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Preface

Structural health monitoring (SHM) has emerged as an important research area in
recent years because of its strong links with structural safety and the need to monitor
and extend the lives of existing structures. SHM is an interdisciplinary field, com-
bining elements of mechanics with those of information science and sensors and
actuators. The practical importance of SHM is clear from the continuing failures
which affect engineering structures such as bridges, aircraft, helicopters, and nu-
clear reactors. In many cases, a health monitoring system installed on the structure
can detect and isolate the damage before it becomes catastrophic, thereby reduc-
ing the likelihood of failures. SHM systems can therefore reduce costs and save
lives.

A key problem in SHM involves performing damage detection and isolation
from a set of measured data. Typically, the measured data is contaminated with
noise, and the number of measurements is limited. In model-based SHM, a math-
ematical model is used to develop simulated measured data for the damaged
structure. Then, the simulated data is used to develop a pattern recognition ap-
proach which maps the damage location and size to the simulated data. Algo-
rithms such as neural networks are often used to perform this pattern recogni-
tion task. However, neural networks tend to be black boxes which are difficult
to understand. In this book, an alternative and powerful architecture, the genetic
fuzzy system (GFS), is demonstrated for beams, composite tubes, and helicopter
rotor blade health monitoring. A novel feature of this book is the focus on heli-
copter rotor health monitoring, as this represents a system of considerable complex-
ity.

The fuzzy logic approaches addresses uncertainty directly through the linguistic
fuzzifier and is very well suited to SHM because it gives linguistic outputs which
can be used to guide prognostic action. The use of the genetic algorithm automates
the development of the fuzzy system and makes the method easy to use for problems
involving a large number of measurements and damage location sizes, which is
typical of SHM. By demonstrating the use of the GFS as a series of progressively
complicated structures, this book enables the reader to learn about this new and
powerful approach to SHM. The book also provides some MATLAB code for the
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algorithms developed. This book will be useful for aerospace, civil, and mechanical
engineers working in the area of SHM. It will also be useful for computer scientists
and applied mathematicians interested in the application of GFSs to engineering
problems.

Prashant M. Pawar
Ranjan Ganguli

Bangalore, India
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Chapter 1
Introduction

Structural health monitoring (SHM) is necessary for various aerospace, mechanical,
and civil engineering applications for evaluating the fitness of a structure to perform
its prescribed tasks. The structure may change its performance based on a grad-
ual or sudden change in state, load conditions, or response mechanisms. The main
objective of developing the SHM system is to enhance structural safety. However,
SHM serves other economic benefits such as increased mission reliability, extended
life of life-limited components, reduced tests, reduction in “down time,” increased
equipment reliability, customization of maintenance actions, and greater awareness
of operating personnel, resulting in fewer accidents [1]. SHM also promises to help
in reducing maintenance costs. For example, in the case of helicopters, maintenance
costs account for about 24% of the direct operating costs [2]. Due to evolution in on-
board information processing technology and avionics, comprehensive SHM sys-
tems are feasible, and flight data recorder systems mitigate the cost of installing
the SHM systems [3]. Hence, SHM plays an important role in the case of aging
structures (whose life span is increased due to budget restrictions) by promising an
increase in safety and a reduction in the maintenance cost.

Some aerospace vehicles are equipped with a health and usage monitoring system
(HUMS), which is a very good example of SHM. HUMS is highly recommended
for helicopters, as these flight vehicles are prone to damage due to high vibration
levels. The process of usage monitoring involves assessing the life consumption of
critical component systems and structures by monitoring actual damage exposure.
For predicting the remaining life of components, accurate prediction of the total
life of a component and accurate measurement of its usage is needed. The simplest
form of usage monitoring is time monitoring. The use of automated time monitor-
ing not only relieves pilot and crew workload, it also removes errors associated with
the rounding of flight hours. Another function of HUMS is automated recording in
flight exceedance, thus removing the dependency upon the crew to perform this task
manually. For example, if a predefined oil temperature, oil pressure, or shaft torque
level is exceeded, then HUMS records the time and level of the exceedance for post
flight evaluations. In addition, HUMS records the values of a set of flight parameters
(such as altitude, airspeed, and outside temperature) at the time of the exceedance.

P.M. Pawar, R. Ganguli, Structural Health Monitoring Using Genetic Fuzzy Systems,
DOI 10.1007/978-0-85729-907-9_1, © Springer-Verlag London Limited 2011

1

http://dx.doi.org/10.1007/978-0-85729-907-9_1


2 1 Introduction

These parameter levels give additional insight to the maintainer during a post flight
analysis. The faults detected through exceedance monitoring cover the engine, drive
train, rotor, and oil system. Based on the experience of the Eurocopter HUMS devel-
opment of more than 10,000 flight hours supporting 70 systems world wide, actual
achievements were compared with initial expectations in [4]. From these studies, it
was observed that the implementation of HUMS has numerous benefits. In particu-
lar, the safety enhancement provided by HUMS is now unquestioned.

In this book, we will consider both SHM and HUMS systems. HUMS goes be-
yond SHM in terms of sensor measurements; however, the underlying philosophy is
the same: to use measurements to monitor system health. Several different structures
will be considered with different damage modeling approaches. These applications
are relevant to aerospace, civil, and mechanical engineering.

1.1 Terms and Definitions Related to SHM

Over the last two decades, SHM technology has shown enormous development.
Various SHM-related terms have evolved which are defined below [5]. These terms
occur frequently in this book and in the SHM literature.

Damage: Damage is defined as “a deficiency or deterioration in the strength of a
structure, caused by external loads, environmental conditions, or human errors.”
Physically, damage may be visible as a crack, delamination, debonding, reduction
in thickness/cross section, or exfoliation. The damage may not be easily visible to
the naked eye. For example, composite structures are susceptible to barely visible
impact damage (BVID). Operational structures are designed to operate with some
amount of damage; i.e., they are damage tolerant. The term “damage” therefore
carries a very different meaning compared to the term “failure.” However, early
damage detection can prevent failure of structures just as early detection of heart
disease and cancer can prevent premature death in a human. Once the damage is
detected, appropriate action needs to be taken to repair the structure.

Detection: Detection is defined as “the identification of existence of an anomalous
condition in a system.” For instance, by performing rotor track and balance in a he-
licopter rotor, the maintainer may identify an abnormally high fuselage vibration
in the vertical direction at the one-per-rev (1 �) frequency, where � is the rota-
tion speed. This measurement which can be used for damage detection is called a
damage indicator. Detection includes active and passive sensing, signal processing,
feature extraction, and data fusion.

Diagnostics: Diagnostics is defined as “the identification of the cause of the anoma-
lous condition.” For instance, the cause of the previously mentioned one-per-rev
vibration in a helicopter rotor may be identified as a blade tab error on one blade
of the rotor. Diagnosis includes the mapping of damage indicators to damage.

Prognostics: Prognostics is “the prediction of the amount of safe life left in a sys-
tem.” For instance, prognostication of a bridge would predict time until failure of
the bridge. Currently, HUMS prognosticates only by measuring usage. To be truly
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predictive, a connection between the evolution of damage indicators and remaining
useful life of the structure must be found. Thus, life prediction algorithms can play
an important role in prognostics.

HUMS: HUMS is “a system and a process of avionics equipment, ground support
equipment and procedures and putting of these into productive use.” HUMS ap-
plied to aircraft will focus on onboard monitoring associated to online or ground
data processing to create diagnostic and prognostic decisions. The HUMS are de-
signed to improve the safe operation and reduce operating costs of aircraft.

Monitoring: HUMS employs sensors and computer-based processes on the aircraft
along with associated computers and processes on the ground to continuously ob-
serve the damage indicators of aircraft members. These damage indicators may
be as simple as engine or rotor speed or as complex as a fast Fourier transform
(FFT) or wavelet transform of non-dimensional parameters associated with gears
or bearings.

Usage (Monitoring): Usage is “a process which assesses the life consumption of
critical components, systems, and structures by monitoring actual damage expo-
sure.”

Failure: Failure “refers to any action leading to an inability on the part of a struc-
ture or a machine to function in the intended manner.” Fracture, permanent defor-
mation, buckling, divergence, flutter, ground resonance, and even excessive linear
elastic deformation may be regarded as modes of failure of structures. Failure re-
sults when a particular type of damage becomes too large, thereby seriously im-
pairing the safety and/or the functioning of the structure.

Structural health monitoring (SHM): SHM “is defined as the acquisition, valida-
tion and analysis of a technical data to facilitate life cycle management decisions.”
SHM involves creation of a reliable system with the ability to detect and interpret
“changes” in a structure due to damage or normal operations. SHM is highly mul-
tidisciplinary, drawing elements from the mechanical, information, and electrical
sciences.

1.2 SHM Approaches

Traditional SHM methods were based on manual feedback such as abnormalities
reported by means of warning, caution, advisory, and/or maintenance panels. The
abnormalities were considered based on exceedance monitoring of various measure-
ments such as vibration, temperature, pressure, strain, frequency, acceleration, dis-
placement, and load. Exceedance monitoring involves the operations performed by
the operators manually at various critical locations and for any critical components
of the system to monitor that measurements do not exceed predefined thresholds.
For example, in the transmission system, gear wear can be detected by post opera-
tion oil analysis using chip detectors [6]. Such SHM systems involve thresholding
of sensor measurements and little information processing. Most of the effort here is
on the development of better oil debris monitoring sensors. In turbine blades, a sig-
nificant level of low cycle fatigue damage can be thresholded by monitoring natural
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frequencies [7]. Here, operational vibration data must be signal processed to extract
online frequencies. Exceedance monitoring depends strongly on the quality of the
trends in the measured data, and signal processing algorithms are used to remove
noise and outliers from the signals [8]. In some systems, physics-based modeling
capability is limited due to the complexity of the system. In these cases, exceedance
monitoring may be the only feasible approach for health monitoring. The design
of an SHM system depends on the type of structure, operating environment of the
system, level of damage prediction accuracy, type of measurement signals avail-
able, and allowable cost of SHM. Based on these parameters, an SHM system can
be developed using various approaches. These are summarized below with a few
examples.

1.2.1 Model-Based SHM

In model-based SHM, damage is identified from changes in the simulated mea-
surements from the structural model. Figure 1.1 represents a typical SHM, which

Fig. 1.1 SHM flowchart
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involves two parts: SHM development process and SHM implementation process.
These two processes go hand in hand, as the SHM development process depends
upon the system environment, type of damage in the system, and types of signals
measured. Precise mathematical modeling of a system is now possible due to dra-
matic improvements in the computational capability of modern computers. Accu-
rate mathematical modeling of the damaged system behavior is an important part
of model-based SHM. Modeling often involves the solution of the governing dif-
ferential equations for the system with appropriate initial and boundary conditions.
The governing differential equations are typically obtained by applying the laws of
physics to the undamaged and damaged system.

The measurements which are used to track damage play a very important part
in SHM. The type of measurement signals and locations is decided based on the
type of damage, type of structure, operating environment of the structure, and level
of accuracy needed for damage prediction. Structural engineering models are gener-
ally developed using finite element methods. Sometimes, actual experimental results
and those predicted by finite element-based models may show discrepancies. These
discrepancies can be minimized by improving the theory and by minimizing the
discretization errors (insufficient mesh refinement, simplification of geometry) and
numerical errors occurring during the resolution of the equations of motion. For ex-
ample, short stubby beams are better modeled using Timoshenko beam theory, while
long, slender beams are well modeled using Euler–Bernoulli beam theory. Thus, the
modeling of short beams like turbine blades can be improved by simply switch-
ing from Euler–Bernoulli beam theory to Timoshenko beam theory. The problem of
discretization errors can be addressed by doing a convergence study. The number of
finite elements used to model the structure can be progressively increased and the
value of the simulated damage indicator (for example, frequency or mode shape,
etc.) can be monitored. The finite element mesh should be selected such that the
damage indicator has converged. However, when localized damage is present in the
structure (such as a crack in a beam), further local meshing is required to reduce
the discretization error. Thus, care should be taken to ensure that the finite element
model has converged in terms of the damage indicator for every possible damage
simulation case considered. Discrepancies in the simulation of damage indicators
can also arise from the uncertainties of the values of some parameters of the finite
element model which are used as inputs. A finite element update procedure can be
used to improve the modeling. Typically, model updating involves the solution of
an optimization problem to find the optimal mass, stiffness, and damping matrices
which lead to minimal differences between experimental and computed responses.
Since physical models play a very important part in model-based diagnostics, con-
siderable care should be taken to ensure that the baseline undamaged model and the
damaged model are good representations of the real structure. Wherever possible,
verification with experiments or with other modeling results is invaluable.

Material modeling is another important aspect of model-based SHM. Materi-
als may not show the same behavior as that predicted by a theoretical model due
to the nucleation and evolution of material damage. Material damage creates un-
acceptable and irreversible changes under various loading conditions or operat-
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ing environments. Damage in materials leads to a reduction in some of the mea-
surable properties such as strength, stiffness, or toughness. Damage modeling is
a formidable task, as the relationships between changes in material response and
changes in external factors, such as loading conditions or structural geometry, are
generally complex. Material modeling depends on the boundary conditions or ser-
vice environments imposed on the structure or material. Generally speaking, the
more technologically advanced the application, the harsher the service environment
and the more demanding the boundary conditions. Next, the type of material being
modeled, traditional or nontraditional, single phase or multiphase, is an important
factor in determining which model to use. Traditional materials are likely to have a
well-established data base and associated material models, whereas nontraditional
materials typically do not. For example, a localized damage in an isotropic mate-
rial can be well modeled by a localized stiffness reduction using the continuum me-
chanics approach [9]. However, for a composite material, more elaborate models are
needed, as the physics of damage evolution can be quite complex [10]. A third issue
in damage modeling is that each type of material has a characteristic microstruc-
ture. Microstructure plays an important role in determining material behavior since
the morphology of initial damage and the nucleation and evolution of load-induced
damage are controlled by material microstructure. The fourth basic factor is the
identification of the dominant forms of damage and the associated length scales at
which they operate. Fifth, the evolution of damage needs to be considered, i.e., how
it transitions through length scales and how it interacts with other forms of dam-
age. As research in material modeling progresses, a better physical understanding
of the underlying microstructure and damage evolution becomes possible. However,
at any given time, SHM should use material and damage models which fit into the
modeling framework. For example, models of cracks in materials should fit into
a computationally efficient finite element framework. Models of damage in com-
posites are easy to use if they can be expressed as changes to the laminated plate
theory models. The SHM system designer has to make a tradeoff between physical
detail and accuracy of the material model and its ease of incorporation into the finite
element model.

The damage models can be classified as physics-based damage models and phe-
nomenological damage models. The presence of flaws and defects in a structure
creates a significant impact on material strength and toughness. Physics-based mod-
els are developed for predicting material behavior in the presence of flaws and
cracks. These models make use of the stress field generated by a single crack or
for a few idealized configurations of multiple cracks in a structure. Physics-based
damage models involve continuum mechanics-based or fracture mechanics-based
approaches. For example, a physics-based model can be an expression which gives
the localized stiffness in a structure for a given crack size. Phenomenological failure
theories attempt to predict when a material will fail based on some simple macro-
scopic criteria. In general, phenomenological failure theories do not generate both
constitutive predictions and failure predictions and are not rate or history depen-
dent. Generally speaking, phenomenological models are curve fits which are ob-
tained from experimental data. An example of a phenomenological model is fatigue
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curves which link the material degradation to the number of cycles experienced by
the structure. Typically, it is better to use physics-based models if they are available
for a given damage and structure. However, in some cases, the damage mechanics
can be very complex and recourse to a phenomenological model may be the only
option.

The SHM approach can be best understood by looking at examples of real sys-
tems. One such system which is prone to failure is the helicopter. Unlike many
other structures for which failure is only a cost issue, helicopter failure often results
in human deaths. Therefore, developing an SHM capability for helicopters is very
important; we will use this system for a case study in Chap 5 and introduce the he-
licopter rotor system problem here. The first step for developing an SHM system
for a helicopter is to develop a mathematical model of the main rotor blade [11].
A comprehensive aeroelastic analysis based on finite elements in space and time
is used to simulate a damaged helicopter rotor. Numerical results are obtained in
hover and forward flight for the rotor. Selected predictions of rotor component loads
are validated with flight test data. Fault models include moisture absorption, loss
of trim mass, damaged pitch control system, defective lag damper, damaged trim
tab, structural damage, and misadjusted pitch link. In this problem, relatively sim-
ple physics-based models are able to simulate the damage. Moisture absorption is
modeled by increasing the mass of the blade. The loss of trim mass is modeled by a
reduction in a mass at a small damage element. The misadjusted pitch link is mod-
eled by a reduction in the rigid pitch angle of the damaged blade. The damaged
pitch link control system is modeled by a reduction in the pitch link stiffness of the
damaged blade. The defective lag damper is modeled by setting the damping coef-
ficient of the lag damper of the damaged blade equal to zero. The damaged flap is
modeled by a static shift in the deflection of the flap of the damaged blade. Further,
the changes in the features of the rotor blades due to various damages are used to
develop a damage prediction system using neural networks.

SHM problems involve the design of an algorithm which can detect and isolate
damage from measurement data. The mathematical model is developed to simulate
and study prospective measurements which can be used for monitoring the structural
health. These prospective measurements or their signal processed versions then be-
come the damage indicators. Since actual measurements are noisy, a pattern recogni-
tion algorithm needs to be developed to map the noisy measured data to the damage.
For helicopter rotor blade health monitoring problems, a neural network can detect
and quantify both single and multiple faults on the blade from noisy simulated data.
Fuzzy logic is also used for damage detection in the helicopter rotor system [12].
In this fuzzy system, the measurement deviations due to damage are fuzzified and
mapped to a set of faults using a fuzzy logic system. The output faults of the fuzzy
logic system are four levels of damage (undamaged, slight, moderate, and severe) at
five locations along the blade (root, inboard, center, outboard, tip). Even though this
system is based on numerically simulated measurements, these measurements can
be obtained experimentally [6, 13, 14] with reasonable accuracy, hence implemen-
tation of SHM becomes easy. A detailed discussion of neural networks and fuzzy
logic is given later in this chapter and in the next chapter.



8 1 Introduction

The rotor problem example illustrates some general ideas behind SHM. The
model-based methods for SHM are developed by solving an inverse problem us-
ing various pattern recognition methods. The system response can be represented
by an N -dimensional vector of real numbers, which represents a single point in an
N -dimensional space. The simulated system response for different faults tends to be
segregated into distinct regions of this space and can thus be regarded as patterns.
Pattern recognition involves learning these patterns so that a given system response
can be classified with a particular fault. Model-based damage detection methods are
quite useful for accurate damage prediction using the inverse method, even with
noisy data. The accuracy of the damage prediction is based on accurate damage
modeling, accurate system modeling, and use of a pattern recognition approach. In
this book, the advanced soft computing architecture of the genetic fuzzy system is
presented as the pattern recognition tool for many SHM applications. Some of the
applications involve the use of modal data for SHM. Therefore, modal-based meth-
ods are briefly discussed next.

1.2.2 Modal-Based Methods

Modal-based methods, which use frequency and mode shapes, are also widely used
for damage detection [15]. Damage detection methods can be categorized based on
the type of dynamic characteristics used and/or the techniques used to identify the
damage from measured data. These dynamic characteristics include natural frequen-
cies [16, 17], mode shapes [18, 19], mode shape curvatures [20, 21], and the fre-
quency response function [22]. It is impossible to identify the locations and severity
of damage in structures such as cantilever beams and helicopter rotor blades using
frequency response function (FRF) data [23]. Traditional methods detect the loca-
tion and severity of structural damage by minimizing the difference between test and
analytic FRFs, which is a type of model updating or optimization method. Another
approach is a time domain method that utilizes response signals in their purest form
[24]. In this method, error magnification related to computational manipulations,
e.g., an FFT, or similar procedures, is avoided. The method is applied to a clamped
section of a helicopter rotor blade. Damage is induced by a mass increase (locally
added weight) and a mass reduction (holes drilled into the structure), respectively.
The experiments have shown that minimal effects on fundamental eigenfrequencies
are reliably detected without any a priori knowledge of the structure.

For the modal-based damage identification methods, the most significant limita-
tions are that they require accurate measurement of mode shapes and modal frequen-
cies. These measurements are susceptible to sensor noise, contain errors inherent
to curve fitting techniques, and require significant onboard processing capabilities.
However, with the increasing accuracy of sensors and signal processing algorithms,
the accuracy of frequency and mode shape measurements also continues to increase.
Moreover, modal methods are not influenced much by small levels of damage, which
is an advantage in preventing false alarms in damage-tolerant structures designed to
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take significant levels of damage. For instance, helicopter rotor blades can undergo
significant damage prior to failure.

1.2.3 Localized Methods

Most of the model-based and modal-based damage detection methods are based on
global measurements. Note that some modal-based methods are also model based,
as they typically use a finite element model of the structure. However, some methods
use only measurements and are model free [24]. Model-free methods are often good
for finding the existence of damage, but have difficulties with damage isolation.
For example, placing thresholds on sensor measurements is a model-free method.
A few researchers proposed model-based and modal-based damage methods to give
an approximate damage location. However, some faults, such as cracks and delam-
ination, may not show up in global measurements unless they are large; therefore,
localized measurements are necessary. Some of the prominent localized methods
are discussed here with illustrative examples.

Acoustic emission is the most widely used localized damage detection method in
aerospace applications. Acoustic emission is a passive approach in which an ultra-
sonic sensor is used to “listen” for the characteristic stress waves emitted as a crack
propagates. For example, acoustic emission can be used for successful detection of
cracks in rotor components such as non-rotating pitch links in a laboratory setting
during fatigue tests [25].

Wave mechanics is another localized approach reported in the literature for dam-
age detection in helicopter applications. This approach, in contrast to acoustic emis-
sion, is an active approach based on high frequency excitation. As ultrasound waves
hit a discontinuity in the material, they are reflected. The wave mechanics approach,
which is based on local continuum mechanics descriptions of the structural dynam-
ics, uses analytically predicted scattering patterns to detect, locate, and character-
ize flaws. Such an approach can be used for detecting cracks in composite rotor
flexbeams [26], and for detecting cracks and delamination in rotating flexbeams
[27]. Flexbeams are torsionally soft beams attached near the blade hub and are used
for twisting the rotor blades in bearingless helicopter rotors. SHM of such struc-
tures is very important for helicopter flight safety. Helicopter rotors have three key
degrees of motion: flap bending, lag bending, and torsion. Early helicopters used
hinges and bearings to alleviate the high stresses at the blade root. The advent of
composite materials allowed the design of flexures which replaced the flap and lag
hinge for the hingeless rotor. In the bearingless rotor, the pitch bearing is also re-
placed by an elastic flexbeam. However, a consequence of the use of composites in
helicopter rotors is an increased propensity toward complex damage mechanisms.
Metal structures have simpler modes of failure compared to composites. Therefore,
the development of SHM systems for composites requires considerable work on the
damage modeling aspects.

The localized techniques based on ultrasonic sensors may not work for thick-
walled monolithic composites. One way to address this problem is to use computed



10 1 Introduction

tomography (CT) as a nondestructive test method for composite rotor blades such
as those for the BO105, BK117, and EC135 in design and maintenance [28].

The electro-mechanical (E/M) impedance technique is another nondestructive
evaluation (NDE) technology with high potential for in situ health monitoring
of complex machinery. For example, the E/M impedance technique was used for
detecting disbonds between adhesively bonded structural elements of helicopter
blade sections from the Apache 64H helicopter [29]. Damage was mechanically
induced in the structure in the form of local disbonds. An examination of the
damaged-structure E/M impedance spectra and a comparison with the baseline
spectra revealed some important phenomena such as frequency shift of existing
peaks, increase in peak amplitudes, and the appearance of new peaks. It was
found that the frequency shifts were consistently toward lower frequencies. This
shift in frequency was explained by the increase in local compliance due to dis-
bonds. The increased impedance amplitude was correlated with the decrease in
local damping that appears when the two faying surfaces were separated. The
appearance of new peaks was justified by the new local modes that were cre-
ated when disbonds appear. However, this method requires further examination of
the complex interaction between wave propagation, drive point impedance, struc-
tural damage, and electro-mechanical impedance of the piezoelectric wafer trans-
ducer.

The advent of smart materials such as piezoceramics has opened up many pos-
sibilities for SHM. Piezoceramic sensors and actuators and different techniques for
damage detection have been used for health monitoring of a helicopter flexbeam
[30]. Four different methods were used for testing the flexbeam: (a) the reso-
nant comparison method using inertial actuator/PZT patches for longitudinal and
transverse vibration, (b) the wave propagation method using inertial actuator/PZT
patches for longitudinal and transverse vibration, (c) the acoustic emission (lead
break) method using PZT sensor patches, and (d) the vibration response method us-
ing a PZT patch for bending excitation. The damage modeled in the flexbeam was
delamination. It was found that the damage detection using longitudinal vibration
was promising because the amplitude change of symmetric PZTs indicates the dam-
age with minimal pre-damage data. Delamination that was perpendicular to the di-
rection of wave propagation was possibly easier to detect using flexbeam vibration.
The resonant comparison method using longitudinal vibration successfully detected
delamination damage in a fiberglass beam. The method uses structural symmetry,
no structural model is needed, the excitation does not need to be measured, and the
diagnostic procedure is very repeatable and simple. However, this method needs to
be validated for nonsymmetric structures.

The local damage detection methods are useful for accurate local damage pre-
diction. Approaches such as those based on Lamb waves are especially attractive
for aircraft composite structures [31]. However, the use of these methods for scan-
ning damage in the whole structure is very time consuming and is not economical.
A better strategy is to locate the damage to within a small area using a global dam-
age detection method and then use the local methods to zoom in on the damage
location.
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1.3 Soft Computing Methods for Health Monitoring

SHM systems are typically developed by solving an inverse problem using the
changes in some measurable properties of the structure to detect damage. Typically,
models of the structure are used to simulate the damaged condition of the struc-
ture. The inverse problem becomes complicated because of the incomplete informa-
tion and uncertainty in the modeling, measurements, and signal processing. There
are several approaches for handling uncertainty in the inverse problems. The more
traditional approach is to use estimation methods such as those based on Kalman
filtering [32] or probabilistic methods such as those based on Bayesian reasoning
[33, 34]. Another powerful approach which has recently gained popularity is the
use of soft computing methods [35]. Therefore, the inverse problem for the devel-
opment of an SHM system can be solved using soft computing methods like neural
networks, genetic algorithms, and fuzzy logic to extract precise conclusions from
slightly imprecise data. Soft computing differs from traditional hard computing in
several important ways. Hard computing tries to find the exact answer, while soft
computing tries to find an approximate answer. There are many problems in math-
ematics where hard computing comes immediately to mind, for example, in nu-
merical analysis and mathematical logic. On the other hand, most decision making
and evolutionary processes are soft computing processes and lead to good outcomes
without being exact. For example, biological evolution proceeds randomly while
being directed by the objective of survival of the fittest. However, it is clear from
evolution that there is improvement in the species with the passage of time. The hu-
man brain also functions using a huge number of interconnected neurons and is able
to perform complex pattern recognition tasks. Human beings are also able to arrive
at many important decisions in their lives by using various fuzzy concepts such as
“tall,” “rich,” “dangerous,” etc. The pioneers of soft computing realized that new
computing methods which address uncertainty and ambiguity are needed to address
many real world problems. During the last two decades, the field of soft computing
has grown considerably, and there are many papers and some journals which are
devoted to this field. Some recent approaches of these soft computing methods for
SHM are discussed next.

1.3.1 Neural Networks

The neural network is a powerful pattern recognition tool; it forms a nonlinear map-
ping between input and output data sets using training data. A network is developed
using interconnected neurons. The inputs of each neuron consist of the weighted
outputs of other neurons. A commonly used neural network is the feedforward neu-
ral network shown in Fig. 1.2. There is one input layer with n inputs, a hidden layer
with m neurons, and one output layer with two outputs. For SHM problems, the two
outputs typically represent damage size and location. The inputs are the damage
indicators for the problem.
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Fig. 1.2 Schematic
representation of feedforward
neural network

There can be one or more hidden layers between the input and output layers.
Figure 1.2 shows a neural network with one hidden layer. In the feedforward neu-
ral network, data flows forward and each neuron receives inputs from the previous
layer only. The neural network in Fig. 1.2 is thus a map from Rn to R2 or the space
of n real numbers to the space of 2 real numbers. The number of neurons in the
input and output layer are fixed by the input and output vector of the pattern recog-
nition problem. The number of neurons in the hidden layer plays a very important
role in the function approximation capability of the neural network. An appropri-
ate “optimal” selection of the number of neurons in the hidden layer can allow a
neural network to approximate any given function with any desired level of accu-
racy.

The interconnections between the neurons have a weight associated with them
which stores the functional mapping information in a distributed sense. The solution
of the weights connecting the neurons is done through the process of learning by
input-output data linking the vectors x and y. Once the neural network is trained,
it develops the capability to generalize to points which were not included in the
training set. The process of training the neural network is accomplished by using
an optimization method which minimizes the error given by the neural network
while using the weights as the design variables. A separate set of test data, which is
known to be different from the training data, is used to test if the neural network can
generalize well.
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Generally, one hidden layer is sufficient for a feedforward neural network. Too
few neurons in the hidden layer will make function approximation difficult. Too
many neurons in the hidden layer will lead to overlearning, where the neural network
loses its generalization capability. Selecting the appropriate number of neurons in
the hidden layer is an art and is typically done using a trial-and-error procedure to
ensure that the neural network performs well with training and testing data. Some
input-output data should always be set aside for testing and should not be used for
training. Test data is invaluable in evaluating the generalization capability of neural
networks. If the network gives a low error with training data but does not perform
well with test data, then overfitting is the likely cause.

The backpropagation algorithm is widely used for training feedforward neural
networks. This method is based on gradient search. Associated with each neuron is
an activation function. For example, the sigmoid function is widely used in practice
for the neurons in the hidden layer,

f (x) = 1

1 + e−x
.

The above discussion is a very brief summary of neural networks; the subject
is addressed in several textbooks [36–38]. The important thing to remember is
that neural networks are multi-dimensional curve fits relating the output and input
data.

Some recent examples of the use of neural networks for various applications
related to the development of damage detection systems are as follows. A few re-
searchers have developed damage detection systems for composite materials using
neural networks. Mahapatra et al. [39, 40] developed a method for the estimation
of damage configuration in a composite structure using acoustic wave propaga-
tion signal and a reduction-prediction neural network to deal with high-dimensional
spectral data. A reduction-prediction network, which was a combination of an in-
dependent component analysis (ICA) and a multi-layer perceptron (MLP) neural
network, was proposed to quantify the damage state related to transverse matrix
cracking in composite laminates using an acoustic wave propagation model and
the Fourier spectral response of the damaged structure under frequency band selec-
tive excitation. Further, Chakraborty [41] developed an approach for predicting the
presence of embedded delaminations (in terms of their size, shape, and location) in
fiber reinforced plastic composite laminates using natural frequencies as indicative
parameters and an artificial neural network as a learning tool. The neural network
was trained until the network learned to an acceptable level of accuracy using the
ten modal frequencies obtained for various combinations of size, shape, and loca-
tion of embedded delamination in a graphite/epoxy plate using a three-dimensional
(3D) finite element model. It was found that the neural network can learn effec-
tively about the size, shape, and location of the embedded delamination present in
the laminate and can predict reasonably well when tested with an unknown data
set.

Some researchers have used neural networks for prediction of fatigue damage
and crack propagation. A backpropagation neural network for fatigue life prediction
under multiaxial random loading was developed by Kang et al. [42]. The proposed
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neural network model was applied to the fatigue life prediction of an automotive
subframe, which was subjected to 70 random load histories. The fatigue life data
of the automotive subframe was obtained using a finite element model. The per-
formance of the neural network model was evaluated by comparing outputs of the
neural network with results of the conventional calculation method and was found
to be acceptable in most fatigue design considerations. Al-Assaf and El-Kadi [43]
demonstrated the use of neural networks for predicting the fatigue behavior of uni-
directional glass fiber/epoxy composite laminae under tension-tension and tension-
compression loading.

Online damage detection is another important area where neural networks have
been used. Oberholster and Heyns [44] proposed a methodology for monitoring
the online condition of axial flow fan blades with the use of neural networks. Re-
sults from a stationary experimental modal analysis of the structure were used for
identifying global blade mode shapes and their corresponding frequencies. It was
demonstrated that it was possible to classify damage for several fan blades by us-
ing neural networks with online vibration measurements from sensors not neces-
sarily installed on the damaged blades themselves. Yuan et al. [45] developed an
online damage detection method applied to thin-walled composite structures adopt-
ing wideband Lamb waves based on active monitoring technology using a neural
network. A new damage signature based on the acoustic-ultrasonic active monitor-
ing technology was introduced to determine the presence and extent of delamination
and impact damage in composites, while eliminating the influence of different dis-
tances between the actuator and sensor. A neural network was researched to take
advantage of this new damage signature combined with several other signatures to
decide the damage mode.

The above-mentioned references are a small sample of the literature on the use
of neural networks in SHM. The literature on neural network-based damage detec-
tion systems shows that these methods have been demonstrated for various impor-
tant problems such as composite structures, fatigue damage prediction, and online
damage prediction. However, it is difficult to develop neural network-based damage
detection for some of the critical cases where the system has insufficient training
data and only human experience-based knowledge is available. Neural networks
also require a huge amount of computer time for training, and a slight tuning of
the neural network is difficult when there are few modifications in the model. One
reason for the popularity of neural networks in SHM is the familiarity of structural
engineers with the neural network method and the availability of software pack-
ages. However, there is considerable literature which shows that damage detection
is a problem plagued with uncertainty and ambiguity and that linguistic outputs in
terms of damage location and size are preferable for maintenance actions. In this
book, we shall see that the fuzzy logic method provides a superior alternative to the
neural network approach. However, fuzzy logic requires an element of learning to
give accurate results. This learning function can be framed as an optimization prob-
lem and solved using genetic algorithms, which are briefly discussed in the next
section.
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1.3.2 Genetic Algorithms

The genetic algorithm (GA) is another popular soft computing tool used for damage
detection. GAs are search algorithms developed using the principles inspired by nat-
ural selection to evolve solutions to optimization problems. Most of the GA-based
damage detection methods are developed for minimizing an error measure based on
the damage indicator values of the undamaged structure. The design variables are
indicative of the state of structural health such as the stiffness or mass distributions.
The GA approach to damage detection is typical of system identification methods
which were used in the early years of damage detection research and sought to find
the damaged structure which matches the measurements. The GA-based methods
differ from each other based on the objective function formation.

GAs are optimization algorithms which maximize a fitness function. They are
based on the evolutionary concept of Darwin that populations become fitter through
a process of natural selection and survival of the fittest. A fundamental difference
between GA methods and traditional gradient-based methods is that the GA starts
from a population of points, while traditional methods start from one point. More
importantly, the GA does not use gradient information to move in the design space
and is therefore also called a derivative-free or zero-order method. The calculation of
derivatives can be difficult for some functions. Also, gradient-based algorithms have
numerical problems in regions of the design space where the Hessian matrix is ill
conditioned or not positive definite. The Hessian matrix is composed of the second
derivatives of a multivariate function. For an SHM problem, it is difficult to know a
priori how the derivatives of the objective function will behave in different regions of
the design space. Another advantage of GAs is their ability to find a global minimum
point. In some design spaces, there is more than one minimum point where the
gradient of the function becomes zero and the second derivative or the Hessian is
positive. Gradient-based methods tend to get stuck at a nearby local minimum point.
In complex problems, it is very difficult, if not impossible, to know where the global
minimum may lie in the design space without doing considerable mathematical and
computational analysis. A particular type of function which guarantees that there is
a global minima is the convex function, which has a positive definite Hessian matrix.
However, the complicated numerically evaluated functions which occur in SHM are
rarely convex, and it is very difficult to prove convexity. Therefore, a GA is often
used in damage detection applications, as it offers reduced complexity in terms of
mathematical requirements on gradients and their derivatives.

The most common GA is the binary GA, where the design variables are repre-
sented as binary strings (such as 1001001). Operations of mating pool selection,
crossover, and mutation are performed on the binary strings to simulate the repro-
duction process. Note that evolution involves many successful reproduction events.
Strings which are fitter in terms of the fitness function are forwarded for propaga-
tion to the next generations, while unfit strings are removed. The creation of the
starting population, selection of the mating pool, and the crossover and mutation
operations make use of random numbers. Therefore, GAs are also called probabilis-
tic or stochastic optimization methods. Any two runs of a GA code are different
because of the presence of random numbers in the algorithm.
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Some examples of the use of GAs for damage detection are discussed here. Rao
et al. [46] proposed a method for locating and quantifying the damage in structural
members using the concept of residual forces. To describe the damage in a structure,
finite element models were parameterized by structural stiffness reduction parame-
ters. The damage parameters were determined by minimizing a global error derived
from dynamic residual vectors, which were obtained by introducing simulated “ex-
perimental” data into the eigenproblem. An eigenvalue prediction algorithm, along
with a normalized residual function, was employed to formulate the objective func-
tion.

Nag et al. [47] proposed an efficient strategy for identification of delamination
in composite beams and connected structures using a GA integrated with finite ele-
ment code for automation. A spectral finite element model consisting of a damaged
spectral element was used for model-based prediction of the damaged structural re-
sponse in the frequency domain. Another approach based on Lamb waves and a
projection GA for damage detection in composite plates was proposed by Xu et al.
[48]. This method first formulates the damage detection problem as an optimization
problem of minimizing the error between the measured and calculated surface dis-
placement response derived from Lamb waves. Numerical examples were presented
to verify the proposed method for detection of cracks inside composite plates.

Most of the GA-based SHM methods are based on the error reduction between
the measurements obtained using an analytical or numerical model and the exper-
imental results. A few researchers also used modified GA versions such as micro
GA (muGA) and projection GA. A disadvantage of this method is that GAs are very
time consuming and therefore difficult to use in an online setting; they are mostly
intended for offline use. Another problem is they do not directly account for noisy
data. Some recent applications of GA to SHM advocate a damage penalization func-
tion to address the issue of noisy data [49]. In this approach, the objective function
not only searches for the best correlation but also for the minimum possible dam-
age. Thus, it is possible to use a GA to address noisy data by modifying the objective
function of adding constraints. However, fuzzy logic may offer a conceptually sim-
pler and more elegant approach to handling uncertainty in SHM problems.

1.3.3 Fuzzy Logic System

A fuzzy system is any fuzzy logic-based system which uses fuzzy logic as the ba-
sis for the representation of the different forms of knowledge. Fuzzy systems may
also use fuzzy logic to model the interactions and relationships among the system
variables. Fuzzy systems address uncertainty directly by using linguistic reasoning,
which is more robust to uncertainty than pure numerical reasoning. Thus, fuzzy
logic converts a number such as the height of a person (say 6 ft) to a word (tall).
While a height of 6 ft is an exact number, the concept “tall” is fuzzy and ambiguous
in the sense that many people with a range of heights can be called “tall.” Fuzzy
systems try to work with concepts expressed in words. This number-to-word trans-
formation is a key step which gives fuzzy systems the power to handle uncertainty.
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Recent examples of the use of fuzzy logic systems for developing damage detection
systems are discussed next. Since fuzzy logic forms a key component of this book,
an introduction to this subject is provided in the next chapter in some detail. A brief
discussion of some literature on the application of fuzzy logic to SHM is given next.

Sawyer and Rao [50] presented a procedure for structural fault detection based
on fuzzy logic. Fuzzy logic and continuum damage mechanics were used to process
and analyze the uncertainties and complexities of damaged structures. Damage in
the structure was modeled by a localized reduction in stiffness. Fuzzy associations
between observable structural responses and damage conditions were generated by
finite element simulations. The fuzzy associations or rules were encoded in a fuzzy
associative memory bank to form a knowledge base. This knowledge base was ref-
erenced by a fuzzy inference algorithm which infers possible damage locations and
levels based on the evidence provided by changes in the structural states. The numer-
ical examples demonstrated the performance advantages of the fuzzy logic-based
system in noisy or uncertain conditions.

Dempsey and Afjeh [51] developed a diagnostic tool for detecting damage to
spur gears using fuzzy logic with two different measurement technologies: wear
debris analysis and vibration. This diagnostic tool was developed and evaluated ex-
perimentally by collecting vibration and oil debris data from fatigue tests performed
in the NASA Glenn Spur Gear Fatigue Test Rig. A simple model was defined by the
fuzzy rules and the membership functions for the experiments when pitting damage
occurred. The ability to define valid ranges and limits for each membership function
was found to be critical to the success of the model at predicting damage. Vibration
data were collected from accelerometers and used in previously validated gear vi-
bration diagnostic algorithms. Oil debris data were collected using a commercially
available oil debris sensor. Oil debris and vibration data were integrated using fuzzy
logic analysis techniques to predict damage in the spur gear. From the results it
was observed that the use of two measurement technologies together improved the
detection of pitting damage on spur gears.

The fuzzy-based methods are also applied to civil engineering structures for ex-
tracting the data obtained from NDT techniques for developing an SHM system.
Soh and Bhalla [52] proposed a fuzzy probability-based damage model based on
the extracted equivalent stiffness to evaluate the extent of damage using impedance
data. This enabled the calibration of the piezo-impedance transducers in terms of
damage severity, thus serving as a practical empirical phenomenological damage
model for quantitatively estimating damage severity in concrete. Zhao and Chen
[53] presented a fuzzy rule-based inference system for bridge damage diagnosis
and prediction, which aimed to provide bridge designers with valuable information
about the impacts of design factors on bridge deterioration. A modified mountain
clustering method was employed to create the training data set. In the mountain
clustering method, each cluster center becomes a prototypical data point that exem-
plifies a characteristic behavior of the system. A fuzzy partitioning algorithm was
implemented to construct the membership functions of the input variables and to de-
duce the fuzzy rules from the numerical data. The generated rule base was checked
and optimized based on the similarity measures among the input fuzzy sets. The
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use of fuzzy logic in addressing uncertainty issues in SHM is increasing [54]. In
general, uncertainties can cause false diagnosis and imprecise prognosis if not taken
into account, and therefore a soft computing method must be used for pattern recog-
nition.

Two major advantages of a fuzzy logic-based damage detection system are that
the system can be developed even with a lower number of data sets and that the
system can be tuned with the upgraded model. Another advantage of fuzzy logic is
that the human experience-based knowledge can be utilized to develop or tune the
system when sufficient data is not available. However, the tuning of the fuzzy system
is a manual process and is therefore time consuming and not optimal. As fuzzy logic
systems do not have the capability of learning from data, it is difficult to develop a
fuzzy system when a large number of discrete data is available as a knowledge base.
In contrast to the large amount of work available on SHM using neural networks,
much less work has been done on the use of fuzzy logic in SHM. This is largely
due to the unfamiliarity of structural engineers with fuzzy logic. This book aims to
remove this gap in the training of structural engineers working on SHM systems.

1.3.4 Hybridized Soft Computing Methods

Each of the soft computing methods, neural networks, genetic algorithms, and fuzzy
logic, offers its own advantages and suffers from certain weaknesses. Although all
three of these methods share some common characteristics, they are considered
complementary, as desirable features lacking in one approach are present in an-
other. There was an initial phase of research in which the soft computing methods
were applied in isolation. This was followed by a second phase of research on hy-
brid systems obtained by combining these soft computing methods. The advantages
of various combinations of these soft computing methods are given below [55, 56].

Fuzzy Logic and Neural Networks: The idea of combining these two soft comput-
ing methods originates from two observations. (1) Fuzzy logic systems are not
capable of learning, adaptation, or parallel computation. On the other hand, these
characteristics are clearly present in neural networks. (2) Neural networks lack
flexibility, human interaction, or knowledge representation. However, these char-
acteristics lie at the core of fuzzy logic systems. Depending on which component
dominates in a hybrid system, one can distinguish between neuro-fuzzy systems
and fuzzy-neural network systems. Typically, neuro-fuzzy systems have emerged
as a popular choice for SHM problems.

Neural Networks and Genetic Algorithms: This combination is typically used for
two main applications: (1) a GA is used to optimize the parameters of the learning
method that adapts the synaptic weights of the neural network, and (2) assuming
a bounded number of hidden neurons, GAs are applied to find the network struc-
ture that minimizes the number of training cycles. Since neural networks are often
trained using the backpropagation algorithm, which is an optimization procedure
which relies on gradients, the use of a GA in the evaluation of the weights of the
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neural network and the architecture is feasible. However, the use of a GA as an op-
timization tool for neural network development can be computationally intensive
and is not well suited to SHM problems.

Genetic Algorithms and Fuzzy Logic: GAs provide robust search capabilities al-
lowing global and local search in complex design spaces. A GA is a derivative-
free optimization method which can find a global maximum for a fitness function
while avoiding problems related to function continuity and differentiability. Fuzzy
systems present robust and flexible methods in problems which are subject to im-
precision and uncertainty. The linguistic representation of knowledge permits a
person to interact with the fuzzy system in a straightforward manner. In fact, fuzzy
logic tries to use the linguistic logic of computing with words which humans use
to arrive at decisions. This “fuzzy” logic is different from the black-and-white
classical logic which is used in philosophy and mathematics. The hybridization of
fuzzy logic and GAs gives rise to two methods: fuzzy evolutionary algorithms and
genetic fuzzy systems. Fuzzy evolutionary algorithms are GAs whose parameters
such as fitness function and stopping criteria are fuzzified. Such systems take ad-
vantage of a tolerance for imprecision in order to save computational resources. On
the other hand, in a genetic fuzzy system, a GA evolves a fuzzy logic system by
tuning the variables describing fuzzy membership functions and by learning fuzzy
rules. The genetic fuzzy system can automate the process of developing fuzzy sys-
tems by treating various parameters of the fuzzy system as design variables which
are obtained from the optimization process by the GA. If the optimization process
is set up to maximize the success rate for damage detection, the genetic fuzzy sys-
tem can result in an optimal SHM system. It thus avoids the problems of neural
networks and fuzzy systems which tend to be ad hoc in nature and whose creation
is more of an art depending on the skill of the designer than a science. We will see
in this book that the genetic fuzzy system represents a very powerful tool for SHM.

Very few researchers have used hybridized soft computing methods for solv-
ing damage detection problems. Ramu and Johnson [57] developed a novel method
by integrating the concepts of fuzzy logic with neural networks for damage detec-
tion applications. The main feature of this integrated approach using fuzzy logic
and neural networks was that it requires no additional effort at the training level,
but it can be used against fuzzy input at the end user level with the integration of
the vertex method. The vertex method was a concept for discretization of member-
ship value domains of variables. In addition, a modular development of the network
was proposed which made the training fast and efficient. The above approach was
demonstrated using a composite plate modeled using the finite element method. The
damage occurring due to absorbed moisture and elevated temperature was modeled
as a reduction in material properties and loss of support fixity. It was found that
the hybridized neural network approach was a very promising tool for the damage
assessment task.

Wang [58] developed a new neuro-fuzzy diagnostic system for gear systems
by integrating the strength of robust signal processing techniques. The test results
demonstrate that the novel neuro-fuzzy system, because of its adaptability and ro-
bustness, significantly improves the diagnostic accuracy. It outperforms other re-
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lated classifiers, such as those based on fuzzy logic and neuro-fuzzy schemes, which
adopt different types of rule weights and employ different training algorithms.

Lee and Lam [59] presented the application of a novel neural network model
for the diagnosis of structural damage. The neural network model, which was de-
noted the GRNNFA, was a hybrid model combining the General Regression Neural
Network (GRNN) model and the Fuzzy ART (FA) model. It not only retained the
important features of the GRNN and FA models (i.e., fast and stable network train-
ing and incremental growth of network structure), it also facilitated the removal of
noise embedded in the training samples. The measured modal parameter changes
due to a particular damage were treated as patterns for that damage. The proposed
diagnosis method was demonstrated using a ten-story shear building model. The
damage was modeled by inter-story stiffness reduction. The proposed GRNNFA
model was trained to learn those patterns in order to detect the possible damage
location of the structure. The results of this study demonstrated the feasibility of ap-
plying the GRNNFA model to structural damage diagnosis even when the training
samples were noise contaminated.

Zio and Gola [60] applied the neuro-fuzzy approach to fault diagnosis in rotating
machinery. Faults in such machines can lead to considerable downtime and losses
and must be found promptly and accurately. An initial fuzzy knowledge base is
obtained empirically with bearing vibration used as the damage indicator, and then
the algorithm modifies the rule base for more accurate classification. It was found
that the method provided good classification of faults while keeping the system
interpretable.

The new trend of hybridizing the best features of various soft computing methods
gives a tool for developing more accurate damage detection algorithms. The above
combinations of various soft computing algorithms can be chosen based on the type
of data available and the output requirements. In this book, one of the advanced
hybridized soft computing algorithms, the genetic fuzzy system, is developed for
damage detection and is demonstrated for SHM of beam-type structures and for a
composite helicopter rotor blade.

1.4 Book Summary

This first chapter has given a background of SHM along with various SHM ap-
proaches and an overview of the relevant literature along with some recent review
papers. In the second chapter, an introduction to genetic algorithms and fuzzy logic
systems is given. Further, Chap. 2 explains the development of the genetic fuzzy sys-
tem (GFS) by the hybridization of fuzzy logic and the genetic algorithm. In Chap. 3,
the development of the SHM system is introduced with an example of an isotropic
cantilever beam. The beam is an ubiquitous structural member, and its damage de-
tection is a fundamental problem in SHM. This chapter serves as a tutorial introduc-
tion to the application of the GFS for SHM. Chapter 4 demonstrates the use of the
GFS for SHM for a more complicated structure, the hollow composite tube, in which
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SHM will predict the level of a damage known as matrix cracking. Such compos-
ite tubes are used for power transmission poles. Thus, Chap. 4 involves an increase
in mathematical model complexity of the structure and the damage and shows the
application of the GFS to a more realistic structure. Chapter 5 demonstrates use of
the GFS for developing global and local SHM systems for a composite helicopter
main rotor blade in forward flight. The helicopter is a complicated mechanical sys-
tem which is susceptible to damage due to high levels of vibration and dynamic
stresses. This chapter provides an application to a realistic aerospace system using
aeroelastic analysis of damaged rotor blades as the mathematical model and com-
plicated damage evolution mechanics covering matrix cracking, delamination, and
fiber breakages. By considering the application of the GFS to three different struc-
tures with increasing levels of complexity, this book provides the reader with the
knowledge needed to apply the GFS to his or her SHM problem.
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Chapter 2
Genetic Fuzzy System

The damage detection problem is a pattern classification problem which is based
on ambiguous, noisy, or missing input information. The input information is typi-
cally obtained from sensors placed on the structure or embedded in the structure.
Sensor measurements are often subjected to some processing before being used as
damage indicators. Though considerable effort is made to find damage indicators
which show a high degree of sensitivity to the damage size and location, the prob-
lems of ambiguity, imprecision, and noise present in the measured data are likely to
propagate into the damage indicators. In fact, in some cases, the signal processing
performed on the sensor measurements may increase the noise level in the dam-
age indicators. As an example, differentiation of data to get a damage indicator can
amplify the noise contamination.

Based on this information from sensors, a damage detection system should pro-
vide definite outputs to help the maintenance engineers. For example, the following
questions need to be answered.

1. Is there damage in the system?
2. Where is the damage?
3. What is the damage size?
4. What needs to be done?
5. How much longer can the structure be used?

The answers to these questions should be as accurate as possible. Answers expressed
in words instead of in numbers are often more useful for maintenance engineers.
Among the several soft computing methods, fuzzy logic is the one which maps nu-
merical inputs into linguistic outputs. However, fuzzy logic lacks the capability of
learning from the given data, and the rules which govern the fuzzy system must
be developed by human experts. This process of developing the fuzzy rule base is
difficult and can become very complicated if the number of inputs and outputs in-
creases. The hybridization of fuzzy logic with a genetic algorithm gives an advanced
soft computing algorithm called the genetic fuzzy system (GFS), which generates
the fuzzy rules automatically from the data. In this chapter, the terms used in the
formulation of a GFS for a damage detection problem are explained. The first step
in developing the GFS is to understand the concepts underlying fuzzy logic.
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2.1 Fuzzy Logic System

Fuzzy logic is a unique soft computing method which simultaneously handles nu-
merical data and linguistic knowledge. This unique feature has led it to be called
“computing with words.” People use fuzzy logic all the time to arrive at decisions
in the complex settings in which they operate. For instance, we may conclude that
a “fat” person who is “sedentary” is likely to have “health problems.” In this case,
the words “fat” and “sedentary” represent fuzzy concepts. These concepts could be
numerically quantified using exact weight bounds and exercise bounds. However,
human reasoning does not operate using such numbers and still often reaches sur-
prisingly accurate conclusions using fuzzy rules. Another important fact in fuzzy
logic is the degree of membership. For example, a person may have “fatness” be-
tween the levels of 0 and 1. He or she may also be “sedentary” between the levels of
0 and 1. A fuzzy rule could then be stated as: If a person is “fat” and “sedentary” then
he or she has “health problems.” We can see that an extremely overweight person
who is completely sedentary is “very likely” to have health problems. A marginally
“fat” person who is completely sedentary may also have some health problems.
A very “fat” person who is not “sedentary” may also have some health problems.
Finally, a much less “fat” person who is much less “sedentary” may have far fewer
health problems. Thus, fuzzy logic can address a variety of situations using the con-
cept of degree of membership in a fuzzy set. Thus the membership in the fuzzy sets
“fat” and “sedentary” is not binary (1 and 0) but can have any number between 0 and
1. This simple example clearly shows how humans constantly assign fuzzy mem-
berships to concepts to perform decision making. The output in this case clearly
represents a diagnosis of health.

We see that a key feature of fuzzy logic is the use of words for computing. Other
soft computing methods such as neural networks and genetic algorithms typically
work with numerical data only. In other words, they convert a set of numbers to
another set of numbers. However, fuzzy logic converts a set of words into another set
of words. Expert systems can also work with words but use crisp logic in the sense
that the concepts can only be either 1 or 0. So the rules of expert systems are similar
to if-then-else rules in computer programs. Expert systems tend to deteriorate very
rapidly in the presence of noise in the data. Despite these differences, fuzzy systems
can be interpreted as generalizations of rule-based expert systems with the binary
logic framework being replaced by fuzzy logic.

A fuzzy logic system is a nonlinear mapping of an input feature vector into a
scalar output [1]. Fuzzy set theory and fuzzy logic provide the framework for the
nonlinear mapping. Fuzzy logic systems have been widely used in engineering ap-
plications, because of the flexibility they offer designers and their ability to handle
uncertainty. A fuzzy logic system can be expressed as a linear combination of fuzzy
basis functions and is a universal function approximator. A schematic diagram of
fuzzy logic is shown in Fig. 2.1 for �ω as crisp inputs and damage size and damage
location as crisp outputs. Here, �ω is a measurement delta which can be a change
in frequency between the undamaged and damaged structure, or a change in the
strain output measured by a piezoelectric sensor, for example. The measurement
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Fig. 2.1 Schematic representation of fuzzy logic system for SHM

deltas could also be changes in strains, blade tip responses, and blade root loads in a
helicopter rotor blade. A very condensed introduction to fuzzy logic is provided be-
low. Further information on fuzzy logic systems is available from textbooks [1–3].
Though fuzzy logic has become a vast topic, its application for structural health
monitoring (SHM) requires the knowledge of only a few key concepts, which are
outlined next.

A typical multi-input single-output (MISO) fuzzy logic system performs a map-
ping from a set V ∈ Rm to W ∈ R using four basic components: rules, fuzzifier,
inference engine, and defuzzifier. Here, Rm refers to the space of m real numbers
and assumes that m measurement deltas are present as inputs to the fuzzy system.
The notation R refers to the space of real numbers and refers to the output of the
fuzzy system. Thus the fuzzy system performs the mapping

F : V ∈ Rm → W ∈ R

where V = V1 × V2 × · · · × Vn ∈ Rm

is the input space and W ∈ R is the output space. A typical fuzzy logic system maps
crisp inputs to crisp outputs using four basic components: rules, fuzzifier, inference
engine, and defuzzifier. Once the rules driving the fuzzy logic system have been
fixed, the fuzzy logic system can be expressed as a mapping of inputs to outputs.

Rules can come from experts or can be obtained from numerical data. When the
rules come from experts, they can be directly represented as words. For example,
an expert may suggest that when oil temperature measured by a sensor is high and
vibration level at a particular accelerometer A is high, then there is damage at a loca-
tion B in the structure. A process of interviewing of experts is often the best way to
develop a fuzzy rule base directly from human knowledge which encodes the expert
information often used by maintenance engineers. However, for many engineering
problems, expert knowledge may not be available about the different conditions of
the damaged system. In such cases, a mathematical model of the damaged system
is invaluable for creating a rule base linking seeded damages to the damaged indi-
cators. Therefore, the rules for a fuzzy logic system can come either from experts or
from a mathematical model, depending on the system under consideration. In either
case, engineering rules are expressed as a collection of IF-THEN statements such
as “IF u1 is HIGH, and u2 is LOW, THEN v is LOW.” We can see that some of the
rules can come from experts while others can come from models.
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For SHM, the designer must select the input damage indicators to the fuzzy sys-
tem and the outputs of the fuzzy system. Various examples and case studies consid-
ered in this book will show some typical input-output sets. To physically understand
the fuzzy rules, a damage detection problem for a cantilever beam can be consid-
ered where the inputs are the changes in natural frequencies relative to the baseline
undamaged beam and the output is the location of the damage. To formulate a fuzzy
rule, we need an understanding of

1. Linguistic variables (words) versus numerical values of a variable (e.g., HIGH
versus 3.5% change in the fundamental frequency),

2. Quantifying linguistic variables (e.g., ω1 (fundamental frequency) will have a
finite number of linguistic terms associated with it, ranging from NEGLIGIBLE,
SMALL, MEDIUM, to VERY HIGH), which is done using fuzzy membership
functions,

3. Logical connections between linguistic variables (e.g., AND, OR etc.), and
4. Implications such as IF A THEN B. We also need to understand how to combine

more than one rule.

Once the inputs of the fuzzy logic system are identified, a set of linguistic vari-
ables must be associated with each input. For instance, the change in the first natural
frequency may vary from 0–5%. This set of (0,5)% is now expressed as words, i.e.,
(negligible, small, medium, high, very high) assuming a discretization of five levels.
This process of moving from the number space to the word space is accomplished by
the fuzzification process. The fuzzifier performs the fuzzification and maps numbers
into fuzzy sets. Thus a 0.5% change in the input may become a “small” change, and
a 4.5% change in the input may become a “very high” change. This number-to-word
transformation is very important in fuzzy logic, as all further operations such as rules
are performed on the words. Thus, the fuzzifier is needed to activate rules that are
expressed in terms of linguistic variables. An inference engine of the fuzzy logic
system maps fuzzy sets to fuzzy sets and determines the way in which the fuzzy sets
are combined. The inference engine therefore performs the operations for the fuzzy
rules by converting the inputs expressed in words to the output expressed in words.
The application of the rules on the words rather than on the numbers is the main
source of the strength of the fuzzy logic system. The words are relatively insensitive
to small changes in numbers and therefore are robust to uncertainty in the inputs. In
several applications, numbers are needed as an output of the fuzzy logic system. In
those cases, a defuzzifier is used to calculate crisp values from fuzzy values. Thus,
the defuzzifier converts the words back to numbers. The internal architecture of the
fuzzy system thus operates with words, but the interface to the outside world can be
through numbers because of the fuzzifier and the defuzzifier. We will now formally
define the various fuzzy logic terms.

Fuzzy Sets A fuzzy set F is defined on a universe of discourse U and is charac-
terized by a degree of membership μ(x), which can take values between 0 and 1.
A fuzzy set generalizes the concept of an ordinary set whose membership function
only takes two values, zero and unity. Thus, an element must either belong to an or-
dinary set or not belong to it. However, an element can belong to two or more fuzzy
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sets with different degrees of memberships. For example, if we classify height as
“tall,” “normal,” and “short,” then a given person may have a high degree of mem-
bership in “tall,” a low degree of membership in “normal,” and a very low degree
of membership in “short.” This allows the system to deal with ambiguity. Though
the concept of height of a person is associated with a clear numerical value, human
decisions which are made with height as an input typically use height as a fuzzy
variable.

Linguistic Variables A linguistic variable u is used to represent the numerical
value x, where x is an element of U . A linguistic variable is usually decomposed
into a set of terms T (u), which cover its universe of discourse.

Membership Functions The most commonly used shapes for membership func-
tions μ(x) are triangular, trapezoidal, piecewise linear, or Gaussian. The designer
selects the type of membership function used. There is no theoretical requirement
that membership functions overlap. However, one of the major strengths of fuzzy
logic is that membership functions can overlap. Fuzzy logic systems are robust be-
cause decisions are distributed over more than one input class. For convenience,
membership functions are normalized to one so they take values between 0 and 1,
and thus define the fuzzy set. One advantage of the Gaussian membership functions
is that they do not suddenly go to zero. This helps in a progressive degradation of
the behavior of the fuzzy logic system.

Inference Engine Rules for the fuzzy system can be expressed as

Ri : IF x1 is F1 AND x2 is F2 AND · · · AND xm is Fm THEN y = Ci

i = 1,2,3, . . . ,M

where m and M are the number of input variables and rules, xi and y are the in-
put and output variables, and Fi ∈ Vi and Ci ∈ W are fuzzy sets characterized by
membership functions μFi

(x) and μCi
(x), respectively. Each rule can be viewed as

a fuzzy implication

F12···m = F1 × F2 × · · · × Fm → Ci

which is a fuzzy set in V ×W = V1 ×V2 ×· · ·×Vm ×W with membership function
given by

μRi
(x, y) = μFi

(x1) ∗ μF2(x2) ∗ · · · ∗ μFm(xm) ∗ μCi
(y)

where the asterisk can be the min or product operator with x = [x1, x2, . . . , xm] ∈ V

and y ∈ W . This sort of rule covers many applications. The algebraic product is
one of the most widely used operators in applications and leads to product impli-
cation. Underlying all this mathematics is a very simple concept that the degrees
of memberships of the different parts of the rule are multiplied to get the degree to
which a rule has fired. The Gaussian fuzzy sets are useful here, as they ensure that
each rule is fired to some degree as none of the membership functions will become
exactly zero. In pattern recognition problems, the outputs are often crisp sets, and
μCi

(y) = 1 is often used for the product implication formula. In this book, product
implication will be used for the fuzzy systems.
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Defuzzification Popular defuzzification methods include maximum matching and
centroid defuzzification. While centroid defuzzification is widely used for fuzzy
control problems where a numerical output is needed, maximum matching is often
used for pattern matching problems where we need to know the output class. For
example, a fuzzy control application may require an output in terms of an angle
(degree or radian) for a given actuator. In these applications, the defuzzifier plays
an important role. However, in SHM, it may be better to know that the damage is
in the “outboard” section of the beam which could have been defined at the region
between 60 and 80% of the beam length during the data gathering process. There
is no great value in knowing that the damage is at an exact numerical location such
as 73% of the beam length, as such a diagnosis is likely to be erroneous given the
uncertainties in the problem. The output in words given by the fuzzy system is also
useful for maintenance engineers and can be easily fed directly into the graphical
user output.

Suppose there are K fuzzy rules and among them, Kj rules (j = 1,2, . . . ,L and
L is the number of classes) produce class Cj . Let Di

p be the measurements of how
the pth pattern matched the antecedent conditions (IF part) of the ith rule, which is
given by the product of membership grades of the pattern in the regions which the
ith rule occupies:

Di
p =

m∏

i=1

μli, (2.1)

where m is the number of inputs and μli is the degree of membership of measure-
ment l in the fuzzy regions that the ith rule occupies. Let Dmax

p (Cj ) be the maximum
matching degree of the rules (rules jl , l = 1,2, . . . ,Kj ) generating class Cj :

Dmax
p (Cj ) = Kj

max
l=1

D
jl
p . (2.2)

Then the system will output class Cj∗ provided that

Dmax
p (Cj∗) = max

j
Dmax

p (Cj ). (2.3)

If there are two or more classes which achieve the maximum matching degree,
we will select the class which has the largest number of fired fuzzy rules (a fired
rule has a matching degree of greater than zero).

There are several applications of fuzzy logic systems in SHM as well as in the
broader area of engineering. Despite their considerable success, fuzzy systems are
limited to problems with a small number of input variables. In addition, the process
of developing the fuzzy system requires a lot of judgement and experience on the
part of the designer. Two aspects in the design of the fuzzy system are particularly
difficult: (1) generating the best rule set and (2) tuning the membership functions.
The rules and the membership functions must accurately capture the relationship
between the independent and dependent variables.

Unfortunately, the tasks of tuning the membership function and generating rules
are not independent. The task of selecting membership functions and rule values is
difficult since the information has to be obtained from numerical data of the system
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to be modeled. Another problem is selecting an appropriate number of fuzzy sets.
Most studies use experience to come up with this number. Often, symmetric fuzzy
sets are assumed. However, assuming symmetry in the fuzzy sets also implies as-
suming symmetry in the system being modeled [4]. The results of successful fuzzy
logic systems which one reads in papers and which have been implemented in many
practical systems have come after much trial and error on the part of the designer.
Typically, the designer selects a level of discretization for the measurement, then
assigns the membership function for each fuzzy set, creates the rules, and checks
for performance. If the performance of the fuzzy system is not good, the level of
discretization, membership functions, and rules are manually tuned until a reason-
ably good level of performance is obtained. However, the danger of this approach is
that it is ad hoc in nature and the fuzzy systems developed using this method are not
optimal.

To use the power of fuzzy logic for realistic health monitoring problems, it is nec-
essary to automate the process of fuzzy rule creation. For SHM problems, a clear
metric for maximization is the success rate of the fuzzy system when confronted
with test data. The design of the best fuzzy system for SHM is essentially an op-
timization problem which involves maximization of the success rate. As discussed
in the previous chapter, the process of designing the best fuzzy logic system can be
accelerated by using genetic algorithms. We therefore discuss genetic algorithms in
the next section.

2.2 Genetic Algorithms

The genetic algorithm (GA) is a search process based on the laws of natural se-
lection and genetics. The GA was one of the early examples of bio-inspiration in
engineering and has paved the way for many other such methods and concepts. The
GA searches the design space for an optimal design point to maximize a fitness
function value. Generally, a simple GA contains three basic operations: selection,
genetic operations, and replacement. A typical GA cycle is shown in Fig. 2.2. If
Fig. 2.2 is examined, it will be seen that the first step needed to start the GA process
is the construction of an initial population. The initial population is the potential so-
lution set comprising a reasonably large number of points in the design space and is
generated randomly or heuristically. The general method used at this stage is a ran-
dom construction of individuals. It is also possible to use a combination of uniform
sampling of the design space and random sampling in order to ensure that each part
of the design space is represented in the initial population.

The next step of the pre-evolution phase is to evaluate the initial individuals. This
step is needed to determine the next generation that will constitute the subpopula-
tion. For a typical problem, the fitness function value needs to be calculated at each
of the points in the population. There is a very small but finite probability that the
initial population may possibly include the solution.

After this pre-evolution stage, the evolution phase loops until (1) a solution is
found or (2) the generation number reaches the predetermined maximum generation
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Fig. 2.2 Flowchart of genetic
algorithm

number or (3) there remains no mutation combination left to try and any increase
in the average success of the population cannot be achieved. Details about GAs are
available in textbooks [5, 6], and their use in genetic fuzzy systems is described
in [7]. GAs are theoretically and empirically proven to provide a robust search in
complex spaces [8]. A GA operates on a population of randomly generated points
(P ). Each point is sometimes called a chromosome and is often represented by
binary strings. There exist both binary and real coded versions of GAs; however,
in this book we will use the binary GA, as this works quite well when a low level
of discretization in terms of the numerics are needed. In a binary GA, any numbers
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are first converted into binary form and then the genetic operators are applied to the
resulting strings of 1’s and 0’s. The binary form resulting after the operations can
then again be converted to real number form. However, the binary form requires a
specification of the number of bits used for representing each design variable. These
bits can be kept to a low number for SHM applications in genetic fuzzy systems as
they typically represent the characteristics of the fuzzy set.

The GA is an optimization algorithm, and its advantage relative to traditional
gradient-based algorithms lies in its ability to locate the global minimum and also
operate with discrete or integer design variables. Several terms are widely used in
the GA literature, and they are discussed next.

2.2.1 Operations During a GA Process

Encoding Encoding is the first part of a GA process, because problem-related in-
formation is encoded into a structure called a chromosome or string. A chromosome
is generally a sequence of variables of a problem placed in an organized manner.
Every variable sequenced to construct the chromosome is called a gene. These def-
initions come from the biologically inspired nature of the GA. However, as the GA
moved away from its biological roots, genes were replaced by bits and chromo-
somes by strings. For instance, a design variable x can be represented by the string
110110. If there are two such design variables, they can be put side by side and
result in a string of double the size. This process of moving from the real number
space to the binary space is called encoding.

Fitness Evaluation GAs mimic the survival-of-the-fittest principle of nature to
perform a search process. Therefore, GAs are naturally suitable for solving maxi-
mization problems where a fitness function is maximized. Minimization problems
are usually transformed to maximization problems by some suitable transforma-
tion. In general, a fitness function F(x) is first derived from the objective func-
tion f (x) and used in successive genetic operations. For maximization problems,
the fitness function can be considered to be the same as the objective function,
i.e., F(x) = f (x). For minimization problems, the fitness function is an equiva-
lent maximization problem chosen such that the optimum point remains unchanged.
A number of such transformations are possible. The following fitness function is
often used:

F(x) = 1/
(
1 + f (x)

)
.

GA operators typically require the function value to remain positive. Therefore, the
process of changing the sign of the fitness function which is popular in gradient-
based optimization is not used in GAs. If there is some chance that the fitness func-
tion may become negative in the design space, a large positive number can be added
to it to ensure that the fitness stays positive.



34 2 Genetic Fuzzy System

Genetic Operations The operation of GAs begins with a population of random
strings representing design variables. Thereafter, each string is evaluated to find the
fitness value. The population is then operated by three main operators, reproduction,
crossover, and mutation, to create a new population of points. These operators are
described below.

Reproduction: Reproduction is the first operator applied on a population. Repro-
duction selects good strings in a population and forms a mating pool. In do-
ing so, it mimics the courtship phase of natural selection. There exist a num-
ber of reproduction operators in the GA literature, but the essential idea in
all of them is that above-average strings are picked from the current popu-
lation and their multiple copies are inserted in the mating pool in a proba-
bilistic manner. The commonly used reproduction operator is proportionate re-
production, where a string is selected for the mating pool with a probabil-
ity proportional to its fitness. This approach is also known as roulette wheel
selection. Thus, good strings in a population are probabilistically assigned a
larger number of copies and a mating pool is formed. Another approach to
reproduction occurs in tournament selection. Here tournaments are arranged
between any two random strings, and the winners are selected for mating.
It is important to note that no new strings are formed in the reproduction
phase.

Crossover: At the end of the reproduction process, the mating pairs are se-
lected. The idea of exchange of genetic information which occurs between the
male and female is now mimicked during the crossover process. Recall that
each individual is a point or a binary string. Thus, information exchange in-
volves the swapping of some bits between the male and female strings. The
process of information exchange between the individuals is called crossover
and is a basic property of GAs. The crossover procedure creates new chromo-
somes or strings from the two parents. Crossover is performed after selection
of a subpopulation of individuals according to their fitness values and collec-
tion of the selected individuals into a gene pool. Crossover is achieved in three
stages. The first stage is matching. Matching is the selection of two individu-
als in the gene pool randomly. In the second stage, a crossover point is deter-
mined in each of the individuals. In the final stage, two parts of the individu-
als are replaced with each other. Typically, the crossover performs an operation
where two parents lead to two children. An example of crossover is shown be-
low:

Parent Strings Children Strings

100 | 1001 100 | 0111

==Crossover�⇒
111 | 0111 111 | 1001

Besides the single-point crossover shown above, multipoint crossover can also be
used. In such a case, the parent strings between two sites are swapped to get the
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child strings.

Parent Strings Children Strings

100 | 1001 | 1001001 100 | 0111 | 1001001

==Crossover�⇒
111 | 0111 | 0101010 111 | 1001 | 0101010

Multipoint crossover is better when a large number of design variables result in
long strings. For such long strings, single-point crossover is biased toward the
right of the strings and changes these design variables much more often than those
at the left of the string.

Mutation: Mutation means a random change in the information of a chromosome
or string. In other words, mutation is an operation that defines the variation in a
chromosome. This variation may be local or global. A probability test determines
whether a mutation will be carried out or not. For example, if the average fitness
of the new generation is smaller than the average fitness of the previous gener-
ation, bit y of the chromosome x can be changed. A bit mutation applied to a
chromosome is shown below:

Before mutation: 100 | 1 | 1101

After mutation: 100 | 0 | 1101

Mutation can be useful for improving the population. Since the initial popula-
tion is a subset of all possible solutions, an important bit of all the chromo-
somes may be 0 while it must be 1 to be optimal. Crossover may not solve
this problem and mutation is indispensable for the solution. In general, muta-
tion leads to small local moves in the design space, while crossover leads to
larger global moves. Mutation may often lower the average fitness of the popu-
lation, but it also allows the GA to escape from a local minimum by adding diver-
sity.

There are two proposed methods for allowing a subpopulation to replace its an-
cestors. One of the methods is generational replacement. In this method, a popula-
tion of size n entirely replaces the new generation. The other method is steady-state
reproduction, which replaces only a few individuals in a generation. A small num-
ber of strings with high fitness values are sometimes shielded from the crossover
and mutation operations. This is known as elitism.

2.2.2 Performance Factors

Population size is a factor that affects the performance of the GA. Increasing the
population means a longer computation time. On the other hand, if the population
size is decreased, the accuracy of the solution also decreases because of reduced
variation of chromosomes. In GA design, there must be a balance between the gen-
eration numbers and population size. Population size has another effect in the GA; it
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reduces the effect of the highest fitness valued chromosomes. For example, in a pop-
ulation of 10 chromosomes, if one of the chromosomes has a fitness value of 9 while
the others have a fitness value of 1, half of the parents will be chosen from among the
relatively low fitness valued chromosomes, although the best fitness valued chromo-
some is nine times better. Evaluation of chromosomes and fitness calculations are
the most time-consuming parts of the GA. If the evaluation operation is reduced, the
GA process will work faster, and this can be achieved by reducing the population
size and number of generations needed to reach a solution.

2.3 Genetic Fuzzy System

The principles and operations of GAs and fuzzy logic have been briefly described
in the previous sections. These two soft computing tools can be combined to form
the genetic fuzzy system [9]. The GA provides good global search capability. Fuzzy
logic presents robust and flexible inference methods in problems subject to impre-
cision and uncertainty. The linguistic representation of knowledge permits a person
to interact with a fuzzy system in an easy manner. The hybridization of the GA
and fuzzy logic gives an advanced soft computing method called the genetic fuzzy
system (GFS), in which a GA is used to evolve a fuzzy system by tuning fuzzy
membership functions and learning fuzzy rules.

A key objective of this section is to use GAs to automate the design of fuzzy sys-
tems. The generalized GFS algorithm is explained for a damage detection problem.

Input and Output Suppose inputs to the fuzzy systems are represented by z and
outputs are represented by x. The objective is to find the mapping between z and x.
In damage detection problems, the measurement deltas �z’s (changes in measure-
ments between damaged and undamaged model) can be used as inputs, and the com-
binations of damage levels and locations will be the output of the fuzzy system. Here
x = {location1, location2, . . . , locationn}T and z = {�z1,�z2, . . . ,�zd}T , where n

are the user-defined locations and d is a user-defined number of measurements. Each
measurement delta has uncertainty.

Fuzzification The structure can be divided into various locations. For example,
“location1” ranges from 0% to say n1% and so on until all the locations are labeled
per user requirement. To get a degree of resolution of the extent of damage [10],
each of these damage locations is allowed several levels of damage and split into
linguistic variables. For example, consider “location1” as a linguistic variable. Then
it can be decomposed into k levels and the undamaged level,

T (location1) = {Undamaged, level1 Damage, level2 Damage, . . . , levelk Damage}
where each term in T (location1) is characterized by a fuzzy set in the universe
of discourse U(location1) = {0,damage parameter}. The other structural damage
variables are fuzzified in a similar manner.

The measurement deltas �z1,�z2, . . . and �zd are also treated as fuzzy vari-
ables. Fuzzy sets with Gaussian membership functions are used to define these input
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variables. These fuzzy sets can be defined using the following equation:

μ(x) = e−0.5( x−m
σ

)2
, (2.4)

where m is the midpoint of the fuzzy set.
�z’s are used as midpoints for the respective fuzzy sets. The standard deviation

associated with each variable is denoted by σ and is obtained using a GA for max-
imization of the success rate SR , as discussed later. After optimization of the fuzzy
system for its success rate, we get a different σ value for every fuzzy set. We can
see that the Gaussian fuzzy sets depend on the appropriate choice of the midpoint
and the standard deviation. The midpoint is a measure of the point of maximum
likelihood of a fuzzy set, while the standard deviation represents the scatter and ac-
counts for the uncertainty. For instance, we could define a 0% change in the natural
frequency as “negligible” and give a standard deviation of 0.3%. This ensures that
a Gaussian fuzzy set for the word “negligible” is centered at 0 change in frequency
representing the undamaged condition and also that very small shifts from the 0
position are also classified as negligible. Thus, the numerical value is fuzzified by
the spread of the Gaussian fuzzy set, and the standard deviation allows us to control
how slowly or fast the “negligible” membership function decays.

Rule Generation Rules for the fuzzy system can be obtained by fuzzification of
the numerical values obtained by numerical analysis of the model using the follow-
ing procedure.

1. The fuzzy sets corresponding to �z1,�z2, . . . ,�zd are generated by taking the
�z’s obtained by numerical analysis as midpoints of membership functions cor-
responding to a given structural damage. This strategy for selecting the midpoint
ensures that the maximum degree of membership (μ = 1) for each fuzzy set oc-
curs at the values of �z since the Gaussian function is highest at the midpoint.
The standard deviation of each set is initially fixed randomly within a prescribed
range.

2. For each measurement delta corresponding to given fault, the degree of member-
ship in the fuzzy set is calculated.

3. Each measurement delta is assigned to the fuzzy set with the maximum degree
of membership. One rule is obtained for each damage type by relating the mea-
surement deltas. The “IF” rule segment before “THEN” part will change from
structure to structure but the rule segment after “THEN” will remain the same
unless the number of damage locations and levels of damages are changed. Sup-
pose for rule i we are giving d inputs. Then the fuzzy system will generate d

membership functions A taking the change in measurements obtained by numer-
ical analysis of the model as the midpoint. The standard deviation is obtained by
optimization as discussed later.

4. The fuzzy system is then fine tuned by changing the standard deviation σ for
each set.
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Table 2.1 Rules for fuzzy system

Rule �z1 �z2 . . . �zd

Undamaged A11 A12 . . . A1d

level1 Damage at location1 A21 A22 . . . A2d

level1 Damage at location2 A31 A32 . . . A3d

.

.

.

level1 Damage at locationk A(k+1)1 A(k+1)2 . . . A(k+1)d

.

.

.

leveln Damage at locationk A((n×k)+1)1 A((n×k)+1)2 . . . A((n×k)+1)d

So rule i will be in generalized form as:

IF

�z1 is Ai1 AND

�z2 is Ai2 AND
...

�zd is Aid AND

THEN

corresponding level of damage at corresponding location.
In the preceding rules, the membership values of membership function A will

change from structure to structure. These rules are symbolically tabulated in Ta-
ble 2.1.

For calculation of the uncertainty associated with variables, i.e., the standard
deviation of the Gaussian membership functions, we use a GA for optimization of
the success rate. As we have already discussed, there will be uncertainty and some
noise in the measurement deltas. By generating noisy deltas and testing the fuzzy
system for a known damage, we can define a success rate. Our optimization problem
can be written in standard form as

Maximize SR

For design variable σ min ≤ σij ≤ σ max

where i = 1,2, . . . ,M,

j = 1,2, . . . , d,

where M is the number of rules and d is the number of fuzzy sets.
The success rate is calculated using the results obtained after defuzzification. If

we test NT samples of noisy data and out of that the system correctly classifies NC

times, then the success rate for rule p as a percentage is given as [11]

SR = NC

NT

100. (2.5)
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The added noise in the data simulates the uncertainty present in the experimental
measurements and the modeling process. Given a computed measurement delta �z,
random number u in the interval [−1,1], and a noise level parameter α, the noisy
simulated data is given as

�znoisy = �z + uα. (2.6)

The parameter α defines the maximum variance between the computed value
of �z and simulated measured value �znoisy which is a simulation of a practical
measurement. For example, if α = 0.15, then the simulated measurement delta can
be different by as much as 0.15 from the ideal value predicted by simulations. Thus,
α can be used to control noise levels in the simulated data used for testing the fuzzy
logic system.

2.4 Summary

This chapter gives a brief introduction to fuzzy logic, genetic algorithms, and a few
other terms used in the formulation of the genetic fuzzy system. Fuzzy logic in-
volves computing with words instead of numbers and is robust to the presence of
uncertainty in the inputs. However, fuzzy logic systems are difficult to design due
to the interaction between the choice of appropriate membership functions, the rule
base obtained, and the performance of the fuzzy system. The process of designing
fuzzy systems can be automated by using an optimization procedure for tuning the
membership functions and rule base. Genetic algorithms provide an excellent ap-
proach for finding the global minimum and can be used to design the fuzzy systems.
The genetic fuzzy system combines the uncertainty representation characteristics of
fuzzy logic with the learning ability of the genetic algorithm. Using the changes in
measurement deltas, a fuzzy system is generated, and the rule base and membership
functions are optimized by the genetic algorithm. The generalized formulation of the
genetic fuzzy system is explained using a damage detection problem. The genetic
fuzzy system will be used for solving damage detection problems using modal data
in the next two chapters. These applications will make the process of developing
genetic fuzzy systems for structural health monitoring very clear.
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Chapter 3
Structural Health Monitoring of Beams

Structural damage detection is an inverse problem of structural engineering having
four main parts: finding the existence, location, and extent of damage, and sug-
gesting a course of remedial action often called prognosis. In this chapter, a genetic
fuzzy system (GFS) is used to find the location and extent of damage in a beam. The
beam is a fundamental structural element used to model systems such as helicopter
rotor blades, airplane wings, columns, bridges, and buildings. In fact, the beam is
probably the most ubiquitous structural member. The GFS automatically generates
the rules for a fuzzy system using a genetic algorithm (GA) for application to struc-
tural damage detection. The GFS is demonstrated for damage detection in a beam-
type structure modeled using the finite element method. The finite element method
is a numerical method for solving governing differential equations and has proved
to be particularly successful for problems in solid mechanics where nonuniformity
of the domain and boundary conditions do not permit analytical solutions.

We first consider a cantilever beam for illustrating the GFS for the damage detec-
tion problem. Cantilever beam-type structures include, e.g., helicopter blades, tur-
bine and compressor blades, wind turbine blades, and airplane wings. These struc-
tures are fixed at one end and free at the other end. We also discuss results for the
BO105 hingeless helicopter rotor blade at the end of this chapter.

In the present work, the fuzzy rules are automatically generated. The GA is used
to solve the optimization problem. It is based on roulette wheel selection, fixed-
point crossover, and bitwise mutation. The population size, crossover probability,
mutation probability, and maximum number of generations are 20,0.8,0.05, and 30,
respectively. These values are determined by numerical experimentation. It should
be noted that the computational expense of the GA here depends on the underlying
finite element analysis. For the beam-type structures considered in this chapter, the
number of degrees of freedom is small, and hence the computer time for solving the
eigenvalue problem is much less. All numerical results in this book are obtained on
PCs, reflecting the growing power of computers.

In this chapter, a GFS is developed and demonstrated for damage detection in two
isotropic beam-type structures using modal-based measurement deltas. A cantilever
beam and a hingeless helicopter blade with only flapwise (out-of-plane) bending are
considered.

P.M. Pawar, R. Ganguli, Structural Health Monitoring Using Genetic Fuzzy Systems,
DOI 10.1007/978-0-85729-907-9_3, © Springer-Verlag London Limited 2011
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3.1 Damage Modeling in 1D Beam

The GFS is demonstrated using simulated signals of a one-dimensional (1D)
isotropic cantilever beam which is modeled using the Euler–Bernoulli cantilever
beam with the governing equation

∂2

∂x2

[
EI(x)

∂2w

∂x2

]
+ m(x)

∂2w

dt2
= 0. (3.1)

Here EI(x) is the flexural stiffness, m(x) is the mass per unit length, and w(x, t) is
the displacement. To obtain the natural frequencies, harmonic excitation is assumed:
w(x, t) = W(x)eiωt . This converts the partial differential equation (PDE) into an
ordinary differential equation (ODE). This ODE has an exact solution for natural
frequencies for a uniform beam which has constant flexural stiffness and mass per
unit length. However, structural damage causes a localized reduction in the flexural
stiffness at the point where the damage occurs. Therefore, modeling of damaged
beams requires analysis of a nonuniform beam.

For a nonuniform beam, an approximate method such as the finite element
method is needed to calculate the natural frequencies. In finite element analysis, the
structure is divided into many small finite elements and a local displacement field is
assumed within the element with degrees of freedom present at the element nodes.
The elements are then assembled together and appropriate boundary conditions are
applied. Basically, finite element analysis transforms a differential equation into a
matrix equation and gives a discrete system approximation of the continuous sys-
tem. Details of the finite element method are given in standard textbooks [1–4]. The
beam element used here has four degrees of freedom, two at each node. The nodal
degrees of freedom are the displacement and slope at the two ends of the element.
Between the finite elements, there is continuity of the displacement and slope de-
grees of freedom. The element mass and stiffness matrices for this beam element are
of size 4 × 4. The element matrices for the entire beam are assembled and boundary
conditions are enforced to give the global stiffness matrix Kg and the global mass
matrix Mg . For a cantilever beam which is hinged at the root, the displacement and
slope degree of freedom at the root node is set to zero. These are known as geomet-
ric boundary conditions for the cantilever beam. Then, for free vibration, we have
the eigenvalue problem as

KgΦ = ω2MgΦ (3.2)

This equation is solved numerically as a general eigenvalue problem to obtain the
natural frequencies ω and the eigenvectors Φ of the beam. Such equations can easily
be solved in MATLAB, for instance, or by using any other numerical computing
software.

The change in frequency is considered as the measurement delta and is calculated
by the finite element method for a combination of five different locations and four
different levels of damages: Undamaged, Slight Damage, Moderate Damage, and
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Fig. 3.1 Fuzzy sets representing damage levels over universe of discourse (0–40%)

Severe Damage. The damage is modeled as a reduction in element stiffness, and a
percentage damage parameter D is defined such that [5–7]

D = 100
Eundamaged − Edamaged

Eundamaged
. (3.3)

Here E is the Young’s modulus of the material. The structural damage in each seg-
ment is modeled by stiffness reductions (D) of 10%, 20%, and 30%, respectively.
These damage sizes are classified as “slight damage,” “moderate damage,” and “se-
vere damage,” respectively. Damage sizes below “slight damage” are classified as
undamaged. Damage sizes greater than “severe damage” are classified as “catas-
trophic damage” as shown in Fig. 3.1. Thus both the damage locations and the dam-
age size are expressed in terms of words to make the problem suitable for fuzzy
logic.

The beam is divided into five damage locations as “root” ranging from 0–20%
of the beam, “inboard” from 20–40%, “center” from 40–60%, “outboard” from
60–80%, and “tip” from 80–100%, as shown in Fig. 3.2. Since modal properties
such as frequencies are global properties in contrast to strains, which are local prop-
erties, it is best to use the modal methods for a broad classification of the damage
and then to subject the structure to more detailed local inspection using nonde-
structive testing methods. The difference between the frequency of the damaged
and undamaged beam is used as a system indicator for damage and referred to as
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Fig. 3.2 Schematic representation of the cantilever beam damage locations

a “measurement delta.” This measurement delta is positive for structural damage
since the reduction in stiffness for a damaged beam decreases the frequency. The
measurement delta is expressed as a percentage change:

�ω = 100
ωundamaged − ωdamaged

ωundamaged
. (3.4)

Different locations of damage in the beam and different levels of the damages
give different sets of �ω, which are used to create the database of fuzzy rules. Note
that in this problem, the database used to create rules is obtained from a mathemati-
cal model. It is also possible to obtain such a database from experiments. However,
the costs of performing experiments on the large number of damaged beams can be
very high. Therefore, a model-based diagnostics is very useful.

The sensitivity of �ω with respect to damage level and location is shown in
Fig. 3.3. These results are obtained from the finite element model of the cantilever
beam by seeding the damage at different locations along the beam. However, any
modeling process including the finite element method contains errors due to uncer-
tainty in the material properties and discretization and numerical errors. Uncertain-
ties in the model can be of two types: aleatory and epistemic [8]. Aleatory or random
uncertainty can be present because the material properties used in the determinis-
tic mathematical model such as Young’s modulus are actually random variables. In
other words, if we were to build ten beams and find the Young’s modulus for each
beam, there would be some scatter in the data obtained. Besides random uncertainty,
epistemic or model uncertainty may also be present. For instance, if Euler–Bernoulli
beam theory is used to model a short thick beam, the results will not be accurate,
as the effects of shear deformation and rotary inertia are neglected in the Euler–
Bernoulli beam theory. These effects are included in Timoshenko beam theory, and
the use of such a theory for short thick beams will reduce epistemic uncertainty.

While epistemic uncertainty can be reduced by choosing good models, random
uncertainty is harder to reduce as it involves manufacturing and quality issues. Dis-
cretization errors arise from not using enough elements in the finite element model.
It is very important to use a sufficient number of finite elements especially at lo-
cations of sudden change in the material properties which occur in the vicinity of
the damage. As a rule, it is important to perform a convergence study by increasing
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Fig. 3.3 Surface plots of �ω for first four frequencies with respect to damage location
(Root = 0–20%, Inboard = 20–40%, Center = 40–60%, Outboard = 60–80%, Tip = 80–100%)
and damage level (undamaged, slight damage, moderate damage, and severe damage at D = 0%,
10%, 20%, and 30%, respectively)

the number of finite elements and monitoring the damage indicator value. It is bet-
ter to overdiscretize and err on the side of caution than to underdiscretize. We thus
see that there is always some difference between predictions by models and test
results, even if discretization errors have been minimized. This difference is called
modeling uncertainty. In addition to modeling uncertainty, noise may be present in
the frequency measurement deltas (�ω’s). This is called measurement uncertainty.
In this work, we will assume that random noise models both forms of uncertain-
ties present in the structure. Finally, numerical errors involved in algorithms such
as eigenvalue solvers, linear system solvers, and differential equation solvers should
be minimized by using robust methods and double precision computer arithmetic.

3.2 Formulation of Genetic Fuzzy System

Formulation of the genetic fuzzy system (GFS) is demonstrated for beam-type
structures for a cantilever beam. The inputs of the fuzzy system are {�ω1,�ω2,

. . . ,�ωd}T and the outputs of the fuzzy system are various damage levels at five
fault locations {Root, Inboard, Center, Outboard, Tip}. The objective of the GFS is
to find a mapping between the frequency-based measurement deltas and damage at
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the five locations. Each measurement delta has uncertainty. Helicopter rotor blades
are designed to have a high level of damage tolerance and therefore only significant
levels of damage are of interest to us here. Therefore, the use of a global method
such as frequency-based damage detection is appropriate, as the damage indicator
acts as a filter which prevents minor and insignificant damage from being detected.

Fuzzy sets with Gaussian membership functions are used to define these input
variables. The changes in frequencies (�ω) are used as midpoints for the respective
fuzzy sets. This midpoint will change for different structures and damage combina-
tions since it is dependent on geometrical properties and material properties of the
structure. As this GFS automatically adjusts the midpoints of fuzzy sets, it has the
flexibility to deal with different beams. In addition, by selecting the number of fuzzy
sets as equal to the number of measurements or modes, we automate the process of
selecting the number of fuzzy sets. Of course, the greater the number of measure-
ments, the more accurate the fuzzy system. For each different beam, the GFS will
automatically adjust midpoints according to the conditions of damage and location.

The uncertainty (standard deviation) associated with each variable is denoted
by σ and is obtained using a GA for maximization of the success rate SR . After
optimization of the fuzzy system for its success rate, we get a different σ value
for every fuzzy set. For calculation of the uncertainty associated with the variables,
i.e., the standard deviation of the Gaussian membership functions, we use a GA for
optimization of the success rate. As we have already discussed, there will be the
presence of uncertainty and some noise in the measurement deltas. The added noise
in the data simulates the uncertainty present in the experimental measurements and
the modeling process. The data for training and testing of the GFS is developed by
using the noise model given in (2.6) by considering the �z as frequencies obtained
by finite element analysis.

The schematic representation of the GFS is shown in Fig. 3.4. Figure 2.1 in the
previous chapter shows the components of a classical fuzzy logic system where
data is fuzzified, the rules are evaluated, and the defuzzification is used to determine
the final output of the system. For our problem, inputs are the measurement deltas
(�ω) and the outputs are the damage presence, location, and size. Figure 3.4 shows
how the fuzzy logic system in Fig. 2.1 is developed. Data from the finite element
model are used to obtain the midpoints of the fuzzy sets. Noisy data at noise level
α are used to train the fuzzy system to maximize the success rate (SR) by using
the standard deviations as design variables. The outputs of the GFS are damage
presence, location, and size, which are the same as those for the fuzzy system in
Fig. 2.1. However, the addition of learning using GA allows the GFS to optimize its
rule base.

Once we obtain the proper fuzzy rules which are generated automatically, we
have a knowledge base to isolate structural damage using frequency shifts. When
these rules are applied for a given measurement, we have the degree of membership
for each fault. For fault isolation, we are interested in the most likely fault. There-
fore, the fault with the highest degree of membership is selected as the most likely
fault. The output is left as a fuzzy set, as it is closer to the human reasoning process.
For example, it is better to know that there is a “moderate” damage in the “center”
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Fig. 3.4 Schematic representation of GFS

element than to know that there is a D of 22% at a distance of 0.46R from the root of
the beam. The fuzzy output could be color coded or formulated in terms of “alerts”
or “alarms” at different levels, which is useful for maintenance actions.

3.3 Structural Health Monitoring for Uniform Beam

The schematic representation of the beam is shown in Fig. 3.2. The dimensions
and material properties of the beam (Fig. 3.5) are obtained from Chandrupatla and
Belegundu [1]. The beam is divided into 20 finite elements of equal length. The se-
lection of the number of elements is justified in Fig. 3.6 to minimize the modeling
error. In this figure, the ratio of the eighth mode, which is the highest mode used in
the numerical results, with the first mode is shown. From the graph, it appears that
20 elements give a good level of discretization. Each segment spanning 20% of the
beam in Fig. 3.2 is therefore divided into four finite elements. The undamaged beam
is uniform. Therefore, the frequency predictions from the finite element method
(FEM) model of the undamaged beam are validated by comparing with exact so-
lutions for a continuous beam. The first eight natural frequencies of the beam are
22.66 Hz, 142.03 Hz, 397.70 Hz, 779.37 Hz, 1288.49 Hz, 1925.18 Hz, 2689.82 Hz,
and 3583.07 Hz, respectively. We shall assume in this study that the finite element
analysis is accurate and any deviations from reality are random noise and not sys-
tematic (biased) modeling error. For applications to real structures, some methods
such as finite element model updating can be used to match the model predictions
of the undamaged structure with experimental data.
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Fig. 3.5 Cantilever beam model for damage detection with 20 finite elements. Material and ge-
ometric properties of the beam are: E = 2.0 × 105 N/mm2, cross-sectional area = 240 mm2,
moment of inertia = 2000 mm4, and mass density = 7840 × 10−9 kg/mm3

Fig. 3.6 Ratio of eighth
frequency to first frequency
of the cantilever beam with
increasing number of finite
elements

The generated rules are shown in Table 3.1 for eight input deltas. The eight input
deltas represent the first eight natural frequencies of the beam. During the process of
developing the fuzzy system, eight frequencies are used, but during testing, we will
also experiment with missing measurements. In the GFS, only the beam geometry
and material properties need to be specified along with the number of measurement
deltas (modes) needed, and the rule base and success rate for the optimal system
are automatically generated. In Table 3.1, the midpoints and standard deviation of
membership functions are shown for respective faults in linguistic form, which is
the output. The linguistic forms will remain constant for different structures, but the
numerical values of midpoints and standard deviation will change. We can see that
a lot of information is contained in this table, and it is very difficult to find all this
information manually through a trial-and-error process.

3.3.1 Test with Noisy Data

The fuzzy logic system is optimized for α = 0.15 and also tested using noise con-
taminated simulated data. The fuzzy system defined by rules for eight �ω inputs
(Table 3.1) is tested for different values of α as shown in Table 3.2. Table 3.2 con-
tains the success rate for each rule for values of α of 0.1, 0.15, and 0.20. This success
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Table 3.2 Success rate for
different rules at different
noise levels (d = 8)

Rule No. α = 0.1 α = 0.15 α = 0.2

1 100.00 100.00 100.00

2 100.00 100.00 100.00

3 100.00 100.00 100.00

4 100.00 100.00 99.00

5 100.00 100.00 99.20

6 100.00 100.00 99.90

7 100.00 100.00 100.00

8 100.00 100.00 100.00

9 100.00 100.00 100.00

10 100.00 100.00 100.00

11 100.00 100.00 100.00

12 100.00 100.00 100.00

13 100.00 100.00 100.00

14 100.00 100.00 100.00

15 100.00 100.00 100.00

16 100.00 100.00 100.00

Avg. SR 100.00 100.00 99.81

rate is obtained by testing the fuzzy system for a thousand noisy data sets. As ex-
pected, the success rate improves as the data quality becomes better. Optimizing
the fuzzy system for a higher noise level therefore results in good performance at
lower noise levels. Furthermore, the fuzzification process of fuzzy logic ensures that
the deterioration in the performance of the GFS is gradual with the increase in the
noise level. Even though a success rate of 99.81% shown for the noise level for 20%
may appear to be very good, it means that in a total of 10,000 samples, 19 cases
were not identified correctly. These 19 cases are called false alarms, and one of the
main aims of damage detection algorithms is to minimize these false alarms, as they
can be expensive and also reduce the faith of the users in the health monitoring
system.

To get a physical feel for the change in frequencies due to structural damage
and the effect of noise level, we look at the numbers used in rule 4 of Table 3.1
in dimensional form. Rule 4 of Table 3.1 is “slight damage at center.” For this rule
D = 10%, i.e., flexural stiffness is reduced from 4 × 108 N-mm2 for the undamaged
beam to 3.6 × 108 N-mm2 for the damaged beam. For this rule, values of ideal
damaged beam frequencies, difference between undamaged beam frequencies and
ideal damaged beam frequencies, noisy damaged beam frequencies for positive and
negative extreme noise level α = 0.2, and difference between ideal damaged beam
frequencies and noisy damaged beam frequencies are tabulated in Table 3.3 for eight
modes. Here ω1 − ω2 is the change in frequency due to damage. The effect of noise
is to allow the noisy damaged frequency to vary between ωn

2 and ω
p

2 . For a given
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Table 3.3 Effect of adding noise in measurement delta on damaged beam frequency (d = 8)

Mode �ωfem (%) ω1 ω2 ω1 − ω2 ω
p

2 ωn
2 ω2 − ω

p

2 ω2 − ωn
2

1 3.72 22.66 21.82 0.84 21.77 21.86 0.04 −0.04

2 3.89 142.03 136.50 5.52 136.22 136.79 0.28 −0.28

3 3.61 397.70 383.34 14.35 382.54 384.13 0.79 −0.79

4 3.65 779.37 750.92 28.44 749.36 752.48 1.55 −1.55

5 3.48 1288.49 1243.65 44.83 1241.07 1246.23 2.57 −2.57

6 4.22 1925.18 1843.93 81.24 1840.08 1847.78 3.85 −3.85

7 4.34 2689.82 2573.08 116.73 2567.70 2578.46 5.37 −5.37

8 3.92 3583.07 3427.56 155.50 3420.40 3434.73 7.16 −7.16

ω1 = Undamaged beam frequency obtained by FEM (Hz)

ω2 = Damaged beam frequency obtained by FEM (Hz)

ω
p

2 = Damaged beam frequency after adding noise α = 0.2, u = 1 in �ωfem (Hz)

ωn
2 = Damaged beam frequency after adding noise α = 0.2, u = −1 in �ωfem (Hz)

mode, the maximum change in damaged frequency due to noise is given by ω2 −ω
p

2
and ω2 − ωn

2 . It is clear that, for each mode, the change in damaged frequency due
to structural damage is larger than the change due to noise. Of course, this fact
is an important requirement for successful damage detection. Even the best soft
computing approach cannot perform damage detection if the change in the damage
indicator due to damage is less than the noise level. Therefore, the search for good
damage indicators is as important in structural health monitoring as the development
of soft computing methods.

3.3.2 Test with Different Measurements

The success rate of the fuzzy system is dependent on the number of measurements
(�ω’s). Eight frequency measurement deltas were used during the training phase
of the GFS. However, for a physical system, the first eight natural frequencies may
not be available. Furthermore, some of the higher mode frequencies are difficult to
measure accurately, and there is a greater risk of noise contamination in these mea-
surements. We test the automatic rule generating GFS for 4, 5, 6, 7, and 8 measure-
ments. For all these cases, the fuzzy system is optimized using the GA for α = 0.20.
For α = 0.20, the average success rate is 98.68% for four modes and increases to
99.88% for eight modes (Table 3.4). As expected, the addition of measurements in-
creases the accuracy of damage detection. For α = 0.15, the average success rate is
almost 100% for four modes and for the higher modes. Therefore, for reasonably
good quality measurement data,the fuzzy system performs extremely accurately.

The effect of the number of measurements used for damage detection on the
average success rate of the fuzzy system is shown in Fig. 3.7. As expected, the
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Table 3.4 Success rate for different rules at different numbers of measurements (α = 0.20)

Rule No. SR (d = 4) SR (d = 5) SR (d = 6) SR (d = 7) SR (d = 8)

1 100.00 100.00 100.00 100.00 100.00

2 100.00 100.00 100.00 100.00 100.00

3 99.00 99.90 99.30 99.90 100.00

4 91.60 87.20 91.50 96.20 99.00

5 90.20 93.70 94.70 98.10 99.20

6 98.40 99.30 99.20 100.00 99.90

7 100.00 100.00 100.00 100.00 100.00

8 100.00 100.00 100.00 100.00 100.00

9 99.80 100.00 100.00 100.00 100.00

10 99.90 100.00 99.90 100.00 100.00

11 100.00 100.00 100.00 100.00 100.00

12 100.00 100.00 100.00 100.00 100.00

13 100.00 100.00 100.00 100.00 100.00

14 100.00 100.00 100.00 100.00 100.00

15 100.00 100.00 100.00 100.00 100.00

16 100.00 100.00 100.00 100.00 100.00

Avg. SR 98.68 98.76 99.04 99.64 99.88

Fig. 3.7 Effect of increase in
number of measurement
deltas on average success rate
(α = 0.15)

success rate goes up as more modes are used. Going from four modes to seven
modes results in an increase in the success rate of almost 1%.

3.3.3 Missing and Faulty Measurements

An important test for damage detection algorithms is how they perform if one or
more measurements are missing or faulty. Consider the case where d ′ measurement
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Table 3.5 Success rate for defective measurement instrument for various d ′ (α = 0.15, d = 8)

Rule No. SR (d ′ = 1) SR (d ′ = 2) SR (d ′ = 3) SR (d ′ = 4)

1 100.00 100.00 100.00 100.00

2 100.00 100.00 100.00 99.70

3 100.00 100.00 99.70 99.70

4 100.00 100.00 100.00 99.60

5 100.00 99.80 99.400 98.80

6 100.00 100.00 100.00 99.50

7 100.00 100.00 100.00 100.00

8 100.00 100.00 100.00 100.00

9 100.00 100.00 100.00 100.00

10 100.00 100.00 100.00 99.90

11 100.00 100.00 100.00 100.00

12 100.00 100.00 100.00 100.00

13 100.00 100.00 100.00 100.00

14 100.00 100.00 100.00 100.00

15 100.00 100.00 100.00 100.00

16 100.00 100.00 100.00 100.00

Avg. SR 100.00 99.99 99.94 99.83

d ′ = Number of randomly selected measurement deltas which will cross upper or lower limit

deltas exceed a minimum or maximum threshold at a noise level of α = 0.15 and
eight measurement deltas. For numerical results, we put the minimum threshold at
�ω = 0 and the maximum threshold at �ω = 15. These values are selected so that
the fuzzy sets defined in Table 3.1 are contained within these thresholds. A thousand
samples of noisy data are generated, and for each sample, d ′ measurement deltas are
randomly selected to cross the upper or lower limit for each sample. The success
rate for d ′ = 1 is 100% and decreases to 99.83% as d ′ increases to 4. The results
are shown in Table 3.5. This case can represent a scenario where there is missing
measurement or bad data such as a bit error. In implementations, such a bad or
missing data point(s) may be replaced by a large number (say 100) or a negative
number (say −1). Then the fuzzy system would calculate results while neglecting
that measurement.

3.3.4 Measurements with High Noise

We consider the case in which noise (α′) increases above normal noise at one or
two points (randomly selected). As shown in Table 3.6, the average success rate is
about 99.92% at α′ = 0.30 for one randomly selected measurement delta and goes
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Table 3.6 Success rate when noise increases at one randomly selected measurement (α = 0.15,
d = 8)

Rule No. SR (α′ = 0.30) SR (α′ = 0.40) SR (α′ = 0.50) SR (α′ = 0.60)

1 100.00 100.00 100.00 100.00

2 100.00 100.00 100.00 99.60

3 100.00 99.70 99.80 98.20

4 99.90 97.50 98.30 95.00

5 99.00 95.40 94.50 89.60

6 99.80 98.60 99.40 96.40

7 100.00 100.00 100.00 100.00

8 100.00 100.00 100.00 100.00

9 100.00 100.00 100.00 100.00

10 100.00 100.00 100.00 100.00

11 100.00 100.00 100.00 100.00

12 100.00 100.00 100.00 100.00

13 100.00 100.00 100.00 100.00

14 100.00 100.00 100.00 100.00

15 100.00 100.00 100.00 100.00

16 100.00 100.00 100.00 100.00

Avg. SR 99.92 99.45 99.5 98.68

α′ = Increased noise level for faulty sensor

on decreasing to 98.68% for α′ = 0.60. Table 3.7 shows that the average success rate
is about 99.51% for α′ = 0.30 for two randomly selected measurement deltas and
goes on decreasing to 96.18% for α′ = 0.60. These cases can represent a scenario
where there are sensor faults or measurement errors effecting one or two modal fre-
quencies. Therefore, it is easier to handle missing measurements and gross errors
compared to measurement error. However, the fuzzy system shows a graded degra-
dation in performance. Therefore, it is robust in the presence of significant levels of
uncertainty.

3.4 Structural Health Monitoring for Nonuniform Beam

An important advantage of the GFS is that the rule base can easily be obtained for a
different structure. To illustrate this, consider a nonuniform beam. Most real physi-
cal beam structures are nonuniform in terms of the variation of flexural stiffness and
mass per unit length properties. Generally, the root region of a cantilever beam is
subject to higher levels of stress. Therefore, designing a cantilever beam which is
tapered such that there is more material at the root and less material in the outboard
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Table 3.7 Success rate when noise increases at two randomly selected measurements (α = 0.15,
d = 8)

Rule No. SR (α′ = 0.30) SR (α′ = 0.40) SR (α′ = 0.50) SR (α′ = 0.60)

1 100.00 100.00 100.00 100.00

2 99.50 98.40 98.60 96.50

3 99.30 97.70 98.00 93.60

4 97.40 91.90 90.90 80.10

5 96.70 90.50 88.70 79.10

6 99.30 95.40 94.20 89.80

7 100.00 100.00 100.00 100.00

8 100.00 100.00 100.00 100.00

9 100.00 100.00 100.00 99.90

10 100.00 100.00 100.00 99.90

11 100.00 100.00 100.00 100.00

12 100.00 100.00 100.00 100.00

13 100.00 100.00 100.00 100.00

14 100.00 100.00 100.00 100.00

15 100.00 100.00 100.00 100.00

16 100.00 100.00 100.00 100.00

Avg. SR 99.51 98.37 98.15 96.18

α′ = Increased noise level for faulty sensor

regions is common practice. Note, for instance, that the wings of airplanes and the
rotor blades of helicopters and wind turbines are tapered beams.

For testing the GFS for a nonuniform beam, the beam illustrated in Fig. 3.5 is
tapered by decreasing the area from the fixed end to the free end up to 0.75 times
the area at the fixed end. The GA is then used along with the finite element model to
create the numerics for the fuzzy sets which maximize the success rate for damage
detection of the tapered beam. The inputs are the same eight frequency measure-
ment deltas, and the outputs are the five locations along the beam. Thus, the input
and output are exactly the same as those used for the uniform beam earlier in this
chapter, but the structure itself is changed to a tapered beam. Automatically gener-
ated rules for the tapered beam are shown in Table 3.8. Note that it may have taken
a human an enormous amount of time to develop such a rule base. One would have
to experiment with thousands of different fuzzy set combinations, and the best suc-
cess rate obtained using such a process may still not be “optimal.” The design of the
fuzzy system for structural health monitoring becomes computationally efficient by
putting the development of the fuzzy system within the framework of an optimiza-
tion problem. Table 3.9 shows that the success rate for this case is also excellent.
The average success rate for noise level α = 0.20 is about 99.06% and increases to
99.92% for a noise level of 0.10. For noise levels of α = 0.05 and below, the success
rate is 100%.
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Table 3.9 Success rate for
different rules at different
noise levels for tapered beam
(d = 8)

Rule No. α = 0.10 α = 0.15 α = 0.20

1 100.00 100.00 100.00

2 100.00 100.00 100.00

3 100.00 100.00 99.70

4 99.20 92.80 85.50

5 99.50 94.80 87.00

6 100.00 100.00 99.80

7 100.00 100.00 100.00

8 100.00 100.00 100.00

9 100.00 99.90 98.40

10 100.00 100.00 98.60

11 100.00 100.00 100.00

12 100.00 100.00 100.00

13 100.00 100.00 100.00

14 100.00 100.00 100.00

15 100.00 100.00 100.00

16 100.00 100.00 100.00

Avg. SR 99.92 99.22 98.06

3.4.1 Refined Output Set

The division of a beam into only five parts for structural health monitoring may not
be acceptable for many problems. It is often necessary to obtain a higher degree
of resolution in damage detection. For instance, for a helicopter rotor blade with a
length of 5 m, dividing the beam into five segments gives a damage localization to
within 1 m. However, if the beam is divided into ten segments, a localization of 0.5 m
is obtained. To obtain more refined results and better accuracy in damage detection
we now divide the beam into ten parts. Each of these parts is expressed as a word
and given by: (Root1, Root2, Inboard1, Inboard2, Center1, Center2, Outboard1,
Outboard2, Tip1, Tip2). Then the number of rules will also increase from 16 to 31.
The GA is now used to find the optimal fuzzy sets to maximize the success rate for
damage detection. The rules obtained from the GFS are shown in Table 3.10. The
average success rate is 98.58% for noise level α = 0.15. As the number of inputs and
outputs grows, fuzzy systems face the problem called “curse of dimensionality,” re-
sulting in a great increase in the number of rules. It thus becomes very difficult for a
human to design the rule base for large-dimensional fuzzy systems. However, GFSs
are very well suited for such problems. Considering the numerics in Table 3.10, it is
impossible to imagine that such a complex system could be designed manually by a
human.
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Table 3.11 Baseline
hingeless blade properties Number of blades, Nb 4

Radius, R, m 4.94

Hover tip speed, ΩR, m/s 198.12

Mass per unit length, mo, kg/m 6.46

EIy/moΩ
2R4 0.0108

EIz/moΩ
2R4 0.0268

GJ/moΩ
2R4 0.00615

m/mo 1.0

Lock number 5.2

Solidity, σ 0.07

CT /σ 0.07

c/R 0.055

3.5 SHM for BO105 Hingeless Helicopter Rotor Blade

Until now, the genetic fuzzy system (GFS) has been developed and tested for a
uniform and tapered cantilever beam. To further justify and test the use of this GFS,
this system is tested on a realistic example of the blade of a uniform beam model
of the BO105 hingeless helicopter rotor. It is assumed that the helicopter is on the
ground and the rotor is not rotating. A set of sensors is used to perform a modal
analysis of the blade, and the first eight frequencies are extracted. These frequencies
are then compared to the saved frequencies of the undamaged blade to find the
measurement deltas. These measurement deltas are then fed to the damage detection
system. We use finite element simulation to develop the damage detection system.
The hingeless rotor blade is fixed at the hub and can be idealized as a cantilever
beam. We consider only the out-of-plane or flapwise bending modes of this beam
for the damage detection. The properties of this blade are given in Table 3.11. Here,
EIy is the flap stiffness, EIz is the lag stiffness, and GJ is the torsion stiffness. The
Lock number is a non-dimensional ratio of the aerodynamic forces and the inertia
forces acting on the rotor. Also, CT is the non-dimensional thrust coefficient for the
helicopter, c is the blade chord, and the rotor solidity is a ratio of the blade area to
the area of the rotor disk.

3.5.1 Frequency-Based Damage Detection of Blade

The finite element analysis is performed for the undamaged and all the different
sets of damaged blades by seeding the damage at the different locations. The GA is
then used to develop the fuzzy system. The rules generated by the GFS are given
in Table 3.12. These rules are obtained by optimizing the system for α = 0.15 and
are tested for α = 0.1 to α = 1.0. In this problem, we use a high level of noise to
test the GFS to its maximum limits. Also, real systems tend to be noisy because of
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Table 3.13 Success rate for different rules at different noise levels for BO105 hingeless helicopter
rotor blade (d = 8)

Rule No. Noise level, α

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

2 100.00 100.00 100.00 99.50 97.10 94.10 90.70 88.40 84.50 81.40

3 100.00 100.00 96.60 87.10 76.40 66.70 57.60 50.90 44.60 41.70

4 100.00 99.00 88.30 71.20 59.50 51.00 41.40 35.70 30.80 24.70

5 100.00 99.70 95.00 84.80 73.50 68.10 61.60 54.20 51.80 48.10

6 100.00 99.90 94.40 84.50 69.90 64.60 54.60 47.20 42.70 38.50

7 100.00 100.00 100.00 100.00 100.00 100.00 99.50 98.10 96.40 91.50

8 100.00 100.00 100.00 99.90 98.90 96.60 91.50 89.10 81.80 76.40

9 100.00 100.00 99.90 99.80 94.80 90.20 80.50 73.40 68.40 62.00

10 100.00 100.00 100.00 98.80 96.30 90.50 81.10 76.80 68.60 61.40

11 100.00 100.00 100.00 100.00 99.10 96.50 91.40 87.00 82.90 78.30

12 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.90

13 100.00 100.00 100.00 100.00 100.00 99.90 98.30 96.30 92.90 89.10

14 100.00 100.00 100.00 100.00 99.80 99.30 97.80 95.30 92.00 86.80

15 100.00 100.00 100.00 100.00 99.40 98.70 95.40 92.40 86.10 79.10

16 100.00 100.00 100.00 100.00 100.00 99.80 98.70 96.70 93.00 88.70

Avg. SR 100.00 99.91 98.39 95.41 91.54 88.49 83.76 80.09 76.03 71.73

Fig. 3.8 Effect of increasing
noise in data on the success
rate of GFS (d = 8)

both measurement and model uncertainty. The results are shown in Table 3.13. The
average success rate is 100% for α = 0.1 and 71.73% for α = 1.0.

The effect of increasing noise on the average success rate of the fuzzy logic
system is shown in Fig. 3.8. It can be observed that the success rate is about 100%
until a noise level of α = 0.10, after which it starts decreasing. However, even at
a noise level of α = 0.3, the fuzzy system with eight natural frequencies shows
an average success rate of 98.39%. Figure 3.8 also shows the behavior of the lowest
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success rate case (rule no. 4, slight damage at center). It is observed that at α = 0.30,
the success rate is 88.30% and at higher noise levels it decreases drastically, even
though the average success rate remains high. Thus, for higher α, the system may
not work well. The worst diagnosed damage gives the critical noise below which
the fuzzy system will work very well. For example, if we want a damage detection
accuracy of at least 90%, the critical noise is about 0.3 from Fig. 3.8. It is also
observed that for rule no. 1 (for undamaged) and for rule no. 12 to rule no. 16 (for
severe damage), the critical noise value will be much higher than that of rule no. 2
to rule no. 6 (for slight damage).

3.5.2 Mode Shape-Based Damage Detection of Blade

For the previous results, we have given changes in frequencies as the input data
to the GFS. Frequencies are easy to measure and also easy to handle numerically
because they are scalars. However, they can be relatively insensitive to low levels
of damage in the presence of noise. The mode shapes of a structure represent the
“shape” with which the structure vibrates when excited at a given natural frequency.
Thus, if the beam is excited at the first natural frequency, it vibrates at the first mode
shape. In general, the ith natural frequency of the beam corresponds to the ith mode
shape. Some researchers have opined that mode shapes are good indicators of the
location of damage. Recall the general eigenvalue problem for structural vibration,
where the natural frequencies are the eigenvalues and the mode shapes are the eigen-
vectors. We now use mode shape data as a measurement delta defined as the percent
difference between the norms of the eigenvector Φ:

�‖Φ‖ = 100
‖Φundamaged‖ − ‖Φdamaged‖

‖Φundamaged‖ . (3.5)

Given a computed eigenvector measurement delta �‖Φ‖, random number u in
the interval [−1,1], and a noise level parameter β , the noisy simulated data is given
as

�‖Φ‖noisy = �‖Φ‖fem + uβ. (3.6)

The parameter β defines the maximum variance between the computed value of
�‖Φ‖fem and the simulated measured value �‖Φ‖noisy, which is a simulation of a
practical measurement. Note that since the magnitudes of �‖Φ‖ are much less than
those for �ω, the noise level β used here is not directly comparable to α used for
frequency-based damage detection.

The rules generated by measurement deltas as norms of the eigenvectors are
given in Table 3.14. Some of the measurement deltas are negative because the norm
of the eigenvector can increase or decrease from the undamaged level for a stiffness
damage, while the eigenvalues will always decrease. The success rates obtained by
this method are given in Table 3.15. This method works very well up to a noise level
β of 0.10.
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Table 3.15 Success rate for
different rules at different
noise levels for BO105
hingeless helicopter rotor
blade by mode shape method
(d = 8)

Rule No. β = 0.00 β = 0.05 β = 0.10 β = 0.15

1 100.00 100.00 100.00 100.00

2 100.00 100.00 100.00 100.00

3 100.00 100.00 100.00 100.00

4 100.00 99.00 87.80 73.20

5 100.00 99.10 85.30 70.90

6 100.00 100.00 99.90 96.50

7 100.00 100.00 100.00 100.00

8 100.00 100.00 100.00 100.00

9 100.00 100.00 96.90 88.30

10 100.00 100.00 98.10 90.40

11 100.00 100.00 100.00 100.00

12 100.00 100.00 100.00 100.00

13 100.00 100.00 100.00 100.00

14 100.00 100.00 99.80 97.70

15 100.00 100.00 99.80 94.20

16 100.00 100.00 100.00 100.00

Avg. SR 100.00 99.88 97.97 94.45

3.6 Summary

This chapter illustrates the use of the genetic fuzzy system for damage detection
in a beam, which is one of the simplest and most important structures. First, the
structural health monitoring system is developed and tested for a uniform beam
using the change in natural frequencies relative to the undamaged structure as the
damage indicators. Various conditions involving noisy data, different measurement
sets, different levels of damage resolution, and faulty measurements are used, and
the genetic fuzzy system is found to perform well. The structural health monitor-
ing system is then developed for a tapered beam and a BO105 hingeless helicopter
rotor blade. For each structure, a genetic algorithm is used to develop the fuzzy sys-
tem to maximize the success rate of damage detection. The complexity of the fuzzy
rules clearly highlights the need for automation. Finally, mode shapes are used in
place of frequencies to perform damage detection. The genetic fuzzy system per-
forms well for all the cases considered in this chapter and shows a gradual decrease
in performance as noise increases. The genetic fuzzy system detects damage with
an accuracy of nearly 100% for low to moderate levels of noise in the data. The
problems in the chapter focus on a beam structure made of isotropic material. Both
the damage model and the mathematical model of the structure are kept simple to
focus on the genetic fuzzy system development process. In the next chapter, a more
complex structure (thin-walled tubular beam) made of composite material will be
considered to illustrate damage detection using the genetic fuzzy system.
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Chapter 4
Structural Health Monitoring of Composite
Tubes

This chapter investigates the effects of structural damage on the behavior of thin-
walled composite tubes. A tube of hollow circular cross section made of composite
material is considered. Composites are materials formed by combining at least two
different types of materials so as to take advantage of some properties of each of
them. For example, fiber reinforced polymer composites are made by reinforcing
a polymer matrix material with fibers. The polymer matrix may be epoxy, and the
fibers could be carbon in the form of graphite. Here, the fibers contribute to the
stiffness and the polymer to the volume and lightweight properties. Composite ma-
terials have become popular because of their low weight, superior fatigue proper-
ties, damage tolerance, and crashworthiness. Their initial use was in the aerospace
industry, but now composites are being used in many fields of structural engineer-
ing. Despite these advantages, composites also create complications due to their
more complex modeling requirements as compared to metals. Unlike metals, the
material properties of composites are directional in nature. Composites are suscep-
tible to several different damage mechanisms. The three most important damage
mechanisms which occur in composites are matrix cracking, delamination, and fiber
breakage. Generally, the first damage which occurs in composite structures is ma-
trix cracking. As matrix cracks build up within the structure, they cause a degra-
dation in the stiffness. However, after a critical matrix crack saturation density is
reached, the accumulation of more matrix cracks causes negligible change in the
structural stiffness. This point, called matrix crack saturation, is an important point
which shows that more serious damage mechanisms are likely to begin. Typically,
matrix crack saturation is followed by delamination/debonding and fiber breakage.
Therefore, the values of damage indicators at the point of matrix crack saturation
can be used as a threshold to put the structure under closer watch. In this chap-
ter, matrix cracking in the composite tube is considered as the damage. Since both
the structure and damage models are more complicated than the isotropic beams
considered in the previous chapter, the mathematical model development is more
elaborate in this chapter. Thus, this chapter illustrates the development of the ge-
netic fuzzy system for a more complicated structure compared to the previous chap-
ter.

P.M. Pawar, R. Ganguli, Structural Health Monitoring Using Genetic Fuzzy Systems,
DOI 10.1007/978-0-85729-907-9_4, © Springer-Verlag London Limited 2011
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4.1 Matrix Cracking in Hollow Circular Cross Section

We need to develop a mathematical model which predicts the change in modal prop-
erties such as frequencies of a composite tube due to localized matrix cracks. This is
achieved by including a matrix crack model in the structural model of the composite
tube. The composite tube has a hollow circular cross section with uniform diameter
and thickness along the length. Such composite tubes find many industrial applica-
tions. For example, they can be used as electrical transmission poles [1, 2] and as
parts of wind turbine towers [3]. Circular composite tubes are also being used for
crash absorption components in trains [4]. There is a trend to replace metal tubes
with composite tubes in applications due to their lower weight and better crash-
worthiness properties. Thus, composite tubes are important structures. However,
damage growth in these tubes can result in undesirable stiffness loss and resulting
changes in displacement and natural frequencies which may also be undesirable.
The cross section of the tube is shown in Fig. 4.1. The dynamic analysis of the com-
posite tube is done by using a beam finite element analysis discussed in the previous
chapter for the Euler–Bernoulli cantilever beam (Sect. 3.1). The tube is long and
slender; thus, an Euler–Bernoulli beam model is appropriate. The effective elastic
modulus required for beam analysis with matrix crack damage is discussed next.

4.1.1 Effective Elastic Modulus

This section derives an effective elastic modulus of a thin-walled composite struc-
ture which can be useful for simple thin-walled composite beams such as a hollow
circular cross section with the wall having the [±θm/90n]s family of composite lam-
inates. For the one-dimensional (1D) model, the effective elastic modulus is required
which accounts for all composite properties including the effect of matrix cracking.
The effective elastic modulus is formulated considering the small cross section of
the beam as a 2D composite plate.

Modeling of composite structures is done using the classical laminated plate the-
ory. A composite laminate is made by stacking together many laminas. Each lamina
or ply has an associated ply angle at which the fibers are oriented. A key advan-
tage of composites is that the fibers can be tailored for improved properties of the
structure. Details about composite materials can be obtained from books such as the
one by Jones [5]. Using the classical laminate theory, the coefficients of a generally
orthotropic plate can be determined. The constitutive equation for the laminate is

{
N
M

}
=
[

A B
B D

]{
ε

k

}
. (4.1)

Here N and M are vectors representing three forces and three moments, respec-
tively. Also, ε and k are vectors of strain and curvature, respectively. The extension
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bending stiffness matrix (B) is a null matrix for a symmetrical laminate. From the
equideformability hypothesis [6] of the laminate, one can conclude that

⎧
⎨

⎩

Nx

Ny

Nxy

⎫
⎬

⎭=
⎡

⎣
A11 A12 A16
A12 A22 A26
A16 A26 A66

⎤

⎦

⎧
⎨

⎩

εx

εy

εxy

⎫
⎬

⎭ (4.2)

Inverting (4.2) we obtain
⎧
⎨

⎩

εx

εy

εxy

⎫
⎬

⎭=
⎡

⎣
a′

11 a′
12 a′

16
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26
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26 a′
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⎤

⎦

⎧
⎨

⎩

Nx

Ny

Nxy

⎫
⎬

⎭ (4.3)

Note that the shear-extension coupling terms A16 and A26 in (4.2) vanish for the
[±θm/90n]s family of composites, and the term a′

11 in (4.3) includes the shear effect
due to layer stiffness transformation. The terms a′

16 and a′
26 are also zero in this case.

The effective longitudinal modulus Eeff [7] can then be calculated from (4.3) as

Eeff = 1

a′
11 t

. (4.4)

For structures having a wall thickness smaller than the beam dimension, the rigidity
of the beam is minimally dependent on the local rigidity of the wall. This fact has
been used to simplify the modeling by several researchers. Estivalezes and Barrau
[8] mentioned that for the thin-walled cross section with respect to other dimensions
of the beam, the local rigidities can be neglected; i.e., the thin-walled beam can be
analyzed by using only the extensional stiffness matrix. Recently, Ferrero [6] used
the constitutive relation based on the extensional stiffness matrix on the basis of the
equideformability hypothesis of the laminate. Hence, the effective modulus Eeff can
be used for axial as well as flexural problems without loss of material characteristics
that affect the structural behavior of the member.

4.1.2 Matrix Crack Model ([±θm/90n] Family of Composites)

The damage model used in this chapter is a matrix crack model for cross-ply lami-
nates. This model is developed based on the Nuismer and Tan [9] study for matrix
cracking in the [±θm/90n] family of composites. The identification of an appropri-
ate damage model is a crucial step in the development of the model-based structural
health monitoring (SHM) system. The model should be as simple as possible, but
should still capture the basic physics of the problem accurately. Typically, a thor-
ough search of the literature should be conducted and the appropriate damage model
should be selected. In some cases no usable model may be available, and a damage
model may need to be developed for SHM. In many cases, damage models devel-
oped to model the intricate physics of the problem using micromechanics, atom-
istic, and multiscale approaches may be too computationally intensive to be used
for model-based SHM.
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Fig. 4.1 A hollow circular cantilever beam showing small cross section of wall, composite lami-
nate containing a cracked ply

Fig. 4.2 One-quarter of the
composite laminate unit cell

To understand the damage modeling, consider a composite beam subjected to
a general in-plane loading σ̄x , σ̄y , τ̄xy and containing a cracked central lamina, as
shown in Fig. 4.1. The center layer consists of a 90°-ply group and top and bottom
layers of a ±θ°-ply group. Matrix cracks are assumed to exist in the 90°-ply group
with a uniform crack spacing of 2 s. Further, for symmetry reasons, only one quarter
of the repeating interval of the laminate is modeled. The modeled portion of length
s is divided into two sub-laminates, as shown in Fig. 4.2. In this figure, sub-laminate
1 denotes the 90°-ply group and sub-laminate 2 denotes the ±θ°-ply group.

The key to this approach lies in defining average properties across the lamina
thickness:
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(X̄)(i) = 1

h(i)

∫

h(i)

(X)(i) dz, (4.5)

where a bar (X̄) is used to designate the through-the-thickness average of a particu-
lar variable X and the superscript (i) denotes sub-laminate 1 or 2.

One more assumption is that there is a simple linear variation in the out-of-plane
shear stresses across the lamina thickness. Careful investigation of the governing
equations in Nuismer and Tan [9] reveals that the solution for the in-plane normal
response of the laminate decouples from the solution for the in-plane shear response
due to the assumed orthotropy of the laminas. Therefore, each response is consid-
ered separately.

The reduced laminate stiffness matrix, having the effect of matrix cracking in 90°
plies, is given as

Ā =
⎡

⎣
Ā11 Ā12 0
Ā12 Ā22 0

0 0 Ā66

⎤

⎦ , (4.6)

where the terms of the above matrix can be written as

Ā11 = h(1)Q̄
(1)
11 + h(2)Q̄

(2)
11

β2h̄
, (4.7)

Ā12 = β1h
(1)Q̄

(1)
12 + β2h

(2)Q̄
(2)
12

β2h̄
, (4.8)

Ā22 = h(1)Q̄
(1)
22 + h(2)Q̄

(2)
22

h̄
−
(

β2 − β1

β2

)
h(1)

h̄

Q̄
(1) 2
12

Q̄
(1)
11

, (4.9)

Ā66 = h(1)Q̄
(1)
66 + h(2)Q̄

(2)
66

β4h̄
, (4.10)

and the values of β1, β2, and β4 are

β1 = 1 − tanhα1s

α1s
, (4.11)

β2 = 1 + h(1)Q
(1)
11

h(2)Q
(2)
11

· tanhα1s

α1s
, (4.12)

β4 = 1 + h(1)Q
(1)
66

h(2)Q
(2)
66

· tanhα2s

α2s
, (4.13)

and where the values of α1 and α2 are

α2
1 = 3Q

(1)
55 Q

(2)
55

h(1)Q
(2)
55 + h(2)Q

(1)
55

(
h(1)Q

(1)
11 + h(2)Q

(2)
11

h(1)h(2)Q
(1)
11 Q

(2)
11

)
, (4.14)



72 4 Structural Health Monitoring of Composite Tubes

α2
2 = 3Q

(1)
44 Q

(2)
44

h(1)Q
(2)
44 + h(2)Q

(1)
44

(
h(1)Q

(1)
66 + h(2)Q

(2)
66

h(1)h(2)Q
(1)
66 Q

(2)
66

)
. (4.15)

Ā is obtained by averaging both the sub-laminates to account for the effect of ma-
trix cracking. Therefore, Ā is the reduced stiffness matrix for the whole laminate.
Hence, the extensional stiffness matrix, having the effect of matrix cracking, can be
obtained directly as

A = tĀ. (4.16)

This matrix crack model is valid only for the [±θm/90n]s family of composites
with matrix cracking in 90° laminates. The model is simple and easy to apply for
preliminary investigations on the effect of matrix cracking on composite structure
stiffness. The model is also limited to composite structure theories using the A ma-
trix. Some thin-walled beam theories for aerospace structures use the A matrix only,
and the model discussed above is applicable to such problems. Thus, we now have
a model of the undamaged composite tube and a way of simulating matrix cracks in
the composite tube. Numerical experiments for the undamaged and damaged com-
posite tube can now be performed, and these experiments will allow us to perform
model-based diagnostics.

A sample MATLAB code for calculating the effective Young’s modulus for a given
matrix crack density (refer to (4.4)) is given in file “matrix_cracking_code.m”.

4.2 Modal Analysis

Computational modal analysis is performed for the composite tube. The tube length
is 18 m and the outer diameter of the circular cross section is 600 mm. These prop-
erties are taken from Polyzois et al. [7], and this structure was selected since results
to validate the analysis of the undamaged composite tube (without matrix cracks)
are also given by Polyzois et al. [7]. Furthermore, the structure is a realistic physical
structure representing a long composite pole of the kind used for electrical trans-
mission wires. Material properties corresponding to glass epoxy are E1 = 48 Gpa,
E2 = 13.30 Gpa, ν12 = 0.235, and G12 = 5.17 Gpa, where 1 denotes the fiber direc-
tion and 2 denotes the transverse direction. The material density ρ = 1.94 gm/cm3,
and the wall contains 50 plies, where each ply is 0.22 mm thick. The total thickness
of the beam wall cross section is 11 mm. We can see that the thickness of the beam
wall of 11 mm is much less than the diameter of the cross section of 600 mm. This is
a typical thin-walled structure which makes very good use of the material for giving
desired stiffness and strength properties.

The baseline undamaged finite element model converges at eight number of el-
ements for the undamaged structure. The natural frequencies of the fundamental
mode are compared with the frequencies of the Polyzois et al. [7] model of com-
posite beam with hollow circular cross section computed for various θ values of
[±θ ]25 composite (see Table 4.1). Polyzois et al. [7] validated this beam model by
comparing the natural frequency of the fundamental mode obtained by 3D shell
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Table 4.1 For the typical [±θm]25 family of composites, comparison of fundamental frequencies
(rad/sec) for undamaged structure

±θ 0° 5° 10° 15° 20° 25° 30° 35° 40° 45°

Present ωp 11.45 11.37 11.12 10.71 10.14 9.42 8.62 7.83 7.12 6.58

Polyzois et al. ωl 11.35 11.28 11.04 10.63 10.06 9.35 8.55 7.76 7.07 6.53

Comparison (ωp−ωl)×100
ωl

% 0.88 0.80 0.72 0.75 0.79 0.75 0.82 0.90 0.71 0.77

Table 4.2 For a typical [±θm/90n]s family of composites, effective modulus (GPa) and funda-
mental frequencies (rad/sec) for undamaged structure

n θ

0° 30° 60°

Eeff ω Eeff ω Eeff ω

5 41.208 10.610 26.161 8.453 13.306 6.029

9 35.675 9.872 24.210 8.132 13.509 6.075

17 24.514 8.183 19.118 7.226 13.574 6.089

element analysis of the beam using the ANSYS finite element program. Our predic-
tions match those of Polyzois et al. [7] within 0.71–0.9%. Therefore, the baseline
model for the undamaged composite pole is validated.

Results are first obtained for a uniform pole with matrix cracks. The effects of
matrix cracking in the effective matrix are included by substituting the matrix A
from (4.16). For the typical [±θm/90n]s family of composites, the effective elastic
modulus and fundamental frequencies for the undamaged structure at θ = 0, 30,
60 and n = 5, 9, 17 are shown in Table 4.2. The stiffness decreases with an in-
crease in constraining angle θ and the number of 90° plies (n). Figure 4.3 shows
the variation in effective modulus and frequency delta (change between damaged
and undamaged frequency) due to an increase in crack density for several θ and n

combinations.
The crack density is varied from 0–50 cracks/10 cm. From these plots it is ob-

served that the variation of fundamental frequencies is dependent on the crack den-
sity, the number of 90° plies, and also the angle of the constraining layer (θ ). Using
these plots, the range of crack density for each damage level is decided. This type
of parametric study done for a structure gives a clear idea about how the damage
indicator is related to the damage. In the absence of experimental data, the trends
obtained by the parametric study can be used to evaluate the mathematical model us-
ing physical reasoning. For the given huge composite transmission pole, performing
experiments on the structure would be difficult and expensive.

Next, results are obtained for a nonuniform beam with ten segments, each of
length 10% of the beam length. The nonuniformity is in the stiffness along the
beam length. Each segment contains two finite elements and the tube is modeled
using 20 finite elements. Matrix crack is assumed to accumulate individually in
each segment; i.e., we are considering localized matrix cracking. By considering
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Fig. 4.3 Effect of number of cracks on percentage change in effective modulus (�Eeff) and per-
centage change in fundamental frequency (�ω) for [±θm/90n]s composites at θ = 0, 30, 60, and
n = 5, 9, 17

damage in each segment, the change in frequency for the first eight modes as
�ω1,�ω2, . . . ,�ω8 is obtained. In this way, the measurement deltas (�ωfem) are
obtained for 31 rules of the genetic fuzzy system. The effect on the first four modes
of frequencies of various crack densities and at various matrix cracking locations for
[016/909]s , [±308/909]s , and [±608/909]s composite structures are shown in sur-
face plots of variation of change in frequency (�ω) with respect to damage location
and crack density (see Fig. 4.4).
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Fig. 4.4 Effect of number of cracks at various locations on percentage change in frequencies for
[±θ8/909]s composite (number of cracks/10 cm along X-direction and crack location (m) along
Y direction)

A sample MATLAB code for calculating change in frequencies at different crack
densities is given in file “frequency_calculation_code.m”, for which the input file is
“model2.inp” and the output file is “model2.out”.

4.3 Damage Detection in Composite Structure

In the previous chapter, the genetic fuzzy system was demonstrated for damage
detection in beam-type structures. However, the damage was modeled as a decrease
in stiffness at the damage location, which is typically done for isotropic structures.
In this section, a genetic fuzzy system is developed for the thin-walled composite
tube by directly relating the internal state of the composite structure in the form of
matrix crack density to the measurement deltas.

4.3.1 Development of Genetic Fuzzy System

In this section, we formulate the genetic fuzzy system (GFS) for the detection of
crack density and location of cracks for a composite tube. Inputs to the GFS are
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measurement deltas; outputs are matrix crack density and locations of cracks. The
objective is to find the mapping between the measurement deltas and the ten loca-
tions of matrix cracking. Numerical simulation of the measurement deltas (change
in frequencies) for the composite tube is explained in Sect. 4.2.

In this fuzzy system, the matrix crack location is expressed in words. For ex-
ample, the location of matrix cracking “L10” ranges from 0% to 10% of the beam
from the fixed end, “L20” from 10% to 20%, and so on up to “L100” from 90% to
100%. There are ten damage locations along the tube. Recall that the tube is 18 m
long, meaning that each damage location is 1.8 m in length. Matrix cracks are often
initiated by low velocity impact [10], which can occur on such composite tubes.
To get a degree of resolution of the extent of matrix cracking, each of these matrix
cracking locations is allowed several levels of damage and is split into linguistic
variables. These classifications are based on the numerical results obtained for ma-
trix cracking. From the plots of change in frequency and matrix crack density shown
in Fig. 4.4, the matrix crack density can be broadly classified as “Undamaged” for
zero crack density, “Slight damage” for 1–5 crack density, “Moderate damage” for
5–10 crack density, “Severe damage” for 10–20 crack density, and “Very severe
damage” for crack density more than 20. Crack density in this chapter refers to the
number of cracks per 10 cm. Note that the crack densities selected here are for the
composite tube and will change for different structures.

The measurement deltas �ω1,�ω2, . . . ,�ω8 are also treated as fuzzy variables.
These are the changes in the first eight natural frequencies of the structure relative
to the undamaged baseline condition. Fuzzy sets with Gaussian membership func-
tions are used to define these input variables. A change in frequency (measurement
delta) is calculated by finite element simulation for a combination of ten different
locations and four different levels of damage (Undamaged, Slight Damage, Mod-
erate Damage, and Severe Damage). Crack densities greater than 20 represent very
severe damage and are excluded.

Rules for the fuzzy system are obtained by fuzzification of the numerical
values obtained from finite element analysis. The fuzzy sets corresponding to
�ω1,�ω2, . . . ,�ω8 are generated by taking the �ω’s obtained by the finite ele-
ment solution as midpoints of the membership function corresponding to a location
of matrix cracking and damage level. This strategy for selecting the midpoint en-
sures that the maximum degree of membership (μ = 1) for each fuzzy set occurs at
the values of �ω since the Gaussian function is highest at the midpoint. The stan-
dard deviation of the Gaussian membership functions are calculated using a genetic
algorithm for maximization of the success rate.

In this way, the “Undamaged” level of damage is represented by one rule and the
three damage levels “Slight,” “Moderate,” and “Severe” at ten locations are repre-
sented by a total of ten rules each. Therefore, the complete matrix crack detection
system can be represented by 31 rules. For example “Slight” damage at the 0–10%
part of the beam can be written as “Slight L10.” Rules of the GFS along with mid-
points and standard deviations of its Gaussian membership functions for [016/909]s
composite are given in Table 4.3. Rules for all other cases are formulated in a simi-
lar manner by solving the optimization problem. Once the GFS is developed, it can
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Table 4.3 Midpoints and standard deviations for different rules for typical [016/909]s family of
composites

R.N. �ω1 �ω2 �ω3 �ω4 �ω5 �ω6 �ω7 �ω8

1 0.00 (0.33) 0.00 (0.34) 0.00 (0.32) 0.00 (0.35) 0.00 (0.31) 0.00 (0.32) 0.00 (0.31) 0.00 (0.33)

2 1.11 (0.34) 1.06 (0.33) 1.02 (0.34) 0.99 (0.33) 0.96 (0.32) 0.94 (0.31) 0.92 (0.34) 0.92 (0.34)

3 1.03 (0.30) 0.85 (0.32) 0.80 (0.33) 0.82 (0.34) 0.88 (0.30) 0.93 (0.33) 0.94 (0.34) 0.92 (0.34)

4 0.96(0.32) 0.79 (0.30) 0.88 (0.31) 0.94 (0.31) 0.87 (0.32) 0.81 (0.31) 0.88 (0.32) 0.96 (0.31)

5 0.90 (0.34) 0.85 (0.34) 0.94 (0.33) 0.82 (0.34) 0.87 (0.32) 0.96 (0.35) 0.85 (0.34) 0.87 (0.31)

6 0.86 (0.30) 0.93 (0.30) 0.84 (0.34) 0.88 (0.33) 0.93 (0.31) 0.82 (0.30) 0.96 (0.33) 0.84 (0.30)

7 0.82 (0.31) 0.97 (0.32) 0.80 (0.31) 0.95 (0.30) 0.82 (0.31) 0.94 (0.31) 0.86 (0.33) 0.93 (0.34)

8 0.81 (0.31) 0.94 (0.34) 0.92 (0.34) 0.81 (0.34) 0.96 (0.32) 0.86 (0.33) 0.86 (0.30) 0.96 (0.31)

9 0.79 (0.31) 0.87 (0.32) 0.98 (0.30) 0.91 (0.32) 0.81 (0.31) 0.89 (0.33) 0.96 (0.33) 0.87(0.31)

10 0.79 (0.33) 0.81 (0.30) 0.89 (0.33) 0.97 (0.33) 0.98 (0.34) 0.91 (0.31) 0.84 (0.32) 0.84 (0.32)

11 0.79 (0.33) 0.79 (0.31) 0.80 (0.30) 0.82 (0.32) 0.85 (0.31) 0.89 (0.34) 0.93 (0.32) 0.96 (0.34)

12 2.13 (0.34) 2.03 (0.31) 1.95 (0.33) 1.89 (0.35) 1.84 (0.31) 1.79 (0.33) 1.77 (0.33) 1.75 (0.35)

13 1.97 (0.34) 1.63 (0.32) 1.53 (0.30) 1.58 (0.31) 1.69 (0.33) 1.78 (0.30) 1.80 (0.30) 1.75 (0.32)

14 1.83 (0.33) 1.52 (0.34) 1.68 (0.33) 1.80 (0.32) 1.67 (0.34) 1.56 (0.32) 1.68 (0.31) 1.84 (0.32)

15 1.72 (0.34) 1.62 (0.31) 1.80 (0.31) 1.57 (0.31) 1.66 (0.33) 1.84 (0.30) 1.62 (0.30) 1.67 (0.33)

16 1.64 (0.31) 1.78 (0.34) 1.61 (0.30) 1.68 (0.33) 1.77 (0.32) 1.58 (0.31) 1.84 (0.31) 1.61 (0.30)

17 1.58 (0.32) 1.86 (0.34) 1.54 (0.32) 1.82 (0.32) 1.58 (0.31) 1.79 (0.33) 1.64 (0.34) 1.77 (0.31)

18 1.55 (0.35) 1.80 (0.31) 1.77 (0.31) 1.54 (0.30) 1.83 (0.32) 1.64 (0.32) 1.66 (0.34) 1.84 (0.32)

19 1.53 (0.33) 1.67 (0.34) 1.89 (0.34) 1.74 (0.31) 1.54 (0.32) 1.71 (0.33) 1.84 (0.34) 1.67 (0.31)

20 1.52 (0.30) 1.56 (0.32) 1.70 (0.34) 1.85 (0.30) 1.88 (0.31) 1.75 (0.31) 1.61 (0.33) 1.61 (0.31)

21 1.52 (0.30) 1.52 (0.33) 1.53 (0.34) 1.57 (0.30) 1.62 (0.30) 1.70 (0.33) 1.77 (0.31) 1.84 (0.31)

22 3.67 (0.32) 3.50 (0.34) 3.36 (0.31) 3.25 (0.34) 3.16 (0.32) 3.10 (0.34) 3.06 (0.31) 3.04 (0.31)

23 3.40 (0.33) 2.83 (0.34) 2.65 (0.33) 2.73 (0.33) 2.92 (0.30) 3.08 (0.32) 3.10 (0.34) 3.02 (0.30)

24 3.17 (0.32) 2.64 (0.31) 2.91 (0.30) 3.11 (0.31) 2.89 (0.30) 2.70 (0.33) 2.90 (0.34) 3.17 (0.31)

25 2.98 (0.32) 2.81 (0.32) 3.10 (0.31) 2.72 (0.31) 2.87 (0.34) 3.18 (0.32) 2.82 (0.30) 2.89 (0.33)

26 2.84 (0.30) 3.08 (0.32) 2.80 (0.30) 2.90 (0.32) 3.07 (0.30) 2.73 (0.34) 3.18 (0.32) 2.79 (0.33)

27 2.74 (0.30) 3.21 (0.33) 2.67 (0.32) 3.14 (0.34) 2.73 (0.31) 3.10 (0.34) 2.83 (0.31) 3.06 (0.31)

28 2.68 (0.30) 3.11 (0.30) 3.06 (0.33) 2.68 (0.33) 3.16 (0.32) 2.84 (0.32) 2.88 (0.34) 3.17 (0.34)

29 2.65 (0.33) 2.89 (0.34) 3.26 (0.34) 3.01 (0.30) 2.68 (0.30) 2.96 (0.30) 3.17 (0.34) 2.89 (0.33)

30 2.64 (0.31) 2.70 (0.31) 2.94 (0.30) 3.20 (0.32) 3.24 (0.30) 3.02 (0.34) 2.79 (0.33) 2.79 (0.30)

31 2.63 (0.32) 2.64 (0.32) 2.66 (0.33) 2.72 (0.33) 2.82 (0.31) 2.94 (0.32) 3.07 (0.33) 3.18 (0.31)

Rules are defined as given in Table 4.4

Quantities in parentheses represent standard deviation

detect and isolate faults from measured frequencies. We can note that the rules are
very complicated and would be difficult to develop manually.

A sample MATLAB code for training the GFS is given in file “Training_code_for_
GFS.m”, for which the input file is “model2.inp” and the output file is “model2.out”.
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4.3.2 Testing of Genetic Fuzzy System

The GFS for detecting crack density and location of matrix cracking is tested for a
range of constraining angles and numbers of 90° plies. Two cases are discussed in
detail, and the results of the other cases are summarized.

1. Constraining angle (θ ) for [±θ8/909]s family of composites.
2. Number of 90° plies (n) for [±30m/90n]s family of composites.

The above cases are selected to study the effect of the constraining angle (θ ) and
the effect of various numbers of 90° plies (n) or the effect of the depth of the matrix
crack on the matrix crack density and location prediction.

In the first case, the success rate is calculated for a constraining angle θ of 0, 30,
and 60 degrees for the [±θ8/909]s family of composites. Success rates for these
composites for noise levels of 0.05 (below training noise level), 0.1 (training noise
level), and 0.15 (above training noise level) are shown in Table 4.4. From this ta-
ble, it is seen that for all the three layups the success rate is 100% for a noise level
of 0.05. As the noise level increases, the quality of the measurement data starts
deteriorating and data for one rule can become identified with another; hence, the
success rate decreases. For the [±608/909]s composite, the rules are well sepa-
rated and therefore the success rate is 100% even for a noise level of 0.15. For
the [016/909]s and [±308/909]s composites some of the rules become confused for
noise levels of 0.1 and 0.15. It is also observed that the success rate is less than 95%
only for rules 2 to 11 (slight damage level). The reasons for this can be observed
from Fig. 4.3, which shows a greater variation in stiffness, and therefore frequen-
cies, for the θ = 60° plies than for the θ = 0° and θ = 30° plies. The θ = 0° plies
show the least variation in stiffness and therefore the lowest average success rate
of 89.4%. The important point here is the 100% success rate for all cases when the
noise level is 0.05, which is representative of good data. For a noise level of 0.1, the
average success rate lies between 97–100%, which is also very good. For a noise
level of 0.15, which is low quality data, the average success rate is 89–100%. For
moderate and severe damage levels, the success rate of damage detection is very
good for this system.

In the second case, the success rate is calculated for various numbers of 90° plies
(n) for the[±30m/90n]s family of composites. The success rates for this case at
noise levels of 0.05, 0.1, and 0.15 are shown in Table 4.5. It is observed that the
success rate is 100% for 17 90° plies. Also, for nine 90° plies, the success rate for
all rules is more than 99%, and the average success rate is up to 99.88%. For five
90° plies, the success rate at noise level 0.05 is about 90% for undamaged and slight
damage level rules (rule 2 to rule 11), and the success rate is more than 99% for the
two other levels of damage. However, for low numbers of the 90° plies, the success
rate is not good for slight damage at high noise levels. Observing Fig. 4.3, we can
see the reasons behind the behavior of the fuzzy system. As the number of 90° plies
decreases, the variation and magnitude of the change in stiffness, and therefore the
frequency, decreases. Therefore, the rules show more confusion.
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Table 4.4 For the typical [±θ8/909]s family of composites, success rate at various noise levels
and for various constraining angles

No. Rule θ

0° 30° 60°

SR0.05 SR0.1 SR0.15 SR0.05 SR0.1 SR0.15 SR0.05 SR0.1 SR0.15

1 Undamaged 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

2 Slight L10 100.00 100.00 97.50 100.00 100.00 100.00 100.00 100.00 100.00

3 Slight L20 100.00 92.90 71.70 100.00 99.80 90.40 100.00 100.00 100.00

4 Slight L30 100.00 91.10 63.90 100.00 99.70 87.80 100.00 100.00 100.00

5 Slight L40 100.00 89.90 61.20 100.00 99.50 82.20 100.00 100.00 100.00

6 Slight L50 100.00 84.00 53.20 100.00 98.80 82.30 100.00 100.00 100.00

7 Slight L60 100.00 93.60 65.80 100.00 99.80 89.50 100.00 100.00 100.00

8 Slight L70 100.00 90.60 66.80 100.00 99.10 87.10 100.00 100.00 100.00

9 Slight L80 100.00 88.90 65.20 100.00 99.70 88.50 100.00 100.00 100.00

10 Slight L90 100.00 93.70 74.10 100.00 100.00 90.30 100.00 100.00 100.00

11 Slight L100 100.00 91.80 68.00 100.00 99.90 89.50 100.00 100.00 100.00

12 Moderate L10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

13 Moderate L20 100.00 100.00 98.60 100.00 100.00 100.00 100.00 100.00 100.00

14 Moderate L30 100.00 100.00 99.00 100.00 100.00 99.80 100.00 100.00 100.00

15 Moderate L40 100.00 100.00 97.10 100.00 100.00 99.40 100.00 100.00 100.00

16 Moderate L50 100.00 100.00 95.80 100.00 100.00 98.50 100.00 100.00 100.00

17 Moderate L60 100.00 100.00 99.20 100.00 100.00 99.90 100.00 100.00 100.00

18 Moderate L70 100.00 100.00 98.20 100.00 100.00 99.30 100.00 100.00 100.00

19 Moderate L80 100.00 100.00 98.30 100.00 100.00 100.00 100.00 100.00 100.00

20 Moderate L90 100.00 100.00 99.30 100.00 100.00 100.00 100.00 100.00 100.00

21 Moderate L100 100.00 100.00 98.50 100.00 100.00 100.00 100.00 100.00 100.00

22 Severe L10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

23 Severe L20 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

24 Severe L30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

25 Severe L40 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

26 Severe L50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

27 Severe L60 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

28 Severe L70 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

29 Severe L80 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

30 Severe L90 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

31 Severe L100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Avg SR 100.00 97.31 89.40 100.00 99.88 96.27 100.00 100.00 100.00

An important point to note from these results is the 100% correct classification
of the “Undamaged” condition. It is very important for a diagnostic system not to
give false positives, which is when a damage is indicated by the system when none
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Table 4.5 For the typical [±30n/909]s family of composites, success rate at various noise levels
and various numbers of 90° plies

No. Rule n

5 9 17

SR0.05 SR0.1 SR0.15 SR0.05 SR0.1 SR0.15 SR0.05 SR0.1 SR0.15

1 Undamaged 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

2 Slight L10 100.00 87.00 67.60 100.00 100.00 100.00 100.00 100.00 100.00

3 Slight L20 94.60 51.30 36.40 100.00 99.80 90.40 100.00 100.00 100.00

4 Slight L30 89.80 43.80 24.20 100.00 99.70 87.80 100.00 100.00 100.00

5 Slight L40 87.60 39.40 27.70 100.00 99.50 82.20 100.00 100.00 100.00

6 Slight L50 86.30 38.30 26.00 100.00 98.80 82.30 100.00 100.00 100.00

7 Slight L60 92.00 52.00 33.70 100.00 99.80 89.50 100.00 100.00 100.00

8 Slight L70 89.70 48.70 30.20 100.00 99.10 87.10 100.00 100.00 100.00

9 Slight L80 89.60 46.40 34.90 100.00 99.70 88.50 100.00 100.00 100.00

10 Slight L90 92.80 55.10 37.40 100.00 100.00 90.30 100.00 100.00 100.00

11 Slight L100 91.00 43.20 29.00 100.00 99.90 89.50 100.00 100.00 100.00

12 Moderate L10 100.00 100.00 95.90 100.00 100.00 87.10 100.00 100.00 100.00

13 Moderate L20 99.80 84.30 59.90 100.00 100.00 88.50 100.00 100.00 100.00

14 Moderate L30 100.00 84.40 61.50 100.00 100.00 90.30 100.00 100.00 100.00

15 Moderate L40 99.70 68.80 35.80 100.00 100.00 89.50 100.00 100.00 100.00

16 Moderate L50 99.30 66.50 37.30 100.00 100.00 90.30 100.00 100.00 100.00

17 Moderate L60 99.90 86.30 57.40 100.00 100.00 100.00 100.00 100.00 100.00

18 Moderate L70 99.50 81.50 58.50 100.00 100.00 100.00 100.00 100.00 100.00

19 Moderate L80 99.80 87.50 66.40 100.00 100.00 99.80 100.00 100.00 100.00

20 Moderate L90 100.00 85.40 60.60 100.00 100.00 99.40 100.00 100.00 100.00

21 Moderate L100 100.00 85.40 56.70 100.00 100.00 98.50 100.00 100.00 100.00

22 Severe L10 100.00 100.00 100.00 100.00 100.00 99.90 100.00 100.00 100.00

23 Severe L20 100.00 100.00 96.90 100.00 100.00 99.30 100.00 100.00 100.00

24 Severe L30 100.00 99.90 90.30 100.00 100.00 100.00 100.00 100.00 100.00

25 Severe L40 100.00 99.50 85.00 100.00 100.00 100.00 100.00 100.00 100.00

26 Severe L50 100.00 97.10 74.10 100.00 100.00 100.00 100.00 100.00 100.00

27 Severe L60 100.00 99.70 95.70 100.00 100.00 100.00 100.00 100.00 100.00

28 Severe L70 100.00 98.40 89.30 100.00 100.00 100.00 100.00 100.00 100.00

29 Severe L80 100.00 99.70 95.30 100.00 100.00 100.00 100.00 100.00 100.00

30 Severe L90 100.00 100.00 96.60 100.00 100.00 100.00 100.00 100.00 100.00

31 Severe L100 100.00 100.00 96.70 100.00 100.00 100.00 100.00 100.00 100.00

Avg SR 97.31 78.40 63.13 100.00 99.88 94.52 100.00 100.00 100.00

is present. The case of misclassification is of relatively lesser importance than false
positives which can severely damage the credibility of the diagnostic system and
lead to high costs. Also, the GFS serves the function of both fault detection and
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Fig. 4.5 Average success rate and lowest success rate of GFS for various combinations of
[±θm/90n]s family of composites

isolation. If rule 1 is active, there is no damage; if the other rules are active, there is
damage present in the structure.

Finally, we summarize the results of testing the composite beam for damage de-
tection at other combinations of θ and n. Figure 4.5 shows the behavior of the av-
erage success rate and the lowest success rate for the three noise levels and various
combinations of the [±θm/90n]s family of composites. From this figure, the perfor-
mance of the GFS and the reliability zone of this system can be determined. The
performance is best for θ = 60° and n = 17 composites. As n decreases to 5 and θ

decreases to 0°, the performance of correctly locating the damage decreases. How-
ever, as we shall see in the next section, the damage detection accuracy (is a damage
present or not?) and identification capability (how much damage is present?) remain
high.

A sample MATLAB code for testing the GFS is given in file “Testing_code_for_
GFS.m”, for which input files are “rul309.dat” and “tune.dat”, whereas the output
file is “f09_15.dat”.

4.3.3 Analysis of Misclassification

In some cases of highly noisy data, the rules which are not correctly classified lead
to a success rate of less than 100%. If there is a misclassification, it is important
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Fig. 4.6 Damage detection and identification using GFS

to know if the choice is slightly wrong or completely wrong. Thus, if the system
gives a neighboring location of damage, it is much less harmful than if it gives a
distant location. A diagnostic system should gradually deteriorate as data quality
deteriorates; it should not show a sudden fall in performance.

For example, rules 3 to 11 for the [016/909]s composite at a noise level of 0.15
are considered whose success rates are less than 75%, as shown in Table 4.4. In
these cases, more than 25% of the data is distributed in other rules. It is observed
that wrongly classified rules fall in the same level of damage but at the wrong lo-
cation. From Table 4.4, rules 2 to 11 all indicate “Slight” damage level. Therefore,
in terms of damage level detection, the fuzzy system is able to classify all cases of
“Slight” damage level with an accuracy of 100%. The same results are also found in
the cases for “Moderate” and “Severe” damage level. Therefore, the fuzzy system
is robust in terms of indicating the size of the damage even at high levels of noise
in the data, although there can be some error in locating the damage. Figure 4.6
shows a schematic representation of how the fuzzy system can be used for the de-
tection and identification of damage. Note that the accuracy of these functions is
very good (≈100) for the GFS, even for low quality data, while location accuracy
can deteriorate in certain situations [11].

Some MATLAB code illustrating the process of SHM development using the
GFS is given at the end of the book. A detailed description of the code is given in
Appendix.

4.4 Summary

In this chapter, a genetic fuzzy system is developed and demonstrated for struc-
tural damage detection of a thin-walled composite tube. Such thin-walled composite
structures are widely used in applications such as electrical transmission poles. The
damage modeled is matrix cracking, and the damage indicators are the changes in
natural frequencies relative to the undamaged structure. Localized matrix cracking
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is typically initiated in composites by low velocity impact. The genetic fuzzy sys-
tem is developed by maximizing the success rate of damage detection and tuning
the fuzzy sets and rules using genetic algorithms. The genetic fuzzy system pre-
dicts the matrix cracking accurately for reasonable noise levels in the measurement
delta. It should be noted that the damage detection approach in this chapter is devel-
oped using a finite element model and is also tested using simulated data obtained
by adding noise to finite element-based predictions. The algorithm developed in this
chapter provides a new approach toward achieving a user-friendly damage detection
system which provides linguistic and qualitative information from complicated and
noisy numerical data. In the next chapter, the genetic fuzzy system will be used for
online health monitoring of a helicopter rotor using simulated measurements from
an aeroelastic simulation. Both the structural and the damage model complexity will
increase substantially.
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Chapter 5
Structural Health Monitoring of Composite
Helicopter Rotor

The last two chapters have shown the application of the genetic fuzzy system to
beams and tubes made of different materials. While the beam is an important struc-
tural member, the composite tube represents a real structure such as a transmission
pole. In this chapter, we develop the genetic fuzzy system for structural health mon-
itoring (SHM) of a composite helicopter rotor blade. Such a system is deployed for
detecting damage in the composite rotor. Mathematical modeling of the damaged
helicopter rotor is required for developing the rule base for the genetic fuzzy sys-
tem. The mathematical models of composite damage also become quite elaborate, as
we need to simulate the damaged system in real life. Furthermore, modeling of the
helicopter rotor blade requires an aeroelastic analysis, as the highly flexible blades
cause the structure and aerodynamics to be coupled. For example, a damage in the
rotor blade which causes a change in the blade twist will also affect the aerodynamic
loads due to a change in the blade section angle of attack. Therefore, damage affects
the system properties of the helicopter rotor in a complicated and often nonlinear
manner. The case study presented in this chapter is therefore for a complex system
whose modeling (both the undamaged and damaged system) represents a high level
of complexity.

The helicopter rotor blades operate in a highly dynamic and unsteady aerody-
namic environment leading to severe vibratory loads on the rotor system. Repeated
exposure to this severe loading condition can induce damage in the composite rotor
blade. These blades, generally made of fiber reinforced laminated composites, ex-
hibit various competing damage modes such as matrix cracking, delamination, fiber
matrix debonding, fiber breakage, and fiber pull-out.

Generally, as mentioned in the previous chapter, the first damage mode in a com-
posite material is dominated by matrix cracking. The number of cracks increases
monotonically with load or with the number of load cycles until a saturation density
is reached. Due to the interlaminar cracks, separation of the plies locally takes place.
The separation of plies is known as interior delamination, as opposed to the exte-
rior delamination associated with free edges in laminates. The final failure mode is
fiber breakage, which is associated with the ultimate failure of the ply. Under cyclic
loading, the accumulation of damage in the rotor blade follows a systematic pro-
cess. First, the matrix cracks accumulate and then reach saturation after some time.
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Second, the matrix crack saturation is followed by the growth of delamination in the
material. Third, fiber breaks start taking place in the composite structure, leading to
complete failure of the laminate.

5.1 Mathematical Model

Just as in the previous two chapters for beams and composite tubes, development of
an SHM system requires a mathematical model for the undamaged baseline struc-
ture and the different cases of the damaged structure. Such a model allows numer-
ical experiments which simulate the damaged helicopter rotor in flight. Obviously,
it is not feasible to seed various damages in a composite helicopter rotor and con-
duct flight tests due to safety concerns and airworthiness requirements. Modeling is
therefore indispensable for the health monitoring of aerospace structures.

The analysis of the damaged composite rotor blade is explained in three parts.
The first part summarizes the mathematical model of a baseline undamaged he-
licopter rotor system. The second part discusses the composite rotor blade cross-
sectional analysis. The composite cross-sectional properties are included in the
mathematical model of the helicopter rotor system. The third part discusses the
modeling of the key damage modes in composite materials. The damage modeling
is done in a manner such that it can be easily integrated into the composite cross-
sectional model. An outline of the formulation of the forward flight simulation of
the damaged composite rotor blade is now given. This mathematical model is coded
into a computer program which is more than 50,000 lines long. The mathematical
model is based on the finite element method, which is generally the norm in the
analysis of complicated and realistic structures.

5.1.1 Mathematical Model of Helicopter Rotor

The helicopter is represented by a nonlinear model of rotating elastic rotor blades
dynamically coupled to a six-degree-of-freedom rigid fuselage. Each blade under-
goes flap bending, lag bending, elastic twist, and axial displacement. Here, flap
bending is also called out-of-plane bending and lag bending is called in-plane bend-
ing. The elastic twist motion is also called torsion. Governing partial differential
equations for the generalized beam are derived using a generalized Hamilton’s prin-
ciple applicable to non-conservative systems [1]:

∫ ψ2

ψ1

(δU − δT − δW)dψ = 0. (5.1)

δU , δT , and δW are the virtual strain energy, kinetic energy, and virtual work, re-
spectively. The azimuth angle around the rotor disk is denoted as ψ , and ψ1 and ψ2
represent the initial and final values of these angles. The δU and δT include energy
contributions from components that are attached to the blade. These equations are
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Fig. 5.1 Beam finite element used for rotor blade

based on the work of Hodges and Dowell [1] and include second-order geometric
nonlinear terms accounting for moderate blade deflections in the flap bending, lag
bending, axial, and torsion equations. External aerodynamic forces on the blade con-
tribute to the virtual work variational, δW . The aerodynamic forces and moments
are calculated using unsteady aerodynamics [2]. The finite element method is used
to discretize the governing equations of motion, and allows for accurate represen-
tation of complex hub kinematics and nonuniform blade properties [3]. After the
finite element discretization into N elements, Hamilton’s principle is written as

∫ ψf

ψi

N∑

i=1

(δUi − δTi − δWi) dψ = 0. (5.2)

Each of the N beam elements has fifteen degrees of freedom, as shown in
Fig. 5.1.

These degrees of freedom are distributed over five element nodes (two boundary
nodes and three interior nodes). There are six degrees of freedom at each element
boundary node. These six degrees of freedom correspond to u, v, v′, w, w′, and φ̂.
There are two internal nodes for axial deflection u and one internal node for elas-
tic twist φ̂. There is continuity of displacements and slope for flap (w) and lag
(v) bending deflections between elements. Also, there is inter-element continuity of
displacement for elastic twist and axial deflections. These elements ensure physi-
cally consistent linear variations of bending moments and torsional moment, and
quadratic variation of axial force within each element. Using the interpolating poly-
nomials, the distribution of deflections over a beam element is expressed in terms of
the elemental nodal displacements qi . The shape functions used are Hermite poly-
nomials for lag and flap bending, and Lagrange polynomials for axial and torsion
deflection [4]. For the ith beam element, the elemental nodal displacement vector is
defined as

qT
i = [u1, u2, u3, u4, v1, v

′
1, v2, v

′
2,w1,w

′
1,w2,w

′
2, φ̂1, φ̂2, φ̂3]. (5.3)



88 5 Structural Health Monitoring of Composite Helicopter Rotor

Assembling the blade finite element equations and applying boundary conditions
results in (5.2) becoming [3, 5]

Mq̈(ψ) + Cq̇(ψ) + Kq(ψ) = F(q, q̇,ψ). (5.4)

Here M, C, and K represent the mass, damping, and stiffness matrices for the rotor
blade and F is the force vector. The nodal displacements q are functions of time,
and all nonlinear terms have been moved into the force vector on the right-hand
side. The spatial functionality has been removed by using finite element discretiza-
tion, and partial differential equations have been converted into ordinary differential
equations (ODEs).

The finite element equations representing each rotor blade are transformed to
normal mode space for efficient solution of blade response using the modal expan-
sion. Typically, structural dynamic systems with a very large number of degrees of
freedom can be often represented by using the first few normal modes, resulting in
greatly enhanced computational efficiency. Typically, six to ten modes are found to
be sufficient for capturing the helicopter dynamics. The displacements are expressed
in terms of normal modes as

q = Φp. (5.5)

Here, p is the vector of modal coordinates and Φ contains the eigenvectors corre-
sponding to free vibration of the rotor blade. Substituting (5.5) into (5.4) lead to
normal mode equations having the form

M̄p̈(ψ) + C̄ṗ(ψ) + K̄p(ψ) = F̄(p, ṗ,ψ). (5.6)

These equations are nonlinear ODEs, but their dimensions are much reduced com-
pared to the full finite element equations (5.4). The normal mode mass, stiffness,
and damping matrices and force vectors are given by

M̄ = ΦT MΦ, C̄ = ΦT CΦ, K̄ = ΦT KΦ, F̄ = ΦT F. (5.7)

The mode shapes or eigenvectors in (5.5) and (5.7) are obtained by solving the
general eigenvalue problem [3]

KsΦ = ω2MsΦ. (5.8)

Here, Ks and Ms represent the global stiffness and mass matrices for free vibration
of the rotor blade, and ω represents the rotating frequencies of the blade. Note that
rotating blades have a frequency which includes the effect of centrifugal stiffening,
and so their frequencies are greater than those of non-rotating blades. In fact, non-
rotating blades are well modeled as beams, as was done in Chap. 3 for the BO105
rotor blade with only the flapwise mode.

The blade normal mode equations (5.6) can be written in the following variational
form [7]:

∫ 2π

0
δpT (M̄p̈ + C̄ṗ + K̄p − F̄) dψ = 0. (5.9)
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Integrating (5.9) by parts, we obtain [7]
∫ 2π

0

{
δp
δṗ

}{
F̄ − C̄ṗ − K̄p

M̄ṗ

}
dψ =

{
δp
δṗ

}{
Mṗ

0

}∣∣∣∣
2π

0
. (5.10)

Since the helicopter rotor is a periodic system with a time period of one rev-
olution, we have ṗ(0) = ṗ(2π). Imposing periodic boundary conditions on (5.10)
results in the right-hand side becoming zero and yields the following system of first-
order ODEs [7]:

∫ 2π

0
δyT Qdψ = 0, (5.11)

where

y =
{

p
ṗ

}
, Q =

{
F̄ − C̄ṗ − K̄p

M̄ṗ

}
. (5.12)

The nonlinear, periodic ODEs are then solved for blade steady response using the
finite element in time method and a Newton–Raphson procedure [7]. Discretizing
(5.12) over Nt time elements around the rotor disk (where ψ1 = 0,ψNt+1 = 2π ) and
taking a first-order Taylor series expansion about the steady-state value yo = [pT

o ṗT
o ]

yields algebraic equations [7]

Ni∑

i=1

∫ ψi+1

ψi

δyT
i Qi(yo + �y) dψ

=
Ni∑

i=1

∫ ψi+1

ψi

δyT
i

[
Qi(yo) + Kti(yo)�y

]
dψ = 0, (5.13)

where the tangential stiffness matrix is given by

Kt i =
[

∂F̄
∂P

− K̄ ∂F̄

∂Ṗ
− C̄

0 M̄

]

i

. (5.14)

For the ith time element, the modal displacement vector can be written as

pi (ψ) = H(s)ξi, (5.15)

where H(s) are time shape functions which are fifth-order Lagrange polynomials
[7] used for approximating the normal mode coordinate p. For a fifth-order polyno-
mial, six nodes are needed to describe the variation of p within the element. Con-
tinuity of generalized displacements is assumed between the time elements. Substi-
tuting (5.15) and its derivative into (5.14) yields the time-discretized blade response
[7]

QG + Ki
G�ξG = 0, (5.16)

where
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QG =
Ni∑

i=1

∫ ψi+1

ψi

HT Qi dψ, (5.17)

KG
t =

Nt∑

i=1

∫ ψi+1

ψ

HT

[
∂F̄
∂P

− K̄ ∂F̄

∂Ṗ
− C̄

M̄

]

i

dψ,

�ξG =
Nt∑

i=1

�ξi.

(5.18)

Solving the above equations iteratively yields the blade steady response.
Steady and vibratory components of the rotating frame blade loads (i.e., shear

forces and bending/torsion moments) are calculated using the force summation
method. In this approach, blade inertia and aerodynamic forces are integrated di-
rectly over the length of the blade. The blade root loads are given as [5]

⎧
⎨

⎩

FxR

FyR

FzR

⎫
⎬

⎭=
∫ 1

0

⎧
⎨

⎩

Lu

Lv

Lw

⎫
⎬

⎭ dx, (5.19)

⎧
⎨

⎩

MxR

MyR

MzR

⎫
⎬

⎭=
∫ 1

0

⎧
⎨

⎩

−Lvw + Lwv + Mu

Luw − Lwv + Mv

−Luv + Lv(x + u) + Mw

⎫
⎬

⎭ dx. (5.20)

Here Lu, Lv , and Lw represent the blade section forces and Mu, Mv , and Mw repre-
sent the blade section moments. Fixed frame hub loads are calculated by summing
the individual contributions of individual blades [5]:

FH
x (ψ) =

Nb∑

m=1

(
Fm

x cosψm − Fm
y sinψm − βpFm

z cosψm

)
,

FH
y (ψ) =

Nb∑

m=1

(
Fm

x sinψm + Fm
y cosψm − βpFm

z sinψm

)
,

FH
z (ψ) =

Nb∑

m=1

(
Fm

z + βpFm
x

)
,

MH
x (ψ) =

Nb∑

m=1

(
Mm

x cosψm − Mm
y sinψm − βpMm

z cosψm

)
,

MH
y (ψ) =

Nb∑

m=1

(
Mm

x sinψm + Mm
y cosψm − βpMm

z sinψm

)
,

MH
z (ψ) =

Nb∑

m=1

(
Mm

z + βpMm
x

)
.

(5.21)

Here, Nb is the number of rotor blades, βp is the precone angle which is built in to
reduce the flap displacement, and ψm is the azimuth angle for the mth blade. Once
the hub loads are obtained, the helicopter needs to be trimmed. This is defined as
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the condition where the steady forces and moments acting on the helicopter sum to
zero and simulates the condition for steady level flight [6]. The trim solution for the
helicopter involves finding the pilot control angles θ at which the six steady forces
and moments acting on the helicopter are zeros:

F(θ) = 0. (5.22)

Here θ = [θ0 θ1c θ1s αs φsθT ]. The angles θ0, θ1c, θ1s , and θT are the four heli-
copter controls used by the pilot called the collective pitch, lateral cyclic, longitu-
dinal cyclic, and tail rotor collective, respectively. Also, αs and φs are the shaft tilt
and bank angle of the helicopter, respectively.

The trim equations are solved iteratively using a Newton–Raphson procedure [5].
A coupled trim procedure is carried out to solve the blade response, pilot input trim
controls, and vehicle orientation, simultaneously. This procedure is called coupled
trim since the blade response equations (5.16) and trim equations (5.22) are simul-
taneously solved, thereby accounting for the influence of elastic blade deflections
on the rotor steady forces [5, 7]:

�θ = −∂F
∂θ

∣∣∣∣
θ0

(θ − θ0), (5.23)

ξG
i+1 = ξG

i+1 + �ξG
i+1. (5.24)

The coupled trim is solved iteratively until convergence. The coupled trim procedure
is essential for elastically coupled blades since elastic deflections play an important
role in the steady net forces and moments generated by the rotor.

Figure 5.2 shows the flowchart of the aeroelastic analysis. Starting with the input
to the analysis, structural modeling is carried out as the first step.

The governing differential equations thus obtained are space and time depen-
dent. These equations are nonlinear and periodic in nature. These equations are dis-
cretized by using the finite element method in space, and rotating blade natural fre-
quencies and mode shapes are found. The frequency analysis is conducted using lin-
ear equations in a vacuum condition assuming a spinning blade (θ0 = θ1c = θ1s = 0).
Normal mode transformation is done on the full finite element equations to re-
duce the number of degrees of freedom and thus reduce the computational time.
Aerodynamic modeling is the next major step and is done along with the deriva-
tion of the finite element equations. Here the type of aerodynamic model is de-
cided and the governing equations are discretized in time. Thus, both space and
time dependencies are removed, resulting in nonlinear, algebraic equations which
are solved using the Newton–Raphson method. Blade loads and the helicopter
steady loads are calculated, which are in turn required for performing trim cal-
culations. Blade steady state response, vehicle orientation, and trim control an-
gles are solved for iteratively using a coupled trim procedure. The rotor nonlinear
equations are linearized about the trim solution to perform aeromechanical stabil-
ity.
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Fig. 5.2 Organization of aeroelastic analysis

5.1.2 Composite Rotor Blade

The previous section discussed the aeroelastic analysis of a rotor blade. The analy-
sis is general in nature, as it uses the energy approach and different materials can be
considered in the analysis by adjusting the strain energy component in the deriva-
tion. The composite helicopter blade is modeled as a one-dimensional, thin-walled
beam undergoing extension, torsion, flap (out-of-plane), and lag (in-plane) bending
using the Chandra and Chopra [8] model. The Chandra and Chopra [8] thin-walled
composite beam model includes terms due to constrained warping torsion and terms
due to transverse shear. The effects of transverse shear are included by static con-
densation. The restrained warping effect is negligible for a closed section and is
therefore ignored for this work. The stiffness matrix of order (9 × 9) is thus reduced
to a stiffness matrix of order (4 × 4):

⎡

⎢⎢⎣

N

Mx

−My

Ts

⎤

⎥⎥⎦=

⎡

⎢⎢⎣

K ′
11 K ′

12 K ′
13 K ′

15
K ′

22 K ′
23 K ′

25
sym. K ′

33 K ′
35

K ′
55

⎤

⎥⎥⎦=

⎡

⎢⎢⎣

W ′
φ′

y

φ′
x

φ′
z

⎤

⎥⎥⎦ . (5.25)
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The coefficients K ′
ij of the stiffness matrix are obtained by static condensation of

the (9 × 9) stiffness matrix K. The terms in the K matrix depend on the beam cross
section and geometry and are expressed in terms of A, B, and D matrices. Here
EA = K ′

11, EIy = K ′
22, EIz = K ′

33, GJ = K ′
55 are the axial, flap, lag, and torsion

stiffness, respectively. The effects of composite material are included in the forward
flight simulation through the strain energy expression using the cross-sectional stiff-
ness matrix derived in this section. The effects of the key damages in composite
material are included in the forward flight simulation through the cross-sectional
stiffness matrices using the progressive damage accumulation model given in the
next section.

5.1.3 Progressive Damage Accumulation

Matrix cracking, delamination/debonding, and fiber breakage are the key damage
modes in composite materials. These damage modes are modeled at the lamina and
laminate level, as summarized next.

5.1.3.1 Matrix Cracking

The matrix cracking in composite structures is inserted through the extension (A),
extension-bending (B), and bending (D) stiffness matrices. The stiffness matrices
for the presence of matrix cracks A(c), B(c), and D(c) are obtained by subtracting
the damage matrices �A, �B, and �D from the stiffness matrices A, B, and D of
the virgin laminate:

A(c) = A − �A, (5.26)

B(c) = B − �B, (5.27)

D(c) = D − �D. (5.28)

These stiffness matrices reduce with increasing crack density. The dimensionless
crack density ρk for the ply k is defined by

ρk = tk

sk
. (5.29)

Here sk is the average crack spacing and tk is the thickness of ply k. The A, B,
and D matrices are defined in terms of the lamina stiffness for the virgin laminate
and are given by

A =
N∑

k=1

tkQk, (5.30)

B =
N∑

k=1

tkzkQk, (5.31)
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D =
N∑

k=1

tk
[(

zk
)2 + (tk)2

12

]
Qk, (5.32)

where the mid-plane position zk and thickness tk of ply k are introduced as

zk = hk + hk−1

2
and tk = hk − hk−1 (5.33)

and N represents the number of lamina.
Adolfsson and Gudmundson [9] related the strain increment produced by an array

of cracks to the local crack face displacement.
The changes in stiffness matrices can be written as

�A =
N∑

k=1

N∑

l=1

√
tkρkt lρlCkl

EE, (5.34)

�B =
N∑

k=1

N∑

l=1

√
tkρkt lρl

(
zlCkl

EE

)
, (5.35)

�D =
N∑

k=1

N∑

l=1

√
tkρkt lρl

(
zkzlCkl

EE + tkt l

4
Ckl

BB

)
, (5.36)

where the matrix C takes account of the elastic properties and crack orientation
relative to applied stress and can be written as

Ckl
m = Qk

(
Nk
)T

βkl
mNlQl , m = EE,BB, (5.37)

where EE and BB denote pure extension and bending, respectively. The matrix Nk

is defined from the constant unit normal vectors nk for crack surfaces of ply k and
can be written as

Nk =
[

nk
1 0 nk

2
0 nk

2 nk
1

]
. (5.38)

Thus, damage matrices are proportional to the crack density and crack displacement
vector βkm

m . Adolfsson and Gudmundson [9] obtained a crack opening displacement
matrix assuming that the different modes of crack opening displacements and trac-
tions are independent and can be written as

βkl
m =
[

βkl
11(m) 0
0 βkl

22(m)

]
, m = EE,BB. (5.39)

The assumption given above suggests that there will be no coupling between the
crack opening displacements of different plies, hence

βkl = 0 for all k �= l. (5.40)

The components of βkk are derived using the relation between the stress intensity
factors and energy release rate. The β11 components relate to crack face displace-
ment in mode III anti-plane strain. β22 relates to mode I crack opening and can only
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be evaluated numerically by a series expression. The resulting components of the
βkk-matrices are as given below:

βkk
11(EE) = π

2
γ k

1
8

(πρk)2
ln

[
cosh

(
πρk

2

)]
, (5.41)

βkk
22(EE) = π

2
γ k

2

10∑

j=1

aj

(1 + ρk)j
, (5.42)

for the components connected with pure extension (EE) and

βkk
11(BB) = π

16
γ k

2

10∑

j=1

bj

(1 + ρk)j
, (5.43)

βkk
22(BB) = π

16
γ k

2

10∑

j=1

cj

(1 + ρk)j
, (5.44)

for the components which must be added to take bending (BB) into account.
The quantities γ k

1 and γ k
2 are defined from the materials properties of ply k as

γ k
1 = 1

2Gk
LT

, (5.45)

γ k
2 = 1 − μk

LTμk
TL

Ek
T

. (5.46)

The curve fit parameters aj , bj , and cj are given in [9]. The results of the compo-
nents connected to pure extension were obtained from Gudmundson and Zang [10],
and the components required to be added to take bending into account are obtained
from Adolfsson and Gudmundson [9] using the least square fit to the results from
numerical integration.

After a certain crack density, the stiffness becomes saturated at a crack density
known as the saturation crack density (ρ0). However, as damage increases, matrix
cracks may induce more severe damage at the tip of the crack such as debond-
ing/delamination and fiber breakage. The debonding/delamination and fiber break-
age damage models are developed in the next sections. In this mathematical model,
it is assumed that the debonding/delamination will occur after matrix crack satura-
tion and fiber breakage will start after debonding/delamination.

5.1.3.2 Debonding/Delamination

The effect of the debonding/delamination is modeled at the lamina mechanical prop-
erty level. The effect of debonding/delamination induced by matrix cracks on the
effective ply stiffness is estimated based on the continuum damage mechanics ap-
proach. Therefore, the degree of degradation of the mechanical properties in the ply
due to matrix cracking-induced damage is associated with crack density and has the
following form given by Shahid and Chang [11]:
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Ed
xx(ρ) = Exx(ρ), (5.47)

Ed
yy(ρ) = Eyy(ρ)ds, (5.48)

μd
xy(ρ) = μxy(ρ), (5.49)

μd
yx(ρ) = μyx(ρ)ds, (5.50)

Gd
xy(ρ) = Gxy(ρ)ds, (5.51)

where

ds = e−[ε̄yy (ρ)/ε̄yy(ρ0)]η (5.52)

and ρ0 is the crack saturation density of the ply, ε̄yy(ρ0) is the effective transverse
strain of the ply at saturation crack density, and η is the shape parameter dictating the
rate of degradation of the cracked ply due to matrix crack-induced damage. Exx(ρ),
Eyy(ρ), Gxy(ρ), and μxy(ρ) are the effective mechanical properties including the
effect of matrix cracking at crack density ρ. For graphite/epoxy composites, a value
of η greater than or equal to 8 was found appropriate [11]. Here ds is the material
degradation factor due to matrix cracking-induced damage. Since η is constant for a
given material, ds varies with the effective strain ratio (ε̄yy(ρ)/ε̄yy(ρ0)). In general,
the model implies that matrix crack-induced debonding or delamination damage
accumulates with an increase of the crack density.

Values of Exx(ρ), Eyy(ρ), Gxy(ρ), and μxy(ρ) are calculated using a genetic
algorithm (GA) such that the numerical values of An, Bn, and Dn match with
the A(c), B(c), and D(c) matrices obtained from (5.26)–(5.28) for matrix crack
density ρ0. This ensures a smooth transition between matrix crack saturation and
debonding/delamination. The optimization problem can be written in standard form
as follows.

Minimize
√√√√√

3∑

i=1

3∑

j=1

[(
An

ij − A(c)
ij

)2 + (Bn
ij − B(c)

ij

)2 + (Dn
ij − D(c)

ij

)2]
. (5.53)

For design variables

0.5 ≤ Exx(ρ)

E0
xx

; Eyy(ρ)

E0
yy

; Gxy(ρ)

G0
xy

; μxy(ρ)

μ0
xy

≤ 1.

Here An, Bn, and Dn are the stiffness matrices at the nth generation. E0
xx , E0

yy , G0
xy ,

and μ0
xy are the mechanical properties of the virgin lamina. The GA [12] parameters

crossover rate, mutation rate, and population size are selected to be 0.5, 0.01, and 20,
respectively.

Using the mechanics properties, the ply stiffness due to the presence of debond-
ing/delamination can be expressed as

QM
xx(ρ) = rEd

xx(ρ), (5.54)

QM
yy(ρ) = rEd

yy(ρ), (5.55)
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QM
yx(ρ) = rμd

xy(ρ)Ed
xx(ρ), (5.56)

QM
xy(ρ) = rμd

yx(ρ)Ed
xx(ρ), (5.57)

QM
ss (ρ) = Gd

xy(ρ), (5.58)

where

r = [1 − μxy(ρ)μyx(ρ)
]−1

. (5.59)

5.1.3.3 Fiber Breakage

The extreme damage mechanism in composites is fiber breakage because fibers are
the primary load-carrying elements of fiber reinforced composites. Hence, fiber
breakage is linked directly to the final failure of composites. For a unidirectional
composite ply, sparse breaks of individual fibers may not cause the total failure of
the composite. Based on the fiber bundle theory, the effect of the fiber breakage can
be defined as
⎛

⎝
σ̄xx

σ̄yy

σ̄xy

⎞

⎠=
⎛

⎝
QM

xx(ρ) QM
xy(ρ) 0

QM
yx(ρ) QM

yy(ρ) 0
0 0 QM

ss (ρ)

⎞

⎠

⎛

⎝
df 0 0
0 df 0
0 0 df

⎞

⎠

⎛

⎝
ε̄xx

ε̄yy

ε̄xy

⎞

⎠ , (5.60)

where df is the degradation coefficient for fiber breakage, which has the following
form:

df = e−(Af /δ2)β (5.61)

and Af is the extent of fiber failure area over which the stress is equal to or higher
than the average tensile strength of the composite. Here δ is the fiber interaction
length for the unidirectional composite under consideration, and β is associated with
the rate of material degradation due to fiber breakage. Any value of β greater than
or equal to 8 can produce the fiber breakage phenomenon [11]. As β is a constant
for a given material, df varies with area ratio Af /δ2. For typical graphite/epoxy
composites, the fiber interaction zone δ is very small and ranges between 0.002 and
0.007 inches and β is 8.

5.2 Data Reduction

For health monitoring of a composite helicopter rotor, blade response, root loads,
and strains are candidate measurements. However, blade response, root loads, and
strains are functions of the location of sensor, azimuth angle around the rotor disk
(0 ≤ ψ ≤ 2π ), and damage level. It is very difficult to handle these data for all
sensor locations, azimuths, and damage level because of the large amount of data
generated. Therefore, the time location of maximum values of these measurements
or spatial locations at specific intervals are selected for obtaining data at various
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Fig. 5.3 Data reduction using fixed sensor locations and peak-to-peak sensor measurements

damage levels. For a specified sensor location, measurement will depend on azimuth
(ψ ) for a specified damage level. By taking the peak-to-peak value of the total signal
obtained for ψ values between 0 and 360 degrees, the blade system response can
be expressed as one scalar variable which is a function of the damage parameter
only. Comparing the peak-to-peak value between the undamaged and damaged rotor
blade results in a measurement delta which is an indicator of damage. The algorithm
for data handling is shown in Fig. 5.3. D indicates the measurement for the damaged
system, U indicates the measurement for the undamaged system, and cr represents
the damage level.

This step of data reduction is important for the structural health monitoring
(SHM) system. Sensors placed on a structure can quickly give very large amounts
of data. Physical knowledge of the system and experience can be used to identify
strategies for data reduction.

5.3 Life of the Structure

Besides detection and location of damage, one of the most desirable features of
an SHM system is the ability to predict the remaining life of a structure. In this
section, we develop a qualitative approach for predicting the remaining life in the
composite helicopter rotor blade undergoing progressive damage accumulation. The
stiffness degradation of the structure can be correlated to the life of the structure. The
stiffness degradation is transformed as a function of life of the structure based on the
phenomenological theory developed for fatigue life analysis of composite materials
by Mao and Mahadevan [12]:

D = q

(
t

tf

)m1

+ (1 − q)

(
t

tf

)m2

. (5.62)

Here D = E0−E
E0−Ef

, E0 is the initial stiffness (t = 0), Ef is the stiffness at final fail-
ure time tf , and E is the stiffness at any instant of time t . We use the functional
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Fig. 5.4 Fatigue damage
growth curve

relationship given in (5.62) as a curve fit to link the physics-based damage with
the remaining life of the structure. Unlike other models for composite materials,
the model in (5.62) captures the three phases of composite material degradation
using one equation. Stage I is dominated by matrix cracking, Stage II by debond-
ing/delamination, and Stage III by fiber breakage. Note that although (5.62) was
originally developed to curve fit relating the continuum damage variable D with
time, it can also be used for other variables which show a qualitatively similar be-
havior. Thus, (5.62) is a mathematical model of curves of the type shown in Fig. 5.4.

The values of the curve fitting parameters q , m1, and m2 are obtained by match-
ing the stiffness reduction values obtained by physical damage modeling and by
curve fitting (5.62) at the initial and final life of the structure and at the transition
points of matrix cracking to debonding/delamination and debonding/delamination
to fiber breakage.

5.4 Behavior of Composite Rotor Blade

To investigate the behavior of the composite rotor blade due to life consumption,
a two-cell airfoil section beam with stiffness properties representing a stiff in-plane
rotor is developed. The geometric properties and ply orientation of the two-cell air-
foil section are shown in Fig. 5.5.

The ply elastic stiffness properties are EL = 30 msi, ET = 3 msi, GLT = 1.2 msi,
and μLT = 0.3. The length (l) of the beam is 200 in. Since current rotor blades do
not exploit composite couplings, the section is selected to have minimum couplings.
Therefore, in the present study all the laminates are selected from the family of
(0/ ± 45/90)s composites to minimize the coupling terms.
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Fig. 5.5 Details of two-cell airfoil section beam

5.4.1 Effect on Cross-Sectional Stiffness

The stiffness reduction obtained due to the key damage modes such as matrix cracks,
matrix crack-induced debonding/delamination, and fiber breakage is correlated to
life consumption of the composite rotor blade. The stiffness reduction which is a
function of the physical damage parameters is transformed to the stiffness reduction
as a function of the life consumption of the composite rotor blade using (5.62).

Using the curve fit equation for bending stiffness gives

D1 = 0.3

(
t

tf

)0.2

+ 0.7

(
t

tf

)8

. (5.63)

Here D1 = EIy0−EIy
EIy0−EIyf

, EIy0 is the initial bending stiffness (t = 0), EIyf is the bend-
ing stiffness at final failure time tf , and EIy is the bending stiffness at any instant
of time t . The same model fits the flap and lag bending stiffness since degradation
affects the normalized flap and lag stiffness in a similar manner.

For torsion stiffness,

D2 = 0.6

(
t

tf

)0.3

+ 0.4

(
t

tf

)8

. (5.64)

Here D2 = GJ0−GJ
GJ0−GJf

, GJ0 is the initial torsion stiffness (t = 0), GJf is the torsion
stiffness at final failure time tf , and GJ is the torsion stiffness at any instant of time t .
Here D1 and D2 can be interpreted as continuum damage variables in bending and
torsion, respectively.

The bending and torsion stiffness reductions due to life consumption are shown
in Figs. 5.6 and 5.7, respectively. To study the life consumption in various dam-
age modes, the stiffness reduction plots are divided into three zones: matrix crack-
ing, debonding/delamination, and fiber breakage. These correspond to Stages I, II,
and III of the phenomenological model. From Figs. 5.6 and 5.7, it is observed that
the life consumption in the matrix cracking zone is about 12–15% of the total life.
The life consumption in the debonding/delamination zone is about 45–55% of the
total life, and the remaining life of the structure is covered by the final failure fiber
breakage. In these graphs, MC indicates matrix cracking, D/D indicates debond-
ing/delamination, and FB represents fiber breakage.
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Fig. 5.6 Decrease in bending
stiffness with increase in life
consumption of the structure

Fig. 5.7 Decrease in torsion
stiffness with increase in life
consumption of the structure

5.4.2 Effect on Static Response

Beam stiffness provides some indication of damage growth in composites. Changes
in the beam stiffness can also change parameters such as the beam static response
under a tip load or under gravity loads which can be measured at periodic intervals
to assess the condition of the blade. The response of the airfoil section cantilever
beam under unit static loads at the free end is obtained. Figures 5.8 and 5.9 show
an increase in the normalized tip static responses φy (bending) and φz (torsion) of
the beam with increasing life consumption. Here φ0

y and φ0
z are the tip static re-

sponses of the beams with virgin laminate. Similar to the stiffness plots, the plots of
static responses are also divided into three damage zones. The threshold values of
tip static deflection at the transition of these damage modes are useful for develop-
ing a ground-based maintenance and life management system. The maximum static
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Fig. 5.8 Increase in tip
bending response with
increase in life consumption
of the structure

Fig. 5.9 Increase in tip
torsion response with increase
in life consumption of the
structure

tip bending response after matrix crack saturation is about 1.15 times that of the
virgin composite blade. The maximum static tip torsion response is about 1.5 times
that of the virgin composite blade. Therefore, these maximum static values of tip
static responses will give an indication that life of the composite beam in the matrix
cracking damage zone is about 12–15% of the total life.

The rate of increase in static deflection in the D/D zone is very slow. However, the
static deflection values at the transition of D/D and fiber breakage are very important
because at this value the structure must be subjected to rigorous inspection and even
replaced. Otherwise, fiber breakage may lead to catastrophic failure. The rate of
variation of the tip static bending response in debonding/delamination damage mode
is small compared to the torsion response. The maximum change in the tip bending
slope due to debonding/delamination damage is about 1.3 times that of the virgin
composite blade. By contrast, the maximum tip torsion response is about twice that
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of the virgin composite blade. When the tip bending slope exceeds 1.3 times that of
the virgin beam and the tip torsion exceeds twice the virgin beam values, there is
an indication that the composite beam has consumed 60–65% of the total life and
entered the catastrophic damage mode. Therefore, the structure must be replaced
when the tip bending slope exceeds 1.3 times that of the virgin beam and the tip
torsion exceeds twice that of the virgin blade. We can see that mathematical models
can allow the development of thresholds for condition monitoring.

Although fiber breakage is the catastrophic damage mode, the static responses
show that the initial life of about 10–15% in this zone does not show a sudden
increase in the static response. Therefore, the structure can be conservatively kept
in working condition up to the transition point of D/D to fiber breakage. A more
aggressive threshold at about 70–80% of the life consumption could be used to save
costs at the cost of a higher risk of failure. In general, threshold selection in health
monitoring involves a tradeoff between cost and risk.

5.5 Numerical Simulation of Measurement Deltas

For SHM, it is important to study the effects of damage on the behavior of the
structure and the changes in measurable system properties due to damage. A four-
bladed stiff in-plane hingeless composite rotor with progressive damage accumu-
lation in the composite material is considered. The geometric properties and ply
orientation of the two-cell airfoil section are the same as those given in the previous
section. Results are obtained in forward flight at an advance ratio (μ = V/ΩR) of
μ = 0.3, a moderate thrust condition CT /σ = 0.07, Lock number γ = 6.34, radius

of gyration
mk2

m1
m0R

2 = 0.000174,
mk2

m2
m0R

2 = 0.00061, and m
m0

= 1. The effect of dam-
age on global damage indicators such as blade tip response and blade root loads is
first studied. Then, thresholds for these measurements are obtained using the ma-
trix crack saturation point. Strains along the rotor blade are also evaluated as local
damage indicators. As mentioned in previous chapters, a systematic study of the
effect of damage growth on the structure is necessary to find useful damage indica-
tors.

5.5.1 Blade Tip Response

The effect of matrix cracks in the whole blade on changes in the tip lag (�V ), flap
(�W ), and torsion (�φ) response for varying crack densities are shown in Fig. 5.10.
From Fig. 5.10, it is observed that the change in the tip lag bending deflection as
compared to the tip flap bending deflection is negligible. It is also observed that the
change in tip flap bending deflection reduces by 0.01 m in the initial phase of matrix
cracking, and it increases steadily with an increase in crack density to 0.1 m. The
change in tip torsion increases steadily up to 9 degrees, which is very high. Note
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Fig. 5.10 Change in
peak-to-peak tip lag (m), flap
(m), and torsion (degrees) for
increasing matrix crack
density

that the values here are the change in peak-to-peak deformations across the azimuth
between the damaged and undamaged blades. When matrix cracking effects start
saturating, the change in tip torsion starts decreasing.

The effect of debonding/delamination in the whole blade on changes in the
tip lag, flap, and torsion response for varying effective strain ratios are plotted in
Fig. 5.11. During the transition from matrix cracking to debonding/delamination
damage mode, the change in tip flap bending deflection value drops down to 0.07 m
and the change in tip torsion value to 5 degrees. The change in tip flap bending and
change in tip torsion remain nearly constant up to an effective strain of 0.88 and
thereafter they increase up to 0.2 m and 12 degrees, respectively, due to an increase
in the effective strain ratio.

The effect of fiber breakage in the whole blade on changes in the tip lag, flap, and
torsion response for varying area ratios are plotted in Fig. 5.12. In this damage mode,
the change in tip lag bending deflection is more affected and increases steadily up
to 0.2 m. The change in tip flap bending deflection reduces from 0.17 m to 0.05 m
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Fig. 5.11 Change in
peak-to-peak tip lag (m), flap
(m), and torsion (degrees) for
increasing effective strain
ratio due to
debonding/delamination

and again increases up to 0.18 m. The change in tip torsion reduces from 15 degrees
to 6 degrees.

The change in the system properties with damage evolution is not monotonic.
This may be due to the substantial changes in the frequencies which pass each other
as well as the rotor speed multiples as the damage grows. The aeroelastic effects of
such frequency changes are considerable.

5.5.2 Blade Root Loads

The peak-to-peak change in blade root longitudinal (�Fx ), lateral (�Fy ), and verti-
cal (�Fz) forces and rolling (�Mx ), pitching (�My ), and yawing (�Mz) moments,
for varying crack densities, are plotted in Fig. 5.13. The effect of matrix cracking is
more on the change in root vertical forces as compared to other forces. The change
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Fig. 5.12 Change in
peak-to-peak tip lag (m), flap
(m), and torsion (degrees) for
increasing fiber area ratio due
to fiber breakage

in force value of all forces reduces initially up to a crack density of 1 and then in-
creases steadily. Curves of all the forces flatten toward the matrix crack saturation
value. The maximum change in longitudinal and lateral blade root forces is about
1100 N and the maximum change in vertical blade root forces is about 2500 N. From
the plots of peak-to-peak change in blade root bending moments, it is observed that
the effect of the matrix cracking on blade root rolling and pitching moment is small
compared to that on the blade root yawing moment. The change in root yawing
moment decreases rapidly up to 4500 N-m for matrix crack density value 1, and
thereafter it remains constant up to a crack density of 1.25, and again starts increas-
ing.

The peak-to-peak changes in blade root forces and moments, for varying effective
strain ratio, are plotted in Fig. 5.14. The changes in longitudinal and lateral forces
remain almost constant in this damage mode. The value of the change in vertical
root force remains almost constant up to an effective strain ratio of 0.88; thereafter,
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Fig. 5.13 Change in
peak-to-peak blade root
forces (N) and moments
(N-m) for increasing matrix
crack density

it starts increasing and reaches a maximum of about 9000 N for effective strain
ratio 0.94.

From the plots of peak-to-peak change in blade root bending moments, it is ob-
served that the effect of debonding/delamination on the change in pitching moments
remains almost constant up to 0.88 and thereafter increases up to 4500 N-m. The
change in yawing moment value decreases by about 1500 N-m, and the change in
rolling moment value remains almost constant in this damage mode.

The peak-to-peak change in blade root forces and moments, for varying area
ratio, are plotted in Fig. 5.15. The change in blade root longitudinal and lateral
forces increases rapidly, and the change in root vertical force decreases rapidly.

From the plots of peak-to-peak change in blade root bending moments, it is ob-
served that the effect of fiber breakage on the change in root rolling moment value
is almost negligible. The change in root pitching moment decreases rapidly up to
an area ratio of 0.88 and thereafter increases. The yawing moment remains almost
constant up to an area ratio of 0.86 and thereafter increases rapidly up to 6000 N-m.
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Fig. 5.14 Change in
peak-to-peak blade root
forces (N) and moments
(N-m) for increasing effective
strain ratio due to
debonding/delamination

5.5.3 Thresholds Based on Matrix Crack Saturation

Since matrix crack saturation marks the start of more dangerous damage mecha-
nisms, it is useful to use the change of rotor response at matrix cracking as a thresh-
old for health monitoring. Table 5.1 shows the values of this blade response as loads
at matrix crack saturation and the maximum change in these values from the baseline
undamaged blade. The maximum changes in these values can be used as a threshold
to flag the rotor blade condition as prone to damage. Such a blade could then be
placed on a “watch list” subject to nondestructive testing techniques periodically.

5.5.4 Strains

Strains are useful local indicators of damage. We consider damage at five locations
on the blade ranging from the root to the tip. To investigate the implementation
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Fig. 5.15 Change in
peak-to-peak blade root
forces (N) and moments
(N-m) for increasing fiber
area ratio due to fiber
breakage

Table 5.1 Change in peak-to-peak value of tip lag (m), tip flap (m), tip torsion (deg), root forces
(N), and root moments (N-m) at matrix crack saturation and maximum change during matrix crack
damage

�V �W �φ �Fx �Fy �Fz �Mx �My �Mz

At Saturation −0.0015 0.1 8.8 1.16E3 1.24E3 2.46E3 0.60E3 1.03E3 0.65E3

Max. Change −0.0109 0.1 9.1 1.16E3 −1.28E3 2.46E3 0.63E3 −1.14E3 −4.38E3

of strain measuring instrumentation on the rotor blade, the peak-to-peak change
in shear strains is calculated at various locations for matrix cracking, debond-
ing/delamination, and fiber breakage. The results are shown in Figs. 5.16, 5.17,
and 5.18, respectively. All the strains are calculated on the top side of the beam
and along the line passing through the point 0.35c on the two-cell airfoil section.
From these plots, it is observed that the maximum change in strains among all five
locations is at the location where the damage is situated. The change in strains in-
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Fig. 5.16 Change in peak-to-peak shear strain measured at various locations for various crack
densities and cracks at various locations (tip = 0 m and root = 5 m). Crack locations: T = Tip,
O = Outboard, C = Center, I = Inboard, R = Root

creases with increasing damage level. From the plots of all three modes of damages,
it is observed that the shear strain can be useful to isolate damage locations and
damage level.

5.6 Predicting Life Consumption

Until now, the results have focused on static variables such as stiffness and blade
tip deflection under a static loading. Obviously, there is a close relationship between
stiffness and static displacements of the structure. However, static deflection cannot
be used for online health monitoring. To simulate online measurements, an aeroelas-
tic analysis of a composite rotor blade is performed. The composite damage models
are integrated into the rotor aeroelastic analysis. The rotor system behavior is fur-
ther linked with life consumption through the relationship between stiffness and
time. The measurement deltas between a damaged and undamaged blade are used
to develop two genetic fuzzy systems (GFSs) for the prediction of global and local
physical damage and life consumption. The development of these GFSs for SHM is
discussed next.
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Fig. 5.17 Change in peak-to-peak shear strain measured at various locations for various effective
strain ratios and debonding/delamination at various locations (tip = 0 m and root = 5 m). D/D
locations: T = Tip, O = Outboard, C = Center, I = Inboard, R = Root

5.6.1 Development of Genetic Fuzzy System

There are two possibilities of damage in composite rotor blades. The first possibility
is that the damage will be approximately uniformly distributed along the whole
blade (global damage detection). The second possibility is that the damage will be
localized. In this section, we formulate two GFSs. The first GFS is for predicting the
physical damage parameter and life consumption parameter in the matrix cracking
and debonding/delamination zones along the whole blade. The second GFS is for
predicting the physical damage parameter and life consumption parameter in the
matrix cracking and debonding/delamination zones in various parts of the blade
(local damage detection). The fiber breakage damage mode in composite materials
is considered as a catastrophic damage mode, and detection of such a damage zone
is not useful. Therefore, the fiber breakage zone is not considered while designing
the GFS. The schematic diagram of the SHM system development process is shown
in Fig. 5.19. The difference between the global and local SHM lies in the choice of
sensor measurements z in Fig. 5.19, as discussed next.
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Fig. 5.18 Change in peak-to-peak shear strain measured at various locations for various area ratios
and fiber breakage at various locations (tip = 0 m and root = 5 m). Fiber breakage locations:
T = Tip, O = Outboard, C = Center, I = Inboard, R = Root

Fig. 5.19 Schematic representation of development of SHM
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5.6.1.1 Global Damage Detection

The GFS for global damage detection is designed using the displacement-, force-,
and moment-based measurement deltas. The objective is to find the mapping be-
tween measurement deltas and various damage levels.

In this fuzzy system, physical damage parameters and life consumption param-
eters in the matrix cracking and debonding/delamination zones are expressed as
words. To get a degree of resolution of the extent of physical damage and life
consumption, the physical damage parameter and life consumption parameter are
allowed to have several zones based on the physical damage and split into lin-
guistic variables. These classifications are based on the numerical results obtained
for matrix cracking and debonding/delamination earlier in this chapter. We first
consider the displacement measurement deltas for defining the rules, which show
approximately monotonic behavior with respect to matrix cracking and debond-
ing/delamination (Figs. 5.10 and 5.11). Next, the force and moment measurement
deltas are considered for prediction of matrix cracking and debonding/delamination
(Figs. 5.13 and 5.14). The first step in fuzzy logic is to transform typical measure-
ments into fuzzy linguistic measures. This is done using the plots of change in
peak-to-peak displacements and matrix crack density shown in Fig. 5.10 and the
plots of change in peak-to-peak displacements and debonding/delamination shown
in Fig. 5.11. Table 5.2 shows the linguistic and numerical measures based on the
displacement measurement deltas. This table also shows the relation between the
physical damage parameters and the life consumption parameters of the composite
rotor blade. Based on the experience of the prognostic actions for composite struc-
tures, three prognostic actions for the three stages of the life of the composite blade
are shown in this table.

The measurement deltas �W , �φ, �Fx , �Fy , �Fz, �Mx , �My , and �Mz are
treated as fuzzy variables. Fuzzy sets with Gaussian membership functions are used
to define these input variables. Changes in the measurement deltas are calculated us-
ing the aeroelastic analysis for different levels of damages along the whole blade, as
explained in Sect. 5.5. The midpoints of the Gaussian function are calculated by nor-
malizing the changes in measurement deltas with its maximum values. The genetic
fuzzy system is tested using the normalized noisy measurement delta (x) which is
derived from the noise model given in (2.6). The addition of noise to the simulations
is needed to make it realistic and develop a robust model-based diagnostic system.

Rules for the fuzzy system are obtained by fuzzification of the numerical values
obtained from an aeroelastic analysis of the composite helicopter blade in forward
flight. The fuzzy sets corresponding to �W , �φ, �Fx , �Fy , �Fz, �Mx , �My , and
�Mz are generated by taking the change in measurements obtained from the aero-
elastic analysis solution as midpoints of membership functions corresponding to a
damage level. This strategy for selecting the midpoint ensures that the maximum
degree of membership (μ = 1) for each fuzzy set occurs at the values of m since
the Gaussian function is the highest at the midpoint. The standard deviations of the
Gaussian membership functions are calculated using a GA for maximization of the
success rate, as discussed in earlier chapters.
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Table 5.2 Linguistic classification of damage for the GFS for global damage detection

No. Physics-based rule Damage level Life consumption
(Residual life)

Prognostic
action

1 Undamaged Nil crack density Nil (100%) OK

2 V. Small CD Crack density 0–0.8 0–2.5% (97.5%) OK

3 Small CD Crack density 0.8–1.2 2.5–5% (95%) OK

4 Considerable CD Crack density 1.2–1.6 5–7% (93%) OK

5 High CD Crack density 1.6–2.0 7–8.5% (91.5%) OK

6 Very high CD Crack density 2.0–2.4 8.5–10% (90%) OK

7 Saturation CD Crack density 2.4–3.0 10–12 % (88%) OK

8 Transition of MC to D/D CD 3.0a to ESR 0.8b 12–20% (80%) WATCH

9 Slight D/D ESR 0.8–0.88 20–43% (67%) WATCH

10 Moderate D/D ESR 0.88–0.9 43–50% (50%) WATCH

11 Severe D/D ESR 0.9–0.92 50–56% (44%) WATCH

12 Extreme D/D ESR 0.92–0.94 56–62% (38%) REMOVE

aSaturation crack density (CD)
bThe ESR from where the effects of D/D become considerable

Prognostic actions: OK: Blade is OK, no action is required. WATCH: Put blade under watch.
REMOVE: Remove blade. Take for thorough inspection

5.6.1.2 Local Damage Detection

The GFS for local damage detection predicts the physical damage parameter and
life consumption parameter in the matrix crack and debonding/delamination zones
and finds the location of the damage along the blade.

Inputs to the GFS are strain-based measurement deltas at five locations, and out-
puts are physical damage parameters and the life consumption parameter at different
locations. The objective is to find a mapping between the measurement deltas and
physical damage parameters and life consumption parameters at five different loca-
tions. In this fuzzy system, the location parameters are crisp numbers. The damage
locations are divided and labeled as discussed in Fig. 3.2.

To get a degree of resolution of the extent of physical damage and life consump-
tion, physical damage parameters and life consumption parameters at each location
are allowed several levels and split into linguistic variables. Fuzzy logic rules are de-
fined based on the shear strains obtained for a few key physical damage parameters.
These shear strains are first obtained for the physical damage parameters and then
linked with the life of the blade. The linguistic relations of the key life consumption
parameters and physical damage parameters are shown in Table 5.3. Similar to the
global SHM system, the prognostic actions for the three stages of the life of the
composite structure are shown in the table.

Strain-based measurement deltas �εTip, �εOutboard, �εCenter, �εInboard, and
�εRoot are treated as fuzzy variables. Fuzzy sets with Gaussian membership func-
tions are used to define these input variables. Changes in strains (measurement
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Table 5.3 Linguistic classification of damage for local damage detection

Damage name Damage level Life consumption
(Residual life)

Prognostic
action

Undamaged Matrix crack density zero Nil (100%) OK

Small CD Matrix crack density 0.4 About 2% (98%) OK

Moderate CD Matrix crack density 1.2 About 5% (95%) OK

High CD Matrix crack density 1.6 About 7% (93%) OK

Very high CD Matrix crack density 2.4 About 10% (90%) OK

Slight D/D ESR 0.8 About 20% (80%) WATCH

Moderate D/D ESR 0.88 About 43% (67%) WATCH

Severe D/D ESR 0.92 About 56% (44%) REMOVE

Prognostic actions: OK: Blade is OK, no action is required. WATCH: Put blade under watch.
REMOVE: Remove blade. Take for thorough inspection

deltas) are calculated using an aeroelastic analysis for a combination of five dif-
ferent locations and seven different levels of damages and are shown in Figs. 5.16
and 5.17. Formulation of the GFS and calculation of the success rate are performed
using the algorithm discussed in previous chapters.

5.6.2 Testing of Genetic Fuzzy System

The global GFS and the local GFS are tested at various noise levels. All the mea-
surements are normalized with their maximum value. The details of the tests are
discussed next.

5.6.2.1 Global Damage Detection

Two key issues are discussed in the next two subsections using numerical simula-
tions. The first is the use of different sets of measurement deltas, and the second is
the effect of training noise of the GFS.

Effect of Different Measurement Delta Sets The midpoints and standard devi-
ations of the Gaussian membership functions for the rules of prediction of physical
damage parameters and life consumption parameters along the whole blade with
a training noise level of 0.15 are given in Table 5.4. Success rates of the GFS are
calculated for various noise levels of 0.03, 0.05, 0.10, 0.15, and 0.20. The GFS is
tested using four sets of measurement deltas: (1) tip displacement only, (2) blade
root forces only, (3) blade root moments only, and (4) all three. The performance of
the SHM for the four sets of measurement deltas gives an idea about the reliability of
the SHM based on different measurement instruments. It may be possible to imple-
ment the displacement-based SHM in an old helicopter to achieve economy and sim-
plicity. The root load-based SHM can be implemented when the root loads can be
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obtained from the existing instrumental arrangements and the SHM based on all the
measurement deltas can be implemented when more accurate prediction is needed.
Table 5.5 shows the success rates for all the rules for four different sets of mea-
surement deltas at various noise levels; these results are summarized in Fig. 5.20.
From Table 5.5 and Fig. 5.20, it is observed that the GFS with displacement-based
measurement deltas gives good results at the noise level of 0.05 with an average
success rate of 95.55% and a minimum success rate of 80.90% (transition of matrix
cracking to debonding/delamination) and starts deteriorating rapidly with a further
increase in noise level. The critical performance of the SHM system can be judged
based on the success rate of the key fuzzy rules. The key fuzzy rules for the current
SHM are rule number 7 and rule number 12. Rule number 7 gives an indication of
the beginning of a severe damage mode, debonding/delamination, and changing to
new prognostic action “Put blade under watch.” Rule number 12 gives an indication
about the beginning of a catastrophic damage, fiber breakage. The SHM performs
satisfactorily for the two key rules by giving success rates of 98% and 100% for rule
number 7 and 12, respectively, at a noise level of 0.05.

The GFS with force-based measurement deltas gives a success rate of 100% at the
noise level of 0.05. For a noise level of 0.1, the GFS with force-based measurement
deltas gives an average success rate of 99% and a minimum success rate of 91.3%
(Severe D/D) and starts falling for higher noise levels of 0.15 and 0.20 by giving
average success rates of 96% and 89.8% and minimum success rates of 76% and
63.90%, respectively. The GFS with force-based measurement deltas gives a 100%
success rate for both the key rules even at a higher noise level of 0.15.

The GFS with moment-based measurement deltas gives a success rate of 100%
at the noise level of 0.05. For a noise level of 0.1, the GFS with moment-based
measurement deltas gives an average success rate of 98.05% and a minimum suc-
cess rate of 91.4% (Slight D/D) and starts falling for higher noise levels of 0.15 and
0.20 by giving average success rates of 96% and 89.8%, respectively, and minimum
success rates of 76% and 63.90%, respectively. The GFS with moment-based mea-
surement deltas also gives good performance for the key rules by giving a success
rate of about 96% for rule 7 and a success rate of about 100% for rule 12, for a
higher noise level of 0.15.

When all measurement deltas are considered for matrix cracking and debond-
ing/delamination detection, the GFS gives a success rate of 100% percent up to
a noise level of 0.10 and also gives good results with higher noise levels of 0.15
and 0.20 by giving average success rates of 99.21% and 97.02%, respectively, and
minimum success rates of 95.30% and 86.30%, respectively. Thus, the use of both
displacement- and load-based measurements results in a health monitoring system
with high levels of accuracy even with noisy data.

It is noted that the GFS with displacement-based, force-based, and moment-
based measurement deltas gives a success rate of about 100% for rule 12, which
indicates the beginning of catastrophic damage. Therefore, the GFS can be used to
give a warning about the beginning of catastrophic damage with a minimum num-
ber of measurement deltas in a highly noisy environment. It can also be noted that,
though the noise tolerance capacity of the GFS is dependent on the type of measure-
ment delta, the accuracy of the measurement instrument will also have an influence
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Fig. 5.20 Effect of various
measurements on minimum
and average success rate of
genetic fuzzy logic system for
global damage detection

on the accuracy of damage prediction. For example, the displacements are measured
directly using optical blade tracking, and the laser Doppler vibrometer (LDV) gives
more accurate measurements than the force and moment measurements, which are
estimated using vibration level measurements.

Effect of Training Noise The previous results used a training noise level of 0.15.
The effect of different levels of noise in the training data is now considered. The
GFS is trained using noisy data with noise levels (training noise level) of 0.05, 0.10,
and 0.15. These GFSs are then tested using noisy data for noise levels of 0.05, 0.10,
and 0.15. The effects of various training noise levels are studied by comparing the
minimum and average success rates of the GFS with training noise levels of 0.05
and 0.10 with the minimum and average success rates of the GFS with a training
noise level of 0.15 for various testing noise levels. �SR0.05 indicates the difference
between the success rates with a training noise level of 0.05 compared with the
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Table 5.6 Effect of training noise level on minimum success rate at various noise levels for global
damage detection using displacement, force, moments, and all measurements

α Displacements Forces Moments All

�SR0.05 �SR0.10 �SR0.05 �SR0.10 �SR0.05 �SR0.10 �SR0.05 �SR0.10

0.05 15.60 8.10 0 0.02 0 0 0 0

0.10 16.10 11.40 −2.20 4.80 4.90 1.70 0 0.02

0.15 13.30 6.90 −3.20 14.20 1.90 4.80 −2.70 0

�SR0.05 = Difference between the minimum SR for training at α = 0.15 and α = 0.05

�SR0.10 = Difference between the minimum SR for training at α = 0.15 and α = 0.10

Negative value indicates better SR than the SR for training at α = 0.15

success rates with a training noise level of 0.15. A similar definition is used for
�SR0.10.

The effects of training noise on the minimum success rates for different measure-
ment data sets at various (testing) noise levels are shown in Table 5.6. The minimum
success rate gives an indication of the reliability of the GFS. From Table 5.6 it is ob-
served that the highest values of �SR0.05 and �SR0.10 for the minimum success rate
with displacement-based measurement deltas are about 16.1 and 11.4, respectively.
This result indicates that the training noise level of 0.15 is a good option for the GFS
with the displacement-based measurement delta. The highest value of �SR0.05 for
the minimum success rate with the force-based measurement deltas is about −3.20
and the highest value of �SR0.10 is 14.2. This shows that for the force-based mea-
surement delta, a training noise level of 0.05 is a good option. The highest value of
�SR0.05 for the minimum success rate with the moment-based measurement delta is
about 4.90 and the highest value of �SR0.10 is 4.80. This shows that for the moment-
based measurement delta, a training noise level of 0.15 is a good option. The highest
value of �SR0.05 for the minimum success rate with all measurement deltas together
is about −2.70 and the highest value of �SR0.10 is 0.02. This shows that for all the
measurement deltas, a training noise level of 0.05 is a good option.

The effects of training noise on the average success rates for different measure-
ment sets at various (testing) noise levels is shown in Table 5.7. The average success
rate gives an indication of the overall performance of the system. From Table 5.7,
it is observed that the GFS with training noise level of 0.15 gives a good success
rate except for some cases with a training noise level of 0.05. The highest nega-
tive value �SR0.05 for average success rates is −0.37 at a testing noise level of
0.15. This result indicates that the success rate of the GFS with training noise level
of 0.05 is more than the success rate of the GFS with training noise level of 0.15
by an amount of 0.37 at a testing noise level of 0.15. Therefore, from the results of
minimum success rates and average success rates, the training noise level of 0.15 ap-
pears to be a judicious selection because this system also performs well with single
types of measurement deltas like displacement- and moment-based measurement
deltas.
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Table 5.7 Effect of training noise level on average success rate at various noise levels for global
damage detection using displacement, force, moments, and all measurements

α Displacements Forces Moments All

�SR0.05 �SR0.10 �SR0.05 �SR0.10 �SR0.05 �SR0.10 �SR0.05 �SR0.10

0.05 0.78 0.96 0 0.02 0 0 0 0

0.10 −0.35 0.59 −0.16 0.34 0.20 0.57 0 0.02

0.15 −0.25 2.18 −0.22 1.17 −0.19 0.28 −0.37 0.10

�SR0.05 = Difference between the average SR for training at α = 0.15 and α = 0.05

�SR0.10 = Difference between the average SR for training at α = 0.15 and α = 0.10

Negative value indicates better SR than the SR training at α = 0.15

5.6.2.2 Local Damage Detection

The midpoints and standard deviations of the Gaussian membership functions for
the rules for prediction of physical damage parameters and life consumption param-
eters in various parts of the blade using strain-based measurement deltas are tabu-
lated in Table 5.8. These results are obtained at a training noise level of 0.05, which
is found to be good for the strain-based measurement deltas. The midpoints in this
table are normalized with the maximum value of the corresponding measurement
deltas; corresponding values of the standard deviations are given in parentheses.

The success rates for prediction of physical damage parameters and life con-
sumption parameters at various parts of the blades are tested at noise levels of 0.03,
0.05, and 0.10. Table 5.9 shows the success rate for all the rules with various noise
levels. From Table 5.9, it is observed that the GFS for predicting the life consump-
tion parameters in the matrix cracking zone in various parts of the blade using strain-
based measurement deltas gives a success rate of 100% up to a noise level of 0.03.
For the debonding/delamination zone, the GFS gives a success rate of 100% for a
noise level of 0.03 except for two rules, Moderate D/D at Root and Severe D/D at
Root. For a noise level of 0.05, the GFS gives an average success rate of 99.42%
and a minimum success rate of 91.8%. The GFS gives a minimum success rate of
97.70% for the matrix crack zone and a minimum success rate of 91.8% for the
debonding/delamination zone for a noise level of 0.05. It can be noted that the GFS
gives a success rate of 100% for the debonding/delamination zone up to a noise level
of 0.05, except for two rules, Moderate D/D at Root and Severe D/D at Root. How-
ever, for a higher noise level of 0.1, the system success rate starts falling rapidly for
the rules which define matrix cracking towards the blade tip zone, and for the rules
which define moderate and severe D/D at the root.

During the analysis of misclassification of the rules, the reason for the sudden
fall in success rates at higher noise levels is that the GFS is unable to isolate the
damage levels due to higher noise in the data. However, it is observed that even at
the higher noise levels the GFS can isolate damage locations accurately.
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Table 5.8 Midpoints and standard deviations of rules for local damage detection using strain-
based measurement deltas

No. Rule �εTip �εOutboard �εCenter �εInboard �εRoot

1 Undamaged 0.00 (0.18) 0.00 (0.14) 0.00 (0.17) 0.00 (0.13) 0.00 (0.15)

2 Small CD at Tip 0.08 (0.13) −0.00 (0.16) 0.00 (0.10) 0.00 (0.13) −0.00 (0.13)

3 Small CD at Outboard 0.00 (0.19) 0.02 (0.11) 0.01 (0.14) 0.00 (0.16) −0.00 (0.16)

4 Small CD at Center 0.00 (0.16) 0.01 (0.10) 0.05 (0.15) 0.01 (0.16) −0.00 (0.16)

5 Small CD at Inboard 0.01 (0.13) 0.01 (0.14) 0.01 (0.19) 0.04 (0.13) −0.01 (0.12)

6 Small CD at Root 0.01 (0.14) 0.01 (0.12) 0.02 (0.13) −0.00 (0.13) 0.05 (0.18)

7 Moderate CD at Tip 0.17 (0.12) −0.00 (0.17) 0.00 (0.18) 0.00 (0.16) −0.00 (0.15)

8 Moderate CD at Outboard 0.01 (0.11) 0.05 (0.13) 0.02 (0.20) 0.01 (0.19) 0.00 (0.19)

9 Moderate CD at Center 0.02 (0.10) 0.01 (0.18) 0.11 (0.12) 0.02 (0.12) −0.00 (0.19)

10 Moderate CD at Inboard 0.04 (0.13) 0.02 (0.18) 0.04 (0.14) 0.09 (0.12) −0.01 (0.18)

11 Moderate CD at Root 0.07 (0.19) 0.03 (0.13) 0.06 (0.18) 0.02 (0.14) 0.13 (0.16)

12 High CD at Tip 0.19 (0.20) −0.00 (0.11) 0.00 (0.14) 0.01 (0.17) −0.00 (0.17)

13 High CD at Outboard 0.01 (0.17) 0.05 (0.19) 0.02 (0.15) 0.01 (0.17) 0.00 (0.15)

14 High CD at Center 0.02 (0.11) 0.02 (0.11) 0.13 (0.15) 0.02 (0.19) −0.00 (0.20)

15 High CD at Inboard 0.05 (0.17) 0.02 (0.12) 0.04 (0.20) 0.11 (0.17) −0.01 (0.18)

16 High CD at Root 0.09 (0.13) 0.03 (0.18) 0.07 (0.12) 0.02 (0.11) 0.16 (0.11)

17 Very High CD at Tip 0.21 (0.17) −0.00 (0.18) 0.00 (0.17) 0.01 (0.19) −0.00 (0.12)

18 Very High CD at Outboard 0.02 (0.14) 0.06 (0.14) 0.02 (0.14) 0.01 (0.17) 0.00 (0.12)

19 Very High CD at Center 0.03 (0.14) 0.02 (0.19) 0.15 (0.17) 0.02 (0.18) −0.00 (0.13)

20 Very High CD at Inboard 0.07 (0.15) 0.03 (0.19) 0.05 (0.17) 0.13 (0.14) −0.01 (0.14)

21 Very High CD at Root 0.11 (0.17) 0.04 (0.14) 0.08 (0.14) 0.03 (0.19) 0.19 (0.17)

22 Slight D/D at Tip 0.41 (0.16) −0.01 (0.15) 0.00 (0.16) 0.01 (0.14) −0.00 (0.11)

23 Slight D/D at Outboard 0.04 (0.16) 0.12 (0.15) 0.03 (0.10) 0.02 (0.15) 0.00 (0.10)

24 Slight D/D at Center 0.10 (0.12) 0.04 (0.13) 0.33 (0.16) 0.05 (0.14) 0.01 (0.11)

25 Slight D/D at Inboard 0.28 (0.17) 0.09 (0.16) 0.18 (0.19) 0.36 (0.18) 0.06 (0.16)

26 Slight D/D at Root 0.48 (0.14) 0.15 (0.19) 0.31 (0.12) 0.18 (0.15) 0.62 (0.16)

27 Moderate D/D at Tip 0.59 (0.19) −0.01 (0.20) 0.00 (0.12) 0.01 (0.17) −0.00 (0.18)

28 Moderate D/D at Outboard 0.07 (0.20) 0.18 (0.11) 0.05 (0.17) 0.03 (0.10) 0.01 (0.18)

29 Moderate D/D at Center 0.23 (0.15) 0.08 (0.12) 0.59 (0.15) 0.09 (0.10) 0.04 (0.13)

30 Moderate D/D at Inboard 0.42 (0.20) 0.13 (0.20) 0.27 (0.19) 0.51 (0.12) 0.12 (0.19)

31 Moderate D/D at Root 0.83 (0.15) 0.24 (0.18) 0.48 (0.15) 0.31 (0.18) 0.94 (0.12)

32 Severe D/D at Tip 0.76 (0.13) −0.01 (0.11) 0.00 (0.11) 0.02 (0.16) −0.01 (0.11)

33 Severe D/D at Outboard 0.64 (0.17) 1.00 (0.19) 0.27 (0.13) 0.19 (0.15) 0.15 (0.12)

34 Severe D/D at Center 0.48 (0.11) 0.15 (0.17) 1.00 (0.15) 0.18 (0.15) 0.12 (0.12)

35 Severe D/D at Inboard 1.00 (0.18) 0.28 (0.15) 0.54 (0.14) 1.00 (0.20) 0.40 (0.10)

36 Severe D/D at Root 0.88 (0.14) 0.26 (0.19) 0.51 (0.13) 0.33 (0.14) 1.00 (0.17)
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Table 5.9 Success rate of various rules for local damage detection using strain-based measurement
deltas

No. Rule SR0.03 SR0.05 SR0.10

1 Undamaged 100.00 100.00 100.00

2 Small CD at Tip 100.00 100.00 100.00

3 Small CD at Outboard 100.00 100.00 100.00

4 Small CD at Center 100.00 100.00 100.00

5 Small CD at Inboard 100.00 100.00 100.00

6 Small CD at Root 100.00 100.00 100.00

7 Moderate CD at Tip 100.00 98.60 81.10

8 Moderate CD at Outboard 100.00 99.60 81.50

9 Moderate CD at Center 100.00 99.90 86.00

10 Moderate CD at Inboard 100.00 100.00 95.50

11 Moderate CD at Root 100.00 100.00 99.90

12 High CD at Tip 100.00 99.90 47.20

13 High CD at Outboard 100.00 100.00 84.20

14 High CD at Center 100.00 99.80 68.40

15 High CD at Inboard 100.00 100.00 96.10

16 High CD at Root 100.00 100.00 83.80

17 Very High CD at Tip 100.00 99.30 84.10

18 Very High CD at Outboard 100.00 97.70 69.20

19 Very High CD at Center 100.00 100.00 89.90

20 Very High CD at Inboard 100.00 100.00 93.50

21 Very High CD at Root 100.00 100.00 99.40

22 Slight D/D at Tip 100.00 100.00 100.00

23 Slight D/D at Outboard 100.00 100.00 100.00

24 Slight D/D at Center 100.00 100.00 100.00

25 Slight D/D at Inboard 100.00 100.00 100.00

26 Slight D/D at Root 100.00 100.00 100.00

27 Moderate D/D at Tip 100.00 100.00 100.00

28 Moderate D/D at Outboard 100.00 100.00 100.00

29 Moderate D/D at Center 100.00 100.00 100.00

30 Moderate D/D at Inboard 100.00 100.00 100.00

31 Moderate D/D at Root 99.90 92.90 74.90

32 Severe D/D at Tip 100.00 100.00 86.00

33 Severe D/D at Outboard 100.00 100.00 100.00

34 Severe D/D at Center 100.00 100.00 100.00

35 Severe D/D at Inboard 100.00 100.00 100.00

36 Severe D/D at Root 99.90 91.80 73.90

Avg. 99.99 99.43 91.52

Min. 99.90 91.80 47.20
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Fig. 5.21 Schematic representation of implementation of SHM

5.6.3 Implementation of the SHM System

The SHM system can be implemented on the helicopter rotor blade to predict the
physical damage and residual life of the blade. The schematic diagram for imple-
mentation of the SHM system is shown in Fig. 5.21. As shown in the figure, for
the global GFS, tip deflection and root forces, and for the local GFS, the strains
measured at five locations can be compared with the database of measurements
from the undamaged blade. Further, using the data reduction algorithm, the mea-
surement deltas can be calculated and input to the GFS for predicting the physical
damage and residual life of the blade. As shown in Table 5.2 for global SHM and
in Table 5.3 for local SHM, maintenance norms can be developed to provide di-
rect instructions to maintenance engineers. This will be helpful for optimal and safe
use of the composite rotor blade as compared to the “Safe-life” method. As this
method gives intermediate residual life zones, it will help in reducing the overhaul-
ing time.

This chapter showcases a comprehensive case study detailing the development
of an SHM system for a composite rotor. It is clear that the development requires
a knowledge of the system under consideration as well as a knowledge of the GFS
[13–16]. This multidisciplinary nature is typical of realistic SHM problems.

5.7 Summary

In this chapter, an online SHM system is developed for predicting the global and
local physical damage and life consumption of a composite rotor blade using the
genetic fuzzy system. Hamilton’s principle is used to derive the governing partial
differential equations which are then solved using finite elements in space, nor-
mal mode transformation, and finite elements in time. The rotor and hub loads are
obtained, and the vehicle trim equations are also solved simultaneously with the
blade response equations. The mathematical model of the rotor blade is adjusted
to include composite materials by adding new strain energy terms. A progressive
damage growth model for composite materials which includes matrix cracking, de-
lamination/debonding, and fiber breakage is integrated into an aeroelastic analysis
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for composite rotor blades. The aim of this modeling exercise is to develop a math-
ematical model for a damaged composite rotor blade. A phenomenological damage
model is used to link the physics-based damage modes with the life consumption of
the blade. The genetic fuzzy system is developed to maximize the success rate for
damage detection. The genetic fuzzy system is able to determine the different types
of damage, the location, and possible prognostic action required. The genetic fuzzy
system is then tested for various measurements deltas with various noise levels. The
effect of training noise on the genetic fuzzy system is also investigated. The genetic
fuzzy system works quite well with noisy data and is recommended for online SHM
of composite helicopter rotor blades. Implementation of the SHM on a composite
rotor blade and its use in maintenance are discussed.
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Appendix
MATLAB Codes

MATLAB codes are available from http://extras.springer.com. A brief discussion of
the codes is provided here.

1. Code for calculating effective Young’s modulus for given matrix cracking: Matrix
cracking effects are embedded in composite layups of cross-ply composite. This
code is based on the theory given in Sect. 4.1.1. Material properties are given
in the code. For a given level of matrix cracking, this code calculates the effec-
tive Young’s modulus which will be used in a subsequent code for calculating
variation in natural frequencies for given matrix cracking.

File name: matrix_cracking_code.m

2. Code for calculating change in frequencies at different crack densities: This
code calculates changes in the first eight modes of frequencies due to matrix
cracking at ten different locations. This code is based on the theory discussed in
Sects. 4.1.2, 3.1, and 4.2. For this code, the input file is “model2.inp” and output
is stored in “model2.out”. Inputs given in the input files can be understood by
the comments given in the code. The inputs are in the sequence of Number of
nodes, Number of elements, Number of material properties, Coordinates of the
nodes, Connectivity, For each element Material index, moment of inertia, cross-
sectional area and Mass Density of beam material. Effective material properties
obtained from previous code for different crack densities are given in “mat1”.

File name: frequency_calculation_code.m
Input file: model2.inp
Output file: model2.out

3. Code for training the genetic fuzzy system: The first eight modes of frequen-
cies for three damage levels at ten different locations are the input to this code.
These numerical values are considered as midpoints of Gaussian membership
functions, and the code calculates the values of standard deviations of the mem-
bership function for maximization of the success rate of each rule for noisy data
of that rule. This code is based on the theory discussed in Sects. 4.3.1 and 2.3.

P.M. Pawar, R. Ganguli, Structural Health Monitoring Using Genetic Fuzzy Systems,
DOI 10.1007/978-0-85729-907-9, © Springer-Verlag London Limited 2011
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File name: Training_code_for_GFS.m
Input file: rul309.dat
Output file: tune.dat

4. Code for testing the genetic fuzzy system: This code uses the frequencies devel-
oped from the code in point 2 and standard deviations obtained in the previous
code to obtain the success rate of each rule for various noise levels. This code is
based on the theory discussed in Sects. 4.3.2 and 2.3.

File name: Testing_code_for_GFS.m
Input file: rul309.dat and tune.dat
Output file: f 09_415.dat
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