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Preface to the Second Edition

When we first approach empirical analysis and we are about to estimate our first
model, we may think that the toughest part is the estimation. Actually, that is not the
case unless we decide to program the econometric model from scratch. But again
this is not the case for most of us because, regardless the software or programming
language we use, we just end up passing the names of variables to a ready-to-use
function. Therefore, I may say that from an estimation point of view, the challenge
is theoretical, i.e., it concerns the specification of the model and the interpretation
of the results.

The real tough part, in my opinion, consists in building those variables that we
want to pass to the model. We will have data from different sources that come with
different formats and shapes that we want to put together. Then, we may want to
generate additional variables for our analysis. These are kinds of operations that
we cannot fully automatize yet. Furthermore, data building is key for our analysis
because the model can be theoretically well specified, but if we pass wrong data, the
results will be simply incorrect.

In this context, I want to mention the book by the UNCTAD & WTO, A Practical
Guide to Trade Policy Analysis that is at the base of this book.! The book by the
UNCTAD & WTO is a perfect combination of theory, econometric analysis, and
practice to analyze trade policies. Even though there are now several books dealing
with theory and analysis with a programming language, I still think that this book
is unique in this genre of books because the UNCTAD & WTO’s team provide raw
data files and best practices for building the database for the analysis from scratch
in Stata.

As I immediately realized the value of the UNCTAD & WTO’s book, I thought
that the same approach with the R programming language would be useful for
students and professionals. I take this opportunity to thank the WTO for granting
me permission to use some of their data sets to produce this book.

1'Visit https://www.wto.org/english/res_e/publications_e/practical_guidel12_e.htm to download
the book.
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vi Preface to the Second Edition

This book is a second edition. The reasons for publishing a second edition are
mainly two. First, the WTO has changed the location of the files to download that
are used in this book. Therefore, the link to the data files in the first edition is not
working anymore. Second, some R functions used in the first edition are deprecated
functions. Therefore, it was necessary to replace the link to the data and those
deprecated functions.

However, these are not the only two changes I have made to this second edition.
While reading again the first edition, I was thinking how I could provide more value
to a reader who is approaching R for the first time.

Even though I placed an appendix in the first edition with some basic information
regarding R, I realize that that information is not enough for a beginner given
that the book immediately starts with some advanced operations. Therefore, the
first main modification is that I replaced the appendix in the first edition with
the current Chap. 1. Chapter 1 is mainly based on the corresponding chapter of
my previous book Introduction to Mathematics for Economics with R.> However,
some modifications were made. A few modifications were necessary because of
the different project (e.g., the working directory, the packages used) and purpose
of the book (the introduction to the apply () family functions was moved from
the exercise section in that book to Sect. 1.6.6). Then, I provide more detail about
vectorization in Sect. 1.6.6. On the other hand, Sects. 1.7.2 and 1.8 are completely
new. Section 1.7.2 is about data management operations. I show alternatives to
accomplish a same task in R that mainly use base R functions, functions from the
tidyr and dplyr packages, and functions from the data . table package. You
may choose the functions you are more comfortable with to replicate the chapters
in the book. Section 1.8 shows how to download, unzip, create directories, and copy
files by using solely R. Note that to follow along, you have to set up the R project
as shown in Sect. 1.3.1.

In Chaps. 2, 3, and 4, some modifications consist in code simplification, removal
of typos, and a correction of code. Main modifications concern data visualization
in Chaps.2 and 3. Figure 2.3 now shows in the second panel how to zoom-in in
a plot with ggplot2 while Fig.2.8 has been turned dynamic (in the book it is
printed the static version). Chapter 3 is where I divert more from the original Stata
script and from the first edition of this book in terms of plotting. I may be wrong
but I think that econometricians fail to data scientists in presenting the output.
That is, econometricians mainly present static output while data scientists build app
and dashboard where the user can interact with the results. By using R, we can
easily go beyond static output. Therefore, in Chap. 3, we will learn how to make
interactive plots. Additionally, we will build an interactive dashboard with R Shiny
to present some of the results from Sect. 3.1. However, since R Shiny requires a
bit of a different mindset with respect to the standard R code, we will build it in
Appendix A.

2 Porto (2022). https://link.springer.com/book/10.1007/978-3-031-05202-6.
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Preface to the Second Edition vii

Finally, the code is printed with a new colored style to make it more pleasant and
easy to read.

Ad maiora

Beppu, Japan Massimiliano Porto
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Chapter 1 ®
Introduction to R Chock or

This chapter introduces the reader to R (R Core Team, 2020) and RStudio (RStudio
Team, 2020). The R version used in this book is 4.0.2. You can retrieve the version
info by typing sessionInfo () in the console pane (Sect. 1.3). Following I print
the first lines of the output of sessionInfo () in my console pane'

> sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86 64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)
The RStudio version used in this book is 1.3.1056. You can retrieve this info by
typing the following command in the console pane

> rstudioapi::versionInfo () $version
[1] r1.3.1056"

Note that even though you use a different version of R and RStudio, you can
still run the code in this book. However, you may observe slight differences in the
output. In Sect. 1.6.5, I will discuss a main difference if you use an R version before
4.0.0.

1.1 Installing R

R can be installed on different operating system such as Windows, Mac and
Linux. The reader is referred to the Comprehensive R Archive Network (CRAN)
(http://cran.r-project.org) for the instructions to install R.
If you have Windows, you may refer to:
https://cran.r-project.org/bin/windows/base/

Do not write > because it is not part of the code—we will return to > in Sect. 1.5.1.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 1
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2 1 Introduction to R

If you have Mac, you may refer to:
https://cran.r-project.org/bin/macosx/

1.2 Installing RStudio

RStudio is an integrated development environment (IDE) that makes easier to work
with R. You can download RStudio Desktop from the following website:
https://posit.co/download/rstudio-desktop/

1.3 Introduction to RStudio

Figure 1.1 shows the interface of RStudio. It is divided in 4 panes:

1. Console pane: the console pane (1 in Fig. 1.1) is where you write your code,
called command in R language.

2. Environment/History pane: in the environment/history pane (2 in Fig. 1.1) you
can see all the objects you create in R and the history of your commands.

3. Files, plots, packages,.. pane: the pane number 3 in Fig. 1.1 is where you find
your files, the packages you can install to improve the capabilities of R, where
you can visualize the plots you create etc.

4. Source pane: the source pane (4 in Fig. 1.1) provides you different ways to write
and save your code.

Fig. 1.1 RStudio interface
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1.3 Introduction to RStudio 3
1.3.1 Launching a New Project

A project is a place to store your work on a particular topic (or project). To create a
project follow the procedure as in Figs. 1.2, 1.3, and 1.4.

Click on the R symbol in the top hand right corner, click New Directory > New
Project and then write the directory name (WTO_R for this book) and click Create
project.”

I strongly recommend creating projects whenever you start what you consider
a new project, not related to previous projects. For example, observe Fig. 1.5. This
figure tells us that currently I am in the working directory WTO_R. You can see that
I have other projects—for example a project about Econometrics in R, a project
about creating interactive dashboards in R with Shiny and so on. Those projects
are not related. Therefore, for each of them I created a project. For example, if
I wanted to switch to the project regarding Econometrics, I would just click on
ModellingEconometrics. This operation closes the current project and opens
the project ModellingEconometrics. This means that my working directory
would become ModellingEconometrics. Note also that the R session starts
again when you switch between projects.

Now let’s suppose that you start working without creating a project. In this case
you can check your working directory by typing getwd () in the command pane.
For example, my current working directory is

> getwd ()
[1] "C:/Users/porto/OneDrive/Documenti/R_progetti/WTO R"

Fig. 1.2 Launch a new project (1)

2 If you have already created a directory, you can click Existing Directory.



1 Introduction to R

& version 4,
cepyright (C) . h
Flatform: wBE_Ed-nEd-min

% s
20406+22) == “Taking off agatn”
Feundatizn for Statistical Cosputing
qu32/uEd (84-BiT)

R iz fres software and comes with ABSOLUTELY MO WARRANTY.
¥ou are welcoms %o redistribute it under certain c
Type "Tieensa ()’ or "Vicence()" for distribution detad

ons.

R i3 & collsborazive preject with mamy concribuzers,
Tyee ‘contributers()’ for mirs information and - brac ey
“eitation(}’ on how To cize R or & packages in publicatiens.

3' for some demos. “help()* for on-line halp, or
far an KT browser interface to help. i 0 —
Tyee "a()’ %o quit R,

T

Fig. 1.3 Launch a new project (2)

R varsion 4,0,2 (2020- - e ¢
Cepyright (C) 2020 The R
Plarfora: %5

cal Computing

R 15 fres software and comes with ABSOLUTELY NG WARRANTY.
Yeu ar oma to radistribute 1t under cartain conditions.
Type ‘Ticensa(}’ or "Vicence()” for distribution details.

R it & collaborative project with many con:
Type “contributors()’ for more informas
“eftatien()’ en hew to cite R or B packag

buters

o eSS
n publications.

- Crot S Prageet
Tyee ‘desa()’ for soms dames, halp(}’ fer en-line halp, or
“help.stare(}’ for an wTL browser interface to halp.

Type a0’ to quit k. R

Fig. 1.4 Launch a new project (3)

If you want to change the working directory, write the new directory path in the
brackets of setwd () —again not really recommended. A better practice when you
are already working in R without having created a project would be to associate a
project with an existing working directory (refer to Fig. 1.2).

The working directory includes the following files:

¢ .RData: Holds the objects etc. in your environment;
¢ .RHistory: Holds the history of what you typed in the console;
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Fig. 1.5 Navigate through projects

¢ .RProfile: Holds specific setup information for the working directory you are in.
For example, if you want to disable the scientific notation in R and set the number
of digits at 4 for your output, you can write options ("scipen"=9999,
digits=4) in.RProfile (I did not set it for this project). In this way, this option
will be loaded when you open your project.

— To check if you created the .RProfile, write file.exists ("~/.Rprof
ile™) in the console pane. If you did not, R will return the value FALSE.

— By typing file.edit ("~/.Rprofile") in the console pane you can
create the .RProfile.

Before continuing, let’s create a folder in our working directory called images.
This folder will contain all the figures that we will create in this book. For this task
write dir.create ("images") in the console pane after creating the WTO_R
project (from now on I assume that you are in the working directory WTO_R)

> dir.create("images")

1.3.2 Opening an R Script

We open an R Script file in RStudio as shown in Fig. 1.6. Before starting working,
it is good practice to save it (Fig. 1.7).

To run a code in the R Script, for a single line of code place the mouse pointer
before the code, for a block of lines select it, and then click the Run button (Fig. 1.8),
or press Ctrl + Enter ona Windows system.
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> dir.create("images™)

Fig. 1.7 Save an R Script

1.4 Packages to Install

Packages extend the capability of R.

To reproduce step by step the code in this book, you need to install the following
packages:

¢ lmtest (Zeileis & Hothorn, 2002) (version 0.9.38)
¢ sandwich (Zeileis, 2004) (version 3.0.0)
¢ zoo (Zeileis & Grothendieck, 2005) (version 1.8.8)
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Fig. 1.8 Run button in RStudio

¢ plm (Croissant & Millo, 2008) (version 2.2.5)

¢ ggplot2 (Wickham, 2009) (version 3.3.2)

¢ png (Urbanek, 2013) (version 0.1.7)

e data.table (Dowle & Srinivasan, 2017) (version 1.13.2)
e gifski (Ooms, 2018) (version 0.8.6)

¢ gscales (Wickham, 2018) (version 1.1.1)

¢ stargazer (Hlavac, 2018) (version 5.2.2)

¢ stringr (Wickham, 2019b) (version 1.4.0)

¢ dplyr (Wickham et al., 2019) (version 1.0.2)

¢ ggpubr (Kassambara, 2019) (version 0.4.0)

e tidyr (Wickham & Henry, 2019) (version 1.1.2)

¢ gganimate (Pedersen & Robinson, 2020) (version 1.0.7)
¢ haven (Wickham & Miller, 2020) (version 2.3.1)

¢ plotly (Sievert, 2020) (version 4.9.3)

* stringi (Gagolewski, 2020) (version 1.5.3)

e estimatr (Blairetal., 2021) (version 0.30.4)

¢ shiny (Chang et al., 2021) (version 1.6.0)

¢ shinyFeedback (Merlino & Howard, 2021) (version 0.4.0)
e Hmisc (Harrell Jret al., 2021) (version 4.5-0)

* doBy (Hgjsgaard & Halekoh, 2023) (version 4.6.16)

We will refer to these packages when we use functions from them.?

3In parenthesis the package version used in this book. To retrieve the package version of
ggplot2, for example, after you installed it: packageVersion ("ggplot2"). Again, it
should be fine to replicate this code even though you have a different version.
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Fig. 1.9 Packages in RStudio

1.4.1 How to Install a Package

You can install a package in R with the function install.packages (). Write
the name of the package you want to install in quotation marks. For example,

> install.packages ("ggplot2")

You install the package once. If a new version is released, you can update the
package by using the function update .packages ().

An alternative way—that I prefer—is to install packages in RStudio as shown in
Figs. 1.9 and 1.10

1.4.2 How to Load a Package

After you installed the package, you need to load the package in R with the
library () function to use it. For example,

> library("ggplot2")

You need to load the package you want to use anytime you start a new R session.

1.5 Good Practice and Notation

Before starting to replicate the code in this book, make sure you are in the working
directory WTO_R.



1.5 Good Practice and Notation 9

13 o £ - i o —

Fig. 1.10 Install packages in RStudio

Next step is to open an R Script. Even though we could write the code directly
in the console pane, as we did when we created the folder images, it is better to
write the code in an R Script when we have to write more than one line of code.
The commands in an R Script can be easily traced back, modified and shared with
colleagues. In an R Script, it is possible to add comments using #. Everything that
follows # will be considered as comment and, consequently, will be not run by R. If
you want to write multiple lines of comments you may want to use # /. Additionally,
it is possible to set up a table of contents in an R Script file by typing at least four
trailing dashes (-), equal signs (=), or pound signs (#). This allows to navigate easily
through the script file. For an example refer to Fig. 1.11. Again, this is also useful
if you share the file with a colleague. Therefore, we can say that it is convenient to
work in an R Script.

At the beginning of any R Script, it is good practice to type the packages needed
to implement the code in the file. After writing the code to load the package with the
library () function, you may add, as comment, a keyword to remind about the
use of the package. This would help us to remember the content of the file and make
clear to a third person what will be needed to implement the code in the R Script.

It is also good practice to describe the project and write short comments in the
body of the functions we create. Again this is useful for the author of the script and
for a third person who will read the code.

Finally, a last remark before starting working: to avoid confusion in the text
of this book, we will use the following font for all the words related to the R
code we will write. Additionally, all the functions will be written with parenthesis.
For example, sum () is the base R function for summation while mtable () is a
function that we will write to compute multiplication tables. This notation is adopted
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Fig. 1.11 Table of contents in an R Script file

to distinguish functions from other type of objects that will be written without
parentheses.

1.5.1 How to Read the Code

In this book, you will see the code printed out in two different ways. A colored code
and a black code. The colored code means that I am running the code from the R
Script file while the black code is used to illustrate the code and its outcome that
is printed out in the console pane. In this last case, the code is preceded by >, the
prompt symbol. > is not part of the code written in the R Script file. It signals that
R is ready to operate. However, keep in mind that I run the code from the R Script
file. And I suggest you do the same to replicate the code in this book. Let’s have a
look to see how the two codes look like.
An example of just one line of code in R Script

x <- seqg(-10, 10, 0.1)

and the same code printed in the console pane

> x <- seq(-10, 10, 0.1)

For one line of code it may seem that the difference is not so relevant.
Here, an example with two lines of code in R Script
x <- seq(-10, 10,
0.1)
and the same code printed out in the console pane

> x <- seq(-10, 10,
+ 0.1)
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Now, note that in the code in the console pane there is a + that is missing in the
code in the R Script file. Basically, this + is not part of the code. It means that the
code is continuing on the following line. It is not needed in the R Script.

Let’s see another example. The following example is a plot from Sect. 1.7.1
generated by using the ggplot () function (do not write it now).

This is how the code looks like in the R Script

ggplot (results_test_def, aes(x= Students, y = Total_Score,
fill = ‘PASS/FAIL‘)) +
geom_bar (position = "dodge", stat="identity") +
ylab("Total Score") + theme_classic() +
ggtitle ("Total Score for a 50 question test") +

theme (legend.position = "bottom")

and the same code printed in the console pane

ggplot (results_test_def, aes(x= Students, y = Total_Score,
fill = ‘PASS/FAIL‘)) +
geom _bar (position = "dodge", stat="identity") +

ylab("Total Score") + theme_classic() +
ggtitle ("Total Score for a 50 question test") +
theme (legend.position = "bottom")

Note that in this case we have one + from the R Script file and two + from the
console pane. The + in the R Secript file is part of the code. This is a feature of
the ggplot () code. On the other hand, the second +, directly below the prompt
symbol, >, is not part of our code and it just means that the code continues on the
next line. When R has finished to run the code, the prompt symbol, >, will appear
again meaning that R is ready to take a new command.

1.6 8 Key-Points Regarding R

Is R hard to learn? If we surf the net to find an answer to this question, it seems
that R is hard to learn. In this section, I would like to share my own experience in
learning R with the reader.

R is not the first statistical software I learnt. When I was a PhD student I moved
from a property software to R to work with two professors of mine who used it. And
yes, at the beginning it has been very hard. I was getting errors after errors. I was
spending more time to clean the errors than to accomplish my tasks. However, the
more errors [ solved (mainly thanks to the community of Stack Overflow) the more
I started to appreciate R. When I got used to the R language, I figured out what
made it difficult for me at the beginning. Following I list the 8 key-points regarding
R—with examples—that I think every beginner should grasp when working with R.

Let’s check these points while coding. Open an R Script and save it as
01_INTRODUCTION.R.* Again, I assume that you are in the working directory
WTO R.

4 Note that you do not need to type . R.
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1.6.1 The Assignment Operator

The assignment operator, <-, is used to assign values to objects we create in R.
For example, we store 5 in an object, a. We can compute operations with a as
we were dealing directly with 5

>a <- 5
> a * 2
[1] 10

We can store the result of this multiplication in another object, res. In this case,
we do not see the result of the operation, that is stored in res, unless we run the
object

> res <- a x 2
> res
[1] 10

We can store different kinds of objects, such as functions and plots with
ggplot ().

1.6.2 The Class of Objects

In R, we work with different types of objects. We check the type of object with the
class () function. For example, the object we generated earlier is numeric.

> class(a)
[1] "numeric"
Now, let’s generate an object, b, that stores 2. Note that we add quotation marks.

> b <- m"2n
> b
[1] nomn

Let’s multiply a times b. We should get 10 but
>a * b
Error in a * b : non-numeric argument to binary operator

We get an error. The error says non-numeric argument to binary
operator. We already know that a is numeric. What about b?
> class (b)
[1] "character"

As we can see, although b stores 2, it stores it as character and not as
numeric because we enclosed it in quotation marks. In the R language we cannot
multiply a numeric value by a character value and consequently we get the error.

5 We need to specify that this operation does not work in the R language. In fact, if you are a
Python user you are aware that in Python this is a legit operation that replicates the string many
times as determined by the numeric value.
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Now it is clear what caused the error. We should have stored 2 as numeric
value. Currently, b stores something that is very close to a numeric 2. Basically, we
need to remove the quotation marks. We have the opportunity to introduce a group
of functions that starts with as. such as as.numeric (), as.integer (),
as.character (), as.data.frame (), an so on. These functions coerce a
class of an object to another class. In our case, we use the as.numeric ()
function.

> class (b)

[1] "character"

> b <- as.numeric (b)
> b

[1] 2

>a * b

[1] 10

We got the expected results. Note that to use this group of functions, the object
needs to have the “quality” to be coerced. For example, I store my name in m. It is
a character. In this case we fail the coercion to numeric because R does not
know how to coerce a string of letters to a number.°

> m <- "massimiliano"

> class (m)

[1] "character"

> m <- as.numeric (m)
Warning message:

NAs introduced by coercion
> m

[1] NA

1.6.3 Case Sensitiveness

If we use the same name for an object, the second object overwrites the first object.
Previously, we wrote

> b <- as.numeric(b)

In that case, we overwrote the previous b that was a character. However,
observe the following example,

> b <- 3
> b
[11 3

> b <- 2
> b
[1] 2

> B <- 4
> B
[1] 4

> b
(11 2

% NA stands for Not Available. We will return to NA in Sect. 1.7.2 and Warning message
in Sect. 1.6.8.
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The object b initially stores 3. We overwrite it so that it stores 2. On the other
hand, if we assign 4 to B this does not affect b. In fact, b and B are two different
objects. In other words, R is a case sensitive language.

1.6.4 The c() Function

The c () function is used to concatenate items separated by a comma ,. For
example,

>d <- c(1, 2, 3, 4, 5)

> d

[1] 1 2 3 4 5

> e <- C("a", ||b", IIc|I’ lldll, llell)
> e

[1] "am"™ "bn" nen ngn nen

We can also concatenate the objects we generated. For example, we concatenate
the objects d, a, and b. Note that the values of d, a and b are added to the new
object, dab, in the order we concatenate them.
> dab <- c(d, a, Db)

> dab
[1] 1 23 4552

However, note the following

> de <- c(d,e)
> de
[1] |I1|| V|2H HBII II4II |I5|| Haﬂ llbll IICII |Id“ Heﬂ

Note the quotation marks around the numbers. What is the issue here? This
happens because the c () function cannot store items with different classes.
Consequently, R will coerce the different types of items to a common type. In this
case, R coerced every item to be a character. Then, what about if we are not
satisfied with this solution? We can use the 1ist () function to store the objects in
a single object keeping their characteristics.
> 1 <- list(d, e)
> 1

[[111]
[11 12345

[[2]]

[1] "am" "bn mgn ngn nen

> class (1)

[1] "list"

> class (1[[11])
[1] "numeric"

> class(1[[2]1])
[1] "character"
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1.6.5 The Square Bracket Operator [ ]

The square bracket operator [ ] has the function to subset, extract, or replace a part
of an object such as a vector, a matrix or a data frame. For example, we select the
first entry in the e object as follows
> e[1]
[11 "a"

Remember that the R language starts indexing from 1. Consequently, "a" is
extracted because it is stored as the first entry in the e object.

If we run the e object again, we find that no modification has been made.

> e
[1] "a" "pm mwgn ngnm nen

But as we said, [ ] can be used to replace an item from an object. In this case,
we have just to assign a new value. For example,
> e[l] <- "m"
> e
[1] "m" Ilbll ngn Hd" ngn

We replaced the first entry in e, i.e. "a" with "m". That is, we overwrote the
first element of e.

Let’s rewrite the e object as before. Note that this time instead of typing each
letter we are selecting them from the built-in object letters. Exactly, we are
selecting the letters from 1 to (:) 5 that correspond to letters from a to e.
> e <- letters[1l:5]
> e
[1] Hall llbll ||c|| Hd" Hell

We can generate a new object, e1, and assign the first value from the e object as
follows
> el <- e[l]
> el
(11 "a"

If we want to subset for more that one value, we combine [ ] with the ¢ ()
function. For example,
> elc(1, 3)]

[1] ngm ongn

Subsets for the first element and third element of e, that are "a" and "c",
respectively.

If we want to subset for consecutive values we can use the : operator. For
example, to select entries from 1 to 3
> e[1:3]

[1] ngn llbll ngn

This is what we did with the 1etters object.

Until now we worked with one dimension. Let’s see a few examples with a data
frame that is an object with two dimensions.” We use the data . frame () function

7 You may think of a data frame as an Excel spreadsheet.
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to create a data frame. We name this data frame as df. We create it by using d and
e we created earlier. We set the column title for d and e, numbers and letters,
respectively. Note that to create a data frame it is necessary that the objects we
use—in this case d and e—have the same length, i.e. the same number of items. As
list (), a data frame allows to store different types of object.

> df <- data.frame (numbers = d,
+ letters = e)
> df

numbers letters
1

ool WP
U W N
[ eTiNe o)

The structure of df is rows per columns. Therefore, we need an index for the row
and an index for the column. For example, if we want to select d, we observe that
is located at row number 4 and column number 2. We use again the [ , ] but this
time we add a comma , to separate the row dimension from the column dimension.

> df [4, 2]
[1] "dn

If we want to select more than one element, we use the ¢ () function.

> df[4, c(1, 2)]
numbers letters

4 4 d

> df [c(3, 5), 2]

[1] "cm ver

> df [c(3, 5), c(1, 2)]
numbers letters

3 3 c

5 5 e

In the first case, we selected one row, 4, and two column indexes, 1 for numbers
and 2 for letters. In the second case, we selected two row indexes, 3 and 5, and
one column index, 2. In the last case we selected two row indexes and two column
indexes. What about selecting all the rows for the first column? We leave blank the
spot for the row before the comma as follows

> df[, 1]
[11 1 23 45

Consequently, if we leave blank the spot for the columns after the comma, we
select all the columns for row indexes. For example,

> df[c(2, 4), 1
numbers letters

2 2 b

4 4 d

Note that we can use the name of columns as well to extract the entries for the
corresponding column. For example,
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> df [, "numbers"]
[1] 1 2 3 4 5

> df[2, "letters"]
[1] "b"

We can replace an element from a data frame with the same pattern we saw
before. Let’s replace the entry in the first row and first column with 10.

> df[1, 1] <- 10

> df

numbers letters
10
3

[S SV S
[ e TR e B oI}

5
7
9

Additionally, note that data.frame () before R version 4.0.0 by default
converted character vectors to factors. We can replicate it by setting stringsaAs
Factors = TRUE inthe data.frame () function. Let’s do it

> df <- data.frame (numbers = d,
+ letters = e,
+ stringsAsFactors = TRUE)

> df
numbers letters
1

[S SV S
(G V]
[N e TR e R oI}

Note that now letters in df are stored as factor, i.e., categorical variables
that take a limited number of different values. 1evels is an attribute that provides
the identity of each category.

> class(dfsletters)
[1] "factor"
> df[4, 2]
(11 4
Levels: a b c de
Sometimes factors can be replaced by character data. We use the as . character ()

function to force it to be character. For example,

> df$letters <- as.character(df$letters)
> class(dfsletters)
[1] "character"

Finally, note that we have other two operators acting on vectors, matrices, arrays,
lists, and data frames to extract or replace parts: double square brackets [ [ 1] and
$ operators.® The most important difference is that [ 1 can select more than one
element whereas the other two select a single element.

> 1[[1]
[11 13579

We extracted the content stored at index 1 of the list 1 we generated earlier.

8 & works for lists and data frames.
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Let’s assign names to the objects stored in the list 1 with the names () function.
Note that in R the order is extremely important. In our case, we assign two names,
numbers and letters. The first name will be assigned to the first object stored
at index 1 and the second name will be assigned to the second object stored at index
2. Then, we can select the object by name with $

> names (1) <- c("numbers", "letters")
> 1

Snumbers

[1] 1 2 3 4 5

Sletters
[1] ngn Ilbll ngn Hd" ngn

> l$numbers
[1] 1 2 3 4 5

With $ operator, we can select the column of a data frame by its name

> dfsnumbers
[1] 1 357 9

In addition, we can use it to create a new column in the data frame by typing $

after the name of the data frame and before the name of the column we choose, and
with the values to be assigned to the new column

> df$new <- c(0, 1, 0, 1, 0)
> df
numbers letters new

1 0

[S SV SR
[N eI e R oI}

3 1
5 0
7 1
9 0

1.6.6 Loop, Vectorization, and the apply () Family Functions

Let’s suppose we want to compute the multiplication table for 2, i.e, 2 x 1,2 X
2,2 x 3,...,2 x 10. That is, we want to multiply 2 times 1 and print the result.
Then, multiply 2 times 2 and print the result, and so on until 2 times 10. Basically,
this is a loop. We can generate this kind of loops in R with the for () function. In
the for () function we have three keys elements:

e 1 is a syntactical name for a value (as we will see later we can choose any name
for it)

* 1inis an operator

* a sequence. In this example, we generate a sequence with the seq () function
where we indicate the minimum and the maximum value and the increment
amount between each value. We store the sequence in the s object.

* finally, note that the loop steps are enclosed in curly brackets.

> s <- seq(l, 10, 1)
> 8
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11 1 2 3 4 5 6 7 8 910
> for(i in s){
+ res <- 2 * 1
+ print (res)
+}
[1] 2
[1] 4
[1] 6
[1] 8
[1] 10
[1] 12
[1] 14
[1] 16
[1] 18
[1] 20

What is happening? Basically, when the loop starts, i is 1. Therefore, 2 * 1 is
multiplied, stored in res and printed with the print () function. Then, the loop
moves to the second index in the sequence that in this case is 2. This means that now

iis2and 2 * 2 is multiplied and so on. The loop stops at the end of the sequence,
i.e. the last operation is when 1 is 10.

for () loop
Loops are generated by the for () function.
The structure of a for () loop is the following:

for (value in sequence) {
steps of commands
}

where:

* value: is an syntactical name for a value. It can be any name as we will
see in a following example;

e 1in:is an operator that points where to look for the value;

* sequence: a vector or a data frame with values to loop over;

* steps of commands: the steps of commands you want the loop go
through. They are enclosed by { }

However, in R we can avoid writing loops like the previous one because we can
benefit from the vectorization of R. We can obtain the same results just multiplying
2 by a vector from 1 to 10 as follows. Note that in this case we use the colon operator

: to generate the same sequence as before.
>n <- 1:10

> n

(1] 1 2 3 4 5 6 7 8 910

> 2 % n
[1] 2 4 6 8 10 12 14 16 18 20

However, extra care is needed when using vectorization. For example, in the
previous case 2 is seen by R as a vector of length 1 that is multiplied by a vector of
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length 10. Therefore, R recycles its value to match the vector of length 10. In this
case it is fine for us. But observe the following example

> vl <- c(2, 3)
> v2 <- c(7, 9, 11)
> 100 + vl
[1] 102 103
> 100 + v2
[1] 107 109 111
> vl + v2
[1] 9 12 13
Warning message:
In vl + v2 :
longer object length is not a multiple of shorter object length
> vl x v2
[1] 14 27 22
Warning message:
In vl = v2 :
longer object length is not a multiple of shorter object length

The vectors v1 and v2 have different lengths. If we add each of these vector by
100, the value of 100 is recycled to match the length of the vectors and produce the
expected results. However, if we add or multiply the two vectors with each other, a
warning message is produce telling that the two objects have different lengths. The
operations in both cases has been computed but note that in both cases the value 2
in v1 is recycled to match the length of v2. In these cases we have an incomplete
cycle. We need to be very careful to incomplete cycles in our computation when
implementing vectorization.

Additionally, note that some functions in R are vectorized. For example, let’s
load the built-in data set cars. This is a data frame with 50 observations on 2
variables, speed and stopping distance. If we want to compute the mean of these
two variables, we just use the colMeans () function

> data("cars")
> head(cars)
speed dist
4 2
10
4
22
16
6 9 10
> colMeans (cars)
speed dist
15.40 42.98

Uk W N
W 9 3

that is, the average speed is 15.40 mph and the average stopping distance is 42.98
ft.

Another kind of loop that is often used is the while () loop. The while () loop
is trickier than the for () loop. The main difference is that the for () loop iterates
over a sequence while the while () loop iterates over a conditional statement. The
issue is that a sequence can be very long but it is finished, i.e. at the end of the
sequence the loop will stop. On the other hand, if we wrongly define the conditional
statement or we forget to write the step to modify the conditional statement in the
while () function, the loop will iterate infinitely times. If this happens, just break
the loop by clicking on the st op button that will appear in the console pane.
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Let’s consider a simple example. Let’s say we want to print the numbers from
10 to 0 included with a while () loop. First, we assign the starting point, 10, to
x. Then, we write the while () loop. The conditional statement in our case is that
x > 0. That is, the loop has to iterate as long as x is greater or equal to 0. Now, keep
in mind that we assigned 10 to x. That is, x is greater than 0. If we do not modify
x in the while () loop so that at a given moment x will turn less than 0—and
the fulfillment of this condition stops the loop—the loop will run infinitely times
because x remains greater than 0. Note that also for the while () loop the steps of
commands are enclosed by { } .Incode,

x <- 10

while(x >= 0){
(x)

+ + Vv
Lo}
R
-
=
o

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

O NMWH®UOJ WK

As you can see, in the body of the while () function, print (x) prints out
x. Then, we assign a new value to x every time the loop iterates. Again, let’s go
through each step. At the beginning, x is 10. Is 10 greater than 0? That’s true. The
conditional statement is satisfied. Then, x is printed, i.e. its value 10 is printed.
Before the end of the loop we reassign a value for x. In this case we subtract 1 from
x meaning that x becomes 9. Let’s ask: is 9 greater than 0?7 Again, that’s true. And
again the conditional statement is satisfied and the same steps are implemented. But
now, x becomes 8. That is still greater than 0. Now let’s say that x has become 1.
Its value is printed and the value O is assigned to x. The conditional statement that
we wrote is true for x > 0. Meaning that the conditional statement is still satisfied.
Therefore, 0 is printed out. But now x becomes —1. This violates the conditional
statement. The conditional statement has turned false and this stops the loop.

If we implement the same task with the for () loop
> s <- 10:0
> for(i in s){
+ print (1)
+ )
(1l
[1]
[1]
[1]
(1l
[1]
[1]
[1]
[1]
(1]
[1]

o

O MWK UOJ oK
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As you can see, in this case we already know when the loop will eventually stop.
A “side effect” of using a for () loop is that at the end of the loop the “unwanted”
i object is created storing the last value—in this case 0.

while () loop
The while () loop is another common way to implement loop in R.
The structure of a while () loop is the following:

while (conditional statement){
steps of commands
expression that will turn the conditional statement to false

}

where:

e conditional statement: the condition that activates the loop;
* steps of commands: the steps of commands you want the loop go
through. They are enclosed by { }

Again, for this simple task we can avoid using any loop. In fact, by running the
sequence s we generated, we obtain the countdown as well

> s
[1] 10 9 8 7 6 5 4 3 2 1 0

Finally, the apply () family functions that include apply (), lapply (),
tapply (), vapply (), and mapply () substitute the loop by applying another
function to all elements in an object. For example, the object can be a matrix,
an array or a data frame in the case of the apply () function; a vector, a data
frame and a list in the case of sapply () and lapply (). The difference between
sapply () and lapply () is that the former returns as result a vector, a matrix or
a list, while the latter returns a list.

Let’s write a function’ mean_dev () to compute the deviation from the mean,
i.e. how far the values of interest are from the average of those values

> mean_dev <- function (x) {
+ X - mean (x)

+}
Let’s test it with the vector v3 <- c (1, 4, 10)

> v3 <- c(1, 4, 10)
> mean (v3)

[1] 5

> mean_dev (v3)

[1] -4 -1 5

We see that the average of the values of v3 is 5. Consequently, the mean deviation
is —4, —1, and 5.

9 More on functions in Sect. 1.6.7.
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Now our task is to apply the mean_dev () function to the columns of the cars
data frame. We use the apply () function for this task. To make sense of the
apply () family functions, I suggest that we read it from the last argument to the
first argument, that is “apply the mean dev () function to the columns (2) of the
data frame cars”
head (apply(cars, 2, mean_dev))

speed dist
-11.4 -40.98

]
[2,] -11.4 -32.98
[3,] -8.4 -38.98
[4,] -8.4 -20.98
[5,1] -7.4 -26.98
[6,] -6.4 -32.98

Note that we do not need to write the parentheses of the function in the apply ()
function and that 2 refers to the columns of the data frame while 1 refers to the rows
of the data frame. We will see another example with sapply () in Sect. 1.6.7.

1.6.7 Functions

Now, let’s continue with the example of the multiplication table and let’s say we
want to compute the multiplication table for 3 as well. And then for 4, 5, and so on.

n

3 6 9 12 15 18 21 24 27 30

n
[1] 4 8 12 16 20 24 28 32 36 40

n

5

10 15 20 25 30 35 40 45 50

In this code, we can observe that nn is in common and the output changes based on
the the inputs 3, 4, and 5. In this case, we may think to build a function to compute
these calculations. We build a function with the function () function. We store
it in an object, that in this case we call mtable.

> mtable <- function(x) x x* n

Our function is now ready. If we want to compute the multiplication table for 2,
we just need to write 2 in mtable (). This value will be used to replace x in x *
n in the function.
> mtable(2)

[1] 2 4 6 8 10 12 14 16 18 20

And, of course, if we want the multiplication table for 5 we write

> mtable (5)
[1] 5 10 15 20 25 30 35 40 45 50
We can store the results of a function in an object as well. For example,

> mtabl0 <- mtable(10)
> mtabl0
[1] 10 20 30 40 50 60 70 80 90 100
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We can note two critical points of our function. First, n is defined outside the
environment of the function. Second, n is not flexible. What about computing the
multiplication table up to 15? and up to 20? We should rewrite n each time. Clearly,
this would not be efficient. Let’s try to fix mtable ().

> mtable <- function(x, w = 10) {
+ n <- l:w

+ res <- Xxn

+ return (res)

+

}

We did what we wanted: (1) define n inside the environment of the function; and
(2) make it flexible. But what did we do? We added a new argument to our function,
w. Note that inside the function w is the end value of a sequence stored in n that
starts with 1. In addition, we set w as a default argument. That is, it is set to 10. This
choice depends on the fact that in most cases we want the multiplication table up to
10. So we do not want to bother ourselves typing every time 10. But this time, if we
want a multiplication table up to 15, we just need to type 15 in the second entry of
the function. Finally, note that we enclosed the code in curly brackets { }. We need
them when we write the code of a function on multi-levels. However, it would have
been more appropriate if we had used the curly brackets also for the first example
of mtable ().

Functions
You can build your own functions using function (). For example, a
structure of a function can be the following:

name_function <- function(x1, x2){
stepl <- x1 and some operations
step2 <- x2 and some operations
output <- stepl + step2
return (output)

where:

* name function: you assign the function to an object;

e function (): in the parenthesis you type the arguments of the function,
x1 and x2 in this example;

* steps of commands: the steps of commands you want the function
go through. They are enclosed by { }

e return ():is a function that returns the object from inside the function
to the workspace.

Basically, you type step by step what the function needs to do. It will take
the arguments from inside the parentheses in function.

Now, let’s see an example with the fixed mtable (). First, let’s compute the
multiplication table of 2 up to 10.
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> mtable (2)
[1] 2 4 6 8 10 12 14 16 18 20

And now up to 15.

> mtable (2, 15)
[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Furthermore, note that the order of the arguments in the function matters unless
we explicitly write the argument names. For example,

> mtable (15, 2)
[1] 15 30
> mtable(w = 15, x = 2)
[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

In the first case, 15 takes the place of x in mtable () while 2 takes the place
of w in mtable (). On the other hand, we do not need to respect the positioning
of the arguments if we explicitly write the names of the arguments in the function
as in the second case. In other words, “R uses either named matching or positional
matching to figure out the correct assignment” (Georgakopoulos, 2015, p. 28).

Additionally, note that mtable () computes the multiplication table for one
input at a time. However, we know now that we can use the apply () functions
to compute the multiplication tables for multiple values. Let’s compute the multipli-
cation table for 1 to Sup to 8. Let’s use the sapply () function. To use an argument
of the function (in our case w = 8), we write it after the name of the function we
want to use it. We nest the sapply () itin t () to transpose the results

> s <- 1:5
> t(sapply(s, mtable, w = 8))

(,11 [,21 [,31 [,41 [,51 [,el [,7]1 I[,8]
[1,1 1 2 3 4 5 6 7 8
[2,1] 2 4 6 8 10 12 14 16
[3,1 3 6 9 12 15 18 21 24
[4,1] 4 8 12 16 20 24 28 32
[5,1 5 10 15 20 25 30 35 40

Finally, what I like about functions in R is that they can be seen as a neat
correspondence of how we state mathematical functions. Let’s consider a simple
example. Let’s suppose that the cost, C, of renting a car in dollars only depends
on the number of days, d, we rent it and how many km, k, we drive. We are just
expressing in English a function of two variables, C = f(d, k). Let’s say that
renting a car costs 30$ per day and 0.15$ per km. We can write the functional
form to compute the rental cost as C = f(d, k) = 30d 4 0.15k. Therefore, what
is the cost of renting a car for 2days and driving it 100km? Or, in other words,
C = f(d =2,k =100) (we can omit d and k as well, i.e., C = f(2, 100)).

In R, we set the function and find the solution as follows

> renting car <- function(days, km){
+ res <- 30+days + 0.15xkm

+ return (res)

+}

> renting car (2, 100)

[1] 75

This means that the cost of renting a car for 2 days and driving it 100 km is $75.
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The final remark is that we could safely write C <- function(d, k),
and, consequently, res <- 30xd + 0.15+k and C(2, 100). Naturally,
renting car () and C() produce the same results and they are both fine.
However, clearly, the former is more readable and should be preferred.

1.6.8 Errors

I want to conclude this section talking about errors. When we make an error, we get
an error message in red that can be intimidating and frustrating. When I started
to learn R T have to admit it was quite discouraging. In addition, I learned R
after learning a property statistical software that is objectively more user-friendly.
Consequently, as a beginner in R I was making a lot of errors. As you can imagine,
the errors indeed did not discourage me. I got even more passionate about R after
solving the errors I was doing. I think, indeed, that when we solve errors we really
learn how to use R (but this can be extended to any software). This short introduction
about my experience is just to stress that everyone makes errors, above all at the
beginning, and even the most expert users. Here I would like to talk about the most
frequent errors I made when I started to learn R.

Syntax Errors

R is a language and as any language has its own grammar rules. For example, if
in English I write “I, want to learn R” an English teacher would tell me I made
an error because I put a comma between the subject and the verb. And something
similar happens in R.

We can make “syntax errors” in R, i.e. errors due to write a part of code in the
wrong place or to forget an essential element of the code. This kind of errors is the
most recurrent case and, generally, it is extremely easy to fix. For example,
>a«<-c(6, 7, 8, 9 10)

Error: unexpected numeric constant in "a <- c(6, 7, 8, 9 10"

Basically, we just forgot the comma , between 9 and 10.

Let’s see another example. In R, we use many functions developed by the R
Community members. All these functions come with documentation regarding their
use. We access this documentation by typing a question mark before the name of
the function or by using the help () function. For example,
> ?print
> PUwifn
> help("as.numeric")

For example, let’s use the 1m () function to fit a linear model. We generate some
random data for the independent variable, x, by using the rnorm () function and
then we generate the dependent variable y. We build then a data frame, df, with x
and y and we print the first six entries with the head () function. Finally, we fit a
linear model with the 1m () function.
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> X <- rnorm(100)
>y <- 10 + 5xx
> df <- data.frame(x, y)
> head (df)
x y

-1.1161285 4.419357
1.3803809 16.901904
-1.7812245 1.093877
0.9383783 14.691891
-0.4576268 7.711866

6 -1.7358237 1.320882

> modell <- 1lm(y, x, data = df)
Error in formula.default (object, env = baseenv()) : invalid formula

Uk W N

However, we got an error. If we investigate the documentation for the 1m ()
function, we find out that we incorrectly wrote the formula, i.e. the description of
the model. In fact, we should have used the regression operator ~ to separate the
dependent variable from the independent variables. We will correctly use the 1m ()
function from the next chapter.

class() Type Errors

This is the kind of error that we encountered when we tried to multiply a numeric
value by a character value. If we compare this “class errors” with the “syntax
errors”, in this case we are correctly writing the code but the objects we use are
not appropriate. Let’s consider another example.

Let’s build a data frame with the data . frame () function.

> df <- data.frame(a = c(1, 2)
+ b = c(3, 4))
> df

ab
113
22 4

Now this df object looks very similar to a matrix. Let’s try to make a matrix
multiplication with the operator % % %. To investigate the usage of this operator type

ne on
?PEXT".

Matrix Multiplication
Description

Multiplies two matrices, if they are conformable. If one argument is a
vector, it will be promoted to either a row or column matrix to make the two
arguments conformable. If both are vectors of the same length, it will return
the inner product (as a matrix).
Usage

X %*% y
Arguments

X, y numeric or complex matrices or vectors.



28 1 Introduction to R

After reading the documentation for %%, do you think we can make a matrix
multiplication between df and df? Let’s try
> df %$+% df

Error in df %+% df : requires numeric/complex matrix/vector arguments

As you correctly imagined, we got an error. As the documentation and the error
message tell us, the operator %+ % requires numeric or complex matrices or vectors.
But we have a data . frame type object.
> class (df)

[1] "data.frame"

Since this object is very similar to a matrix, let’s try to coerce it to a matrix

type object by using this time the as .matrix.data.frame () function.

> df <- as.matrix.data.frame (df)
> class (df)
[1] "matrix" "array"

Now, let’s compute the matrix multiplication again.

> df %$+% df

a b
[1,1 7 15
[2,] 10 22

And as expected now it works.

We should keep in mind that in some cases we can apply operations only with
some type of objects. Therefore, it is very important to be aware about the type of
objects we are working with.

Warning Message

Let’s write a conditional statement with the 1 f () function. We create an object, x,
and set it equal to 10. We tell R to print "yes" if x == 10.'° Because x is 10, the
conditional statement is true and, consequently, the function prints "yes". Then,
let’s set x <- 9. In this case the function does nothing because now x is equal to
9 and therefore the conditional statement is false.

> x <- 10

> if (x == 10) print("yes")
[1] Hyesll
> X <- 9
> if(x == 10) print("yes")

But note the following.'!

> X <- 5:15

> X
[1] 5 6 7 8 9 10 11 12 13 14 15
> if (x == 10) print("yes")

10 Refer to Table 1.3 for logical operators.

1T Note that if you have the latest version of R you will not able to replicate the warning message
since the 1 f () function returns an error in the latest version with the same example.



1.6 8 Key-Points Regarding R 29

Warning message:
In if (x == 10) print("yes")
the condition has length > 1 and
only the first element will be used
> if (x > 10) print("yes")
Warning message:
In if (x > 10) print("yes")
the condition has length > 1 and
only the first element will be used

In these last cases, R prints a Warning message. We have to make a
distinction between error and warning messages in R. When we get an error the
function does not run. Instead, in the case of the warning message, it runs but R tells
us something is unexpected.

In the example, the warning message says that the condition has
length > 1, because we are working with an object that stores multiple values,
and that only the first element will be used. In this case, the first
value is 5 and therefore the function does nothing. But if the first value is 10 we
have the following

> x <- 10:15

> if (x == 10) print("yes")
[1] "yes"

Warning message:

In if (x == 10) print("yes")

the condition has length > 1 and

only the first element will be used

The function prints "yes" because the first value now is 10. To convince
ourselves that the function is really working let’s add an else expression. Let’s
rebuild the x object from 5 to 15.

> X <- 5:15

> 1f(x == 10){
+ print ("yes")
+ } elsef

+ print ("no")

+

[1] "no"
Warning message:
In if (x == 10) {

the condition has length > 1 and

only the first element will be used

And as you can see now the function prints "no" because the first element, 5, is
not equal to 10. However, we still get the warning message.

We could work out this warning message by nesting the any () function in the
if () function as follows

> X <- 5:15
> if (any(x == 10)) print("yes")
[1] nyegt

However, let’s say we want something different, i.e. that the function is evaluated
at each value of x. A better solution would consist in picking another function. In
this case, the ifelse () function
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> ifelse(x == 10, "yes", "no")

[l] "no" "no" "no" "no" "no" ”yes“ "no" "no" "no" "no" "no"
> ifelse(x > 10, "yes", "no")

[l] |Inoll "no" ”no" "no" llnou |Inoll Hyesll |Iyes|| “yes" llyesll "yes"

Finally, two pieces of advice. First, if we cannot solve the error after reading the
documentation we simply can copy and paste the error or the warning message in a
web search engine to look for more explanations and examples. You will find that
in most of the cases your question has been already answered by the R Community.
Second, since most of the R Community members communicate in English, it is
convenient to set R in English. In this way R will print the error and warning
messages in English. Consequently, we can find more examples for the case we
are interested in.

No-Error Message Error

In this book, we will not code functions from scratch. However, we should be aware
about the most difficult errors to deal with that mainly occur when we build our own
functions: that is, the function we write runs but it does not do what we programmed
it for. The main issue is that because it runs we do not get any error or warning
message so we may wrongly think that it properly works. An important check
when we build our own function is to test it to replicate well-known results and
examples. For several examples on writing functions from scratch you may refer to
Introduction to Mathematics for Economics with R (Porto, 2022).

1.7 Two Examples with R

In this section, we will go through some of the main features of R with two
examples. In the first example in Sect. 1.7.1, we will see R as calculator, as pro-
gramming language (interactive mode, loop and functions), as statistical software
and as graphical software. In the second example in Sect. 1.7.2, we will focus on
data management operations with two dummy data frames.

1.7.1 An Overview of R with a Step by Step Example

Suppose a student took a test made up of 50 questions. She gets 3 points for each
correct answer. In total she gave 43 correct answers. She wants to know her total
score. We can make this multiplication in R

> 43%3
[1] 129
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Table 1.1 Math operators

Operator | Description Example | Output
+ Addition 2 + 5 7

- Subtraction 5 -2 3

* Multiplication |5 * 2 10

Division 5/ 2 2.5

~ Exponentiation | 572 25

% Remainder 5 %% 2 1

$/% Integer division |5 %/% 2 |2

Table 1.2 Math functions

Operator Description Example Output
sum () Sum of vector elements sum(5, 2, 3) 10
cumsum () Cumulative sums cumsum (c (5, 2, 3)) 5 7 10
min () Minima min(5, 2, 3) 2

max () Maxima max (5, 2, 3) 5

mean () Average mean(c (5, 2, 3)) 3.333333
sqgrt () Square root sgrt (25) 5

abs () Absolute value abs (-5) 5

In this way, we are using R as calculator. Table 1.1 reports the most common
operators. In addition, there are some built-in functions that extends the math
capability. Refer to Table 1.2.1

Continuing with the example, we know that the total score of the student is 129.

However, if you skipped the first lines of the introduction to this section, this
number would say nothing to you. Let’s see how to reorganize the information.
We generate an object, n_correct answer, that stores the number of correct
answers. We accomplish this task using the assignment operator <-. Then, we
generate another object, point, that stores the points per correct answer. Finally,
we multiply these two objects.

> n_correct_answer <- 43
> point <- 3
> n_correct_answer * point
[1] 129
Now the information is clearer. Let’s add a new step. Let’s store the result of the
multiplication in a new object, total score.

> total_score <- n_correct_answer x point

Note that now we do not see the output of the operation because it is stored in
total score. To see the output, we have to run the object

> total_score
[1] 129

12 Note that sum () ,min (), max () treat the collection of arguments as the vector. This is not
the typical behaviour in R. In cumsum () and mean (), the ¢ () function combines values into a
vector (Burns, 2012, p. 8).
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The number in the brackets points out the position of the printed element. In this
case, 129 is the first element. Since we have only one element it may seem not a
useful information. Let’s see the output of cumsum (1:25), where :, the colon
operator, generates regular sequences, in this case, from 1 to 25. The output says
that 120 is located at the 15th index.

> cumsum(1:25)
[1] 1 3 6 10 15 21 28 36 45 55 66 78 91 105
[15] 120 136 153 171 190 210 231 253 276 300 325

Let’s continue with the example. Suppose now we want to write a program that
allows the students to enter their number of correct answers and calculates the total
score. For this task, we use the readline () function. readline () reads a line
from the terminal in interactive use.

We will assign to the object n correct answer the following input:
readline ("Enter your number of correct answers: "). Note
that the former score of the student will be overwritten.

When we run this object, R will ask to enter the input as follows

> n_correct_answer <- readline("Enter your number of correct answers: "
Enter your number of correct answers:

If a student scored 39 she can enter it as follows.

> n_correct_answer <- readline("Enter your number of correct answers: "
Enter your number of correct answers: 39

Now we multiply again the number of correct answers by the points, point.

> total_score <- n_correct_answer x point
Error in n_correct_answer  point
non-numeric argument to binary operator

But we got an error. The message says that we have a non-numeric argument
even though we multiply 39 by 3. Why’s that? Let’s investigate our objects.

> class (point)
[1] "numeric"

By using the class () function we find out that point is a numeric class
object. Let’s check n _correct answer.

> class (n_correct_answer)
[1] "character"

We found where the problem is. Even though we entered a number, 39, it
is returned by the function as a character. Basically, we cannot multiply a
number by a string. Therefore, we got an error. Let’s solve the problem by coercing
n_correct_answer from character to numeric. We do this by nesting the
previous function in the as .numeric () function
> n_correct_answer <- as.numeric(

+ readline ("Enter your number of correct answers: "))
Enter your number of correct answers: 39
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Now, let’s check again the score of the student.

> total_score <- n_correct_answer % point
> total_score
[1] 117

This student scored 117. We solved the problem. This example shows that it is
important to know the class of an object we are dealing with because it can happen
that some operations or functions work only with objects with a specific class.

Suppose now that we evaluate the tests of 7 students and collect the numbers of
correct answers in the tests: 43, 39, 41, 36, 38, 48, 33. We want to calculate their
scores.

We can do this by using a loop. First, we generate an object to collect the total
score, total score. Second, we collect all the numbers of correct answers in a
vector using the ¢ () function,n_correct answer. Third, we define the object
that stores the points, point.'> Then we use a loop by using the for () function,
where 1 is a syntactical name and in is an operator followed by a sequence. Note
that the operations are enclosed in braces. The print () function prints out the
output. How does the loop work? At the beginning, the i element is 43. This is
multiplied by point and the result is stored in total score and it is printed.
Then, the loop starts again. Now the i element is 39. This is multiplied by point
and the result is stored in total score and then it is printed. This is repeated for
the length of the sequence. In this case, 7 times.

total_score <- 0
n_correct_answer <- c(43, 39, 41, 36, 38, 48, 33)
point <- 3
for (i in n_correct answer) {
total_score <- i % point
print (total_score)

+ + v Vv Vv Vv

+ )

[1] 129
[1] 117
[1] 123
[1] 108
[1] 114
[1] 144
[1] 99

We obtained the scores for the 7 students. However, in this case the loop is
not the best choice for this computation. We can just use the R’s vectorization
feature. Basically, we just multiply the vector, n _correct answer, by the
scalar, point.

> names_stud <- c("Anne", "John", "Bob", "Emma",
+ "Tony", "Sarah", "James"

> names (n_correct_answer) <- names_stud

> n_correct_answer

13 Note that if you did not remove point or clear the objects from the workspace, you do not need
to generate again point to make the loop work. However, we generate it again to make our work
easy to understand. On the other hand, we do not really need to generate total score out of
the loop. We could remove it from the workspace with rm () and this would not affect the loop.
However, when we want to store multiple results it is necessary to initialize it. We will talk again
about the initialization of total score in a few pages.
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Anne John Bob Emma Tony Sarah James
43 39 41 36 38 48 33

> total_score <- n_correct_answer x point

> total_ score

Anne John Bob Emma Tony Sarah James
129 117 123 108 114 144 99

Note also that we generated an object, names stud, that contains the
names of the students. By using the names () function, we set the names of
n_correct_ answer. Keep in mind that the order is key in R. For example,
Anne is stored at index 1 in names_stud. Consequently, it is set as name of the
item stored at index 1 inn_correct_answer.

Let’s make another example with for () loop. Suppose that the students enter
the number of correct answers in turn. We use the readline () function inside
the loop.

> for(students in l:length(namesistud)){

+ n_correct_answer <- as.numeric(

+ readline ("Enter your number of correct answers: "))
+ total_score <- n_correct_answer * point
+ print (total_score)

+ )

Enter your number of correct answers: 43
[1] 129

Enter your number of correct answers: 39
[1] 117

Enter your number of correct answers: 41
[1] 123

Enter your number of correct answers: 36
[1] 108

Enter your number of correct answers: 38
[1] 114

Enter your number of correct answers: 48
[1] 144

Enter your number of correct answers: 33
[1] 99

In this example, first note that we use the name students as a syntactical name
for a variable (basically, you can choose any name even though i for the first loop
and j for the second loop are quite standard). Second, note how the sequence is
written. We know that after in the sequence begins. We already know the meaning
of the : operator. Basically, we generated a sequence that starts at 1 and ends at 7.
Why seven? Because 7 is the length of the vector names_stud. In fact, it contains
7 elements, i.e. 7 students. Run length (names_stud) to verify it. length ()
gets or sets the length of vectors (including lists) and factors, and of any other R
object for which a method has been defined.
> length (names_stud)

(1 7

Additionally, instead of inputing the score after Enter your number of
correct answers: , I write the score after the loop function in the R Script
file like this

43
39
41
36
38
48
33
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and run each of them them every time Enter your number of correct
answers: is printed.

In the previous loop, we printed the results. However, in this way they cannot be
used. Therefore, this time we run again the same loop but we remove the print ()
function. The results will be stored in total score. Since we have more than one
result to store, this time it is necessary to initialize the total score object. In the
previous example, we did not really need it because we just printed out each result
every time the loop ran. Note that you can initialize the loop in different ways. In this
example, we write total score <- numeric (length(names_ stud))
that returns an object with seven 0, the length of names_stud. These zeros will
be replaced by the result of each student every time the loop iterates.

In this regard, note how we write total score inside the loop. We use the
square brackets [ ] to replace the zeros with the results of the students when the
loop iterates (more on this in a few lines). However, note that if we do not subset
using the square brackets [ ] only the last score will be stored because each time
the loop runs it will overwrite the previous value.

> point <- 3

> names_stud <- c("Anne", "John", "Bob", "Emma",
+ "Tony", "Sarah", "James"

> total_score <- numeric(length(names_stud))

> total_score

[1] 0 0 00O0O0O

> for (students in seqﬁalong(namesistud)){

+ n_correct answer <- as.numeric(

+ readline ("Enter your number of correct answers: "))
+ total_score[students] <- n_correct_answer  point
+}

Enter your number of correct answers: 43

Enter your number of correct answers: 39

Enter your number of correct answers: 41

Enter your number of correct answers: 36

Enter your number of correct answers: 38

Enter your number of correct answers: 48

Enter your number of correct answers: 33

> total_score

[1] 129 117 123 108 114 144 99

Finally, note the in for () wereplaced for (students in 1:length(x))
with for (students in seq along(names_stud)). seq along()
also generates a sequence

> seqg_along (names_stud)
[1] 1 23 456 7

Now let’s break the loop down into pieces to analyse what it does.
First, let’s again initialize the object to store the results of the loop

> total_score <- numeric(length(names_stud))
> total_ score
[1] 0 000O0O0O0

When the loop starts, students is 1, that is the beginning of the sequence.
Therefore, let’s replace students with 1. The number of correct answers for the
first student was 43. Consequently, the total score is replaced at the first entry.
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> n_correct_answer <- as.numeric(

+ readline ("Enter your number of correct answers: "))
Enter your number of correct answers: 43

> total_score[l] <- n_correct_answer x point

> total_score

[1] 129 0 0 0 0 0 0

What about if we run this last chunk of code to simulate the second iteration of
the loop? Substitute students with 2 and give 39 as number of correct answers
for the second student and check the output.

Until now the students know their score but they do not know yet if they passed
the test. Let’s find it out.

First, let’s write the information we have, i.e. names of the students who took the
test and their number of correct answers, in a data frame. Use the data . frame ()
function to build the data frame named results_test.

> names_stud <- c("Anne", "John", "Bob", "Emma",
+ "Tony", "Sarah", "James"
> n_correct_answer <- c(43, 39, 41, 36, 38, 48, 33)
> results_test <- data.frame(names_stud,
+ n_correct_answer)
> results_test
names_stud n_correct_answer

1 Anne 43
2 John 39
3 Bob 41
4 Emma 36
5 Tony 38
6 Sarah 48
7 James 33

Now we build a function, £inal test, that will return the score and the
information about if the students passed the test.

results_test_1 <- cbind(data, total_score, outcome)
return(results_test_1)

> final test <- function(n, data, tot_g,

+ test per, point = 3){
+ total_score <- datal, n]l x point

+ full score <- tot_g x point

+ threshold <- full score % test_per

+ outcome <- ifelse(total_score > threshold,
+ "PASS",

+ "FAIL")

+

+

+

——

The function takes five arguments: n, data, tot_qg, test per and point.
n refers to the column in the data set that contains the number of correct answer.
It can be the name of the column as a string or the corresponding column index.
In our case, the name of the column in the data frame is n_correct answer.
data is the name of the data set with the information about the test. In our
case, the name of the data set is results_test. tot_ g is the total number
of questions in the test. test per is the percentage that defines the passing
threshold. Note that we set a default value, 3, for point. Between the braces, we
define the steps of the function. First, we calculate the total score of the students,
total score as n_correct answer multiplied by point. Note how we
select the column with the number of correct answer in the data frame. We will
talk about this shortly. Second, we calculate the maximum score, full score,
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as tot g multiply by point. Third, we calculate the threshold, threshold,
as full score multiplied by the passing percentage, test per. Fourth, we
generate a variable outcome that takes value "PASS" if the total score is
greater than the threshold, and "FAIL" otherwise. We use the ifelse ()
function to accomplish this task. Then, we combine by columns the data set, data,
that represents our data set, with total score and outcome by using the
cbind () function. We assign this operation to a new object, results_ test 1.
Finally, we will use the return () function to return the data frame from inside
the function to the workspace.

Now, we are ready to test it. Suppose that only the students who scored more
than 80% of the maximum score pass the test. In this case

> final_test(n = "n_correct_answer",
+ data = results_test,
+ tot_g = 50,
+ test_per = 0.8)

names_stud n_correct_answer total_score outcome
1 Anne 43 129 PASS
2 John 39 117 FAIL
3 Bob 41 123 PASS
4 Emma 36 108 FAIL
5 Tony 38 114 FAIL
6 Sarah 48 144 PASS
7 James 33 99 FAIL

Let’s try the function by replacing the column name for n with the column index,
in our case 2

> final test(n = 2,
+ data = results_test,

+ tot_g = 50,
+ test_per = 0.8)

names_stud n_correct_answer total_score outcome
1 Anne 43 129 PASS
2 John 39 117 FAIL
3 Bob 41 123 PASS
4 Emma 36 108 FAIL
5 Tony 38 114 FAIL
6 Sarah 48 144 PASS
7 James 33 99 FAIL

As expected, we obtain the same results. We have only three students who passed
the test. Let’s lower the percentage to 70%.

> final_test(n = "n_correct_answer",
+ data = results_test,
+ tot_g = 50,
+ test_per = 0.7)

names_stud n_correct_answer total_score outcome
1 Anne 43 129 PASS
2 John 39 117 PASS
3 Bob 41 123 PASS
4 Emma 36 108 PASS
5 Tony 38 114 PASS
6 Sarah 48 144 PASS
7 James 33 99 FAIL

In this case, only one student did not pass the test.
Note that we can modify the default value for point as follows:

> final_test(n = "n_correct_answer",
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+ data = results_test,
+ tot_g = 50,
+ test_per = 0.7,
+ point = 4)

names_stud n_correct_answer total_score outcome
1 Anne 43 172 PASS
2 John 39 156 PASS
3 Bob 41 164 PASS
4 Emma 36 144 PASS
5 Tony 38 152 PASS
6 Sarah 48 192 PASS
7 James 33 132 FAIL

Let’s go back to the first case, i.e. an 80% passing percentage. This time let’s
assign this operation to a new object, results test def to calculate some
statistics about our data set. Remember that in this case, you have to run the object
to see its content.

> results_test_def <- final test(n = "n_correct_answer",
+ data = results_test,

+ tot_g = 50,

+ test_per = 0.8)

> results_test_def
names_stud n_correct_answer total_ score outcome

1 Anne 43 129 PASS
2 John 39 117 FAIL
3 Bob 41 123 PASS
4 Emma 36 108 FAIL
5 Tony 38 114 FAIL
6 Sarah 48 144 PASS
7 James 33 99 FAIL

Let’s investigate the structure of our data set with the str () function.

> str(results_test_def)

‘data.frame’: 7 obs. of 4 variables:

$ names_stud : chr "Anne" "John" "Bob" "Emma"

$ n_correct_answer: num 43 39 41 36 38 48 33

$ total score : num 129 117 123 108 114 144 99

$ outcome : chr "PASS" "FAIL" "PASS" "FAIL"

Note that n_correct answer and total score have numerical values.
names_stud and outcome are characters.

Let’s find, for example, the average score of the students. We use $ to select the
column of interest from the data set.

> mean (results_test_defs$total_score)
[1] 119.1429

Let’s find now the lowest and highest score:

> min(results_test_defstotal_score)
[1] 99

> max (results_ test defs$total score)
[1] 144

A short-cut to obtain this information is through the summary () function.
> summary (results_test_def$total_score)

Min. 1st Qu. Median Mean 3rd Qu. Max.
99.0 111.0 117.0 119.1 126.0 144.0

If we apply it to the whole data set:



1.7 Two Examples with R 39

> summary (results_test_def)

names_stud n_correct_answer total_score outcome
Length:7 Min. :33.00 Min. : 99.0 Length:7
Class :character 1st Qu.:37.00 1st Qu.:111.0 Class :character
Mode :character Median :39.00 Median :117.0 Mode :character
Mean :39.71 Mean :119.1
3rd Qu.:42.00 3rd Qu.:126.0
Max. :48.00 Max. :144.0

Let’s coerce out come to factors and let’s apply again the summary () function
to the data set (refer to Sect. 1.6.5 for the meaning of factors)

> results_test def$outcome <- as.factor(results_test_def$outcome)
> results_test_def$outcome

[1] PASS FAIL PASS FAIL FAIL PASS FAIL

Levels: FAIL PASS

> summary (results_test_def)

names_stud n_correct_answer total score outcome
Length:7 Min. :33.00 Min. : 99.0 FAIL:4
Class :character 1st Qu.:37.00 1st Qu.:111.0 PASS:3
Mode :character Median :39.00 Median :117.0
Mean :39.71 Mean :119.1
3rd Qu.:42.00 3rd Qu.:126.0
Max. :48.00 Max. :144.0

As you can observe, now the summary () function prints how many passed and
failed the test in the out come column.

Now let’s suppose we want to show only the personal result scored by the student.
There are different ways we can extract information from a data frame. Basically,
a data frame has two dimensions like a matrix. We can use the [i, j] indexes
for rows and columns, respectively, where the square brackets [ ] subset the data
frame.

Let’s print again the data set.

> results_test_def
names_stud n_correct_answer total_score outcome

1 Anne 43 129 PASS
2 John 39 117 FAIL
3 Bob 41 123 PASS
4 Emma 36 108 FAIL
5 Tony 38 114 FAIL
6 Sarah 48 144 PASS
7 James 33 99 FAIL

We see that student Anne is at row number 1 and column number 1. Therefore,
to extract the name of student Anne

> results_test def[1, 1]
[1] "Anne"

But if we want to extract all the info for student Anne, i.e. row 1 and all the
columns associated

> results_test_def[1, 1]
names_stud n_correct_answer total_score outcome
1 Anne 43 129 PASS

Basically, we leave blank the space for the column entry after the comma , .
Therefore, if we want to select only the column with the total score we leave
blank the space for the row entry before the comma, ,
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> results_test_def[, 3]
[1] 129 117 123 108 114 144 99

We can select the data also by column name in a data frame. For example, we
could achieve the same previous task as follows:
> results_test_def[, "total_score"]
[1] 129 117 123 108 114 144 99

The selection of columns with the square bracket operator is alternative to $.
However, with the square bracket operator we can select more columns with the
c () function. For example, to select the first column and third column:

> results_test_def[, c(1, 3)]
names_stud total_ score

1 Anne 129
2 John 117
3 Bob 123
4 Emma 108
5 Tony 114
6 Sarah 144
7 James 99
> results_test_def[, c("names_stud", "total_score")]
names_stud total_score
1 Anne 129
2 John 117
3 Bob 123
4 Emma 108
5 Tony 114
6 Sarah 144
7 James 99

Consequently, if we want to select more rows:

> results_test_def[c(2, 5), ]

names_stud n_correct_answer total score outcome
2 John 39 117 FAIL
5 Tony 38 114 FAIL

Now suppose we want to find the student who got the highest score:

> results_test_def [which.max (results_test_def$total_score), ]

names_stud n_correct_answer total_score outcome
6 Sarah 48 144 PASS

Now the notation should be clear. We subset the data set by the row with the
highest total score, i.e. 144, that it is located at row 6, and for all the columns. In
fact,

> which.max (results_test_def$total_ score)
[1] 6

Now suppose we want to rename the column names. We use the colnames ()

function.'#
> colnames (results_test_def) <- c("Students", "Correct_Answer",
+ "Total_Score", "Outcome"

> results_test_def
Students Correct_Answer Total_Score Outcome

14 Note that it is better to avoid space in the names of the variables.
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Table 1.3 Logical operators Operator | Description

> Greater than

< Less than

>= Greater or equal
<= Less or equal

== Exact equality
= Inequality

1 Anne 43 129 PASS
2 John 39 117 FAIL
3 Bob 41 123 PASS
4 Emma 36 108 FAIL
5 Tony 38 114 FAIL
6 Sarah 48 144 PASS
7 James 33 99 FAIL

But now we decide we want to change the name of Out come in PASSFATIL:

> colnames (results_test_def) [
+ colnames (results_test_def) == "Outcome"] <- "PASSFAIL"
> results_test_def

Students Correct_Answer Total_Score PASSFAIL

1 Anne 43 129 PASS
2 John 39 117 FAIL
3 Bob 41 123 PASS
4 Emma 36 108 FAIL
5 Tony 38 114 FAIL
6 Sarah 48 144 PASS
7 James 33 99 FAIL

Let’s translate into plain English this line of code. We are telling R that “among
all column names in the data set, the one whose name is equal to Out come has to
be renamed as PASSFAIL”.

Note that == is a logical operator that means exact equality. Refer to Table 1.3
for more logical operators.

Let’s see how we can replace column names in a different way. Let’s change
PASSFAILto PASS/FAIL. Let’srunonly colnames (results test def).
This extracts the column names of the data frame or matrix. We observe that
PASSFAIL is the 4th entry.

> colnames (results_test_def)
[1] "Students" "Correct_Answer" "Total_ Score" "PASSFAIL"

Let’s rename it by replacing its 4th entry

> colnames (results_test def) [4] <- "PASS/FAIL"
> results_test_def
Students Correct_ Answer Total Score PASS/FAIL

1 Anne 43 129 PASS
2 John 39 117 FAIL
3 Bob 41 123 PASS
4 Emma 36 108 FAIL
5 Tony 38 114 FAIL
6 Sarah 48 144 PASS
7 James 33 99 FAIL

Let’s generate a new variable, PASS, that takes value 1 if the student passed, 0
otherwise. We use again the ifelse () function.
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> results_test_def$PASS <- ifelse(
+ results_test def$‘'PASS/FAIL' == "PASS",
. 1, 0)
> results_test def
Students Correct_Answer Total_Score PASS/FAIL PASS

1 Anne 43 129 PASS 1
2 John 39 117 FAIL 0
3 Bob a1 123 PASS 1
4 Emma 36 108 FAIL 0
5 Tony 38 114 FAIL 0
6 Sarah 48 144 PASS 1
7 James 33 99 FAIL 0

Let’s conclude this section by plotting some information in the data set. We will
plot using the ggplot () function from the ggplot2 package.

We need to load the package before using it at the beginning of an R session. We
use the 1ibrary () function to load the package.

> library("ggplot2")

When we load a package some information about the package may be printed.
For the sake of illustration we do not print them.

Now we are ready to use the ggplot () function. We will plot a bar plot and a
box plot.

First, we will plot the total score of each student. Note again the code printed in
the console pane for ggplot (). We have two +. One +, directly below the prompt
symbol, >, means the the code is continuing on the next line in the console pane.
This + is not part of the code we write. The other + is part of the ggplot () code
and connect the different layers in ggplot ().

ggplot (results_test_def, aes(x= Students, y = Total_Score,
£i1ll = ‘PASS/FAIL‘)) +
geom bar (position = "dodge", stat="identity") +

+

: ylab("Total Score") + theme_classic() +

+ ggtitle ("Total Score for a 50 question test") +
+ theme (legend.position = "bottom")

The first entry in ggplot () is the data set. In aes () we map the data for the
x and y axes. We distinguish the values by whether the students passed the test by
using £i11 =. We will return to the meaning of the backticks in * PASS/FAIL" in
amoment. We choose to plot the data as a bar plot using geom_bar () .position
= "dodge" puts the bars side-by-side. With stat = "identity" the heights
of the bars represent values in the data. ylab () sets the label for the y-axis. In
ggtitle () we type the title of the plot. theme classic () is one of the
possible options to define the layout of the plot. Finally, in theme () we set the
position of the legend below the plot. The output is Fig. 1.12.

We can export it as image from RStudio as shown in Figs. 1.13 and 1.14

A feature of ggplot () is that its output can be stored. For example, if you plot
using the built-in function in R, i.e. plot (), you cannot store its output.

In the next example, we will store the output of a box plot in the following
object, passed_boxplot. Note the in aes (), we have to map x and £i11 to
‘PASS/FAIL". Note that we have to enclose the variable name in * ‘ because
we included / in the column name. *  is also necessary when we write a column
name with a space. For this reason, it is better to avoid spaces in the column names.
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In addition, x1ab (" ") removes the title of the x-axis while legend.title =
element blank () removes the title of the legend. Now, we have to run the
object to see the plot (Fig. 1.15).

> passed_boxplot <- ggplot (results_test_def,
aes(x = ‘PASS/FAIL‘,
y = Total_Score,
f£ill = ‘PASS/FAIL‘)) +

ylab("Total Score") + xlab("") +

+
+
+
+ geom_boxplot () +
+
+ ggtitle ("Boxplot of Results (Fail, Pass)") +
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+ theme_bw() +
+ theme (legend.title = element_blank())
> passed_boxplot

For this example, we use the ggsave () function from ggplot2 to save the
ggplot2 plot. The first entry is the file name to create on the disk. Note that I
specify the path to the images folder we created at the beginning. The second

entry is the name of the plot we want to save. By default, it saves the last plot."

15 In the rest of the book I will not print the code to save the images. However, for ggplot2 plots
T use the ggsave () function. For other plots, I save them as shown in Figs. 1.13 and 1.14. To save
3D plots, you may use the rgl . snapshot () function from the rgl package. However, we will
not make any 3D plot in this book.
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> ggsave (filename = "images/passes_boxplot.png",
+ plot = passed_boxplot)
Saving 9.28 x 5.6 in image

Suppose we want to check the values of the boxplot. First, we can subset the
data set using the subset () function. Since the subset () function is a built-
in function, we do not need to load any package to use it. We create two objects.
The first one contains the data only for the students who passed while the second
one only for students who did not pass. The first entry in the subset () function
is the data set. Then, we type the conditional statement. In this case, we subset
the data set if the value in *PASS/FAIL" is equal to "PASS". Note again the
inclusion of ¥ ' around the column name. Note that for the object FAIL we use
the inequality operator !=. We could also use ‘PASS/FAIL' == "FAIL" to
accomplish the same task. Finally, we apply the summary () function to the value
in Total Score.

> PASS <- subset (results_test def, ‘PASS/FAIL' == "PASS")
> FAIL <- subset (results test def, ‘PASS/FAIL' != "PASS")
> PASS
Students Correct Answer Total Score PASS/FAIL PASS
1 Anne 43 129 PASS 1
3 Bob 41 123 PASS 1
6 Sarah 48 144 PASS 1
> FAIL
Students Correct Answer Total Score PASS/FAIL PASS
2 John 39 117 FAIL 0
4 Emma 36 108 FAIL 0
5 Tony 38 114 FAIL 0
7 James 33 99 FAIL 0
> summary (PASS$Total_Score)
Min. 1st Qu. Median Mean 3rd Qu. Max.

123.0 126.0 129.0 132.0 136.5 144.0

> summary (FAIL$STotal_Score)
Min. 1st Qu. Median Mean 3rd Qu. Max.
99.0 105.8 111.0 109.5 114.8 117.0

We read that the minimum value for PASS is 123, the beginning of the vertical
line in Fig. 1.15. The first quartile corresponds to the beginning of the box, 126,
while the third quartile corresponds to the end of the box, 136.5. The tick middle line
corresponds to the median or middle quartile, 129. The end of the line corresponds
to the maximum value, 144.

1.7.2 Main Data Management Operations

From the next chapter, we will repeatedly use functions to put information from
several data frames of different sizes into a single data frame that will finally be
analyzed. Since we will work with real data frames with thousands of rows and
dozens of columns, it will be impossible to print the outcome of the individual
functions.
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Since I think it is very useful to clearly grasp how the functions modify the
data frames we work with, in this section we implement the main data management
operations to two small dummy data frames. We name the first data frame trade.
It contains four columns: year containing information for years 2020, 2021, and
2022, reporter and partner containing information about 3 fictitious countries
that we name as letters, and export containing the value of export from reporter
to partner in million dollar. The second data frame is named gdp and contains the
GDP values in billion dollar of four fictitious countries. Our goal is to put the info of
these two different data frames in an single data frame and generate new variables
to provide additional information.

We need to load the following packages before starting to write the code

library("data.table") # data management (melt, dcast)
library("tidyr") # data management (pivot_)
library("dplyr") # data management (case_when)
library("stringr") # string manipulation
library("zoo") # time series

Now let’s build the two dummy data frames for the example

> set.seed(123)
> trade <- data.frame(year = rep(2020:2022, 6),

+ reporter = rep(LETTERS([1:3], each = 6),
+ partner = rep(c("B","C", "A", "C", "A", "B"),
¥ each = 3),
+ export = sample(50:150, 18, replace = TRUE))
> trade
year reporter partner export
1 2020 A B 80
2 2021 A B 128
3 2022 A B 100
4 2020 A C 63
5 2021 A C 1lle
6 2022 A C 91
7 2020 B A 99
8 2021 B A 92
9 2022 B A 150
10 2020 B C 63
11 2021 B C 74
12 2022 B C 139
13 2020 C A 140
14 2021 C A 118
15 2022 Cc A 140
16 2020 C B 106
17 2021 C B 141
18 2022 C B 58

> set.seed(321)
> gdp <- data.frame(country = c(LETTERS[1:4]),
+ isocode = pasteO(LETTERS[1:4], 1:4),

+ year2020 = sample(500:1000, 4),
+ year2021 = sample(500:1000, 4),
+ year2022 = sample(500:1000, 4))
> gdp

country isocode year2020 year2021 year2022
1 A Al 681 843 625
2 B B2 997 963 772
3 C C3 752 557 727
4 D D4 832 851 546
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Let’s replace the entry for the A country for year 2021 with a missing value, NA

> gdp[1l, 4] <- NA

> gdp

country isocode year2020 year2021 year2022
1 A Al 681 NA 625
2 B B2 997 963 772
3 C C3 752 557 727
4 D D4 832 851 546

First, note that the set . seed () function is used to make the example repro-
ducible with random number generation functions. Second, note that the trade
data frame is in a long format while the gdp data frame is in a wide format. In the
long format, values for years and id repeat in the columns. On the other hand, in the
wide format, id values do not repeat in the columns, and each year is a column title.

Our goal is to merge trade and gdp. However, we cannot perform this
operation with gdp in a wide format. Therefore the first step is to reshape it.

Reshaping Data Set Wide-Long

We can perform this task with different packages. We will see how to do it with the
the tidyr package and with the data . table package.
Let’s start with a simple case. Let’s drop the i socode from gdp

> gdp2 <- gdpl, -2]

> gdp2

country year2020 year2021 year2022
1 A 681 NA 625
2 B 997 963 772
3 C 752 557 727
4 D 832 851 546

The country column is our id column.

First, let’s reshape it with the pivot longer () function from the tidyr
package. The esclamation mark ! means that we are reshaping all the columns by
using country as the id variable. In names_to we write the name of the column
to be created the will store the names of the variables to be reshaped. In vaues_to
we write the name of the column to be created the will store the reshaped values in
the columns year2020, year2021, and year2022.

> gdp2_1 <- gdp2 %>%
+ pivot_longer (!country, # all columns but not country

+ names_to = "year",
+ values_to = "GDP"
> gdp2_1
# A tibble: 12 x 3
country year GDP
<chr> <chr> <int>
year2020 681
year2021 NA

year2022 625
year2020 997
year2021 963
year2022 772
year2020 752
year2021 557
year2022 727

W oo J0 Ul b WwN
N QWwWwWXPP



48 1 Introduction to R

10 D year2020 832
11 D year2021 851
12 D year2022 546

The original data set gdp2 has 4 rows and 4 columns. The reshaped data set
gdp2 1 has 12 rows and 3 columns. Now the values in country repeat, as the
values in year. Note that in the year column we want numeric values. We will
see how to adjust that in a moment. Finally, GDP is the column that we created and
stores the GDP values corresponding to each country and year.

Additionally, note the role of $>%. This is the pipe operator. It is used to pipe an
object forward into a function or call expression. We are using it to pass gdp2 as
the first argument in pivot longer (). Note that we could just write as usual

> pivot_longer (gdp2,

+ !country, # all columns but not country
+ names_to = "year",
+ values_to = "GDP"
# A tibble: 12 x 3
country year GDP
<chr> <chr> <int>
1A year2020 681
2 A year2021 NA
3 A year2022 625
4 B year2020 997
5B year2021 963
6 B year2022 772
7 C year2020 752
8 C year2021 557
9 C year2022 727
10 D year2020 832
11 D year2021 851
12 D year2022 546

However, the pipe operator turns to be very useful to chain operations.
Ok, now gdp2_1 is in the long format. What about if we want to reshape it in a
wide format? We can use the pivot wider () function from the t idyr package.

> gdp2_w <- gdp2_1 %>%

+ pivot_wider (names_from = "year",
+ values_from = "GDP"
> gdp2_w

# A tibble: 4 x 4
country year2020 year2021 year2022

<chr> <int> <int> <int>
1A 681 NA 625
2 B 997 963 772
3 C 752 557 727
4 D 832 851 546

We are back to the wide format. However, note that the class of gdp2 and
gdp2_w is different

> class (gdp2)

[1] "data.frame"

> class (gdp2_w)

[1] "tbl_df" "tbl" "data.frame"

gdp2_ wis a now a tibble object. Here, we define the tbl df class as a special
class of data frame. You may refer to Wickham (2019a, p. 58) for more details.
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Now we implement the same operations with the data . table package. We use
the melt () function to reshape the data set from wide to long, and the dcast ()
function to reshape from long to wide.

> gdp2_ldt <- melt(setDT(gdp2), id.vars = "country",
+ measure.vars = 2:length(colnames (gdp2)),
+ variable.name = "year",
+ value.name = "GDP")

> gdp2_1ldt

country year GDP

1: A year2020 681

2: B year2020 997

3: C year2020 752

4: D year2020 832

5: A year2021 NA

6: B year2021 963

7: C year2021 557

8: D year2021 851

9S: A year2022 625
10: B year2022 772
11: C year2022 727
12: D year2022 546

The setDT () function coerces lists and data.frames to data.table by reference.

In id.vars we indicate the id variables. It can be integer (corresponding id
column numbers) or character (id column names) vector. In measure.vars we
indicate the variables for melting. variable . name assigns the name for the mea-
sured variable names column. The default name is ’variable’, while value .name
assigns name for the molten data values column(s). The default name is ’value’.

By using dcast () we reshape the data set from wide back to long.

> gdp2 wdt <- dcast(gdp2_ 1ldt, country ~ year,

+ value.var = "GDP"
> gdp2_wdt

country year2020 year2021 year2022
1: A 681 NA 625
2: B 997 963 772
3: C 752 557 727
4: D 832 851 546

In dcast () we need to use a formula of the form LHS ~ RHS. In our
example, country is our id variable and year is casted away with the values
of GDP fillig the corresponding entry in the data set.

Next, we repeat the same operations with the pivot longer () function and
with the melt () function to reshape the data set from wide to long. However, this
time we specify the pattern in the data set.

> gdp2_12 <- gdp2 %>%

+ pivot_longer (!country,
+ names_prefix = "year",
+ names_to = "year",
+ values_to = "GDP")
> gdp2_12
# A tibble: 12 x 3
country year GDP
<chr> <chr> <int>
1A 2020 681
2 A 2021 NA
3 A 2022 625
4 B 2020 997
5B 2021 963
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6 B 2022 772
7 C 2020 752
8 C 2021 557
9 C 2022 727
10 D 2020 832
11 D 2021 851
12 D 2022 546

By using name_prefix we removed the word year from the numeric year.
However, note that the year column is character.

By using measure = patterns() in melt () we identify the column to
melt by the pattern. Note that in this case we did not remove the word year. We
will manipulate strings in Sect. 1.7.2.

> gdp2_1dt2 <- melt(setDT(gdp2), id = 1,
+ measure = patterns("year")
> gdp2_1ldt2

country variable value

1: A year2020 681
2: B year2020 997
3: C year2020 752
4: D year2020 832
5: A year2021 NA
6: B year2021 963
7: C year2021 557
8: D year2021 851
9: A year2022 625
10: B year2022 772
11: C year2022 727
12: D year2022 546

Finally, we see how to reshape the data set with multiple id vars. We use the gdp
data frame

> gdp

country isocode year2020 year2021 year2022
1 A Al 681 NA 625
2 B B2 997 963 772
3 C C3 752 557 727
4 D D4 832 851 546

With pivot longer ()

> gdp_1 <- gdp %>%
+ pivot longer (cols = 3:length(colnames(gdp)),
+ names_prefix = "year",
+ names_to = "year",
+ values_to = "GDP"
+ values_drop_na = TRUE)
> gdp_1
# A tibble: 11 x 4
country isocode year GDP
<chr> <chr> <chr> <int>

1A Al 2020 681

2 A Al 2022 625

3B B2 2020 997

4 B B2 2021 963

5B B2 2022 772

6 C C3 2020 752

7 C c3 2021 557

8 C C3 2022 727

S D D4 2020 832
10 D D4 2021 851
11 D D4 2022 546
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Note that by setting values drop na = TRUE we removed the observation
with the missing value. If we do not include it

> gdp %>%
+ pivot_longer (cols = 3:length(colnames(gdp)),
+ names_prefix = "year",
+ names_to = "year",
+ values_to = "GDP")
# A tibble: 12 x 4
country isocode year GDP
<chr> <chr> <chr> <int>

1A Al 2020 681

2 A Al 2021 NA

3 A Al 2022 625

4 B B2 2020 997

5 B B2 2021 963

6 B B2 2022 772

7 C C3 2020 752

8 C C3 2021 557

9 C C3 2022 727

10 D D4 2020 832

11 D D4 2021 851

12 D D4 2022 546

Note that we just printed, but we did not store, the result of the previous
operation.
To reshape from wide to long

> gdp_w <- gdp_1 %>%
+ pivot_wider (names_prefix = "year",
+ names_from = "year",
+ values_from = "GDP",
+ names_sort = TRUE,
+ values_fill = NA)
> gdp_w
# A tibble: 4 x 5
country isocode year2020 year2021 year2022
<chrs> <chrs> <int> <int> <int>
1A Al 681 NA 625
2 B B2 997 963 772
3 C C3 752 557 727
4 D D4 832 851 546

We are back to the wide format. Note that by setting vales_fill = NA we
introduce the entry with the missing value in the data set.
Now we repeat the same operations with the data . table package

> gdp_12 <- melt(setDT(gdp), id.vars = 1:2,
+ measure = 3:length(colnames (gdp)),
+ variable.name = "year",
+ value.name = "GDP",
+ na.rm = TRUE)
> gdp_12
country isocode year GDP
A Al year2020 681
B2 year2020 997
C3 year2020 752
D4 year2020 832
B2 year2021 963
C3 year2021 557
D4 year2021 851
Al year2022 625
B2 year2022 772
C3 year2022 727
D4 year2022 546
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> gdp_w2 <- dcast(gdp_l2, country + isocode ~ year,

+ value.var = "GDP", fill = NA)
> gdp_w2

country isocode year2020 year2021 year2022
1: A Al 681 NA 625
2: B B2 997 963 772
3: C C3 752 557 727
4: D D4 832 851 546

Working with Strings

We can use the stringr package to manipulate strings.'® For example,
let’s remove the word year from the year column in gdp2 1 by using the
str remove all () function

> gdp2_l$year <- str_remove_all (gdp2_l$year, "year")

> gdp2_1
# A tibble: 12 x 3
country year GDP
<chr> <chr> <int>
1A 2020 681
2 A 2021 NA
3 A 2022 625
4 B 2020 997
5B 2021 963
6 B 2022 772
7 C 2020 752
8 C 2021 557
9 C 2022 727
10 D 2020 832
11 D 2021 851
12 D 2022 546

We removed year but it is still a character. Let’s convert into numeric

> gdp2_l$year <- as.numeric(gdp2_l$year)
> str(gdp2_1)
tibble [12 x 3] (S3: tbl df/tbl/data.frame)
$ country: chr [1:12] "A" "A" "A" "B .
$ year : num [1:12] 2020 2021 2022 2020 2021
S GDP : int [1:12] 681 NA 625 997 963 772 752 557 727 832

There are several functions to work with strings in stringr. They start with
str . Read their documentation to learn more about them.

case_when () (if else)

Country A and country B belong to region W, while country C and country D belong
to region Z. We want to add this information in the gdp2 1 data set. We have
already seen how to accomplish this task with the ifelse () function. In this case,
however, it is more convenient to use the case_when () function from the dplyr
package. This function allows you to vectorize multiple if else () statements.

16 In Sect. 2.4 we will work with the st ringi package.
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> gdp2_1 <- gdp2_1 %>%

+ mutate (region = case_when(
+ country == "A" | country == "B" ~ "W",
+ country == "C" | country == "D" ~ "Z"
+ ))
> gdp2_1
# A tibble: 12 x 4
country vyear GDP region
<chr> <dbl> <int> <chr>

1A 2020 681 W

2 A 2021 NA W

3 A 2022 625 W

4 B 2020 997 W

5B 2021 963 W

6 B 2022 772 W

7 C 2020 752 Z

8 C 2021 557 Z

9 C 2022 727 Z
10 D 2020 832 Z
11 D 2021 851 Z
12 D 2022 546 Z

Note that we nested case_when () in mutate (), another function from the
dplyr package that allows to add new variables to the data set.

In case_when () we use a formula where the left hand side (LHS) determines
which values match this case while the right hand side (RHS) provides the
replacement value.

Grouping by One or More Variables

Often it happens that we have to perform operations per group of variables in a data
set. For this task we can use the group by () function from the dplyr package.

Let’s say that we want to sum the GDP per country in gdp2 1. We can do as
follow

> gdp2 1 <- gdp2_1 %>%

+ group_by (country) %>%

+ mutate (totalGDP = sum(GDP, na.rm = TRUE))

> gdp2_1

# A tibble: 12 x 5

# Groups: country [4]

country year GDP region totalGDP
<chr> <dbl> <int> <chrs> <int>

1A 2020 681 W 1306
2 A 2021 NA W 1306
3 A 2022 625 W 1306
4 B 2020 997 W 2732
5B 2021 963 W 2732
6 B 2022 772 W 2732
7 C 2020 752 Z 2036
8 C 2021 557 Z 2036
9 C 2022 727 Z 2036

10 D 2020 832 Z 2229

11 D 2021 851 Z 2229

12 D 2022 546 Z 2229

Note that we need to set na.rm = TRUE in sum () because the series contains
a missing value.
An alternative is to use the base function ave () as follows
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> gdp2_ave <- gdp2_1
> gdp2_avestotalGDPave <- ave(gdp2_ave$GDP,
+ interaction (gdp2_aves$country),
+ FUN = function(x) sum(x, na.rm = TRUE)
> gdp2_ave
# A tibble: 12 x 6
# Groups: country [4]
country year GDP region totalGDP totalGDPave
<chr> <dbl> <int> <chr> <int> <int>
1A 2020 681 W 1306 1306
2 A 2021 NA W 1306 1306
3 A 2022 625 W 1306 1306
4 B 2020 997 W 2732 2732
5B 2021 963 W 2732 2732
6 B 2022 772 W 2732 2732
7 C 2020 752 7 2036 2036
8 C 2021 557 Z 2036 2036
9 C 2022 727 Z 2036 2036
10 D 2020 832 Z 2229 2229
11 D 2021 851 Z 2229 2229
12 D 2022 546 Z 2229 2229
Merging Data Sets

Now we are ready to merge the gdp2_ 1 data frame with the trade data frame.
Let’s print them again

> gdp2_1
# A tibble: 12 x 5
# Groups: country [4]
country year GDP region totalGDP
<chr> <dbl> <int> <chr> <int>
1A 2020 681 W 1306
2 A 2021 NA W 1306
3 A 2022 625 W 1306
4 B 2020 997 W 2732
5B 2021 963 W 2732
6 B 2022 772 W 2732
7 C 2020 752 Z 2036
8 C 2021 557 Z 2036
9 C 2022 727 7 2036
10 D 2020 832 Z 2229
11 D 2021 851 Z 2229
12 D 2022 546 Z 2229
> trade
year reporter partner export
1 2020 A B 80
2 2021 A B 128
3 2022 A B 100
4 2020 A C 63
5 2021 A C 116
6 2022 A C 91
7 2020 B A 99
8 2021 B A 92
9 2022 B A 150
10 2020 B C 63
11 2021 B C 74
12 2022 B C 139
13 2020 C A 140
14 2021 C A 118
15 2022 C A 140
16 2020 C B 106
17 2021 C B 141
18 2022 C B 58
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Our goal is to put the data from the two data frames in a single data frame. We
need an id column in both data frames to accomplish this task. In our case, we will
use the country column in gdp2 1 and the reporter column in trade. Note
that two data frames to merge may not have exactly the same entries. This is the
case for this example, where in t rade we do not have any country D. This implies
that we have to make a choice about keeping or dropping the values for D.

We will see several options to merge with the base merge () function, with the
dplyr package and with the data . table package.

Let’s start with the base merge () function. We refer to gdp2 1 as the x data
set and trade as the y data set. We merge them by using the info in country and
year in the x data set and reporter and year in the y data set
> df <- merge(gdp2_1, trade,

+ by.x = c("country", "year"),
+ by.y = c("reporter", "year"))
> df

country year GDP region totalGDP partner export
1 A 2020 681 W 1306 B 80
2 A 2020 681 W 1306 C 63
3 A 2021 NA W 1306 B 128
4 A 2021 NA W 1306 C 116
5 A 2022 625 W 1306 B 100
6 A 2022 625 W 1306 c 91
7 B 2020 997 W 2732 A 99
8 B 2020 997 W 2732 C 63
9 B 2021 963 W 2732 A 92
10 B 2021 963 W 2732 C 74
11 B 2022 772 W 2732 A 150
12 B 2022 772 W 2732 C 139
13 C 2020 752 Z 2036 A 140
14 C 2020 752 Z 2036 B 106
15 C 2021 557 Z 2036 A 118
16 C 2021 557 Z 2036 B 141
17 C 2022 727 Z 2036 A 140
18 C 2022 727 Z 2036 B 58

> class (df)
[1] "data.frame"

Note that the info for D has been dropped. To keep it we can set all = TRUE
> df2 <- merge(gdp2_ 1, trade,

+ by.x = c("country", "year"),
+ by.y = c("reporter", "year"),
+ all = TRUE)
> df2

country year GDP region totalGDP partner export
1 A 2020 681 W 1306 B 80
2 A 2020 681 W 1306 c 63
3 A 2021 NA W 1306 B 128
4 A 2021 NA W 1306 C 116
5 A 2022 625 W 1306 B 100
6 A 2022 625 W 1306 C 91
7 B 2020 997 ) 2732 A 99
8 B 2020 997 W 2732 C 63
9 B 2021 963 W 2732 A 92
10 B 2021 963 W 2732 C 74
11 B 2022 772 W 2732 A 150
12 B 2022 772 W 2732 C 139
13 C 2020 752 4 2036 A 140
14 C 2020 752 4 2036 B 106
15 C 2021 557 4 2036 A 118
16 C 2021 557 Z 2036 B 141
17 C 2022 727 Z 2036 A 140
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18 C 2022 727 Z 2036 B 58
19 D 2020 832 4 2229 <NA> NA
20 D 2021 851 4 2229 <NA> NA
21 D 2022 546 Z 2229 <NA> NA

Now we kept D but obviously we have missing values for partner and
export because we do not have D in trade.

Alternatively, to keep D we can set all.x = TRUE because D is in the x data
set,i.e.ingdp2 1

> df3 <- merge(gdp2 1, trade,

+ by.x = c("country", "year"),
+ by.y = c("reporter", "year"),
+ all.x = TRUE)
> df3

country year GDP region totalGDP partner export
1 A 2020 681 W 1306 B 80
2 A 2020 681 W 1306 C 63
3 A 2021 NA W 1306 B 128
4 A 2021 NA W 1306 C 116
5 A 2022 625 W 1306 B 100
6 A 2022 625 W 1306 C 91
7 B 2020 997 W 2732 A 99
8 B 2020 997 W 2732 C 63
9 B 2021 963 W 2732 A 92
10 B 2021 963 w 2732 C 74
11 B 2022 772 W 2732 A 150
12 B 2022 772 W 2732 C 139
13 C 2020 752 Z 2036 A 140
14 C 2020 752 Z 2036 B 106
15 C 2021 557 Z 2036 A 118
16 C 2021 557 Z 2036 B 141
17 C 2022 727 Z 2036 A 140
18 C 2022 727 Z 2036 B 58
19 D 2020 832 Z 2229 <NA> NA
20 D 2021 851 Z 2229 <NA> NA
21 D 2022 546 Z 2229 <NA> NA

On the other hand, if we setall.y = TRUE we drop D because it is not in the
y data set, i.e. in trade

> df4 <- merge(gdp2_1, trade,

+ by.x = c("country", "year"),
+ by.y = c("reporter", "year"),
+ all.y = TRUE)
> df4

country year GDP region totalGDP partner export
1 A 2020 681 W 1306 B 80
2 A 2020 681 W 1306 C 63
3 A 2021 NA W 1306 B 128
4 A 2021 NA W 1306 c 116
5 A 2022 625 W 1306 B 100
6 A 2022 625 W 1306 C 91
7 B 2020 997 W 2732 A 99
8 B 2020 997 W 2732 C 63
9 B 2021 963 W 2732 A 92
10 B 2021 963 W 2732 C 74
11 B 2022 772 W 2732 A 150
12 B 2022 772 W 2732 C 139
13 C 2020 752 Z 2036 A 140
14 C 2020 752 Z 2036 B 106
15 C 2021 557 Z 2036 A 118
16 C 2021 557 Z 2036 B 141
17 C 2022 727 Z 2036 A 140
18 C 2022 727 Z 2036 B 58
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Next we repeat the same operations with the functions from the dplyr package.
We use again x and y to refer to the data set we input in the left argument and in the
right argument in the function.

By using the inner join () function, we include all the rows in x and y. We
match the variables in the two data sets to join by with by

> df5 <- inner join(gdp2_1, trade,
+ by = c("country" = "reporter",
+ "year" = "year“))
> dfs5
# A tibble: 18 x 7
# Groups: country [3]
country vyear GDP region totalGDP partner export
<chr> <dbl> <int> <chr> <int> <chr> <int>
1A 2020 681 W 1306 B 80
2 A 2020 681 W 1306 C 63
3 A 2021 NA W 1306 B 128
4 A 2021 NA W 1306 C 116
5 A 2022 625 W 1306 B 100
6 A 2022 625 W 1306 C 91
7B 2020 997 W 2732 A 99
8 B 2020 997 W 2732 C 63
9B 2021 963 W 2732 A 92
10 B 2021 963 W 2732 C 74
11 B 2022 772 W 2732 A 150
12 B 2022 772 W 2732 C 139
13 C 2020 752 Z 2036 A 140
14 C 2020 752 Z 2036 B 106
15 C 2021 557 Z 2036 A 118
16 C 2021 557 Z 2036 B 141
17 C 2022 727 7 2036 A 140
18 C 2022 727 Z 2036 B 58

By using the full join () function, we include all the rows in x or y

> df6 <- full join(gdp2_ 1, trade,
+ by = c("country" = "reporter",
+ "year" = "year"))
> dfé # include D
# A tibble: 21 x 7
# Groups: country [4]
country year GDP region totalGDP partner export
<chr> <dbl> <int> <chr> <int> <chr> <int>
1A 2020 681 W 1306 B 80
2 A 2020 681 W 1306 C 63
3 A 2021 NA W 1306 B 128
4 A 2021 NA W 1306 C 116
5 A 2022 625 W 1306 B 100
6 A 2022 625 W 1306 C 91
7 B 2020 997 W 2732 A 99
8 B 2020 997 W 2732 C 63
9 B 2021 963 W 2732 A 92
10 B 2021 963 W 2732 C 74
# with 11 more rows

By using the 1eft join () function, we include all the rows in x

> df7 <- left_join(gdp2_1, trade,

+ by = c("country" = "reporter",

+ "year" = "year"))

> df7 # include D

# A tibble: 21 x 7

# Groups: country [4]
country year GDP region totalGDP partner export
<chr> <dbl> <int> <chrs> <int> <chr> <ints>

1A 2020 681 W 1306 B 80
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2 A 2020 681
3 A 2021 NA
4 A 2021 NA
5 A 2022 625
6 A 2022 625
7 B 2020 997
8 B 2020 997
9 B 2021 963
10 B 2021 963
# ... with 11 more rows
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By using the right join () function, we include all the rows in y

df8 <- right_join(gdp2_1, trade,

by

c(

df8 # does not include D

>

+

+

>

# A tibble: 18 x
# Groups:
country vyear

<chr> <dbl>
1A 2020
2 A 2020
3 A 2021
4 A 2021
5 A 2022
6 A 2022
7B 2020
8 B 2020
S B 2021
10 B 2021
11 B 2022
12 B 2022
13 C 2020
14 C 2020
15 C 2021
16 C 2021
17 C 2022
18 C 2022

7

country [3]

GDP
<int>
681
681
NA
NA
625
625
997
997
963
963
772
772
752
752
557
557
727
727

"country" =

region totalGDP
<chr> <int>

W
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Other two useful functions are semi_join () which returns all rows from x
with a match in y and anti join() which returns all rows from x without a

match in y.

Finally, we implement the same operations with the merge () function from the
data.table package. The arguments of this function are the same as the base
merge () function. Before merging the data frames, we set them as data.table

objects

>
>
>
+
+
>

dfdt

country year
2020
2020
2021
2021
2022
2022
2020
2020
2021

W OIU R WN R
Www

by.x =

gdp2_1dt <- setDT(gdp2_1)
trade_dt <- setDT(trade)
dfdt <- merge(gdp2_1ldt,

trade_dt,
¢ ("country",
by.y = c("reporter",

nyearu)’
"year"))

GDP region totalGDP partner export

681
681

NA

NA
625
625
997
997
963

sS=s==s=3=3=33

1306
1306
1306
1306
1306
1306
2732
2732
2732

B

PAarQwmQ

80
63
128
116
100
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10 B 2021 963 W 2732 ¢ 74
11: B 2022 772 w 2732 A 150
12: B 2022 772 w 2732 C 139
13 C 2020 752 Z 2036 A 140
14 C 2020 752 Z 2036 B 106
15 C 2021 557 Z 2036 A 118
16 C 2021 557 Z 2036 B 141
17: C 2022 727 Z 2036 A 140
18: C 2022 727 Z 2036 B 58
> class (dfdt)
[1] "data.table" "data.frame"
> df2dt <- merge(gdp2_ldt, trade_dt,
+ by.x = c("country", "year"),
+ by.y = c("reporter", "year"),
+ all = TRUE)
> df2dt

country year GDP region totalGDP partner export
1: A 2020 681 w 1306 B 80
2: A 2020 681 W 1306 c 63
3: A 2021 NA W 1306 B 128
4: A 2021 NA w 1306 C 116
5: A 2022 625 w 1306 B 100
6: A 2022 625 w 1306 C 91
7 B 2020 997 w 2732 A 99
8: B 2020 997 W 2732 ¢ 63
9: B 2021 963 w 2732 A 92
10: B 2021 963 w 2732 C 74
11: B 2022 772 w 2732 A 150
12: B 2022 772 W 2732 C 139
13: C 2020 752 Z 2036 A 140
14: C 2020 752 Z 2036 B 106
15: C 2021 557 Z 2036 A 118
16 C 2021 557 Z 2036 B 141
17 C 2022 727 Z 2036 A 140
18 C 2022 727 Z 2036 B 58
19: D 2020 832 Z 2229 <NA> NA
20 D 2021 851 Z 2229 <NA> NA
21: D 2022 546 Z 2229 <NA> NA

country year GDP region totalGDP partner export

> df3dt <- merge(gdp2_1ldt, trade_dt,

+ by.x = c("country", "year"),
+ by.y = c("reporter", "year"),
+ all.x = TRUE)
> df3dt

country year GDP region totalGDP partner export
1: A 2020 681 w 1306 B 80
2: A 2020 681 W 1306 ¢ 63
3: A 2021 NA W 1306 B 128
4: A 2021 NA w 1306 C 116
5: A 2022 625 w 1306 B 100
6: A 2022 625 w 1306 C 91
7 B 2020 997 w 2732 A 99
8: B 2020 997 W 2732 c 63
9: B 2021 963 w 2732 A 92
10: B 2021 963 w 2732 C 74
11: B 2022 772 w 2732 A 150
12: B 2022 772 w 2732 C 139
13: C 2020 752 Z 2036 A 140
14: C 2020 752 Z 2036 B 106
15: C 2021 557 Z 2036 A 118
16 C 2021 557 Z 2036 B 141
17 C 2022 727 Z 2036 A 140
18 C 2022 727 Z 2036 B 58
19: D 2020 832 Z 2229 <NA> NA
20 D 2021 851 Z 2229 <NA> NA
21: D 2022 546 Z 2229 <NA> NA
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country year GDP region totalGDP partner export

> df4dt <- merge(gdp2_ 1ldt, trade_dt,

+ by.x = c("country", "year")
+ by.y = c("reporter", "year")
+ all.y = TRUE)
> df4dt
country year GDP region totalGDP partner export
1: A 2020 681 W 1306 B 80
2: A 2020 681 W 1306 C 63
3: A 2021 NA w 1306 B 128
4: A 2021 NA w 1306 C 116
5: A 2022 625 w 1306 B 100
6: A 2022 625 W 1306 C 91
7 B 2020 997 w 2732 A 99
8: B 2020 997 w 2732 C 63
9: B 2021 963 w 2732 A 92
10: B 2021 963 w 2732 C 74
11: B 2022 772 w 2732 A 150
12: B 2022 772 W 2732 C 139
13: C 2020 752 Z 2036 A 140
14: C 2020 752 Z 2036 B 106
15 C 2021 557 Z 2036 A 118
16 C 2021 557 Z 2036 B 141
17: C 2022 727 Z 2036 A 140
18 C 2022 727 Z 2036 B 58
Aggregating Data

Another operation that we often implement consists in aggregating some variables
in the data frame. In this example, we compute the mean of GDP and export by
country and partner in df4. Again, we show how we can accomplish this task
with the base aggregate () function, with dplyr, and with data.table

In aggregate (),ina list () we indicate the variables to aggregate, in by a
list of grouping elements, and in FUN the function to use to aggregate.

> df4agg <- aggregate.data.frame(list (GDP_mean = df4$GDP,
+ export_mean = df4$export),
+ by = list(country = df4$country,

+ partner = df4$partner),

+ FUN = function(x) mean(x, na.rm = T))

>

df4agg

country partner GDP_mean export_mean
1 B A 910.6667 113.6667
2 C A 678.6667 132.6667
3 A B 653.0000 102.6667
4 C B 678.6667 101.6667
5 A C 653.0000 90.0000
6 B C 910.6667 92.0000

With the dplyr package, we combine group by () with summarize ().
Here, I show you two ways. You can refer to https://dplyr.tidyverse.org/reference/
summarise_all.html for additional examples.

> df4agg2 <- df4 %>%
+ group_by (country, partner) %>%

+ summarize (GDP_mean = mean(GDP, na.rm = TRUE),
+ export_mean = mean(export, na.rm = TRUE))
‘summarise () ' regrouping output by ‘country’ (override with ‘.groups' argument)

> df4agg2
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# A tibble: 6 x 4

# Groups: country [3]

country partner GDP_mean export_mean

<chr> <chr> <dbl> <dbl>

A B 653 103.

A C 653 90
A 911. 114.
C 911. 92
A 679. 133.
B 679. 102.

f4agg2 <- df4 $>%
group_by (country, partner) %>%

-+ + + V.OOUIL B WM
oNNWw

summarize (across (c ("GDP", "export"),
~ mean(.x, na.rm = TRUE))
summarise () ' regrouping output by ‘country’ (override with ‘.groups' argument)
> df4agg2
# A tibble: 6 x 4
# Groups: country [3]

country partner GDP export
<chr> <chrs> <dbl> <dbls>

1A B 653 103.
2 A C 653 90
3 B A 911. 114.
4 B C 911. 92
5C A 679. 133.
6 C B 679. 102.
Finally, with data.table
> df4dtagg <- df4dt[, list (GDP_mean = mean(GDP, na.rm = TRUE),
+ export_mean = mean(export, na.rm = TRUE))
+ by = list(country, partner)]
> df4dtagg
country partner GDP_mean export_mean
1: A B 653.0000 102.6667
2: A C 653.0000 90.0000
3: B A 910.6667 113.6667
4: B C 910.6667 92.0000
5: C A 678.6667 132.6667
6: C B 678.6667 101.6667

Detecting Missing Values

In gdp2 1 we have a missing value. We can clearly see it in this small data frame.
But how can we detect it in a larger data frame?

First, we can run the summary () function
> summary (gdp2_1)

country year GDP region
Length:12 Min. :2020 Min. :546.0 Length:12
Class :character 1st Qu.:2020 1st Qu.:653.0 Class :character
Mode :character Median :2021 Median :752.0 Mode :character
Mean :2021 Mean :754.8
3rd Qu.:2022 3rd Qu.:841.5
Max. :2022 Max. :997.0
NA’'s :1
totalGDP
Min. :1306

1st Qu.:1854
Median :2132
Mean :2076
3rd Qu.:2355
Max. :2732
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We see that GDP has one missing value.
Alternatively, we can use the is.na () function. The TRUE value indicates the
presence of the missing value

> is.na(gdp2_1)
country vyear GDP region totalGDP

[1,] FALSE FALSE FALSE FALSE FALSE
[2,] FALSE FALSE TRUE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE FALSE
[4,] FALSE FALSE FALSE FALSE FALSE
[5,] FALSE FALSE FALSE FALSE FALSE
[6,1 FALSE FALSE FALSE FALSE FALSE
[7,1 FALSE FALSE FALSE FALSE FALSE
[8,] FALSE FALSE FALSE FALSE FALSE
[9,] FALSE FALSE FALSE FALSE FALSE
[10,] FALSE FALSE FALSE FALSE FALSE
[11,] FALSE FALSE FALSE FALSE FALSE
[12,] FALSE FALSE FALSE FALSE FALSE

Let’s locate it by nesting is.na () in the which () function
> which(is.na(gdp2_1))
[1] 26

The output indicates that the missing value is the 26th value by counting from
top to down from the first column. Still is quite hard to spot it in a large data set.
To get a better location for the missing value, we add arr.ind = TRUE to the
previous function to return the indices for the matrix

> which(is.na(gdp2_1), arr.ind = TRUE)
row col

(1 2 3

Now we know that the missing value is located at row 2 and column 3.

In the next part of this section, we simply learn a few functions to work with
missing values.

First, we can omit the observation with the missing value by using na .omit ()
> gdp_NAomit <- na.omit (gdp2_1)

> gdp_NAomit
country year GDP region totalGDP

1: A 2020 681 w 1306
2: A 2022 625 W 1306
3: B 2020 997 w 2732
4: B 2021 963 w 2732
5: B 2022 772 w 2732
6: C 2020 752 Z 2036
7: C 2021 557 Z 2036
8: C 2022 727 Z 2036
9: D 2020 832 Z 2229
10: D 2021 851 Z 2229
11: D 2022 546 Z 2229

We dropped the observation for country A and year 2021.
Alternatively, we can use complete.cases () which returns a logical vector
indicating which cases are complete, i.e. have no missing values

> gdp2_1[complete.cases (gdp2_1), 1
country year GDP region totalGDP

1: A 2020 681 w 1306
2: A 2022 625 W 1306
3: B 2020 997 W 2732
4: B 2021 963 w 2732
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5: B 2022 772 w 2732
6: C 2020 752 Z 2036
7: C 2021 557 Z 2036
8: C 2022 727 Z 2036
9: D 2020 832 Z 2229
10: D 2021 851 Z 2229
11: D 2022 546 Z 2229

Without going into detail of missing data analysis, let’s see how we can simply
replace the missing value. For example, we can forward the previous value. For
this task we use the na . locf () function from the zoo package. Since we have to
make sure that the previous value belong to the same country, we use group_by ()

> gdp2_1 %>%

+ group_by (country)
+ mutate (gdp_NAomit
# A tibble: 12 x 6
#

o e
5>%

na.locf (GDP))

Groups : country [4]

country vyear GDP region totalGDP gdp_ NAomit

<chr> <dbl> <int> <chr> <int> <int>
1A 2020 681 W 1306 681
2 A 2021 NA W 1306 681
3 A 2022 625 W 1306 625
4 B 2020 997 W 2732 997
5B 2021 963 W 2732 963
6 B 2022 772 W 2732 772
7 C 2020 752 Z 2036 752
8 C 2021 557 Z 2036 557
9 C 2022 727 7 2036 727
10 D 2020 832 Z 2229 832
11 D 2021 851 Z 2229 851
12 D 2022 546 Z 2229 546

In this example, we generated a new column gdp NAomit where we replaced
the missing value. Instead of forwarding, we can backward a value. We use the same
function as before but we add fromLast = TRUE

> gdp2_1 %>%

+ group_by (country) %>%
+ mutate (gdp NAomit = na.locf (GDP,

+ fromLast = TRUE))
# A tibble: 12 x 6
#

Groups : country [4]

country year GDP region totalGDP gdp NAomit

<chr> <dbl> <int> <chr> <int> <int>
1A 2020 681 W 1306 681
2 A 2021 NA W 1306 625
3 A 2022 625 W 1306 625
4 B 2020 997 W 2732 997
5B 2021 963 W 2732 963
6 B 2022 772 W 2732 772
7 C 2020 752 7 2036 752
8 C 2021 557 Z 2036 557
9 C 2022 727 Z 2036 727
10 D 2020 832 Z 2229 832
11 D 2021 851 Z 2229 851
12 D 2022 546 Z 2229 546

Alternatively, we can replace it with the average of the previous and following
value. We can use na . approx () for this task. Note that this is a generic function
for replacing each NA with interpolated values.

> gdp3 <- gdp2_1 %>%
+ group_by (country) %>%
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+ mutate (GDP = na.approx (GDP) )

> gdp3
# A tibble: 12 x 5
# Groups: country [4]
country year GDP region totalGDP
<chr> <dbl> <dbl> <chr> <int>
1A 2020 681 W 1306
2 A 2021 653 W 1306
3 A 2022 625 W 1306
4 B 2020 997 W 2732
5B 2021 963 W 2732
6 B 2022 772 W 2732
7 C 2020 752 Z 2036
8 C 2021 557 Z 2036
9 C 2022 727 Z 2036
10 D 2020 832 Z 2229
11 D 2021 851 Z 2229
12 D 2022 546 Z 2229

Another alternative to replace missing values is touse £i11 ()

> gdp2_ 1 %$>%
+ group_by (country) %>%
+ £i11(GDP, .direction = "up")
# A tibble: 12 x 5
# Groups: country [4]
country year GDP region totalGDP
<chr> <dbl> <int> <chr> <int>
1A 2020 681 W 1306
2 A 2021 625 W 1306
3 A 2022 625 W 1306
4 B 2020 997 W 2732
5B 2021 963 W 2732
6 B 2022 772 W 2732
7 C 2020 752 Z 2036
8 C 2021 557 Z 2036
9 C 2022 727 7 2036
10 D 2020 832 Z 2229
11 D 2021 851 Z 2229
12 D 2022 546 Z 2229

Creating Lag Variables

There are different options to create lag variables but in this example we will see
only a case with the 1ag () function from dplyr. We will use another approach in
Sect. 2.2 with the p1m package.

Since we have different countries, we have to make sure that the lag variable
belongs to the appropriate country. Consequently, we need to use group_ by ()
to group the series by country. Note that we use dplyzr: : 1ag to tell R that we
want to use the 1ag () function from the dplyr package. Since there are more than
one functions named lag (), by specifying the package we avoid possible errors.
In 1lag (), n gives the number of positions to lead or lag by.
> gdp3 <- gdp3 %>%

+ group_by (country) %>%

+ mutate (Lgdp = dplyr::lag(GDP, n = 1))
> gdp3

# A tibble: 12 x 6

# Groups: country [4]
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country year GDP region totalGDP Lgdp

<chr> <dbl> <dbl> <chr> <int> <dbl>
1A 2020 681 W 1306 NA
2 A 2021 653 W 1306 681
3 A 2022 625 W 1306 653
4 B 2020 997 W 2732 NA
5B 2021 963 W 2732 997
6 B 2022 772 W 2732 963
7 C 2020 752 Z 2036 NA
8 C 2021 557 Z 2036 752
S C 2022 727 7 2036 557
10 D 2020 832 Z 2229 NA
11 D 2021 851 Z 2229 832
12 D 2022 546 Z 2229 851

Subsetting a Data Frame

We have already seen how to subset by using subset ()

> gdp3W <- subset (gdp3, region == "W")
> gdp3W
# A tibble: 6 x 6
# Groups: country [2]
country year GDP region totalGDP Lgdp
<chr> <dbl> <dbl> <chr> <int> <dbl>
1A 2020 681 W 1306 NA
2 A 2021 653 W 1306 681
3 A 2022 625 W 1306 653
4 B 2020 997 W 2732 NA
5B 2021 963 W 2732 997
6 B 2022 772 W 2732 963
> gdp3Z <- subset(gdp3, region != "W")
> gdp3Z
# A tibble: 6 x 6
# Groups: country [2]
country year GDP region totalGDP Lgdp
<chr> <dbl> <dbl> <chr> <int> <dbl>
1cC 2020 752 Z 2036 NA
2 C 2021 557 Z 2036 752
3 C 2022 727 Z 2036 557
4 D 2020 832 Z 2229 NA
5D 2021 851 Z 2229 832
6 D 2022 546 Z 2229 851

An alternative is touse filter () from dplyr

> gdp3C <- gdp3 %>%
+ filter (country == "C")
> gdp3C
# A tibble: 3 x 6
# Groups: country [1]
country year GDP region totalGDP Lgdp
<chr> <dbl> <dbl> <chr> <int> <dbl>
1cC 2020 752 Z 2036 NA
2 C 2021 557 Z 2036 752

3 C 2022 727 Z 2036 557
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1.8 Retrieve the Data Sets from the WTO

After reviewing the main features of R and the main data management operations,
we are almost ready to start. We need to retrieve the data sets from the WTO for
replication. We have two options. The first option is to visit the WTO website
at https://www.wto.org/english/res_e/publications_e/practical_guidel2_e.htm and
download the files from the link “Download application and exercises files”. The
second option is to download the data sets directly from R. Let’s use this second
option. First, we download the files that are zipped. Please note that the download
can last several minutes because we are downloading quite large data sets. Second,
we unzip the files. Following, I show both the code from the R Script file

download.file("https://www.wto.org/english/res_e/reser_e/PracticalGuideFiles.
zip", destfile = "PracticalGuideFiles.zip")
unzip ("PracticalGuideFiles.zip")

and from the console pane

> download.file("https://www.wto.org/english/res_e/reser_e/PracticalGuideFiles.
zip", + destfile = "PracticalGuideFiles.zip")

trying URL 'https://www.wto.org/english/res_e/reser_e/PracticalGuideFiles.zip’

Content type ’'application/x-zip-compressed’ length 467548975 bytes (445.9 MB)

downloaded 445.9 MB

> unzip ("PracticalGuideFiles.zip")

The files downloaded include all the data sets, the Stata do files where the code is
written in Stata, and other files. Since we only use a few data sets, we create a new
directory, datWTO, where we move the data sets of interest.

dir.create ("datWTo")

We have to copy the data sets from the folder where they are stored into dat WTO.
We will use a for () loop for this task. First, we store the name of the data sets we
use in datl, dat2, and dat3. The corresponding data sets are stored in three
different folders. Second, we generate a list that contains these three objects. Third,
we use the for () loop where we define the path to the three folders where the data
sets are stored and the path to datWTO

datl <- c("aBilateralTrade.dta", "BilateralTrade.dta",
"comtrade_exports_all_countries_2000.dta",
"germany_trade_2004_hsé6.dta",
"GravityData.dta",
"openness.dta",
"TPP.dta",
"unctad_tot_data.dta")

dat2 <- "PMA_MEX.dta"

dat3 <- c("dist_cepii224.dta", "Religion.dta",
"tradeflows.csv", "joinwto.txt",
"GDP.csv")

datList <- list(datl, dat2, dat3)

for(i in 1:3){
p <- paste0O("Practical guide to TPA/Chapter", i,
"/Datasets/")
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file.copy(from = pasteO(p, datList[[i]]),
to = paste0O("datWTo/", datList[[i]]))

Note the loop can take a few seconds to copy all the data sets.

Now we are ready to work.

67



Chapter 2 ®
Analyzing Trade Flows Qe

2.1 Openness Across Countries

Learning Objectives

Import a Stata file

Generate new variables

Replace variables

Subset a data set

Run a regression

Reproduce Stata robust standard errors
Plot with plot () and ggplot ()
Generate new variables with 1felse ()
Handle missing values

In this section we replicate the UNCTAD & WTO’s Stata code in R for assessing
and estimating trade openness across countries. !
Country’s trade openness is defined as

Export; + Import;

Openness; = 2.1
P i GDP; 2.1
! The corresponding Stata code is available in openness.do.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 69
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Table 2.1 Openness for G20 countries, 2016

Country GDP Export Import EXP/GDP IMP/GDP Openness
ARG 554.8 57.7 55.6 10.4% 10.0% 20.4%
AUS 1208.0 189.6 189.4 15.7% 15.7% 31.4%
BRA 1793.9 185.2 137.5 10.3% 7.7% 18.0%
CAN 1535.7 389.0 402.9 25.3% 26.2% 51.6%
CHN 11190.9 2097.6 1587.9 18.7% 14.2% 32.9%
FRA 2465.1 488.8 560.5 19.8% 22.7% 42.6%
DEU 3477.7 1340.7 1060.6 38.6% 30.5% 69.1%
IND 2274.2 260.3 356.7 11.4% 15.7% 27.1%
IDN 932.2 144.4 135.6 15.5% 14.6% 30.0%
ITA 1859.3 461.5 404.5 24.8% 21.8% 46.6%
JPN 4949.2 644.9 606.9 13.0% 12.3% 25.3%
KOR 1414.8 495.4 406.1 35.0% 28.7% 63.7%
MEX 1077.7 373.9 387.0 34.7% 35.9% 70.6%
RUS 1284.7 285.4 182.2 22.2% 14.2% 36.4%
SAU 644.9 183.6 140.1 28.5% 21.7% 50.2%
ZAF 295.7 74.1 74.7 25.1% 25.3% 50.3%
TUR 863.7 142.5 198.6 16.5% 23.0% 39.5%
GBR 2650.8 411.4 636.3 15.5% 24.0% 39.5%
USA 18624.4 1450.4 2248.2 7.8% 12.1% 19.9%

Source: GDP data from the World Bank. Trade data from COMTRADE
Note: Values in billion US dollars

Trade openness measures the integration of an economy into the world trade
circuit. Table 2.1 reports the openness indicator for the G20 countries for the 2016.
We observe different degrees of openness. Mexico and Germany record the highest
degree of openness, around 70%, while United States and Brazil the lowest, around
20%.

Open a new script file in RStudio and save it as 02 openness_2edn.

Let’s load the following packages by using the 1ibrary () function.

library("haven") # import STATA .dta file

library("ggplot2") # plot with ggplot

library ("ggpubr") # combine ggplot plots

library ("sandwich") # replicate Stata robust standard errors
library("lmtest") # replicate Stata robust standard errors
library("estimatr") # estimation with Stata robust standard errors

We start by importing the WTO’s openness.dta data set in R by using
read dta () from the haven package. Next, follow these steps:

. Check the class of the imported data set with class () ;

. View the data set using View () ;

. Retrieve the dimension of the data set with dim () ;

. Obtain additional information about the structure of the data set using the str ()
function.

AW N =
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#’ Note I assume that you set up the R project as described

#’ in the introductory chapter and that you saved the data sets
#’ in datWTO as shown in the last section in the introductory
#’ chapter.

openness <- read_dta("datWTO/openness.dta")

class (openness)

View (openness)

dim(openness)

str (openness)

openness is a tibble data frame” with 3161 observations and 10 variables
such as reporter, ccode, year, year, trade openness in current terms, openc,
trade openness in real terms, openk, total population, pop, GDP in current terms,
gdp_current, landlocked, i.e. if a country has no access to the sea, 1dlock,
island, i.e. if a country is an island country, i sland, remoteness, remoteness,
and remoteness as defined by Head, remoteness head. Data cover the years
1976-2004.

Let’s start preparing the data set for the analysis. First, we create new variables.
We do this simply by adding $ to the data set before the name of the new variable.
Then we use the assignment operator <- to assign values to the new variable.
In the first line of the next code block, for example, we create gdppc, GDP per
capita, dividing gdp_current, current GDP, by pop, population, in the data set
openness.

Then, we create new variables as the logarithm of existing variables by using the
log () function. Finally, we scale the variable for GDP capita, gdppc, dividing by
1000. We simply assign a new value to replace it.

# GDP per capita (gdppc)

openness$gdppc <- openness$gdp current / openness$pop

# Log of variables

openness$ln open <- log(openness$openc)

openness$ln gdp <- log(opennesssgdp current)
opennesss$ln_gdppc <- log(openness$gdppc)
opennesssln pop <- log(openness$pop)

openness$ln_remot <- log(openness$remoteness)
openness$ln remot head <- log(openness$remoteness head)

# Replace gdppc and 1ln_gdppc
openness$gdppc <- openness$gdppc / 1000
openness$ln_gdppc <- log(openness$gdppc)

Our aim is to plot the data for year 2000 for countries whose trade openness in
current terms, openc, is less or equal to 200. The first step is to subset the data set.
We use the subset () function to subset the original data set if year is 2000 and
if openc is less or equal to 200.

# subset openness data set with year = 2000 and openc <= 200
openness_ 2000 <- subset (openness, year == 2000 & openc <= 200)
dim(openness_2000)

Note that we create a new data set, openness 2000, to not overwrite the
original data set. In the subset () function, first we enter the name of the data

2 Here, we just refer to it as a special class of data frame. You may refer to Wickham (2019a, p. 58)
for more details.
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set to subset and then the conditional statement, i.e., in this case, year equal to
2000 (double equal sign) and openc less than or equal to 200.

Now we are ready to plot. For this first example, we will plot by using the
basic plot () function and the ggplot () function to highlight some differences.
Afterwards, we will use ggplot () in the rest of this section and in the rest of the
book. We will use again plot () only in Sect. 2.6.

# Linear regression
openness_2000_1m <- lm(openc ~ gdppc, data = openness_2000)

# Basic plot

plot (openness 2000$gdppc, openness 2000S$Sopenc,
xlab = "GDP per Capita",
ylab "Openness",
main = "Trade Openness"

abline (openness 2000 _1lm, col ="red")

# ggplot
ggplot (openness_2000, aes(x=gdppc, y=openc)) +
geom_point () +
stat_smooth(method = "lm", col ="red") +
labs(x = "GDP per Capita", y = "Openness"
title = "Trade Openness")

The entries of the plot () function are the x and y coordinates of points in
the plot. Then we add labels for the x-axis and y-axis, xlab = and ylab =
respectively, and the main title, main = . We add a regression line with the
abline () function. Note that we run a linear regression and store its results in
an object called openness 2000 _1m. This is the first entry of the abline ()
function. More on regression in Sects. 3.2 and 4.2. The argument col = specify
the color of the line.

In ggplot () we first identify the data set that must be a data frame. Second
we map the data to the x-axis and y-axis in aes (). Then we specify the kind of
plot we want to create. In this case, geom point () is used to create scatter-plots.
Then we add the regression line using stat smooth () and specifying method
= "1m". In the argument 1abs () we set axes labels and title. Figure 2.1 shows
the outcome of these plots.

A feature of the ggplot () function is that the + operator is part of the code
and it is used to combine the different layers of the plot. For example, observe the
commands in the console pane for plot () and ggplot () after running the code
in the script file.

> plot (openness_2000$gdppc, openness_2000$openc,

+ xlab = "GDP per Capita",
+ ylab = "Openness"
+ main = "Trade Openness")

> ggplot (openness_2000, aes(x=gdppc, y=openc)) +

+ geom_point () +

+ stat_smooth (method = "lm", col ="red") +
+ labs(x = "GDP per Capita", y = "Openness"
+ title = "Trade Openness")
‘geom_smooth () ' using formula 'y ~ x’

Warning messages:
1: Removed 1 rows containing non-finite values (stat_smooth) .
2: Removed 1 rows containing missing values (geom_point) .
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Trade Openness

Trade Openness .
.
S A
&
| .
° .
o
150 ©
o o - . .
L4 5 o |
o
.
o
.
o ° .
O . °
8 H
w B
g %) 2 *
2 . g |
g o o o % . |
2 o .
O 270 oo L
O o P oo
o 09
N o o O o B .
O 777777‘7777777‘7 ; . . . A
o 2 .
5 o o ° ° o o I .
8 o o . . . | .
éﬁso - o oo e .
.
: . = ..
o 8 8 R T .
o 7 ° ‘ | |
B . ‘ |
o s0- & |
8o ) |
P .
8 O 2
o o ] ‘. :
o
. .
T : | | | |
0 10000 20000 30000 .
GDP per Capita 0 10000 20000 2000
GDP per Capita
§ (b)

Fig. 2.1 Comparing basic plot and ggplot layout. (a) Plot function. (b) ggplot function

The command line for plot () reports a + that is not in the code. This + just
signals that the code continues on the second line. We do not need it when we edit
in the R Script file. On the other hand, the command line for ggplot () reports
a double +. This is due to the fact the one + is part of the code of the ggplot ()
while the second + just signals that the code continues on the second line. We do
not need the second + when we edit in the R Script file.

Finally, note that ggplot () prints that geom_smooth () uses the formula y
~ x because we did not explicitly write the formula we want. However, we are fine
with this choice (more on the formula shortly).

The following codes generate the plots with a quadratic fit using ggplot (),
without and with log transformation, respectively plot gdt and plot lngdt.
Note that in ggplot () the x value is mapped to gdppc in plot gdt while
to In_gdppc in plot 1ngdt. In_gdppc is the log transformation of gdppc
generated at the beginning.

Before plotting, we create new variables that store a character value. This will be
use for mapping the color and legend in aes () in ggplot (). In this section, we
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introduce the basics to plot with ggplot (). We will see later in Sect. 2.3 how to
reshape the data set to plot and how to set properly the legend.

# add variables to openness_2000 for mapping in aes() in ggplot (
openness_2000$%map_ fit <- "fitted"
openness_2000$map open <- "openness'

Now we are ready to plot with ggplot ().

# Plot

plot_gdt <- ggplot (openness_2000,
aes(x = gdppc, y = openc,
color = "openness")) +
geom_point () +
stat_smooth (method = "Im",
formula = y ~ x + I(x72),
aes (color = "fitted")) +
ggtitle("Quadratic fit") +
xlab ("GDP per capita") + ylab(" ") +
theme (plot.title = element_text (hjust = 0.5,
size = 10
legend.position = "bottom") +
scale_color discrete (name="Legend")

plot_lngdt <- ggplot (openness_2000,
aes(x = ln_gdppc, y = openc,

color = "openness")) +

geom_point () +
stat_smooth (method = "Ilm",

formula = y ~ x + I(x72),

aes (color = "fitted")) +
ggtitle("Quadratic fit after log transformation") +
xlab ("GDP per capita") + ylab(" ") +
theme (plot.title = element_text (hjust = 0.5, size = 10),

legend.position = "bottom") +

scale_color_discrete (name="Legend")

plot_gdt
plot_lngdt

## combine plots
ggarrange (plot_gdt, plot_ lngdt,
ncol = 1, nrow = 2)

Note that this time in stat smooth () we specify the method = "1m"
and we define a quadratic formula for the quadratic fit line, formula = y ~
x + I(x"2).3 Furthermore, note that we add new lines of code. For example,
the labels are written in ad hoc arguments, x1ab (), ylab () and the title of the
plot in ggtitle (). This method is alternative to the one we coded in Fig.2.1.
It is recommended if we change other scale options. In theme (plot.title =
element text ()) we set the horizontal adjustment, hjust = and the size,
size = for the title. The last two arguments manage color and the legend. We say
more about them in Sects. 2.2 and 2.3. Note that we store the plots in two objects.
Therefore, to view the plots we have to run the objects. Finally, we combine the two
plots with ggarrange () from the ggpubr package to reproduce the outcome

3The I () function is used to inhibit the interpretation of operators such as "+", "-", "*" and """ as
formula operators, so they are used as arithmetical operators.
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Fig. 2.2 Adding a quadratic fit to a ggplot

as in Fig. 2.2. We specify the number of rows, nrow and the number of columns,
ncol, to arrange the plot grid in two rows and one column.* The plots are shown
in Fig. 2.2.

Note that the different appearance of the two plots is due to the log transforma-
tion. In the second plot, the influence of the outliers is reduced.

Next, we compute the turning point for the quadratic estimation. In an estimated
quadratic equation with B 1 > 0and 32 < 0, the turning point (or maximum of the
function) is always achieved at the coefficient on x over twice the absolute value of
the coefficient on x> (Wooldridge, 2012, p.195)

4 Note that a plot generated by plot () cannot be stored in an object. I combined the plots in
Fig. 2.1 directly when editing this book in IATEX.
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o= P 2.2)
2| B2l

# turning point of equation "quadratic fit"

reg 1 <- lm(openc ~ gdppc + I(gdppc”2), data = openness_2000)
reg_lscoefficients

turning pointl <- reg l$coefficients([2]/(2xabs(reg_lscoefficients[3]))
turning pointl

> reg_l$coefficients
(Intercept) gdppc I (gdppc™2)
6.683052e+01 3.146966e-03 -9.560138e-08
> turning_pointl <- reg_l$coefficients[2]/(2xabs(reg_l$coefficients[3]))
> turning pointl
gdppc

16458.79

The calculated turning point is $ 16458.79. Note how we extracted the coeffi-
cients from the fitted model object. We use the $ mark and extract the position from
coefficients with [ ]. Note the position of the estimated coefficients.

We add this information on the plot by drawing a vertical line with
geom vline (xintercept = ). In the second plot, we zoom in by using
coord cartesian (). Note the we just add the new layers to previous stored
plots (Fig.2.3).

# Plot with vertical line at turning point

plot_gdt_tp <- plot_gdt +
geom_vline (xintercept = turning_ pointl,
linetype = "dotted" )

plot_qgdt_tp

### zoom-in
plot_gdt_zoom <- plot _gdt tp +
coord_cartesian(xlim = ¢ (10000, 25000),
ylim = c¢(75, 110)) +
labs (caption = "zoom in")

ggarrange (plot_gdt tp, plot_gdt zoom,
ncol = 1, nrow = 2,
common. legend = TRUE,
legend = "bottom")

Note that in ggarange () we set common . legend equal TRUE so that the
two plots share the same legend.

Now, let’s add another kind of information to our plots. Suppose we want
to identify which countries have a trade openness greater than 150 and add this
information to our plots. We can add this information as label, geom label (),
or text, geom_text () to the plot.

In the following code, we create a new object, openness_2000sub, which is
a subset of openness 2000 data set by countries with a trade openness greater
than 150. This object stores the information we want to add to the plot (Fig. 2.4).

# add text to ggplot ()

## subset if openc > 150
openness 2000sub <- openness 2000 [openness 2000$openc > 150, ]
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Fig. 2.3 Adding an x intercept line to a ggplot

head (openness_2000sub)

plot_gdt_1bl <- plot_gdt +
geom_label (aes (gdppc, openc, label = ccode),
size = 2.5, data = openness_2000sub) +
labs (caption = "a) label") +
theme (plot.title = element_text (hjust = 0.5, size = 11.5),
plot.caption = element text (hjust = 0.5, size = 12))

plot_lngdt_txt <- plot_lngdt +
labs(caption = "b) text") +
theme (plot.title = element_text (hjust = 0.5, size = 11.5),
plot.caption = element_text (hjust 0.5, size = 12),
legend.position = "bottom") +
geom_text (aes (1ln_gdppc, openc, label = ccode),
size = 2.5, data = openness_2000sub,
alpha= 0.5, hjust = 1.2)
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Fig. 2.4 Adding labels and text to a ggplot

plot_gdt_1bl
plot_lngdt_txt

ggarrange (plot_qgdt_1bl, plot_lngdt_txt,
ncol = 1, nrow = 2,
common. legend = TRUE,
legend.grob = get_legend(plot_lngdt_txt),
legend = "bottom")
In the second part of this example, we compare the observed values with fitted
values to check how much a country trades relatively to how much it can be

expected. First, we estimate the following equation

In_open = By + Biln_gdppc + Barln_pop + Bzccode + u (2.3)
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First, we use the 1m () function that is a base R function. The first entry is the
model, i.e. is the dependent variable separated by the independent variables by a
tilde, ~. Between independent variables we insert a + operator. Finally, we include
data = with the name of the database where these variables are located.

Let’s store the result in a new object, open_reg. To see the result we use the
summary () function. Note that to reproduce robust standard errors as in Stata we
have to call for another function, coeftest () in Imtest package and choose the
option vcov = vcovHC (x, "HC1"), where x represents a fitted model object.

open_reg <- lm(ln_open ~ 1ln_gdppc + ln pop + factor(ccode),
data = openness)
summary (open_reg)
coeftest (open_reg, vcov = vcovHC(open_reg, "HC1"))
Now, we replicate the same results with the 1m_ robust () function from
the estimatr package. With this function, we just need to write se_type =
"stata" to reproduce Stata robust standard errors.

open_reg_rob <- lm robust (ln_open ~ 1ln gdppc + ln _pop + factor (ccode),
data = openness,
se_type = "stata")
summary (open_reg_rob)
Let’s continue the example with open_reg. Let’s extract the fitted values and
store in a new variable in the openness data set. If we do it, we get the following
€rTor.

> openness$fitted <- open_regsfitted.values # error

Error: Assigned data ‘open_reg$fitted.values' must be compatible with existing
data.

x Existing data has 3161 rows.

x Assigned data has 3039 rows.

i Only vectors of size 1 are recycled.

Run ‘rlang::last_error()' to see where the error occurred.

We read the the data set has 3161 rows and the fitted values 3039. Let’s check
the dimension of the data set and the length of the fitted values.
> dim(openness)

[1] 3161 17
> length (open_regs$fitted.values)
[1] 3039

Note that when we run the regression with the 1m () function, we can add the
argument na.action, a function which indicates what should happen when the
data contain NAs. The default is set by the na.action setting of options, and is
na.fail if thatis unset. The ‘factory-fresh’ defaultis na . omit. Another possible
value is NULL, no action. Value na . exclude can be useful.

In the next step we omit the missing values from our data set with na . omit ().
Note that before omitting the missing values we test the values with the function
is.na /(). It returns TRUE for values with missing values and FALSE otherwise.
We nested the is.na () in any () and which () to obtain more info about the
missing values.

# omit data with missing values

is.na (openness)

any (is.na (openness))

which(is.na (openness), arr.ind = TRUE)
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Note that if we call for the summary () function, it provides the number of
missing values, NA. For example,

> summary (openness$ln_gdppc)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
4.203 6.027 7.173 7.413 8.644 10.910 122

Note that the number of NA is the difference between 3161 and 3039.

openness_omit <- na.omit (openness)

openness_omit has 3039 observations.

> nrow (openness_omit)
[1] 3039

Then, we add a new variable to the data set that contains the result of fitted
values from our previous regression. To access these values, we extract them from
open_reg, the object that stores our results from the regression analysis. We use
$ to extract fitted values from the regression object and assign them to the new
variable £itted which we generate in the openness_omit data set.

Finally, we compare the observed values with the fitted values. We generate a new
column in our data set, trade more with the ifelse () function. The first entry
of the function states the conditional statement. In this case, if the observed values
are greater than the fitted values. If they are greater, it assigns 1 to trade_more,
0 otherwise. Finally, we table the results by using the table () function. Note that
we nest table () inwith () and head (). with () evaluates an R expression
in an environment constructed from data. Therefore, it allows us to avoid writing
the name of the data set for the two variables. head () allows us to view the first
entries of the data set. By default head () shows the first 6 entries. Here, we set
head () to show the first 15 entries.’

# Predict
openness_omit$fitted <- open_regsfitted.values

# check if trade more
openness_omit$trade more <- ifelse(openness_omit$ln_open >
openness_omit$fitted,

1, 0)
# crosstable
head (with (openness_omit, table(ccode, trade_more)), 15)
> head (with (openness_omit, table(ccode, trade_more)), 15)

trade_more
ccode 0 1
AGO 7 13
ARE 14 13
ARG 16 13
AUS 17 12
AUT 18 11

3 Note that some results for 0 (trade less) differ from the output in Stata. The reason is that Stata
is comparing the observed values with the fitted values even though the value is indeed missing. It
assigns the result of this comparison to 0. If you drop the missing values for fitted values in Stata
you will get the same results as in R.
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BDI 12 17
BEN 16 13
BFA 15 14
BGD 18 11
BOL 19 10
BRA 16 13
BWA 15 14
CAF 15 14
CAN 18 11
CHE 15 14

2.2 Geographical Orientation of Exports

Learning Objectives

Import a Stata file

Conversion of objects

Generate new variables

Group operations with ave ()

Group operations with group by ()
Sort data set by variables

Collapse a data set with aggregate ()
Rename column names

Label variables

Generate lag variables in a panel data set
Merge two data sets with merge ()
Replace if

Subset a data set

Plot with ggplot ()

In this section we replicate the UNCTAD & WTO’s Stata code in R for plotting the
geographical orientation of exports of Colombia and Pakistan.®

Open a new script file in RStudio and save it as 03_growth_orientation of_exports
_2edn.

Let’s load the following packages by using the 1ibrary () function.
library("haven") # import Stata .dta file

library ("Hmisc") # for label
library("ggplot2") # plot with ggplot

6 The corresponding Stata code is available in growth_orientation_of_exports.do.
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library ("plm") # for making lag variables in panel data
library("dplyr") # data management
library ("ggpubr") # combine ggplot plots

We start by importing the data set aBilateralTrade.dta as aBTin R. aBT
is a data frame with 403,135 observations and 5 variables: reporter, ccode, partner,
pcode, year, year, export value, exp tv, and impon value, imp_tv. Data cover
the years 1976-2004.

aBT <- read dta("datWTO/aBilateralTrade.dta"
class (aBilateralTrade)

View (aBT)

dim(aBT)

str (aBT)

We generate a new variable, tot exp, that is the total value of exports of an
exporter towards all partners by year. To calculate it, we need to sum the export
value, exp_ tv, by country, ccode, for a given year, year. We group these two
operations using the ave () function.” The first entry of ave () is the variable we
want to operate, i.e., exp_tv in this case. In the term interaction () we define
the grouping variables. In this case, ccode, for the exporting country, and year,
for the year. Finally, we define a function to apply for each level combination. In
this case we define a sum () function. Note that x refers to exp_ tv, the first entry
of ave (),and na.rm = T removes missing values.

Then, we create a new variable, export share as export value, exp_ tv,
divided by total value of exports, tot exp. Finally, we sort the aBT data set by
ccode and year with the order () function.

## Generate total export value

aBTS$tot_exp <- ave(aBT$exp_tv, interaction(aBT$ccode, aBTS$year),
FUN = function(x) sum(x, na.rm = T))

aBTS$export_share <- aBT$exp tv / aBTStot_exp

aBT <- aBT[order (aBT$ccode, aBTSyear), |

summary (aBT$export_share)

The following is the output of the summary () function applied to
export_ share. R signals the presence of missing values, NA.

> summary (aBT$export share)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’'s
0.000 0.000 0.000 0.008 0.002 1.000 3567

In the next step, let’s label the variable export share with the upData ()
function from the Hmisc package. In the first entry we input the data set. Then, in
label = we set a label to the variable of interest. The 1abel () function shows

the labels of your variables in the data set. If you View () the data set, you will note
that the label has been also added below the variable name.

aBT <- upData(aBT, labels = c(export_share =

"pcode’s share in ccode’s total exports")
label (aBT)
View (aBT)

7 We will implement another approach with the dp1yr package to group by later in this section.
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> label (aBT)

ccode pcode

"Country code" "Partner code"
year exp tv

"Year" "(sum) exp_ tv"

imp_tv tot_exp

"(sum) imp_tv" " (sum) exp_tv"

export_share
"pcode’s share in ccode’s total exports"

Next, we use again the ave () function to generate the sum of total imports,
tot_imppcode, by partner, pcode, and year, year. Then, we label it as reported
in the following code.

aBTS$tot imppcode <- ave (aBTS$exp tv, interaction(aBTS$year, aBTS$pcode),
FUN = function(x) sum(x, na.rm = T))
aBT <- upData (aBT, labels = c(tot_imppcode =
"total import of importing country (pcode)"))
label (aBT)
View (aBT)

Next, we collapse the data set by aggregating tot imppcode by pcode and
year. We use the aggregate () function. The first argument of aggregate ()
is the variables to be summarized, the second argument is a list containing the
variables to be used for grouping, and the third argument is the function to be used
to summarize the data. We assign this operation to a new data set, aBTc, to not
overwrite aBT.

aBTc <- aggregate (list (tot_imppcode = aBT$tot_imppcode),
by = list(pcode = aBTS$pcode, year = aBTS$year),
mean, na.rm = T)

View (aBTc)

In the next lines of code, we generate a new variable for the year over
year change, gamma_ totimppcode. For this task we need to create a lag
variable for tot imppcode. First, we sort the data set aBTc by pcode with
the order () function. Second, we make the aBTc data set as a panel data
frame object by using the function pdata.frame () from the plm package.
The index attribute describes its individual and time dimensions. Third, we
use the lag () function from the plm package to create the lag variable for
imppcode, lag totimppcode. Again, note that we specify that R has to use
the lag () function from the plm package. Finally, we create the new variable,
gamma_totimppcode and replace infinity value Inf with NA.

# making lag variable in panel data
aBTc <- aBTc [order (aBTcsSpcode), ]

aBTc <- pdata.frame(aBTc, index = c("pcode", "year"))
class (aBTc)

str (aBTc)

View (aBTc)

aBTcslag totimppcode <- plm::lag(aBTc$tot imppcode)
aBTcsgamma_totimppcode <- (aBTcS$tot imppcode / aBTc$lag totimppcode) - 1

# replace Inf with NA
any (is.infinite (aBTc$gamma_totimppcode) )
aBTc$gamma_totimppcode [is.infinite (aBTc$gamma_totimppcode)] <- NA
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If you noted, when we run str (aBTc) the variable year is reported as a factor.
Here, we show how to convert factor into a numeric value. We nest the level ()
function in as.numeric (). This is the advice from FAQ on CRAN to convert
factors to numeric.3

# change factor to numeric
aBTcS$year <- as.numeric(levels (aBTc$year)) [aBTcSyear]

In the next lines of code, we create new variables that represent average
for all the years of the data set, 1974-2004 (avg imp g 1974 2004),
for the period 1990-2000 (avg imp g 1990 2000), and for the period
1994-2004 (avg_imp g 1994 2004). We use the dplyr package. We use
group by () to group the data by pcode. Then, we compute just the mean for
avg _imp g 1974 2004 by making sure to remove the missing values for the
computation. The other two variables are generated by using the case when ()
function from dplyr. When the year corresponds to our period of interest, we
compute the mean for gamma_totimppcode for that period.”

# create average variables ----

aBTc <- aBTc %>%
group_by (pcode) %>%
mutate (avg_imp g 1974 2004 mean (gamma_totimppcode, na.rm = T),
avg_imp g 1990_2000 case_when (
year >= 1990 & year <= 2000 ~ mean(
gamma_totimppcode [year >= 1990 & year <= 2000], na.rm = T)

)
avg_imp_g 1994 2004 = case_when(
year >= 1994 & year <= 2004 ~ mean(
gamma_totimppcode [year >= 1994 & year <= 2004], na.rm = T)
))

View (aBTc)

Next, we use merge () to merge the data in aBT and aBTc. We define the
keyword for the merge in by =. Note that in this case, we have the same column
titles for the two data sets. That’s why the code differs from the example from
section “Merging Data Sets” where the column titles had different names.

# merge aBT and aBTc -> aBTm

aBTm <- merge (aBT, aBTc,
by = c("pcode", "year", "tot_imppcode"),
all = TRUE)

View (aBTm)

Next, we generate the logarithm of export shareandavg imp g 1990
2000. When we check the summary, we see that some -Inf values are
returned for 1n x. This is caused by taking the log of 0. We replace these

8 See https://cran.r-project.org/doc/FAQ/R-FAQ.html#How-do-I-convert-factors-to-numeric_003f.
9 Note that this chunk of code differs from the code in the first edition. I found out that the function
I wrote for the first edition did not return the correct results for avg_imp_g 1990_2000 for
about 15% of the countries. It seems that the issued I overlooked was related to the fact that for
those countries the series of data starts after 1990.
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values with NA. Note again that [ ] is a subset operator. Therefore, in

aBTm$1ln x[is.infinite(aBTm$ln x)] <- NA we are replacing the

value of 1n_x with NA if this value is equal to infinity. We label this new variable

as Log of export share to destination j withupData().
Finally, we create two variables for mapping the legend in the plots, fitted

and 1log, which store the text that will appear in the legend.

aBTm$1ln _x <- log(aBTm$export_share)

aBTmsln_ y <- log(aBTm$avg_imp g 1990_2000)

summary (aBTm$1ln_ x)
summary (aBTm$1ln_y)

any (is.infinite (aBTm$1ln_x))
aBTm$ln _x[is.infinite (aBTm$ln_x)] <- NA

summary (aBTm$1ln_x)

# label
aBTm <- upData (aBTm,
labels = c(ln_x = "Log of export share to destination j"))

aBTm$fitted <- "Fitted"
aBTm$log <- "log average import growth of destination j, 1990-2000"

To plot the geographical orientation of exports of Colombia and Pakistan we first
subset the data set for Colombia and year 2000 and then for Pakistan and year 2000
with the subset () function.

# select only Colombia and year == 2000
aBTm_col <- subset (aBTm, ccode == "COL" & year == 2000
View (aBTm_col)

# select only Pakistan and year == 2000
aBTm_pak <- subset (aBTm, ccode == "PAK" & year == "2000")
View (aBTm_pak)

Finally, we create two plots and then combine them. We add more options with
respect to the plots we made in Sect. 2.1. In particular, we control for the legend with
aes () and with the options in theme (), we add a new format for the the title and
define a new background, theme classic (). Add the options gradually to see
what they do. Note that n in the title splits a title over two lines (Fig. 2.5).

# plot Geographical orientation of Colombia’s exports, 2000

plot_col <- ggplot(aBTm col, aes(x = 1ln x, y = 1n y)) +

geom_point (shape = 1, color = "blue",
aes (£111 = factor(log))) +
geom_smooth (method=1m, aes(color = "Fitted")) +
geom_text (aes(label = pcode), size = 2, hjust=0, vjust=1) +
theme_classic() +
xlab("log of export share to destination j") + ylab("") +
ggtitle ("Geographical orientation of \n Colombia’s exports, 2000") +
theme (plot.title = element_ text (hjust = 0.5, size = 10, face="bold"),
axis.title.x = element text(size = 7.5)) +
theme (legend.position = "bottom", legend.box = "vertical"
legend.text = element_text (size = 7.5),
legend.key.size = unit (0.2, "cm"),

legend.title = element_blank())
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Fig. 2.5 More elaborated plots with ggplot2

# plot Geographical orientation of Pakistan’s exports, 2000

plot_pak <- ggplot(aBTm pak, aes(x = ln x, y = 1n_y)) +

geom_point (shape = 1, color = "blue",
aes (£111 = factor(log))) +
geom_smooth (method=1m, aes(color = "Fitted")) +

geom_text (aes(label = pcode), size = 2, hjust=0, vjust=1l) +

theme classic() +

xlab("log of export share to destination j") + ylab("") +

ggtitle ("Geographical orientation of \n Pakistan’s exports, 2000") +

theme (plot.title = element_text (hjust = 0.5, size = 10, face="bold"),
axis.title.x = element_text (size = 7.5)) +

theme (legend.position = "bottom", legend.box = "vertical",
legend.text = element text(size = 7.5),
legend.key.size = unit (0.2, "cm"),
legend.title = element blank())
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ggarrange (plot_col, plot_pak,

ncol = 1, nrow = 2,
common. legend = TRUE,
legend = "bottom")

2.3 Sectoral Orientation of Exports

Learning Objectives

Import a Stata file

Conversion of objects
Generate new variables

Group operations with ave ()
Sort data set by variables
Generate ranking for variables
Generate group id

Reshape the data set

Subset a data set

Plot with ggplot ()

In this section we replicate the UNCTAD & WTO’s Stata code in R to plot the
sectoral orientation of exports of Colombia.'?

Open a new script file in RStudio and save it as
04_sectoral_geographical_orientation_ of_ trade_2edn

Let’s load the following packages by using the 1ibrary () function.

library ("haven") # import Stata .dta file
library("dplyr") # group id

library("data.table") # reshape the dataset with dcast
library ("ggplot2") # plot with ggplot

Let’s import the data set TPP.dta in R. TPP is a data frame with 81,200
observations and 40 variables. Data cover the years 1976-2004.

TPP <- read_dta(”datWTO/TPP.dta”)
class (TPP)

View (TPP)

dim (TPP)

str (TPP)

10 The corresponding Stata code is available in sectoral_geographical_orientation_of_trade.do.
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We generate total export variable, total export, with the ave () func-
tion. Refer to Sect.2.2 for details on the ave () function. Then, we generate
the export share, export share, as export value, exp tv, divided by total
export, total export. Finally, we sort the TPP dataset by ccode, year and
export_share using the order () function. Note that the - operator before
the variable sorts it in descending order. The summary () function applied to
export_share shows that export share has missing values, NA.

## Main export sectors, Colombia, 1990 and 2000

TPPS$total export <- ave (TPPSexp tv, interaction(TPP$ccode, TPPS$year),
FUN = function(x) sum(x, na.rm = T))
TPPSexport share <- TPP$exp tv / TPPStotal export

# ordering:minus (-) before the variable for descending order
TPP <- TPP[order (TPP$ccode, TPPSyear, -TPPS$export share),]

summary (TPP$export_share)

In the next line of code, we generate a ranking for export share, ranking, by
ccode and year, nesting the rank () function in the ave () function. Note that
the - operator before x in the rank () function sorts the ranking in descending
order.

# ranking
TPP$ranking <- ave (TPP$export_share, interaction(TPP$ccode, TPPSyear),
FUN = function(x) rank(-x))

We keep only ranking, sector, ccode, year, and export share by
applying [ 1 to TPP data set. Let’s assign this operation to a new object, TPP2.

We generate group id variable, id, by ccode and sector using the
cur_group_id () function from the dplyr package.!! Let’s copy the TPP2 in
a new object, TPP3.

Finally, we have to reshape the data set wide. We want to generate new columns
with the ranking per each year and the export share per each year for id, country
(ccode) and sector. For this operation, I prefer to use the dcast () function from
the data.table package. You can refer to Sect. 1.7.2 for an alternative method.
Note that before reshaping the data set, we convert the data set in a data.table
using setDT () from the data.table package. The first entry in dcast is a
data set that must be a data.table or a data.frame. Note that when casting
multiple variables it is better to have the data set as data.table. The variables
on the left hand side of ~ will be in rows while the variables on the right hand side
of ~ will become column names. The argument value.var = assignsthe name
of the column whose values will be filled to cast.

TPP2 <- TPP[, c("ranking", "sector", "ccode", "year", "export_ share")

# generate group id by ccode & sector
TPP2 <- TPP2 %>%

' The cur_group 1id() function replaces group indices () that was used in the first
edition because it is now a deprecated function.
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group_by (ccode, sector) %>%
mutate (id = cur_group_id())

View (TPP2)

# make the dataset wide
## convert the dataset in a data.table before using dcast
TPP3 <- setDT(TPP2)

TPP3s <- dcast (TPP3, id + ccode + sector ~ year,
value.var = c("ranking", "export_share"))

View (TPP3s)

Now we can prepare the data set for plotting. We plot the data for Colombia only.
Therefore, the first step consists in subsetting by Colombia using subset (). This
operation is stored in a new object, TPP_col. We keep only the following variables:
ccode, sector, ranking 1990, ranking 2000, export share 1990,
and export share 2000. Weuse [ ] for this operation and we assign it to a
new object, TPP_col2.

To plot the following bar plot we need to reshape the data long. We use
melt () from data.table package. The first entry is the data set to be reshaped.
The argument id.vars = is a vector of id variables, i.e., the variables that
identify individual rows of data. It can be integer (variable position) or string
(variable name). The argument measure.vars = is a vector of measured
variables. It can be integer (variable position) or string (variable name). By default,
melt () names the new variables variable and value. You can rename using
variable.name = and value.name =. Finally, we sort the data set by

ranking using order ().

# subset for Colombia

TPP_col <- subset (TPP3s, ccode == "COL")
View (TPP_col)

TPP_col2 <- TPP_col[, c("ccode", "sector", "ranking 1990", "ranking 2000"
"export_ share 1990", "export_share 2000")]

dim (TPP_col2)
View (TPP_col2)

## make dataset long with melt ()

TPP_col3 <- melt (TPP_col2, id.vars = c("sector", "ccode",
"ranking_1990", "ranking 2000"),
measure.vars = c("export_share_1990",

"export_share 2000"))

TPP_col3 <- TPP_col3[order (TPP_col3$ranking 1990),1]
head (TPP_col3)

By using head () we see the first six entries of the data set as reported in the
following output.'?

12 Note that I shortened the name for sector to show the output in a more readable way. The name
of the sector should be Petroleum refineries, Food products, and Iron and steel.
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> head (TPP_col3)

sector ccode ranking 1990 ranking 2000 variable value
1: Petroleum COL 1 1 export_share 1990 0.22075888
2: Petroleum COL 1 1 export_share 2000 0.14273302
3 Food COL 2 2 export_share_1990 0.15854882
4: Food COL 2 2 export_share_ 2000 0.12791253
5 Iron COL 3 6 export_share 1990 0.09223055
6 Iron COL 3 6 export_share 2000 0.06149664

Now we are ready to plot a bar plot with ggplot (). Note that the general
structure is the same as the previous plots with ggplot (). Here, we describe the
different arguments.

reorder () in aes() order the sector by ranking 1990. If you
want to reverse the order of the bars, from high to low, remove the - before
ranking 1990.

£ill = maps the color conditional on a variable. In this case, this variable is
called variable. It is the column name in the TPP_col3 dataset that contains
the values export share 1990 and export share 2000.

To generate a bar plot we use geom bar (). position = "dodge"
puts the bars side-by-side. Remove it to see the different output. With stat =
"identity" the heights of the bars represent values in the data. coord flip ()
flips the plot.

Inxlab () and ylab () we only insert " " because we do not want any label
for x and y axis. If we do not include x1lab () and ylab () with " ", R will
generate default labels for the axes.

With scale fill manual () we define manually the labels name and
colors.

Figure 2.6 shows the outcome of this plot.

# plot

plot_TPP_col <- ggplot (TPP_col3,
aes (x = reorder (sector, -ranking 1990),

y = value, fill = variable)) +
geom bar (position = "dodge", stat="identity") +
coord_flip() +
xlab("") + ylab("") + theme_classic() +
ggtitle("Sectoral share in total exports, 1990-2000") +
scale_fill manual (labels = c("Share 1990", "Share 2000"),
values = c("blue", "red")) +
theme (plot.title = element_text (hjust = 0.5, size = 10,
face="bold"),
axis.title.x = element_ text(size = 7.5),
axis.text.y = element_ text(size = 7.5)) +
theme (legend.position = "bottom", legend.box = "vertical"

legend.text = element_text (size = 7.5),
legend.key.size = unit (0.2, "cm"),
legend.title = element_blank())

plot_TPP col
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Sectoral share in total exports, 1990-2000
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Fig. 2.6 Bar plot with ggplot2
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Learning Objectives

B Import a Stata file

B Conversion of objects
B Generate new variables
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Attach a data set

Subset a data set

Rename column names

Sort data set by variables

Replace if

Remove leading and/or trailing whitespace from character strings
Reshape the data set

Group operations with ave () and the dplyr package
Generate new variables with ifelse ()

Merge two data sets with merge ()

Plot with ggplot ()

In this section we plot the similarity index and the share of overlap trade between
Germany and its trading partners for 2004.'3
The similarity index is defined following Helpman (1987) as

GDP; ]2 [ GDP, }2
- (2.4)

SLj = 1—
GDP; + GDP; GDP; + GDP;

The trade overlap index is defined as the sum of exports and imports in products
(HS, six digit) characterized by two-way trade (Grubel-Lloyd (GL) index > 0),
divided by the sum of total exports and imports.

By combining these two pieces of information, we observe the relations between
economic size and intra-industry trade between two partners. Typically, similar
countries (in terms of economic size, e.g. GDP) share more intra-industry trade.
Refer to UNCTAD & WTO (2012, p. 20) for more insights.

Open a new script file in RStudio and save itas 05_overlap trade 2edn.

Let’s load the following packages by using the 1ibrary () function.

library("haven") # import Stata .dta file

library("stringi") # count the number of code points
library("data.table") # reshape the data set
library ("dplyr") # data management
library("ggplot2") # plot with ggplot
library ("ggpubr") # combine ggplot plots

First, we build the similarity index. Let’s import the UNCTAD & WTO’s
GravityData.dta as GravityData in R by using read dta () from the
haven package. GravityData has 3,950,635 observations and 27 variables.
Data cover the years 1976-2004. Since it is quite big, we make a copy and work
with GD. Therefore, in case we make an error, it is not necessary to import it again
because we do not modify GravityData.

13 The corresponding Stata code is available in overlap_trade.do.
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GravityData <- read dta("datWIO/GravityData.dta")
class (GravityData)
GD <- GravityData
dim (GD)
str (GD)
We keep only the following columns: ccode, pcode, year, cgdp c2000,
and pgdp_c2000. Then, we drop the duplicates using the unique function. This
last operation may take a while.

GD <- GD[, c("ccode", "pcode", "year", "cgdp_c2000", "pgdp_c2000")]
GD <- unique (GD)

We attach the data set GD by using the attach () function. This means that the
database is searched by R when evaluating a variable, so objects in the database can
be accessed by simply giving their names. Then, we detach the data set by using the
detach () function before moving on.

Next, we build the similarity index, simil index, as in Eq. (2.4).

Then, we keep only the following variables: ccode, pcode, year, and
simil index. We assign this operation to a new object, GD2. Then, we subset
it by year equal 2004 and country equal Germany (ccode == "DEU"). We store
the results in GDger. Let’s sort the data set by ccode, pcode, and year by using
the order () function. Finally, we check basic statistics for simil index.

attach (GD)
GDStempl <- cgdp c2000 / (cgdp c2000 + pgdp c2000)
GD$temp2 <- pgdp c¢2000 / (cgdp c2000 + pgdp c2000)

detach (GD)

GD$simil index <- 1 - GDStempl”(2) - GDStemp2”(2)

GD2 <- GD[, c("ccode", "pcode", "year", "simil_ index")]
GDger <- subset (GD2, year == "2004" & ccode == "DEU")

GDger <- GDger [order (GDger$ccode, GDgerspcode, GDgerSyear),]
summary (GDger$simil index)

In this part, we build the trade overlap index. Let’s import the UNCTAD &
WTO’s germany trade 2004 hs6.dta as GT_2004HS6 in R by using
read dta () from the haven package. GT 2004HS6 has 874,975 observations
and 11 variables.

GT_2004HS6 <- read dta("datWTO/germany_trade 2004_hs6.dta")
class (GT_2004HS6)

View (GT_2004HS6)

dim(GT_2004HS6)

str (GT_2004HS6)

We rename reporter as ccode and partner as pcode using the
colnames () function. Then, we replace the value Gross Exp. in flow name
as Exports and the value Gross Imp. in flow name as Imports. Finally,
we drop the first column.

colnames (GT_2004HS6) [2] <- "ccode"
colnames (GT_2004HS6) [4] <- "pcode"

GT_2004HS6$flow name [GT 2004HS6S$flow name == "Gross Exp."] <- "Exports"
GT_2004HS6$flow_name [GT_2004HS6$flow_name == "Gross Imp."] <- "Imports"
GT_2004HS6 <- GT_2004HS6[, -1]

Next, we remove leading and/or trailing whitespace from product using the
trimws () function. By default, trimws () removes both leading and trailing
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whitespace. However, it is possible to remove only the leading or trailing whites-
pace, specifying in the function "left" or "right", respectively.

GT_2004HS6$product <- trimws (GT_2004HS6$product)

Next, we drop observations from the data set if product is equal to Total.
Then, we subset again if the length of the values in the product column is longer
than 6. We use the stri length() function from the stringi package to
accomplish this step. Finally, we remove the rowname column.

GT_2004HS6_2 <- subset (GT_2004HS6, !product == "Total")
GT 2004HS6 3 <- subset (GT 2004HS6 2,

stri_length (product) >= "6")
GT 2004HS6 3 <- GT 2004HS6 3[, -10]

Next, we reshape the data set wide by using the dcast () function from the

data.table package. Refer to Sect. 2.3 for the use of dcast (). We assign this
operation to a new object, overlap temp.

overlap_temp <- dcast (setDT(GT_2004HS6_3),
ccode + pcode + year + product ~
flow_name,
value.var = "trade_value"

After sorting the data set by pcode and product, we build the Grubel-Lloyd
(GL) index. The GL index is defined as follows:

| Xijx — Mij il

GLijx=1-
Y Xijk + Mijk

2.5)

where

* Xk isi’s exports to j in sector k
* M;jx is i’s imports from j in sector k

By definition, we have 0 < GL < 1. GL = 0 means that a country does
not engage in intra-industry trade, i.e. either X;;x = O or M;jx = 0. GL =1
means that a country exports and imports the good in sector k in equal amounts, i.e.
Xijk = M;ji. Consequently, a greater GL index indicates a larger intra-industry
trade between two countries.

We replace the NA values of the GL index, g1 i j k, with O and sort the
dataset by pcode.

overlap_temp <- overlap temp [order (overlap_tempS$pcode,
overlap_ temps$product), 1

## Grubel-Lloyd (GL) Index
overlap temp$gl i j k <- 1 - (abs(overlap_ temp$Exports - overlap temp$Imports) /
(overlap_temp$Exports + overlap temp$Imports)

overlap_temps$gl i j_kl[is.na(overlap_temp$gl i j k)] <- 0
overlap temp <- overlap temp [order (overlap temp$pcode), 1

In the next lines of code, we generate two new variables, x1 and x2, which are
given by the sum of Exports and Imports, respectively, by partner, pcode.
We accomplish these operations with the ave () function that we encountered in

Sects. 2.2 and 2.3. Then, we generate the denominator, denom, as the sum between
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x1 and x2. Finally, we generate a new variable, dd, which reports the max value of
denom by pcode. We use again the ave () function. Note that now the function
to apply for each factor level combination is max.

overlap temp$xl <- ave (overlap temp$Exports, overlap tempS$pcode,
FUN = function(x) sum(x, na.rm = T))

overlap_temp$x2 <- ave(overlap_ temp$Imports, overlap tempSpcode,
FUN = function(x) sum(x, na.rm = T))

overlap temp$denom <- overlap temp$xl + overlap temp$x2
overlap_temps$dd <- ave(overlap_ temp$denom, overlap tempS$pcode, FUN = max)

Next, we generate two new variables, x11 and x22 which are given by the sum
of Exports and Imports, respectively, by partner, pcode, as x1 and x2, but
subject to the condition thatgl i j kis greater than 0. Remember that this is the
condition stated in the definition of the trade overlap index.

In this case, instead, we sum the values by using functions from the dplyr
package as in Sect. 2.2.

overlap_temp <- overlap temp %>%
group_by (pcode) %>%
mutate(x1l = ifelse(gl_i_j k > 0,

sum(Exports[gl i j k > 0], na.rm = T),
NA),

x22 = ifelse(gl_i_j k > 0,
sum(Imports[gl_i_j k > 0], na.rm = T),
NA))

Note again that % >% is an operator which pipes a value forward into an expression
or function call. The group by () function performs the operation by groups
of observations within a data set. The mutate () function adds new variables
that are functions of existing variables and preserves existing variables. We use
in mutate () the ifelse () function to state the conditional statement of the
operation, i.e. GL index greater than 0.

Next, we generate the numerator, numer, as the sum between x11 and x22, and
the variable nn. Conceptually, nn is similar to dd in terms of code. However, we
need to take care of missing values and infinite values.

Then, we generate the trade overlap index, overlap, as the ratio between nn
and dd. Finally, we create a new data set, overlap, which contains 4 variables
from overlap temp: ccode, pcode, year, and overlap.

overlap_temps$numer <- overlap temp$xll + overlap temp$x22
overlap temp <- overlap temp %>%

group_by (pcode) %>%

mutate (nn = max (numer, na.rm = T))

overlap temps$nn[is.infinite(overlap_ temp$nn)] <- NA
overlap tempS$overlap <- overlap_temp$nn / overlap tempsdd
overlap <- overlap temp[, c("ccode", "pcode", "year", "overlap")]

Now, we are ready to merge overlap and GDger, the data set that stores
the similarity index for Germany. We use the merge () function. We assign this
operation to a new object, overlap m. After merging, we drop the duplicates.

overlap m <- merge (overlap, GDger,
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by = c("ccode", "pcode", "year")
all.x = T, all.y = F)

overlap m <- unique (overlap m

Before plotting, we add two new columns to the dataset overlap m for
mapping the legend in the plots, Fitted and 1leg overlap, that store the text
that will appear in the legend.
overlap m$Fitted <- "Fitted Values"
overlap _m$leg overlap <- "Share of overlap trade"

The following code generates Fig. 2.7.

plot_1ft <- ggplot (overlap m,
aes(x = simil index, y = overlap)) +

geom_point (shape = 1, color = "blue",
aes (fill = factor(leg_overlap))) +
geom_smooth (method = 1m, aes(color = "Fitted Values")) +

geom_text (aes(label = pcode), size = 2, hjust = 0, vjust = 1) +

theme_classic() +
xlab ("Share of overlap trade") + ylab(" ") +
ggtitle("Similarity index") + labs(caption = "a) linear fit") +

theme (plot.title = element_text (hjust = 0.5, size = 10, face="bold"),
plot.caption = element_ text (hjust = 1, size = 10),

axis.title.x = element_text(size = 7.5)) +
theme (legend.position = "bottom", legend.box = "vertical",
legend.text = element text (size = 7.5),

legend.title = element_blank(),
legend.key.height = unit (0.1, "cm"))

plot_1ft

plot_gft <- ggplot (overlap_m,
aes(x = simil_index, y = overlap)) +

geom point (shape = 1, color = "blue",
aes (fill = factor(leg overlap))) +
geom_smooth (method = 1m, formula =y ~ x + I(x*2),
aes (color = "Fitted Values")) +
geom_text (aes(label = pcode), size = 2, hjust = 0, vjust = 1) +
theme_classic() +
xlab("Share of overlap trade") + ylab(" ") +

ggtitle("Similarity index") +labs(caption = "b) quadratic fit") +
theme (plot.title = element_ text (hjust = 0.5, size = 10, face="bold"),
1,

plot.caption = element text (hjust = size = 10)
axis.title.x = element_text (size = 7.5)) +
theme (legend.position = "bottom", legend.box = "vertical"

legend.text = element_text(size = 7.5),
legend.title = element_ blank(),
legend.key.height = unit (0.1, "cm"))

plot_gft

ggarrange (plot_1ft, plot_ gft,
ncol = 1, nrow = 2,
common. legend = TRUE,
legend = "bottom")
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Fig. 2.7 Scatterplot with linear and quadratic fitted lines with ggplot2

2.5 Terms of Trade

Learning Objectives

B Import a Stata file
B Conversion of objects
B Subset a data set

(continued)
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B Plot with ggplot ()
B Convert a static plot into a dynamic plot with gganimate ()

In this section we replicate the UNCTAD & WTO’s Stata code to plot a line
plot which shows the trend of terms of trade (TOT) of developing countries
between 2001 and 2009. TOT is defined as the percentage ratio of the export
unit value indexes to the import unit value indexes, measured relative to a base
year.'#

Open a new script file in RStudio and saveitas 06 _terms of trade 2edn.

Let’s load the following packages by using the 1ibrary () function.

library("haven") # import Stata .dta file

library("ggplot2") # plot with ggplot

library("png") # graphics devices for BMP, JPEG, PNG and TIFF format bitmap
library("gifski") # converts image frames to high quality GIF animations
library("gganimate") # animated plot

We will use the packages png, gifski, and gganimate at the end of this
section to convert a static plot into a dynamic plot.

Let’s import the UNCTAD & WTO’s unctad tot data.dta datasetin R
by using the read_dta () function from the haven package. un_data has 3321
observations and 15 variables. Data cover the years 2001-2009.

un_data <- read_dta("datWTO/unctad_tot_data.dta")
class (un_data)

View(un_data)

dim(un_data)

str(un_data)

Next, we convert the year variable, year, which has a numeric class in a factor
class. This choice depends on the fact that year will be on the x-axis. In this case,

it is useful to treat it as a categorical variable instead of a numeric one. Note that if
the x-axis variable is continuous, it should be kept as numeric.

un_data$year <- as.factor (un_data$year)

Next we subset un_data by countries of interest by using the subset ()
function.

un_data_s <- subset(

un_data,

country=="Selected exporters of agricultural products (TDR)" |
country=="Selected exporters of manufactured goods and primary commodities
(TDR) " |
country=="Selected exporters of minerals and mining products (TDR)" |
country=="Selected manufactured goods exporters (TDR)" |
country=="Selected petroleum exporters (TDR)"

Now we are ready to plot. We use geom_1line () in ggplot () to generate
a line plot. We have new layers compared to previous plots. group groups data

14 The corresponding Stata code is available in terms_of_trade.do.
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Barter TOT, selected groups of countries
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Fig. 2.8 Line plot with ggplot2 (static version of the dynamic plot)

points so that ggplot () knows which points to connect. Note that we grouped
them by country. We use country to set colour, shape, and 1inetype as
well. legend.direction indicates the direction of the legend, “horizontal” or
“vertical”. Figure 2.8 illustrates the outcome.

plot_line <- ggplot(un data s, aes(x = year, y = tot,
group = country,
shape = country,
colour = country)) +

geom_line (aes(linetype = country), size = 1) +

theme classic() +

ylab(" ") +

ggtitle ("Barter TOT, selected groups of countries") +

theme (plot.title = element_text (hjust = 0.5, size = 10, face="bold"),
axis.title.x = element text(size = 8.5)) +

theme (legend.position = "bottom", legend.box = "vertical",
legend.direction = "vertical",

legend.text = element_text (size = 8),
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legend.key.size = unit (0.5, "cm")
legend.title = element_blank())

plot_line

We can easily convert this static plot into a dynamic plot by adding the
transition reveal () function to the previous plot. Note that we also add
geom_point () to generate a leading shape

plot_line_anim <- plot_line +
geom_point (size = 2) +
transition_reveal (as.numeric (year))

Now we can visualize it by running plot _line anim
> plot_line_anim

Frame 100 (100%)
Finalizing encoding... done!

We can modify the window size and save it as a GIF object by using animate ()

> animate (plot_line_anim, height = 538, width = 866,
+ renderer = gifski_renderer ("images/gganim.gif")

Frame 100 (100%)
Finalizing encoding... done!

2.6 Intensive and Extensive Margins

Learning Objectives

Import a Stata file

Conversion of objects

Generate new variables

Group operations with ave ()

Subset a data set

Collapse a data set with aggregate ()
Replace if

Drop duplicates

Rename column names

Plot with plot ()

In this section we replicate the UNCTAD & WTO’s Stata code in R to calculate and
plot extensive and intensive margins of diversification.
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Open a new script file in RStudio and save it as 06_tM EM hummels klenow 2edn.'”

Let’s load the following package by using the 1ibrary () function.

library("haven") # import Stata .dta file

Let’s import the data set comtrade exports all countries 2000
.dtaasexp2000inR. exp2000 has 358,871 observations and 9 variables. Vari-
ables identifies reporter, reporter and reporter name, partner, partner
and partner name, year, year, product name, product name, flow name,
flow name, trade value, trade value, and product, product. Data cover
the year 2000.

exp2000 <- read dta("datWTO/comtrade exports_all countries 2000.dta")
class (exp2000)
dim(exp2000)
View (exp2000)
str (exp2000)
In the next lines of code we build the intensive and extensive margin of
diversification based on the Hummels-Klenow decomposition for products and
geographical markets.

The intensive margin for products is given by

I Mi — ZK i XZV
Z Ki X ]ZV
The extensive margin for products is given by

i Yki Xi
EM! = Kt Tk
ZKWXI‘;V

where

* K ’ is the set of products exported by country i
* X is the dollar value of i’s exports of product  to the world
e X ,ZV is the dollar value of world exports of product k

Note that we use the ave () function. Refer to Sects. 2.2 and 2.3 for description
of the ave () function.

exp2000sx_1i_k <- exp2000S$trade_value

### Sum of i’s export of all products exported by i
exp2000ssum i x i k <- ave(exp2000$x_i_k,
interaction (exp2000Sreporter, exp2000S$Syear),
FUN = function(x) sum(x, na.rm = T))
exp2000 <- exp2000 [order (exp2000Sreporter, exp2000Syear), |

exp2000Stempl <- ifelse(exp2000Sreporter == "All",

15 The corresponding Stata code is available in IM_EM_hummels_klenow.do.
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exp2000$x_i k, NA)

### World exports of product k in year t

exp2000Stemp2 <- ave (exp2000Stempl,
interaction (exp2000$year, exp2000Sproduct),
FUN = function(x) max(x, na.rm = T))

### Total world exports of all products exported by i
exp2000$sum 1 x w k <- ave(exp2000Stemp2,
interaction (exp2000Sreporter, exp2000S$Syear),
FUN = function(x) sum(x, na.rm = T))

### Total world exports of all products in the world
exp2000$sum_w_x_w_k <- ave(exp2000$x_1i_k,

interaction (exp2000S$year) ,

FUN = function(x) sum(x, na.rm = T))

exp2000$im i <- exp2000$sum i x i k / exp2000$sum i x w k
exp2000Sem_1i <- exp2000$sum i x w k / exp2000$sum w_x w_k

summary (exp2000$im_1i)
summary (exp2000Sem_i)

We keep only reporter, year, im_i, and em_i. We store the results of this
operation in a new object, exp2000_2. Then, we drop the duplicates by using
the unique () function. Finally, multiply the intensive margin, im_ i, and the
extensive margin, em_1i, by 100.
exp2000_2 <- exp2000[, c("reporter", "year", "im i", "em_ i")

# drop duplicates
exp2000_3 <- unique (exp2000_2)

dim(exp2000_2)
dim(exp2000_3)

exp2000_3%$im i <- exp2000_3$im ix100
exp2000_3S%$em i <- exp2000_3$em ix100

summary (exp2000_3$im_i)
summary (exp2000_3$em i)

The intensive margin for geographical markets is given by

. > e
[All — D! 7d
ZDi le;v

The extensive margin for geographical markets is given by

, > D¢
12A41 — D! 7d
ZDW Xav'V

where

. Df' is the set of destination markets where i exports

* X, is the dollar value of i’s total exports to destination d
. XZV is the dollar value of world exports to destination d
» DV is the set of all destination countries
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To calculate it, we need to import the data set BilateralTrade.dta in R.
We work on a new object, BT that has 5,563,268 observations and 11 variables. Data
cover the years 1976-2004.

# Geographical decomposition ----

## Construction of IM and EM

BilateralTrade <- read dta("datWTO/BilateralTrade.dta")
BT <- BilateralTrade

class (BT)

dim(BT)

View (BT)

str (BT)

In this last part, we focus on how to plot with plot ().

In the next lines of code, we use aggregate (), ave (), and unique ()
functions. Note that this time we indicate two variables, exp_tv and imp_tv,
to aggregate in the data set. We include both variables in 1ist () in the first entry
of the aggregate () function.

BTStt <- sum(BT$exp_ tv, na.rm = T)
summary (BTStt)

BTc <- aggregate(list(exp tv = BTSexp tv,
imp_tv = BTS$imp_tv),
by = list(ccode = BTS$ccode,
pcode = BTSpcode,
year = BT$year),
FUN = function(x) sum(x, na.rm = T))
dim(BTc)

BTc2 <- BTc
BTc2$x i _d <- BTc2Sexp tv

# Sum of ccode’s export to all its destinations
BTc2$sum i_x i d <- ave(BTc2$exp_tv,
interaction (BTc2$ccode, BTc2Syear),
FUN = function(x) sum(x, na.rm = T))

# Total world exports to each destination
BTc2s$x w_d <- ave (BTc2$exp_tv,
interaction (BTc2$pcode, BTc2Syear),
FUN = function(x) sum(x, na.rm = T))

# Total world exports to all destinations served by ccode
BTc2$sum 1 _x w d <- ave(BTc2$x_w_d,
interaction (BTc2$ccode, BTc2$year),
FUN = function(x) sum(x, na.rm = T))

# Total world exports to all destinations in the world
BTc2$sum w_x w_d <- ave(BTc2$exp_tv,
interaction (BTc2$year),
FUN = function(x) sum(x, na.rm = T))

BTc2$em i <- BTc2$sum i x w d / BTc2$sum w x w_d
BTc2$im i <- BTc2$sum i x i d / BTc2$sum w_x w_d

summary (BTc2$em i)
summary (BTc2$im_i)

BTc3 <- BTc2[, c("ccode", "year", "em_ i", "im_i")]
BTc3 <- unique (BTc3)
dim(BTc3)

BTc3$em i <- BTc3Sem i % 100
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BTc3$im i <- BTc3$im i % 100

summary (BTc3$em i)
summary (BTc3$im i)

We build a double y-axis plot with the intensive margin on the left side y-axis and
the extensive margin on the right side y-axis margin. It is possible to plot a double y-
axis plot with ggplot (). However, to my knowledge, ggplot () does not allow
the rescale of the second y-axis. With ggplot () we need to transform the data
for representation. However, the transformation of the data in the two y-axes is a
1 : 1 transformation. On the other hand, plot () automatically rescales the second
y-axis. Therefore, to reproduce the same plot as in Stata, this time we use plot ().

We plot the intensive and extensive margins for four countries: Argentina,
Colombia, Mexico, and Spain. We use subset () to subset BTc3 by each of these
countries and assign each of them to new objects.

# plot double y-axis with plot() for ARG, COL, MEX and ESP
### subset ccode == "ARG"

BT arg <- subset (BTc3, ccode == "ARG")

summary (BT_arg$em_i)

summary (BT _arg$im_ i)

### subset ccode == "COL"

BT _col <- subset (BTc3, ccode == "COL")
summary (BT_col$em_ i)

summary (BT _col$im i)

### subset ccode == "MEX"

BT _mex <- subset (BTc3, ccode == "MEX")
summary (BT _mex$Sem_ i)

summary (BT _mex$im i)

### subset ccode == "ESP

BT _esp <- subset (BTc3, ccode == "ESP")
summary (BT_mex$Sem_i)

summary (BT _mex$im_ i)

The first lines of code draw the plot for Argentina. Note the use of par ().
par () can be used to set or query graphical parameters. In the first line of code,
we use the parameter mfrow = to define the arrangement of the plotting space
by number of rows and number of columns. In this specific case, we are arranging
a 2 x 2 space where to draw the four plots. Note that at the very last line we code
par (mfrow = c(1,1)) to set back the plotting space to the whole area.

In the second line, we modify the margins inside par (). xpd = TRUE sets all
plotting clipped to the figure region. mar = par () $mar + c(0, 0, 0, 2)
expands the margins on the right. Note that at the end of the code for each plot we
restore the margins.

In plot (), the first entries represent the coordinates of points in the plot. In
this case, we use ~. This allows to plot formula, such as y ~ x. pch = define
a plotting character. 1as = sets the label style, where 1 means always horizontal.
cex = indicates the amount by which plotting text and symbols should be scaled
relative to the default that is 1. Therefore, cex.main = and cex.axis = define
the magnification to be used for main title and axis notation.
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Fig. 2.9 A double y-axis plot

We set par (new = T) to not clean the first plot. Therefore, the new plot is
added in the same frame. In fact, now we code the second plot. Note that for the y-
axis we use the extensive margin, em_ i, while in the first plot we used the intensive
margin, im_i. We add two arguments, axis () and mtext (). Note the both have
side = 4. This means that the options in these arguments apply to the second
y-axis.

Finally, we define the legend. Note that with inset = we define the position
of the legend outside the box. bty defines the box style. The value n suppress the
box around the plot.

Repeat this codes for the other three countries to reproduce Fig. 2.9.

# plot

par (mfrow = c(2,2))
par(xpd = T, mar = par()Smar + c(0, 0, 0, 2))
plot (BT arg$im i ~ BT argS$year, col = "blue",
ylab = "IM", xlab = "Years", pch = 20,
main = "Argentina Intensive and Extensive Margin",
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las =1,
cex.main = 0.8, cex.axis = 0.8)
par (new = T)
plot (BT arg$em i ~ BT argSyear, col = "red",
axes = F, xlab = "", ylab = "", pch = 20
axis(side = 4, las = 1,
cex.main = 0.8, cex.axis = 0.8)

mtext ("EM", side = 4, line = 2.5, cex = 0.7)
legend ("bottomright",

legend = c("Intensive Margin", "Extensive Margin")

col = c("blue", "red")

pch c (20, 20), cex = 0.8, bty = "n",
c(-0.05,-0.25))

inset
(

par(mar = c(5, 4, 4, 2) + 0.1)

par(xpd = T, mar = par()Smar + c(0, 0, 0, 2)

plot (BT _col$im i ~ BT col$year, col = "blue",
ylab = "IM", xlab = "Years", pch = 20,
main = "Colombia Intensive and Extensive Margin",
las =1,
cex.main = 0.8, cex.axis = 0.8)
par (new = T)
plot (BT col$em i ~ BT col$year, col = "red",
axes = F, xlab = "", ylab = "", pch = 20
axis(side = 4, las = 1,
cex.main = 0.8, cex.axis = 0.8)

mtext ("EM", side = 4, line = 2.5, cex = 0.7)
legend ("bottomright",

legend = c("Intensive Margin", "Extensive Margin")

col = c("blue", "red")

pch c(20, 20), cex = 0.8, bty = "n",
c(-0.05,-0.25))

inset
(

par(mar = c(5, 4, 4, 2) + 0.1)

par(xpd = T, mar = par()Smar + c(0, 0, 0, 2)

plot (BT _mex$im i ~ BT mex$year, col = "blue",
ylab = "IM", xlab = "Years", pch = 20,
main = "Mexico Intensive and Extensive Margin",
las =1,
cex.main = 0.8, cex.axis = 0.8)
par (new = T)
plot (BT mex$em i ~ BT mex$Syear, col = "red",
axes = F, xlab = "", ylab = "", pch = 20
axis(side = 4, las = 1,
cex.main = 0.8, cex.axis = 0.8)

mtext ("EM", side = 4, line = 2.5, cex = 0.7)
legend ("bottomright",

legend = c("Intensive Margin", "Extensive Margin")
col = c("blue", "red")

pch c(20, 20), cex = 0.8, bty = "n",
inset=c(-0.05,-0.25)

t=
par (mar = c(5, 4, 4, 2) + 0.1)

par (xpd = T, mar = par()Smar + c(0, 0, 0, 2)

plot (BT _esp$im i ~ BT esp$year, col = "blue",
ylab = "IM", xlab = "Years", pch = 20,
main = "Spain Intensive and Extensive Margin",
las = 1,
cex.main = 0.8, cex.axis = 0.8)
par (new = T)
plot (BT esp$em i ~ BT espSyear, col = "red",
axes = F, xlab = "", ylab = "", pch = 20
axis(side = 4, las = 1,
cex.main = 0.8, cex.axis = 0.8)

mtext ("EM", side = 4, line = 2.5, cex = 0.7)
legend ("bottomright",
legend = c("Intensive Margin", "Extensive Margin")
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col = c("blue", "red"),
pch = c (20, 20), cex = 0.8, bty = "n",
inset=c(-0.05,-0.25))

par (mar = c(5, 4, 4, 2) + 0.1)

par (mfrow = c(1,1))
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Analyzing Trade Tariffs Qe

3.1 Summary of Tariff Statistics

Learning Objectives

Import a Stata file

Conversion of objects

Generate new variables

Describe variables

Export data set

Reshape the data set

Subset a data set

Plot with ggplot ()

Make an interactive plot with ggplotly ()

In this section we summarize, reorganize and export basic statistics for tariffs. We
conclude the section by plotting tariffs for Colombia and Japan using histogram,
density plot and scatter plot.!

Open a new script file in RStudio and save it as 08_tariff statistics
2edn.

Let’s load the following packages by using the 1ibrary () function.

library ("haven") # import Stata .dta file

! The code in this section is base on the Stata code available in AnalyzingTradePolicy.do.
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library ("Hmisc") # describe variable
library("data.table") # reshape the data set
library("dplyr") # combine operations
library ("doBy") # summarise by
library("ggplot2") # plot with ggplot
library("plotly") # interactive plot

Let’s import the UNCTAD & WTO’s TPP.dta data set in R. TPP is a data
frame with 81,200 observations and 40 variables. Data cover the years 1976-2004.

TPP <- read dta("datWTO/TPP.dta")
class (TPP)

View (TPP)

dim (TPP)

str (TPP)

We access basic statistics by using the general function summary (). In the
following lines of code, we obtain basic statistics for Colombia and Japan. We obtain
information such as minimum, Ist quartile, median, mean, 3rd quartile, maximum,
and, if present, number of missing values. Note that we can obtain information about
a variable also with the describe () function from the Hmisc package.

# summary statistics for Colombia and Japan
summary (subset (TPP, ccode == "COL"))
summary (subset (TPP, ccode == "JPN"))

describe (TPP$isic3d_3dig)

In the next lines of code, we compute mean, media, standard deviation, minimum
and maximum for tariffs for Colombia and Japan.

First, we subset the data set for Colombia and Japan, respectively. Then, we
keep only the following variables: sector, sector, simple average of applied
tariffs on imports, tar savg ahs, weighted average of applied tariffs on
imports, tar iwahs, simple average import tariff for most favored nation MFN
tar savg mfn, and weighted average tariff rate for MFN tar iwmfn.

TPP_col <- subset (TPP, ccode == "COL")

TPP_col <- TPP_col[, c("sector", "tar_savg_ahs", "tar_iwahs",
"tar_savg_mfn", "tar iwmfn")

TPP_jpn <- subset (TPP, ccode == "JPN")

TPP_jpn <- TPP_jpn[, c("sector", "tar_savg_ahs", "tar_ iwahs",
"tar_savg_mfn", "tar_ iwmfn")]

We use the summaryBy () function from the doBy package. This is a function
to calculate group wise summary statistics The first entry is a formula object. In
this case, we calculate statistics by each tariff per sector. We indicate the data set in
the second entry. Then, we include the list of functions that we want to apply. The
argument na . rm=TRUE will remove the missing values.” The calculations for each
tariff will be stored in a new object.

tar_col <- summaryBy(tar_ savg_ahs + tar_iwahs +
tar_savg mfn + tar iwmfn ~ sector,
TPP_col, na.rm = T,
FUN=c (mean, median, sd, min, max))

2na.rm = ispassed as an extra argument to the function. We need to be sure the all the functions

in FUN accept the extra argument to pass it.
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View (tar_ col)

tar jpn <- summaryBy(tar savg ahs + tar iwahs +
tar savg mfn + tar iwmfn ~ sector,
TPP_jpn, na.rm = T,
FUN=c (mean, median, sd, min, max))

View(tar jpn)

Finally, we export the data sets as a tab delimited text files using
write.table().

## export dataset as tab delimited txt file

write.table(tar_col, "AverageTariff COL.txt",
row.names = F, sep="\t"

write.table(tar_jpn, "AverageTariff JPN.txt",
row.names = F, sep="\t")

Following, we plot the data. We use a histogram for Colombia’s tariffs distribu-
tion, a density plot for Japan’s tariffs distribution, and a scatter plot for Japan split
by tariffs.>

The first step to plot the histogram for Colombia’s tariffs distribution is to reshape
the data set long. We use the melt () function from the data.table package.
Refer to Sect. 2.3 for details about the function.

TPP_col_1 <- melt (setDT(TPP_col), id.vars = "sector"
measure.vars = c("tar savg _ahs", "tar iwahs"
"tar_savg_mfn", "tar_iwmfn"),
variable.name = "tariff name",
value.name = "tariff_ value")

Now we are ready to plot. By now, most of the lines of the following
code is well known. Note that we use the function geom histogram().
bins specifies the number of bins. The default value is 30. ..density..
plots the histogram with density instead of count on y-axis. Finally, we add
guides (fill=guide legend(nrow = 2, byrow = TRUE)) to break
the legend by two rows. The output of this plot is shown in Fig. 3.1.

ggplot (TPP_col_1, aes(tariff value, ..density..,
fill = tariff name)) +
geom_histogram(bins = 17, position="dodge") +
theme_classic() +
xlab("tariffs") +
ggtitle("Tariffs Distribution in Colombia") +
scale_fill manual (labels = c("simple average of applied tariffs on imports",

"weighted average of applied tariffs on imports",
"simple average import tariff for most favored
nation MFN",
"weighted average tariff rate for MFN"),
values = c("red", "blue", "green", "pink")) +
theme (legend.position = "bottom",
legend.text = element_text (size =
legend.key.size = unit (0.2, "cm"),
legend.title = element_blank()) +
guides (fill=guide legend(nrow = 2,byrow = TRUE))

7.5),

3 Note that the plots in this chapter divert from the code in Practical Guide to Trade Policy Analysis
to show new features of ggplot ().
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Tariffs Distribution in Colombia
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Fig. 3.1 Histogram with ggplot2

Next, we plot a density plot for Japan’s tariffs. The steps are the same as for the
previous plot. First, we reshape the data set.

TPP_jpn_1 <- melt (setDT(TPP_jpn), id.vars = "sector",
measure.vars = c("tar_savg_ahs", "tar_ iwahs",
"tar_savg_mfn", "tar iwmfn"),
variable.name = "tariff name",
value.name = "tariff value")

Now we are ready to plot. We use the geom_density () function. The rest of
the code is the same as the previous figure. However, note that we add na . rm = T.
If FALSE, the default, missing values are removed with a warning. If you replicated
the plot for Colombia, you should have received the following warning

Warning message:
Removed 2016 rows containing non-finite values (stat\_bin) .

By setting TRUE, missing values are silently removed.



3.1 Summary of Tariff Statistics

Tariffs Distribution in Japan

113

0.3
0.2
2
‘@
=
[}
©
0.1
/_\<\
0.0
0 10 20 30 40
tariffs
O simple average of applied tariffs on imports O weighted average of applied tariffs on imports

O simple average import tariff for most favored nation MFN [ weighted average tariff rate for MFN

Fig. 3.2 Density plot with ggplot2

Finally, note that the value of alpha is used to control the level of transparency.

The output of this plot is shown in Fig. 3.2.

TPP_jpn_plot <- ggplot (TPP_jpn 1, aes(tariff value,

£ill = tariff name)) +
geom density(alpha = .3, na.rm = T) +
theme_classic() +
xlab("tariffs") +

ggtitle("Tariffs Distribution in Japan") +

scale_fill manual (labels = c("simple average of applied tariffs on imports",
"weighted average of applied tariffs on imports",
"simple average import tariff for most favored

nation MFN",
"weighted average tariff rate for MFN"),
values = c("red", "blue", "green", "pink")) +
theme (legend.position = "bottom",
legend.text = element_text (size =
legend.key.size = unit (0.2, "cm"),
legend.title = element_blank()) +
guides (fill=guide legend(nrow = 2,byrow = TRUE))

7.5),



114 3 Analyzing Trade Tariffs
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Fig. 3.3 Interactive plot

TPP_jpn_plot

We can easily turn the previous plot in an interactive plot by using the plotly
package. We just need to pass the ggplot2 plot to the ggplotly () function.
Figure 3.3 shows the output.*

ggplotly (TPP_jpn plot)

Finally, we plot a scatter plot for Japan split by tariffs. Each scatter plot, where
the point represents a sector, is built with tariffs on the horizontal x-axis and non-
tariff barrier (NTB) ad valorem equivalents (AVE) on the y-axis.

First, we subset the data set for Japan by keeping values greater than zero. It is
suggested that when the number of zero values is high, it is best to drop them from
the plot to see a clearer picture. We use filter () from the dplyr package. Note
that we name this data set TPP_jpn as the previous one. This means that it will be
overwritten. If you do not want to overwrite it, just choose a different name. Then,
we reshape it long. This time we also keep year that will be used to compare the
values in the plot.

TPP_jpn <- TPP

$>%
filter (ccode == "JPN" & ave_core_sim > 0 & tar_savg_ahs > 0) %>%
filter (ccode == "JPN" & ave_core_sim > 0 & tar_iwahs > 0) %>%
filter (ccode == "JPN" & ave_core_sim > 0 & tar_savg mfn > 0) %>%
filter (ccode == "JPN" & ave core_sim > 0 & tar iwmfn > 0)
TPP_jpn_1 <- melt (setDT(TPP_jpn),
id.vars = c("sector", "year", "ave_core_sim"),
measure.vars = c("tar_savg_ahs", "tar_ iwahs"
"tar_savg_mfn", "tar iwmfn")
variable.name = "tariff name",
value.name = "tariff value")

View (TPP_jpn_1)

4 Figure 3.3 is a screenshot.
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Fig. 3.4 Facets with ggplot2

shown in Fig. 3.4.

plot_jpn <- ggplot (TPP_jpn_ 1,
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Now we are ready to plot. The main difference with the previous plots is the
facet grid() function. facet grid() forms a matrix of panels defined by
row and column facetting variables. The first entry is a formula with the rows (of the
tabular display) on the LHS and the columns (of the tabular display) on the RHS. If
we replace one of the variables in the formula with the dot, we indicate that there
should be no faceting on that dimension (either row or column). Refer to Sect. 3.3
and Appendix A for other examples with facet grid (). Additionally, we use a
different background for the plot by using theme bw (). The output of this plot is

geom_point (size = 2) +
facet_grid(year ~ tariff name) +

aes (x = tariff value,
y = ave_core_sim,
colour = as.factor(year))) +
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theme bw() +
xlab("Tariffs") + ylab("average Core NTB Coverage Ratio") +
ggtitle("Tariffs versus NTBs in JPN") +
theme (plot.title = element text (hjust = 0.5,
size = 10, face="bold"),
axis.title.x = element_text (size = 7.5)) +
theme (legend.position="bottom",
legend.title = element blank())

plot_jpn

In Appendix A, we will create an interactive dashboard with R Shiny to show
some of these results.

3.2 Determinants of Tariffs

Learning Objectives

Import a Stata file

Generate new variables

Pipe operations with %>%

Sort data set by variables

Collapse a data set with aggregate ()
Replace if

Subset a data set

Generate group id

Label variables

Export data set

Run a regression

Reproduce Stata robust standard errors
Export results with stargazer ()

The aim of this section is to estimate the determinants of tariffs by regressing
average tariff on establishment size, proportion of female workers, wage per
employee, and import-penetration ratio. First, we generate the covariates and then
we estimate the equation.
Open a new script file in RStudio and save it as 09_determinants_of_tariffs_2edn.
Let’s load the following packages using the 1ibrary () function.

3 The corresponding Stata code is available in AnalyzingTradePolicy.do.



3.2 Determinants of Tariffs 117

library("haven") # import Stata .dta file

library ("Hmisc") # for label

library("dplyr") # combine operations and group id

library ("plm") # panel regression

library("sandwich") # replicate Stata robust standard errors
library("lmtest") # replicate Stata robust standard errors
library("stargazer") # export regression results

Let’s import the UNCTAD & WTO’s TPP.dta data set in R. TPP is a data
frame with 81,200 observations and 40 variables. Data cover the years 1976-2004.

TPP <- read dta("datWTO/TPP.dta")
class (TPP)

View (TPP)

dim (TPP)

str (TPP)

First, we calculate the import-penetration ratios for each sector, defined as

M,
J

where

* M; is imports of good j for a given year;

* C; is domestic consumption (final demand) of the same good in the same year.
After generating the new variables, we label them and we sort the data set by

ccode and isic3d 3dig with the order () function.®

TPPSM_Jj <- TPPSimp tv

TPPSC j <- TPPSimp tv + TPPSoutput

TPPSmu <- TPP$M_j / TPPSC_j

TPP <- upData (TPP,

labels = c¢(M_j = "imports of good j",
C_j = "domestic consumption of good j",
mu = "Import-Penetration"))

TPP <- TPP[order (TPP$ccode, TPP$isic3d 3dig), ]

In the next step, we calculate the rate of growth of import-penetration between
1983-1985 and 1998-2000. We need to generate two new variables, mu_83 85
and mu_98 00, which store the average for 1983-1985 and 1998-2000, respec-
tively. We accomplish this task by using the dplyr as shown in Sect.2.4. After
generating the new variables, we label them using the upData () function from
the Hmisc package.

TPP <- TPP %>%
group_by (ccode, isic3d 3dig) %>%
mutate (mu_83_85 = ifelse(year >= 1983 & year <= 1985,
mean (mu[year >= 1983 & year <= 1985],
na.rm = T), NA),

mu_98 00 = ifelse(year >= 1998 & year <= 2000,
mean (mu[year >= 1998 & year <= 2000],

6The isic3d 3digis the Sector-Identifier which divides the economic activities into 28 sectors
(isic identifier from 311 to 390).
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na.rm = T), NA))
View (TPP[, c(1, 2, 3, 44, 45)1)

TPP <- upData (TPP,
labels = c(mu_83_85 = "Average Import-Penetration for 1983-1985",
mu_98_00 = "Average Import-Penetration for 1998-2000"))

Next, we collapse mu_83 85 and mu_98 00 by ccode and isic3d_3dig
by using the aggregate () function. Refer to Sects.2.2 and 2.6 for its use. We
assign this operation to a new object, TPP_c.

TPP_c <- aggregate(list(mu_83_85 = TPPsSmu_83_85,
mu_98 00 = TPP$mu_98 00),
by = list(ccode = TPP$ccode,
isic3d_3dig = TPP$isic3d_3dig),
FUN = function(x) mean(x, na.rm = T))
Next, we generate the growth rate of import-penetration, mugrate. We replace

Inf value with NA and we label it.
TPP_c$mugrate <- (TPP_c$mu_98 00 - TPP_c$mu_83_85)/TPP_cS$mu_83_ 85
TPP_csmugrate[is.infinite (TPP_c$mugrate)] <- NA

TPP_c <- upData(TPP_c,
labels = c(mugrate = "Growth Rate of Import-Penetration"))

Finally, we sort TPP_c by ccode and isic3d_3dig with the order ()
function. Then, we subset for Colombia and Japan and export the results as a CSV
file by using write.csv ().

TPP_c <- TPP_c[order (TPP_c$ccode, TPP_cs$isic3d_3dig), ]

TPP_col <- subset (TPP_c[, c(1, 2,

5)]1, ccode == "COL")
TPP_jpn <- subset (TPP_c[, c(1, 2, 5)]

)1, ccode == "JPN")

# export dataset
write.csv(TPP_col, "TPP col.csv", row.names = FALSE)
write.csv(TPP_jpn, "TPP_ jpn.csv", row.names = FALSE)

Next, we generate the other covariates, establishment size as the ratio of
employees to establishments, estabsize, the proportion of female workers,
femalework, and wages per employee, wagepe, and label them.

We keep only the following variables: ccode, year, isic3d 3dig,
tar savg ahs,tar iwahs,tar savg mfn,tar iwmfn,ave core sim,
ave core wgt, estabsize, femalework, wagepe, and mu. We assign this
operation to a new object, Ratios.

TPPSestabsize <- TPPS$n employees/TPP$n establ
TPP$femalework <- TPPSn female emp/TPPSn_employees
TPP$wagepe <- TPPSwage bill/TPP$n_ employees

TPP <- upData(TPP, labels = c(estabsize = "establishment size",
femalework = "proportion of female workers",
wagepe = "wage per employee"))
Ratios <- TPP[, c("ccode", "year", "isic3d 3dig", "tar_savg_ahs"
"tar iwahs", "tar savg mfn", "tar_ iwmfn",
"ave_core_sim", "ave_core_wgt", "estabsize",

"femalework", "wagepe", "mu")]
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Next, we generate the panel id, 1d, with the cur group_ id () function from
the dplyr package. Then, we convert the variables into logarithms.

Ratios <- Ratios %>%
group_by (ccode, isic3d 3dig) %>%
mutate (id = cur_group id())

Ratios$ln_estabsize <- log(Ratios$estabsize)

Ratiossln wagepe <- log(Ratios$wagepe)
Ratios$ln_tar savg ahs <- log(Ratios$tar_savg ahs + 1)
Ratios$ln femalework <- log(Ratios$femalework + 1)
Ratios$ln mu <- log(Ratios$mu + 1)

Replace the NaN values’ in 1n_tar savg ahs, 1n_wagepe, and 1n_mu
with NA. We use the is.nan () function that tests if a numeric value is NaN. Do

not test equality to NaN, or even use identical, since systems typically have many
different NaN values.

Ratios$ln tar savg ahs[is.nan(Ratios$ln tar savg ahs)] <- NA
Ratios$ln wagepe[is.nan(Ratios$ln wagepe)] <- NA
Ratios$ln mul[is.nan(Ratios$ln_mu)] <- NA
Now we are ready to estimate the following two equations by using fixed effects
with the p1lm () function from the p1lm package:

In_tar_savg_ahs = Bo + Biln_estabsize + Brln_femalework

+ B3ln_wagepe + u (3.2)

In_tar_savg_ahs = Bo + Biln_estabsize + Borln_femalework

+ B3ln_wagepe + Baln_mu + u (3.3)

The first entry of the plm() is a formula. index = enables the estimation
functions to identify the structure of the data, i.e., the individual and the time period
for each observation, model = indicates the kind of model to be estimated. In this
case, we choose within for fixed effects.

Finally, note that to reproduce robust standard errors as in Stata we have to call for
another function, coeftest () from the Imtest package and choose the options
type = "sss" and cluster = "group" invcov = vcovHC().

reg_plm fe <- plm(ln_tar savg ahs ~ 1ln_estabsize +
In_ femalework + ln_wagepe,
data = Ratios,
index = c("id", "year"),
model = "within")

summary (reg_plm fe)

reg plm fe r <- coeftest (reg _plm fe,
vcov = vcovHC(reg plm fe,
type = "sss",
cluster = "group"))

7 NaN means “Not a Number”.
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reg plm_fe r

reg_plm fe2 <- plm(ln_tar savg ahs ~ 1ln_estabsize +
In_femalework + ln_wagepe + ln_mu,
data = Ratios,
index = c("id", "year"),
model = "within")
summary (reg_plm fe2)
reg_plm fe r2 <- coeftest(reg plm fe2,
vcov = vcovHC(reg_plm fe2,
type = "sss",
cluster = "group"))
reg_plm_fe r2

Here, I print the results of the first model with the conventional standard errors

and Stata robust standard errors.

> summary (reg plm fe)
Oneway (individual) effect Within Model

Call:
plm(formula = ln tar_ savg_ahs ~ 1ln_estabsize
+ 1n femalework + 1n wagepe, data = Ratios,
model = "within", index = c("id", "vear"))
Unbalanced Panel: n = 1170, T = 1-9, N = 3594
Residuals:

Min. l1st Qu. Median 3rd Qu. Max.
-2.569936 -0.090951 0.000000 0.098789 2.670879
Coefficients:

Estimate Std. Error t-value Pr(s|t])

In_estabsize 0.184586
In femalework 0.536223
In wagepe -0.141421
Signif. codes:

0 ‘*%xx’ 0.001 ‘%%’ 0.01 ‘x’ 0.05

Total Sum of Squares: 289.73
Residual Sum of Squares: 269.81
R-Squared: 0.06876

Adj. R-Squared: -0.38205
F-statistic:

\

59.5863 on 3 and 2421 DF, p-value:

> reg plm fe r

0.001952

1

0.1

0.015049 12.2654 < 2.2e-16
0.172928 3.1008
0.026634 -5.3098 1.198e-07

\

’

* k%
* *

* k%

1

< 2.22e-16
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t test of coefficients:

Estimate Std. Error t value Pr(s|t])
1n estabsize 0.184586 0.017933 10.2932 < 2.2e-16 #*+*x*
In femalework 0.536223 0.235487 2.2771 0.0228685 =«
ln wagepe -0.141421 0.038066 -3.7151 0.0002077 %%
Signif. codes:
0 ‘“#%x’ 0.001 'xx’ 0.01 ‘%’ 0.05 *.” 0.1 v " 1

However, note that Stata output reports an intercept with fixed effects model.®
To replicate that result for the intercept with the plm package, we need to use the
within intercept () function.

> within intercept (reg plm fe,

+ vcov = function(x) wvcovHC(x, type="sss",
+ cluster = "group"))
(overall intercept)

1.671349
attr(, "se")
[1] 0.108322

After estimating the models, we may want to export the results. We can
accomplish this task with the stargazer package.

First, note that we store all the regressions results in objects. The first entries of
stargazer () are one or more model objects (for regression analysis tables) or
data frames/vectors/matrices (for summary statistics, or direct output of content).
type = specifies what type of output the command should produce. The possible
values are latex, (default) for LaTeX code, html for HTML/CSS code, text
for ASCII text output. title = is a character vector with titles for the tables.
digits =indicates how many decimal places should be used. column. labels
=, dep.var.labels =, and covariate.labels = indicate the labels for
columns, dependent variable, and independent variables, respectively. add . lines
= is a list of vectors (one vector per line) containing additional lines to be included
in the table. Each element of the listed vectors will be put into a separate column.
out = contains the path of output files. Depending on the file extension (.tex, .txt,
.htm or .html), either a LaTeX/HTML source file or an ASCII text output file will
be produced (see Table 3.1).

Note that the code for stargazer () differs from the code in the first edition of
the book. In the first edition, we used reg_plm fe rand reg plm fe r2 as
models to get the desired robust standard errors. In this code we use reg plm fe
and reg plm_ fe2 as models and we modify the standard errors and the p-values

8 Refer to https://www.stata.com/support/fags/statistics/intercept-in-fixed- effects-model/.
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in the stargazer () function by passing a list of numeric vectors to se = and
p =, respectively. The values are matched to covariates by their element names.
By doing like this, stargazer () automatically will print some statistics such as
number of observations, R-squared, Adjusted R-squared, and F statistics.

Refer to Sect. 4.3 for another example with stargazer.

stargazer (reg_plm_fe, reg plm_fe2,
type = "latex",
title ="Regression output of the determinant of tariffs with
stargazer",
digits = 4,
dep.var.labels = "Log of simple average of applied tariffs on
imports",
covariate.labels = c("log of establishment size",
"log of proportion of female workers",
"log of wage per employee",
"log of Import-Penetration"),
se = list(reg plm fe r[, 2],
reg plm fe r2[, 21),
p = list(reg_plm fe r[, 4],
reg_plm fe r2[, 4]),
add.lines = list(c("FE", "YES", "YES")),
out = "regression tar.tex")

Table 3.1 Regression output of the determinant of tariffs with stargazer

Dependent variable:

Log of simple average of applied tariffs on imports

M (@)

log of establishment size 0.1846™** 0.1847***

(0.0179) (0.0184)
log of proportion of female workers 0.5362** 0.6716™**

(0.2355) (0.2541)
log of wage per employee —0.1414%** —0.1210%**

(0.0381) (0.04006)
log of Import-Penetration 0.1979

(0.2231)

FE YES YES
Observations 3,594 3,295
R? 0.0688 0.0722
Adjusted R? —0.3821 —0.3797

F Statistic

59.5863*** (df = 3; 2421)

43.1112%* (df = 4; 2215)

Note:

*p<0.1; *p<0.05; **p<0.01
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3.3 Analyzing Preferential Market Access

Learning Objectives

Import a Stata file
Conversion of objects
Generate new variables
Pipe operations with $>%
Drop duplicates

Label variables

Reshape the dataset
Replace if

Plot with ggplot ()

In this section we replicate the UNCTAD & WTO’s the code to calculate the tariff
trade restrictiveness index (TTRI) and the relative preferential margin (RPM) as
defined in Fugazza & Nicita (201 N

Fugazza & Nicita (2011) observe that “one consequence of the large number
of PTAs is that an increasing share of international trade is not subject to the
most favoured nation (MFN) tariff, but enters markets through preferential access.
Preferential access affects trade because, by providing some countries with a relative
advantage, it is essentially a discriminatory practice”.

They provide two indices to measure market access conditions that take into
account the complex structure of tariff preferences: the tariff trade restrictiveness
index (TTRI) and the relative preferential margin (RPM).

TTRI is defined as

J
Zhs expjk,hs EkwhSTk,hs

TTRI;;, =
j
> s €XPjk,hs€k.hs

(3.4)

where exp are exports, € is the import demand elasticity, 7 is the tariff, and hs are
HS six-digit categories.

TTRI index captures direct market access conditions (the overall tariff faced by
exports).

RPM is defined as

° The corresponding Stata code in available in AnalyzingPreferentialMarketAccess.do.
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w J
Zhs CXPjk,hs€k,hs (Tk,hs - Tk,hs)

RPMj; = . JFk 3.5)
ohs €XPjk,hs€k,hs
with
™, — Zv expvk,hst,hs (3 6)
fohs > 0 XDy hs '

where exp are exports, € is the import demand elasticity, 7 is the tariff, 4s are HS six-
digit categories, v are exporters competing with country j in exporting to country k,
and T,f 1s 18 the trade-weighted average of the tariffs applied by country k to imports
originating from each country v (for each HS six-digit product).

RPM index captures relative market access conditions (the overall tariff faced by
exports relative to that faced by competitors).

Refer to Fugazza & Nicita (2011) for more details on these indexes and their
applicability.

In this section, we calculate the TTRI and RPM for Mexico. We will add a bar
plot of the two indexes for year 2000 and 2008 that is not included in Practical
Guide to Trade Policy Analysis.'”

Open a new script file in RStudio and save it as
10_AnalyzingPreferentialMarketAccess 2edn.

Let’s load the following packages by using the 1ibrary () function.

library("haven") # import Stata .dta file
library ("Hmisc") # for label
library("dplyr") # combine operations
library("data.table") # reshape the data set
library("ggplot2") # plot with ggplot
library("stargazer") # export results

Let’s import the UNCTAD & WTO’s PMA MEX.dta in R by using the
read_dta () function from the haven package. Assign this operation to a new
object, PMA_MEX. PMA MEX is a data frame with 94,699 observations and 7
variables: year, year, importer-reporter, ccode, bilateral trade, exp, HS-6 code,
hs6, exporter-partner, pcode, applied tariff, T, and import demand elasticity, eps.

PMA MEX <- read_dta("datWTO/PMA_MEX.dta")
class (PMA_MEX)

View (PMA MEX)

dim(PMA MEX)

str (PMA_MEX)

First of all, we rename the applied tariff, T as AT because T is short for TRUE
which is a reserved name in R.

colnames (PMA_MEX) [6] <- "AT"

In the next lines of code we will compute step by step the TTRI and RPM indexes.

10 The corresponding Stata code in available in AnalyzingPreferentialMarketAccess.do.
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# COMPUTE THE PREFERENTIAL MARKET ACCESS
## Compute the TTRI measure ----
PMA MEX <- PMA MEX %>%
group_ by (ccode, year, pcode) %>%
mutate (num = sum((exp * AT % eps), na.rm = T))

PMA_MEX <- PMA MEX [order (PMA MEX$year, PMA_ MEX$pcode), ]

PMA MEX <- PMA MEX %>%
group_by (ccode, year, pcode) %>%
mutate (den = sum((exp * eps), na.rm = T))

PMA MEXS$TTRI elas <- PMA MEX$num/PMA MEX$den

PMA_MEX <- PMA MEX %>%
group_by (ccode, year, pcode) %>%
mutate (num_ = sum((exp * AT), na.rm = T),
den = sum((exp), na.rm = T))

PMA MEXS$TTRI noelas <- PMA MEX$num_/PMA MEXS$den

# Compute the weighted average tariff for competitors at the hs level
PMA MEX <- PMA MEX $%>%
group_by (ccode, year, hs6) %>%
mutate (TotalexpT = sum((exp % AT), na.rm = T),
Totalexp = sum((exp), na.rm = T))

PMA MEX$Twc <- ((PMA MEX$TotalexpT - PMA MEX$exp % PMA MEXS$AT) /
(PMA_MEX$Totalexp - PMA MEXSexp))

# Compute the RPM measure ----
PMA MEX <- PMA MEX %>%
group by (ccode, year, pcode) %>%
mutate (num2 = sum((exp * Twc * eps), na.rm = T))

PMA_MEXS$TTRI others_elas <- PMA MEX$num2 / PMA MEX$den
PMA MEXSRPM elas = PMA MEXS$TTRI others elas - PMA MEXSTTRI elas

PMA_MEX <- PMA MEX %>%
group_by (ccode, year, pcode) %>%
mutate (num2_ = sum((exp * Twc), na.rm = T))

PMA MEXSTTRI_others noelas <- PMA_MEXS$num2_ / PMA_MEXS$den
PMA_MEX$RPM noelas <- PMA_MEX$TTRI_others_noelas - PMA_MEXS$TTRI_noelas

# Compute the trade-weighted average for MEX
PMA_MEX <- PMA MEX %>%

group_by (ccode, pcode, year) %>%

mutate (exports = sum((exp), na.rm = T))

PMA MEX2 <- PMA_MEX[, c(2, 1, 5, 23, 10, 13, 18, 21, 19, 22)]
PMA MEX2 <- unique (PMA MEX2)

PMA MEX2 <- PMA MEX2 %>%
group_by (ccode, year) %>
mutate (Totalexports = sum((exports), na.rm = T),

TTRI_elas_bar = mean((TTRI_elas), na.rm =
TTRI_elas_sd = sd((TTRI_elas), na.rm = T),
TTRI_noelas_bar = mean((TTRI_noelas), na.rm =
TTRI _noelas_sd = sd((TTRI_noelas), na.rm = T),
TTRI_elas_wbar = sum(((TTRI_elas % exports)/Totalexports),
na.rm = T),
TTRI_elas_wsd = sd(((TTRI_elas = exports) /Totalexports),
na.rm = T),
TTRI noelas wbar = sum(((TTRI noelas * exports)/Totalexports),
na.rm = T),

o°
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TTRI_noelas_wsd

RPM_elas_bar
RPM_elas_sd
RPM_noelas_bar
RPM_noelas_sd

RPM_elas_wsd

na.

RPM_noelas_wbar

RPM noelas_wsd

PMA_MEX2 <- upData (PMA_MEX2,
labels

¢ (TTRI_elas
TTRI_noelas

mean (RPM_elas, na.rm
sd (RPM_elas, na.rm
mean (RPM_noelas, na.rm = T),
sd (RPM_noelas, na.rm
RPM_elas_wbar = sum(((RPM_elas * exports

na.rm
sd (((RPM_elas * exports)

sum( ( (RPM_noelas * exports)

sd (((RPM_noelas x exports)
na.rm
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sd ( ((TTRI_noelas x exports)/Totalexports),

na.rm = T),

T),

T),

=T,
) / Totalexports),

T),
/ Totalexports),

rm T),

/ Totalexports),

na.rm T),

/ Totalexports),

T))

"Tariff trade restrictiveness index",
"Tariff trade restrictiveness index

without elasticities as weights",

RPM_elas = "Relative preferential margin with
elasticities as weights",

RPM noelas = "Relative preferential margin without
elasticities as weights",

TTRI_elas_bar = "TTRI simple average",

TTRI_elas_sd = "TTRI simple standard deviation",

TTRI_elas_wbar = "TTRI trade weighted average",

TTRI_elas_wsd = "TTRI trade weighted standard

deviation",

RPM_elas_.
RPM_elas_sd
RPM_elas_wbar
RPM_elas_wsd

bar "RPM simple average",
"RPM simple standard deviation",
"RPM trade weighted average",

"RPM trade weighted standard

deviation"))
PMA_MEX3 <- PMA MEX2[, c(1, 2, 12:27)]
PMA MEX3 <- unique (PMA_MEX3)
RPM <- PMA MEX3[, c("year", "ccode", "TTRI_elas_bar", "TTRI_elas_wbar",
"RPM_elas_bar", "RPM_elas_wbar")]
colnames (RPM) <- c("year", "ccode", "TTRIsimpleavg", "TTRIweightedav",
"RPMsimpleavg", "RPMweightedav")

RPM

Following, the output of RPM.

> RPM

# A tibble: 2 x 6

# Groups: ccode, year [2]
year ccode TTRIsimpleavg TTRIweightedav RPMsimpleavg RPMweightedav
<labelled> <labelled> <labelled> <labelled> <labelled> <labelled>

1 2000 MEX 0.12813437 0.01855284 -0.08799973 0.03814564

2 2007 MEX 0.09382693 0.02245499 -0.04912892 0.01055606

Now, let’s reshape the data set long. We use the pattern in the name of the
variables two reshape the data set long with two columns, one for the TTRI
index and the other one for the RPM index. We accomplish this operation with
the melt () function from the data.table package. Note that we introduce
the patterns () argument where we identify the pattern in the name of the

variables with ~. The argument variable.factor

FALSE prevents the

variable column from being converted to factor.

RPM2 <- melt (setDT (RPM),

id.vars

c("year", "ccode"),
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measure = patterns (" TTRI", "“RPM"),
variable.name = "statistics",
variable.factor = FALSE,

value.name = c("TTRI", "RPM"))

class (RPM2Sstatistics)

RPM2S$statistics [RPM2Sstatistics == "1"] <- ‘'"simple average"
RPM2S$statistics [RPM2Sstatistics == "2"] <- ‘'"weighted average"
RPM2
> RPM2
year ccode statistics TTRI RPM
1: 2000 MEX simple average 0.12813437 -0.08799973
2: 2007 MEX simple average 0.09382693 -0.04912892
3: 2000 MEX weighted average 0.01855284 0.03814564
4: 2007 MEX weighted average 0.02245499 0.01055606
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Now, let’s suppose we want to plot the data as a bar plot. We want to display
information of the indexes by statistics and by year. We use geom_bar (). The
first step is to reshape the data set long because we need our indexes in the same

column. We use again the melt () function.

RPM3 <- melt (setDT(RPM2),
id.vars = c("year", "ccode", "statistics"),
measure.vars = c("TTRI", "RPM")

RPM3

As you can see from the printed output, our data set is now long.

> RPM3

year ccode statistics variable value
1: 2000 MEX simple average TTRI 0.12813437
2: 2007 MEX simple average TTRI 0.09382693
3: 2000 MEX weighted average TTRI 0.01855284
4: 2007 MEX weighted average TTRI 0.02245499
5: 2000 MEX simple average RPM -0.08799973
6: 2007 MEX simple average RPM -0.04912892
7: 2000 MEX weighted average RPM 0.03814564
8: 2007 MEX weighted average RPM 0.01055606

Now we are ready to plot with ggplot (). All the arguments of the following

plot should be clear (see Fig. 3.5 for the output).

ggplot (RPM3, aes(x = variable, y = value,

fill = factor(statistics))) +
geom_bar (stat = "identity", position = "dodge") +
facet_grid(. ~ year) +
theme classic() +
xlab("") + ylab(" ") +

ggtitle ("TTRI and RPM") +

theme (plot.title = element_ text (hjust = 0.5,
size = 10, face="bold"),
axis.title.x = element text(size = 7.5),

legend.title = element_blank())
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TTRI and RPM
2000 I 2007 |
0.10-
0.051
. simple average
. weighted average
0.00-
-0.051
TTRI RPM TTRI RPM

Fig. 3.5 Bar plot and facets with ggplot2



Chapter 4 )
The Gravity Model of Trade oo

The gravity model for international trade was introduced by Jan Tinbergen in 1962.
This model was based on an equation that approximated the theory of gravitation
of Newton and therefore it is known as the gravity equation. Basically, the model
shows that trade flows between two countries are positively affected by the size of
the gross domestic product (GDP) of the two countries and negatively affected by
their distance. In its simplest form, the model is represented as follows:

GDP,GDP,

Xii=G
Y Dist,-j

4.1)

where:

* X;; denotes exports from country i to country j;

* G denotes the inverse of world production;

* GDP; and GD P; denote the GDP of country i and country j, respectively;

* Dist;jdenotes the geographical distance between the two countries that approxi-
mates the total trade costs between country i and country j.

Traditionally, the gravity equation has been estimated through ordinary least-
squares (OLS) as the following:

InX;j = Bo+ P1InGDPi + BrlnGDP; + B3lnDist;j + & 4.2)

where:

e By is a constant;

e ¢ is the error term;

* the other variables have the meaning explained above but in natural logarithmic
form.
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In order to account for trade costs, a set of dummy variables, denoting whether
two countries share a common border, language, religion and colonial ties and
whether a country is an island or is landlocked, is generally added to Eq. (4.2).

The gravity equation has been successfully applied to several fields other than
trade, such as immigration, investments and tourism. In order to focus on a policy
of interest, researchers need to include relevant variables. For example, to estimate
the effects of FTAs a dummy variable is added to Eq. (4.2) :

InX;j = Bo+ B1InGDPi + BrlnGDP; + B3lnDistij + BaZ; + BsFT Ajj + &
4.3)
where:

e Z; is a vector of the aforementioned dummy variables (common border, lan-
guage, religion, . . .);

* FTA;; is a dummy variable capturing the presence of a free-trade agreement
between partners i and j;

* the other variables have the meaning explained above.

Generally, the “traditional” empirical strategy in estimating (4.3) through OLS
consists of estimating it with, firstly, random effect and, secondly, with fixed effect;
then test the suitability of the random effect model through the Hausman test.

From its basic version in Egs. (4.1)—(4.3), the gravity model underwent several
developments both in theory and estimation technique. From a theoretical point of
view, the gravity equation was initially introduced without any strong theoretical
foundations. For this reason, it was criticized by trade economists despite its power
to explain bilateral trade flows. Anderson (1979) was the first who tried to fill
the gap between the empirical evidence and theory. He derived the gravity model
based on constant elasticity of substitution (CES) preferences and goods that are
differentiated by country of origin. The gravity model was also derived based
on a model of monopolistic competition (Bergstrand, 1989) and on a Ricardian
framework (Eaton & Kortum, 2002). Anderson & Van Wincoop (2003), building
on Anderson (1979), showed that estimations of gravity equation suffered from
omitted variable bias because empirical analysis did not take account of multilateral
resistance terms. Anderson & Van Wincoop (2003, p.183) state that “multilateral
resistance variables are critical to understanding the impact of border barriers on
bilateral trade”. Solving the McCallum border puzzle by including the multilateral
resistance terms in the estimation of the gravity equation, Anderson & Van Wincoop
(2003, p.184) find that “to the extent that border barriers raise average trade barriers
faced by an importer and an exporter (multilateral resistance), it dampens the
negative impact of the bilateral border barrier on trade between the two countries”.
The specification of the model due to Anderson & Van Wincoop (2003) is widely
recognized and represents a solid basis for further improvements of the gravity
model. The gravity model derived by Anderson & Van Wincoop (2003) that includes
multilateral resistance terms takes the following form:
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B GDP,»GDP]»< tij )1“’ @b

U= ""GDpP, i P;
where:

* X;; denotes exports from country i to country j;

* GDP;, GDPj and GD P, denote the GDP of country i, the GDP of country j,
and world GDP, respectively;

* t;j denotes the bilateral trade costs between country i and country j that account
for geographical distance, the set of aforementioned dummy variables, bilateral
tariffs, whether the countries are parties to an FTA;

e T[I; denotes the outward multilateral resistance and captures the fact that the
exports from country i to country j also depend on the trade costs borne by
country i towards all possible markets;

e P; denotes the inward multilateral resistance and captures the fact that the
imports of country i from country j also depend on the trade costs borne by all
possible suppliers in country i’s market;

¢ o denotes the elasticity of substitution.

The contribution of Anderson & Van Wincoop (2003) is not limited to theoret-
ical development. It paved the way for development in the estimation technique
because of the issue of how to properly estimate the multilateral resistance terms.
Equation (4.4) could be estimated through OLS as follows:

InX;j = Bo+ B1InGDPi + BrinGDP; + Balnt;j + 4Il; + BsP; +&;j  (4.5)

However, it should be noted that the multilateral resistance terms are not directly
observable. The empirical literature proposed different ways to estimate them.
Anderson & Van Wincoop (2003) estimated them through a nonlinear least-squares
(NLS) estimator, which, however, has not been much applied in the empirical
literature. An alternative is to include a proxy for the multilateral resistance terms
in the form of a “remoteness” index that measures a country’s average weighted
distance from its trading partners. However, Anderson & Van Wincoop (2003)
criticize this “remoteness” index because it does not capture any trade barrier other
than distance. The empirical literature mainly estimates the multilateral resistance
terms using country fixed effects for importers and exporters in cross-section
estimations and using exporter-time and importer-time fixed effects in a dynamic
estimation with panel data.!

! “It should be noted that in addition to accounting for the unobservable multilateral resistance
terms, the exporter-time and importer-time fixed effects will also absorb the size variables (E; ; and
Y; ;) from the structural gravity model as well as all other observable and unobservable country-
specific characteristics which vary across these dimensions, including various national policies,
institutions, exchange rates, etc.” (Piermartini & Yotov, 2016, p. 7).
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Recent econometric best practices include the use of country —pair fixed effects to
address the problem of endogeneity bias due to unobservable heterogeneity across
pairs (Baier & Bergstrand, 2007), estimation in panel data with time interval because
“fixed-effects estimation is sometimes criticized when applied to data pooled over
consecutive years on the grounds that dependent and independent variables cannot
fully adjust in a single year’s time” (Cheng & Wall, 2005), and the use of a Poisson
Pseudo Maximum Likelihood (PPML) estimator (Santos & Tenreyro, 2006). Santos
& Tenreyro (2006) showed the advantages of the PPML estimator compared to OLS.
In particular, the PPML estimator accounts for the patterns of heteroskedasticity that
plague trade data and performs well even when the proportion of zeros in the sample
is very large (Santos Silva & Tenreyro, 2011).

These last developments will be not shown in this book. Refer to An Advanced
Guide to Trade Policy Analysis: The Structural Gravity Model by the UNCTAD
& WTO for practical applications of last best practices in estimating the gravity
equations. Furthermore, the book The gravity model of international trade: a user
guide [R version], published by the United Nations ESCAP (Shepherd et al., 2019)
available at https://www.unescap.org/resources/gravity-model-international-trade-
user-guide-r-version, shows several econometric techniques applied to the gravity
model of international trade. Therefore, it can be a natural integration to this book.
Finally, note that an ad hoc package to estimate the gravity equation, gravity, has
been developed by Woelwer & Burgard (2017). This package provides estimation
methods for log-log models and multiplicative models, such as the PPML estimator.

Learning Objectives

Import csv, txt, and Stata files
Conversion of objects

Drop duplicates

Generate new variables

Group operations with ave ()

Sort data set by variables

Collapse a data set with aggregate ()
Rename column names

Append data sets

Use of complete ()

Reshape the data set

Replace if

Subset a data set

Generate dummy variables with ifelse ()
Generate group id

Label variables

(continued)
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B Export data set

B Run a regression

B Replicates Stata robust standard errors
B Export results with stargazer ()

In this chapter, we are going to build a database to estimate a gravity equation.”

We will follow eight steps:

. import data sets

. create all possible country-year combinations

. reshape and merge country-specific data with bilateral trade flows
. merge with pair-specific data (CEPII, gravity data)

. generate new country-pair variables

. compute the log of variables and generate the panel id

. estimate the model

. export the results

el e N O S

Open a new script file in RStudio and save it as
11 building database approach 2edn.
Let’s load the following packages by using the 1ibrary () function.

library("readr") # import .csv file
library("haven") # import Stata .dta file
library ("Hmisc") # label
library("tidyr") # complete observations
library("data.table") # reshape the dataset
library ("plm") # panel regression
library("dplyr") # group id
library("sandwich") # replicate Stata robust standard errors
library ("lmtest") # replicate Stata robust standard errors
library("stargazer") # export regression results

4.1 Building the Database

In this section we follow the UNCTAD & WTO’s good practice to build the data set
for the gravity model. First, we import data sets from different sources. We make
operations on each of them before importing the next data set. We prepare the data
sets to be merged in a single final data set which will contain all the information to
run the regression.

Let’s start by importing the UNCTAD & WTO’s tradeflows.csv in R
by using read delim() from readr package. We indicate ; as delimiter.

2 The corresponding Stata code is available in BuildingDatabase Approach.do.
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The option trim ws = TRUE trims leading and trailing white space. If the file
contains double quotes, the option escape double = TRUE makes the value
nmown represent a single quote, " .

‘We store the data set as t£. t £ is a data frame with 369,178 observations and
4 variables, importer, exporter, year, and imports. Data cover the years
1990-2005.

# Step 1: Import data ----
# Import trade flows data (; delimiter)
tf <- read delim("datWTO/tradeflows.csv",

";", escape_double = FALSE,
trim ws = TRUE)

class (tf)
View (tf)
dim(tf)
str(tf)

Next we import the UNCTAD & WTO’s dataset for WTO accession data,
joinwto. txt. This is a text file. We use again read_delim (). Note that this
time the delimiter is tab, \t. We store the data set as jw. jw is a data frame with
176 observations and 2 variables, country and join. join reports the date of
accession to the WTO.

# Import WTO accession data (tab delimiter)

jw <- read_delim("datWTO/joinwto.txt",
"\t", escape_double = FALSE,
trim ws = TRUE)

class (jw)

View (jw)

dim(jw)

str(jw)

We need to correct the data set for Belgium and Luxembourg. If the value of
country is equal to BEL or, |, LUX, we replace the value with BLX. We also
replace COD with ZAR. Drop duplicates with the unique () function and sort the
data set by country with order (). For the use of unique () refer to Sect. 2.6.
For the use of order () refer to Sects. 2.2, 2.3 and 2.6. The data set jw has 174
observations after dropping duplicates. Note that the imported data set, joinwto,
reports two values for COD.

# replace if

jwScountry [jw$country == "BEL" | jw$country == "LUX"] <- "BLX"
jwScountry [jwScountry == "COD"] <- "ZAR"

jw <- unique (jw)

jw <- jwlorder (jwScountry), I

dim(jw)

View (jw)

Next we import the data set storing GDP data, GDP. csv. This is a csv file.
This time we use another function to import the data set in R, read csv ().
We store the data set in gdp. gdp is a data frame with 228 observations and
54 variables. Variables include Country Name, Country Code, Indicator
Name, Indicator Code and years from 1960 to 2009.

# Import GDP data
gdp <- read_csv("datWTO/GDP.csv")
class (gdp)
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dim(gdp)
View (gdp)
str (gdp)

We need to correct for Belgium and Luxembourg also for this data set. We replace
the values as we did for the jw dataset.

In this case, however, we need to sum the values of the GDP for the two countries.
We do this in a few steps.

We subset the gdp data set twice. First, we drop from the data set BLX. We subset
gdpif ‘Country Code' != "BLX",where ! = is alogical operator that means
inequality. We assign this operation to a new object, gdp no_blx.

Second, we keep only BLX in the dataset. We subset gdp if * Country Code‘
== "BLX", where == is a logical operator that means exact equality. We assign this
operation to a new object, gdp blx.

Next, we keep only GDP value per years in gdp blx. Therefore, we keep
columns from 5 to 54. We use [ ] operator and assign this operation to a new
object, gdp blx2. We sum the values in the columns using colSums () and
append the outcome to gdp blx2 by using rbind (). We assign this operation to
a new object, gdp blx3. Next, we eliminate the first two rows, which correspond
to the single values of Belgium and Luxembourg using the [ ] operator. We assign
this operation to a new object, gdp blx4.

We create a new object from gdp blx which includes Country Name,
Country Code, Indicator Name, and Indicator Code for BLX. We
assign this operation to a new object, gdp_blx lab.

Next, we bind by columns, by using cbind(), gdp blx lab and
gdp blx4. We assign this operation to a new object, gdp blx5. Now we have
the data for BLX of the right dimension to be appended to the data set without BLX,
gdp no_blx. We append these two data sets by using rbind.data.frame ()
in a new object, gdp2. We have corrected the data set. We have 227 observations.
Finally, we sort the gdp2 by ‘Country Code"' using order ().

HEH SR R R R
# Adjust for BLX = BEL + LUX

gdp$ ‘Country Code' [gdp$'Country Code' == "BEL" |
gdp$ ‘Country Code' == "LUX"] <- "BLX"
gdp$ 'Country Name' [gdp$'Country Name' == "Belgium" |
gdp$ ‘Country Name' == "Luxembourg"] <- "BENELUX"

# subset eliminating BLX
gdp_no_blx <- subset (gdp, gdps$'Country Code' != "BLX")
dim(gdp_no_blx)

# subset only BLX

gdp_blx <- subset (gdp, gdp$'Country Code' == "BLX")
dim(gdp_blx)

View(gdp_blx)

# keep only value in gdp_blx for sum
gdp_blx2 <- gdp_blx[, 5:54]

View(gdp_blx2)

gdp_blx3 <- rbind(gdp blx2, colSums(gdp blx2)
gdp blx4 <- gdp blx3[-c(1,2),]

View (gdp_blx4)
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gdp_blx lab <- gdp_blx[1, c(1:4)]
View(gdp_blx_lab)

gdp blx5 <- cbind(gdp blx lab, gdp blx4)
View (gdp_blx5)

# rbind gdp with and without BLX
gdp2 <- rbind.data.frame(gdp no_blx, gdp blx5)
dim(gdp2)
gdp2 <- gdp2 [order (gdp2$'Country Code‘), ]
View (gdp2)
B B

Next, we import the data set dist cepii224.dta as dist cepii. This
data set contains gravity variables such as distance between two countries in km
dist, contiguity (dummy variable which takes value 1 if two countries share same
borders, 0 otherwise), contig, language (dummy variable which takes value 1 if
two countries share the same language, 0 otherwise), comlang of £, landlocked
(dummy variable which takes value 1 if a reporter, REP1landlocked, or a partner,
PARTlandlocked, have no access to the sea, and so on. The source of this data
set is the French Centre d’Etudes Prospectives et d’Informations Internationales
(CEPID). In total, the data set contains 50,176 observations and 30 variables.

# Import dataset with gravity variables

dist cepii <- read dta("datWTO/dist cepii224.dta")
class (dist_cepii)

View(dist_cepii)

dim(dist_cepii)

str(dist_cepii)

We rename country, partner, repnum, and partnum as shown in the next
block of code. Then, we adjust for Belgium and Luxembourg.

# Open gravity variables and correct for BLX = BEL + LUX
## rename

colnames (dist_cepii) [1] <- "exporter"
colnames (dist_cepii) [2] <- "importer"
colnames (dist_cepii) [15] <- "exporternum"
colnames (dist_cepii) [23] <- "importernum"
dist_cepiisexporter[dist_cepii$exporter == "BEL"
dist_cepiisexporter == "LUX"] <- "BLX"
dist cepii$importer[dist cepii$importer == "BEL" |
dist cepii$importer == "LUX"] <- "BLX"

Next, we use aggregate () to collapse the variables exporternum,
importernum, contig, comlang off, colony, dist, REPlandlocked,
and PARTlandlocked by exporter and importer. Refer to Sect.2.6 for
details about aggregate (). Note that we nest aggregate () in with().
Refer to Sect. 2.1 for the use of with (). We assign this operation to a new object,
dist cepii2.

Finally, we keep the observations if exporter is different from importer,
exporternum != importernum, by using subset (). We assign this
operation to a new object, dist cepii3. Then, we sort the data set by
exporter and importer. We assign this operation to a new object, cepii.

dist cepii2 <- with(dist_ cepii,
aggregate (list (exporternum = exporternum,
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importernum = importernum,

contig = contig,

comlang off = comlang off,

colony = colony,

dist = dist,

REPlandlocked = REPlandlocked,

PARTlandlocked = PARTlandlocked),
by = list (exporter = exporter,

importer = importer),

FUN = function(x) mean(x, na.rm = T)))

View(dist cepii2)
dist_cepii3 <- subset (dist_cepii2, exporternum != importernum)
dim(dist_cepii3)

View(dist_ cepii3)
cepii <- with(dist cepii3, dist_cepii3 [order (exporter, importer),])

In Step 2 of the gravity database building approach, we create all possi-
ble country-pairs-year combinations. We use the complete () function. The
complete () function turns implicit missing values into explicit missing values.
The first entry of the function is a data frame. To find all unique combinations
of importer, exporter, and year, including those not found in the data, we
supply each variable as a separate argument. The argument £111 allows to supply
a value per variable instead of NA. In this case, we supply 0 to imports. We assign
this operation to a new object, t £2.

Finally, we keep the observations if exporter is different from importer,
exporter != importer, using subset (). We assign this operation to a
new object, gvty tl.gvty t1 has 996,000 observations and 4 variables.

# Step 2: Create all possible country-pairs-year combinations ----

tf2 <- complete(tf, importer, exporter, year, fill = list (imports = 0))
View (tf2)

dim(t£2)

gvty tl <- subset(tf2, exporter != importer)

dim(gvty t1)

We start Step 3 by keeping only ‘Country Code‘ and years in gdp2. We
assign this operation to a new object, gdp3. Then, we reshape the data set long
with the melt () function. We assign this operation to a new object, gdp4. Refer
to Sect.2.3 for details about melt (). We rename the columns of gdp4 with
colnames ().

Finally, we copy gdp4 in two new objects, gdp exporter and
gdp_importer and rename countrycode as exporter and importer,
respectively, and rename gdp as gdp exporter and gdp importer,
respectively.

# Step 3: Reshape and Merge country-specific data with bilateral trade flows ----
gdp3 <- gdp2[, c(2, 5:54)]

View (gdp3)

gdp4 <- melt (setDT(gdp3), id.vars = 1, measure.vars = c(2:51)
colnames (gdp4) <- c("countrycode", "year", "gdp")

View (gdp4)

gdp_exporter <- gdp4
colnames (gdp_exporter) [which (
colnames (gdp_exporter) == "countrycode")] <- "exporter"
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colnames (gdp_exporter) [which (
colnames (gdp_exporter) == "gdp")] <- "gdp_exporter"

gdp_importer <- gdp4
colnames (gdp_importer) [which (

colnames (gdp_importer) == "countrycode")] <- "importer"
colnames (gdp_importer) [which (
colnames (gdp importer) == "gdp")] <- "gdp_importer"

Now we are ready to start to merge the data sets. We add the information
with gdp per exporter, gdp exporter, and importer, gdp_importer, to the
data set with bilateral data, gvty t1. by using the merge () function. First,
we merge gvty tl and gdp exporter. We merge the two data sets only
with observations which appear in both data sets. We assign this operation to a
new object, gvty tlm. Next, we merge gdp importer to gvty tlm. We
assign this operation to a new object, gvty t2. Then, we sort it by exporter,
importer, and year.

# Merge the country-specific data with bilateral trade
gvty_tl <- gvty_ tl[order(gvty tl$exporter,
gvty tlsyear), |

gvty tlm <- merge(gvty tl, gdp_exporter,
by = c("exporter", "year")

gvty_tlm <- gvty tlm[order (gvty_ tlm$importer, gvty_ tlmsyear), ]

gvty t2 <- merge(gvty tlm, gdp_ importer,
by = c("importer", "year")

gvty t2 <- gvty t2[order(gvty t2$exporter,
gvty t2$importer,
gvty_t2$year), ]

dim(gvty t2)

View(gvty t2)

We repeat the same operation for the WTO accession data, jw. This data set
reports the year of accession to the WTO. Therefore, contrary to the previous
operation, we need to choose the option all.x = TRUE in the merge ()
function. This option adds extra rows to the output, one for each row in x that has
no matching row in y. These rows will have NAs in those columns that are usually
filled with values from y. The final data set after these operations will be gvty t3.
jw_exp <- jw
colnames (jw_exp) [which (colnames (jw_exp) == "country")] <- "exporter"
colnames (jw_exp) [which (colnames (jw_exp) == "join")] <- "join_ exporter"
jw_imp <- jw
colnames (jw_imp) [which (colnames (jw_imp) == "country")] <- "importer"

colnames (jw_imp) [which (colnames (jw_imp) == "join")] <- "join importer"

gvty t2 <- gvty t2[order(gvty t2$exporter, gvty t2$year), ]
gvty_t2m <- merge(gvty t2, jw_exp,

by = c("exporter"), all.x = TRUE)
dim(gvty_t2m)
gvty_t2m <- gvty t2m[order(gvty t2m$importer,gvty t2m$year), ]

gvty t3 <- merge(gvty t2m, jw_imp,
by = c("importer"), all.x = TRUE)
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dim(gvty t3)
View(gvty t3)

In Step 4, we start by merging gvty t3 with the gravity data from CEPII,
cepii. We keep the data in the new object, gvty t3mif they appear in both data
sets.

# Step 4: Merge with pair-specific data (CEPII Gravity data) ----
gvty t3 <- gvty t3[order(gvty t3$exporter,

gvty t3$importer,

gvty_t3$year), ]

gvty_t3m <- merge(gvty t3, cepii,
by = c("exporter", "importer"))

Next, we import the data set Religion.dta as rel withread dta().rel
has 41,820 observations and 3 variables, exporter, importer,and religion.
relion takes value 1 if exporter and importer share the same religion, 0
otherwise.

Then, we merge rel with gvty t3m in a new object, gvty t4. We also
replace NA values in religion with O

rel <- read dta("datWTO/Religion.dta"
class (rel)

View (rel)

dim(rel)

str(rel)

gvty_t4 <- merge(gvty t3m, rel,
by = c("exporter", "importer")
all.x =T)

gvty t4 <- gvty t4[order(gvty t4Sexporter,
gvty_t4$importer,
gvty_t4syear), |

any (is.na(gvty_t4s$religion))
gvty t4S$religion([which(is.na(gvty t4$religion))] <- 0
dim(gvty t4)

In Step 5, we generate dummy variables for the WTO membership with
ifelse (). First, replace NA in join exporter and join importer with
a random number, 9999, which is functional to building the WTO membership.

We generate the following dummy variables:

e onein equal 1 if one of the country pair is member of the WTO, 0 otherwise;
* bothin equal 1 if both countries are members of the WTO, 0 otherwise;
* nonein equal 1 if none of the country pair is member of the WTO, 0 otherwise.

After generating the dummy variables for the WTO membership, we drop
join exporter and join importer from the data set. We assign this
operation to a new object, gvty def. Now the data set is complete with all the
data for the gravity model.

# Step 5: Generate new country-pair variables ----

gvty t5 <- gvty t4
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gvty t5$join_exporter[which(is.na(gvty t5$join_exporter))] <- 9999
gvty t5%join_importer[which(is.na(gvty_ t5$join_importer))] <- 9999
View(gvty t5)

dim(gvty t5)

# dummy variables

gvty t5$%onein <- with(gvty t5, ifelse(
join_exporter <= year & join importer > year
join_importer <= year & join exporter > year,
1, 0))

gvty_ t5$bothin <- with(gvty t5, ifelse(
join_exporter <= year & join importer <= year,
1, 0))

gvty_tb5$%nonein <- with(gvty t5, ifelse(
join_exporter > year & join_importer > year,
1, 0))

# drop the columns with join_exporter join importer
gvty def <- gvty t5[, -c(7, 8)]

dim(gvty def)

View(gvty def)

In Step 6, we compute the log of the variables imports, imports, GDP for
exporter, gdp exporter, GDP for importer, gdp importer, and distance,
dist.

We replace - Inf in the log of imports, 1imports, with NA.

We generate the panel id, pairid, by exporter and importer by using the
cur_group_ id() function from the dplyr package.

Then, we label the variables by using upData ().

The data set is now complete. We can export it by using the write.csv ()
function. The argument £ile = " " write the file to your working directory. The
argument row.names = FALSE omit the row names.

# Step 6: Compute the log of the variables imports, GDPs and distance ----
gvty defs$limports <- log(gvty def$imports)

gvty defslgdp exporter <- log(gvty def$gdp exporter)

gvty_def$lgdp_ importer <- log(gvty def$gdp_importer)

gvty def$ldist <- log(gvty defsdist)

# susbstitute -inf in imports with NA
gvty defslimports[gvty def$limports == -Inf] <- NA

# generate panel id

gvty def <- gvty def %>%
group_by (exporter, importer) %>%
mutate (pairid = cur_group_id()

# label
gvty def <- upData(
gvty def,
labels = c(importer = "reporter",
exporter = "partner"
imports = "Imports value in thousand",
gdp_exporter = "GDP in current USD",
gdp_ importer = "GDP in current USD",
exporternum = "IFS code exporter",
importernum = "IFS code importer",
contig = "1 for contiguity",
comlang off = "1 for common official language",
colony = "1 for pairs ever in colonial relationship",
dist = "simple distance",

REPlandlocked = "1 if exporter landlocked",
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PARTlandlocked = "1 if importer landlocked",

religion = "1 if common main religion for both countries"
onein = "one of the country pair is member of the WTO",
bothin = "both countries is member of the WTO",

nonein = "none of the country pair is member of the WTO",
limports = "Log of imports value",

lgdp_exporter = "log of exporter’s GDP",

lgdp_importer = "log of importer’s GDP",

ldist = "log of distance",

pairid = "panel id")
label (gvty_def)
View (gvty_ def)

### export dataset as csv

write.csv(gvty def, file = "gvty def.csv",

row.names = FALSE)
# Note that the file is written to your working directory.
# row.names = FALSE -> omit the row names

Finally, we copy the data set to be used in Appendix B

## make a copy of the data set

df <- gvty def

4.2 Estimating the Gravity Model

The data set gvty def contains all the information needed for the estimation of
the following equation:

limports = Bo + Bilgdp_exporter + Brlgdp_importer + B3ldist 4+ Bacolony
+ Bscontig + Becomlang_off + Bronein 4+ Bsbothin
+ Bononein + u (4.6)

First, we estimate Eq. (4.6) with OLS with country and year fixed effects. We use
the 1m () function that specifies a linear regression of 1 imports on the regressors
and an implicitly defined constant. ~ is the regressor operator. To add dummy
variables for year, exporter and importer, we simply add these values as factor. We
can use the factor () function inside 1m (). Finally, data = refers to the data
frame which contains the variables in the model.

Note that to reproduce robust standard errors as in Stata we have to call for
another function, coeftest () in lmtest package and choose the option vcov
= vcovHC (x, "HC1"), where x represents a fitted model object.

# Step 7: estimating the gravity model ----

## ols with country fixed effects

reg lm <- lm(limports ~ lgdp_ exporter + lgdp importer +
ldist + colony +
contig + comlang off + onein + bothin +
factor (year) +
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factor (exporter) + factor (importer),
data = gvty def)
summary (reg_lm)
reg lm r <- coeftest(reg 1lm, vcov = vcovHC(reg lm, "HC1"))
reg_lm_r

Second, we estimate the model with fixed effects using the plm () function for
estimating linear model for panel data. The first entry of the plm () is a formula.
index enables the estimation functions to identify the structure of the data, i.e., the
individual and the time period for each observation. model indicates the kind of
model to be estimated: within for fixed effects and random for random effects.’

Note that to reproduce robust standard errors as in Stata we have to call for
another function, coeftest () in lmtest package and choose the options type
= "gsgsg" and cluster = "group" invcov = vcovHC ().

## fixed effects
reg plm_fe <- plm(limports ~ lgdp_exporter + lgdp importer +
onein + bothin +
factor (year),
data = gvty def,
index = c("pairid", "year"),
model = "within")
summary (reg_plm fe)
reg plm fe r <- coeftest(reg plm fe,
vcov = vcovHC(reg plm fe,
type = "sss",
cluster = "group"))
reg plm fe r

Finally, we estimate a random effects model. Note we change the kind of model
to random.

## random effects
reg plm re <- plm(limports ~ lgdp exporter + lgdp importer +
ldist + colony +
contig + comlang off + onein + bothin +
factor (year),
data = gvty def,
index = c("pairid", "year"),
model = "random")
summary (reg_plm re)
reg_plm re r <- coeftest(reg_plm re,
vcov = vcovHC (reg plm re,
type = "sss",
cluster = "group"))
reg plm re r

3 Please note that the effects are introduced in the model by the p1lm () function by setting ef fect
= one of "individual", "time", "twoways", or "nested". The approached followed
here is to replicate the same R-squared computed by Stata for the fixed effects model.

4In random model, we find slightly different results between
plm() and Stata because they use different procedures. Refer to
https://cran.r-project.org/web/packages/plm/vignettes/B_plmFunction.html ~ for more info
regarding the estimation with the plm function. To get closer results, you may want to use
the Swamy-Aurora version of the random effects model in Stata. I took this suggestion from
https://rlhick.people.wm.edu/stories/econ_407_notes_panel_companion.html.
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4.3 Exporting Regression Output

Finally, we may want to export our results. We can accomplish this task with the
stargazer package.

First, note that we stored all the regression in objects. The first entries of
stargazer () are one or more model objects (for regression analysis tables) or
data frames/vectors/matrices (for summary statistics, or direct output of content).
type = specifies what type of output the command should produce. The possible
values are latex, (default) for LaTeX code, html for HTML/CSS code, text
for ASCII text output. title = is a character vector with titles for the tables.
digits =indicates how many decimal places should be used. column. labels
=, dep.var.labels =, and covariate.labels = indicate the labels for
columns, dependent variable, and independent variables, respectively. omit =
specifies which of the explanatory variables should be omitted from presentation in
the table. For se = and p = refer to the code to generate Table 3.1. add.lines
= is a list of vectors (one vector per line) containing additional lines to be included
in the table. Each element of the listed vectors will be put into a separate column.
keep.stat = specifies which of the statistics should be printed. out = contains
the path of output files. Depending on the file extension (.tex, .txt, .htm or .html),
either a LaTeX/HTML source file or an ASCII text output file will be produced (see
Table 4.1 for the output).

## Step 8: export results ----

stargazer (reg_lm, reg plm fe, reg plm re,
type = "latex",
title ="Regression output with Stargazer",
digits = 4,

column.labels = c("OLS", "FE", "RE")
dep.var.labels = "Log of imports value",
covariate.labels = c("log of exporter’s GDP",

"log of importer’s GDP",

"log of distance",

"l for pairs ever in colonial relationship",

"l for contiguity",

"l for common official language",

"one of the country pair is member of the WTO",
"both countries is member of the WTO"),

omit = c("factor"),
se = list(reg_1lm r[, 2], reg plm fe r[, 2], reg plm re r[, 2]),
p = list(reg 1Im r[, 4], reg plm fe r[, 4], reg plm re r[, 4]),
add.lines = list(c("Year FE", "YES", "YES", "YES"),

c("Country FE", "YES", "NO", "NO")),
keep.stat = c("n", "rsg", "adj.rsqg")

out = "regression.tex")
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Table 4.1 Regression output with Stargazer

Dependent variable:

Log of imports value

OLS panel
linear
OLS FE RE
(€] (@) 3
log of exporter’s GDP 0.3290%*** 0.3450*** 1.0046***
(0.0216) (0.0237) (0.0050)
log of importer’s GDP 0.5966*** 0.6860™*** 0.8386™**
(0.0201) (0.0211) (0.0052)
log of distance —1.5007*** —1.1940%**
(0.0060) (0.0157)
1 for pairs ever in colonial relationship 1.0812%* 1.5722%%
(0.0258) (0.0854)
1 for contiguity 0.6540*** 1.0844*+*
(0.0291) (0.0934)
1 for common official language 0.8206™** 0.8893%**
(0.0130) (0.0335)
one of the country pair is member of the WTO ~ —0.2772*** 0.0574 —0.0092
(0.0264) (0.0421) (0.0365)
both countries is member of the WTO —0.0589 0.1462%** 0.1055%**
(0.0359) (0.0456) (0.0383)
Constant —5.1910%** —26.7828***
(0.6323) (0.2398)
Year FE YES YES YES
Country FE YES NO NO
Observations 291,859 291,859 291,859
R2 0.7194 0.0681 0.1554
Adjusted R2 0.7191 —0.0352 0.1553
Note: *p<0.1; **p<0.05; ***p<0.01



Appendix A
Interactive Dashboard with R Shiny

In this appendix, we create a simple R Shiny interactive dashboard to allow the
reader to interact with the results of the tariff analysis from Sect. 3.1.

The code to build an interactive dashboard in R Shiny has some peculiarities that
make it different from the code we have written until now. Here, we will cover the
essential elements to build our dashboard. The reader is referred to the following
resources to learn more about R Shiny:

 Shiny, Shiny Tutorial, https://shiny.rstudio.com/tutorial/written-tutorial/lesson1/
* Mastering Shiny (Wickham, 2021) that is also made free available online at the
following address: https://mastering-shiny.org/index.html

Let’s start!

First, we need to open and save the app.R file where we code our dash-
board. Refer to Fig. A.1 to open the file and to Fig. A.2 to save it. Save it as
08b_tariff statistics_2edn. This will generate a folder with that name
that will contain the app . R file. Copy the TPP data set we used in Sect. 3.1 in this
folder (Fig. A.3)

The beginning of the file starts by loading the packages we need to run our code
with the 1ibrary () function. We need the same packages we used in Sect. 3.1
with the addition of shiny.

Then, we import the TPP data set with the read_dta () function and convert
sector and year in factors. We convert sector and year in factors because
we will make a slight modification to the plot.

From now on, the code starts to differ from the code we are used to. First, we
need to understand the structure of the R Shiny app.

The file to build the app is structured in three parts:

1. definition of user interface for application, ui
2. definition of the server logic, server
3. run of the application, shinyApp ()
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Fig. A.1 Create a new Shiny web dashboard (1)

Fig. A.2 Create a new Shiny web dashboard (2)

A.1 User Interface

We create the page layout with £1uidPage (). The horizontal space is divided in
12-unit wide grid. We will return to this number shortly. All the remaining code for
the user interface will be inside f1luidPage ().

The first line of code is shinyFeedback: :useShinyFeedback (). We
need this line of code to give feedback to the users of our dashboard. Since it is a
two step process, we will cover it in Sect. A.2.
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rFead_dea("TPR.dta

sector <~ as.factor(TPAisector - - —
tyear < as,factor (TPPiyear R

fluidrage O

Fig. A.3 Create a new Shiny web dashboard (3)

We create a panel containing the application title with titlePanel (). Below
we write additional information about our app by using h3 () and p () .

Our dashboard will have two viewable sections. One will show the plot as
output and the other one will show a table with tariff statistics. We generate
multiple viewable sections with tabsetPanel (). The first panel is built with
tabPanel (). We set a title for it "Data visualization" and then we
organize it in two panels: a sidebarLayout () and amainPanel ().

In sidebarLayout () we create the input controls to control for the output.
selectInput () creates a select list that can be used to choose a single or
multiple items from a list of values. In our case, we create the list from the unique
values of ccode in TPP and we do not allow for multiple selections (multiple
= FALSE, default value), and we set the width to 100%. The first two entries are
the inputId and the label. The inputId needs to be unique. We set it as
"ccodel". The 1label is the label that will describe the input control. We choose
"Select country: ".

We also create two buttons. The first button is an action button, actionButton ().
Again, the first entry is the inputId and the second entry is the 1abel. We set
"buttonl" as inputId and "Plot" as label. We also choose a CSS class
to apply to the tag for the button. Briefly, this is the button that the user will have to
push to generate the plot in the dashboard.

The second button is a downloadButton (). By pushing this button, the
user can download on her/his computer the data used for the plot. We just set the
outputId as "downloadl". We keep the default value for the 1abel that is
"Download".

Finally, we set the width of the sidebarLayout () to 2.
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Next, we need to define the content of the mainPanel (). In this case,
we want to produce an interactive plot with plotly. Therefore, we choose
plotlyOutput () and we set its outputId as "Plot". Finally, we set the
width of the mainPanel () to 10. Therefore, in total we covered the 12-unit space.

Then, we generate the second panel where we show some summary statistics as
an interactive table. We will use the same code used for the first panel. However, we
have to make some necessary modifications.

In sidebarPanel (), we need to modify the input Id and outputId. We
just replace 1 with 2. For example, "ccode2" instead of "ccodel". For the
action button we will change the label as well. This modification is not strictly
necessary for the functioning of the dashboard. However, since we are going to
calculate statistics instead of plotting, we replace "Plot " with "Compute".

InmainPanel (), wechoose dataTableOutput () andset "statistics™
as outputId.

A.2 Server Logic

In Sect.A.1, we set up the user interface. Next step consists in defining the
underlying logic to make our dashboard work. We write the server as a function
of two inputs function (input, output). If now we jumped directly to
Sect. A.3 and run the app, we would create the dashboard. However, if we pushed
the buttons nothing would happen. Because the app does not know what to do.
Therefore, we write the steps the app needs to implement inside the function.

First, we need to prepare the data for the plot and generate the plot with
ggplot (). In templ, first we subset the data set TPP, then we reshape it and
finally we pass it to ggplot () to make the plot. In this plot, we also group by
sector. Note three key elements:

e eventReactive ():in this case the subset is triggered when the user click the
button. Note that the first argument of eventReactive () is the id that we set
for the button that we call with input $buttonl,;

* req(): ensure that the values are available. In this case, we make sure that the
user selected a country (inputSccodel) to plot;

e in the subset () function, the country to subset for is associated with
inputsSccodel. That is, the user will select the name of the country among the
options provided by unique (TPPSccode) and by clicking the action button
will trigger the subset. We also use inputsSccodel for the title of the plot in
ggtitle()

Another key aspect of the code in R Shiny is that templ, that has been
generated with eventReactive (), is treated as a function. In fact, it is passed to
ggplotly () as templ (). The interactive plot with ggplotly () is rendered
by renderPlotly (). This is our output in the first panel and it is assigned to
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outputsPlot because Plot is the id that we chose in plotlyOutput () in
mainPanel () defined in the user interface.

Another output of the first panel is generated by the download button. In
outputsdownloadl, with downloadHandler () we return a csv file, that
takes the name of the selected country, containing the data used to plot. Note that in
write.csv () we retrieve the data set from the ggplot?2 object templ ().

Next, we move to define the output for the second panel. Here we have an
interactive table that is rendered by renderDataTable () and a csv file to
download containing the summary statistics showed in the table.

Finally, let’s discuss about shinyFeedback. When a user uses an app, some
commands or requests may cause the app to crash. In our case, for example, the
main problem is related to the subset of the data set to produce the plot in the first
panel because the conditions for subsetting can not be hold true for all countries.
This implies that a data set with no rows could be returned. If this is the case, the
plot will fail and the error message from the console pane will be printed.

There are two issues related to it:

1. the printed error message does not explain what the issue is to the user. Therefore,
we want to generate our own message to communicate what the problem is with
the selection of the user;

2. the crash of the app is not aesthetically pleasing. Consequently, if the error is
generated, we want to prevent the app from updating and printing the error
message from the console pane.

For these tasks we use the functions from the shinyFeedback package. As we
said, this is two step process. First, we add useShinyFeedback to the ui to set
up “the needed HTML and JavaScript for attractive error message display” (Wick-
ham, 2021). Second, in the server () function we add feedbackWarning ().
The first argument is the inputId that takes the same id of the input where the
feedback should be placed. In our case, "ccodel". The second argument is the
condition to be checked. In our case that number of rows of the subsetted data
set is zero. The third argument is the message we want to print in case of error.
Inour case, "No subset data for this country". The fourth argument
sets the color of the message as red. We can also omit because the color has a default
value.

With these modifications we took care of the issue 1, i.e. we generate our
error message to communicate the issue to the user. However, only with these
modifications the app will continue to work and definitely crash, i.e. it will not
produce the plot but it will print the error message from the console pane. To prevent
the app from running after we identified the cause of error, we add another req () .
This time the condition is that the number of rows of the data set is greater than
zero. In other words, if the data set after being subsetted has no rows the app has to
stop running.
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A.3 Run the Application

Now we are ready to run the app with shinyApp () where the two arguments
are ui and server. We can run it as shown in Fig. A.3 or by using the keyboard
shortcut CTRL + SHIFT + ENTER on Windows (CMD + SHIFT + ENTER on
Mac). Figures A.4, A.5, and A.6 show the output of our dashboard.
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Fig. A.5 Our R Shiny dashboard—panel 2
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Fig. A.6 Our R Shiny dashboard—error message

# library ----

library ("shiny")

library("haven") # import STATA .dta file
library("data.table") # reshape the data set
library("dplyr") # combine operations
library("doBy") # summarise by
library("ggplot2") # plot with ggplot
library("plotly") # interactive plot

# import data ----
TPP <- read_dta("TPP.dta")

TPPSsector <- as.factor (TPP$Ssector)
TPPSyear <- as.factor (TPPSyear)

# Define UI for application
ui <- fluidPage (

shinyFeedback: :useShinyFeedback ()

# Application title

titlePanel ("Analyzing Trade Tariffs"),
h3 ("Summary of Tariff Statistics"),
p("Porto M., Using R for Trade Policy Analysis.
R Codes for the UNCTAD and WTO Practical Guide,

Springer, 2nd edition,

# Panels
tabsetPanel (# Panel 1

2023."),

tabPanel ("Data visualization",

sidebarLayout (
sidebarPanel (

selectInput ("ccodel"

choices = wunique (TPPSccode),
width = "100%"),
actionButton ("buttonl", "Plot", class = "btn-block"),

br(),
br(),

"Select country:",
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downloadButton ("downloadl"),
width = 2
)

mainPanel (
plotlyOutput ("Plot"),
width = 10

)y
# Panel 2
tabPanel ("Summary of Tariff Statistics",
sidebarLayout (
sidebarPanel (
selectInput ("ccode2",
"Select country:",

choices = unique (TPPSccode),
width = "100%"),
actionButton ("button2", "Compute", class = "btn-block")
br(),
br(),
downloadButton ("download2") ,
width = 2
)
mainPanel (
dataTableOutput ("statistics"),
width = 10

# Define server logic
server <- function (input, output) {

# plot
templ <- eventReactive (input$buttonl, {
req (inputSccodel)

TPP s <- TPP %>%

filter (ccode == input$ccodel & ave core sim > 0 & tar savg ahs > 0) %>%
filter (ccode == input$ccodel & ave_core_sim > 0 & tar_iwahs > 0) %>%
filter (ccode == input$ccodel & ave_core_sim > 0 & tar_savg mfn > 0) %>%
filter (ccode == input$ccodel & ave core sim > 0 & tar_ iwmfn > 0)

# check subset data set

shinyFeedback: : feedbackWarning ("ccodel", isTRUE (nrow(TPP_s) == 0)
"No subset data for this country",
color = "red")

req (nrow (TPP_s) > 0)

TPP_ s 1 <- melt (setDT(TPP_s),

id.vars = c("sector", '"year'", "ave_core_sim"),

measure.vars = c("tar_savg_ahs", "tar_ iwahs"
"tar_savg_mfn", "tar iwmfn"),

variable.name = "tariff name",

value.name = "tariff value")

plot_s <- ggplot (TPP_s_1,
aes (x = tariff value,
y = ave_core_sim,
colour = year,
group = sector)) +
geom_point (size = 2) +
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facet_grid(. ~ tariff name) +

theme bw() +

xlab("Tariffs") + ylab("average Core NTB Coverage Ratio") +
ggtitle (pasteO("Tariffs versus NTBs in ", input$ccodel)) +

theme (plot.title = element_text (hjust = 0.5,
size = 10, face="bold"),
axis.title.x = element_ text(size = 7.5)) +
theme (legend.title = element blank())

output$Plot <- renderPlotly ({
ggplotly (templ())
3]

# download
output$downloadl <- downloadHandler (
filename = function() {
pastel (input$ccodel, ".csv") # create the name of the file

content = function(file) ({
write.csv(templ () $data, file,
row.names = FALSE)
}

)
# table
temp2 <- eventReactive (input$button2, {
req (input$ccode2)
TPP_s2 <- subset (TPP, ccode == input$ccode2)
tar <- summaryBy (tar_ savg_ahs + tar_iwahs +
tar_savg mfn + tar iwmfn ~ sector,

TPP_s2, na.rm = T,
FUN=c (mean, median, sd, min, max))

3]

output$statistics <- renderDataTable (

temp2 (), options = list (pageLength = 16)
)
# download
output$download2 <- downloadHandler (
filename = function() {
paste0l (input$ccode2, " tariff statistics.csv")
content = function(file) {
write.csv(temp2(), file,

row.names = FALSE)

}

# Run the application
shinyApp (ui = ui, server = server)
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Now we have created the dashboard but this is only available on our computer.
When we build a dashboard with R Shiny in most cases it is because we want to
share it. I will not cover how to deploy the app. You can refer to “Lesson 7” of the
Shiny Tutorial I indicated at the beginning of this section to learn several ways to
share your app that may meet your needs.

In my case, I use shinyapps. io, RStudio’s hosting service for Shiny apps.
You can visit the dashboard we created at the following address:

https://mporto.shinyapps.io/example_using_r_trade_policy/

For an example of a more elaborated dashboard that uses the same framework,
you may visit

https://mporto.shinyapps.io/japanese-affiliates-italy

that is an interactive dashboard I built to narrate the evolution of the network of
Japanese affiliates in Italy.
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Appendix B
Additional Code for Chap. 4: Conditional
Replacement with Nested Loop

In Chap. 4, we built a database to estimate a gravity model by following the approach
shown in the the Stata do file BuildingDatabase Approach.do.

At Step 6 in that file, the author mentions a limitation in computing country-time
dummies for Stata/IC users, since they will not be able to increase the number of
variables to create all the dummies. To address this issue, the author proposes three
solutions. Here, I am interested in the solution number 2 that consists in computing
country-period dummies.

To accomplish this task, the author use a conditional replacement with a nested
for loop. I think it is a good exercise for us because this is a kind of code that we
did not implement in the book. Additionally, I think the code may be useful in other
cases.

Therefore, in this section we implement that part of code that leads us to generate
country-period id.

The main part of the code consists in a nested loop generate with for () and a
conditional replacement inside the inner loop.

First, we subset df, that we created at the end of Step 6 in Sect. 4.1, if year
> 1995. We assign this operation to dfs. Then, we initialize a column time
in df s. Before setting the loop, we generate step that defines the steps of the
sequence in the loop. We set equal to 3. It corresponds to the number of years
for a period. Additionally, we coerce the tibble data frame to a data frame with
as.data.frame().

Second, we implement the nested for () loop. We have an external loop and an
internal loop. In the external loop, the loop runs over a sequence from the minimum
year to the maximum year in the data frame. The increment of the sequence is
controlled by by =. In this case the increment corresponds to the number stored
in step. Then we have the internal loop that runs over a sequence from O to the
number stored in step.
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Third, we write the conditional statement inside the loop. That is, if year is
equal to the sum of i and j, we replace the value that currently is NA with that of
the formula.

## subset the dataset if year > 1995

dfs <- subset (df, year > 1995)
View (dfs)

# initialize column
dfsStime <- NA

# conditional replacement with for loop
step <- 3

dfs <- as.data.frame (dfs)
for(i in seq(min(dfs$year), max(dfs$year), by = step)){
for(j in 0:step) {

dfs [dfsSyear == (i+3j), "time"] <- (i - min(dfs$year))/step

}

head(dfs[, c("year", "time")], 20)

Following, I print a section of the output

> head(dfs[, c("year", "time")], 20)
year time

1996
1997
1998
1999
2000
2001
2002
2003
9 2004
10 2005
11 1996
12 1997
13 1998
14 1999
15 2000
1l6 2001
17 2002
18 2003
19 2004
20 2005

W 30 U W

WNNMNMNMHRFRFEPFFRPOOOWNMNMNMREREREOOO

Finally, we generate the country-period id.

dfs <- dfs %>%
group by (exporter, time) %>%
mutate (exportertime = cur group id())

dfs <- dfs %>%
group_ by (importer, time) %>%
mutate (importertime = cur group id())
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