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Preface

This book is a collection of contributions by active researchers, in the field of Data-
Centric Engineering, on important topics in this rapidly evolving field and is an at-
tempt to shed light on the use of data-centric approaches in structural health monitor-
ing (SHM). SHM has continued to gain immense importance in recent years due to the
need for timely and accurate diagnosis of potential structural failures. With the in-
creasing complexity of structures and the advent of advanced sensing and data collec-
tion technologies, the field of SHM has witnessed a paradigm shift towards data-
driven approaches, which rely on data-centric methodologies for data collection, proc-
essing, and analysis. The present book aims to present a comprehensive overview of
these approaches, their advantages and limitations, and their potential applications in
the field of SHM. It covers a wide range of topics, from basic concepts and principles
to advanced techniques, and presents case studies and real-world applications to illus-
trate the relevance and effectiveness of these methods.

One of the key benefits of data-centric SHM is that it allows for continuous moni-
toring of a structure, providing real-time insights into its health and performance.
This can help to identify potential issues before they become critical, allowing for
timely maintenance and repairs. Additionally, data-centric SHM can provide a more
comprehensive view of a structure’s health, compared to traditional inspection meth-
ods, which may only focus on certain areas or components.

This edited volume on data-centric structural health monitoring is published as
part of a new book series, titled Data-Centric Engineering, which has just been estab-
lished by De Gruyter. The editors of this book are the founding editors of the new
series. This volume represents an effort to provide a comprehensive overview of the
latest advances and techniques in this rapidly evolving field. By exploring the benefits
and limitations of data-driven methodologies and presenting real-world applications,
we hope to contribute to the ongoing discussion on the role of data-centric approaches
in SHM. We believe that this book will be a valuable resource for researchers, practi-
tioners, and students who are interested in the field of SHM and data-driven ap-
proaches. We thank all the contributors for their insightful contributions, and we
hope that this book will inspire further research and innovation in this exciting area
of study. As the editors of the Data-Centric Engineering series, we also invite and en-
courage scholars from all branches of engineering and sciences, who are active in this
multi-disciplinary field, to contact us if they are interested in publishing edited vol-
umes relevant to this theme in their fields of expertise.

Editors
March 2023
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a magnitude of 6.7 at a depth of 15 km [1]. In view of the high seismicity of the Ohrid
region, almost all buildings are exposed to risk of a potential earthquake event. The de-
mand for detailed inspections has been initiated in the 80s of the previous century,
which has been a pioneering event in the Balkan regions. One of the sites is the Loca-
tion Tower, which has been reestablished recently and enables real-time monitoring
and recording of data. The Location Tower consists of a surface and three downhole
instruments up to 125 meters down the bedrock; it is a nine-story building with two
instruments installed on the 6th and 9th stories and four instruments installed at the
foundation level. Several small to moderate earthquakes have been recorded during
the period 2021–2022. Selected results and comparisons of equivalent analysis are pre-
sented in this work using real recorded acceleration data from the analyzed site. Based
on a number of geophysical and geotechnical investigations, the soil profile of the loca-
tion is obtained and evaluated both in situ and by laboratory tests. The obtained results
present a promising starting point for further complex site response analysis consider-
ing both linearity and nonlinearity of the material models, which can be validated by
stronger earthquakes in future.

1.1 Introduction

During an earthquake, ground motions subjected to local site conditions can be influ-
enced significantly resulting in changes in the ground accelerations. Usually, large
earthquakes can be followed by smaller aftershocks, which also influence the struc-
tural behavior but are not considered in the design codes. The site effects are mostly
seen in the presence of sediments that have large effects on the amplitude of the seis-
mic wave characteristics. The properties of soil deposits change in relation to the ap-
plied strain from earthquake forces, in which the shear modulus is reduced while the
damping coefficient increases, thus making the behavior of soil deposit nonlinear.
The change in the magnitude of input earthquake signal through the soil medium is
usually annexed with site amplification factor. The evaluation of site amplification nor-
mally has two levels of earthquake ground motions mainly set to determine whether
the seismic resistance is at a rational level, from the viewpoint of public safety. The se-
lection of earthquakes to be used in the analysis of local site effects is also important
due to the effects of the earthquakes on the overall attenuation of seismic force.

The destruction of structures and ground motions recorded in Mexico City since
the 1985 Michoacan earthquake and in the San Francisco Bay Area from the 1989
Loma Prieta earthquake had promoted the need to study site effects. In addition, the
effects of local ground conditions are of particular importance in seismic microzona-
tion, seismic design of major facilities, and seismic safety evaluation of existing struc-
tures and implementation of preventive measures to reduce the seismic risk of
existing facilities and urban areas, which are exposed to destructive ground motions.
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During the seismic event, the time interval between the main events can be small
in order to establish a complete structural evaluation. Here, the structural health moni-
toring plays an important role in predicting the behavior of the structure as a whole
and its special elements, subject to earthquake ground motions. Important characteris-
tics of earthquake ground motions are its intensity, duration, and frequency contents,
which are subject to local site conditions [2]. Local soil and geological site conditions
can cause changes in amplitudes, spectral content, and duration of strong earthquake
ground motions, which result in damage of structures on the surface. Although differ-
ent models might be adopted for definition of geological site conditions, the upper top
layers have the greatest role in determining the ground motions. The general approach
for representing the site conditions has been modified from linear wave motion includ-
ing the transfer functions [3] to those associated with earthquake source, spreading
path, site effects, and amplification based on topology of the soil medium. As given in
the work of Stanko [4], one-dimensional equivalent linear site response analysis tools
are commonly used to estimate the site-specific ground response in which recorded or
simulated earthquake time histories are used. In the work of Di Fiore [5], the topo-
graphic irregularities are shown as important factors for seismic amplification in as-
sessment of seismic site effects. The existing empirical methods and new techniques for
seismic microzoning, based on experience from damage of the structures in the past
earthquakes and consideration of local site conditions determined from the studies of
microtremors and small earthquakes, are hardly reliable methods for evaluation of the
seismic design parameters. Verification is ultimately needed for the possibility of ex-
trapolation of small records to predict local soil behavior and site effects in the case of
strong earthquake motions, as well as to verify laboratory techniques for elaboration of
dynamic soil properties under high strain levels. This triggers the purpose for obtaining
seismic records from different locations and levels of excitation sources in order to vali-
date the available empirical analysis methods. In the past decades, the site amplification
effects have obtained the attention of scientists in order to determine the process of
wave propagation through soil and layered medium situated on rigid rocks. The effects
of attenuation of stress waves are considered to be important because of the fact that
the soft deposits fortify the ground’s motions.

The analysis of the local site effects has its roots back in 80s when a three-
dimensional seismic network was established in the Ohrid Lake basin [6] with the
support of USGS (United States Geological Survey). These analyses also considered the
sedimentary basins of the Ohrid Lake, which can significantly amplify the earthquake
ground motion. Similar analyses have been done in Mexico City during the Michoacan
earthquake, 1985 and in the South Bay of San Francisco during the Loma Prieta Event,
1989 [7]. Ground motion simulations and their amplifications in soil media even for sim-
plified source implementations such as plane waves have shown significant basin effects.

In this work, the focus of the analysis was to observe the modification of strong
ground motions and dynamic response of structural systems combining a three-
dimensional seismic network in the Ohrid Lake basin. As given in the work of Dimi-
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triu [8], considerable efforts have been made at the Euro-Seistest strong motion array
at Volvi, near Thessaloniki, Greece where a data set covered a wide range of magni-
tudes. The analyzed case of 3D strong motion array consists of three free field sites
with one surface and three downhole instruments each, 125 meters down the bedrock;
a nine-story building site with two instruments installed on the building, four instru-
ments installed at the foundation level and one outcropping rock site with one instru-
ment (Location Tower). The extensive recent activities allow real- time recording and
health monitoring processes to be enabled at the location. In this work, the main
focus is on the site response analysis of the soil profile at the Location Tower in com-
parison to real acceleration records from different depths at the location.

1.2 Site location, soil profile, and structural
characteristics

1.2.1 Description of the site location

The chosen location represents a commercial building within the city of Ohrid, the so-
called “Tower location.” Ohrid region represents an active seismic region with large
earthquakes, which have nearly covered the seismic zone in the past decades, often
with magnitudes greater than six (M > 6). In the distant past, there are confirmations of
multiple earthquakes, like in 1906, Ohrid ML = 6.00 and in 1911, Ohrid, ML = 6.7. In the
recent past, as in 2016, an earthquake with magnitude of around 5 according to the Eu-
ropean MSC scale was felt. The epicenter of the earthquake was 12 km northeast of the
city and caused considerable damage to older structures, more importantly to ones
from cultural heritage. This proved the gap between scientific investigations and engi-
neering practice. In multiple previous studies performed by UKIM-IZIIS [6] for the city
of Ohrid, it has been proved that geological conditions in combination with certain in-
tensity of seismic exposure could rise to some geotechnically associated hazards. This is
especially important in the regions with significant engineering structures, where these
hazards can have an unfavorable effect leading to total damage of structures.

From the latest seismic hazard map of North Macedonia [11], which is prepared
according to the Eurocodes (PGA) guidelines, the city of Ohrid is placed in a zone of
moderate to high seismicity, with PGA of 0.3 g at bedrock, in the case of a return pe-
riod of 475 years. The city is settled along the Ohrid lake watershed area, which is
characterized by provoking geotechnical conditions:
1. Surface quaternary and deep pliocene sediments.
2. Surface quaternary sediments consisting of fine gravel and sand as well as or-

ganic clays and sand down to depth of 20 m.
3. Heterogeneous nature characterized by unfavorable physical-mechanical charac-

teristics. The underground water level is commonly high.
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1.2.2 Soil profile

The geotechnical characteristics of the site were defined from data from previous in-
vestigations as well as data from additionally performed geophysical and geotechnical
studies and georadar measurements. Combinations of different methods, seismic re-
fraction, MASW, and HVSR were used to determine the results and from then describe
a seismic section to a depth of 150 m. The local discontinuity and deformation in the
terrain were defined using the same investigations. This defined section was used to
construct analytical models where five lithological media were characterized from
the different physically-mechanical characteristics.

The following lithological media are distinguished:
– A surface layer of dusty, sandy, and clayey with seismic velocity values of Vs =

150–200 m/s
– Subsurface layer of clay, dust, and sand with seismic velocity values of Vs =

200–400 m/s
– More compact quaternary sediments with seismic velocity values in the range of

Vs = 400–600 m/s
– Pliocene sediments with seismic velocity values in the range of Vs = 650–800 m/s
– Terrain bedrock and Paleozoic shales with seismic velocity values of Vs > 1,000 m/s

From the analysis of data of the newly performed CPT (cone penetration tests), SPT
(standard penetration tests), and from the aspects of the lithological composition of the
terrain, strength, and deformability characteristics, it can be concluded that the soil in
the investigated location is characterized by variable geomechanical characteristics.
The lithological structure consists of alternating occurrence of silty clays with fine
gravel and clayey silt that are moderately plastic, both with variable thickness of layers.
The penetration resistance of silty parts ranging within the limits of qc = (0.5–1.2) MPa
was obtained and the corrected number of SPT blows is N60 = 4, whereas those of the
sandy and fine gravel parts are in the limits of qc = (6.0–10.0) MPa with N60 = 14. From
the extensive soil investigation, the Vs soil profile is presented in Figure 1.1.

1.2.3 Structural characteristics

The building is residential, where the ground floor is intended for business while the
floors above are designed for housing premises. It has an approximately square
shape, with dimensions 24.0 × 24.4 m (Figure 1.2) and has eleven levels: ground floor,
mezzanine, first floor, second floor, third floor, fourth floor, fifth floor, sixth floor,
seventh floor, eighth floor, and attic. The ground floor has a height of H = 3.84 m, the
mezzanine is with a height of H = 2.60 m, while the other floors have an equal height
of H = 2.88 m. The structure is a mixed reinforced concrete structural system with
square and rectangular columns, which start from the ground floor with larger cross-
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sections, gradually decreasing to the higher floors. Pile foundation is used through
single foundations connected to each other by foundation beams in both orthogonal
directions.

For obtaining the dynamic characteristics, ambient vibration method was used as
given in Figure 1.3.

The results from the transformed records from all tests are shown in Figure 1.4,
which displays the mode shapes for the corresponding natural frequencies of vibra-
tion. In Table 1.1, the natural frequencies and the damping in the corresponding
modes are given.

Table 1.1 contains information on the dominant frequencies of the structure ob-
tained from a mathematical model, while Table 1.2 shows the values of natural fre-
quencies measured in 1985 as given in the work of Petrovski [6]. When compared,
Tables 1.1 and 1.2 show that there is no significant change of frequency and hence no
significant change in stiffness of the structure. A slight decrease of frequency, that is,
8% in y-direction and 6% in x-direction is observed.

In defining the mathematical model, SAP2000 software was used for the analysis
and analytical modelling of the tested structure. Modelling of the structural elements
was done in accordance with the existing (available) formwork plans and reinforce-
ment details. The columns and the beams were modelled as “frame” elements, whereas
the walls and the slabs were modelled as “shell” elements. The linear structural ele-
ments were divided into finite elements by use of the “auto frame mesh – intermediate
joints” function, whereas the 2D elements were divided into finite elements of 50 cm by
use of the “automatic area mesh” function. The structure is fixed to the base, by which
its motion is prevented in all directions.
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Figure 1.1: Shear wave velocity Vs (m/s) profile for analysis of the local site effects.
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There is a difference in the frequency in the Y-direction obtained from the analyt-
ical model, which is expected, since the loads used for the analytical model corre-
spond to those in the structural project. Taking into account that the building has
been exposed to undergoing changes in the course of its serviceability period for
which there is no document and that soil-structure interaction is also not taken into

Table 1.2: Values of natural frequencies, measurements done 1985.

Direction Frequencies (Hz) Damping (%)

f f f f f

P . . . . .
P . . . .
Torsion . . . .

Table 1.1: Values of natural frequencies.

Frequency (Hz) Damping (%) Complexity (%) Description

. . . First mode of vibration in transverse direction Х
. . . Torsion
. . . First mode of vibration in longitudinal direction Y
. . . Second mode of vibration in transverse direction X
. . . Second mode of vibration in longitudinal direction Y

Figure 1.4: Mode shapes for the corresponding natural frequencies of vibration.
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account in the model, it has been defined that the analytical model shows the behav-
ior of the structure in real conditions well, that is, there is good correlation between
the experimental and the analytical results see Figure (1.5) and Table (1.3 and 1.4).

Figure 1.5: Analytical model from SAP2000.

Table 1.3: Dynamic characteristics of the “fitted” model (SAP2000 output).

Output case Step type Step num Period Frequency Circ freq Eigen value

Text Text Unitless Sec Cyc/s rad/s rad/s

MODAL Mode  . . . .
MODAL Mode  . . . .
MODAL Mode  . . . .

Table 1.4: Comparison of dynamic characteristics.

Y-direction X-direction

Measurement  . .
Measurement  . .
SAP . .

10 Julijana Bojadjieva et al.



1.3 Seismic instrumentation

1.3.1 Instrumentation at the site

The Location Tower from the 3D strong motion array consists of one surface and
three downhole instruments each, 125 meters down the bedrock; a nine-story building
with two instruments installed in the building, on the 6th and 9th stories, and four
instruments installed at the foundation level. The number and the depth of the instru-
ments at the locations are presented in Figure 1.6.

1.3.2 Obtained records from small to moderate earthquakes

During planning and installation of the Ohrid Lake Seismic Network in the late 70s,
the entire network was composed of the most advanced instruments produced by
Kinemetrics Inc., Pasadena, California. However, the analogue recording system could
not be maintained in the last decade and there was no possibility of recording real
time earthquake events. The time period 2020–2021 was the beginning of extensive
revitalization of the network [9]. Replacement of the recording system by an ana-
logue-digital conversion device, which enables real-time recording of earthquake
events and thus structural and health monitoring at the Location Tower was realized.
Since March 2021, several small to moderate earthquake events have proven the func-

Story 6

Story 9

Free–field

Site

Surface

Foundation –13.0

–22.9

Bedrock –101.0

Figure 1.6: Instruments setup and depth at the Location Tower.

Instrumentation Location – -Tower in situ
laboratory

Site type Instrumented building

Instruments on the building
structure

 (th and th story)

Instruments at the level of the
foundation structure



Instruments on soil surface 

Instruments in soil profile  (. m, . m)

Instruments at bedrock  ( m)

Total number of instruments 
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tionality of the installed instruments and have provided important data for further
investigation at the location. Selected recorded earthquakes are analyzed in this
paper, which are given in Table 1.5. The presented registrations are used in simple 1-
dimensional linear equivalent site response analysis and are presented in the next
chapter. It is worth noting that three directions are recorded with three channels, and
for the analysis, one horizontal acceleration per earthquake was used.

1.4 Seismic site amplification analysis

The soil conditions can significantly influence the amplitude and the frequency of the
bedrock motion from earthquakes. Depending on the characteristics of the local geo-
technical conditions and the characteristics of excitation at the level of the seismic
bedrock, these effects can be greater or lesser, making the soil profile advantageous
or disadvantageous for the structures to be built on the site.

The effect of the local soil conditions is expressed through variation of the
amplitude–frequency characteristics of ground motion upon the surface in respect to
the corresponding excitation at the level of the seismic bedrock.

In this work, the analyses are performed by application of the method of vertical
propagation of shear seismic waves through a linear viscoelastic system based on the
solution of the Kanai wave equation. The procedure of definition of the nonlinear ef-
fects in soil resulting from seismic effects includes an approach that uses the equiva-
lent linear characteristics of soil, developed by Seed and Idriss. The analyses were

Table 1.5: Selected registered earthquakes with the monitoring system at the Location Tower.

Date of registered
earthquakes

Richter
Magnitude

Epicenter

EQ  January : Pm (UTC)


. Bitola, Macedonia,  km southeast of Bistrica,
Macedonia✶

EQ  January : Pm (UTC)


. Florina, West Macedonia, Greece✶

EQ  January : Pm (UTC)


. Florina, West Macedonia, Greece✶

EQ  January : Am (UTC)


. Florina, West Macedonia, Greece✶

EQ  April : (UTC)  .  km SE of Mostar, Bosnia and Herzegovina

EQ  January : (UTC)  .  km NE of Tirana, Albania

✶These quakes were likely an aftershock of the 5.3 quake West Macedonia, Greece, Jan 9, 2022 11:43 pm
(GMT + 2).
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performed by using the SHAKE2000 software [10]. The calculation model, which is
presented in Figure 1.1, is analyzed using the selected acceleration records given in
Table 1.5 using the methodology as given in the work of other authors [11–15].

The effect of the local medium was evaluated based on the analysis of the dy-
namic response of the mathematical model. This analysis enabled definition of the
peak accelerations along the depth of the model as well as the response spectra of the
models for the surface level. With the analyses of the local soil effects, the mean peri-
ods of natural vibration of 0.63–0.65 s were obtained for the real recorded accelera-
tion level (without scaling) corresponding to low level of deformations. Figure 1.7 and
Table 1.6 show the variation of peak accelerations along the depth of the models ob-
tained by convolution of selected accelerograms, for real recorded input acceleration
of аmax between 0.0027 and 0.0069 g.

Figure 1.8 shows the spectra for each of the selected time histories of acceleration, for
damping of D = 5%, for both levels of bedrock −101 m (left) and the surface level 0.0 m
(right), along with the mean value from all the analyses. From the obtained spectra, it
is clear that the dominant amplitudes occur in the period range of 0.4–1.0 s. The dia-
grams show that the surface layers considerably amplify the earthquake effect, which
is the result of the low strength characteristics of the soil in these layers.

Peak Acceleration (g)

D
e

p
th

 (
m

)

0.0
0.000 0.002 0.004 0.006 0.008

–11.2

–16.8

–22.4

–28.1

–33.7

–39.3

–44.9

–50.5

–56.1

–61.7

–67.3

–72.9

–78.6

–84.2

–89.8

–95.4

–101.0

–5.6 EQ 1

EQ 2

EQ 3

EQ 4

EQ 5

EQ 6

Average

Figure 1.7: Peak accelerations along depth for real recorded acceleration response of the soil column.
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Figures 1.9 and 1.10 represent the average computed acceleration time history on
the left and the real recorded acceleration time history from instruments on the right
for the level of 101.0 m and the surface level 0.0 m for EQ1. The graphs are compatible,
and it can be concluded that the modelled soil profile represents the real amplifica-
tion characteristics of the location. Figures 1.11 and 1.12 represent the average com-
puted acceleration time history on the left and the real recorded acceleration time
history from instruments on the right for the level of 101.0 m and the surface level
0.0 m for the earthquake records.

Calculated acceleration records at the same depths where recorded acceleration
records were available were compared and results presented in Table 1.7. The ob-
tained dynamic amplification factor is presented in Table 1.8.

The differences between the values show that the newly installed instruments are
operating correctly. Moreover, the numerical analysis from SHAKE software is in
good correlation with the values, showing that the design of the mathematical model
is successful.

Table 1.6: Calculated peak accelerations along depth, periods of the soil column, and dynamic
amplification factor (DAF)mean.

Depth Maximum acceleration

EQ :
Florina
..
(M.)

EQ :
Bitola
..
(M.)

EQ :
Florina
..
(M.)

EQ :
Florina
..
(M.)

EQ : B&H
..
(M.)

EQ :
Albania
..
(M.)

Average
acc.
аmax (g)

 . . . . . . .

−. . . . . . . .

−. . . . . . . .

−. . . . . . . .

−. . . . . . . .

−. . . . . . . .

−. . . . . . . .

−. . . . . . . .

DAF
(/−)

. . . . . . .

DA
(−/−)

. . . . . . .

Period (s) . . . . . . Average
period:
. s
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1.5 Seismic structural amplification analysis

For numerical analysis in SAP2000, as an input, accelerations time histories from the
recorded accelerations for selected recent earthquakes on the ground floor (0th foun-
dation) are used. Peak ground accelerations (PGA) for the chosen earthquakes are
given in Table 1.9.

As can be seen from Figures 1.13 to 1.18 the numerically obtained acceleration
time histories and the real recorded acceleration time histories from instrument at
the 9th story are in good accordance. From the obtained measurements, it can be
seen that the values are similar and thus the accuracy of the model can be confirmed.
The slight difference is due to the simulations of soil medium, which is not included
in the numerical modelling but is present in the in situ conditions.
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Figure 1.8: Spectral acceleration for 5% damping at level −101.0 m (above) and at surface 0.0 m (below).
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The tables present the values of PGAs of the numerically obtained and measured dif-
ferent earthquakes respectively. The difference in the percentage is given in Table 1.12
and it can be seen that it is different depending on the earthquake records, 37% for the
EQ1, 26% for EQ2, 33% for EQ3, and so on. It must be mentioned that the difference is
notable because of the soil-structure interaction present in the real structure but not pres-
ent during the numerical modeling.

When comparing the DAF between the foundation level and the 9th floor it can
be said that the amplitude of the amplification is observed clearly as given in
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Figure 1.9: Computed acceleration time history (above) and the recorded acceleration time history
(below) for the depth of −101.0 m – EQ1.
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Table 1.13. The DAF for the recorded time histories is in the range of 1.4 to 3.8, while
for the numerical model the DAF varies between 2.1 to 2.9. This is mainly because of
the fact that the numerical model needs improvement in the simulation of soil me-
dium, which will be presented in the next papers from the same group of authors.
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Figure 1.10: Computed acceleration time history (above) and the recorded acceleration time history
(below) for the surface 0.0 m – EQ1.
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Figure 1.11: Computed acceleration time history (above) and the recorded acceleration time history
(below) for the surface 0.0 m – (EQ 6).
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Figure 1.12: Computed acceleration time history (above) and the recorded acceleration time history
(below) for the depth of −101.0 m – (EQ 6).
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Table 1.8: Dynamic amplification factor for each depth in
respect to the seismic bedrock, calculated versus recorded.

Depth (m) DAF (calculated) DAF (recorded acc.)

. . .
− . . .
− . . .
− .  

Table 1.9: Input peak ground acceleration (PGA).

Story Input acceleration (PGA) [g]

EQ : Florina
..
(M.)

EQ : Bitola
..
(M.)

EQ : Florina
..
(M.)

EQ : Florina
..
(M.)

EQ : B&H
..
(M.)

EQ : Tirana
..
(M.)

th (foundation) . . . . . .
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Figure 1.13: Recorded acceleration time history (above) and analytically obtained acceleration time
history (below) for the 9th story – EQ1.
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Figure 1.14: Recorded acceleration time history (above) and analytically obtained acceleration time
history (below) for the 9th story – EQ2.
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Figure 1.15: Recorded acceleration time history (above) and analytically obtained acceleration time
history (below) for the 9th story – EQ3.
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Figure 1.17: Recorded acceleration time history (above) and analytically obtained acceleration time
history (below) for the 9th story – EQ5.
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Figure 1.16: Recorded acceleration time history (above) and analytically obtained acceleration time
history (below) for the 9th story – EQ4.
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Figure 1.18: Recorded acceleration time history (above) and analytically obtained acceleration time
history (below) for the 9th story – EQ6.

Table 1.10: Numerically obtained peak ground accelerations (PGA).

Story Numerically obtained PGA (g)-SAP

EQ : Florina
..
(M.)

EQ : Bitola
..
(M.)

EQ : Florina
..
(M.)

EQ : Florina
..
(M.)

EQ : B&H
..
(M.)

EQ : Tirana
..
(M.)

th
(foundation)

. . . . . .

th . . . . . .

Table 1.11: Recorded peak ground accelerations (PGA).

Story Recorded acceleration (PGA) (g)

EQ : Florina
..
(M.)

EQ : Bitola
..
(M.)

EQ : Florina
..
(M.)

EQ : Florina
..
(M.)

EQ : B&H
..
(M.)

EQ : Tirana
..
(M.)

th
(foundation)

. . . . . .

th . . . . . .
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1.6 Comparison of site and structural dynamic
amplification factor (DAF) with previous studies

The values of DAF were also compared to DAF values given in Petrovski et al. (1995)
[1] from the seismic source zones in Albania, Greece, and Macedonia recorded during
1992 (Table 1.5). Four moderate earthquakes with magnitudes in the range of 3.8–4.9
have been recorded on the three dimensional instruments array with the maximum
acceleration amplitudes from 0.0010 g to 0.00637 g. The time histories and response
spectra for the building site (L2) are given in Figures 1.4–1.6 for the deep downhole B I
at the depth of 101 m. in the bedrock with maximum PGA = 0.00121 g, foundation level
F4 with PGA = 0.00322 g, and 9th floor PGA = 0.00627 g, all for N-S (transverse) compo-
nent. DAF at this site for relatively low excitation is in the soil media DAF = 2.66 with
respect to the bedrock and 1.95 for the building with respect to the foundation level
(Table 1.14).

Table 1.12: Difference in the percentage of the recorded PGA versus the numerically
obtained PGA for the 9th story.

Story Difference in recorded versus numerically obtained PGA (%)

EQ : Florina
..
(M.)

EQ : Bitola
..
(M.)

EQ : Florina
..
(M.)

EQ : Florina
..
(M.)

EQ : B&H
..
(M.)

EQ : Tirana
..
(M.)

th . . . . . .

Table 1.13: Dynamic amplification factor (DAF) for the 9th story in respect to the foundation level,
calculated versus recorded.

Story EQ : Florina
..
(M.)

EQ : Bitola
..
(M.)

EQ : Florina
..
(M.)

EQ : Florina
..
(M.)

EQ : B&H
..
(M.)

EQ : Tirana
..
(M.)

DAF
(calculated)

. . . . . .

DAF
(recorded)

. . . . . .

1 Seismic site investigation and structural amplification 25



1.7 Discussion, conclusions, and further work

Obtained results are a good starting point for further sophisticated analysis including
nonlinear site response analysis at the location, which can be verified with stronger
recorded earthquakes in future. At the analyzed site, sets of input motions were se-
lected to represent different frequency contents in order to improve the influence of
the numerical calculations.

In comparing the DAF between the foundation level and the structure in the 9th
floor, it can be said that the amplitude of the amplification for the recorded time his-
tories is in the range of 1.4–3.8, while for the numerical model the DAF varies between
2.1 and 2.9. This is mainly because the numerical model developed for the simulation
does not include soil-structure interaction SSI modelling.

The diagrams show that the surface layers considerably amplify the earthquake
effect, which is the result of the low strength characteristics of the soil in these layers.
The dynamic amplification factor being a nondeterministic quantity is related to the
fundamental frequency of the soil layers, thus gaining in importance in the site re-
sponse analysis. The values of the dynamic amplification factors from the analyzed
recorded accelerations match well with the ones obtained and analyzed from previ-
ous small to moderate earthquakes at the site from 1992.

Still, to get a more accurate insight, one of the next recommended research steps
is to analyze the local soil conditions using a higher number of acceleration records
from the site with different magnitudes, compare the obtained acceleration records
with acceleration records from nearby seismic stations, and make detailed modelling
of the dynamic soil properties (shear modulus and damping) obtained from labora-
tory experiments on soil samples of the location.

Table 1.14: Peak ground acceleration (PGA) values and DAF from the August 13, 1992
Resen earthquake as given in [6].

Depth PGA (g) DAF

th floor (building structure) . . (in respect to the foundation of the building)
Foundation level (. m) . . (in respect to the bedrock)
Bedrock (− m) . 
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2 Impact of industry 4.0 technologies
on structural health monitoring

Abstract: Structural health monitoring (SHM) and non-destructive test (NDT) methods
are significant tools in ensuring structural safety, reliability, integrity, and minimal
structural maintenance. Industry 4.0 technologies, for example, Internet of things
(IoT), Blockchain, Unmanned Aerial Vehicles (UAVs), and Data Mining have recently
received significant interest in SHM due to their ability to improve the SHM systems
in terms of performance, automation, cost-effectiveness, and safety, for example. In
recent years, traditional SHM approaches have been rapidly upgraded to IoT-based,
Internet of Drone (IoD)-based, and data mining-based SHM. This is due to the fact that
conventional methods are limited by their high cost and non-real-time SHM. More-
over, the implementation of blockchain-based SHM as an emerging decentralized da-
tabase technology has been identified for improving the security of data collection.
Additionally, Wireless Sensor Networks (WSNs) are widely used in the aforemen-
tioned Industry 4.0 technologies. Therefore, IoT, blockchain, IoD, and data mining
have been applied to enhance SHM strategies. In this regard, this chapter presents the
most recent advanced emerging technologies employed in SHM. To this end, a brief
background of these technologies is discussed in this chapter. Then, the development
of these advances and current applications in SHM are presented with the aim of
showing the benefits and efficiency of these technologies.

2.1 Introduction

In general, “damage” is a deficiency in the performance of a structure, caused by ex-
ternal loads, human errors, or environmental conditions [1]. Damage detection techni-
ques can be classified in two categories due to their detection abilities; namely local-
based and global-based techniques [2]. Structural health monitoring (SHM) systems
have been used to guarantee the safe functioning of structures in order to make satis-
factory decisions on structural maintenance, repair, and retrofitting [3–10]. The main
steps in SHM implementation are briefly summarized and illustrated in Figure 2.1. A
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Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland

Acknowledgment: The authors would like to express their sincere gratitude and appreciation to Univer-
sity College, Dublin for providing the resources and supporting this research. (Grant number: 101021668)

https://doi.org/10.1515/9783110791426-002

https://doi.org/10.1515/9783110791426-002


brief history of SHM is shown in Figure 2.2. As can be observed from Figure 2.2, the
first health monitoring approach was conducted in 1937 on the Golden Gate Bridge in
San Francisco [11]. Since this first application of SHM, there has been growing global
demand for reliable structural health information to minimize maintenance costs and
increase human safety [12]. This is due to the fact that the health of structures needs
to be monitored to predict damage, retrofit, and prevent collapse as the failure of
structures is to be avoided (see Figure 2.3).

Stage 1:

Stage 2:

Stage 3:

Monitoring and measuring

desired structural parameters

using different available sensors  

– Feature extraction

– Capture of reference model

– Comparison of environmental influences
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Figure 2.1: Schematic operation of SHM systems in civil engineering applications (adapted from [13]).
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Figure 2.2: An overview of SHM evolution over the years.
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(a) Tacoma Narrows bridge in 

Washington, collapsed in 1940, wind [14]

(b) Silver bridge in Ohio, collapsed in 

1967, corrosion [15]

(c) Ronan Point building, London, 

collapsed in 1968, gas explosion [16]

(d) Skyline Plaza in the USA, collapsed in 

1973, framework removal [17]

(e) Mianus River bridge in Greenwich, 

collapsed in 1983, corrosion and poor 

maintenance [18]

f) Hanshin Expressway bridge in Kobe, 

Japan, collapsed in 1995, earthquake [19]

(g) Khobar tower in Saudi Arabia, 

collapsed in 1996, bombing [20]

(h) The World Trade Center in USA, 

collapsed in 2001, terrorist attack [16]

(i) I-35W bridge in Minneapolis, USA, 

collapsed in 2007, design flaw [21]

(j) I-580 Connector Ramp –Oakland, 

California, collapsed in 2007, fire [18]

(k) Sea wall at Dawlish, UK, collapsed in 

2014, storm [22]

(l) Tadcaster bridge in England, collapsed 

in 2015, river scour [23,24]

(m) Plasco tower in Iran, collapsed in 

2017, fire [25]

(n) Morandi bridge in Italy, collapsed in 

2018, poor construction [26]

(o) Nan Fang’ao bridge in Taiwan,

collapsed in 2019, corrosion [27]

(p) Bridge collapse in Bad Neuenahr-

Ahrweiler, Germany, 2021, flood [28]

(q) Metropolis building in Iran, collapsed 

in 2022, poor construction and overloading 

[29,30]

(r) Building collapse in Kahramanmaras, 

Turkey, 2023, earthquake [31]

Figure 2.3: Sample of some structures subjected to collapse [14–31].
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Civil engineering structures may be subjected to different loads such as seismic,
wind, wave, traffic, blast, or random impact loads during their service life. Therefore,
it is necessary to assess their vulnerability and evaluate if it is necessary to retrofit
and enhance their structural capacity. Hence, structural rehabilitation and retrofits of
structures have to be conducted [32]. In order to inform any retrofitting strategy or
detection of any structural damage, tracking the response of the structure continu-
ously over time is required but presents a major technical challenge as data sensing is
the core of most of the current SHM systems (see Figure 2.4) [33, 34]. However, con-
ventional SHM techniques such as visual inspection [35], acoustic emission (AE) [36],
chain drag [37], impact echo (IE) [38], radiography [39], X-ray [40], impulse response
(IR) [41], and ultrasonic methods [42], which are local SHM approaches, are challenged
by low-cost and a lack of real-time event monitoring [43, 44]. Additionally, most of the
aforementioned approaches are labour-intensive and time-consuming. Moreover,
their implementation is limited to the availability of the structural damage location
[45, 46], that is, need to detect damage locally by inspection. However, typically in
most cases, the location of damage is unknown. Therefore, these techniques do not
have adequate capacity to assess the health condition of structures, particularly for
large structures and visually unobservable damages. Consequently, IoT, blockchain,
IoD, and data mining are required to be integrated with SHM mainly due to following
reasons:
– To overcome the aforementioned drawbacks relating to large structures and visu-

ally unobservable damages
– To enhance the application of remotely monitoring complicated structural sys-

tems anytime, anywhere
– To implement a reliable, constant, and efficient low-cost SHM system

Due to the rapid growth of sensing technologies, that is, wireless communication and
radio-frequency identification [47], IoT is an emerging technology for monitoring sys-
tems. In this regard, IoT has received significant attention in SHM due to its flexibility
in monitoring various structures, that is, buildings and bridges, especially in smart cit-
ies [48]. Therefore, IoT has provided a promising choice for SHM in recent years. For
example, Wireless Sensor Network (WSN), as the basic layer of IoT, has recently been em-
ployed in SHM schemes due to its intelligent sensing and computing ability [49–51]. Be-
sides, according to [10], drones can generate high-quality images for SHM systems,
especially in difficult-to-access areas. Blockchain technology is another emerging trend.
The implementation of blockchain-based IoT solutions could solve several issues, that is,
the high maintenance cost of centralized approaches [52]. Data mining algorithms, that is,
machine learning, artificial intelligence, and statistical techniques have also been used to
extract information on the structural health condition by obtaining relationships between
data in the form of patterns [53, 54]. Therefore, data mining has provided numerous solu-
tions to SHM problems due to its powerful computational ability by means of classifica-
tion-, prediction-, and optimization-based methods such as neural networks, fuzzy,
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support vector machine (SVM), principal component analysis (PCA), Bayesian, genetic al-
gorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) [55].
For example, Knowledge Discovery in Databases (KDD), which is a data mining approach,
has been applied in SHM [56] (see Figure 2.5). To explain Figure 2.5, an SHM system
should be as specific as feasible to define the impact of the structural damage. Therefore,
the development of SHM can be categorized into three parts, that is, damage detection,
damage diagnosis, and damage prognosis. On the other hand, damage diagnosis can be
also classified into detailed information representing the damage in terms of damage se-
verity, damage type, and damage location. As a result, a hierarchical SHM scheme can be
decomposed into five levels, as depicted in Figure 2.5.
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The main focus of this chapter is to present an overview of SHM implementation
based on the integration of advanced Industry 4.0 technologies. Therefore, this chap-
ter is organized as follows. Section 2 highlights the outlook of Industry 4.0 technolo-
gies since 2020. Then, the concept and background of IoT, blockchain, UAVs, and data
mining are described in Section 3. Section 4 summarizes the observations, challenges,
and future directions of these technologies. Then, the concluding remarks are given
in Section 5.

2.2 The 2020s outlook of industry 4.0 platforms

In Industry 4.0, the term “industry” refers to the creation of products, services, and fa-
cilities within an economy. In the twenty-first century, our world is experiencing the
fourth step of industrialization, popularly known as the Fourth Industrial Revolution,
“Industry 4.0”, or “IR4.0” (see Table 2.1) [58–62]. Industry 4.0 refers to the smart and
connected devices (i.e. hosts or networks) that have been designed to interact with the
physical world using machine-to-machine communication and human-machine cooper-
ation. IoT, Internet of Services (IoS), Cyber-Physical Systems (CPS), cloud/fog/edge com-
puting, data mining, robotics, and blockchain are fundamental pillars of Industry 4.0,
which promote smart tasks and diagnostics in research and analytics to industries and
organizations. Hence, the IR4.0 technologies are handling complicated undertakings at
a faster rate compared to human performance in the 2020s.

Several reports have indicated the importance of Industry 4.0 technological plat-
forms. The International Data Corporation (IDC) predicted that close to 28 billion con-
nected hosts were used by 2012 [63]. It is now expected that around 55.9 billion hosts
will be connectable by 2025, showing significant growth [64]. In addition, according to
VisionMobile outlook, the number of IoT developers will increase from 300,000 in
2014 to more than 4.5 million by the 2020s [65].

2.3 Industry 4.0 technologies in SHM

2.3.1 Internet of things (IoT)

Before going into the details of “Internet of things” relating to SHM, it is important to
highlight this term, which consists of “Internet” and “Things.” Internet refers to the
global interconnected computer networks, while any object, which is capable of sens-
ing and collecting data, can be considered as a “Thing.” Therefore, IoT is an evolution-
ary technology comprising billions of physical devices around the world containing
embedded sophisticated chips, sensors, and actuators, which are able to connect, col-
lect, share, interact, and exchange any type of data. Hence, in IoT, environmental
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sensing with data transmission can be combined with processing by means of wire-
less communication systems to enhance the quality of life [66]. For example, Figure 2.6
illustrates the idea of IoT, which has changed the means of human living by contact-
ing anybody, anytime, and anywhere.

Table 2.1: Global industrial revolution and their contribution.

Industrialization steps Key contributions

Fourth Industrial Revolution
(IR .)

– Internet of things (IoT)
– Smart factories/Smart Manufacturing/Robotics
– Circular economy/Product – Lifecycle – Management (PLM)
– Data mining/Big data analytics
– Smart sensors/Remote sensing/Wireless sensor network
– Cloud computing/Cognitive computing/Mobile computing
– Cybersecurity/Blockchain
– Digital twin/Smart tasks and diagnostics/Smartification
– Virtual reality/Augmented reality/Building Information Modelling
– Unmanned Aerial Vehicles (UAVs)/Internet of Drone/Smart cities
– Smart environment/Sustainable development/Renewable energy

Third Industrial Revolution
(IR .)

– Production Automation/Computer and Automation
– Information and Technology/Telecommunication
– Linear economy
– Leveraging Electrical Mechanization
– First programmable logic controller (PLC)
– Industrial Robotics/Electronic and nuclear industries
– Business Computers/Supercomputers/Business software
– Internet/World Wide Web

Second Industrial Revolution
(IR .)

– Electrical Energy/Steam power and petroleum
– Skyscrapers
– Large scale iron and steel production
– Telephones and telegraphs, typewriter, phonograph, motion

pictures
– Widespread use of machinery in manufacturing
– Automobile, airplanes, diesel engines, bicycles, railroads
– Chemical, rubber, paper mills, fertilizers
– Applied Science
– New forms of business organizations

First Industrial Revolution
(IR .)

– Mechanical Production
– New Energy Resources/Water and Steam Power
– New raw materials/Iron, coal, textile, steam industries
– New machines/Spinning Jenny and the Power loom
– Factory system, division of labour, specialization
– The locomotive
– Expansion of world trade
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IoT systems can support real-time applications using low-cost sensors. Therefore,
they have gained significant interest for various applications such as smart cities, smart
buildings, healthcare, smart grids, industrial manufacturing, and transportation with-
out any intervention of human-human interaction [67–71] (see Figure 2.7). In other
words, IoT is changing the physical world with traditional societies and industries into
one huge database system that can support real-time applications. In the context of
SHM, Figure 2.8 presents the role of internet in damage detection of buildings [72].

In recent years, conventional SHM has been upgraded to IoT-based SHM. Traditional
approaches to SHM are being challenged by IoT-based SHM, which is real-time and
low-cost SHM. Applications of IoT in SHM have been reported recently by several re-
searchers to show their capability of identifying structural damage. For example, a
real-time health assessment was carried out by Qu et al. [73] in order to improve the
effectiveness of prognostic and health management (PHM) systems through obtained
data from massive sensors (see Figure 2.9). As can be seen from Figure 2.9, the pro-
posed framework, which was applied to study the online PHM, comprises three levels,
that is, strategic, tactical, and operational levels.

As mentioned previously in Section 1, WSN is one of the most important technolo-
gies recently applied to SHM. One study by Asay [65] presented the development of
IoT-based WSN in SHM. The authors of this study visualized an intelligent and reliable
monitoring system, as shown in Figure 2.10. In another work by Wang et al. [74], a
cloud-based SHM methodology using IoT was introduced to reduce the processing of
big data as well as improve the monitoring system in smart cities. It was shown that
various infrastructures, for example, bridges and buildings could be monitored indi-
vidually under one cloud using attached IoT sensors (see Figure 2.11). A big data re-
duction scheme was also proposed in [74] to identify the structural damage of smart
cities (see Figure 2.12). The signal acquisition stage of this research was conducted
using particular requirements, for example, application-specific conditions. In addi-
tion, a frequency content analysis was carried out in this study with the aim of sensor
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Figure 2.6: Concept of the IoT system.
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signal sensitivity detection. It was concluded that among sensitive and insensitive sig-
nals, only sensitive sets had to be transferred to the base station.

Wang et al. [76] proposed an IoT-based integrated information system for SHM com-
prising three layers namely a sensor data collection network, a data processing net-
work, and an SHM service network. Likewise, the architecture of an IoT-SHM system
has also been illustrated by Scuro et al. [77] including its library of components, that
is, (i) smart sensors, (ii) gateway, (iii) remote control and service room, and (iv) open
platform communications server (see Figure 2.13).
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Figure 2.9: Integrative prognostics and health management framework based on IoT [73].
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2.3.2 Blockchain

Blockchain is an emerging decentralized database technology proposed in 2008 [78]. A
schematic form of a blockchain is detailed in Figure 2.14, where the blockchain is de-
noted as a sequence of blocks appended to each other in chronological order. Generally,
blockchain can be viewed in three categories, that is, public, private, and consortium
blockchain [79]. Any file with data such as transactions or any record can be controlled
by this technology [80]. As a result, it has gained significant interest [81]. The novel data
structure of blockchain is capable of efficiently setting rules to update the information.
Thus, blockchain is gaining attention from a large variety of applications, as shown in
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Figure 2.11: Combination of WSN data recorded from different infrastructures using sensor data cloud [74].
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Figure 2.15. This could be explained by the fact that it has significant features such as
anonymity, decentralization, immutability, and security. Therefore, it can be applied in
IoT systems and the outcome is robust and highly reliable, with a major cost reduction
[68, 82–84].

Smart Sensors

Network
Gateway

Cloud

Remote Control and Service Room

Open Platform Communications Server

Figure 2.13: Architecture of an IoT-based SHM system [77].
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Figure 2.14: Structure of a blockchain, adapted from [85].
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A blockchain-IoT-based distributed network was proposed by Jo et al. [89] with
the aim of improving the security of data collection in SHM (see Figure 2.16). In addi-
tion, an autonomous decision-making approach using blockchain-based smart con-
tracts in SHM was also introduced in this work. The authors verified the performance
and feasibility of the proposed method using SHM data from an underground coal
mine. As can be seen from Figure 2.16, the blockchain network was divided into core
and edge sub-networks and all data could be stored on a distributed ledger. Two types
of storage were presented in the proposed model, that is, raw data and structural
damage storage. The edge nodes had a low capacity for storage. In contrast, the core
participants included a better ability to create new blocks and verify proof-of-work.
In addition, hash functions were also implemented in the core network to guarantee
the reliability of data. It was concluded that the proposed fully decentralized model
could provide more reliable results with high interoperability in comparison to sim-
ple [90], WSN [91], IoT [92], and IoT-cloud [48] SHM systems.

One of the most significant benefits of blockchain is that it can manage decentral-
ized databases without failure. By taking advantage of this feature, Gordan et al. [87]
proposed a new way to compute in situ wireless sensors data for real-time monitoring
of smart structures, which is needed to address the limitations of SHM systems (see Fig-
ure 2.17). According to their findings, before starting the SHM procedure, a reliability
evaluation of the recorded data using blockchain needs to be carried out in advance to
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verify the authenticity of sensors. As mentioned earlier, blockchain is a series of blocks
chained to each other in a sequential manner using cryptographic hash functions,
which can set rules on how a database is updated. The only recorded sensor data con-
sidered valid are the ones acknowledged by this technology. Therefore, any sensor data
entry from a SHM application should be evaluated by blockchain to increase the reli-
ability of the structural damage identification system. To this end, any recorded sensor
data cannot be added to the input SHM database without agreement from blockchain.

2.3.3 Unmanned aerial vehicles (UAVs)

Remote sensing technology has been used for extracting structural damage detection
using non-contact measurement devices [93–100]. This is because the obtained responses
from non-contact measurement tools are quicker and at a lower cost in comparison to
conventional SHM systems. In addition, they have much wider fields of view. Therefore,
the application of remote sensing in recording the SHM databases has been recently re-
ported for structural damage assessment [101]. Figure 2.18 illustrates the remote sensing-
based non-contact technologies in three levels, that is, spaceborne, airborne, and ground-
based levels. At the ground-based level, the IoD is considered as one of the large-scale
heterogeneous networks. The IoD networking resources and capabilities, as a vital need,
is required to be developed for conducting the expected services and applications. This
communication architecture is able to support complex task management and coordina-
tion [102]. Additionally, UAVs are being developed for SHM applications due to their high
mobility and direct communication range [103] (see Figure 2.19). In addition, these self-
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sufficient devices are relatively low-cost and widespread [104]. Consequently, several
services of UAV applications have been developed, for example, navigation, delivery, res-
cue, disaster management, military, and intelligent transportation [105–107].

Carroll et al. [110] developed a customized drone for sensor deployment as well as
SHM of a lab-scale bridge (see Figure 2.20). A laser speckle imaging system (LSIS) was
also proposed in [111]. The developed approach was used for remote strain sensing as
well as non-contact NDT purposes. This research could demonstrate the potential ap-
plication of LSIS as an effective non-contact measurement system. According to [112],
the utilization of remote sensing technologies for SHM can also be an alternate solu-
tion for bridge monitoring and maintenance, for example, Morandi Bridge in Italy

(a) Fixed-wing UAVs 

(b) Rotary-wing UAVs, and unmanned helicopters

(c) Hybrid UAVs, umbrella-UAVs, and bionic-UAVs

Figure 2.19: Several types of drones/UAVs [109].

Figure 2.20: (a) Overview of the custom drone and (b) sensor deployment and retrieval experiment
on the test apparatus performed by Carroll et al. [110].
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[113]. The advantage of integrating the bridge data with remote sensing is to make a
comprehensive and strong data collection procedure. Others have used a drone
equipped with a Digital Image Correlation (DIC) camera system for dynamic SHM of a
railroad tie, as shown in Figure 2.21 [114]. It was concluded that the autonomous sys-
tem successfully performed a remote structural evaluation.

A drone-based mobile sensing platform was implemented by Herrmann et al. [115] to iden-
tify the modal frequencies of a wind turbine (see Figure 2.22). In this research, an optical
displacement sensor was used for vibration analysis. The applied sensing platform mea-
sured the relative displacement between the structure and the drone, which indicated re-
silient behaviour under wind excitations. The authors of this paper claimed that the
absolute movement of the structure could be estimated based on the measured relative
distance. They also mentioned that the recorded time domain data was a suitable input
for various operational modal analysis algorithms.

UAV

Figure 2.21: Overview of experimental setup using UAV for dynamic SHM of a railroad tie [114].
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Figure 2.22: Vibration measurement of a wind turbine using drone: (a) schematic view and (b) actual
measurement [115].
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2.3.4 Data mining

Data mining is a powerful computing tool used to obtain knowledge from raw data.
Data mining is the analysis of datasets to find out the valued data in the form of pat-
terns in order to extract relationships, novel correlations, and trends of data using
various functions (see Figure 2.23). In particular, data mining is useful for complex
and time-consuming problems (e.g. prediction, classification, visualization, and sum-
marization) that cannot be solved with traditional techniques [102, 116, 117]. In this
context, prediction is one of the most important functions not only in data mining but
also in SHM [118, 119].

One of the main functions of IoT is to remotely collect the recorded sensor data
and transfer it into valued knowledge, which can be utilized for pattern recognition
and decision-making purposes. Three types of data mining techniques, statistical, ma-
chine learning, and artificial intelligence techniques need to be applied in order to
obtain valued knowledge from sensed data (see Figure 2.24) [120]. It should be noted
that each of these techniques has several methods. For instance, statistical methods
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Figure 2.23: Data mining functions.
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include regression analysis, clustering analysis, and decision tree, and machine learn-
ing methods include SVM, PCA, and case-based reasoning. The third category is artifi-
cial intelligence, for example, fuzzy logic, genetic algorithm, artificial neural network,
and particle swarm algorithm. In recent years, these algorithms have also been used
for damage detection of different structures (See Table 2.2 and Figure 2.25).

There is a variety of research focusing on the application of data mining in SHM. For
instance, a data mining-based damage identification method was performed by Gor-
dan et al. [122] for bridge structures using a hybrid artificial neural network-based
imperial competitive algorithm (ANN-ICA). The applicability of the proposed approach
was developed to detect the hidden patterns in vibration data using Cross Industry
Standard Process for Data Mining (CRISP-DM) tool, as shown in Figure 2.26. It was con-
cluded that the proposed data mining-based damage detection methodology could
successfully identify and quantify damage.

Big Data
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Learning
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Figure 2.24: The relationships between computer science-based techniques [120].

Table 2.2: Data mining techniques [117].

Data mining technique Category Learning type

Support vector machine Machine learning Supervised
Decision tree Statistical Supervised
Clustering Statistical Unsupervised
Principal component analysis Machine learning Unsupervised
Regression Statistical Supervised
Fuzzy Artificial intelligence Supervised/unsupervised
Metaheuristics (see Figure .) Artificial intelligence _
Classification Statistical Supervised
Artificial neural network Artificial intelligence Supervised/unsupervised
Bayesian Machine learning Supervised
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As mentioned previously, classical SHM methods such as visual inspections have
various limitations, for example, time-consuming procedure, based on human judge-
ment, costly process, and ineffective for large and complex structural systems. To over-
come these difficulties, a data mining-based SHM approach was developed by Gordan
et al. [123]. This research investigates the applicability of data mining for damage identi-
fication of civil engineering structures. For implementation of the proposed methodol-
ogy, modal parameters obtained from a series of experimental modal analysis of a slab-
on-girder bridge structure were used as an input database for data mining. The labora-
tory work was carried out through various damage scenarios in order to generate the
database (see Figure 2.27). The applicability of machine learning, artificial intelligence,
and statistical methods was examined using Support Vector Machine (SVM), Artificial
Neural Network (ANN), and Classification and Regression Tree (CART) to predict the
structural behaviour and damage severity (see Figure 2.28). The performance of the
methods was compared to obtain the most accurate method. It was concluded that the
artificial intelligence method had the highest accuracy. Likewise, in the second stage,
the performance of machine learning technique was better than the statistical method.

Tan et al. [124] applied the combination of a back propagation neural network and
modal strain energy in order to quantify and locate damage in a number of steel beams.
The authors showed that the results could verify the applicability of the proposed ap-
proach. A comprehensive review on structural damage detection in conjunction with
data mining was reported by Gordan [125]. In [126], various data mining techniques,
which are applicable to SHM, have been thoroughly reviewed. A comparison of data
mining applications in SHM and the most used data mining methods with the highest
application rates were also discussed in this study. The authors presented the capabili-
ties and drawbacks of several algorithms such as ANN, fuzzy logic, regression, SVM, deci-
sion tree, Bayesian analysis, clustering and PCA, GA, PSO, and ACO (see Table 2.3).

Target

identification

Knowledge

extraction
Data exploration

Database

construction

Pattern

identification

Pattern

evaluation

Figure 2.26: Generalized framework of CRISP-DM for structural damage identification [122].
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Table 2.3: Abilities and drawbacks of major existing DM techniques [126].

Technique Category Abilities Drawbacks

ANN Artificial
Intelligence

(1) Accurate
(2) Robust to outliers
(3) Capable of using with other

techniques
(4) High flexibility
(5) High autonomy
(6) High scalability
(7) High accessibility
(8) High learning capability

(1) Time-consuming training
(2) High computational complexity
(3) Low interpretability
(4) Medium optimization capacity
(5) Difficult to use
(6) Possible overfitting
(7) Uncertainty in assigning weights

to connections among layers

Fuzzy Artificial
Intelligence

(1) Applicable for uncertain and
nonlinear systems

(2) Parallel implementation ability
(3) High interpretability

(1) Costly trial and error process for
membership function

(2) Variable shapes determination
requires trial and error

(3) Low learning capability
(4) Inadequate in some decision

challenges

PCA Statistical
Analysis

(1) High variable transformation
power

(2) Capable of quick calculation
(3) Minimization of data dependency
(4) Able to handle sparse/

asynchronous data
(5) Able to retain the information of

the projection data in the linear
projection

(1) Changing of coordinates may
cause information loss

(2) Large projection distance for
poorly fitted data

GA Artificial
Intelligence

(1) Accurate
(2) Capable of using with other

techniques
(3) High autonomy
(4) High interpretability
(5) High optimization capacity

(1) Time-consuming iterations
(2) Medium flexibility
(3) High computational complexity
(4) Medium scalability
(5) Low accessibility
(6) Lack of memory
(7) Disable to keep all solutions

using different populations

Clustering Statistical
Analysis

(1) Easy to use
(2) Capable of using with other

techniques

(1) Low accuracy
(2) Lack of optimal number of

clusters
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2.4 Discussion

2.4.1 Observations

With the development in the scope of applications of computing tools in recent deca-
des, much research and development has focused on precise systematic solutions for
big data problems. Subsequently, data-driven strategies have been employed to obtain
useful patterns from Industry 4.0 sensed data. Industry 4.0 technologies such as IoT,
blockchain, and UAVs are becoming highly precise and reliable when performing high-
complexity tasks. Additionally, these technologies are part of our daily lives. For exam-
ple, blockchain technology has recently attracted significant attention from practitioners
and academics in various fields such as business [127], energy [128], manufacturing [129],

Table 2.3 (continued)

Technique Category Abilities Drawbacks

SVM Machine
Learning

(1) Can be used without local
minimization

(2) Capable of quick sample
classification

(3) Can be used without dimension
error

(4) Applicable for nonlinear
problems

(1) Dependent on potential kernels
in nonlinear problems

(2) Computational inefficiency

Regression Statistical
Analysis

(1) Easy to use
(2) High accessibility

(1) Low flexibility
(2) Incapable of solving nonlinear

problems
(3) Low autonomy

PSO Artificial
Intelligence

1) Able to retain the previous
knowledge

2) Existence of memory

Time-consuming

Bayesian Machine
Learning

(1) Capable of using with other
techniques

(1) Impose restriction on the
dependency structure uncovered
among its nodes

Decision
tree

Statistical
Analysis

(1) Handles missing values well
(2) Robust to outliers

(1) High variance of tree structure
(2) Low flexibility
(3) Low autonomy

ACO Artificial
Intelligence

(1) Incremental solution structure
(2) Capable of using problem-based

heuristics

(1) Inappropriate for continuous
optimization problems.

52 Meisam Gordan, Daniel McCrum, Abdollah Malekjafarian, Ramin Ghiasi



smart cities [130], smart grids [131], finance [132], healthcare [133], transportation [134],
and also SHM [135]. Hence, computer-based technologies and their applications are be-
coming ubiquitous in our daily life, especially in different fields of civil engineering. For
instance, traditional SHM has been upgraded to IoT-based SHM due to the advantages of
using the automation, intelligence, and specialization of new IoT technologies.

2.4.2 Challenges and future directions in SHM

Data-driven SHM diagnostics are based on the interpretation of measured data di-
rectly, without recourse to physics-based SHM approaches. In general, data-driven
methods require large-scale databases to achieve accurate results. However, in real-
world civil engineering applications, big data collection is seldom available, as the
process of generating high-quality large data is complicated and time-consuming. On
the other hand, physics-based approaches rely on the physical laws governing the
structural behaviour, which can minimize overfitting issues, present constraints to
the predicted results, and moderate the need of big data collection. Therefore, future
work is envisaged to concern the application of emerging technologies (e.g. digital
twin, virtual reality, and augmented reality) to guarantee more reliable data-driven-
based and physics-based SHM approaches, a point highlighted by other researchers
too [136, 137].

2.5 Conclusions

In-service civil engineering structures will damage during their lifetime due to ageing
or different loads such as fatigue, seismic, wind, wave, traffic, blast, or random impact
loads during their service life. The propagation of damage can lead to out-of-service
conditions. Therefore, traditional structural health monitoring (SHM) has been rap-
idly upgraded to IR4.0-based SHM. In this context, the impact of IR4.0 applications on
SHM was presented in this book chapter. To this end, IoT, blockchain, UAV, and data
mining have been reviewed, accordingly.

One of the main advantages of IoT is that it can support real-time applications. In
this regard, WSNs, as the basic layer of IoT, have successfully been used for SHM sys-
tems. Hence, the conventional physics-based SHM has been enhanced to IoT-based SHM
using IoD-based monitor systems, comprising UAVs and/or remote sensing. Such appli-
cations of IoT in SHM have been highlighted in this chapter to show the capability of
this evolutionary technology for structural damage identification in civil engineering
systems. Blockchain is also an emerging decentralized database technology, which
could increase the reliability of databases. On the other hand, data mining, which is
one of the main components of KDD, has been employed in order to obtain useful pat-
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terns from sensed data. Consequently, data mining-based damage identification systems
have been shown to be capable of being applied in SHM. For this reason, the latest re-
search focusing on the application of data mining in SHM was also addressed in this
chapter. In relation to future work, it is envisaged that emerging technologies (e.g. digi-
tal twin, virtual reality, and augmented reality) will be applied to SHM to guarantee
more reliable data-driven-based and physics-based SHM approaches.
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3 Health monitoring of recycled aggregates-
reinforced concrete beams retrofitted by
concrete jacket using piezoelectric
transducers

Abstract: Advanced retrofitting techniques from concrete constructions were sensed
and contained using an active-damage interrogation (AI) technique that employs a
collection of piezoelectric transducers (PT) mounted to members. By cordially enforc-
ing the element using PT and analyzing the structural answer as detected by the PT,
the AI scheme enables the capacity to identify, focus, and assess the amount of the
disband. The AI system offers a special way to identify whether the transducer/struc-
tural link has deteriorated by using both bounty and stage data from multiple actua-
tor/sensor transfer purposes. This investigation examines the viability of employing
the AI technique for health monitoring of reinforced concrete (RC) jacketed beams
comprising waste aggregate (WA), and it discusses the benefits and drawbacks of this
approach.

3.1 Introduction

The primary ingredients used to make concrete materials are cement, gravel, sand, and
water, but using cement and aggregates entails costly and environmental impressions
[1, 2]. As a result, WA is in the preservation of natural possessions and may be utilized
in place of cement and natural particles to create concrete mixtures. The influence of
WA on the characteristics of concrete has been the subject of several investigations
[3, 4, and 5–8]. The impact of using WA on the mechanical behavior of high-strength
concrete was explored by Blessen et al. [9]. Concrete’s durability decreased as a re-
sult of using WA, while its resistance to abrasion and water engagement enhanced.
Ganjian et al. [10] discovered a loss in compressive resistance when WA was incor-
porated. The impact of WA on the compressive resistance of concrete was examined
by Aslani et al. [11]. The obtained data demonstrated that there was little impact on
compressive resistance. Additionally, Li et al. [12] and Saberian et al. [4] have exam-
ined the impact of WA on the mechanical characteristics of the materials employed
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in the base layer of construction. In 2018, Ramdan et al. explored the mechanical
and physical behavior of WA concrete. WA was substituted for natural aggregates in
their study to the extent of 10–60%. Both fresh and hardened specimens underwent
testing. According to the data, employing WA enhanced compressive resistance by
roughly 20%. Additionally, adding WA made concrete easier to work with. Usahanuntha
et al. [13] investigated the mechanical characteristics and offered suggestions for using
WA in concrete. The consequences showed that WA of various shapes may take the
place of both fine and coarse aggregates. Additionally, 20% was the ideal replacement
content for WA. Awoyera et al. [14] employed WA as fine and coarse particles in differ-
ent research to examine the impact on concrete behavior. Three, seven, fourteen, and
twenty-eight days of curing were employed to control the compressive and tensile resis-
tances. The findings demonstrated that associated with conservative concrete, the com-
pressive and cracking tensile resistance rose greater with curing age.

WA was employed by Wong et al. [15], who also provided a review of the subject.
The study’s objectives were to examine mechanical behavior and durability-related char-
acteristics. They came to the conclusion that WA, which may replace up to 20% of par-
ticles in concrete and increase its resistance and some durability features, is the most
practical use of WA. In their 2015 study, Arora and Singh examined the bending fatigue
behavior of an RC beam made entirely of WA. The outcomes were contrasted with those
of concrete beams made using natural particles. It has been demonstrated that 100% WA
in concrete mixtures led to subpar fatigue consequences. The bending characteristics of
beams produced from WA were examined by Azad [16]. WA was employed as recycled
particles in their investigation. The specimens’ compressive resistance, maximum load
capability, load-deflection curve, toughness, and failure mechanisms were established.
The findings indicated that up to 15% of WA can be incorporated into concrete. Other
researchers assessed how well fibers-reinforced coarse WA concrete flexed. According to
the findings, adding fibers significantly enhanced flexural resistance, toughness, and de-
flection. Adding fibers to WA concrete beams is a proven method of enhancing their
flexural features, according to prior studies [6, 17]. Additionally, earlier investigations
supported the value of fibers in preventing fracture growth [18, 19]. Besides, by boosting
tensile resistance and toughness, fibers aid in preventing brittle fractures.

Beams must occasionally be reinforced either before or after concrete casting.
Using components like fibers before producing concrete enhances the bending and
shear characteristics of beams. The characteristics of fiber-reinforced concrete beams
were premeditated by Kim et al. in [20]. The outcomes indicated that, in addition to
recovering management of repeated cracking, the capability and energy degeneracy
both greatly enhanced. The impact of fibers on the bending features of RC beams was
investigated by Altun and Aktas in [21]. To boost energy absorption and control frac-
ture characteristics, fibers were used as an additional ingredient in concrete. The
findings show that fibers incorporation increases the ductility and toughness capabil-
ity of prismatic RC beams.
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On the other hand, there are times when it is important to understand how RC
beams behave after failing. It is sometimes necessary to repair a damaged RC beam,
and one of the most common ways to accomplish it is by using a concrete jacket. Al-
ternatively, recycling rubber, stone, brick, and concrete debris can contribute to envi-
ronmental protection. These components can be used in addition to concrete or
instead of cement or aggregate. Frequent research has been directed at the repair of
RC beams using concrete jacketing under certain load configurations. Concrete jacket-
ing was employed by Chalioris and Pourzitidis [22] to repair the shear-damaged RC
beams. Initial four-point bending loads consisted of monotonic loading on three
shear-conditioned beams. Then, concrete jacketing was used to fix the broken beams
by applying them to the bottom width and both of their vertical sides. The resistance
and inclusive characteristics of the jacketed specimens were superior to those of the
earlier beams, which indicated that jacketing is a potential restoration technique.
Altun [23] examined jacketed RC beams subjected to bending in a different investiga-
tion. The bending characteristics of the original and jacketed RC beams were exam-
ined to determine the impact of jacketing after they had been loaded to its maximum
plastic yield under flexure. The consequences exhibited that the mechanical charac-
teristics of the jacketed RC beams were marginally superior to that of the initial speci-
mens. In a different research, Ruano et al. [24] tested for shear and employed fibers
as a retrofitting material for RC beams that had been mended and reinforced using
concrete jackets. The findings demonstrated the superior resistance and ductility re-
gaining of the restored beams. The load-bearing capability of the jacketed samples
that had not been damaged was greater than that of the tested beams. Monir et al.
[25] examined the bending characteristics of jacketed RC beams. It is a challenging
task to examine retrofitted RC beams while taking the interfacial slide consequence
into account. The slide between the jacket and the beam was ignored in their examina-
tion and monolithic behavior. In order to scrutinize retrofitted RC beams while taking
into consideration the interfacial slip delivery and the real nonlinear characteristics of
concrete and steel bars, a simpler technique was applied. With the aid of this approach,
it is possible to evaluate the slip and shear stress circulations and determine the impact
of the surface level of roughness.

In the past, strain tracking or acoustic emission monitoring approaches have
been the mainstays of structural health monitoring, although both have significant
drawbacks [26]. These structural strategies call on ongoing observation of the building
being assessed in order to spot any structural problems. As a result, the structural
health monitoring scheme is turned off in the event of a power outage. Additionally,
the correctness and dependability of the acoustic release monitoring procedure are
compromised by the environment’s ambient noise. Large data storage is needed for
acoustic emission monitoring, which is another significant drawback. To qualify and
pinpoint the damage using the strain tracking approach, an expensive finite element
strain distribution model must be created. This model will be used to liken the re-
strained strain delivery athwart the member. Furthermore, neither of these structural
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health monitoring methods is sensitive enough to identify anything but major struc-
tural deterioration, which drastically restricts their usefulness. AI, which uses PT to
aggressively stimulate and measure the vibration properties of the member, is one of
the most auspicious health monitoring approaches presently being developed [27].
The alteration between this vibration sign and that of an unharmed, normal member
is then used to derive a measure for the structure’s health. Therefore, these structural
health-monitoring methods can be categorized as active-vibration-based methods. In
comparison to other constructions, concrete jacketing attached to solid concrete may
have diverse vibrational properties. This study aims to evaluate the viability of AI ap-
proaches for claims in civil engineering, namely for disband and segregation sensing
of composite repairs of concrete beams, as well as to identify and confirm certain sig-
nificant problems related to it. It displays the test results for RC beams instrumented
with an AI technique and strengthened with concrete jackets. The findings show a
high degree of application potential for civil engineering constructions. While this is
happening, several difficult problems that are essential to the effective application of
this technology must be studied more.

3.2 AI methodology for health monitoring

PT used in AI is attached to or entrenched inside the member and is used for both
actuation and sensing. By actively stimulating the member using PT and analyzing the
structural reaction as detected by the PT, the AI scheme offers the capability to iden-
tify, locate, and assess the severity of damage to the RC beams. The AI technique offers
a special way to identify whether the transducer/structure link has deteriorated by
using breadth and stage data from the different actuator/sensor transfer purposes.
Over wideband stimulation of the transducers, the AI technique actively inspects the
member. The signals from the devices are converted to digital form, and each pair’s
transfer purpose is calculated. For each actuator/sensor combination, the alteration
between the existing PT purpose and the baseline transfer function is regularized sta-
tistically by the baseline transfer function’s standard deviation.

The sum of standard deviations from the baseline is used to express the PT role
deviation for individual combinations. The windowed local averaging function is for-
merly used to process this statistic, known as the transfer function delta, in order to
minimize slight variance brought on by haphazard noise. A single metric for evaluat-
ing the scale of alteration of that specific transfer function is provided by the swelling
average delta, which is created by integrating the windowed transfer purpose delta
for each sensor over the whole seismic frequency spectrum. First-level data is pro-
vided by the swelling average delta for individual transfer function and is necessary
for locating and quantifying beam damage. The cumulative average delta principles
may then be merged to provide a damage indicator metric for the individual actuator,
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which accounts for all sensor pairings. By locating the actuator with the greatest
harm indicator metric or damage index, the damage is subsequently confined to a
damage region. It is possible to analyze a range of damage index principles further to
pinpoint the damage inside the region.

3.3 Experimental database

Various volumetric substitution fractions of natural coarse aggregates with WA, 0%,
50%, and 100%, were incorporated to create 200 mm × 250 mm × 2,000 mm dimen-
sions RC beams. The produced beams were first put through a four-point flexural
setup until they failed. The beam was then roughly twisted back to its original
shape. Then, sensors were installed on the beam and mended with a 50-mm thick
concrete jacket. Figure 3.1 demonstrates the configuration of the RC beams.

Different criteria were used to describe the aggregates. WA was used to substi-
tute natural coarse aggregates at three diverse mass fractions: 0%, 50%, and 100%.
Figure 3.2 displays the grading curves of the particles employed in this investigation.
Additionally, the features of employed aggregates are listed in Table 3.1.

To create an RC beam, cement was combined with gravel and sand, followed by
the addition of water and a high-performance superplasticizer to evenly disperse the
elements inside the concrete matrix. Table 3.2 lists the concrete mixtures and the com-
pressive and tensile test results that were achieved. The overall water/cement fraction
of all mixtures was held constant at 0.41 due to the similar physical characteristics of
natural and waste aggregates. Six 150 mm × 300 mm cylinders were created and veri-
fied underneath a hydraulic jack in order to assess the compressive and tensile resis-
tance of samples. The average compressive and tensile resistances of three of the
cylinders were used for each blend as per ASTM C293-08 [28], BS EN 12,390-1 (2008).

3.4 Disband detection

A test was carried out on beams to measure the AI for bond detection of jacketed repair
RC beams, as shown in Figure 3.3. The location of the AI system used in the experimental
program is also shown in these figures [29–34]. As can be observed, the AI system consists
of an AI dispensation section, a transducer signal production and data system, and one PT
placed in the structure being evaluated. A fervor signal source and data acquisition board,
which are electrically connected to the actuator/sensor arrangement, are part of the trans-
ducer signal group and data-gaining system. A microprocessor is part of the AI dispensa-
tion area and is used to run essential computational and numerical dispensation trials.
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3.5 Experimental procedure for debonding
detection

The instrumentation’s transducer is activated by the AI scheme’s operation throughout
a frequency range of 0 to 150 kHz via wideband accidental acceleration. The informa-
tion-gaining scheme digitizes the equivalent signals generated by the sensors in re-
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Figure 3.1: Arrangement of the bars, the beams’ geometry, and other components.

68 Arash Karimi Pour, Ehsan Noroozinejad Farsangi



sponse to this stimulation. The AI dispensation portion next uses the fast Fourier trans-
form to calculate the transfer function (TF) bounty and segment for each sensor in the
arrangement. The transfer purpose for individual sensors of the sensor arrangement is
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Figure 3.2: Used aggregate size distribution.

Table 3.1: Physical characteristics of employed aggregates.

Aggregate sort Apparent density
(g/cm)

Bulk density
(g/cm)

Water absorption
(wt%)

Crushing key
(%)

Porosity
(%)

Natural . . . . .
Waste . . . . .

Table 3.2: Concrete mixtures arrangement and resistances.

Materials %WA %WA %WA

Water   

Cement   

Coarse WA .  

Coarse natural aggregates   

Fine natural aggregates   

Average tensile stress (MPa) . . .
Tensile stress coefficient of variation . . .
Average compressive strength (MPa) . . .
Compressive strength coefficient of variation . . .
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then used to calculate the vibration sign of the beams under examination. The test pro-
cedure was examined using the experimental setup seen in Figure 3.3 after the jacket-
ing repair had had time to cure.
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Figure 3.3: Calculation procedure for debonding measurement.
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3.5.1 Segregation documentation

An experiment using jacketed RC beams was carried out using the AI system to show
the effectiveness of the AI approach in diagnosing the segregation in strengthened RC
beams. Three RC beams having various WA amounts strengthened with concrete jack-
ets were employed, as shown in Figure 3.1. To pinpoint the segregation using the AI
system, beams containing a 10 × 25 × 100-mm notch measuring in the bottom of the
beam at mid-span were employed to create baseline signals. The segregation proce-
dure was started and accelerated by the notch. In this experimental method, the rate
of load until was kept 5 kN/min till the first cracking, and after the occurrence of
cracking, the loading rate was reduced to 2 kN/min until the sample completely failed.
As observed in Figure 3.4, the bottom surface of the beams was separated into regions
I, II, and III in order to locate and recognize the damaged region inside the beam. A
total of four PTs were used to instrument each region. Figure 3.4 depicts where the
PTs are. Using the AI setup method depicted in Figure 3.3, the AI signals were gener-
ated at 10, 60, and 80% of the beam’s maximum capacity.

3.6 Results and argument

3.6.1 Disbond detection

The TF magnitude spectrums of strengthened RC beams are shown in Figure 3.5. The
damaged conditions acquired by the PT were obviously different from one another.
Peaks in the magnitude spectrum of the TF correspond to local structural characters
at advanced frequencies and global structural modes at inferior frequencies. Similar
modifications in the structure’s vibration sign are brought on fractures and segrega-
tion for RC beams having WA.

Concrete beam PTs
Mid-span

Region I

Region II

Region III

15
0

 m
m

Figure 3.4: Arrangements of regions and PTs.
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The swelling average delta findings for undamaged and damaged bonds are shown
in Figures 3.6 and 3.7. In these figures, the TF amplitude and stage values calculated by
the AI scheme for undamaged and damaged bonds were measured. These consequences
exhibited that the cumulative average delta values of the damaged beams were greater.
Additionally, the WA incorporation leads to raising swelling average delta values. This is
because the concrete jacketing fix has come away from the concrete surface. In order to
identify the deteriorated bond in the PT, the specific swelling average deltas for stage and
amplitude must be calculated. The bond is said to be in good standing if the difference
stays below a set cutoff, which is often a tiny portion of the total cumulative average
delta that is presumed to be 1. The bond is regarded as deteriorated if the amplitude cu-
mulative average delta surpasses the phase cumulative average delta by an amount
larger than the edge. The bond is acceptable for a conventional concrete beam without
WA, since the variance among the cumulative average delta amplitude and cumulative
average delta phase is 2.48; however, the bond is not good for damaged specimens be-
cause the variance among the cumulative average delta amplitude and cumulative aver-
age delta stage is 10. These outcomes amply demonstrate the AI system’s capability to
identify damage and gauge its severity.
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3.6.2 Segregation detection

The damage index for the individual actuator is calculated as the first phase in deter-
mining the damage. Getting a single metric for each actuator entails averaging the
cumulative average delta principles for individual TFs using that actuator. The dam-
age region with high segregation was located using the actuator with the peak damage
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index. The greatest damage index for regions I, II, and III was shown in Figure 3.8
prior to the beam being loaded. The damage indices derived from the AI scheme are
inferior because the contact between the concrete jackets and the beam was still in-
tact prior to loading, as shown in Figure 3.8. The damage indices for regions I, II, and
III with a 150 kN applied stress are shown in Figure 3.9. As can be observed, region I
experiences a little segregation when the performed stress exceeds 150 kN. This was
increased further when the WA fraction increased in RC beams. This is due to the fact
that interfacial cracking lengthways of the concrete jackets–beam interface started
from the lowest surface of the flexural crack when the performed force exceeded the
cracking load of the beam, particularly when WA was used. A diagonal crack began at
the end of the interfacial fracture and spread across the bending crack when a load of
180 kN was applied. It was discovered that the diagonal crack sped up the interfacial
crack’s continued extension into region II. This cracking performance supported the
damage index in Figure 3.10. Regions I and II, respectively, exhibit considerable and
little segregation, as seen in Figure 3.10. Region III’s concrete jacket–beam interface,
however, is still in good shape. Interfacial fractures spread in region II until 200 mm
from the mid-span when the performed load reached 210 kN, which was 80% of the
maximum beam capacity. This resulted in big and small segregations in regions II and
III, correspondingly, as illustrated in Figure 3.11.
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3.7 Conclusions

In order to monitor the health of RC beams containing various WA fractions repaired
and strengthened using concrete jacketing, the study introduces an AI system that
makes use of a variety of PT connected to or embedded inside the beam. The results
of the aforementioned studies show that AI can locate disbands and segregation in
concrete that has been outwardly reinforced with concrete jackets. Segregations in
jacketed RC beams that were being loaded were successfully found. The experimental
fracture spread and segregation effects findings supported the damage indices de-
rived from the PT. The damage index was discovered to rise with rising applied load
in each region, particularly when WA was employed. This could be associated with
the lower resistance of WA in comparison with natural aggregates, which leads to in-
creasing the crack width and propagation. RC beams’ damage that was strengthened
using concrete jacketing was accurately localized with a 0.24% inaccuracy. The AI ap-
proach seems to be a viable way to determine the damage and its severity in RC
beams retrofitted with concrete jackets regarding the testing findings. The endurance
of PT sensors under dynamic loads and ecological influences is a concern that has to
be addressed in additional research and testing before the AI system is employed in
field tenders.
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4 Identification of critical response
of bilinear-hysteretic SDOF model with
tuned inertial mass damper under
long-duration ground motion through
internal simulation monitoring

Abstract: In this paper, the critical (resonant) response of an elastic–plastic single-de-
gree-of-freedom (SDOF) model with a tuned inertial mass damper is derived under a
long-duration ground motion. This means a kind of system identification of nonlinear
passive control structures through internal monitoring by numerical simulation. Tuned
inertial mass dampers exhibit high seismic performance when optimally tuned to the
natural period of the structure. However, if the structure shows an elastic–plastic re-
sponse and the natural period fluctuates from the original one, the damper cannot
guarantee its performance. A multi impulse introduced by Kojima and Takewaki [1, 2]
is used as a representative of long-duration ground motions. This substitution allows us
to evaluate the critical resonant response of the elastic–plastic SDOF model without iter-
ative and time-consuming computation. Finally, the resonance curve of elastic–plastic
SDOF models [2, 3] is extended to the nonlinear model with the tuned inertial mass
damper, and it is demonstrated that the proposed evaluation method shows a good
agreement with the result for the corresponding sinusoidal wave.

4.1 Introduction

To investigate the uncertain effect of long-duration and long-period ground motions on
the building structural response, the theory on the elastic–plastic response of a damped
multi-degree-of-freedom (MDOF) model to the critical multi impulse was developed by
Akehashi et al. [4] and Kawai and Takewaki [5] based on the approach by Kojima and
Takewaki [6]. In this paper, it is extended to an SDOF elastic–plastic model with a tuned
inertial mass damper (TIMD) under the critical multi impulse and the corresponding
critical response is derived. This indicates a kind of system identification of nonlinear
passive control structures through internal monitoring by numerical simulation.
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Kojima and Takewaki [1] proposed a method using multi impulse to approximate
long-duration ground motions whose velocity waveforms can be represented by har-
monic waves. By replacing the inputs with impulses, it was made possible to find the res-
onance response characteristics of elastic–plastic structures with low computation load.
Subsequently, Kojima abd Takewaki [2] developed a critical excitation method for un-
damped SDOF systems with bilinear hysteretic properties under multi impulse. Then,
Akehashi et al. [4] extended the problem to elastic–plastic SDOF systems with linear vis-
cous damping. Furthermore, Kawai and Takewaki [5] treated a damped MDOF model
with bilinear restoring force characteristics and extended the concept of double impulse
pushover (DIP) developed by Akehashi and Takewaki [7] for near-fault ground motions to
MIP (multi impulse pushover), which is to evaluate the resonant elastic–plastic response
under multi impulse as replacement of long-period long duration ground motions.

The design method of tuned mass dampers for elastic–plastic structures can be
developed by using the method of equivalent linearization based on the least-squares
approximation method proposed by Caughey [8, 9]. Although the resonant response
can be directly evaluated for an undamped SDOF system in the Caughey’s method, the
accuracy may not be guaranteed in the range where the ratio of post-yield stiffness to
elastic stiffness is relatively small as found in actual building structures. Accurate pe-
riod evaluation is essential for the design of tuned mass dampers and is not suited to
the equivalent linearization method. The methods of Caughey [8, 9] and Iwan [3] were
developed under the condition of constant acceleration amplitude, but in the current
seismic design standards, the input seismic motion level is defined by the maximum
velocity amplitude when designing structures. These methods cannot be directly applied
to the design of seismically controlled structures such as those treated in this study. In
contrast, the multi impulse method proposed by Kojima and Takewaki [1] enables the
critical response evaluation using the maximum velocity amplitude as a parameter. Fur-
thermore, Akehashi and Takewaki [7] defined the critical impulse input timing for
an MDOF model as “the timing that maximizes the input energy due to the impulse to
the structure”. According to this definition, the resonance of the structures in the
elastic–plastic range can be computed without performing iterative computations.

4.2 Multi impulse representing long-duration
ground motion

The multi impulse was introduced to represent the principal part of a long-duration
ground motion simulated as a multi-cycle sine wave [1]. The motivation is that, while
the combination of free- and forced-vibration components is inevitable in the analysis
of the response to the forced input, the multi impulse induces only a free-vibration.
This enables us to avoid the solution of the transcendental equation characterizing
resonance curves and use a simple energy balance law to derive the maximum re-
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sponse without laborious time-history response analysis. The essential property of a
long-duration ground motion is first simulated by multi-cycle sine wave €uSWg ðtÞ as
shown in eq. (4.1) (see Figure 4.1) and then transformed into a double impulse €uMI

g ðtÞ
expressed by eq. (4.2) (see Figure 4.2):

€uSWg tð Þ=Al sinωlt (4:1)

€uMI
g tð Þ= 0.5Vδ tð Þ−Vδ t− t0ð Þ+Vδ t− 2t0ð Þ

−Vδ t− 3t0ð Þ+ � � � + − 1ð ÞN−1Vδ t− N − 1ð Þt0ð Þ
(4:2)

where Al, ωl, V , and t0 indicate the acceleration amplitude of the multi-cycle sine
wave, circular frequency of the multi-cycle sine wave, the velocity amplitude of the
multi impulse, and the time interval of each impulse (N: impulse number), respec-
tively. Kojima and Takewaki [1] used a criterion in this transformation, that is, the
same maximum Fourier amplitude of these two inputs.

The ratio a of Al to V in this transformation is introduced by

Al = aV (4:3)

The parameter a as a function of t0 =π=ωl can be derived as

aðt0Þ= Al

V
=

max
ω

PN−1
n=0

−1ð Þne0−iωnt0
���� ����

max
ω

2πt0
π2 − ωt0ð Þ2 sin 0.5Nωt0
���� ���� (4:4)

The maximum velocity Vp of the multi-cycle sine wave can then be expressed by

Vl =
Al

ωl
= 2
π
V (4:5)
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Figure 4.1: Transformation of main part of ground motion (Tomakomai EW component during
Tokachioki earthquake 2003) by multi impulse.
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4.3 Tuned inertial mass damper

The present TIMD is composed of three elements: an inertial mass element, a viscous
element, and a stiffness element of the supporting member. In this study, the inertial
mass element and the viscous element are configured in parallel, and these two ele-
ments are supported in series by a stiffness element. For the detailed explanation of
this damper, see Ikago et al. [10, 11]. Although TIMD has three design variables, when
the mass ratio, that is, the ratio of the inertial mass of the damper to the mass of the
structure, is given, the other two parameters, that is, the damping coefficient and the
stiffness, can be automatically obtained using the fixed-point theory [10, 12–14]. It
should also be noted that the inertial mass damper (IMD) is realized with a rotational
mechanism [15]. This mechanism has the property of amplifying the apparent mass
by several thousand times the actual mass. Aside from the damper configuration
treated in this study, quite a few applications of IMD are investigated such as a tuned
inerter damper (TID, [16]) and a tuned mass damper inerter (TMDI, [17]).

The equation of motion of the model shown in Figure 4.3 is described as

m 0
0 z

" #
€u
€uz

( )
+

c 0
0 cz

" #
_u
_uz

( )
+

k + kz −kz
−kz kz

" #
u
uz

( )
= −

m 0
0 z

" #
1
0

( )
€ug (4:6)

Here, m, c, k stand for the mass, the damping coefficient, and the stiffness of the struc-
ture, respectively. In addition, z, cz, kz stand for the inertial mass, the damping coeffi-
cient of the damper, and the stiffness of the supporting member, respectively. u, uz, €ug
denote the displacement of the structure relative to ground, the deformation of the
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Figure 4.2: Long duration earthquake ground motion in terms of sinusoidal waves and corresponding
multi impulse [1, 5].
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damper, and the ground acceleration, respectively. Until the next section, the main
structure is treated as a linear elastic structure to derive the Kelvin-Voigt model for
TIMD. However, after that, the main structure is dealt with as a bilinear hysteretic
model as shown in Figure 4.4.

We define non-dimensional parameters μ, β, hz as

μ= z
m
, β= ωz

ω1
, hz =

cz
2
ffiffiffiffiffiffiffi
zkz

p (4:7)

Hereafter, the mass ratio μ is treated as a parameter to determine the seismic perfor-
mance of the system.

When the mass ratio μ is given, β, hz are derived as follows [10]:

βFP = 1ffiffiffiffiffiffiffiffiffi
1− μ

p (4:8)

hFPd = 1
2

ffiffiffiffiffiffiffiffiffiffi
3μ
2− μ

s
(4:9)

Let βFP, hFPz denote the specific values of β, hz derived by the fixed-point theory.
According to eqs. (4.7), (4.8), and (4.9), z, cz, kz are obtained by:

z= μm (4:10)

kz = z β ·ω1ð Þ2 (4:11)

cz = 2z · hz · β ·ω1 (4:12)
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Figure 4.3: Bilinear SDOF model with TIMD.
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4.4 Transformation of TIMD to Kelvin-Voigt model

As shown in Figure 4.5, the series elements of TIMD are converted to the Kelvin-Voigt
model, which is a frequency-dependent parallel element. From the damping force
equilibrium and the deformation compatibility conditions of the series elements, the
following equation holds:

f ðtÞ= kzðu− uzÞ= z€uz + cz _uz (4:13)

Fourier transformation of eq. (4.13) yields the following equation:

FðωÞ= kz U −Uzð Þ= −ω2z+ iωcz
� �

UzðωÞ (4:14)

Here, ω denotes the circular excitation frequency and i=
ffiffiffiffiffi
−1

p
is the imaginary unit.

Under the condition that eq. (4.14) is equivalent to the damper force in the Kelvin-
Voigt model, the relationship between these two models can be expressed in terms of
the frequency-dependent viscous coefficient Ce ωð Þ and stiffness Ke ωð Þ of the Kelvin-
Voigt model as:

kz −zω2 + iωcz
� �

kz − zω2 + iωcz
UðωÞ= iωCeðωÞ+KeðωÞð ÞUðωÞ (4:15)

From eq. (4.15), Ce ωð Þ and Ke ωð Þ can be expressed as

Ke ωð Þ= kz −ω2z kz −ω2z
� �

+ω2cz2
� �

kz −ω2zð Þ2 +ω2cz2
(4:16)

Ce ωð Þ= kz2cz
kz −ω2zð Þ2 +ω2cz2

(4:17)
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Figure 4.4: Bilinear hysteretic restoring force-
deformation characteristic.
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The natural circular frequency ωe and the damping ratio he of the SDOF model re-
duced to the Kelvin-Voigt model are given by

ωeðωÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k + keðωÞ

m

r
(4:18)

heðωÞ= CeðωÞ
2mωeðωÞ (4:19)

Figure 4.6 shows ωe, he, and the first derivative of he with respect to ω=ω1 when the
mass ratio of the damper is set to μ= 0.10. Here, ω1 =

ffiffiffiffiffiffiffiffiffi
k m=

p
denotes the undamped

natural circular frequency. From Figure 4.6, it can be found that ω1 = lim
ω ω1!0=

ωe(ω)

and cz=2mω1 = lim
ω ω1!0=

he(ω) hold. This means that the system including the damper

can be approximately evaluated as an SDOF system with the natural circular frequency
ω1 and the damping ratio cz 2mω1= when ω ω1= approaches to 0. Also, ∂he ∂ω= 0= holds
at ω=ω1. This means that the input of a sinusoidal wave with the circular frequency
ω=ω1 maximizes the dissipation energy of the damper. The maximization of the
damper dissipation energy is equivalent to the maximization of the input energy to the
entire system in an undamped linear elastic structure.

In later sections, the elastic–plastic response of the main structure is considered.
When the level of the plastic deformation becomes larger, the equivalent natural fre-
quency and the corresponding frequency of the critical multi impulse tend to become
smaller. In this case, the above-mentioned parameters of the equivalent natural circu-
lar frequency and the equivalent damping ratio at ω=ω1 ! 0 can be used approxi-
mately. The validity of this approximation will be investigated in later sections
through the time-history response analysis of the elastic–plastic SDOF model with the
tuned mass damper.
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Figure 4.5: Transformation of TIMD to Kelvin-Voigt model.
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4.5 Critical impulse timing

The critical impulse timing is obtained following the procedure by Kojima and
Takewaki [5].

Figure 4.7 presents the normalized critical impulse interval t0c T1= with respect to
the input velocity level V Vy

�
for several mass ratios μ= 0.025, 0.050, 0.075, 0.10 and

three post-yield stiffness ratios α= 0.90, tan π=8ð Þ, tan 2π=180ð Þ. Here Vy =ω1dy denotes
the input velocity level of the impulse at which the undamped elastic–plastic SDOF
model just yields after the first impulse. In this paper, we use the structural parame-
ters, that is, the fundamental natural circular frequency ω1 = 2π rad s T1 = 1.0 sð Þ= and
the yield deformation dy = 0.04 m, and Vy = 0.25m s= . It can be seen that, the larger the
post-yield stiffness ratio α is, the quicker the critical impulse interval t0c T1= converges.
Also, the larger the mass ratio is, the shorter the critical impulse timing t0c T1= in the
elastic range becomes. In the range where the post-yield stiffness is close to the elastic
stiffness (α= 1.0), the critical impulse interval converges more quickly because the
damper is well tuned with the structure and provides a large damping ratio. On the
other hand, in the range where the post-yield stiffness ratio is close to zero, the criti-
cal impulse interval does not converge due to the fact that the damper provides little
damping effect. This is because the elastic–plastic behaviour of the structure length-
ens the natural period of the structure and the damper may be untuned under such
conditions.

Figure 4.8 shows the normalized critical impulse timing t0c T1= with respect to post-
yield stiffness ratio α for various input levels V Vy

�
and mass ratios. Also, the approxi-

mation of the convergent value is shown in Figure 4.8. The approximate value of t0c T1=

is derived from π ωα

ffiffiffiffiffiffiffiffiffiffiffi
1− h2α

p� ��
(half of the damped natural period of the SDOF model

with a natural circular frequency ωα =
ffiffiffi
α

p
ω1 and a damping ratio hα = cz 2mω1

ffiffiffi
α

p� ��
)

with the post-yield stiffness ratio α as a parameter. Here, the displacement–shear force
relationship of the structure is elliptically approximated (Akehashi et al. [4]). From Fig-
ure 4.8, t0c T1= converges to the approximate value as the input velocity level increases.
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Figure 4.6: Evaluation of damper performance in frequency domain using Kelvin-Voigt model.
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Figure 4.8(a) shows that the approximate value and the value computed by the time-
history response analysis are asymptotically close for all input velocity levels in the
range of α≥ 0.60. On the other hand, the approximate values do not converge for all
input velocity levels except for the input velocity level in α≤ 0.60. This is because, as
can be seen in Figure 4.7, the smaller the post-yield stiffness ratio is, the worse the con-
vergence of the approximate value with increasing input velocity level becomes.

4.6 Maximum deformation and energy response
under critical multi impulse

Figure 4.9 illustrates the maximum deformation umax dy
�

to the critical multi im-
pulse and the corresponding sine wave with respect to the input level V Vy

�
for

three post-yield stiffness ratios α= 0.90, tan π=8ð Þ, tan 2π=180ð Þ and several mass ratios
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Figure 4.7: Normalized critical impulse timing t0c T1= with respect to input level V Vy
�

for various mass
ratios μ.
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μ= 0.025, 0.050, 0.075, 0.10. These post-yield stiffness ratios were taken from the past
related work [1, 3]. The structural and computational parameters T1 = 1.0s, dy = 0.04m,
Δt = 5.0× 10−3T1 are used in the time-history response analysis and the number of im-
pulses used in the time-history response analysis for the convergence of the responses
is 50, regardless of the structural parameters. From Figures 4.9(a) and 4.9(b), it can be
seen that the responses to the critical multi impulse and the multi-cycle sine wave
correspond well for α= 0.90, tan π=8ð Þ, tan 2π=180ð Þ, and μ= 0.025, 0.050, 0.075, 0.10,
when the maximum values of the Fourier amplitude spectrum are adjusted to be equal.
Figures 4.9(b), 4.9(c), and 4.9(d) show that the steady-state responses to the critical multi
impulse and the multi-cycle sine wave generally correspond well, although some differ-
ences are observed in the case of α= tan π=8ð Þ, μ= 0.025 and α= tan 2π=180ð Þ compared
to the case of α= 0.90, tan π=8ð Þ. Kojima and Takewaki [1] showed that in order to
equalize the maximum deformation of the elastic–plastic response to the critical multi
impulse and the multi-cycle sine wave, the Fourier amplitude of the corresponding
multi-cycle sine wave must be adjusted to that of the critical multi impulse and then
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multiplied by a magnification factor of 1.15 in the elastic–perfectly plastic models. In the
case of α= tan π=8ð Þ, the response increases sharply near V Vy = 2.0

�
. This is due to the

difference between the case when the impulse input occurs in the loading process (elas-
tic stiffness range] and the case when it occurs in the unloading process (secondary
stiffness range).

Figure 4.10 shows the maximum deformation umax dy
�

of the structure, the maxi-
mum deformation ud,max dy

�
of the damper (inertial mass and dashpot), and the maxi-

mum deformation u− udð Þmax dy = uk,max dy
� ���

of the damper supporting member to the
critical multi impulse and the corresponding sine wave with respect to the input velocity
level for three post-yield stiffness ratios α= 0.90, tan π=8ð Þ, tan 2π=180ð Þ and several
mass ratios μ= 0.025, 0.050, 0.075, 0.10. Figure 4.10 indicates that the responses to the
critical multi impulse and the multi-cycle sine wave correspond well for both the building
and the damper elements, except when the post-yield stiffness ratio and the mass ratio
are both in the small range. It can also be found that the deformation of the damper ex-
ceeds the displacement of the building. Therefore, it can be said that the amplification of
the damper deformation due to tuning occurs even when a large plastic deformation is
experienced in the building. Figure 4.10(a) shows that for the case α= 0.90, the maximum
deformation of the building and damper elements increases almost in proportion to the
input velocity level. In the case of α= tan π=8ð Þ, the response increases sharply near
V Vy = 2.0
�

. This is due to the difference between the case when the impulse input occurs
in the loading process (elastic stiffness range) and the case when it occurs in the unload-
ing process (secondary stiffness range). Figure 4.10(c) indicates that in the case of
α= tan 2π=180ð Þ, there exist the maxima and minima with respect to the input velocity
level in the deformation of the supporting member. The maxima of the maximum defor-
mation of the support member with respect to the input velocity level V Vy

�
are caused

by the maximization of the damper performance due to tuning when the building is lin-
early elastic or experiences a sufficiently small plastic deformation. On the other hand,
the minima of the maximum deformation of the supporting member with respect to the
input velocity level V Vy

�
are caused by the convergence of the critical impulse interval

as shown in Figure 4.7, after the damper performance is maximized.
Figure 4.11 shows the normalized energy responses EI mV2�

, EQ mV2�
, ED mV2�

to
the critical multi impulse and the sine wave with respect to the input velocity level
V Vy
�

for three post-yield stiffness ratios α= 0.90, tan π=8ð Þ, tan 2π=180ð Þ and several
mass ratios μ= 0.025, 0.050, 0.075; 0.10. Here, EI , EQ, and ED stand for the input en-
ergy to the structure, the hysteretic dissipation energy of the structure, and the damp-
ing energy by the damper, respectively. From Figure 4.11, the energy responses to the
critical multi impulse and the multi-cycle sine wave correspond very well under the
condition that the maximum values of the Fourier amplitudes of both inputs are cho-
sen to be equal. Figure 4.11(a) indicates that when the post-yield stiffness ratio is set to
α= 0.90, the energy consumed by the damper accounts for most of the input energy,
even when the input velocity level increases. This is because in the range where the
post-yield stiffness is close to the elastic stiffness, the natural period during the elas-
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tic-plastic response tends to be rather stable, and therefore the damper maintains the
effect of tuning and consumes energy efficiently. In Figure 4.11(b), the minimum
value of EI mV2�

and ED mV2�
with respect to the input velocity level is caused by the

convergence of the critical impulse interval. Figure 4.11(c) shows that in the case of
α= tan 2π=180ð Þ, the natural period of the structure is relatively long due to the
elastic–plastic response and the energy dissipation effect by tuning can hardly be ex-
pected. Therefore, the value of EI mV2�

decreases inversely proportion to the input
velocity level. It can also be said that the response of the system can approximately be
regarded as that of a linear elastic model with stiffness αk.

μ = 0.025 (Critical multi impulse) μ = 0.025 (Corresponding sine wave)

μ = 0.050 (Critical multi impulse) μ = 0.050 (Corresponding sine wave)

μ = 0.075 (Critical multi impulse) μ = 0.075 (Corresponding sine wave)

μ = 0.10   (Critical multi impulse) μ = 0.10   (Corresponding sine wave)
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Figure 4.9: Maximum deformation umax dy
�

to critical multi impulse and corresponding sine wave with
respect to input level V Vy

�
for various mass ratios μ.
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Figure 4.12 illustrates the Monte Carlo simulation of the normalized input en-
ergy for 2,500 mutually independent and uniformly generated random patterns
with respect to the post-yield stiffness ratio and the input velocity level in the range
0≤ α≤ 1, 0≤V Vy ≤ 5

�
. Here, N denotes the number of impulse inputs. Figure 4.12

shows that EI mV2N
� ��

is constant in the range where the input velocity level is
small and the post-yield stiffness ratio is close to 1. This is because the system behaves
like a linear elastic system in these ranges, and therefore, the amount of input energy is

Figure 4.10: Maximum deformation umax dy
�

(structure and damper) to critical multi impulse and
corresponding sine wave with respect to input level V Vy

�
for various mass ratiosμ.
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proportional to the square of the input velocity level. In addition, EI mV2N
� ��

decreases
temporarily as the input velocity level increases. The reason is that the building’s hys-
teretic energy dissipation becomes dominant due to the elastic–plastic response, and
the proportion of energy dissipation by the damper decreases. Furthermore, as the
input velocity level increases, EI mV2N

� ��
is enlarged near α = 0.5. This is due to the fact

that the performance of the tuned damper becomes stable with the increase of the
input velocity level as the natural period of the structure converges.
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Figure 4.11: Normalized energy response EI mV2
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, EQ mV2
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, ED mV2
�

to critical multi impulse and
corresponding sine wave with respect to input level V Vy

�
for various mass ratios μ.
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Figure 4.13 shows the maximum deformation umax dy
�

of the structure with re-
spect to the impulse interval of the multi impulse for three input velocity levels V Vy

�
,

three post-yield stiffness ratios α= 0.90, tan π=8ð Þ, tan 2π=180ð Þ, and several mass ra-
tios μ= 0.025, 0.050, 0.075, 0.10. From Figures 4.13(a) and 4.13(b), it can be confirmed
that the maximum deformation is almost maximum at t0 = t0c, that is, at the critical
impulse interval. On the other hand, in case of α= 0.90, the response is not necessarily
maximized at t0 = t0c. This is because the period maximizing the damper dissipation
energy and the period maximizing the building deformation do not correspond when
the damper is optimally tuned for the linear elastic structure.
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(a) α = 0.90

(b) α = tan(π/8) = 0.414
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Figure 4.13: Maximum deformation umax dy
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with respect to timing of multi impulse t0=t0c for various
input levels.
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(a) α = 0.90

(b) α = tan(π/8) = 0.414
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Figure 4.14: Maximum deformation umax dy
�

with respect to period Tl Tl cð= t0=t0cÞ= of corresponding sine
wave for various input levels.
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4.7 Applicability of critical multi impulse timing
to corresponding sine wave

Figure 4.14 shows the maximum deformation umax dy
�

with respect to the period of
the corresponding sine wave Tl Tlcð= t0=t0cÞ= for three input velocity levels V Vy

�
,

three post-yield stiffness ratios α= 0.90, tan π=8ð Þ, tan 2π=180ð Þ, and several mass ra-
tios μ= 0.025, 0.050, 0.075, 0.10. The velocity amplitude of the sine wave is expressed
in terms of the input velocity level of the impulse to facilitate the comparison with the
multi impulse. The horizontal axis, Tl Tlc= , is the period of the sine wave Tl divided by
Tlc = 2t0cð Þ. Figures 4.13 and 4.14 demonstrate clearly that the responses of the critical
multi impulse and the sine wave correspond precisely, regardless of the impulse
interval.
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Figure 4.15: Comparison of maximum deformation to critical impulse (constant velocity amplitude) and
resonance curve for sine wave (constant acceleration amplitude and constant velocity amplitude): mass
ratio μ = 0.050.
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Figures 4.15 and 4.16 show a comparison of the maximum deformation (constant
velocity amplitude) to the critical multi impulse and the resonance curves (constant
acceleration amplitude and constant velocity amplitude) to a sine wave for three post-
yield stiffness ratios α= 0.90, tan π=8ð Þ, tan 2π=180ð Þ for two different mass ratios
μ= 0.050, 0.10, respectively. As mentioned earlier, t0 = t0c does not necessarily maxi-
mize the deformation in α= 0.90. This is also the case in sine wave inputs, and it can
be seen that the responses of the critical multi impulse and the corresponding sine
wave match well.
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Figure 4.16: Comparison of maximum deformation to critical impulse (constant velocity amplitude) and
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ratio μ = 0.10.
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4.8 Conclusions

The theory on the elastic–plastic response of a damped MDOF model to the critical
multi impulse, developed by Akehashi and Takewaki [7] and Kawai and Takewaki [5],
was extended to an elastic–plastic SDOF model with a tuned inertial mass damper
(TIMD). This indicates a kind of system identification of nonlinear passive control
structures through internal monitoring by numerical simulation. The main conclu-
sions can be summarized as follows:
(1) The damper was replaced by a Kelvin-Voigt model and the frequency character-

istics were evaluated only in a section for clarifying the damper characteristics. It
was shown that it is possible to calculate the input period of the multi impulse
maximizing the input energy to the linear elastic models by evaluating the re-
sponse characteristics in the frequency domain. Furthermore, the Kelvin-Voigt
model enables us to evaluate an approximate natural period of the structure in
the elastic–plastic range.

(2) The relation between the input velocity level and the critical impulse interval
was clarified numerically by the time-history response analysis. It was shown
that the critical impulse interval converges more quickly for larger post-yield
stiffness ratios. The convergent value of the critical impulse interval can be accu-
rately obtained by elliptically approximating the displacement–shear force rela-
tion of the structure.

(3) The relation between the input velocity level and the deformation of the structure
and damper elements under the critical multi impulse was investigated. It was
shown that, as the input velocity level increases, the supporting member defor-
mation of the damper decreases temporarily but tends to be amplified again
when the natural period of the structure converges.

(4) The relationship between the input velocity level and the energy responses
were investigated. It was shown that, as the input velocity level increases, the
input energy and hysteretic energy temporarily decrease, but tend to increase
as the natural period of the structure converges. Furthermore, Monte Carlo sim-
ulations were performed to evaluate the response characteristics of the input
energy when the input velocity level and the post-yield stiffness ratio were var-
ied simultaneously.

(5) The resonance curves for the sine wave inputs and the elastic–plastic response to
the critical multi impulse were compared. It was found that the responses to the
critical multi impulse and the sine wave inputs correspond very well. While the
resonance curves for the sine wave inputs require a laborious time-history re-
sponse analysis under the condition of constant acceleration or velocity ampli-
tude, the elastic–plastic resonant response to the multi impulse can be easily
calculated with much shorter computation time.
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5 Damage identification using physics-based
datasets: From convolutional to metric-
informed damage-sensitive feature
extractors

Abstract: Two alternative strategies addressing damage identification in structural
health monitoring are presented in this contribution. Both strategies rely on reduced
data representations – or features – to enable damage identification from vibrational
data. To exploit a supervised learning scheme, training datasets are generated through
numerical simulations, possibly speeded up through reduced order modelling. The
first strategy deals with damage identification as a classification task employing one-
dimensional convolutional neural networks. Despite the good performance displayed
in the proposed numerical benchmark of an eight-storey building, this approach suf-
fers from the need of defining the possible damage classes a–priori, and from the lack
of robustness of the extracted features. Both issues are successfully addressed by
a second strategy, which relies on a Siamese architecture to learn a damage-sensitive
low-dimensional metric space. In this second case, damage identification can be per-
formed by solving a regression task in the learned metric space. This second approach
is assessed against a test case involving a railway bridge, displaying impressive dam-
age localization capabilities.

5.1 Introduction

Safety of infrastructures is a key challenge of our society. Material ageing, enhanced
service demands, extreme loadings whose frequency is even increased by climate
change (e.g. heat waves, floods) threaten the safety of infrastructures. In situ inspec-
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tions are costly, possibly risky [12], and necessarily related to the moment they are per-
formed. The development of digital technology and of the internet of things paradigm
has recently enabled the use of pervasive sensor systems providing a great amount of
data almost in real time. In this work, we describe Data-centric Structural Health Moni-
toring (SHM) techniques for damage detection and damage localization, as key enablers
for automatic and continuous assessment of structural performance [15].

SHM can be envisioned as a pattern recognition problem, in which the onset of
damage is assessed by comparing data previously obtained for known structural condi-
tions, usually the undamaged ones in the early stage of structural life cycle, with new
incoming measurements. A pattern recognition paradigm for SHM was proposed in [16]
to be distinguished into four steps: (i) operational evaluation; (ii) data acquisition; (iii)
feature selection and extraction; (iv) statistical modelling for feature discrimination.
The last stage consists in setting up a statistical model to perform damage identification
(our task of interest) using the features extracted during stage (iii).

A feature is a synthetic representation of the data, (ideally) capable of coding
meaningful information for damage identification. For instance, structural frequen-
cies are often exploited as features because they may be sensitive to the ongoing dam-
age [49]. Often, features are related to the structural dynamic response; a model to
represent such response can be physics-based, if physical knowledge is exploited for
its definition, or otherwise data-based, if relying on data-based relationships only. For
example, in [6], the parameters calibrating a Finite Element (FE) model were em-
ployed as features. However, in several cases features might not have a clear physical
meaning, like, e.g., when they are extracted through crude statistical methods [5].
More in general, features extracted through data-based models may not enjoy a clear
interpretability, e.g., in case of parameters and residuals of autoregressive models
adopted as damage-sensitive features, see e.g. [50, 13].

Feature selection and extraction, and statistical modelling stage are considered as
two separate components in Machine Learning (ML)-based approaches. However,
both stages can be simultaneously addressed through a single end-to-end learning
process, according to the Deep Learning (DL) paradigm [28]. This approach allows to
further automatise the selection and extraction of features, optimized for the task at
hand [34, 36], and its convenience for the SHM of large structures becomes clearer in
the presence of varying environmental and operational conditions [1, 41]. Indeed, the
DL paradigm also enables to automatically blend data coming from different sources,
such as temperature and structural acceleration recordings [47, 48].

Among the Neural Network (NN) architectures to enable the DL paradigm within
a SHM framework, convolutional ones were proposed in [34, 38] to perform feature
extraction from structural vibrations, which are actually Multivariate Time Series
(MTS) acquired with pervasive sensor networks. Vibration measurements can be ex-
ploited as they may carry relevant information about the mechanical properties of a
structure [23, 46], well-suited to allow both local and global structural health assess-
ments [49], even in large scale applications [11]. Nevertheless, features extracted
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through convolutional NNs usually suffer from lack of explainability [39], and may be
not robust to differences between the probability distributions underlying training
and incoming data [33, 40], which are unavoidable due to the unavailability of infor-
mation related to the occurrence of damage. In this work, data related to damage con-
ditions during the service life of the structure are generated through physics-based
models [44, 2] within a simulation-based approach to damage identification. Alterna-
tively, adversarial learning was also exploited in [9] to cope with the possible lack of
robustness of the extracted features. Following a different approach, in [45] a metric
for the feature space was set by means of a Siamese architecture [4] trained with pair-
wise contrastive learning [19]. This approach has the advantage that the NN is let free
to learn a suitable feature metric space, mitigating the lack of explainability and en-
hancing the robustness of the identification procedure.

The reminder of the chapter is organized as follows. In Section 5.2, the proposed
simulation-based damage identification framework is discussed: the composition of
the handled physics-based datasets is detailed in Section 5.2.1; modelling aspects, in
terms of full-order and reduced-order modelling strategies are shown in Section 5.2.2;
two damage identification procedures, exploiting convolutional layers for automatic
feature extraction and employing damage–sensitivity into a low-dimensional metric
space through a Siamese architecture are then touched in Section 5.2.3. Some details
regarding the working principles of convolutional and fully connected layers are also
provided for the sake of completeness. Relevant numerical results are then discussed
in Section 5.3, with reference to a shear-type building and a railway bridge. Conclu-
sions and future perspectives are finally given in Section 5.4.

5.2 Simulation-based damage identification using
neural networks

5.2.1 Data specification: labeled vibration datasets

The dataset needed to build data-based models performing the damage identifica-
tion task, is here provided with a number Ni of MTS Uni , with ni = 1, . . .,Ni, record-
ings of the vibrational response of the structure. Each MTS, also termed instance,
collects the measurements unu

ni
2 R

L acquired by nu = 1, . . .,Nu sensors, thus yielding
Uni = u1

ni
, . . .,uNu

ni

h i
2 R

L×Nu . When a simulation-based approach is employed, vibra-
tions are collected for the Nu degrees of freedom (dofs) coinciding with the sensor posi-
tions and spatial orientations. Accordingly, the number L of measurements depends on
the time interval 0, Tð Þ, which the recordings refer, and on the sampling rate f .

Each instance is associated to a label that depends on the required task, being
thus different for the classification or the regression task. Classification and regres-
sion are possible ways of formalizing damage detection and localization, where the
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latter avoids the a–priori definition of target classes and thus enables a more precise
description of the damage location.

Classification involves the prediction of an output class label to categorize a given
input. In this case, the output labels to be predicted identify a set of Nc predefined
damage scenarios, each referring to a different damage location. The dataset next
used for classification (CL) is defined as:

DCL = Uni ,bni
� �	 
Ni

ni=1
, (5:1)

where bni = ½b1ni , . . ., b
Nc
ni
�`2 B

Nc is a Boolean vector, or one-hot encoding, with entries
bjni equal to 1 if the target class for the ni–th instance is j and 0 otherwise, with
j 2 1, . . .,Ncf g. This strategy has been adopted by the authors, e.g., in [34, 37, 48].

Regression involves, instead, the prediction of a target value in a non-discretised
setting, which represents the damage condition behind the considered vibrational re-
sponse. In concrete terms, damage is parametrized through a vector y 2 R

Ndam , col-
lecting Ndam input parameters describing the position of damage. Accordingly, the
dataset used for regression (RG) is assembled as:

DRG = Uni ,yni

� �n oNi

ni=1
. (5:2)

This strategy has been adopted by the authors in [37, 48].
The definition of DCL and DRG is independent of the simulation-based approach

adopted in this work. Such an approach is crucial to cope with the unavailability of
data related to the onset and propagation of damage while monitoring the structure,
and allows to synthesize DCL and DRG through numerical simulations.

5.2.2 Parametric numerical models for dataset generation

By modeling the structure as a linear–elastic continuum and introducing a space dis-
cretization through a FE method, its dynamic response is described by the following
system of second-order ordinary differential equations:

MHFd
..HF tð Þ þ KHF μð ÞdHF tð Þ ¼ fHF t;μð Þ; t 2 0; Tð Þ

dHF 0ð Þ ¼ dHF
0

_d
HF

0ð Þ ¼ _d
HF
0 ;

8>><>>: (5:3)

which is referred to as the High-Fidelity (HF) Full-Order Model (FOM). Here: t 2 0, Tð Þ
denotes time; dHF tð Þ and d

..HF tð Þ 2 R
ℳ are the vectors of nodal displacements and accel-

erations, respectively; ℳ is the number of dofs; MHF 2 R
ℳ×ℳ is the mass matrix;

KHF μð Þ 2 R
ℳ×ℳ is the stiffness matrix; fHF t,μð Þ 2 R

ℳ is the vector of external forces;
μ 2 R

Npar is a vector of Npar parameters ruling the operational, damage and (possibly)
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environmental conditions; dHF
0 and _d

HF
0 are the initial conditions (at t= 0), respectively,

in terms of nodal displacements and velocities. Because of the small relevance in the
identification of the properties of continuously excited systems, structural damping is
disregarded, see e.g. [10].

The parametrization of damage according to the one-hot encoding b or the regres-
sion target y is also addressed by means of the parameter vector μ. As often assumed
in the SHM literature, see e.g. [17, 24], damage is modeled as a local reduction of the
material stiffness. In concrete terms, the stiffness matrix is parametrized through a set
of parameters collected in μ, which governs the position and the magnitude of the local
stiffness reduction. With reference to damage scenarios characterized by a low damage
evolution rate, the damage condition is hold fixed during the time interval 0, Tð Þ, thus
allowing for a timescale separation between damage evolution and health assessment.

By adopting a uniform partition of the time interval 0, Tð Þ, the solution of prob-
lem (3) is advanced in time using the implicit Newmark time integration method, to
provide dHF

l , _d
HF
l and d

..HF
l , for l= 1, . . ., L; by choosing an unconditionally stable inte-

gration rule, the integration step can be arbitrarily chosen on the basis of the funda-
mental structural frequencies and of the sensor sampling rate f .

To speed up the generation of synthetic datasets, a low-fidelity (LF) model with
reduced computational cost can be derived from the FOM. The LF model considered
in this paper is a projection-based reduced-order model (ROM), built by relying on the
proper orthogonal decomposition (POD)-Galerkin reduced basis method [31], see also
[36, 37, 48].

The solution of problem (3) in terms of nodal displacements is approximated by line-
arly combining ℳLF � ℳ POD-basis functions wk 2 R

ℳ, k = 1, . . . ,ℳLF, as d̂HF t,μð Þ=
WdLF t,μð Þ, where W= ½w1, . . .,wℳLF � 2 R

ℳ×ℳLF is the projection matrix and dLF t,μð Þ
2 R

ℳLF is the vector of unknown POD-coefficients. The corresponding ℳLF-dimensional
dynamical system to be solved is obtained through a Galerkin projection to enforce the
orthogonality between the residuals and the subspace spanned by the first ℳLF POD-
modes, and reads:

MLFd
..
LF tð Þ+KLF μð ÞdLF tð Þ= fLF t,μð Þ, t 2 0, Tð Þ

dLF 0ð Þ=W`dHF
0

_d
LF

0ð Þ=W` _d
HF
0 ,

8>><>>: (5:4)

whose solution is advanced in time using the same strategy employed for the HF
model. Here, the reduced arrays play the same role of their HF counterparts, yet with
dimension ruled byℳLF insteadℳ, according to:

MLF ≡W`MHFW, KLF μð Þ≡W`KHF μð ÞW, fLF t,μð Þ≡W`fHF t,μð Þ: (5:5)

An optimal projection matrix W is obtained by means of POD, exploiting the so-called
method of snapshots. To this aim, a matrix S= dHF

1 , . . .,dHF
S

� � 2 R
ℳ×S is assembled
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from S solution snapshots computed by integrating problem (3) in time for different
values of parameters μ, and then factorized through singular value decomposition as:

S=PΣZ`, (5:6)

where: P= p1, . . .,pℳ½ � 2 R
ℳ×ℳ and Z= z1, . . ., zS � 2 R

S ×S�
are two orthogonal matri-

ces, whose columns are the left and right singular vectors of S, respectively; Σ 2 R
ℳ×S is

a pseudo-diagonal matrix collecting the singular values σ1 ≥ σ2 ≥ . . . ≥ σR ≥ 0 of S,
R =min ℳ,Sð Þ being the rank of S.

As each singular value quantifies the information content of S described by the
corresponding left singular vector, the order ℳLF of the ROM can be set by prescrib-
ing a tolerance ϵ on the fraction of energy content retained in the LF model, accord-
ing to: PℳLF

m=1 ðσmÞ2PR
m=1 ðσmÞ2

≥ 1− ϵ2, (5:7)

which is a standard energy–content criterion to select the POD-basis functions.
To populate the datasets described in Section 5.2.1 with training instances, the

parametric input space described by μ is assumed to have a prescribed probability dis-
tribution and is then sampled via the Latin hypercube rule. The number of samples is
equal to the number of instances Ni. Nodal displacements or accelerations in 0, Tð Þ are
first collected, either as V= d̂HF

1 , . . ., d̂HF
L

h i
2 R

ℳ×L or as V= €̂d
HF

1 , . . ., €̂dHF
L


 �
2 R

ℳ×L,

depending on the handled measurements, by evaluating problem (4). The relevant vi-
bration recordings U are then obtained as

U= ðTVÞ`, (5:8)

where T 2 B
Nu ×ℳ is a Boolean matrix whose n,mð Þ-th entry is equal to 1 only if the

n-th sensor output coincides with the m-th dof.
Due to the formulation of problem (4), each instance Uni of DCL and of DRG de-

pends on μ, namely Uni =Uniðμni
Þ, and therefore, on the damage parameters. When

damage identification is performed by adopting the regression setting, dataset DRG is
made up by collecting Uni and the corresponding label yni

, which describes the spatial
coordinates of the subdomain wherein the stiffness is reduced. On the other hand, if
the classification setting is considered, dataset DCL is assembled with Uni and the cor-
responding one-hot encoding bni , with the latter having a single nonzero component
in correspondence of the entry associated with the target class.
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5.2.3 Damage identification models

5.2.3.1 Details on convolutional and fully connected layers

NNs work by aggregating the computations of basic units, termed neurons, to approx-
imate a target function. For the classification task, the target function models the rela-
tion between input vibration recordings and the one-hot encoding b labeling the
subdomain in which damage is assumed to be possibly located; for the regression
task, it instead models the relation between input vibration recordings and the pa-
rameter vector y ruling the damage location.

In a fully connected layer F 1, each neuron (N ) provides an output β computed as an
affine transformation of its input, ruled by a nonlinear activation function A : R ! R as
follows:

β=A ω`
Nα+ bN

� �
, (5:9)

where α 2 R
Nα is the input to the neuron, ωN 2 R

Nα are the connection weights of
the linear mapping and bN 2 R is a bias term. The activation function A is usually
chosen as the hyperbolic tangent (tanh) or the rectified linear unit (ReLU). The rela-
tion mapped by N is tuneable through ωN and bN .

Since F 1 simultaneously applies a set of Nn neurons to its input, the output of F 1

is a vector βF1 2 R
Nn computed as:

βF1 =F 1 α,ΞF1 , bF1

� �
, (5:10)

where ΞF1 = ω1
F1
, . . .,ωNn

F1

h i
2 R

Nn ×Nα and bF1 = ½b1F1
, . . ., bNnF1

� 2 R
Nn respectively, col-

lect the weights and biases of the learnable affine transformations. By applying a sec-
ond fully connected layer F 2 to βF1 , it is possible to compute:

βF2 =F 2 βF1 ,ΞF2 , bF2

� �
=F 2 � F 1 α, ΞF1 ,ΞF2

� �
, ½bF1 , bF2 �

� �
: (5:11)

Such an architecture composed of two fully connected layers is said to be a feed for-
ward NN with a single hidden layer. The vector βF1 is an internal representation of
the inputs or, in other words, forms a set of features. In this sense, a NN epitomizes
the essence of the DL paradigm.

In general, stacking multiple layers allows to perform strong nonlinear transfor-
mations of the input, and approximate complex target functions. The relevant weights
are then calibrated during a training phase through the optimization of a loss func-
tion on the available datasets.

For ease of explanation, a one-dimensional (1d) array α has been considered as
input vector for F 1. However, 2d–arrays like the MTS U can be similarly treated. In
that case, the number of weights would highly increase, therefore requiring a greater
number of training data. To limit the size of the training datasets DCL and DRG, convo-
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lutional layers [32] are often preferred for feature extraction purposes. They reduce
the number of tuning weights by exploiting local correlation within their inputs (the
convolutional kernel inputs are in close proximity with one another and isolated from
distal entities) and translation equivariance (the learned rule can be reused across dif-
ferent localities in the input). In other words, convolutional layers enjoy sparse con-
nectivity and parameter sharing, leading to a great computational efficiency.

When MTS data are treated, 1d convolutional layers are usually employed [26].
Assuming the vibration recordings U as input of a convolutional layer C1 featuring a
single output filter, the output βC1 is computed as

βC1 = C1 U,ΞC1 , bC1
� �

=A
XNu
nu=1

ωnu
C1
✶unu + bC1

 !
, (5:12)

where ΞC1 = ω1
C1
, . . .,ωNu

C1

h i
2 R

Nh ×Nu are the kernel filters of C1; ✶ : RNh ×R
L� �! R

L is
the discrete convolution operator [21]; Nh is the kernel dimension, setting the dimension
of the local correlation sought by the convolutional layer. For ease of explanation, C1 has
been here designed to output a 1d–array, i.e. a single output channel, but a straightfor-
ward extension of eq. (5.12) can be elaborated to output 2d–arrays; see [33] for a com-
plete treatment of how NNs can handle monitoring vibrational data. Like fully
connected layers, also convolutional layers can be stacked multiple times to obtain
hierarchical high-level representations useful to approximate the target function. If
1d convolutional layers are employed for feature extraction purposes, the obtained
NN architecture is defined as a 1d Convolutional Neural Network (CNN).

5.2.3.2 Multivariate time series classification using one-dimensional
convolutional neural networks

We address now the multiclass classification task underlying a damage detection and
localization problem through a 1d CNN NN CNN. The set of weights and biases parame-
trizing NN CNN and collectively denoted as ΘCL is learned by minimizing a loss function
over the training dataset DCL; for classification tasks, the probabilistic categorical cross-
entropy between the predicted and target label classes is adopted, as follows:

H ΘCL,DCLð Þ= −
1
Ni

XNi
ni=1

XNc
j=1

b j
ni
log b̂ j

ni

�
:

�
(5:13)

H ΘCL,DCLð Þ provides a measure of the distance between the discrete probability distri-
bution describing b (collected in DCL) and its estimated counterpart b̂; its minimization
is equivalent to maximizing the likelihood of the training dataset on the parameters of
the model. The minimization is performed by exploiting the optimization algorithm
Adam [27]. Herein, b̂= ðb̂1, . . ., b̂NcÞ` 2 R

Nc is a vector collecting the confidence levels
b̂j by which the current instance is assigned to the j–th damage class. Such a probability
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distribution of b̂ over the Nc possible classes is provided with a Softmax activation func-
tion b̂= Softmax að Þ as follows:

b̂ j að Þ= exp aj
� �PNc

ι¼1 exp aιð Þ , j= 1, . . .,Nc, (5:14)

which converts a vector of real-valued inputs a= ða1, . . ., aNcÞ` 2R
Nc into a discrete

probability distribution. When the trained model is exploited for prediction purposes,
the most likely class is selected as the one that best explains the processed measure-
ments. The NN architecture comprising NN CNN and adopted to map the MTS vibra-
tion recordings U onto the probability distribution b̂ will be detailed in Sec. 5.3.1.

The performance ofNN CNN against the considered classification task is assessed in
terms of the accuracy indicator Acc= CC

AC, which measures the ratio between the number
CC of correct classifications to the overall number AC of classifications. The evolution of
the classification accuracy, together with the loss score, are monitored during training
to evaluate the learning process advancement. To avoid overfitting, part of the instan-
ces collected in DCL are employed to monitor the NN CNN performance during training,
without affecting the calibration of weights ΘCL; those instances are said to be em-
ployed for validation purposes. Once NN CNN is trained, its performance is tested
against a set of NT

i instances unseen during training and validation.

5.2.3.3 Encoding damage sensitivity into a low-dimensional metric space
through a Siamese architecture

The regression task underlying a damage identification problem is finally addressed
through the construction (learning) of an ordered and smooth mapping of the vibra-
tion recordings onto a low-dimensional feature space. This is useful to effectively en-
code the sought damage parameters y, so that they can be easily predicted directly in
the low-dimensional space. With reference to the damage localization task, here, the
sought damage parameters are the coordinates of the damaged region in a regression-
like fashion, see e.g. [46, 45].

The aforementioned mapping is driven by NN H, with the subscript H standing
for “head”, designed to map vibration recordings U(μ) onto its feature representation
hðyÞ 2 R

Nh in a low-dimensional space of size Nh, as:

h y
� �

=NN H U μð ÞÞ,ð (5:15)

where the trainable layers will be better specified in Sec. 5.3.2.
In order to code the damage parameters y through the low-dimensional repre-

sentation hðyÞ, we require that a suitable distance function Eh = Ehðh1 y1

� �
, h2ðy2ÞÞ

of any pair of mappings h1ðy1Þ and h2ðy2Þ semantically approximates the Euclid-
ean distance Ey y1,y2

� �
= jjy1 −y2jj2 between the associated damage parameters y1
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and y2. This is achieved through the Siamese architecture [4] sketched in Figure 5.1,
which is made of two identical heads NN H sharing the same set of weights. The
two NNs are linked by the loss function Lsq−sq, hence, those data points are proc-
essed in pairs, yielding two outputs h1 ðy1Þ and h2ðy2Þ. To this aim, the dataset DRG

is augmented to DP
RG through a pairing process; by prescribing a threshold distance Ey,

ζ+ positive pairs, characterized by similar damage conditions Ey ≤ Ey

� �
, and ζ − negative

pairs, characterized by dissimilar damage conditions ðEy > EyÞ, are assembled for each
data instance, to provide:

DP
RG = ðU1 μ1ð Þ, y1U2 μ2ð Þ, y2ÞnPi

� �NPi

nPi =1
, (5:16)

where NP
i =Ni ζ+ + ζ−ð Þ is the total number of pairs.

During training, the set of weights ΘH parametrizing NN H is optimized by mini-
mizing the following square–square loss function:

Lsq− sq ΘH, DP
RG

� �
= 1
NP
i

XNPi
nPi =1

1− γð Þ 1
2
ðEhÞ2 + γ

1
2
½max 0, ψ− Ehð Þ�2

� �
nPi

, (5:17)

1 (     1)

2 (     2)

sq–sq

H
H

 1,      2

Figure 5.1: Scheme of the Siamese architecture. The set of weights parametrizing the mapping NN H is
learned by processing paired vibration recordings U1ðμ1Þ and U2ðμ2Þ, and by minimizing a function of the
distance between the relative low-dimensional representations h1ðy1Þ and h2ðyÞ2 , and of the
corresponding damage parameters y1 and y2.
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where: γ= 0, 1f g, respectively, if y1 and y2 identify a positive or a negative pair; ψ> 0
is a margin beyond which negative pairs do not contribute to Lsq− sq; the metric
adopted for the computation of distances in the low-dimensional space is the Euclid-
ean one, although this can be further generalized. The minimization of Lsq− sq yields a
distance function Eh, such that dissimilar pairs are kept away by at least the margin
ψ, while similar pairs are pushed to be as close as possible.

Once trained, the Siamese architecture is discarded, and only NN H is retained
together with DRG. The damage position for a data instance U uð Þ unseen during the
training phase is then predicted through a k-nearest neighbours (KNN) regression in
the low-dimensional space. To calibrate the KNN regressor, DRG is projected onto the
low-dimensional space to provide:

Dh = hni ,yni

� �n oNi

ni=1
, (5:18)

so that the low-dimensional encodings of the training data and the relative labels can
be stored by the KNN model.

At prediction time, the KNN regressor computes the distances between h uð Þ =
NN H UðuÞ

� �
and its nearest neighbors among hni , ni = 1, . . ., Ni, to provide an estimateby uð Þ of the associated damage parameters as a weighted average of the corresponding

labels. The number of neighbors accounted for in such a regression and the associated
weighting rule are not set a–priori, but their value is determined through an N–fold
cross-validation strategy. This approach is expected to reduce the potential influence
of outliers within Dh identifying a model of optimal complexity.

5.3 Results

For the considered case studies, the HF and LF numerical models have been imple-
mented in the Matlab environment, using the redbKIT library [30]. The NN architec-
tures have been implemented through the Tensorflow-based Keras API [8]. These
architectures as well as the relevant hyperparameters and training options, are se-
lected through a preliminary sensitivity study, aimed at minimizing the loss function
of interest while retaining the corresponding generalization capabilities.

5.3.1 Damage identification in a shear-type building

We first assess the performance of damage identification as a classification task in
the case of the shear building model depicted in Figure 5.2. The structure, originally
proposed in [7], is an idealized eight story shear building with constant floor mass
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m = 625 ton and interstory stiffness k = 106 kN/m. The vibrational response of the
building in the horizontal direction is simulated by employing 1 dof per floor; there-
fore, given that the model accounts for only ℳ = 8 dofs, a LF model further reduc-
ing the number of dofs is not employed in this case.

To construct DCL, Nc = 9 possible damage classes are considered: the classes labelled as “1”,
“2”, . . . “8” refer to a 25% stiffness reduction associated with the corresponding interstory
link, while “0” denotes the undamaged state class. As reported in Table 5.1, only two trends
can be highlighted in terms of structural frequencies for the different damage classes: the
reduction of each structural frequency induced by a damage in the first interstory connec-
tion and the reduction of the first structural frequency induced by each damage class.

Displacements time histories unu are recorded for all the Nu = 8 floors, with sen-
sors numbered from bottom to top. Recordings are provided for a time interval
0, T = 10 sð Þ with an acquisition frequency f = 66 Hz, in order to avoid aliasing for
both the undamaged and the damaged classes.

m

m

m

m

k

k

k

k

Figure 5.2: Shear building model.

Table 5.1: Shear building. Structural frequencies (in Hz) of the lateral vibrations for the considered
damage classes (0 labels the undamaged state class).

Damage class

Mode         

 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .
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Two load cases are considered to show the performance of the approach when
the frequency band of the loading is either narrow or broad. The first load case ap-
plies at each floor a force featuring a narrow frequency band, possibly exceeding the
structural frequencies range. This load case is termed sinusoidal because of the spe-
cific type of time variation in accordance with:

qnuni ðtÞ=
X2
ι=1

nu

8
ηιni sin 2πϕι

ni
t

� �
, with nu = 1, . . ., 8, (5:19)

which provides a summation over two harmonic components. For the ni–th instance,
each harmonic component features: amplitude ηιni sampled from a normal probability
density function with zero mean and standard deviation equal to 1 KN; frequency ϕι

ni
computed by taking one of the undamaged vibration frequencies and then multiplying
it with a value sampled from a normal probability density function with zero mean and
standard deviation equal to

ffiffiffi
2

p
. The spatial variation of the load is inspired by the lat-

eral force method reported in [14], while the sinusoidal time law is somehow due to the
fact that any time variations can be decomposed through a Fourier series. Examples of
force evolution in time are reported in Figure 5.3.

The acquired measurements are then mimicked by corrupting the output of numeri-
cal simulations with an additive Gaussian noise, so that the resulting signals feature
a signal-to-noise ratio equal to 15 dB. A comparison between noise-free (numerical)
and noisy signals is provided in Figure 5.4.

The second load case, termed white noise one, is characterized by a force whose
time amplitude is sampled from a normal probability density function with zero mean
and standard deviation equal to 10 kN. The resulting frequency spectrum is then proc-
essed by means of a low-pass filter with roll-off between 5 and 7 Hz. This type of ran-
dom excitation may be caused by low-energy seismicity from urban or natural sources
[22, 3]. A possible realization of this load case is reported in Figure 5.5.
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Figure 5.3: Shear building, sinusoidal load case. Exemplary time evolutions of the load applied
to the first floor over the first 2.5 s of the total time window.
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For each load case, DCL is assembled with Ni = 3500 numerically simulated instan-
ces Uni , bni

� �
, where bni encodes the damage class for the ni–th instance. DCL is then

splitted with a ratio of 80 : 20 for training and validation purposes.
Damage classification is addressed with the 1d NN CNN receiving Uni as input and

returning b̂ni as output. NN CNN is composed of three convolutional units, each one
consisting of a convolutional layer, ReLU activation function, and batch normalization
[18]. The resulting output is then run through a global average pooling layer [43] and,
finally, through a Softmax-activated fully connected layer. The convolutional layers
respectively feature 16, 32, 16 filters with a kernel size of 8, 5, 3. The cross-entropy loss

Figure 5.4: Shear building, sinusoidal load case. Exemplary displacement time-histories u1ni , u
4
ni
, u8ni

corresponding to η1ni =−0.446 kN, η2ni = 1.531 kN, ϕ1
ni
= 21.1 Hz, and ϕ2

ni
= 69.2 Hz. The blue lines denote

pseudo–experimental displacements, whereas black lines refer to the noise-free output of the numerical model.
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Figure 5.5: Shear building, white noise load case. Exemplary time evolution (left) and power spectral
density PSD (right) of the applied forces qnuni ðtÞ, with nu = 1, . . ., 8.
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function is computed as in eq. (5.13), having determined a confidence level b̂ni for
each possible damage class, according to eq. (5.14). Adopting a learning rate of 10−3

and a batch size of 10, the loss function is minimized for a maximum of 1500 epochs.
The training is then stopped whenever overfitting is detected from the loss function
score attained on the validation instances; this strategy, termed early stopping, avoids
NN CNN from barely memorizing the input-output pairs contained in DCL.

The evolution of the loss function H during training is reported in Figure 5.6 for
the sinusoidal load case, together with the corresponding evolution of the accuracy
indicator Acc. To assess the performance of the classifier, this latter must be com-
pared with the accuracy score resulting from a random guess Acc= 1=NCð Þ. The most
significant gains in terms of classification accuracy are displayed in the first stages of
the training, after which only a limited increase in the generalization capabilities of
NN FCN is attained.

Once trained, NN CNN is tested against NT
i = 1152 new instances, providing an overall

accuracy of 76.8% for the sinusoidal load case. Most of the misclassifications are re-
lated to the damage classes connected to the stiffness reduction at the highest floors,
see Table 5.2. This is reasonable, as the response of the upper floors is expected to be
more sensitive to damage below; also note the corresponding frequency drift reported
in Table 5.1. On the other hand, the damage states at the lowest floors are mostly cor-
rectly identified. The undamaged state 0 is reported to be often misclassified as dam-
age classes 7 and 8, for the same reasons discussed above: it is difficult to detect small
frequency variations due to a stiffness reduction in the highest interstoreys, especially
in the presence of noise.

A better performance is reported for the white noise load case. In particular, the
overall classification accuracy attained by NN CNN against NT

i = 1152 newly collected
instances reaches 99.3%. This excellent outcome is due to the fact that, for the consid-
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Figure 5.6: Shear building, sinusoidal load case. Evolution of the loss function and of the accuracy
indicator of NN CNN during training, related to the training (blue) and validation (black) data instances.
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ered white noise load case, the first three structural modes are always excited, thus
allowing NN CNN to correctly catch how the resulting vibrations are affected by each
damage class.

The reported performance of NN CNN for the two considered load cases is coun-
terbalanced by two aspects. First, the need of an a–priori definition of the possible
damage classes to be accounted for: if a damage scenario not considered shows up,
NN CNN would be unable to correctly classify it. Second, the features extracted with
NN CNN could be not robust to small deviations between the probability distributions
underlying the training data and the incoming data. These issues can be addressed by
means of the low-dimensional metric space obtained with the Siamese architecture
illustrated in Section 5.2.3.3 and whose application is shown next.

5.3.2 Damage identification in a railway bridge

This case study aims to assess the performance of the damage localization strategy
proposed in Section 5.2.3.3 against the railway bridge depicted in Figure 5.7. This
bridge is an integral concrete portal frame located along the Bothnia line, featuring a
span of 15.7 m, a free height of 4.7 m and a width of 5.9 m (edge beams excluded). The
thickness of the structural elements is 0.5 m for the deck, 0.7 m for the frame walls,
and 0.8 m for the wing walls. The mechanical properties of concrete are: E = 34 GPa,
ν= 0.2, ρ= 2500 kg=m3; for further details, see [37, 45]. The bridge is subjected to the
transit of trains composed of two wagons, traveling with a speed ν 2 160, 215½ � km=h
and with each axle carrying a mass ϕ 2 16, 22½ � ton.

The bridge is discretized with 17, 057 tetrahedral elements, resulting in ℳ= 17, 292
dofs. The monitoring system features Nu = 10 sensors and is deployed as depicted in Fig-
ure 5.8 to provide U μð Þ= u1, . . ., uNu½ �. Data are assumed to be collected along the time
interval 0, T = 1.5 sð Þ with frequency f = 400 Hz.

DRG is assembled by considering that damage can take place anywhere in the two
lateral frame walls and in the deck, within subdomains Ωy as depicted in Figure 5.8.
The stiffness reduction can occur with a magnitude δ 2 [30%, 40%] constant within
0, Tð Þ, whose spatial coordinates y= xΩ, zΩð Þ 2 R are characterized by either xΩ or zΩ
varying in the ranges [–0.115, 16.63] m and [0.25, 6.25] m.

Table 5.2: Shear building, sinusoidal load case. Accuracy of each damage
classification as attained by NN CNN.

Damage class

        

.% .% .% .% .% .% .% .% .%
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The dataset DRG is built with Ni = 8000 instances computed with an ROM featuring
ℳLF = 528 POD–modes in place of the original 17, 292 dofs, and augmented to DP

RG with
ζ+ = ζ− = 10 pairs after prescribing a threshold distance Ey = 0.25 m. The testing dataset
consists of NT

i = 800 instances generated through the FOM. Both the training and testing
data are corrupted with an additive Gaussian noise, yielding a signal-to-noise ratio
equal to 20.80 dB. An exemplary time history of the vertical displacement at midspan is
reported in Figure 5.9, to compare the FOM solution and the noise-corrupted ROM
approximation.

The architecture of NN H features three 1d convolutional units, each one consisting
of a convolutional layer, a nonlinear activation function, batch normalization, a max
pooling layer, and a dropout layer [42]. The convolutional layers respectively feature 16,
32, 16 filters with a kernel size of 25, 13, 7. The output features are then flattened and run

Figure 5.7: Hörnefors railway bridge.
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Figure 5.8: Railway bridge. Cross-section with details of the synthetic recordings related to
displacements u1ðtÞ . . ., u10ðtÞ and exemplary damaged regions Ωy .
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through a stack of three fully connected layers, respectively featuring 64, 16, 4 neurons,
whose output is the low-dimensional representation h; with Nh = 4; further insights on
how to choose Nh can be found, e.g., in [35, 45]. No activation is applied to the last
dense layer, while the tanh activation function is employed elsewhere.

By splitting DP
RG with a ratio 75 : 25 for training and validation purposes and by adopt-

ing a batch size of 32, the loss function Lsq− sq is minimized for a maximum of 100
epochs. The learning rate is initially set to 10−4, and decreased for 80 epochs by adopt-
ing a cosine decay schedule with weight decay 0.05. An early stopping strategy is used
to interrupt the learning process.

A compact representation of the low-dimensional embeddings collected in Dh is
shown in Figure 5.10, as obtained by applying the metric version of multidimensional
scaling. Multidimensional scaling is a nonlinear dimensionality reduction method
that seeks a low-dimensional representation of the input data, preserving pairwise
distances as much as possible [20]. In these graphs, the color channel refers to the
target damage position along the x-axis, i.e., fxΩnig

Ni
ni = 1, and along the z-axis, i.e.,

fzΩnig
Ni
ni=1. Intuitively, these plots show that NN H correctly encodes the damage posi-

tion in the low-dimensional space, with higher accuracy along the z-axis as the por-
tion of the manifold describing the variation along the x-axis looks more confused
and increased in size.

Damage is located by exploiting a KNN regressor accounting for 51 nearest neigh-
bors with inverse distance weights, which provides the maximum folds averaged re-
gression score against a 20-fold cross-validation. The distributions of the prediction
error along the x and z directions, in relation to the NT

i = 800 testing instances, are
reported in Figure 5.11; in these charts, the counts refer to the number of instances
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Figure 5.9: Railway bridge. Time history of the vertical displacement at midspan ðxΩ = 8.25 m,
zΩ = 6.25 m, δ= 0.35, ν = 210 km=h, and ϕ= 20 ton): comparison between FOM and noise-corrupted
ROM approximation.
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for which a certain prediction error is reported. The observed values are distributed
in a rather narrow range around the origin, showing that the damage position is al-
most always identified with high accuracy. From a quantitative point of view, damage
locations feature a mean absolute error MAEx = 0.453 m, MAEz = 0.260 m, respectively
along the x-axis and z-axis. This result confirms what stated about the more confused
manifold portion describing the variation of damage position along the x-axis. Never-
theless, the overall result is still noteworthy, especially considering the involved dynamic
response triggered by the moving load and the limited extension of the considered dam-
age regions: both MAE values are smaller then the width of the damaged regions, which
is 0.5 m.
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5.4 Conclusions

In this work, we have proposed a damage identification approach based on the simu-
lation-based paradigm of structural health monitoring. Assuming a slow damage pro-
gression, we have considered two alternative strategies relying on learnable feature
extractors and enabling damage detection and localization in civil structures: a classi-
fication-based one, to categorize multivariate time series using one-dimensional con-
volutional neural networks; a regression-like one, enjoying a low-dimensional metric
feature space resting on contrastive pairwise learning and capable of coding damage–
sensitivity.

The proposed framework relies on an offline phase of data generation and train-
ing. Within a supervised learning setting, a physics-based numerical model has been
adopted to systematically simulate the structural response and generate training data
pertaining to specific damage conditions under varying operational conditions. To re-
lieve the relevant computational burden, the data generation phase has been speeded
up through a model order reduction strategy for parametrized systems. The results
obtained for the considered test cases prove the capability of the approach to allow
damage identification under the effect of measurement noise and varying operational
conditions.

Future activities will be devoted to integrate the proposed structural health moni-
toring tools within a sequential decision framework, to enable a digital twin concept
for the structural asset to be monitored, see e.g. [25, 29]. This will allow to inform an
optimal planning of maintenance, inspection, and management actions.
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6 Structural health monitoring of steel plates
using modified modal strain energy
indicator and optimization algorithms

Abstract: Assessing structural damage in plate structures is a critical issue in various
engineering fields such as mechanical and civil engineering. In this paper, an efficient
approach based on a modified modal strain energy (MSE) indicator, combined with ro-
bust optimization algorithms, is proposed to accurately detect, locate, and quantify struc-
tural damage in a square plate structure. A finite element model is built in MATLAB
software, and the damage is simulated by element stiffness reduction. This approach pre-
cisely identifies single and multiple damages by incorporating frequency response in the
MSE method. An optimization problem is then formulated using an objective function
based on the modified indicator to determine the extent of the damage. The approach is
evaluated using three optimization algorithms: Snake optimization, marine predators al-
gorithm, and moth flame optimizer (MFO). Results show that the approach accurately
locates and quantifies damage in all examined cases. The MFO algorithm yields superior
outcomes in terms of convergence, CPU time, and accuracy of damage extent.

6.1 Introduction

Plate structures are widely used in various engineering applications such as civil, me-
chanical [1–4], and design engineering [5–9]. These structures are subjected to various
external and internal loads that can lead to damage, including cracks, fractures, and
other forms of structural damage. Structural damage can significantly affect the perfor-
mance, safety, and durability of these structures, making their assessment and detection
a crucial issue. Therefore, developing efficient and accurate techniques for structural
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health monitoring is of extreme importance. According to existing literature, Rytter [10]
proposed a framework consisting of four primary stages for monitoring the health of
structural systems. Firstly, the initial stage involves the detection of damage in the struc-
ture. Subsequently, the second stage pertains to the localization of the damage within the
structure. The third stage involves the assessment of the severity of the detected damage.
Lastly, the fourth stage is concerned with predicting the remaining service life of the
damaged structure. Numerous research studies have been carried out to develop reliable
and efficient vibration-based methods for structural damage assessment, including meth-
ods based on identification using frequency contours, mode shape curvature, changes in
natural frequencies, modal strain energy, and changes in dynamic flexibility [11].

Tiachacht et al. introduced an altered iteration of the Cornwell Indicator and ap-
plied it alongside a genetic algorithm to devise a method that is both stronger and more
effective in precisely identifying, locating, and measuring structural damages [12, 13].
Based on the numerical findings, the GA-MCI technique proves to be a precise predictor
of the location and intensity of the structural damage under various conditions, sur-
passing analogous methodologies identified in existing literature [14–16]. In their paper,
De Oliveira et al. [17] presented a different method for monitoring the health of struc-
tures. Their approach involved the use of a lead zirconate titanate patch as an actuator
to stimulate the structure, along with three patches serving as sensors to measure the
structural response. Additionally, they employed singular spectrum analysis to calculate
statistical metrics, thereby ensuring dependable detection of any damage.

Khatir et al. [18–22] explored the use of metaheuristic algorithms to detect damage
in steel plates by utilizing FRF damage indicators. Their inverse analysis revealed that
the Wild Horse Optimizer algorithm surpassed both the Harris Hawks Optimization and
Arithmetic Optimization Algorithm in terms of convergence speed and CPU time. Beh-
tani et al. [23, 24] studied the modal strain energy (MSE) damaged indicator on both un-
damaged and damaged CFRP beams for modal analysis. Their results indicate that the
use of MSE, based on frequency, is more effective than using mode shape, and that the
MSE calculated using the first mode is significantly superior to other modes. Kahouadji
et al. [25] introduced a methodology that employs optimization techniques, and utilizes
LFCR as a means to identify damage. Student psychology-based optimization algorithm
accurately detects damage severity in 20 bar 2D and 28 bar 3D trusses, demonstrating
precise damage detection and location with LFCR.

This article presents a novel methodology that effectively identifies and measures
harm in plate structures through the application of an updated damage indicator and
optimization strategies. Our technique involves modifying the modal strain energy
(MSE) method by integrating frequency response to pinpoint the affected components.
Additionally, we utilize three optimization algorithms, namely snake optimization
(SO), marine predators algorithm (MPA), and moth flame optimizer (MFO) to precisely
gauge the extent and severity of the harm. The proposed approach boasts of impres-
sive accuracy in detecting and pinpointing damaged elements, as well as accurately
quantifying the degree and severity of damage.
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6.2 Modal strain energy using the frequency
response

The modal strain energy (MSE) indicator is commonly used to detect potential damage in
structures by identifying changes in their modal characteristics. The traditional method
for MSE relies on eigenvectors, but this can be difficult to obtain and may be affected by
noise. An alternative approach is to use the frequency response function, which can be
easily obtained from finite element simulations. The MSE of both healthy and damaged
structures can be calculated using the following equation:

MSEuij =
1
2

Φu
i

� �T
KjΦ

u
i , MSEdij =

1
2
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i

� �T
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The undamaged and damaged cases’ frequency response is provided by the mode
number and the element number denoted as i and j, respectively. The stiffness matrix
Kj, mode shape Φi, and superscripts u representing the undamaged structure and d
representing the damaged structure are also involved:
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Equation (6.2) will be used instead of the eigenvectors in eq. (6.1) as follows:
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By dividing the discrepancy between the modified modal strain energy of the damaged
structure and the unimpaired structure with the modified modal strain energy of the un-
impaired structure, the recalibrated MSE Indicator can be computed as depicted below:

MMSEIij =
MMSEdij −MMSEuij
��� ���

MMSEuij
(6:4)

6.3 Optimization

In this study, we have utilized three distinct optimization algorithms to quantify the
damage, with the objective of comparing their efficacy.
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6.3.1 Snake optimizer (SO)

Snake optimizer (SO), introduced by Hashim and Hussein [26], is an innovative swarm-
based algorithm that leverages the mating behavior of snakes to tackle optimization prob-
lems. This algorithm emulates the foraging and reproductive actions of snakes, where
both the male and female snakes compete to secure the best partner in conditions of
ample food and low temperature. In the SO, solutions to optimization problems are de-
picted as snakes, and their movements are guided by the snake mating behavior. The al-
gorithm strives to attain a balance between exploration and exploitation by utilizing a
dynamically adapted search radius. Additionally, the swarm is equally split into male and
female groups in the snake optimizer algorithm. At each iteration, the best potential solu-
tion is determined by scrutinizing the male and female groups’ individual best solutions.

The Snake Optimizer algorithm utilizes a swarm that is divided equally into male
and female groups. In each iteration, the algorithm selects the best individual candidate
solution by analyzing the male and female groups to determine their individual best
solutions.

During the exploitation phase, the Snake Optimizer algorithm employs two condi-
tions to identify the best solutions. The first condition involves comparing the positions of
the male and female individuals with the position of the best individual. The second con-
dition compares the quality of the food with a predetermined threshold. If the food qual-
ity is lower than the threshold, the snakes will engage in either fighting or mating
behavior. When in fighting mode, the male and female agents calculate their fighting abil-
ities based on their positions and the position of the best individual in the opposite group.

6.3.2 Marine predators algorithm (MPA)

Faramarzi et al. [27] developed the MPA, which takes inspiration from the foraging be-
havior of ocean predators. Specifically, the algorithm incorporates the use of Lévy and
Brownian movements, as well as an optimal encounter rate policy with their prey. Each
potential solution is modeled as a predator, and the algorithm utilizes these strategies
to balance both exploration and exploitation during the search process. By adhering to
the natural rules that govern foraging and encounter rate in marine ecosystems, the
algorithm employs these principles to direct the movement of each “predator” toward a
potential optimal solution.

The MPA optimization process has three phases, each with a specific velocity ratio
mimicking a predator’s step size to catch its prey:
– Phase 1: initial optimization iterations favor exploration, and the optimal strategy for

the predator is to remain still at a high-velocity ratio.
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– Phase 2: intermediate optimization phase aims to shift from exploration to exploi-
tation, with the optimal strategy for the predator being Brownian at a unit veloc-
ity ratio, while the prey moves in Lévy.

– Phase 3: the final optimization phase emphasizes high exploitation capability, with
the optimal strategy for the predator being Lévy at a low-velocity ratio.

The algorithm imitates predator and prey life cycles, with assigned periods for each
phase, based on their movement rules. Predators use both Lévy and Brownian move-
ments, with no movement in phase one, Brownian in phase two, and Lévy in phase
three. The prey use Brownian in phase one and Lévy in phase two.

The algorithm divides the iterations into thirds for each phase, instead of cycling
between them. It is inspired by the ocean predator’s foraging behavior to optimize
solutions effectively.

6.3.3 Moth flame optimization (MFO)

The MFO algorithm, proposed by Mirjalili [28], is inspired by the navigation behavior of
moths, specifically the transverse orientation. This behavior allows moths to fly straight
by maintaining a fixed angle with respect to the moon. However, artificial lights can
cause moths to become disoriented and trapped, leading to dangerous situations. The
MFO algorithm models this behavior for optimization. The algorithm generates a group
of moths that each represents a potential solution to the problem. Moths move toward
the best solution found, represented as a flame, with the attraction force pulling them
toward it, the repulsion force pushing them away from other moths, and the randomiza-
tion force adding stochasticity for exploring the search space.

The MFO algorithm consists of three main components:
– Generating an initial population of moths,
– Updating the moths’ positions,
– Updating the number of flames.

Moths and flames are both solutions, but in different ways. Moths search the space, while
flames are the best positions found by moths. Flames act as markers dropped by moths
during their search, and each moth updates the flame if it finds a better solution while
searching around it.

MFO uses three functions to reach the global optimum: transverse orientation for
searching, balancing moth motion near the flame for exploitation and exploration,
and keeping optimal solutions for each repetition. The algorithm updates the number
of flames to improve exploitation, and moves moths to different locations to avoid
missing promising solutions.

This algorithm, based on moth navigation, optimizes problems by moving toward
the best solution represented as a flame. It uses three forces and involves generating an

6 SHM of steel plates using modified MSE indicator and optimization 129



initial moth population, updating their positions, and the number of flames. MFO balan-
ces exploration and exploitation to converge to the global optimum using three func-
tions: transverse orientation, optimal solution retention, and flame number updates.

6.4 Numerical analysis

In order to evaluate the efficacy of the suggested method for identifying and measur-
ing the extent of harm, a square plate configuration was employed, which featured
two types of damage as illustrated in Figure 6.1. The physical characteristics of this
configuration have been enumerated in Table 6.1, while Table 6.2 provides further
elucidation on the two specific damage scenarios.

Table 6.3 displays the non-dimensional natural frequencies of both damaged and un-
damaged cases for the CCCF plate, which are defined in eq. (6.5):

w=wa
ffiffiffiffi
δ
G

r
(6:5)
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Figure 6.1: 8 × 8 mesh for the plate structure.

Table 6.1: Material properties of the plate structure.

Material property value

Modulus of elasticity ,
Thickness-to-side ratio .
Poisson’s coefficient .
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6.4.1 Damage localization based on the modified modal
strain energy indicator

The present section describes the implementation of the modified MSE indicator for de-
tecting and locating damaged elements in plate structures under both single and multiple
damage scenarios. The MMSE indicator values of damaged elements are higher than
those of healthy ones, allowing for a clear distinction between the two states. As illus-
trated in Figure 6.2, the MMSE-based approach demonstrates a high level of accuracy in
identifying damaged elements. The identification of damage in a plate structure is a com-
plex process, and one crucial step in this process is the use of optimization algorithms.
By neglecting the healthy elements in the structure, these algorithms can assess the ex-
tent and severity of the damage more accurately, thereby reducing the computational
time required. The results of this approach are promising, suggesting that it has the po-
tential to become a reliable and effective tool for localizing damage in plate structures.

6.4.2 Optimization-based damage quantification

This section evaluates the damage rate after removing healthy elements, using three op-
timization algorithms: SO, MPA, and MFO. The algorithms use a modified MSE indicator
that considers the frequency response of the plate structure.

Figure 6.3 provides an assessment of the damage extent in the first scenario
where three optimization algorithms were employed for quantification. The results
reveal that all three algorithms effectively measure the damage extent. Nevertheless,

Table 6.3: Healthy and damaged natural frequencies of the plate structure.

Mode Healthy Actual FEM Damaged

[] [] Case  Case 

st . . . . .
nd . . . . .
rd . . . . .
th . . . . .
th . . . . .

Table 6.2: Damage scenarios for the plate structure.

Case Element no. Reduction in stiffness

Case   %
Case  



%
%
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the MFO exhibits superior performance compared to the other two algorithms in
terms of convergence speed. This is evidenced by the shorter computation time, dis-
played in Table 6.4, and a lower value of the objective function.

The findings presented in Figure 6.4 clearly demonstrate that the approach pro-
posed in this study is highly effective in accurately quantifying the degree of damage
in a plate structure containing two damaged elements, when all three optimization
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Figure 6.2: Damage localization in the plate structure: (a) scenario 1 and (b) scenario 2.
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algorithms are utilized. However, upon closer examination of the results, it becomes
apparent that the MFO outperforms the other algorithms in terms of both conver-
gence and accuracy when it comes to determining the extent of the damage.

The proficient execution of the proposed approach utilizing multiple optimization
algorithms and diverse damage scenarios is a clear testament to its effectiveness in accu-
rately detecting and quantifying damage in plate structures. Table 6.4 further establishes
the superiority of MFO over other algorithms in terms of CPU time in both scenarios.
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Figure 6.3: Case 1 of damage: (a) objective function convergence and (b) damage quantification.

6 SHM of steel plates using modified MSE indicator and optimization 133



6.5 Conclusion

This paper proposed a novel approach for detecting and quantifying structural damage
in square plate structures, based on the Modified Modal Strain Energy (MSE) indicator,
combined with robust optimization algorithms. The proposed approach accurately identi-
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Figure 6.4: Case 2 of damage: (a) objective function convergence and (b) damage quantification.

Table 6.4: CPU time for all cases.

− Case  Case 

SO . .
MPA . .
MFO . .
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fied, located, and quantified single and multiple damages in the examined cases. The
application of the frequency response in the MSE method, followed by formulating an
optimization problem to determine the extent of the damage using an objective func-
tion based on the modified indicator, was effective. The three optimization algorithms
tested, SO, MPA, and Moth Flame Optimizer (MFO), demonstrated that the MFO algo-
rithm provided superior outcomes with respect to convergence, CPU time, and the ac-
curacy of damage extent. Overall, the proposed approach has potential for use in
mechanical and civil engineering fields to accurately assess and monitor structural
damage.
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7 Vibration-based damage detection using
a novel hybrid CNN-SVM approach

Abstract: In classic machine learning-based damage detection algorithms, extracting
damage-sensitive features from time series is a challenging issue. Also, this paradigm
can delay processing procedures and requires preprocessing. Many efforts have been
made to overcome this limitation by expanding deep learning (DL) in structural health
monitoring (SHM). However, because most of these systems require considerable meas-
urements during the training step, they are unsuitable for real-time applications. To
solve the challenges above, we offer a robust approach using two-dimensional convolu-
tional neural networks (CNNs) and support vector machines (SVMs), merging feature ex-
traction and a rapid classifier at the same time. The method employs a shallow CNN
network that receives raw acceleration signals. Both noisy and noise-free datasets are
used to verify the hybrid CNN-SVM approach. The results showed an increase in robust-
ness, speed efficiency, and accuracy over traditional machine learning approaches. The
results proved efficient, making the algorithm reliable even under high noise conditions.

7.1 Introduction

Various structural defects occur during a structure’s service life, putting the system’s
integrity and performance at risk. Environmental circumstances, natural risks, or
human influences could all cause damage. Such a degradation process generates ex-
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cessive deflections in the components, rebar corrosion, and the onset of cracks, all of
which might interrupt the service functionality in the long or short term. In contrast
to visual inspection and manual damage detection, which have limitations in imple-
mentation, structural health monitoring (SHM) aims to provide an automated, precise,
and accurate solution for condition assessment that takes advantage of advanced
sensing and computation innovations.

Structural responses, such as deflections, strains, and accelerations, include scal-
able information on the state of the monitored system, allowing any changes in the
system status to be tracked back to the associated responses [1]. Anomalies in the
time, frequency, or time-frequency domain are investigated using modal characteris-
tics, frequency response functions (FRFs), and structural matrices. To determine sys-
tem attributes, model-based and data-driven strategies are used. In contrast to the
first methodology, data-driven procedures do not necessitate prior knowledge of the
boundary conditions, damage location, and material attributes. As a result, they are
more practical in working with large structures, which require considerable effort to
find the optimum value of parameters [2].

Sensors collect various responses, including information about the monitored struc-
ture in data-driven processes. Displacement, velocity, strain, and acceleration all con-
tain system information. Signal processing methods are the most often used to extract
information from recorded signals. Time series and signal transformations like wave-
lets, Stockwell, and Hilbert–Huang transforms have been used to discover anomalies in
responses. Although these methods are efficient for damage detection, feature extrac-
tion and selection are made manually, which are time-consuming and error-prone.

On the other hand, machine learning techniques are used for pattern recognition,
feature extraction, and data classification. They can also be combined with signal
processing techniques to produce an automated feature extractor and feature selec-
tor. For example, in these models, time series were mixed with ReliefF and machine
learning classifiers to differentiate damage scenarios [3]. To extract features, discrete
wavelets were combined with neighborhood component analysis (NCA), while sup-
port vector machines (SVMs) and k-nearest neighbors (KNNs) were used to classify
damages inside structures [4].

Because the number of neurons is limited, increasing the input data causes the per-
formance of conventional machine learning algorithms to plateau. On the other hand,
deep learning (DL) algorithms deal with a larger amount of data, resulting in higher pre-
diction and discrimination accuracy. DL, a subclass of machine learning, has been used
in a wide range of applications, including computer vision [5], speech recognition [6], and
signal processing [7]. Convolutional Neural Networks (CNNs) are one of the most com-
monly used deep neural networks; they were initially created to analyze image data; nev-
ertheless, it has recently been shown that CNN has excellent potential for subsequent
data analysis, such as natural language processing. CNNs are commonly employed in
SHM applications due to recent advances in computation facilities and training using
GPUs. As an example, Modarres et al. [8] established a CNN for detecting and recognizing
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damage and compared the results to four other approaches for noisy and clean images.
Shihavuddin et al. [9] developed a CNN architecture for detecting surface flaws on wind
turbine blades using images. Avci et al. [10] established a decentralized one-dimensional
CNN-based technique to assess the level of structural damage using only two states of the
structure as input for the training stage (damaged and undamaged data). Han et al. [11]
took advantage of transfer learning by introducing AlexNet and ResNet18 in both 2D and
1D forms for bolt loosening identification purposes.

Although CNNs are used in SHM, the computation cost and robustness in adverse
signal conditions are still untouched. Hence, the authors attempt to establish a fast
model for damage detection by combining CNN and SVM as a single body in this
paper. To evaluate the feasibility of the decentralized technique, the authors used ac-
celeration data from the three nearest accelerometers to each joint to train a two-
dimensional hybrid CNN-SVM for each joint in the Qatar University Grandstand Simu-
lator (QUGS) dataset [12, 13]. Notably, the authors have used a similar methodology
previously, using a single CNN with limited damage scenarios [14], while this study
employs all damage scenarios, including cases in which two joints were damaged si-
multaneously, under a hybrid CNN-SVM strategy.

The paper outline follows: first, the research technique is thoroughly detailed.
The training and testing procedures are then described. Afterward, a brief explana-
tion of the benchmark and the data set is given in the following section. Then, the
performance in different signal conditions and the robustness of the CNN-SVM against
changing the hyperparameters are evaluated. Last, conclusions and representative
works are studied in light of the findings.

7.2 Methodology

The research methodology is illustrated in sequential steps in this section. The architec-
ture of two-dimensional CNN as a feature extractor is first demonstrated. The extracted
features are then fed to an SVM to classify various damage cases of the benchmark.

7.2.1 Network architecture

The authors advocate using a compact hybrid CNN-SVM model rather than a deep ar-
chitecture to improve computational performance. This technique assigns a different
CNN-SVM to each structure component to assess its condition. The proposed method-
ology is depicted in Figure 7.1.

Each CNN-SVM has an architecture consisting of two convolutional blocks fol-
lowed by a dropout function before the SVM. Each convolutional block consists of a
batch normalization, activation, and pooling layer. Batch normalization is done to the
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input data prior to the first convolution block to reduce nonuniform distribution. The
typical architecture of the proposed network is seen in Figure 7.2. The following sec-
tions briefly describe the role of each layer.

7.2.1.1 Convolutional layer

As the name implies, the convolutional layer is the essence of a CNN, distinguishing it
from earlier machine learning systems. In this layer, convolution is a mathematical pro-
cess used to extract features from the input. In this case, convolution is the sum of a dot
product between a slider kernel and the layer’s input with a bias. A convolution layer
comprises several kernels with learnable weights that convolve the input one by one to
generate a new matrix called the feature map, which is then given to the next layer. Ker-
nels should have the same number of channels as the input, regardless of whether their
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Figure 7.2: Architecture of CNN-SVM.
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width and length are the same or lesser than the input [15]. Convolution layers with zero
paddings keep the feature map from shrinking in size. Figure 7.3 depicts the performance
of a two-dimensional convolutional layer with zero padding for improved comprehension.

7.2.1.2 Batch normalization

Since the training procedure is done batch by batch, a nonuniform distribution of
each batch can significantly impede convergence. Sergey Ioffe and Christian Szegedy
[16] presented a batch normalization method to overcome this problem known as in-
ternal covariate shift. Batch normalization (BN) is a powerful technique for parame-
trizing virtually any type of neural network. It calculates the mean and variance of
each input batch and then scales and shifts them to 0 and 1, respectively, using eqs.
(7.1)–(7.4). Since BN is performed in a mini-batch, it is computationally efficient, and it
also enables the use of higher learning rates:

μB =
1
m

Xm
i=1

xi (7:1)

0 0 0 0 0 0 0

0 1 2 2 6 6 0

0 6 8 8 1 3 0 2 3 5

6 8 8

95 54 118 151 182

140 234 209 202 85

128 228 201 176 57

90 188 163 126 62

82 102 70 60 30

8 1 3

0 3 4 8 3 1 0

0 4 6 2 4 2 0

0 4 3 1 1 1 0

0 0 0 0 0 0 0

Figure 7.3: Example of convolutional operation with zero padding.
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σ2
B =

1
m

Xm
i=1

xi − μBð Þ2 (7:2)

x̂i =
xi − μBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2B + ϵð Þp (7:3)

yi = γx̂i + β (7:4)

where ϵ is a small number to prevent division by zero, x is input data, x̂ is the stan-
dardized form of the input data, and y is the linear transform of x̂ with the scaling
factor of γ and β as bias.

7.2.1.3 Activation function

One of the most critical components of a neural network is its activation functions.
They give the network nonlinearity, making the input more learnable and capable of
executing more complex tasks. The rectified linear unit (ReLU) [17, 18] has become the
most popular among many activation functions in recent years. It adheres to a
straightforward formula, as given in eq. (7.5):

y=max 0, xð Þ (7:5)

The first advantage of ReLU over previous algorithms is its capacity to tackle the van-
ishing gradient problem, which was prevalent in sigmoid [19], and the second advan-
tage over previous algorithms is that it is computationally cheap, making the network
faster in training. ReLU is inserted immediately after the BN layer in the proposed
design.

7.2.1.4 Max pooling

Following the activation function, the final layer of each convolutional block in the
CNNs is a pooling layer. It attempts to reduce the size of the feature map by keeping
vital information and reducing the amount of data that must be pushed forward to
the next layer. In addition to the previously mentioned benefit, pooling makes learn-
ing more independent of minor translations of input data.

The two most common types of pooling are max pooling and average pooling. Av-
erage pooling moves a window through the feature map and computes the mean of
the values in the window, whereas max pooling takes the largest value and disregards
the rest. As it is quicker to calculate, we used max pooling in this process. Figure 7.4
shows an example of how max pooling works.
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7.2.1.5 Dropout

For the first time, Srivastava et al. [20] suggested this method as a simple solution to
the overfitting problem. Dropout, in a nutshell, causes some units in a neural network
to be temporarily disregarded during training by the probability of p, requiring the
network to learn features rather than memorizing noisy training input data. It also
shortens training time by lightening the network. Dropout is used before the SVM to
prevent overfitting in the network.

7.2.1.6 Classifier

After extracting features by convolutional blocks, they must be classified. In a typical CNN,
the classifier is a fully connected (FC) layer that classifies a vector of features. An FC layer
in binary classification seeks to build a boundary between the features in order to give
the best possible classification results on training data. However, this strategy may result
in an overfitting problem. SVMs, on the other hand, aim to maximize the margin between
the decision border and the nearest features belonging to each class. This notion improves
the network’s performance when it comes to managing new data. SVM is replaced as the
classifier immediately after the flattening layer in the suggested network architecture.

max pooling

2×2

7 5 4 3 5 4

2 1 2 7 3 4

6 2 6 7 2 3

2 3 1 1 5 3

7 7 5

7 2 6

8 8 5
8 2 8 5 3 2

6 7 4 1 4 4

Figure 7.4: Example of max pooling operation.
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7.2.1.7 Loss function and optimizer

Hinge loss is utilized as the loss function to calculate the network’s prediction error
when training all network sections as a single body. The hinge loss, primarily used in
SVMs to maximize margin, is defined in eq. (7.6):

L ysð Þ=max 0, 1− yt.ysð Þ (7:6)

where ys shows the classifier’s raw score and yt stands for the actual class label.
In order to reduce the value of the stated equation during the training phase, the

Adam optimizer method [21] with an L2 normalization is used instead of the standard
stochastic gradient descent.

7.2.2 Training and testing

As previously stated, this method assesses the structure’s condition by monitoring each
element separately using a different CNN-SVM; in contrast to most prior centralized
methods, decentralization aids in detecting several class damages that co-occur in the
structure. Raw acceleration signals in both damaged and healthy states are used to train
the CNNs. Signal data from three accelerometers are used as input in the suggested ap-
proach. Using the signals of two auxiliary accelerometers could reduce the amount of
data required for training. Considering a structure with M elements and N accelerome-
ters, M CNN-SVMs must be trained to monitor all elements. Every accelerometer in the
network collects a vector of the structure’s acceleration responses. Suppose Z features
were required to train each CNN using only a single accelerometer signal for each ele-
ment, NZ features would need to be collected from the accelerometers to train all the
CNNs. In this case, adding data from two more existing accelerometers reduces it to al-
most NZ/3 features. The authors proposed employing data from the element’s nearby ac-
celerometers as an auxiliary, with more specific information demonstrated in the
following section, combining data from three accelerometers in conjunction with the
suggested CNN-SVM improved accuracy.

For element i, undamaged and damaged data are as follows:

Ui = Ui1 Ui2 Ui3½ � (7:7)

Di = Di1 Di2 Di3½ � (7:8)

where Ui and Di denote measurement signals for ith element in undamaged and dam-
aged states, respectively. The terms Ui1, Ui2, and Ui3 represent the acceleration re-
sponses for the healthy condition of the ith element recorded by the first, second, and
third nearest accelerometers, respectively. The same pattern is established for the
damaged condition.
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In this approach, the undamaged data set for the ith element includes signal re-
sponses in the ith element’s healthy state, while one of the others was likewise dam-
aged. This approach mitigates the effects of other damaged elements on the monitored
element’s classification performance.

As CNN can only work with fixed input sizes, the next step is to divide the re-
sponses into many fixed-length frames with a length of sf after collecting responses
in both damaged and undamaged states of the ith element. In this process, damaged
frames are labeled 1, and undamaged frames are labeled 0:

Ui =

Ui1,1 Ui2,1 Ui3,1

Ui1,2 Ui2,2 Ui3,2

..

.

Ui1,Nu Ui2,Nu Ui3,Nu

2666664

3777775 (7:9)

Di =

Di1,1 Di2,1 Di3,1

Di1,2 Di2,2 Di3,2

..

.

Di1,Nd Di2,Nd Di3,Nd

2666664

3777775 (7:10)

where Nd and Nu stand for the number of damaged and undamaged frames, respec-
tively. In eqs. (7.11) and (7.12), the jth frame of signals in the undamaged and damaged
condition of element i is shown. Each frame has a dimension of sf × 3:

UFi,j = Ui1,j Ui2,j Ui3,j
� �

(7:11)

DFi,j = Di1,j Di2,j Di3,j
� �

(7:12)

Assuming that each accelerometer’s signal consists of su and sd samples for the un-
damaged and damaged states of a given element, the total number of frames in the
undamaged and damaged cases is determined as follows:

Nu =
su
sf

(7:13)

Nd =
sd
sf

(7:14)

Given that damage in other elements is considered the healthy condition for a single ele-
ment, the values of Nu and Nd are noticeably different, resulting in an unbalanced data
set for training. To overcome this issue, during the framing step, an equal number of rows
from each scenario in the undamaged condition was chosen, separated into equal length
frames, and shuffled; the first Nd frames are then used as undamaged frames for training.

After supplying the necessary data for each CNN-SVM, they should be trained individ-
ually for several epochs using the backpropagation algorithm. Based on validation data,
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the best performance of each of them will be saved during the training approach. This
approach keeps the network from overfitting the training data.

The final step in this method is to put each CNN-SVM through its paces on new
data that the networks have never seen before. The following are the steps in the test-
ing procedure:
1. Divide input signals into frames of fixed-length sf .
2. For each element, classify undamaged frames as 0 and damaged frames as 1 by

the related network.
3. Calculate the percentage of the damage possibility (DPi) for the ith element by av-

eraging the outputs as follows:

DPi =
Pni

j=1 Li,j
ni

× 100 (7:15)

where Li, j is the label output of the jth frame processed by CNNi and ni is the total
number of the input frames classified by CNN− SVMi. DPi is expected to be close to 0
for undamaged elements and 100 for damaged elements.

Section 4 provides details about the hyperparameters of the typical CNN-SVM in
this paper.

7.3 Case study

This paper tests the proposed technique on the Qatar University Grandstand Simula-
tor (QUGS), a new large-scale SHM benchmark problem. This benchmark is consid-
ered challenging as detecting joint damages demands computationally expensive
models, which may lead to a slower approach [22]. For validation, both noise-free and
noisy signals are employed. The algorithm’s resistance is further tested by varying
batch sizes, signal durations, and sample rates.

The structure of QUGS is depicted in Figure 7.5. A laboratory steel structure with 8
girders and 25 filler beams supported on four columns serves as the benchmark. Thirty
accelerometers are installed in this structure’s joints. Loosening the bolts at the beam-to-
girder joints under white noise shaker excitation at a sampling frequency of 1,024 Hz is
used to mimic various damage situations. This method was repeated twice for each case,
and the results were presented as two data sets. The data set includes 36 different scenar-
ios, including 30 single damage cases with damage at each joint, five double damage
cases, and a completely undamaged case. Each signal comprises 262,144 samples collected
over 256 s. Reference [23] provides more information on the benchmark structure. Struc-
tural Dynamics Team [24] published the data in 2018 as an SHM benchmark.

The following section discusses applying the proposed method to the mentioned
benchmark in various signal conditions.
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7.4 Results and discussions

This section discusses the results of training and evaluating 240 networks. The meth-
od’s efficiency is examined using various signal conditions. The effect of changing hy-
perparameters is investigated on noise-free data, as well as evaluating the rapidness
of the network.

7.4.1 Validation results on noise-free data

The network’s hyperparameters are determined by trial and error. Table 7.1 shows
the typical CNN-SVM setup used in the method. In this network, the batch size is 8, the
signal length is 256, and the learning rate begins at 0.01 and steadily lowers after a
series of epoch points. To speed things up, the training uses the PyTorch framework
in the Python 3.8 language environment, with an Intel Core i7-4720HQ CPU and an
NVIDIA GTX 950 m graphic card.

About 75% of data set A is used to train 30 networks using the technique de-
scribed in Section 2.2, while 12.5% of data set B is used to validate them. A test data set
including 245 frames from each scenario is also used to evaluate the technique on
each one individually.

Following training, the method’s performance is validated using accuracy as well
as four other evaluation metrics: Precision, Recall, F1-score, and Area Under the Re-
ceiver Operating Characteristic Curve (ROC AUC) score. The following formulas are
used to compute precision, recall, and F1-score:
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Figure 7.5: Qatar University Grandstand simulator structural steel frame [25].
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Precision= TP
TP+ FP

(7:16)

Recall= TP
TP+ FN

(7:17)

F1= 2× Precision×Recall
Precision+Recall

(7:18)

where TP denotes the number of true positives for the considered class, the true posi-
tive for a target class relates to signals from that class that the network correctly cate-
gorizes. On the other hand, false positive refers to the number of signals from other
classes that were wrongly classified as belonging to the regarded class. The number of
signals that do not belong to the considered class and are not labeled by the classifier
is referred to as the true negative (TN).

Table 7.2 summarizes the method’s outcomes on the training and validation data
sets. The technique classified the validation data set with an accuracy of 0.994 on av-
erage, suggesting strong performance. Also, a distinct data set was employed in each
example to assess the method’s accuracy. To this end, 245 frames from each scenario
were collected and sent to the networks, and the TP value in percentage was calcu-
lated for each of them using Section 2.2. As shown in Figure 7.6, the accuracy varies
between 98.4% and 99.88% for different scenarios, and the technique is 99.1% accu-
rate on average, which means that, despite using binary classifiers, the approach can
dependably distinguish between all classes.

Table 7.1: Network architecture.

Inp  ×  ×  ×  Kernel size/number Padding Activation Rate

BN  ×  ×  ×  − − − −
C  ×  ×  ×  − − − −
BN  ×  ×  ×  ( × )/ Same ReLU −
P  ×  ×  ×  − − − −
C  ×  ×  ×  ( × )/ Valid − −
BN  ×  ×  ×  ( × )/ Same ReLU −
P  ×  ×  ×  − − − −
Dr − ( × )/ Valid − −
Fl , − − − .
SVM  − − − −

BN: batch normalization; C: convolutional layer; P: pooling layer; Dr: dropout; Fl: flattened layer; SVM:
support vector machine.
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7.4.2 Effect of batch size

While all other hyperparameters remain constant, the training procedure is repeated
for each of the three batch size values of 8, 16, and 32. Table 7.3 summarizes the aver-
age results. Although batch number 8 yields excellent results, the outcomes deterio-
rate slightly as batch size increases. As a result, changing batch size does not affect
learning damage features in this technique.

Table 7.2: Evaluation metrics on the training and validation data.

Net ID Training Validation

Accuracy Accuracy Precision Recall F score ROC AUC

 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
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7.4.3 Signal length

Figure 7.7 indicates that all assessment measures decline marginally when the signal
length is cut in half. Even though the minimum validation accuracy was reported to
be 0.891 for a single joint, the average remained at 0.989. In general, even when the
signal duration is cut in half, the process is highly reliable and accurate.
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Figure 7.6: Accuracy in each scenario (in percentage).

Table 7.3: Evaluation metrics for different batch sizes.

Batch size Training Validation

Train accuracy Valid accuracy Precision Recall F score ROC AUC
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7.4.4 Sample rate

As previously stated, the preceding parts used 75% of data set A for the training
phase. As a result, we wanted to see if we could reduce the quantity of data needed to
train the networks by lowering the sample rate. The issue is accomplished by employ-
ing a half sample rate and limiting the amount of training data to 50%. As shown in
Figure 7.8, downsampling the training data to around 66% of its previous size had no
discernible effect on the method’s performance. The method proved a resilient algo-
rithm against data scarcity with an accuracy score of 0.989 on the validation data set
in this case.
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Figure 7.7: Evaluation metrics for different signal lengths.

Train Accuracy Valid Accuracy Precision Recall F1 score ROC AUC

Normal sample rate 0.999 0.994 0.994 0.995 0.994 0.994

Half sample rate 1.000 0.989 0.985 0.992 0.989 0.989
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Figure 7.8: Effect of sample rate.
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7.4.5 Robustness against noisy data

Even though the data in this study came from real measurements, where containing
noise is inevitable, three different signal-to-noise ratio (SNR) levels of white Gaussian
noise (WGN) were added to the original signals to evaluate the method’s capacity to
learn under high noise situations. The SNR is computed as follows [26]:

SNRdB = 10× log10
Psignal
Pnoise

� �
(7:19)

where Psignal and Pnoise represent the average power of the signal and the noise,
respectively.

The training approach was repeated with a training data set containing additive
WGN with SNRs of 0, 2.5, and 5 dB. Figure 7.9 depicts the original signal, its noisy form,
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Figure 7.9: Acceleration time-history for a 1 s (1,024 samples) signal of joint 2, additive WGN
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and the additive WGN with SNR = 0, indicating that the average power of the signal and
the noise are equal. The hyperparameters are all the same as they were in Section 4.1.
Following training, the CNNs were validated using the validation data set with the same
levels of WGN. These three SNRs were chosen to denote extreme noise conditions.

Figures 7.10 and 7.11 compare the results of the noisy scenarios to the noise-free con-
dition for the training and validation data sets, respectively. Although an SNR of 0 dB in-
dicates a severe noise condition, most networks maintained an accuracy of higher than
90%. Furthermore, as seen in Figure 7.12, the method’s accuracy at 5 dB and 2.5 dB SNR
levels has decreased marginally compared to noise-free data, while it remains accurate at
a high SNR level of 0 dB. In general, the proposed methodology has proven to be a reli-
able tool for detecting structural degeneration in various environmental circumstances.
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Figure 7.11: Networks’ accuracy of validation data for different SNR levels.
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7.4.6 Speed performance

To calculate the suggested CNN-SVM’s speed, 245 frames of length 256 were delivered
to each network, and the required time was determined independently using the GPU
and CPU. After that, the average required time to process a single frame signal is de-
termined. The findings are based on a mean of 30 runs. The results show that a 256-
frame render takes 0.419 ms on GPU and 0.424 ms on CPU. The time required to pro-
cess a single frame was not significantly different while using the CPU or GPU due to
the network’s modest architecture. However, the time required to classify a 1-s signal
for each CNN-SVM is approximately 1.7 ms, demonstrating that the method is both
fast and robust, making it suitable for real-time applications.

7.5 Conclusion

– Findings show that the proposed method outperforms others in detecting struc-
tural damage in both single and double damage cases.

– Both the training and validation data sets were subjected to white Gaussian noise
with three distinct SNR values. The technique was 93% accurate on the validation
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data set. As a result, this examination indicates the method’s promising perfor-
mance in terms of robustness in encountering signal noises.

– Even in noisy environments, the algorithm can learn damage features straight
from raw acceleration data, with no preprocessing or handcrafted feature extrac-
tion required.

– This study aimed to examine how batch size, signal length, and sample rate af-
fected the results. The method’s performance is sufficiently resistant to these
changes.

– The amount of data necessary for training is lowered by adding signals from two
existing accelerometers to the input. It also enables the method to use a two-
dimensional architecture, which converges faster and has more learnable param-
eters than the 1D kind.

– Unlike traditional approaches, this technology is decentralized, with each CNN ad-
hering to a straightforward design. As a result, the suggested technique is compu-
tationally quick and low-cost, allowing it to be implemented on various ordinary
devices.

– The proposed method’s required time to evaluate new data is smaller than for
real-time alternatives.

However, this method necessitates data from damaged structures, which is costly and,
in some instances, difficult to generate in real-world applications. As a result, future
works will consider the feasibility of applying finite element methodologies to gener-
ate damaged data and the one-vs-all classification strategy. Given that the proposed
method was tested on a data set with joint damages, it should be tested on other dam-
age scenarios as well, such as mass changes and stiffness reduction. As a future study,
the authors also considered adding a capacity for anticipating damage severity to the
existing system. Another practical limitation is the number of accelerometers that can
be included in complex construction. Future studies using fewer accelerometers
should be investigated to overcome this issue.
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8 Fast probabilistic damage detection using
inverse surrogate models

Abstract: Bayesian inference has been widely employed in structural health monitor-
ing (SHM) to evaluate structural integrity by inferring damage indices based on phys-
ics-based computational simulations and or field observations; this is a fundamentally
inverse problem. To overcome the challenge caused by the computationally intensive
physics-based simulations, machine learning (ML) models have been enabled as for-
ward emulators to supplant the conventional physics-based simulations in Bayesian
inference. While the forward ML models provide a viable solution to the computa-
tional challenge in probabilistic damage detection using Bayesian inference, it re-
quires coordination with Bayesian inference algorithms, followed by evaluation via
likelihood functions. For complex stochastic systems, the likelihood functions some-
times are analytically intractable even though the forward model has been replaced
with a computationally cheap ML model. This poses challenges to model-based proba-
bilistic damage detection in SHM. This chapter presents two inverse surrogate model-
ing methods for two scenarios of problems to enable for fast probabilistic damage
detection without the need of evaluating the likelihood function. The first method is
for problems where a one-to-one mapping exists between the observations and dam-
age indices. A variational Bayesian neural network is developed to directly map ob-
servations to damage indices and to account for uncertainty in the observations.
The second method adopts the idea of normalizing the flow and is suited to problems
with highly nonlinear behavior when there is no clear one-to-one mapping between
the observations and the damage indices. A summary and a conditional invertible
neutral network (cINN) are employed to extract features for damage detection and to
perform the nonlinear mapping between observations and posterior distributions of
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damage indices. Two engineering application examples, including a miter gate and a
concrete building frame, are used to demonstrate the presented inverse surrogate
models for probabilistic damage detection in SHM.

8.1 Introduction

8.1.1 Background of structural damage detection

Structural damage is defined as any deviation (either intentional or unintentional) in
material, geometric, and/or connectivity characteristics that cause the structure to be
unable to perform its designed function; in the worst cases, damage may threaten
structural integrity and serviceability [1]. Common examples of structural damage
types include corrosion (change in material), cracking (change in geometry), looseness
of bolts (change in connectivity), and broken welds (change in geometry/connectivity).
Damage may occur anywhere on a structure, and its expression ranges from the mi-
croscale to the global scale (both in spatial extent and in time scales). Although struc-
tural damage may not cause a complete failure (e.g., structural collapse), system
functionality may not reach to the expected or required quality due to the occurrence
of a damage [2]. If a damage remains sustained and undetected, it can incrementally
accumulate and propagate over time, and eventually lead to structural failure. For ex-
ample, damage stems from fatigue or corrosion, which is prone to progressively grow,
resulting in failures over a long period, while fire, earthquake or other unexpected
events can cause failure in a short time [3].

Figure 8.1(a) illustrates the three common methods for condition assessment and
damage detection, namely, visual inspection, nondestructive testing (NDT), and struc-
tural health monitoring. Visual inspection is the most common historical (and cur-
rent) method for structural condition assessment. It is typically executed by a human
inspector tasked to observe the structural condition, and evaluate the state based on
the inspectors’ experience and some form of rubric or other guidelines [4]. Although
visual inspection is easy to implement and applicable to many scales of damage, it is
not suitable for complex and large-scale structures, since damage may occur to struc-
tural components with restricted accessibility/observability (i.e., internal damage
masked by decorative coverings) or difficult to visually detect (i.e., loose bolts) [5]. In
addition, visual inspection often provides only qualitative damage assessment in the
absence of a well-defined rubric, and the entire process is labor-intensive, cost-
consuming, and requires operational interruption. The reliability of inspection results
also heavily relies on qualified and highly trained inspectors.

To overcome limitations of visual inspection, NDT techniques have been exten-
sively studied to effectively detect and monitor deterioration in engineering struc-
tures. NDT realizes condition assessment and damage detection in a local sense,
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particularly when prior information concerning possible damage location is available
[6]. A considerable number of NDT techniques are well-established and can be catego-
rized based on different ranges of the interrogating parameter wavelength or, inversely,
the frequency. Interaction between the interrogating parameter at a certain frequency of
the investigated structures enables us to detect structural damage using characteristics
of the wave spectrum [7]. Traditional NDT techniques include acoustic emission [8], ultra-
sound [9], guided (Lamb) waves [10], thermography [11], and laser Doppler vibrometer
[12], among others (see Figure 8.1(b)). Although NDT techniques operate in a relatively
simple way and can identify local damage due to the localized nature, prior knowledge
of the damage type and the location is generally required. The implementation process is
also susceptible to human error, and, often most importantly, the system or structure
usually must be taken out of service to perform the NDT.

Some of these issues and challenges in visual inspection and NDT have promoted
the idea of online, continuous monitoring, without taking the system out of service, now
widely known as structural health monitoring (SHM). SHM is a process of in-service
health evaluation – continuously tracking the structural status and identifying damage
through a reliable and autonomous monitoring system [13]. It enables us to understand
the behavior of the structure under diverse operational conditions, take precautions to
prevent severe damage, and benefit from repairing and maintenance work. The objec-
tive of SHM is to perform a continuous or periodical health monitoring of crucial struc-
tures for deciding whether a timely remedial (maintenance, repair, etc.) action is needed
or not. The basic principle of SHM techniques is that the sensing system or hardware
deployed on the structure of interest and analysis system or software work in alignment
to implement the task of monitoring and evaluation. The hardware part encompasses
sensors mounted on the structure, such as accelerometers, strain gauges, or others, and
data acquisition modules for data collection [14]. Fundamental processing, often known
as intelligent feature extraction, must be performed to extract meaningful information,
accounting for the current status of structure being evaluated [15]. With the assistance of
hardware and software, SHM provides the capability to trace the condition variation of
structure over time using measured structural responses from a network of sensors. The
information concerning the structural performance on targeted function is continuously
updated during the long-term or continuous SHM, which potentially avoids faults or de-
fects to evolve to an unacceptable level. SHM has evolved into a workflow built on statis-
tical pattern recognition, governed by a few fundamental axioms [16].

As such, SHM may be considered an inverse problem where deficiencies of a
structure are inferred using collected measurements in the field, given a certain
known input. A comprehensive monitoring solution combines SHM, which is a diag-
nostic capability, with a prognostic capability. Diagnostics identifies the occurrence,
localization, classification, and/or quantification of damage, representing the current
state of the system. Through prognostics, the information acquired from the diagnos-
tic stage is used to estimate the remaining useful life of a structure or some other
such limit state. Therefore, as shown in Figure 8.2, an SHM strategy can be broadly
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outlined over five levels [13]. The five levels in Figure 8.2 represent the accumulated
knowledge regarding the structural damage states. Level 1 aims at confirming the
presence of damage in a structure. This is usually achieved by observing the struc-
tural properties identified over time, such as modal data (natural frequency and
mode shape), strain energy, and stiffness variation. The goal of level 2 is to determine
the damage location. The methods involving guided waves and ultrasonics can some-
times achieve both level 1 and 2 together, since wave propagation and wave source
location are known [17]. To identify the damage types at level 3, correlation between
the data representing some specific damage types and the currently measured data is
a prior, effectively requiring supervised learning [18]. For levels 4 and 5, advanced
modeling (such as through physics-based finite element analysis (FEA)) is usually
needed to achieve damage quantification and prognostics.

8.1.2 Methods for structural damage detection

Structural damage detection can be generally divided into two groups: data-enabled and
physics-enabled methods. The two groups of methods are complementary, as their com-
bination is frequently employed for application to damage detection. It is difficult to con-
clude that one of them is absolutely superior to the another since they exhibit different
performance results, depending on the different contexts and what is available. An ex-
haustive discussion on the two groups of methods in SHM is available in [19].

Figures 8.3 and 8.4 summarize the characteristics of data-enabled and physics-
enabled methods in terms of appropriate application contexts, advantages, and disadvan-
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Figure 8.2: Five levels of damage detection in SHM.
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tages. For example, data-enabled methods do not require creating an FE model of a struc-
ture, as the implementation is achieved by comparing the current damage condition to
previous observations. Therefore, these methods typically use artificial intelligence and
pattern recognition methods for damage detection to elicit this “change detection,” or
anomalous behavior. Specifically, instead of solving an inverse problem that uses the re-
corded data to infer model parameters, data-enabled methods detect anomalies using un-
supervised learning techniques to compare the reference/baseline features recorded in a
presumed “healthy” condition, to features from the current period; there is no direct
physical interpretation. Data-enabled methods are usually relatively easy to implement,
avoid the challenges in physical modeling of complex structures, and have low computa-
tional cost demands [20]. Some popular methods include auto-associative Artificial Neu-
ral Networks (ANNs) [21], autoregressive models [22], response surface model [23], or any
abnormal detectors (e.g., distance measure). The key components in these methods are
data processing, dimensionality reduction, feature extraction, and anomaly detection. Be-
cause the underlying methodology is unsupervised, one of the challenges in using these
methods is distinguishing true damage from falsely detected damage that may be caused
by environmental change [24].

On the other hand, physics-enabled methods for damage detection require creating
a structural model (e.g., an FE model). With an FE model, structural responses can be
predicted at a new damage state, given a related loading condition. Typically, an FE
model is initially established based on the design, and measured data from the real struc-
ture are used to update the FE model, which will be elaborately introduced in the next
section. Compared to pure data anomaly detectors, these methods consider the underly-
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ing physics, such as material, geometric, boundary, and connectivity properties of the
structure. These methods, therefore, can explicitly represent data under various opera-
tional conditions and simulate structural behavior, which further explains the possible
reasons for variation [25]. FE model has been extensively employed for damage detection
of engineering structures in SHM. However, such model-based methods are relatively
computationally expensive and time-consuming to generate. Furthermore, modeling er-
rors or bias are inevitably introduced, due to assumptions, simplifications, unknown or
missing physics, etc. Correcting such errors would be very challenging and requires suffi-
cient high-quality measurements [26]. In addition, there may be lots of candidate models
due to the different modeling strategies, and it may take prohibitive time to compare
and select the optimal one.

In summary, structural damage detection in SHM is a quite broad topic. In this
chapter, we will only focus on physics-enabled methods for damage detection.

8.1.3 Finite element model updating for damage detection

Physics-enabled structural damage detection has been growing since the 1990s as
computational modeling capabilities have grown dramatically; with the development
and execution of increasingly complex models, it comes with the advantages of physi-
cal interpretability and even prediction of future performance (prognostics) [27]. Fi-
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nite element model updating (FEMU) is a desirable model-based damage detection
method to achieve sustainable condition assessment for engineering structures in
SHM. FEMU aims to minimize the discrepancy between model predictions and the
measured counterparts by progressively adjusting the model parameters or hyper-
parameters until the model can successfully predict the observed structural condition(s)
[28, 29]. As shown in Figure 8.5, FEMU, in general, can be categorized into two main clas-
ses: deterministic methods and stochastic methods.

Deterministic methods, such as sensitivity methods [30, 31] and evolutionary methods
[32, 33], are defined as the optimization of a single FE model to reduce the error be-
tween the actual test and the model-derived results. These methods only give a unique
solution based on a single calibration of structural parameters. The confidence and
reliability in representing a physical structure using the updated parameters are not
available. The model’s credibility must be quantified through a measure of robustness
to uncertainty and prediction accuracy for observations that are not recorded in the
field test [34]. On the other hand, stochastic methods provide a way to incorporate struc-
tural uncertainties into the prediction process by describing model parameters as a
range or distribution functions, considering multiple sets of possible models [35]. Popu-
lar stochastic methods include Bayesian inference [36], covariance matrix adjustment
[37], perturbation method [38], interval model updating [39], and inverse fuzzy arithme-
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tic [40]. Stochastic methods identify not only the optimal model parameters, but also the
associated uncertainty of the parameters. Stochastic methods have been in-depth inves-
tigated and widely applied for model updating and structural damage detection. A thor-
ough literature review of stochastic FEMU can be found in [41].

8.2 Probabilistic structural damage detection using
Bayesian model updating

A wide range of stochastic methods have been developed and successfully applied to var-
ious civil infrastructure systems in the last few decades. Among these methods, one of
the most widely used is the Bayesian model updating. It has attracted a thriving interest
and has been extensively employed for model updating, probabilistic damage detection,
and system identification [42–44]. The Bayesian-based structural damage detection starts
with a FE model, parameterized by assumed uncertain structural parameters, denoted
by θ. In the Bayesian model updating, the measurements collected from the actual struc-
ture are used to update the FE model parameters, θ, and the controllable parameters are
involved during the updating process. The model parameters refer to random variables
related to the FE modeling that need to be calibrated using observations; conversely, the
controllable parameters refer to those that are controllable or fully observable in a test
or an experiment, such as external excitation (in some cases). Specifically, suppose a
FE model ym =Gðθ, f1:mÞ is available, where ym2 R

NY×1 denotes the output of the FE
model at time step m, NY is the number of outputs, f1:m = ½fT1 , fT2 , � � �, fTm� 2 R

ðNu×mÞ×1

denotes the external excitations during the past m time steps, and Nu is the number of
excitation variables, the relation between the experimental observations, yo,m 2 R

NY×1,
and the model-derived outputs is expressed as follows

yo,m = ym +πðf1:mÞ+ τm,

=Gðθ, f1:mÞ+ πðf1:mÞ+ τm,
(8:1)

where πðf1:mÞ is the model bias of a FE model, τk ⁓Nð0, ΣÞ is the observation error
that is usually simulated as Gaussian noise with zero-mean vector and diagonal co-
variance matrix whose diagonal elements are the variances, σ2

i , i= 1, � � �,NY , of the
measurement noise for the i-th response.

Considering both excitation and observations, the uncertain model parameters θ can
be estimated or updated using the Bayes’ theorem,

pθjyðθjyo,1:m, f1:mÞ=
pyjθðyo,1:mjθ, f1:mÞpθðθÞÐ
pyjθðyo,1:mjθ, f1:mÞpθðθÞdθ

∝ pyjθðyo,1:mjθ, f1:mÞpθðθÞ, (8:2)
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where pθðθÞ is a prior distribution of θ, which reflects the existing knowledge and
the initial assumptions that are about to be updated by the uncertain model param-
eters (collectively known as “plausibility.”). Theoretically, one can use any type of
pθðθÞ, depending on the specific application and measurement information. In eq.
(8.2), the yo, 1:m = ½yo, 1, � � �, yo,m� 2 R

NY×m are the observations from t1 to tm, and
pyjθðyo,1:mjθ, f1:mÞ is the likelihood function, given θ and excitation measurement f1:m.
The likelihood function reflects how good is the model, which is characterized by the
model parameter θ and used to describe the true nature of the structural system, success-
fully reproducing the actual observations. pθjyðθjyo,1:m, f1:mÞ is the posterior distribution
that usually requires solving intractable and high-dimensional integrals. The popular
ways to estimate the posterior distribution are Markov Chain Monte Carlo (MCMC) sam-
pling methods, such as metropolis hasting (MH) [45], delayed rejection and adaptive me-
tropolis (DRAM) [46], differential evolutionary adaptive metropolis (DREAM) [47], and
sequential Monte Carlo simulation (SMC) [48].

In some situations, input excitation is not measured or otherwise known, such as
in a test or an experiment under ambient vibration in which the vibration is triggered
by natural/non-artificial force, for example, wind, traffic, or human walking. In these
cases, excitation is often assumed to be broadband Gaussian white noise. Equation
(8.2) is therefore rewritten as

pθjyðθjyo,1:mÞ=
ð
pθjyðθjyo,1:m, f1:mÞpfðf1:kÞdf1:m,

∝
ð
pyjθðyo,1:mjθ, f1:mÞpfðf1:kÞf1:mpθðθÞ,

(8:3)

where pfðf1:mÞ is the join probability distribution of f1:m.
To solve either eqs. (8.2) or (8.3), various approaches have been developed in either

likelihood-based or likelihood-free schemes [49, 50]. A noticeable drawback for both clas-
ses of methods is the required high computational effort due to the large number of
model runs required to achieve a satisfactory convergence. To tackle the computational
burden, numerous surrogate modeling methods have been proposed, which substantially
reduce the computational expense, through the form of either order-reduced models [51]
or various types of metamodels, such as Gaussian process regression [35, 52], response
surface [53, 54], polynomial chaos [55, 56], and artificial neural networks [57, 58]. How-
ever, there are still challenges in the application of surrogate modeling to model updat-
ing, for the purposes of informing SHM. For example, assumptions and approximations
in the surrogate model construction may lead to accuracy loss in surrogate predictions.
In addition, many applications are limited in the use of scalar-valued or time-averaged
data collected under ambient vibration such as modal data (natural frequencies and
mode shapes) identified from the time series data [59]. Multiple surrogate models, corre-
sponding to the relationship between a set of modal data and model parameters, are for-
mulated, which may increase the computational cost [60]. For the situation where the
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input excitations are not measured, the performance of model updating is strongly corre-
lated to how well the modal data are identified and what modal data will be adopted. A
direct use of output-only time-series data has been largely ignored in surrogate model-
based model updating and damage detection. Furthermore, using surrogate models may
not necessarily realize remarkable speed-ups as the fundamental limitation of needing to
run the surrogate model many times may remain.

Motivated by addressing the computational challenges of the current Bayesian in-
ference methods for structural damage detection, this chapter presents two types of
inverse surrogate modeling methods, which allows us to efficiently solve eqs. (8.2) or
(8.3) without evaluating any likelihood function, and obtain the posterior distribution
of damage parameters θ for any given observations in real time. This enables for real-
time SHM using probabilistic damage detection methods.

8.3 Inverse surrogate models for fast probabilistic
damage detection

In this section, inverse surrogate modeling methods for fast probabilistic damage detec-
tion are presented. As shown in Figure 8.6, the presented inverse surrogate modeling
methods, in general, consists of two phases, including an offline training phase and an
online damage detection phase.

In the offline training phase, Nt training samples of θ are first generated according
to its prior distribution. Denoting the training samples as θtrain = ½θð1Þt , � � �, θðNtÞt � and by
accounting for various uncertainty sources, synthetic observation data ysyni, 1:T , i= 1, � � �,Nt

can be obtained, where ysyni,1:T represents the synthetic observation generated using the
i-th training sample of θ. Next, inverse surrogate models are constructed to map the
synthetic observations to posterior distributions of θ directly. After the training of the
inverse surrogate models in the online detection phase, measurements yo,1:T collected
from field test are passed through the trained inverse surrogate models to obtain the
posterior samples of θ, without evaluating any likelihood function, which can often
be a time-consuming phase of the process.

In this chapter, two types of inverse surrogate models are presented for fast prob-
abilistic damage detection.
– The first type of surrogate model is for problems with an invertible response

function ym =Gðθ, f1:mÞ. In other words, there is a one-to-one mapping between θ
and ym, such that an inverse surrogate model can be constructed to obtain poste-
rior samples of θ directly using ym.

– The second type of surrogate model is for a more generalized case, where the one-
to-one mapping between θ and ym does not exist. A conditional invertible neural
network (cINN) is used in conjunction with normalizing the flow to achieve the
probabilistic mapping between the observations and the posterior distribution of θ.
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In what follows, this chapter presents details of the two types of inverse surrogate
models and their application to probabilistic damage detection.

8.3.1 Inverse surrogate model for damage detection with
invertible models

As mentioned above, when ym =Gðθ, f1:mÞ is invertible, one can directly build a surro-
gate model to map the observations yo,1:T to the damage parameters θ. The unmea-
sured input excitation, however, becomes “noise” in the inverse surrogate model due
to the lack of information. The Bayesian method can be employed in the inverse sur-
rogate model to account for this part of uncertainty by quantifying the uncertainty in
the damage parameters θ. In this section, the Bayesian neural network is employed to
accomplish this task.

8.3.1.1 Bayesian neural network (BNN) architecture

ANN as a widely used data-driven method has been proven its great potential for vari-
ous purposes through SHM applications, especially for highly nonlinear structures with
complicated failure models. Traditional ANNs are mostly built to generate point predic-
tion where the prediction accuracy may be strongly affected by the quality and noise
level of the training data. As an alternative way to train an ANN over deterministic
mathematical models, the Bayesian neural network (BNN) is more robust against train-
ing data uncertainties [61] such as uncertainty due to the unmeasured input excitations
in the case of inverse surrogate.

As shown in Figure 8.7, a BNN is essentially a neural network with a prior distribu-
tion on each network parameter, accounting for its uncertainty (i.e., the weights and
biases). The uncertainty in these weights and biases can be propagated into network pre-
dictions, which provides insightful reliability-related information in the context SHM
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Figure 8.6: Flowchart of probabilistic damage detection using inverse surrogates.
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problems. The joint posterior distribution of the network parameters, after observing a
set of training data (Xtr,Ytr), can be expressed as follows:

pðw,b,ΣjYtr,XtrÞ= pðYtrjw,b,Σ,XtrÞpðw,b,ΣjXtrÞ
pðYtrjXtrÞ ,

= pðYtrjw,b,Σ,XtrÞpðw,b,ΣjXtrÞÐÐÐ
pðYtrjw,b, Σ,XtrÞpðw,b,ΣjXtrÞdwdbdΣ

, (8:4)

where w, b, and Σ represent the weights, biases, and the covariance matrix of the
model, respectively. Based on the prior, the posterior predictive distribution, Ytest,
after observing a set of new data, Xtest, can be calculated as

pðYtestjXtest,Ytr,XtrÞ=
ððð

pðYtestjw,b,Σ,XtestÞpðw,b, ΣjYtr,XtrÞdwdbdΣ. (8:5)

The high-dimensional marginalization term in the denominator of eq. (8.4) is typically
intractable. Therefore, variational inference (VI) is employed as an approximation
method in the process of training a BNN, which assumes a family of distributions, Q that
is simpler than pðw,b,ΣjYtr,XtrÞ, and finding the closest member, q✶ðw,b,ΣÞ, in that
family that is similar to the true distribution. The similarity between the two distribu-
tions can be measured by the Kullback-Leibler (KL) divergence – the choice of the dis-
similarity function.

In the rest of the section, the parameter, ω, will be used to represent the parame-
ters w, b, and Σ for simplicity. The optimization model in VI is given by [62]

q✶ðωÞ= argmin KL qðωÞkpðωjYtr,XtrÞð Þf g. (8:6)

The above KL divergence can be expressed using the evidence lower bound (ELBO) as

KL qðωÞkpðωjYtr,XtrÞð Þ= ELBOðqðωÞÞ+ E log pðYtrjXtrÞð Þ½ �, (8:7)
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Figure 8.7: BNN architecture.
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where the ELBO is defined as

ELBOðqðωÞÞ=EqðωÞ log pðYtrjω,XtrÞpðωÞð Þ½ �−EqðωÞ logðqðωÞÞ½ �. (8:8)

Finally, the closest member from the family of the distributions can be found by maxi-
mizing the ELBO as follows:

q✶ðωÞ= argmin
qðωÞ2Q

KLðqðωÞkpðωjYtr,XtrÞÞf g,

= argmax
qðωÞ2Q

ELBO qðωÞð Þf g.
(8:9)

8.3.1.2 Structural damage detection using a BNN as the inverse surrogate model

Civil structures commonly experience several types of failure modes (e.g., cracking, corro-
sion, and boundary condition changes) during their lifetime. An FE model and surrogate
models may thus be used to map the measured structural response to certain types of
damage features in an inverse analysis, as discussed in the earlier parts of this chapter.
As shown in Figure 8.8, the output data (e.g., strain measurements) and the input data
(i.e., the damage, to be defined below) from a high-fidelity FE model become the input
data and output data to train a BNN surrogate model. More specifically, the inputs of the
inverse surrogate are yo,1:T and the output is the damage parameter vector θ. Once the
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Figure 8.8: Damage detection and decision flow using BNN as an inverse surrogate.
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BNN surrogate model is trained, the severity of the damage feature can be predicted by
the model based on the newly observed strain data. Such probabilistic distribution of the
prediction enables the process of fast probabilistic damage detection for risk-informed
decision-making.

8.3.2 Conditional invertible neural networks for probabilistic
damage detection

If ym =Gðθ, f1:mÞ is not invertible, the above-presented BNN will be inapplicable due to
the ill-posedness of the inverse problem. This section introduces the second type of in-
verse surrogate based on the cINN and normalizing flow. In what follows, normalizing
flows are first briefly introduced and later, the inverse surrogate is presented in detail.

8.3.2.1 Normalizing flows

Normalizing flows is the mapping between a complex distribution and a known and
easy-to-sample probability distribution (e.g., normal distribution). The mapping between
the two distributions is invertible and differential. Assume that one has random varia-
bles θ 2 R

N , with complex and irregular PDF pθð·Þ:RN ! R , and Z 2 R
N is a multivari-

ate Gaussian distribution, with PDF pZðzÞ 2 R . Figure 8.9 shows the two types of
mapping in normalizing flow, namely generative direction and normalizing direction.

Generative direction uses an invertible function to realize the forward movement
where a base distribution is transformed into a target complex distribution. Specifically,
z is first sampled from the base distribution pZðzÞ and a generator θ= rðzÞ is applied,
where rð·Þ is an invertible function, to obtain samples of θ. On the other hand, normaliz-
ing direction makes flow in the opposite direction: from a complex and irregular PDF to
a more regular and normal distribution. Let kð·Þ= r− 1ð·Þ be the inverse of rð·Þ such that
z= r−1ðθÞ= kðθÞ, kð·Þ maps the complex and irregular distribution of θ to a multivariate
Gaussian distribution [63]. Under this condition and adopting the Jacobian matrix, a PDF
can be computed through another PDF as follows [63]:

pθðθÞ= pzðzÞ det ∂kðθÞ
∂θ

� ����� ����= pzðzÞ det ∂rðkðθÞÞ
∂z

� ����� ����−1, (8:10)

where ∂kðθÞ
∂θ is the Jacobian of k, and ∂rðkðθÞÞ

∂z is the Jacobian of r. Equation (8.10) implies
that the expected distribution pθðθÞ can be estimated by performing a push forward
of pzðzÞ through rð·Þ.

There are several aspects that need to be emphasized in normalizing flows. First,
the transformation in a normalizing flow strictly requires an invertibility property.
Second, the dimensions of inputs and outputs must be the same. In addition, accord-
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ing to eq. (8.10), the computation of the determinant of Jacobian matrix plays a key
role in the distribution transformation in a normalizing flow. Therefore, selecting an
appropriate flow/transformation structure that has easy-to-compute Jacobian matrix
in a normalizing flow is a priority. In particular, kð·Þ is constructed, which contains a
set of M bijective functions: kð·Þ=k1ð·Þ � � � � � kM−1ð·Þ � kMð·Þ is the composition of
functions, and rjð·Þ=k−1

j ð·Þ, j= 1, � � �, M exists. It can be shown that the resulting rð·Þ=
r1ð·Þ � � � � � rM−1ð·Þ � rMð·Þ is also bijective. However, in practice, it is difficult to create
the nonlinear and complicated transformation satisfying the abovementioned require-
ments [64]. Considerable effort has gone in to develop a proper flow structure. Dinh et al.
[65] proposed the use of a sequence of invertible bijective functions so that the resulting
composition is still invertible and the determinant of the Jacobian becomes a specific
form, which makes its calculation computationally efficient. In this chapter, the cINN,
with a stack of affine coupling layers (ACL), is used as invertible functions to achieve bi-
jective transformation.

8.3.2.2 Conditional invertible neural network

The architecture of cINN is constructed by stacking multiple conditional affine cou-
pling layers (cACLs). cACL is an extended ACL that was proposed by Dinh et al. [65]
and applied to an invertible mapping between inputs and outputs. The difference be-
tween ACL and cACL is conditional inputs, for example, observations, are put aside/
added to the original ACL building blocks.

Figures 8.10 and 8.11 illustrate the workflow of a cINN architecture for forward
transformation and inverse transformation, respectively. For forward transformation,
shown in Figure 8.10, each cACL incorporates two scale functions, denoted as u1ð·Þ,
u2ð·Þ, and two translation functions, denoted as v1ð·Þ, v2ð·Þ. These four internal func-
tions could be modeled as any arbitrary neural networks trained in the forward path.
The layer splits the input and output vector θ and z into two halves θ= ðθ1, θ2Þ and
z= ðz1, z2Þ, respectively. Taking the observation yo as an additional conditioning
input, the forward transformation is realized as follows [65]:

z1 = θ1 � expðu2ðθ2, y0ÞÞ+ v2ðθ2, y0Þ, (8:11)

z2 = θ2 � expðu1ðz1, y0ÞÞ+ v1ðz1, y0Þ, (8:12)

where � is the element-wise multiplication.
The forward transformation can be easily inverted. With z= ðz1, z2Þ inversely pass-

ing through the cACL, the inverse transformation based on the workflow in Figure 8.11
is given as [65]

θ1 = ðz1 − v2ðθ2, y0ÞÞ � expð−u2ðθ2, y0ÞÞ, (8:13)

θ2 = ðz2 − v1ðz1, y0ÞÞ � expð−u1ðz1, y0ÞÞ, (8:14)
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Equations (8.11)–(8.14) make the determinant of Jacobian in eq. (8.10) easy to eval-
uate due to the simple mathematical expression of Jacobian in cACL (upper or lower
triangle matrix). Then, through the invertible transformation and eq. (8.10), a simple
distribution pzðzÞ, such as the standard Gaussian distribution, may be transformed to
a complex distribution pθðθÞ.

Finally, by sequentially stacking multiple cACLs, a neural network is established allow-
ing for a non-linear bijective mapping between a complex distribution pθðθjyoÞ and a
multivariate Gaussian distribution fZðzÞ according to the normalizing flow theory de-
scribed in Sec. 8.3.2.1. The resulting network is the so-called a cINN [66]. In the entire
cINN, all cACL are sequentially connected in such a way that the output of each cACL
serves as the input to the next one. Regarding the parameter inference, the starting in-
puts and ultimate outputs are respectively specified as parameters of interest θ and the
latent variable z. In summary, mappings between pθðθjyoÞ and a multivariate Gaussian
PDF pZðzÞ in the cINN may be realized using an invertible function z=kωðθ; yoÞ with
hyper-parameters ω for normalizing direction transformation, and its inverse function
θ=k−1

ω ðz; yoÞ for generative direction transformation.

Input θ Output Z

θ1

yo

θ2 +

+ z1

z2

υ2 ν2
υ1 ν1

Figure 8.10: The forward transformation in cACL.

Input: θ Output: Z

θ1

yo

θ2 –

– z1

z2

υ2 ν2
υ1 ν1

Figure 8.11: The inverse transformation in cACL.
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8.3.2.3 Structural damage detection using cINN and normalizing flows

(a) Training of cINN as an inverse surrogate for posterior estimation
Building upon normalizing flow and the cINN described above, the goal is to approxi-
mate the posterior distribution pθðθjy1:TÞ of θ for any given observations y1:T using
cINN, where y1:T = ðy1, y2, � � �, yTÞ and yi,∀i= 1, � � �, T is the ith vector of observations.
pθðθjy1:TÞ can be expressed in terms of kω in a cINN:

θ ⁓ pθðθjy1:TÞ , θ= k−1ω z, y1:Tð Þ; (8:15)

where z are latent variables following standard distribution z ⁓N zj0,Πð Þ. The trans-
formation in eq. (8.15) is performed through a cINN.

As a machine learning inverse surrogate, identifying the optimal hyperpara-
meters ω̂ is of paramount importance. The optimal hyperparameters of cINN are
identified by minimizing the KL divergence between the target and the approximate
posterior-given observations y1:T as follows [66]:

ω̂= argmin
ω

EpY1:T ðy1:T Þ KL pθðθjy1:TÞ ~pθ,ωðθjy1:TÞ
��� �� �

;

= argmin
ω

EpYðy1:T Þ EpθjYðθjy1:T Þ log pθðθjy1:TÞf g− logf~pθ,ωðθjy1:TÞg
� �h i

;

= argmax
ω

EpYðy1:T Þ EpθjYðθjy1:T Þ logf~pθ,ωðθjy1:TÞg
� �h i

;

= argmax
ω

ðð
pθ,Yðy1:T , θÞ logf~pθ,ωðθjy1:TÞgdθdy1:T , (8:16)

where py1:T ðy1:TÞ is the PDF of y1:T , E½·� is expectation operator, ~pθ,ωðθjy1:TÞ is the esti-
mated posterior of θ for a given ω of the cINN, and KL½·� is the KL divergence operator.

According to the fundamental theory of normalizing flow presented in Section 8.3.2.1:

~pθ,ωðθjy1:TÞ= pzðz= kωðθ; y1:TÞÞ det
∂kωðθ; y1:TÞ

∂θ

� ����� ����. (8:17)

Hence the optimization model in eq. (8.16) can be rewritten as

ω̂= argmax
ω

ðð
pθ,Yðy1:T , θÞ logf~pθ,ωðθjy1:TÞg+ log det

∂kωðθ; y1:TÞ
∂θ

� ����� ����� �
dθdy1:T .

(8:18)

Assume that there are NMCS sets of synthetic data generated from a forward model
as illustrated in Figure 8.6. Equation (8.18) can be approximated using these samples
as [66]
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ω̂= argmax
ω

1
NMCS

XNMCS

i=1
log p kωðθðiÞ; yðiÞ1:TÞ

� �
+ log det

∂kωðθ; y1:TÞ
∂θ

����
θðiÞ , yðiÞ1:T

 !�����
�����

 !( )
,

(8:19)

where NMCS is the number of MCS samples, θðiÞ is the ith MCS sample of θ, and yðiÞ1:T jθðiÞ
is the synthetic observation generated using a forward model with inputs of θðiÞ.

Taking the negative of eq. (8.19) and recalling the latent variables z are defined as a
standard Gaussian distribution so that pzðz= kωðθ; y1:TÞÞ= 1ffiffiffiffi

2π
p exp − 1

2 kωðθ; y1:TÞ½ �2
n o

,
the optimization model for training cINN is rewritten as

ω̂= argmin
ω

J ωð Þ, (8:20)

with

J ωð Þ= 1
NMCS

XNMCS

i=1

1
2

kωðθðiÞ; yðiÞ1:TÞ
h i2

− log det
∂kωðθ; y1:TÞ

∂θ

����
θðiÞ , yðiÞ1:T

 !�����
�����

 !
, (8:21)

where J ωð Þ is treated as a loss function for the posterior estimate, which can be solved
by any stochastic gradient descent methods.

(b) Structural damage detection using cINN
Since monitoring data in SHM are usually in the format of time series, images, or video,
an additional neural network can be used in conjunction with the cINN for damage de-
tection. Such a framework has been proposed by Radev et al. [67] and is named as Bayes-
Flow. This additional neural network is essentially a preprocessing step for the simulated
or measured data, prior to the cINN, for damage detection. In BayesFlow, this neural net-
work is called a summary network. Through the addition of a summary network, mea-
sured raw data (i.e., y1:T ) is summarized or filtered to a fixed-size and low-dimensional
length, which will be used as inputs to cINN for damage detection using the Bayesian
model updating method. The summary network allows to automatically learn the maxi-
mally informative statistics directly from the measured data rather than the traditional
handcrafted features. The choice of the summary network depends on the properties of
the measured data. For example. a bidirectional long short-term memory (LSTM) [68], as
a summary network, is well tailored to time-series data, as LSTM network typically ena-
bles to naturally manipulate the sequential measurement with long-memory and non-
linear features. Another preference of summary network may be a 1D fully connected
convolutional neural network (CNN), which has been adopted to learn summary statistics
of temporal responses for Bayesian inference [69].

After accounting for the summary network, the flowchart of probabilistic damage
detection using inverse surrogates given in Figure 8.6 is revised as shown in Figure 8.12.
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Mathematically, a summary network can be expressed as

~y= λγðy1:TÞ, (8:22)

where λγð·Þ is the summary network with parameter γ, and ~y is the summarized fea-
ture from the network that will be used as y0 in the inference network (i.e., cINN).

To ensure the performance of damage detection, the cINN and summary network
need to be trained together. The hyperparameters ω and γ of the two neural networks
(i.e., cINN and summary network) are estimated by minimizing the expected KL diver-
gence, similar to eq. (8.16). The optimization model given in eq. (8.20) can be revised
accordingly as follows [67]:

γ̂, ω̂= argmin
γ,ω

J γ,ωð Þ, (8:23)

where

J γ,ωð Þ= 1
NMCS

XNMCS

i=1

1
2

kωðθðiÞ; λγðyðiÞ1:T jθðiÞÞÞ
h i2

− log det
∂kωðθ; λγðyðiÞ1:T jθðiÞÞÞ

∂θ

�����
θðiÞ ,yðiÞ1:T

0@ 1A������
������

0@ 1A.

(8:24)

After the estimation of the parameters, γ̂, ω̂, the posterior distribution pθðθjy1:TÞ may
be efficiently approximated for a given y1:T using the inverse surrogate.
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Figure 8.12: Probabilistic damage detection using a summary network and an cINN.
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The above presented inverse surrogate process, including variational BNN and
cINN, can achieve the amortized inference. Although a relatively expensive computa-
tional cost is needed during the training, it may be executed offline. After the training,
the trained networks can efficiently estimate the posterior of the damage parameters
for any given new observed data within a few seconds. Next, two case studies will be
used to demonstrate the presented inverse surrogates in this chapter.

8.4 Case studies

8.4.1 Case study 1: damage detection of a miter gate

8.4.1.1 Modeling of miter gate failure

Miter gates play an important role in inland waterway systems by helping cargo ships
navigate different water elevations [70]. The aging of these steel structures is manifested
by multiple forms of damage. Among them, the most concerned damage is the quoin
block damage, leading to the contact loss between the quoin block and the lock wall, as
shown in Figure 8.13. A “gap” is referred to as the severity of such a contact loss.

An FE model for a miter gate was constructed using Abaqus 2020 as shown in Figure 8.14.
The model has been previously validated with field data to provide accurate physics,
which is employed in this paper to predict the strain responses of the gate [71, 72]. As
indicated in Figure 8.14, the “gap length” (i.e., quoin block contact loss) is modeled by not
fixing the full length of the contacting boundary conditions along a certain length.

a)

Leakage due to the
quoin block damage

b)

Figure 8.13: Quoin block damage (gap).
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8.4.1.2 BNN surrogate modeling and damage detection

The BNN surrogate model used in this section contains two layers, with 50 neurons in its
hidden layer, to learn the mapping between the strain measurement and the gap length.
For training and testing data, 3,000 data points were obtained using the ABAQUS FE
model by varying the value of the damage parameter (i.e., gap) for training and testing
purposes. Among the 3,000 data points, 2,000 of them are used for training and the re-
maining are for testing. During training, synthetic measurements are used as input, and
the gap length is used as output by following the procedure described in Section 8.3.1.

After the training of the BNN as an inverse surrogate model, it is employed to directly
map strain measurements to probabilistic damage parameter (i.e., gap length). Figure 8.15
shows the sensor readings from 4 randomly selected sensors deployed on the miter gate.
The sensor readings are obtained by adding noise to the synthetic sensor measurements.

Figure 8.16 shows the predicted posterior distribution of the gap length over 1,000
time steps. As shown in Figure 8.16(b), the mean prediction and the 95% confidence
intervals suggest that the BNN model can accurately predict the damage state (i.e., the
gap length) with high confidence for given strain measurements.

b)a)

Healthy state

(full length fixed)

Damaged state

(with gap length)

Figure 8.14: Quoin block damage (gap length) simulation using the FE model.
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and (b) first 1,000 reads.
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Figure 8.17 depicts the comparison of the posterior distributions obtained from
BNN and the true gap length for four different time instants. As shown in this figure,
the mean of the posterior distribution is very close to the true gap length. This demon-
strates the effectiveness of using BNN as an inverse surrogate model for fast probabi-
listic damage detection.

8.4.2 Case study 2: a concrete building frame

8.4.2.1 Modeling of damage in a concrete building frame

A concrete building frame, a full-scale test structure in Structural Engineering and Mate-
rials Laboratory on Georgia Tech Campus [64, 73], is used to verify the capability of cINN
(i.e., the second type of inverse surrogate model described in Sec. 8.3.2) for damage detec-
tion. Four identical frame components, denoted as #1 ~ #4 in Figure 8.18. (a), and another
two frames at the outermost and innermost for collapse prevention are assembled to
form the entire building frame. Due to the separated distribution among all frames and a
clear space between every two components, each frame component can be modeled and
analyzed independently. In this case study, structural damage detection for the frame
component #1 is implemented to demonstrate the capability of the presented inverse sur-
rogate. Figure 8.18 (a) shows the front, elevation, and side view of frame #1.

Figure 8.18 (b) shows the FE model of frame #1 in which 2,302 DOFs are considered,
and a diagonal mass matrix is designed with zero element in the rotational direction
[74]. In the concrete building, a total of six stiffness parameters, representing the
change in elastic modulus, are selected to be updated, denoted as θ1 ⁓ θ6, as shown in
Figure 8.18 (b), where θ1 ⁓ θ4, respectively, are assigned to reflect the change between
the nominal and the actual elastic modulus of the longitudinal beam members (x direc-
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Figure 8.16: Damage detection results: (a) posterior distribution of the gap length over 1,078 time steps
and (b) posterior distribution of gap length using the selected 100 time steps.
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tion) at the first and second floors. Similarly, θ5 ⁓ θ6, respectively, are assigned to reflect
changes in the elastic modulus for both the slab and the lateral beam members (y direc-
tion) at the first and second slabs. In addition, suppose that a vibration test is per-
formed under ambient vibration so that the input excitation is not known but is
modeled as Gaussian white noise with power spectral density of 3 N/

ffiffiffiffiffiffi
Hz

p
. Figure 8.18 (b)

shows the deployment of accelerometers at the two slabs; only vibration responses on
the vertical and longitudinal directions (z and x directions) are measured. Since the
number of sensors is limited and the measured data are always incomplete in practice,
only acceleration data at 26 DOFs are measured. Regarding data configuration, 4-min ac-
celeration responses are measured with a sampling frequency of 100 Hz. To mimic the
measurement noise, the Gaussian white noise of 5% root-mean-square (RMS) noise-
signal-ratio (NSR) is added to all measured data. Figure 8.19 shows the example of two
measured acceleration responses.
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Figure 8.17: Comparison of posterior distribution history and the true gap length for four different cases.
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8.4.2.2 Structural damage detection using cINN as an inverse surrogate

A total of 800 sets of training samples with respect to six stiffness parameters are gen-
erated from uniform distribution U ⁓ −0.3, 0.3ð Þ, using Latin hypercube sampling.
Based on the samples, 800 sets of acceleration responses are generated using the FE
model. An extra 100 sets of data are generated for model validation. The summary
network and cINN described in Section 3.2 are jointly trained. Ten independent cACLs
are stacked to build the architecture of cINN. Forty epochs with 200 iterations each
are adopted to train the neural networks using the simulated acceleration data. After
the training and validation of the summary network and cINN, damage detection can
be performed. In this example, one damage scenario with multiple damage locations
is intentionally created, as listed in Table 8.1. Suppose the initial FE model is in an
intact state. The negative sign in Table 8.1 denotes stiffness reduction. For instance,

θ1 =
Ed1 −Eud1

Eud1
= −10% represents stiffness reduction of 10% in the elastic modulus of the

#4
#3

Collapse prevention frames

#2 #1

5.5 5.5 1.4 1.4

3.7

3.7

Unit: m

(a) View of the structure

: Measurement location

: Measurement direction

: Model parameters representing elastic modulus
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θ1 ~ θ6
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θ4

Figure 8.18: Concrete building frame.
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longitudinal beam members at the first floor, where Ed1 and Eud1 , respectively, are the
damaged and undamaged elastic modulus.

Ten sets of vibration responses at 26 DOFs under damaged condition are measured with
4-min duration. The performance of inverse surrogate on damage detection is also com-
pared with an advanced sampling-based method called, DREAM [47]. When applying
DREAM for damage detection, acceleration data have to be converted into frequency-
domain data, such as modal data, for example, natural frequencies and mode shapes,
due to the assumption of ambient vibration and unmeasured excitation. Herein, the first
eight modes, identified from the same measured accelerations in the damaged condition,
are used in DREAM. A total of 20,000 samples are generated to estimate the posteriors.

Figure 8.20 shows the results of damage detection by BayesFlow (i.e., the inverse
surrogate with a summary network and a cINN) and DREAM. The inverse surrogate
(i.e., BayesFlow) shows outstanding performance in detecting structural damage across
different datasets, while the number of data sets significantly affects the performance
of DREAM. For example, in the case of one data set, it is seen in Figure 8.20(a) that the
posterior estimates from DREAM show inferior accuracy compared to BayesFlow, such
as maxima far away from the true values (e.g., θ1 ⁓ θ2) and having very flat shapes (e.g.,
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Figure 8.19: An example of measured acceleration for 4 min.

Table 8.1: Damage location and severity of concrete building.

Damage scenario Damage location (damage severity)

 θ1 (–10%), θ3 (–20%), θ4 (–10%), θ5 (–20%)
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θ1, θ2, θ6). In one given dataset, DREAM gives complete false damage state estimation,
while the inverse surrogate (i.e., BayesFlow) still accurately estimates the posteriors
for all parameters. With the amount of data increasing in Figures 8.20(b)–(d), the ac-
curacy of damage detection using DREAM tends to be increased noticeably. However, all
posterior densities from DREAM in Figure 8.20(b) distribute over a relatively wider re-
gion, but the posterior shapes from the inverse surrogate (i.e., BayesFlow) have smaller
dispersion. With more data available, the approximate posteriors from the two methods
become similar, as illustrated in Figure 8.20 (c) and (d).

Figures 8.21–8.24 show the results of the identified damage severity and the associ-
ated uncertainties. As seen in Figure 8.21, where only single data set is available, Bayes-
Flow identifies stiffness reduction with good accuracy while DREAM falsely detects the
damage severity in terms of θ2. In addition, although the stiffness reduction for θ3 ⁓ θ5
identified by two methods is similar, the associated uncertainties from DREAM are
much larger than that from BayesFlow, indicating less reliability using DREAM.
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Figure 8.21: Damage identification by one datasets on concrete building.
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As shown in Figures 8.22–8.24, with the number of datasets increasing, the dam-
age severity identified by BayesFlow and DREAM get closer to the ground truth. How-
ever, the identified damage uncertainties, characterized by the standard deviation
using BayesFlow, are significantly lower than those from DREAM. It probably can be
explained that the use of modal data in DREAM inevitably induces errors, which may
result in additional uncertainty on parameter estimation. The results again confirm
that the inverse surrogate model (i.e., BayesFlow) performs better than DREAM on
probabilistic damage detection in two aspects: (1) Inverse surrogate has a stable and
robust performance on damage detection, given different data information; (2) In-
verse surrogate identifies damage severity with low uncertainty, indicating reliability
on damage detection.
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Figure 8.22: Damage identification by two datasets on concrete building.
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Table 8.2 summaries the computational cost using the inverse surrogate and
DREAM for damage detection, given ten datasets. It is noted that the inverse surrogate
(i.e., BayesFlow) takes around 25 h for training. After training, it takes 7 s to perform
damage detection on ten datasets. On the contrary, DREAM takes about 3.2 h to com-
plete the task of damage detection.
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Figure 8.23: Damage identification by five datasets on concrete building.
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8.5 Conclusion

This chapter presents two types of inverse surrogate modeling methods for fast prob-
abilistic damage detection. The first type of inverse surrogate is based on the Bayesian
neural network and is for the problem with invertible response function. The other
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Figure 8.24: Damage identification by ten datasets on concrete building.

Table 8.2: Comparison of computational cost between inverse
surrogate and DREAM.

Inverse surrogate DREAM

Training (h) Inference (s) Inference (h)

  .
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type of inverse surrogate is for problems with more generalized nonlinear response
functions.

The presented inverse surrogate modeling methods can bypass the high computa-
tional effort required by the conventional Bayesian model updating-based SHM. They
consist of an offline training phase and an online damage detection phase. In the off-
line training phase, synthetic damage data and observation data are collected from
high-fidelity simulation models for the training of the inverse surrogates. After the
training of the surrogates, the surrogate models can be used in the online phase to
efficiently predict the posterior distribution of the damage parameters without com-
puting complicated likelihood functions.

Damage detection in a miter gate and in a concrete building frame are used to
demonstrate the capability of the presented inverse surrogate modeling methods. Re-
sults show that although inverse surrogate takes a long time in training, the training
can be carried out offline. Damage detection can be conducted in real time, given
measurement data after the training. It indicates that inverse surrogate is a feasible
and promising tool for model updating and probabilistic structural damage detection.
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9 Remote sensing techniques for post-
disaster infrastructure health monitoring

Abstract: Natural disasters can be predicted but cannot be controlled. Earthquakes,
tsunamis, and cyclones are among humankind’s most catastrophic natural disasters.
Disasters not only affect human life but also damage the infrastructure. Estimating
infrastructure damages play a critical role in finding out the area and the amount of
work that needs to be reconstructed. One of the major problems is to analyse accurate
damages in buildings rapidly. Accurate destruction analysis helps engineers and plan-
ners provide a plan for rehabilitation in the affected area. This chapter discusses the
different remote sensing techniques used in building damage detection. The study re-
views damages due to different natural hazards and outlines the general framework
for building damage detection. In this chapter, we also propose a novel approach with
a framework for disaster damage monitoring using various data sources.

9.1 Introduction

The first important task after natural disaster was to immediately assess the damages.
This data supports various organisations to respond quickly, which may reduce the
number of casualties. For the same, [1] have developed a real-time damage assess-
ment system to estimate building damage within 15 min after an earthquake occurs
using satellite data. Real-time damage assessment and detection system is the primary
source during the period of initial disaster response. The planning and assessment
help in short-term and long-term recovery. Sometimes, damage detection and estima-
tion are not so accurate and show variation from ground reality; this uncertainty is
due to the different data collection and interpretation techniques. Thus, the study of
various data collection techniques and data interpretation techniques is necessary.

In this chapter, a literature analysis is presented for the various remote sensing
techniques, and presented as a framework. In addition, this article also discusses the
different methods for data interpretation. In the chapter’s last section, we propose a
novel tribrid approach for post-disaster damage assessment using unmanned aerial
vehicle (UAV) and satellite data.
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9.2 Literature survey

The use of remote sensing for building damage detection is not novel. In the last two
decades, many researchers used various remote sensing techniques to estimate build-
ing damage. Satellites have different types of visual and non-visual wavelength bands,
such as SAR, high-resolution imagery, multi-spectral, and hyper-spectral, which show
the capability of observing the Earth to collect various valuable information. On the
other hand, data can also be collected from manual aerial vehicle (MAV) and UAV
using high-resolution cameras and light detection and ranging (LiDAR). The literature
from the last two decades is discussed in Table 9.1.

Table 9.1: Summary of remote sensing methodologies used in building damage detection.

S. no. Author Disaster Year Methodology

 [] Izmit, earthquake, Turkey  Post-earthquake aerial images were
collected and further processed using image
enhancement and edge detection. Polygons
are created over different buildings using a
watershed segmentation method and the
damage is then assessed.

 [] Beichuan earthquake, China  Aerial images are captured using
camera-mounted UAV. DSM (digital surface
model) is created for pre-disaster and post-
disaster data and they are compared to
check the damage in buildings. The data is
segmented, shape- and texture-based are
extracted and compared for pre and post-
disaster events to estimate building
damage.

 [] Haiti earthquake  Both LiDAR data and images were captured
using an aerial survey. DEM (digital
elevation model) and DSM were obtained
from LiDAR data. The image data is then
georeferenced and orthorectified with LiDAR
data. Image segmentation and classification
are carried out using eCongition software.
The result was then evaluated with the help
of ArcGIS software having an accuracy
between  and %.
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Table 9.1 (continued)

S. no. Author Disaster Year Methodology

 [] BAM earthquake, Iran  Pre and post-event image data are collected
and merged with the old vector map. The
image is then georeferenced to create a
building polygon map. The image is then
classified and labelled, and geometric
features are extracted to determine damage
to the building. Sensitivity analysis is
performed using ANFIS. The overall accuracy
was .%, with a kappa coefficient of ..

 [] Chastel landslide  The methodology is based on combining
SAR data with LiDAR point cloud data. The
point cloud data comprises GPS (global
positioning system) and topographical data.

 [] Yushu earthquake  Satellite high-resolution images are used
along with the building polygon. The
building is analysed for roof edge and
interior, improving the accuracy. Buildings
are colour coded based on the damage. The
overall accuracy is .%.

 [] Indonesia, ; Nepal, ;
Italy, ; Haiti, ;
Nepal, ; Taiwan, .

– Satellite data, airborne data, UAV datasets
were collected and analysed. The model is
then trained and tested using CNN
(convolution neural network).

 [] Hurricane Sandy, USA  UAV-mounted camera is used along with
machine learning.

 [] Haiti earthquake  Comparison between pre- and post-
earthquake satellite data using CNN.

 [] Van City earthquake  Aerial cameras are used to capture images
and a comparison is made between pre- and
post-earthquake DSM models, based on
geometric properties such as area, and the
perimeter is then extracted.

 [] Nagapattinam, Tsunami,
India

 Using image analysis, pre- and post-Tsunami
are compared using high-resolution imagery
satellite data.

 [] Kumamoto earthquake  Fixed-wing UAV is used to capture images,
and two machine learning methods – bag-
of-visual-words model and a CNN model –
were used for determining damages in four
different levels, based on the damage.
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In Table 9.1, the literature discusses various remote sensing techniques. Interpre-
tation technics show promising result, with an accuracy between 80 and 90%. From
the table, we can conclude that the various methods follow a common approach. The
framework for the same is illustrated in the flow chart in Figure 9.1.

As explained in the flow chart, as soon as a disaster occurs, we need to decide the
remote sensing technique that will be appropriate and accurate in that situation. The
choice depends on the funds, availability, and expertise [13]. Once the technique is
finalised, data is captured and further processed. Features such as polygon, area, pe-
rimeter, and roofs are extracted. These features are then compared with the pre-
event data. This gives an estimate of the damages that can be evaluated with the
ground reality which helps to determine the accuracy of the developed methodology.
The output provides a guideline to the administration about the structure that re-
quires repair, rehabilitation, or retrofitting.

Occurance of

Disasters

Capturing post

event destruction

data

Extracting features

like area,

perimeter and roofs.

Comparison

between pre event

and post event data

Assessment of

damages.

Levels of
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Validation of result

with ground truth

Repair
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Retrofitting

Remote

sensing

techniques

Figure 9.1: Basic framework for building damage detection.
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SAR data is mainly used in satellite imagery, besides radar. Remote sensing is
used for weather and it can also collect data for urban mapping. Its sensitivity is
enough to capture the heights of the building in pre and post-event data. The resolu-
tion can be up to 1 m for the latest generation of VHR space-borne SAR sensors like
TerraSAR-X and COSMO-SkyMed, which are useful for urban area analysis at the
building level.

Some forms of damage (e.g. pancake collapses) cannot be identified from 2D pho-
tos, but can be detected using airborne LiDAR system rapid and by comprehensive
capture of exact height data. There is little study on utilising actual pre-event and
post-event LiDAR data for building damage identification because LiDAR is still a rela-
tively new technology, and many areas do not have LiDAR coverage. MAV has the
benefit of capturing data of a very large area with a single scan, and can take lot
more time and resources than UAV, while UAV is readily available and requires less
flight planning. For a disaster like a cyclone or hurricane, a UAV is more suitable than
MAV to collect data. UAVs are also cost-effective for data collection.

Similarly, many data interpretation techniques are discussed in Table 9.2. Image
processing is the oldest method and the backbone for all other processes. Machine
learning and deep learning are based on learning algorithms, and researchers use su-
pervised learning to train the classifiers and test them on actual data.

Numerous preliminary tests have been carried out by scientists all around the
world to learn more about identifying earthquake-induced structural damage. The
spatial resolution of the data in Table 9.3 is less than 10 metres, making it suitable for
locating earthquake damage to buildings. Optical images can be processed to extract a
variety of different types of data, including grayscale, spectra, texture, shape, morpho-
logical features, and so on [14, 15], while a digital elevation model (DEM) or stereo-
scopic measurement can be used to obtain height and volume data [16–18].

Table 9.2: Remote sensing techniques and interpretation techniques for building
damage assessment.

Adopted remote sensing techniques Adopted data interpretation methods

– Satellite imagery
– LiDAR
– High-resolution camera with MAV
– Camera with UAV

– Image processing
– Machine learning (ML)
– Deep learning (DL)
– Computer vision
– Surface models (DEM, DSM)
– Bundled software
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9.3 Structural damage evaluation criteria

In Table 9.4, we see the various degrees of damage that may happen to buildings. If the
extent of the damage is variable, so must be the measures taken in response. Heavy
damage to a building necessitates a quick evaluation, does not call for more identifica-
tion precision (since the damages are substantial), and cannot be inspected up-close
without putting inspectors at risk. As a result, contactless instruments may be the most
suitable option. On the other side, bridge tests may be conducted on structures with
moderate damage. However, a higher degree of precision is needed in these cases. Rapid
testing strategies, based on vibration, may be the most suited option here. It is often ad-
vised that high-accuracy procedures and long-term monitoring systems be established in
the event of lightly damaged structures, even when no major damage is obvious. The
different levels of marking structures while processing data is shown in Figure 9.2.

Table 9.3: Remote sensing satellite with the spatial resolution.

Satellite/platform Spatial resolution Satellite/platform Spatial resolution

Worldview- . m TerraSAR-X  m
GeoEye- . m Spot  . m
Worldview- . m Formosat-  m
QuickBird . m IRS-P (Cartosat-) . m
Worldview- . m ALOS  m
Pleiades- . m RapidEye  m
EROS-B . m Spot   m
IKONOS  m Spot  

KOMPSAT-  m

0

(No Damages)
Undisturbed, No sign of structural damages

Visible crack, roof element missing

Wall or roof collapse

Completely collapsed or no longer present

1

(Minor Damages)

2

(Major Damages)

3

(Destroyed)

Disaster Damage Damages level in infrastructure

Figure 9.2: Different damage level markers for data processing.
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9.4 Infrastructure damage detection by comparing
pre-disaster data with post-disaster data

One common technique for assessing structural damage caused by an earthquake is
change detection, with pre-and post-event remote sensing data. Methods for change
detection, such as improved image analysis and a comparison of classification results,
can be used to determine the changes in a structure over time. Improving photos uses
mathematical processes such as subtraction of bands, rationing, and image regression
to merge several images taken at various times.

Table 9.4: A summary of damage level of infrastructures.

Damage
level

Description Implications

Heavy
damage

– Displacement and compressive component
shear failure

– Distinct residual motion, connection settling
– Foundation scour and vertical offset
– Massive spalling and cracking in the

concrete
– Accepting the arrival of the bulk of

reinforcements
– Superstructure has been severely damaged

or unsettled
– Substantial and irreversible bending

– Importance is placed heavily on
evaluating performance.

– Signs indicate that the area is closed
off and no one can enter.

– It could be necessary to replace it,
either partially or entirely.

Moderate
damage

– Compression parts have moderate cracking
and spalling

– Major spalling and cracking of shear keys,
and bent blots and keeper bars without
unseating

– Moderate decrease in cover concrete mass
Moderate

– Approaching moderation
– Foundation scour or medial settling

– Evaluation is on the low-to-medium
priority list.

– Access is denied or severely limited.
– There is a test for the bridge, and it

is essential that repairs be made
right away to prevent further
degradation.

Light
damage

– The foundation has several small cracks and
spalls.

– Hinge spalling and little fractures.
– Modest cracking in the compressive parts.
– Jamming from debris (can be cleaned).
– Distortion does not seem to be permanent.
– Cover concrete with fine fissures.

– Undervalued emphasis on
evaluation.

– Free and easy availability.
– Needs only cosmetic work, however

permanent monitoring may be
necessary.
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9.4.1 Satellite imagery

It is common practise to utilise high-resolution satellite photos to survey a vast region
and assess damage to buildings and other infrastructure. The primary benefit of this
approach is that it aids authorities, hazard rescue teams, and relief workers in assess-
ing the extent of the damage to structures, and making plans for rescue/emergency
operations and organizing relief activities. Satellite image assessment techniques use
time-lapse comparisons to evaluate the extent of physical damage to buildings and
landscapes [19]. Some operations have identified damaged structures by comparing
photographs taken before and after a disaster [20–22]. The field, in this respect, has
utilised several methods. Satellite photos taken in the aftermath of the Oklahoma City
tornado were studied by Myint et al. [21], utilising component analysis, image recogni-
tion, and object-oriented classification to identify the damaged buildings. Results
were found to be more exact with the object-oriented categorisation. The majority of
analytic methods, however, still rely on the time-consuming and resource-intensive
human labour of a team of professionals scanning thousands of photos [23]. There-
fore, various object-classification-based automatic assessment techniques have
been suggested [24–26]. These techniques include the minimal distance classifier, the
decision tree algorithm, and the support vector machine. Automated aerial imaging
damage detection methods were compared by Ye et al. [27]. In order to train and eval-
uate the image classification algorithms, feature sets were first extracted from the
photos. The findings suggest that combining feature sets with several categorisation
techniques might achieve the most significant results. One key drawback of satellite
imagery-based methods is that it is necessary to have photos from both before and
after a threat occurs.

9.4.2 Unmanned aerial vehicles (UAVs)

Increasingly, high-resolution photos are captured quickly using unmanned aerial ve-
hicles (UAVs). UAVs have their uses and benefits while requiring an on-site operation.
This platform allows for a more thorough inspection and, as a result, a more precise
damage assessment by taking a huge number of photographs and videos. UAVs are
more practical, inexpensive, and simple to operate than satellites because of the re-
cent developments in sensing, low-cost cameras, and autonomous navigation. Because
of these benefits, UAVs are increasingly being used to evaluate severely damaged
buildings where access is restricted. Three phases make up the UAV-driven damage
assessment [28]. (2) Visual data analytics: extracting information characteristics from
pictures and comparing with a priori information to discover deviations from the
norm. (1) Image acquisition: gathering photographs or videos of damaged structures
or places. Third, data visualisation tools allow for quick assessment of the present
damaged state of structures. Several research projects have been carried out utilising
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this method, demonstrating the great potential of this framework for use in damage
assessment. Hallermann and Morgenthal [29] showed how this system might be used
in practice to detect the movement of a massive retaining wall. Separate footage from
UAVs captured the wall in its calibration (original) and converted (distorted) states. In
order to detect alterations to the wall, the collected images underwent photogrammet-
ric analysis and were converted into a 3D point cloud, which was then compared and
displayed using an appropriate software. As the findings show, this method may diag-
nose bridge deformation (including deck distortion, tower tilt, and piling settlement)
effectively and quickly. Notably, like satellite imagery-based approaches, this tech-
nique calculates the displacement by comparing the “calibration-transformed” state
of the wall. Most of these techniques, however, share the difficulty of post-hazard pro-
cedures’ lack of previous knowledge since they detect flaws by comparing the differ-
ences between a healthy and damaged building. Fernandez et al. [30] employed
object-based image analysis (OBIA) to evaluate extensive damage to building roofs,
concrete facades, and brick facades using a damaged image to address this issue. Ob-
jects relevant to the damage were extracted from UAV photos using an image segmen-
tation method in OBIA. It is possible to identify broken components more precisely
when used with the aforementioned items.

Results showed that OBIA-processed oblique pictures are helpful in locating criti-
cal damage in buildings. However, there is a dearth of studies investigating the use of
this technique for the damage assessment of essential assets like bridges.

Although UAVs have a lot of potential for quick damage assessment, following
natural disasters, they still have several issues to work out before they can be used
efficiently. A few of the most important ones are (1) data collection from unseen sec-
tions of the structures; (2) feature description and configuration information stand-
ards; and (3) auto-pilot, path planning, and navigation algorithms [31]. There have
been several attempts to create self-navigational pathways using simultaneous local-
isation and mapping methods. Fernandez Galarreta et al. [30] highlighted the benefits
of using GPS waypoints with pre-existing maps when navigating a vehicle. However,
natural disasters can result in quick modifications to structures and the surroundings,
which are not taken into consideration. This might result in navigational challenges
and safety concerns that were not anticipated. In order to overcome this shortcoming,
Michael et al. [32] used a 3D map of the post-hazard buildings, made up of 3D point
clouds, created by rotating a laser scanner and a 2D occupancy grid map. But there
has not been enough research done on the second and third obstacles thus far. PLD
can be used as a priori knowledge about a building’s geometry and other physical and
functional properties.
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9.4.3 Machine learning

Uncertainty increases significantly when extensive data from several sources are
combined to improve catastrophe preparedness and response. Due to the sheer vol-
ume of integrated data, manual interpretation and analysis are no longer sufficient;
instead, advanced automatic analysis methods are necessary to ensure the process
runs smoothly and effectively. Since its introduction in disaster management two dec-
ades ago, machine learning has become one of the most effective methods for filtering
out irrelevant data and speeding up the analysis in disaster situations, which aids in
rapid prediction analysis and determining the best response strategies.

Automatically categorising tweets on disaster relief efforts using text classifica-
tion of social media data speeds up the process of locating relevant tweets. “[33]” Arti-
ficial Intelligence for Disaster Response (AIDR) was created by 34 to categorise user-
generated content during catastrophes into predetermined groups of data (such as
“needs,” “damage,” etc.). To do this, it continually gathers data from Twitter, analyses
it (through machine learning classification algorithms), and makes use of human
input [via crowdsourcing) in real time. During the 2013 Pakistan Earthquake, AIDR
was put to test to determine whether or not tweets were instructive. To quickly evalu-
ate massive amounts of aerial data for time-sensitive disaster response, Bejiga et al.
[35] suggested a hybrid crowdsourcing and real-time machine learning system based
on AIDR. Features of interest in aerial photographs were annotated with the help of
crowd (such as damaged shelters and roads blocked by debris]. These manually anno-
tated characteristics were used to teach a supervised machine learning system how to
identify them in previously viewed photos.

Dynamic decision-making is enhanced and human contact is decreased when
damage detection techniques are used. It can be time-consuming, error-prone, and ex-
pensive to conduct a damage assessment based only on visual interpretation of satel-
lite/aerial pictures and films. Additionally, in areas where the death toll is higher,
supplementary data like UAV products, LiDAR, or GIS databases are typically unavail-
able [36]. While traditional statistical methods assume a normal distribution of the
data, machine learning algorithms continuously adjust to new conditions and im-
prove over time [37]. When compared to more conventional approaches to categoriza-
tion and change detection, the accuracy of machine learning algorithms is often
higher. Non-linear datasets [38] can be used, as can learning with little training data
[39], and challenging classification issues can be solved. The usefulness of Artificial
Neural Networks and Random Forests in identifying building damages, induced by
the 2010 Haiti earthquake, was studied by [40] using high spatial resolution data gath-
ered using WorldView-1 and Quickbird 2.

One of the more recent advances in machine learning that has potential in disas-
ter management is new learning. Using a convolutional neural network, Cha et al. [41]
suggested a method for detecting fractures in concrete without the usual calculation
of a defect feature, which is affected by noise in the data. Traditional edge detection
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approaches (canny and Sobel) fail to offer significant fracture information; however,
the suggested methodology successfully categorised the detected cracks into diverse
characteristics such as bright light spots, shadows, and extremely thin cracks. In
order to extract data from YouTube videos depicting natural disasters such floods,
fires, mudslides, tornadoes, and lightning, Pouyanfar and Chen [42] suggested an en-
semble deep learning architecture. Shots are taken from videos by border recognition
and key-frame selection, and features are subsequently extracted using deep learning
reference models for each shot. The characteristics were fed into well-known classi-
fiers like Decision Trees and Support Vector Machines to do the classification.

Machine Learning, historical and Big Data analytics, and real-time catastrophe
monitoring are just some of the ways in which predictive damage assessment technol-
ogies are helping to refine their damage predicting models. Modelling connections be-
tween computed seismic parameters and potential earthquake occurrences was the
focus of a 2017 study by Asim et al., who examined four machine learning techniques:
a pattern recognition neural network, a recurrent neural network, a random forest,
and a linear programming boost ensemble classifier. The ability to adapt to ever-
changing crisis conditions is another benefit of automating such procedures.

9.5 Proposed tribrid approach using satellite
and UAV data

Optical and radar satellite data are widely recognised as having great potential for use
in crisis management settings. Loss assessments, following natural catastrophes, have
been the subject of several research in recent years [2, 5]. Previous decades’ low spatial
resolution datasets prevented reliable loss assessment because damaged structures
were too tiny to fit within individual pixels. Inadequate financial judgments are made
in relation to the reconstruction of infrastructures due to wrong evaluation. Contrarily,
aerial imaging, particularly UAV-based monitoring, has proven useful in the construc-
tion of new buildings and other infrastructure [1, 9]. While satellite-based and aerial-
based assessments are looked at individually in the literature, combining the two is still
a mostly uncharted territory when it comes to disaster recovery management. It is for
this reason that frameworks for financial choices necessitate integrated modelling tech-
niques. Even if there are flaws and unknowns in the comprehensive damage assess-
ment, the situation can be modelled with the help of the suggested Disaster Damage
Rating (DDR) model. The modelling requires the overlay of many data sets, such as
those captured by hyperspectral satellites, high-resolution UAVs, and data collected
from the field. The generation of orthophoto pictures using UAV allows for the superim-
position of the data set in a common coordinate system after which the damage can be
assessed in 3D, and the missing pieces may be reconstructed in 4D using UAV data. In
addition to a more precise assessment, the model will also assign a score on the Damage
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Scale (DS). A machine learning framework [8] will be constructed based on the DS to
determine the appropriate infrastructure treatments. The completed FDF can serve as a
repository for relevant financial facts for use in making future choices.

Innovation/novelty
– UAV data and satellite data are underutilised in the infrastructure management

field.
– The novel tribrid approach, which involves UAV and satellite data, followed by

verification with field data, gives a correlation with global data.
– The proposed research uses machine learning algorithms, extending it to damage

detection applications, which will automate the process and eliminate human
errors.

– The research focuses on damage monitoring and provides a framework for deci-
sion-making at each stage to formulate financial strategies.

– The study develops a rating model for monitoring, which is used as a key parame-
ter in the financial decision framework in later stages.

Satellite and UAV data complement each other when it comes to incorporating tempo-
ral and spatial features. Nanosatellites (such as Planet labs) placed in the low orbits of
the Earth provide high-resolution spatial data (1–10 m) that can be used for macro
analysis, but due to lower data quality, does not satisfy all applications. A micro-UAV
shifts the remote sensing (RS) paradigm by allowing end users to control acquisition
features [43]. The RS UAV’s strengths are its ultra-spatial resolution (centimetric to
millimetric) and acquisition flexibility. The proposed solution for the problem is (Flow-
chart 1) to incorporate field data and UAV data into global data, which gives the com-
fort to micro-level analysis. There are two segments in the proposed solution, (i) Model
Calibration, which involves “data comparison” and “Multiscale Explanation”; which
provide parameters for Model calibration to analyse a model quantitatively and quali-
tatively. The calibration parameters thus obtained can be used as input for the next
process of “Data Fusion” (refer to flowchart 1 in Figure 9.3) (ii) The second portion give
an overview of the data fusion process, which is persuaded by analysing pixel and fea-
tures in both the data when superimposed together. Using a decision matrix, the condi-
tional assessment of the infrastructure is performed. The testing data is then verified
with the ground truth obtained by field data. Each infrastructure is then marked with
a rating scale, which is proposed as “Disaster Damage Rating” for the proposed solu-
tion. Optimisation algorithm(s) can be used in the last portion of the research to initial-
ise the framework for treatment allotment, and the data is used by continuous model
learning. The research outcomes provide a synergy between the UAV and satellite data
to overcome the current limitations [44]. The research provides a combined workflow
that must be facilitated and adapted to automated and accurate monitoring.
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Considering a post-disaster scenario, the research methodology is divided into 4
subcategories as described in Flowchart 2 (Figure 9.4): (i) data acquisition, which in-
volves data collection from various open source databases such as MODIS, Terra, UN-
OSAT, and paid satellite data services such as Planet lab. Data needs to be extracted
for a given latitude and longitude using python programming. Secondly, UAV data can
be collected from the site itself (if possible) or obtained from respective agencies,
along with the extrinsic and intrinsic properties of the camera used by the UAV. By
collecting the data, a database is created for (ii) pre-processing, which involves Atmo-
spheric Correction and Radiometric Calibration, Pan Sharpening, and Co-registered
Reflectance Imagery for satellite data. Similarly, for UAV data, tie points and markers
are marked to perform alignment correction, followed by the generation of ortho-
photo generation for quick mapping and point cloud generation (converting raster
data to vector data). The DSM and DEM models are created for analysis using vector
point cloud data. The processed satellite and UAV data are then passed through various
(iii) feature extraction processes. For feature extraction, various data processing (DP) do-
main is proposed (photometric, geometric, hybrid, and transformational approaches);
the best-performing approach is chosen, and the data is then passed through different
DP filters as described in Flowchart 4. The desired feature is then extracted using seg-
mentation and classification. The condition of the structure member is then assessed
and validated with field data. A machine learning CNN/ANN-based defect prediction
model is used to decide each structure’s maintenance priority. (iv) An optimisation algo-
rithm is used to find the trade off between the required resources and the short- and
long-term strategy, to finalise the resource allocation approach, which leads to the final
financial decision framework.

9.6 Conclusion

In-depth research on building damage detection methods has shown that these techni-
ques were developed, considering the specifics of the data they were meant to ana-
lyse, with practically every natural catastrophe affecting the same geographic region.
Therefore, testing all these procedures with a single or small sample of experimental
data makes it difficult to compare their relative merits quantitatively. Still, the afore-
mentioned review may be utilised to make some broad generalisations regarding the
current trends and the results of most investigations. Infrastructure damage detection
increasingly uses various remote sensing techniques and the associated GIS (Geo-
graphic Information System) data. A resolution of 10 to 0.3 m is obtained using a wide
variety of optical, SAR, LiDAR, raster, and vector data types, as well as airborne and
space-based remote sensors. Due to their many advantages, different data types may
be used in several contexts.
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10 Recent developments in the building
information modeling-based programs
used for structural and architectural
purposes

Abstract: Nowadays, building activities are expanding quickly, and the requirements in
the design and construction sectors are developing. Devoted to these requirements, pro-
grams based on building information modeling (BIM) are employed to create digital
representations of the physical and functional characteristics of spaces and to man-
age project processes. BIM-based programs enable the creation of computational
and parametric designs while also enabling the simultaneous fabrication of the project.
Thanks to these programs, the project management process keeps moving forward
quickly while the construction process is not negatively impacted by the design-related
modification. However, since they can allow interdisciplinary work and cooperation,
BIM-based programs are regarded beneficial. Diverse professional groups are simulta-
neously active in the design projection stages, encouraging the use of a common lan-
guage and working as a community, ensuring a coordinated effort. It can be stated that
BIM-based programs were not immediately introduced into the building sector with all
these beneficial aspects and underwent a development and change process like how all
computer-based programs go through in their development phase. This chapter covers
the latest scholarly developments in the BIM-based programs used for structural and
architectural purposes.

10.1 Introduction

A correct definition of building information modeling (BIM) has been given by the
British Standards Institute as “BIM is a process where data about a building is gener-
ated and managed throughout the course of its entire life.” In this regard, BIM can be
considered a system where each building element is represented by a 3D component
at its center, and formed as a package in which the processes and technologies are
integrated. Building information modeling (BIM) is a technology that allows the crea-
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Figure 10.1: BIM levels depicting the maturity levels (inspired from the BIM levels presented by [17–20]).
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tion, storage, management, and modification of three-dimensional (3D) parametric
and object-based project productions in the architectural, engineering, and construc-
tion (AEC) sectors [1]. BIM technology can also be expressed as creating a digital twin
of a structure prior to its construction [2]. While BIM technology has been used by a
few companies till a short time ago, it has now begun to become a common tool in the
AEC sector [3].

The ability of the BIM-based software to continuously advance the analytical process
throughout the design phase is by far its greatest benefit. The BIM software that has a
multiple-layered running feature can be revised in the modeling stage of the structure
and of the building while the analysis stage continues. The project management stage
may readily include the new possibilities that may arise during the design phase, and
the project can go forward in a planned manner without suffering any harm [4–7]. This
allows for the simultaneous solution of several issues with a small margin of error. On
the other hand, BIM-based programs offer concurrent incorporation of several profes-
sional groups into a project by presenting parametric design principles. Being a revisable
infrastructure, BIM has additional benefits for the collaboration of disciplines through-
out the project design [8]. This scenario makes the project simple to manage and reduces
coordination problems between the many professional groups [9, 10]. As a result, the
project creation stages progress steadily [11, 12].

Currently, BIM-based software has begun to replace conventional design ap-
proaches due to technological advancements [13]. BIM technology has gotten ahead of
traditional delivery methods that are thought of as two-dimensional (2D) by having
numerical information storage with regard to all project data, and offering access op-
portunities at any time. Especially during the project stage, a more efficient control
compared to the traditional stage is provided since the digital designs have countless
numerical data that constitute the BIM, and can be updated with changes [14, 15]. BIM
technology, which is based on a design tool at a file level, involved period, and the
amount of collaboration, can be handled at four different maturity levels as indicated
in Figure 10.1 and as described below [16, 17]:
– The first level, often known as Level 0, is the one that addresses a project’s funda-

mental components. It covers the use of paper-based CAD drawing techniques,
which are typically seen as the stage prior to BIM. Further, it is an outdated level,
where cooperation is almost nonexistent and is slowly being abandoned by occu-
pation specialists today.

– The second level, or Level 1, is arguably the most popular BIM level, combining
2D documentation with 3D CAD concepts. It is regarded as a system where CAD
files and BIM work together in a basic database that is developed for sharing pur-
poses. While there is more cooperation at this level compared to the previous
level, it is still done under the contractor’s control and in an electronic environ-
ment using common data sharing methods.

– The third level, Level 2, focuses on collaboration across disciplines. Although dif-
ferent professional groups work on separate models, they always use the same
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standard file format for recording and sharing. This is highly useful since it ena-
bles simultaneous disciplinary control over a project.

– Level 3, also known as Open BIM, is a result-oriented level where the parties in-
volved in all processes of the project can access the model produced through a
common central system, and much more comprehensive and deep cooperation is
offered. Since all parties can simultaneously access the entire information during
the building process, the risk is reduced.

As stated earlier, BIM-based programs, as a digital representation of a structure, have
the capability of simultaneously incorporating several professional practices. These
practices are conducive to many actors participating in a project. While each individual
in any professional practice works alone in the traditional method of project produc-
tion, BIM technology has succeeded to meet all professional practices on a common
ground so as to be integrated, if required. In this direction, considering in the view of
different professional practices:

(i) in architectural practice, BIM technology offers a method of parametric design
to the users. This feature provides advantages to architects by constituting the forms
such as organic and fractal, excepting linear design forms, on the realistic ground. At
the same time, BIM gives architects a significant advantage in terms of visualization. In
contrast to the traditional approaches, BIM-based programs allow the production and
visualization tasks of the project to be performed simultaneously. For example, it is pos-
sible to create a section, a façade, and a 3D model all at once when an architectural
design is drawn. Thanks to these programs, render presentations that are a significant
piece of visualization of an architectural project can be rapidly generated. In this partic-
ular, it can be stated that when the BIM-based programs are taken into consideration in
the architectural context, they provide a work package that includes design, visualiza-
tion, parametric modeling, clash detection, building performance analysis, data man-
agement, object library, and collaboration tools.

(ii) on the other hand, BIM technology has begun to be favored in construction
practice as a result of project management programs that offer prospects for time sav-
ing during the construction phase, estimating potential issues at the construction site
caused by the assembly. Integration of architectural design and structural features
during the project preparation stage might save time. Considering the intensity of
structural elements in a project model, these elements may clash much more in the
case of traditional 2D methods; however, thanks to the BIM-based programs, detection
of such cases becomes easy, and project planning and project management progress
much more properly. Additionally, the stage where every detail is manually managed
on paper has been converted into standard software as a paperless system, making it
simple to control the workflow on the construction site [21]. This coordinated work
provides minimized error margin for manufacturing and quantity takeoff cost calcu-
lations. Similar to the architectural context, when the BIM-based programs are taken
into consideration in the structural context, it can be said that it provides a work
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package involving building performance analysis, data management, planning, on-
site software, and collaboration.

When it is evaluated in general, the following can be delivered simultaneously
through the BIM-based programs, as also presented schematically in Figure 10.2 [3]:
– The whole process of the project, from the idea stage to the stage, when the build-

ing is built and delivered, can be planned [Programming phase],
– By transferring to the computer, every aspect of the project that is intended to be

produced, from the first idea to the smallest detail, can be identically designed
[Design phase],

– The components can be modeled prior to the construction process, and the site co-
ordination can be organized prior to the building process [Preconstruction phase]

– The entire model may be built in accordance with the real conditions, and any mod-
ifications can be implemented simultaneously and immediately during manufactur-
ing on-site [Construction phase],

– By moving through a second phase, when the building’s operations and mainte-
nance were handled after construction is complete, management and sustainabil-
ity can both be supplied [Operations and Maintenance phase],

– The service life of the building can be foreseen, and recycling of the building by
separating out the components can be monitored, and as a consequence, it can be
provided that when the building completed its service life, it is no longer a rubble
waste [Demolition phase].

It is believed that to comprehend the direction that BIM-based programs are going,
which is considered to be more involved in architectural and engineering applications
in the near future, it is required to look at the historical development process by read-
ing from the past to the present.

Programming

Design

Preconstruction

Construction

Operations &

Maintenance

Demolition

Figure 10.2: Visual representation of BIM’s stages adapted from the study of Azhar et al. [3].
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10.2 Historical development of BIM

Although BIM-based programs are becoming more popular today, they have a long
history that dates back to the 1960s. The foundation of BIM technology, employed in
the AEC sectors, is 2D computer-aided drafting (CAD) programs, also known as com-
puter-aided design tools. The start of this technology to the AEC methodology began
with putting the Sketchpad program providing 2D drawing potential on the market in
the year 1963. This program gives the opportunity to digitally illustrate projects that
are created on paper. The number of such 2D programs has gradually increased, fol-
lowing the meeting of manual drawing with technology. But due to the increase in the
size of the projects, indirectly built structures, and with increase in their functions as
a result of the development of technology, these programs began to be insufficient [22].
In 1977, Charles Eastman advocated that 2D programs fell short and then started to
evolve Graphical Language for Interactive Design [23]. Research institutes for the crea-
tion of workspace-presenting programs with parametric databases were established in
the 1980s; these studies served as the foundation for the creation of BIM-based technol-
ogy. It was considered that CAD software, together with the newly generated software
types, did not provide parametric solutions software types with databases that contain
descriptions of a model’s whole geometry [24] and this situation led to the gradual wide-
spread use of the BIM technology.

The program, with the name Archicad, was released to the market in 1984 by a
firm called Graphisoft. In addition to being a tool that uses Eastman’s developed graphi-
cal language, Archicad serves as the basis for all BIM-based systems developed after it
[25]. On the other hand, the RUCAPS software system developed in 1986 is a program
that first takes into consideration the temporal phasing concept of the building period
of a structure. The program was employed in the stepwise construction of Terminal 3 of
Heathrow Airport [2]. The Center for Integrated Facility Engineering’s establishment in
1988 is recognized as the turning point for BIM technology. The center developed a con-
siderable resource for the purpose of advancing the development of four-dimensional
(4D) building modeling [26]. The Building Design Advisor developed in 1993 was used to
model a building and simulate its context. The program consists of a medium where
the graphic analysis and simulation, from the conceptual first stages of a building to the
features of the whole building components, were integrated. In addition to this, the pro-
gram offers a basic optimization option with producing solutions for a building model
in the direction of alternative conditions [27]. The CATIA program, whose inception
dates back to 1977, has had a remarkable evaluation through time as a 3D program de-
signed by the airplane manufacturing company, Dassault System. The program and the
substructure it offers were used in the Guggenheim Museum, constructed in Bilbao,
Spain in 1997, and has come to the forefront of architectural and structural projects by
making quite complex forms real [28].

CAD software has begun to lag behind BIM-based programs since the early 2000s as
a result of the advancement of parametric modeling and technological development,
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and BIM-based programs have begun to be integrated into the applications of AEC proj-
ects [3]. Revit software, which is based on using object-oriented programming, was
launched in the market for the construction industry in 2000. In 2002, the software was
purchased by a company named Autodesk and it evolved according to the company’s
politics. Revit created a revolutionary effect by modeling all components of a building
with the parametric language it uses, and integrating the fourth dimension, time, into
the structure [6, 26]. Revit gained popularity as a program, where an interdisciplinary
link was offered by creating the versions, as being integrated into the architectural sub-
structure, prepared for civil and mechanical engineers in recent years by Autodesk.
The collaboration made possible by BIM technology enabled the creation of larger and
more intricate building projects. The integration of different professional practices
drew the attention of big construction companies and promoted them to use BIM tech-
nology in their projects. The FormIt-named software developed by Autodesk in 2012
with a motto of “every project starts with a sketch” became a software of BIM, provid-
ing usage on mobile devices. This software, where the modeling incorporates fingers
with a digital pencil, has become a leaping point for the BIM world [29]. Numerous
BIM-based tools have been developed and released in the years after the year 2000. The
aforementioned types of software have become the pioneer of recent programs and
contributed to their developments. From the past to the present, it is anticipated that
BIM technology has left its mark in the construction industry and in production sectors
in terms of providing the programs used by the different disciplines to come to the
same ground and make rapid progress.

10.3 Categorization of BIM-based technology

BIM, a collaborative digital building process, is a technology with steadily rising users
that has been evolving and expanding quickly in recent years. According to the tenth
annual BIM report published by the National Building Specification (NBS), a UK-based
business, only 13% of the design and other construction professionals were using BIM
programs in 2010, while that number had increased to 73% as of 2020. Again, per the
same report, while the rate of people who have never heard of BIM technology was
43% in 2010, this rate decreased to 1% in 2020 [30]. Based on these findings, it can be
concluded that the usage of BIM technology is spreading throughout the professions of
designers, manufacturers, architects, engineers, and contractors [31]. According to the
Allied Market Research’s report on the BIM in Construction Market, as of 2019, this tech-
nology’s market value was €4.5 billion. Again, according to this report, it is estimated
that this market will grow by about 15.2% annually and reach a value of €13.7 billion by
2027 [32]. From this information, it can be deduced that new software will be added to
the BIM technology industry, which currently has already a large selection of software.
Finding the right program to employ from all of these options may be quite challenging.
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BIM users are not required to utilize or have knowledge about every software in this
context, but they are expected to have a conceptual understanding of the applications
of BIM-based software across a variety of disciplines, as well as a working knowledge of
the current software [33]. Categorizing BIM technology under the subheadings of de-
sign, construction, and operation/maintenance phases as presented in Figure 10.3 will
make it very easy for the user to both learn and follow the developments in this con-
text. As can be seen from the given figure, BIM-based programs can be categorized
under the subheadings of parametric modeling, object library, design, collaboration, vi-
sualization, and conflict detection in the design phase category; on-site and planning
software, data visualization and management, collaboration, and 4D&5D concepts in
the construction category; parametric modeling, building performance analysis, and
data management and visualization in the operation/maintenance phase category.
Here, it should be noted that parametric modeling is a common subheading in the de-
sign and operation/maintenance phases, data management and visualization are a com-
mon subheading in both the operation/maintenance and construction phases, and
collaboration is a common subheading in the design and construction phases. In this
regard, further information on these subcategories and the software that is frequently
employed in them is provided Figure 10.3.

10.3.1 Parametric modeling [in design and operations/
maintenance phases]

The term “parametric” means the one related to numerical or other measurable fac-
tor or factors, constituting one of the clusters that define a system or determine the
operation conditions, or expressed by them. When it is used for design purposes, nev-
ertheless, it represents the ability to apply the dimension modification to its form
when the value of a dimension pertaining to geometry is altered [34]. When it is
taken into consideration in this context, parametric modeling in BIM technology is a
joint technology service that is included in both the design phase and the operations/
maintenance categories, as can be seen in Figure 10.3. But it should be noted that the
thing intended to be expressed by the parametric modeling notion given under the
design phase category differs from the thing intended to be expressed in the notion
given under the operations/maintenance category. While the concept of parametric
modeling in the design phase takes its name from the project variables that are being
changed during the design and simulation phases of the project [35], the parametric
modeling concept in operations/maintenance phases frequently takes its name from
the human, environmental, technical, and financial variables that occur during the
digital transformation of the real estate assets [36]. Thereby, the parametric modeling
in the design phase helps to model and optimize the feasibility of the project and
offer adherence to the submission guidelines [35]. On the other hand, the parametric
modeling provided under the issue of operations and maintenance enables the crea-
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tion of digital records for use in operation, service, and maintenance once the build-
ing is handed over [36]. In both cases, more visible and more flexible projects with a
higher analysis depth are presented to clients by parametric modeling.

The information and data are associated via algorithms on a digital platform and
the whole system is updated in the case of any change. As a consequence, human er-
rors are eliminated or minimized and crucially, the time spent for updating the de-
signs is decreased. Parametric modeling tools, composed of a series of mathematical
equations and algorithms, must be predicated on data from a real project or must be
verified using data from a real project in order to be valid. It can be tested by mathe-
matical models, of which indeterminacy cases were previously described and proved,
and its previous experiences can be easily embodied. Besides, since they have less
prejudgment than the human thinking processes, it is much easier to design that are
gradually becoming complex, with fewer sources and within a shorter time [35]. In
this context, parametric modeling can be generally defined as a modeling approach of
creating a product platform conforming to past-based design strategies and offering
design automation [37]. Programs with the commercial names of Catia, SolidWorks,
AutoDesk Fusion 360, Hypar, SpaceMaker, and Dynamo are frequently used in the
parametric modeling of the design phase, whereas those with the commercial names
of MainManager, ArchiBus, Active 3D, Ecodomus, Ajour, Dalux, Spinal, and PlanIt are
generally employed in the parametric modeling of the operations/maintenance phase.

10.3.2 Object libraries [in design phase]

By positioning the objects, the model produced in any design tool gains significance.
Objects not only bring a model design to a better level but also make it technically
understandable. The designed objects can be of any size and type. A model designed
in an architectural sense takes on significance with the objects in it. The architectural
design expresses itself better and becomes meaningful by detailed modeling of a
chair in the kitchen, an armchair in the living room, a bed in the bedroom, a floor
lamp on the dresser, or a soap dish in the bathroom. These models’ textures and ma-
terials, in addition to their well-thought-out model, form them with all the necessary
technical aspects, giving them their realistic appearance. Object libraries provide a
distinct discipline inside the BIM technology by assigning realistic textures and mate-
rials to the designed models.

It is not necessary to prepare objects just in modeling programs. Object libraries can
operate independent of the designed application, thanks to the infrastructure provided
by BIM. As the programs may be associated with a BIM infrastructure with a common
denominator, the location and extension of the file may no longer matter. Any equip-
ment that has been meticulously designed may move from one platform to another.
Since the models of the designed objects are already available, this condition offers acces-
sibility, and speeds up the project manufacturing process. All these possibilities become
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an advantage for program users [26]. Commercial programs like MagiCAD, Avail, Bimob-
ject, BimCo, and Unifi are favored for creating an object library during the design stage.

10.3.3 Design [in design phase]

Any BIM-based program offers the user a wide range of design possibilities. Each step
of the design is drawn separately and sequentially when using a standard 2D applica-
tion for design. Every sketch, therefore, has a large margin for error. On the other
hand, each stage is drawn simultaneously while creating a model in a BIM-based pro-
gram. The program issues a warning if an error occurs at any point. In this way, faults
from all other stages are fixed along with the drawing. Unlike a CAD-based system,
which expresses the design in lines, BIM-based designs use real elements to represent
the actual building components. Besides, with the BIM-based system, forms like or-
ganic, amorphous, and fractals that can be challenging to represent in any 2D applica-
tion can be designed on a realistic foundation. However, the diversity of programs
that BIM provides makes it a favored technology, and makes parametric drawings
easier [23]. The integration of both time (4D) and cost (5D) concepts in design is made
possible by BIM technology, which goes beyond merely creating boundary-definite
spaces [16]. Thus, the boundaries of a building conceptualized in the BIM technology
can be integrated into the model, as well as its materials, with both their qualities and
cost. In the design phase, Revit, Tekla Structures, Allplan, ArchiCAD, Autodesk Civil 3D,
Novapoint, Bentley, and BricsCAD commercial programs are generally used to design
a model.

10.3.4 Collaboration [in design and construction phases]

Collaboration and working in a real collaborative workplace, backed by digital technol-
ogy, are two very different things. Operational tools that enable full participation of all
participants in the construction process are now integrated into the technology, resulting
in greater overall productivity. Building Information Modeling and Management, an inte-
grated management system that enables time, cost, and quality control, in addition to 3D
visualization, gives the chance to more effectively address this shortcoming in the archi-
tectural, engineering, construction owner, and operator sector. Design and construction
activities in the architectural, engineering, construction owner, and operator sector in-
clude several interconnected firms working together to offer customized solutions to
owners [38]. While this association is mostly managed on paper in the conventional
working environment, BIM has left this practice behind. BIM-based programs enable
multidisciplinary collaboration by enabling the transmission of drawings through an in-
tegrated software so that the design team and the construction team may collaborate on
the same foundation [39]. In project-based construction, each partner has his/her own
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specialties, work schedules, and obligations, in addition to his/her own culture, values,
and interests. The resulting BIM-enabled projects are therefore carried out through a sig-
nificant network of various professional specialists [40]. The ultimate objective herein is
to ensure that all project participants and stakeholders comprehend the expected out-
come as well as their specific responsibilities and roles. The key tools required for the
success of the project include the BIM Execution Plan and the Common Data Environ-
ment, a document shared in a common digital environment that should clearly include
roles, responsibilities, processes, and specific outcomes, and supported by initial and on-
going mandatory training [41]. The effectiveness, degree, and relevance of collaboration
in such initiatives also determine BIM technology’s sales value [42]. However, in recent
years, there have been some developments that have influenced the way joint work and
collaboration, including the organization of construction projects and the roles of differ-
ent participants, most notably the trend toward greater openness among project partici-
pants [43] and the proliferation of BIM [44]. Additionally, the existence of several distinct
organizations and professional groups, in addition to the physical distance between
them, might make it difficult to maintain a cooperative relationship [45]. In this context,
while collaboration in the design phase is usually done with commercial programs such
as Isetia, Aconex, Autodesk Bim 360, Bim Track, Imerso, and Bimsync, collaboration in the
construction phase is usually done with commercial programs such as Interaxo, Revizto,
Bim Collab, Thinkproject, and Trimble Connect.

10.3.5 Visualization [in design phase]

The term “Visualization” can be defined in the most traditional sense as transferring
a building in a 3D model. One of the most prominent aspects of BIM-based programs
is visualization. There are visualization tools that are not BIM-based as well, but BIM-
based programs offer a lot of opportunities to users in this regard. A model may be
expressed and rendered in 3D with success, effectiveness, and high quality using visu-
alization software other than the BIM-based ones. However, BIM-based programs ex-
tend the concept of visualization by integrating the existing environmental analysis
and sustainability analyses into the 3D model. Namely, the designed model is not inde-
pendent of its context but can be represented along with the entire built environment
in which it is located. The realistically designed environment helps to evaluate the
model in terms of physical criteria such as the location and height of the model, its
closeness to neighboring buildings, if any, and the approach of vehicle/pedestrian
pathways. Furthermore, other environmental aspects such as solar orientation, cli-
mate information, energy demand estimation, and the building’s need for natural
light can be added to these criteria in order to provide a real basis for the model. Be-
sides, an accurate integration of the desired material, texture, and color into the
model is another element that lends realism to a model, and BIM does this success-
fully. With the cooperation of BIM-based platforms, models are created and then ren-
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dered on common platforms by assigning materials-textures-colors, providing very re-
alistic productions.

In addition, in terms of effectively conveying the shape of a model, BIM-based
programs have become highly preferred. BIM technology may also be used to model
projects with tough parametric design decisions and set them on a realistic founda-
tion for construction [46]. With technological advancements, BIM has begun to be
combined with virtual reality applications. Through add-ons to the programs, projects
can be experienced while they are still in the design phase, which is advantageous
not only for clients but also for sector personnel and contractors. The integration of
BIM with augmented reality applications provides a great advantage to the sector’s
employees in field studies and helps in the adoption of technology [47]. All these
make BIM-based programs more advantageous than other 3D modeling programs.
Commercial programs named Vrex, Isetia, Insite VR, Kubity, Fuzor, Lumion, Kubity,
Fuzor, and Lumion are frequently used for visualization during the design phase.

10.3.6 Clash detection [in design phase]

BIM-based programs offer the ability to describe clashes between any two elements,
of which there are several kinds available during the architectural design stage. Addi-
tionally, the programs determine if one element interacts with another one or not, as
well as how an element integrates with another when it does. In conventional design
techniques, these clashes can be seen as long as attention is paid on paper. If the
model is being constructed, there may be significant losses in terms of labor, time,
and money. However, in BIM-based technology, these clashes are detected by the pro-
grams at the design stage, and thereby, the program warns due to clashes in the
model. Programs whose commercial names are Navisworks, Isetia, and Solibri are
generally used for clash detection during the design phase.

10.3.7 Data management and visualization [in construction
and operations/maintenance phases]

Data management and visualization are two important common subheadings that can
be categorized under both the construction and operations/maintenance phases. Un-
derstanding the significance of data, meaning facts and figures put together for refer-
ence or analysis is crucial in order to know what data management and visualization
represent. At this point, it can be said that data is important because it enables people,
organizations, and companies to make better decisions, solve problems more easily,
evaluate performance quickly and easily, improve processes, and comprehend clients
or consumers better [48]. That is why companies, institutions, or organizations, small
or large, profit or non-profit, private or public, are undergoing a digital transforma-
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tion where they are applying ones and zeros as best they can. Today, with the data
gathered on the basis of these ones and zeros, everything from people’s behavior to
habits, needs, and consumption is modeled through mathematical expressions and al-
gorithms, and predictions are made about what will happen tomorrow, what will be
needed, and how people will behave. In this context, due to the similar needs in BIM-
based technology, continuous data collection and both visualization and management
of these data are important. As a matter of fact, all BIM-based programs that have
been developed, are being developed, and will be developed are based on the use of
this data. Therefore, the management and visualization of data are important both
for the operation and use of the programs. Compiling and organizing the gathered
data into groups or classes is the initial step in data management. Then, while pre-
senting this classified data, visualization tools such as pie charts, bar charts, histo-
grams, area charts, scatter plots, timelines, Gantt charts, heat maps, highlight tables,
and bullet graphs are used to analyze and understand the data. In this context, three
main groups were defined for the collected data: unstructured, semi-structured and
structured [49, 50].

As the name suggests, the unstructured data type is data that has no established
format. It may include a mix of text, video, email, and image files, but it can only be
useful when properly organized, processed, and analyzed. Data of this kind has no
specific format or order, does not follow any rules or semantics, has no easily recog-
nizable structure, cannot be stored in a spreadsheet-like format (i.e., based on rows
and columns), and cannot be directly used or understood by a program. Unstructured
data is estimated to account for 80% of the world’s official data [51, 52].

A semi-structured type is a data type that may be handled via metadata tagging,
which will enable us to capture useful information. With this type of data, it is diffi-
cult to determine the meaning of the data and even more difficult to store the data in
rows and columns, as in a standard database; so it is not always possible to automate
data analysis, even if metadata is available. Data of this type may not have identical
properties within the same group, are grouped with similar entities, do not fit into a
data model but contain tags and metadata, and cannot be kept in a spreadsheet-like
format, that is, based on rows and columns [51, 52].

The third type of data is structured data, which is a systematic database that can
be used right away by companies for processing and analysis. It consists of informa-
tion transformed and formatted into a well-defined data model. Such data is trans-
lated into fields with pre-built layouts that may be read and retrieved by a related
database. This method of storing information is the ideal of the three types, and al-
though the relational model minimizes data redundancy, it still requires caution be-
cause structured data is more interdependent and, therefore, sometimes, less flexible.
The most important characteristics of this type of data are that it conforms to a data
model, similar entities are grouped, the characteristics within the same group are the
same, the data is contained in fixed fields within a record, and the definition and
meaning of the data are clearly known [51, 52].
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What is actually targeted by data management and visualization can be better ex-
pressed by the DIKW hierarchy, a four-tiered pyramid of data, information, knowledge,
and wisdom. The DIKW hierarchy is a hierarchy of relationships that describes how
raw data can be transformed into information, then knowledge, and then wisdom, with
each layer adding specific attributes over and above the previous one [51]. In this hier-
archy of relationships, data is the most basic level; information adds context; knowl-
edge determines how to use it; wisdom determines when and why to use it [53]. Thus,
as you move up the pyramid, data without any specific meaning is transformed into
knowledge, and then wisdom, by applying structure, organization, classification, and
categorization [51]. As a result, we can think of data management and visualization as a
way to “approach” and eventually “solve” problems in the BIM-based technology. Pro-
grams whose commercial names are Isetia, ProjectWise, ViewPoint, and BIMEye are fre-
quently used in the data management of the construction, whereas those having
commercial names of Areo, Tableau, Domo, Isetia, and Data Studio are generally em-
ployed in the data visualization of the construction. On the other hand, commercially
named programs such as Opidis, Isetia, dRofus, GliderBIM, and Verify3D are broadly
used programs in the data management of operations/maintenance.

10.3.8 On-site and planning software [in construction phase]

The construction of the structure, which is designed and detailed, is a process that re-
quires systematic and controlled work. This stage, which is at least as important as the
design stage on the road, from design to construction, is a stage that requires serious
cooperation, organization, responsibility, planning, and safety measures. Although it
seems to take place entirely on the field, it is carried out with serious office support in
the background. In this construction process, where both time and cost are taken into
account, many technical teams work together, and the productions are carried out ac-
cording to a certain timetable and succession relationship. The organization of the con-
struction site, the follow-up of the production and schedule, the coordination between
the teams, the planning of the process, and taking the necessary security measures are
vital for the healthy and trouble-free construction of a project in this process, where
any disruption can both delay the construction and pose serious financial and security
problems. The main objective of this process is to complete the construction without
any safety problems, without any loss of time and/or additional costs, and with smooth
and targeted quality production.

In this context, BIM technology offers a wide range of programs related to the
process described above, helping to ensure that the project is completed to the desired
specifications, on schedule, on time, at the projected cost, and with zero safety prob-
lems. BIM technology makes planning more efficient, reduces the risk of schedule
overruns, identifies troublesome processes and enables early corrective measures,
provides insight into current and future resource utilization for accurate forecasts
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and decisions, solves potential work package backlogs by leveling or modifying them,
enables the ability to create and collaborate on manufacturing or process-related
checklists from anywhere with real-time access, facilitates collaboration with subcon-
tractors, enables easy security measures and notification of protocols in this context,
and saves time while reducing risk [54, 55]. In addition, teams are categorized and
notified through BIM-based programs so that there is no complication, and progress
or setbacks are continuously reported, enabling instant monitoring of changes and
costs. It facilitates work follow-up by providing systematic and immediate notification
of the work done and to be done. It is possible to involve both the contractor and the
clients. In addition to all these, by enabling surveillance and tracking of financial mo-
bility from a single point, possible losses are prevented [56]. With all these benefits,
BIM technology makes a significant contribution to the safe completion of the con-
struction, both within the planned timeframe and at the targeted quality and cost.
Commercially named StreamBIM, CoConstruct, CheckD, Dalux, PlanGrid, Isetia, and
Fonn programs are frequently used as on-site software during the construction,
whereas those named Powerproject, Primavera, Tilos, Office Project, and Isetia are
generally employed as planning programs during the construction.

10.3.9 4D and 5D concepts [in construction phase]

The most remarkable features offered by BIM-based technology are 4D and 5D con-
cepts. In its basic sense, 4D is the inclusion of a temporal component in a 3D model.
The project process is time management and involves all stakeholders such as em-
ployers, contractors, and technical staff in the AEC sector. When effective manage-
ment of time, one of the most critical issues in the sector, is provided, a more efficient
process is ensured in terms of the project’s production budget as well, thereby, better
site organization is accomplished by designing and incorporating project deadlines
into the BIM infrastructures. In addition, project timeframes are used to analyze de-
sign modifications and/or revisions to prevent misunderstanding during planning. In
the event of problems, disruptions, and changes, field crews can more rapidly ascer-
tain in what stage and how much of the project’s progress would be impacted. As a
result, stakeholders attain the least amount of job losses and the greatest possible
profits. There are three primary steps in the integration of 4D into projects: modeling,
planning, and assembly. All three stages should involve the time component, and they
should be flexible enough to be revised and updated as needed [57].

The 5D concept, on the other hand, is a variation of the 3D concept in which the
concept of time, along with the notion of cost, is included. 5D, which can also be ex-
pressed as a cost estimating feature, can be integrated into BIM models and defined
as the process of calculating the new project budget in the case of any design change.
Although 5D is often thought of as the stage that comes after the planning of 4D, it can
actually ensure precise cost planning from the project’s pre-conceptual stage. Costs
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can thus be analyzed comparatively as a cost estimate before the start of the project’s
field phase and as a cost after completion [58]. By the completion of the model phase
and the start of field studies, this plan can be updated as the project progresses, and a
new cost plan can be prepared [59]. In the sector, 4D and 5D software integrated into
BIM-enabled projects has been increasing day by day, and time and cost have become
one of the most crucial components of the AEC industry. Programs with brand names
like Powerproject, Cost, BuilderTrend, Synchro, Isetia, CostOS, Simio, iTWO, VicoOffice,
and Assemble are widely used in this BIM feature with a wide range of programs.

10.3.10 Building performance analysis [in operations/
maintenance phase]

Building performance analysis enables simultaneous testing of the design decisions
within the context of the physical environmental conditions of a building as a quantita-
tive, measurable factor. The prediction of how a building will respond to environmental
and sustainability factors in the pre-construction phase is tested through analysis. Design
decisions may be revised and updated, in line with the analysis of the simulations cre-
ated. Building performance analysis can be performed at any conceptual or advanced
stage of design. A variety of features are decided in the design of a building, such as
– its form and typology,
– its façade elements and the occupancy-void ratio on the façade,
– the properties of the building material employed,
– the location of the building,
– its surroundings and construction status, and
– the local climatic conditions

These factors directly exert an influence on the outcomes of the building performance
analysis. Daylight, sun/shade, solar radiation, climate, wind, and energy analyses are
among the building performance analysis methods frequently used in the BIM technol-
ogy. With the analyses performed, it is possible to ensure that the proposed space will
have the optimum thermal comfort, air quality comfort, and visual comfort character-
istics, once it is constructed. In addition, the building designed in terms of the desig-
nated environmentally friendly materials can be made efficient, healthy, recyclable,
and long-lasting in terms of energy recovery. The sustainability of a structure after con-
struction depends on all of these features [60, 61]. During the operations and mainte-
nance phase, programs commercially named Green Building Studio, OneClick, StaadPro,
Scia, Sefaira, Equa, Ies, and Cype are generally used for building performance analysis.
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10.4 Stats about BIM-based technology

The paradigm shifts that the design and construction sector underwent as a result of
their encounter with computers have brought them to the current-day stage. This indus-
try, which has transitioned quickly from 2D to 3D, has brought BIM-based programs to
the fore and increased their usage. From the perspective of different disciplines, BIM is
now employed in the field of architecture at a rate of 60%, and it is predicted that this
percentage will increase to 89% by 2024. On the other hand, it is estimated that BIM-
based technology, currently used at a rate of 46% in civil engineering applications, will
reach a rate of 72% in 2024, while that, employed at a rate of 51% in other engineering
fields, is expected to reach 80% usability in 2024 [62].

BIM has a high market value, in addition to the services it offers to the AEC. As was
previously stated, the market value of BIM was 4.5 billion € in 2019 and is anticipated to
increase to 13.7 billion € by 2027. The industry needs to exhibit an annual growth rate of
around 15.2% from 2020 to 2027 in order to reach this figure [31]. In this growth, it is
thought that the pandemic that started in 2020 has been a driving force in making digita-
lization mandatory. However, the fact that some countries from Europe to Asia require
BIM, in line with certain rules, has a great role in the spread of this sector. Norway, Den-
mark, Sweden, Netherlands, Poland, Russia, Germany, France, England, Italy, and Spain
in Europe; USA, Mexico, Brazil, Chile, and Argentina in the Americas; Japan, Malaysia,
and Thailand in the Asian continent; Nigeria, Ethiopia, and Tanzania in Africa; Australia
and New Zealand in the Australian continent are among these countries.

Another aspect that raises interest in the use of BIM programs is the object librar-
ies generated by them. Companies may more easily contact object creators directly,
thanks to BIM as a sector. Through the agency of the partnerships established, the up-
dating of the object designs, in accordance with the request of the companies, has
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Figure 10.3: Categorization of BIM-based technology.
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been effective in the transformation of the BIM technology into a preferred brand. In
this direction, sales on the BIMobject platform have surged by 51%, notably through-
out the course of the 2019–2020 year [63].

Interest in BIM-based programs has risen as a result of the AEC industry adopting
a collaborative working system. In this context, 73% of the companies in the AEC sec-
tor state that the collaborative working model offered by the BIM technology is more
sensitive, fast, and reliable [31].

Moreover, the global interest in the construction industry and its products leads
it to becoming more widespread and increasing its value. By 2060, 230 billion square
meters of additional construction space are anticipated to be built, according to the
United Nations Department of Economic and Social Affairs. Such an amount of pro-
duction leads the AEC sector to BIM programs that produce advantageous and effi-
cient solutions in terms of time-saving [64].

In this direction, the advancements described in the usage of BIM technology in
the AEC industry provide a numerical evaluation and give ideas about the future ori-
entation of BIM.

10.5 Conclusions

Given the information and explanations provided above, it can be concluded that BIM
technology is on its way to becoming an indispensable component of the AEC indus-
try, and that the industry will soon be completely integrated into this technology.
With its many benefits, BIM technology, which is involved in all stages of a project,
from design to operation, is used by more and more designers, architects, manufac-
turers, engineers, and contractors. This makes BIM to have an increasing market
share in the sector.

Categorizing BIM technology under the subheadings of design, construction, and
operation/maintenance will make it easier to comprehend the technology. Users can
benefit from BIM in a variety of ways, including design and modeling, visualization,
wide and realistic object libraries, and clash detection throughout the design process.
On the other hand, during the construction phase, BIM-based technology assists the
user on the basis of managing and visualizing data, providing software on-site and in
planning, constituting collaboration, and offering 4D/5D concepts, while in the opera-
tions/maintenance phase, users receive services from BIM in the areas of parametric
modeling, building performance analysis, and data management and visualization.

BIM technology, which is becoming more popular in the AEC industry by the day,
motivates many developers to create new software due to its characteristics. As a re-
sult, a variety of BIM-based program pools are created. It is not possible for users or
other interested parties to have complete knowledge of all programs. Each program
has unique benefits and drawbacks. Therefore, BIM either adapts the existing pro-
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grams to user or client demands or creates new programs in response to their needs,
by providing user-oriented services. Consequently, it would be a more effective and
rational solution to contact the developer companies after determining why the user
needs BIM, with the aid of the categorization described above.
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11 Evaluating the current state of
digitalisation of the UK construction
industry

Abstract: Due to the significant role of the construction industry in terms of the im-
pact on economies and the environment, digitalisation of this sphere deserves special
attention. This study aims to evaluate the state of digitalisation of the UK construction
industry from the perspective of construction professionals. A critical review of exist-
ing literature is conducted to identify and evaluate the (1) barriers to adoption and
implementation of digital practices, (2) the gap in adoption between small and me-
dium enterprises and large-sized companies, (3) currently available, and (4) future
technologies. The findings of the literature review were further investigated by adopt-
ing the mixed method approach, combining qualitative and quantitative research
methods to develop a comprehensive understanding of the digitalisation phenomena
in the context of the UK construction industry. In total, 81 questionnaire responses
were returned and 5 interviews were conducted to gauge the opinions of construction
professionals. The results reveal how there have been minimal advancements, in line
with prior predictions, and how there is still considerable room for improvement to
digitalise the industry. The study is an up-to-date snap shot of the current reality in
the field of construction digitalisation in the UK and therefore provides the actual pic-
ture of the current state of affairs that could be useful for the industry as a whole.

11.1 Introduction

The benefits of moving to a digitalised construction industry are numerous. With the
main aim of improving data efficiency and its communication, implementation of a
digitalised strategy can facilitate further developments during various construction
stages, such as advances in testing and surveying methods [1]. The concept of a digital
industry was first acknowledged in the 1970s with the implementation of the “digital
revolution”, also known as industry 3.0 [2]. Industry 3.0, which involved the use of
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electronics and information technology to advance the automation processes, intro-
duced the world to the potential benefits that digital technologies can provide, and
laid the foundation for industry 4.0. The fourth industrial revolution, which advanced
the automation, monitoring, and analysis of supply chains processes through integra-
tion of smart technologies, epitomises the importance of digital technologies across all
industries, including the construction sector [3]. Industry 4.0 has triggered numerous
changes across the industry and at the same time also created many opportunities to
develop it further, with its focus for efficiency of project delivery being at the fore-
front [4]. Industry 4.0 was introduced to enrich the various construction processes
with the use of digital information technologies. The implementation of industry 4.0
encouraged the development and further adoption of digital technologies and skills
that can be observed today as well as provided insight into the cyber-physical systems
available to the industry [4].

With the implementation of industry 4.0, the UK government has recognised the
benefits that a digitalised industry can provide. As a result, various government schemes
have come to fruition to supplement the adoption, namely the Construction Strategy
2016–2020 [5], Digital Built Britain Scheme [6], and Construction 2025 [7]. The Construc-
tion 2025 strategy outlines a forecasted £200bn per annum market for digital technolo-
gies by 2030 [8], which would lead to an increase in productivity of 15% if digital
technologies are universally adopted [9]. According to the NBS construction technology
report (2019), the infusion of digital technologies throughout the industry will be a mas-
sive contributor to combating the current sustainability issues the industry faces. In ad-
dition, the government launched the Centre for Digital Built Britain to lead the digital
transformation of the built environment in the UK. The centre ran the National Digital
Twin programme (NDTp) along with the Department for Business, Energy, and Indus-
trial Strategy. The programme works with future users and early adopters in order to
develop an Information Management Framework to connect digital twins [10].

There has been a need for the UK construction industry to become more digital-
ised, especially considering the recent events such as the fire at the Grenfell Tower
and more recently with the COVID-19 pandemic, thus highlighting the importance of
having an effective handover for technical information [11]. In fact, due to the pan-
demic, the UK construction industry has seen a rapid infusion of digital technologies
into various elements of the workplace. In a survey conducted by the National Bureau
of Statistics (NBS), due to COVID-19, 98% of respondents claimed they had seen a vari-
ety of changes to company processes operationally through the implementation of
digital technologies [11]. This is further evidenced through an increased investment in
the digital technology market, whilst the UK was suffering a major economic crisis as
a result of the pandemic [12].

The aim of this research is to critically analyse the current state of digitalisation of
the UK construction industry. The specific objectives of this study aimed at defining
the current barriers preventing the adoption of digital technologies within the UK con-
struction industry. The study also attempted to evaluate whether there is a difference

238 Liam Bousfield, Serik Tokbolat, Peter Demian



in digital technologies adoption between the large-sized companies and SMEs in the
UK construction industry. This analysis was supported by the investigation of the cur-
rent digital technologies used in the UK construction industry and a discussion of the
potential digital technologies the UK construction industry should adopt in the future.

11.2 Literature review

11.2.1 Current barriers to adoption

Whilst the idea of a digitalised construction industry is not a new concept, the per-
ceived benefits of adoption are limited and often disregarded due to the barriers that
the industry currently faces. According to the government’s Construction 2025 scheme
(2013), two-third of all construction companies are not partaking in any innovative
schemes. There could be many reasons for this; however, as seen in the McKinsey Sur-
vey (2019), 84% of the respondents stated that digital transformation fell short of what
was expected, thus resulting in a lack of scheme adoption. The main barrier to adop-
tion of digitalisation by the industry at present is the lack of an effective digital strat-
egy. If there is not a consistent strategy across all areas of the business, the adoption
of the technologies will not be effective [13]. The lack of a digital strategy is one of the
largest barriers for digitalisation of an industry in the beginning stages due to busi-
nesses not being able to competently grasp their strategic influences [14].

In addition to the lack of digital strategy, an insufficient innovation culture is a
major barrier to adoption in the UK market. According to [15], digital transformation
can only occur if there are both digital and cultural amendments to a business model.
In the UK industry, people often overlook the importance of culture in a business and
how it coincides with digital change. Digital change is a process that needs influence
from all members of the business. There needs to be an enhanced focus on a compa-
nywide innovative business model to be able to combine both aspects, facilitating the
formation of a digitally integrated industry. This concept is further explored by [16]
and his “cultural and management barriers” states that a lack of top management
commitment will adversely influence those further down the hierarchy. Similarly,
[14] outlines how uncertainty of managers and employees, coupled with insufficient
capabilities within the team and a lack of willingness to take the risks associated with
a digital shift, are key barriers associated with company culture.

Further supporting the above, the start-up costs of implementing digital technolo-
gies across the organisation are a major reason for lack of execution. The Construc-
tion 2025 government scheme [8] outlines how the financial risk associated with
innovation is one of the reasons why innovation rarely occurs throughout the indus-
try, with the financial impacts of Research and Development [R&D] being a deterrent.
This is further supported by [16] with the “economic and finance barriers” element of
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his analysis stating that high investment, lack of R&D resources, and Return on Invest-
ment [ROI] are significant barriers. This element also intertwines with the “lack of
pertinent competencies” barrier outlined by [14].

To further explain the above barriers, the [17] outlined how third parties can also
have an adverse influence on digital adoption through the following elements. First,
“Fragmentation,” which outlines how the current projects undertaken in the construc-
tion industry are disjointed amongst supply chains. The key to achieving a successful
digital shift is through consistent alterations, which need to be made across the differ-
ent elements of the construction process [17]. Second, “Lack of replication” – as a lot
of the construction projects in the UK are bespoke to client needs and delivered in
various ways, it is difficult to generalise how approaches should be taken and hence a
full-scale transformation will be required for each project. This is consistent with the
“Technical technology barriers” outlined by 16, where it is argued that there is a lack
of scalability and standardisation. Figure 11.1 below shows both the internal and ex-
ternal barriers outlined above.

11.2.2 SMEs vs large organisations

SME adoption of digital technologies will play an integral part to achieving a digitalised
construction industry. First, the BIM report (2020) outlines how there is still a divide
between large-sized organisations and SMEs – this being evidenced through 80% of
large-sized organisations utilising Building Information Modelling (BIM), compared
with only 62% of small-medium enterprises. In a report produced by [18], it can be seen
that large companies are almost three times more likely to adopt digital technologies,
such as BIM, when compared with SMEs. Consequently, the 2015 report revealed just
over 50% of SMEs were ready for the digital shift compared with nearly 90% of large
companies [18]. This is further evidenced in the [17], where a comparison was drawn
between SMEs and large-sized companies, evidencing that 34% of large-sized companies
had over five years experience with BIM compared with only 16% of SMEs [18].

Internal Barriers

Adoption of Digital

Technologies

External Barriers

Solution to barriers

Support within the organisation Support outside the organisation

Lack of Efficacious Digital Strategy

Insufficient Innovation Culture

Cost of Implementation

Lack of Government Support

Fragmented Supply Chain

Lack of Replication

Figure 11.1: Barriers to adoption.
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Supplementary to industry 4.0, the UK government has encouraged SMEs to em-
ploy a digital strategy, in line with large-sized companies, in an attempt to bridge the
gap [19]. This is explored by [20], claiming that the start-up cost of BIM level one was
extremely detrimental to SMEs, and many SME have not fully recovered. As a result,
with the government pushing for similar investment into BIM level two, they have
created a lag between the two business dimensions. If the UK government wants to
successfully digitalise the industry, there needs to be a focus on the training of staff in
SMEs to be able to competently utilise the technologies [21].

It is said that companies in the earlier years of BIM adoption, usually small-
medium enterprises, show a negative Return on Investment (ROI) or only break even
on their BIM investments, compared to large-sized organisations that usually show a
positive ROI [22]. This is due to the start-up costs of implementing the technologies,
which have had an adverse effect on cash flow for small-medium enterprises com-
pared with large-sized businesses [18]. As outlined earlier, the difference in adoption
between large-sized companies and SMEs has had a detrimental effect on SMEs. The
use of BIM level two was made a legal requirement on all projects worth at least £5 m
in 2016 [23]. It was determined that the adoption of BIM level two in SMEs was poste-
rior to large-sized companies, and as result of the lack of adoption, work winning by
SMEs was extremely difficult [20]. This is further supported by the Federation of Mas-
ter Builders (2016), who state that 40% of SMEs fail to win 90% of the public projects
they submit a bid for, and over half of all SMEs state they have seen a reduced success
in bidding for works in the last five years.

11.2.3 Current digital technologies used in the UK construction
industry

11.2.3.1 Building information modelling (BIM)

The notion of a digitalised construction industry was initially brought to light through the
implementation of BIM. In a study conducted by Accenture (2014), the UK construction
industry was highlighted as the sector with the lowest adoption and implementation of
digital technologies, with 75% of construction employees in the UK not having advanced
technologies incorporated in their business. It was claimed that the construction industry
had a slow adoption and integration due to various reasons, such as minimal understand-
ing of BIM benefits.

As previously highlighted, April 2016 saw the UK government introduce BIM level
two as a mandatory element for all public sector works [24]. Since the enforcement of
this mandate, there has been an increase of 8% in BIM usage across employees, this is
the biggest increase in a three-year period [25]. The UK is currently advocating the
use and benefits of BIM, providing both standards and descriptions of best use, with
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many other countries using the UK model as a template for implementation [26]. This
is a direct result of BIM contributing to a saving of £855 m on UK construction
schemes in 2016 [26].

The mandate was implemented due to the increasing need for public infrastruc-
ture and spending as well as combating the current adversarial environmental effects
the industry is having. There is an enhanced focus on a reduction in the amount of
fossil fuels used and due to this requirement, in line with the BIM level two mandate,
the government implemented a scheme called “spend carefully, build more and to a
sustainable quality standard” [27].

BIM, as a process and a standard, will contribute to the UK government’s aim for
the construction industry to be net zero carbon by 2050. BIM aids in the utilisation of
energy and resources used on site, and often acts as a guide to developing sustainable
projections of a project [26]. The year 2020 marked 10 years of BIM usage. The 2016 pro-
jections saw BIM being implemented in 97% of all projects [26]. Alas, with a variance of
26%, it demonstrates how the industry is not digitalising at a rate that was projected.

It is important to note that BIM has seen many successes since implementation.
In a report conducted by [18], 59% of respondents from the UK construction industry
stated they reported a positive return on investment for BIM, with over 25% of re-
spondents claiming the implementation of BIM had a very high positive return on in-
vestment. Finally, with a new generation of industry individuals coming through
from the “millennials” and “generation Z” age groups, the use of digital technologies
is the norm for these individuals from a young age. From a survey conducted by NBS,
it states that 80% of employees aged under 40 have adopted BIM in their projects,
compared with 60% for those 55 or over [28]. The cultural aspect and attitudes to-
wards digital adoption differ between the age groups.

11.2.3.2 Drones and unmanned aerial vehicles (UAVs)

There has been limited research into the application of drones and UAVs in the UK
construction industry; however, as a result of the UK government passing the “mod-
ern transport bill” in 2019, the use of drones/UAVs in construction has grown signifi-
cantly. UAVs and drones have seen a substantial growth in recent times due to the
affordability [29] and accuracy [30] of the technology. This means applications of
these technologies is becoming the norm and they have many uses such as health and
safety of sites, surveying of construction sites, and progress tracking [31–33].

Design errors can cause significant amount of disputes in the UK construction in-
dustry. Drones can be used to counteract this issue by capturing real-time, accurate
data from site and reporting it to generate more accurate models that are continu-
ously updated. Benefits offered by drones to the industry are significant, as shown
through a 61% increase in the accuracy of information being produced [34].
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As the UK construction industry strengthens its digital capabilities, the use of
drones and UAVs are becoming more applicable to multiple stages of construction [35].
Traditionally, drones were only employed in the preliminary stages of construction;
however, this has now changed. In recent times, drones are utilised in the full life cycle
of the project [36]. According to [36], drones provide up to date, real-scale images,
which allow for more accurate modelling. Drones are more recently being used in inter-
nal 3D mapping of structures, where traditionally their uses were focused on external
aerial mapping. As shown in a study by [37], the 3D mapping capabilities of drones pro-
vide a wide range of accurate imagery, which would otherwise be difficult.

As applications of drones and UAVs move away from traditional uses and into
other phases of the construction life cycle, it is important to evaluate the effectiveness
and accuracy of the imagery produced by the drones and UAVs [38]. It was discovered
that the accuracy between the imagery produced by a drone and a 3D model were far
better than those produced using other technologies, with the degree of error being
less than 4 cm. The information provided by the aerial images is then converted into
3D models through the process of 3D reconstruction [35]. Drones and UAVs can cap-
ture these points remotely and offer a wider range of information when compared
with other methods [33].

11.2.4 Future digital technologies for the UK construction
industry

11.2.4.1 Blockchain technology

The idea of using blockchain technology in the construction industry is a relatively
new concept even though it has been widely explored in other industries. Blockchain
is an electronic source of record keeping that is securely kept, authenticated, and
maintained by the various parties through a decentralised network [39]. Blockchain
saves the information in blocks and adds it to a chain at scheduled intervals, which
forms a chain of information that is extremely difficult to corrupt [40]. Blockchain is
comprised of various elements that make it applicable to the construction industry.
First, the decentralised element – this means there is no “middleman” involved with
moneys or contracts, such as bank transfer or the use of a lawyer [41]. This has vari-
ous monetary benefits as the associated costs that the banks and lawyers charge in
order to complete the transaction can be avoided [42].

This element is applied through blockchain’s electronic document management.
As the data is decentralised, it can be automatically updated across all systems and
offers a comprehensive information management software for the whole project life
cycle [43]. All the information is stored in a decentralised information base where val-
idation is needed from all participants in the chain. This allows all participants in the
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chain to receive the same information without any room for error or discrepancy
[40]. However, it has been found that blockchain technology is not always suitable for
storage of all data [44].

As many construction projects produce mass amounts of data and need all data
stored, blockchain may not be suitable as only limited data can be stored [44]. Block-
chain technology also has applications in construction contract management. “Block-
chain 2.0” outlines the usage of smart contracts. The use of a blockchain smart
contract can potentially disregard the need for a main contractor, with smart con-
tracts being set up between all the relevant third parties directly [40]. This is con-
ducted through an “autonomous” element. With the technology being autonomous,
once the programme is launched, the contract and the entity that initiated do not
need to be in further contact [45]. This element allows for the use of algorithms that
will automatically trigger the “execution, verification, and enforcement” of the smart
contract [40]. The BIM, UAV, and Blockchain technologies were selected as examples
from a wide range of technologies due to their relative popularity and recognition.
Further research should consider a wider range of technologies.

To conclude, historically the industry has faced payment disputes in construction
projects with issues such as non-payment or late payment often occurring [46].
Through the implementation of smart contracts, blockchain technology can act as a
solution to these payment disputes. This will influence the way future contracts are
set up and can avoid litigation [47]. The use of blockchain and smart contract will re-
move the risk of litigation occurring as the payments will be automated [48].

11.3 Methodology

This study has considered data collected from the scientific literature and primary
data sources. A potential risk of relying on published literature is that there is no con-
trol over the quality of the information provided. In order to control this risk, an eval-
uation of the reliability of the information had been conducted prior to inclusion in
this study. When carrying out primary research, a survey approach has been adopted
using a questionnaire. The questions were based on a Likert scale to measure the rela-
tive impact from strongly disagree (1) to strongly agree (5), multiple choice questions,
and closed questions. The Likert scale questions were used as they are universally
adopted as a comprehensive way of collecting data, which is easy to understand and
analyse the results. This data was gathered through various professionals in the UK
construction industry. The advantage of using these professionals is that they are di-
rectly involved in the delivery of a construction project from start to finish. Moreover,
semi-structured direct interviews have been carried out. The interview questions
were semi-structured to allow the professionals to further expand their views of the
questions, previously limited in the questionnaire. Obtaining both qualitative and

244 Liam Bousfield, Serik Tokbolat, Peter Demian



quantitative data has facilitated a reliable evaluation of the current state of digitalisa-
tion within the UK construction industry.

The research for this study has included both the use of qualitative data collection
and quantitative data collection. According to Hurmerinta-Peltomaki and [49], the use
of a mixed methodology approach increases the validity and accuracy of the results.
Furthermore, the use of a mixed method approach offers the benefits of both qualita-
tive and quantitative data collection to be utilised effectively [50].

The research questions were structured to clearly establish relationships between
different job roles, sectors, and viewpoint on the state of digitalisation within the UK
construction industry. An understanding of the company size, sector, job role, age
group, and perception on adoption is imperative to either proving or disproving the
findings from the literature review. Upon conducting the research for this study, it
was identified that similar questions have been asked regarding this topic, namely in
a study conducted by [51]. This study conducted research into the state of digitalisa-
tion of the South African construction industry and there were limited similarities in
studies currently conducted in the UK.

11.3.1 Survey

Even though the questionnaires offer an “even international coverage,” when com-
pared to other methods, there are still some limitations associated with the data col-
lection method [52]. According to [53], one of the main issues surrounding the use of
questionnaires is the potential for dishonesty in answers. This can often be as a result
of “social desirability bias”. This matter has been managed through the questionnaire
being anonymous. With the questionnaire being anonymous, the need for social ap-
proval of answers is removed. Furthermore, with the questionnaire being closed, it is
claimed to be difficult to grasp the emotions of the participant. This is also discussed
by [53], who states without these elements, essential data may be missed. In order to
counteract this issue, a mixed methodology approach has been used with semi-
structured interviews that allow participants to further expand their viewpoints.

11.3.2 Semi-structured interviews

The interview questions were split into five main sections. The first section was in-
tended to identify the type of respondent who would be undertaking the interview,
outlining their depth of experience and the skeleton knowledge surrounding a digital
focus in the construction industry. The next four sections were split, based on the
four objectives. The second section surrounded a discussion around the potential bar-
riers to adoption and the key elements that need to be addressed to combat these bar-
riers. From the literature review and the questionnaire responses, it was clear there
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was a gap in adoption between large-sized companies and small-medium enterprises.
With the questionnaire only outlining whether there was a clear gap, it was important
to identify why the participants felt this was the case. In addition to this, identification
and expansion on ways to reduce this gap was included. Section three of the interview
surrounded the current digital technologies in the industry. This was helpful to evalu-
ate the reliability of the literature reviewed and identify whether the two digital tech-
nologies discussed in the literature review were being used within the industry. The
final element of the interview discussed future technologies. The future technology
discussed in the literature review was “blockchain technology”. This topic was dis-
cussed as it was a niche element of construction, which is yet to be fully adopted.
With there being limited research on the topic, it was important to identify whether
the individuals interviewed were aware of the applications and whether they be-
lieved it was integral to the further development of the industry.

Whilst interviews have many benefits, there are also factors of limitation. When con-
ducting the interviews, there is always an element of uncertainty. There is the potential
risk that the interviewee may misunderstand the question [54] and, in some instances,
respond incorrectly. To ensure this does not occur in the interview, the interview ques-
tions were semi-structured, but without ambiguity. They were well-defined and concise,
with a clear path of the topics that the interviewee shall discuss. Furthermore, there was
potential for the ”interview effect,” which could affect the results provided by the inter-
viewee [55]. In order to minimise this issue, the interviews were conducted over Micro-
soft Teams due to the coronavirus pandemic, and the camera was always switched off.

11.3.3 Research sample

The research sample used for this study included construction individuals who are
currently in the industry from various sectors, age groups, job roles, and company
sizes. The aim of this sample was to cover a broad range of construction professionals.
The sample selected for this study was identified initially using social media, particu-
larly LinkedIn. LinkedIn is an extremely useful tool due to there currently being over
722 million users on the platform [56].

The study reached out to 652 connections on LinkedIn, with 91.56% of connections
involved in the construction industry. With 597 individuals within the network from
various construction roles, experiences and company size, the network was deemed
to be representative of the industry. The post on LinkedIn had 712 views. With a total
of 81 responses from the sample, there was a 11.38% response rate. According to both
[57] and [58], a response rate of 10–15% is standard for an external survey, thus show-
ing the response rate for the questionnaire aligns with expectations of the methodol-
ogy. There was a 100% response rate on the semi-structured element of the research.
The research sample for the interviews consisted of five interviews, three of these
from small-medium-sized enterprises and two from large-sized companies.
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11.3.4 Method of analysis

The questionnaire has been selected due to its scalability and comparability benefits
as well as its ability to cover a vast range of participants. This questionnaire was
structured and closed to allow for clear comparisons to be drawn using quantitative
data. The analysis techniques utilised were based on the use of Mean Item Score,
which was used to score the level of digitalisation within the different elements, and
additional statistical measures and value manipulation measures were used to further
express the viewpoints of the sample.

The interviews were semi-structured and open. The interviews were thematically
analysed, identifying similarities and differences between the responses. In addition,
there was an analysis done on the consistency in response between the different com-
pany sizes and their viewpoints on the industry in relation to digital technologies. A
mixed-method approach was used to compare the three types of data collected – two
primary research methods, the questionnaire and the interview, and the secondary
data collection through the existing literature.

11.4 Results

The questionnaire was issued with the intention of identifying a larger sample size of
the UK construction industry. There were 81 responses in total, with 14 responses from
the Small-Medium Business group, 9 from the Small-Medium Enterprise, 2 from a me-
dium-sized company, and 56 from the large-sized company group. The interview sample
consisted of five interviewees – two of these being from a large-sized company, and the
other three being from small-medium enterprises. All five participants fell in the “Gen-
eration X” sample group, with all participants having a similar level of site experience
in order to draw clear comparisons between company size and viewpoints.

11.4.1 Barriers to adoption

The literature review revealed that the four main barriers to adoption are “lack of
government initiative”, “cost implications”, “lack of digital culture”, and a “lack of a
digital strategy” as shown in the table 11.1. From the respondents, 67.90% state that
they believe a lack of a digital culture is the main barrier to adoption; this being the
most nominated response. This is closely followed by cost implications, with 61.70% of
respondents selecting this barrier. It was interesting to see that there was over a 20%
gap between selection of “lack of digital culture” and “lack of a digital strategy”. The
literature review revealed how these two elements interlink and one cannot be
achieved without the other.
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The barrier that was most prevalent from the interview discussion was a “lack of
digital culture”, highlighted by 80% of the interviewees. This was explored by [59] and
[16] stating how people often overlook the importance of culture in a business and
how it is essential to successfully digitalise. It was a surprise that only one of the re-
spondents highlighted “lack of a digital strategy” as a barrier. The literature review
revealed that this was one of the main barriers to adoption, stating “lack of a digital
strategy is one of the largest barriers for digitalisation of an industry” [14].

In order to identify the difficulty to adopt digital technologies, the below question
was proposed to get a consensus of their opinions as shown in Figure 11.2. By using the
mean item score method of analysis, an overall score of 3.19 was calculated. This shows
that from all the responses, on average, the respondents believe it is moderately diffi-
cult to adopt digital technologies in the industry. This is a relatively consistent view
across company sizes, with the mean item scores ranging between 3.09 and 3.66.

The results from this section do not necessarily compare with the findings in the liter-
ature review. The literature review revealed that there was a clear gap between

Table 11.1: Barriers to adoption.

Barrier Responses %

Lack of digital culture  .%
Cost implications  .%
Lack of digital strategy  .%
Lack of government initiatives  .%
Other  .%

Moderately

(3)

Easy

(4)

Very Easy

(5)

Difficult

(2)

Large Sized Company (1000+ Employees)

How difficult is it to adopt digital technologies?

Medium Sized Company (501 – 1000 Employees)
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Very Difficult

(1)

2
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1 1 1 1
3 3
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Figure 11.2: Difficulty to adopt by company size.
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large-sized companies and small-medium enterprises in terms of adoption and the
ease associated with adoption. Even though only 33.93% of large-sized companies
claimed that it was either difficult or very difficult to adopt the technologies com-
pared with 66.67% of SMEs, there is only a variance of 0.57 between their mean item
scores.

11.4.2 Large-sized company vs SME

From the results below as shown Figure 11.3, most of the respondents believe that
there is a clear gap between the two groups, with just under 94% claiming so.

From the interview responses, 100% of the large-sized company sample group stated
that there was a gap in adoption between large-sized companies and SMEs, when
compared with only 66.67% of the SME sample group. It was fascinating to identify
why one of the SME sample interviewees claimed that there was no gap, stating “they
both utilise similar technologies”. The literature review revealed that one of the key
reasons for the gap between the two company sizes is due to lack of government sup-
port, this being highlighted in both the questionnaire and the interviews. Referring to
Figure 11.4, it is clear that most respondents believe that the government does not
offer enough support to be able to digitalise the industry, with 89.90% stating this
viewpoint.

Moreover, the literature review predicted that the SME group would have a high
percentage of respondents claiming that the government does not offer enough sup-
port. The literature review revealed that a lack of government support has meant
work winning for SMEs has become far more difficult. This is supported by 100% of
the respondents from the SME sample group; they stated that the government does

Do you think there is a gap in digital adoption

between Large Sized Companies and SME’s?

6%

94%

Yes No

Figure 11.3: Gap in adoption.

Do you think the government offer enough

support to be able to digitalise the industry?

Yes No 11%

89%

Figure 11.4: Government support.
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not provide a substantial amount of support to be able to digitalise. From the inter-
views, “lack of resources” and “lack of funding” were highlighted by 80% of the re-
spondents, supporting the literature evidence [21]. The literature review revealed that
the implementation of the BIM level two mandate has created a gap between the two
company sizes. This was explored by one of the interviewees, stating “there is a gap,
and it is because the government made BIM level 2 mandatory in 2016”. By using the
mean item score method of analysis, an overall score of 4.28 was calculated. This
shows that from all the responses, on average, the respondents are in between –

being likely and very likely to support the adoption of digital technologies in their
business as shown in Figure 11.5 below.

It was interesting to see that the mean item score for the large-sized company was
4.48 compared to the mean item score of 3.22 for small-medium enterprises. The re-
sults from the study are the same as the findings in the literature review. The litera-
ture review revealed that a positive culture towards adoption of innovative solutions
was more prevalent in large-sized companies when compared to small-medium-sized
enterprises. As outlined previously, almost 93% of the respondents of the large-sized
company group state they are likely or very likely to support the adoption of digital
technologies. This is more than double the result found from the small-medium enter-
prise sample group. The results found in the questionnaire once again reiterate that
there is a clear gap and acts as a viable validation of the findings revealed in the liter-
ature review.
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Figure 11.5: Likely to support adoption.
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11.4.3 Current technologies

11.4.3.1 Building information modelling

From the literature review, BIM was highlighted as the “backbone of digital transfor-
mation of the construction industry” and one of the key digital technologies contribut-
ing to the growing digital revolution.

The questionnaire results as shown in Figure 11.6 revealed that, overall, 74.07% of
the respondents are either, aware, or very aware of building information modelling.
By using the mean item score method of analysis, a score of 3.98 was calculated. This
result evidences how the respondents are only aware of BIM. This is not consistent
with findings from the literature review. The literature review stated that as of 2020,
over 70% of the industry personnel are using building information modelling in their
projects. If this was the case, it would be expected that there would be a mean item
score between 4 and 5 as a high level of usage would coincide with a high level of
awareness. From the interview results, 100% of the interviewees were aware of BIM
as a technology, with all currently using it in their projects bar one. In terms of cur-
rent applications, the majority of the interviewees were aware of all the applications
outlined in the literature review. There were two elements of BIM that were highlighted
by the sample group that was not identified in the literature review; these being “appli-
cations in clash detection “and “virtual testing”.
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Figure 11.6: BIM awareness.
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11.4.3.2 Drones/UAVs

The literature review revealed that the use of drones/UAVs is one of the most adopted
current digital technologies in the UK construction industry. As shown in Figure 11.7,
just over half of the respondents state that they are either aware or very aware of
drones/UAVs, with 51.85% stating this.

By using the mean item score method of analysis, a score of 3.19 was calculated.
This shows that from all the responses, on average, the respondents are only moder-
ately aware of drones/UAVs uses. This is not consistent with the findings from the lit-
erature review as the review highlighted many uses and current applications within
the industry. The interviews revealed that 100% of the interviewees are aware of
drones/UAVs; however, only 40% currently use them in their projects, with both inter-
viewees being from the large company sample group. The interviews revealed that
the most commonly occurring applications were for media, handovers, and topo-
graphical surveys. These were also highlighted as key elements for application in the
literature review. As expected, there were more identified applications from the
large-sized company sample group, compared with small-medium-sized, and this coin-
cides with the findings from the literature review. There was a clear split in opinion
between the two company sizes, with the small-medium-sized enterprise personnel
stating, “it is expensive and very few small companies have this ability” and the large-
sized company group stating that “Drones are the way forward”.

8

19

Are you aware of the usage of Drones and UAV’s in the

construction industry?

12

33

9

0

5

10

15

20

25

30

35

Figure 11.7: Drones/UAV awareness.
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11.4.4 Future technology

11.4.4.1 Blockchain technology

Blockchain technology was the future technology explored in the literature review.
Figure 11.8 below outlines the respondents’ current level of awareness of blockchain
technology. The results clearly evidence that 65.40% of the participants were not
aware of blockchain technology, with only 28 respondents stating they are aware of
blockchain technology.

Furthermore, it was important to identify whether there was a clear gap between the
awareness by company size. Prior to conducting the research, it was alleged that there
would be a clear gap in awareness between these two company sizes. However, that is
not the case, as both the sample groups have a larger proportion of respondents claiming
they are not aware of the technology, with 62.50% of the large-sized company group stat-
ing they were not aware of the technology, compared to 66.67% in the SME group. The
results from the interviews regarding this topic are aligned with what was expected prior
to undertaking the interviews. As expected, 100% of the interviewees from the large-sized
company sample group were aware of blockchain technology and 100% of those in the
SME sample were not aware. This coincides with the differing cultural viewpoints re-
vealed between the two in the previous analysis and the literature review.

11.5 Discussion

When addressing the objective of identifying and evaluating barriers to adoption of
construction digitalisation, it was clear to see that the barriers identified in the litera-
ture review were consistent with what was found in both primary data collection re-

Are you aware of Blockchain Technology?

Yes No

35%

65%

Figure 11.8: Awareness of blockchain.
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sults. From what can be seen, with the earliest literature used in this section of the
study being from 2004, the same barriers have remained constant for a period of
nearly 17 years. The findings have also highlighted where additional measures need
to be implemented in order to facilitate a successful digital shift, thus supporting the
conclusions drawn from previous researchers.

The study findings have also identified that there is a clear gap in adoption of
digital practices and technologies between large-sized companies and SMEs. Both the
literature reviewed and the primary data results come to the same conclusion. It was
interesting to identify the adverse effects the government has caused on this gap, with
both the literature review and primary data stating that they have “increased the
gap” between the two. The findings from this section support previously published
conclusions from academics, thus reinforcing its validity.

When discussing BIM as a part of current digital technologies used in the UK con-
struction industry, the primary data results were consistent with the findings from
the literature review for the most part, apart from levels of awareness from the pri-
mary data, compared with the stated levels of uses in the literature review. This as-
pect was quite thought-provoking as it was believed, due to the multiple applications
and current uses of BIM within the industry, that the findings from both would be
consistent. However, both sections concluded that BIM was the digital technology that
was utilised the most within the UK construction industry.

Drones/UAV usage was highlighted as the second most adopted digital technology
within the industry. Unfortunately, some of the findings from the primary data results
were not consistent with this theory and the literature review findings, with the inter-
viewees showing a more positive attitude towards this technology. According to the
literature review, the use of drones in construction has grown significantly as a result
of the modern transport bill. However, the questionnaire results did not evidence this
with a relatively low level of adoption being found. This is contrasted by the findings
of the interviews, with one interviewee stating, “Drones are the way forward”.

Discussion surrounding blockchain technology centred around the point if it is a
future technology the industry should adopt. As there was limited research into this
technology due to the recent awareness of its beneficial elements, with the earliest
literature used being from late 2015, it was difficult to draw confident conclusions
about its conceptual element vs application element. The literature review revealed
the various applications where blockchain technology can be used within the indus-
try, stating how implementation will help tackle industry’s old issues such as poor
productivity and payment disputes. The data collected from the questionnaire ex-
posed how little the current industry knows about blockchain technology and the ben-
efits it can provide for the industry. This is however contrasted by the interviews,
with two of the interviewees discussing all of the benefits that blockchain can provide
for the industry.
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11.6 Conclusions

The aim of this study was to evaluate the state of digitalisation of the UK construction
industry. After collating all the information, it is clear to see that the industry is only
moderately advanced in terms of digitalisation. To further substantiate this point, the
first objective discusses the barriers to adoption. This objective revealed a number of
barriers that have been constant and affected the digital uptake in the industry for a
number of years. If the industry is to be able to successfully integrate digital technolo-
gies, the barriers need to be addressed and this needs to be from a “top-down” ap-
proach, with additional support needed both internally and externally to a business.
Furthermore, the main issue currently is the emerging gap between large-sized compa-
nies and SMEs. As the literature review revealed, SMEs account for 99% of the construc-
tion industry. There will not be a substantial growth in the impact that digitalisation
can have within the industry without the gap between the two company sizes being
addressed, a key theme being the lack of government support, once again putting em-
phasis on the “top-down” approach. Discussion surrounding BIM and drones/UAVs re-
vealed that the current industry is not as technologically advanced as the literature
review revealed, with BIM awareness differing from claimed usage and awareness as
also the current knowledge of the uses within the industry for drones/UAVs. The final
element surrounded the implementation of a new digital technology within the indus-
try, blockchain technology. The literature review revealed the mass amounts of com-
mercial applications where blockchain can be used within the industry and how it can
interlink with current technologies such as BIM to improve its current uses. If the in-
dustry is to continue to digitalise at an advanced rate, the adoption of these future tech-
nologies is imperative.
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