y) = cxy3 0 < x < 1, 0 < y < x
1
4

Find c and the conditional distribution of X, given Y = y.

6.47. Packages of different types arriving in a processing
department have a processing parameter μ, depending on
type. The service time for processing a package with pro-
cessing parameter μ is an exponentially distributed service
rate μ. The parameter μ is also assumed to be uniformly
distributed on (a1, a2), a2 > a1 > 0. If a particular package
takes more than b, b > 0, to process, find the conditional
density of the processing parameter. Based on this infor-
mation, determine the expected value of the processing
parameter that the next package identical to this one will
have.

6.48. LetX1 andX2 be independent random variables that
are exponentially distributed with parameter λ. Compute
the probability that the largest of the two is twice as great
as the other one.

6.49.A complex machine is able to operate effectively as
long as at least 3 of its 5 motors are functioning. If each
motor independently functions for a random amount of

time with density function f (x) = xe−x, x > 0, compute
the density function of the length of time that the machine
functions.

6.50. If 3 trucks break down at points randomly dis-
tributed on a road of length L, find the probability that no
2 of the trucks are within a distance d of each other when
d … L/2.

6.51. Consider a sample of size 5 from a uniform distribu-
tion over (0, 1). Compute the probability that the median
is in the interval

(
1
4 ,

3
4

)
.

6.52. Let X1, . . . ,Xn be independent and identically dis-
tributed geometric random variables with parameter p
related to the probability of a successful trial. Hence, given
a positive integer a, find:

(a) P{min(X1, . . . ,Xn) … a};
(b) P{max(X1, . . . ,Xn) … a}.
6.53. Let X(1),X(2), . . . ,X(n) be the order statistics of a
set of n independent uniform (0, 1) random variables. Find
the conditional distribution of X(n) given that X(1) =
s1,X(2) = s2, . . . ,X(n−1) = sn−1.

6.54. Let Z1 and Z2 be independent standard normal ran-
dom variables. Given X = Z1 + Z2 and Y = Z2 − Z1,
show that X and Y are independent normally distributed
random variables with mean 0 and variance 2.

6.55.Derive the distribution of the range of a sample of
size 2 from a distribution having density function f (x) =
2x, 0 < x < 1.

6.56. Let X and Y denote the coordinates of a point uni-
formly chosen in the circle of radius 1 centered at the ori-
gin. That is, their joint density is

f (x, y) = 1
π

x2 + y2 … 1

Find the joint density function of the polar coordinates
R = (X2 + Y2)1/2 and � = tan−1 Y/X.

6.57. If X and Y are independent random variables both
uniformly distributed over (0, 1), find the joint density
function of R =

√
X2 + Y2,Θ = tan−1 Y/X.

6.58. If U is uniform on (0, 2π) and Z, independent of U,
is exponential with rate 1, show directly (without using the
results of Example 7b) that X and Y defined by

X =
√
2Z cosU

Y =
√
2Z sinU

are independent standard normal random variables.

6.59. X and Y have joint density function

f (x, y) = 1
x2y2

x Ú 1, y Ú 1
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(a) Compute the joint density function of U = XY,V =
X/Y.
(b)What are the marginal densities?

6.60. If X and Y are independent and identically
distributed uniform random variables on (0, 1),
compute the joint density of

(a) U = X + Y,V = X/Y;
(b) U = X,V = X/Y;
(c) U = X + Y,V = X/(X + Y).

6.61. Repeat Problem 6.60 whenX andY are independent
exponential random variables, each with parameter λ = 1.

6.62. Let X1 and X2 be independent exponentially dis-
tributed random variables with parameters λ1 and λ2,
respectively. Find the joint density function of Y1 = X1
and Y2 = X1 + X2.

6.63. Let X, Y, and Z be independent random variables
having identical distribution functions f (x) = 1 − .5x, 0 <

x < 2. Derive the joint distribution of U = X + Y, V =
eY ,W = X + Y + Z.

6.64. In Example 8b, let Yk+1 = n + 1 −
k∑
i=1

Yi. Show

that Y1, . . . ,Yk,Yk+1 are exchangeable. Note that Yk+1 is
the number of balls one must observe to obtain a special
ball if one considers the balls in their reverse order of with-
drawal.

6.65. Consider an urn containing n balls numbered
1, . . . ,n, and suppose that k of them are randomly with-
drawn. Let Xi equal 1 if ball number i is removed and let
Xi be 0 otherwise. Show thatX1, . . . ,Xn are exchangeable.

Theoretical Exercises

6.1. F(x, y) is the joint density function of random vari-
ables X and Y. If F(x, y) = F(y, x) what can you say about
the distributions of the two random variables?

6.2. Suppose that X and Y are integer valued random
variables and have a joint distribution function F(i, j) =
P(X … i,Y … j).

(a)Give an expression, in terms of the joint distribution
function, for P(X = i,Y … j).
(b)Give an expression, in terms of the joint distribution
function, for P(X = i,Y = j).

6.3. Suggest a procedure for using Buffon’s needle prob-
lem to estimate π . Surprisingly enough, this was once a
common method of evaluating π .

6.4. Solve Buffon’s needle problem when L > D.

ANSWER:
2L
πD

(1 − sin θ) + 2θ/π , where cos θ = D/L.

6.5.Given continuous independent random variables X
andY with probability density functions fX and fY , find the
density functions and distribution functions for the ran-
dom variables Z = XeY and W = X(Y2 + 1) in terms
of fX and fY .

6.6. X and Y are continuous random variables with joint
density function f (x, y). Show that the density function of
X − Y is given by

fX−Y(z) =
∫ q

−q
f (x, x − z)dx

Show that independence implies the equation

FX−Y(z) = 1 −
∫ q

−q
FY(x − z)fX(x)dx

6.7. (a) If X has a gamma distribution with parameters
(t, λ), what is the distribution of cX, c > 0?
(b) Show that

1
2λ

χ2
2n

has a gamma distribution with parameters n, λ when n is a
positive integer and χ2

2n is a chi-squared random variable
with 2n degrees of freedom.

6.8. LetX and Y be independent continuous random vari-
ables with respective hazard rate functions λX(t) and λY(t),
and setW = min(X,Y).

(a)Determine the distribution function of W in terms of
those of X and Y.
(b) Show that λW(t), the hazard rate function of W, is
given by

λW(t) = λX(t) + λY(t)

6.9. Show that

f (x1, x2, . . . , xn) = n!
(1 + x1 + x2 + . . . . + xn)n+1

for x1 Ú 0, x2 Ú 0, . . . .xn Ú 0 constitutes a joint density
function. Compute P{X1 … X2,X2 Ú X3} where X1, X2,
and X3 follow the joint density function above.



A First Course in Probability 309

6.10. The lifetimes of batteries are independent exponen-
tial random variables, each having parameter λ. A flash-
light needs 2 batteries to work. If one has a flashlight and
a stockpile of n batteries, what is the distribution of time
that the flashlight can operate?

6.11. Let X1, X2, X3, X4, X5 be independent continuous
random variables having a common distribution function
F and density function f , and set

I = P{X1 < X2 < X3 < X4 < X5}
(a) Show that I does not depend on F.
Hint: Write I as a five-dimensional integral and make the
change of variables ui = F(xi), i = 1, . . . , 5.
(b) Evaluate I.
(c) Give an intuitive explanation for your answer to (b).

6.12. Show that the jointly continuous (discrete) random
variables X1, . . . ,Xn are independent if and only if their
joint probability density (mass) function f (x1, . . . , xn) can
be written as

f (x1, . . . , xn) =
n∏
i=1

gi(xi)

for nonnegative functions gi(x), i = 1, . . . ,n.

6.13. In Example 5e, we computed the conditional density
of a success probability for a sequence of trials when the
first n + m trials resulted in n successes. Would the condi-
tional density change if we specified which n of these trials
resulted in successes?

6.14. X and Y are independent geometrically distributed
random variables both with parameter p.

(a)Work out P{X > Y}. Hence derive an expression for
P{X = Y}.
(b) Compute P{X Ú 2Y|X > Y}.
6.15. Consider a sequence of independent trials, with each
trial being a success with probability p. Given that the kth
success occurs on trial n, show that all possible outcomes
of the first n − 1 trials that consist of k − 1 successes and
n − k failures are equally likely.

6.16. The number of particles N arriving inside a closed
chamber within a fixed interval of time is Poisson dis-
tributed with parameter λ. Once inside the chamber, n
particles go through a process from which the number X
of disintegrating particles follows a binomial distribution
with parameters (n, p). Compute P{X = k} showing that
X itself is Poisson.

6.17. Suppose that Xi, i = 1, 2, 3 are independent Pois-
son random variables with respective means λi, i = 1, 2, 3.
Let X = X1 + X2 and Y = X2 + X3. The random

vector X,Y is said to have a bivariate Poisson distribu-
tion. Find its joint probability mass function. That is, find
P{X = n, Y = m}.
6.18. X and Y are integer valued random variables. Prove
that

P(X = i or Y = j)
P(X = i,Y = j)

= 1
P(X = i|Y = j)

+ 1
P(Y = j|X = i)

− 1

for all integers i, j.

6.19.Given X1,X2,X3,X4 are four positive, independent,
identically distributed random variables with a shared con-
tinuous distribution, find the following probabilities

(a) P{ X1
X1+X2

<
X3

X3+X2
};

(b) P{X1 < X2,X3 < X4|X2 < X3};
(c) P{X1 > X2 > X3|X2 > X3}.
6.20. The random variable X is exponentially distributed
with parameter λ. Work out the following conditional dis-
tributions:

(a) P{X|X > t};
(b) P{X|X < t}.
6.21. Suppose that W, the amount of moisture in the air
on a given day, is a gamma random variable with parame-
ters (t,β). That is, its density is f (w) = βe−βw(βw)t−1/�(t),
w > 0. Suppose also that given that W = w, the num-
ber of accidents during that day—call it N—has a Poisson
distribution with mean w. Show that the conditional distri-
bution of W given that N = n is the gamma distribution
with parameters (t + n,β + 1).

6.22. Let W be a gamma random variable with param-
eters (t,β), and suppose that conditional on W = w,
X1,X2, . . . ,Xn are independent exponential random vari-
ables with rate w. Show that the conditional distribution
of W given that X1 = x1,X2 = x2, . . . ,Xn = xn is gamma

with parameters

(
t + n,β +

n∑
i=1

xi

)
.

6.23.A rectangular array of mn numbers arranged in n
rows, each consisting ofm columns, is said to contain a sad-
dlepoint if there is a number that is both the minimum of
its row and the maximum of its column. For instance, in
the array

1 3 2
0 −2 6
.5 12 3

the number 1 in the first row, first column is a saddlepoint.
The existence of a saddlepoint is of significance in the the-
ory of games. Consider a rectangular array of numbers as
described previously and suppose that there are two indi-
viduals—A and B—who are playing the following game: A
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is to choose one of the numbers 1, 2, . . . ,n andB one of the
numbers 1, 2, . . . ,m. These choices are announced simulta-
neously, and if A chose i and B chose j, then A wins from
B the amount specified by the number in the ith row, jth
column of the array. Now suppose that the array contains
a saddlepoint—say the number in the row r and column
k—call this number xrk. Now if player A chooses row r,
then that player can guarantee herself a win of at least
xrk (since xrk is the minimum number in the row r). On
the other hand, if player B chooses column k, then he can
guarantee that he will lose no more than xrk (since xrk is
the maximum number in the column k). Hence, as A has
a way of playing that guarantees her a win of xrk and as B
has a way of playing that guarantees he will lose no more
than xrk, it seems reasonable to take these two strategies
as being optimal and declare that the value of the game to
player A is xrk.

If the nm numbers in the rectangular array described are
independently chosen from an arbitrary continuous distri-
bution, what is the probability that the resulting array will
contain a saddlepoint?

6.24. If X is exponential with rate λ, find P{[X] = n,X −
[X] … x}, where [x] is defined as the largest integer less
than or equal to x. Can you conclude that [X] andX − [X]
are independent?

6.25. Suppose that F(x) is a cumulative distribution func-
tion. Show that (a) Fn(x) and (b) 1 − [1 − F(x)]n are
also cumulative distribution functions when n is a positive
integer.
Hint: Let X1, . . . ,Xn be independent random variables
having the common distribution function F. Define ran-
dom variables Y and Z in terms of the Xi so that P{Y …
x} = Fn(x) and P{Z … x} = 1 − [1 − F(x)]n.

6.26. Show that if n people are distributed at random along
a road L miles long, then the probability that no 2 people
are less than a distanceDmiles apart is whenD … L/(n −
1), [1 − (n − 1)D/L]n. What ifD > L/(n − 1)?

6.27. Suppose that X1, . . . ,Xn are independent exponen-
tial random variables with rate λ. Find

(a) fX1|X1+...+Xn(x|t), the conditional density of X1 given
that X1 + . . . + Xn = t;
(b) P(X1 < x|X1 + . . . + Xn = t).

6.28. Establish Equation (6.2) by differentiating Equa-
tion (6.4).

6.29. Show that the median of a sample of size 2n + 1 from
a uniform distribution on (0, 1) has a beta distribution with
parameters (n + 1, n + 1).

6.30. Suppose that X1, . . . ,Xn are independent and iden-
tically distributed continuous random variables. For A =
{X1 < · · · < Xj > Xj+1 > · · · > Xn}, findP(A). That is, find

the probability that the function X(i) = Xi, i = 1, . . . ,n, is
a unimodal function with maximal value X(j). Hint:Write

A = {max(X1, . . . ,Xj) = max(X1, . . . ,Xn),

X1 < · · · < Xj, Xj+1 > · · · > Xn}

6.31. Compute the density of the range of a sample of size
n from a continuous distribution having density function f .

6.32. Let X(1) … X(2) … · · · … X(n) be the ordered values
of n independent uniform (0, 1) random variables. Prove
that for 1 … k … n + 1,

P{X(k) − X(k−1) > t} = (1 − t)n

where X(0) K 0,X(n+1) K 1, and 0 < t < 1.

6.33. Let X1, . . . ,Xn be a set of independent and identi-
cally distributed continuous random variables having dis-
tribution function F, and let X(i), i = 1, . . . ,n denote their
ordered values. If X, independent of the Xi, i = 1, . . . ,n,
also has distribution F, determine

(a) P{X > X(n)};
(b) P{X > X(1)};
(c) P{X(i) < X < X(j)}, 1 … i < j … n.

6.34. Let X1, . . . ,Xn be independent and identically dis-
tributed random variables having distribution function F
and density f . The quantityM K [X(1) + X(n)]/2, defined
to be the average of the smallest and largest values in
X1, . . .,Xn, is called the midrange of the sequence. Show
that its distribution function is

FM(m) = n
∫ m

−q
[F(2m − x) − F(x)]n−1f (x)dx

6.35. Let X1, . . . ,Xn be independent uniform (0, 1) ran-
dom variables. Let R = X(n) − X(1) denote the range and
M = [X(n) + X(1)]/2 the midrange ofX1, . . .,Xn. Compute
the joint density function of R andM.

6.36. IfX andY are independent standard normal random
variables, determine the joint density function of

U = X V = X
Y

Then use your result to show that X/Y has a Cauchy
distribution.

6.37. Suppose that (X,Y) has a bivariate normal distribu-
tion with parameters μx,μy, σx, σy, ρ.

(a) Show that (
X−μx

σx
, Y−μy

σy
) has a bivariate normal distri-

bution with parameters 0, 1, 0, 1, ρ.

(b)What is the joint distribution of (aX + b, cY + d).
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6.38. Suppose that X has a beta distribution with parame-
ters (a, b), and that the conditional distribution of N given
that X = x is binomial with parameters (n + m, x). Show
that the conditional density of X given that N = n is
the density of a beta random variable with parameters
(n + a,m + b). N is said to be a beta binomial random
variable.

6.39. Consider an experiment with n possible outcomes,
having respective probabilities P1, . . . ,Pn,

∑n
i=1 Pi = 1,

and suppose we want to assume a probability distribution
on the probability vector (P1, . . . ,Pn). Because

∑n
i=1 Pi =

1, we cannot define a density on P1, . . . ,Pn, but what we
can do is to define one on P1, . . . ,Pn−1 and then take
Pn = 1 − ∑n−1

i=1 Pi. The Dirichlet distribution takes
(P1, . . . ,Pn−1) to be uniformly distributed over the set
S = {(p1, . . . ,pn−1) :

∑n−1
i=1 pi < 1, pi > 0, i = 1, . . . ,n − 1}.

That is, the Dirichlet density is

fP1,...,Pn−1(p1, . . . ,pn−1) = C,

pi > 0, i = 1, . . . ,n − 1,
n−1∑
i=1

pi < 1

(a)Determine C. Hint: Use results from Section 6.3.1.

LetU1, . . . ,Un be independent uniform (0, 1) random vari-
ables.
(b) Show that the Dirichlet density is the conditional den-
sity of U1, . . . ,Un−1 given that

∑n−1
i=1 Ui < 1.

*(c) Show that U(1),U(2) − U(1), . . . ,U(n) − U(n−1) has a
Dirichlet distribution, where U(1), . . . ,U(n) are the order
statistics of U1, . . . ,Un.

6.40. Let FX1,...,Xn(x1, . . . , xn) and fX1,...,Xn(x1, . . . , xn) be,
respectively, the joint distribution function and the joint
density function of X1, . . . ,Xn.
Show that

∂n

∂x1 · · · ∂xn
FX1,...,Xn(x1, . . . , xn) = fX1,...,Xn(x1, . . . , xn).

6.41. For given constants ci > 0, let Yi = ciXi, i =
1, . . . ,n, and let FY1,...,Yn(x1, . . . , xn) and fY1,...,Yn(x1, . . . , xn)
be, respectively the joint distribution function and the joint
density function of Y1, . . . ,Yn.
(a) Express FY1,...,Yn(x1, . . . , xn) in terms of the joint distri-
bution function of X1, . . . ,Xn.
(b) Express fY1,...,Yn(x1, . . . , xn) in terms of the joint density
function of X1, . . . ,Xn.
(c) Use Equation (7.3) to verify your answer to part (b).

Self-Test Problems and Exercises

6.1. Each throw of an unfair die lands on each of the odd
numbers 1, 3, 5 with probability C and on each of the even
numbers with probability 2C.

(a) Find C.
(b) Suppose that the die is tossed. Let X equal 1 if the
result is an even number, and let it be 0 otherwise. Also,
let Y equal 1 if the result is a number greater than three
and let it be 0 otherwise. Find the joint probability mass
function of X and Y. Suppose now that 12 independent
tosses of the die are made.
(c) Find the probability that each of the six outcomes
occurs exactly twice.
(d) Find the probability that 4 of the outcomes are either
one or two, 4 are either three or four, and 4 are either five
or six.
(e) Find the probability that at least 8 of the tosses land on
even numbers.

6.2. The joint probability mass function of the random
variables X, Y, Z is

p(1, 2, 3) = p(2, 1, 1) = p(2, 2, 1) = p(2, 3, 2) = 1
4

Find (a) E[XYZ], and (b) E[XY + XZ + YZ].

6.3. The joint density of X and Y is given by

f (x, y) = C(y − x)e−y −y < x < y, 0 < y < q

(a) Find C.
(b) Find the density function of X.
(c) Find the density function of Y.
(d) Find E[X].
(e) Find E[Y].

6.4. Let r = r1 + . . . + rk, where all ri are positive integers.
Argue that if X1, . . . ,Xr has a multinomial distribution,
then so does Y1, . . . ,Yk where, with r0 = 0,

Yi =
ri−1+ri∑
j=ri−1+1

Xj , i … k

That is, Y1 is the sum of the first r1 of the X ′s, Y2 is the
sum of the next r2, and so on.
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6.5. Suppose that X, Y, and Z are independent random
variables that are each equally likely to be either 1 or
2. Find the probability mass function of (a) XYZ, (b)
XY + XZ + YZ, and (c) X2 + YZ.

6.6. Let X and Y be continuous random variables with
joint density function

f (x, y) =
⎧⎨
⎩
x
5

+ cy 0 < x < 1, 1 < y < 5

0 otherwise

where c is a constant.

(a)What is the value of c?
(b)Are X and Y independent?
(c) Find P{X + Y > 3}.
6.7. The joint density function of X and Y is

f (x, y) =
{
xy 0 < x < 1, 0 < y < 2
0 otherwise

(a)Are X and Y independent?
(b) Find the density function of X.
(c) Find the density function of Y.
(d) Find the joint distribution function.
(e) Find E[Y].
(f) Find P{X + Y < 1}.
6.8. Consider two components and three types of shocks.
A type 1 shock causes component 1 to fail, a type 2 shock
causes component 2 to fail, and a type 3 shock causes both
components 1 and 2 to fail. The times until shocks 1, 2,
and 3 occur are independent exponential random variables
with respective rates λ1, λ2, and λ3. Let Xi denote the time
at which component i fails, i = 1, 2. The random variables
X1,X2 are said to have a joint bivariate exponential distri-
bution. Find P{X1 > s,X2 > t}.
6.9. Consider a directory of classified advertisements that
consists of m pages, where m is very large. Suppose that
the number of advertisements per page varies and that
your only method of finding out howmany advertisements
there are on a specified page is to count them. In addition,
suppose that there are too many pages for it to be feasible
to make a complete count of the total number of adver-
tisements and that your objective is to choose a directory
advertisement in such a way that each of them has an equal
chance of being selected.

(a) If you randomly choose a page and then randomly
choose an advertisement from that page, would that satisfy
your objective? Why or why not?

Let n(i) denote the number of advertisements on page
i, i = 1, . . . ,m, and suppose that whereas these quantities

are unknown, we can assume that they are all less than
or equal to some specified value n. Consider the following
algorithm for choosing an advertisement.

Step 1. Choose a page at random. Suppose it is page X.
Determine n(X) by counting the number of adver-
tisements on page X.

Step 2. “Accept” page X with probability n(X)/n. If page
X is accepted, go to step 3. Otherwise, return to
step 1.

Step 3. Randomly choose one of the advertisements on
page X.

Call each pass of the algorithm through step 1 an iter-
ation. For instance, if the first randomly chosen page
is rejected and the second accepted, then we would
have needed 2 iterations of the algorithm to obtain an
advertisement.

(b)What is the probability that a single iteration of the
algorithm results in the acceptance of an advertisement on
page i?
(c)What is the probability that a single iteration of the
algorithm results in the acceptance of an advertisement?
(d)What is the probability that the algorithm goes through
k iterations, accepting the jth advertisement on page i on
the final iteration?
(e)What is the probability that the jth advertisement on
page i is the advertisement obtained from the algorithm?
(f) What is the expected number of iterations taken by the
algorithm?

6.10. The “random” parts of the algorithm in Self-Test
Problem 6.9 can be written in terms of the generated val-
ues of a sequence of independent uniform (0, 1) random
variables, known as random numbers. With [x] defined as
the largest integer less than or equal to x, the first step can
be written as follows:

Step 1. Generate a uniform (0, 1) random variable U. Let
X = [mU] + 1, and determine the value of n(X).

(a) Explain why the above is equivalent to step 1 of Prob-
lem 6.8.

Hint: What is the probability mass function of X?
(b)Write the remaining steps of the algorithm in a similar
style.
6.11. LetX1,X2, . . . be a sequence of independent uniform
(0, 1) random variables. For a fixed constant c, define the
random variable N by

N = min{n : Xn > c}
Is N independent of XN? That is, does knowing the
value of the first random variable that is greater than c
affect the probability distribution of when this random
variable occurs? Give an intuitive explanation for your
answer.
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6.12. The accompanying dartboard is a square whose sides
are of length 6:

10
20

30

The three circles are all centered at the center of the board
and are of radii 1, 2, and 3, respectively. Darts landing
within the circle of radius 1 score 30 points, those land-
ing outside this circle, but within the circle of radius 2,
are worth 20 points, and those landing outside the circle
of radius 2, but within the circle of radius 3, are worth 10
points. Darts that do not land within the circle of radius 3
do not score any points. Assuming that each dart that you
throw will, independently of what occurred on your pre-
vious throws, land on a point uniformly distributed in the
square, find the probabilities of the accompanying events:

(a) You score 20 on a throw of the dart.
(b) You score at least 20 on a throw of the dart.
(c) You score 0 on a throw of the dart.
(d) The expected value of your score on a throw of
the dart.
(e) Both of your first two throws score at least 10.
(f) Your total score after two throws is 30.

6.13.Amodel proposed for NBA basketball supposes that
when two teams with roughly the same record play each
other, the number of points scored in a quarter by the
home team minus the number scored by the visiting team
is approximately a normal random variable with mean 1.5
and variance 6. In addition, the model supposes that the
point differentials for the four quarters are independent.
Assume that this model is correct.

(a)What is the probability that the home team wins?
(b)What is the conditional probability that the home team
wins, given that it is behind by 5 points at halftime?
(c)What is the conditional probability that the home team
wins, given that it is ahead by 5 points at the end of the first
quarter?

6.14. Let N be a geometric random variable with parame-
ter p. Suppose that the conditional distribution of X given
that N = n is the gamma distribution with parameters n
and λ. Find the conditional probability mass function of N
given that X = x.

6.15. Let X and Y be independent uniform (0, 1) random
variables.

(a) Find the joint density of U = X,V = X + Y.

(b)Use the result obtained in part (a) to compute the den-
sity function of V.

6.16. You and three other people are to place bids for an
object, with the high bid winning. If you win, you plan to
sell the object immediately for $10,000. How much should
you bid to maximize your expected profit if you believe
that the bids of the others can be regarded as being inde-
pendent and uniformly distributed between $7,000 and
$10,000 thousand dollars?

6.17. Find the probability that X1,X2, . . . ,Xn is a permu-
tation of 1, 2, . . . ,n, when X1,X2, . . . ,Xn are independent
and

(a) each is equally likely to be any of the values 1, . . . , n;
(b) each has the probability mass function P{Xi = j} =
pj, j = 1, . . . , n.

6.18. Let X1, . . . ,Xn and Y1, . . . ,Yn be independent ran-
dom vectors, with each vector being a random ordering of
k ones and n − k zeros. That is, their joint probability mass
functions are

P{X1= i1, . . . ,Xn= in}=P{Y1= i1, . . . ,Yn= in}

= 1(
n
k

) , ij = 0, 1,
n∑
j=1

ij = k

Let

N =
n∑
i=1

|Xi − Yi|

denote the number of coordinates at which the two vec-
tors have different values. Also, let M denote the number
of values of i for which Xi = 1,Yi = 0.

(a) Relate N toM.
(b)What is the distribution ofM?
(c) Find E[N].
(d) Find Var(N).

*6.19. Let Z1,Z2, . . . ,Zn be independent standard normal
random variables, and let

Sj =
j∑

i=1

Zi

(a)What is the conditional distribution of Sn given that
Sk = y. Find it for k = 1, . . . ,n − 1.
(b) Show that, for 1 … k … n, the conditional distribution
of Sk given that Sn = x is normal with mean xk/n and
variance k(n − k)/n.
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6.20. Let X1,X2, . . . be a sequence of independent and
identically distributed continuous random variables. Find

(a) P{X6 > X1|X1 = max(X1, . . . ,X5)}
(b) P{X6 > X2|X1 = max(X1, . . . ,X5)}
6.21. Prove the identity

P{X … s,Y … t} =P{X … s} +P{Y … t} + P{X > s,Y > t}−1

Hint:Derive an expression for P{X > s,Y > t} by taking
the probability of the complementary event.

6.22. In Example 1c, find P(Xr = i,Ys = j) when j < i.

6.23.A Pareto random variable X with parameters a > 0,
λ > 0 has distribution function F(x) = 1 − aλx−λ, x > a.
For x0 > a, verify that the conditional distribution of X
given thatX > x0 is that of a Pareto random variable with
parameters (x0, λ) by evaluating P(X > x|X > x0).

6.24. Verify the identity fX(x) = ∫q
−q fX|Y(x|y)fY(y)dy.

6.25. In a contest originating with n players, each player
independently advances to the next round, with player i
advancing with probability pi. If no players advance to the
next round, then the contest ends and all the players in
the just concluded round are declared co-winners. If only
one player advances, then that player is declared the win-
ner and the contest ends. If two or more players advance,

then those players play another round. Let Xi denote the
number of rounds that i plays.

(a) Find P(Xi Ú k). Hint: Note that {Xi Ú k} will occur
if i advances at least k times and at least one of the other
players advances at least k − 1 times.
(b) FindP(i is either the sole winner or one of the co-winners).
Hint: It might help to imagine that a player always contin-
ues to play rounds until he or she fails to advance. (That
is, if there is a sole winner then imagine that that player
continues on until a failure occurs.)
(c) Find P(i is the sole winner)

6.26. Let X1, . . . ,Xn be independent nonnegative integer
valued random variables, and let αi = P(Xi is even), i =
1, . . . ,n. With S = ∑n

i=1Xi we want to determine p =
P(S is even). Let Yi = 1 if Xi is even and let it equal −1 if
Xi is odd.
In parts (a) and (b) fill in the missing word at the end of

the sentence.

(a) S is even if and only if the number of X1, . . . ,Xn that
are odd is
(b) S is even if and only if

∏n
i=1 Yi is

(c) Find E[
∏n

i=1 Yi].
(d) Find P(S is even). Hint: Use parts (b) and (c).
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7.1 Introduction
In this chapter, we develop and exploit additional properties of expected values. To
begin, recall that the expected value of the random variable X is defined by

E[X] =
∑
x

x p(x)

when X is a discrete random variable with probability mass function p(x), and by

E[X] =
∫ q

−q
x f (x)dx

when X is a continuous random variable with probability density function f(x).
Since E[X] is a weighted average of the possible values of X, it follows that if X

must lie between a and b, then so must its expected value. That is, if

P{a … X … b} = 1

then
a … E[X] … b

To verify the preceding statement, suppose that X is a discrete random variable for
which P{a … X … b} = 1. Since this implies that p(x) = 0 for all x outside of the
interval [a, b], it follows that

E[X] =
∑

x:p(x)>0

x p(x)

Ú
∑

x:p(x)>0

a p(x)

315
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= a
∑

x:p(x)>0

p(x)

= a

In the same manner, it can be shown that E[X] … b, so the result follows for discrete
random variables. As the proof in the continuous case is similar, the result follows.

7.2 Expectation of Sums of Random Variables
For a two-dimensional analog of Propositions 4.1 of Chapter 4 and 2.1 of Chapter 5,
which give the computational formulas for the expected value of a function of a
random variable, suppose that X and Y are random variables and g is a function of
two variables. Then we have the following result.

Proposition
2.1

If X and Y have a joint probability mass function p(x,y), then

E[g(X,Y)] =
∑
y

∑
x

g(x, y)p(x, y)

If X and Y have a joint probability density function f(x,y), then

E[g(X,Y)] =
∫ q

−q

∫ q

−q
g(x, y) f (x, y)dx dy

Let us give a proof of Proposition 2.1 when the random variables X and Y are
jointly continuous with joint density function f (x, y) and when g(X,Y) is a nonneg-
ative random variable. Because g(X,Y) Ú 0, we have, by Lemma 2.1 of Chapter 5,
that

E[g(X,Y)] =
∫ q

0
P{g(X,Y) > t} dt

Writing

P{g(X,Y) > t} =
∫ ∫

(x,y):g(x,y)>t
f (x, y)dy dx

shows that

E[g(X,Y)] =
∫ q

0

∫ ∫
(x,y):g(x,y)>t

f (x, y)dy dx dt

Interchanging the order of integration gives

E[g(X,Y)] =
∫
x

∫
y

∫ g(x,y)

t=0
f (x, y)dt dy dx

=
∫
x

∫
y
g(x, y) f (x, y)dy dx

Thus, the result is proven when g(X,Y) is a nonnegative random variable. The gen-
eral case then follows as in the one-dimensional case. (See Theoretical Exercises 2
and 3 of Chapter 5.)

Example
2a

An accident occurs at a point X that is uniformly distributed on a road of length L.
At the time of the accident, an ambulance is at a location Y that is also uniformly
distributed on the road. Assuming that X and Y are independent, find the expected
distance between the ambulance and the point of the accident.
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Solution We need to compute E[|X − Y|]. Since the joint density function ofX and
Y is

f (x, y) = 1
L2 , 0 < x < L, 0 < y < L

it follows from Proposition 2.1 that

E[|X − Y|] = 1
L2

∫ L

0

∫ L

0
|x − y|dy dx

Now, ∫ L

0
|x − y|dy =

∫ x

0
(x − y)dy +

∫ L

x
(y − x)dy

= x2

2
+ L2

2
− x2

2
− x(L − x)

= L2

2
+ x2 − xL

Therefore,

E[|X − Y|] = 1
L2

∫ L

0

(
L2

2
+ x2 − xL

)
dx

= L
3

.

For an important application of Proposition 2.1, suppose thatE[X] andE[Y] are
both finite and let g(X,Y) = X + Y. Then, in the continuous case,

E[X + Y] =
∫ q

−q

∫ q

−q
(x + y) f (x, y)dx dy

=
∫ q

−q

∫ q

−q
x f (x, y)dy dx +

∫ q

−q

∫ q

−q
y f (x, y)dx dy

=
∫ q

−q
x fX(x)dx +

∫ q

−q
y fY(y)dy

= E[X] + E[Y]

The same result holds in general; thus, whenever E[X] and E[Y] are finite,

E[X + Y] = E[X] + E[Y] (2.1)

Example
2b

Suppose that for random variables X and Y,

X Ú Y

That is, for any outcome of the probability experiment, the value of the random
variable X is greater than or equal to the value of the random variable Y. Since
X Ú Y is equivalent to the inequality X − Y Ú 0, it follows that E[X − Y] Ú 0,
or, equivalently,

E[X] Ú E[Y] .

Using Equation (2.1), we may show by a simple induction proof that if E[Xi] is
finite for all i = 1, . . . ,n, then

E[X1 + · · · + Xn] = E[X1] + · · · + E[Xn] (2.2)
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Equation (2.2) is an extremely useful formula whose utility will now be illustrated
by a series of examples.

Example
2c

The sample mean

Let X1, . . . ,Xn be independent and identically distributed random variables having
distribution function F and expected value μ. Such a sequence of random variables
is said to constitute a sample from the distribution F. The quantity

X =
n∑
i=1

Xi

n

is called the sample mean. Compute E[X].

Solution

E[X] = E

⎡
⎣ n∑
i=1

Xi

n

⎤
⎦

= 1
n
E

⎡
⎣ n∑
i=1

Xi

⎤
⎦

= 1
n

n∑
i=1

E[Xi]

= μ since E[Xi] K μ

That is, the expected value of the sample mean is μ, the mean of the distribution.
When the distributionmeanμ is unknown, the sample mean is often used in statistics
to estimate it. .

Example
2d

Boole’s inequality

Let A1, . . . ,An denote events, and define the indicator variables Xi, i = 1, . . . ,n, by

Xi =
{
1 if Ai occurs
0 otherwise

Let

X =
n∑
i=1

Xi

so X denotes the number of the events Ai that occur. Finally, let

Y =
{
1 if X Ú 1
0 otherwise

so Y is equal to 1 if at least one of the Ai occurs and is 0 otherwise. Now, it is imme-
diate that

X Ú Y

so
E[X] Ú E[Y]
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But since

E[X] =
n∑
i=1

E[Xi] =
n∑
i=1

P(Ai)

and

E[Y] = P{at least one of the Ai occur} = P

⎛
⎝ n⋃
i=1

Ai

⎞
⎠

we obtain Boole’s inequality, namely,

P

⎛
⎝ n⋃
i=1

Ai

⎞
⎠ …

n∑
i=1

P(Ai) .

The next three examples show how Equation (2.2) can be used to calculate the
expected value of binomial, negative binomial, and hypergeometric random vari-
ables. These derivations should be compared with those presented in Chapter 4.

Example
2e

Expectation of a binomial random variable

Let X be a binomial random variable with parameters n and p. Recalling that such
a random variable represents the number of successes in n independent trials when
each trial has probability p of being a success, we have that

X = X1 + X2 + · · · + Xn

where

Xi =
{
1 if the ith trial is a success
0 if the ith trial is a failure

Hence, Xi is a Bernoulli random variable having expectation E[Xi] = 1(p) +
0(1 − p). Thus,

E[X] = E[X1] + E[X2] + · · · + E[Xn] = np .

Example
2f

Mean of a negative binomial random variable

If independent trials having a constant probability p of being successes are per-
formed, determine the expected number of trials required to amass a total of r
successes.

Solution If X denotes the number of trials needed to amass a total of r successes,
then X is a negative binomial random variable that can be represented by

X = X1 + X2 + · · · + Xr

where X1 is the number of trials required to obtain the first success, X2 the number
of additional trials until the second success is obtained, X3 the number of additional
trials until the third success is obtained, and so on. That is, Xi represents the number



320 Chapter 7 Properties of Expectation

of additional trials required after the (i − 1) success until a total of i successes is
amassed. A little thought reveals that each of the random variables Xi is a geomet-
ric random variable with parameter p. Hence, from the results of Example 8b of
Chapter 4, E[Xi] = 1/p, i = 1, 2, . . . , r; thus,

E[X] = E[X1] + · · · + E[Xr] = r
p

.

Example
2g

Mean of a hypergeometric random variable

If n balls are randomly selected from an urn containingN balls of whichm are white,
find the expected number of white balls selected.

Solution Let X denote the number of white balls selected, and represent X as

X = X1 + · · · + Xm

where

Xi =
{
1 if the ith white ball is selected
0 otherwise

Now

E[Xi] = P{Xi = 1}
= P{ith white ball is selected}

=

(
1
1

)(
N − 1
n − 1

)
(
N
n

)

= n
N

Hence,

E[X] = E[X1] + · · · + E[Xm] = mn
N

We could also have obtained the preceding result by using the alternative represen-
tation

X = Y1 + · · · + Yn

where

Yi =
{
1 if the ith ball selected is white
0 otherwise

Since the ith ball selected is equally likely to be any of the N balls, it follows that

E[Yi] = m
N

so
E[X] = E[Y1] + · · · + E[Yn] = nm

N
.
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Example
2h

Expected number of matches

Suppose thatN people throw their hats into the center of a room. The hats are mixed
up, and each person randomly selects one. Find the expected number of people who
select their own hat.

Solution Letting X denote the number of matches, we can compute E[X] most eas-
ily by writing

X = X1 + X2 + · · · + XN

where

Xi =
{
1 if the ith person selects his own hat
0 otherwise

Since, for each i, the ith person is equally likely to select any of the N hats,

E[Xi] = P{Xi = 1} = 1
N

Thus,

E[X] = E[X1] + · · · + E[XN] =
(
1
N

)
N = 1

Hence, on the average, exactly one person selects his own hat. .

Example
2i

Coupon-collecting problems

Suppose that there are N types of coupons, and each time one obtains a coupon, it
is equally likely to be any one of the N types. Find the expected number of coupons
one needs to amass before obtaining a complete set of at least one of each type.

Solution Let X denote the number of coupons collected before a complete set is
attained. We compute E[X] by using the same technique we used in computing the
mean of a negative binomial random variable (Example 2f). That is, we defineXi, i =
0, 1, . . . ,N − 1 to be the number of additional coupons that need be obtained after
i distinct types have been collected in order to obtain another distinct type, and we
note that

X = X0 + X1 + · · · + XN−1

When i distinct types of coupons have already been collected, a new coupon obtained
will be of a distinct type with probability (N − i)/N. Therefore,

P{Xi = k} = N − i
N

(
i
N

)k−1

k Ú 1

or, in other words, Xi is a geometric random variable with parameter (N − i)/N.
Hence,

E[Xi] = N
N − i



322 Chapter 7 Properties of Expectation

implying that

E[X] = 1 + N
N − 1

+ N
N − 2

+ · · · + N
1

= N
[
1 + · · · + 1

N − 1
+ 1

N

]
.

Example
2j

Ten hunters are waiting for ducks to fly by. When a flock of ducks flies overhead, the
hunters fire at the same time, but each chooses his target at random, independently
of the others. If each hunter independently hits his target with probability p, com-
pute the expected number of ducks that escape unhurt when a flock of size 10 flies
overhead.

Solution Let Xi equal 1 if the ith duck escapes unhurt and 0 otherwise, for i = 1,
2, . . . , 10. The expected number of ducks to escape can be expressed as

E[X1 + · · · + X10] = E[X1] + · · · + E[X10]

To computeE[Xi] = P{Xi = 1}, we note that each of the hunters will, independently,
hit the ith duck with probability p/10, so

P{Xi = 1} =
(
1 − p

10

)10

Hence,

E[X] = 10
(
1 − p

10

)10

.

Example
2k

Expected number of runs

Suppose that a sequence of n 1’s andm 0’s is randomly permuted so that each of the
(n + m)!/(n!m!) possible arrangements is equally likely. Any consecutive string of
1’s is said to constitute a run of 1’s—for instance, if n = 6,m = 4, and the ordering
is 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, then there are 3 runs of 1’s—and we are interested in
computing the mean number of such runs. To compute this quantity, let

Ii =
{
1 if a run of 1’s starts at the ith position
0 otherwise

Therefore, R(1), the number of runs of 1, can be expressed as

R(1) =
n+m∑
i=1

Ii

and it follows that

E[R(1)] =
n+m∑
i=1

E[Ii]
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Now,

E[I1] = P{“1” in position 1}
= n
n + m

and for 1 < i … n + m,

E[Ii] = P{“0” in position i − 1, “1” in position i}
= m
n + m

n
n + m − 1

Hence,

E[R(1)] = n
n + m

+ (n + m − 1)
nm

(n + m)(n + m − 1)

Similarly, E[R(0)], the expected number of runs of 0’s, is

E[R(0)] = m
n + m

+ nm
n + m

and the expected number of runs of either type is

E[R(1) + R(0)] = 1 + 2nm
n + m

.

Example
2l

A random walk in the plane

Consider a particle initially located at a given point in the plane, and suppose that it
undergoes a sequence of steps of fixed length, but in a completely random direction.
Specifically, suppose that the new position after each step is one unit of distance from
the previous position and at an angle of orientation from the previous position that
is uniformly distributed over (0, 2π). (See Figure 7.1.) Compute the expected square
of the distance from the origin after n steps.

1

2

0

1

1

0 5 initial position

1 5 position after first step

2 5 position after second step

Figure 7.1
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Solution Letting (Xi,Yi) denote the change in position at the ith step, i = 1, . . . ,n,
in rectangular coordinates, we have

Xi = cos θi

Yi = sin θi

where θi, i = 1, . . . ,n, are, by assumption, independent uniform (0, 2π) random vari-

ables. Because the position after n steps has rectangular coordinates

(
n∑
i=1

Xi,
n∑
i=1

Yi

)
,

it follows that D2, the square of the distance from the origin, is given by

D2 =
⎛
⎝ n∑
i=1

Xi

⎞
⎠

2

+
⎛
⎝ n∑
i=1

Yi

⎞
⎠

2

=
n∑
i=1

(X2
i + Y2

i ) +
∑∑

iZj
(XiXj + YiYj)

= n +
∑∑

iZj
(cos θi cos θj + sin θi sin θj)

where cos2 θi + sin2 θi = 1. Taking expectations and using the independence of θi
and θj when i Z j and the fact that

2πE[cos θi] =
∫ 2π

0
cos udu = sin 2π − sin 0 = 0

2πE[sin θi] =
∫ 2π

0
sinudu = cos 0 − cos 2π = 0

we arrive at
E[D2] = n .

Example
2m

Analyzing the quick-sort algorithm

Suppose that we are presented with a set of n distinct values x1, x2, . . . , xn and that
we desire to put them in increasing order, or as it is commonly stated, to sort them.
An efficient procedure for accomplishing this task is the quick-sort algorithm, which
is defined as follows: When n = 2, the algorithm compares the two values and then
puts them in the appropriate order. When n > 2, one of the elements is randomly
chosen—say it is xi—and then all of the other values are compared with xi. Those
smaller than xi are put in a bracket to the left of xi and those larger than xi are put in
a bracket to the right of xi. The algorithm then repeats itself on these brackets and
continues until all values have been sorted. For instance, suppose that we desire to
sort the following 10 distinct values:

5, 9, 3, 10, 11, 14, 8, 4, 17, 6

We start by choosing one of them at random (that is, each value has probability 1
10 of

being chosen). Suppose, for instance, that the value 10 is chosen. We then compare
each of the others to this value, putting in a bracket to the left of 10 all those values
smaller than 10 and to the right all those larger. This gives
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{5, 9, 3, 8, 4, 6}, 10, {11, 14, 17}
We now focus on a bracketed set that contains more than a single value—say the one
on the left of the preceding—and randomly choose one of its values—say that 6 is
chosen. Comparing each of the values in the bracket with 6 and putting the smaller
ones in a new bracket to the left of 6 and the larger ones in a bracket to the right
of 6 gives

{5, 3, 4}, 6, {9, 8}, 10, {11, 14, 17}
If we now consider the leftmost bracket, and randomly choose the value 4 for com-
parison, then the next iteration yields

{3}, 4, {5}, 6, {9, 8}, 10, {11, 14, 17}
This continues until there is no bracketed set that contains more than a single value.

If we let X denote the number of comparisons that it takes the quick-sort algo-
rithm to sort n distinct numbers, then E[X] is a measure of the effectiveness of this
algorithm. To compute E[X], we will first express X as a sum of other random vari-
ables as follows. To begin, give the following names to the values that are to be
sorted: Let 1 stand for the smallest, let 2 stand for the next smallest, and so on. Then,
for 1 … i < j … n, let I(i, j) equal 1 if i and j are ever directly compared, and let it
equal 0 otherwise. With this definition, it follows that

X =
n−1∑
i=1

n∑
j=i+1

I(i, j)

implying that

E[X] = E

⎡
⎢⎣n−1∑
i=1

n∑
j=i+1

I(i, j)

⎤
⎥⎦

=
n−1∑
i=1

n∑
j=i+1

E[I(i, j)]

=
n−1∑
i=1

n∑
j=i+1

P{i and j are ever compared}

To determine the probability that i and j are ever compared, note that the values
i, i + 1, . . . , j − 1, j will initially be in the same bracket (since all values are initially
in the same bracket) and will remain in the same bracket if the number chosen for
the first comparison is not between i and j. For instance, if the comparison number is
larger than j, then all the values i, i + 1, . . . , j − 1, j will go in a bracket to the left of
the comparison number, and if it is smaller than i, then they will all go in a bracket
to the right. Thus all the values i, i + 1, . . . , j − 1, j will remain in the same bracket
until the first time that one of them is chosen as a comparison value. At that point all
the other values between i and j will be compared with this comparison value. Now,
if this comparison value is neither i nor j, then upon comparison with it, i will go into
a left bracket and j into a right bracket, and thus i and j will be in different brackets
and so will never be compared. On the other hand, if the comparison value of the
set i, i + 1, . . . , j − 1, j is either i or j, then there will be a direct comparison between
i and j. Now, given that the comparison value is one of the values between i and j,
it follows that it is equally likely to be any of these j − i + 1 values, and thus the
probability that it is either i or j is 2/(j − i + 1). Therefore, we can conclude that
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P{i and j are ever compared} = 2
j − i + 1

and

E[X] =
n−1∑
i=1

n∑
j=i+1

2
j − i + 1

To obtain a rough approximation of the magnitude of E[X] when n is large, we can
approximate the sums by integrals. Now

n∑
j=i+1

2
j − i + 1

L
∫ n

i+1

2
x − i + 1

dx

= 2 log(x − i + 1)
∣∣n
i+1

= 2 log(n − i + 1) − 2 log(2)

L 2 log(n − i + 1)

Thus

E[X] L
n−1∑
i=1

2 log(n − i + 1)

L 2
∫ n−1

1
log(n − x + 1)dx

= 2
∫ n

2
log(y)dy

= 2(y log(y) − y)|n2
L 2n log(n)

Thus we see that when n is large, the quick-sort algorithm requires, on average,
approximately 2n log(n) comparisons to sort n distinct values. .

Example
2n

The probability of a union of events

Let A1, . . .An denote events, and define the indicator variables Xi, i = 1, . . . ,n, by

Xi =
{
1 if Ai occurs
0 otherwise

Now, note that

1 −
n∏
i=1

(1 − Xi) =
{
1 if ∪ Ai occurs
0 otherwise

Hence,

E

⎡
⎣1 −

n∏
i=1

(1 − Xi)

⎤
⎦ = P

⎛
⎝ n⋃
i=1

Ai

⎞
⎠
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Expanding the left side of the preceding formula yields

P

⎛
⎝ n⋃
i=1

Ai

⎞
⎠ = E

⎡
⎢⎣ n∑
i=1

Xi −
∑∑

i<j

XiXj +
∑∑∑

i<j<k

XiXjXk

− · · · + (−1)n+1X1 · · ·Xn

⎤
⎦ (2.3)

However,

Xi1Xi2 · · ·Xik =
{
1 if Ai1Ai2 · · ·Aik occurs

0 otherwise

so
E[Xi1 · · ·Xik ] = P(Ai1 · · ·Aik)

Thus, Equation (2.3) is just a statement of the well-known inclusion-exclusion for-
mula for the union of events:

P(∪Ai) =
∑
i

P(Ai) −
∑∑

i<j

P(AiAj) +
∑∑∑

i<j<k

P(AiAjAk)

− · · · + (−1)n+1P(A1 · · ·An) .

When one is dealing with an infinite collection of random variables Xi, i Ú 1,
each having a finite expectation, it is not necessarily true that

E

⎡
⎣ q∑
i=1

Xi

⎤
⎦ =

q∑
i=1

E[Xi] (2.4)

To determine when (2.4) is valid, we note that
q∑
i=1

Xi = lim
n→q

n∑
i=1

Xi. Thus,

E

⎡
⎣ q∑
i=1

Xi

⎤
⎦ = E

⎡
⎣ lim
n→q

n∑
i=1

Xi

⎤
⎦

?= lim
n→q

E

⎡
⎣ n∑
i=1

Xi

⎤
⎦

= lim
n→q

n∑
i=1

E[Xi]

=
q∑
i=1

E[Xi] (2.5)

Hence, Equation (2.4) is valid whenever we are justified in interchanging the expec-
tation and limit operations in Equation (2.5). Although, in general, this interchange
is not justified, it can be shown to be valid in two important special cases:

1. The Xi are all nonnegative random variables. (That is, P{Xi Ú 0} = 1 for all i.)

2.
q∑
i=1

E[|Xi|] < q.
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Example
2o

Consider any nonnegative, integer-valued random variable X. If, for each i Ú 1, we
define

Xi =
{
1 if X Ú i
0 if X < i

then

q∑
i=1

Xi =
X∑
i=1

Xi +
q∑

i=X+1

Xi

=
X∑
i=1

1 +
q∑

i=X+1

0

= X

Hence, since the Xi are all nonnegative, we obtain

E[X] =
q∑
i=1

E(Xi)

=
q∑
i=1

P{X Ú i} (2.6)

a useful identity. .

Example
2p

Suppose that n elements—call them 1, 2, . . ., n—must be stored in a computer in the
form of an ordered list. Each unit of time, a request will be made for one of these
elements—i being requested, independently of the past, with probability P(i), i Ú 1,∑
i
P(i) = 1. Assuming that these probabilities are known, what ordering minimizes

the average position in the line of the element requested?

Solution Suppose that the elements are numbered so that P(1) Ú P(2) Ú · · · Ú P(n).
To show that 1, 2, . . ., n is the optimal ordering, let X denote the position of the
requested element. Now, under any ordering—say,O = i1, i2, . . . , in,

PO{X Ú k} =
n∑
j=k

P(ij)

Ú
n∑
j=k

P(j)

= P1,2, . . . ,n{X Ú k}

Summing over k and using Equation (2.6) yields

Eo[X] Ú E1,2, . . . ,n[X]

thus showing that ordering the elements in decreasing order of the probability that
they are requested minimizes the expected position of the element requested. .
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*7.2.1 Obtaining Bounds from Expectations via the Probabilistic
Method

The probabilistic method is a technique for analyzing the properties of the elements
of a set by introducing probabilities on the set and then studying an element chosen
according to those probabilities. The technique was previously seen in Example 4l of
Chapter 3, where it was used to show that a set contained an element that satisfied a
certain property. In this subsection, we show how it can sometimes be used to bound
complicated functions.

Let f be a function on the elements of a finite set A, and suppose that we are
interested in

m = max
s∈A

f (s)

A useful lower bound form can often be obtained by letting S be a random element
of A for which the expected value of f (S) is computable and then noting that m Ú
f (S) implies that

m Ú E[f (S)]

with strict inequality if f (S) is not a constant random variable. That is, E[f (S)] is a
lower bound on the maximum value.

Example
2q

The maximum number of Hamiltonian paths in a tournament

A round-robin tournament of n > 2 contestants is a tournament in which each of

the

(
n
2

)
pairs of contestants play each other exactly once. Suppose that the players

are numbered 1, 2, 3, . . . ,n. The permutation i1, i2, . . . in is said to be a Hamiltonian
path if i1 beats i2, i2 beats i3, . . ., and in−1 beats in. A problem of some interest is to
determine the largest possible number of Hamiltonian paths.

As an illustration, suppose that there are 3 players. On the one hand, one of
them wins twice, then there is a single Hamiltonian path. (For instance, if 1 wins
twice and 2 beats 3, then the only Hamiltonian path is 1, 2, 3.) On the other hand, if
each of the players wins once, then there are 3 Hamiltonian paths. (For instance, if 1
beats 2, 2 beats 3, and 3 beats 1, then 1, 2, 3; 2, 3, 1; and 3, 1, 2, are all Hamiltonians.)
Hence, when n = 3, there is a maximum of 3 Hamiltonian paths.

We now show that there is an outcome of the tournament that results in more
than n!/2n−1 Hamiltonian paths. To begin, let the outcome of the tournament specify

the result of each of the

(
n
2

)
games played, and let A denote the set of all 2

(
n
2

)
pos-

sible tournament outcomes. Then, with f (s) defined as the number of Hamiltonian
paths that result when the outcome is s ∈ A, we are asked to show that

max
s

f (s) Ú
n!

2n−1

To show this, consider the randomly chosen outcome S that is obtained when the

results of the

(
n
2

)
games are independent, with each contestant being equally likely

to win each encounter. To determine E[f (S)], the expected number of Hamiltonian
paths that result from the outcome S, number the n! permutations, and, for i =
1, . . . ,n!, let
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Xi =
{
1, if permutation i is a Hamiltonian
0, otherwise

Since
f (S) =

∑
i

Xi

it follows that
E[f (S)] =

∑
i

E[Xi]

Because, by the assumed independence of the outcomes of the games, the probability
that any specified permutation is a Hamiltonian is (1/2)n−1, it follows that

E[Xi] = P{Xi = 1} = (1/2)n−1

Therefore,
E[f (S)] = n!(1/2)n−1

Since f (S) is not a constant random variable, the preceding equation implies that
there is an outcome of the tournament having more than n!/2n−1 Hamiltonian
paths. .

Example
2r

A grove of 52 trees is arranged in a circular fashion. If 15 chipmunks live in these
trees, show that there is a group of 7 consecutive trees that together house at least 3
chipmunks.

Solution Let the neighborhood of a tree consist of that tree along with the next six
trees visited by moving in the clockwise direction. We want to show that for any
choice of living accommodations of the 15 chipmunks, there is a tree that has at least
3 chipmunks living in its neighborhood. To show this, choose a tree at random and
let X denote the number of chipmunks that live in its neighborhood. To determine
E[X], arbitrarily number the 15 chipmunks and for i = 1, . . . , 15, let

Xi =
{
1, if chipmunk i lives in the neighborhood of the randomly chosen tree
0, otherwise

Because

X =
15∑
i=1

Xi

we obtain that

E[X] =
15∑
i=1

E[Xi]

However, because Xi will equal 1 if the randomly chosen tree is any of the 7 trees
consisting of the tree in which chipmunk i lives along with its 6 neighboring trees
when moving in the counterclockwise direction,

E[Xi] = P{Xi = 1} = 7
52

Consequently,

E[X] = 105
52

> 2
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showing that there exists a tree with more than 2 chipmunks living in its neigh-
borhood. .

*7.2.2 The Maximum–Minimums Identity
We start with an identity relating the maximum of a set of numbers to the minimums
of the subsets of these numbers.

Proposition
2.2

For arbitrary numbers xi, i = 1, . . . ,n,

max
i
xi =

∑
i

xi −
∑
i<j

min(xi, xj) +
∑
i<j<k

min(xi, xj, xk)

+ . . . + (−1)n+1 min(x1, . . . , xn)

Proof We will give a probabilistic proof of the proposition. To begin, assume that all
the xi are in the interval [0, 1]. LetU be a uniform (0, 1) random variable, and define
the eventsAi, i = 1, . . . ,n, byAi = {U < xi}. That is,Ai is the event that the uniform
random variable is less than xi. Because at least one of these events Ai will occur if
U is less than at least one of the values xi, we have that

∪iAi =
{
U < max

i
xi

}

Therefore,

P(∪iAi) = P
{
U < max

i
xi

}
= max

i
xi

Also,
P(Ai) = P

{
U < xi

} = xi

In addition, because all of the events Ai1 , . . . ,Air will occur if U is less than all the
values xi1 , . . . , xir , we see that the intersection of these events is

Ai1 . . .Air =
{
U < min

j=1,...r
xij

}

implying that

P(Ai1 . . .Air) = P

{
U < min

j=1,...r
xij

}
= min

j=1,...r
xij

Thus, the proposition follows from the inclusion–exclusion formula for the probabil-
ity of the union of events:

P(∪iAi) =
∑
i

P(Ai) −
∑
i<j

P(AiAj) +
∑
i<j<k

P(AiAjAk)

+ . . . + (−1)n+1P(A1 . . .An)

When the xi are nonnegative, but not restricted to the unit interval, let c be such
that all the xi are less than c. Then the identity holds for the values yi = xi/c, and the
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desired result follows by multiplying through by c. When the xi can be negative, let
b be such that xi + b > 0 for all i. Therefore, by the preceding,

max
i

(xi + b) =
∑
i

(xi + b) −
∑
i<j

min(xi + b, xj + b)

+ · · · + (−1)n+1 min(x1 + b, . . . , xn + b)

Letting

M =
∑
i

xi −
∑
i<j

min(xi, xj) + · · · + (−1)n+1 min(x1, . . . , xn)

we can rewrite the foregoing identity as

max
i
xi + b = M + b

⎛
⎝n −

(
n
2

)
+ · · · + (−1)n+1

(
n
n

)⎞
⎠

But

0 = (1 − 1)n = 1 − n +
(
n
2

)
+ · · · + (−1)n

(
n
n

)

The preceding two equations show that

max
i
xi = M

and the proposition is proven.

It follows from Proposition 2.2 that for any random variables X1, . . . ,Xn,

max
i
Xi =

∑
i

Xi −
∑
i<j

min(Xi,Xj) + · · · + (−1)n+1 min(X1, . . . ,Xn)

Taking expectations of both sides of this equality yields the following relationship
between the expected value of the maximum and those of the partial minimums:

E
[
max
i
Xi

]
=
∑
i

E[Xi] −
∑
i<j

E[min(Xi,Xj)]

+ · · · + (−1)n+1E[min(X1, . . . ,Xn)] (2.7)

Example
2s

Coupon collecting with unequal probabilities

Suppose there are n types of coupons and that each time one collects a coupon, it
is, independently of previous coupons collected, a type i coupon with probability pi,
n∑
i=1

pi = 1. Find the expected number of coupons one needs to collect to obtain a

complete set of at least one of each type.

Solution If we let Xi denote the number of coupons one needs to collect to obtain
a type i, then we can express X as

X = max
i=1,...,n

Xi
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Because each new coupon obtained is a type i with probability pi, Xi is a geometric
random variable with parameter pi. Also, because the minimum of Xi and Xj is the
number of coupons needed to obtain either a type i or a type j, it follows that for
i Z j, min (Xi,Xj) is a geometric random variable with parameter pi + pj. Similarly,
min (Xi,Xj,Xk), the number needed to obtain any of types i, j, or k, is a geometric
random variable with parameter pi + pj + pk, and so on. Therefore, the identity (2.7)
yields

E[X] =
∑
i

1
pi

−
∑
i<j

1
pi + pj

+
∑
i<j<k

1
pi + pj + pk

+ · · · + (−1)n+1 1
p1 + · · · + pn

Noting that ∫ q

0
e−px dx = 1

p

and using the identity

1 −
n∏
i=1

(1 − e−pix) =
∑
i

e−pix −
∑
i<j

e−(pi+pj)x + · · · + (−1)n+1e−(p1+ · · ·+pn)x

shows, upon integrating the identity, that

E[X] =
∫ q

0

⎛
⎝1 −

n∏
i=1

(1 − e−pix)

⎞
⎠ dx

which is a more useful computational form. .

7.3 Moments of the Number of Events that Occur
Many of the examples solved in the previous section were of the following form: For
given eventsA1, . . . ,An, findE[X], whereX is the number of these events that occur.
The solution then involved defining an indicator variable Ii for event Ai such that

Ii =
{
1, if Ai occurs
0, otherwise

Because

X =
n∑
i=1

Ii

we obtained the result

E[X] = E

⎡
⎣ n∑
i=1

Ii

⎤
⎦ =

n∑
i=1

E[Ii] =
n∑
i=1

P(Ai) (3.1)

Now suppose we are interested in the number of pairs of events that occur.
Because IiIj will equal 1 if both Ai and Aj occur and will equal 0 otherwise, it fol-
lows that the number of pairs is equal to

∑
i<j IiIj. But because X is the number of
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events that occur, it also follows that the number of pairs of events that occur is
(X
2

)
.

Consequently, (
X
2

)
=
∑
i<j

IiIj

where there are
(n
2

)
terms in the summation. Taking expectations yields

E

[(
X
2

)]
=
∑
i<j

E[IiIj] =
∑
i<j

P(AiAj) (3.2)

or

E
[
X(X − 1)

2

]
=
∑
i<j

P(AiAj)

giving that
E[X2] − E[X] = 2

∑
i<j

P(AiAj) (3.3)

which yields E[X2], and thus Var(X) = E[X2] − (E[X])2.
Moreover, by considering the number of distinct subsets of k events that all

occur, we see that (
X
k

)
=

∑
i1<i2<...<ik

Ii1Ii2 · · · Iik

Taking expectations gives the identity

E

[(
X
k

)]
=

∑
i1<i2<...<ik

E[Ii1Ii2 · · · Iik] =
∑

i1<i2<...<ik

P(Ai1Ai2 · · ·Aik) (3.4)

Example
3a

Moments of binomial random variables

Consider n independent trials, with each trial being a success with probability p. Let
Ai be the event that trial i is a success. When i Z j, P(AiAj) = p2. Consequently,
Equation (3.2) yields

E

[(
X
2

)]
=
∑
i<j

p2 =
(
n
2

)
p2

or
E[X(X − 1)] = n(n − 1)p2

or
E[X2] − E[X] = n(n − 1)p2

Now, E[X] = ∑n
i=1 P(Ai) = np, so, from the preceding equation

Var(X) = E[X2] − (E[X])2 = n(n − 1)p2 + np − (np)2 = np(1 − p)

which is in agreement with the result obtained in Section 4.6.1.
In general, because P(Ai1Ai2 · · ·Aik) = pk, we obtain from Equation (3.4) that

E

[(
X
k

)]
=

∑
i1<i2<...<ik

pk =
(
n
k

)
pk
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or, equivalently,

E[X(X − 1) · · · (X − k + 1)] = n(n − 1) · · · (n − k + 1)pk

The successive values E[Xk], k Ú 3, can be recursively obtained from this identity.
For instance, with k = 3, it yields

E[X(X − 1)(X − 2)] = n(n − 1)(n − 2)p3

or
E[X3 − 3X2 + 2X] = n(n − 1)(n − 2)p3

or

E[X3] = 3E[X2] − 2E[X] + n(n − 1)(n − 2)p3

= 3n(n − 1)p2 + np + n(n − 1)(n − 2)p3 .

Example
3b

Moments of hypergeometric random variables

Suppose n balls are randomly selected from an urn containing N balls, of which m
are white. Let Ai be the event that the ith ball selected is white. Then X, the number
of white balls selected, is equal to the number of the events A1, . . . ,An that occur.
Because the ith ball selected is equally likely to be any of theN balls, of whichm are
white, P(Ai) = m/N. Consequently, Equation (3.1) gives that E[X] = ∑n

i=1 P(Ai) =
nm/N. Also, since

P(AiAj) = P(Ai)P(Aj|Ai) = m
N
m − 1
N − 1

we obtain, from Equation (3.2), that

E

[(
X
2

)]
=
∑
i<j

m(m − 1)
N(N − 1)

=
(
n
2

)
m(m − 1)
N(N − 1)

or
E[X(X − 1)] = n(n − 1)

m(m − 1)
N(N − 1)

showing that

E[X2] = n(n − 1)
m(m − 1)
N(N − 1)

+ E[X]

This formula yields the variance of the hypergeometric, namely,

Var(X) = E[X2] − (E[X])2

= n(n − 1)
m(m − 1)
N(N − 1)

+ nm
N

− n2m2

N2

= mn
N

[
(n − 1)(m − 1)

N − 1
+ 1 − mn

N

]

which agrees with the result obtained in Example 8j of Chapter 4.
Higher moments of X are obtained by using Equation (3.4). Because

P(Ai1Ai2 · · ·Aik) = m(m − 1) · · · (m − k + 1)
N(N − 1) · · · (N − k + 1)
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Equation (3.4) yields

E

[(
X
k

)]
=
(
n
k

)
m(m − 1) · · · (m − k + 1)
N(N − 1) · · · (N − k + 1)

or

E[X(X − 1) · · · (X − k + 1)]

= n(n − 1) · · · (n − k + 1)
m(m − 1) · · · (m − k + 1)
N(N − 1) · · · (N − k + 1)

.

Example
3c

Moments in the match problem

For i = 1, . . . ,N, let Ai be the event that person i selects his or her own hat in the
match problem. Then

P(AiAj) = P(Ai)P(Aj|Ai) = 1
N

1
N − 1

which follows because, conditional on person i selecting her own hat, the hat selected
by person j is equally likely to be any of the other N − 1 hats, of which one is his
own. Consequently, with X equal to the number of people who select their own hat,
it follows from Equation (3.2) that

E

[(
X
2

)]
=
∑
i<j

1
N(N − 1)

=
(
N
2

)
1

N(N − 1)

thus showing that
E[X(X − 1)] = 1

Therefore, E[X2] = 1 + E[X]. Because E[X] = ∑N
i=1 P(Ai) = 1, we obtain that

Var(X) = E[X2] − (E[X])2 = 1.

Hence, both the mean and variance of the number of matches is 1. For higher
moments, we use Equation (3.4), along with the fact that P(Ai1Ai2 · · ·Aik) =

1
N(N−1)···(N−k+1) , to obtain

E

[(
X
k

)]
=
(
N
k

)
1

N(N − 1) · · · (N − k + 1)

or
E[X(X − 1) · · · (X − k + 1)] = 1 .

Example
3d

Another coupon-collecting problem

Suppose that there are N distinct types of coupons and that, independently of past
types collected, each new one obtained is type j with probability pj,

∑N
j=1 pj = 1.

Find the expected value and variance of the number of different types of coupons
that appear among the first n collected.

Solution We will find it more convenient to work with the number of uncollected
types. So, let Y equal the number of types of coupons collected, and let X = N − Y
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denote the number of uncollected types. With Ai defined as the event that there are
no type i coupons in the collection,X is equal to the number of the eventsA1, . . . ,AN
that occur. Because the types of the successive coupons collected are independent,
and, with probability 1 − pi each new coupon is not type i, we have

P(Ai) = (1 − pi)n

Hence, E[X] = ∑N
i=1(1 − pi)n, from which it follows that

E[Y] = N − E[X] = N −
N∑
i=1

(1 − pi)n

Similarly, because each of the n coupons collected is neither a type i nor a type j
coupon, with probability 1 − pi − pj, we have

P(AiAj) = (1 − pi − pj)n, i Z j

Thus,
E[X(X − 1)] = 2

∑
i<j

P(AiAj) = 2
∑
i<j

(1 − pi − pj)n

or
E[X2] = 2

∑
i<j

(1 − pi − pj)n + E[X]

Hence, we obtain

Var(Y) = Var(X)

= E[X2] − (E[X])2

= 2
∑
i<j

(1 − pi − pj)n +
N∑
i=1

(1 − pi)n −
⎛
⎝ N∑
i=1

(1 − pi)n

⎞
⎠

2

In the special case where pi = 1/N, i = 1, . . . ,N, the preceding formulas give

E[Y] = N

[
1 −

(
1 − 1

N

)n]

and

Var(Y) = N(N − 1)
(
1 − 2

N

)n
+ N

(
1 − 1

N

)n
− N2

(
1 − 1

N

)2n

.

Example
3e

The negative hypergeometric random variables

Suppose an urn contains n+m balls, of which n are special andm are ordinary. These
items are removed one at a time, with each new removal being equally likely to be
any of the balls that remain in the urn. The random variable Y, equal to the number
of balls that need be withdrawn until a total of r special balls have been removed,
is said to have a negative hypergeometric distribution. The negative hypergeometric
distribution bears the same relationship to the hypergeometric distribution as the
negative binomial does to the binomial. That is, in both cases, rather than considering
a random variable equal to the number of successes in a fixed number of trials (as
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are the binomial and hypergeometric variables), they refer to the number of trials
needed to obtain a fixed number of successes.

To obtain the probability mass function of a negative hypergeometric random
variable Y, note that Y will equal k if both

1. the first k − 1 withdrawals consist of r − 1 special and k − r ordinary balls
and

2. the kth ball withdrawn is special.

Consequently,

P{Y = k} =
( n
r−1

)( m
k−r

)
(n+m
k−1

) n − r + 1
n + m − k + 1

We will not, however, utilize the preceding probability mass function to obtain the
mean and variance of Y. Rather, let us number the m ordinary balls as o1, . . . ,om,
and then, for each i = 1, . . . ,n, let Ai be the event that oi is withdrawn before r
special balls have been removed. Then, if X is the number of the events A1, . . . ,Am
that occur, it follows thatX is the number of ordinary balls that are withdrawn before
a total of r special balls have been removed. Consequently,

Y = r + X

showing that

E[Y] = r + E[X] = r +
m∑
i=1

P(Ai)

To determine P(Ai), consider the n + 1 balls consisting of oi along with the n special
balls. Of these n + 1 balls, oi is equally likely to be the first one withdrawn, or the
second one withdrawn, . . . , or the final one withdrawn. Hence, the probability that
it is among the first r of these to be selected (and so is removed before a total or r
special balls have been withdrawn) is r

n+1 . Consequently,

P(Ai) = r
n + 1

and

E[Y] = r + m
r

n + 1
= r(n + m + 1)

n + 1

Thus, for instance, the expected number of cards of a well-shuffled deck that would
need to be turned over until a spade appears is 1 + 39

14 = 3.786, and the expected
number of cards that would need to be turned over until an ace appears is
1 + 48

5 = 10.6.
To determine Var(Y) = Var(X), we use the identity

E[X(X − 1)] = 2
∑
i<j

P(AiAj)

Now, P(AiAj) is the probability that both oi and oj are removed before there have
been a total of r special balls removed. So consider the n + 2 balls consisting of oi,oj,
and the n special balls. Because all withdrawal orderings of these balls are equally
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likely, the probability that oi and oj are both among the first r + 1 of them to be
removed (and so are both removed before r special balls have been withdrawn) is

P(AiAj) =
(2
2

)( n
r−1

)
(n+2
r+1

) = r(r + 1)
(n + 1)(n + 2)

Consequently,

E[X(X − 1)] = 2
(
m
2

)
r(r + 1)

(n + 1)(n + 2)

so
E[X2] = m(m − 1)

r(r + 1)
(n + 1)(n + 2)

+ E[X]

Because E[X] = m r
n+1 , this yields

Var(Y) = Var(X) = m(m − 1)
r(r + 1)

(n + 1)(n + 2)
+ m

r
n + 1

−
(
m

r
n + 1

)2

A little algebra now shows that

Var(Y) = mr(n + 1 − r)(n + m + 1)
(n + 1)2(n + 2)

.

Example
3f

Singletons in the coupon collector’s problem

Suppose that there are n distinct types of coupons and that, independently of past
types collected, each new one obtained is equally likely to be any of the n types.
Suppose also that one continues to collect coupons until a complete set of at least
one of each type has been obtained. Find the expected value and variance of the
number of types for which exactly one coupon of that type is collected.

Solution Let X equal the number of types for which exactly one of that type is
collected. Also, let Ti denote the ith type of coupon to be collected, and let Ai be
the event that there is only a single type Ti coupon in the complete set. Because X
is equal to the number of the events A1, . . . ,An that occur, we have

E[X] =
n∑
i=1

P(Ai)

Now, at the moment when the first type Ti coupon is collected, there remain n − i
types that need to be collected to have a complete set. Because, starting at this
moment, each of these n − i + 1 types (the n − i not yet collected and type Ti)
is equally likely to be the last of these types to be collected, it follows that the type
Ti will be the last of these types (and so will be a singleton) with probability 1

n−i+1 .

Consequently, P(Ai) = 1
n−i+1 , yielding

E[X] =
n∑
i=1

1
n − i + 1

=
n∑
i=1

1
i

To determine the variance of the number of singletons, let Si, j, for i < j, be the event
that the first type Ti coupon to be collected is still the only one of its type to have
been collected at the moment that the first type Tj coupon has been collected. Then

P(AiAj) = P(AiAj|Si,j)P(Si,j)
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Now, P(Si,j) is the probability that when a type Ti has just been collected, of the
n − i + 1 types consisting of type Ti and the n − i as yet uncollected types, a type Ti
is not among the first j − i of these types to be collected. Because type Ti is equally
likely to be the first, or second, or . . . ,n − i + 1 of these types to be collected,
we have

P(Si,j) = 1 − j − i
n − i + 1

= n + 1 − j
n + 1 − i

Now, conditional on the event Si,j, both Ai and Aj will occur if, at the time the first
type Tj coupon is collected, of the n − j + 2 types consisting of types Ti,Tj, and the
n − j as yet uncollected types, Ti and Tj are both collected after the other n − j. But
this implies that

P(AiAj|Si,j) = 2
1

n − j + 2
1

n − j + 1

Therefore,

P(AiAj) = 2
(n + 1 − i)(n + 2 − j)

, i < j

yielding

E[X(X − 1)] = 4
∑
i<j

1
(n + 1 − i)(n + 2 − j)

Consequently, using the previous result for E[X], we obtain

Var(X) = 4
∑
i<j

1
(n + 1 − i)(n + 2 − j)

+
n∑
i=1

1
i

−
⎛
⎝ n∑
i=1

1
i

⎞
⎠

2

.

7.4 Covariance, Variance of Sums, and Correlations
The following proposition shows that the expectation of a product of independent
random variables is equal to the product of their expectations.

Proposition
4.1

If X and Y are independent, then, for any functions h and g,

E[g(X)h(Y)] = E[g(X)]E[h(Y)]

Proof Suppose that X and Y are jointly continuous with joint density f (x, y). Then

E[g(X)h(Y)] =
∫ q

−q

∫ q

−q
g(x)h(y) f (x, y)dx dy

=
∫ q

−q

∫ q

−q
g(x)h(y) fX(x) fY(y)dx dy

=
∫ q

−q
h(y) fY(y)dy

∫ q

−q
g(x) fX(x)dx

= E[h(Y)]E[g(X)]

The proof in the discrete case is similar.

Just as the expected value and the variance of a single random variable give
us information about that random variable, so does the covariance between two
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random variables give us information about the relationship between the random
variables.

Definition
The covariance between X and Y, denoted by Cov (X,Y), is defined by

Cov(X,Y) = E[(X − E[X])(Y − E[Y])]

Upon expanding the right side of the preceding definition, we see that

Cov(X,Y) = E[XY − E[X]Y − XE[Y] + E[Y]E[X]]

= E[XY] − E[X]E[Y] − E[X]E[Y] + E[X]E[Y]

= E[XY] − E[X]E[Y]

Note that if X and Y are independent, then, by Proposition 4.1, Cov(X,Y) = 0.
However, the converse is not true. A simple example of two dependent random
variables X and Y having zero covariance is obtained by letting X be a random
variable such that

P{X = 0} = P{X = 1} = P{X = −1} = 1
3

and defining

Y =
{
0 if X Z 0
1 if X = 0

Now, XY = 0, so E[XY] = 0. Also, E[X] = 0. Thus,

Cov(X,Y) = E[XY] − E[X]E[Y] = 0

However, X and Y are clearly not independent.
The following proposition lists some of the properties of covariance.

Proposition
4.2

(i) Cov(X,Y) = Cov(Y,X)

(ii) Cov(X,X) = Var(X)

(iii) Cov(aX,Y) = a Cov(X,Y)

(iv) Cov

⎛
⎜⎝ n∑
i=1

Xi,
m∑
j=1

Yj

⎞
⎟⎠ =

n∑
i=1

m∑
j=1

Cov(Xi,Yj)

Proof of Proposition 4.2 Parts (i) and (ii) follow immediately from the definition
of covariance, and part (iii) is left as an exercise for the reader. To prove part (iv),
which states that the covariance operation is additive (as is the operation of taking
expectations), let μi = E[Xi] and vj = E[Yj]. Then

E

⎡
⎣ n∑
i=1

Xi

⎤
⎦ =

n∑
i=1

μi, E

⎡
⎢⎣ m∑
j=1

Yj

⎤
⎥⎦ =

m∑
j=1

vj
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and

Cov

⎛
⎜⎝ n∑
i=1

Xi,
m∑
j=1

Yj

⎞
⎟⎠ = E

⎡
⎢⎢⎣
⎛
⎝ n∑
i=1

Xi −
n∑
i=1

μi

⎞
⎠
⎛
⎜⎝ m∑
j=1

Yj −
m∑
j=1

vj

⎞
⎟⎠
⎤
⎥⎥⎦

= E

⎡
⎢⎣ n∑
i=1

(Xi − μi)

m∑
j=1

(Yj − vj)

⎤
⎥⎦

= E

⎡
⎢⎣ n∑
i=1

m∑
j=1

(Xi − μi)(Yj − vj)

⎤
⎥⎦

=
n∑
i=1

m∑
j=1

E[(Xi − μi)(Yj − vj)]

where the last equality follows because the expected value of a sum of random vari-
ables is equal to the sum of the expected values.

It follows from parts (ii) and (iv) of Proposition 4.2, upon taking Yj = Xj, j =
1, . . . ,n, that

Var

⎛
⎝ n∑
i=1

Xi

⎞
⎠ = Cov

⎛
⎜⎝ n∑
i=1

Xi,
n∑
j=1

Xj

⎞
⎟⎠

=
n∑
i=1

n∑
j=1

Cov(Xi,Xj)

=
n∑
i=1

⎛
⎝Cov(Xi,Xi) +

∑
j:jZi

Cov(Xi,Xj)

⎞
⎠

=
n∑
i=1

Var(Xi) +
∑∑

iZj
Cov(Xi,Xj)

Since each pair of indices i, j, i Z j, appears twice in the double summation, the pre-
ceding formula is equivalent to

Var

⎛
⎝ n∑
i=1

Xi

⎞
⎠ =

n∑
i=1

Var(Xi) + 2
∑∑

i<j

Cov(Xi,Xj) (4.1)

If X1, . . . ,Xn are pairwise independent, in that Xi and Xj are independent for
i Z j, then Equation (4.1) reduces to

Var

⎛
⎝ n∑
i=1

Xi

⎞
⎠ =

n∑
i=1

Var(Xi)

The following examples illustrate the use of Equation (4.1).
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Example
4a

Let X1, . . . ,Xn be independent and identically distributed random variables having

expected value μ and variance σ 2, and as in Example 2c, let X =
n∑
i=1

Xi/n be the

sample mean. The quantities Xi − X, i = 1, . . . ,n, are called deviations, as they
equal the differences between the individual data and the sample mean. The random
variable

S2 =
n∑
i=1

(Xi − X)2

n − 1

is called the sample variance. Find (a) Var(X) and (b) E[S2].

Solution

(a) Var(X) =
(
1
n

)2

Var

⎛
⎝ n∑
i=1

Xi

⎞
⎠

=
(
1
n

)2 n∑
i=1

Var(Xi) by independence

= σ 2

n

(b) We start with the following algebraic identity:

(n − 1)S2 =
n∑
i=1

(Xi − μ + μ − X)2

=
n∑
i=1

(Xi − μ)2 +
n∑
i=1

(X − μ)2 − 2(X − μ)

n∑
i=1

(Xi − μ)

=
n∑
i=1

(Xi − μ)2 + n(X − μ)2 − 2(X − μ)n(X − μ)

=
n∑
i=1

(Xi − μ)2 − n(X − μ)2

Taking expectations of the preceding yields

(n − 1)E[S2] =
n∑
i=1

E[(Xi − μ)2] − nE[(X − μ)2]

= nσ 2 − nVar(X)

= (n − 1)σ 2

where the final equality made use of part (a) of this example and the one preceding
it made use of the result of Example 2c, namely, that E[X] = μ. Dividing through
by n − 1 shows that the expected value of the sample variance is the distribution
variance σ 2. .

Our next example presents another method for obtaining the variance of a bino-
mial random variable.
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Example
4b

Variance of a binomial random variable

Compute the variance of a binomial random variable X with parameters n and p.

Solution Since such a random variable represents the number of successes in n inde-
pendent trials when each trial has the common probability p of being a success, we
may write

X = X1 + · · · + Xn

where the Xi are independent Bernoulli random variables such that

Xi =
{
1 if the ith trial is a success
0 otherwise

Hence, from Equation (4.1), we obtain

Var(X) = Var(X1) + · · · + Var(Xn)

But

Var(Xi) = E[X2
i ] − (E[Xi])2

= E[Xi] − (E[Xi])2 since X2
i = Xi

= p − p2

Thus,
Var(X) = np(1 − p) .

Example
4c

Sampling from a finite population

Consider a set of N people, each of whom has an opinion about a certain sub-
ject that is measured by a real number v that represents the person’s “strength of
feeling” about the subject. Let vi represent the strength of feeling of person i,
i = 1, . . .N.

Suppose that the quantities vi, i = 1, . . . ,N, are unknown and, to gather infor-
mation, a group of n of theN people is “randomly chosen” in the sense that all of the(
N
n

)
subsets of size n are equally likely to be chosen. These n people are then ques-

tioned and their feelings determined. If S denotes the sum of the n sampled values,
determine its mean and variance.

An important application of the preceding problem is to a forthcoming election
in which each person in the population is either for or against a certain candidate or
proposition. If we take vi to equal 1 if person i is in favor and 0 if he or she is against,

then v =
N∑
i=1

vi/N represents the proportion of the population that is in favor. To

estimate v, a random sample of n people is chosen, and these people are polled.
The proportion of those polled who are in favor—that is, S/n—is often used as an
estimate of v.

Solution For each person i, i = 1, . . . ,N, define an indicator variable Ii to indicate
whether or not that person is included in the sample. That is,

Ii =
{
1 if person i is in the random sample
0 otherwise
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Now, S can be expressed by

S =
N∑
i=1

viIi

so

E[S] =
N∑
i=1

viE[Ii]

Var(S) =
N∑
i=1

Var(viIi) + 2
∑∑

i<j

Cov(viIi, vjIj)

=
N∑
i=1

v2iVar(Ii) + 2
∑∑

i<j

vivjCov(Ii, Ij)

Because

E[Ii] = n
N

E[IiIj] = n
N
n − 1
N − 1

it follows that

Var(Ii) = n
N

(
1 − n

N

)

Cov(Ii, Ij) = n(n − 1)
N(N − 1)

−
(
n
N

)2

= −n(N − n)
N2(N − 1)

Hence,

E[S] = n
N∑
i=1

vi
N

= nv

Var(S) = n
N

(
N − n
N

) N∑
i=1

v2i − 2n(N − n)
N2(N − 1)

∑∑
i<j

vivj

The expression for Var(S) can be simplified somewhat by using the identity

(v1 + · · · + vN)2 =
N∑
i=1

v2i + 2
∑∑
i<j

vivj. After some simplification, we obtain

Var(S) = n(N − n)
N − 1

⎛
⎜⎜⎝

N∑
i=1

v2i

N
− v2

⎞
⎟⎟⎠

Consider now the special case in which Np of the v’s are equal to 1 and the
remainder equal to 0. Then, in this case, S is a hypergeometric random variable and
has mean and variance given, respectively, by

E[S] = nv = np since v = Np
N

= p



346 Chapter 7 Properties of Expectation

and

Var(S) = n(N − n)
N − 1

(
Np
N

− p2
)

= n(N − n)
N − 1

p(1 − p)

The quantity S/n, equal to the proportion of those sampled that have values equal to
1, is such that

E
[
S
n

]
= p

Var
(
S
n

)
= N − n
n(N − 1)

p(1 − p) .

The correlation of two random variablesX andY, denoted by ρ(X,Y), is defined,
as long as Var(X) Var(Y) is positive, by

ρ(X,Y) = Cov(X,Y)√
Var(X)Var(Y)

It can be shown that
−1 … ρ(X,Y) … 1 (4.2)

To prove Equation (4.2), suppose that X and Y have variances given by σ 2
x and σ 2

y ,
respectively. Then, on the one hand,

0 … Var

(
X
σx

+ Y
σy

)

= Var(X)

σ 2
x

+ Var(Y)

σ 2
y

+ 2Cov(X,Y)

σxσy

= 2[1 + ρ(X,Y)]

implying that
−1 … ρ(X,Y)

On the other hand,

0 … Var

(
X
σx

− Y
σy

)

= Var(X)

σ 2
x

+ Var(Y)

(−σy)2
− 2Cov(X,Y)

σxσy

= 2[1 − ρ(X,Y)]

implying that
ρ(X,Y) … 1

which completes the proof of Equation (4.2).
In fact, since Var(Z) = 0 implies that Z is constant with probability 1 (this intu-

itive relationship will be rigorously proven in Chapter 8), it follows from the proof
of Equation (4.2) that ρ(X,Y) = 1 implies that Y = a + bX, where b = σy/σx > 0
and ρ(X,Y) = −1 implies that Y = a + bX, where b = −σy/σx < 0. We leave it as
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an exercise for the reader to show that the reverse is also true: that if Y = a + bX,
then ρ(X,Y) is either +1 or −1, depending on the sign of b.

The correlation coefficient is a measure of the degree of linearity between X
and Y. A value of ρ(X,Y) near+1 or−1 indicates a high degree of linearity between
X and Y, whereas a value near 0 indicates that such linearity is absent. A positive
value of ρ(X,Y) indicates that Y tends to increase when X does, whereas a negative
value indicates that Y tends to decrease when X increases. If ρ(X,Y) = 0, then X
and Y are said to be uncorrelated.

Example
4d

Let IA and IB be indicator variables for the events A and B. That is,

IA =
{
1 if A occurs
0 otherwise

IB =
{
1 if B occurs
0 otherwise

Then

E[IA] = P(A)

E[IB] = P(B)

E[IAIB] = P(AB)

so

Cov(IA, IB) = P(AB) − P(A)P(B)

= P(B)[P(A|B) − P(A)]

Thus, we obtain the quite intuitive result that the indicator variables for A and B
are either positively correlated, uncorrelated, or negatively correlated, depending
on whether P(A|B) is, respectively, greater than, equal to, or less than P(A). .

Our next example shows that the sample mean and a deviation from the sample
mean are uncorrelated.

Example
4e

Let X1, . . . ,Xn be independent and identically distributed random variables having
variance σ 2. Show that

Cov(Xi − X,X) = 0

Solution We have

Cov(Xi − X,X) = Cov(Xi,X) − Cov(X,X)

= Cov

⎛
⎜⎝Xi,

1
n

n∑
j=1

Xj

⎞
⎟⎠ − Var(X)

= 1
n

n∑
j=1

Cov(Xi,Xj) − σ 2

n

= σ 2

n
− σ 2

n
= 0



348 Chapter 7 Properties of Expectation

where the next-to-last equality uses the result of Example 4a and the final equality
follows because

Cov(Xi,Xj) =
{
0 if j Z i by independence
σ 2 if j = i since Var(Xi) = σ 2

Although X and the deviation Xi − X are uncorrelated, they are not, in gen-
eral, independent. However, in the special case where the Xi are normal random
variables, it turns out that not only is X independent of a single deviation, but it is
independent of the entire sequence of deviations Xj − X, j = 1, . . . ,n. This result
will be established in Section 7.8, where we will also show that, in this case, the sam-
ple mean X and the sample variance S2 are independent, with (n − 1)S2/σ 2 having
a chi-squared distribution with n − 1 degrees of freedom. (See Example 4a for the
definition of S2.) .

Example
4f

Consider m independent trials, each of which results in any of r possible outcomes
with probabilities p1, . . . ,pr,

∑r
i=1 pi = 1. If we letNi, i = 1, . . . , r, denote the number

of the m trials that result in outcome i, then N1,N2, . . . ,Nr have the multinomial
distribution

P{N1 = n1, . . . ,Nr = nr} = m!
n1! . . . nr!

pn11 · · · pnrr ,
r∑
i=1

ni = m

For i Z j, it seems likely that when Ni is large, Nj would tend to be small; hence, it is
intuitive that they should be negatively correlated. Let us compute their covariance
by using Proposition 4.2(iv) and the representation

Ni =
m∑
k=1

Ii(k) and Nj =
m∑
k=1

Ij(k)

where

Ii(k) =
{
1 if trial k results in outcome i
0 otherwise

Ij(k) =
{
1 if trial k results in outcome j
0 otherwise

From Proposition 4.2(iv), we have

Cov(Ni,Nj) =
m∑

�=1

m∑
k=1

Cov(Ii(k), Ij(�))

Now, on the one hand, when k Z �,

Cov(Ii(k), Ij(�)) = 0

since the outcome of trial k is independent of the outcome of trial �. On the other hand,

Cov(Ii(�), Ij(�)) = E[Ii(�)Ij(�)] − E[Ii(�)]E[Ij(�)]

= 0 − pipj = −pipj
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where the equation uses the fact that Ii(�)Ij(�) = 0, since trial � cannot result in both
outcome i and outcome j. Hence, we obtain

Cov(Ni,Nj) = −mpipj
which is in accord with our intuition that Ni and Nj are negatively correlated. .

7.5 Conditional Expectation
7.5.1 Definitions
Recall that if X and Y are jointly discrete random variables, then the conditional
probability mass function of X, given that Y = y, is defined for all y such that
P{Y = y} > 0, by

pX|Y(x|y) = P{X = x|Y = y} = p(x, y)
pY(y)

It is therefore natural to define, in this case, the conditional expectation of X given
that Y = y, for all values of y such that pY(y) > 0, by

E[X|Y = y] =
∑
x

xP{X = x|Y = y}

=
∑
x

xpX|Y(x|y)

Example
5a

If X and Y are independent binomial random variables with identical parameters n
and p, calculate the conditional expected value of X given that X + Y = m.

Solution Let us first calculate the conditional probability mass function of X given
that X + Y = m. For k … min(n,m),

P{X = k|X + Y = m} = P{X = k,X + Y = m}
P{X + Y = m}

= P{X = k,Y = m − k}
P{X + Y = m}

= P{X = k}P{Y = m − k}
P{X + Y = m}

=

(
n
k

)
pk(1 − p)n−k

(
n

m − k

)
pm−k(1 − p)n−m+k

(
2n
m

)
pm(1 − p)2n−m

=

(
n
k

)(
n

m − k

)
(
2n
m

)

where we have used the fact (see Example 3f of Chapter 6) thatX + Y is a binomial
random variable with parameters 2n and p. Hence, the conditional distribution ofX,
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given that X + Y = m, is the hypergeometric distribution, and from Example 2g,
we obtain

E[X|X + Y = m] = m
2

.

Similarly, let us recall that ifX andY are jointly continuous with a joint probabil-
ity density function f (x, y), then the conditional probability density of X, given that
Y = y, is defined for all values of y such that fY(y) > 0 by

fX|Y(x|y) = f (x, y)
fY(y)

It is natural, in this case, to define the conditional expectation of X, given that
Y = y, by

E[X|Y = y] =
∫ q

−q
xfX|Y(x|y)dx

provided that fY(y) > 0.

Example
5b

Suppose that the joint density of X and Y is given by

f (x, y) = e−x/ye−y

y
0 < x < q, 0 < y < q

Compute E[X|Y = y].

Solution We start by computing the conditional density

fX|Y(x|y) = f (x, y)
fY(y)

= f (x, y)∫ q

−q
f (x, y)dx

= (1/y)e−x/ye−y∫ q

0
(1/y)e−x/ye−y dx

= (1/y)e−x/y∫ q

0
(1/y)e−x/y dx

= 1
y
e−x/y

Hence, the conditional distribution of X, given that Y = y, is just the exponential
distribution with mean y. Thus,

E[X|Y = y] =
∫ q

0

x
y
e−x/y dx = y .

Remark Just as conditional probabilities satisfy all of the properties of ordinary
probabilities, so do conditional expectations satisfy the properties of ordinary expec-
tations. For instance, such formulas as

E[g(X)|Y = y] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
x

g(x)pX|Y(x|y) in the discrete case

∫ q

−q
g(x) fX|Y(x|y)dx in the continuous case
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and

E

⎡
⎣ n∑
i=1

Xi|Y = y

⎤
⎦ =

n∑
i=1

E[Xi|Y = y]

remain valid. As a matter of fact, conditional expectation given that Y = y can be
thought of as being an ordinary expectation on a reduced sample space consisting
only of outcomes for which Y = y. .

7.5.2 Computing Expectations by Conditioning
Let us denote by E[X|Y] that function of the random variable Y whose value at
Y = y is E[X|Y = y]. Note that E[X|Y] is itself a random variable. An extremely
important property of conditional expectations is given by the following proposition.

Proposition
5.1

The Conditional Expectation Formula

E[X] = E[E[X|Y]] (5.1)

If Y is a discrete random variable, then Equation (5.1) states that

E[X] =
∑
y

E[X|Y = y]P{Y = y} (5.1a)

whereas if Y is continuous with density fY(y), then Equation (5.1) states

E[X] =
∫ q

−q
E[X|Y = y] fY(y)dy (5.1b)

We now give a proof of Equation (5.1) in the case where X and Y are both discrete
random variables.

Proof of Equation (5.1) When X and Y Are Discrete: We must show that

E[X] =
∑
y

E[X|Y = y]P{Y = y} (5.2)

Now, the right-hand side of Equation (5.2) can be written as∑
y

E[X|Y = y]P{Y = y} =
∑
y

∑
x

xP{X = x|Y = y}P{Y = y}

=
∑
y

∑
x

x
P{X = x,Y = y}

P{Y = y} P{Y = y}

=
∑
y

∑
x

xP{X = x,Y = y}

=
∑
x

x
∑
y

P{X = x,Y = y}

=
∑
x

xP{X = x}

= E[X]

and the result is proved.
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One way to understand Equation (5.2) is to interpret it as follows: To calcu-
late E[X], we may take a weighted average of the conditional expected value of X
given that Y = y, each of the terms E[X|Y = y] being weighted by the probabil-
ity of the event on which it is conditioned. (Of what does this remind you?) This
is an extremely useful result that often enables us to compute expectations easily
by first conditioning on some appropriate random variable. The following examples
illustrate its use.

Example
5c

Aminer is trapped in a mine containing 3 doors. The first door leads to a tunnel that
will take him to safety after 3 hours of travel. The second door leads to a tunnel that
will return him to the mine after 5 hours of travel. The third door leads to a tunnel
that will return him to the mine after 7 hours. If we assume that the miner is at all
times equally likely to choose any one of the doors, what is the expected length of
time until he reaches safety?

Solution LetX denote the amount of time (in hours) until the miner reaches safety,
and let Y denote the door he initially chooses. Now,

E[X] = E[X|Y = 1]P{Y = 1} + E[X|Y = 2]P{Y = 2}
+ E[X|Y = 3]P{Y = 3}

= 1
3
(E[X|Y = 1] + E[X|Y = 2] + E[X|Y = 3])

However,

E[X|Y = 1] = 3

E[X|Y = 2] = 5 + E[X] (5.3)

E[X|Y = 3] = 7 + E[X]

To understand why Equation (5.3) is correct, consider, for instance, E[X|Y = 2]
and reason as follows: If the miner chooses the second door, he spends 5 hours in
the tunnel and then returns to his cell. But once he returns to his cell, the prob-
lem is as before; thus, his expected additional time until safety is just E[X]. Hence,
E[X|Y = 2] = 5 + E[X]. The argument behind the other equalities in Equation (5.3)
is similar. Hence,

E[X] = 1
3
(3 + 5 + E[X] + 7 + E[X])

or
E[X] = 15 .

Example
5d

Expectation of a sum of a random number of random variables

Suppose that the number of people entering a department store on a given day is
a random variable with mean 50. Suppose further that the amounts of money spent
by these customers are independent random variables having a common mean of
$8. Finally, suppose also that the amount of money spent by a customer is also inde-
pendent of the total number of customers who enter the store. What is the expected
amount of money spent in the store on a given day?

Solution If we letN denote the number of customers who enter the store andXi the
amount spent by the ith such customer, then the total amount of money spent can

be expressed as
N∑
i=1

Xi. Now,
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E

⎡
⎣ N∑

1

Xi

⎤
⎦ = E

⎡
⎢⎣E

⎡
⎣ N∑

1

Xi|N
⎤
⎦
⎤
⎥⎦

But

E

⎡
⎣ N∑

1

Xi|N = n

⎤
⎦ = E

⎡
⎣ n∑

1

Xi|N = n

⎤
⎦

= E

⎡
⎣ n∑

1

Xi

⎤
⎦ by the independence of the Xi and N

= nE[X] where E[X] = E[Xi]

which implies that

E

⎡
⎣ N∑

1

Xi|N
⎤
⎦ = NE[X]

Thus,

E

⎡
⎣ N∑
i=1

Xi

⎤
⎦ = E[NE[X]] = E[N]E[X]

Hence, in our example, the expected amount of money spent in the store is 50 * $8,
or $400. .

Example
5e

The game of craps is begun by rolling an ordinary pair of dice. If the sum of the
dice is 2, 3, or 12, the player loses. If it is 7 or 11, the player wins. If it is any other
number i, the player continues to roll the dice until the sum is either 7 or i. If it is
7, the player loses; if it is i, the player wins. Let R denote the number of rolls of the
dice in a game of craps. Find
(a) E[R];
(b) E[R|player wins];
(c) E[R|player loses].

Solution If we let Pi denote the probability that the sum of the dice is i, then

Pi = P14−i = i − 1
36

, i = 2, . . . , 7

To compute E[R], we condition on S, the initial sum, giving

E[R] =
12∑
i=2

E[R|S = i]Pi

However,

E[R|S = i] =
⎧⎨
⎩
1, if i = 2, 3, 7, 11, 12

1 + 1
Pi + P7

, otherwise

The preceding equation follows because if the sum is a value i that does not end
the game, then the dice will continue to be rolled until the sum is either i or 7, and
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the number of rolls until this occurs is a geometric random variable with parameter
Pi + P7. Therefore,

E[R] = 1 +
6∑
i=4

Pi
Pi + P7

+
10∑
i=8

Pi
Pi + P7

= 1 + 2(3/9 + 4/10 + 5/11) = 3.376

To determine E[R|win], let us start by determining p, the probability that the player
wins. Conditioning on S yields

p =
12∑
i=2

P{win|S = i}Pi

= P7 + P11 +
6∑
i=4

Pi
Pi + P7

Pi +
10∑
i=8

Pi
Pi + P7

Pi

= 0.493

where the preceding uses the fact that the probability of obtaining a sum of i before
one of 7 is Pi/(Pi + P7). Now, let us determine the conditional probability mass
function of S, given that the player wins. Letting Qi = P{S = i|win}, we have

Q2 = Q3 = Q12 = 0, Q7 = P7/p, Q11 = P11/p

and, for i = 4, 5, 6, 8, 9, 10,

Qi = P{S = i, win}
P{win}

= PiP{win|S = i}
p

= P2
i

p(Pi + P7)

Now, conditioning on the initial sum gives

E[R|win] =
∑
i

E[R|win, S = i]Qi

However, as was noted in Example 2j of Chapter 6, given that the initial sum is i,
the number of additional rolls needed and the outcome (whether a win or a loss)
are independent. (This is easily seen by first noting that conditional on an initial sum
of i, the outcome is independent of the number of additional dice rolls needed and
then using the symmetry property of independence, which states that if event A is
independent of event B, then event B is independent of event A.) Therefore,

E[R|win] =
∑
i

E[R|S = i]Qi

= 1 +
6∑
i=4

Qi

Pi + P7
+

10∑
i=8

Qi

Pi + P7

= 2.938
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Although we could determine E[R|player loses] exactly as we did E[R|player
wins], it is easier to use

E[R] = E[R|win]p + E[R|lose](1 − p)

implying that

E[R|lose] = E[R] − E[R|win]p
1 − p

= 3.801 .

Example
5f

As defined in Example 5d of Chapter 6, the bivariate normal joint density function
of the random variables X and Y is

f (x, y) = 1

2πσxσy
√
1 − ρ2

exp

⎧⎪⎨
⎪⎩− 1

2(1 − ρ2)

⎡
⎣(x − μx

σx

)2

+
(
y − μy

σy

)2

− 2ρ
(x − μx)(y − μy)

σxσy

⎤
⎦
⎫⎪⎬
⎪⎭

We will now show that ρ is the correlation between X and Y. As shown in Exam-
ple 5c, μx = E[X], σ 2

x = Var(X), and μy = E[Y], σ 2
y = Var(Y). Consequently,

Corr(X,Y) = Cov(X,Y)

σxσy

= E[XY] − μxμy

σxσy

To determine E[XY], we condition on Y. That is, we use the identity

E[XY] = E
[
E[XY|Y]

]
Recalling from Example 5d that the conditional distribution of X given that Y = y
is normal with mean μx + ρ σx

σy
(y − μy), we see that

E[XY|Y = y] = E[Xy|Y = y]

= yE[X|Y = y]

= y

[
μx + ρ

σx

σy
(y − μy)

]

= yμx + ρ
σx

σy
(y2 − μyy)

Consequently,

E[XY|Y] = Yμx + ρ
σx

σy
(Y2 − μyY)
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implying that

E[XY] = E

[
Yμx + ρ

σx

σy
(Y2 − μyY)

]

= μxE[Y] + ρ
σx

σy
E[Y2 − μyY]

= μxμy + ρ
σx

σy

(
E[Y2] − μ2

y

)
= μxμy + ρ

σx

σy
Var(Y)

= μxμy + ρσxσy

Therefore,

Corr(X,Y) = ρσxσy

σxσy
= ρ .

Sometimes E[X] is easy to compute, and we use the conditioning identity to
compute a conditional expected value. This approach is illustrated by our next
example.

Example
5g

Consider n independent trials, each of which results in one of the outcomes 1, . . . ,k,
with respective probabilities p1, . . . ,pk,

∑k
i=1 pi = 1. Let Ni denote the number of

trials that result in outcome i, i = 1, . . . ,k. For i Z j, find

(a) E[Nj|Ni > 0] and (b) E[Nj|Ni > 1]

Solution To solve (a), let

I =
{
0, if Ni = 0
1, if Ni > 0

Then

E[Nj] = E[Nj|I = 0]P{I = 0} + E[Nj|I = 1]P{I = 1}

or, equivalently,

E[Nj] = E[Nj|Ni = 0]P{Ni = 0} + E[Nj|Ni > 0]P{Ni > 0}

Now, the unconditional distribution of Nj is binomial with parameters n,pj. Also,
given that Ni = r, each of the n − r trials that does not result in outcome i will,
independently, result in outcome j with probability P(j|not i) = pj

1−pi . Consequently,
the conditional distribution of Nj, given that Ni = r, is binomial with parameters
n − r, pj

1−pi . (For a more detailed argument for this conclusion, see Example 4c of
Chapter 6.) Because P{Ni = 0} = (1 − pi)n, the preceding equation yields

npj = n
pj

1 − pi
(1 − pi)n + E[Nj|Ni > 0](1 − (1 − pi)n)

giving the result

E[Nj|Ni > 0] = npj
1 − (1 − pi)n−1

1 − (1 − pi)n
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We can solve part (b) in a similar manner. Let

J =

⎧⎪⎨
⎪⎩

0, if Ni = 0
1, if Ni = 1
2, if Ni > 1

Then

E[Nj] = E[Nj|J = 0]P{J = 0} + E[Nj|J = 1]P{J = 1}
+ E[Nj|J = 2]P{J = 2}

or, equivalently,

E[Nj] = E[Nj|Ni = 0]P{Ni = 0} + E[Nj|Ni = 1]P{Ni = 1}
+ E[Nj|Ni > 1]P{Ni > 1}

This equation yields

npj = n
pj

1 − pi
(1 − pi)n + (n − 1)

pj
1 − pi

npi(1 − pi)n−1

+ E[Nj|Ni > 1](1 − (1 − pi)n − npi(1 − pi)n−1)

giving the result

E[Nj|Ni > 1] = npj[1 − (1 − pi)n−1 − (n − 1)pi(1 − pi)n−2]
1 − (1 − pi)n − npi(1 − pi)n−1

.

It is also possible to obtain the variance of a random variable by conditioning.
We illustrate this approach by the following example.

Example
5h

Variance of the geometric distribution

Independent trials, each resulting in a success with probability p, are successively
performed. Let N be the time of the first success. Find Var(N).

Solution Let Y = 1 if the first trial results in a success and Y = 0 otherwise. Now,

Var(N) = E[N2] − (E[N])2

To calculate E[N2], we condition on Y as follows:

E[N2] = E[E[N2|Y]]

However,

E[N2|Y = 1] = 1

E[N2|Y = 0] = E[(1 + N)2]

These two equations follow because, on the one hand, if the first trial results in a
success, then, clearly, N = 1; thus, N2 = 1. On the other hand, if the first trial results
in a failure, then the total number of trials necessary for the first success will have
the same distribution as 1 (the first trial that results in failure) plus the necessary
number of additional trials. Since the latter quantity has the same distribution as N,
we obtain E[N2|Y = 0] = E[(1 + N)2]. Hence,
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E[N2] = E[N2|Y = 1]P{Y = 1} + E[N2|Y = 0]P{Y = 0}
= p + (1 − p)E[(1 + N)2]

= 1 + (1 − p)E[2N + N2]

However, as was shown in Example 8b of Chapter 4, E[N] = 1/p; therefore,

E[N2] = 1 + 2(1 − p)
p

+ (1 − p)E[N2]

or

E[N2] = 2 − p
p2

Consequently,

Var(N) = E[N2] − (E[N])2

= 2 − p
p2

−
(
1
p

)2

= 1 − p
p2

.

Example
5i

Consider a gambling situation in which there are r players, with player i initially
having ni units, ni > 0, i = 1, ..., r. At each stage, two of the players are chosen to
play a game, with the winner of the game receiving 1 unit from the loser. Any player
whose fortune drops to 0 is eliminated, and this continues until a single player has
all n K

∑r
i=1 ni units, with that player designated as the victor. Assuming that the

results of successive games are independent and that each game is equally likely to
be won by either of its two players, find the average number of stages until one of
the players has all n units.

Solution To find the expected number of stages played, suppose first that there are
only 2 players, with players 1 and 2 initially having j and n − j units, respectively.
Let Xj denote the number of stages that will be played, and let mj = E[Xj]. Then,
for j = 1,...,n − 1,

Xj = 1 + Aj

where Aj is the additional number of stages needed beyond the first stage. Taking
expectations gives

mj = 1 + E[Aj]

Conditioning on the result of the first stage then yields

mj = 1 + E[Aj|1 wins first stage]1/2 + E[Aj|2 wins first stage]1/2

Now, if player 1 wins at the first stage, then the situation from that point on is exactly
the same as in a problem that supposes that player 1 starts with j + 1 and player 2
with n − ( j + 1) units. Consequently,

E[Aj|1 wins first stage] = mj+1

and, analogously,
E[Aj|2 wins first stage] = mj−1
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Thus,

mj = 1 + 1
2
mj+1 + 1

2
mj−1

or, equivalently,

mj+1 = 2mj − mj−1 − 2, j = 1, . . . ,n − 1 (5.4)

Using that m0 = 0, the preceding equation yields

m2 = 2m1 − 2

m3 = 2m2 − m1 − 2 = 3m1 − 6 = 3(m1 − 2)

m4 = 2m3 − m2 − 2 = 4m1 − 12 = 4(m1 − 3)

suggesting that
mi = i(m1 − i + 1), i = 1, . . . ,n (5.5)

To prove the preceding equality, we use mathematical induction. Since we’ve already
shown the equation to be true for i = 1, 2, we take as the induction hypothesis that
it is true whenever i … j < n. Now we must prove that it is true for j + 1. Using
Equation (5.4) yields

mj+1 = 2mj − mj−1 − 2

= 2j(m1 − j + 1) − (j − 1)(m1 − j + 2) − 2 (by the induction hypothesis)

= (j + 1)m1 − 2j2 + 2j + j2 − 3j + 2 − 2

= (j + 1)m1 − j2 − j

= (j + 1)(m1 − j)

which completes the induction proof of (5.5). Letting i = n in (5.5), and using that
mn = 0, now yields that

m1 = n − 1

which, again using (5.5), gives the result

mi = i(n − i)

Thus, the mean number of games played when there are only 2 players with initial
amounts i and n − i is the product of their initial amounts. Because both players
play all stages, this is also the mean number of stages involving player 1.

Now let us return to the problem involving r players with initial amounts ni, i =
1,..., r,

∑r
i=1 ni = n. Let X denote the number of stages needed to obtain a victor,

and let Xi denote the number of stages involving player i. Now, from the point of
view of player i, starting with ni, he will continue to play stages, independently being
equally likely to win or lose each one, until his fortune is either n or 0. Thus, the
number of stages he plays is exactly the same as when he has a single opponent with
an initial fortune of n − ni. Consequently, by the preceding result, it follows that

E[Xi] = ni(n − ni)

so

E

⎡
⎣ r∑
i=1

Xi

⎤
⎦ =

r∑
i=1

ni(n − ni) = n2 −
r∑
i=1

n2i
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But because each stage involves two players,

X = 1
2

r∑
i=1

Xi

Taking expectations now yields

E[X] = 1
2

⎛
⎝n2 −

r∑
i=1

n2i

⎞
⎠

It is interesting to note that while our argument shows that the mean number of
stages does not depend on the manner in which the teams are selected at each stage,
the same is not true for the distribution of the number of stages. To see this, suppose
r = 3, n1 = n2 = 1, and n3 = 2. If players 1 and 2 are chosen in the first stage, then
it will take at least three stages to determine a winner, whereas if player 3 is in the
first stage, then it is possible for there to be only two stages. .

In our next example, we use conditioning to verify a result previously noted in
Section 6.3.1: that the expected number of uniform (0, 1) random variables that need
to be added for their sum to exceed 1 is equal to e.

Example
5j

Let U1,U2, . . . be a sequence of independent uniform (0, 1) random variables. Find
E[N] when

N = min

⎧⎨
⎩n:

n∑
i=1

Ui > 1

⎫⎬
⎭

Solution We will find E[N] by obtaining a more general result. For x ∈ [0, 1], let

N(x) = min

⎧⎨
⎩n:

n∑
i=1

Ui > x

⎫⎬
⎭

and set
m(x) = E[N(x)]

That is, N(x) is the number of uniform (0, 1) random variables we must add until
their sum exceeds x, and m(x) is its expected value. We will now derive an equation
for m(x) by conditioning on U1. This gives, from Equation (5.1b),

m(x) =
∫ 1

0
E[N(x)|U1 = y]dy (5.6)

Now,

E[N(x)|U1 = y] =
{
1 if y > x
1 + m(x − y) if y … x

(5.7)

The preceding formula is obviously true when y > x. It is also true when y … x,
since, if the first uniform value is y, then, at that point, the remaining number of
uniform random variables needed is the same as if we were just starting and were
going to add uniform random variables until their sum exceeded x − y. Substituting
Equation (5.7) into Equation (5.6) gives



A First Course in Probability 361

m(x) = 1 +
∫ x

0
m(x − y)dy

= 1 +
∫ x

0
m(u)du

by letting
u = x − y

Differentiating the preceding equation yields

m′(x) = m(x)

or, equivalently,
m′(x)
m(x)

= 1

Integrating this equation gives

log[m(x)] = x + c

or
m(x) = kex

Since m(0) = 1, it follows that k = 1, so we obtain

m(x) = ex

Therefore, m(1), the expected number of uniform (0, 1) random variables that need
to be added until their sum exceeds 1, is equal to e. .

7.5.3 Computing Probabilities by Conditioning
Not only can we obtain expectations by first conditioning on an appropriate random
variable, but we can also use this approach to compute probabilities. To see this, let
A denote an arbitrary event, and define the indicator random variable X by

X =
{
1 if A occurs
0 if A does not occur

It follows from the definition of X that

E[X] = P(A)

E[X|Y = y] = P(A|Y = y) for any random variable Y

Therefore, from Equations (5.1a) and (5.1b), we obtain

P(A) =
∑
y

P(A|Y = y)P(Y = y) if Y is discrete

=
∫ q

−q
P(A|Y = y)fY(y)dy if Y is continuous

(5.8)

Note that if Y is a discrete random variable taking on one of the values y1, . . . , yn,
then by defining the events Bi, i = 1, . . . ,n, by Bi = {Y = yi}, Equation (5.8) reduces
to the familiar equation

P(A) =
n∑
i=1

P(A|Bi)P(Bi)

where B1, . . . ,Bn are mutually exclusive events whose union is the sample space.
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Example
5k

The best-prize problem

Suppose that we are to be presented with n distinct prizes, in sequence. After being
presented with a prize, we must immediately decide whether to accept it or to reject
it and consider the next prize. The only information we are given when deciding
whether to accept a prize is the relative rank of that prize compared to ones already
seen. That is, for instance, when the fifth prize is presented, we learn how it compares
with the four prizes we’ve already seen. Suppose that once a prize is rejected, it is
lost, and that our objective is to maximize the probability of obtaining the best prize.
Assuming that all n! orderings of the prizes are equally likely, how well can we do?

Solution Rather surprisingly, we can do quite well. To see this, fix a value k, 0 …
k < n, and consider the strategy that rejects the first k prizes and then accepts the
first one that is better than all of those first k. LetPk(best) denote the probability that
the best prize is selected when this strategy is employed. To compute this probability,
condition on X, the position of the best prize. This gives

Pk(best) =
n∑
i=1

Pk(best|X = i)P(X = i)

= 1
n

n∑
i=1

Pk(best|X = i)

Now, on the one hand, if the overall best prize is among the first k, then no prize is
ever selected under the strategy considered. That is,

Pk(best|X = i) = 0 if i … k

On the other hand, if the best prize is in position i, where i > k, then the best prize
will be selected if the best of the first i − 1 prizes is among the first k (for then none
of the prizes in positions k + 1,k + 2, . . . , i − 1 would be selected). But, conditional
on the best prize being in position i, it is easy to verify that all possible orderings of
the other prizes remain equally likely, which implies that each of the first i − 1 prizes
is equally likely to be the best of that batch. Hence, we have

Pk(best|X = i) = P{best of first i − 1 is among the first k|X = i}
= k
i − 1

if i > k

From the preceding, we obtain

Pk(best) = k
n

n∑
i=k+1

1
i − 1

L
k
n

∫ n

k+1

1
x − 1

dx

= k
n
log

(
n − 1
k

)

L
k
n
log

(
n
k

)
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Now, if we consider the function

g(x) = x
n
log

(
n
x

)

then

g′(x) = 1
n
log

(
n
x

)
− 1

n

so

g′(x) = 0 * log
(
n
x

)
= 1 * x = n

e

Thus, since Pk(best) L g(k), we see that the best strategy of the type considered is to
let the first n/e prizes go by and then accept the first one to appear that is better than
all of those. In addition, since g(n/e) = 1/e, the probability that this strategy selects
the best prize is approximately 1/e L .36788.

Remark Most people are quite surprised by the size of the probability of obtain-
ing the best prize, thinking that this probability would be close to 0 when n is large.
However, even without going through the calculations, a little thought reveals that
the probability of obtaining the best prize can be made reasonably large. Consider
the strategy of letting half of the prizes go by and then selecting the first one to
appear that is better than all of those. The probability that a prize is actually selected
is the probability that the overall best is among the second half, and this is 1

2 . In addi-
tion, given that a prize is selected, at the time of selection that prize would have been
the best of more than n/2 prizes to have appeared and would thus have probability
of at least 1

2 of being the overall best. Hence, the strategy of letting the first half of
all prizes go by and then accepting the first one that is better than all of those prizes
has a probability greater than 1

4 of obtaining the best prize. .

Example
5l

Let U be a uniform random variable on (0, 1), and suppose that the conditional
distribution of X, given that U = p, is binomial with parameters n and p. Find the
probability mass function of X.

Solution Conditioning on the value of U gives

P{X = i} =
∫ 1

0
P{X = i|U = p}fU(p)dp

=
∫ 1

0
P{X = i|U = p}dp

= n!
i!(n − i)!

∫ 1

0
pi(1 − p)n−i dp

Now, it can be shown (a probabilistic proof is given in Section 6.6) that

∫ 1

0
pi(1 − p)n−idp = i!(n − i)!

(n + 1)!

Hence, we obtain

P{X = i} = 1
n + 1

i = 0, . . . ,n
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That is, we obtain the surprising result that if a coin whose probability of coming up
heads is uniformly distributed over (0, 1) is flipped n times, then the number of heads
occurring is equally likely to be any of the values 0, . . . ,n.

Because the preceding conditional distribution has such a nice form, it is worth
trying to find another argument to enhance our intuition as to why such a result
is true. To do so, let U,U1, . . . ,Un be n + 1 independent uniform (0, 1) random
variables, and let X denote the number of the random variables U1, . . . ,Un that are
smaller than U. Since all the random variables U,U1, . . . ,Un have the same distri-
bution, it follows that U is equally likely to be the smallest, or second smallest, or
largest of them; so X is equally likely to be any of the values 0, 1, . . . ,n. However,
given that U = p, the number of the Ui that are less than U is a binomial random
variable with parameters n and p, thus establishing our previous result. .

Example
5m

A random sample of X balls is chosen from an urn that contains n red and m blue
balls. If X is equally likely to be any of the values 1, . . . ,n, find the probability that
all the balls in the sample are red.

Solution Conditioning on X yields

P(all balls are red) =
n∑
i=1

P(all balls are red|X = i)P(X = i)

Now, given that the sample is of size i, each of the
(n+m

i

)
subsets of size i is equally

likely to be the chosen set of balls. As
(n
i

)
of these subsets have all red balls, it follows

that P{all balls are red|X = i} = (ni)
(n+mi )

, and thus that

P(all balls are red) = 1
n

n∑
i=1

(n
i

)
(n+m

i

)
However, though not obvious, it turns out that the preceding can be simplified, and
indeed yields the surprising result that

P(all balls are red) = 1
m + 1

, for all n,m

To prove the preceding formula, we will not make use of our earlier result, but rather
we will use induction on n. When n = 1, the urn contains 1 red and m blue balls and
so a random sample of size 1 will be red with probability 1

m+1 . So, assume the result
is true whenever the urn contains n − 1 red and m blue balls and a random sample
whose size is equally likely to be any of 1, . . . ,n − 1 is to be chosen. Now consider
the case of n red and m blue balls. Start by conditioning not on the value of X but
only on whether or not X = 1. This yields

P(all balls are red) = P(all red|X = 1)P(X = 1) + P(all red|X > 1)P(X > 1)

= n
n + m

1
n

+ P(all red|X > 1)
n − 1
n

Now, if X > 1 then in order for all balls in the sample to be red, the first one chosen
must be red, which occurs with probability n

n+m , and then all of the X − 1 remain-
ing balls in the sample must be red. But given that the first ball chosen is red, the
remaining X − 1 balls will be randomly selected from an urn containing n − 1 red
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andm blue balls. AsX − 1, given thatX > 1, is equally likely to be any of the values
1, . . . ,n − 1, it follows by the induction hypothesis that

P(all balls are red|X > 1) = n
n + m

1
m + 1

Thus,

P(all balls are red) = 1
n + m

+ n
n + m

1
m + 1

n − 1
n

= 1
n + m

(1 + n − 1
m + 1

)

= 1
m + 1

.

Example
5n

Suppose that X and Y are independent continuous random variables having densi-
ties fX and fY , respectively. Compute P{X < Y}.

Solution Conditioning on the value of Y yields

P{X < Y} =
∫ q

−q
P{X < Y|Y = y} fY (y)dy

=
∫ q

−q
P{X < y|Y = y} fY (y)dy

=
∫ q

−q
P{X < y} fY (y}dy by independence

=
∫ q

−q
FX(y) fY (y)dy

where

FX(y) =
∫ y

−q
fX(x)dx .

Example
5o

Suppose that X and Y are independent continuous random variables. Find the dis-
tribution function and the density function of X + Y.

Solution By conditioning on the value of Y, we obtain

P{X + Y < a} =
∫ q

−q
P{X + Y < a|Y = y} fY(y)dy

=
∫ q

−q
P{X + y < a|Y = y} fY(y)dy

=
∫ q

−q
P{X < a − y} fY(y)dy

=
∫ q

−q
FX(a − y) fY(y)dy
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Differentiation yields the density function of X + Y:

fX+Y(a) = d
da

∫ q

−q
FX(a − y) fY (y)dy

=
∫ q

−q

d
da
FX(a − y) fY (y)dy

=
∫ q

−q
fX(a − y) fY (y)dy .

7.5.4 Conditional Variance
Just as we have defined the conditional expectation of X given the value of Y, we
can also define the conditional variance of X given that Y = y:

Var(X|Y) K E[(X − E[X|Y])2|Y]

That is, Var(X|Y) is equal to the (conditional) expected square of the difference
between X and its (conditional) mean when the value of Y is given. In other words,
Var(X|Y) is exactly analogous to the usual definition of variance, but now all expec-
tations are conditional on the fact that Y is known.

There is a very useful relationship between Var(X), the unconditional variance
ofX, and Var(X|Y), the conditional variance ofX givenY, that can often be applied
to compute Var(X). To obtain this relationship, note first that by the same reasoning
that yields Var(X) = E[X2] − (E[X])2, we have

Var(X|Y) = E[X2|Y] − (E[X|Y])2

so

E[Var(X|Y)] = E[E[X2|Y]] − E[(E[X|Y])2]

= E[X2] − E[(E[X|Y])2] (5.9)

Also, since E[E[X|Y]] = E[X], we have

Var(E[X|Y]) = E[(E[X|Y])2] − (E[X])2 (5.10)

Hence, by adding Equations (5.9) and (5.10), we arrive at the following proposition.

Proposition
5.2

The conditional variance formula

Var(X) = E[Var(X|Y)] + Var(E[X|Y])

Example
5p

Suppose that by any time t the number of people who have arrived at a train depot
is a Poisson random variable with mean λt. If the initial train arrives at the depot at a
time (independent of when the passengers arrive) that is uniformly distributed over
(0, T), what are the mean and variance of the number of passengers who enter the
train?

Solution For each t Ú 0, let N(t) denote the number of arrivals by t, and let Y
denote the time at which the train arrives. The random variable of interest is then
N(Y). Conditioning on Y gives



A First Course in Probability 367

E[N(Y)|Y = t] = E[N(t)|Y = t]

= E[N(t)] by the independence of Y and N(t)

= λt since N(t) is Poisson with mean λt

Hence,
E[N(Y)|Y] = λY

so taking expectations gives

E[N(Y)] = λE[Y] = λT
2

To obtain Var(N(Y)), we use the conditional variance formula:

Var(N(Y)|Y = t) = Var(N(t)|Y = t)

= Var(N(t)) by independence

= λt

Thus,

Var(N(Y)|Y) = λY

E[N(Y)|Y] = λY

Hence, from the conditional variance formula,

Var(N(Y)) = E[λY] + Var(λY)

= λ
T
2

+ λ2
T2

12

where we have used the fact that Var(Y) = T2/12. .

Example
5q

Variance of a sum of a random number of random variables

LetX1,X2, . . . be a sequence of independent and identically distributed random vari-
ables, and letN be a nonnegative integer-valued random variable that is independent

of the sequence Xi, i Ú 1. To compute Var

(
N∑
i=1

Xi

)
, we condition on N:

E

⎡
⎣ N∑
i=1

Xi|N
⎤
⎦ = NE[X]

Var

⎛
⎝ N∑
i=1

Xi|N
⎞
⎠ = NVar(X)

The preceding result follows because, given N,
∑N

i=1Xi is just the sum of a fixed
number of independent random variables, so its expectation and variance are just
the sums of the individual means and variances, respectively. Hence, from the condi-
tional variance formula,

Var

⎛
⎝ N∑
i=1

Xi

⎞
⎠ = E[N]Var(X) + (E[X])2Var(N) .
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7.6 Conditional Expectation and Prediction
Sometimes a situation arises in which the value of a random variable X is observed
and then, on the basis of the observed value, an attempt is made to predict the
value of a second random variable Y. Let g(X) denote the predictor; that is, if X
is observed to equal x, then g(x) is our prediction for the value of Y. Clearly, we
would like to choose g so that g(X) tends to be close to Y. One possible criterion for
closeness is to choose g so as to minimize E[(Y − g(X))2]. We now show that, under
this criterion, the best possible predictor of Y is g(X) = E[Y|X].

Proposition
6.1 E[(Y − g(X))2] Ú E[(Y − E[Y|X])2]

Proof

E[(Y − g(X))2|X] = E[(Y − E[Y|X] + E[Y|X] − g(X))2|X]

= E[(Y − E[Y|X])2|X]

+ E[(E[Y|X] − g(X))2|X]

+ 2E[(Y − E[Y|X])(E[Y|X] − g(X))|X] (6.1)

However, given X,E[Y|X] − g(X), being a function of X, can be treated as a con-
stant. Thus,

E[(Y − E[Y|X])(E[Y|X] − g(X))|X]

= (E[Y|X] − g(X))E[Y − E[Y|X]|X]

= (E[Y|X] − g(X))(E[Y|X] − E[Y|X])

= 0 (6.2)

Hence, from Equations (6.1) and (6.2), we obtain

E[(Y − g(X))2|X] Ú E[(Y − E[Y|X])2|X]

and the desired result follows by taking expectations of both sides of the preceding
expression.

Remark A second, more intuitive, although less rigorous, argument verifying Propo-
sition 6.1 is as follows: It is straightforward to verify that E[(Y − c)2] is minimized
at c = E[Y]. (See Theoretical Exercise 1.) Thus, if we want to predict the value of
Y when there are no data available to use, the best possible prediction, in the sense
of minimizing the mean square error, is to predict that Y will equal its mean. How-
ever, if the value of the random variable X is observed to be x, then the prediction
problem remains exactly as in the previous (no-data) case, with the exception that all
probabilities and expectations are now conditional on the event that X = x. Hence,
the best prediction in this situation is to predict that Y will equal its conditional
expected value given that X = x, thus establishing Proposition 6.1. .

Example
6a

Suppose that the son of a man of height x (in inches) attains a height that is normally
distributed with mean x + 1 and variance 4. What is the best prediction of the height
at full growth of the son of a man who is 6 feet tall?

Solution Formally, this model can be written as

Y = X + 1 + e
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where e is a normal random variable, independent ofX, having mean 0 and variance
4. TheX and Y, of course, represent the heights of the man and his son, respectively.
The best prediction E[Y|X = 72] is thus equal to

E[Y|X = 72] = E[X + 1 + e|X = 72]

= 73 + E[e|X = 72]

= 73 + E(e) by independence

= 73 .

Example
6b

Suppose that if a signal value s is sent from locationA, then the signal value received
at location B is normally distributed with parameters (s, 1). If S, the value of the
signal sent at A, is normally distributed with parameters (μ, σ 2), what is the best
estimate of the signal sent if R, the value received at B, is equal to r?

Solution Let us start by computing the conditional density of S given R. We have

fS|R(s|r) = fS,R(s, r)
fR(r)

= fS(s)fR|S(r|s)
fR(r)

= Ke−(s−μ)2/2σ 2
e−(r−s)2/2

where K does not depend on s. Now,

(s − μ)2

2σ 2 + (r − s)2

2
= s2

(
1

2σ 2 + 1
2

)
−
(

μ

σ 2 + r
)
s + C1

= 1 + σ 2

2σ 2

⎡
⎣s2 − 2

(
μ + rσ 2

1 + σ 2

)
s

⎤
⎦ + C1

= 1 + σ 2

2σ 2

(
s − (μ + rσ 2)

1 + σ 2

)2

+ C2

where C1 and C2 do not depend on s. Hence,

fS|R(s|r) = C exp

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−
[
s − (μ + rσ 2)

1 + σ 2

]2

2

(
σ 2

1 + σ 2

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

where C does not depend on s. Thus, we may conclude that the conditional distribu-
tion of S, the signal sent, given that r is received, is normal with mean and variance
now given by

E[S|R = r] = μ + rσ 2

1 + σ 2

Var(S|R = r) = σ 2

1 + σ 2
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Consequently, from Proposition 6.1, given that the value received is r, the best esti-
mate, in the sense of minimizing the mean square error, for the signal sent is

E[S|R = r] = 1
1 + σ 2μ + σ 2

1 + σ 2 r

Writing the conditional mean as we did previously is informative, for it shows that it
equals a weighted average of μ, the a priori expected value of the signal, and r, the
value received. The relative weights given to μ and r are in the same proportion to
each other as 1 (the conditional variance of the received signal when s is sent) is to
σ 2 (the variance of the signal to be sent). .

Example
6c

In digital signal processing, raw continuous analog data X must be quantized, or
discretized, in order to obtain a digital representation. In order to quantize the raw
data X, an increasing set of numbers ai, i = 0,;1,;2, . . ., such that lim

i→+q
ai = q and

lim
i→−q

ai = −q is fixed, and the raw data are then quantized according to the interval

(ai, ai+1] in whichX lies. Let us denote by yi the discretized value whenX ∈ (ai, ai+1],
and let Y denote the observed discretized value—that is,

Y = yi if ai < X … ai+1

The distribution of Y is given by

P{Y = yi} = FX(ai+1) − FX(ai)

Suppose now that we want to choose the values yi, i = 0,;1,;2, . . . so as to
minimize E[(X − Y)2], the expected mean square difference between the raw data
and their quantized version.

(a) Find the optimal values yi, i = 0,;1, . . . .
For the optimal quantizer Y, show that

(b) E[Y] = E[X], so the mean square error quantizer preserves the input mean;
(c) Var(Y) = Var(X) − E[(X − Y)2].

Solution (a) For any quantizer Y, upon conditioning on the value of Y, we obtain

E[(X − Y)2] =
∑
i

E[(X − yi)2|ai < X … ai+1]P{ai < X … ai+1}

Now, if we let

I = i if ai < X … ai+1

then

E[(X − yi)2|ai < X … ai+1] = E[(X − yi)2|I = i]

and by Proposition 6.1, this quantity is minimized when

yi = E[X|I = i]

= E[X|ai < X … ai+1]

=
∫ ai+1

ai

xfX(x)dx
FX(ai+1) − FX(ai)
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Now, since the optimal quantizer is given by Y = E[X|I], it follows that
(b) E[Y] = E[X]
(c)

Var(X) = E[Var(X|I)] + Var(E[X|I])
= E[E[(X − Y)2|I]] + Var(Y)

= E[(X − Y)2] + Var(Y) .

It sometimes happens that the joint probability distribution of X and Y is not
completely known; or if it is known, it is such that the calculation of E[Y|X = x]
is mathematically intractable. If, however, the means and variances of X and Y and
the correlation ofX and Y are known, then we can at least determine the best linear
predictor of Y with respect to X.

To obtain the best linear predictor of Y with respect to X, we need to choose a
and b so as to minimize E[(Y − (a + bX))2]. Now,

E[(Y − (a + bX))2] = E[Y2 − 2aY − 2bXY + a2 + 2abX + b2X2]

= E[Y2] − 2aE[Y] − 2bE[XY] + a2

+ 2abE[X] + b2E[X2]

Taking partial derivatives, we obtain

∂
∂a
E[(Y − a − bX)2] = −2E[Y] + 2a + 2bE[X]

∂
∂b
E[(Y − a − bX)2] = −2E[XY] + 2aE[X] + 2bE[X2]

(6.3)

Setting Equations (6.3) to 0 and solving for a and b yields the solutions

b = E[XY] − E[X]E[Y]
E[X2] − (E[X])2

= Cov(X,Y)

σ 2
x

= ρ
σy

σx

a = E[Y] − bE[X] = E[Y] − ρσyE[X]
σx

(6.4)

where ρ = Correlation(X,Y), σ 2
y = Var(Y), and σ 2

x = Var(X). It is easy to ver-
ify that the values of a and b from Equation (6.4) minimize E[(Y − a − bX)2];
thus, the best (in the sense of mean square error) linear predictor Y with respect
to X is

μy + ρσy

σx
(X − μx)

where μy = E[Y] and μx = E[X].
The mean square error of this predictor is given by

E

[(
Y − μy − ρ

σy

σx
(X − μx)

)2
]

= E
[
(Y − μy)

2
]

+ ρ2 σ 2
y

σ 2
x
E
[
(X − μx)

2
]

− 2ρ
σy

σx
E
[
(Y − μy)(X − μx)

]
= σ 2

y + ρ2σ 2
y − 2ρ2σ 2

y

= σ 2
y (1 − ρ2) (6.5)
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We note from Equation (6.5) that if ρ is near +1 or −1, then the mean square error
of the best linear predictor is near zero. .

Example
6d

An example in which the conditional expectation of Y given X is linear in X, and
hence in which the best linear predictor of Y with respect to X is the best overall
predictor, is when X and Y have a bivariate normal distribution. For, as shown in
Example 5d of Chapter 6, in that case,

E[Y|X = x] = μy + ρ
σy

σx
(x − μx) .

7.7 Moment Generating Functions
The moment generating function M(t) of the random variable X is defined for all
real values of t by

M(t) = E[etX ]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
x

etxp(x) if X is discrete with mass function p(x)

∫ q

−q
etxf (x)dx if X is continuous with density f (x)

We call M(t) the moment generating function because all of the moments of X can
be obtained by successively differentiating M(t) and then evaluating the result at
t = 0. For example,

M′(t) = d
dt
E[etX ]

= E
[
d
dt

(etX)

]
(7.1)

= E[XetX ]

where we have assumed that the interchange of the differentiation and expectation
operators is legitimate. That is, we have assumed that

d
dt

⎡
⎣∑

x

etxp(x)

⎤
⎦ =

∑
x

d
dt
[etxp(x)]

in the discrete case and

d
dt

[∫
etxf (x)dx

]
=
∫

d
dt
[etxf (x)]dx

in the continuous case. This assumption can almost always be justified and, indeed, is
valid for all of the distributions considered in this book. Hence, from Equation (7.1),
evaluated at t = 0, we obtain

M′(0) = E[X]
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Similarly,

M′′(t) = d
dt
M′(t)

= d
dt
E[XetX ]

= E
[
d
dt

(XetX)

]
= E[X2etX ]

Thus,
M′′(0) = E[X2]

In general, the nth derivative ofM(t) is given by

Mn(t) = E[XnetX ] n Ú 1

implying that
Mn(0) = E[Xn] n Ú 1

We now computeM(t) for some common distributions.

Example
7a

Binomial distribution with parameters n and p

If X is a binomial random variable with parameters n and p, then

M(t) = E[etX ]

=
n∑

k=0

etk
(
n
k

)
pk(1 − p)n−k

=
n∑

k=0

(
n
k

)
(pet)k(1 − p)n−k

= (pet + 1 − p)n

where the last equality follows from the binomial theorem. Differentiation yields

M′(t) = n(pet + 1 − p)n−1pet

Thus,
E[X] = M′(0) = np

Differentiating a second time yields

M′′(t) = n(n − 1)(pet + 1 − p)n−2(pet)2 + n(pet + 1 − p)n−1pet

so
E[X2] = M′′(0) = n(n − 1)p2 + np

The variance of X is given by

Var(X) = E[X2] − (E[X])2

= n(n − 1)p2 + np − n2p2

= np(1 − p)

verifying the result obtained previously. .
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Example
7b

Poisson distribution with mean λ

If X is a Poisson random variable with parameter λ, then

M(t) = E[etX ]

=
q∑
n=0

etne−λλn

n!

= e−λ
q∑
n=0

(λet)n

n!

= e−λeλe
t

= exp{λ(et − 1)}

Differentiation yields

M′(t) = λet exp{λ(et − 1)}
M′′(t) = (λet)2 exp{λ(et − 1)} + λet exp{λ(et − 1)}

Thus,

E[X] = M′(0) = λ

E[X2] = M′′(0) = λ2 + λ

Var(X) = E[X2] − (E[X])2

= λ

Hence, both the mean and the variance of the Poisson random variable equal λ. .

Example
7c

Exponential distribution with parameter λ

M(t) = E[etX ]

=
∫ q

0
etxλe−λx dx

= λ

∫ q

0
e−(λ−t)x dx

= λ

λ − t
for t < λ

We note from this derivation that for the exponential distribution, M(t) is defined
only for values of t less than λ. Differentiation ofM(t) yields

M′(t) = λ

(λ − t)2
, M′′(t) = 2λ

(λ − t)3

Hence,

E[X] = M′(0) = 1
λ
, E[X2] = M′′(0) = 2

λ2
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The variance of X is given by

Var(X) = E[X2] − (E[X])2

= 1
λ2

.

Example
7d

Normal distribution

We first compute the moment generating function of a standard normal random vari-
able with parameters 0 and 1. Letting Z be such a random variable, we have

MZ(t) = E[etZ]

= 1√
2π

∫ q

−q
etxe−x

2/2 dx

= 1√
2π

∫ q

−q
exp

{
− (x2 − 2tx)

2

}
dx

= 1√
2π

∫ q

−q
exp

{
− (x − t)2

2
+ t2

2

}
dx

= et
2/2 1√

2π

∫ q

−q
e−(x−t)2/2 dx

= et
2/2

Hence, the moment generating function of the standard normal random variable Z
is given byMZ(t) = et

2/2. To obtain the moment generating function of an arbitrary
normal random variable, we recall (see Section 5.4) that X = μ + σZ will have
a normal distribution with parameters μ and σ 2 whenever Z is a standard normal
random variable. Hence, the moment generating function of such a random variable
is given by

MX(t) = E[etX ]

= E[et(μ+σZ)]

= E[etμetσZ]

= etμE[etσZ]

= etμMZ(tσ)

= etμe(tσ)2/2

= exp

{
σ 2t2

2
+ μt

}

By differentiating, we obtain

M′
X(t) = (μ + tσ 2) exp

{
σ 2t2

2
+ μt

}

M′′
X(t) = (μ + tσ 2)2 exp

{
σ 2t2

2
+ μt

}
+ σ 2 exp

{
σ 2t2

2
+ μt

}
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Table 7.1 Discrete Probability Distribution.

Moment
Probability mass generating
function, p(x) function,M(t) Mean Variance

Binomial with
parameters n, p;
0 … p … 1

(
n
x

)
px(1 − p)n−x (pet + 1 − p)n np np(1 − p)

x = 0, 1, . . . ,n

Poisson with
parameter λ > 0

e−λ λx

x!
exp{λ(et − 1)} λ λ

x = 0, 1, 2, . . .

Geometric with
parameter
0 … p … 1

p(1 − p)x−1 pet

1 − (1 − p)et
1
p

1 − p
p2

x = 1, 2, . . .

Negative
binomial with
parameters r, p;
0 … p … 1

(
n − 1
r − 1

)
pr(1 − p)n−r

[
pet

1 − (1 − p)et

]r
r
p

r(1 − p)
p2

n = r, r + 1, . . .

Thus,

E[X] = M′(0) = μ

E[X2] = M′′(0) = μ2 + σ 2

implying that

Var(X) = E[X2] − E([X])2

= σ 2 .

Tables 7.1 and 7.2 (on page 364) give the moment generating functions for some
common discrete and continuous distributions.

An important property of moment generating functions is that the moment gen-
erating function of the sum of independent random variables equals the product of
the individual moment generating functions. To prove this, suppose thatX andY are
independent and have moment generating functionsMX(t) andMY(t), respectively.
ThenMX+Y(t), the moment generating function of X + Y, is given by

MX+Y(t) = E[et(X+Y)]

= E[etXetY ]

= E[etX ]E[etY ]

= MX(t)MY(t)

where the next-to-last equality follows from Proposition 4.1, since X and Y are
independent.

Another important result is that themoment generating function uniquely deter-
mines the distribution. That is, ifMX(t) exists and is finite in some region about t = 0,
then the distribution of X is uniquely determined. For instance, if
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MX(t) =
(
1
2

)10

(et + 1)10,

then it follows from Table 7.1 that X is a binomial random variable with parameters
10 and 1

2 .

Example
7e

Suppose that the moment generating function of a random variable X is given by
M(t) = e3(e

t−1). What is P{X = 0}?

Solution We see from Table 7.1 thatM(t) = e3(e
t−1) is the moment generating func-

tion of a Poisson random variable with mean 3. Hence, by the one-to-one correspon-
dence between moment generating functions and distribution functions, it follows
that X must be a Poisson random variable with mean 3. Thus, P{X = 0} = e−3. .

Example
7f

Sums of independent binomial random variables

If X and Y are independent binomial random variables with parameters (n, p) and
(m, p), respectively, what is the distribution of X + Y?

Solution The moment generating function of X + Y is given by

MX+Y(t) = MX(t)MY(t) = (pet + 1 − p)n(pet + 1 − p)m

= (pet + 1 − p)m+n

However, (pet + 1 − p)m+n is the moment generating function of a binomial ran-
dom variable having parameters m + n and p. Thus, this must be the distribution
of X + Y. .

Example
7g

Sums of independent Poisson random variables

Calculate the distribution ofX + Y whenX andY are independent Poisson random
variables with means respectively λ1 and λ2.

Solution

MX+Y(t) = MX(t)MY(t)

= exp{λ1(et − 1)} exp{λ2(et − 1)}
= exp{(λ1 + λ2)(e

t − 1)}

Hence, X + Y is Poisson distributed with mean λ1 + λ2, verifying the result given
in Example 3e of Chapter 6. .

Example
7h

Sums of independent normal random variables

Show that if X and Y are independent normal random variables with respective
parameters (μ1, σ 2

1 ) and (μ2, σ 2
2 ), then X + Y is normal with mean μ1 + μ2 and

variance σ 2
1 + σ 2

2 .
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Solution

MX+Y(t) = MX(t)MY(t)

= exp

{
σ 2
1 t

2

2
+ μ1t

}
exp

{
σ 2
2 t

2

2
+ μ2t

}

= exp

{
(σ 2

1 + σ 2
2 )t2

2
+ (μ1 + μ2)t

}

which is the moment generating function of a normal random variable with mean
μ1 + μ2 and variance σ 2

1 + σ 2
2 . The desired result then follows because the moment

generating function uniquely determines the distribution. .

Example
7i

Compute the moment generating function of a chi-squared random variable with n
degrees of freedom.

Solution We can represent such a random variable as

Z2
1 + · · · + Z2

n

where Z1, . . . ,Zn are independent standard normal random variables. Let M(t) be
its moment generating function. Then, by the preceding,

M(t) = (E[etZ
2
])n

where Z is a standard normal random variable. Now,

E[etZ
2
] = 1√

2π

∫ q

−q
etx

2
e−x

2/2 dx

= 1√
2π

∫ q

−q
e−x

2/2σ 2
dx where σ 2 = (1 − 2t)−1

= σ

= (1 − 2t)−1/2

where the next-to-last equality uses the fact that the normal density with mean 0 and
variance σ 2 integrates to 1. Therefore,

M(t) = (1 − 2t)−n/2 .

Example
7j

Moment generating function of the sum of a random number of random variables

Let X1,X2, . . . be a sequence of independent and identically distributed random
variables, and let N be a nonnegative, integer-valued random variable that is inde-
pendent of the sequence X, i Ú 1. We want to compute the moment generating
function of

Y =
N∑
i=1

Xi

(In Example 5d, Y was interpreted as the amount of money spent in a store on a
given day when both the amount spent by a customer and the number of customers
are random variables.)
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To compute the moment generating function of Y, we first condition on N as
follows:

E

⎡
⎢⎢⎣exp

⎧⎨
⎩t

N∑
1

Xi

⎫⎬
⎭
∣∣∣∣∣∣∣N = n

⎤
⎥⎥⎦ = E

⎡
⎢⎢⎣exp

⎧⎨
⎩t

n∑
1

Xi

⎫⎬
⎭
∣∣∣∣∣∣∣N = n

⎤
⎥⎥⎦

= E

⎡
⎢⎣exp

⎧⎨
⎩t

n∑
1

Xi

⎫⎬
⎭
⎤
⎥⎦

= [MX(t)]n

where
MX(t) = E[etXi]

Hence,
E[etY |N] = (MX(t))N

Thus,
MY(t) = E[(MX(t))N]

The moments of Y can now be obtained upon differentiation, as follows:

M′
Y(t) = E[N(MX(t))N−1M′

X(t)]

So

E[Y] = M′
Y(0)

= E[N(MX(0))N−1M′
X(0)]

= E[NE[X]] (7.2)

= E[N]E[X]

verifying the result of Example 5d. (In this last set of equalities, we have used the
fact thatMX(0) = E[e0X ] = 1.)

Also,

M′′
Y(t) = E[N(N − 1)(MX(t))N−2(M′

X(t))2 + N(MX(t))N−1M′′
X(t)]

so

E[Y2] = M′′
Y(0)

= E[N(N − 1)(E[X])2 + NE[X2]]

= (E[X])2(E[N2] − E[N]) + E[N]E[X2] (7.3)

= E[N](E[X2] − (E[X])2) + (E[X])2E[N2]

= E[N]Var(X) + (E[X])2E[N2]

Hence, from Equations (7.2) and (7.3), we have

Var(Y) = E[N]Var(X) + (E[X])2(E[N2] − (E[N])2)

= E[N]Var(X) + (E[X])2Var(N) .
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Example
7k

Let Y denote a uniform random variable on (0, 1), and suppose that conditional on
Y = p, the random variable X has a binomial distribution with parameters n and p.
In Example 5k, we showed that X is equally likely to take on any of the values
0, 1, . . . ,n. Establish this result by using moment generating functions.

Solution To compute the moment generating function of X, start by conditioning
on the value of Y. Using the formula for the binomial moment generating function
gives

E[etX |Y = p] = (pet + 1 − p)n

Now, Y is uniform on (0, 1), so, upon taking expectations, we obtain

E[etX ] =
∫ 1

0
(pet + 1 − p)n dp

= 1
et − 1

∫ et

1
yndy (by the substitution y = pet + 1 − p)

= 1
n + 1

et(n+1) − 1
et − 1

= 1
n + 1

(1 + et + e2t + · · · + ent)

Because the preceding is the moment generating function of a random variable that
is equally likely to be any of the values 0, 1, . . . ,n, the desired result follows from the
fact that the moment generating function of a random variable uniquely determines
its distribution. .

7.7.1 Joint Moment Generating Functions
It is also possible to define the joint moment generating function of two or more
random variables. This is done as follows: For any n random variables X1, . . . ,Xn,
the joint moment generating function, M(t1, . . . , tn), is defined, for all real values of
t1, . . . , tn, by

M(t1, . . . , tn) = E[et1X1+ · · ·+tnXn]

The individual moment generating functions can be obtained from M(t1, . . . , tn) by
letting all but one of the tj’s be 0. That is,

MXi(t) = E[etXi ] = M(0, . . . , 0, t, 0, . . . , 0)

where the t is in the ith place.
It can be proven (although the proof is too advanced for this text) that the joint

moment generating functionM(t1, . . . , tn) uniquely determines the joint distribution
of X1, . . . ,Xn. This result can then be used to prove that the n random variables
X1, . . . ,Xn are independent if and only if

M(t1, . . . , tn) = MX1(t1) · · ·MXn(tn) (7.4)
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For the proof in one direction, if the n random variables are independent, then

M(t1, . . . , tn) = E[e(t1X1+ · · ·+tnXn)]

= E[et1X1 · · · etnXn ]

= E[et1X1 ] · · ·E[etnXn] by independence

= MX1(t1) · · ·MXn(tn)

For the proof in the other direction, if Equation (7.4) is satisfied, then the joint
moment generating functionM(t1, . . . , tn) is the same as the joint moment generating
function of n independent random variables, the ith of which has the same distribu-
tion as Xi. As the joint moment generating function uniquely determines the joint
distribution, this must be the joint distribution; hence, the random variables are
independent.

Example
7l

Let X and Y be independent normal random variables, each with mean μ and vari-
ance σ 2. In Example 7a of Chapter 6, we showed that X + Y and X − Y are
independent. Let us now establish that X + Y and X − Y are independent by
computing their joint moment generating function:

E[et(X+Y)+s(X−Y)] = E[e(t+s)X+(t−s)Y]
= E[e(t+s)X ]E[e(t−s)Y ]

= eμ(t+s)+σ 2(t+s)2/2eμ(t−s)+σ 2(t−s)2/2

= e2μt+σ 2t2eσ
2s2

But we recognize the preceding as the joint moment generating function of the sum
of a normal random variable with mean 2μ and variance 2σ 2 and an independent
normal random variable with mean 0 and variance 2σ 2. Because the joint moment
generating function uniquely determines the joint distribution, it follows thatX + Y
and X − Y are independent normal random variables. .

In the next example, we use the joint moment generating function to verify a
result that was established in Example 2b of Chapter 6.

Example
7m

Suppose that the number of events that occur is a Poisson random variable with
mean λ and that each event is independently counted with probability p. Show that
the number of counted events and the number of uncounted events are independent
Poisson random variables with respective means λp and λ(1 − p).

Solution Let X denote the total number of events, and let Xc denote the number of
them that are counted. To compute the joint moment generating function of Xc, the
number of events that are counted, and X − Xc, the number that are uncounted,
start by conditioning on X to obtain

E[esXc+t(X−Xc)|X = n] = etnE[e(s−t)Xc |X = n]

= etn(pes−t + 1 − p)n

= (pes + (1 − p)et)n
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which follows because, conditional on X = n,Xc is a binomial random variable with
parameters n and p. Hence,

E[esXc+t(X−Xc)|X] = (pes + (1 − p)et)X

Taking expectations of both sides of this equation yields

E[esXc+t(X−Xc)] = E[(pes + (1 − p)et)X ]

Now, since X is Poisson with mean λ, it follows that E[etX ] = eλ(et−1). Therefore, for
any positive value a we see (by letting a = et) that E[aX ] = eλ(a−1). Thus,

E[esXc+t(X−Xc)] = eλ(pes+(1−p)et−1)

= eλp(e
s−1 )eλ(1−p)(et−1)

As the preceding is the joint moment generating function of independent Poisson
random variables with respective means λp and λ(1 − p), the result is proven. .

7.8 Additional Properties of Normal Random Variables
7.8.1 The Multivariate Normal Distribution
Let Z1, . . . ,Zn be a set of n independent standard normal random variables. If, for
some constants aij, 1 … i … m, 1 … j … n, and μi, 1 … i … m,

X1 = a11Z1 + · · · + a1nZn + μ1

X2 = a21Z1 + · · · + a2nZn + μ2

.

.

.

Xi = ai1Z1 + · · · + ainZn + μi

.

.

.

Xm = am1Z1 + · · · + amnZn + μm

then the random variables X1, . . . ,Xm are said to have a multivariate normal distri-
bution.

From the fact that the sum of independent normal random variables is itself a
normal random variable, it follows that each Xi is a normal random variable with
mean and variance given, respectively, by

E[Xi] = μi

Var(Xi) =
n∑
j=1

a2ij

Let us now consider

M(t1, . . . , tm) = E[exp{t1X1 + · · · + tmXm}]



384 Chapter 7 Properties of Expectation

the joint moment generating function of X1, . . . ,Xm. The first thing to note is that

since
m∑
i=1

tiXi is itself a linear combination of the independent normal random vari-

ables Z1, . . . ,Zn, it is also normally distributed. Its mean and variance are

E

⎡
⎣ m∑
i=1

tiXi

⎤
⎦ =

m∑
i=1

tiμi

and

Var

⎛
⎝ m∑
i=1

tiXi

⎞
⎠ = Cov

⎛
⎜⎝ m∑
i=1

tiXi,
m∑
j=1

tjXj

⎞
⎟⎠

=
m∑
i=1

m∑
j=1

titjCov(Xi,Xj)

Now, if Y is a normal random variable with mean μ and variance σ 2, then

E[eY ] = MY(t)|t=1 = eμ+σ 2/2

Thus,

M(t1, . . . , tm) = exp

⎧⎪⎨
⎪⎩

m∑
i=1

tiμi + 1
2

m∑
i=1

m∑
j=1

titjCov(Xi,Xj)

⎫⎪⎬
⎪⎭

which shows that the joint distribution of X1, . . . ,Xm is completely determined from
a knowledge of the values of E[Xi] and Cov(Xi,Xj), i, j = 1, . . . ,m.

It can be shown that when m = 2, the multivariate normal distribution reduces
to the bivariate normal.

Example
8a

Find P(X < Y) for bivariate normal random variables X and Y having parameters

μx = E[X], μy = E[Y], σ 2
x = Var(X), σ 2

y = Var(Y), ρ = Corr(X,Y)

Solution Because X − Y is normal with mean

E[X − Y] = μx − μy

and variance

Var(X − Y) = Var(X) + Var(−Y) + 2Cov(X,−Y)

= σ 2
x + σ 2

y − 2ρσxσy

we obtain

P{X < Y} = P{X − Y < 0}

= P

⎧⎪⎨
⎪⎩
X − Y − (μx − μy)√

σ 2
x + σ 2

y − 2ρσxσy

<
−(μx − μy)√

σ 2
x + σ 2

y − 2ρσxσy

⎫⎪⎬
⎪⎭

= 	

⎛
⎝ μy − μx√

σ 2
x + σ 2

y − 2ρσxσy

⎞
⎠ .
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Example
8b

Suppose that the conditional distribution of X, given that 
 = θ , is normal with
mean θ and variance 1. Moreover, suppose that 
 itself is a normal random vari-
able with mean μ and variance σ 2. Find the conditional distribution of 
 given that
X = x.

Solution Rather than using and then simplifying Bayes’s formula, we will solve this
problem by first showing thatX,
 has a bivariate normal distribution. To do so, note
that the joint density function of X,
 can be written as

fX,
(x, θ) = fX|
(x|θ)f
(θ)

where fX|
(x|θ) is a normal density with mean θ and variance 1. However, if we letZ
be a standard normal random variable that is independent of 
, then the conditional
distribution of Z + 
, given that 
 = θ , is also normal with mean θ and variance 1.
Consequently, the joint density of Z + 
,
 is the same as that ofX,
. Because the
former joint density is clearly bivariate normal (since Z + 
 and 
 are both linear
combinations of the independent normal random variables Z and 
), it follows that
X,
 has a bivariate normal distribution. Now,

E[X] = E[Z + 
] = μ

Var(X) = Var(Z + 
) = 1 + σ 2

and

ρ = Corr(X,
)

= Corr(Z + 
,
)

= Cov(Z + 
,
)√
Var(Z + 
)Var(
)

= σ√
1 + σ 2

Because X,
 has a bivariate normal distribution, the conditional distribution of 
,
given that X = x, is normal with mean

E[
|X = x] = E[
] + ρ

√
Var(
)

Var(X)
(x − E[X])

= μ + σ 2

1 + σ 2 (x − μ)

and variance

Var(
|X = x) = Var(
)(1 − ρ2)

= σ 2

1 + σ 2 .

7.8.2 The Joint Distribution of the Sample Mean and Sample
Variance

LetX1, . . . ,Xn be independent normal random variables, each with meanμ and vari-

ance σ 2. Let X =
n∑
i=1

Xi/n denote their sample mean. Since the sum of independent
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normal random variables is also a normal random variable, it follows thatX is a nor-
mal random variable with (from Examples 2c and 4a) expected value μ and variance
σ 2/n.

Now, recall from Example 4e that

Cov(X,Xi − X) = 0, i = 1, . . . ,n (8.1)

Also, note that since X,X1 − X,X2 − X, . . . ,Xn − X are all linear combina-
tions of the independent standard normals (Xi − μ)/σ , i = 1, . . . ,n, it follows that
X,Xi − X, i = 1, . . . ,n has a joint distribution that is multivariate normal. If we let
Y be a normal random variable, with mean μ and variance σ 2/n, that is independent
of the Xi, i = 1, . . . ,n, then Y,Xi − X, i = 1, . . . ,n also has a multivariate normal
distribution and, indeed, because of Equation (8.1), has the same expected values
and covariances as the random variables X,Xi − X, i = 1, . . . ,n. But since a mul-
tivariate normal distribution is determined completely by its expected values and
covariances, it follows that Y,Xi − X, i = 1, . . . ,n and X,Xi − X, i = 1, . . . ,n have
the same joint distribution, thus showing that X is independent of the sequence of
deviations Xi − X, i = 1, . . . ,n.

Since X is independent of the sequence of deviations Xi − X, i = 1, . . . ,n, it is

also independent of the sample variance S2 K
n∑
i=1

(Xi − X)2/(n − 1).

Since we already know that X is normal with mean μ and variance σ 2/n, it
remains only to determine the distribution of S2. To accomplish this, recall, from
Example 4a, the algebraic identity

(n − 1)S2 =
n∑
i=1

(Xi − X)2

=
n∑
i=1

(Xi − μ)2 − n(X − μ)2

Upon dividing the preceding equation by σ 2, we obtain

(n − 1)S2

σ 2 +
(
X − μ

σ/
√
n

)2

=
n∑
i=1

(
Xi − μ

σ

)2

(8.2)

Now,
n∑
i=1

(
Xi − μ

σ

)2

is the sum of the squares of n independent standard normal random variables and
so is a chi-squared random variable with n degrees of freedom. Hence, from Exam-
ple 7i, its moment generating function is (1 − 2t)−n/2. Also, because

(
X − μ

σ/
√
n

)2

is the square of a standard normal variable, it is a chi-squared random variable with
1 degree of freedom, and so has moment generating function (1 − 2t)−1/2. Now, we
have seen previously that the two random variables on the left side of Equation (8.2)
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are independent. Hence, as the moment generating function of the sum of indepen-
dent random variables is equal to the product of their individual moment generating
functions, we have

E[et(n−1)S2/σ 2
](1 − 2t)−1/2 = (1 − 2t)−n/2

or
E[et(n−1)S2/σ 2

] = (1 − 2t)−(n−1)/2

But as (1 − 2t)−(n−1)/2 is the moment generating function of a chi-squared random
variable with n − 1 degrees of freedom, we can conclude, since the moment gener-
ating function uniquely determines the distribution of the random variable, that that
is the distribution of (n − 1)S2/σ 2.

Summing up, we have shown the following.

Proposition
8.1

If X1, . . . ,Xn are independent and identically distributed normal random variables
with mean μ and variance σ 2, then the sample mean X and the sample variance S2

are independent. X is a normal random variable with mean μ and variance σ 2/n;
(n − 1)S2/σ 2 is a chi-squared random variable with n − 1 degrees of freedom.

7.9 General Definition of Expectation
Up to this point, we have defined expectations only for discrete and continuous ran-
dom variables. However, there also exist random variables that are neither discrete
nor continuous, and they, too, may possess an expectation. As an example of such a
random variable, letX be a Bernoulli random variable with parameter p = 1

2 , and let
Y be a uniformly distributed random variable over the interval [0, 1]. Furthermore,
suppose that X and Y are independent, and define the new random variableW by

W =
{
X if X = 1
Y if X Z 1

Clearly,W is neither a discrete (since its set of possible values, [0, 1], is uncountable)
nor a continuous (since P{W = 1} = 1

2 ) random variable.
In order to define the expectation of an arbitrary random variable, we require

the notion of a Stieltjes integral. Before defining this integral, let us recall that for
any function g,

∫ b
a g(x)dx is defined by

∫ b

a
g(x)dx = lim

n∑
i=1

g(xi)(xi − xi−1)

where the limit is taken over all a = x0 < x1 < x2 · · · < xn = b as n→q and where
max
i=1,...,n

(xi − xi−1)→0.

For any distribution function F, we define the Stieltjes integral of the nonnega-
tive function g over the interval [a, b] by∫ b

a
g(x) dF(x) = lim

n∑
i=1

g(xi)[F(xi) − F(xi−1)]

where, as before, the limit is taken over all a = x0 < x1 < · · · < xn = b as n→q and
where max

i=1,...,n
(xi − xi−1)→0. Further, we define the Stieltjes integral over the whole

real line by
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∫ q

−q
g(x) dF(x) = lim

a→ − q
b→ + q

∫ b

a
g(x) dF(x)

Finally, if g is not a nonnegative function, we define g+ and g− by

g+(x) =
{
g(x) if g(x) Ú 0

0 if g(x) < 0

g−(x) =
{

0 if g(x) Ú 0
−g(x) if g(x) < 0

Because g(x) = g+(x) − g−(x) and g+ and g− are both nonnegative functions, it is
natural to define∫ q

−q
g(x) dF(x) =

∫ q

−q
g+(x) dF(x) −

∫ q

−q
g−(x) dF(x)

and we say that
∫q
−q g(x) dF(x) exists as long as

∫q
−q g+(x) dF(x) and

∫q
−q g−(x) dF(x)

are not both equal to +q.
If X is an arbitrary random variable having cumulative distribution F, we define

the expected value of X by

E[X] =
∫ q

−q
x dF(x) (9.1)

It can be shown that if X is a discrete random variable with mass function p(x), then∫ q

−q
xdF(x) =

∑
x:p(x)>0

xp(x)

whereas if X is a continuous random variable with density function f (x), then∫ q

−q
xdF(x) =

∫ q

−q
xf (x)dx

The reader should note that Equation (9.1) yields an intuitive definition ofE[X];
consider the approximating sum

n∑
i=1

xi[F(xi) − F(xi−1)]

of E[X]. Because F(xi) − F(xi−1) is just the probability thatX will be in the interval
(xi−1, xi], the approximating sum multiplies the approximate value of X when it is in
the interval (xi−1, xi] by the probability that it will be in that interval and then sums
over all the intervals. Clearly, as these intervals get smaller and smaller in length, we
obtain the “expected value” of X.

Stieltjes integrals are mainly of theoretical interest because they yield a compact
way of defining and dealing with the properties of expectation. For instance, the
use of Stieltjes integrals avoids the necessity of having to give separate statements
and proofs of theorems for the continuous and the discrete cases. However, their
properties are very much the same as those of ordinary integrals, and all of the proofs
presented in this chapter can easily be translated into proofs in the general case.
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Summary

If X and Y have a joint probability mass function p(x, y),
then

E[g(X,Y)] =
∑
y

∑
x

g(x, y)p(x, y)

whereas if they have a joint density function f (x, y), then

E[g(X,Y)] =
∫ q

−q

∫ q

−q
g(x, y)f (x, y)dx dy

A consequence of the preceding equations is that

E[X + Y] = E[X] + E[Y]

which generalizes to

E

⎡
⎣ n∑
i=1

Xi

⎤
⎦ =

n∑
i=1

E[Xi]

The covariance between random variables X and Y is
given by

Cov(X,Y) = E[(X − E[X])(Y − E[Y])]

= E[XY] − E[X]E[Y]

A useful identity is

Cov

⎛
⎜⎝ n∑
i=1

Xi,
m∑
j=1

Yj

⎞
⎟⎠ =

n∑
i=1

m∑
j=1

Cov(Xi,Yj)

When n = m and Yi = Xi, i = 1, . . . ,n, the preceding
formula gives

Var

⎛
⎝ n∑
i=1

Xi

⎞
⎠ =

n∑
i=1

Var(Xi) + 2
∑∑

i<j

Cov(Xi,Yj)

The correlation between X and Y, denoted by ρ(X,Y), is
defined by

ρ(X,Y) = Cov(X,Y)√
Var(X)Var(Y)

If X and Y are jointly discrete random variables, then the
conditional expected value of X, given that Y = y, is
defined by

E[X|Y = y] =
∑
x

xP{X = x|Y = y]

If X and Y are jointly continuous random variables, then

E[X|Y = y] =
∫ q

−q
xfX|Y(x|y)

where fX|Y(x|y) = f (x, y)
fY(y)

is the conditional probability density of X given that
Y = y. Conditional expectations, which are similar to
ordinary expectations except that all probabilities are now
computed conditional on the event that Y = y, satisfy all
the properties of ordinary expectations.

Let E[X|Y] denote that function of Y whose value at
Y = y is E[X|Y = y]. A very useful identity is

E[X] = E[E[X|Y]]

In the case of discrete random variables, this equation
reduces to the identity

E[X] =
∑
y

E[X|Y = y]P{Y = y}

and, in the continuous case, to

E[X] =
∫ q

−q
E[X|Y = y]fY(y)dy

The preceding equations can often be applied to obtain
E[X] by first “conditioning” on the value of some other
random variable Y. In addition, since, for any event A,
P(A) = E[IA], where IA is 1 if A occurs and is 0 otherwise,
we can use the same equations to compute probabilities.

The conditional variance of X, given that Y = y, is
defined by

Var(X|Y = y) = E[(X − E[X|Y = y])2|Y = y]

Let Var(X|Y) be that function of Y whose value at Y = y
is Var(X|Y = y). The following is known as the conditional
variance formula:

Var(X) = E[Var(X|Y)] + Var(E[X|Y])

Suppose that the random variableX is to be observed and,
on the basis of its value, one must then predict the value of
the random variableY. In such a situation, it turns out that
among all predictors, E[Y|X] has the smallest expectation
of the square of the difference between it and Y.

The moment generating function of the random vari-
able X is defined by

M(t) = E[etX ]

The moments of X can be obtained by successively differ-
entiating M(t) and then evaluating the resulting quantity
at t = 0. Specifically, we have

E[Xn] = dn

dtn
M(t)

∣∣∣∣∣
t=0

n = 1, 2, . . .

Two useful results concerning moment generating func-
tions are, first, that the moment generating function
uniquely determines the distribution function of the
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random variable and, second, that the moment generat-
ing function of the sum of independent random variables
is equal to the product of their moment generating func-
tions. These results lead to simple proofs that the sum of
independent normal (Poisson, gamma) random variables
remains a normal (Poisson, gamma) random variable.

If X1, . . . ,Xm are all linear combinations of a finite
set of independent standard normal random variables,
then they are said to have a multivariate normal distribu-
tion. Their joint distribution is specified by the values of
E[Xi], Cov(Xi,Xj), i, j = 1, . . . ,m.

If X1, . . . ,Xn are independent and identically dis-
tributed normal random variables, then their sample mean

X =
n∑
i=1

Xi

n

and their sample variance

S2 =
n∑
i=1

(Xi − X)2

n − 1

are independent. The sample mean X is a normal random
variable with mean μ and variance σ 2/n; the random vari-
able (n − 1)S2/σ 2 is a chi-squared random variable with
n − 1 degrees of freedom.

Problems

7.1. A player throws a fair die and simultaneously flips a
fair coin. If the coin lands heads, then she wins twice, and
if tails, then she wins one-half of the value that appears on
the die. Determine her expected winnings.

7.2. The game of Clue involves 6 suspects, 6 weapons, and
9 rooms. One of each is randomly chosen and the object of
the game is to guess the chosen three.
(a)How many solutions are possible?
In one version of the game, the selection is made and then
each of the players is randomly given three of the remain-
ing cards. Let S, W, and R be, respectively, the numbers
of suspects, weapons, and rooms in the set of three cards
given to a specified player. Also, let X denote the number
of solutions that are possible after that player observes his
or her three cards.

(b) Express X in terms of S,W, and R.
(c) Find E[X].

7.3.Daily price movements of an asset are independent,
and it is twice as likely for the price to go up than down.
Let D represent the difference between the up and down
movements of an asset that is sold on its first downward
movement. Find

(a) P{D < 0}
(b) P{D Ú 1}
(c) E[D]

7.4. If X and Y have joint density function

fX,Y(x, y) =
{

1
3 (x + y), if 0 < x < 1, 0 < y < 2
0, otherwise

find
(a) E[XY]
(b) E[X]
(c) E[Y2]

7.5.A city in the shape of a rectangle stretches 5 kilo-
meters from west to east and 3 kilometers from north to
south. A rescue helicopter waits in a helipad just outside
the city near the south-western corner, with coordinates
(0,0). A rescue call, which follows a uniform distribution,
can arrive at any point (x, y) in the city. Find the expected
distance covered by the helicopter in travelling to this
point.

7.6.A fair die is rolled 10 times. Calculate the expected
sum of the 10 rolls.

7.7. Eight medical tests are run independently by 2 sepa-
rate labs, with probability of a correct result equal to .95.
Find the expected number of times that

(a) both labs provide a correct result;
(b) both labs provide a wrong result;
(c) only 1 lab provides a correct result.

7.8. N people arrive separately to a professional dinner.
Upon arrival, each person looks to see if he or she has
any friends among those present. That person then sits
either at the table of a friend or at an unoccupied table
if none of those present is a friend. Assuming that each

of the
(
N
2

)
pairs of people is, independently, a pair of

friends with probability p, find the expected number of
occupied tables.
Hint: Let Xi equal 1 or 0, depending on whether the ith
arrival sits at a previously unoccupied table.

7.9.A total of n balls, numbered 1 through n, are put into
n urns, also numbered 1 through n in such a way that ball i
is equally likely to go into any of the urns 1, 2, . . . , i. Find

(a) the expected number of urns that are empty;
(b) the probability that none of the urns is empty.
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7.10. Consider 3 trials, each having the same probability
of success. Let X denote the total number of successes in
these trials. If E[X] = 1.8, what is
(a) the largest possible value of P{X = 3}?
(b) the smallest possible value of P{X = 3}?
In both cases, construct a probability scenario that results
in P{X = 3} having the stated value.
Hint: For part (b), you might start by letting U be a uni-
form random variable on (0, 1) and then defining the trials
in terms of the value of U.

7.11. Consider n independent flips of a coin having proba-
bility p of landing on heads. Say that a changeover occurs
whenever an outcome differs from the one preceding it.
For instance, if n = 5 and the outcome is HHTHT, then
there are 3 changeovers. Find the expected number of
changeovers.
Hint: Express the number of changeovers as the sum of
n − 1 Bernoulli random variables.

7.12.A group of n men and n women is lined up at
random.
(a) Find the expected number of men who have a woman
next to them.
(b) Repeat part (a), but now assuming that the group is
randomly seated at a round table.

7.13.On a leap year, each of 366 people with different
birthdays pick one of 366 travel tickets for different days of
the year. If those who pick tickets corresponding to their
birthdays can avail free travel, find the expected number
of people who cannot.

7.14.An urn has m black balls. At each stage, a black ball
is removed and a new ball that is black with probability p
and white with probability 1 − p is put in its place. Find
the expected number of stages needed until there are no
more black balls in the urn.
NOTE: The preceding has possible applications to under-
standing the AIDS disease. Part of the body’s immune
system consists of a certain class of cells known as T-cells.
There are 2 types of T-cells, called CD4 and CD8. Now,
while the total number of T-cells in AIDS sufferers is (at
least in the early stages of the disease) the same as that
in healthy individuals, it has recently been discovered that
the mix of CD4 and CD8 T-cells is different. Roughly 60
percent of the T-cells of a healthy person are of the CD4
type, whereas the percentage of the T-cells that are of
CD4 type appears to decrease continually in AIDS suf-
ferers. A recent model proposes that the HIV virus (the
virus that causes AIDS) attacks CD4 cells and that the
body’s mechanism for replacing killed T-cells does not dif-
ferentiate between whether the killed T-cell was CD4 or
CD8. Instead, it just produces a new T-cell that is CD4
with probability .6 and CD8 with probability .4. However,
although this would seem to be a very efficient way of

replacing killed T-cells when each one killed is equally
likely to be any of the body’s T-cells (and thus has prob-
ability .6 of being CD4), it has dangerous consequences
when facing a virus that targets only the CD4 T-cells.

7.15. In Example 2h, say that i and j, i Z j, form a matched
pair if i chooses the hat belonging to j and j chooses the
hat belonging to i. Find the expected number of matched
pairs.

7.16. Let Z be an exponentially distributed random vari-
able with rate λ. For some fixed x > 0, set

X =
{
eZ Z Ú x
−eZ Z < x

Find E[X] in terms of λ and x.

7.17.Adeck of n cards numbered 1 through n is thoroughly
shuffled so that all possible n! orderings can be assumed
to be equally likely. Suppose you are to make n guesses
sequentially, where the ith one is a guess of the card in
position i. Let N denote the number of correct guesses.

(a) If you are not given any information about your earlier
guesses, show that for any strategy, E[N] = 1.
(b) Suppose that after each guess you are shown the card
that was in the position in question. What do you think is
the best strategy? Show that under this strategy,

E[N] = 1
n

+ 1
n − 1

+ · · · + 1

L
∫ n

1

1
x
dx = logn

(c) Suppose that you are told after each guess whether you
are right or wrong. In this case, it can be shown that the
strategy that maximizes E[N] is one that keeps on guess-
ing the same card until you are told you are correct and
then changes to a new card. For this strategy, show that

E[N] = 1 + 1
2!

+ 1
3!

+ · · · + 1
n!

L e − 1

Hint: For all parts, express N as the sum of indicator (that
is, Bernoulli) random variables.

7.18.On a TV show, 10 couples are separated from each
other and placed in two groups. Those in the first group
pick a room when the second group is not looking. Each
member of the second group then selects a room at ran-
dom and independent of every other member in the group.
Each room can be selected more than once or not at
all. Compute the expected number of times a couple is
reunited when the room is selected.

7.19.A certain region is inhabited by r distinct types
of a certain species of insect. Each insect caught will,
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independently of the types of the previous catches, be of
type i with probability

Pi, i = 1, . . . , r
r∑
1

Pi = 1

(a) Compute the mean number of insects that are caught
before the first type 1 catch.
(b) Compute the mean number of types of insects that are
caught before the first type 1 catch.

7.20. In an urn containing n balls, the ith ball has weight
W(i), i = 1, . . . ,n. The balls are removed without replace-
ment, one at a time, according to the following rule: At
each selection, the probability that a given ball in the urn
is chosen is equal to its weight divided by the sum of the
weights remaining in the urn. For instance, if at some time
i1, . . . , ir is the set of balls remaining in the urn, then the

next selection will be ij with probabilityW(ij)
/ r∑

k=1
W(ik),

j = 1, . . . , r. Compute the expected number of balls that
are withdrawn before ball number 1 is removed.

7.21. Fifty people are placed randomly in 200 rooms.
Compute
(a) the expected number of rooms containing exactly 2
people;
(b) the expected number of non-vacant rooms.

7.22.How many times would you expect to roll a fair die
before all 6 sides appeared at least once?

7.23.Urn 1 contains 5 white and 6 black balls, while urn 2
contains 8 white and 10 black balls. Two balls are randomly
selected from urn 1 and are put into urn 2. If 3 balls are
then randomly selected from urn 2, compute the expected
number of white balls in the trio.
Hint: Let Xi = 1 if the ith white ball initially in urn 1 is
one of the three selected, and let Xi = 0 otherwise. Simi-
larly, let Yi = 1 if the ith white ball from urn 2 is one of the
three selected, and let Yi = 0 otherwise. The number of

white balls in the trio can now be written as
5∑
1
Xi +

8∑
1
Yi.

7.24.A bottle initially contains m large pills and n small
pills. Each day, a patient randomly chooses one of the pills.
If a small pill is chosen, then that pill is eaten. If a large
pill is chosen, then the pill is broken in two; one part is
returned to the bottle (and is now considered a small pill)
and the other part is then eaten.

(a) Let X denote the number of small pills in the bottle
after the last large pill has been chosen and its smaller half
returned. Find E[X].
Hint: Define n + m indicator variables, one for each of the
small pills initially present and one for each of them small
pills created when a large one is split in two. Now use the
argument of Example 2m.

(b) LetY denote the day on which the last large pill is cho-
sen. Find E[Y].
Hint: What is the relationship between X and Y?

7.25. Let X1,X2, . . . be a sequence of independent and
identically distributed continuous random variables. Let
N Ú 2 be such that

X1 Ú X2 Ú · · · Ú XN−1 < XN

That is,N is the point at which the sequence stops decreas-
ing. Show that E[N] = e.
Hint: First find P{N Ú n}.
7.26. Let X1, . . . ,Xn be independent and identically dis-
tributed random variables having an exponential distribu-
tion with parameter λ. Find
(a) the expected value of the minimum of X1, . . . ,Xn;
(b) the expected value of the median of X1, . . . ,Xn if n is
odd.

7.27. If n prizes are randomly distributed among k partici-
pants in a lottery, show that at least one participant has at
least

[
n
k

]
prizes with probability 1.

*7.28. The k-of-r-out-of-n circular reliability system, k … r …
n, consists of n components that are arranged in a circu-
lar fashion. Each component is either functional or failed,
and the system functions if there is no block of r con-
secutive components of which at least k are failed. Show
that there is no way to arrange 47 components, 8 of which
are failed, to make a functional 3-of-12-out-of-47 circular
system.

*7.29. There are 4 different types of coupons, the first 2 of
which comprise one group and the second 2 another group.
Each new coupon obtained is type i with probability pi,
where p1 = p2 = 1/8, p3 = p4 = 3/8. Find the expected
number of coupons that one must obtain to have at least
one of
(a) all 4 types;
(b) all the types of the first group;
(c) all the types of the second group;
(d) all the types of either group.

7.30. X and Y are independent exponentially distributed
random variables with rate parameters λ1 and λ2, respec-
tively. Find

E[(X + Y)2]

in terms of λ1 and λ2.

7.31. In Problem 7.6, calculate the variance of the sum of
the rolls.

7.32. In Problem 7.9, compute the variance of the number
of empty urns.
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7.33. If E[X(X − 1)] = 3 and E[X] = 2, find for constants
a, b

(a) E[(a − bX)2];
(b) Var(bX − a).

7.34. In a circle, 3 Germans, 3 Brazilians, 3 Japanese, and
3 Russians randomly position themselves. Find the expec-
tation and variance of the number of people of the same
nationalities standing next to each other.

7.35.A fair six-sided die is rolled sequentially. Compute
the expected number of times a die needs to be rolled in
order to obtain

(a) 2 odd numbers;
(b) 7 sixes;
(c) all the numbers.

7.36.Outcomes of n successive independent trials are
either positive, negative (each with probability .4), or
inconclusive. Find Cov(X,Y) where X, Y represent the
number of positive and negative outcomes, respectively.

7.37. U1, U2 are independently and uniformly generated
between 0 and 1 by a machine. Let X denote their sum
and let Y be equal to 1 − U2. Compute Cov(X,Y).

7.38. SupposeX andY have the following joint probability
mass function:

p(i, j) =
{

3+2i−j
45 i, j ∈ {1, 2, 3}

0 elsewhere

(a) Find E[X] and E[Y].
(b) Find Var(X) and Var(Y).
(c) Find Cov(X,Y).
(d) Find Corr(X,Y).

7.39. Suppose that 2 balls are randomly removed from an
urn containing n red and m blue balls. Let Xi = 1 if the ith

ball removed is red, and let it be 0 otherwise, i = 1, 2.

(a)Do you think that Cov(X1,X2) is negative, zero, or pos-
itive.
(b) Validate your answer to part (a).

Suppose the red balls are numbered, and let Yi equal 1 if
red ball number i is removed, and let it be 0 if that ball is
not removed.
(c) Do you think that Cov(Y1,Y2) is negative, zero, or pos-
itive.
(d) Validate your answer to part (c).

7.40. The random variables X and Y have a joint density
function given by

f (x, y) =
{

2 ln x
9 ln 3−4 1 … x … 3, 0 … y … x
0 otherwise

Compute Cov(X,Y).

7.41. LetX1, . . . be independent with common mean μ and
common variance σ 2, and set Yn = Xn + Xn+1 + Xn+2.
For j Ú 0, find Cov(Yn,Yn+j).

7.42. The joint density function of X and Y is given by

f (x, y) = 1
y
e−(y+x/y), x > 0, y > 0

Find E[X], E[Y], and show that Cov(X,Y) = 1.

7.43. Five chits are picked from an urn containing 42 chits
with numbers written on each. Before this selection, a per-
son picks 5 chits and wins if he guesses 3 numbers correctly.
What are the mean and variance of the guessed numbers?
What is the probability of winning?

7.44.A group of 20 people consisting of 10 men and 10
women is randomly arranged into 10 pairs of 2 each. Com-
pute the expectation and variance of the number of pairs
that consist of a man and a woman. Now suppose the 20
people consist of 10 married couples. Compute the mean
and variance of the number of married couples that are
paired together.

7.45. Let X1,X2, . . . ,Xn be independent random variables
having an unknown continuous distribution function F,
and let Y1,Y2, . . . ,Ym be independent random variables
having an unknown continuous distribution function G.
Now order those n + m variables, and let

Ii =
⎧⎨
⎩
1 if the ith smallest of the n + m

variables is from the X sample
0 otherwise

The random variable R =
n+m∑
i=1

iIi is the sum of the ranks

of the X sample and is the basis of a standard statistical
procedure (called theWilcoxon sum-of-ranks test) for test-
ing whether F and G are identical distributions. This test
accepts the hypothesis that F = G when R is neither too
large nor too small. Assuming that the hypothesis of equal-
ity is in fact correct, compute the mean and variance of R.
Hint: Use the results of Example 3e.

7.46. Between two distinct methods for manufacturing cer-
tain goods, the quality of goods produced by method i is
a continuous random variable having distribution Fi, i =
1, 2. Suppose that n goods are produced by method 1 and
m by method 2. Rank the n + m goods according to qual-
ity, and let
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Xj =
⎧⎨
⎩
1 if the jth best was produced from

method 1
2 otherwise

For the vector X1,X2, . . . ,Xn+m, which consists of n 1’s
and m 2’s, let R denote the number of runs of 1. For
instance, if n = 5,m = 2, and X = 1, 2, 1, 1, 1, 1, 2, then
R = 2. If F1 = F2 (that is, if the twomethods produce iden-
tically distributed goods), what are the mean and variance
of R?

7.47. Let X1,X2, and X3 be pairwise uncorrelated and
gamma distributed, with shape and scale parameters k and
θ . Compute in terms of k and θ the correlations of

(a) X1 and X1 + X2;
(b) X1 + 2X2 and X1 + X2 + X3.

7.48. Consider the following dice game, as played at a cer-
tain gambling casino: Players 1 and 2 roll a pair of dice in
turn. The bank then rolls the dice to determine the out-
come according to the following rule: Player i, i = 1, 2,
wins if his roll is strictly greater than the bank’s. For i =
1, 2, let

Ii =
{
1 if i wins
0 otherwise

and show that I1 and I2 are positively correlated. Explain
why this result was to be expected.

7.49. Consider a graph having n vertices labeled 1, 2, . . . ,n,

and suppose that, between each of the
(
n
2

)
pairs of distinct

vertices, an edge is independently present with probability
p. The degree of vertex i, designated as Di, is the number
of edges that have vertex i as one of their vertices.

(a)What is the distribution of Di?
(b) Find ρ(Di,Dj), the correlation betweenDi andDj.

7.50.A fair die is rolled successively. Let X and Y denote
the sum of scores and the absolute difference of scores
respectively. Find

(a) E[Y];
(b) E[X|Y = 1];
(c) E[Y|X = 7].

7.51.A deliveryman delivers 20 parcels in a day. Thirty
percent of the time, the deliveryman works in the Bella
Vista neighborhood, where there is a 20 percent chance of
receiving a complaint from any one customer. Otherwise,
the deliveryman works in the Pembroke neighborhood,
where the chance of receiving a complaint from any one
customer is 10 percent. Let X be the number of received
complaints on any given day. Compute E[X|X > 0].

7.52. The joint density of X and Y is given by

f (x, y) = x + e−y

2(1 − e−1)
, 0 < x < 1, 0 < y < 1

Given k > 0, derive E[Xk|Y = y] in terms of k and y.

7.53. The joint density of X and Y is given by

f (x, y) = 10x2y, 0 < x < 1, 0 < y < x

Given k > 0, derive E[Yk|X = x] in terms of k and x.

7.54.A population is made up of r disjoint subgroups. Let
pi denote the proportion of the population that is in sub-
group i, i = 1, . . . , r. If the average weight of the members
of subgroup i is wi, i = 1, . . . , r, what is the average weight
of the members of the population?

7.55.A prisoner is trapped in a cell containing 3 doors.
The first door leads to a tunnel that returns him to his
cell after 2 days’ travel. The second leads to a tunnel
that returns him to his cell after 4 days’ travel. The
third door leads to freedom after 1 day of travel. If it is
assumed that the prisoner will always select doors 1, 2,
and 3 with respective probabilities .5, .3, and .2, what is
the expected number of days until the prisoner reaches
freedom?

7.56. Consider the following dice game: A pair of dice is
rolled. If the sum is 7, then the game ends and you win 0.
If the sum is not 7, then you have the option of either stop-
ping the game and receiving an amount equal to that sum
or starting over again. For each value of i, i = 2, . . . , 12, find
your expected return if you employ the strategy of stop-
ping the first time that a value at least as large as i appears.
What value of i leads to the largest expected return?
Hint: Let Xi denote the return when you use the critical
value i. To compute E[Xi], condition on the initial sum.

7.57. Ten hunters are waiting for ducks to fly by. When a
flock of ducks flies overhead, the hunters fire at the same
time, but each chooses his target at random, independently
of the others. If each hunter independently hits his target
with probability .6, compute the expected number of ducks
that are hit. Assume that the number of ducks in a flock is
a Poisson random variable with mean 6.

7.58. The number of people who enter an elevator on the
ground floor is a Poisson random variable with mean 10.
If there are N floors above the ground floor, and if each
person is equally likely to get off at any one of the N
floors, independently of where the others get off, compute
the expected number of stops that the elevator will make
before discharging all of its passengers.

7.59. In a month, the expected number of damage claims
received by an insurance company is 30. The expected
sizes of the claims (in units of currency) are independent
with mean 1000. If the size of each claim is independent
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of the number of claims that occur, compute the expected
total sum of claims in a month.

7.60.A player draws a card from a pack of 52 cards and
replaces it until both a numbered playing card appears and
an ace, or a king, or a queen, or a jack appears. Find

(a) the probability that the last drawn card is an ace, or a
king, or a queen, or a jack;
(b) the expected number of draws.

7.61.A coin that comes up heads with probability p is con-
tinually flipped. Let N be the number of flips until there
have been both at least n heads and at leastm tails. Derive
an expression for E[N] by conditioning on the number of
heads in the first n + m flips.

7.62. There are n + 1 participants in a game. Each person
independently is a winner with probability p. The winners
share a total prize of 1 unit. (For instance, if 4 people win,
then each of them receives 1

4 , whereas if there are no win-
ners, then none of the participants receives anything.) Let
A denote a specified one of the players, and let X denote
the amount that is received by A.

(a) Compute the expected total prize shared by the
players.

(b)Argue that E[X] = 1 − (1 − p)n+1

n + 1
.

(c) Compute E[X] by conditioning on whether A is a win-
ner, and conclude that

E[(1 + B)−1] = 1 − (1 − p)n+1

(n + 1)p

when B is a binomial random variable with parameters n
and p.
7.63. Each of m + 2 players pays 1 unit to a kitty in order
to play the following game: A fair coin is to be flipped suc-
cessively n times, where n is an odd number, and the suc-
cessive outcomes are noted. Before the n flips, each player
writes down a prediction of the outcomes. For instance, if
n = 3, then a player might write down (H,H,T), which
means that he or she predicts that the first flip will land on
heads, the second on heads, and the third on tails. After
the coins are flipped, the players count their total number
of correct predictions. Thus, if the actual outcomes are all
heads, then the player who wrote (H, H, T) would have 2
correct predictions. The total kitty ofm + 2 is then evenly
split up among those players having the largest number of
correct predictions.
Since each of the coin flips is equally likely to land on

either heads or tails, m of the players have decided to
make their predictions in a totally random fashion. Specif-
ically, they will each flip one of their own fair coins n times
and then use the result as their prediction. However, the
final 2 of the players have formed a syndicate and will

use the following strategy: One of them will make pre-
dictions in the same random fashion as the other m play-
ers, but the other one will then predict exactly the oppo-
site of the first. That is, when the randomizing member
of the syndicate predicts an H, the other member pre-
dicts a T. For instance, if the randomizing member of the
syndicate predicts (H, H, T), then the other one predicts
(T, T, H).

(a)Argue that exactly one of the syndicate members will
have more than n/2 correct predictions. (Remember, n is
odd.)
(b) Let X denote the number of the m nonsyndicate play-
ers who have more than n/2 correct predictions. What is
the distribution of X?
(c)With X as defined in part (b), argue that

E[payoff to the syndicate] = (m + 2)

*E
[

1
X + 1

]

(d)Use part (c) of Problem 7.62 to conclude that

E[payoff to the syndicate] = 2(m + 2)
m + 1

*

[
1 −

(
1
2

)m+1
]

and explicitly compute this number when m = 1, 2, and 3.
Because it can be shown that

2(m + 2)
m + 1

[
1 −

(
1
2

)m+1
]

> 2

it follows that the syndicate’s strategy always gives it a pos-
itive expected profit.

7.64. The number of goals that J scores in soccer games
that her team wins is Poisson distributed with mean 2,
while the number she scores in games that her team loses
is Poisson distributed with mean 1. Assume that, indepen-
dent of earlier results, J’s teamwins each new game it plays
with probability p.

(a) Find the expected number of goals that J scores in her
team’s next game.
(b) Find the probability that J scores 6 goals in her next 4
games.
Hint: Would it be useful to know howmany of those games
were won by J’s team.
Suppose J’s team has just entered a tournament in which
it will continue to play games until it loses. Let X denote
the total number of goals scored by J in the tournament.
Also, let N be the number of games her team plays in the
tournament.

(c) Find E[X].



396 Chapter 7 Properties of Expectation

(d) Find P(X = 0).
(e) Find P(N = 3|X = 5).

7.65. If the level of infection of a tree is x, then each treat-
ment will independently be successful with probability
1 − x. Consider a tree whose infection level is assumed
to be the value of a uniform (0, 1) random variable.

(a) Find the probability that a single treatment will result
in a cure.
(b) Find the probability that the first two treatments are
unsuccessful.
(c) Find the probability it will take n treatments for the
tree to be cured.

7.66. Let X1, . . . be independent random variables with
the common distribution function F, and suppose they
are independent of N, a geometric random variable with
parameter p. LetM = max(X1, . . . ,XN).

(a) Find P{M … x} by conditioning on N.
(b) Find P{M … x|N = 1}.
(c) Find P{M … x|N > 1}.
(d)Use (b) and (c) to rederive the probability you found
in (a).

7.67. LetU1,U2, . . . be a sequence of independent uniform
(0, 1) random variables. In Example 5i, we showed that for
0 … x … 1,E[N(x)] = ex, where

N(x) = min

⎧⎨
⎩n :

n∑
i=1

Ui > x

⎫⎬
⎭

This problem gives another approach to establishing that
result.
(a) Show by induction on n that for 0 < x … 1 and all n Ú 0,

P{N(x) Ú n + 1} = xn

n!

Hint: First condition on U1 and then use the induction
hypothesis.
Use part (a) to conclude that

E[N(x)] = ex

7.68.An urn contains 30 balls, of which 10 are red and 8
are blue. From this urn, 12 balls are randomly withdrawn.
LetX denote the number of red and Y the number of blue
balls that are withdrawn. Find Cov(X,Y)

(a) by defining appropriate indicator (that is, Bernoulli)
random variables

Xi,Yj such that X =
10∑
i=1

Xi,Y =
8∑
j=1

Yj

(b) by conditioning (on either X or Y) to determine
E[XY].

7.69. Suppose the distance covered by tyres of type i fol-
lows a gamma distribution with shape and scale parame-
ters ki and θi, respectively. Given 0 < α < 1, 100a percent
of cars have tyres of type 1 and the rest have tyres of type 2.
Let X denote the distance covered by a randomly picked
tyre. Find
(a) E[X];
(b) Var(X).

7.70. The number of winter storms in a good year is a Pois-
son random variable with mean 3, whereas the number in a
bad year is a Poisson random variable with mean 5. If next
year will be a good year with probability .4 or a bad year
with probability .6, find the expected value and variance of
the number of storms that will occur.

7.71. In Example 5c, compute the variance of the length of
time until the miner reaches safety.

7.72. Consider a gambler who, at each gamble, either wins
or loses her bet with respective probabilities p and 1 − p.
A popular gambling system known as the Kelley strategy
is to always bet the fraction 2p − 1 of your current fortune
when p > 1

2 . Compute the expected fortune after n gam-
bles of a gambler who starts with x units and employs the
Kelley strategy.

7.73. The number of accidents that a person has in a given
year is a Poisson random variable with mean λ. However,
suppose that the value of λ changes from person to person,
being equal to 2 for 60 percent of the population and 3 for
the other 40 percent. If a person is chosen at random, what
is the probability that he will have (a) Zero accidents and
(b) exactly 3 accidents in a certain year? What is the con-
ditional probability that he will have 3 accidents in a given
year, given that he had no accidents the preceding year?

7.74. Repeat Problem 7.73 when the proportion of the pop-
ulation having a value of λ less than x is equal to 1 − e−x.

7.75. Consider an urn containing a large number of coins,
and suppose that each of the coins has some probability p
of turning up heads when it is flipped. However, this value
of p varies from coin to coin. Suppose that the composi-
tion of the urn is such that if a coin is selected at random
from it, then the p-value of the coin can be regarded as
being the value of a random variable that is uniformly
distributed over [0, 1]. If a coin is selected at random from
the urn and flipped twice, compute the probability that

(a) the first flip results in a head;
(b) both flips result in heads.

7.76. In Problem 7.75, suppose that the coin is tossed n
times. Let X denote the number of heads that occur.
Show that

P{X = i} = 1
n + 1

i = 0, 1, . . . ,n
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Hint: Make use of the fact that

∫ 1

0
xa−1(1 − x)b−1 dx = (a − 1)!(b − 1)!

(a + b − 1)!

when a and b are positive integers.

7.77. Suppose that in Problem 7.75, we continue to flip the
coin until a head appears. LetN denote the number of flips
needed. Find

(a) P{N Ú i}, i Ú 1;
(b) P{N = i};
(c) E[N].

7.78. In Example 6b, let S denote the signal sent and R the
signal received.

(a) Compute E[R].
(b) Compute Var(R).
(c) Is R normally distributed?
(d) Compute Cov(R,S).

7.79. In Example 6c, suppose that X is uniformly dis-
tributed over (0, 1). If the discretized regions are deter-
mined by a0 = 0, a1 = 1

2 , and a2 = 1, calculate the optimal
quantizer Y and compute E[(X − Y)2].

7.80. The moment generating function of X is given by
MX(t) = exp{2et − 2} and that of Y by MY(t) =(
3
4e

t + 1
4

)10
. If X and Y are independent, what are

(a) P{X + Y = 2}?
(b) P{XY = 0}?
(c) E[XY]?

7.81. The number of patients entering a ward is a Poisson
distribution with mean 5. The probability of each admitted
patient testing positive to an infection is .1. Compute the
joint moment generating function for the total number of
patients and the number of patients tested positive.

7.82. The joint density of X and Y is given by

f (x, y) = 1√
2π

e−ye−(x−y)2/2 0 < y < q,

−q < x < q

(a) Compute the joint moment generating function of X
and Y.
(b) Compute the individual moment generating functions.

7.83. Two envelopes, each containing a check, are placed
in front of you. You are to choose one of the envelopes,
open it, and see the amount of the check. At this point,
either you can accept that amount or you can exchange it
for the check in the unopened envelope. What should you
do? Is it possible to devise a strategy that does better than
just accepting the first envelope?
Let A and B,A < B, denote the (unknown) amounts of

the checks, and note that the strategy that randomly selects
an envelope and always accepts its check has an expected
return of (A + B)/2. Consider the following strategy: Let
F(·) be any strictly increasing (that is, continuous) distri-
bution function. Choose an envelope randomly and open
it. If the discovered check has the value x, then accept
it with probability F(x) and exchange it with probability
1 − F(x).

(a) Show that if you employ the latter strategy, then your
expected return is greater than (A + B)/2.
Hint: Condition on whether the first envelope has the
value A or B.

Now consider the strategy that fixes a value x and then
accepts the first check if its value is greater than x and
exchanges it otherwise.
(b) Show that for any x, the expected return under
the x-strategy is always at least (A + B)/2 and
that it is strictly larger than (A + B)/2 if x lies between
A and B.
(c) Let X be a continuous random variable on the whole
line, and consider the following strategy: Generate the
value of X, and if X = x, then employ the x-strategy of
part (b). Show that the expected return under this strategy
is greater than (A + B)/2.

7.84.Weekly log-returns on two stocks have a bivariate
normal distribution with common mean 0, standard devi-
ations of the first and second stock being .3 and .2 respec-
tively, and correlation .5.

(a) Find the probability that the absolute value of the sum
of the two log-returns is greater than .2.
(b) Recalculate the probability if the correlation is −.5.
(c) Give an intuitive reason why the probability in (b) is
less than the probability in (a).

Theoretical Exercises

7.1. Show that E[(X − a)2] is minimized at a = E[X].

7.2. Suppose that X is a continuous random variable with
density function f . Show that E[|X − a|] is minimized
when a is equal to the median of F.

Hint: Write

E[|X − a|] =
∫

|x − a|f (x)dx
Now break up the integral into the regions where x < a

and where x > a, and differentiate.
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7.3. Prove Proposition 2.1 when

(a) X and Y have a joint probability mass function;
(b) X and Y have a joint probability density function and
g(x, y) Ú 0 for all x, y.

7.4. Let X be a random variable having finite expectation
μ and variance σ 2, and let g(·) be a twice differentiable
function. Show that

E[g(X)] L g(μ) + g′′(μ)

2
σ 2

Hint: Expand g(·) in a Taylor series about μ. Use the first
three terms and ignore the remainder.

7.5. If X Ú 0 and g is a differentiable function such that
g(0) = 0, show that

E[g(X)] =
∫ q

0
P(X > t) g ′(t)dt

Hint: Define random variables I(t), t Ú 0 so that

g(X) =
∫ X

0
g ′(t)dt =

∫ q

0
I(t)g ′(t)dt

7.6. Let A1,A2, . . . ,An be arbitrary events, and define
Ck = {at least k of the Ai occur}. Show that

n∑
k=1

P(Ck) =
n∑

k=1

P(Ak)

Hint: Let X denote the number of the Ai that occur. Show
that both sides of the preceding equation are equal to
E[X].

7.7. In the text, we noted that

E

⎡
⎣ q∑
i=1

Xi

⎤
⎦ =

q∑
i=1

E[Xi]

when the Xi are all nonnegative random variables. Since
an integral is a limit of sums, one might expect that

E
[∫ q

0
X(t)dt

]
=
∫ q

0
E[X(t)]dt

whenever X(t), 0 … t < q, are all nonnegative random
variables; this result is indeed true. Use it to give another
proof of the result that for a nonnegative random vari-
able X,

E[X) =
∫ q

0
P{X > t}dt

Hint: Define, for each nonnegative t, the random variable
X(t) by

X(t) =
{
1 if t < X
0 if t Ú X

Now relate
∫q
0 X(t)dt to X.

7.8.We say that X is stochastically larger than Y, written
X Úst Y, if, for all t,

P{X > t} Ú P{Y > t}
Show that if X Úst Y, then E[X] Ú E[Y] when

(a) X and Y are nonnegative random variables;
(b) X and Y are arbitrary random variables.
Hint: Write X as

X = X+ − X−

where

X+ =
{
X if X Ú 0
0 if X < 0 , X− =

{
0 if X Ú 0

−X if X < 0

Similarly, represent Y as Y+ − Y−. Then make use of part
(a).

7.9. Show that X is stochastically larger than Y if and
only if

E[f (X)] Ú E[f (Y)]

for all increasing functions f .
Hint: Show thatX Úst Y, thenE[f (X)] Ú E[f (Y)] by show-
ing that f (X) Úst f (Y) and then using Theoretical Exer-
cise 7.8. To show that ifE[f (X)] Ú E[f (Y)] for all increasing
functions f , then P{X > t} Ú P{Y > t}, define an appro-
priate increasing function f .

7.10.A coin having probability p of landing on heads is
flipped n times. Compute the expected number of runs of
heads of size 1, of size 2, and of size k, 1 … k … n.

7.11. Let X1,X2, . . . ,Xn be independent and identically
distributed positive random variables. For k … n, find

E

⎡
⎢⎢⎢⎢⎢⎢⎣

k∑
i=1

Xi

n∑
i=1

Xi

⎤
⎥⎥⎥⎥⎥⎥⎦

7.12. Consider n independent trials, each resulting in
any one of r possible outcomes with probabilities
P1,P2, . . . ,Pr. Let X denote the number of outcomes that
never occur in any of the trials. Find E[X] and show
that among all probability vectors P1, . . . ,Pr,E[X] is min-
imized when Pi = 1/r, i = 1, . . . , r.

7.13. LetX1,X2, . . . be a sequence of independent random
variables having the probability mass function

P{Xn = 0} = P{Xn = 2} = 1/2 , n Ú 1
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The random variable X = ∑q
n=1Xn/3n is said to have the

Cantor distribution. Find E[X] and Var(X).

7.14. Let X1, . . . ,Xn be independent and identically dis-
tributed continuous random variables. We say that a
record value occurs at time j, j … n, if Xj Ú Xi for all
1 … i … j. Show that

(a) E[number of record values] =
n∑
j=1

1/j;

(b) Var(number of record values)=
n∑
j=1

(j − 1)/j2.

7.15. For Example 2i, show that the variance of the num-
ber of coupons needed to amass a full set is equal to

N−1∑
i=1

iN
(N − i)2

When N is large, this can be shown to be approximately
equal (in the sense that their ratio approaches 1 asN→q)
to N2π2/6.

7.16. Consider n independent trials, the ith of which results
in a success with probability Pi.

(a) Compute the expected number of successes in the n
trials—call it μ.
(b) For a fixed value of μ, what choice of P1, . . . ,Pn maxi-
mizes the variance of the number of successes?
(c)What choice minimizes the variance?

*7.17. Suppose that each of the elements of S = {1, 2, . . . ,n}
is to be colored either red or blue. Show that if A1, . . . ,Ar
are subsets of S, there is a way of doing the coloring so

that at most
r∑
i=1

(1/2)|Ai|−1 of these subsets have all their

elements the same color (where |A| denotes the number
of elements in the set A).

7.18. Suppose that X1 and X2 are independent random
variables having a common mean μ. Suppose also that
Var(X1) = σ 2

1 and Var(X2) = σ 2
2 . The value of μ is

unknown, and it is proposed that μ be estimated by a
weighted average ofX1 andX2. That is, λX1 + (1 − λ)X2
will be used as an estimate of μ for some appropriate value
of λ. Which value of λ yields the estimate having the low-
est possible variance? Explain why it is desirable to use
this value of λ.

7.19. In Example 4f, we showed that the covariance of
the multinomial random variables Ni and Nj is equal to
−mPiPj by expressing Ni and Nj as the sum of indicator
variables. We could also have obtained that result by using
the formula

Var(Ni + Nj)=Var(Ni) + Var(Nj) + 2 Cov(Ni,Nj)

(a)What is the distribution of Ni + Nj?
(b)Use the preceding identity to show that Cov(Ni,Nj) =
−mPiPj.
7.20. Show thatX andY are identically distributed and not
necessarily independent, then

Cov(X + Y,X − Y) = 0

7.21. The Conditional Covariance Formula. The condi-
tional covariance of X and Y, given Z, is defined by

Cov(X,Y|Z) K E[(X − E[X|Z])(Y − E[Y|Z])|Z]

(a) Show that

Cov(X,Y|Z) = E[XY|Z] − E[X|Z]E[Y|Z]

(b) Prove the conditional covariance formula

Cov(X,Y) = E[Cov(X,Y|Z)]
+Cov(E[X|Z],E[Y|Z])

(c) Set X = Y in part (b) and obtain the conditional vari-
ance formula.

7.22. Let X(i), i = 1, . . . ,n, denote the order statistics from
a set of n uniform (0, 1) random variables, and note that
the density function of X(i) is given by

f (x) = n!
(i − 1)!(n − i)!

xi−1(1 − x)n−i 0 < x < 1

(a) Compute Var(X(i)), i = 1, . . . ,n.
(b)Which value of i minimizes, and which value maxi-
mizes, Var(X(i))?

7.23. Show that Y = a + bX, then

ρ(X,Y) =
{+1 if b > 0
−1 if b < 0

7.24. Show that Z is a standard normal random variable
and if Y is defined by Y = a + bZ + cZ2, then

ρ(Y,Z) = b√
b2 + 2c2

7.25. Prove the Cauchy–Schwarz inequality, namely,

(E[XY])2 … E[X2]E[Y2]

Hint: Unless Y = −tX for some constant, in which case
the inequality holds with equality, it follows that for all t,

0 < E[(tX + Y)2] = E[X2]t2 + 2E[XY]t + E[Y2]



400 Chapter 7 Properties of Expectation

Hence, the roots of the quadratic equation

E[X2]t2 + 2E[XY]t + E[Y2] = 0

must be imaginary, which implies that the discriminant of
this quadratic equation must be negative.

7.26. Show that if X and Y are independent, then

E[X|Y = y] = E[X] for all y

(a) in the discrete case;
(b) in the continuous case.

7.27. Prove that E[g(X)Y|X] = g(X)E[Y|X].

7.28. Prove that if E[Y|X = x] = E[Y] for all x, then X
and Y are uncorrelated; give a counterexample to show
that the converse is not true.
Hint: Prove and use the fact that E[XY] = E[XE[Y|X]].

7.29. Show that Cov(X,E[Y|X]) = Cov(X,Y).

7.30. Let X1, . . . ,Xn be independent and identically dis-
tributed random variables. Find

E[X1|X1 + · · · + Xn = x]

7.31. Consider Example 4f, which is concerned with the
multinomial distribution. Use conditional expectation to
compute E[NiNj], and then use this to verify the formula
for Cov(Ni,Nj) given in Example 4f.

7.32.An urn initially contains b black and w white balls.
At each stage, we add r black balls and then withdraw,
at random, r balls from the b + w + r balls in the urn.
Show that

E[number of white balls after stage t]

=
(

b + w
b + w + r

)t
w

7.33. For an event A, let IA equal 1 if A occurs and
let it equal 0 if A does not occur. For a random
variable X, show that

E[X|A] = E[XIA]
P(A)

7.34.A coin that lands on heads with probability p is con-
tinually flipped. Compute the expected number of flips
that are made until a string of r heads in a row is obtained.

Hint: Condition on the time of the first occurrence of tails
to obtain the equation

E[X] = (1 − p)
r∑
i=1

pi−1(i + E[X])

+(1 − p)
q∑

i=r+1

pi−1r

Simplify and solve for E[X].

7.35. For another approach to Theoretical Exercise 7.34,
let Tr denote the number of flips required to obtain a run
of r consecutive heads.

(a)Determine E[Tr|Tr−1].
(b)Determine E[Tr] in terms of E[Tr−1].
(c)What is E[T1]?
(d)What is E[Tr]?

7.36. The probability generating function of the discrete
nonnegative integer valued random variable X having
probability mass function pj, j Ú 0, is defined by

φ(s) = E[sX ] =
q∑
j=0

pjsj

Let Y be a geometric random variable with parameter
p = 1 − s, where 0 < s < 1. Suppose thatY is independent
of X, and show that

φ(s) = P{X < Y}

7.37.One ball at a time is randomly selected from an
urn containing a white and b black balls until all of the
remaining balls are of the same color. LetMa,b denote the
expected number of balls left in the urn when the exper-
iment ends. Compute a recursive formula for Ma,b and
solve when a = 3 and b = 5.

7.38.An urn contains a white and b black balls. After a
ball is drawn, it is returned to the urn if it is white; but if it
is black, it is replaced by a white ball from another urn. Let
Mn denote the expected number of white balls in the urn
after the foregoing operation has been repeated n times.

(a)Derive the recursive equation

Mn+1 =
(
1 − 1

a + b

)
Mn + 1

(b)Use part (a) to prove that

Mn = a + b − b
(
1 − 1

a + b

)n
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(c)What is the probability that the (n + 1) ball drawn is
white?

7.39. The best linear predictor of Y with respect to X1 and
X2 is equal to a + bX1 + cX2, where a,b, and c are chosen
to minimize

E[(Y − (a + bX1 + cX2))
2]

Determine a, b, and c.

7.40. The best quadratic predictor of Y with respect to X
is a + bX + cX2, where a, b, and c are chosen to minimize
E[(Y − (a + bX + cX2))2]. Determine a, b, and c.

7.41.Use the conditional variance formula to determine
the variance of a geometric random variable X having
parameter p.

7.42. Let X be a normal random variable with parameters
μ = 0 and σ 2 = 1, and let I, independent of X, be such
that P{I = 1} = 1

2 = P{I = 0}. Now define Y by

Y =
{

X if I = 1
−X if I = 0

In words, Y is equally likely to equal either X or −X.

(a)Are X and Y independent?
(b)Are I and Y independent?
(c) Show that Y is normal with mean 0 and variance 1.
(d) Show that Cov(X,Y) = 0.

7.43. It follows from Proposition 6.1 and the fact that the
best linear predictor of Y with respect to X is μy +
ρ

σy
σx

(X − μx) that if

E[Y|X] = a + bX

then

a = μy − ρ
σy

σx
μx b = ρ

σy

σx

(Why?) Verify this directly.

7.44. Show that for random variables X and Z,

E[(X − Y)2] = E[X2] − E[Y2]

where
Y = E[X|Z]

7.45. Consider a population consisting of individuals able
to produce offspring of the same kind. Suppose that by
the end of its lifetime, each individual will have produced
j new offspring with probability Pj, j Ú 0, independently
of the number produced by any other individual. The
number of individuals initially present, denoted by X0,

is called the size of the zeroth generation. All offspring
of the zeroth generation constitute the first generation,
and their number is denoted by X1. In general, let Xn

denote the size of the nth generation. Let μ =
q∑
j=0

jPj and

σ 2 =
q∑
j=0

(j − μ)2Pj denote, respectively, the mean and the

variance of the number of offspring produced by a single
individual. Suppose that X0 = 1—that is, initially there is
a single individual in the population.

(a) Show that
E[Xn] = μE[Xn−1]

(b)Use part (a) to conclude that

E[Xn] = μn

(c) Show that

Var(Xn) = σ 2μn−1 + μ2Var(Xn−1)

(d)Use part (c) to conclude that

Var(Xn) =

⎧⎪⎪⎨
⎪⎪⎩

σ 2μn−1
(

μn − 1
μ − 1

)
if μ Z 1

nσ 2 if μ = 1

The model just described is known as a branching process,
and an important question for a population that evolves
along such lines is the probability that the population will
eventually die out. Let π denote this probability when the
population starts with a single individual. That is,

π = P{population eventually dies out|X0 = 1)

(e)Argue that π satisfies

π =
q∑
j=0

Pjπ j

Hint: Condition on the number of offspring of the initial
member of the population.

7.46. Verify the formula for the moment generating func-
tion of a uniform random variable that is given in Table 7.2.
Also, differentiate to verify the formulas for the mean and
variance.

7.47. For a standard normal random variable Z, let μn =
E[Zn]. Show that

μn =

⎧⎪⎨
⎪⎩
0 when n is odd
(2j)!
2jj!

when n = 2j
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Hint: Start by expanding the moment generating function
of Z into a Taylor series about 0 to obtain

E[etZ] = et
2/2

=
q∑
j=0

(t2/2)j

j!

7.48. LetX be a normal random variable with mean μ and
variance σ 2. Use the results of Theoretical Exercise 7.47 to
show that

E[Xn] =
[n/2]∑
j=0

(
n
2j

)
μn−2jσ 2j(2j)!

2jj!

In the preceding equation, [n/2] is the largest integer less
than or equal to n/2. Check your answer by letting n = 1
and n = 2.

7.49. If Y = aX + b, where a and b are constants, express
the moment generating function of Y in terms of the
moment generating function of X.

7.50. The positive random variableX is said to be a lognor-
mal random variable with parameters μ and σ 2 if log(X)

is a normal random variable with mean μ and variance σ 2.
Use the normal moment generating function to find the
mean and variance of a lognormal random variable.

7.51. Let X have moment generating function M(t), and
define 
(t) = logM(t). Show that


 ′′(t)|t=0 = Var(X)

7.52.Use Table 7.2 to determine the distribution of
n∑
i=1

Xi

when X1, . . . ,Xn are independent and identically
distributed exponential random variables, each having
mean 1/λ.

7.53. Show how to compute Cov(X,Y) from the joint
moment generating function of X and Y.

7.54. Suppose that X1, . . . ,Xn have a multivariate normal
distribution. Show that X1, . . . ,Xn are independent ran-
dom variables if and only if

Cov(Xi,Xj) = 0 when i Z j

7.55. If Z is a standard normal random variable, what is
Cov(Z,Z2)?

7.56. Suppose that Y is a normal random variable with
mean μ and variance σ 2, and suppose also that the con-
ditional distribution ofX, given that Y = y, is normal with
mean y and variance 1.

(a)Argue that the joint distribution of X,Y is the same
as that of Y + Z,Y when Z is a standard normal random
variable that is independent of Y.
(b)Use the result of part (a) to argue that X,Y has a
bivariate normal distribution.
(c) Find E[X], Var(X), and Corr(X,Y).
(d) Find E[Y|X = x].
(e)What is the conditional distribution of Y given that
X = x?

Self-Test Problems and Exercises

7.1. Consider a list ofm names, where the same name may
appear more than once on the list. Let n(i), i = 1, . . . ,m,
denote the number of times that the name in position i
appears on the list, and let d denote the number of distinct
names on the list.

(a) Express d in terms of the variablesm, n(i), i = 1, . . . ,m.
Let U be a uniform (0, 1) random variable, and let X =
[mU] + 1.
(b)What is the probability mass function of X?
(c)Argue that E[m/n(X)] = d.

7.2.An urn has nwhite andm black balls that are removed
one at a time in a randomly chosen order. Find the
expected number of instances in which a white ball is
immediately followed by a black one.

7.3. Twenty individuals consisting of 10 married couples
are to be seated at 5 different tables, with 4 people at each
table.

(a) If the seating is done “at random,” what is the expected
number of married couples that are seated at the same
table?
(b) If 2 men and 2 women are randomly chosen to be
seated at each table, what is the expected number of mar-
ried couples that are seated at the same table?

7.4. If a die is to be rolled until all sides have appeared at
least once, find the expected number of times that outcome
1 appears.

7.5.A deck of 2n cards consists of n red and n black cards.
The cards are shuffled and then turned over one at a time.
Suppose that each time a red card is turned over, we win
1 unit if more red cards than black cards have been turned
over by that time. (For instance, if n = 2 and the result
is r b r b, then we would win a total of 2 units.) Find the
expected amount that we win.
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7.6. Let A1,A2, . . . ,An be events, and let N denote the
number of them that occur. Also, let I = 1 if all of these
events occur, and let it be 0 otherwise. Prove Bonferroni’s
inequality, namely,

P(A1 · · ·An) Ú
n∑
i=1

P(Ai) − (n − 1)

Hint: Argue first that N … n − 1 + I.

7.7. Let X be the smallest value obtained when k num-
bers are randomly chosen from the set 1, . . . ,n. Find E[X]
by interpreting X as a negative hypergeometric random
variable.

7.8.An arriving plane carries r families. A total of nj of
these families have checked in a total of j pieces of lug-
gage,

∑
j
nj = r. Suppose that when the plane lands, the

N = ∑
j
jnj pieces of luggage come out of the plane in a ran-

dom order. As soon as a family collects all of its luggage,
it immediately departs the airport. If the Sanchez family
checked in j pieces of luggage, find the expected number
of families that depart after they do.

*7.9. Nineteen items on the rim of a circle of radius 1 are
to be chosen. Show that for any choice of these points,
there will be an arc of (arc) length 1 that contains at least
4 of them.

7.10. Let X be a Poisson random variable with mean λ.
Show that if λ is not too small, then

Var(
√
X) L .25

Hint: Use the result of Theoretical Exercise 7.4 to approx-
imate E[

√
X].

7.11. Suppose in Self-Test Problem 7.3 that the 20 people
are to be seated at seven tables, three of which have 4 seats
and four of which have 2 seats. If the people are randomly
seated, find the expected value of the number of married
couples that are seated at the same table.

7.12. Individuals 1 through n, n > 1, are to be recruited
into a firm in the following manner: Individual 1 starts
the firm and recruits individual 2. Individuals 1 and 2 will
then compete to recruit individual 3. Once individual 3 is
recruited, individuals 1, 2, and 3 will compete to recruit
individual 4, and so on. Suppose that when individuals
1, 2, . . . , i compete to recruit individual i + 1, each of them
is equally likely to be the successful recruiter.

(a) Find the expected number of the individuals 1, . . . ,n
who did not recruit anyone else.
(b)Derive an expression for the variance of the number of
individuals who did not recruit anyone else, and evaluate
it for n = 5.

7.13. The nine players on a basketball team consist of 2
centers, 3 forwards, and 4 backcourt players. If the play-
ers are paired up at random into three groups of size 3
each, find (a) the expected value and (b) the variance of
the number of triplets consisting of one of each type of
player.

7.14.A deck of 52 cards is shuffled and a bridge hand of
13 cards is dealt out. Let X and Y denote, respectively, the
number of aces and the number of spades in the hand.

(a) Show that X and Y are uncorrelated.
(b)Are they independent?

7.15. Each coin in a bin has a value attached to it. Each
time that a coin with value p is flipped, it lands on heads
with probability p. When a coin is randomly chosen from
the bin, its value is uniformly distributed on (0, 1). Sup-
pose that after the coin is chosen but before it is flipped,
you must predict whether it will land on heads or on tails.
You will win 1 if you are correct and will lose 1 otherwise.

(a)What is your expected gain if you are not told the value
of the coin?
(b) Suppose now that you are allowed to inspect the coin
before it is flipped, with the result of your inspection being
that you learn the value of the coin. As a function of p, the
value of the coin, what prediction should you make?
(c) Under the conditions of part (b), what is your expected
gain?

7.16. In Self-Test Problem 7.1, we showed how to use the
value of a uniform (0, 1) random variable (commonly
called a random number) to obtain the value of a random
variable whose mean is equal to the expected number of
distinct names on a list. However, its use required that one
choose a random position and then determine the num-
ber of times that the name in that position appears on the
list. Another approach, which can be more efficient when
there is a large amount of replication of names, is as fol-
lows: As before, start by choosing the random variable X
as in Problem 7.1. Now identify the name in position X,
and then go through the list, starting at the beginning, until
that name appears. Let I equal 0 if you encounter that
name before getting to positionX, and let I equal 1 if your
first encounter with the name is at position X. Show that
E[mI] = d.
Hint: Compute E[I] by using conditional expectation.

7.17.A total of m items are to be sequentially distributed
among n cells, with each item independently being put in
cell j with probability pj, j = 1, . . . ,n. Find the expected
number of collisions that occur, where a collision occurs
whenever an item is put into a nonempty cell.

7.18. Let X be the length of the initial run in a random
ordering of n ones andm zeros. That is, if the first k values
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are the same (either all ones or all zeros), thenX Ú k. Find
E[X].

7.19. There are n items in a box labeled H and m in a box
labeled T. A coin that comes up heads with probability p
and tails with probability 1 − p is flipped. Each time it
comes up heads, an item is removed from the H box, and
each time it comes up tails, an item is removed from the
T box. (If a box is empty and its outcome occurs, then no
items are removed.) Find the expected number of coin flips
needed for both boxes to become empty.
Hint: Condition on the number of heads in the first n + m
flips.

7.20. Let X be a nonnegative random variable having dis-
tribution function F. Show that if F(x) = 1 − F(x), then

E[Xn] =
∫ q

0
xn−1F(x)dx

Hint: Start with the identity

Xn = n
∫ X

0
xn−1 dx

= n
∫ q

0
xn−1IX(x)dx

where

Ix(x) =
{
1, if x < X
0, otherwise

*7.21. Let a1, . . . , an, not all equal to 0, be such that∑n
i=1 ai = 0. Show that there is a permutation i1, . . . , in

such that
∑n

j=1 aijaij+1 < 0.
Hint: Use the probabilistic method. (It is interesting that
there need not be a permutation whose sum of products
of successive pairs is positive. For instance, if n = 3,
a1 = a2 = −1, and a3 = 2, there is no such permutation.)

7.22. Suppose that Xi, i = 1, 2, 3, are independent Poisson
random variables with respective means λi, i = 1, 2, 3. Let
X = X1 + X2 and Y = X2 + X3. The random vectorX,Y
is said to have a bivariate Poisson distribution.

(a) Find E[X] and E[Y].
(b) Find Cov(X,Y).
(c) Find the joint probability mass function P{X = i,
Y = j}.
7.23. Let (Xi,Yi), i = 1, . . . , be a sequence of independent
and identically distributed random vectors. That is, X1,Y1
is independent of, and has the same distribution as,X2,Y2,
and so on. Although Xi and Yi can be dependent, Xi and
Yj are independent when i Z j. Let

μx = E[Xi], μy = E[Yi], σ 2
x = Var(Xi),

σ 2
y = Var(Yi), ρ = Corr(Xi,Yi)

Find Corr(
∑n

i=1Xi,
∑n

j=1 Yj).

7.24. Three cards are randomly chosen without replace-
ment from an ordinary deck of 52 cards. Let X denote the
number of aces chosen.

(a) Find E[X|the ace of spades is chosen].
(b) Find E[X|at least one ace is chosen].

7.25. Let 	 be the standard normal distribution function,
and let X be a normal random variable with mean μ and
variance 1. We want to find E[	(X)]. To do so, let Z be
a standard normal random variable that is independent of
X, and let

I =
{
1, if Z < X
0, if Z Ú X

(a) Show that E[I|X = x] = 	(x).
(b) Show that E[	(X)] = P{Z < X}.
(c) Show that E[	(X)] = 	

(
μ√
2

)
.

Hint: What is the distribution of X − Z?

The preceding comes up in statistics. Suppose you are
about to observe the value of a random variable X that
is normally distributed with an unknown mean μ and vari-
ance 1, and suppose that you want to test the hypothesis
that the mean μ is greater than or equal to 0. Clearly
you would want to reject this hypothesis if X is suf-
ficiently small. If it results that X = x, then the p-
value of the hypothesis that the mean is greater than
or equal to 0 is defined to be the probability that X
would be as small as x if μ were equal to 0 (its small-
est possible value if the hypothesis were true). (A small
p-value is taken as an indication that the hypothesis is
probably false.) Because X has a standard normal dis-
tribution when μ = 0, the p-value that results when
X = x is 	(x). Therefore, the preceding shows that the
expected p-value that results when the true mean is μ

is 	
(

μ√
2

)
.

7.26.A coin that comes up heads with probability p is
flipped until either a total of n heads or of m tails is
amassed. Find the expected number of flips.
Hint: Imagine that one continues to flip even after the
goal is attained. Let X denote the number of flips needed
to obtain n heads, and let Y denote the number of
flips needed to obtain m tails. Note that max(X,Y) +
min(X,Y) = X + Y. Compute E[max(X,Y)] by con-
ditioning on the number of heads in the first n + m − 1
flips.

7.27.A deck of n cards numbered 1 through n, initially in
any arbitrary order, is shuffled in the following manner: At
each stage, we randomly choose one of the cards and move
it to the front of the deck, leaving the relative positions
of the other cards unchanged. This procedure is continued
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until all but one of the cards has been chosen. At this point,
it follows by symmetry that all n! possible orderings are
equally likely. Find the expected number of stages that are
required.

7.28. Suppose that a sequence of independent trials in
which each trial is a success with probability p is per-
formed until either a success occurs or a total of n trials
has been reached. Find the mean number of trials that are
performed.

Hint: The computations are simplified if you use the
identity that for a nonnegative integer valued random
variable X,

E[X] =
q∑
i=1

P{X Ú i}

7.29. Suppose that X and Y are both Bernoulli random
variables. Show that X and Y are independent if and only
if Cov(X,Y) = 0.

7.30. In the generalized match problem, there are n indi-
viduals of whom ni wear hat size i,

∑r
i=1 ni =n. There are

also n hats, of which hi are of size i,
∑r

i=1 hi = n. If each
individual randomly chooses a hat (without replacement),
find the expected number who choose a hat that is their
size.

7.31. For random variables X and Y, show that

√
Var(X + Y) …

√
Var(X) +

√
Var(Y)

That is, show that the standard deviation of a sum is
always less than or equal to the sum of the standard
deviations.

7.32. Let R1, . . . ,Rn+m be a random permutation of
1, . . . ,n + m. (That is, R1, . . . ,Rn+m is equally likely to be
any of the (n + m)! permutations of 1, . . . ,n + m.) For
a given i … n, let X be the the ith smallest of the values
R1, . . . ,Rn. Show that E[X] = i + m i

n+1 .
Hint: Note that if we let In+k equal 1 if Rn+k < X and let
it equal 0 otherwise, that

X = i +
m∑
k=1

In+k

7.33. Suppose that Y is uniformly distributed over (0, 1),
and that the conditional distribution of X, given that Y =
y, is uniform over (0, y).

(a) Find E[X].
(b) Find Cov(X,Y).
(c) Find Var(X).
(d) Find P{X … x}.
(e) Find the probability density function of X.
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8.1 Introduction
The most important theoretical results in probability theory are limit theorems. Of
these, the most important are those classified either under the heading laws of large
numbers or under the heading central limit theorems. Usually, theorems are consid-
ered to be laws of large numbers if they are concerned with stating conditions under
which the average of a sequence of random variables converges (in some sense) to
the expected average. By contrast, central limit theorems are concerned with deter-
mining conditions under which the sum of a large number of random variables has a
probability distribution that is approximately normal.

8.2 Chebyshev’s Inequality and the Weak Law of Large Numbers
We start this section by proving a result known as Markov’s inequality.

Proposition
2.1

Markov’s inequality

If X is a random variable that takes only nonnegative values, then for any value
a > 0,

P{X Ú a} …
E[X]
a

Proof For a > 0, let

I =
{
1 if X Ú a
0 otherwise

406
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and note that, since X Ú 0,

I …
X
a

Taking expectations of the preceding inequality yields

E[I] …
E[X]
a

which, because E[I] = P{X Ú a}, proves the result.
As a corollary, we obtain Proposition 2.2.

Proposition
2.2

Chebyshev’s inequality

If X is a random variable with finite mean μ and variance σ 2, then for any value
k > 0,

P{|X − μ| Ú k} …
σ 2

k2

Proof Since (X − μ)2 is a nonnegative random variable, we can apply Markov’s
inequality (with a = k2) to obtain

P{(X − μ)2 Ú k2} …
E[(X − μ)2]

k2
(2.1)

But since (X − μ)2 Ú k2 if and only if |X − μ| Ú k, Equation (2.1) is equivalent to

P{|X − μ| Ú k} …
E[(X − μ)2]

k2
= σ 2

k2

and the proof is complete.

The importance of Markov’s and Chebyshev’s inequalities is that they enable
us to derive bounds on probabilities when only the mean or both the mean and the
variance of the probability distribution are known. Of course, if the actual distribu-
tion were known, then the desired probabilities could be computed exactly and we
would not need to resort to bounds.

Example
2a

Suppose that it is known that the number of items produced in a factory during a
week is a random variable with mean 50.
(a) What can be said about the probability that this week’s production will

exceed 75?
(b) If the variance of a week’s production is known to equal 25, then what can

be said about the probability that this week’s production will be between 40
and 60?

Solution Let X be the number of items that will be produced in a week.

(a) By Markov’s inequality,

P{X > 75} …
E[X]
75

= 50
75

= 2
3

(b) By Chebyshev’s inequality,

P{|X − 50| Ú 10} …
σ 2

102
= 1

4
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Hence,

P{|X − 50| < 10} Ú 1 − 1
4

= 3
4

so the probability that this week’s production will be between 40 and 60 is at
least .75. .

As Chebyshev’s inequality is valid for all distributions of the random variable
X, we cannot expect the bound on the probability to be very close to the actual
probability in most cases. For instance, consider Example 2b.

Example
2b

If X is uniformly distributed over the interval (0, 10), then, since E[X] = 5 and
Var(X) = 25

3 , it follows from Chebyshev’s inequality that

P{|X − 5| > 4} …
25

3(16)
L .52

whereas the exact result is

P{|X − 5| > 4} = .20

Thus, although Chebyshev’s inequality is correct, the upper bound that it provides is
not particularly close to the actual probability.

Similarly, if X is a normal random variable with mean μ and variance σ 2,
Chebyshev’s inequality states that

P{|X − μ| > 2σ } …
1
4

whereas the actual probability is given by

P{|X − μ| > 2σ } = P

{∣∣∣∣X − μ

σ

∣∣∣∣ > 2

}
= 2[1 − �(2)] L .0456 .

Chebyshev’s inequality is often used as a theoretical tool in proving results. This
use is illustrated first by Proposition 2.3 and then, most importantly, by the weak law
of large numbers.

Proposition
2.3

If Var(X) = 0, then
P{X = E[X]} = 1

In other words, the only random variables having variances equal to 0 are those that
are constant with probability 1.

Proof By Chebyshev’s inequality, we have, for any n Ú 1,

P
{
|X − μ| >

1
n

}
= 0

Letting n→q and using the continuity property of probability yields

0 = lim
n→q

P
{
|X − μ| >

1
n

}
= P

{
lim
n→q

{
|X − μ| >

1
n

}}

= P{X Z μ}
and the result is established.
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Theorem
2.1

The weak law of large numbers

LetX1,X2, . . . be a sequence of independent and identically distributed random vari-
ables, each having finite mean E[Xi] = μ. Then, for any ε > 0,

P

{∣∣∣∣X1 + · · · + Xn

n
− μ

∣∣∣∣ Ú ε

}
→0 as n→q

Proof We shall prove the theorem only under the additional assumption that the
random variables have a finite variance σ 2. Now, since

E
[
X1 + · · · + Xn

n

]
= μ and Var

(
X1 + · · · + Xn

n

)
= σ 2

n

it follows from Chebyshev’s inequality that

P

{∣∣∣∣X1 + · · · + Xn

n
− μ

∣∣∣∣ Ú ε

}
…

σ 2

nε2

and the result is proven.

The weak law of large numbers was originally proven by James Bernoulli for the
special case where theXi are 0, 1 (that is, Bernoulli) random variables. His statement
and proof of this theorem were presented in his book Ars Conjectandi, which was
published in 1713, eight years after his death, by his nephewNicholas Bernoulli. Note
that because Chebyshev’s inequality was not known in Bernoulli’s time, Bernoulli
had to resort to a quite ingenious proof to establish the result. The general form of
the weak law of large numbers presented in Theorem 2.1 was proved by the Russian
mathematician Khintchine.

8.3 The Central Limit Theorem
The central limit theorem is one of the most remarkable results in probability theory.
Loosely put, it states that the sum of a large number of independent random vari-
ables has a distribution that is approximately normal. Hence, it not only provides
a simple method for computing approximate probabilities for sums of independent
random variables, but also helps explain the remarkable fact that the empirical fre-
quencies of so many natural populations exhibit bell-shaped (that is, normal) curves.

In its simplest form, the central limit theorem is as follows.

Theorem
3.1

The central limit theorem

LetX1,X2, . . . be a sequence of independent and identically distributed random vari-
ables, each having mean μ and variance σ 2. Then the distribution of

X1 + · · · + Xn − nμ
σ
√
n

tends to the standard normal as n→q. That is, for −q < a < q,

P

{
X1 + · · · + Xn − nμ

σ
√
n

… a

}
→ 1√

2π

∫ a

−q
e−x

2/2 dx as n→q

The key to the proof of the central limit theorem is the following lemma, which
we state without proof.
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Lemma
3.1

Let Z1,Z2, . . . be a sequence of random variables having distribution functions FZn
and moment generating functionsMZn ,n Ú 1, and let Z be a random variable having
distribution function FZ and moment generating function MZ. If MZn(t)→
MZ(t) for all t, then FZn(t)→FZ(t) for all t at which FZ(t) is continuous.

If we let Z be a standard normal random variable, then, since MZ(t) = et
2/2,

it follows from Lemma 3.1 that if MZn(t)→ et
2/2 as n→q, then FZn(t)→ �(t) as

n→q.
We are now ready to prove the central limit theorem.

Proof of the Central Limit Theorem: Let us assume at first that μ = 0 and σ 2 = 1.
We shall prove the theorem under the assumption that the moment generating func-
tion of the Xi,M(t), exists and is finite. Now, the moment generating function of
Xi/

√
n is given by

E

⎡
⎣exp

{
tXi√
n

}⎤
⎦ = M

(
t√
n

)

Thus, the moment generating function of
n∑
i=1

Xi/
√
n is given by

[
M
(

t√
n

)]n
. Let

L(t) = logM(t)

and note that

L(0) = 0

L′(0) = M′(0)
M(0)

= μ

= 0

L′′(0) = M(0)M′′(0) − [M′(0)]2

[M(0)]2

= E[X2]

= 1

Now, to prove the theorem, we must show that [M(t/
√
n)]n → et

2/2 as n→q, or,
equivalently, that nL(t/

√
n)→ t2/2 as n→q. To show this, note that

lim
n→q

L(t/
√
n)

n−1
= lim

n→q

−L′(t/
√
n)n−3/2t

−2n−2 by L’Hôpital’s rule

= lim
n→q

[
L′(t/

√
n)t

2n−1/2

]

= lim
n→q

[
−L′′(t/

√
n)n−3/2t2

−2n−3/2

]
again by L’Hôpital’s rule

= lim
n→q

⎡
⎣L′′

(
t√
n

)
t2

2

⎤
⎦

= t2

2
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Thus, the central limit theorem is proven when μ = 0 and σ 2 = 1. The result
now follows in the general case by considering the standardized random variables
X∗
i = (Xi − μ)/σ and applying the preceding result, since E[X∗

i ] = 0,Var(X∗
i ) = 1.

Remark Although Theorem 3.1 states only that, for each a,

P

{
X1 + · · · + Xn − nμ

σ
√
n

… a

}
→�(a)

it can, in fact, be shown that the convergence is uniform in a. [We say that fn(a)→ f (a)
uniformly in a if, for each ε > 0, there exists an N such that |fn(a) − f (a)| < ε for
all a whenever n Ú N.] .

The first version of the central limit theorem was proven by DeMoivre around
1733 for the special case where the Xi are Bernoulli random variables with p = 1

2 .
The theorem was subsequently extended by Laplace to the case of arbitrary p. (Since
a binomial random variable may be regarded as the sum of n independent and identi-
cally distributed Bernoulli random variables, this justifies the normal approximation
to the binomial that was presented in Section 5.4.1.) Laplace also discovered the
more general form of the central limit theorem given in Theorem 3.1. His proof,
however, was not completely rigorous and, in fact, cannot easily be made rigorous.
A truly rigorous proof of the central limit theorem was first presented by the Russian
mathematician Liapounoff in the period 1901–1902.

Figure 8.1 illustrates the central limit theorem by plotting the probability mass
functions of n independent random variables having a specified mass function when
(a) n = 5, (b) n = 10, (c) n = 25, and (d) n = 100.

Example
3a

An astronomer is interested in measuring the distance, in light-years, from his obser-
vatory to a distant star. Although the astronomer has a measuring technique, he
knows that because of changing atmospheric conditions and normal error, each time
a measurement is made, it will not yield the exact distance, but merely an estimate.
As a result, the astronomer plans to make a series of measurements and then use the
average value of these measurements as his estimated value of the actual distance.
If the astronomer believes that the values of the measurements are independent
and identically distributed random variables having a common mean d (the actual
distance) and a common variance of 4 (light-years), how many measurements need
he make to be reasonably sure that his estimated distance is accurate to within ;.5
light-year?

Solution Suppose that the astronomer decides to make n observations. If X1,
X2, . . . ,Xn are the n measurements, then, from the central limit theorem, it fol-
lows that

Zn =

n∑
i=1

Xi − nd

2
√
n

has approximately a standard normal distribution. Hence,
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Central Limit Theorem

Enter the probabilities and the number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.
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P

⎧⎪⎪⎨
⎪⎪⎩ −.5 …

n∑
i=1

Xi

n
− d … .5

⎫⎪⎪⎬
⎪⎪⎭ = P

{
−.5

√
n
2

… Zn … .5
√
n
2

}

L �

(√
n
4

)
− �

(
−

√
n
4

)
= 2�

(√
n
4

)
− 1

Therefore, if the astronomer wants, for instance, to be 95 percent certain that his
estimated value is accurate to within .5 light-year, he should make n∗ measurements,
where n∗ is such that

2�

(√
n∗

4

)
− 1 = .95 or �

(√
n∗

4

)
= .975

Thus, from Table 5.1 of Chapter 5,
√
n∗

4
= 1.96 or n∗ = (7.84)2 L 61.47

As n∗ is not integral valued, he should make 62 observations.
Note, however, that the preceding analysis has been done under the assumption

that the normal approximation will be a good approximation when n = 62. Although
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Central Limit Theorem

Enter the probabilities and the number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

P0 .25
P1 .15
P2 .1
P3 .2
P4 .3

n = 10

Start

Quit

Mean = 21.5
Variance = 25.275

403020100
i

0.00

0.08

p(i)
0.06
0.04
0.02

Figure 8.1(b)

this will usually be the case, in general the question of how large n need be before
the approximation is “good” depends on the distribution of theXi. If the astronomer
is concerned about this point and wants to take no chances, he can still solve his
problem by using Chebyshev’s inequality. Since

E

⎡
⎣ n∑
i=1

Xi

n

⎤
⎦ = d Var

⎛
⎝ n∑
i=1

Xi

n

⎞
⎠ = 4

n

Chebyshev’s inequality yields

P

⎧⎪⎨
⎪⎩
∣∣∣∣∣∣
n∑
i=1

Xi

n
− d

∣∣∣∣∣∣ > .5

⎫⎪⎬
⎪⎭ …

4
n(.5)2

= 16
n

Hence, if he makes n = 16/.05 = 320 observations, he can be 95 percent certain that
his estimate will be accurate to within .5 light-year. .

Example
3b

The number of students who enroll in a psychology course is a Poisson random vari-
able with mean 100. The professor in charge of the course has decided that if the
number enrolling is 120 or more, he will teach the course in two separate sections,
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Central Limit Theorem

Enter the probabilities and the number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

P0 .25
P1 .15
P2 .1
P3 .2
P4 .3

n = 25

Start

Quit

Mean = 53.75
Variance = 63.1875

1000
i

0.00

0.05

p(i)

0.04
0.03
0.02
0.01

80604020

Figure 8.1(c)

whereas if fewer than 120 students enroll, he will teach all of the students together
in a single section. What is the probability that the professor will have to teach two
sections?

Solution The exact solution

e−100
q∑

i=120

(100)i

i!

does not readily yield a numerical answer. However, by recalling that a Poisson
random variable with mean 100 is the sum of 100 independent Poisson random vari-
ables, each with mean 1, we can make use of the central limit theorem to obtain an
approximate solution. IfX denotes the number of students who enroll in the course,
we have

P{X Ú 120} = P{X Ú 119.5} (the continuity correction)

= P

{
X − 100√

100
Ú

119.5 − 100√
100

}
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Central Limit Theorem

Enter the probabilities and the number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

P0 .25
P1 .15
P2 .1
P3 .2
P4 .3

n = 100

Start

Quit

Mean = 215.
Variance = 252.75

4000
i

0.000

0.030

p(i)

300200100

0.025
0.020
0.015
0.010
0.005

Figure 8.1(d)

L 1 − �(1.95)

L .0256

where we have used the fact that the variance of a Poisson random variable is equal
to its mean. .

Example
3c

If 10 fair dice are rolled, find the approximate probability that the sum obtained is
between 30 and 40, inclusive.

Solution Let Xi denote the value of the ith die, i = 1, 2, . . . , 10. Since

E(Xi) = 7
2
, Var(Xi) = E[X2

i ] − (E[Xi])2 = 35
12

,

the central limit theorem yields
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P{29.5 … X … 40.5} = P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
29.5 − 35√

350
12

…
X − 35√

350
12

…
40.5 − 35√

350
12

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

L 2�(1.0184) − 1

L .692 .

Example
3d

Let Xi, i = 1, . . . , 10, be independent random variables, each uniformly distributed

over (0, 1). Calculate an approximation to P

{
10∑
i=1

Xi > 6

}
.

Solution Since E[Xi] = 1
2 and Var(Xi) = 1

12 , we have, by the central limit theorem,

P

⎧⎨
⎩

10∑
1

Xi > 6

⎫⎬
⎭ = P

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

10∑
1

Xi − 5

√
10
(

1
12

) >
6 − 5√
10
(

1
12

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

L 1 − �(
√
1.2)

L .1367

Hence,
10∑
i=1

Xi will be greater than 6 only 14 percent of the time. .

Example
3e

An instructor has 50 exams that will be graded in sequence. The times required to
grade the 50 exams are independent, with a common distribution that has mean
20 minutes and standard deviation 4 minutes. Approximate the probability that the
instructor will grade at least 25 of the exams in the first 450 minutes of work.

Solution If we let Xi be the time that it takes to grade exam i, then

X =
25∑
i=1

Xi

is the time it takes to grade the first 25 exams. Because the instructor will grade at
least 25 exams in the first 450 minutes of work if the time it takes to grade the first 25
exams is less than or equal to 450, we see that the desired probability is P{X … 450}.
To approximate this probability, we use the central limit theorem. Now,

E[X] =
25∑
i=1

E[Xi] = 25(20) = 500

and

Var(X) =
25∑
i=1

Var(Xi) = 25(16) = 400
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Consequently, with Z being a standard normal random variable, we have

P{X … 450} = P

{
X − 500√

400
…

450 − 500√
400

}

L P{Z … −2.5}
= P{Z Ú 2.5}
= 1 − �(2.5) L .006 .

Central limit theorems also exist when the Xi are independent, but not neces-
sarily identically distributed random variables. One version, by no means the most
general, is as follows.

Theorem
3.2

Central limit theorem for independent random variables

Let X1,X2, . . . be a sequence of independent random variables having respective
means and variances μi = E[Xi], σ 2

i = Var(Xi). If (a) the Xi are uniformly

bounded—that is, if for someM,P{|Xi| < M}=1 for all i, and (b)
q∑
i=1

σ 2
i =q—then

P

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

(Xi − μi)

√√√√ n∑
i=1

σ 2
i

… a

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

→�(a) as n→q

Historical note

Pierre-Simon, Marquis de Laplace (1749–1827)
The central limit theorem was originally stated and proven by the French math-
ematician Pierre-Simon, Marquis de Laplace, who came to the theorem from
his observations that errors of measurement (which can usually be regarded
as being the sum of a large number of tiny forces) tend to be normally dis-
tributed. Laplace, who was also a famous astronomer (and indeed was called
“the Newton of France”), was one of the great early contributors to both prob-
ability and statistics. Laplace was also a popularizer of the uses of probability
in everyday life. He strongly believed in its importance, as is indicated by the
following quotations taken from his published book Analytical Theory of Prob-
ability: “We see that the theory of probability is at bottom only common sense
reduced to calculation; it makes us appreciate with exactitude what reasonable
minds feel by a sort of instinct, often without being able to account for it.. . . It is
remarkable that this science, which originated in the consideration of games of
chance, should become the most important object of human knowledge.. . . The
most important questions of life are, for the most part, really only problems of
probability.”

The application of the central limit theorem to show that measurement
errors are approximately normally distributed is regarded as an important con-
tribution to science. Indeed, in the seventeenth and eighteenth centuries, the
central limit theorem was often called the law of frequency of errors. Listen to
the words of Francis Galton (taken from his bookNatural Inheritance, published
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in 1889): “I know of scarcely anything so apt to impress the imagination as the
wonderful form of cosmic order expressed by the ‘Law of Frequency of Error.’
The Law would have been personified by the Greeks and deified, if they had
known of it. It reigns with serenity and in complete self-effacement amidst the
wildest confusion. The huger the mob and the greater the apparent anarchy, the
more perfect is its sway. It is the supreme law of unreason.”

8.4 The Strong Law of Large Numbers
The strong law of large numbers is probably the best-known result in probability
theory. It states that the average of a sequence of independent random variables
having a common distribution will, with probability 1, converge to the mean of that
distribution.

Theorem
4.1

The strong law of large numbers

LetX1,X2, . . . be a sequence of independent and identically distributed random vari-
ables, each having a finite mean μ = E[Xi]. Then, with probability 1,

X1 + X2 + · · · + Xn

n
→μ as n→q†

As an application of the strong law of large numbers, suppose that a sequence
of independent trials of some experiment is performed. Let E be a fixed event of the
experiment, and denote by P(E) the probability that E occurs on any particular trial.
Letting

Xi =
{
1 if E occurs on the ith trial
0 if E does not occur on the ith trial

we have, by the strong law of large numbers, that with probability 1,

X1 + · · · + Xn

n
→E[X] = P(E) (4.1)

Since X1 + · · · + Xn represents the number of times that the event E occurs in the
first n trials, we may interpret Equation (4.1) as stating that with probability 1, the
limiting proportion of time that the event E occurs is just P(E).

Although the theorem can be proven without this assumption, our proof of the
strong law of large numbers will assume that the random variables Xi have a finite
fourth moment. That is, we will suppose that E[X4

i ] = K < q.

Proof of the Strong Law of Large Numbers: To begin, assume that μ, the mean

of the Xi, is equal to 0. Let Sn =
n∑
i=1

Xi and consider

E[S4n] = E[(X1 + · · · + Xn)(X1 + · · · + Xn)

* (X1 + · · · + Xn)(X1 + · · · + Xn)]

†That is, the strong law of large numbers states that

P{ lim
n→q

(X1 + · · · + Xn)/n = μ} = 1
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Expanding the right side of the preceding equation results in terms of the form

X4
i , X3

i Xj, X2
i X

2
j , X2

i XjXk, and XiXjXkXl

where i, j, k, and l are all different. Because all the Xi have mean 0, it follows by
independence that

E[X3
i Xj] = E[X3

i ]E[Xj] = 0

E[X2
i XjXk] = E[X2

i ]E[Xj]E[Xk] = 0

E[XiXjXkXl] = 0

Now, for a given pair i and j, there will be

(
4
2

)
= 6 terms in the expansion that will

equal X2
i X

2
j . Hence, upon expanding the preceding product and taking expectations

term by term, it follows that

E[S4n] = nE[X4
i ] + 6

(
n
2

)
E[X2

i X
2
j ]

= nK + 3n(n − 1)E[X2
i ]E[X

2
j ]

where we have once again made use of the independence assumption. Now, since

0 … Var(X2
i ) = E[X4

i ] − (E[X2
i ])

2

we have
(E[X2

i ])
2 … E[X4

i ] = K

Therefore, from the preceding, we obtain

E[S4n] … nK + 3n(n − 1)K

which implies that

E

[
S4n
n4

]
…

K
n3

+ 3K
n2

Therefore,

E

⎡
⎣ q∑
n=1

S4n
n4

⎤
⎦ =

q∑
n=1

E

[
S4n
n4

]
< q

But the preceding implies that with probability 1,
q∑
n=1

S4n/n
4 < q. (For if there is a

positive probability that the sum is infinite, then its expected value is infinite.) But
the convergence of a series implies that its nth term goes to 0; so we can conclude
that with probability 1,

lim
n→q

S4n
n4

= 0

But if S4n/n
4 = (Sn/n)4 goes to 0, then so must Sn/n; hence, we have proven that with

probability 1,
Sn
n

→ 0 as n→q
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When μ, the mean of the Xi, is not equal to 0, we can apply the preceding argu-
ment to the random variables Xi − μ to obtain that with probability 1,

lim
n→q

n∑
i=1

(Xi − μ)

n
= 0

or, equivalently,

lim
n→q

n∑
i=1

Xi

n
= μ

which proves the result.
Figure 8.2 illustrates the strong law by giving the results of a simulation of n inde-

pendent random variables having a specified probability mass function. The averages
of the n variables are given when (a) n = 100, (b) n = 1000, and (c) n = 10, 000.

Many students are initially confused about the difference between the weak and
the strong laws of large numbers. The weak law of large numbers states that for any
specified large value n∗, (X1 + · · · + Xn∗)/n∗ is likely to be near μ. However, it does
not say that (X1 + · · · + Xn)/n is bound to stay near μ for all values of n larger than
n∗. Thus, it leaves open the possibility that large values of |(X1 + · · · + Xn)/n − μ|
can occur infinitely often (though at infrequent intervals). The strong law shows that
this cannot occur. In particular, it implies that, with probability 1, for any positive
value ε,

Figure 8.2(a)
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Figure 8.2(b)∣∣∣∣∣∣
n∑
1

Xi

n
− μ

∣∣∣∣∣∣
will be greater than ε only a finite number of times.

The strong law of large numbers was originally proven, in the special case of
Bernoulli random variables, by the Frenchmathematician Borel. The general form of
the strong law presented in Theorem 4.1 was proven by the Russian mathematician
A. N. Kolmogorov.

8.5 Other Inequalities and a Poisson Limit Result
We are sometimes confronted with situations in which we are interested in obtain-
ing an upper bound for a probability of the form P{X − μ Ú a}, where a is some
positive value and when only the mean μ = E[X] and variance σ 2 = Var(X) of the
distribution ofX are known. Of course, sinceX − μ Ú a > 0 implies that |X − μ| Ú a,
it follows from Chebyshev’s inequality that

P{X − μ Ú a} … P{|X − μ| Ú a} …
σ 2

a2
when a > 0
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Figure 8.2(c)

However, as the following proposition shows, it turns out that we can do better.

Proposition
5.1

One-sided Chebyshev inequality

If X is a random variable with mean 0 and finite variance σ 2, then, for any a > 0,

P{X Ú a} …
σ 2

σ 2 + a2

Proof Let b > 0 and note that

X Ú a is equivalent to X + b Ú a + b

Hence,
P{X Ú a} = P{X + b Ú a + b}

… P{(X + b)2 Ú (a + b)2}
where the inequality is obtained by noting that since a + b > 0,X + b Ú a + b
implies that (X + b)2 Ú (a + b)2. Upon applying Markov’s inequality, the
preceding yields that

P{X Ú a} …
E[(X + b)2]

(a + b)2
= σ 2 + b2

(a + b)2

Letting b = σ 2/a [which is easily seen to be the value of b that minimizes
(σ 2 + b2)/(a + b)2] gives the desired result.
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Example
5a

If the number of items produced in a factory during a week is a random variable
with mean 100 and variance 400, compute an upper bound on the probability that
this week’s production will be at least 120.

Solution It follows from the one-sided Chebyshev inequality that

P{X Ú 120} = P{X − 100 Ú 20} …
400

400 + (20)2
= 1

2

Hence, the probability that this week’s production will be 120 or more is at most 1
2 .

If we attempted to obtain a bound by applying Markov’s inequality, then we
would have obtained

P{X Ú 120} …
E(X)

120
= 5

6

which is a far weaker bound than the preceding one. .

Suppose now thatX has mean μ and variance σ 2. Since bothX − μ and μ − X
have mean 0 and variance σ 2, it follows from the one-sided Chebyshev inequality
that, for a > 0,

P{X − μ Ú a} …
σ 2

σ 2 + a2

and

P{μ − X Ú a} …
σ 2

σ 2 + a2

Thus, we have the following corollary.

Corollary
5.1

If E[X] = μ and Var(X) = σ 2, then, for a > 0,

P{X Ú μ + a} …
σ 2

σ 2 + a2

P{X … μ − a} …
σ 2

σ 2 + a2

Example
5b

A set of 200 people consisting of 100 men and 100 women is randomly divided into
100 pairs of 2 each. Give an upper bound to the probability that at most 30 of these
pairs will consist of a man and a woman.

Solution Number the men arbitrarily from 1 to 100, and for i = 1, 2, . . . 100, let

Xi =
{
1 if man i is paired with a woman
0 otherwise

Then X, the number of man–woman pairs, can be expressed as

X =
100∑
i=1

Xi

Because man i is equally likely to be paired with any of the other 199 people, of
which 100 are women, we have

E[Xi] = P{Xi = 1} = 100
199
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Similarly, for i Z j,

E[XiXj] = P{Xi = 1,Xj = 1}
= P{Xi = 1}P{Xj = 1|Xi = 1} = 100

199
99
197

where P{Xj = 1|Xi = 1} = 99/197, since, given that man i is paired with a woman,
man j is equally likely to be paired with any of the remaining 197 people, of which 99
are women. Hence, we obtain

E[X] =
100∑
i=1

E[Xi]

= (100)
100
199

L 50.25

Var(X) =
100∑
i=1

Var(Xi) + 2
∑
i<j

∑
Cov(Xi,Xj)

= 100
100
199

99
199

+ 2

(
100
2

)[
100
199

99
197

−
(
100
199

)2]

L 25.126

The Chebyshev inequality then yields

P{X … 30} … P{|X − 50.25| Ú 20.25} …
25.126

(20.25)2
L .061

Thus, there are fewer than 6 chances in 100 that fewer than 30menwill be paired with
women. However, we can improve on this bound by using the one-sided Chebyshev
inequality, which yields

P{X … 30} = P{X … 50.25 − 20.25}
…

25.126
25.126 + (20.25)2

L .058 .

When the moment generating function of the random variable X is known, we
can obtain even more effective bounds on P{X Ú a}. Let

M(t) = E[etX ]

be the moment generating function of the random variable X. Then, for t > 0,

P{X Ú a} = P{etX Ú eta}
… E[etX ]e−ta by Markov’s inequality

Similarly, for t < 0,

P{X … a} = P{etX Ú eta}
… E[etX ]e−ta

Thus, we have the following inequalities, known as Chernoff bounds.
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Proposition
5.2

Chernoff bounds

P{X Ú a} … e−taM(t) for all t > 0

P{X … a} … e−taM(t) for all t < 0

Since the Chernoff bounds hold for all t in either the positive or negative quadrant,
we obtain the best bound on P{X Ú a} by using the t that minimizes e−taM(t).

Example
5c

Chernoff bounds for the standard normal random variable

If Z is a standard normal random variable, then its moment generating function is
M(t) = et

2/2, so the Chernoff bound on P{Z Ú a} is given by

P{Z Ú a} … e−taet
2/2 for all t > 0

Now the value of t, t > 0, that minimizes et
2/2−ta is the value that minimizes t2/2 − ta,

which is t = a. Thus, for a > 0, we have

P{Z Ú a} … e−a
2/2

Similarly, we can show that, for a < 0,

P{Z … a} … e−a
2/2 .

Example
5d

Chernoff bounds for the Poisson random variable

If X is a Poisson random variable with parameter λ, then its moment generating
function isM(t) = eλ(et−1). Hence, the Chernoff bound on P{X Ú i} is

P{X Ú i} … eλ(et−1)e−it t > 0

Minimizing the right side of the preceding inequality is equivalent to minimizing
λ(et − 1) − it, and calculus shows that the minimal value occurs when et = i/λ.
Provided that i/λ > 1, this minimizing value of t will be positive. Therefore, assuming
that i > λ and letting et = i/λ in the Chernoff bound yields

P{X Ú i} … eλ(i/λ−1)
(

λ

i

)i

or, equivalently,

P{X Ú i} …
e−λ(eλ)i

ii
.

Example
5e

Consider a gambler who is equally likely to either win or lose 1 unit on every play,
independently of his past results. That is, if Xi is the gambler’s winnings on the ith
play, then the Xi are independent and

P{Xi = 1} = P{Xi = −1} = 1
2
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Let Sn =
n∑
i=1

Xi denote the gambler’s winnings after n plays. We will use the Chernoff

bound on P{Sn Ú a}. To start, note that the moment generating function of Xi is

E[etX ] = et + e−t

2

Now, using the McLaurin expansions of et and e−t, we see that

et + e−t = 1 + t + t2

2!
+ t3

3!
+ · · · +

(
1 − t + t2

2!
− t3

3!
+ · · ·

)

= 2

{
1 + t2

2!
+ t4

4!
+ · · ·

}

= 2
q∑
n=0

t2n

(2n)!

… 2
q∑
n=0

(t2/2)n

n!
since (2n)! Ú n!2n

= 2et
2/2

Therefore,
E[etX ] Ú et

2/2

Since the moment generating function of the sum of independent random variables
is the product of their moment generating functions, we have

E[etSn ] = (E[etX ])n

… ent
2/2

Using the preceding result along with the Chernoff bound gives

P{Sn Ú a} … e−taent
2/2 t > 0

The value of t that minimizes the right side of the preceding is the value that min-
imizes nt2/2 − ta, and this value is t = a/n. Supposing that a > 0 (so that the
minimizing t is positive) and letting t = a/n in the preceding inequality yields

P{Sn Ú a} … e−a
2/2n a > 0

This latter inequality yields, for example,

P{S10 Ú 6} … e−36/20 L .1653

whereas the exact probability is

P{S10 Ú 6} = P{gambler wins at least 8 of the first 10 games}

=

(
10
8

)
+
(
10
9

)
+
(
10
10

)

210
= 56

1024
L .0547 .
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The next inequality is one having to do with expectations rather than probabili-
ties. Before stating it, we need the following definition.

Definition
A twice-differentiable real-valued function f (x) is said to be convex if f ′′(x) Ú 0
for all x; similarly, it is said to be concave if f ′′(x) … 0.

Some examples of convex functions are f (x) = x2, f (x) = eax, and f (x) = −x1/n
for x Ú 0. If f (x) is convex, then g(x) = −f (x) is concave, and vice versa.

Proposition
5.3

Jensen’s inequality

If f (x) is a convex function, then

E[ f (X)] Ú f (E[X])

provided that the expectations exist and are finite.

Proof Expanding f (x) in a Taylor’s series expansion about μ = E[X] yields

f (x) = f (μ) + f ′(μ)(x − μ) + f ′′(ξ)(x − μ)2

2

where ξ is some value between x and μ. Since f ′′(ξ) Ú 0, we obtain

f (x) Ú f (μ) + f ′(μ)(x − μ)

Hence,
f (X) Ú f (μ) + f ′(μ)(X − μ)

Taking expectations yields

E[ f (X)] Ú f (μ) + f ′(μ)E[X − μ] = f (μ)

and the inequality is established.

Example
5f

An investor is faced with the following choices: Either she can invest all of her money
in a risky proposition that would lead to a random return X that has mean m, or
she can put the money into a risk-free venture that will lead to a return of m with
probability 1. Suppose that her decision will be made on the basis of maximizing
the expected value of u(R), where R is her return and u is her utility function. By
Jensen’s inequality, it follows that if u is a concave function, then E[u(X)] … u(m), so
the risk-free alternative is preferable, whereas if u is convex, then E[u(X)] Ú u(m),
so the risky investment alternative would be preferred. .

The following proposition, which implies that the covariance of two increasing
functions of a random variable is nonnegative, is quite useful.

Proposition
5.4

If f and g are increasing functions then

E[f (X)g(X)] Ú E[f (X)]E[g(X)]

Proof To prove the preceding inequality suppose thatX andY are independent with
the same distribution and that f and g are both increasing functions. Then, because f
and g are increasing, f (X) − f (Y) and g(X) − g(Y)will both be positive whenX > Y
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and will both be negative whenX < Y. Consequently, their product is positive. That
is, (

f (X) − f (Y)
) (
g(X) − g(Y)

)
Ú 0

Taking expectations gives

E[
(
f (X) − f (Y)

) (
g(X) − g(Y)

)
] Ú 0

Multiplying through and taking expectations term by term yields

E[f (X)g(X)] − E[f (X)g(Y)] − E[f (Y)g(X)] + E[f (Y)g(Y)] Ú 0 (5.1)

Now,

E[f (X)g(Y)] = E[f (X)]E[g(Y)] by independence of X and Y

= E[f (X)]E[g(X)] because X and Y have the same distribution

Similarly, E[f (Y)g(X)] = E[f (Y)]E[g(X)] = E[f (X)]E[g(X)], and E[f (Y)g(Y)] =
E[f (X)g(X)]. Hence, from Equation (5.1) we obtain that

2E[f (X)g(X)] − 2E[f (X)]E[g(X)] Ú 0

which proves the result.

Example
5g

Suppose there are m days in a year, and that each person is independently born
on day r with probability pr, r = 1, . . . ,m,

∑m
r=1 pr = 1. Let Ai,j be the event that

persons i and j are born on the same day. In Example 5c of Chapter 4, we showed that
the information that persons 1 and 2 have the same birthday makes it more likely
that persons 1 and 3 have the same birthday. After proving this result, we argued
that it was intuitive because if “popular days” are the ones whose probabilities are
relatively large, then knowing that 1 and 2 share the same birthday makes it more
likely (than when we have no information) that the birthday of person 1 is a popular
day and that makes it more likely that person 3 will have the same birthday as does
1. To give credence to this intuition, suppose that the days are renumbered so that pr
is an increasing function of r. That is, renumber the days so that day 1 is the day with
lowest birthday probability, day 2 is the day with second lowest birthday probability,
and so on. Letting X be the birthday of person 1, then because the higher numbered
days are the most popular our intuitive explanation would lead us to believe that
the expected value of X should increase upon the information that 1 and 2 have the
same birthday. That is, it should be that E[X|A1,2] Ú E[X]. To verify this, let Y be
the birthday of person 2, and note that

P(X = r|A1,2) = P(X = r,A1,2)

P(A1,2)

= P(X = r,Y = r)∑
r P(X = r,Y = r)

= p2r∑
r p

2
r

Hence,

E[X|A1,2] =
∑
r

r P(X = r|A1,2) =
∑

r r p
2
r∑

r p
2
r
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Because E[X] =∑r rP(X = r) =∑r r pr, we need show that

∑
r

r p2r Ú

⎛
⎝∑

r

r pr

⎞
⎠
⎛
⎝∑

r

p2r

⎞
⎠

But

E[XpX ] =
∑
r

r prP(X = r) =
∑
r

r p2r , E[pX ] =
∑
r

p2r , E[X] =
∑

r pr

and thus we must show that

E[XpX ] Ú E[pX ]E[X]

which follows from Proposition 5.4 because both f (X) = X and g(X) = pX are
increasing functions of X. .

When f (x) is an increasing and g(x) is a decreasing function, then it is a simple con-
sequence of Proposition 5.4 that

E[f (X)g(X)] … E[f (X)]E[g(X)]

We leave the verification of the preceding as an exercise.
Our final example of this section deals with a Poisson limit result.

Example
5h

A Poisson Limit Result

Consider a sequence of independent trials, with each trial being a success with proba-
bility p. If we letY be the number of trials until there have been a total of r successes,
then Y is a negative binomial random variable with

E[Y] = r
p
, Var(Y) = r(1 − p)

p2

Thus, when p = r
r+λ

, we have that

E[Y] = r + λ , Var(Y) = λ(r + λ)

r

Now, when r is large, Var(Y) L λ. Thus, as r becomes larger, the mean of Y grows
proportionately with r, while the variance converges to λ. Hence, we might expect
that when r is large Y will be close to its mean value of r + λ. Now, if we let X
be the number of failures that result in those Y trials - that is, X is the number of
failures before there have been a total of r successes - then when r is large, because
Y is approximately r + λ, it would seem that X would approximately have the dis-
tribution of the number of failures in r + λ independent trials when each trial is a
failure with probability 1 − p = λ

λ+r . But by the Poisson limit of the binomial, such a
random variable should approximately be Poisson with mean (r + λ) λ

λ+r = λ. That
is, as r→q, we might expect that the distribution ofX converges to that of a Poisson
random variable with mean λ. We now show that this is indeed true.

Because X = k if the rth success occurs on trial r + k, we see that

P(X = k) = P(Y = r + k)

=
(
r + k − 1
r − 1

)
pr(1 − p)k
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When p = r
r+λ

,

(
r + k − 1
r − 1

)
(1 − p)k =

(
r + k − 1

k

)
(

λ

r + λ
)k

= (r + k − 1)(r + k − 2) · · · r
k!

λk

(r + λ)k

= λk

k!
r + k − 1
r + λ

r + k − 2
r + λ

· · · r
r + λ

→ λk

k!
as r→q

Also,
1
pr

= (
r + λ

r
)r = (1 + λ

r
)r→eλ as r→q

Thus, we see that

P(X = k)→e−λ λk

k!
as r→q .

8.6 Bounding the Error Probability When Approximating a Sum of
Independent Bernoulli Random Variables by a Poisson Random
Variable

In this section, we establish bounds on how closely a sum of independent Bernoulli
random variables is approximated by a Poisson random variable with the samemean.
Suppose that we want to approximate the sum of independent Bernoulli random
variables with respective means p1,p2, . . . ,pn. Starting with a sequence Y1, . . . ,Yn
of independent Poisson random variables, with Yi having mean pi, we will construct
a sequence of independent Bernoulli random variables X1, . . . ,Xn with parameters
p1, . . . ,pn such that

P{Xi Z Yi} … p2i for each i

Letting X =
n∑
i=1

Xi and Y =
n∑
i=1

Yi, we will use the preceding inequality to con-

clude that

P{X Z Y} …
n∑
i=1

p2i

Finally, we will show that the preceding inequality implies that for any set of real
numbers A,

|P{X ∈ A} − P{Y ∈ A}| …
n∑
i=1

p2i

Since X is the sum of independent Bernoulli random variables and Y is a Poisson
random variable, the latter inequality will yield the desired bound.

To show how the task is accomplished, let Yi, i = 1, . . . ,n be independent Pois-
son random variables with respective means pi. Now let U1, . . . ,Un be independent
random variables that are also independent of the Yi’s and are such that
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Ui =
{
0 with probability (1 − pi)epi
1 with probability 1 − (1 − pi)epi

This definition implicitly makes use of the inequality

e−p Ú 1 − p

in assuming that (1 − pi)epi … 1.
Next, define the random variables Xi, i = 1, . . . ,n, by

Xi =
{
0 if Yi = Ui = 0
1 otherwise

Note that

P{Xi = 0} = P{Yi = 0}P{Ui = 0} = e−pi(1 − pi)epi = 1 − pi
P{Xi = 1} = 1 − P{Xi = 0} = pi

Now, if Xi is equal to 0, then so must Yi equal 0 (by the definition of Xi). Therefore,

P{Xi Z Yi} = P{Xi = 1,Yi Z 1}
= P{Yi = 0,Xi = 1} + P{Yi > 1}
= P{Yi = 0,Ui = 1} + P{Yi > 1}
= e−pi [1 − (1 − pi)epi] + 1 − e−pi − pie−pi

= pi − pie−pi

… p2i (since 1 − e−p … p)

Now let X =
n∑
i=1

Xi and Y =
n∑
i=1

Yi, and note that X is the sum of independent

Bernoulli random variables andY is Poisson with the expected valueE[Y] = E[X] =
n∑
i=1

pi. Note also that the inequality X Z Y implies that Xi Z Yi for some i, so

P{X Z Y} … P{Xi Z Yi for some i}

…
n∑
i=1

P{Xi Z Yi} (Boole’s inequality)

…
n∑
i=1

p2i

For any event B, let IB, the indicator variable for the event B, be defined by

IB =
{
1 if B occurs
0 otherwise

Note that for any set of real numbers A,

I{X∈A} − I{Y∈A} … I{XZY}

The preceding inequality follows from the fact that since an indicator variable is
either 0 or 1, the left-hand side equals 1 only when I{X∈A} = 1 and I{Y∈A} = 0. But
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this would imply that X ∈ A and Y �∈ A, which means that X Z Y, so the right side
would also equal 1. Upon taking expectations of the preceding inequality, we obtain

P{X ∈ A} − P{Y ∈ A} … P{X Z Y}
By reversing X and Y, we obtain, in the same manner,

P{Y ∈ A} − P{X ∈ A} … P{X Z Y}
Thus, we can conclude that

|P{X ∈ A} − P{Y ∈ A}| … P{X Z Y}

Therefore, we have proven that with λ =
n∑
i=1

pi,

∣∣∣∣∣∣∣P
⎧⎨
⎩

n∑
i=1

Xi ∈ A

⎫⎬
⎭ −

∑
i∈A

e−λλi

i!

∣∣∣∣∣∣∣ …
n∑
i=1

p2i

Remark When all the pi are equal to p, X is a binomial random variable. Hence,
the preceding inequality shows that, for any set of nonnegative integers A,∣∣∣∣∣∣

∑
i∈A

(
n
i

)
pi(1 − p)n−i −

∑
i∈A

e−np(np)i

i!

∣∣∣∣∣∣ … np2 .

8.7 The Lorenz Curve
The Lorenz curve L(p), 0 < p < 1 is a plot of the fraction of the total income of
a population that is earned by the 100p percent of the population having the lowest
incomes. For instance, L(.5) is the fraction of total income earned by the lower half
of income earners. Suppose that the earnings of the members of a population can be
represented by the quantities X1,X2, . . . where the Xi are independent and identi-
cally distributed positive continuous random variables with distribution function F.
Now, let X be a random variable with distribution F, and define ξp to be that value
such that

P{X … ξp} = F(ξp) = p

The quantity ξp is called the 100p percentile of the distribution F. With I(x) defined
by

I(x) =
{
1, if x < ξp
0, if x Ú ξp

it follows that I(X1)+...+I(Xn)
n is the fraction of the first n members of the population

that have incomes less than ξp. Upon letting n→q, and applying the strong law
of large numbers to the independent and identically distributed random variables
I(Xk), k Ú 1, the preceding yields that, with probability 1,

lim
n→q

I(X1) + . . . + I(Xn)

n
= E[I(X)] = F(ξp) = p
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That is, with probability 1, p is the fraction of the population whose income is less
than ξp. The fraction of the total income earned by those earning less than ξp can be
obtained by noting that the fraction of the total income of the first nmembers of the
population that is from those earning less that ξp is

X1I(X1)+...+XnI(Xn)
X1+...+Xn

. Letting n→q,
yields that

L(p) = lim
n→q

X1I(X1)+...+XnI(Xn)
n

X1+...+Xn
n

= E[X I(X)]
E[X]

,

where the final equality was obtained by applying the strong law of large numbers to
both the numerator and denominator of the preceding fraction. Letting μ = E[X],
and noting that

E[X I(X)] =
∫ q

0
x I(x) f (x)dx =

∫ ξp

0
x f (x)dx

shows that

L(p) = E[X I(X)]
E[X]

= 1
E[X]

∫ ξp

0
x f (x)dx (7.1)

Example
7a

If F is the distribution function of a uniform random variable on (a,b), where 0 …
a < b, then

F(x) =
∫ x

a

1
b − a

dx = x − a
b − a

, a < x < b

Because p = F(ξp) = ξp−a
b−a , we see that ξp = a + (b − a)p. Because the mean of a

uniform (a,b) random variable is (a + b)/2, we obtain from Equation (7.1) that

L(p) = 2
a + b

∫ a+(b−a)p

a

x
b − a

dx

= (a + (b − a)p)2 − a2

(a + b)(b − a)

= 2pa + (b − a)p2

a + b

When a = 0, the preceding gives that L(p) = p2. Also, letting a converge to b gives
that

lim
a→b

L(p) = p

which can be interpreted as saying thatL(p) = pwhen all members of the population
earn the same amount. .

A useful formula for L(p) can be obtained by letting

J(x) = 1 − I(X) =
{
0, if x < ξp
1, if x Ú ξp

and then noting that

1 − L(p) = E[X] − E[X I(X)]
E[X]

= E[X J(X)]
E[X]
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Conditioning on J(X) gives that

E[X J(X)] = E[X J(X)|J(X) = 1]P(J(X) = 1) + E[X J(X)|J(X) = 0]P(J(X) = 0)

= E[X|X Ú ξp] (1 − p)

which shows that

1 − L(p) = E[X|X Ú ξp] (1 − p)
E[X]

(7.2)

Example
7b

If F is the distribution function of an exponential random variable with mean 1, then
p = F(ξp) = 1 − e−ξp , and so ξp = − log(1 − p). Because the lack of memory
property of the exponential implies that E[X|X > ξp] = ξp + E[X] = ξp + 1,
we obtain from Equation (7.2) that the fraction of all income that is earned by those
earning at least ξp is

1 − L(p) = (ξp + 1)(1 − p)

= (1 − log(1 − p))(1 − p)

= 1 − p − (1 − p) log(1 − p)

giving that
L(p) = p + (1 − p) log(1 − p) .

Example
7c

If F is the distribution function of a Pareto random variable with parameters λ > 0,
a > 0, then F(x) = 1 − aλ

xλ , x Ú a. Consequently, p = F(ξp) = 1 − aλ

ξλ
p
, giving that

ξλ
p = aλ

1 − p
or ξp = a(1 − p)−1/λ

When λ > 1, it was shown in Section 5.6.5 thatE[X] = λ a
λ−1 . In addition, it was shown

in Example 5f of Chapter 6 that if X is Pareto with parameters λ, a then the condi-
tional distribution of X given that it exceeds x0, x0 > a, is Pareto with parameters λ,
x0. Consequently, when λ > 1, E[X|X > ξp] = λ ξp

λ−1 , and thus Equation (7.2) yields
that

1 − L(p) = E[X|X > ξp] (1 − p)
E[X]

= ξp(1 − p)
a

= (1 − p)1−1/λ

or
L(p) = 1 − (1 − p)

λ−1
λ .

We now prove some properties of the function L(p).

Proposition
7.1

L(p) is an increasing, convex function of p, such that L(p) … p.

Proof That L(p) increases in p follows from its definition. To prove convexity we
must show that L(p + a) − L(p) increases in p for p … 1 − a; or equivalently, that
the proportion of the total income earned by those with incomes between ξp and
ξp+a increases in p. But this follows because, for all p, the same proportion of the
population – namely, 100a percent - earns between ξp and ξp+a, and ξp increases in
p. (For instance, 10 percent of the population have incomes in the 40 to 50 percentile
and 10 percent of the population have incomes in the 45 to 55 percentile, and as
the incomes earned by the 5 percent of the population in the 40 to 45 percentile
are all less than those earned by the 5 percent of the population in the 50 to 55
percentile, it follows that the proportion of the population income of those in the
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40 to 50 percentile is less than the proportion of those in the 45 to 55 percentile.)
To establish that L(p) … p, we see from Equation (7.1) that we need to show that
E[X I(X)] … E[X]p. But this follows because I(x), equal to 1 if x < ξp and to 0
if x Ú ξp, is a decreasing and h(x) = x is an increasing function of x, which from
Proposition 5.4 implies that E[X I(X)] … E[X]E[I(X)] = E[X]p.

Because L(p) … p with L(p) = p when all members of the population have
the same income, the area of the “hump”, equal to the region between the straight
line and the Lorenz curve (the shaded region in Figure 8.3), is an indication of the
inequality of incomes.

0 0.2 0.4 0.6 0.8 1

5/60

12/60

21/60

38/60

1

p

L
(p

)

B

Figure 8.3 The Hump of the Lorenz Curve

A measure of the inequality of the incomes is given by the Gini index, which is
the ratio of the area of the hump divided by the area under the straight lineL(p) = p.
Because the area of a triangle is one half its base times its height, it follows that the
Gini index, call itG, is given by

G = 1/2 − ∫ 1
0 L(p)dp

1/2
= 1 − 2

∫ 1

0
L(p)dp

Example
7d

Find the Gini index when F, the distribution of earnings for an individual in the
population, is uniform on (0, 1), and when F is exponential with rate λ.

Solution When F is the uniform (0,b) distribution, then as shown in Example 7a,
L(p) = p2, giving that G = 1 − 2/3 = 1/3. When F is exponential, then from
Example 7b

∫ 1

0
L(p)dp =

∫ 1

0

(
p + (1 − p) log(1 − p)

)
dp

= 1
2

+
∫ 1

0
x log(x)dx
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Integrating by parts with u = log x, dv = x dx shows that∫ 1

0
x log(x)dx = −

∫ 1

0

x
2
dx = −1/4

where L’hopital’s rule was used to obtain that limx→0 x2 log(x) = 0. Hence,
∫ 1
0 L(p)

dp = 1/4, giving that G = 1/2. Because larger values of G indicate more inequality,
we see that the inequality is larger when the distribution is exponential than when it
is uniform. .

Summary

Two useful probability bounds are provided by theMarkov
and Chebyshev inequalities. The Markov inequality is con-
cerned with nonnegative random variables and says that
for X of that type,

P{X Ú a} …
E[X]
a

for every positive value a. The Chebyshev inequality,
which is a simple consequence of the Markov inequality,
states that ifX has meanμ and variance σ 2, then, for every
positive k,

P{|X − μ| Ú kσ } …
1
k2

The two most important theoretical results in probability
are the central limit theorem and the strong law of large
numbers. Both are concerned with a sequence of inde-
pendent and identically distributed random variables. The
central limit theorem says that if the random variables
have a finite mean μ and a finite variance σ 2, then the

distribution of the sum of the first n of them is, for large
n, approximately that of a normal random variable with
mean nμ and variance nσ 2. That is, if Xi, i Ú 1, is the
sequence, then the central limit theorem states that for
every real number a,

lim
n→q

P

{
X1 + · · · +Xn − nμ

σ
√
n

… a

}
= 1√

2π

∫ a

−q
e−x

2/2 dx

The strong law of large numbers requires only that the ran-
dom variables in the sequence have a finite mean μ. It
states that with probability 1, the average of the first n of
them will converge to μ as n goes to infinity. This implies
that if A is any specified event of an experiment for which
independent replications are performed, then the limiting
proportion of experiments whose outcomes are in A will,
with probability 1, equal P(A). Therefore, if we accept the
interpretation that “with probability 1” means “with cer-
tainty,” we obtain the theoretical justification for the long-
run relative frequency interpretation of probabilities.

Problems

8.1. Suppose that X is a random variable with mean and
variance both equal to 20. What can be said about P{0 <

X < 40}?
8.2. From past experience, a professor knows that the test
score of a student taking her final examination is a random
variable with mean 75.
(a)Give an upper bound for the probability that a stu-
dent’s test score will exceed 85.
(b) Suppose, in addition, that the professor knows that
the variance of a student’s test score is equal to 25. What
can be said about the probability that a student will score
between 65 and 85?
(c) How many students would have to take the examina-
tion to ensure with probability at least .9 that the class
average would be within 5 of 75? Do not use the central
limit theorem.

8.3.Use the central limit theorem to solve part (c) of Prob-
lem 8.2.

8.4. Let X1, . . . ,X20 be independent Poisson random vari-
ables with mean 1.
(a)Use the Markov inequality to obtain a bound on

P

⎧⎨
⎩

20∑
1

Xi > 15

⎫⎬
⎭

(b)Use the central limit theorem to approximate

P

⎧⎨
⎩

20∑
1

Xi > 15

⎫⎬
⎭ .
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8.5. Fifty numbers are rounded off to the nearest inte-
ger and then summed. If the individual round-off errors
are uniformly distributed over (−.5, .5), approximate the
probability that the resultant sum differs from the exact
sum by more than 3.

8.6.A die is continually rolled until the total sum of all
rolls exceeds 300. Approximate the probability that at
least 80 rolls are necessary.

8.7.A person has 100 light bulbs whose lifetimes are inde-
pendent exponentials with mean 5 hours. If the bulbs are
used one at a time, with a failed bulb being replaced imme-
diately by a new one, approximate the probability that
there is still a working bulb after 525 hours.

8.8. In Problem 8.7, suppose that it takes a random time,
uniformly distributed over (0, .5), to replace a failed bulb.
Approximate the probability that all bulbs have failed by
time 550.

8.9. Xi is a sequence of random variables, each with mean
1.3, so that T = ∑n

i=1Xi has a gamma distribution with
variance 1.69n. It is desired that the values of T lie within
;.5 of its true mean with probability at least .9. How large
a value of n should be taken?

8.10.An elevator has a capacity of carrying 8 people.
Safety standards permit only one instance of overload per
1000 trips. Passengers using the lift are assumed to have
normally distributed weights with mean 80.1 kg and a stan-
dard deviation of 15.6. Find an approximation to the value
of this maximum.

8.11.Many people believe that the daily change of price of
a company’s stock on the stock market is a random vari-
able with mean 0 and variance σ 2. That is, if Yn represents
the price of the stock on the nth day, then

Yn = Yn−1 + Xn n Ú 1

where X1,X2, . . . are independent and identically dis-
tributed random variables with mean 0 and variance σ 2.
Suppose that the stock’s price today is 100. If σ 2 = 1, what
can you say about the probability that the stock’s price will
exceed 105 after 10 days?

8.12. The performance of a six-member relay athletics
team is being modeled by a sports research team. The
slowest runner is put first and the fastest last. Training
methods used ensure that the time taken by each run-
ner for running 1/6 of one lap is uniformly distributed.
Average time for the ith member has been estimated at
20 − ((i − 1))/2 seconds. The absolute minimum that
applies to all runners is 15 seconds. Estimate an upper
bound for the probability that the team will cover one
whole lap in less than two minutes.

8.13. Student scores on exams given by a certain instructor
have mean 74 and standard deviation 14. This instructor is
about to give two exams, one to a class of size 25 and the
other to a class of size 64.
(a)Approximate the probability that the average test
score in the class of size 25 exceeds 80.
(b) Repeat part (a) for the class of size 64.
(c)Approximate the probability that the average test
score in the larger class exceeds that of the other class by
more than 2.2 points.
(d)Approximate the probability that the average test
score in the smaller class exceeds that of the other class
by more than 2.2 points.

8.14.A certain component is critical to the operation of an
electrical system and must be replaced immediately upon
failure. If the mean lifetime of this type of component is
100 hours and its standard deviation is 30 hours, howmany
of these components must be in stock so that the probabil-
ity that the system is in continual operation for the next
2000 hours is at least .95?

8.15.An insurance company has 10,000 automobile pol-
icyholders. The expected yearly claim per policyholder is
$240, with a standard deviation of $800. Approximate the
probability that the total yearly claim exceeds $2.7 million.

8.16.Apple producers Wenzu and Xandru enroll in a con-
test. Records show that Wenzu’s apples weigh 94.1 grams
on average, with a standard deviation of 17.1, while Xan-
dru’s apples weigh 90.4 grams, with a standard deviation
of 21.9. Judges randomly pick samples of sizes 35 and 20
from Wenzu’s and Xandru’s produces, respectively. The
winner will be the person whose sample’s average weight
will exceed 100 grams. If there is a tie, the two contestants
will share the prize.
(a)Wenzu claims that the selection process is unfair as the
relative sample sizes give Xandru’s sample a greater prob-
ability of exceeding 100 grams. Work out the two proba-
bilities and compare.
(b)Work out the probability that Xandru’s sample mean
exceeds that of Wenzu’s.

8.17. Redo Example 5b under the assumption that the
number of man–woman pairs is (approximately) normally
distributed. Does this seem like a reasonable supposition?

8.18. Repeat part (a) of Problem 8.2 when it is known
that the variance of a student’s test score is equal
to 25.

8.19. Each player of a soccer team has to shoot a ball at
a distant target until three successive hits are registered.
Let p denote the probability of a player hitting the tar-
get. Obtain an upper bound for the probability of a player
needing more than 10 attempts to successfully hit the tar-
get thrice. Let p be estimated at .8 for skillful players.
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These players claim that they will not exceed 10 attempts
more than 10% of the time. Is their claim in line with the
bound obtained?

8.20.A random variableX takes values within the interval
[0,K] with E[X] = 100. Show that
(a) E[Xa] … Ka for all a Ú 0;
(b) E[X .5] … 10;

(c) 0 Ú E
[
cos
(

π
2 + πX

K

)]
Ú cos

(
π
2 + 100π

K

)
;

(d) E[1 − log(1 + X)] Ú 1 − log 101.

8.21. Let X be a positive random variable. Show that

(a) logE[eX ] Ú eE[logX];
(b) E[log

√
X] … 1

2 logE[X].

8.22.Would the results of Example 5f change if the
investor were allowed to divide her money and invest the
fraction α, 0 < α < 1, in the risky proposition and invest
the remainder in the risk-free venture? Her return for such
a split investment would be R = αX + (1 − α)m.

8.23. Let X be a Poisson random variable with mean 20.
(a)Use the Markov inequality to obtain an upper
bound on

p = P{X Ú 26}

(b)Use the one-sided Chebyshev inequality to obtain an
upper bound on p.
(c) Use the Chernoff bound to obtain an upper bound
on p.
(d)Approximate p by making use of the central limit the-
orem.
(e)Determine p by running an appropriate program.

8.24. If X is a Poisson random variable with mean 100,
then P{X > 120} is approximately

(a) .02,
(b) .5 or
(c) .3?

8.25. Suppose that the distribution of earnings of members
of a population is Pareto with parameters λ, a > 0, where
λ = log(5)

log(4) L 1.161.

(a) Show that the top 20 percent of earners earn 80 percent
of the total earnings.
(b) Show that the top 20 percent of the top 20 percent of
earners earn 80 percent of the earnings of the top 20 per-
cent of earners. (That is, show that the top 4 percent of all
earners earn 80 percent of the total earnings of the top 20
percent of all earners.)

8.26. Let X be a positive random variable. Show that
E[

√
Xe−X ] …

√
E[X]E[e−X ].

8.27. If L(p) is the Lorenz curve associated with the ran-
dom variable X, show that L(p) = E[X|X<ξp]p

E[X] .

8.28. Suppose that L(p) is the Lorenz curve associated
with the random variable X and that c > 0.
(a) Find the Lorenz curve associated with the random vari-
able cX.
(b) Show that Lc(p), the Lorenz curve associated with the
random variable X + c, is

Lc(p) = L(p)E[X] + pc
E[X] + c

(c) Verify that the answer to part (b) is in accordance with
the formulas given in Example 7a in the case thatX is uni-
form over the interval (0, b − a) and c = a.

Theoretical Exercises

8.1. If X has variance σ 2, then σ , the positive square root
of the variance, is called the standard deviation. If X has
mean μ and standard deviation σ , show that

P{|X − μ| Ú kσ } …
1
k2

8.2. If X has mean μ and standard deviation σ , the ratio
r K |μ|/σ is called the measurement signal-to-noise ratio
of X. The idea is that X can be expressed as X = μ +
(X − μ), with μ representing the signal and X − μ the
noise. If we define |(X − μ)/μ| K D as the relative devia-
tion of X from its signal (or mean) μ, show that for α > 0,

P{D … α} Ú 1 − 1
r2α2

8.3. Compute the measurement signal-to-noise ratio—
that is, |μ|/σ , where μ = E[X] and σ 2 = Var(X)—of the
following random variables:
(a) Poisson with mean λ;
(b) binomial with parameters n and p;
(c) geometric with mean 1/p;
(d) uniform over (a, b);
(e) exponential with mean 1/λ;
(f) normal with parameters μ, σ 2.

8.4. Let Zn,n Ú 1, be a sequence of random variables
and c a constant such that for each ε > 0,P{|Zn − c| >

ε}→ 0 as n→q. Show that for any bounded continuous
function g,
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E[g(Zn)]→ g(c) as n→q

8.5. Let f (x) be a continuous function defined for 0 … x … 1.
Consider the functions

Bn(x) =
n∑

k=0

f
(
k
n

)(
n
k

)
xk(1 − x)n−k

(called Bernstein polynomials) and prove that

lim
n→q

Bn(x) = f (x)

Hint: Let X1,X2, . . . be independent Bernoulli random
variables with mean x. Show that

Bn(x) = E

[
f
(
X1 + · · · + Xn

n

)]

and then use Theoretical Exercise 8.4.

Since it can be shown that the convergence of Bn(x) to
f (x) is uniform in x, the preceding reasoning provides a
probabilistic proof of the famous Weierstrass theorem of
analysis, which states that any continuous function on a
closed interval can be approximated arbitrarily closely by
a polynomial.

8.6. (a) Let X be a discrete random variable whose pos-
sible values are 1, 2, . . . . If P{X = k} is nonincreasing in
k = 1, 2, . . . , prove that

P{X = k} … 2
E[X]
k2

(b) Let X be a nonnegative continuous random variable
having a nonincreasing density function. Show that

f (x) …
2E[X]
x2

for all x > 0

8.7. Suppose that a fair die is rolled 100 times. Let Xi be
the value obtained on the ith roll. Compute an approxima-
tion for

P

⎧⎨
⎩

100∏
1

Xi … a100

⎫⎬
⎭ 1 < a < 6

8.8. Explain why a gamma random variable with parame-
ters (t, λ) has an approximately normal distribution when t
is large.

8.9. Suppose a fair coin is tossed 1000 times. If the first 100
tosses all result in heads, what proportion of heads would
you expect on the final 900 tosses? Comment on the state-
ment “The strong law of large numbers swamps but does
not compensate.”

8.10. If X is a Poisson random variable with mean λ, show
that for i < λ,

P{X … i} …
e−λ(eλ)i

ii

8.11. Let X be a binomial random variable with parame-
ters n and p. Show that, for i > np,

(a)minimum
t>0

e−tiE[etX ] occurs when t is such that et =
iq

(n−i)p , where q = 1 − p.

(b) P{X Ú i} … nn

ii(n−i)n−i p
i(1 − p)n−i.

8.12. The Chernoff bound on a standard normal ran-
dom variable Z gives P{Z > a} … e−a2/2, a > 0. Show,
by considering the density of Z, that the right side of
the inequality can be reduced by the factor 2. That is,
show that

P{Z > a} …
1
2
e−a

2/2 a > 0

8.13. Show that ifE[X] < 0 and θ Z 0 is such thatE[eθX ] =
1, then θ > 0.

8.14. Let X1,X2, . . . be a sequence of independent and
identically distributed random variables with distribution
F, having a finite mean and variance. Whereas the cen-
tral limit theorem states that the distribution of

∑n
i=1Xi

approaches a normal distribution as n goes to infinity, it
gives us no information about how large n need be before
the normal becomes a good approximation. Whereas in
most applications, the approximation yields good results
whenever n Ú 20, and oftentimes for much smaller values
of n, how large a value of n is needed depends on the dis-
tribution of Xi. Give an example of a distribution F such
that the distribution of

∑100
i=1Xi is not close to a normal

distribution.
Hint: Think Poisson.

8.15. If f and g are density functions that are positive
over the same region, then the Kullback-Leiber diver-
gence from density f to density g is defined by

KL(f , g) = Ef [log
(
f (X)

g(X)

)
] =

∫
log
(
f (x)
g(x)

)
f (x)dx

where the notation Ef [h(X)] is used to indicate that X has
density function f .

(a) Show that KL(f , f ) = 0

(b)Use Jensen’s inequality and the identity log( f (x)g(x) ) =
− log( g(x)f (x) ), to show that KL(f , g) Ú 0
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8.16. LetL(p) be the Lorenz curve associated with the dis-
tribution function F, with density function f and mean μ.

(a) Show that

L(p) = 1
μ

∫ p

0
F−1(y)dy

Hint: Starting withL(p) = 1
μ

∫ ξp
0 xf (x)dx, make the change

of variable y = F(x).
(b)Use part (a) to show that L(p) is convex.

(c) Show that

∫ 1

0
L(p)dp = 1

μ

∫ q

0
(1 − F(x))xf (x)dx

(d) Verify the preceding formula by using it to compute
the Gini index of a uniform (0, 1) and an exponential ran-
dom variable, comparing your answers with those given in
Example 7d.

Self-Test Problems and Exercises

8.1. The number of automobiles sold weekly at a certain
dealership is a random variable with expected value 16.
Give an upper bound to the probability that
(a) next week’s sales exceed 18;
(b) next week’s sales exceed 25.

8.2. Suppose in Problem 8.14 that the variance of the num-
ber of automobiles sold weekly is 9.
(a)Give a lower bound to the probability that next week’s
sales are between 10 and 22, inclusively.
(b)Give an upper bound to the probability that next
week’s sales exceed 18.

8.3. If

E[X] = 75 E[Y] = 75 Var(X) = 10
Var(Y) = 12 Cov(X,Y) = −3

give an upper bound to
(a) P{|X − Y| > 15};
(b) P{X > Y + 15};
(c) P{Y > X + 15}.
8.4. Suppose that the number of units produced daily at
factory A is a random variable with mean 20 and stan-
dard deviation 3 and the number produced at factory B
is a random variable with mean 18 and standard deviation
6. Assuming independence, derive an upper bound for the
probability that more units are produced today at factory
B than at factory A.

8.5. The amount of time that a certain type of component
functions before failing is a random variable with proba-
bility density function

f (x) = 2x 0 < x < 1

Once the component fails, it is immediately replaced by
another one of the same type. If we let Xi denote the life-

time of the ith component to be put in use, then Sn =
n∑
i=1

Xi

represents the time of the nth failure. The long-term rate

at which failures occur, call it r, is defined by

r = lim
n→q

n
Sn

Assuming that the random variables Xi, i Ú 1, are inde-
pendent, determine r.

8.6. In Self-Test Problem 8.5, how many components
would one need to have on hand to be approximately 90
percent certain that the stock would last at least 35 days?

8.7. The servicing of amachine requires two separate steps,
with the time needed for the first step being an exponen-
tial random variable with mean .2 hour and the time for
the second step being an independent exponential ran-
dom variable with mean .3 hour. If a repair person has 20
machines to service, approximate the probability that all
the work can be completed in 8 hours.

8.8.On each bet, a gambler loses 1 with probability .7,
loses 2 with probability .2, or wins 10 with probability .1.
Approximate the probability that the gambler will be los-
ing after his first 100 bets.

8.9.Determine t so that the probability that the repair
person in Self-Test Problem 8.7 finishes the 20 jobs within
time t is approximately equal to .95.

8.10.A tobacco company claims that the amount of nico-
tine in one of its cigarettes is a random variable with mean
2.2 mg and standard deviation .3 mg. However, the aver-
age nicotine content of 100 randomly chosen cigarettes
was 3.1 mg. Approximate the probability that the average
would have been as high as or higher than 3.1 if the com-
pany’s claims were true.

8.11. Each of the batteries in a collection of 40 batteries
is equally likely to be either a type A or a type B battery.
Type A batteries last for an amount of time that has mean
50 and standard deviation 15; type B batteries last for an
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amount of time that has mean 30 and standard deviation
6.
(a)Approximate the probability that the total life of all 40
batteries exceeds 1700.
(b) Suppose it is known that 20 of the batteries are type A
and 20 are type B. Now approximate the probability that
the total life of all 40 batteries exceeds 1700.

8.12.A clinic is equally likely to have 2, 3, or 4 doctors
volunteer for service on a given day. No matter how many
volunteer doctors there are on a given day, the numbers
of patients seen by these doctors are independent Poisson
random variables with mean 30. Let X denote the number
of patients seen in the clinic on a given day.
(a) Find E[X].
(b) Find Var(X).
(c) Use a table of the standard normal probability distri-
bution to approximate P{X > 65}.

8.13. The strong law of large numbers states that with
probability 1, the successive arithmetic averages of a

sequence of independent and identically distributed ran-
dom variables converge to their common mean μ. What
do the successive geometric averages converge to? That is,
what is

lim
n→q

⎛
⎝ n∏
i=1

Xi

⎞
⎠

1/n

8.14. Each new book donated to a library must be pro-
cessed. Suppose that the time it takes to process a book
has mean 10 minutes and standard deviation 3 minutes. If
a librarian has 40 books to process,
(a) approximate the probability that it will take more than
420 minutes to process all these books;
(b) approximate the probability that at least 25 books will
be processed in the first 240 minutes.
What assumptions have you made?

8.15. Prove Chebyshev’s sum inequality, which says that
if a1 Ú a2 Ú · · · Ú an and b1 Ú b2 Ú · · · Ú bn, then
n
∑n

i=1 aibi Ú (
∑n

i=1 ai)(
∑n

i=1 bi).



Chapter

ADDITIONAL TOPICS

IN PROBABILITY 9
Contents

9.1 The Poisson Process
9.2 Markov Chains

9.3 Surprise, Uncertainty, and Entropy
9.4 Coding Theory and Entropy

9.1 The Poisson Process
Before we define a Poisson process, let us recall that a function f is said to be o(h) if

lim
h→0

f (h)
h

= 0.

That is, f is o(h) if, for small values of h, f (h) is small even in relation to h. Suppose
now that “events” are occurring at random points at time, and let N(t) denote the
number of events that occur in the time interval [0, t]. The collection of random
variables {N(t), t Ú 0} is said to be a Poisson process having rate λ, λ > 0, if

(i) N(0) = 0.
(ii) The numbers of events that occur in disjoint time intervals are independent.
(iii) The distribution of the number of events that occur in a given interval depends

only on the length of that interval and not on its location.
(iv) P{N(h) = 1} = λh + o(h).
(v) P{N(h) Ú 2} = o(h).

Thus, condition (i) states that the process begins at time 0. Condition (ii), the
independent increment assumption, states, for instance, that the number of events
that occur by time t [that is, N(t)] is independent of the number of events that occur
between t and t + s [that is,N(t + s) − N(t)]. Condition (iii), the stationary increment
assumption, states that the probability distribution of N(t + s) − N(t) is the same
for all values of t.

In Chapter 4, we presented an argument, based on the Poisson distribution being
a limiting version of the binomial distribution, that the foregoing conditions imply
that N(t) has a Poisson distribution with mean λt. We will now obtain this result by
a different method.

442
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Lemma
1.1

For a Poisson process with rate λ,

P{N(t) = 0} = e−λt

Proof Let P0(t) = P{N(t) = 0}. We derive a differential equation for P0(t) in the
following manner:

P0(t + h) = P{N(t + h) = 0}
= P{N(t) = 0,N(t + h) − N(t) = 0}
= P{N(t) = 0}P{N(t + h) − N(t) = 0}
= P0(t)[1 − λh + o(h)]

where the final two equations follow from condition (ii) plus the fact that conditions
(iv) and (v) imply that P{N(h) = 0} = 1 − λh + o(h). Hence,

P0(t + h) − P0(t)
h

= −λP0(t) + o(h)
h

Now, letting h→0, we obtain
P′
0(t) = −λP0(t)

or, equivalently,
P′
0(t)

P0(t)
= −λ

which implies, by integration, that

logP0(t) = −λt + c

or
P0(t) = Ke−λt

Since P0(0) = P{N(0) = 0} = 1, we arrive at

P0(t) = e−λt

For a Poisson process, let T1 denote the time the first event occurs. Further, for
n > 1, let Tn denote the time elapsed between the (n − 1) and the nth event. The
sequence {Tn,n = 1, 2, . . .} is called the sequence of interarrival times. For instance, if
T1 = 5 and T2 = 10, then the first event of the Poisson process would have occurred
at time 5 and the second at time 15.

We shall now determine the distribution of the Tn. To do so, we first note that
the event {T1 > t} takes place if and only if no events of the Poisson process occur
in the interval [0, t]; thus,

P{T1 > t} = P{N(t) = 0} = e−λt

Hence, T1 has an exponential distribution with mean 1/λ. Now,

P{T2 > t} = E[P{T2 > t|T1}]
However,

P{T2 > t|T1 = s} = P{0 events in (s, s + t]|T1 = s}
= P{0 events in (s, s + t]}
= e−λt
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where the last two equations followed from the assumptions about independent and
stationary increments. From the preceding, we conclude that T2 is also an exponen-
tial random variable with mean 1/λ and, furthermore, that T2 is independent of T1.
Repeating the same argument yields Proposition 1.1.

Proposition
1.1

T1,T2, . . . are independent exponential random variables, each with mean 1/λ.

Another quantity of interest is Sn, the arrival time of the nth event, also called
the waiting time until the nth event. It is easily seen that

Sn =
n∑
i=1

Ti n Ú 1

hence, from Proposition 1.1 and the results of Section 5.6.1, it follows that Sn has a
gamma distribution with parameters n and λ. That is, the probability density of Sn is
given by

fSn(x) = λe−λx (λx)n−1

(n − 1)!
x Ú 0

We are now ready to prove that N(t) is a Poisson random variable with mean λt.

Theorem
1.1

For a Poisson process with rate λ,

P{N(t) = n} = e−λt(λt)n

n!

Proof Note that the nth event of the Poisson process will occur before or at time t if
and only if the number of events that occur by t is at least n. That is,

N(t) Ú n 3 Sn … t

so

P{N(t) = n} = P{N(t) Ú n} − P{N(t) Ú n + 1}
= P{Sn … t} − P{Sn+1 … t}

=
∫ t

0
λe−λx (λx)n−1

(n − 1)!
dx −

∫ t

0
λe−λx (λx)n

n!
dx

But the integration-by-parts formula
∫
udv = uv − ∫ v du with u = e−λx and dv =

λ[(λx)n−1/(n − 1)!]dx yields∫ t

0
λe−λx (λx)n−1

(n − 1)!
dx = e−λt (λt)

n

n!
+
∫ t

0
λe−λx (λx)n

n!
dx

which completes the proof.

9.2 Markov Chains
Consider a sequence of random variables X0,X1, . . . , and suppose that the set of
possible values of these random variables is {0, 1, . . . ,M}. It will be helpful to inter-
pret Xn as being the state of some system at time n, and, in accordance with this
interpretation, we say that the system is in state i at time n if Xn = i. The sequence
of random variables is said to form aMarkov chain if, each time the system is in state
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i, there is some fixed probability—call it Pij—that the system will next be in state j.
That is, for all i0, . . . , in−1, i, j,

P{Xn+1 = j|Xn = i,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0} = Pij

The values Pij, 0 … i … M, 0 … j … N, are called the transition probabilities of the
Markov chain, and they satisfy

Pij Ú 0
M∑
j=0

Pij = 1 i = 0, 1, . . . ,M

(Why?) It is convenient to arrange the transition probabilities Pij in a square array
as follows: ∥∥∥∥∥∥∥∥∥∥∥∥

P00 P01 · · · P0M
P10 P11 · · · P1M

#
#
#

PM0 PM1 · · · PMM

∥∥∥∥∥∥∥∥∥∥∥∥
Such an array is called a matrix.

Knowledge of the transition probability matrix and of the distribution of X0
enables us, in theory, to compute all probabilities of interest. For instance, the joint
probability mass function of X0, . . . ,Xn is given by

P{Xn = in,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0}
= P{Xn= in|Xn−1 = in−1, . . . ,X0= i0}P{Xn−1 = in−1, . . . ,X0 = i0}
= Pin−1, inP{Xn−1 = in−1, . . . ,X0 = i0}

and continual repetition of this argument demonstrates that the preceding is equal to

Pin−1, inPin−2, in−1 · · ·Pi1, i2Pi0, i1P{X0 = i0}

Example
2a

Suppose that whether it rains tomorrow depends on previous weather conditions
only through whether it is raining today. Suppose further that if it is raining today,
then it will rain tomorrow with probability α, and if it is not raining today, then it will
rain tomorrow with probability β.

If we say that the system is in state 0 when it rains and state 1 when it does not,
then the preceding system is a two-state Markov chain having transition probability
matrix ∥∥∥∥∥ α 1 − α

β 1 − β

∥∥∥∥∥
That is, P00 = α = 1 − P01,P10 = β = 1 − P11. .

Example
2b

Consider a gambler who either wins 1 unit with probability p or loses 1 unit with
probability 1 − p at each play of the game. If we suppose that the gambler will quit
playing when his fortune hits either 0 orM, then the gambler’s sequence of fortunes
is a Markov chain having transition probabilities
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Pi,i+1 = p = 1 − Pi,i−1 i = 1, . . . ,M − 1

P00 = PMM = 1 .

Example
2c

The husband-and-wife physicists Paul and Tatyana Ehrenfest considered a concep-
tual model for the movement of molecules in which M molecules are distributed
among 2 urns. At each time point, one of the molecules is chosen at random and is
removed from its urn and placed in the other one. If we letXn denote the number of
molecules in the first urn immediately after the nth exchange, then {X0,X1, . . .} is a
Markov chain with transition probabilities

Pi,i+1 = M − i
M

0 … i … M

Pi,i−1 = i
M

0 … i … M

Pij = 0 if j = i or |j − i| > 1 .

Thus, for a Markov chain, Pij represents the probability that a system in state i
will enter state j at the next transition. We can also define the two-stage transition
probability P(2)

ij that a system presently in state i will be in state j after two additional
transitions. That is,

P(2)
ij = P{Xm+2 = j|Xm = i}

The P(2)
ij can be computed from the Pij as follows:

P(2)
ij = P{X2 = j|X0 = i}

=
M∑
k=0

P{X2 = j,X1 = k|X0 = i}

=
M∑
k=0

P{X2 = j|X1 = k,X0 = i}P{X1 = k|X0 = i}

=
M∑
k=0

PkjPik

In general, we define the n-stage transition probabilities, denoted as P(n)
ij , by

P(n)
ij = P{Xn+m = j|Xm = i}

Proposition 2.1, known as the Chapman–Kolmogorov equations, shows how the P(n)
ij

can be computed.

Proposition
2.1

The Chapman–Kolmogorov equations

P(n)
ij =

M∑
k=0

P(r)
ik P

(n−r)
kj for all 0 < r < n
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Proof

P(n)
ij = P{Xn = j|X0 = i}

=
∑
k

P{Xn = j,Xr = k|X0 = i}

=
∑
k

P{Xn = j|Xr = k,X0 = i}P{Xr = k|X0 = i}

=
∑
k

P(n−r)
kj P(r)

ik

Example
2d

A random walk

An example of a Markov chain having a countably infinite state space is the random
walk, which tracks a particle as it moves along a one-dimensional axis. Suppose that
at each point in time, the particle will move either one step to the right or one step
to the left with respective probabilities p and 1 − p. That is, suppose the particle’s
path follows a Markov chain with transition probabilities

Pi, i+1 = p = 1 − Pi, i−1 i = 0,;1, . . .

If the particle is at state i, then the probability that it will be at state j after n tran-
sitions is the probability that (n − i + j)/2 of these steps are to the right and
n − [(n − i + j)/2] = (n + i − j)/2 are to the left. Since each step will be to
the right, independently of the other steps, with probability p, it follows that the
preceding is just the binomial probability

Pnij =
(

n
(n − i + j)/2

)
p(n−i+j)/2(1 − p)(n+i−j)/2

where

(
n
x

)
is taken to equal 0 when x is not a nonnegative integer less than or

equal to n. The preceding formula can be rewritten as

P2n
i,i+2k =

(
2n

n + k

)
pn+k(1 − p)n−k k = 0,;1, . . . ,;n

P2n+1
i,i+2k+1 =

(
2n + 1

n + k + 1

)
pn+k+1(1 − p)n−k

k = 0,;1, . . . ,;n,−(n + 1) .

Although the P(n)
ij denote conditional probabilities, we can use them to derive

expressions for unconditional probabilities by conditioning on the initial state. For
instance,

P{Xn = j} =
∑
i

P{Xn = j|X0 = i}P{X0 = i}

=
∑
i

P(n)
ij P{X0 = i}

For a large number of Markov chains, it turns out that P(n)
ij converges, as n→q, to a

value πj that depends only on j. That is, for large values of n, the probability of being
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in state j after n transitions is approximately equal to πj, no matter what the initial
state was. It can be shown that a sufficient condition for a Markov chain to possess
this property is that for some n > 0,

P(n)
ij > 0 for all i, j = 0, 1, . . . ,M (2.1)

Markov chains that satisfy Equation (2.1) are said to be ergodic. Since Proposi-
tion 2.1 yields

P(n+1)
ij =

M∑
k=0

P(n)
ik Pkj

it follows, by letting n→q, that for ergodic chains,

πj =
M∑
k=0

πkPkj (2.2)

Furthermore, since 1 =
M∑
j=0

P(n)
ij , we also obtain, by letting n→q,

M∑
j=0

πj = 1 (2.3)

In fact, it can be shown that the πj, 0 … j … M, are the unique nonnegative solutions
of Equations (2.2) and (2.3). All this is summed up in Theorem 2.1, which we state
without proof.

Theorem
2.1

For an ergodic Markov chain,
πj = lim

n→q
P(n)
ij

exists, and the πj, 0 … j … M, are the unique nonnegative solutions of

πj =
M∑
k=0

πkPkj

M∑
j=0

πj = 1

Example
2e

Consider Example 2a, in which we assume that if it rains today, then it will rain
tomorrow with probability α, and if it does not rain today, then it will rain tomorrow
with probability β. From Theorem 2.1, it follows that the limiting probabilities π0
and π1 of rain and of no rain, respectively, are given by

π0 = απ0 + βπ1

π1 = (1 − α)π0 + (1 − β)π1

π0 + π1 = 1

which yields

π0 = β

1 + β − α
π1 = 1 − α

1 + β − α

For instance, if α = .6 and β = .3, then the limiting probability of rain on the nth day
is π0 = 3

7 . .
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The quantity πj is also equal to the long-run proportion of time that the Markov
chain is in state j, j = 0, . . . ,M. To see intuitively why this might be so, let Pj denote
the long-run proportion of time the chain is in state j. (It can be proven using the
strong law of large numbers that for an ergodic chain, such long-run proportions
exist and are constants.) Now, since the proportion of time the chain is in state k is
Pk, and since, when in state k, the chain goes to state j with probability Pkj, it follows
that the proportion of time the Markov chain is entering state j from state k is equal
to PkPkj. Summing over all k shows that Pj, the proportion of time theMarkov chain
is entering state j, satisfies

Pj =
∑
k

PkPkj

Since clearly it is also true that ∑
j

Pj = 1

it thus follows, since by Theorem 2.1 the πj, j = 0, . . . ,M are the unique solution of
the preceding, that Pj = πj, j = 0, . . . ,M. The long-run proportion interpretation of
πj is generally valid even when the chain is not ergodic.

Example
2f

Suppose in Example 2c that we are interested in the proportion of time that there
are j molecules in urn 1, j = 0, . . . ,M. By Theorem 2.1, these quantities will be the
unique solution of

π0 = π1 *
1
M

πj = πj−1 *
M − j + 1

M
+ πj+1 *

j + 1
M

j = 1, . . . ,M

πM = πM−1 *
1
M

M∑
j=0

πj = 1

However, as it is easily checked that

πj =
(
M
j

)(
1
2

)M
j = 0, . . . ,M

satisfy the preceding equations, it follows that these are the long-run proportions of
time that the Markov chain is in each of the states. (See Problem 9.11 for an expla-
nation of how one might have guessed at the foregoing solution.) .

9.3 Surprise, Uncertainty, and Entropy
Consider an event E that can occur when an experiment is performed. How sur-
prised would we be to hear that E does, in fact, occur? It seems reasonable to sup-
pose that the amount of surprise engendered by the information that E has occurred
should depend on the probability of E. For instance, if the experiment consists of
rolling a pair of dice, then we would not be too surprised to hear that E has occurred
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when E represents the event that the sum of the dice is even (and thus has proba-
bility 1

2 ), whereas we would certainly be more surprised to hear that E has occurred
when E is the event that the sum of the dice is 12 (and thus has probability 1

36 ).
In this section, we attempt to quantify the concept of surprise. To begin, let

us agree to suppose that the surprise one feels upon learning that an event E has
occurred depends only on the probability of E, and let us denote by S(p) the sur-
prise evoked by the occurrence of an event having probability p. We determine the
functional form of S(p) by first agreeing on a set of reasonable conditions that S(p)
should satisfy and then proving that these axioms require that S(p) have a specified
form. We assume throughout that S(p) is defined for all 0 < p … 1 but is not defined
for events having p = 0.

Our first condition is just a statement of the intuitive fact that there is no surprise
in hearing that an event that is sure to occur has indeed occurred.

Axiom 1

S(1) = 0

Our second condition states that the more unlikely an event is to occur, the
greater is the surprise evoked by its occurrence.

Axiom 2
S(p) is a strictly decreasing function of p; that is, if p < q, then S(p) > S(q).

The third condition is a mathematical statement of the fact that we would intui-
tively expect a small change in p to correspond to a small change in S(p).

Axiom 3
S(p) is a continuous function of p.

To motivate the final condition, consider two independent events E and F hav-
ing respective probabilities P(E) = p and P(F) = q. Since P(EF) = pq, the surprise
evoked by the information that both E and F have occurred is S(pq). Now, sup-
pose that we are told first that E has occurred and then, afterward, that F has also
occurred. Since S(p) is the surprise evoked by the occurrence of E, it follows that
S(pq) − S(p) represents the additional surprise evoked when we are informed that
F has also occurred. However, because F is independent of E, the knowledge that E
occurred does not change the probability of F; hence, the additional surprise should
just be S(q). This reasoning suggests the final condition.

Axiom 4

S(pq) = S(p) + S(q) 0 < p … 1, 0 < q … 1

We are now ready for Theorem 3.1, which yields the structure of S(p).

Theorem
3.1

If S(·) satisfies Axioms 1 through 4, then

S(p) = −C log2 p

where C is an arbitrary positive integer.

Proof It follows from Axiom 4 that

S(p2) = S(p) + S(p) = 2S(p)

and by induction that
S(pm) = mS(p) (3.1)
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Also, since, for any integral n,S(p) = S(p1/n · · ·p1/n) = n S(p1/n), it follows that

S(p1/n) = 1
n
S(p) (3.2)

Thus, from Equations (3.1) and (3.2), we obtain

S(pm/n) = mS(p1/n)

= m
n
S(p)

which is equivalent to

S(px) = xS(p) (3.3)

whenever x is a positive rational number. But by the continuity of S (Axiom 3), it
follows that Equation (3.3) is valid for all nonnegative x. (Reason this out.)

Now, for any p, 0 < p … 1, let x = − log2 p. Then p =
(
1
2

)x
, and from Equa-

tion (3.3),

S(p) = S

((
1
2

)x)
= xS

(
1
2

)
= −C log2 p

where C = S
(
1
2

)
> S(1) = 0 by Axioms 2 and 1.

It is usual to let C equal 1, in which case the surprise is said to be expressed in
units of bits (short for binary digits).

Next, consider a random variableX that must take on one of the values x1, . . . , xn
with respective probabilities p1, . . . ,pn. Since − log pi represents the surprise evoked
if X takes on the value xi,† it follows that the expected amount of surprise we shall
receive upon learning the value of X is given by

H(X) = −
n∑
i=1

pi logpi

The quantity H(X) is known in information theory as the entropy of the random
variable X. (In case one of the pi = 0, we take 0 log 0 to equal 0.) It can be shown
(and we leave it as an exercise) thatH(X) is maximized when all of the pi are equal.
(Is this intuitive?)

Since H(X) represents the average amount of surprise one receives upon
learning the value of X, it can also be interpreted as representing the amount of
uncertainty that exists as to the value of X. In fact, in information theory, H(X) is
interpreted as the average amount of information received when the value of X is
observed. Thus, the average surprise evoked byX, the uncertainty ofX, or the aver-
age amount of information yielded byX all represent the same concept viewed from
three slightly different points of view.

Now consider two random variables X and Y that take on the respective values
x1, . . . , xn and y1, . . . , ym with joint mass function

p(xi, yj) = P{X = xi,Y = yj}

†For the remainder of this chapter, we write log x for log2 x. Also, we use ln x for loge x.
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It follows that the uncertainty as to the value of the random vector (X,Y), denoted
by H(X,Y), is given by

H(X,Y) = −
∑
i

∑
j

p(xi, yj) log p(xi, yj)

Suppose now that Y is observed to equal yj. In this situation, the amount of uncer-
tainty remaining in X is given by

HY=yj(X) = −
∑
i

p(xi|yj) log p(xi|yj)

where
p(xi|yj) = P{X = xi|Y = yj}

Hence, the average amount of uncertainty that will remain in X after Y is observed
is given by

HY(X) =
∑
j

HY=yj(X)pY(yj)

where
pY(yj) = P{Y = yj}

Proposition 3.1 relatesH(X,Y) toH(Y) andHY(X). It states that the uncertainty as
to the value ofX and Y is equal to the uncertainty of Y plus the average uncertainty
remaining in X when Y is to be observed.

Proposition
3.1

H(X,Y) = H(Y) + HY(X)

Proof Using the identity p(xi, yj) = pY(yj)p(xi|yj) yields

H(X,Y) = −
∑
i

∑
j

p(xi, yj) log p(xi, yj)

= −
∑
i

∑
j

pY(yj)p(xi|yj)[log pY(yj) + logp(xi|yj)]

= −
∑
j

pY(yj) log pY(yj)
∑
i

p(xi|yj)

−
∑
j

pY(yj)
∑
i

p(xi|yj) logp(xi|yj)

= H(Y) + HY(X)

It is a fundamental result in information theory that the amount of uncertainty in
a random variable X will, on the average, decrease when a second random variable
Y is observed. Before proving this statement, we need the following lemma, whose
proof is left as an exercise.

Lemma
3.1

ln x … x − 1 x > 0

with equality only at x = 1.

Theorem
3.2 HY(X) … H(X)

with equality if and only if X and Y are independent.
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Proof

HY(X) − H(X) = −
∑
i

∑
j

p(xi|yj) log[p(xi|yj)]p(yj)

+
∑
i

∑
j

p(xi, yj) log p(xi)

=
∑
i

∑
j

p(xi, yj) log

[
p(xi)
p(xi|yj)

]

… log e
∑
i

∑
j

p(xi, yj)

[
p(xi)
p(xi|yj) − 1

]
by Lemma 3.1

= log e

⎡
⎣∑

i

∑
j

p(xi)p(yj) −
∑
i

∑
j

p(xi, yj)

⎤
⎦

= log e[1 − 1]

= 0

9.4 Coding Theory and Entropy
Suppose that the value of a discrete random vector X is to be observed at location
A and then transmitted to location B via a communication network that consists of
two signals, 0 and 1. In order to do this, it is first necessary to encode each possible
value of X in terms of a sequence of 0’s and 1’s. To avoid any ambiguity, it is usu-
ally required that no encoded sequence can be obtained from a shorter encoded
sequence by adding more terms to the shorter.

For instance, if X can take on four possible values x1, x2, x3, and x4, then one
possible coding would be

x1 % 00

x2 % 01

x3 % 10

x4 % 11

(4.1)

That is, if X = x1, then the message 00 is sent to location B, whereas if X = x2, then
01 is sent to B, and so on. A second possible coding is

x1 % 0

x2 % 10

x3 % 110

x4 % 111

(4.2)

However, a coding such as

x1 % 0

x2 % 1

x3 % 00

x4 % 01
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is not allowed because the coded sequences for x3 and x4 are both extensions of the
one for x1.

One of the objectives in devising a code is to minimize the expected number of
bits (that is, binary digits) that need to be sent from location A to location B. For
example, if

P{X = x1} = 1
2

P{X = x2} = 1
4

P{X = x3} = 1
8

P{X = x4} = 1
8

then the code given by Equation (4.2) would expect to send 1
2 (1) + 1

4 (2) + 1
8 (3) +

1
8 (3) = 1.75 bits, whereas the code given by Equation (4.1) would expect to send 2
bits. Hence, for the preceding set of probabilities, the encoding in Equation (4.2) is
more efficient than that in Equation (4.1).

The preceding discussion raises the following question: For a given random vec-
tor X, what is themaximum efficiency achievable by an encoding scheme? The answer
is that for any coding, the average number of bits that will be sent is at least as large as
the entropy of X. To prove this result, known in information theory as the noiseless
coding theorem, we shall need Lemma 4.1.

Lemma
4.1

Let X take on the possible values x1, . . . , xN . Then, in order to be able to encode
the values of X in binary sequences (none of which is an extension of another) of
respective lengths n1, . . . ,nN , it is necessary and sufficient that

N∑
i=1

(
1
2

)ni
… 1

Proof For a fixed set of N positive integers n1, . . . ,nN , let wj denote the number of
the ni that are equal to j, j = 1, . . . . For there to be a coding that assigns ni bits to the
value xi, i = 1, . . . ,N, it is clearly necessary that w1 … 2. Furthermore, because no
binary sequence is allowed to be an extension of any other, we must have w2 … 22 −
2w1. (This follows because 22 is the number of binary sequences of length 2, whereas
2w1 is the number of sequences that are extensions of the w1 binary sequence of
length 1.) In general, the same reasoning shows that we must have

wn … 2n − w12n−1 − w22n−2 − · · · − wn−12 (4.3)

for n = 1, . . . . In fact, a little thought should convince the reader that these condi-
tions are not only necessary, but also sufficient for a code to exist that assigns ni bits
to xi, i = 1, . . . ,N.

Rewriting inequality (4.3) as

wn + wn−12 + wn−222 + · · · + w12n−1 … 2n n = 1, . . .

and dividing by 2n yields the necessary and sufficient conditions, namely,

n∑
j=1

wj

(
1
2

)j
… 1 for all n (4.4)
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However, because
n∑
j=1

wj
(
1
2

)j
is increasing in n, it follows that Equation (4.4) will be

true if and only if
q∑
j=1

wj

(
1
2

)j
… 1

The result is now established, since, by the definition of wj as the number of ni that
equal j, it follows that

q∑
j=1

wj

(
1
2

)j
=

N∑
i=1

(
1
2

)ni

We are now ready to prove Theorem 4.1.

Theorem
4.1

The noiseless coding theorem

Let X take on the values x1, . . . , xN with respective probabilities p(x1), . . . ,p(xN).
Then, for any coding of X that assigns ni bits to xi,

N∑
i=1

nip(xi) Ú H(X) = −
N∑
i=1

p(xi) logp(xi)

Proof Let Pi = p(xi), qi = 2−ni
/ N∑

j=1
2−nj , i = 1, . . . ,N. Then

−
N∑
i=1

Pi log
(
Pi
qi

)
= − log e

N∑
i=1

Pi ln
(
Pi
qi

)

= log e
N∑
i=1

Pi ln
(
qi
Pi

)

… log e
N∑
i=1

Pi

(
qi
Pi

− 1
)

by Lemma 3.1

= 0 since
N∑
i=1

Pi =
N∑
i=1

qi = 1

Hence,

−
N∑
i=1

Pi logPi … −
N∑
i=1

Pi logqi

=
N∑
i=1

niPi + log

⎛
⎜⎝ N∑
j=1

2−nj

⎞
⎟⎠

…
N∑
i=1

niPi by Lemma 4.1
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Example
4a

Consider a random variable X with probability mass function

p(x1) = 1
2

p(x2) = 1
4

p(x3) = p(x4) = 1
8

Since

H(X) = −
[
1
2
log

1
2

+ 1
4
log

1
4

+ 1
4
log

1
8

]

= 1
2

+ 2
4

+ 3
4

= 1.75

it follows from Theorem 4.1 that there is no more efficient coding scheme than

x1 % 0

x2 % 10

x3 % 110

x4 % 111 .

For most random vectors, there does not exist a coding for which the average
number of bits sent attains the lower bound H(X). However, it is always possible to
devise a code such that the average number of bits is within 1 ofH(X). To prove this,
define ni to be the integer satisfying

− log p(xi) … ni < − log p(xi) + 1

Now,
N∑
i=1

2−ni …
N∑
i=1

2logp(xi) =
N∑
i=1

p(xi) = 1

so, by Lemma 4.1, we can associate sequences of bits having lengths ni with the
xi, i = 1, . . . ,N. The average length of such a sequence,

L =
N∑
i=1

ni p(xi)

satisfies

−
N∑
i=1

p(xi) log p(xi) … L < −
N∑
i=1

p(xi) log p(xi) + 1

or
H(X) … L < H(X) + 1

Example
4b

Suppose that 10 independent tosses of a coin having probability p of coming up
heads are made at location A and the result is to be transmitted to location B. The
outcome of this experiment is a random vector X = (X1, . . . ,X10), where Xi is 1 or
0 according to whether or not the outcome of the ith toss is heads. By the results of
this section, it follows that L, the average number of bits transmitted by any code,
satisfies

H(X) … L
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with
L < H(X) + 1

for at least one code. Now, since the Xi are independent, it follows from Proposi-
tion 3.1 and Theorem 3.2 that

H(X) = H(X1, . . . ,X10) =
10∑
i=1

H(Xi)

= −10[p log p + (1 − p) log(1 − p)]

If p = 1
2 , thenH(X) = 10, and it follows that we can do no better than just encoding

X by its actual value. For example, if the first 5 tosses come up heads and the last 5
tails, then the message 1111100000 is transmitted to location B.

However, if p Z 1
2 , we can often do better by using a different coding scheme.

For instance, if p = 1
4 , then

H(X) = −10
(
1
4
log

1
4

+ 3
4
log

3
4

)
= 8.11

Thus, there is an encoding for which the average length of the encoded message is
no greater than 9.11.

One simple coding that is more efficient in this case than the identity code is
to break up (X1, . . . ,X10) into 5 pairs of 2 random variables each and then, for i =
1, 3, 5, 7, 9, code each of the pairs as follows:

Xi = 0,Xi+1 = 0 % 0

Xi = 0,Xi+1 = 1 % 10

Xi = 1,Xi+1 = 0 % 110

Xi = 1,Xi+1 = 1 % 111

The total message transmitted is the successive encodings of the preceding pairs.
For instance, if the outcome TTTHHTTTTH is observed, then the message

010110010 is sent. The average number of bits needed to transmit the message with
this code is

5

[
1
(
3
4

)2
+ 2

(
1
4

)(
3
4

)
+ 3

(
1
4

)(
3
4

)
+ 3

(
1
4

)2]
= 135

16

L 8.44 .

Up to this point, we have assumed that the message sent at locationA is received
without error at location B. However, there are always certain errors that can occur
because of random disturbances along the communications channel. Such random
disturbances might lead, for example, to the message 00101101, sent at A, being
received at B in the form 01101101.

Let us suppose that a bit transmitted at location A will be correctly received at
location B with probability p, independently from bit to bit. Such a communications
system is called a binary symmetric channel. Suppose further that p = .8 and we
want to transmit a message consisting of a large number of bits from A to B. Thus,
direct transmission of the message will result in an error probability of .20 for each
bit, which is quite high. One way to reduce this probability of bit error would be to
transmit each bit 3 times and then decode by majority rule. That is, we could use the
following scheme:
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Encode Decode Encode Decode

0→000

000
001
010
100

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

→0 1→111

111
110
101
011

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

→1

Note that if no more than one error occurs in transmission, then the bit will be
correctly decoded. Hence, the probability of bit error is reduced to

(.2)3 + 3(.2)2(.8) = .104

a considerable improvement. In fact, it is clear that we can make the probability of
bit error as small as we want by repeating the bit many times and then decoding by
majority rule. For instance, the scheme

Encode Decode

0→string of 17 0’s By majority rule
1→string of 17 1’s

will reduce the probability of bit error to below .01.
The problem with this type of encoding scheme is that although it decreases the

probability of bit error, it does so at the cost of also decreasing the effective rate of
bits sent per signal. (See Table 9.1.)

In fact, at this point it may appear inevitable to the reader that decreasing the
probability of bit error to 0 always results in also decreasing the effective rate at
which bits are transmitted per signal to 0. However, a remarkable result of informa-
tion theory known as the noisy coding theorem and due to Claude Shannon demon-
strates that this is not the case. We now state this result as Theorem 4.2.

Theorem
4.2

The noisy coding theorem

There is a number C such that for any value R that is less than C, and for any ε > 0,
there exists a coding–decoding scheme that transmits at an average rate of R bits
sent per signal and with an error (per bit) probability of less than ε. The largest such
value of C—call it C∗† —is called the channel capacity, and for the binary symmetric
channel,

C∗ = 1 + p log p + (1 − p) log(1 − p)

Table 9.1 Repetition of Bits Encoding Scheme.

Probability of error Rate
(per bit) (bits transmitted per signal)

.20 1

.10 .33
(
= 1

3

)
.01 .06

(
= 1

17

)

†For an entropy interpretation of C∗, see Theoretical Exercise 9.18.
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Summary

The Poisson process having rate λ is a collection of ran-
dom variables {N(t), t Ú 0} that relate to an underlying
process of randomly occurring events. For instance, N(t)
represents the number of events that occur between times
0 and t. The defining features of the Poisson process are as
follows:

(i) The number of events that occur in disjoint time
intervals are independent.

(ii) The distribution of the number of events that occur
in an interval depends only on the length of the inter-
val.

(iii) Events occur one at a time.
(iv) Events occur at rate λ.

It can be shown thatN(t) is a Poisson random variable with
mean λt. In addition, if Ti, i Ú 1, are the times between the
successive events, then they are independent exponential
random variables with rate λ.

A sequence of random variables Xn,n Ú 0, each of
which takes on one of the values 0, . . . ,M, is said to be
a Markov chain with transition probabilities Pi, j if, for all
n, i0, . . . , in, i, j,

P{Xn+1 = j|Xn = i,Xn−1 = in−1, . . . ,X0 = i0} = Pi, j

If we interpret Xn as the state of some process at time
n, then a Markov chain is a sequence of successive states
of a process that has the property that whenever it enters
state i, then, independently of all past states, the next state

is j with probability Pi,j, for all states i and j. For many
Markov chains, the probability of being in state j at time n
converges to a limiting value that does not depend on the
initial state. If we let πj, j = 0, . . . ,M, denote these limit-
ing probabilities, then they are the unique solution of the
equations

πj =
M∑
i=0

πiPi, j j = 0, . . . ,M

M∑
j=1

πj = 1

Moreover, πj is equal to the long-run proportion of time
that the chain is in state j.

Let X be a random variable that takes on one of
n possible values according to the set of probabilities
{p1, . . . ,pn}. The quantity

H(X) = −
n∑
i=1

pi log2(pi)

is called the entropy of X. It can be interpreted as rep-
resenting either the average amount of uncertainty that
exists regarding the value of X or the average informa-
tion received when X is observed. Entropy has important
implications for binary codings of X.

Problems and Theoretical Exercises

9.1. Customers arrive at a bank at a Poisson rate λ. Sup-
pose that two customers arrived during the first hour.
What is the probability that

(a) both arrived during the first 20 minutes?
(b) at least one arrived during the first 20 minutes?

9.2. Cars cross a certain point in the highway in accor-
dance with a Poisson process with rate λ = 3 per minute. If
Al runs blindly across the highway, what is the probability
that he will be uninjured if the amount of time that it takes
him to cross the road is s seconds? (Assume that if he is on
the highway when a car passes by, then he will be injured.)
Do this exercise for s = 2, 5, 10, 20.

9.3. Suppose that in Problem 9.2, Al is agile enough to
escape from a single car, but if he encounters two or more
cars while attempting to cross the road, then he is injured.
What is the probability that he will be unhurt if it takes him
s seconds to cross? Do this exercise for s = 5, 10, 20, 30.

9.4. Suppose that 3 white and 3 black balls are distributed
in two urns in such a way that each urn contains 3 balls.
We say that the system is in state i if the first urn contains i
white balls, i = 0, 1, 2, 3. At each stage, 1 ball is drawn from
each urn and the ball drawn from the first urn is placed
in the second, and conversely with the ball from the sec-
ond urn. Let Xn denote the state of the system after the
nth stage, and compute the transition probabilities of the
Markov chain {Xn,n Ú 0}.

9.5. Consider Example 2a. If there is a 50–50 chance of
rain today, compute the probability that it will rain 3 days
from now if α = .7 and β = .3.

9.6. Compute the limiting probabilities for the model of
Problem 9.4.

9.7.A transition probability matrix is said to be doubly
stochastic if
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M∑
i=0

Pij = 1

for all states j = 0, 1, . . . ,M. Show that such a Markov
chain is ergodic, then

∏
j = 1/(M + 1), j = 0, 1, . . . ,M.

9.8.On any given day, Buffy is either cheerful (c), so-so
(s), or gloomy (g). If she is cheerful today, then she will be
c, s, or g tomorrow with respective probabilities .7, .2, and
.1. If she is so-so today, then she will be c, s, or g tomorrow
with respective probabilities .4, .3, and .3. If she is gloomy
today, then Buffy will be c, s, or g tomorrow with prob-
abilities .2, .4, and .4. What proportion of time is Buffy
cheerful?

9.9. Suppose that whether it rains tomorrow depends on
past weather conditions only through the past 2 days.
Specifically, suppose that if it has rained yesterday and
today, then it will rain tomorrow with probability .8; if it
rained yesterday but not today, then it will rain tomorrow
with probability .3; if it rained today but not yesterday,
then it will rain tomorrow with probability .4; and if it
has not rained either yesterday or today, then it will rain
tomorrow with probability .2. What proportion of days
does it rain?

9.10.A certain person goes for a run each morning. When
he leaves his house for his run, he is equally likely to go
out either the front or the back door, and similarly, when
he returns, he is equally likely to go to either the front or
the back door. The runner owns 5 pairs of running shoes,
which he takes off after the run at whichever door he hap-
pens to be. If there are no shoes at the door from which
he leaves to go running, he runs barefooted. We are inter-
ested in determining the proportion of time that he runs
barefooted.

(a) Set this problem up as a Markov chain. Give the states
and the transition probabilities.
(b)Determine the proportion of days that he runs bare-
footed.

9.11. This problem refers to Example 2f.

(a) Verify that the proposed value of
∏

j satisfies the nec-
essary equations.
(b) For any given molecule, what do you think is the (lim-
iting) probability that it is in urn 1?

(c) Do you think that the events that molecule j, j Ú 1, is
in urn 1 at a very large time would be (in the limit) inde-
pendent?
(d) Explain why the limiting probabilities are as given.

9.12.Determine the entropy of the sum that is obtained
when a pair of fair dice is rolled.

9.13. Prove that if X can take on any of n possible values
with respective probabilities P1, . . . ,Pn, thenH(X) is max-
imized when Pi = 1/n, i = 1, . . . ,n. What is H(X) equal to
in this case?

9.14.A pair of fair dice is rolled. Let

X =
{
1 if the sum of the dice is 6
0 otherwise

and let Y equal the value of the first die. Compute (a)
H(Y), (b)HY(X), and (c) H(X,Y).

9.15.A coin having probability p = 2
3 of coming up heads

is flipped 6 times. Compute the entropy of the outcome of
this experiment.

9.16.A random variable can take on any of n possible
values x1, . . . , xn with respective probabilities p(xi), i =
1, . . . ,n. We shall attempt to determine the value of X by
asking a series of questions, each of which can be answered
“yes” or “no.” For instance, we may ask “Is X = x1?” or
“Is X equal to either x1 or x2 or x3?” and so on. What can
you say about the average number of such questions that
you will need to ask to determine the value of X?

9.17. Show that for any discrete random variable X and
function f ,

H(f (X)) … H(X)

9.18. In transmitting a bit from location A to location B,
if we let X denote the value of the bit sent at location
A and Y denote the value received at location B, then
H(X) − HY(X) is called the rate of transmission of infor-
mation from A to B. The maximal rate of transmission, as
a function of P{X = 1} = 1 − P{X = 0}, is called the
channel capacity. Show that for a binary symmetric chan-
nel with P{Y = 1|X = 1} = P{Y = 0|X = 0} = p,
the channel capacity is attained by the rate of transmis-
sion of information when P{X = 1} = 1

2 and its value is
1 + p logp + (1 − p) log(1 − p).

Self-Test Problems and Exercises

9.1. Events occur according to a Poisson process with rate
λ = 3 per hour.

(a)What is the probability that no events occur between
times 8 and 10 in the morning?

(b)What is the expected value of the number of events
that occur between times 8 and 10 in the morning?
(c)What is the expected time of occurrence of the fifth
event after 2 P.M.?
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9.2. Customers arrive at a certain retail establishment
according to a Poisson process with rate λ per hour. Sup-
pose that two customers arrive during the first hour. Find
the probability that

(a) both arrived in the first 20 minutes;
(b) at least one arrived in the first 30 minutes.

9.3. Four out of every five trucks on the road are followed
by a car, while one out of every six cars is followed by a
truck. What proportion of vehicles on the road are trucks?

9.4.A certain town’s weather is classified each day as
being rainy, sunny, or overcast, but dry. If it is rainy one
day, then it is equally likely to be either sunny or overcast

the following day. If it is not rainy, then there is one chance
in three that the weather will persist in whatever state it is
in for another day, and if it does change, then it is equally
likely to become either of the other two states. In the long
run, what proportion of days are sunny? What proportion
are rainy?

9.5. Let X be a random variable that takes on 5 possible
values with respective probabilities .35, .2, .2, .2, and .05.
Also, let Y be a random variable that takes on 5 possible
values with respective probabilities .05, .35, .1, .15, and .35.

(a) Show thatH(X) > H(Y).
(b)Using the result of Problem 9.13, give an intuitive
explanation for the preceding inequality.
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10.1 Introduction
How can we determine the probability of our winning a game of solitaire?
(By solitaire, we mean any one of the standard solitaire games played with an ordi-
nary deck of 52 playing cards and with some fixed playing strategy.) One possible
approach is to start with the reasonable hypothesis that all (52)! possible arrange-
ments of the deck of cards are equally likely to occur and then attempt to determine
how many of these lead to a win. Unfortunately, there does not appear to be any sys-
tematic method for determining the number of arrangements that lead to a win, and
as (52)! is a rather large number and the only way to determine whether a particular
arrangement leads to a win seems to be by playing the game out, it can be seen that
this approach will not work.

In fact, it might appear that the determination of the probability of winning
at solitaire is mathematically intractable. However, all is not lost, for probability
falls not only within the realm of mathematics, but also within the realm of applied
science; and, as in all applied sciences, experimentation is a valuable technique. For
our solitaire example, experimentation takes the form of playing a large number of
such games or, better yet, programming a computer to do so. After playing, say, n
games, if we let

Xi =
{
1 if the ith game results in a win
0 otherwise

then Xi, i = 1, . . . ,n will be independent Bernoulli random variables for which

E[Xi] = P{win at solitaire}
Hence, by the strong law of large numbers, we know that

n∑
i=1

Xi

n
= number of games won

number of games played

462
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will, with probability 1, converge to P{win at solitaire}. That is, by playing a large
number of games, we can use the proportion of games won as an estimate of the
probability of winning. This method of empirically determining probabilities by
means of experimentation is known as simulation.

In order to use a computer to initiate a simulation study, we must be able to
generate the value of a uniform (0, 1) random variable; such variates are called ran-
dom numbers. To generate them, most computers have a built-in subroutine, called a
random-number generator, whose output is a sequence of pseudorandom numbers—
a sequence of numbers that is, for all practical purposes, indistinguishable from a
sample from the uniform (0, 1) distribution. Most random-number generators start
with an initial value X0, called the seed, and then recursively compute values by
specifying positive integers a, c, and m, and then letting

Xn+1 = (aXn + c) modulo m n Ú 0 (1.1)

where the foregoing means that aXn + c is divided bym and the remainder is taken
as the value ofXn+1. Thus, eachXn is either 0, 1, . . . ,m − 1, and the quantityXn/m is
taken as an approximation to a uniform (0, 1) random variable. It can be shown that
subject to suitable choices for a, c, and m, Equation (1.1) gives rise to a sequence
of numbers that look as if they were generated from independent uniform (0, 1)
random variables.

As our starting point in simulation, we shall suppose that we can simulate from
the uniform (0, 1) distribution, and we shall use the term random numbers to mean
independent random variables from this distribution.

In the solitaire example, we would need to program a computer to play out the
game starting with a given ordering of the cards. However, since the initial ordering
is supposed to be equally likely to be any of the (52)! possible permutations, it is also
necessary to be able to generate a random permutation. Using only random num-
bers, the following algorithm shows how this can be accomplished. The algorithm
begins by randomly choosing one of the elements and then putting it in position n; it
then randomly chooses among the remaining elements and puts the choice in posi-
tion n − 1, and so on. The algorithm efficiently makes a random choice among the
remaining elements by keeping these elements in an ordered list and then randomly
choosing a position on that list.

Example
1a

Generating a random permutation

Suppose we are interested in generating a permutation of the integers 1, 2, . . . ,n such
that all n! possible orderings are equally likely. Then, starting with any initial permu-
tation, we will accomplish this after n − 1 steps, where we interchange the positions
of two of the numbers of the permutation at each step. Throughout, we will keep
track of the permutation by letting X(i), i = 1, . . . ,n denote the number currently in
position i. The algorithm operates as follows:

1. Consider any arbitrary permutation, and let X(i) denote the element in posi-
tion i, i = 1 . . . ,n. [For instance, we could take X(i) = i, i = 1, . . . ,n.]

2. Generate a random variable Nn that is equally likely to equal any of the values
1, 2, . . . ,n.

3. Interchange the values of X(Nn) and X(n). The value of X(n) will now remain
fixed. [For instance, suppose that n = 4 and initially X(i) = i, i = 1, 2, 3, 4. If
N4 = 3, then the new permutation is X(1) = 1,X(2) = 2,X(3) = 4,X(4) = 3,
and element 3 will remain in position 4 throughout.]
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4. Generate a random variable Nn−1 that is equally likely to be either 1, 2, . . . ,
n − 1.

5. Interchange the values of X(Nn−1) and X(n − 1). [If N3 = 1, then the new
permutation is X(1) = 4,X(2) = 2,X(3) = 1,X(4) = 3.]

6. Generate Nn−2, which is equally likely to be either 1, 2, . . . ,n − 2.
7. Interchange the values of X(Nn−2) and X(n − 2). [If N2 = 1, then the new

permutation is X(1) = 2,X(2) = 4,X(3) = 1,X(4) = 3, and this is the final
permutation.]

8. Generate Nn−3, and so on. The algorithm continues until N2 is generated, and
after the next interchange the resulting permutation is the final one.

To implement this algorithm, it is necessary to be able to generate a random
variable that is equally likely to be any of the values 1, 2, . . . ,k. To accomplish this,
let U denote a random number—that is, U is uniformly distributed on (0, 1)—and
note that kU is uniform on (0,k). Hence,

P{i − 1 < kU < i} = 1
k

i = 1, . . . ,k

so if we take Nk = [kU] + 1, where [x] is the integer part of x (that is, the largest
integer less than or equal to x), then Nk will have the desired distribution.

The algorithm can now be succinctly written as follows:

Step 1. Let X(1), . . . ,X(n) be any permutation of 1, 2, . . . ,n. [For instance, we
can set X(i) = i, i = 1, . . . ,n.]

Step 2. Let I = n.
Step 3. Generate a random number U and set N = [IU] + 1.
Step 4. Interchange the values of X(N) and X(I).
Step 5. Reduce the value of I by 1, and if I > 1, go to step 3.
Step 6. X(1), . . . ,X(n) is the desired random generated permutation.

The foregoing algorithm for generating a random permutation is extremely use-
ful. For instance, suppose that a statistician is developing an experiment to compare
the effects of m different treatments on a set of n subjects. He decides to split the
subjects intom different groups of respective sizes n1,n2, . . . ,nm, where

∑m
i=1 ni = n,

with the members of the ith group to receive treatment i. To eliminate any bias in
the assignment of subjects to treatments (for instance, it would cloud the meaning of
the experimental results if it turned out that all the “best” subjects had been put in
the same group), it is imperative that the assignment of a subject to a given group be
done “at random.” How is this to be accomplished?†

A simple and efficient procedure is to arbitrarily number the subjects 1 through
n and then generate a random permutation X(1), . . . ,X(n) of 1, 2, . . . ,n. Now assign
subjects X(1),X(2), . . . ,X(n1) to be in group 1; X(n1 + 1), . . . ,X(n1 + n2) to be
in group 2; and, in general, group j is to consist of subjects numbered X(n1 + n2 +
· · · + nj−1 + k),k = 1, . . . ,nj. .

†Another technique for randomly dividing the subjects when m = 2 was presented in Example 2g of Chapter 6.
The preceding procedure is faster, but requires more space than the one of Example 2g.
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10.2 General Techniques for Simulating Continuous
Random Variables

In this section, we present two general methods for using random numbers to simu-
late continuous random variables.

10.2.1 The Inverse Transformation Method
A general method for simulating a random variable having a continuous
distribution—called the inverse transformation method—is based on the following
proposition.

Proposition
2.1

Let U be a uniform (0, 1) random variable. For any continuous distribution function
F, if we define the random variable Y by

Y = F−1(U)

then the random variable Y has distribution function F. [F−1(x) is defined to equal
that value y for which F(y) = x.]

Proof

FY(a) = P{Y … a}
= P{F−1(U) … a} (2.1)

Now, since F(x) is a monotone function, it follows that F−1(U) … a if and only if
U … F(a). Hence, from Equation (2.1), we have

FY(a) = P{U … F(a)}
= F(a)

It follows from Proposition 2.1 that we can simulate a random variableX having
a continuous distribution function F by generating a random number U and then
setting X = F−1(U).

Example
2a

Simulating an exponential random variable

If F(x) = 1 − e−x, then F−1(u) is that value of x such that

1 − e−x = u

or
x = − log(1 − u)

Hence, if U is a uniform (0, 1) variable, then

F−1(U) = − log(1 − U)

is exponentially distributed with mean 1. Since 1 − U is also uniformly distributed on
(0, 1), it follows that− logU is exponential with mean 1. Since cX is exponential with
mean c when X is exponential with mean 1, it follows that −c logU is exponential
with mean c. .

The results of Example 2a can also be utilized to stimulate a gamma random
variable.
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Example
2b

Simulating a gamma (n, λ) random variable

To simulate from a gamma distribution with parameters (n, λ) when n is an integer,
we use the fact that the sum of n independent exponential random variables, each
having rate λ, has this distribution. Hence, if U1, . . . ,Un are independent uniform
(0, 1) random variables, then

X = −
n∑
i=1

1
λ
logUi = −1

λ
log

⎛
⎝ n∏
i=1

Ui

⎞
⎠

has the desired distribution. .

10.2.2 The Rejection Method
Suppose that we have a method for simulating a random variable having density
function g(x). We can use this method as the basis for simulating from the continu-
ous distribution having density f (x) by simulating Y from g and then accepting the
simulated value with a probability proportional to f (Y)/g(Y).

Specifically, let c be a constant such that

f (y)
g(y)

… c for all y

We then have the following technique for simulating a random variable having
density f .

Rejection Method

Step 1. Simulate Y having density g and simulate a random number U.
Step 2. If U … f (Y)/cg(Y), set X = Y. Otherwise return to step 1.

The rejection method is expressed pictorially in Figure 10.1. We now prove that
it works.

Generate
Y , g

Start

Generate a
random number

U 

Is

U <

Yes
Set X 5 Y

No

f(Y)
cg(Y) 

Figure 10.1 Rejection method for simulating a random variable X having density func-
tion f .

Proposition
2.2

The random variable X generated by the rejection method has density function f .

Proof Let X be the value obtained and let N denote the number of necessary itera-
tions. Then

P{X … x} = P{YN … x}
= P

{
Y … x|U …

f (Y)

cg(Y)

}

=
P
{
Y … x,U …

f (Y)

cg(Y)

}
K
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where K = P{U … f (Y)/cg(Y)}. Now, by independence, the joint density function
of Y and U is

f (y,u) = g(y) 0 < u < 1

so, using the foregoing, we have

P{X … x} = 1
K

∫∫
y … x

0 … u … f (y)/cg(y)

g(y)dudy

= 1
K

∫ x

−q

∫ f (y)/cg(y)

0
du g(y)dy

= 1
cK

∫ x

−q
f (y)dy

(2.2)

Letting X approach q and using the fact that f is a density gives

1 = 1
cK

∫ q

−q
f (y)dy = 1

cK

Hence, from Equation (2.2), we obtain

P{X … x} =
∫ x

−q
f (y)dy

which completes the proof.

Remarks (a) Note that the way in which we “accept the value Y with probability
f (Y)/cg(Y)” is by generating a random number U and then accepting Y if U …
f (Y)/cg(Y).

(b) Since each iteration will independently result in an accepted value with prob-
ability P{U … f (Y)/cg(Y)} = K = 1/c, it follows that the number of iterations has a
geometric distribution with mean c. .

Example
2c

Simulating a normal random variable

To simulate a unit normal random variable Z (that is, one with mean 0 and vari-
ance 1), note first that the absolute value of Z has probability density function

f (x) = 2√
2π

e−x
2/2 0 < x < q (2.3)

We will start by simulating from the preceding density function by using the rejection
method, with g being the exponential density function with mean 1—that is,

g(x) = e−x 0 < x < q
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Now, note that

f (x)
g(x)

=
√

2
π
exp

{
−(x2 − 2x)

2

}

=
√

2
π
exp

{
−(x2 − 2x + 1)

2
+ 1

2

}

=
√
2e
π

exp

{
−(x − 1)2

2

}
(2.4)

…
√
2e
π

Hence, we can take c = √
2e/π ; so, from Equation (2.4),

f (x)
cg(x)

= exp

{
−(x − 1)2

2

}

Therefore, using the rejection method, we can simulate the absolute value of a unit
normal random variable as follows:

(a) Generate independent random variables Y and U, Y being exponential with
rate 1 and U being uniform on (0, 1).

(b) If U … exp{−(Y − 1)2/2}, set X = Y. Otherwise, return to (a).

Once we have simulated a random variable X having Equation (2.3) as its density
function, we can then generate a unit normal random variable Z by letting Z be
equally likely to be either X or −X.

In step (b), the valueY is accepted ifU … exp{−(Y − 1)2/2}, which is equivalent
to − logU Ú (Y − 1)2/2. However, in Example 2a, it was shown that − logU is
exponential with rate 1, so steps (a) and (b) are equivalent to

(a′) Generate independent exponentials Y1 and Y2, each with rate 1.
(b′) If Y2 Ú (Y1 − 1)2/2, set X = Y1. Otherwise, return to (a′).

Suppose now that the foregoing results in Y1 being accepted—so we know that Y2
is larger than (Y1 − 1)2/2. By how much does the one exceed the other? To answer
this question, recall that Y2 is exponential with rate 1; hence, given that it exceeds
some value, the amount by whichY2 exceeds (Y1 − 1)2/2 [that is, its “additional life”
beyond the time (Y1 − 1)2/2] is (by the memoryless property) also exponentially
distributed with rate 1. That is, when we accept step (b′), not only do we obtain X
(the absolute value of a unit normal), but, by computing Y2 − (Y1 − 1)2/2, we
also can generate an exponential random variable (that is independent of X) having
rate 1.

Summing up, then, we have the following algorithm that generates an exponen-
tial with rate 1 and an independent unit normal random variable:

Step 1. Generate Y1, an exponential random variable with rate 1.
Step 2. Generate Y2, an exponential random variable with rate 1.
Step 3. If Y2 − (Y1 − 1)2/2 > 0, set Y = Y2 − (Y1 − 1)2/2 and go to step

4. Otherwise, go to step 1.
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Step 4. Generate a random number U, and set

Z =
{

Y1 if U … 1
2

−Y1 if U > 1
2

The random variables Z and Y generated by the foregoing algorithm are inde-
pendent, with Z being normal with mean 0 and variance 1 and Y being exponential
with rate 1. (If we want the normal random variable to have mean μ and variance
σ 2, we just take μ + σZ.)

Remarks (a) Since c = √
2e/π L 1.32, the algorithm requires a geometrically dis-

tributed number of iterations of step 2 with mean 1.32.
(b) If we want to generate a sequence of unit normal random variables, then we

can use the exponential random variable Y obtained in step 3 as the initial exponen-
tial needed in step 1 for the next normal to be generated. Hence, on the average, we
can simulate a unit normal by generating 1.64(= 2 * 1.32 − 1) exponentials and
computing 1.32 squares. .

Example
2d

Simulating normal random variables: the polar method

It was shown in Example 7b of Chapter 6 that if X and Y are independent unit nor-
mal random variables, then their polar coordinates R=

√
X2+Y2,�= tan−1(Y/X)

are independent, with R2 being exponentially distributed with mean 2 and � being
uniformly distributed on (0, 2π). Hence, if U1 and U2 are random numbers, then,
using the result of Example 2a, we can set

R = (−2 logU1)
1/2

Θ = 2πU2

from which it follows that

X = R cosΘ = (−2 logU1)
1/2 cos(2πU2)

Y = R sinΘ = (−2 logU1)
1/2 sin(2πU2) (2.5)

are independent unit normals. .

The preceding approach to generating unit normal random variables is called
the Box–Muller approach. Its efficiency suffers somewhat from its need to compute
the sine and cosine values. There is, however, a way to get around this potentially
time-consuming difficulty. To begin, note that if U is uniform on (0, 1), then 2U is
uniform on (0, 2), so 2U − 1 is uniform on (−1, 1). Thus, if we generate random
numbers U1 and U2 and set

V1 = 2U1 − 1

V2 = 2U2 − 1

then (V1,V2) is uniformly distributed in the square of area 4 centered at (0, 0). (See
Figure 10.2.)

Suppose now that we continually generate such pairs (V1,V2) until we obtain
one that is contained in the disk of radius 1 centered at (0, 0)—that is, until V2

1 +
V2
2 … 1. It then follows that such a pair (V1,V2) is uniformly distributed in the disk.

Now, let R, � denote the polar coordinates of this pair. Then it is easy to verify that
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(1, 1)

(1, 21)

(–1, 1)

(21, 21)

R V2

V1 V 1
2 1

u

5 1V 2
2

5 (0, 0)

5 (V1, V2)

Figure 10.2

R and � are independent, with R
2
being uniformly distributed on (0, 1) and � being

uniformly distributed on (0, 2π). (See Problem 10.13.)
Since

sin� = V2

R
= V2√

V2
1 + V2

2

cos� = V1

R
= V1√

V2
1 + V2

2

it follows from Equation (2.5) that we can generate independent unit normalsX and
Y by generating another random number U and setting

X = (−2 logU)1/2V1/R

Y = (−2 logU)1/2V2/R

In fact, because (conditional on V2
1 + V2

2 … 1) R
2
is uniform on (0, 1) and is inde-

pendent of θ , we can use it instead of generating a new random number U, thus
showing that

X = (−2 logR
2
)1/2

V1

R
=
√

−2 log S
S

V1

Y = (−2 logR
2
)1/2

V2

R
=
√

−2 log S
S

V2

are independent unit normals, where

S = R
2 = V2

1 + V2
2

Summing up, we have the following approach to generating a pair of independent
unit normals:
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Step 1. Generate random numbers U1 and U2.
Step 2. Set V1 = 2U1 − 1,V2 = 2U2 − 1,S = V2

1 + V2
2 .

Step 3. If S > 1, return to step 1.
Step 4. Return the independent unit normals

X =
√

−2 log S
S

V1,Y =
√

−2 log S
S

V2

The preceding algorithm is called the polar method. Since the probability that a
random point in the square will fall within the circle is equal to π/4 (the area of the
circle divided by the area of the square), it follows that, on average, the polar method
will require 4/π L 1.273 iterations of step 1. Hence, it will, on average, require 2.546
random numbers, 1 logarithm, 1 square root, 1 division, and 4.546 multiplications to
generate 2 independent unit normals.

Example
2e

Simulating a chi-squared random variable

The chi-squared distribution with n degrees of freedom is the distribution of χ2
n =

Z2
1 + · · · + Z2

n, where Zi, i = 1, . . . ,n are independent unit normals. Now, it was
shown in Section 6.3 of Chapter 6 that Z2

1 + Z2
2 has an exponential distribution

with rate 1
2 . Hence, when n is even (say, n = 2k),χ2

2k has a gamma distribution

with parameters
(
k, 12

)
. Thus, −2 log(

∏k
i=1Ui) has a chi-squared distribution with

2k degrees of freedom. Accordingly, we can simulate a chi-squared random variable
with 2k + 1 degrees of freedom by first simulating a unit normal random variable Z
and then adding Z2 to the foregoing. That is,

χ2
2k+1 = Z2 − 2 log

⎛
⎝ k∏
i=1

Ui

⎞
⎠

where Z,U1, . . . ,Un are independent, Z is a unit normal, and U1, . . .,Un are uniform
(0, 1) random variables.

10.3 Simulating from Discrete Distributions
All of the general methods for simulating random variables from continuous dis-
tributions have analogs in the discrete case. For instance, if we want to simulate a
random variable Z having probability mass function

P{X = xj} = Pj, j = 0, 1, . . . ,
∑
j

Pj = 1

we can use the following discrete time analog of the inverse transform technique:
To simulate X for which P{X = xj} = Pj, let U be uniformly distributed over

(0, 1) and set
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X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 if U … P1
x2 if P1 < U … P1 + P2

#
#
#

xj if
j−1∑
1

Pi < U …
j∑
i

Pi

#
#
#

Since

P{X = xj} = P

⎧⎨
⎩
j−1∑
1

Pi < U …
j∑
1

Pi

⎫⎬
⎭ = Pj

it follows that X has the desired distribution.

Example
3a

The geometric distribution

Suppose that independent trials, each of which results in a “success” with probability
p, 0 < p < 1, are continually performed until a success occurs. LettingX denote the
necessary number of trials; then

P{X = i} = (1 − p)i−1p i Ú 1

which is seen by noting that X = i if the first i − 1 trials are all failures and the ith
trial is a success. The random variable X is said to be a geometric random variable
with parameter p. Since

j−1∑
i=1

P{X = i} = 1 − P{X > j − 1}

= 1 − P{first j − 1 are all failures}
= 1 − (1 − p)j−1 j Ú 1

we can simulate such a random variable by generating a random numberU and then
setting X equal to that value j for which

1 − (1 − p)j−1 < U … 1 − (1 − p)j

or, equivalently, for which

(1 − p)j … 1 − U < (1 − p)j−1

Since 1 − U has the same distribution as U, we can define X by

X = min{j : (1 − p)j … U}
= min{j : j log(1 − p) … logU}

= min

{
j : j Ú

logU
log(1 − p)

}

where the inequality has changed sign because log(1−p) is negative [since log(1−p)
> log 1 = 0]. Using the notation [x] for the integer part of x (that is, [x] is the largest
integer less than or equal to x), we can write
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X = 1 +
[

logU
log(1 − p)

]
.

As in the continuous case, special simulating techniques have been developed
for the more common discrete distributions. We now present two of these.

Example
3b

Simulating a binomial random variable

A binomial (n, p) random variable can easily be simulated by recalling that it can
be expressed as the sum of n independent Bernoulli random variables. That is, if
U1, . . . ,Un are independent uniform (0, 1) variables, then letting

Xi =
{
1 if Ui < p
0 otherwise

it follows that X K
n∑
i=1

Xi is a binomial random variable with parameters n and p.

Example
3c

Simulating a Poisson random variable

To simulate a Poisson random variable with mean λ, generate independent uniform
(0, 1) random variables U1,U2, . . . stopping at

N = min

⎧⎨
⎩n:

n∏
i=1

Ui < e−λ

⎫⎬
⎭

The random variableX K N − 1 has the desired distribution. That is, if we continue
generating random numbers until their product falls below e−λ, then the number
required, minus 1, is Poisson with mean λ.

ThatX K N − 1 is indeed a Poisson random variable having mean λ can perhaps
be most easily seen by noting that

X + 1 = min

⎧⎨
⎩n:

n∏
i=1

Ui < e−λ

⎫⎬
⎭

is equivalent to

X = max

⎧⎨
⎩n:

n∏
i=1

Ui Ú e−λ

⎫⎬
⎭ where

0∏
i=1

Ui K 1

or, taking logarithms, to

X = max

⎧⎨
⎩n:

n∑
i=1

logUi Ú −λ

⎫⎬
⎭

or

X = max

⎧⎨
⎩n:

n∑
i=1

− logUi … λ

⎫⎬
⎭
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However, − logUi is exponential with rate 1, so X can be thought of as being the
maximum number of exponentials having rate 1 that can be summed and still be
less than λ. But by recalling that the times between successive events of a Poisson
process having rate 1 are independent exponentials with rate 1, it follows that X is
equal to the number of events by time λ of a Poisson process having rate 1; thus, X
has a Poisson distribution with mean λ. .

10.4 Variance Reduction Techniques
Let X1, . . . ,Xn have a given joint distribution, and suppose that we are interested in
computing

θ K E[g(X1, . . . ,Xn)]

where g is some specified function. It sometimes turns out that it is extremely dif-
ficult to analytically compute θ , and when such is the case, we can attempt to use
simulation to estimate θ . This is done as follows: Generate X(1)

1 , . . . ,X(1)
n having the

same joint distribution as X1, . . . ,Xn and set

Y1 = g(X(1)
1 , . . . ,X(1)

n )

Now letX(2)
1 , . . . ,X(2)

n simulate a second set of random variables (independent of the
first set) having the distribution of X1, . . . ,Xn and set

Y2 = g(X(2)
1 , . . . ,X(2)

n )

Continue this until you have generated k (some predetermined number) sets and so
have also computed Y1,Y2, . . . ,Yk. Now, Y1, . . . ,Yk are independent and identically
distributed random variables, each having the same distribution as g(X1, . . . ,Xn).
Thus, if we let Y denote the average of these k random variables—that is, if

Y =
k∑
i=1

Yi
k

then

E[Y] = θ

E[(Y − θ)2] = Var(Y)

Hence, we can use Y as an estimate of θ . Since the expected square of the difference
between Y and θ is equal to the variance of Y, we would like this quantity to be as
small as possible. [In the preceding situation, Var(Y) = Var(Yi)/k, which is usually
not known in advance, but must be estimated from the generated values Y1, . . . ,Yn.]
We now present three general techniques for reducing the variance of our estimator.
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10.4.1 Use of Antithetic Variables
In the foregoing situation, suppose that we have generated Y1 and Y2, which are
identically distributed random variables having mean θ . Now,

Var
(
Y1 + Y2

2

)
= 1

4
[Var(Y1) + Var(Y2) + 2Cov(Y1,Y2)]

= Var(Y1)

2
+ Cov(Y1,Y2)

2

Hence, it would be advantageous (in the sense that the variance would be reduced)
if Y1 and Y2 were negatively correlated rather than being independent. To see how
we could arrange this, let us suppose that the random variables X1, . . . ,Xn are inde-
pendent and, in addition, that each is simulated via the inverse transform technique.
That is, Xi is simulated from F−1

i (Ui), where Ui is a random number and Fi is the
distribution of Xi. Thus, Y1 can be expressed as

Y1 = g(F−1
1 (U1), . . . ,F−1

n (Un))

Now, since 1 − U is also uniform over (0, 1) whenever U is a random number (and
is negatively correlated with U), it follows that Y2 defined by

Y2 = g(F−1
1 (1 − U1), . . . ,F−1

n (1 − Un))

will have the same distribution asY1. Hence, ifY1 andY2 were negatively correlated,
then generating Y2 by this means would lead to a smaller variance than if it were
generated by a new set of random numbers. (In addition, there is a computational
savings because, rather than having to generate n additional random numbers, we
need only subtract each of the previous n numbers from 1.) Although we cannot,
in general, be certain that Y1 and Y2 will be negatively correlated, this often turns
out to be the case, and indeed it can be proven that it will be so whenever g is a
monotonic function.

10.4.2 Variance Reduction by Conditioning
Let us start by recalling the conditional variance formula (see Section 7.5.4)

Var(Y) = E[Var(Y|Z)] + Var(E[Y|Z])
Now, suppose that we are interested in estimating E[g(X1, . . . ,Xn)] by simulating
X = (X1, . . . ,Xn) and then computing Y = g(X). If, for some random variable Z
we can compute E[Y|Z], then, since Var(Y|Z) Ú 0, it follows from the preceding
conditional variance formula that

Var(E[Y|Z]) … Var(Y)

Thus, since E[E[Y|Z]] = E[Y], it follows that E[Y|Z] is a better estimator of E[Y]
than is Y.

Example
4a

Estimation of π

Let U1 and U2 be random numbers and set Vi = 2Ui − 1, i = 1, 2. As noted in
Example 2d, (V1,V2) will be uniformly distributed in the square of area 4 centered
at (0, 0). The probability that this point will fall within the inscribed circle of radius 1
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centered at (0, 0) (see Figure 10.2) is equal to π/4 (the ratio of the area of the circle
to that of the square). Hence, upon simulating a large number n of such pairs and
setting

Ij =
{
1 if the jth pair falls within the circle
0 otherwise

it follows that Ij, j = 1, . . . ,n, will be independent and identically distributed random
variables having E[Ij] = π/4. Thus, by the strong law of large numbers,

I1 + · · · + In
n

→π

4
as n→q

Therefore, by simulating a large number of pairs (V1,V2) and multiplying the pro-
portion of them that fall within the circle by 4, we can accurately approximate π .

The preceding estimator can, however, be improved upon by using conditional
expectation. If we let I be the indicator variable for the pair (V1,V2), then, rather
than using the observed value of I, it is better to condition on V1 and so utilize

E[I|V1] = P{V2
1 + V2

2 … 1|V1}
= P{V2

2 … 1 − V2
1 |V1}

Now,

P{V2
2 … 1 − V2

1 |V1 = ν} = P{V2
2 … 1 − ν2}

= P{−
√
1 − ν2 … V2 …

√
1 − ν2}

=
√
1 − ν2

so

E[I|V1] =
√
1 − V2

1

Thus, an improvement on using the average value of I to estimate π/4 is to use the

average value of
√
1 − V2

1 . Indeed, since

E
[√

1 − V2
1

]
=
∫ 1

−1

1
2

√
1 − ν2dν =

∫ 1

0

√
1 − u2du = E

[√
1 − U2

]

where U is uniform over (0, 1), we can generate n random numbers U and use the
average value of

√
1 − U2 as our estimate of π/4. (Problem 10.14 shows that this

estimator has the same variance as the average of the n values,
√
1 − V2.)

The preceding estimator of π can be improved even further by noting that the
function g(u) =

√
1 − u2, 0 … u … 1, is a monotonically decreasing function of u,

and so the method of antithetic variables will reduce the variance of the estimator
of E[

√
1 − U2]. That is, rather than generating n random numbers and using the

average value of
√
1 − U2 as an estimator of π/4, we would obtain an improved

estimator by generating only n/2 random numbers U and then using one-half the
average of

√
1 − U2 +

√
1 − (1 − U)2 as the estimator of π/4.

The following table gives the estimates of π resulting from simulations, using
n = 10, 000, based on the three estimators.
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Method Estimate of π

Proportion of the random points that fall in the circle 3.1612
Average value of

√
1 − U2 3.128448

Average value of
√
1 − U2 +

√
1 − (1 − U)2 3.139578

A further simulation using the final approach and n = 64, 000 yielded the estimate
3.143288. .

10.4.3 Control Variates
Again, suppose that we want to use simulation to estimate E[g(X)], where X =
(X1, . . . ,Xn). But suppose now that for some function f , the expected value of f (X)
is known—say, it is E[f (X)] = μ. Then, for any constant a, we can also use

W = g(X) + a[f (X) − μ]

as an estimator of E[g(X)]. Now,

Var(W) = Var[g(X)] + a2Var[f (X)] + 2a Cov[g(X), f (X)] (4.1)

Simple calculus shows that the foregoing is minimized when

a = −Cov[f (X), g(X)]
Var[f (X)]

(4.2)

and for this value of a,

Var(W) = Var[g(X)] − Cov[f (X), g(X)]2

Var[f (X)]
(4.3)

Unfortunately, neither Var[f (X)] nor Cov[f (X)], g(X)] is usually known, so we can-
not in general obtain the foregoing reduction in variance. One approach in practice
is to use the simulated data to estimate these quantities. This approach usually yields
almost all of the theoretically possible reduction in variance.

Summary

Let F be a continuous distribution function and U a uni-
form (0, 1) random variable. Then the random variable
F−1(U) has distribution function F, where F−1(u) is that
value x such that F(x) = u. Applying this result, we can
use the values of uniform (0, 1) random variables, called
random numbers, to generate the values of other random
variables. This technique is called the inverse transform
method.

Another technique for generating random variables is
based on the rejection method. Suppose that we have an
efficient procedure for generating a random variable from
the density function g and that we desire to generate a
random variable having density function f . The rejection
method for accomplishing this starts by determining a con-
stant c such that

max
f (x)
g(x)

… c

It then proceeds as follows:

1. Generate Y having density g.
2. Generate a random number U.
3. If U … f (Y)/cg(Y), set X = Y and stop.
4. Return to step 1.

The number of passes through step 1 is a geometric ran-
dom variable with mean c.

Standard normal random variables can be efficiently
simulated by the rejection method (with g being exponen-
tial with mean 1) or by the technique known as the polar
algorithm.
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To estimate a quantity θ , one often generates the
values of a partial sequence of random variables whose
expected value is θ . The efficiency of this approach is
increased when these random variables have a small vari-
ance. Three techniques that can often be used to specify

random variables with mean θ and relatively small vari-
ances are

1. the use of antithetic variables,
2. the use of conditional expectations, and
3. the use of control variates.

Problems

10.1. The following algorithm will generate a random per-
mutation of the elements 1, 2, . . . ,n. It is somewhat faster
than the one presented in Example 1a but is such that no
position is fixed until the algorithm ends. In this algorithm,
P(i) can be interpreted as the element in position i.

Step 1. Set k = 1.
Step 2. Set P(1) = 1.
Step 3. If k = n, stop. Otherwise, let k = k + 1.
Step 4. Generate a random number U and let

P(k) = P([kU] + 1)

P([kU] + 1) = k

Go to step 3.

(a) Explain in words what the algorithm is doing.
(b) Show that at iteration k—that is, when the value of
P(k) is initially set—P(1),P(2), . . . ,P(k) is a random per-
mutation of 1, 2, . . . ,k.
Hint: Use induction and argue that

Pk{i1, i2, . . . , ij−1,k, ij, . . . , ik−2, i}
= Pk−1{i1, i2, . . . , ij−1, i, ij, . . . , ik−2} 1k
= 1
k!

by the induction hypothesis

10.2.Develop a technique for simulating a random vari-
able having density function

f (x) =
{
e2x −q < x < 0
e−2x 0 < x < q

10.3.Give a technique for simulating values from the dis-
tribution having the probability density function

f (x) = 1
2

− 1
4
|x|, x ∈ [−2, 2]

10.4.Given the distribution function defined by

F(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 z < 1
1
3

1 … z < 2

1
3

+ z2 − 4
15

2 … z < 3

2
3

+ 1
3
(1 − e−z) z Ú 3

how would random numbers be generated in a way so as
to follow the probabilistic pattern above?

10.5. F is the function defined by

F(z) = e−e
−z

z Ú 0

Show that it is a distribution function. Obtain the inverse
transformation that may be used to generate random num-
bers following distribution F.

10.6.Given distributions

F(x) = 1
1 + exp(−x2n+1)

− q … x … q

give a simulation method for each of the following specifi-
cations.
(a) n = 0
(b) n = 2

10.7. Let F be the distribution function

F(x) = xn 0 < x < 1

(a)Give amethod for simulating a random variable having
distribution F that uses only a single random number.
(b) Let U1, . . . ,Un be independent random numbers.
Show that

P{max(U1, . . . ,Un) … x} = xn

(c) Use part (b) to give a second method of simulating a
random variable having distribution F.
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10.8. Independent random variables V1, . . . ,Vn share the
distribution function

F(x) = e−
1
x x > 0

How would you simulate values from max
1… i… n

Vi and from

min
1… i… n

Vi?

10.9. Suppose we have a method for simulating random
variables from the distributions F1 and F2. Explain how to
simulate from the distribution

F(x) = pF1(x) + (1 − p)F2(x) 0 < p < 1

Give a method for simulating from

F(x) =
⎧⎨
⎩

1
3 (1 − e−3x) + 2

3x 0 < x … 1
1
3 (1 − e−3x) + 2

3 x > 1

10.10. In Example 2c we simulated the absolute value of a
unit normal by using the rejection procedure on exponen-
tial random variables with rate 1. This raises the question
of whether we could obtain a more efficient algorithm by
using a different exponential density—that is, we could use
the density g(x) = λe−λx. Show that the mean number
of iterations needed in the rejection scheme is minimized
when λ = 1.

10.11.How can the rejection method be used to simulate
random values with probability density function

f (x) = 15
64
x2(4 − x2) 0 … x … 2

using reference density g(x) = x
2?

10.12. Explain how you could use random numbers to
approximate

∫ 1
0 k(x)dx, where k(x) is an arbitrary func-

tion.
Hint: If U is uniform on (0, 1), what is E[k(U)]?

10.13. Let (X,Y) be uniformly distributed in the circle of
radius 1 centered at the origin. Its joint density is thus

f (x, y) = 1
π

0 … x2 + y2 … 1

Let R = (X2 + Y2)1/2 and θ = tan−1(Y/X) denote
the polar coordinates of (X, Y). Show that R and θ are
independent, with R2 being uniform on (0, 1) and θ being
uniform on (0, 2π).

10.14. In Example 4a, we showed that

E[(1 − V2)1/2] = E[(1 − U2)1/2] = π

4

when V is uniform (−1, 1) and U is uniform (0, 1). Now
show that

Var[(1 − V2)1/2] = Var[(1 − U2)1/2]

and find their common value.

10.15. (a) Verify that the minimum of (4.1) occurs when a
is as given by (4.2).
(b) Verify that the minimum of (4.1) is given by (4.3).

10.16. Let X be a random variable on (0, 1) whose density
is f (x). Show that we can estimate

∫ 1
0 g(x)dx by simulat-

ing X and then taking g(X)/f (X) as our estimate. This
method, called importance sampling, tries to choose f sim-
ilar in shape to g, so that g(X)/f (X) has a small variance.

Self-Test Problems and Exercises

10.1. The random variable X has probability density
function f (x) = Cex 0 < x < 1

(a) Find the value of the constant C.
(b)Give a method for simulating such a random variable.

10.2.Give an approach for simulating a random variable
having probability density function

f (x) = 30(x2 − 2x3 + x4) 0 < x < 1
10.3.Give an efficient algorithm to simulate the value of a
random variable with probability mass function

p1 = .15 p2 = .2 p3 = .35 p4 = .30

10.4. If X is a normal random variable with mean μ and
variance σ 2, define a random variable Y that has the same
distribution as X and is negatively correlated with it.

10.5. Let X and Y be independent exponential random
variables with mean 1.

(a) Explain how we could use simulation to estimate
E[eXY ].
(b) Show how to improve the estimation approach in part
(a) by using a control variate.
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52* 52* 51! ... 2!1!
(52!)52

; 1
(52!)51

23. 81/100 25. 0; 1/36 26. .492929 28. .0888; .2477;
.1244; .2099 30. 1/18; 1/6; 1/2 31. 2/9; 1/9 33. 70/323
34. .000547 36. .0045; .0588 37. .0833; .5 38. 4
39. .48 40. .8134; .1148 41. .5177 44. .3; .2; .1 46. 5
47. .1399 48. .00106 49. .4329 50. 2.6084 * 10−6

52. .2133841 53. 12/35 54. .0511 55. .2198; .0342

Chapter 3
1. 1/9 2. 2/3 3. .339 5. 6/91 6. 1/2 7. 2/3 8. 1/2
9. 7/11 10. .22 11. 1/17; 1/33 12. 2/3 13. .504; .3629
15. 35/768; 35/128 16. .4848 17. .9835 18. .0792; .264
19. .331; .383; .286; .4862 20. 44.29; 41.18 21. .4; 1/26
22. .496; 3/14; 9/62 23. 5/9; 1/6; 5/54 24. 4/9; 1/2 26. 1/3;
1/2 28. 20/21; 40/41 30. 3/128; 29/1536 31. .0125
32. 7/12; 3/5 35. .65, .5714 36. 27/31 37. .62, 10/19
38. 1/2 39. 1/2; 1/2 40. 12/37 41. 46/185 42. 3/13;
5/13; 5/52; 15/52 43. 43/459 44. 1.03 percent; .3046
45. 4/9 47. .58; 28/58 50. 2/3 52. .175; 38/165; 17/33
53. .65; 56/65; 8/65; 1/65; 14/35; 12/35; 9/35 54. 1

4 (2p3 +
p2 + p) 55. 3/20; 17/27 56. .40; 17/40; 3/8; 0.08825
57. p3/[p3 + (1 − p)3]; [p3(1 − (1 − p)4) + (1 − p)3

(1 − p4)]/[p3 + (1 − p)3] 58. (1/2)/
(
1 − (1/2)n−1

)
60. 9 62. (c) 2/3 65. 2/3; 1/3; 3/4 66. 1/6; 3/20
69. .4375 73. (i) 9/128, 9/128, 18/128, 110/128 (ii) 1/32, 1/32,
1/16, 15/16 74. 1/9; 1/18 76. 1/16; 1/32; 5/16; 1/4; 31/32
77. 9/19 78. 3/4, 7/12 81. 2p3(1 − p) + 2p(1 − p)3;
p2/(1 − 2p + 2p2) 82. .5550 86. .5; .6; .8 87. 9/19; 6/19;
4/19; 7/15; 53/165; 7/33 91. 9/16 94. 97/142; 15/26; 33/102
95. 1

n (1 − (1 − p)n) 96. p1(2 − p2)/2; p2/(2 − p2)

Chapter 4
1. p(4) = 3/95; p(3) = 2/19; p(2.50) = 16/95; p(2.20) =
6/95; p(2) = 1/19; p(1.50) = 4/19; p(1.20) = 3/38; p(1) =
14/95; p(0.70) = 12/95; p(0.40) = 3/190 4. 5/6 5. n − 2i;
i=0, . . . , n 6. p(3)=p(−3)=1/8; p(1)=p(−1)=3/8 11b.
log10(j + 1) 12. p(4)=1/16; p(3)=1/8; p(2)=1/16; p(0)=1/2;
p(−i)=p(i); p(0)=1 13. E(X) = $880.50 14. p(0)=1/2;
p(1)=1/6; p(2)=1/12; p(3)=1/20; p(4)=1/5 16. k/(k + 1)!,
1 … k < n, 1/n!, k=n 17. 1/2; 1/4; 1/2 19. 1/4; 3/8;
1/8; 1/8; 1/8; all other probabilities are 0 20. .5918; no;
−.108 21. 39.28; 37 24. p=11/18; maximum=23/72
25. .225; .385 27. A(p + 1/10) 28. 55/21 31. p∗
32. 11 − 10(.9)10 33. 3 35. .8235; .8218 38. 82.2; 84.5
40. .3125 41. .0197 43. 2.8; 1.476 46. 3 52. 17/12;
99/60 53. 7/40; 7/120 54. .7408; .0036 56. 1 − e−.6; 1 −
e−219.18 57. .0054; .9354 58. .0125 59. n Ú 676 log(4)
63. .8886 64. .9596 66. .0183; .3712 68. .3935; .2293;
.3935 69. 2/(2n − 1); 2/(2n − 2); e−1 70. 2/n; (2n − 3)/
(n − 1)2; e−2 71. e−10e−5

73. p + (1 − p)e−λt

74. .1500; .1012 76. 5.8125 77. 32/243; 4864/6561;
160/729; 160/729 81. 5(6n−1)/11n 84. 3/10; 5/6; 75/138
85. .757 86. 1.9 89. .1793; 1/3; 4/3

Chapter 5
2. .6109 3. no; yes 4. 1/2, .8999 5. 1 − (.01)1/5

6. 4, 0,q 7. −43/14; 5/14 8. .8930 10. 2/3; 2/3
11. 2/5 13. 3/5; 15/21 15. .7791; .2417; .4389; .1780;
.6778 16. (.9938)10 17. .315; .136 18. 7.1053; 6.5789
19. (ln 4)/2 20. .9803; .0015; .7098 22. .9476 23. .5178;
.2398 26. .0606; .0525 28. .9545 29. .9993 32. e−4/3;
e−2/3 33. V has Pareto distribution with minimum param-
eter a and index parameter λ 34. e−1; 1/3 35. Weibull
random variable with parameters v = 0,α=1,β=2 39. 3/5
41. a = 7/9; b = 56/9 42. 1/c(b−a)

Chapter 6
2. (a) 14/39; 10/39; 10/39; 5/39 (b) 84; 70; 70; 70; 40;
40; 40; 15 all divided by 429 3. 15/26; 5/26; 5/26; 1/26
4. (a) 64/169; 40/169; 40/169; 25/169 6. .20, .30, .30,
.20; .18, .30, .31, .21; 2.5; 2.55; 1.05; 1.0275 7. p(i, j)=p2

(1 − p)i+j 8. c = 4/3;E[XY] = 16/45 9. 2
e−1(4−e) ;

2x(1−e−x)
e−1(4−e) for 0 … x … 1; (1−y2)e−y

e−1(4−e) for 0 … y … 1; .8799;

.7327; .3188 10. 2a+1−2
2a ; .1913 12. .8243 13. 1/6; 1/2

480
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15. π/4 16. n(1/2)n−1 17. .0625 19. x
2(1−x)
B(3,2) , 0 < x< 1;

2y3 − 3y2 + 1
6B(3,2) , 0 < y < 1; 3/5; .3 21. 1; π

4 ;
π+2
8 22. no;

1/3 23. 1/2; 2/3; 1/20; 1/18 25. e−1/i! 28. 1
2 e

−t;
1−3e−2 29. .954; .4502 30. .1766; .9973 31. .0829;
.3766 32. .0625; .1587 33. P(X1 + X2 < 10000);P(X1 >

5100) 34. a − 2μ2 35. (a) .6572; (b) yes; (d) .2402
36. .9346 37. .04; .3758 39. 5/13; 8/13 40. 1/6; 5/6;
1/4; 3/4 45. (y + 1)2xe−x(y+1); xe−xy; e−a 46. 12;

2x
(1−y8) , y

4 < x < 1 50.
(
(L − 2d)/L

)3 51. .79297

52. 1 − (1 − p)na; [1 − (1 − p)a]n 56. r/π 57. r 60. (a)
u/(ν + 1)2

Chapter 7
1. 52.5/12 2. 324; 198.8 3. 1/3; 5/9; 1 4. 2/3; 5/9;
16/9 5. 3.1188 6. 35 7. 7.22; .02; .76 8. 1 10. .6;
0 11. 2(n − 1)p(1 − p) 12. (3n2 − n)/(4n − 2),
3n2/(4n − 2) 14. m/(1 − p) 15. 1/2 18. 1
21. 4.815; 44.3375 22. 14.7 23. 147/110 26. 1/nλ;
2/((n + 1)λ) 29. 437

35 ; 12; 4; 123
35 31. 175/6 33. a2 −

4ab + 5b2;b2 34. .2182; .2407 35. 4; 42; 14.7
36. −0.16n. 37. −1/12 38. 102/45, 84/45; .5956,
.6489; .0771, .1436 40. .1033 43. .5952; .4732; .008
44. 100/19; 16,200/6137; 10/19; 3240/6137 47. 1/

√
2;

3/
√
15 49. 1/(n − 1) 50. 35/18; 7; 3 51. 2.8078

52.
[
1
2 + e−y

2(1−e−1)

]−1 [
1

k+2 + e−y
2(k+1)(1−e−1)

]
53. (2xk)/

(k + 2) 55. 12 56. 8 58. N(1 − e−10/N) 59. 30000
64. p + 1,

∑4
i=0

(4
i
)
pi(1 − p)4−ie−(4+i)(4 + i)6/6!; (1 +

p)/(1 − p); ((1 − p)e)/(e2 − p) 65. 1/2; 1/3;
1/

(
n(n + 1)

)
68. −96/145 70. 4.2; 5.16 71. 218

72. x[1 + (2p − 1)2]n 74. 1/2; 1/16; 2/81 75. 1/2, 1/3
77. 1/i; [i(i + 1)]−1;q 78. μ; 1 + σ 2; yes; σ 2 84. .8186;
.7055

Chapter 8
1. Ú19/20 2. 15/17; Ú3/4; Ú10 3. Ú3 4. …4/3; .8428
5. .1416 6. .9431 7. .3085 8. .6932 9. 19 10. 777.15
11. Ú.057 13. .0162; .0003; .2514; .2514 14. n Ú 23
16. .0206; .0250; .254 18. ….2 23. .769; .357; .4267; .1093;
.112184 24. answer is (a)

Chapter 9
1. 1/9; 5/9 3. .9953; .9735; .9098; .7358 10. (b)1/6
14. 2.585; .5417; 3.1267 15. 5.5098



SOLUTIONS TO SELF-TEST PROBLEMS AND EXERCISES

Chapter 1
1.1. (a) There are 4! different orderings of the letters C, D,
E, F. For each of these orderings, we can obtain an order-
ing with A and B next to each other by inserting A and B,
either in the order A, B or in the order B, A, in any of 5
places, namely, either before the first letter of the permuta-
tion of C, D, E, F, or between the first and second, and so on.
Hence, there are 2 · 5 · 4! = 240 arrangements. Another way
of solving this problem is to imagine that B is glued to the
back of A. Then there are 5! orderings in which A is immedi-
ately before B. Since there are also 5! orderings in which B is
immediately before A, we again obtain a total of 2 · 5! = 240
different arrangements.
(b) There are 6! = 720 possible arrangements, and since
there are as many with A before B as with B before A, there
are 360 arrangements.
(c)Of the 720 possible arrangements, there are as many that
have A before B before C as have any of the 3! possible
orderings of A, B, and C. Hence, there are 720/6 = 120 pos-
sible orderings.
(d)Of the 360 arrangements that have A before B, half will
have C before D and half D before C. Hence, there are 180
arrangements having A before B and C before D.
(e) Gluing B to the back of A and D to the back of C yields
4! = 24 different orderings in which B immediately follows
A and D immediately follows C. Since the order of A and
B and of C and D can be reversed, there are 4 · 24 = 96
different arrangements.
(f) There are 5! orderings in which E is last. Hence, there are
6! − 5! = 600 orderings in which E is not last.

1.2. 3! 4! 3! 3!, since there are 3! possible orderings of coun-
tries and then the countrymen must be ordered.

1.3. (a) 10 · 9 · 8 = 720
(b) 8 · 7 · 6 + 2 · 3 · 8 · 7 = 672. The result of part (b) follows
because there are 8 · 7 · 6 choices not including A or B and
there are 3 · 8 · 7 choices in which a specified one of A and
B, but not the other, serves. The latter follows because the
serving member of the pair can be assigned to any of the 3
offices, the next position can then be filled by any of the other
8 people, and the final position by any of the remaining 7.
(c) 8 · 7 · 6 + 3 · 2 · 8 = 384.
(d) 3 · 9 · 8 = 216.
(e) 9 · 8 · 7 + 9 · 8 = 576.

1.4. (a)

(
10
7

)

(b)

(
5
3

)(
5
4

)
+
(
5
4

)(
5
3

)
+
(
5
5

)(
5
2

)

1.5.

(
7

3, 2, 2

)
= 210

1.6. There are

(
7
3

)
= 35 choices of the three places for the

letters. For each choice, there are (26)3(10)4 different license
plates. Hence, altogether there are 35 · (26)3 · (10)4 different
plates.
1.7. Any choice of r of the n items is equivalent to a choice
of n − r, namely, those items not selected.
1.8. (a) 10 · 9 · 9 · · · 9 = 10 · 9n−1

(b)

(
n
i

)
9n−i, since there are

(
n
i

)
choices of the i places to

put the zeroes and then each of the other n − i positions can
be any of the digits 1, . . . , 9.

1.9. (a)

(
3n
3

)

(b) 3

(
n
3

)

(c)

(
3
1

)(
2
1

)(
n
2

)(
n
1

)
= 3n2(n − 1)

(d) n3

(e)

(
3n
3

)
= 3

(
n
3

)
+ 3n2(n − 1) + n3

1.10. There are 9 · 8 · 7 · 6 · 5 numbers in which no digit is

repeated. There are

(
5
2

)
· 8 · 7 · 6 numbers in which only

one specified digit appears twice, so there are 9

(
5
2

)
· 8 · 7 · 6

numbers in which only a single digit appears twice. There are
7 · 5!

2!2! numbers in which two specified digits appear twice,

so there are

(
9
2

)
7 · 5!

2!2! numbers in which two digits appear

twice. Thus, the answer is

9 · 8 · 7 · 6 · 5 + 9

(
5
2

)
· 8 · 7 · 6 +

(
9
2

)
7 · 5!

2!2!

1.11. (a)We can regard this as a seven-stage experiment.
First choose the 6 married couples that have a representative
in the group, and then select one of the members of each of
these couples. By the generalized basic principle of counting,
there are

(10
6
)
26 different choices.

(b) First select the 6 married couples that have a representa-
tive in the group, and then select the 3 of those couples that
are to contribute a man. Hence, there are

(10
6
)(6
3
) = 10!

4!3!3!
different choices. Another way to solve this is to first select
3 men and then select 3 women not related to the selected
men. This shows that there are

(10
3
)(7
3
) = 10!

3!3!4! different
choices.

482
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1.12.

(
8
3

)(
7
3

)
+
(
8
4

)(
7
2

)
= 3430. The first term gives the

number of committees that have 3 women and 3 men; the
second gives the number that have 4 women and 2 men.

1.13. (number of solutions of x1 + · · · + x5 = 4) (number
of solutions of x1 + · · · + x5 = 5) (number of solutions of

x1 + · · · + x5 = 6) =

(
8
4

)(
9
4

)(
10
4

)
.

1.14. Since there are

(
j − 1
n − 1

)
positive vectors whose sum

is j, there must be
k∑
j=n

(
j − 1
n − 1

)
such vectors. But

(
j − 1
n − 1

)

is the number of subsets of size n from the set of numbers
{1, . . . , k} in which j is the largest element in the subset. Con-

sequently,
k∑
j=n

(
j − 1
n − 1

)
is just the total number of subsets of

size n from a set of size k, showing that the preceding answer

is equal to

(
k
n

)
.

1.15. Let us first determine the number of different results in

which k people pass. Because there are

(
n
k

)
different groups

of size k and k! possible orderings of their scores, it follows

that there are

(
n
k

)
k! possible results in which k people pass.

Consequently, there are
n∑

k=0

(
n
k

)
k! possible results.

1.16. The number of subsets of size 4 is
(20
4
) = 4845. Because

the number of these that contain none of the first five ele-
ments is

(15
4
) = 1365, the number that contain at least one is

3480. Another way to solve this problem is to note that there
are

(5
i
)( 15
4−i
)
that contain exactly i of the first five elements

and sum this for i = 1, 2, 3, 4.

1.17. Multiplying both sides by 2, we must show that

n(n − 1) = k(k − 1) + 2k(n − k) + (n − k)(n − k − 1)

This follows because the right side is equal to

k2(1 − 2 + 1) + k(−1 + 2n − n − n + 1) + n(n − 1)

For a combinatorial argument, consider a group of n items
and a subgroup of k of the n items. Then

(k
2
)
is the number

of subsets of size 2 that contain 2 items from the subgroup of
size k, k(n − k) is the number that contain 1 item from the
subgroup, and

(n−k
2
)
is the number that contain 0 items from

the subgroup. Adding these terms gives the total number of
subgroups of size 2, namely,

(n
2
)
.

1.18. There are 3 choices that can be made from families
consisting of a single parent and 1 child; there are 3 · 1 · 2 = 6
choices that can be made from families consisting of a single
parent and 2 children; there are 5 · 2 · 1 = 10 choices that
can be made from families consisting of 2 parents and a sin-
gle child; there are 7 · 2 · 2 = 28 choices that can be made
from families consisting of 2 parents and 2 children; there are
6 · 2 · 3 = 36 choices that can be made from families consist-
ing of 2 parents and 3 children. Hence, there are 83 possible
choices.

1.19. First choose the 3 positions for the digits, and then put
in the letters and digits. Thus, there are

(8
3
) · 26 · 25 · 24 ·

23 · 22 · 10 · 9 · 8 different plates. If the digits must be
consecutive, then there are 6 possible positions for the digits,
showing that there are now 6 · 26 · 25 · 24 · 23 · 22 · 10 · 9 · 8
different plates.

1.20. (a) Follows since n!
x1!···xr! is the number of n letter per-

mutations of the values 1, . . . , r in which i appears xi times,∑r
i=1 xi = n.

(b)
∑

x1+...+xr=n
n!

x1!···xr! = (1 + . . . + 1)n = rn.

1.21. (1 − 1)n = 1 − (n
1
) + (n

2
) + . . . + (−1)n

(n
n
)
, giving

that
(n
1
) − (n

2
) + . . . + (−1)n+1(n

n
) = 1.

Chapter 2
2.1. (a) 2 · 3 · 4 = 24
(b) 2 · 3 = 6
(c) 3 · 4 = 12
(d) AB = {(c, pasta, i), (c, rice, i), (c, potatoes, i)}
(e) 8
(f) ABC = {(c, rice, i)}
2.2. Let A be the event that a suit is purchased, B be the
event that a shirt is purchased, and C be the event that a tie
is purchased. Then

P(A ∪ B ∪ C) = .22 + .30 + .28 − .11 − .14 − .10 + .06 = .51

(a) 1 − .51 = .49
(b) The probability that two or more items are purchased is

P(AB ∪ AC ∪ BC) = .11 + .14 + .10 − .06 − .06

− .06 + .06 = .23

Hence, the probability that exactly 1 item is purchased is
.51 − .23 = .28.

2.3. By symmetry, the 14th card is equally likely to be any
of the 52 cards; thus, the probability is 4/52. A more formal
argument is to count the number of the 52! outcomes for
which the 14th card is an ace. This yields

p = 4 · 51 · 50 · · · 2 · 1
(52)!

= 4
52
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Letting A be the event that the first ace occurs on the 14th
card, we have

P(A) = 48 · 47 · · · 36 · 4
52 · 51 · · · 40 · 39

= .0312

2.4. Let D denote the event that the minimum temperature
is 70 degrees. Then

P(A ∪ B) = P(A)+P(B)−P(AB) = .7−P(AB)

P(C ∪ D) = P(C)+P(D)−P(CD) = .2+P(D)−P(DC)

SinceA ∪ B = C ∪ D andAB = CD, subtracting one of the
preceding equations from the other yields

0 = .5 − P(D)

or P(D) = .5.

2.5. (a)
52 · 48 · 44 · 40
52 · 51 · 50 · 49

= .6761

(b)
52 · 39 · 26 · 13
52 · 51 · 50 · 49

= .1055

2.6. Let R be the event that both balls are red, and let B be
the event that both are black. Then

P(R ∪ B) = P(R) + P(B) = 3 · 4
6 · 10

+ 3 · 6
6 · 10

= 1/2

2.7. (a) 1(
40
8

) = 1.3 * 10−8

(b)

(
8
7

)(
32
1

)
(
40
8

) = 3.3 * 10−6

(c)

(
8
6

)(
32
2

)
(
40
8

) + 1.3 * 10−8 + 3.3 * 10−6 = 1.8 * 10−4

2.8. (a)
3 · 4 · 4 · 3(

14
4

) = .1439

(b)

(
4
2

)(
4
2

)
(
14
4

) = .0360

(c)

(
8
4

)
(
14
4

) = .0699

2.9. Let S =
n⋃
i=1

Ai, and consider the experiment of ran-

domly choosing an element of S. Then P(A) = N(A)/N(S),
and the results follow from Propositions 4.3 and 4.4.

2.10. Since there are 5! = 120 outcomes in which the
position of horse number 1 is specified, it follows that
N(A) = 360. Similarly, N(B) = 120, and N(AB) = 2 ·
4! = 48. Hence, from Self-Test Problem 2.9, we obtain
N(A ∪ B) = 432.

2.11. One way to solve this problem is to start with the com-
plementary probability that at least one suit does not appear.
Let Ai, i = 1, 2, 3, 4, be the event that no cards from suit i
appear. Then

P

⎛
⎝ 4⋃
i=1

Ai

⎞
⎠ =

∑
i

P(Ai) −
∑
j

∑
i:i<j

P(AiAj)

+ · · · − P(A1A2A3A4)

= 4

(
39
5

)
(
52
5

) −
(
4
2

)
(
26
5

)
(
52
5

) +
(
4
3

)
(
13
5

)
(
52
5

)

= 4

(
39
5

)
(
52
5

) − 6

(
26
5

)
(
52
5

) + 4

(
13
5

)
(
52
5

)

The desired probability is then 1 minus the preceding.
Another way to solve is to let A be the event that all 4 suits
are represented, and then use

P(A) = P(n,n, n, n, o) + P(n,n, n, o, n) + P(n,n, o, n, n)

+ P(n,o, n, n, n)

where P(n, n, n, o, n), for instance, is the probability that the
first card is from a new suit, the second is from a new suit, the
third is from a new suit, the fourth is from an old suit (that is,
one which has already appeared) and the fifth is from a new
suit. This gives

P(A) = 52 · 39 · 26 · 13 · 48 + 52 · 39 · 26 · 36 · 13
52 · 51 · 50 · 49 · 48

+ 52 · 39 · 24 · 26 · 13 + 52 · 12 · 39 · 26 · 13
52 · 51 · 50 · 49 · 48

= 52 · 39 · 26 · 13(48 + 36 + 24 + 12)
52 · 51 · 50 · 49 · 48

= .2637

2.12. There are (10)!/25 different divisions of the 10 play-
ers into a first roommate pair, a second roommate pair, and
so on. Hence, there are (10)!/(5!25) divisions into 5 room-

mate pairs. There are

(
6
2

)(
4
2

)
ways of choosing the front-

court and backcourt players to be in the mixed roommate
pairs and then 2 ways of pairing them up. As there is then
1 way to pair up the remaining two backcourt players and
4!/(2!22) = 3 ways of making two roommate pairs from
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the remaining four frontcourt players, the desired probabil-
ity is

P{2 mixed pairs} =

(
6
2

)(
4
2

)
(2)(3)

(10)!/(5!25)
= .5714

2.13. Let R denote the event that letter R is repeated; simi-
larly, define the events E and V. Then

P{same letter} = P(R) + P(E) + P(V)

= 2
7
1
8

+ 3
7
1
8

+ 1
7
1
8

= 3
28

2.14. Let B1 = A1,Bi = Ai

⎛
⎝i−1⋃
j=1

Aj

⎞
⎠
c

, i > 1. Then

P

⎛
⎝ q⋃
i=1

Ai

⎞
⎠ = P

⎛
⎝ q⋃
i=1

Bi

⎞
⎠

=
q∑
i=1

P(Bi)

…
q∑
i=1

P(Ai)

where the final equality uses the fact that the Bi are mutually
exclusive. The inequality then follows, since Bi ( Ai.

2.15.

P

⎛
⎝ q⋂
i=1

Ai

⎞
⎠ = 1 − P

⎛
⎜⎝
⎛
⎝ q⋂
i=1

Ai

⎞
⎠
c
⎞
⎟⎠

= 1 − P

⎛
⎝ q⋃
i=1

Aci

⎞
⎠

Ú 1 −
q∑
i=1

P(Aci )

= 1

2.16. The number of partitions for which {1} is a subset is
equal to the number of partitions of the remaining n − 1 ele-
ments into k − 1 nonempty subsets, namely, Tk−1(n − 1).
Because there are Tk(n − 1) partitions of {2, . . . , n − 1} into
k nonempty subsets and then a choice of k of them in which
to place element 1, it follows that there are kTk(n − 1) par-
titions for which {1} is not a subset. Hence, the result follows.

2.17. Let R,W, B denote, respectively, the events that there
are no red, no white, and no blue balls chosen. Then

P(R ∪ W ∪ B) = P(R) + P(W) + P(B) − P(RW)

− P(RB) − P(WB) + P(RWB)

=

(
13
5

)
(
18
5

) +

(
12
5

)
(
18
5

) +

(
11
5

)
(
18
5

) −

(
7
5

)
(
18
5

)

−

(
6
5

)
(
18
5

) −

(
5
5

)
(
18
5

)

L 0.2933

Thus, the probability that all colors appear in the chosen sub-
set is approximately 1 − 0.2933 = 0.7067.
2.18. (a) 8·7·6·5·4

17·16·15·14·13 = 2
221

(b) Because there are 9 nonblue balls, the probability is
9·8·7·6·5

17·16·15·14·13 = 9
442 .

(c) Because there are 3! possible orderings of the different
colors and all possibilities for the final 3 balls are equally
likely, the probability is 3!·4·8·5

17·16·15 = 4
17 .

(d) The probability that the red balls are in a specified 4 spots
is 4·3·2·1

17·16·15·14 . Because there are 14 possible locations of
the red balls where they are all together, the probability is
14·4·3·2·1
17·16·15·14 = 1

170 .

2.19. (a) The probability that the 10 cards consist
of 4 spades, 3 hearts, 2 diamonds, and 1 club is(

13
4

)(
13
3

)(
13
2

)(
13
1

)
(
52
10

) . Because there are 4! possible choices

of the suits to have 4, 3, 2, and 1 cards, respectively, it follows

that the probability is
24
(
13
4

)(
13
3

)(
13
2

)(
13
1

)
(
52
10

) .

(b) Because there are
(
4
2

)
= 6 choices of the two suits that

are to have 3 cards and then 2 choices for the suit to have 4

cards, the probability is
12
(
13
3

)(
13
3

)(
13
4

)
(
52
10

) .

2.20. All the red balls are removed before all the blue ones
if and only if the very last ball removed is blue. Because all
30 balls are equally likely to be the last ball removed, the
probability is 10/30.

Chapter 3

3.1. (a) P(no aces) =
(
35
13

)/( 39
13

)

(b) 1 − P(no aces) −
4

(
35
12

)
(
39
13

)
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(c) P(i aces) =

(
3
i

)(
36
13 − i

)
(
39
13

)

3.2. Let Li denote the event that the life of the battery is
greater than 10, 000 * i miles.
(a) P(L2|L1) = P(L1L2)/P(L1) = P(L2)/P(L1) = 1/2
(b) P(L3|L1) = P(L1L3)/P(L1) = P(L3)/P(L1) = 1/8

3.3. Put 1 white and 0 black balls in urn one, and the remain-
ing 9 white and 10 black balls in urn two.

3.4. Let T be the event that the transferred ball is white,
and let W be the event that a white ball is drawn from urn
B. Then

P(T|W) = P(W|T)P(T)

P(W|T)P(T) + P(W|Tc)P(Tc)

= (2/7)(2/3)
(2/7)(2/3) + (1/7)(1/3)

= 4/5

3.5. (a) P(E|E ∪ F) = P(E(E∪F))
P(E∪F)

= P(E)
P(E)+P(F)

since E(E ∪ F) = E and P(E ∪ F) = P(E) + P(F) because
E and F are mutually exclusive.

(b) P(Ej| ∪q
i=1 Ei) = P(Ej(∪q

i=1Ei))
P(∪q

i=1Ei))
= P(Ej)∑q

i=1 P(Ei)

3.6. Let Bi denote the event that ball i is black, and let
Ri = Bci . Then

P(B1|R2) = P(R2|B1)P(B1)

P(R2|B1)P(B1) + P(R2|R1)P(R1)

= [r/[(b + r + c)][b/(b + r)]
[r/(b + r + c)][b/(b + r)] + [(r + c)/(b + r + c)][r/(b + r)]

= b
b + r + c

3.7. Let B denote the event that both cards are aces.

(a)P{B|yes to ace of spades} = P{B, yes to ace of spades}
P{yes to ace of spades}

=

(
1
1

)(
3
1

)
(
52
2

) /
(
1
1

)(
51
1

)
(
52
2

)
= 3/51

(b) Since the second card is equally likely to be any of the
remaining 51, of which 3 are aces, we see that the answer in
this situation is also 3/51.
(c) Because we can always interchange which card is consid-
ered first and which is considered second, the result should
be the same as in part (b). A more formal argument is as

follows:

P{B|second is ace} = P{B, second is ace}
P{second is ace}

= P(B)

P(B) + P{first is not ace, second is ace}
= (4/52)(3/51)

(4/52)(3/51) + (48/52)(4/51)
= 3/51

(d) P{B|at least one} = P(B)

P{at least one}
= (4/52)(3/51)

1 − (48/52)(47/51)
= 1/33

3.8. P(H|E)
P(G|E)

= P(HE)
P(GE)

= P(H)P(E|H)
P(G)P(E|G)

HypothesisH is 1.5 times as likely.

3.9. Let A denote the event that the plant is alive and letW
be the event that it was watered.

(a) P(A) = P(A|W)P(W) + P(A|Wc)P(Wc)

= (.85)(.9) + (.2)(.1) = .785

(b) P(Wc|Ac) = P(Ac|Wc)P(Wc)

P(Ac)

= (.8)(.1)
.215

= 16
43

3.10. (a) Let R be the event that at least one red ball is cho-
sen. Then

P(R) = 1 − P(Rc) = 1 −
(
22
6

)
(
30
6

)

(b) Let G2 be the event there are exactly 2 green balls cho-
sen. Working with the reduced sample space yields

P(G2|Rc) =
(
10
2

) (
12
4

)
(
22
6

)
3.11. Let W be the event that the battery works, and let C
andD denote the events that the battery is a type C and that
it is a type D battery, respectively.
(a) P(W) = P(W|C)P(C) + P(W|D)P(D) = .7(8/14) +
.4(6/14) = 4/7

(b) P(C|Wc) = P(CWc)
P(Wc)

= P(Wc|C)P(C)
3/7 = .3(8/14)

3/7 = .4

3.12. Let Li be the event that Maria likes book i, i = 1, 2.
Then

P(L2|Lc1) = P(Lc1L2)

P(Lc1)
= P(Lc1L2)

.4



Solutions to Self-Test Problems and Exercises 487

Using that L2 is the union of the mutually exclusive events
L1L2 and L

c
1L2, we see that

.5 = P(L2) = P(L1L2) + P(Lc1L2) = .4 + P(Lc1L2)

Thus,

P
(
L2|Lc1

)
= .1

.4
= .25

3.13. (a) The sample space of interviews that have been held
in sequence can be represented as

� = {(x, y, z) : x, y, z ∈ {I,G1,G2}

where I is the innocent person andG1,G2 are the two guilty
persons.

Because the probability of each possible sequence of inter-
views is 1/6, the probability that the first interviewee is guilty
is 2/3.
(b) Let event one where the interviewee has been identified
as guilty after the first interview correspond to A. Then

A = {(G1, I,G2), (G1,G2, I), (G2, I,G1), (G2,G1, I)}

has probability 4/6. Let event two where the second intervie-
wee is innocent correspond to B. Then

B = {(G1, I,G2), (G2, I,G1)

has probability 1/3. Also, A ∩ B = B. Thus,

P[B|A] = P[A ∩ B]
P[A]

= 1/3
2/3

= 1
2

The probability that the next person to be interviewed is
innocent is 1/2.

3.14. LetH be the event that the coin lands heads, let Th be
the event that B is told that the coin landed heads, let F be
the event thatA forgets the result of the toss, and letC be the
event that B is told the correct result. Then
(a) P(Th) = P(Th|F)P(F) + P(Th|Fc)P(Fc)

= (.5)(.4) + P(H)(.6)

= .68

(b) P(C) = P(C|F)P(F) + P(C|Fc)P(Fc)

= (.5)(.4) + 1(.6) = .80

(c) P(H|Th) = P(HTh)
P(Th)

Now,

P(HTh) = P(HTh|F)P(F) + P(HTh|Fc)P(Fc)

= P(H|F)P(Th|HF)P(F) + P(H)P(Fc)

= (.8)(.5)(.4) + (.8)(.6) = .64

giving the result P(H|Th) = .64/.68 = 16/17.

3.15. Since the black rat has a brown sibling, we can con-
clude that both of its parents have one black and one
brown gene.
(a) P(2 black|at least one) = P(2)

P(at least one)
= 1/4

3/4 = 1
3

(b) Let F be the event that all 5 offspring are black, let B2 be
the event that the black rat has 2 black genes, and let B1 be
the event that it has 1 black and 1 brown gene. Then

P(B2|F) = P(F|B2)P(B2)

P(F|B2)P(B2) + P(F|B1)P(B1)

= (1)(1/3)

(1)(1/3) + (1/2)5(2/3)
= 16

17

3.16. Let F be the event that a current flows from A to B,
and let Ci be the event that relay i closes. Then

P(F) = P(F|C1)p1 + P(F|Cc1)(1 − p1)

Now,

P(F|C1) = P(C4 ∪ C2C5 ∪ C3C5)

= p4 + p2p5 + p3p5 − p4p2p5
− p4p3p5 − p2p3p5 + p4p2p5p3

Also,

P(F|Cc1) = P(C2C5 ∪ C2C3C4)

= p2p5 + p2p3p4 − p2p3p4p5

Hence, for part (a), we obtain

P(F) = p1(p4 + p2p5 + p3p5 − p4p2p5
− p4p3p5 − p2p3p5 + p4p2p5p3)

+ (1 − p1)p2(p5 + p3p4 − p3p4p5)

For part (b), let qi = 1 − pi. Then

P(C3|F) = P(F|C3)P(C3)/P(F)

= p3[1 − P(Cc1C
c
2 ∪ Cc4C

c
5)]/P(F)

= p3(1 − q1q2 − q4q5 + q1q2q4q5)/P(F)

3.17. Let A be the event that component 1 is working, and
let F be the event that the system functions.
(a) P(A|F) = P(AF)

P(F)
= P(A)

P(F)
= 1/2

1−(1/2)2
= 2

3

where P(F) was computed by noting that it is equal to 1
minus the probability that components 1 and 2 are both
failed.
(b) P(A|F) = P(AF)

P(F)
= P(F|A)P(A)

P(F)
= (3/4)(1/2)

(1/2)3+3(1/2)3
= 3

4

where P(F) was computed by noting that it is equal to the
probability that all 3 components work plus the three proba-
bilities relating to exactly 2 of the components working.

3.18. If we assume that the outcomes of the successive spins
are independent, then the conditional probability of the next
outcome is unchanged by the result that the previous 10 spins
landed on black.
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3.19. Condition on the outcome of the initial tosses:

P(A odd) = P1(1 − P2)(1 − P3) + (1 − P1)P2P3
+ P1P2P3P(A odd)

+ (1 − P1)(1 − P2)(1 − P3)P(A odd)

so,

P(A odd) = P1(1 − P2)(1 − P3) + (1 − P1)P2P3
P1 + P2 + P3 − P1P2 − P1P3 − P2P3

3.20. Let A and B be the events that the first trial is larger
and that the second is larger, respectively. Also, let E be the
event that the results of the trials are equal. Then

1 = P(A) + P(B) + P(E)

But, by symmetry, P(A) = P(B): thus,

P(B) = 1 − P(E)

2
=

1 −
n∑
i=1

p2i

2

Another way of solving the problem is to note that

P(B) =
∑
i

∑
j>i

P{first trial results in i, second trial results in j}

=
∑
i

∑
j>i

pipj

To see that the two expressions derived for P(B) are equal,
observe that

1 =
n∑
i=1

pi

n∑
j=1

pj

=
∑
i

∑
j

pipj

=
∑
i

p2i +
∑
i

∑
jZi

pipj

=
∑
i

p2i + 2
∑
i

∑
j>i

pipj

3.21. Let E = {A gets more heads than B}; then
P(E) = P(E|A leads after both flip n)P(A leads after both flip n)

+ P(E| even after both flip n)P(even after both flip n)

+ P(E|B leads after both flip n)P(B leads after both flip n)

= P(A leads) + 1
2
P(even)

Now, by symmetry,
P(A leads) = P(B leads)

= 1 − P(even)

2

Hence,

P(E) = 1
2

3.22. (a) Not true: In rolling 2 dice, let E = {sum is 7},
F = {1st die does not land on 4}, and G = {2nd die does not
land on 3}. Then

P(E|F ∪ G) = P{7, not (4, 3)}
P{not (4, 3)} = 5/36

35/36
= 5/35 Z P(E)

(b) P(E(F ∪ G)) = P(EF ∪ EG)

= P(EF) + P(EG) since EFG = ∅
= P(E)[P(F) + P(G)]

= P(E)P(F ∪ G) since FG = ∅

(c) P(G|EF) = P(EFG)

P(EF)

= P(E)P(FG)

P(EF)
since E is independent of FG

= P(E)P(F)P(G)

P(E)P(F)
by independence

= P(G).

3.23. (a) necessarily false; if they were mutually exclusive,
then we would have

0 = P(AB) Z P(A)P(B)

(b) necessarily false; if they were independent, then we
would have

P(AB) = P(A)P(B) > 0

(c) necessarily false; if they were mutually exclusive, then we
would have

P(A ∪ B) = P(A) + P(B) = 1.2

(d) possibly true

3.24. The probabilities in parts (a), (b), and (c) are .5, (.8)3 =
.512, and (.9)7 L .4783, respectively.

3.25. Let Di, i = 1, 2, denote the event that radio i is defec-
tive. Also, let A and B be the events that the radios were
produced at factory A and at factory B, respectively. Then

P(D2|D1) = P(D1D2)

P(D1)

= P(D1D2|A)P(A) + P(D1D2|B)P(B)

P(D1|A)P(A) + P(D1|B)P(B)

= (.05)2(1/2) + (.01)2(1/2)
(.05)(1/2) + (.01)(1/2)

= 13/300
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3.26. We are given that P(AB) = P(B) and must show that
this implies that P(BcAc) = P(Ac). One way is as follows:

P(BcAc) = P((A ∪ B)c)

= 1 − P(A ∪ B)

= 1 − P(A) − P(B) + P(AB)

= 1 − P(A)

= P(Ac)

3.27. The result is true for n = 0. WithAi denoting the event
that there are i red balls in the urn after stage n, assume that

P(Ai) = 1
n + 1

, i = 1, . . . , n + 1

Now let Bj, j = 1, . . . , n + 2, denote the event that there are
j red balls in the urn after stage n + 1. Then

P(Bj) =
n+1∑
i=1

P(Bj|Ai)P(Ai)

= 1
n + 1

n+1∑
i=1

P(Bj|Ai)

= 1
n + 1

[P(Bj|Aj−1) + P(Bj|Aj)]

Because there are n + 2 balls in the urn after stage n, it
follows that P(Bj|Aj−1) is the probability that a red ball is
chosen when j − 1 of the n + 2 balls in the urn are red and
P(Bj|Aj) is the probability that a red ball is not chosen when
j of the n + 2 balls in the urn are red. Consequently,

P(Bj|Aj−1) = j − 1
n + 2

, P(Bj|Aj) = n + 2 − j
n + 2

Substituting these results into the equation for P(Bj) gives

P(Bj) = 1
n + 1

[
j − 1
n + 2

+ n + 2 − j
n + 2

]
= 1
n + 2

This completes the induction proof.

3.28. If Ai is the event that player i receives an ace, then

P(Ai) = 1 −

(
2n − 2

n

)
(
2n
n

) = 1 − 1
2
n − 1
2n − 1

= 3n − 1
4n − 2

By arbitrarily numbering the aces and noting that the player
who does not receive ace number one will receive n of the
remaining 2n − 1 cards, we see that

P(A1A2) = n
2n − 1

Therefore,

P(Ac2|A1) = 1 − P(A2|A1) = 1 − P(A1A2)

P(A1)
= n − 1

3n − 1

Wemay regard the card division outcome as the result of two
trials, where trial i, i = 1, 2, is said to be a success if ace num-
ber i goes to the first player. Because the locations of the two
aces become independent as n goes to infinity, with each one
being equally likely to be given to either player, it follows
that the trials become independent, each being a success with
probability 1/2. Hence, in the limiting case where n→q, the
problem becomes one of determining the conditional proba-
bility that two heads result, given that at least one does, when
two fair coins are flipped. Because n−1

3n−1 converges to 1/3, the
answer agrees with that of Example 2b.

3.29. (a) For any permutation i1, . . . , in of 1, 2, . . . , n, the
probability that the successive types collected is i1, . . . , in is
pi1 · · ·pin = ∏n

i=1 pi. Consequently, the desired probability
is n!

∏n
i=1 pi.

(b) For i1, . . . , ik all distinct,

P(Ei1 · · ·Eik) =
(
n − k
n

)n

which follows because there are no coupons of types
i1, . . . , ik when each of the n independent selections is one
of the other n − k types. It now follows by the inclusion–
exclusion identity that

P(∪ni=1Ei) =
n∑

k=1

(−1)k+1
(
n
k

)(
n − k
n

)n

Because 1 − P(∪ni=1Ei) is the probability that one of each

type is obtained, by part (a) it is equal to n!
nn . Substituting this

into the preceding equation gives

1 − n!
nn

=
n∑

k=1

(−1)k+1
(
n
k

)(
n − k
n

)n

or

n! = nn −
n∑

k=1

(−1)k+1
(
n
k

)
(n − k)n

or

n! =
n∑

k=0

(−1)k
(
n
k

)
(n − k)n

3.30. P(E|E ∪ F) = P(E|F(E ∪ F))P(F|E ∪ F)

+P(E|Fc(E ∪ F))P(Fc|E ∪ F)

Using

F(E ∪ F) = F and Fc(E ∪ F) = FcE
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gives

P(E|E ∪ F) = P(E|F)P(F|E ∪ F)+P(E|EFc)P(Fc|E ∪ F)

= P(E|F)P(F|E ∪ F)+P(Fc|E ∪ F)

Ú P(E|F)P(F|E ∪ F)+P(E|F)P(Fc|E ∪ F)

= P(E|F)

3.31. (a) 2/5
(b) 5/6
3.32. (a) 1/7
(b) 1/6
3.33.

P(E|FGc) = P(EFGc)

P(FGc)

= P(EF) − P(EFG)

P(F) − P(FG)

= P(E)P(F) − P(E)P(F)P(G)

P(F) − P(F)P(G)

= P(E)

The second equality in the preceding used thatEF = EFG ∪
EFGc.
3.34. LetW1 be the event that player 1 wins the contest. Let-
tingO be the event that player 1 does not play in round 1, we
obtain by conditioning on whether or notO occurs, that

P(W1) = P(W1|O)P(O) + P(W1|Oc)P(Oc)

= P(W1|O)
1
3

+ 1
3
1
4
2
3

where the preceding used that ifOc occurs then 1 would have
to beat both 2 and 3 to win the tournament. To compute
P(W1|O), condition on which of 2 or 3 wins the first game.
Letting Bi be the event that i wins the first game

P(W1|O) = P(W1|0,B2)P(B2|O) + P(W1|0,B3)P(B3|O)

= 1
3
2
5

+ 1
4
3
5

= 17/60

Hence, P(W1) = 3/20. Also,

P(O|W1) = P(W1|O)P(O)

P(W1)
= (17/60)(1/3)

3/20
= 17/27

3.35.
P(all white|same) = P(all white)

P(same)

Now,

P(all white) =
(5
4
)

(22
4
) , P(same) =

(4
4
) + (5

4
) + (6

4
) + (7

4
)

(22
4
)

giving that

P(all white|same) =
(5
4
)

(4
4
) + (5

4
) + (6

4
) + (7

4
) = 5

56

3.36. Let B3 be the probability that 3 beats 4. Because 1
beats 2 with probability 1/3,

P(1) = P(1|B3)P(B3) + P(1|Bc3)P(Bc3) = (1/3)(1/4)(3/7)

+ (1/3)(1/5)(4/7) = 31/420

3.37. (a) Condition on who wins the first game to obtain:

P(W3) = P(W3|1wins)(1/3) + P(W3|2wins)(2/3)

= (1/3)(3/4)
n∏
i=4

3
i + 3

+ (2/3)(3/5)
n∏
i=4

3
i + 3

= 13
20

n∏
i=4

3
i + 3

(b) Condition on the opponent of player 4. IfOi is the event
that i is the opponent, i = 1, 2, 3, then

P(O1) = 1
3
1
4

= 1
12

P(O2) = 2
3
2
5

= 4
15

P(O3) = 1 − 1
12

− 4
15

= 13
20

Hence,

P(W4) =
3∑
i=1

P(W4|Oi)P(Oi) = 4
5

1
12

+ 4
6

4
15

+ 4
7
13
20

= 194
315

Chapter 4
4.1. Since the probabilities sum to 1, we must have
4P{X= 3}+ .5 = 1, implying that P{X= 0} = .375,P{X= 3}
= .125. Hence, E[X] = 1(.3) + 2(.2) + 3(.125) = 1.075.

4.2. The relationship implies that pi = cip0, i = 1, 2, where
pi = P{X = i}. Because these probabilities sum to 1, it fol-
lows that

p0(1 + c + c2) = 1 * p0 = 1

1 + c + c2

Hence,

E[X] = p1 + 2p2 = c + 2c2

1 + c + c2

4.3. Let X be the number of flips. Then the probability mass
function of X is

p2 = p2 + (1 − p)2, p3 = 1 − p2 = 2p(1 − p)

Hence,

E[X] = 2p2 + 3p3 = 2p2 + 3(1 − p2) = 3 − p2 − (1 − p)2
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4.4. The probability that a randomly chosen family will have
i children is ni/m. Thus,

E[X] =
r∑
i=1

ini/m

Also, since there are ini children in families having i children,
it follows that the probability that a randomly chosen child is

from a family with i children is ini/
r∑
i=1

ini. Therefore,

E[Y] =

r∑
i=1

i2ni

r∑
i=1

ini

Thus, we must show that

r∑
i=1

i2ni

r∑
i=1

ini

Ú

r∑
i=1

ini

r∑
i=1

ni

or, equivalently, that

r∑
j=1

nj

r∑
i=1

i2ni Ú
r∑
i=1

ini

r∑
j=1

jnj

or, equivalently, that

r∑
i=1

r∑
j=1

i2ninj Ú
r∑
i=1

r∑
j=1

ijninj

But, for a fixed pair i, j, the coefficient of ninj in the left-side
summation of the preceding inequality is i2 + j2, whereas
its coefficient in the right-hand summation is 2ij. Hence, it
suffices to show that

i2 + j2 Ú 2ij

which follows because (i − j)2 Ú 0.

4.5. Let p = P{X = 1}. Then E[X] = p and Var(X) =
p(1 − p), so

p = 3p(1 − p)

implying that p = 2/3. Hence, P{X = 0} = 1/3.

4.6. If you wager x on a bet that wins the amount wagered
with probability p and loses that amount with probability
1 − p, then your expected winnings are

xp − x(1 − p) = (2p − 1)x

which is positive (and increasing in x) if and only if p > 1/2.
Thus, if p … 1/2, one maximizes one’s expected return by

wagering 0, and if p > 1/2, one maximizes one’s expected
return by wagering the maximal possible bet. Therefore, if
the information is that the .6 coin was chosen, then you
should bet 10; if the information is that the .3 coin was cho-
sen, then you should bet 0. Hence, your expected payoff is

1
2
(1.2 − 1)10 + 1

2
0 − C = 1 − C

Since your expected payoff is 0 without the information
(because in this case the probability of winning is 1

2 (.6) +
1
2 (.3) < 1/2), it follows that if the information costs less than
1, then it pays to purchase it.
4.7. (a) If you turn over the red paper and observe the value
x, then your expected return if you switch to the blue paper is

2x(1/2) + x/2(1/2) = 5x/4 > x

Thus, it would always be better to switch.
(b) Suppose the philanthropist writes the amount x on the
red paper. Then the amount on the blue paper is either 2x or
x/2. Note that if x/2 Ú y, then the amount on the blue paper
will be at least y and will thus be accepted. Hence, in this
case, the reward is equally likely to be either 2x or x/2, so

E[Ry(x)] = 5x/4, if x/2 Ú y

If x/2 < y … 2x, then the blue paper will be accepted if its
value is 2x and rejected if it is x/2. Therefore,

E[Ry(x)] = 2x(1/2) + x(1/2) = 3x/2, if x/2 < y … 2x

Finally, if 2x < y, then the blue paper will be rejected. Hence,
in this case, the reward is x, so

Ry(x) = x, if 2x < y

That is, we have shown that when the amount x is written on
the red paper, the expected return under the y-policy is

E[Ry(x)] =

⎧⎪⎨
⎪⎩
x if x < y/2
3x/2 if y/2 … x < 2y
5x/4 if x Ú 2y

4.8. Suppose that n independent trials, each of which results
in a success with probability p, are performed. Then the num-
ber of successes will be less than or equal to i if and only if
the number of failures is greater than or equal to n − i. But
since each trial is a failure with probability 1 − p, it follows
that the number of failures is a binomial random variable
with parameters n and 1 − p. Hence,

P{Bin(n, p) … i} = P{Bin (n, 1 − p) Ú n − i}
= 1 − P{Bin (n, 1 − p) … n − i − 1}

The final equality follows from the fact that the probability
that the number of failures is greater than or equal to n − i
is 1 minus the probability that it is less than n − i.
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4.9. SinceE[X] = np, Var(X) = np(1 − p), we are given that
np = 6,np(1 − p) = 2.4. Thus, 1 − p = .4, or p = .6,n = 10.
Hence,

P{X = 5} =
(
10
5

)
(.6)5(.4)5

4.10. Let Xi, i = 1, . . . ,m, denote the number on the ith ball
drawn. Then

P{X … k} = P{X1 … k,X2 … k, . . . ,Xm … k}
= P{X1 … k}P{X2 … k} · · ·P{Xm … k}

=
(
k
n

)m

Therefore,

P{X = k} = P{X … k} − P{X … k− 1} =
(
k
n

)m
−
(
k− 1
n

)m

4.11. (a)Given that A wins the first game, it will win the
series if, from then on, it wins 2 games before team B wins
3 games. Thus,

P{A wins|A wins first} =
4∑
i=2

(
4
i

)
pi(1 − p)4−i

(b)
P{A wins first|A wins} = P{A wins|A wins first}P{A wins first}

P{A wins}

=

4∑
i=2

(
4
i

)
pi+1(1 − p)4−i

5∑
i=3

(
5
i

)
pi(1 − p)5−i

4.12. To obtain the solution, condition on whether the team
wins this weekend:

.5
4∑
i=3

(
4
i

)
(.4)i(.6)4−i + .5

4∑
i=3

(
4
i

)
(.7)i(.3)4−i

4.13. LetC be the event that the jury makes the correct deci-
sion, and let F be the event that four of the judges agreed.
Then

P(C) =
7∑
i=4

(
7
i

)
(.7)i(.3)7−i

Also,

P(C|F) = P(CF)

P(F)

=
(
7
4

)
(.7)4(.3)3(

7
4

)
(.7)4(.3)3 +

(
7
3

)
(.7)3(.3)4

= .7

4.14. Assuming that the number of hurricanes can be
approximated by a Poisson random variable, we obtain the
solution

3∑
i=0

e−5.2(5.2)i/i!

4.15. E[Y] =
q∑
i=1

iP{X = i}/P{X > 0}

= E[X]/P{X > 0}
= λ

1 − e−λ

4.16. (a) 1/n
(b) Let D be the event that girl i and girl j choose different
boys. Then

P(GiGj) = P(GiGj|D)P(D) + P(GiGj|Dc)P(Dc)

= (1/n)2(1 − 1/n)

= n − 1

n3

Therefore,

P(Gi|Gj) = n − 1

n2

(c) , (d) Because, when n is large, P(Gi|Gj) is small and
nearly equal to P(Gi), it follows from the Poisson paradigm
that the number of couples is approximately Poisson dis-
tributed with mean

∑n
i=1 P(Gi) = 1. Hence, P0 L e−1 and

Pk L e−1/k!
(e) To determine the probability that a given set of k girls all
are coupled, condition on whether or notD occurs, whereD
is the event that they all choose different boys. This gives

P(Gi1 · · ·Gik) = P(Gi1 · · ·Gik |D)P(D)

+ P(Gi1 · · ·Gik |Dc)P(Dc)

= P(Gi1 · · ·Gik |D)P(D)

= (1/n)k
n(n − 1) · · · (n − k + 1)

nk

= n!

(n − k)!n2k

Therefore,

∑
i1<...<ik

P(Gi1 · · ·Gik) =
(
n
k

)
P(Gi1 · · ·Gik)

= n!n!

(n − k)!(n − k)!k!n2k

and the inclusion–exclusion identity yields

1 − P0 = P(∪ni=1Gi) =
n∑

k=1

(−1)k+1 n!n!

(n − k)!(n − k)!k!n2k
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4.17. (a) Because woman i is equally likely to be paired with
any of the remaining 2n − 1 people, P(Wi) = 1

2n−1
(b) Because, conditional on Wj, woman i is equally likely to
be paired with any of 2n − 3 people, P(Wi|Wj) = 1

2n−3
(c)When n is large, the number of wives paired with
their husbands will approximately be Poisson with mean∑n

i=1 P(Wi) = n
2n−1 L 1/2. Therefore, the probability that

there is no such pairing is approximately e−1/2.
(d) It reduces to the match problem.

4.18. (a)

(
8
3

)
(9/19)3(10/19)5(9/19) =

(
8
3

)
(9/19)4(10/19)5

(b) IfW is her final winnings andX is the number of bets she
makes, then, since she would have won 4 bets and lostX − 4
bets, it follows that

W = 20 − 5(X − 4) = 40 − 5X

Hence,

E[W] = 40 − 5E[X] = 40 − 5[4/(9/19)] = −20/9

4.19. The probability that a round does not result in an “odd
person” is equal to 1/4, the probability that all three coins
land on the same side.
(a) (1/4)2(3/4) = 3/64
(b) (1/4)4 = 1/256

4.20. Let q = 1 − p. Then

E[1/X] =
q∑
i=1

1
i
qi−1p

= p
q

q∑
i=1

qi/i

= p
q

q∑
i=1

∫ q

0
xi−1 dx

= p
q

∫ q

0

q∑
i=1

xi−1 dx

= p
q

∫ q

0

1
1 − x

dx

= p
q

∫ 1

p

1
y
dy

= −p
q
log(p)

4.21. Since X−b
a−b will equal 1 with probability p or 0 with

probability 1 − p, it follows that it is a Bernoulli random
variable with parameter p. Because the variance of such a

Bernoulli random variable is p(1 − p), we have

p(1 − p) = Var
(
X − b
a − b

)
= 1

(a − b)2
Var(X − b)

= 1

(a − b)2
Var(X)

Hence,

Var(X) = (a − b)2p(1 − p)

4.22. Let X denote the number of games that you play and
Y the number of games that you lose.
(a)After your fourth game, you will continue to play until
you lose. Therefore, X − 4 is a geometric random variable
with parameter 1 − p, so

E[X] = E[4 + (X − 4)] = 4 + E[X − 4] = 4 + 1
1 − p

(b) If we let Z denote the number of losses you have in the
first 4 games, then Z is a binomial random variable with
parameters 4 and 1 − p. Because Y = Z + 1, we have

E[Y] = E[Z + 1] = E[Z] + 1 = 4(1 − p) + 1

4.23. A total of nwhite balls will be withdrawn before a total
of m black balls if and only if there are at least n white balls
in the first n + m − 1 withdrawals. (Compare with the prob-
lem of the points, Example 4j of Chapter 3.) With X equal to
the number of white balls among the first n + m − 1 balls
withdrawn, X is a hypergeometric random variable, and it
follows that

P{X Ú n} =
n+m−1∑
i=n

P{X = i}

=
n+m−1∑
i=n

(
N
i

)(
M

n + m − 1 − i

)
(

N + M
n + m − 1

)

4.24. Because each ball independently goes into urn i with
the same probability pi, it follows that Xi is a binomial ran-
dom variable with parameters n = 10, p = pi.
First note that Xi + Xj is the number of balls that go

into either urn i or urn j. Then, because each of the 10 balls
independently goes into one of these urns with probability
pi + pj, it follows thatXi + Xj is a binomial random variable
with parameters 10 and pi + pj.
By the same logic, X1 + X2 + X3 is a binomial random

variable with parameters 10 and p1 + p2 + p3. Therefore,

P{X1 + X2 + X3 = 7} =
(
10
7

)
(p1 + p2 + p3)

7( p4 + p5)
3
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4.25. Let Xi equal 1 if person i has a match, and let it equal
0 otherwise. Then

X =
n∑
i=1

Xi

is the number of matches. Taking expectations gives

E[X]=E

⎡
⎣ n∑
i=1

Xi

⎤
⎦=

n∑
i=1

E[Xi]=
n∑
i=1

P{Xi = 1} =
n∑
i=1

1/n= 1

where the final equality follows because person i is equally
likely to end up with any of the n hats.

To compute Var(X), we use Equation (9.1), which states
that

E[X2] =
n∑
i=1

E[Xi] +
n∑
i=1

∑
jZi

E[XiXj]

Now, for i Z j,

E[XiXj] = P{Xi = 1, Xj = 1} = P{Xi = 1}P{Xj = 1|Xi = 1}

= 1
n

1
n − 1

Hence,

E[X2] = 1 +
n∑
i=1

∑
jZi

1
n(n − 1)

= 1 + n(n − 1)
1

n(n − 1)
= 2

which yields

Var(X) = 2 − 12 = 1

4.26. With q = 1 − p, we have, on the one hand,

P(E) =
q∑
i=1

P{X = 2i}

=
q∑
i=1

pq2i−1

= pq
q∑
i=1

(q2)i−1

= pq
1

1 − q2

= pq
(1 − q)(1 + q)

= q
1 + q

On the other hand,

P(E) = P(E|X = 1)p + P(E|X > 1)q = qP(E|X > 1)

However, given that the first trial is not a success, the num-
ber of trials needed for a success is 1 plus the geometrically

distributed number of additional trials required. Therefore,

P(E|X > 1) = P(X + 1 is even) = P(Ec) = 1 − P(E)

which yields P(E) = q/(1 + q).

4.27. In order forN = 6 one of the teamsmust be up 3 games
to 2 after the first 5 games and then must win game 6. This
gives

P(N = 6) =
(
5
3

)
p3(1 − p)2p +

(
5
3

)
(1 − p)3p2(1 − p)

= 10(p4(1 − p)2 + (1 − p)4p2)

On the other hand, N = 7 if each team wins 3 of the first 6
games. Hence,

P(N = 7) =
(
6
3

)
p3(1 − p)3 = 20 p3(1 − p)3

Hence,

P(N = 6) − P(N = 7) = p2(1 − p)2(
10p2 + 10(1 − p)2 − 20p(1 − p)

)
= p2(1 − p)2(40p2 − 40p + 10)

Calculus shows that 40p2 − 40p + 10 is minimized when
p = 1/2 with the minimizing value equal to 0.

(b) In order forN Ú 6 one of the teamsmust be up 3 games
to 2 after the first 5 games, and because when p = 1/2 each
team is equally likely to win game 6, it is just as likely that N
will equal 6 as that it will equal 7.

(c) Imagine that the teams continue to play even after one
of them has won the series. The team that wins the first game
must win at least 3 of the next 6 games played to win the
series. Hence, the desired answer is

∑6
i=3

(6
i
)
(1/2)6 = 42/64.

4.28. (a) The negative binomial represents the number of
balls withdrawn in a similar experiment but with the excep-
tion that the withdrawn ball would be replaced before the
next drawing.
(b)Using the hint, we note that X = r if the first r − 1 balls
withdrawn contain exactly k − 1 white balls and the next
withdrawn ball is white. Hence,

P(X = r) =

(
n

k − 1

)(
m

r − k

)
(
n + m
r − 1

) n − k + 1
n + m − r + 1

,

k … r … m + k

4.29. (a) 1
3
(8
5
) (

(1/3)5(2/3)3 + (1/2)8 + (3/4)5(1/4)3
)

(b) 1
3 [(2/3)

4(1/3) + (1/2)5 + (1/4)4(3/4)]

4.30. Binomial with parameters n and 1 − p.
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4.31.

P(X = k) =
(k−1
i−1
)(n+m−k

n−i
)

(n+m
n
)

4.32. X = i if the first i − 1 balls consist of r − 1 red and
i − r blue balls, and the next ball is red. Hence,

P(X = i) =
( n
r−1
)( m
i−r
)

(n+m
i−1

) n − r + 1
n + m − i + 1

.

Let Y be the number of balls that have to be removed
until a total of s blue balls have been removed. Then, V =
min(X,Y) and for i < r + s,

P(V = i) = P(X = i) + P(Y = i)

=
( n
r−1
)( m
i−r
)

(n+m
i−1

) n − r + 1
n + m − i + 1

+
( m
s−1
)( n
i−s
)

(n+m
i−1

) m − s + 1
n + m − i + 1

Now, Z = max(X, Y). BecauseZ Ú r + s, and Z = i Ú r + s
either if X = i or if Y = i, we have, for i Ú r + s, that

P(Z = i) = P(X = i) + P(Y = i)

=
( n
r−1
)( m
i−r
)

(n+m
i−1

) n − r + 1
n + m − i + 1

+
( m
s−1
)( n
i−s
)

(n+m
i−1

) m − s + 1
n + m − i + 1

X < Y if the rth red ball is removed before a total of r + s
balls have been removed. That is,

P(X < Y) = P(X < r + s)

=
r+s−1∑
i=r

( n
r−1
)( m
i−r
)

(n+m
i−1

) n − r + 1
n + m − i + 1

.

Chapter 5
5.1. Let X be the number of minutes played.
(a) P{X > 15} = 1 − P{X … 15} = 1 − 5(.025) = .875
(b) P{20 < X < 35} = 10(.05) + 5(.025) = .625
(c) P{X < 30} = 10(.025) + 10(.05) = .75
(d) P{X > 36} = 4(.025) = .1

5.2. (a) 1 = ∫ 1
0 cx

ndx = c/(n + 1) * c = n + 1

(b) P{X > x} = (n + 1)
∫ 1
x x

ndx = xn+1
∣∣∣1
x

= 1 − xn+1

5.3. First, let us find c by using

1 =
∫ 2

0
cx4dx = 32c/5 * c = 5/32

(a) E[X] = 5
32
∫ 2
0 x

5dx = 5
32

64
6 = 5/3

(b) E[X2] = 5
32
∫ 2
0 x

6dx = 5
32

128
7 = 20/7 * Var(X) =

20/7 − (5/3)2 = 5/63

5.4. Since

1 =
∫ 1

0
(ax + bx2)dx = a/2 + b/3

.6 =
∫ 1

0
(ax2 + bx3)dx = a/3 + b/4

we obtain a = 3.6,b = −2.4. Hence,
(a) P{X < 1/2} = ∫ 1/2

0 (3.6x − 2.4x2)dx = (1.8x2 −
.8x3)

∣∣∣1/2
0

= .35

(b) E[X2] = ∫ 1
0 (3.6x3 − 2.4x4)dx = .42 * Var(X) = .06

5.5. For i = 1, . . . ,n,

P{X = i} = P{Int(nU) = i − 1}
= P{i − 1 … nU < i}

= P
{
i − 1
n

… U <
i
n

}
= 1/n

5.6. If you bid x, 70 … x … 140, then you will either win the bid
and make a profit of x − 100 with probability (140 − x)/70
or lose the bid and make a profit of 0 otherwise. Therefore,
your expected profit if you bid x is

1
70

(x − 100)(140 − x) = 1
70

(240x − x2 − 14000)

Differentiating and setting the preceding equal to 0 gives

240 − 2x = 0

Therefore, you should bid $120, 000. Your expected profit
will be 40/7 thousand dollars.

5.7. (a) P{U > .1} = 9/10
(b) P{U > .2|U > .1} = P{U > .2}/P{U > .1} = 8/9
(c) P{U > .3|U > .2,U > .1} = P{U > .3}/P{U > .2} = 7/8
(d) P{U > .3} = 7/10
The answer to part (d) could also have been obtained by
multiplying the probabilities in parts (a), (b), and (c).

5.8. LetX be the test score, and letZ = (X − 100)/15. Note
that Z is a standard normal random variable.
(a) P{X > 125} = P{Z > 25/15} L .0478
(b)P{90 < X < 110} = P{−10/15 < Z < 10/15}

= P{Z < 2/3} − P{Z < −2/3}
= P{Z < 2/3} − [1 − P{Z < 2/3}]
L .4950
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5.9. Let X be the travel time. We want to find x such that

P{X > x} = .05

which is equivalent to

P
{
X − 40

7
>

x − 40
7

}
= .05

That is, we need to find x such that

P
{
Z >

x − 40
7

}
= .05

where Z is a standard normal random variable. But

P{Z > 1.645} = .05

Thus,

x − 40
7

= 1.645 or x = 51.515

Therefore, you should leave no later than 8.485 minutes after
12 P.M.

5.10. Let X be the tire life in units of one thousand, and let
Z = (X − 34)/4. Note that Z is a standard normal random
variable.
(a) P{X > 40} = P{Z > 1.5} L .0668
(b) P{30 < X < 35} = P{−1 < Z < .25} = P{Z < .25} −
P{Z > 1} L .44
(c) P{X > 40|X > 30} = P{X > 40}/P{X > 30}

= P{Z > 1.5}/P{Z > −1} L .079

5.11. LetX be next year’s rainfall and letZ=(X−40.2)/8.4.
(a) P{X > 44} = P{Z > 3.8/8.4} L P{Z > .4524} L .3255

(b)

(
7
3

)
(.3255)3(.6745)4

5.12. Let Mi and Wi denote, respectively, the numbers of
men and women in the samples that earn, in units of $1, 000,
at least i per year. Also, let Z be a standard normal random
variable.
(a)

P{W25 Ú 70}
= P{W25 Ú 69.5}

= P

{
W25 − 200(.34)√

200(.34)(.66)
Ú

69.5 − 200(.34)√
200(.34)(.66)

}

L P{Z Ú .2239}
L .4114

(b)

P{M25 … 120}
= P{M25 … 120.5}

= P

{
M25 − (200)(.587)√

(200)(.587)(.413)
…

120.5 − (200)(.587)√
(200)(.587)(.413)

}

L P{Z … .4452}
L .6719

(c)
P{M20 Ú 150}

= P{M20 Ú 149.5}

= P

{
M20 − (200)(.745)√

(200)(.745)(.255)
Ú

149.5 − (200)(.745)√
(200)(.745)(.255)

}

L P{Z Ú .0811}
L .4677

P{W20 Ú 100}
= P{W20 Ú 99.5}

= P

{
W20 − (200)(.534)√

(200)(.534)(.466)
Ú

99.5 − (200)(.534)√
(200)(.534)(.466)

}

L P{Z Ú −1.0348}
L .8496

Hence,

P{M20 Ú 150}P{W20 Ú 100} L .3974

5.13. The lack of memory property of the exponential gives
the result e−4/5.

5.14. (a) e−22 = e−4

(b) F(3) − F(1) = e−1 − e−9

(c) λ(t) = 2te−t2/e−t2 = 2t
(d) Let Z be a standard normal random variable. Use the
identity E[X] = ∫q

0 P{X > x} dx to obtain

E[X] =
∫ q

0
e−x2 dx

= 2−1/2
∫ q

0
e−y2/2 dy

= 2−1/2√2πP{Z > 0}
= √

π/2

(e)Use the result of Theoretical Exercise 5.5 to obtain

E[X2] =
∫ q

0
2xe−x2 dx = −e−x2

∣∣∣∣q
0

= 1

Hence, Var(X) = 1 − π/4.

5.15. (a) P{X > 6} = exp{− ∫ 60 λ(t)dt} = e−3.45
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(b) P{X < 8|X > 6} = 1 − P{X > 8|X > 6}
= 1 − P{X > 8}/P{X > 6}
= 1 − e−5.65/e−3.45

L .8892

5.16. For x Ú 0,

F1/X (x) = P{1/X … x}
= P{X … 0} + P{X Ú 1/x}
= 1/2 + 1 − FX (1/x)

Differentiation yields

f1/X (x) = x−2fX (1/x)

= 1

x2π(1 + (1/x)2)
= fX (x)

The proof when x < 0 is similar.
5.17. IfX denotes the number of the first n bets that you win,
then the amount that you will be winning after n bets is

35X − (n − X) = 36X − n

Thus, we want to determine

a = P{36X − n > 0} = P{X > n/36}
whenX is a binomial random variable with parameters n and
p = 1/38.
(a) When n = 34,

a = P{X Ú 1}
= P{X > .5} (the continuity correction)

= P

{
X − 34/38√

34(1/38)(37/38)
>

.5 − 34/38√
34(1/38)(37/38)

}

= P

{
X − 34/38√

34(1/38)(37/38)
> −.4229

}

L �(.4229)

L .6638

(Because you will be ahead after 34 bets if you win at least
1 bet, the exact probability in this case is 1 − (37/38)34 =
.5961.)
(b)When n = 1000,

a = P{X > 27.5}

= P

{
X − 1000/38√

1000(1/38)(37/38)
>

27.5 − 1000/38√
1000(1/38)(37/38)

}

L 1 − �(.2339)

L .4075

The exact probability—namely, the probability that a bino-
mial n = 1000, p = 1/38 random variable is greater than
27—is .3961.
(c)When n = 100, 000,

a = P{X > 2777.5}

= P

{
X − 100000/38√

100000(1/38)(37/38)
>

2777.5 − 100000/38√
100000(1/38)(37/38)

}

L 1 − �(2.883)

L .0020

The exact probability in this case is .0021.

5.18. If X denotes the lifetime of the battery, then the
desired probability, P{X > s + t|X > t}, can be determined
as follows:

P{X > s + t|X > t} = P{X > s + t,X > t}
P{X > t}

= P{X > s + t}
P{X > t}

=
P{X>s+t|battery is type 1}p1

+P{X>s+t|battery is type 2}p2
P{X>t|battery is type 1}p1

+P{X>t|battery is type 2}p2

= e−λ1(s+t)p1 + e−λ2(s+t)p2
e−λ1tp1 + e−λ2tp2

Another approach is to directly condition on the type of
battery and then use the lack-of-memory property of expo-
nential random variables. That is, we could do the following:

P{X > s + t|X > t}
= P{X > s + t|X > t, type 1}P{type 1|X > t}

+ P{X > s + t|X > t, type 2}P{type 2|X > t}
= e−λ1sP{type 1|X > t} + e−λ2sP{type 2|X > t}

Now for i = 1, 2, use

P{type i|X > t} = P{type i,X > t}
P{X > t}

= P{X > t|type i}pi
P{X > t|type 1}p1 + P{X > t|type 2}p2

= e−λitpi
e−λ1tp1 + e−λ2tp2

5.19. Let Xi be an exponential random variable with mean
i, i = 1, 2.
(a) The value c should be such that P{X1 > c} = .05. There-
fore,

e−c = .05 = 1/20

or c = log(20) = 2.996.



498 Solutions to Self-Test Problems and Exercises

(b) P{X2 > c} = e−c/2 = 1√
20

= .2236

5.20. (a)

E[(Z − c)+] = 1√
2π

∫ q

−q
(x − c)+e−x2/2 dx

= 1√
2π

∫ q

c
(x − c)e−x2/2 dx

= 1√
2π

∫ q

c
xe−x2/2 dx− 1√

2π

∫ q

c
c e−x2/2 dx

= − 1√
2π

e−x2/2 |qc − c(1 − �(c))

= 1√
2π

e−c2/2 − c(1 − �(c))

(b)Using the fact that X has the same distribution as μ +
σZ, where Z is a standard normal random variable, yields

E[(X − c)+] = E[(μ + σZ − c)+]

= E

⎡
⎣(σ

(
Z − c − μ

σ

))+⎤⎦

= E

[
σ

(
Z − c − μ

σ

)+]

= σ E

[(
Z − c − μ

σ

)+]

= σ

[
1√
2π

e−a2/2 − a(1 − �(a))

]

where a = c−μ
σ .

5.21. Only (b) is true.

5.22. (a) If b > 0, then for 0 < x < b,

P
(
bU < x

) = P
{
U < x/b

} = x/b.

Hence,
fbU(x) = 1/b, 0 < x < b

The argument when b < 0 is similar.
(b) For a < x < 1 + a,

P
{
a + U < x

} = P
{
U < x − a

} = x − a

Differentiation yields

fa+U(x) = 1, a < x < 1 + a

(c) a + (b − a)U

(d) For 0 < x < 1/2,

P
{
min

(
U, 1−U

)
< x

}
= P

({
U < x

} ∪ {
U > 1 − x

})
= P

{
U < x

}+ P
{
U > 1 − x

}= 2x

Differentiating gives

fmin(U, 1−U)(x) = 2, 0 < x < 1/2

(e)Using that max(U, 1 − U) = 1 − min(U, 1 − U), the
result follows from (a), (b), and (d). A direct argument is
that, for 1/2 < x < 1,

P
{
max

(
U, 1−U

)
< x

}
= 1−P

{
max

(
U, 1−U

)
> x

}
= 1 − P

({
U > x

} ∪ {
U < 1 − x

})
= 1− (1− x

) − (
1 − x

) = 2x− 1

Hence,

fmax(U,1−U)(x) = 2, 1/2 < x < 1

5.23. (a)
∫ 0
−q exdx + 1 + ∫q

1 e−(x−1)dx = 1 + 1 + 1 = 3.
(b) E[X] = 1/2

5.24. (a) θ
1+θ

∫q
0 (1 + x)θe−θxdx = θ

1+θ
(1 + 1

θ ) = 1.

(b)With Y being exponential with rate θ , E[X] =
θ

1+θ
(E[Y] + E[Y2]) = 2+θ

θ(1+θ)
.

(c) E[X2] = θ
1+θ

(E[Y2] + E[Y3]) = θ
1+θ

( 2
θ2

+ 6
θ3

). Hence,

Var(X) = θ

1 + θ
(
2

θ2
+ 6

θ3
) − (

2 + θ

θ(1 + θ)
)2

Chapter 6
6.1. (a) 3C + 6C = 1 * C = 1/9
(b) Let p(i, j) = P{X = i,Y = j}. Then

p(1, 1) = 4/9, p(1, 0) = 2/9,P(0, 1) = 1/9, p(0, 0) = 2/9

(c)
(12)!

26
(1/9)6(2/9)6

(d)
(12)!

(4!)3
(1/3)12

(e)
12∑
i=8

(
12
i

)
(2/3)i(1/3)12−i

6.2. (a) With pj = P{XYZ = j}, we have
p6 = p2 = p4 = p12 = 1/4

Hence,

E[XYZ] = (6 + 2 + 4 + 12)/4 = 6

(b)With qj = P{XY + XZ + YZ = j}, we have
q11 = q5 = q8 = q16 = 1/4

Hence,

E[XY + XZ + YZ] = (11 + 5 + 8 + 16)/4 = 10
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6.3. In this solution, we will make use of the identity∫ q

0
e−xxn dx = n!

which follows because e−xxn/n!, x > 0, is the density func-
tion of a gamma random variable with parameters n + 1 and
λ and must thus integrate to 1.

(a) 1 = C
∫ q

0
e−y

∫ y

−y
(y − x) dx dy

= C
∫ q

0
e−y2y2 dy = 4C

Hence, C = 1/4.
(b) Since the joint density is nonzero only when y > x and
y > −x, we have, for x > 0,

fX (x) = 1
4

∫ q

x
(y − x)e−y dy

= 1
4

∫ q

0
ue−(x+u) du

= 1
4
e−x

For x < 0,

fX (x) = 1
4

∫ q

−x
(y − x)e−y dy

= 1
4
[−ye−y − e−y + xe−y]q−x

= (−2xex + ex)/4

(c) fY(y) = 1
4e

−y ∫ y−y(y − x) dx = 1
2y

2e−y

(d) E[X] = 1
4

[∫ q

0
xe−xdx +

∫ 0

−q
(−2x2ex + xex) dx

]

= 1
4

[
1 −

∫ q

0
(2y2e−y + ye−y) dy

]

= 1
4
[1 − 4 − 1] = −1

(e) E[Y] = 1
2
∫q
0 y3e−y dy = 3

6.4. The multinomial random variables Xi, i = 1, . . . , r, rep-
resent the numbers of each of the types of outcomes 1, . . . , r
that occur in n independent trials when each trial results
in one of the outcomes 1, . . . , r with respective probabili-
ties p1, . . . , pr. Now, say that a trial results in a category 1
outcome if that trial resulted in any of the outcome types
1, . . . , r1; say that a trial results in a category 2 outcome if that
trial resulted in any of the outcome types r1 + 1, . . . , r1 + r2;
and so on. With these definitions, Y1, . . . ,Yk represent the
numbers of category 1 outcomes, category 2 outcomes, up
to category k outcomes when n independent trials that each

result in one of the categories 1, . . . , k with respective prob-
abilities

∑ri−1+ri
j=ri−1+1 pj, i = 1, . . . , k, are performed. But by

definition, such a vector has a multinomial distribution.
6.5. (a) Letting pj = P{XYZ = j}, we have

p1 = 1/8, p2 = 3/8, p4 = 3/8, p8 = 1/8

(b) Letting pj = P{XY + XZ + YZ = j}, we have

p3 = 1/8, p5 = 3/8, p8 = 3/8, p12 = 1/8

(c) Letting pj = P{X2 + YZ = j}, we have

p2 = 1/8, p3 = 1/4, p5 = 1/4, p6 = 1/4, p8 = 1/8

6.6. (a) 1 =
∫ 1

0

∫ 5

1
(x/5 + cy)dy dx

=
∫ 1

0
(4x/5 + 12c)dx

= 12c + 2/5

Hence, c = 1/20.
(b) No, the density does not factor.

(c) P{X +Y> 3} =
∫ 1

0

∫ 5

3−x
(x/5 + y/20) dy dx

=
∫ 1

0
[(2 + x)x/5 + 25/40−(3−x)2/40]dx

= 1/5 + 1/15 + 5/8 − 19/120 = 11/15

6.7. (a) Yes, the joint density function factors.

(b) fX (x) = x
∫ 2
0 ydy = 2x, 0 < x < 1

(c) fY(y) = y
∫ 1
0 xdx = y/2, 0 < y < 2

(d)
P{X < x,Y < y} = P{X < x}P{Y < y}

= min(1, x2)min(1, y2/4), x > 0, y > 0

(e) E[Y] = ∫ 2
0 y

2/2 dy = 4/3

(f) P{X + Y < 1} =
∫ 1

0
x
∫ 1−x

0
y dy dx

= 1
2

∫ 1

0
x(1 − x)2 dx = 1/24

6.8. Let Ti denote the time at which a shock type i, of i =
1, 2, 3, occurs. For s > 0, t > 0,

P{X1 > s,X2 > t} = P{T1 > s,T2 > t,T3 > max(s, t)}
= P{T1 > s}P{T2 > t}P{T3 > max(s, t)}
= exp{−λ1s} exp{−λ2t} exp{−λ3 max(s, t)}
= exp{−(λ1s + λ2t + λ3 max(s, t))}
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6.9. (a) No, advertisements on pages having many ads are
less likely to be chosen than are ones on pages with few ads.

(b) 1
m
n(i)
n

(c)

m∑
i=1

n(i)

nm = n/n, where n =
m∑
i=1

n(i)/m

(d) (1 − n/n)k−1 1
m
n(i)
n

1
n(i)

= (1 − n/n)k−1/(nm)

(e)
q∑
k=1

1
nm

(1 − n/n)k−1 = 1
nm

.

(f) The number of iterations is geometric with mean n
√
n

6.10. (a) P{X = i} = 1/m, i = 1, . . . ,m.
(b) Step 2. Generate a uniform (0, 1) random variable U.
If U < n(X)/n, go to step 3. Otherwise return to step 1.
Step 3. Generate a uniform (0, 1) random variable U, and
select the element on page X in position [n(X)U] + 1.

6.11. Yes, they are independent. This can be easily seen by
considering the equivalent question of whether XN is inde-
pendent of N. But this is indeed so, since knowing when the
first random variable greater than c occurs does not affect
the probability distribution of its value, which is the uniform
distribution on (c, 1).

6.12. Let pi denote the probability of obtaining i points on a
single throw of the dart. Then

p30 = π/36

p20 = 4π/36 − p30 = π/12

p10 = 9π/36 − p20 − p30 = 5π/36

p0 = 1 − p10 − p20 − p30 = 1 − π/4

(a) π/12
(b) π/9
(c) 1 − π/4
(d) π(30/36 + 20/12 + 50/36) = 35π/9
(e) (π/4)2

(f) 2(π/36)(1 − π/4) + 2(π/12)(5π/36)

6.13. Let Z be a standard normal random variable.
(a)

P

⎧⎨
⎩

4∑
i=1

Xi > 0

⎫⎬
⎭ = P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4∑
i=1

Xi − 6

√
24

>
−6√
24

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

L P{Z > −1.2247} L .8897

(b)

P

⎧⎨
⎩

4∑
i=1

Xi > 0
∣∣∣ 2∑
i=1

Xi = −5

⎫⎬
⎭ = P{X3 + X4 > 5}

= P

{
X3 + X4−3√

12
> 2/

√
12

}

L P{Z > .5774} L .2818

(c)

p

⎧⎨
⎩

4∑
i=1

Xi>0|X1 = 5

⎫⎬
⎭ = P{X2 + X3 + X4 > −5}

= P

{
X2+X3+X4−4.5√

18
>−9.5/

√
18

}

L P{Z > −2.239} L .9874

6.14. In the following, C does not depend on n.

P{N = n|X = x} = fX|N(x|n)P{N = n}/fX (x)

= C
1

(n − 1)!
(λx)n−1(1 − p)n−1

= C(λ(1 − p)x)n−1/(n − 1)!

which shows that, conditional on X = x,N − 1 is a Poisson
random variable with mean λ(1 − p)x. That is,

P{N = n|X = x} = P{N− 1 = n−1|X = x}
= e−λ(1−p)x(λ(1−p)x)n−1/(n−1)!,n Ú 1.

6.15. (a) The Jacobian of the transformation is

J =
∣∣∣∣∣ 1 0
1 1

∣∣∣∣∣ = 1

As the equations u = x, v = x + y imply that x = u, y =
v − u, we obtain

fU,V(u, v) = fX,Y(u, v− u) = 1, 0 < u< 1, 0 < v− u< 1

or, equivalently,

fU,V(u, v) = 1, max(v − 1, 0) < u < min(v, 1)

(b) For 0 < v < 1,

fV(v) =
∫ v

0
du = v

For 1 … v … 2,

fV(v) =
∫ 1

v−1
du = 2 − v
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6.16. Let U be a uniform random variable on (7, 11). If you
bid x, 7 … x … 10, you will be the high bidder with probability

(P{U < x})3 =
(
P
{
U − 7

4
<

x − 7
4

})3
=
(
x − 7

4

)3

Hence, your expected gain—call it E[G(x)]—if you bid x is

E[G(x)] = 1
64

(x − 7)3(10 − x)

Calculus shows this is maximized when x = 37/4.

6.17. Let i1, i2, . . . , in, be a permutation of 1, 2, . . . , n. Then

P{X1= i1,X2 = i2, . . . ,Xn = in}
= P{X1 = i1}P{X2 = i2} · · ·P{Xn = in}
= pi1pi2 · · ·pin
= p1p2 · · ·pn

Therefore, the desired probability is n! p1p2 · · ·pn, which
reduces to n!

nn when all pi = 1/n.

6.18. (a) Because
n∑
i=1

Xi =
n∑
i=1

Yi, it follows that N = 2M.

(b) Consider the n − k coordinates whoseY-values are equal
to 0, and call them the red coordinates. Because the k coordi-
nates whose X-values are equal to 1 are equally likely to be

any of the

(
n
k

)
sets of k coordinates, it follows that the num-

ber of red coordinates among these k coordinates has the
same distribution as the number of red balls chosen when
one randomly chooses k of a set of n balls of which n − k
are red. Therefore,M is a hypergeometric random variable.

(c) E[N] = E[2M] = 2E[M] = 2k(n−k)
n

(d)Using the formula for the variance of a hypergeometric
given in Example 8j of Chapter 4, we obtain

Var(N) = 4 Var(M) = 4
n − k
n − 1

k(1 − k/n)(k/n)

6.19. (a) First note that Sn − Sk =
n∑

i=k+1
Zi is a normal

random variable with mean 0 and variance n − k that is
independent of Sk. Consequently, given that Sk = y, Sn is
a normal random variable with mean y and variance n − k.
(b) Because the conditional density function of Sk given that
Sn = x is a density function whose argument is y, anything
that does not depend on y can be regarded as a constant. (For
instance, x is regarded as a fixed constant.) In the following,
the quantities Ci, i = 1, 2, 3, 4 are all constants that do not

depend on y:

fSk|Sn(y|x) = fSk,Sn(y, x)

fSn(x)

= C1fSn|Sk(x|y)fSk(y)
(
where C1 = 1

fSn(x)

)

= C1
1√

2π
√
n−ke

−(x−y)2/2(n−k) 1√
2π

√
k
e−y2/2k

= C2 exp

{
− (x − y)2

2(n − k)
− y2

2k

}

= C3 exp

{
2xy

2(n − k)
− y2

2(n − k)
− y2

2k

}

= C3 exp

{
− n
2k(n − k)

(
y2 − 2

k
n
xy
)}

= C3 exp

⎧⎨
⎩− n

2k(n − k)

[(
y−k

n
x
)2

−
(
k
n
x
)2]⎫⎬

⎭
= C4 exp

{
− n
2k(n − k)

(
y − k

n
x
)2}

But we recognize the preceding as the density function

of a normal random variable with mean
k
n
x and variance

k(n − k)
n

.

6.20. (a)
P{X6 > X1|X1 = max(X1, . . . ,X5)}
= P{X6 > X1, X1 = max(X1, . . . ,X5)}

P{X1 = max(X1, . . . ,X5)}
= P{X6 = max(X1, . . . ,X6), X1 = max(X1, . . . ,X5)}

1/5

= 5
1
6
1
5

= 1
6

Thus, the probability that X6 is the largest value is inde-
pendent of which is the largest of the other five values. (Of
course, this would not be true if the Xi had different distri-
butions.)
(b)One way to solve this problem is to condition on whether
X6 > X1. Now,

P{X6 > X2|X1 = max(X1, . . . ,X5),X6 > X1} = 1

Also, by symmetry,

P{X6 > X2|X1 = max(X1, . . . ,X5),X6 < X1} = 1
2

From part (a),

P{X6 > X1|X1 = max(X1, . . . ,X5)} = 1
6
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Thus, conditioning on whether X6 > X1 yields the result

P{X6 > X2|X1 = max(X1, . . . ,X5)} = 1
6

+ 1
2
5
6

= 7
12

6.21. P
{
X > s,Y > t

}
= 1 − P

({
X … s

} ∪ {
Y … t

})
= 1 − P

{
X … s

} − P
{
Y … t

} + P
{
X … s,Y … t

}
6.22. Suppose j < i, and consider P(Xr = i, Ys = j). If there
have been s failures after trial j then there have been j − s
successes by that point. Hence, the conditional distribution
of Xr, given that Ys = j, is the distribution of j plus the num-
ber of additional trials after trial j until there have been an
additional r − j + s successes. Hence, for j < i

P(Xr = i, Ys = j) = P(Ys = j)P(Xr = i|Ys = j)

= P(Ys = j)P(Xs+r−j = i − j)

=
(
j − 1
s − 1

)
(1 − p)spj−s(

i − j − 1
s + r − j − 1

)
ps+r−j(1 − p)i−s−r, j < i

6.23. For x > x0, P(X > x|X > x0) = P(X>x)
P(X>x0)

= aλx−λ

aλx−λ
0

=
xλ0x

−λ

6.24. ∫ q

−q
fX|Y(x|y)fY(y)dy =

∫ q

−q

f (x, y)
fY(y)

fY(y)dy

=
∫ q

−q
f (x, y)dy

= fX (x)

6.25. (a) pki
(
1 − ∏

jZi(1 − pkj )
)

(b) Condition on the number of times i would advance if i
played forever, to obtain

∑q
k=0 p

k
i (1 − pi)

∏
jZi(1 − pk+1

j ).

(c)
∑q

k=0 p
k
i (1 − pi)

∏
jZi(1 − pkj ).

6.26. (a) even;
(b) 1;
(c)

∏n
i=1(2αi − 1);

(d)

n∏
i=1

(2αi − 1) = E[
n∏
i=1

Yi]

= P(

n∏
i=1

Yi = 1) − P(

n∏
i=1

Yi = −1)

= 2P(

n∏
i=1

Yi = 1) − 1

giving that

P(S is even) = P(

n∏
i=1

Yi = 1) = 1 + ∏n
i=1(2αi − 1)

2

6.27. For 0 < x < 1

fX|N(x|n) = P(N = n|X = x)fX (x)
P(N = n)

=
(n+m

n
)
xn(1 − x)mxa−1(1 − x)b−1

B(a, b)P(N = n)

= Kxn+a−1(1 − x)m+b−1

where K = (n+mn )
B(a,b)P(N=n) does not depend on x. Hence, we

can conclude that the conditional density of X given that
N = n is beta with parameters n + a,m + b. As a byproduct,

we also see that (n+mn )
B(a,b)P(N=n) = 1

B(a+n,b+m)
, or equivalently

that

P(N = n) =
(n+m

n
)
B(a + n, b + m)

B(a, b)

Chapter 7
7.1. (a) d =

m∑
i=1

1/n(i)

(b) P{X = i} = P{[mU] = i − 1} = P{i − 1 … mU < i} =
1/m, i = 1, . . . ,m

(c) E
[

m
n(X)

]
=

m∑
i=1

m
n(i)

P{X = i} =
m∑
i=1

m
n(i)

1
m

= d

7.2. Let Ij equal 1 if the jth ball withdrawn is white and the
(j + 1) is black, and let Ij equal 0 otherwise. IfX is the num-
ber of instances in which a white ball is immediately followed
by a black one, then we may express X as

X =
n+m−1∑
j=1

Ij

Thus,

E[X] =
n+m−1∑
j=1

E[Ij]

=
n+m−1∑
j=1

P{jth selection is white, (j + 1) is black}

=
n+m−1∑
j=1

P{ jth selection is white}P{( j + 1) is black|jth is white}

=
n+m−1∑
j=1

n
n + m

m
n + m − 1

= nm
n + m
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The preceding used the fact that each of the n + m balls is
equally likely to be the jth one selected and, given that that
selection is a white ball, each of the other n + m − 1 balls
is equally likely to be the next ball chosen.

7.3. Arbitrarily number the couples, and then let Ij equal 1 if
married couple number j, j = 1, . . . , 10, is seated at the same
table. Then, if X represents the number of married couples
that are seated at the same table, we have

X =
10∑
j=1

Ij

so

E[X] =
10∑
j=1

E[Ij]

(a) To compute E[Ij] in this case, consider wife number j.

Since each of the

(
19
3

)
groups of size 3 not including her

is equally likely to be the remaining members of her table, it
follows that the probability that her husband is at her table is(

1
1

)(
18
2

)
(
19
3

) = 3
19

Hence, E[Ij] = 3/19 and so

E[X] = 30/19

(b) In this case, since the 2 men at the table of wife j are
equally likely to be any of the 10 men, it follows that the
probability that one of them is her husband is 2/10, so

E[Ij] = 2/10 and E[X] = 2

7.4. From Example 2i, we know that the expected number of
times that the die need be rolled until all sides have appeared
at least once is 6(1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6) = 14.7.
Now, if we let Xi denote the total number of times that side

i appears, then, since
6∑
i=1

Xi is equal to the total number of

rolls, we have

14.7 = E

⎡
⎣ 6∑
i=1

Xi

⎤
⎦ =

6∑
i=1

E[Xi]

But, by symmetry, E[Xi] will be the same for all i, and thus it
follows from the preceding that E[X1] = 14.7/6 = 2.45.

7.5. Let Ij equal 1 if we win 1 when the jth red card to show
is turned over, and let Ij equal 0 otherwise. (For instance, I1

will equal 1 if the first card turned over is red.) Hence, if X is
our total winnings, then

E[X] = E

⎡
⎢⎣ n∑
j=1

Ij

⎤
⎥⎦ =

n∑
j=1

E[Ij]

Now, Ij will equal 1 if j red cards appear before j black cards.
By symmetry, the probability of this event is equal to 1/2;
therefore, E[Ij] = 1/2 and E[X] = n/2.
7.6. To see thatN … n − 1 + I, note that if all events occur,
then both sides of the preceding inequality are equal to n,
whereas if they do not all occur, then the inequality reduces
toN … n − 1, which is clearly true in this case. Taking expec-
tations yields

E[N] … n − 1 + E[I]

However, if we let Ii equal 1 if Ai occurs and 0 other-
wise, then

E[N] = E

⎡
⎣ n∑
i=1

Ii

⎤
⎦ =

n∑
i=1

E[Ii] =
n∑
i=1

P(Ai)

Since E[I] = P(A1 · · ·An), the result follows.
7.7. Imagine that the values 1, 2, . . . ,n are lined up in their
numerical order and that the k values selected are con-
sidered special. From Example 3e, the position of the first
special value, equal to the smallest value chosen, has mean

1 + n − k
k + 1

= n + 1
k + 1

.

For a more formal argument, note that X Ú j if none of
the j − 1 smallest values are chosen. Hence,

P{X Ú j} =

(
n − j + 1

k

)
(
n
k

) =

(
n − k
j − 1

)
(

n
j − 1

)

which shows that X has the same distribution as the random
variable of Example 3e (with the notational change that the
total number of balls is now n and the number of special balls
is k).
7.8. Let X denote the number of families that depart after
the Sanchez family leaves. Arbitrarily number all the N − 1
non-Sanchez families, and let Ir, 1 … r … N − 1, equal 1 if
family r departs after the Sanchez family does. Then

X =
N−1∑
r=1

Ir

Taking expectations gives

E[X] =
N−1∑
r=1

P{family r departs after the Sanchez family}



504 Solutions to Self-Test Problems and Exercises

Now consider any non-Sanchez family that checked in k
pieces of luggage. Because each of the k + j pieces of luggage
checked in either by this family or by the Sanchez family is
equally likely to be the last of these k + j to appear, the
probability that this family departs after the Sanchez fam-
ily is k

k+j . Because the number of non-Sanchez families who
checked in k pieces of luggage is nk when k Z j, or nj − 1
when k = j, we obtain

E[X] =
∑
k

knk
k + j

− 1
2

7.9. Let the neighborhood of any point on the rim be the arc
starting at that point and extending for a length 1. Consider a
uniformly chosen point on the rim of the circle—that is, the
probability that this point lies on a specified arc of length x
is

x
2π

—and let X denote the number of points that lie in its

neighborhood. With Ij defined to equal 1 if item number j
is in the neighborhood of the random point and to equal 0
otherwise, we have

X =
19∑
j=1

Ij

Taking expectations gives

E[X] =
19∑
j=1

P{item j lies in the neighborhood of the

random point}

But because item j will lie in its neighborhood if the random
point is located on the arc of length 1 going from item j in the
counterclockwise direction, it follows that

P{item j lies in the neighborhood of the random point} = 1
2π

Hence,

E[X] = 19
2π

> 3

Because E[X] > 3, at least one of the possible values of X
must exceed 3, proving the result.

7.10. If g(x) = x1/2, then

g′(x) = 1
2
x−1/2, g′′(x) = −1

4
x−3/2

so the Taylor series expansion of
√
x about λ gives

√
X L

√
λ + 1

2
λ−1/2(X − λ) − 1

8
λ−3/2(X − λ)2

Taking expectations yields

E[
√
X] L

√
λ + 1

2
λ−1/2E[X − λ] − 1

8
λ−3/2E[(X − λ)2]

=
√

λ − 1
8
λ−3/2λ

=
√

λ − 1
8
λ−1/2

Hence,

Var(
√
X) = E[X] − (E[

√
X])2

L λ −
(√

λ − 1
8
λ−1/2

)2

= 1/4 − 1
64λ

L 1/4

7.11. Number the tables so that tables 1, 2, and 3 are the ones
with four seats and tables 4, 5, 6, and 7 are the ones with two
seats. Also, number the women, and letXi,j equal 1 if woman
i is seated with her husband at table j. Note that

E[Xi,j] =

(
2
2

)(
18
2

)
(
20
4

) = 3
95

, j = 1, 2, 3

and

E[Xi,j] = 1(
20
2

) = 1
190

, j = 4, 5, 6, 7

Now, X denotes the number of married couples that are
seated at the same table, we have

E[X] = E

⎡
⎢⎣ 10∑
i=1

7∑
j=1

Xi,j

⎤
⎥⎦

=
10∑
i=1

3∑
j=1

E[Xi,j] +
10∑
i=1

7∑
j=4

E[Xi,j]

7.12. Let Xi equal 1 if individual i does not recruit anyone,
and let Xi equal 0 otherwise. Then

E[Xi] = P{i does not recruit any of i + 1, i + 2, . . . ,n}
= i − 1

i
i

i + 1
· · · n − 2

n − 1

= i − 1
n − 1

Hence,

E

⎡
⎣ n∑
i=1

Xi

⎤
⎦ =

n∑
i=1

i − 1
n − 1

= n
2
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From the preceding, we also obtain

Var(Xi) = i − 1
n − 1

(
1 − i − 1

n − 1

)
= (i − 1)(n − i)

(n − 1)2

Now, for i < j,

E[XiXj] = i − 1
i

· · · j − 2
j − 1

j − 2
j

j − 1
j + 1

· · · n − 3
n − 1

= (i − 1)(j − 2)
(n − 2)(n − 1)

Thus,

Cov(Xi,Xj) = (i − 1)(j − 2)
(n − 2)(n − 1)

− i − 1
n − 1

j − 1
n − 1

= (i − 1)(j − n)

(n − 2)(n − 1)2

Therefore,

Var

⎛
⎝ n∑
i=1

Xi

⎞
⎠ =

n∑
i=1

Var(Xi) + 2
n−1∑
i=1

n∑
j=i+1

Cov(Xi,Xj)

=
n∑
i=1

(i − 1)(n − i)

(n − 1)2
+ 2

n−1∑
i=1

n∑
j=i+1

(i − 1)(j − n)

(n − 2)(n − 1)2

= 1

(n − 1)2

n∑
i=1

(i − 1)(n − i)

− 1

(n − 2)(n − 1)2

n−1∑
i=1

(i − 1)(n − i)(n − i − 1)

7.13. Let Xi equal 1 if the ith triple consists of one of each
type of player. Then

E[Xi] =

(
2
1

)(
3
1

)(
4
1

)
(
9
3

) = 2
7

Hence, for part (a), we obtain

E

⎡
⎣ 3∑
i=1

Xi

⎤
⎦ = 6/7

It follows from the preceding that

Var(Xi) = (2/7)(1 − 2/7) = 10/49

Also, for i Z j,

E[XiXj] = P{Xi = 1,Xj = 1}
= P{Xi = 1}P{Xj = 1|Xi = 1}

=

(
2
1

)(
3
1

)(
4
1

)
(
9
3

)
(
1
1

)(
2
1

)(
3
1

)
(
6
3

)

= 6/70

Hence, for part (b), we obtain

Var

⎛
⎝ 3∑
i=1

Xi

⎞
⎠ =

3∑
i=1

Var(Xi) + 2
∑∑

j>1

Cov(Xi,Xj)

= 30/49 + 2

(
3
2

)(
6
70

− 4
49

)

= 312
490

7.14. LetXi, i = 1, . . ., 13, equal 1 if the ith card is an ace and
let Xi be 0 otherwise. Let Yj equal 1 if the jth card is a spade
and let Yj = 0 otherwise. Now,

Cov(X,Y) = Cov

⎛
⎜⎝ 13∑
i=1

Xi,
13∑
j=1

Yj

⎞
⎟⎠

=
13∑
i=1

13∑
j=1

Cov(Xi,Yj)

However, Xi is clearly independent of Yj because know-
ing the suit of a particular card gives no information about
whether it is an ace and thus cannot affect the probabil-
ity that another specified card is an ace. More formally, let
Ai, s,Ai,h,Ai,d,Ai, c be the events, respectively, that card i is
a spade, a heart, a diamond, and a club. Then

P{Yj = 1} = 1
4
(P{Yj = 1|Ai,s} + P{Yj = 1|Ai,h}

+ P{Yj = 1|Ai,d} + P{Yj = 1|Ai,c})

But, by symmetry, we have

P{Yj = 1|Ai,s} = P{Yj = 1|Ai,h} = P{Yj = 1|Ai,d}
= P{Yj = 1|Ai,c}

Therefore,

P{Yj = 1} = P{Yj = 1|Ai,s}

As the preceding implies that

P{Yj = 1} = P{Yj = 1|Aci,s}
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we see thatYj andXi are independent. Hence, Cov(Xi,Yj) =
0, and thus Cov(X ,Y) = 0.

The random variablesX andY, although uncorrelated, are
not independent. This follows, for instance, from the fact that

P{Y = 13|X = 4} = 0 Z P{Y = 13}

7.15. (a) Your expected gain without any information is 0.
(b) You should predict heads if p > 1/2 and tails otherwise.
(c) Conditioning on V, the value of the coin, gives

E[Gain] =
∫ 1

0
E[Gain|V = p] dp

=
∫ 1/2

0
[1(1−p)−1(p)] dp+

∫ 1

1/2
[1(p)−1(1−p)] dp

= 1/2

7.16. Given that the name chosen appears in n(X) different
positions on the list, since each of these positions is equally
likely to be the one chosen, it follows that

E[I|n(X)] = P{I = 1|n(X)} = 1/n(X)

Hence,

E[I] = E[1/n(X)]

Thus, E[mI] = E[m/n(X)] = d.

7.17. LettingXi equal 1 if a collision occurs when the ith item
is placed, and letting it equal 0 otherwise, we can express the
total number of collisions X as

X =
m∑
i=1

Xi

Therefore,

E[X] =
m∑
i=1

E[Xi]

To determine E[Xi], condition on the cell in which it is
placed.

E[Xi] =
∑
j

E[Xi| placed in cell j]pj

=
∑
j

P{i causes collision|placed in cell j]pj

=
∑
j

[1 − (1 − pj)
i−1]pj

= 1 −
∑
j

(1 − pj)
i−1pj

The next to last equality used the fact that, conditional on
item i being placed in cell j, item i will cause a collision if any

of the preceding i − 1 items were put in cell j. Thus,

E[X] = m −
m∑
i=1

n∑
j=1

(1 − pj)
i−1pj

Interchanging the order of the summations gives

E[X] = m − n +
n∑
j=1

(1 − pj)
m

Looking at the result shows that we could have derived
it more easily by taking expectations of both sides of the
identity

number of nonempty cells = m − X

The expected number of nonempty cells is then found by
defining an indicator variable for each cell, equal to 1 if that
cell is nonempty and to 0 otherwise, and then taking the
expectation of the sum of these indicator variables.

7.18. Let L denote the length of the initial run. Conditioning
on the first value gives

E[L] = E[L|first value is one]
n

n + m

+ E[L|first value is zero]
m

n + m

Now, if the first value is one, then the length of the run will be
the position of the first zero when considering the remaining
n + m − 1 values, of which n − 1 are ones andm are zeroes.
(For instance, if the initial value of the remaining n + m − 1
is zero, then L = 1.) As a similar result is true given that the
first value is a zero, we obtain from the preceding, upon using
the result from Example 3e, that

E[L] = n + m
m + 1

n
n + m

+ n + m
n + 1

m
n + m

= n
m + 1

+ m
n + 1

7.19. Let X be the number of flips needed for both boxes to
become empty, and let Y denote the number of heads in the
first n + m flips. Then

E[X] =
n+m∑
i=0

E[X|Y = i]P{Y = i}

=
n+m∑
i=0

E[X|Y = i]

(
n + m

i

)
pi(1 − p)n+m−i

Now, if the number of heads in the first n + m flips is i,
i … n, then the number of additional flips is the number of
flips needed to obtain an additional n − i heads. Similarly, if
the number of heads in the first n + m flips is i, i > n, then,
because there would have been a total of n + m − i < m
tails, the number of additional flips is the number needed
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to obtain an additional i − n heads. Since the number of
flips needed for j outcomes of a particular type is a negative
binomial random variable whose mean is j divided by the
probability of that outcome, we obtain

E[X] =
n∑
i=0

n − i
p

(
n + m

i

)
pi(1 − p)n+m−i

+
n+m∑
i=n+1

i − n
1 − p

(
n + m

i

)
pi(1 − p)n+m−i

7.20. Taking expectations of both sides of the identity given
in the hint yields

E[Xn] = E
[
n
∫ q

0
xn−1IX (x) dx

]

= n
∫ q

0
E[xn−1IX (x)] dx

= n
∫ q

0
xn−1E[IX (x)] dx

= n
∫ q

0
xn−1F(x)dx

Taking the expectation inside the integral sign is justified
because all the random variables IX (x), 0 < x < q, are non-
negative.
7.21. Consider a random permutation I1, . . . , In that is
equally likely to be any of the n! permutations. Then

E[aIjaIj+1 ] =
∑
k

E[aIjaIj+1 |Ij = k]P{Ij = k}

= 1
n

∑
k

akE[aIj+1 |Ij = k]

= 1
n

∑
k

ak
∑
i

aiP{Ij+1 = i|Ij = k}

= 1
n(n − 1)

∑
k

ak
∑
iZk

ai

= 1
n(n − 1)

∑
k

ak(−ak)

< 0

where the final equality followed from the assumption that∑n
i=1 ai = 0. Since the preceding shows that

E

⎡
⎢⎣n−1∑
j=1

aIjaIj+1

⎤
⎥⎦ < 0

it follows that there must be some permutation i1, . . . , in for
which

n−1∑
j=1

aijaij+1 < 0

7.22. (a) E[X] = λ1 + λ2, E[Y] = λ2 + λ3
(b)

Cov(X,Y) = Cov(X1 + X2,X2 + X3)

= Cov(X1,X2 + X3) + Cov(X2,X2 + X3)

= Cov(X2,X2)

= Var(X2)

= λ2

(c) Conditioning on X2 gives

P{X = i,Y = j}
=
∑
k

P{X = i,Y = j|X2 = k}P{X2 = k}

=
∑
k

P{X1 = i − k,X3 = j − k|X2 = k}e−λ2λk2/k!

=
∑
k

P{X1 = i − k,X3 = j − k}e−λ2λk2/k!

=
∑
k

P{X1 = i − k}P{X3 = j − k}e−λ2λk2/k!

=
min(i,j)∑
k=0

e−λ1
λi−k1

(i − k)!
e−λ3

λ
j−k
3

(j − k)!
e−λ2

λk2
k!

7.23.
Corr

⎛
⎜⎝∑

i

Xi,
∑
j

Yj

⎞
⎟⎠ =

Cov(
∑

i Xi,
∑

j Yj)√
Var(

∑
i Xi)Var(

∑
j Yj)

=
∑

i
∑

j Cov(Xi,Yj)√
nσ 2

x nσ 2
y

=
∑

i Cov(Xi,Yi) + ∑
i
∑

jZi Cov(Xi,Yj)

nσxσy

= nρσxσy

nσxσy
= ρ

where the next to last equality used the fact that
Cov(Xi,Yi) = ρσxσy

7.24. Let Xi equal 1 if the ith card chosen is an ace, and let it
equal 0 otherwise. Because

X =
3∑
i=1

Xi

and E[Xi] = P{Xi = 1} = 1/13, it follows that E[X] = 3/13.
But, with A being the event that the ace of spades is chosen,
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we have

E[X] = E[X|A]P(A) + E[X|Ac]P(Ac)

= E[X|A]
3
52

+ E[X|Ac] 49
52

= E[X|A]
3
52

+ 49
52
E

⎡
⎣ 3∑
i=1

Xi|Ac
⎤
⎦

= E[X|A]
3
52

+ 49
52

3∑
i=1

E[Xi|Ac]

= E[X|A]
3
52

+ 49
52

3
3
51

Using that E[X] = 3/13 gives the result

E[X|A] = 52
3

(
3
13

− 49
52

3
17

)
= 19

17
= 1.1176

Similarly, letting L be the event that at least one ace is cho-
sen, we have

E[X] = E[X|L]P(L) + E[X|Lc]P(Lc)

= E[X|L]P(L)

= E[X|L]
(
1 − 48 · 47 · 46

52 · 51 · 50

)

Thus,

E[X|L] = 3/13

1 − 48·47·46
52·51·50

L 1.0616

Another way to solve this problem is to number the four
aces, with the ace of spades having number 1, and then let
Yi equal 1 if ace number i is chosen and 0 otherwise. Then

E[X|A] = E

⎡
⎣ 4∑
i=1

Yi|Y1 = 1

⎤
⎦

= 1 +
4∑
i=2

E[Yi|Y1 = 1]

= 1 + 3 · 2
51

= 19/17

where we used that the fact given that the ace of spades is
chosen the other two cards are equally likely to be any pair
of the remaining 51 cards; so the conditional probability that
any specified card (not equal to the ace of spades) is chosen
is 2/51. Also,

E[X|L] = E

⎡
⎣ 4∑
i=1

Yi|L
⎤
⎦ =

4∑
i=1

E[Yi|L] = 4P{Y1 = 1|L}

Because

P{Y1 = 1|L} = P(A|L) = P(AL)

P(L)
= P(A)

P(L)
= 3/52

1 − 48·47·46
52·51·50

we obtain the same answer as before.

7.25. (a) E[I|X = x] = P{Z < X|X = x} = P{Z < x|X = x}
= P{Z < x} = �(x)

(b) It follows from part (a) that E[I|X] = �(X). Therefore,

E[I] = E[E[I|X]] = E[�(X)]

The result now follows because E[I]=P{I = 1}=P{Z<X}.
(c) Since X − Z is normal with mean μ and variance 2, we
have

P{X > Z} = P{X − Z > 0}

= P

{
X − Z − μ√

2
>

−μ√
2

}

= 1 − �

(
−μ√
2

)

= �

(
μ√
2

)

7.26. Let N be the number of heads in the first n + m − 1
flips. Let M = max(X,Y) be the number of flips needed to
amass at least n heads and at least m tails. Conditioning on
N gives

E[M] =
∑
i

E[M|N = i]P{N = i}

=
n−1∑
i=0

E[M|N = i]P{N = i} +
n+m−1∑
i=n

E[M|N = i]P{N = i}

Now, suppose we are given that there are a total of i heads
in the first n + m − 1 trials. If i < n, then we have already
obtained at least m tails, so the additional number of flips
needed is equal to the number needed for an additional n − i
heads; similarly, if i Ú n, then we have already obtained at
least n heads, so the additional number of flips needed is
equal to the number needed for an additional m − (n +
m − 1 − i) tails. Consequently, we have

E[M] =
n−1∑
i=0

(
n + m − 1 + n − i

p

)
P{N = i}

+
n+m−1∑
i=n

(
n + m − 1 + i + 1 − n

1 − p

)
P{N = i}

= n + m − 1+
n−1∑
i=0

n − i
p

(
n + m−1

i

)
pi(1−p)n+m−1−i

+
n+m−1∑
i=n

i + 1 − n
1 − p

(
n + m − 1

i

)
pi(1 − p)n+m−1−i
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The expected number of flips to obtain either n heads or m
tails, E[min(X,Y)], is now given by

E[min(X,Y)] = E[X + Y − M] = n
p

+ m
1 − p

− E[M]

7.27. This is just the expected time to collect n − 1 of the n
types of coupons in Example 2i. By the results of that exam-
ple the solution is

1 + n
n − 1

+ n
n − 2

+ . . . + n
2

7.28. With q = 1 − p,

E[X] =
q∑
i=1

P{X Ú i} =
n∑
i=1

P{X Ú i} =
n∑
i=1

qi−1 = 1 − qn

p

7.29. Cov(X,Y) = E[XY] − E[X]E[Y]

= P(X = 1,Y = 1) − P(X = 1)P(Y = 1)

Hence,

Cov(X,Y) = 0 3 P(X = 1,Y = 1) = P(X = 1)P(Y = 1)

Because

Cov(X,Y) = Cov(1 − X, 1 − Y) = −Cov(1 − X,Y)

= −Cov(X, 1 − Y)

the preceding shows that all of the following are equivalent
when X and Y are Bernoulli:

1. Cov(X ,Y) = 0
2. P(X = 1,Y = 1) = P(X = 1)P(Y = 1)
3. P(1 −X = 1, 1 − Y = 1) =P(1 −X = 1)P(1 − Y = 1)
4. P(1 − X = 1,Y = 1) = P(1 − X = 1)P(Y = 1)
5. P(X = 1, 1 − Y = 1) = P(X = 1)P(1 − Y = 1)

7.30. Number the individuals, and let Xi,j equal 1 if the jth
individual who has hat size i chooses a hat of that size, and
let Xi,j equal 0 otherwise. Then the number of individuals
who choose a hat of their size is

X =
r∑
i=1

ni∑
j=1

Xi,j

Hence,

E[X] =
r∑
i=1

ni∑
j=1

E[Xi,j] =
r∑
i=1

ni∑
j=1

hi
n

= 1
n

r∑
i=1

hini

7.31. Letting σ 2
x and σ 2

y be, respectively, the variances of X
and ofY, we obtain, upon squaring both sides, the equivalent
inequality

Var(X + Y) … σ 2
x + σ 2

y + 2σxσy

Using that Var(X + Y) = σ 2
x + σ 2

y + 2Cov(X,Y), the pre-
ceding inequality becomes

Corr(X,Y) = Cov(X,Y)

σxσy
… 1

which has already been established.

7.32. Noting that X is equal to i plus the number of the val-
uesRn+1, . . . ,Rn+m that are smaller thanX, it follows that if
we let In+k equal 1 if Rn+k < X and let it equal 0 otherwise,
that

X = i +
m∑
k=1

In+k

Taking expectations gives that

E[X] = i +
m∑
k=1

E[In+k]

Now,

E[In+k] = P(Rn+k < X)

= P(Rn+k < ith smallest of R1, . . . ,Rn)

= P(Rn+k is one of the i smallest of the values

R1, . . . ,Rn, Rn+k)

= i
n + 1

where the final equality used thatRn+k is equally likely to be
either the smallest, the second smallest, . . ., or the (n + 1)st

smallest of the values R1, . . . ,Rn, Rn+k. Hence,

E[X] = i + m
i

n + 1

7.33. (a) E[X] = ∫ 1
0 E[X|Y = y]dy = ∫ 1

0
y
2dy = 1/4

(b) E[XY] = ∫ 1
0 E[XY|Y = y]dy = ∫ 1

0
y2

2 dy = 1/6, which
gives that Cov(X, Y) = 1/6 − 1/8 = 1/24

(c) E[X2] = ∫ 1
0 E[X

2|Y = y]dy = ∫ 1
0
y2

3 dy = 1/9, giving

that Var(X) = 1
9 − 1

16 = 7
144

(d)

P(X … x) =
∫ 1

0
P(X … x|Y = y)dy

=
∫ x

0
P(X … x|Y = y)dy +

∫ 1

x
P(X … x|Y = y)dy

=
∫ x

0
dy +

∫ 1

x

x
y
dy

= x − x log(x)

(e)Differentiate part (d) to obtain the density f (x) =
− log(x), 0 < x < 1.
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Chapter 8
8.1. Let X denote the number of sales made next week, and
note that X is integral. From Markov’s inequality, we obtain
the following:

(a) P{X > 18} = P{X Ú 19} …
E[X]
19

= 16/19

(b) P{X > 25} = P{X Ú 26} …
E[X]
26

= 16/26

8.2. (a) P{10 … X … 22} = P{|X − 16| … 6}
= P{|X − μ| … 6}
= 1 − P{|X − μ| > 6}
Ú 1 − 9/36 = 3/4

(b) P{X Ú 19} = P{X − 16 Ú 3} …
9

9 + 9
= 1/2

In part (a), we used Chebyshev’s inequality; in part (b), we
used its one-sided version. (See Proposition 5.1.)
8.3. First note that E[X − Y] = 0 and

Var(X − Y) = Var(X) + Var(Y) − 2Cov(X,Y) = 28

Using Chebyshev’s inequality in part (a) and the one-sided
version in parts (b) and (c) gives the following results:

(a) P{|X − Y| > 15} … 28/225

(b) P{X − Y > 15} …
28

28 + 225
= 28/253

(c) P{Y − X > 15} …
28

28 + 225
= 28/253

8.4. If X is the number produced at factory A and Y the
number produced at factory B, then

E[Y − X] = −2, Var(Y − X) = 36 + 9 = 45

P{Y − X > 0} = P{Y − X Ú 1}
= P{Y − X + 2 Ú 3} …

45
45 + 9

= 45/54

8.5. Note first that

E[Xi] =
∫ 1

0
2x2 dx = 2/3

Now use the strong law of large numbers to obtain

r = lim
n→q

n
Sn

= lim
n→q

1
Sn/n

= 1
lim

n→q
Sn/n

= 1/(2/3) = 3/2

8.6. Because E[Xi] = 2/3 and

E[X2
i ] =

∫ 1

0
2x3 dx = 1/2

we have Var(Xi) = 1/2 − (2/3)2 = 1/18. Thus, if there are n
components on hand, then

P{Sn Ú 35} = P{Sn Ú 34.5} (the continuity correction)

= P

{
Sn − 2n/3√

n/18
…

34.5 − 2n/3√
n/18

}

L P

{
Z Ú

34.5 − 2n/3√
n/18

}

where Z is a standard normal random variable. Since

P{Z > −1.284} = P{Z < 1.284} L .90

we see that n should be chosen so that

(34.5 − 2n/3) L −1.284
√
n/18

A numerical computation gives the result n = 55.

8.7. If X is the time required to service a machine, then

E[X] = .2 + .3 = .5

Also, since the variance of an exponential random variable
is equal to the square of its mean, we have

Var(X) = (.2)2 + (.3)2 = .13

Therefore, with Xi being the time required to service job
i, i = 1, . . . , 20, and Z being a standard normal random vari-
able, it follows that

P{X1+ · · · +X20 < 8} = P

{
X1+ · · · +X20−10√

2.6
<

8−10√
2.6

}

L P{Z < −1.24035}
L .1074

8.8. Note first that if X is the gambler’s winnings on a single
bet, then

E[X] = −.7 − .4 + 1 = −.1,E[X2] = .7 + .8 + 10 = 11.5

→Var(X) = 11.49

Therefore, with Z having a standard normal distribution,

P{X1+ · · · +X100 … −.5} = P

{
X1+ · · · +X100+10√

1149
…

−.5+10√
1149

}

L P{Z … .2803}
L .6104

8.9. Using the notation of Problem 8.7, we have

P{X1+ · · · +X20 < t} = P

{
X1+ · · · +X20−10√

2.6
<

t−10√
2.6

}

L P

{
Z <

t − 10√
2.6

}
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Now, P{Z < 1.645} L .95, so t should be such that

t − 10√
2.6

L 1.645

which yields t L 12.65.
8.10. If the claim were true, then, by the central limit theo-
rem, the average nicotine content (call it X) would approx-
imately have a normal distribution with mean 2.2 and stan-
dard deviation .03. Thus, the probability that it would be as
high as 3.1 is

P{X > 3.1} = P
{
X − 2.2

.03
>

3.1 − 2.2
.03

}
L P{Z > 30}
L 0

where Z is a standard normal random variable.
8.11. (a) If we arbitrarily number the batteries and let Xi
denote the life of battery i, i = 1, . . . , 40, then the Xi are
independent and identically distributed random variables. To
compute the mean and variance of the life of, say, battery 1,
we condition on its type. Letting I equal 1 if battery 1 is type
A and letting it equal 0 if it is type B, we have

E[X1|I = 1] = 50 , E[X1|I = 0] = 30

yielding

E[X1] = 50P{I = 1} + 30P{I = 0} = 50(1/2) + 30(1/2) = 40

In addition, using the fact that E[W2] = (E[W])2 + Var(W),
we have

E[X2
1 |I = 1] = (50)2 + (15)2 = 2725 ,

E[X2
1 |I = 0] = (30)2 + 62 = 936

yielding

E[X2
1 ] = (2725)(1/2) + (936)(1/2) = 1830.5

Thus, X1, . . . ,X40 are independent and identically dis-
tributed random variables having mean 40 and variance
1830.5 − 1600 = 230.5. Hence, with S = ∑40

i=1Xi, we have

E[S] = 40(40) = 1600 , Var(S) = 40(230.5) = 9220

and the central limit theorem yields

P{S > 1700} = P

{
S − 1600√

9220
>

1700 − 1600√
9220

}

L P{Z > 1.041}
= 1 − �(1.041) = .149

(b) For this part, let SA be the total life of all the type A bat-
teries and let SB be the total life of all the type B batteries.
Then, by the central limit theorem, SA has approximately a

normal distribution with mean 20(50) = 1000 and variance
20(225) = 4500, and SB has approximately a normal distri-
bution with mean 20(30) = 600 and variance 20(36) = 720.
Because the sum of independent normal random variables
is also a normal random variable, it follows that SA + SB
is approximately normal with mean 1600 and variance 5220.
Consequently, with S = SA + SB,

P{S > 1700} = P

{
S − 1600√

5220
>

1700 − 1600√
5220

}

L P{Z > 1.384}
= 1 − �(1.384) = .084

8.12. Let N denote the number of doctors who volunteer.
Conditional on the event N = i, the number of patients
seen is distributed as the sum of i independent Poisson ran-
dom variables with common mean 30. Because the sum of
independent Poisson random variables is also a Poisson ran-
dom variable, it follows that the conditional distribution of
X given that N = i is Poisson with mean 30i. Therefore,

E[X|N] = 30N Var(X|N) = 30N

As a result,

E[X] = E[E[X|N]] = 30E[N] = 90

Also, by the conditional variance formula,

Var(X) = E[Var(X|N)] + Var(E[X|N])

= 30E[N] + (30)2Var(N)

Because

Var(N) = 1
3
(22 + 32 + 42) − 9 = 2/3

we obtain Var(X) = 690.
To approximate P{X > 65}, we would not be justified in

assuming that the distribution of X is approximately that of
a normal random variable with mean 90 and variance 690.
What we do know, however, is that

P{X > 65} =
4∑
i=2

P{X > 65|N = i}P{N = i} = 1
3

4∑
i=2

Pi(65)

where Pi(65) is the probability that a Poisson random vari-
able with mean 30i is greater than 65. That is,

Pi(65) = 1 −
65∑
j=0

e−30i(30i)j/j!

Because a Poisson random variable with mean 30i has the
same distribution as does the sum of 30i independent Pois-
son random variables with mean 1, it follows from the central
limit theorem that its distribution is approximately normal
with mean and variance equal to 30i. Consequently, with
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Xi being a Poisson random variable with mean 30i and Z
being a standard normal random variable, we can approxi-
mate Pi(65) as follows:

Pi(65) = P{X > 65}
= P{X Ú 65.5}

= P

{
X − 30i√

30i
Ú

65.5 − 30i√
30i

}

L P

{
Z Ú

65.5 − 30i√
30i

}

Therefore,

P2(65) L P{Z Ú .7100} L .2389

P3(65) L P{Z Ú −2.583} L .9951

P4(65) L P{Z Ú −4.975} L 1

leading to the result

P{X > 65} L .7447

If we would have mistakenly assumed that X was approx-
imately normal, we would have obtained the approximate
answer .8244. (The exact probability is .7440.)

8.13. Take logarithms and then apply the strong law of large
numbers to obtain

log

⎡
⎢⎣
⎛
⎝ n∏
i=1

Xi

⎞
⎠
1/n
⎤
⎥⎦ = 1

n

n∑
i=1

log(Xi)→E[log(Xi)]

Therefore, ⎛
⎝ n∏
i=1

Xi

⎞
⎠
1/n

→eE[log(Xi)]

8.14. Let Xi be the time it takes to process book i, and let
Sn = ∑n

i=1Xi.
(a) With Z being a standard normal

P
{
S40 > 420

} = P

{
S40 − 400√

40 · 9
>

420 − 400√
40 · 9

}

L P

{
Z >

20√
360

}
L .146

(b) P
{
S25 … 240

} = P

{
S25 − 250√

25 · 9
…

240 − 250√
25 · 9

}

L P
{
Z … −10

15

}
L .2525

We have assumed that the successive book processing times
are independent.

8.15. Let P(X = i) = 1/n, i = 1, . . . , n. Also, let f (x) = ax
and g(x) = bx. Then f and g are both increasing functions

and so E[f (X)g(X)] Ú E[f (X)]E[g(X)], which is equivalent
to

1
n

n∑
i=1

aibi Ú (
1
n

n∑
i=1

ai)(
1
n

n∑
i=1

bi)

Chapter 9
9.1. From axiom (iii), it follows that the number of events
that occur between times 8 and 10 has the same distribution
as the number of events that occur by time 2 and thus is a
Poisson random variable with mean 6. Hence, we obtain the
following solutions for parts (a) and (b):
(a) P{N(10) − N(8) = 0} = e−6

(b) E[N(10) − N(8)] = 6
(c) It follows from axioms (ii) and (iii) that from any point
in time onward, the process of events occurring is a Pois-
son process with rate λ. Hence, the expected time of the
fifth event after 2 P.M. is 2 + E[S5] = 2 + 5/3. That is, the
expected time of this event is 3:40 P.M.

9.2. (a)

P{N(1/3) = 2|N(1) = 2}
= P{N(1/3) = 2,N(1) = 2}

P{N(1) = 2}
= P{N(1/3) = 2,N(1) − N(1/3) = 0}

P{N(1) = 2}
= P{N(1/3) = 2}P{N(1) − N(1/3) = 0}

P{N(1) = 2} (by axiom (ii))

= P{N(1/3) = 2}P{N(2/3) = 0}
P{N(1) = 2} (by axiom (iii))

= e−λ/3(λ/3)2/2!e−2λ/3

e−λλ2/2!
= 1/9

(b)

P{N(1/2) Ú 1|N(1) = 2} = 1 − P{N(1/2) = 0|N(1) = 2}
= 1 − P{N(1/2) = 0,N(1) = 2}

P{N(1) = 2}
= 1 − P{N(1/2) = 0,N(1) − N(1/2) = 2}

P{N(1) = 2}
= 1 − P{N(1/2) = 0}P{N(1) − N(1/2) = 2}

P{N(1) = 2}
= 1 − P{N(1/2) = 0}P{N(1/2) = 2}

P{N(1) = 2}

= 1 − e−λ/2e−λ/2(λ/2)2/2!

e−λλ2/2!
= 1 − 1/4 = 3/4

9.3. Fix a point on the road and letXn equal 0 if the nth vehi-
cle to pass is a car and let it equal 1 if it is a truck, n Ú 1. We
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now suppose that the sequence Xn, n Ú 1, is a Markov chain
with transition probabilities

P0,0 = 5/6, P0,1 = 1/6, P1,0 = 4/5, P1,1 = 1/5

Then the long-run proportion of times is the solution of

π0 = π0(5/6) + π1(4/5)

π1 = π0(1/6) + π1(1/5)

π0 + π1 = 1

Solving the preceding equations gives

π0 = 24/29 π1 = 5/29

Thus, 2400/29 L 83 percent of the vehicles on the road
are cars.

9.4. The successive weather classifications constitute a
Markov chain. If the states are 0 for rainy, 1 for sunny, and 2
for overcast, then the transition probability matrix is as fol-
lows:

P =
0 1/2 1/2
1/3 1/3 1/3
1/3 1/3 1/3

The long-run proportions satisfy

π0 = π1(1/3) + π2(1/3)

π1 = π0(1/2) + π1(1/3) + π2(1/3)

π2 = π0(1/2) + π1(1/3) + π2(1/3)

1 = π0 + π1 + π2

The solution of the preceding system of equations is

π0 = 1/4, π1 = 3/8, π2 = 3/8

Hence, three-eighths of the days are sunny and one-fourth
are rainy.

9.5. (a)A direct computation yields

H(X)/H(Y) L 1.06

(b) Both random variables take on two of their values with
the same probabilities .35 and .05. The difference is that if
they do not take on either of those values, thenX, but not Y,
is equally likely to take on any of its three remaining possi-
ble values. Hence, from Theoretical Exercise 9.13, we would
expect the result of part (a).

Chapter 10
10.1. (a) 1 = C

∫ 1
0 e

xdx * C = 1/(e − 1)

(b) F(x) = C
∫ x
0 e

ydy = ex−1
e−1 , 0 … x … 1

Hence, if we let X = F−1(U), then

U = eX − 1
e − 1

or
X = log(U(e − 1) + 1)

Thus, we can simulate the random variableX by generating a
random numberU and then settingX = log(U(e − 1) + 1).

10.2. Use the acceptance–rejection method with g(x) =
1, 0 < x < 1. Calculus shows that the maximum value of
f (x)/g(x) occurs at a value of x, 0 < x < 1, such that

2x − 6x2 + 4x3 = 0

or, equivalently, when

4x2 − 6x + 2 = (4x − 2)(x − 1) = 0

The maximum thus occurs when x = 1/2, and it follows that

C = max f (x)/g(x) = 30(1/4 − 2/8 + 1/16) = 15/8

Hence, the algorithm is as follows:

Step 1. Generate a random number U1.
Step 2. Generate a random number U2.
Step 3. If U2 … 16(U2

1 − 2U3
1 + U4

1 ), set X = U1; else
return to Step 1.

10.3. It is most efficient to check the higher probability val-
ues first, as in the following algorithm:
Step 1. Generate a random number U.
Step 2. If U … .35, set X = 3 and stop.
Step 3. If U … .65, set X = 4 and stop.
Step 4. If U … .85, set X = 2 and stop.
Step 5. X = 1.

10.4. 2μ − X

10.5. (a)Generate 2n independent exponential random
variables with mean 1,Xi,Yi, i = 1, . . . , n, and then use the

estimator
n∑
i=1

eXiYi/n.

(b)We can useXY as a control variate to obtain an estimator
of the type

n∑
i=1

(eXiYi + cXiYi)/n

Another possibility would be to use XY + X2Y2/2 as the
control variate and so obtain an estimator of the type

n∑
i=1

(eXiYi + c[XiYi + X2
i Y

2
i /2 − 1/2])/n

Themotivation behind the preceding formula is based on the
fact that the first three terms of the MacLaurin series expan-
sion of exy are 1 + xy + (x2y2)/2.
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Common Discrete Distributions

• Bernoulli(p) X indicates whether a trial that results in a success with probability
p is a success or not.

P{X = 1} = p

P{X = 0} = 1 − p

E[X] = p, Var(X) = p(1 − p).
• Binomial(n,p) X represents the number of successes in n independent trials when
each trial is a success with probability p.

P{X = i} =
(
n
i

)
pi(1 − p)n−i , i = 0, 1, . . . ,n

E[X] = np, Var(X) = np(1 − p).
Note. Binomial(1,p) = Bernoulli(p).

• Geometric(p) X is the number of trials needed to obtain a success when each trial
is independently a success with probability p.

P(X = i) = p(1 − p)i−1 , i = 1, 2, . . . ,

E[X] = 1
p , Var(X) = 1−p

p2
.

• Negative Binomial(r,p) X is the number of trials needed to obtain a total of r
successes when each trial is independently a success with probability p.

P(X = i) =
(
i − 1
r − 1

)
pr(1 − p)i−r , i = r, r + 1, r + 2, . . .

E[X] = r
p , Var(X) = r 1−p

p2
.

Notes.
1. Negative Binomial(1,p) = Geometric(p).
2. Sum of r independent Geometric(p) random variables is Negative Binomial(r,p).

• Poisson(λ) X is used to model the number of events that occur over a set interval
when these events are either independent or weakly dependent and each has a
small probability of occurrence.

P{X = i} = e−λλi/i! , i = 0, 1, 2, . . .

E[X] = λ, Var(X) = λ.

Notes.
1. A Poisson random variable X with parameter λ = np provides a good approxi-
mation to a Binomial(n,p) random variable when n is large and p is small.
2. If events are occurring one at a time in a random manner for which (a) the
number of events that occur in disjoint time intervals is independent and (b) the
probability of an event occurring in any small time interval is approximately λ

times the length of the interval, then the number of events in an interval of length
t will be a Poisson(λt) random variable.

• Hypergeometric(m,N−m,n) X is the number of white balls in a random sample
of n balls chosen without replacement from an urn ofN balls of whichm are white.

P{X = i} =
(m
i

)(N−m
n−i

)
(N
n

) , i = 0, 1, 2, . . .



The preceding uses the convention that
(r
j

) = 0 if either j < 0 or j > r.

With p = m/N, E[X] = np, Var(X) = N−n
N−1np(1 − p).

Note. If each ball were replaced before the next selection, then X would be a
Binomial(n,p) random variable.

• Negative Hypergeometric X is the number of balls that need be removed from an
urn that contains n + m balls, of which n are white, until a total of r white balls
has been removed, where r … n.

P{X = k} =
( n
r−1

)( m
k−r

)
(n+m
k−1

) n − r + 1
n + m − k + 1

, k Ú r

E[X] = r n+m+1
n+1 , Var(X) = mr(n+1−r)(n+m+1)

(n+1)2(n+2)



Common Continuous Distributions

• Uniform (a,b) X is equally likely to be near each value in the interval (a,b). Its
density function is

f (x) = 1
b − a

, a < x < b

E[X] = a+b
2 , Var(X) = (b−a)2

12 .

• Normal(μ, σ 2) X is a random fluctuation arising from many causes. Its density
function is

f (x) = 1√
2π σ

e−(x−μ)2/2σ 2
, −q < x < q

E[X] = μ , Var(X) = σ 2.
1. When μ = 0, σ = 1, X is called a standard normal.
Notes.
2. If X is Normal(μ, σ 2), then Z = X−μ

σ
is standard normal.

3. Sum of independent normal random variables is also normal.
4.An important result is the central limit theorem, which states that the distribution
of the sum of the first n of a sequence of independent and identically distributed
random variables becomes normal as n goes to infinity, for any distribution of these
random variables that has a finite mean and variance.

• Exponential(λ) X is the waiting time until an event occurs when events are occur-
ring at a rate λ > 0. Its density is

f (x) = λe−λx , x > 0

E[X] = 1
λ
, Var(X) = 1

λ2
, P(X > x) = e−λx, x > 0.

Note. X is memoryless, in that the remaining life of an item whose life distribution
is Exponential(λ) is also Exponential(λ), no matter what the current age of the
item is.

• Gamma(α, λ) When α = n,X is the waiting time until n events occur when events
are occurring at a rate λ > 0. Its density is

f (t) = λe−λt(λt)α−1

�(α)
, t > 0

where �(α) = ∫ q
0 e−xxα−1dx is called the gamma function.

E[X] = α
λ
, Var(X) = α

λ2
.

Notes.
1. Gamma(1, λ) = Exponential(λ).

2. If the random variables are independent, then the sum of a Gamma(α1, λ) and
a Gamma(α2, λ) is a Gamma(α1 +α2, λ).

3. The sum of n independent and identically distributed exponentials with para-
meter λ is a Gamma(n, λ) random variable.

• Beta(a,b) X is the distribution of a random variable taking on values in the inter-
val (0, 1). Its density is

f (x) = 1
B(a,b)

xa−1(1 − x)b−1 , 0 < x < 1



where B(a,b) = ∫ 1
0 x

a−1(1 − x)b−1dx is called the beta function.
E[X] = a

a+b , Var(X) = ab
(a+b)2(a+b+1)

.
Notes.
1. Beta(1, 1) = Uniform(0, 1).
2. The jth smallest of n independent Uniform (0, 1) random variables is a Beta(j,n−
j + 1) random variable.

• Chi-Squared(n) X is the sum of the squares of n independent standard normal
random variables. Its density is

f (x) = e−x/2x
n
2−1

2n/2�(n/2)
, x > 0

Add E(X) and Var(X)

Notes.
1. Chi-Squared(n) = Gamma(n/2, 1/2).
2. The sample variance of n independent and identically distributedNormal(μ, σ 2)

random variables multiplied by n−1
σ 2 is a Chi-Squared(n − 1) random variable, and

it is independent of the sample mean.
• Cauchy X is the tangent of a uniformly distributed random angle between −π/2

and π/2. Its density is

f (x) = 1
π(1 + x2)

, −q < x < q

E[X] is undefined.
• Pareto(λ, a) If Y is exponential with rate λ and a > 0, then X = aeY is said to

Pareto with parameters λ and a. Its density is

f (x) = λaλx−(λ+1), x > a

When λ > 1, E[X] = λa
λ−1 , and when λ > 2, Var(X) = λa2

(λ−2)(λ−1)2
.

Note.
The conditional distribution of X given that it exceeds x0 > a is Pareto (λ, x0).
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