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Preface to the Second Edition 

When we first approach empirical analysis and we are about to estimate our first 
model, we may think that the toughest part is the estimation. Actually, that is not the 
case unless we decide to program the econometric model from scratch. But again 
this is not the case for most of us because, regardless the software or programming 
language we use, we just end up passing the names of variables to a ready-to-use 
function. Therefore, I may say that from an estimation point of view, the challenge 
is theoretical, i.e., it concerns the specification of the model and the interpretation 
of the results. 

The real tough part, in my opinion, consists in building those variables that we 
want to pass to the model. We will have data from different sources that come with 
different formats and shapes that we want to put together. Then, we may want to 
generate additional variables for our analysis. These are kinds of operations that 
we cannot fully automatize yet. Furthermore, data building is key for our analysis 
because the model can be theoretically well specified, but if we pass wrong data, the 
results will be simply incorrect. 

In this context, I want to mention the book by the UNCTAD & WTO, A Practical 
Guide to Trade Policy Analysis that is at the base of this book.1 The book by the 
UNCTAD & WTO is a perfect combination of theory, econometric analysis, and 
practice to analyze trade policies. Even though there are now several books dealing 
with theory and analysis with a programming language, I still think that this book 
is unique in this genre of books because the UNCTAD & WTO’s team provide raw 
data files and best practices for building the database for the analysis from scratch 
in Stata. 

As I immediately realized the value of the UNCTAD & WTO’s book, I thought 
that the same approach with the R programming language would be useful for 
students and professionals. I take this opportunity to thank the WTO for granting 
me permission to use some of their data sets to produce this book.

1 Visit https://www.wto.org/english/res_e/publications_e/practical_guide12_e.htm to download 
the book. 
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vi Preface to the Second Edition

This book is a second edition. The reasons for publishing a second edition are 
mainly two. First, the WTO has changed the location of the files to download that 
are used in this book. Therefore, the link to the data files in the first edition is not 
working anymore. Second, some R functions used in the first edition are deprecated 
functions. Therefore, it was necessary to replace the link to the data and those 
deprecated functions. 

However, these are not the only two changes I have made to this second edition. 
While reading again the first edition, I was thinking how I could provide more value 
to a reader who is approaching R for the first time. 

Even though I placed an appendix in the first edition with some basic information 
regarding R, I realize that that information is not enough for a beginner given 
that the book immediately starts with some advanced operations. Therefore, the 
first main modification is that I replaced the appendix in the first edition with 
the current Chap. 1. Chapter 1 is mainly based on the corresponding chapter of 
my previous book Introduction to Mathematics for Economics with R.2 However, 
some modifications were made. A few modifications were necessary because of 
the different project (e.g., the working directory, the packages used) and purpose 
of the book (the introduction to the apply() family functions was moved from 
the exercise section in that book to Sect. 1.6.6). Then, I provide more detail about 
vectorization in Sect. 1.6.6. On the other hand, Sects. 1.7.2 and 1.8 are completely 
new. Section 1.7.2 is about data management operations. I show alternatives to 
accomplish a same task in R that mainly use base R functions, functions from the 
tidyr and dplyr packages, and functions from the data.table package. You 
may choose the functions you are more comfortable with to replicate the chapters 
in the book. Section 1.8 shows how to download, unzip, create directories, and copy 
files by using solely R. Note that to follow along, you have to set up the R project 
as shown in Sect. 1.3.1. 

In Chaps. 2, 3, and 4, some modifications consist in code simplification, removal 
of typos, and a correction of code. Main modifications concern data visualization 
in Chaps. 2 and 3. Figure 2.3 now shows in the second panel how to zoom-in in 
a plot with ggplot2 while Fig. 2.8 has been turned dynamic (in the book it is 
printed the static version). Chapter 3 is where I divert more from the original Stata 
script and from the first edition of this book in terms of plotting. I may be wrong 
but I think that econometricians fail to data scientists in presenting the output. 
That is, econometricians mainly present static output while data scientists build app 
and dashboard where the user can interact with the results. By using R, we can 
easily go beyond static output. Therefore, in Chap. 3, we will learn how to make 
interactive plots. Additionally, we will build an interactive dashboard with R Shiny 
to present some of the results from Sect. 3.1. However, since R Shiny requires a 
bit of a different mindset with respect to the standard R code, we will build it in 
Appendix A.

2 Porto (2022). https://link.springer.com/book/10.1007/978-3-031-05202-6. 
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Preface to the Second Edition vii

Finally, the code is printed with a new colored style to make it more pleasant and 
easy to read. 

Ad maiora 

Beppu, Japan Massimiliano Porto
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Chapter 1 
Introduction to R 

This chapter introduces the reader to R (R Core Team, 2020) and RStudio (RStudio 
Team, 2020). The R version used in this book is 4.0.2. You can retrieve the version 
info by typing sessionInfo() in the console pane (Sect. 1.3). Following I print 
the first lines of the output of sessionInfo() in my console pane1 

> sessionInfo() 
R version 4.0.2 (2020-06-22) 
Platform: x86_64-w64-mingw32/x64 (64-bit) 
Running under: Windows 10 x64 (build 19042) 

The RStudio version used in this book is 1.3.1056. You can retrieve this info by 
typing the following command in the console pane 

> rstudioapi::versionInfo()$version 
[1] ’1.3.1056’ 

Note that even though you use a different version of R and RStudio, you can 
still run the code in this book. However, you may observe slight differences in the 
output. In Sect. 1.6.5, I will discuss a main difference if you use an R version before 
4.0.0. 

1.1 Installing R 

R can be installed on different operating system such as Windows, Mac and 
Linux. The reader is referred to the Comprehensive R Archive Network (CRAN) 
(http://cran.r-project.org) for the instructions to install R. 

If you have Windows, you may refer to: 
https://cran.r-project.org/bin/windows/base/ 

1 Do not write > because it is not part of the code—we will return to > in Sect. 1.5.1. 
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2 1 Introduction to R

If you have Mac, you may refer to: 
https://cran.r-project.org/bin/macosx/ 

1.2 Installing RStudio 

RStudio is an integrated development environment (IDE) that makes easier to work 
with R. You can download RStudio Desktop from the following website: 

https://posit.co/download/rstudio-desktop/ 

1.3 Introduction to RStudio 

Figure 1.1 shows the interface of RStudio. It is divided in 4 panes: 

1. Console pane: the console pane (1 in Fig. 1.1) is where you write your code, 
called command in R language. 

2. Environment/History pane: in the environment/history pane (2 in Fig. 1.1) you 
can see all the objects you create in R and the history of your commands. 

3. Files, plots, packages,.. pane: the pane number 3 in Fig. 1.1 is where you find 
your files, the packages you can install to improve the capabilities of R, where 
you can visualize the plots you create etc. 

4. Source pane: the source pane (4 in Fig. 1.1) provides you different ways to write 
and save your code. 

Fig. 1.1 RStudio interface
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1.3.1 Launching a New Project 

A project is a place to store your work on a particular topic (or project). To create a 
project follow the procedure as in Figs. 1.2, 1.3, and 1.4. 

Click on the  R symbol in the top hand right corner, click New Directory . > New 
Project and then write the directory name (WTO_R for this book) and click Create 
project.2 

I strongly recommend creating projects whenever you start what you consider 
a new project, not related to previous projects. For example, observe Fig. 1.5. This  
figure tells us that currently I am in the working directory WTO_R. You can see that 
I have other projects—for example a project about Econometrics in R, a project 
about creating interactive dashboards in R with Shiny and so on. Those projects 
are not related. Therefore, for each of them I created a project. For example, if 
I wanted to switch to the project regarding Econometrics, I would just click on 
ModellingEconometrics. This operation closes the current project and opens 
the project ModellingEconometrics. This means that my working directory 
would become ModellingEconometrics. Note also that the R session starts 
again when you switch between projects. 

Now let’s suppose that you start working without creating a project. In this case 
you can check your working directory by typing getwd() in the command pane. 
For example, my current working directory is 

> getwd() 
[1] "C:/Users/porto/OneDrive/Documenti/R_progetti/WTO_R" 

Fig. 1.2 Launch a new project (1)

2 If you have already created a directory, you can click Existing Directory. 
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Fig. 1.3 Launch a new project (2) 

Fig. 1.4 Launch a new project (3) 

If you want to change the working directory, write the new directory path in the 
brackets of setwd()—again not really recommended. A better practice when you 
are already working in R without having created a project would be to associate a 
project with an existing working directory (refer to Fig. 1.2). 

The working directory includes the following files: 

• .RData: Holds the objects etc. in your environment; 
• .RHistory: Holds the history of what you typed in the console;
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Fig. 1.5 Navigate through projects 

• .RProfile: Holds specific setup information for the working directory you are in. 
For example, if you want to disable the scientific notation in R and set the number 
of digits at 4 for your output, you can write options("scipen"=9999, 
digits=4) in .RProfile (I did not set it for this project). In this way, this option 
will be loaded when you open your project. 

– To check if you created the .RProfile, write file.exists(". ∼/.Rprof 
ile") in the console pane. If you did not, R will return the value FALSE. 

– By typing file.edit(". ∼/.Rprofile") in the console pane you can 
create the .RProfile. 

Before continuing, let’s create a folder in our working directory called images. 
This folder will contain all the figures that we will create in this book. For this task 
write dir.create("images") in the console pane after creating the WTO_R 
project (from now on I assume that you are in the working directory WTO_R) 

> dir.create("images") 

1.3.2 Opening an R Script 

We open an R Script file in RStudio as shown in Fig. 1.6. Before starting working, 
it is good practice to save it (Fig. 1.7). 

To run a code in the R Script, for a single line of code place the mouse pointer 
before the code, for a block of lines select it, and then click the Run button (Fig. 1.8), 
or press Ctrl + Enter on a Windows system.
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Fig. 1.6 Open an R Script 

Fig. 1.7 Save an R Script 

1.4 Packages to Install 

Packages extend the capability of R. 
To reproduce step by step the code in this book, you need to install the following 

packages: 

• lmtest (Zeileis & Hothorn, 2002) (version 0.9.38) 
• sandwich (Zeileis, 2004) (version 3.0.0) 
• zoo (Zeileis & Grothendieck, 2005) (version 1.8.8)
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Fig. 1.8 Run button in RStudio 

• plm (Croissant & Millo, 2008) (version 2.2.5) 
• ggplot2 (Wickham, 2009) (version 3.3.2) 
• png (Urbanek, 2013) (version 0.1.7) 
• data.table (Dowle & Srinivasan, 2017) (version 1.13.2) 
• gifski (Ooms, 2018) (version 0.8.6) 
• scales (Wickham, 2018) (version 1.1.1) 
• stargazer (Hlavac, 2018) (version 5.2.2) 
• stringr (Wickham, 2019b) (version 1.4.0) 
• dplyr (Wickham et al., 2019) (version 1.0.2) 
• ggpubr (Kassambara, 2019) (version 0.4.0) 
• tidyr (Wickham & Henry, 2019) (version 1.1.2) 
• gganimate (Pedersen & Robinson, 2020) (version 1.0.7) 
• haven (Wickham & Miller, 2020) (version 2.3.1) 
• plotly (Sievert, 2020) (version 4.9.3) 
• stringi (Gagolewski, 2020) (version 1.5.3) 
• estimatr (Blair et al., 2021) (version 0.30.4) 
• shiny (Chang et al., 2021) (version 1.6.0) 
• shinyFeedback (Merlino & Howard, 2021) (version 0.4.0) 
• Hmisc (Harrell Jr et al., 2021) (version 4.5-0) 
• doBy (Højsgaard & Halekoh, 2023) (version 4.6.16) 

We will refer to these packages when we use functions from them.3 

3 In parenthesis the package version used in this book. To retrieve the package version of 
ggplot2, for example, after you installed it: packageVersion("ggplot2"). Again,  it  
should be fine to replicate this code even though you have a different version.
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Fig. 1.9 Packages in RStudio 

1.4.1 How to Install a Package 

You can install a package in R with the function install.packages(). Write 
the name of the package you want to install in quotation marks. For example, 

> install.packages("ggplot2") 

You install the package once. If a new version is released, you can update the 
package by using the function update.packages(). 

An alternative way—that I prefer—is to install packages in RStudio as shown in 
Figs. 1.9 and 1.10 

1.4.2 How to Load a Package 

After you installed the package, you need to load the package in R with the 
library() function to use it. For example, 

> library("ggplot2") 

You need to load the package you want to use anytime you start a new R session. 

1.5 Good Practice and Notation 

Before starting to replicate the code in this book, make sure you are in the working 
directory WTO_R.
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Fig. 1.10 Install packages in RStudio 

Next step is to open an R Script. Even though we could write the code directly 
in the console pane, as we did when we created the folder images, it is better to 
write the code in an R Script when we have to write more than one line of code. 
The commands in an R Script can be easily traced back, modified and shared with 
colleagues. In an R Script, it is possible to add comments using #. Everything that 
follows # will be considered as comment and, consequently, will be not run by R. If  
you want to write multiple lines of comments you may want to use #’. Additionally, 
it is possible to set up a table of contents in an R Script file by typing at least four 
trailing dashes (-), equal signs (=), or pound signs (#). This allows to navigate easily 
through the script file. For an example refer to Fig. 1.11. Again, this is also useful  
if you share the file with a colleague. Therefore, we can say that it is convenient to 
work in an R Script. 

At the beginning of any R Script, it is good practice to type the packages needed 
to implement the code in the file. After writing the code to load the package with the 
library() function, you may add, as comment, a keyword to remind about the 
use of the package. This would help us to remember the content of the file and make 
clear to a third person what will be needed to implement the code in the R Script. 

It is also good practice to describe the project and write short comments in the 
body of the functions we create. Again this is useful for the author of the script and 
for a third person who will read the code. 

Finally, a last remark before starting working: to avoid confusion in the text 
of this book, we will use the following font for all the words related to the R 
code we will write. Additionally, all the functions will be written with parenthesis. 
For example, sum() is the base R function for summation while mtable() is a 
function that we will write to compute multiplication tables. This notation is adopted
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Fig. 1.11 Table of contents in an R Script file 

to distinguish functions from other type of objects that will be written without 
parentheses. 

1.5.1 How to Read the Code 

In this book, you will see the code printed out in two different ways. A colored code 
and a black code. The colored code means that I am running the code from the R 
Script file while the black code is used to illustrate the code and its outcome that 
is printed out in the console pane. In this last case, the code is preceded by . >, the  
prompt symbol. . > is not part of the code written in the R Script file. It signals that 
R is ready to operate. However, keep in mind that I run the code from the R Script 
file. And I suggest you do the same to replicate the code in this book. Let’s have a 
look to see how the two codes look like. 

An example of just one line of code in R Script 
x <- seq(-10, 10, 0.1) 

and the same code printed in the console pane 
> x <- seq(-10, 10, 0.1) 

For one line of code it may seem that the difference is not so relevant. 
Here, an example with two lines of code in R Script 

x <- seq(-10, 10, 
0.1) 

and the same code printed out in the console pane 
> x <- seq(-10, 10, 
+ 0.1)
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Now, note that in the code in the console pane there is a + that is missing in the 
code in the R Script file. Basically, this + is not part of the code. It means that the 
code is continuing on the following line. It is not needed in the R Script. 

Let’s see another example. The following example is a plot from Sect. 1.7.1 
generated by using the ggplot() function (do not write it now). 

This is how the code looks like in the R Script 
ggplot(results_test_def, aes(x= Students, y = Total_Score, 

fill = ‘PASS/FAIL‘)) + 
geom_bar(position = "dodge", stat="identity") +  
ylab("Total Score") + theme_classic() + 
ggtitle("Total Score for a 50 question test") +  
theme(legend.position = "bottom") 

and the same code printed in the console pane 

> ggplot(results_test_def, aes(x= Students, y = Total_Score, 
+ fill = ‘PASS/FAIL‘)) + 
+ geom_bar(position = "dodge", stat="identity") + 
+ ylab("Total Score") + theme_classic() + 
+ ggtitle("Total Score for a 50 question test") + 
+ theme(legend.position = "bottom") 

Note that in this case we have one + from the R Script file and two + from the 
console pane. The + in the R Script file is part of the code. This is a feature of 
the ggplot() code. On the other hand, the second +, directly below the prompt 
symbol, . >, is not part of our code and it just means that the code continues on the 
next line. When R has finished to run the code, the prompt symbol, . >, will appear 
again meaning that R is ready to take a new command. 

1.6 8 Key-Points Regarding R 

Is R hard to learn? If we surf the net to find an answer to this question, it seems 
that R is hard to learn. In this section, I would like to share my own experience in 
learning R with the reader. 

R is not the first statistical software I learnt. When I was a PhD student I moved 
from a property software to R to work with two professors of mine who used it. And 
yes, at the beginning it has been very hard. I was getting errors after errors. I was 
spending more time to clean the errors than to accomplish my tasks. However, the 
more errors I solved (mainly thanks to the community of Stack Overflow) the more 
I started to appreciate R. When I got used to the R language, I figured out what 
made it difficult for me at the beginning. Following I list the 8 key-points regarding 
R—with examples—that I think every beginner should grasp when working with R. 

Let’s check these points while coding. Open an R Script and save it as 
01_INTRODUCTION.R.4 Again, I assume that you are in the working directory 
WTO_R.

4 Note that you do not need to type .R. 
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1.6.1 The Assignment Operator 

The assignment operator, <-, is used to assign values to objects we create in R. 
For example, we store 5 in an object, a. We can compute operations with a as 

we were dealing directly with 5 

> a <- 5  
> a  * 2 
[1] 10 

We can store the result of this multiplication in another object, res. In this case, 
we do not see the result of the operation, that is stored in res, unless we run the 
object 

> res <- a * 2 
> res 
[1] 10 

We can store different kinds of objects, such as functions and plots with 
ggplot(). 

1.6.2 The Class of Objects 

In R, we work with different types of objects. We check the type of object with the 
class() function. For example, the object we generated earlier is numeric. 

> class(a) 
[1] "numeric" 

Now, let’s generate an object, b, that stores 2. Note that we add quotation marks. 

> b <- "2"  
> b  
[1] "2" 

Let’s multiply a times b. We should get 10 but 

> a  * b 
Error in a * b : non-numeric argument to binary operator 

We get an error. The error says non-numeric argument to binary 
operator. We already know that a is numeric. What about b? 

> class(b) 
[1] "character" 

As we can see, although b stores 2, it stores it as character and not as 
numeric because we enclosed it in quotation marks. In the R language we cannot 
multiply a numeric value by a character value and consequently we get the error.5 

5 We need to specify that this operation does not work in the R language. In fact, if you are a 
Python user you are aware that in Python this is a legit operation that replicates the string many 
times as determined by the numeric value.
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Now it is clear what caused the error. We should have stored 2 as numeric 
value. Currently, b stores something that is very close to a numeric 2. Basically, we 
need to remove the quotation marks. We have the opportunity to introduce a group 
of functions that starts with as. such as as.numeric(), as.integer(), 
as.character(), as.data.frame(), an so on. These functions coerce a 
class of an object to another class. In our case, we use the as.numeric() 
function. 

> class(b) 
[1] "character" 
> b <- as.numeric(b) 
> b  
[1] 2 
> a  * b 
[1] 10 

We got the expected results. Note that to use this group of functions, the object 
needs to have the “quality” to be coerced. For example, I store my name in m. It is  
a character. In this case we fail the coercion to numeric because R does not 
know how to coerce a string of letters to a number.6 

> m <- "massimiliano" 
> class(m) 
[1] "character" 
> m <- as.numeric(m) 
Warning message: 
NAs introduced by coercion 
> m  
[1] NA 

1.6.3 Case Sensitiveness 

If we use the same name for an object, the second object overwrites the first object. 
Previously, we wrote 

> b <- as.numeric(b) 

In that case, we overwrote the previous b that was a character. However, 
observe the following example, 

> b <- 3  
> b  
[1] 3 
> b <- 2  
> b  
[1] 2 
> B <- 4  
> B  
[1] 4 
> b  
[1] 2

6 NA stands for Not Available. We will return  to  NA in Sect. 1.7.2 and Warning message 
in Sect. 1.6.8. 
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The object b initially stores 3. We overwrite it so that it stores 2. On the other 
hand, if we assign 4 to B this does not affect b. In fact, b and B are two different 
objects. In other words, R is a case sensitive language. 

1.6.4 The c() Function 

The c() function is used to concatenate items separated by a comma ,. For  
example, 

> d <- c(1, 2, 3, 4, 5) 
> d  
[1] 1 2 3 4 5  
> e <- c("a", "b", "c", "d", "e") 
> e  
[1] "a" "b" "c" "d" "e" 

We can also concatenate the objects we generated. For example, we concatenate 
the objects d, a, and b. Note that the values of d, a and b are added to the new 
object, dab, in the order we concatenate them. 

> dab <- c(d, a, b) 
> dab 
[1] 1 2 3 4 5 5 2  

However, note the following 

> de <- c(d,e) 
> de  
[1] "1" "2" "3" "4" "5" "a" "b" "c" "d" "e" 

Note the quotation marks around the numbers. What is the issue here? This 
happens because the c() function cannot store items with different classes. 
Consequently, R will coerce the different types of items to a common type. In this 
case, R coerced every item to be a character. Then, what about if we are not 
satisfied with this solution? We can use the list() function to store the objects in 
a single object keeping their characteristics. 

> l <- list(d, e) 
> l  
[[1]] 
[1] 1 2 3 4 5  

[[2]] 
[1] "a" "b" "c" "d" "e" 

> class(l) 
[1] "list" 
> class(l[[1]]) 
[1] "numeric" 
> class(l[[2]]) 
[1] "character"
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1.6.5 The Square Bracket Operator [ ]  

The square bracket operator [ ]  has the function to subset, extract, or replace a part 
of an object such as a vector, a matrix or a data frame. For example, we select the 
first entry in the e object as follows 
> e[1] 
[1] "a" 

Remember that the R language starts indexing from 1. Consequently, "a" is 
extracted because it is stored as the first entry in the e object. 

If we run the e object again, we find that no modification has been made. 
> e  
[1] "a" "b" "c" "d" "e" 

But as we said, [ ]  can be used to replace an item from an object. In this case, 
we have just to assign a new value. For example, 
> e[1] <- "m" 
> e  
[1] "m" "b" "c" "d" "e" 

We replaced the first entry in e, i.e. "a" with "m". That is, we overwrote the 
first element of e. 

Let’s rewrite the e object as before. Note that this time instead of typing each 
letter we are selecting them from the built-in object letters. Exactly, we are 
selecting the letters from 1 to (:) 5 that correspond to letters from a to e. 
> e <- letters[1:5] 
> e  
[1] "a" "b" "c" "d" "e" 

We can generate a new object, e1, and assign the first value from the e object as 
follows 
> e1 <- e[1] 
> e1  
[1] "a" 

If we want to subset for more that one value, we combine [ ]  with the c() 
function. For example, 
> e[c(1, 3)] 
[1] "a" "c" 

Subsets for the first element and third element of e, that are "a" and "c", 
respectively. 

If we want to subset for consecutive values we can use the : operator. For 
example, to select entries from 1 to 3 
> e[1:3] 
[1] "a" "b" "c" 

This is what we did with the letters object. 
Until now we worked with one dimension. Let’s see a few examples with a data 

frame that is an object with two dimensions.7 We use the data.frame() function

7 You may think of a data frame as an Excel spreadsheet. 
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to create a data frame. We name this data frame as df. We create it by using d and 
e we created earlier. We set the column title for d and e, numbers and letters, 
respectively. Note that to create a data frame it is necessary that the objects we 
use—in this case d and e—have the same length, i.e. the same number of items. As 
list(), a data frame allows to store different types of object. 

> df <- data.frame(numbers = d, 
+ letters = e) 
> df  

numbers letters 
1 1 a  
2 2 b  
3 3 c  
4 4 d  
5 5 e  

The structure of df is rows per columns. Therefore, we need an index for the row 
and an index for the column. For example, if we want to select d, we observe that 
is located at row number 4 and column number 2. We use again the [ , ]  but this 
time we add a comma , to separate the row dimension from the column dimension. 

> df[4, 2] 
[1] "d" 

If we want to select more than one element, we use the c() function. 

> df[4, c(1, 2)] 
numbers letters 

4 4 d  
> df[c(3, 5), 2] 
[1] "c" "e" 
> df[c(3, 5), c(1, 2)] 

numbers letters 
3 3 c  
5 5 e  

In the first case, we selected one row, 4, and two column indexes, 1 for numbers 
and 2 for letters. In the second case, we selected two row indexes, 3 and 5, and 
one column index, 2. In the last case we selected two row indexes and two column 
indexes. What about selecting all the rows for the first column? We leave blank the 
spot for the row before the comma as follows 

> df[, 1] 
[1] 1 2 3 4 5  

Consequently, if we leave blank the spot for the columns after the comma, we 
select all the columns for row indexes. For example, 

> df[c(2, 4), ] 
numbers letters 

2 2 b  
4 4 d  

Note that we can use the name of columns as well to extract the entries for the 
corresponding column. For example,
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> df[, "numbers"] 
[1] 1 2 3 4 5  
> df[2, "letters"] 
[1] "b" 

We can replace an element from a data frame with the same pattern we saw 
before. Let’s replace the entry in the first row and first column with 10. 

> df[1, 1] <- 10 
> df  

numbers letters 
1 10 a  
2 3 b  
3 5 c  
4 7 d  
5 9 e  

Additionally, note that data.frame() before R version 4.0.0 by default 
converted character vectors to factors. We can replicate it by setting stringsAs 
Factors = TRUE in the data.frame() function. Let’s do it 

> df <- data.frame(numbers = d, 
+ letters = e, 
+ stringsAsFactors = TRUE) 
> df  

numbers letters 
1 1 a  
2 2 b  
3 3 c  
4 4 d  
5 5 e  

Note that now letters in df are stored as  factor, i.e., categorical variables 
that take a limited number of different values. levels is an attribute that provides 
the identity of each category. 

> class(df$letters) 
[1] "factor" 
> df[4, 2] 
[1] d 
Levels: a b c d e 

Sometimes factors can be replaced by character data. We use the as.character() 
function to force it to be character. For example, 

> df$letters <- as.character(df$letters) 
> class(df$letters) 
[1] "character" 

Finally, note that we have other two operators acting on vectors, matrices, arrays, 
lists, and data frames to extract or replace parts: double square brackets [[ ]] and 
$ operators.8 The most important difference is that [ ]  can select more than one 
element whereas the other two select a single element. 

> l[[1]] 
[1] 1 3 5 7 9  

We extracted the content stored at index 1 of the list l we generated earlier.

8 $ works for lists and data frames. 



18 1 Introduction to R

Let’s assign names to the objects stored in the list l with the names() function. 
Note that in R the order is extremely important. In our case, we assign two names, 
numbers and letters. The first name will be assigned to the first object stored 
at index 1 and the second name will be assigned to the second object stored at index 
2. Then, we can select the object by name with $ 

> names(l) <- c("numbers", "letters") 
> l  
$numbers 
[1] 1 2 3 4 5  

$letters 
[1] "a" "b" "c" "d" "e" 

> l$numbers 
[1] 1 2 3 4 5  

With $ operator, we can select the column of a data frame by its name 

> df$numbers 
[1] 1 3 5 7 9  

In addition, we can use it to create a new column in the data frame by typing $ 
after the name of the data frame and before the name of the column we choose, and 
with the values to be assigned to the new column 

> df$new <- c(0, 1, 0, 1, 0) 
> df  

numbers letters new 
1 1 a 0  
2 3 b 1  
3 5 c 0  
4 7 d 1  
5 9 e 0  

1.6.6 Loop, Vectorization, and the apply() Family Functions 

Let’s suppose we want to compute the multiplication table for 2, i.e, . 2 × 1, 2 ×
2, 2 × 3, . . . , 2 × 10. That is, we want to multiply 2 times 1 and print the result. 
Then, multiply 2 times 2 and print the result, and so on until 2 times 10. Basically, 
this is a loop. We can generate this kind of loops in R with the for() function. In 
the for() function we have three keys elements: 

• i is a syntactical name for a value (as we will see later we can choose any name 
for it) 

• in is an operator 
• a sequence. In this example, we generate a sequence with the seq() function 

where we indicate the minimum and the maximum value and the increment 
amount between each value. We store the sequence in the s object. 

• finally, note that the loop steps are enclosed in curly brackets. 

> s <- seq(1, 10, 1) 
> s
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[1] 1 2 3 4 5 6 7 8 9  10  
> for(i in s){ 
+ res <- 2 * i 
+ print(res) 
+ }  
[1] 2 
[1] 4 
[1] 6 
[1] 8 
[1] 10 
[1] 12 
[1] 14 
[1] 16 
[1] 18 
[1] 20 

What is happening? Basically, when the loop starts, i is 1. Therefore, 2 * 1 is 
multiplied, stored in res and printed with the print() function. Then, the loop 
moves to the second index in the sequence that in this case is 2. This means that now 
i is 2 and 2 * 2 is multiplied and so on. The loop stops at the end of the sequence, 
i.e. the last operation is when i is 10. 

for() loop 
Loops are generated by the for() function. 

The structure of a for() loop is the following: 

for(value in sequence){ 
steps of commands 

} 

where: 

• value: is an syntactical name for a value. It can be any name as we will 
see in a following example; 

• in: is an operator that points where to look for the value; 
• sequence: a vector or a data frame with values to loop over; 
• steps of commands: the steps of commands you want the loop go 

through. They are enclosed by { }  

However, in R we can avoid writing loops like the previous one because we can 
benefit from the vectorization of R. We can obtain the same results just multiplying 
2 by a vector from 1 to 10 as follows. Note that in this case we use the colon operator 
: to generate the same sequence as before. 

> n <- 1:10 
> n  
[1] 1 2 3 4 5 6 7 8 9  10  

> 2  * n 
[1] 2 4 6 8 10 12 14 16 18 20 

However, extra care is needed when using vectorization. For example, in the 
previous case 2 is seen by R as a vector of length 1 that is multiplied by a vector of
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length 10. Therefore, R recycles its value to match the vector of length 10. In this 
case it is fine for us. But observe the following example 

> v1 <- c(2, 3) 
> v2 <- c(7, 9, 11) 
> 100 + v1  
[1] 102 103 
> 100 + v2  
[1] 107 109 111 
> v1 + v2  
[1]  9 12 13  
Warning message: 
In v1 + v2 : 

longer object length is not a multiple of shorter object length 
> v1  * v2 
[1] 14 27 22 
Warning message: 
In v1 * v2 : 

longer object length is not a multiple of shorter object length 

The vectors v1 and v2 have different lengths. If we add each of these vector by 
100, the value of 100 is recycled to match the length of the vectors and produce the 
expected results. However, if we add or multiply the two vectors with each other, a 
warning message is produce telling that the two objects have different lengths. The 
operations in both cases has been computed but note that in both cases the value 2 
in v1 is recycled to match the length of v2. In these cases we have an incomplete 
cycle. We need to be very careful to incomplete cycles in our computation when 
implementing vectorization. 

Additionally, note that some functions in R are vectorized. For example, let’s 
load the built-in data set cars. This is a data frame with 50 observations on 2 
variables, speed and stopping distance. If we want to compute the mean of these 
two variables, we just use the colMeans() function 

> data("cars") 
> head(cars) 

speed dist 
1 4 2  
2 4 10  
3 7 4  
4 7 22  
5 8 16  
6 9 10  
> colMeans(cars) 
speed dist 
15.40 42.98 

that is, the average speed is 15.40 mph and the average stopping distance is 42.98 
ft. 

Another kind of loop that is often used is the while() loop. The while() loop 
is trickier than the for() loop. The main difference is that the for() loop iterates 
over a sequence while the while() loop iterates over a conditional statement. The 
issue is that a sequence can be very long but it is finished, i.e. at the end of the 
sequence the loop will stop. On the other hand, if we wrongly define the conditional 
statement or we forget to write the step to modify the conditional statement in the 
while() function, the loop will iterate infinitely times. If this happens, just break 
the loop by clicking on the stop button that will appear in the console pane.
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Let’s consider a simple example. Let’s say we want to print the numbers from 
10 to 0 included with a while() loop. First, we assign the starting point, 10, to 
x. Then, we write the while() loop. The conditional statement in our case is that 
.x ≥ 0. That is, the loop has to iterate as long as x is greater or equal to 0. Now, keep 
in mind that we assigned 10 to x. That is, x is greater than 0. If we do not modify 
x in the while() loop so that at a given moment x will turn less than 0—and 
the fulfillment of this condition stops the loop—the loop will run infinitely times 
because x remains greater than 0. Note that also for the while() loop the steps of 
commands are enclosed by { }  . In code, 

> x <- 10  
> while(x >= 0){ 
+ print(x) 
+ x  <- x - 1  
+ }  
[1] 10 
[1] 9 
[1] 8 
[1] 7 
[1] 6 
[1] 5 
[1] 4 
[1] 3 
[1] 2 
[1] 1 
[1] 0 

As you can see, in the body of the while() function, print(x) prints out 
x. Then, we assign a new value to x every time the loop iterates. Again, let’s go 
through each step. At the beginning, x is 10. Is 10 greater than 0? That’s true. The 
conditional statement is satisfied. Then, x is printed, i.e. its value 10 is printed. 
Before the end of the loop we reassign a value for x. In this case we subtract 1 from 
x meaning that x becomes 9. Let’s ask: is 9 greater than 0? Again, that’s true. And 
again the conditional statement is satisfied and the same steps are implemented. But 
now, x becomes 8. That is still greater than 0. Now let’s say that x has become 1. 
Its value is printed and the value 0 is assigned to x. The conditional statement that 
we wrote is true for .x ≥ 0. Meaning that the conditional statement is still satisfied. 
Therefore, 0 is printed out. But now x becomes . −1. This violates the conditional 
statement. The conditional statement has turned false and this stops the loop. 

If we implement the same task with the for() loop 

> s <- 10:0 
> for(i in s){ 
+ print(i) 
+ }  
[1] 10 
[1] 9 
[1] 8 
[1] 7 
[1] 6 
[1] 5 
[1] 4 
[1] 3 
[1] 2 
[1] 1 
[1] 0
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As you can see, in this case we already know when the loop will eventually stop. 
A “side effect” of using a for() loop is that at the end of the loop the “unwanted” 
i object is created storing the last value—in this case 0. 

while() loop 
The while() loop is another common way to implement loop in R. 
The structure of a while() loop is the following: 

while(conditional statement){ 
steps of commands 
expression that will turn the conditional statement to false 

} 

where: 

• conditional statement: the condition that activates the loop; 
• steps of commands: the steps of commands you want the loop go 

through. They are enclosed by { }  

Again, for this simple task we can avoid using any loop. In fact, by running the 
sequence s we generated, we obtain the countdown as well 

> s  
[1]  10  9 8 7 6 5 4 3 2 1 0  

Finally, the apply() family functions that include apply(), lapply(), 
tapply(), vapply(), and mapply() substitute the loop by applying another 
function to all elements in an object. For example, the object can be a matrix, 
an array or a data frame in the case of the apply() function; a vector, a data 
frame and a list in the case of sapply() and lapply(). The difference between 
sapply() and lapply() is that the former returns as result a vector, a matrix or 
a list, while the latter returns a list. 

Let’s write a function9 mean_dev() to compute the deviation from the mean, 
i.e. how far the values of interest are from the average of those values 

> mean_dev <- function(x){ 
+ x - mean(x) 
+ }  

Let’s test it with the vector v3 <- c(1, 4, 10) 

> v3 <- c(1, 4, 10) 
> mean(v3) 
[1] 5 
> mean_dev(v3) 
[1] -4 -1 5 

We see that the average of the values of v3 is 5. Consequently, the mean deviation 
is . −4, . −1, and 5.

9 More on functions in Sect. 1.6.7. 
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Now our task is to apply the mean_dev() function to the columns of the cars 
data frame. We use the apply() function for this task. To make sense of the 
apply() family functions, I suggest that we read it from the last argument to the 
first argument, that is “apply the mean_dev() function to the columns (2) of the 
data frame cars” 

head(apply(cars, 2, mean_dev)) 
speed dist 

[1,] -11.4 -40.98 
[2,] -11.4 -32.98 
[3,] -8.4 -38.98 
[4,] -8.4 -20.98 
[5,] -7.4 -26.98 
[6,] -6.4 -32.98 

Note that we do not need to write the parentheses of the function in the apply() 
function and that 2 refers to the columns of the data frame while 1 refers to the rows 
of the data frame. We will see another example with sapply() in Sect. 1.6.7. 

1.6.7 Functions 

Now, let’s continue with the example of the multiplication table and let’s say we 
want to compute the multiplication table for 3 as well. And then for 4, 5, and so on. 

> 3  * n 
[1]  3  6  9 12 15 18 21 24 27 30  

> 4  * n 
[1] 4 8 12 16 20 24 28 32 36 40 

> 5  * n 
[1]  5 10 15 20 25 30 35 40 45 50  

In this code, we can observe that n is in common and the output changes based on 
the the inputs 3, 4, and 5. In this case, we may think to build a function to compute 
these calculations. We build a function with the function() function. We store 
it in an object, that in this case we call mtable. 

> mtable <- function(x) x * n 

Our function is now ready. If we want to compute the multiplication table for 2, 
we just need to write 2 in mtable(). This value will be used to replace x in x * 
n in the function. 

> mtable(2) 
[1] 2 4 6 8 10 12 14 16 18 20 

And, of course, if we want the multiplication table for 5 we write 

> mtable(5) 
[1]  5 10 15 20 25 30 35 40 45 50  

We can store the results of a function in an object as well. For example, 

> mtab10 <- mtable(10) 
> mtab10 
[1] 10 20 30 40 50 60 70 80 90 100
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We can note two critical points of our function. First, n is defined outside the 
environment of the function. Second, n is not flexible. What about computing the 
multiplication table up to 15? and up to 20? We should rewrite n each time. Clearly, 
this would not be efficient. Let’s try to fix mtable(). 

> mtable <- function(x, w = 10){ 
+ n <- 1:w 
+ res <- x*n 
+ return(res) 
+ }  

We did what we wanted: (1) define n inside the environment of the function; and 
(2) make it flexible. But what did we do? We added a new argument to our function, 
w. Note that inside the function w is the end value of a sequence stored in n that 
starts with 1. In addition, we set w as a default argument. That is, it is set to 10. This 
choice depends on the fact that in most cases we want the multiplication table up to 
10. So we do not want to bother ourselves typing every time 10. But this time, if we 
want a multiplication table up to 15, we just need to type 15 in the second entry of 
the function. Finally, note that we enclosed the code in curly brackets . { }. We need 
them when we write the code of a function on multi-levels. However, it would have 
been more appropriate if we had used the curly brackets also for the first example 
of mtable(). 

Functions 
You can build your own functions using function(). For example, a 
structure of a function can be the following: 

name_function <- function(x1, x2){ 
step1 <- x1 and some operations 
step2 <- x2 and some operations 
output <- step1 + step2 
return(output) 

} 

where: 

• name_function: you assign the function to an object; 
• function(): in the parenthesis you type the arguments of the function, 

x1 and x2 in this example; 
• steps of commands: the steps of commands you want the function 

go through. They are enclosed by { }  ; 
• return(): is a function that returns the object from inside the function 

to the workspace. 

Basically, you type step by step what the function needs to do. It will take 
the arguments from inside the parentheses in function. 

Now, let’s see an example with the fixed mtable(). First, let’s compute the 
multiplication table of 2 up to 10.
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> mtable(2) 
[1] 2 4 6 8 10 12 14 16 18 20 

And now up to 15. 

> mtable(2, 15) 
[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

Furthermore, note that the order of the arguments in the function matters unless 
we explicitly write the argument names. For example, 

> mtable(15, 2) 
[1] 15 30 
> mtable(w = 15, x = 2)  
[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

In the first case, 15 takes the place of x in mtable() while 2 takes the place 
of w in mtable(). On the other hand, we do not need to respect the positioning 
of the arguments if we explicitly write the names of the arguments in the function 
as in the second case. In other words, “R uses either named matching or positional 
matching to figure out the correct assignment” (Georgakopoulos, 2015, p. 28). 

Additionally, note that mtable() computes the multiplication table for one 
input at a time. However, we know now that we can use the apply() functions 
to compute the multiplication tables for multiple values. Let’s compute the multipli-
cation table for 1 to 5 up to 8. Let’s use the sapply() function. To use an argument 
of the function (in our case w = 8), we write it after the name of the function we 
want to use it. We nest the sapply() it in t() to transpose the results 

> s <- 1:5  
> t(sapply(s, mtable, w = 8)) 

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] 
[1,] 1 2 3 4 5 6 7 8 
[2,] 2 4 6 8 10 12 14 16 
[3,] 3 6 9 12 15 18 21 24 
[4,] 4 8 12 16 20 24 28 32 
[5,] 5 10 15 20 25 30 35 40 

Finally, what I like about functions in R is that they can be seen as a neat 
correspondence of how we state mathematical functions. Let’s consider a simple 
example. Let’s suppose that the cost, . C, of renting a car in dollars only depends 
on the number of days, . d, we rent it and how many km, . k, we drive. We are just 
expressing in English a function of two variables, .C = f (d, k). Let’s say that 
renting a car costs 30$ per day and 0.15$ per km. We can write the functional 
form to compute the rental cost as .C = f (d, k) = 30d + 0.15k. Therefore, what 
is the cost of renting a car for 2 days and driving it 100 km? Or, in other words, 
.C = f (d = 2, k = 100) (we can omit d and k as well, i.e., .C = f (2, 100)). 

In R, we set the function and find the solution as follows 
> renting_car <- function(days, km){ 
+ res <- 30*days + 0.15*km 
+ return(res) 
+ }  
> renting_car(2, 100) 
[1] 75 

This means that the cost of renting a car for 2 days and driving it 100 km is $75.
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The final remark is that we could safely write C <- function(d, k), 
and, consequently, res <- 30*d + 0.15*k and C(2, 100). Naturally, 
renting_car() and C() produce the same results and they are both fine. 
However, clearly, the former is more readable and should be preferred. 

1.6.8 Errors 

I want to conclude this section talking about errors. When we make an error, we get 
an error message in red that can be intimidating and frustrating. When I started 
to learn R I have to admit it was quite discouraging. In addition, I learned R 
after learning a property statistical software that is objectively more user-friendly. 
Consequently, as a beginner in R I was making a lot of errors. As you can imagine, 
the errors indeed did not discourage me. I got even more passionate about R after 
solving the errors I was doing. I think, indeed, that when we solve errors we really 
learn how to useR (but this can be extended to any software). This short introduction 
about my experience is just to stress that everyone makes errors, above all at the 
beginning, and even the most expert users. Here I would like to talk about the most 
frequent errors I made when I started to learn R. 

Syntax Errors 

R is a language and as any language has its own grammar rules. For example, if 
in English I write “I, want to learn R” an English teacher would tell me I made 
an error because I put a comma between the subject and the verb. And something 
similar happens in R. 

We can make “syntax errors” in R, i.e. errors due to write a part of code in the 
wrong place or to forget an essential element of the code. This kind of errors is the 
most recurrent case and, generally, it is extremely easy to fix. For example, 
> a <- c(6, 7, 8, 9 10) 
Error: unexpected numeric constant in "a <- c(6, 7, 8, 9 10" 

Basically, we just forgot the comma , between 9 and 10. 
Let’s see another example. In R, we use many functions developed by the R 

Community members. All these functions come with documentation regarding their 
use. We access this documentation by typing a question mark before the name of 
the function or by using the help() function. For example, 
> ?print 
> ?"if" 
> help("as.numeric") 

For example, let’s use the lm() function to fit a linear model. We generate some 
random data for the independent variable, x, by using  the  rnorm() function and 
then we generate the dependent variable y. We build then a data frame, df, with x 
and y and we print the first six entries with the head() function. Finally, we fit a 
linear model with the lm() function.
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> x <- rnorm(100) 
> y <- 10 + 5*x 
> df <- data.frame(x, y) 
> head(df) 

x y  
1 -1.1161285 4.419357 
2 1.3803809 16.901904 
3 -1.7812245 1.093877 
4 0.9383783 14.691891 
5 -0.4576268 7.711866 
6 -1.7358237 1.320882 
> model1 <- lm(y, x, data = df) 
Error in formula.default(object, env = baseenv()) : invalid formula 

However, we got an error. If we investigate the documentation for the lm() 
function, we find out that we incorrectly wrote the formula, i.e. the description of 
the model. In fact, we should have used the regression operator . ∼ to separate the 
dependent variable from the independent variables. We will correctly use the lm() 
function from the next chapter. 

class() Type Errors 

This is the kind of error that we encountered when we tried to multiply a numeric 
value by a character value. If we compare this “class errors” with the “syntax 
errors”, in this case we are correctly writing the code but the objects we use are 
not appropriate. Let’s consider another example. 

Let’s build a data frame with the data.frame() function. 

> df <- data.frame(a = c(1, 2), 
+ b = c(3, 4)) 
> df  

a b  
1 1 3  
2 2 4  

Now this df object looks very similar to a matrix. Let’s try to make a matrix 
multiplication with the operator %*%. To investigate the usage of this operator type 
?"%*%". 

Matrix Multiplication 
Description 

Multiplies two matrices, if they are conformable. If one argument is a 
vector, it will be promoted to either a row or column matrix to make the two 
arguments conformable. If both are vectors of the same length, it will return 
the inner product (as a matrix). 
Usage 

x %*% y 
Arguments 

x, y numeric or complex matrices or vectors.
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After reading the documentation for %*%, do you think we can make a matrix 
multiplication between df and df? Let’s  try  
> df %*% df  
Error in df %*% df : requires numeric/complex matrix/vector arguments 

As you correctly imagined, we got an error. As the documentation and the error 
message tell us, the operator %*% requires numeric or complex matrices or vectors. 
But we have a data.frame type object. 
> class(df) 
[1] "data.frame" 

Since this object is very similar to a matrix, let’s try to coerce it to a matrix 
type object by using this time the as.matrix.data.frame() function. 
> df <- as.matrix.data.frame(df) 
> class(df) 
[1] "matrix" "array" 

Now, let’s compute the matrix multiplication again. 
> df %*% df  

a b  
[1,] 7 15 
[2,] 10 22 

And as expected now it works. 
We should keep in mind that in some cases we can apply operations only with 

some type of objects. Therefore, it is very important to be aware about the type of 
objects we are working with. 

Warning Message 

Let’s write a conditional statement with the if() function. We create an object, x, 
and set it equal to 10. We tell R to print "yes" if x == 10.10 Because x is 10, the 
conditional statement is true and, consequently, the function prints "yes". Then, 
let’s set x <- 9. In this case the function does nothing because now x is equal to 
9 and therefore the conditional statement is false. 
> x <- 10  
> if(x == 10) print("yes") 
[1] "yes" 
> x <- 9  
> if(x == 10) print("yes") 

But note the following.11 

> x <- 5:15 
> x  
[1] 5 6 7 8 9 10 11 12 13 14 15 

> if(x == 10) print("yes")

10 Refer to Table 1.3 for logical operators. 
11 Note that if you have the latest version of R you will not able to replicate the warning message 
since the if() function returns an error in the latest version with the same example. 
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Warning message: 
In if (x == 10) print("yes") : 

the condition has length > 1 and 
only the first element will be used 

> if(x > 10) print("yes") 
Warning message: 
In if (x > 10) print("yes") : 

the condition has length > 1 and 
only the first element will be used 

In these last cases, R prints a Warning message. We have to make a  
distinction between error and warning messages in R. When we get an error the 
function does not run. Instead, in the case of the warning message, it runs but R tells 
us something is unexpected. 

In the example, the warning message says that the condition has 
length > 1, because we are working with an object that stores multiple values, 
and that only the first element will be used. In this case, the first 
value is 5 and therefore the function does nothing. But if the first value is 10 we 
have the following 

> x <- 10:15 
> if(x == 10) print("yes") 
[1] "yes" 
Warning message: 
In if (x == 10) print("yes") : 

the condition has length > 1 and 
only the first element will be used 

The function prints "yes" because the first value now is 10. To convince 
ourselves that the function is really working let’s add an else expression. Let’s 
rebuild the x object from 5 to 15. 

> x <- 5:15 
> if(x == 10){ 
+ print("yes") 
+ } else{ 
+ print("no") 
+ }  
[1] "no" 
Warning message: 
In if (x == 10) { : 

the condition has length > 1 and 
only the first element will be used 

And as you can see now the function prints "no" because the first element, 5, is 
not equal to 10. However, we still get the warning message. 

We could work out this warning message by nesting the any() function in the 
if() function as follows 

> x <- 5:15 
> if(any(x == 10)) print("yes") 
[1] "yes" 

However, let’s say we want something different, i.e. that the function is evaluated 
at each value of x. A better solution would consist in picking another function. In 
this case, the ifelse() function
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> ifelse(x == 10, "yes", "no") 
[1] "no" "no" "no" "no" "no" "yes" "no" "no" "no" "no" "no" 

> ifelse(x > 10, "yes", "no") 
[1] "no" "no" "no" "no" "no" "no" "yes" "yes" "yes" "yes" "yes" 

Finally, two pieces of advice. First, if we cannot solve the error after reading the 
documentation we simply can copy and paste the error or the warning message in a 
web search engine to look for more explanations and examples. You will find that 
in most of the cases your question has been already answered by the R Community. 
Second, since most of the R Community members communicate in English, it is 
convenient to set R in English. In this way R will print the error and warning 
messages in English. Consequently, we can find more examples for the case we 
are interested in. 

No-Error Message Error 

In this book, we will not code functions from scratch. However, we should be aware 
about the most difficult errors to deal with that mainly occur when we build our own 
functions: that is, the function we write runs but it does not do what we programmed 
it for. The main issue is that because it runs we do not get any error or warning 
message so we may wrongly think that it properly works. An important check 
when we build our own function is to test it to replicate well-known results and 
examples. For several examples on writing functions from scratch you may refer to 
Introduction to Mathematics for Economics with R (Porto, 2022). 

1.7 Two Examples with R 

In this section, we will go through some of the main features of R with two 
examples. In the first example in Sect. 1.7.1, we will see R as calculator, as pro-
gramming language (interactive mode, loop and functions), as statistical software 
and as graphical software. In the second example in Sect. 1.7.2, we will focus on 
data management operations with two dummy data frames. 

1.7.1 An Overview of R with a Step by Step Example 

Suppose a student took a test made up of 50 questions. She gets 3 points for each 
correct answer. In total she gave 43 correct answers. She wants to know her total 
score. We can make this multiplication in R 
> 43*3 
[1] 129



1.7 Two Examples with R 31

Table 1.1 Math operators Operator Description Example Output 

+ Addition 2 + 5 7

- Subtraction 5 - 2 3 

* Multiplication 5 * 2 10 

/ Division 5 / 2 2.5 

ˆ Exponentiation 5ˆ2 25 

%% Remainder 5 %% 2 1 

%/% Integer division 5 %/% 2 2 

Table 1.2 Math functions 

Operator Description Example Output 

sum() Sum of vector elements sum(5, 2, 3) 10 

cumsum() Cumulative sums cumsum(c(5, 2, 3)) 5 7 10  

min() Minima min(5, 2, 3) 2 

max() Maxima max(5, 2, 3) 5 

mean() Average mean(c(5, 2, 3)) 3.333333 

sqrt() Square root sqrt(25) 5 

abs() Absolute value abs(-5) 5 

In this way, we are using R as calculator. Table 1.1 reports the most common 
operators. In addition, there are some built-in functions that extends the math 
capability. Refer to Table 1.2.12 

Continuing with the example, we know that the total score of the student is 129. 
However, if you skipped the first lines of the introduction to this section, this 

number would say nothing to you. Let’s see how to reorganize the information. 
We generate an object, n_correct_answer, that stores the number of correct 
answers. We accomplish this task using the assignment operator <-. Then, we 
generate another object, point, that stores the points per correct answer. Finally, 
we multiply these two objects. 
> n_correct_answer <- 43 
> point <- 3 
> n_correct_answer * point 
[1] 129 

Now the information is clearer. Let’s add a new step. Let’s store the result of the 
multiplication in a new object, total_score. 
> total_score <- n_correct_answer * point 

Note that now we do not see the output of the operation because it is stored in 
total_score. To see the output, we have to run the object 
> total_score 
[1] 129

12 Note that sum(), min(), max() treat the collection of arguments as the vector. This is not 
the typical behaviour in R. In  cumsum() and mean(), the  c() function combines values into a 
vector (Burns, 2012, p. 8).  
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The number in the brackets points out the position of the printed element. In this 
case, 129 is the first element. Since we have only one element it may seem not a 
useful information. Let’s see the output of cumsum(1:25), where :, the colon 
operator, generates regular sequences, in this case, from 1 to 25. The output says 
that 120 is located at the 15th index. 

> cumsum(1:25) 
[1] 1 3 6 10 15 21 28 36 45 55 66 78 91  105  

[15] 120 136 153 171 190 210 231 253 276 300 325 

Let’s continue with the example. Suppose now we want to write a program that 
allows the students to enter their number of correct answers and calculates the total 
score. For this task, we use the readline() function. readline() reads a line 
from the terminal in interactive use. 

We will assign to the object n_correct_answer the following input: 
readline("Enter your number of correct answers: "). Note  
that the former score of the student will be overwritten. 

When we run this object, R will ask to enter the input as follows 
> n_correct_answer <- readline("Enter your number of correct answers: ") 
Enter your number of correct answers: 

If a student scored 39 she can enter it as follows. 

> n_correct_answer <- readline("Enter your number of correct answers: ") 
Enter your number of correct answers: 39 

Now we multiply again the number of correct answers by the points, point. 

> total_score <- n_correct_answer * point 
Error in n_correct_answer * point : 

non-numeric argument to binary operator 

But we got an error. The message says that we have a non-numeric argument 
even though we multiply 39 by 3. Why’s that? Let’s investigate our objects. 

> class(point) 
[1] "numeric" 

By using the class() function we find out that point is a numeric class 
object. Let’s check n_correct_answer. 

> class(n_correct_answer) 
[1] "character" 

We found where the problem is. Even though we entered a number, 39, it 
is returned by the function as a character. Basically, we cannot multiply a 
number by a string. Therefore, we got an error. Let’s solve the problem by coercing 
n_correct_answer from character to numeric. We do this by nesting the 
previous function in the as.numeric() function 

> n_correct_answer <- as.numeric( 
+ readline("Enter your number of correct answers: ")) 
Enter your number of correct answers: 39
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Now, let’s check again the score of the student. 
> total_score <- n_correct_answer * point 
> total_score 
[1] 117 

This student scored 117. We solved the problem. This example shows that it is 
important to know the class of an object we are dealing with because it can happen 
that some operations or functions work only with objects with a specific class. 

Suppose now that we evaluate the tests of 7 students and collect the numbers of 
correct answers in the tests: 43, 39, 41, 36, 38, 48, 33. We want to calculate their 
scores. 

We can do this by using a loop. First, we generate an object to collect the total 
score, total_score. Second, we collect all the numbers of correct answers in a 
vector using the c() function, n_correct_answer. Third, we define the object 
that stores the points, point.13 Then we use a loop by using the for() function, 
where i is a syntactical name and in is an operator followed by a sequence. Note 
that the operations are enclosed in braces. The print() function prints out the 
output. How does the loop work? At the beginning, the i element is 43. This is 
multiplied by point and the result is stored in total_score and it is printed. 
Then, the loop starts again. Now the i element is 39. This is multiplied by point 
and the result is stored in total_score and then it is printed. This is repeated for 
the length of the sequence. In this case, 7 times. 
> total_score <- 0 
> n_correct_answer <- c(43, 39, 41, 36, 38, 48, 33) 
> point <- 3 
> for(i in n_correct_answer){ 
+ total_score <- i * point 
+ print(total_score) 
+ }  
[1] 129 
[1] 117 
[1] 123 
[1] 108 
[1] 114 
[1] 144 
[1] 99 

We obtained the scores for the 7 students. However, in this case the loop is 
not the best choice for this computation. We can just use the R’s vectorization 
feature. Basically, we just multiply the vector, n_correct_answer, by the  
scalar, point. 
> names_stud <- c("Anne", "John", "Bob", "Emma", 
+ "Tony", "Sarah", "James") 
> names(n_correct_answer) <- names_stud 
> n_correct_answer

13 Note that if you did not remove point or clear the objects from the workspace, you do not need 
to generate again point to make the loop work. However, we generate it again to make our work 
easy to understand. On the other hand, we do not really need to generate total_score out of 
the loop. We could remove it from the workspace with rm() and this would not affect the loop. 
However, when we want to store multiple results it is necessary to initialize it. We will talk again 
about the initialization of total_score in a few pages. 
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Anne John Bob Emma Tony Sarah James 
43 39 41 36 38 48 33 

> total_score <- n_correct_answer * point 
> total_score 
Anne John Bob Emma Tony Sarah James 
129 117 123 108 114 144 99 

Note also that we generated an object, names_stud, that contains the 
names of the students. By using the names() function, we set the names of 
n_correct_answer. Keep in mind that the order is key in R. For example, 
Anne is stored at index 1 in names_stud. Consequently, it is set as name of the 
item stored at index 1 in n_correct_answer. 

Let’s make another example with for() loop. Suppose that the students enter 
the number of correct answers in turn. We use the readline() function inside 
the loop. 
> for(students in 1:length(names_stud)){ 
+ n_correct_answer <- as.numeric( 
+ readline("Enter your number of correct answers: ")) 
+ total_score <- n_correct_answer * point 
+ print(total_score) 
+ }  
Enter your number of correct answers: 43 
[1] 129 
Enter your number of correct answers: 39 
[1] 117 
Enter your number of correct answers: 41 
[1] 123 
Enter your number of correct answers: 36 
[1] 108 
Enter your number of correct answers: 38 
[1] 114 
Enter your number of correct answers: 48 
[1] 144 
Enter your number of correct answers: 33 
[1] 99 

In this example, first note that we use the name students as a syntactical name 
for a variable (basically, you can choose any name even though i for the first loop 
and j for the second loop are quite standard). Second, note how the sequence is 
written. We know that after in the sequence begins. We already know the meaning 
of the : operator. Basically, we generated a sequence that starts at 1 and ends at 7. 
Why seven? Because 7 is the length of the vector names_stud. In fact, it contains 
7 elements, i.e. 7 students. Run length(names_stud) to verify it. length() 
gets or sets the length of vectors (including lists) and factors, and of any other R 
object for which a method has been defined. 
> length(names_stud) 
[1] 7 

Additionally, instead of inputing the score after Enter your number of 
correct answers: , I write the score after the loop function in the R Script 
file like this 
43 
39 
41 
36 
38 
48 
33
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and run each of them them every time Enter your number of correct 
answers: is printed. 

In the previous loop, we printed the results. However, in this way they cannot be 
used. Therefore, this time we run again the same loop but we remove the print() 
function. The results will be stored in total_score. Since we have more than one 
result to store, this time it is necessary to initialize the total_score object. In the 
previous example, we did not really need it because we just printed out each result 
every time the loop ran. Note that you can initialize the loop in different ways. In this 
example, we write total_score <- numeric(length(names_stud)) 
that returns an object with seven 0, the length of names_stud. These zeros will 
be replaced by the result of each student every time the loop iterates. 

In this regard, note how we write total_score inside the loop. We use the 
square brackets [ ]  to replace the zeros with the results of the students when the 
loop iterates (more on this in a few lines). However, note that if we do not subset 
using the square brackets [ ]  only the last score will be stored because each time 
the loop runs it will overwrite the previous value. 

> point <- 3 
> names_stud <- c("Anne", "John", "Bob", "Emma", 
+ "Tony", "Sarah", "James") 
> total_score <- numeric(length(names_stud)) 
> total_score 
[1] 0 0 0 0 0 0 0  
> for(students in seq_along(names_stud)){ 
+ n_correct_answer <- as.numeric( 
+ readline("Enter your number of correct answers: ")) 
+ total_score[students] <- n_correct_answer * point 
+ }  
Enter your number of correct answers: 43 
Enter your number of correct answers: 39 
Enter your number of correct answers: 41 
Enter your number of correct answers: 36 
Enter your number of correct answers: 38 
Enter your number of correct answers: 48 
Enter your number of correct answers: 33 
> total_score 
[1] 129 117 123 108 114 144 99 

Finally, note the in for()we replaced for(students in 1:length(x)) 
with for(students in seq_along(names_stud)). seq_along() 
also generates a sequence 

> seq_along(names_stud) 
[1] 1 2 3 4 5 6 7  

Now let’s break the loop down into pieces to analyse what it does. 
First, let’s again initialize the object to store the results of the loop 

> total_score <- numeric(length(names_stud)) 
> total_score 
[1] 0 0 0 0 0 0 0  

When the loop starts, students is 1, that is the beginning of the sequence. 
Therefore, let’s replace students with 1. The number of correct answers for the 
first student was 43. Consequently, the total score is replaced at the first entry.
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> n_correct_answer <- as.numeric( 
+ readline("Enter your number of correct answers: ")) 
Enter your number of correct answers: 43 
> total_score[1] <- n_correct_answer * point 
> total_score 
[1] 129 0 0 0 0 0 0 

What about if we run this last chunk of code to simulate the second iteration of 
the loop? Substitute students with 2 and give 39 as number of correct answers 
for the second student and check the output. 

Until now the students know their score but they do not know yet if they passed 
the test. Let’s find it out. 

First, let’s write the information we have, i.e. names of the students who took the 
test and their number of correct answers, in a data frame. Use the data.frame() 
function to build the data frame named results_test. 
> names_stud <- c("Anne", "John", "Bob", "Emma", 
+ "Tony", "Sarah", "James") 
> n_correct_answer <- c(43, 39, 41, 36, 38, 48, 33) 
> results_test <- data.frame(names_stud, 
+ n_correct_answer) 
> results_test 

names_stud n_correct_answer 
1 Anne 43 
2 John 39 
3 Bob 41 
4 Emma 36 
5 Tony 38 
6 Sarah 48 
7 James 33 

Now we build a function, final_test, that will return the score and the 
information about if the students passed the test. 
> final_test <- function(n, data, tot_q, 
+ test_per, point = 3){ 
+ total_score <- data[, n] * point 
+ full_score <- tot_q * point 
+ threshold <- full_score * test_per 
+ outcome <- ifelse(total_score > threshold, 
+ "PASS", 
+ "FAIL") 
+ results_test_1 <- cbind(data, total_score, outcome) 
+ return(results_test_1) 
+ }  

The function takes five arguments: n, data, tot_q, test_per and point. 
n refers to the column in the data set that contains the number of correct answer. 
It can be the name of the column as a string or the corresponding column index. 
In our case, the name of the column in the data frame is n_correct_answer. 
data is the name of the data set with the information about the test. In our 
case, the name of the data set is results_test. tot_q is the total number 
of questions in the test. test_per is the percentage that defines the passing 
threshold. Note that we set a default value, 3, for point. Between the braces, we 
define the steps of the function. First, we calculate the total score of the students, 
total_score as n_correct_answer multiplied by point. Note how  we  
select the column with the number of correct answer in the data frame. We will 
talk about this shortly. Second, we calculate the maximum score, full_score,
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as tot_q multiply by point. Third, we calculate the threshold, threshold, 
as full_score multiplied by the passing percentage, test_per. Fourth, we 
generate a variable outcome that takes value "PASS" if the total_score is 
greater than the threshold, and "FAIL" otherwise. We use the ifelse() 
function to accomplish this task. Then, we combine by columns the data set, data, 
that represents our data set, with total_score and outcome by using the 
cbind() function. We assign this operation to a new object, results_test_1. 
Finally, we will use the return() function to return the data frame from inside 
the function to the workspace. 

Now, we are ready to test it. Suppose that only the students who scored more 
than 80% of the maximum score pass the test. In this case 

> final_test(n = "n_correct_answer", 
+ data = results_test, 
+ tot_q = 50, 
+ test_per = 0.8) 

names_stud n_correct_answer total_score outcome 
1 Anne 43 129 PASS 
2 John 39 117 FAIL 
3 Bob 41 123 PASS 
4 Emma 36 108 FAIL 
5 Tony 38 114 FAIL 
6 Sarah 48 144 PASS 
7 James 33 99 FAIL 

Let’s try the function by replacing the column name for n with the column index, 
in our case 2 

> final_test(n = 2, 
+ data = results_test, 
+ tot_q = 50, 
+ test_per = 0.8) 

names_stud n_correct_answer total_score outcome 
1 Anne 43 129 PASS 
2 John 39 117 FAIL 
3 Bob 41 123 PASS 
4 Emma 36 108 FAIL 
5 Tony 38 114 FAIL 
6 Sarah 48 144 PASS 
7 James 33 99 FAIL 

As expected, we obtain the same results. We have only three students who passed 
the test. Let’s lower the percentage to 70%. 

> final_test(n = "n_correct_answer", 
+ data = results_test, 
+ tot_q = 50, 
+ test_per = 0.7) 

names_stud n_correct_answer total_score outcome 
1 Anne 43 129 PASS 
2 John 39 117 PASS 
3 Bob 41 123 PASS 
4 Emma 36 108 PASS 
5 Tony 38 114 PASS 
6 Sarah 48 144 PASS 
7 James 33 99 FAIL 

In this case, only one student did not pass the test. 
Note that we can modify the default value for point as follows: 

> final_test(n = "n_correct_answer",
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+ data = results_test, 
+ tot_q = 50, 
+ test_per = 0.7, 
+ point = 4) 

names_stud n_correct_answer total_score outcome 
1 Anne 43 172 PASS 
2 John 39 156 PASS 
3 Bob 41 164 PASS 
4 Emma 36 144 PASS 
5 Tony 38 152 PASS 
6 Sarah 48 192 PASS 
7 James 33 132 FAIL 

Let’s go back to the first case, i.e. an 80% passing percentage. This time let’s 
assign this operation to a new object, results_test_def to calculate some 
statistics about our data set. Remember that in this case, you have to run the object 
to see its content. 

> results_test_def <- final_test(n = "n_correct_answer", 
+ data = results_test, 
+ tot_q = 50, 
+ test_per = 0.8) 
> results_test_def 

names_stud n_correct_answer total_score outcome 
1 Anne 43 129 PASS 
2 John 39 117 FAIL 
3 Bob 41 123 PASS 
4 Emma 36 108 FAIL 
5 Tony 38 114 FAIL 
6 Sarah 48 144 PASS 
7 James 33 99 FAIL 

Let’s investigate the structure of our data set with the str() function. 

> str(results_test_def) 
’data.frame’: 7 obs. of 4 variables: 
$ names_stud : chr "Anne" "John" "Bob" "Emma" ... 
$ n_correct_answer: num 43 39 41 36 38 48 33 
$ total_score : num 129 117 123 108 114 144 99 
$ outcome : chr "PASS" "FAIL" "PASS" "FAIL" ... 

Note that n_correct_answer and total_score have numerical values. 
names_stud and outcome are characters. 

Let’s find, for example, the average score of the students. We use $ to select the 
column of interest from the data set. 

> mean(results_test_def$total_score) 
[1] 119.1429 

Let’s find now the lowest and highest score: 

> min(results_test_def$total_score) 
[1] 99 
> max(results_test_def$total_score) 
[1] 144 

A short-cut to obtain this information is through the summary() function. 

> summary(results_test_def$total_score) 
Min. 1st Qu. Median Mean 3rd Qu. Max. 
99.0 111.0 117.0 119.1 126.0 144.0 

If we apply it to the whole data set:
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> summary(results_test_def) 
names_stud n_correct_answer total_score outcome 

Length:7 Min. :33.00 Min. : 99.0 Length:7 
Class :character 1st Qu.:37.00 1st Qu.:111.0 Class :character 
Mode :character Median :39.00 Median :117.0 Mode :character 

Mean :39.71 Mean :119.1 
3rd Qu.:42.00 3rd Qu.:126.0 
Max. :48.00 Max. :144.0 

Let’s coerce outcome to factors and let’s apply again the summary() function 
to the data set (refer to Sect. 1.6.5 for the meaning of factors) 

> results_test_def$outcome <- as.factor(results_test_def$outcome) 
> results_test_def$outcome 
[1] PASS FAIL PASS FAIL FAIL PASS FAIL 
Levels: FAIL PASS 
> summary(results_test_def) 

names_stud n_correct_answer total_score outcome 
Length:7 Min. :33.00 Min. : 99.0 FAIL:4 
Class :character 1st Qu.:37.00 1st Qu.:111.0 PASS:3 
Mode :character Median :39.00 Median :117.0 

Mean :39.71 Mean :119.1 
3rd Qu.:42.00 3rd Qu.:126.0 
Max. :48.00 Max. :144.0 

As you can observe, now the summary() function prints how many passed and 
failed the test in the outcome column. 

Now let’s suppose we want to show only the personal result scored by the student. 
There are different ways we can extract information from a data frame. Basically, 
a data frame has two dimensions like a matrix. We can use the [i, j] indexes 
for rows and columns, respectively, where the square brackets [ ]  subset the data 
frame. 

Let’s print again the data set. 

> results_test_def 
names_stud n_correct_answer total_score outcome 

1 Anne 43 129 PASS 
2 John 39 117 FAIL 
3 Bob 41 123 PASS 
4 Emma 36 108 FAIL 
5 Tony 38 114 FAIL 
6 Sarah 48 144 PASS 
7 James 33 99 FAIL 

We see that student Anne is at row number 1 and column number 1. Therefore, 
to extract the name of student Anne 

> results_test_def[1, 1] 
[1] "Anne" 

But if we want to extract all the info for student Anne, i.e. row 1 and all the 
columns associated 

> results_test_def[1, ] 
names_stud n_correct_answer total_score outcome 

1 Anne 43 129 PASS 

Basically, we leave blank the space for the column entry after the comma ,. 
Therefore, if we want to select only the column with the total_score we leave 
blank the space for the row entry before the comma, ,
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> results_test_def[, 3] 
[1] 129 117 123 108 114 144 99 

We can select the data also by column name in a data frame. For example, we 
could achieve the same previous task as follows: 
> results_test_def[, "total_score"] 
[1] 129 117 123 108 114 144 99 

The selection of columns with the square bracket operator is alternative to $. 
However, with the square bracket operator we can select more columns with the 
c() function. For example, to select the first column and third column: 
> results_test_def[, c(1, 3)] 

names_stud total_score 
1 Anne 129 
2 John 117 
3 Bob 123 
4 Emma 108 
5 Tony 114 
6 Sarah 144 
7 James 99 

> results_test_def[, c("names_stud", "total_score")] 
names_stud total_score 

1 Anne 129 
2 John 117 
3 Bob 123 
4 Emma 108 
5 Tony 114 
6 Sarah 144 
7 James 99 

Consequently, if we want to select more rows: 
> results_test_def[c(2, 5), ] 

names_stud n_correct_answer total_score outcome 
2 John 39 117 FAIL 
5 Tony 38 114 FAIL 

Now suppose we want to find the student who got the highest score: 
> results_test_def[which.max(results_test_def$total_score), ] 

names_stud n_correct_answer total_score outcome 
6 Sarah 48 144 PASS 

Now the notation should be clear. We subset the data set by the row with the 
highest total score, i.e. 144, that it is located at row 6, and for all the columns. In 
fact, 
> which.max(results_test_def$total_score) 
[1] 6 

Now suppose we want to rename the column names. We use the colnames() 
function.14 

> colnames(results_test_def) <- c("Students", "Correct_Answer", 
+ "Total_Score", "Outcome") 
> results_test_def 

Students Correct_Answer Total_Score Outcome

14 Note that it is better to avoid space in the names of the variables. 
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Table 1.3 Logical operators Operator Description 

.> Greater than 

.< Less than 

.>= Greater or equal 

.<= Less or equal 

.== Exact equality 

.! = Inequality 

1 Anne 43 129 PASS 
2 John 39 117 FAIL 
3 Bob 41 123 PASS 
4 Emma 36 108 FAIL 
5 Tony 38 114 FAIL 
6 Sarah 48 144 PASS 
7 James 33 99 FAIL 

But now we decide we want to change the name of Outcome in PASSFAIL: 
> colnames(results_test_def)[ 
+ colnames(results_test_def) == "Outcome"] <- "PASSFAIL" 
> results_test_def 

Students Correct_Answer Total_Score PASSFAIL 
1 Anne 43 129 PASS 
2 John 39 117 FAIL 
3 Bob 41 123 PASS 
4 Emma 36 108 FAIL 
5 Tony 38 114 FAIL 
6 Sarah 48 144 PASS 
7 James 33 99 FAIL 

Let’s translate into plain English this line of code. We are telling R that “among 
all column names in the data set, the one whose name is equal to Outcome has to 
be renamed as PASSFAIL”. 

Note that == is a logical operator that means exact equality. Refer to Table 1.3 
for more logical operators. 

Let’s see how we can replace column names in a different way. Let’s change 
PASSFAIL to PASS/FAIL. Let’s run only colnames(results_test_def). 
This extracts the column names of the data frame or matrix. We observe that 
PASSFAIL is the 4th entry. 
> colnames(results_test_def) 
[1] "Students" "Correct_Answer" "Total_Score" "PASSFAIL" 

Let’s rename it by replacing its 4th entry 
> colnames(results_test_def)[4] <- "PASS/FAIL" 
> results_test_def 

Students Correct_Answer Total_Score PASS/FAIL 
1 Anne 43 129 PASS 
2 John 39 117 FAIL 
3 Bob 41 123 PASS 
4 Emma 36 108 FAIL 
5 Tony 38 114 FAIL 
6 Sarah 48 144 PASS 
7 James 33 99 FAIL 

Let’s generate a new variable, PASS, that takes value 1 if the student passed, 0 
otherwise. We use again the ifelse() function.
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> results_test_def$PASS <- ifelse( 
+ results_test_def$‘PASS/FAIL‘ == "PASS", 
+ 1,  0)  
> results_test_def 

Students Correct_Answer Total_Score PASS/FAIL PASS 
1 Anne 43 129 PASS 1 
2 John 39 117 FAIL 0 
3 Bob 41 123 PASS 1 
4 Emma 36 108 FAIL 0 
5 Tony 38 114 FAIL 0 
6 Sarah 48 144 PASS 1 
7 James 33 99 FAIL 0 

Let’s conclude this section by plotting some information in the data set. We will 
plot using the ggplot() function from the ggplot2 package. 

We need to load the package before using it at the beginning of an R session. We 
use the library() function to load the package. 
> library("ggplot2") 

When we load a package some information about the package may be printed. 
For the sake of illustration we do not print them. 

Now we are ready to use the ggplot() function. We will plot a bar plot and a 
box plot. 

First, we will plot the total score of each student. Note again the code printed in 
the console pane for ggplot(). We have two  +. One  +, directly below the prompt 
symbol, >, means the the code is continuing on the next line in the console pane. 
This + is not part of the code we write. The other + is part of the ggplot() code 
and connect the different layers in ggplot(). 
> ggplot(results_test_def, aes(x= Students, y = Total_Score, 
+ fill = ‘PASS/FAIL‘)) + 
+ geom_bar(position = "dodge", stat="identity") + 
+ ylab("Total Score") + theme_classic() + 
+ ggtitle("Total Score for a 50 question test") + 
+ theme(legend.position = "bottom") 

The first entry in ggplot() is the data set. In aes() we map the data for the 
x and y axes. We distinguish the values by whether the students passed the test by 
using fill =. We will return to the meaning of the backticks in ‘PASS/FAIL‘ in 
a moment. We choose to plot the data as a bar plot using geom_bar(). position 
= "dodge" puts the bars side-by-side. With stat = "identity" the heights 
of the bars represent values in the data. ylab() sets the label for the y-axis. In 
ggtitle() we type the title of the plot. theme_classic() is one of the 
possible options to define the layout of the plot. Finally, in theme() we set the 
position of the legend below the plot. The output is Fig. 1.12. 

We can export it as image from RStudio as shown in Figs. 1.13 and 1.14 
A feature of ggplot() is that its output can be stored. For example, if you plot 

using the built-in function in R, i.e. plot(), you cannot store its output. 
In the next example, we will store the output of a box plot in the following 

object, passed_boxplot. Note the in aes(), we have to map  x and fill to 
‘PASS/FAIL‘. Note that we have to enclose the variable name in ‘ ‘  because 
we included / in the column name. ‘ ‘  is also necessary when we write a column 
name with a space. For this reason, it is better to avoid spaces in the column names.
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Fig. 1.12 Example of a bar plot 

Fig. 1.13 Export plot as image in RStudio (1) 

In addition, xlab("") removes the title of the x-axis while legend.title = 
element_blank() removes the title of the legend. Now, we have to run the 
object to see the plot (Fig. 1.15). 
> passed_boxplot <- ggplot(results_test_def, 
+ aes(x = ‘PASS/FAIL‘, 
+ y = Total_Score, 
+ fill = ‘PASS/FAIL‘)) + 
+ geom_boxplot() + 
+ ylab("Total Score") + xlab("") + 
+ ggtitle("Boxplot of Results (Fail, Pass)") +
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Fig. 1.14 Export plot as image in RStudio (2) 

Fig. 1.15 Example of a box plot 

+ theme_bw() + 
+ theme(legend.title = element_blank()) 
> passed_boxplot 

For this example, we use the ggsave() function from ggplot2 to save the 
ggplot2 plot. The first entry is the file name to create on the disk. Note that I 
specify the path to the images folder we created at the beginning. The second 
entry is the name of the plot we want to save. By default, it saves the last plot.15 

15 In the rest of the book I will not print the code to save the images. However, for ggplot2 plots 
I use the ggsave() function. For other plots, I save them as shown in Figs. 1.13 and 1.14. To save  
3D plots, you may use the rgl.snapshot() function from the rgl package. However, we will 
not make any 3D plot in this book.
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> ggsave(filename = "images/passes_boxplot.png", 
+ plot = passed_boxplot) 
Saving 9.28 x 5.6 in image 

Suppose we want to check the values of the boxplot. First, we can subset the 
data set using the subset() function. Since the subset() function is a built-
in function, we do not need to load any package to use it. We create two objects. 
The first one contains the data only for the students who passed while the second 
one only for students who did not pass. The first entry in the subset() function 
is the data set. Then, we type the conditional statement. In this case, we subset 
the data set if the value in ‘PASS/FAIL‘ is equal to "PASS". Note again the 
inclusion of ‘ ‘  around the column name. Note that for the object FAIL we use 
the inequality operator !=. We could also use ‘PASS/FAIL‘ == "FAIL" to 
accomplish the same task. Finally, we apply the summary() function to the value 
in Total_Score. 

> PASS <- subset(results_test_def, ‘PASS/FAIL‘ == "PASS") 
> FAIL <- subset(results_test_def, ‘PASS/FAIL‘ != "PASS") 
> PASS 

Students Correct_Answer Total_Score PASS/FAIL PASS 
1 Anne 43 129 PASS 1 
3 Bob 41 123 PASS 1 
6 Sarah 48 144 PASS 1 
> FAIL 

Students Correct_Answer Total_Score PASS/FAIL PASS 
2 John 39 117 FAIL 0 
4 Emma 36 108 FAIL 0 
5 Tony 38 114 FAIL 0 
7 James 33 99 FAIL 0 
> summary(PASS$Total_Score) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 
123.0 126.0 129.0 132.0 136.5 144.0 

> summary(FAIL$Total_Score) 
Min. 1st Qu. Median Mean 3rd Qu. Max. 
99.0 105.8 111.0 109.5 114.8 117.0 

We read that the minimum value for PASS is 123, the beginning of the vertical 
line in Fig. 1.15. The first quartile corresponds to the beginning of the box, 126, 
while the third quartile corresponds to the end of the box, 136.5. The tick middle line 
corresponds to the median or middle quartile, 129. The end of the line corresponds 
to the maximum value, 144. 

1.7.2 Main Data Management Operations 

From the next chapter, we will repeatedly use functions to put information from 
several data frames of different sizes into a single data frame that will finally be 
analyzed. Since we will work with real data frames with thousands of rows and 
dozens of columns, it will be impossible to print the outcome of the individual 
functions.
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Since I think it is very useful to clearly grasp how the functions modify the 
data frames we work with, in this section we implement the main data management 
operations to two small dummy data frames. We name the first data frame trade. 
It contains four columns: year containing information for years 2020, 2021, and 
2022, reporter and partner containing information about 3 fictitious countries 
that we name as letters, and export containing the value of export from reporter 
to partner in million dollar. The second data frame is named gdp and contains the 
GDP values in billion dollar of four fictitious countries. Our goal is to put the info of 
these two different data frames in an single data frame and generate new variables 
to provide additional information. 

We need to load the following packages before starting to write the code 

library("data.table") # data management (melt, dcast) 
library("tidyr") # data management (pivot_) 
library("dplyr") # data management (case_when) 
library("stringr") # string manipulation 
library("zoo") # time series 

Now let’s build the two dummy data frames for the example 

> set.seed(123) 
> trade <- data.frame(year = rep(2020:2022, 6), 
+ reporter = rep(LETTERS[1:3], each = 6), 
+ partner = rep(c("B","C", "A", "C", "A", "B"), 
+ each = 3), 
+ export = sample(50:150, 18, replace = TRUE)) 
> trade 

year reporter partner export 
1 2020 A B 80 
2 2021 A B 128 
3 2022 A B 100 
4 2020 A C 63 
5 2021 A C 116 
6 2022 A C 91 
7 2020 B A 99 
8 2021 B A 92 
9 2022 B A 150 
10 2020 B C 63 
11 2021 B C 74 
12 2022 B C 139 
13 2020 C A 140 
14 2021 C A 118 
15 2022 C A 140 
16 2020 C B 106 
17 2021 C B 141 
18 2022 C B 58 

> set.seed(321) 
> gdp <- data.frame(country = c(LETTERS[1:4]), 
+ isocode = paste0(LETTERS[1:4], 1:4), 
+ year2020 = sample(500:1000, 4), 
+ year2021 = sample(500:1000, 4), 
+ year2022 = sample(500:1000, 4)) 
> gdp 

country isocode year2020 year2021 year2022 
1 A A1 681 843 625 
2 B B2 997 963 772 
3 C C3 752 557 727 
4 D D4 832 851 546
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Let’s replace the entry for the A country for year 2021 with a missing value, NA 

> gdp[1, 4] <- NA 
> gdp 

country isocode year2020 year2021 year2022 
1 A A1 681 NA 625 
2 B B2 997 963 772 
3 C C3 752 557 727 
4 D D4 832 851 546 

First, note that the set.seed() function is used to make the example repro-
ducible with random number generation functions. Second, note that the trade 
data frame is in a long format while the gdp data frame is in a wide format. In the 
long format, values for years and id repeat in the columns. On the other hand, in the 
wide format, id values do not repeat in the columns, and each year is a column title. 

Our goal is to merge trade and gdp. However, we cannot perform this 
operation with gdp in a wide format. Therefore the first step is to reshape it. 

Reshaping Data Set Wide-Long 

We can perform this task with different packages. We will see how to do it with the 
the tidyr package and with the data.table package. 

Let’s start with a simple case. Let’s drop the isocode from gdp 

> gdp2 <- gdp[, -2] 
> gdp2 

country year2020 year2021 year2022 
1 A 681 NA 625 
2 B 997 963 772 
3 C 752 557 727 
4 D 832 851 546 

The country column is our id column. 
First, let’s reshape it with the pivot_longer() function from the tidyr 

package. The esclamation mark ! means that we are reshaping all the columns by 
using country as the id variable. In names_to we write the name of the column 
to be created the will store the names of the variables to be reshaped. In vaues_to 
we write the name of the column to be created the will store the reshaped values in 
the columns year2020, year2021, and year2022. 

> gdp2_l <- gdp2 %>% 
+ pivot_longer(!country, # all columns but not country 
+ names_to = "year", 
+ values_to = "GDP") 
> gdp2_l 
# A tibble: 12 x 3 

country year GDP 
<chr> <chr> <int> 

1 A year2020 681 
2 A year2021 NA 
3 A year2022 625 
4 B year2020 997 
5 B year2021 963 
6 B year2022 772 
7 C year2020 752 
8 C year2021 557 
9 C year2022 727
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10 D year2020 832 
11 D year2021 851 
12 D year2022 546 

The original data set gdp2 has 4 rows and 4 columns. The reshaped data set 
gdp2_l has 12 rows and 3 columns. Now the values in country repeat, as the 
values in year. Note that in the year column we want numeric values. We will 
see how to adjust that in a moment. Finally, GDP is the column that we created and 
stores the GDP values corresponding to each country and year. 

Additionally, note the role of %>%. This is the pipe operator. It is used to pipe an 
object forward into a function or call expression. We are using it to pass gdp2 as 
the first argument in pivot_longer(). Note that we could just write as usual 

> pivot_longer(gdp2, 
+ !country, # all columns but not country 
+ names_to = "year", 
+ values_to = "GDP") 
# A tibble: 12 x 3 

country year GDP 
<chr> <chr> <int> 

1 A year2020 681 
2 A year2021 NA 
3 A year2022 625 
4 B year2020 997 
5 B year2021 963 
6 B year2022 772 
7 C year2020 752 
8 C year2021 557 
9 C year2022 727 

10 D year2020 832 
11 D year2021 851 
12 D year2022 546 

However, the pipe operator turns to be very useful to chain operations. 
Ok, now gdp2_l is in the long format. What about if we want to reshape it in a 

wide format? We can use the pivot_wider() function from the tidyr package. 

> gdp2_w <- gdp2_l %>% 
+ pivot_wider(names_from = "year", 
+ values_from = "GDP") 
> gdp2_w 
# A tibble: 4 x 4 

country year2020 year2021 year2022 
<chr> <int> <int> <int> 

1 A 681 NA 625 
2 B 997 963 772 
3 C 752 557 727 
4 D 832 851 546 

We are back to the wide format. However, note that the class of gdp2 and 
gdp2_w is different 

> class(gdp2) 
[1] "data.frame" 
> class(gdp2_w) 
[1] "tbl_df" "tbl" "data.frame" 

gdp2_w is a now a tibble object. Here, we define the tbl_df class as a special 
class of data frame. You may refer to Wickham (2019a, p. 58) for more details.
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Nowwe implement the same operations with the data.table package. We use 
the melt() function to reshape the data set from wide to long, and the dcast() 
function to reshape from long to wide. 

> gdp2_ldt <- melt(setDT(gdp2), id.vars = "country", 
+ measure.vars = 2:length(colnames(gdp2)), 
+ variable.name = "year", 
+ value.name = "GDP") 
> gdp2_ldt 

country year GDP 
1: A year2020 681 
2: B year2020 997 
3: C year2020 752 
4: D year2020 832 
5: A year2021 NA 
6: B year2021 963 
7: C year2021 557 
8: D year2021 851 
9: A year2022 625 

10: B year2022 772 
11: C year2022 727 
12: D year2022 546 

The setDT() function coerces lists and data.frames to data.table by reference. 
In id.vars we indicate the id variables. It can be integer (corresponding id 

column numbers) or character (id column names) vector. In measure.vars we 
indicate the variables for melting. variable.name assigns the name for the mea-
sured variable names column. The default name is ’variable’, while value.name 
assigns name for the molten data values column(s). The default name is ’value’. 

By using dcast() we reshape the data set from wide back to long. 

> gdp2_wdt <- dcast(gdp2_ldt, country ~ year, 
+ value.var = "GDP") 
> gdp2_wdt 

country year2020 year2021 year2022 
1: A 681 NA 625 
2: B 997 963 772 
3: C 752 557 727 
4: D 832 851 546 

In dcast() we need to use a formula of the form .LHS ∼ RHS. In our 
example, country is our id variable and year is casted away with the values 
of GDP fillig the corresponding entry in the data set. 

Next, we repeat the same operations with the pivot_longer() function and 
with the melt() function to reshape the data set from wide to long. However, this 
time we specify the pattern in the data set. 

> gdp2_l2 <- gdp2 %>% 
+ pivot_longer(!country, 
+ names_prefix = "year", 
+ names_to = "year", 
+ values_to = "GDP") 
> gdp2_l2 
# A tibble: 12 x 3 

country year GDP 
<chr> <chr> <int> 

1 A 2020 681 
2 A 2021 NA 
3 A 2022 625 
4 B 2020 997 
5 B 2021 963
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6 B 2022 772 
7 C 2020 752 
8 C 2021 557 
9 C 2022 727 

10 D 2020 832 
11 D 2021 851 
12 D 2022 546 

By using name_prefix we removed the word year from the numeric year. 
However, note that the year column is character. 

By using measure = patterns() in melt() we identify the column to 
melt by the pattern. Note that in this case we did not remove the word year. We  
will manipulate strings in Sect. 1.7.2. 

> gdp2_ldt2 <- melt(setDT(gdp2), id = 1, 
+ measure = patterns("year")) 
> gdp2_ldt2 

country variable value 
1: A year2020 681 
2: B year2020 997 
3: C year2020 752 
4: D year2020 832 
5: A year2021 NA 
6: B year2021 963 
7: C year2021 557 
8: D year2021 851 
9: A year2022 625 

10: B year2022 772 
11: C year2022 727 
12: D year2022 546 

Finally, we see how to reshape the data set with multiple id vars. We use the gdp 
data frame 

> gdp 
country isocode year2020 year2021 year2022 

1 A A1 681 NA 625 
2 B B2 997 963 772 
3 C C3 752 557 727 
4 D D4 832 851 546 

With pivot_longer() 

> gdp_l <- gdp %>% 
+ pivot_longer(cols = 3:length(colnames(gdp)), 
+ names_prefix = "year", 
+ names_to = "year", 
+ values_to = "GDP", 
+ values_drop_na = TRUE) 
> gdp_l 
# A tibble: 11 x 4 

country isocode year GDP 
<chr> <chr> <chr> <int> 

1 A A1 2020 681 
2 A A1 2022 625 
3 B B2 2020 997 
4 B B2 2021 963 
5 B B2 2022 772 
6 C C3 2020 752 
7 C C3 2021 557 
8 C C3 2022 727 
9 D D4 2020 832 

10 D D4 2021 851 
11 D D4 2022 546
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Note that by setting values_drop_na = TRUE we removed the observation 
with the missing value. If we do not include it 

> gdp %>% 
+ pivot_longer(cols = 3:length(colnames(gdp)), 
+ names_prefix = "year", 
+ names_to = "year", 
+ values_to = "GDP") 
# A tibble: 12 x 4 

country isocode year GDP 
<chr> <chr> <chr> <int> 

1 A A1 2020 681 
2 A A1 2021 NA 
3 A A1 2022 625 
4 B B2 2020 997 
5 B B2 2021 963 
6 B B2 2022 772 
7 C C3 2020 752 
8 C C3 2021 557 
9 C C3 2022 727 

10 D D4 2020 832 
11 D D4 2021 851 
12 D D4 2022 546 

Note that we just printed, but we did not store, the result of the previous 
operation. 

To reshape from wide to long 

> gdp_w <- gdp_l %>% 
+ pivot_wider(names_prefix = "year", 
+ names_from = "year", 
+ values_from = "GDP", 
+ names_sort = TRUE, 
+ values_fill = NA) 
> gdp_w 
# A tibble: 4 x 5 

country isocode year2020 year2021 year2022 
<chr> <chr> <int> <int> <int> 

1 A A1 681 NA 625 
2 B B2 997 963 772 
3 C C3 752 557 727 
4 D D4 832 851 546 

We are back to the wide format. Note that by setting vales_fill = NA we 
introduce the entry with the missing value in the data set. 

Now we repeat the same operations with the data.table package 

> gdp_l2 <- melt(setDT(gdp), id.vars = 1:2, 
+ measure = 3:length(colnames(gdp)), 
+ variable.name = "year", 
+ value.name = "GDP", 
+ na.rm = TRUE) 
> gdp_l2 

country isocode year GDP 
1: A A1 year2020 681 
2: B B2 year2020 997 
3: C C3 year2020 752 
4: D D4 year2020 832 
5: B B2 year2021 963 
6: C C3 year2021 557 
7: D D4 year2021 851 
8: A A1 year2022 625 
9: B B2 year2022 772 

10: C C3 year2022 727 
11: D D4 year2022 546
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> gdp_w2 <- dcast(gdp_l2, country + isocode ~ year, 
+ value.var = "GDP", fill = NA) 
> gdp_w2 

country isocode year2020 year2021 year2022 
1: A A1 681 NA 625 
2: B B2 997 963 772 
3: C C3 752 557 727 
4: D D4 832 851 546 

Working with Strings 

We can use the stringr package to manipulate strings.16 For example, 
let’s remove the word year from the year column in gdp2_l by using the 
str_remove_all() function 

> gdp2_l$year <- str_remove_all(gdp2_l$year, "year") 
> gdp2_l 
# A tibble: 12 x 3 

country year GDP 
<chr> <chr> <int> 

1 A 2020 681 
2 A 2021 NA 
3 A 2022 625 
4 B 2020 997 
5 B 2021 963 
6 B 2022 772 
7 C 2020 752 
8 C 2021 557 
9 C 2022 727 

10 D 2020 832 
11 D 2021 851 
12 D 2022 546 

We removed year but it is still a character. Let’s convert into numeric 

> gdp2_l$year <- as.numeric(gdp2_l$year) 
> str(gdp2_l) 
tibble [12 x 3] (S3: tbl_df/tbl/data.frame) 
$ country: chr [1:12] "A" "A" "A" "B" ... 
$ year : num [1:12] 2020 2021 2022 2020 2021 ... 
$ GDP : int [1:12] 681 NA 625 997 963 772 752 557 727 832 ... 

There are several functions to work with strings in stringr. They start with 
str_. Read their documentation to learn more about them. 

case_when() (if else) 

Country A and country B belong to region W, while country C and country D belong 
to region Z. We want to add this information in the gdp2_l data set. We have 
already seen how to accomplish this task with the ifelse() function. In this case, 
however, it is more convenient to use the case_when() function from the dplyr 
package. This function allows you to vectorize multiple if_else() statements.

16 In Sect. 2.4 we will work with the stringi package. 
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> gdp2_l <- gdp2_l %>% 
+ mutate(region = case_when( 
+ country == "A" | country == "B" ~ "W", 
+ country == "C" | country == "D" ~ "Z", 
+ ))  
> gdp2_l 
# A tibble: 12 x 4 

country year GDP region 
<chr> <dbl> <int> <chr> 

1 A 2020 681 W 
2 A 2021 NA W 
3 A 2022 625 W 
4 B 2020 997 W 
5 B 2021 963 W 
6 B 2022 772 W 
7 C 2020 752 Z 
8 C 2021 557 Z 
9 C 2022 727 Z 

10 D 2020 832 Z 
11 D 2021 851 Z 
12 D 2022 546 Z 

Note that we nested case_when() in mutate(), another function from the 
dplyr package that allows to add new variables to the data set. 

In case_when() we use a formula where the left hand side (LHS) determines 
which values match this case while the right hand side (RHS) provides the 
replacement value. 

Grouping by One or More Variables 

Often it happens that we have to perform operations per group of variables in a data 
set. For this task we can use the group_by() function from the dplyr package. 

Let’s say that we want to sum the GDP per country in gdp2_l. We can do as 
follow 

> gdp2_l <- gdp2_l %>% 
+ group_by(country) %>% 
+ mutate(totalGDP = sum(GDP, na.rm = TRUE)) 
> gdp2_l 
# A tibble: 12 x 5 
# Groups: country [4] 

country year GDP region totalGDP 
<chr> <dbl> <int> <chr> <int> 

1 A 2020 681 W 1306 
2 A 2021 NA W 1306 
3 A 2022 625 W 1306 
4 B 2020 997 W 2732 
5 B 2021 963 W 2732 
6 B 2022 772 W 2732 
7 C 2020 752 Z 2036 
8 C 2021 557 Z 2036 
9 C 2022 727 Z 2036 

10 D 2020 832 Z 2229 
11 D 2021 851 Z 2229 
12 D 2022 546 Z 2229 

Note that we need to set na.rm = TRUE in sum() because the series contains 
a missing value. 

An alternative is to use the base function ave() as follows
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> gdp2_ave <- gdp2_l 
> gdp2_ave$totalGDPave <- ave(gdp2_ave$GDP, 
+ interaction(gdp2_ave$country), 
+ FUN = function(x) sum(x, na.rm = TRUE)) 
> gdp2_ave 
# A tibble: 12 x 6 
# Groups: country [4] 

country year GDP region totalGDP totalGDPave 
<chr> <dbl> <int> <chr> <int> <int> 

1 A 2020 681 W 1306 1306 
2 A 2021 NA W 1306 1306 
3 A 2022 625 W 1306 1306 
4 B 2020 997 W 2732 2732 
5 B 2021 963 W 2732 2732 
6 B 2022 772 W 2732 2732 
7 C 2020 752 Z 2036 2036 
8 C 2021 557 Z 2036 2036 
9 C 2022 727 Z 2036 2036 

10 D 2020 832 Z 2229 2229 
11 D 2021 851 Z 2229 2229 
12 D 2022 546 Z 2229 2229 

Merging Data Sets 

Now we are ready to merge the gdp2_l data frame with the trade data frame. 
Let’s print them again 
> gdp2_l 
# A tibble: 12 x 5 
# Groups: country [4] 

country year GDP region totalGDP 
<chr> <dbl> <int> <chr> <int> 

1 A 2020 681 W 1306 
2 A 2021 NA W 1306 
3 A 2022 625 W 1306 
4 B 2020 997 W 2732 
5 B 2021 963 W 2732 
6 B 2022 772 W 2732 
7 C 2020 752 Z 2036 
8 C 2021 557 Z 2036 
9 C 2022 727 Z 2036 

10 D 2020 832 Z 2229 
11 D 2021 851 Z 2229 
12 D 2022 546 Z 2229 
> trade 

year reporter partner export 
1 2020 A B 80 
2 2021 A B 128 
3 2022 A B 100 
4 2020 A C 63 
5 2021 A C 116 
6 2022 A C 91 
7 2020 B A 99 
8 2021 B A 92 
9 2022 B A 150 
10 2020 B C 63 
11 2021 B C 74 
12 2022 B C 139 
13 2020 C A 140 
14 2021 C A 118 
15 2022 C A 140 
16 2020 C B 106 
17 2021 C B 141 
18 2022 C B 58
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Our goal is to put the data from the two data frames in a single data frame. We 
need an id column in both data frames to accomplish this task. In our case, we will 
use the country column in gdp2_l and the reporter column in trade. Note  
that two data frames to merge may not have exactly the same entries. This is the 
case for this example, where in trade we do not have any country D. This implies 
that we have to make a choice about keeping or dropping the values for D. 

We will see several options to merge with the base merge() function, with the 
dplyr package and with the data.table package. 

Let’s start with the base merge() function. We refer to gdp2_l as the x data 
set and trade as the y data set. We merge them by using the info in country and 
year in the x data set and reporter and year in the y data set 
> df <- merge(gdp2_l, trade, 
+ by.x = c("country", "year"), 
+ by.y = c("reporter", "year")) 
> df  

country year GDP region totalGDP partner export 
1 A 2020 681 W 1306 B 80 
2 A 2020 681 W 1306 C 63 
3 A 2021 NA W 1306 B 128 
4 A 2021 NA W 1306 C 116 
5 A 2022 625 W 1306 B 100 
6 A 2022 625 W 1306 C 91 
7 B 2020 997 W 2732 A 99 
8 B 2020 997 W 2732 C 63 
9 B 2021 963 W 2732 A 92 
10 B 2021 963 W 2732 C 74 
11 B 2022 772 W 2732 A 150 
12 B 2022 772 W 2732 C 139 
13 C 2020 752 Z 2036 A 140 
14 C 2020 752 Z 2036 B 106 
15 C 2021 557 Z 2036 A 118 
16 C 2021 557 Z 2036 B 141 
17 C 2022 727 Z 2036 A 140 
18 C 2022 727 Z 2036 B 58 
> class(df) 
[1] "data.frame" 

Note that the info for D has been dropped. To keep it we can set all = TRUE 
> df2 <- merge(gdp2_l, trade, 
+ by.x = c("country", "year"), 
+ by.y = c("reporter", "year"), 
+ all = TRUE) 
> df2 

country year GDP region totalGDP partner export 
1 A 2020 681 W 1306 B 80 
2 A 2020 681 W 1306 C 63 
3 A 2021 NA W 1306 B 128 
4 A 2021 NA W 1306 C 116 
5 A 2022 625 W 1306 B 100 
6 A 2022 625 W 1306 C 91 
7 B 2020 997 W 2732 A 99 
8 B 2020 997 W 2732 C 63 
9 B 2021 963 W 2732 A 92 
10 B 2021 963 W 2732 C 74 
11 B 2022 772 W 2732 A 150 
12 B 2022 772 W 2732 C 139 
13 C 2020 752 Z 2036 A 140 
14 C 2020 752 Z 2036 B 106 
15 C 2021 557 Z 2036 A 118 
16 C 2021 557 Z 2036 B 141 
17 C 2022 727 Z 2036 A 140
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18 C 2022 727 Z 2036 B 58 
19 D 2020 832 Z 2229 <NA> NA 
20 D 2021 851 Z 2229 <NA> NA 
21 D 2022 546 Z 2229 <NA> NA 

Now we kept D but obviously we have missing values for partner and 
export because we do not have D in trade. 

Alternatively, to keep D we can set all.x = TRUE because D is in the x data 
set, i.e. in gdp2_l 

> df3 <- merge(gdp2_l, trade, 
+ by.x = c("country", "year"), 
+ by.y = c("reporter", "year"), 
+ all.x = TRUE) 
> df3 

country year GDP region totalGDP partner export 
1 A 2020 681 W 1306 B 80 
2 A 2020 681 W 1306 C 63 
3 A 2021 NA W 1306 B 128 
4 A 2021 NA W 1306 C 116 
5 A 2022 625 W 1306 B 100 
6 A 2022 625 W 1306 C 91 
7 B 2020 997 W 2732 A 99 
8 B 2020 997 W 2732 C 63 
9 B 2021 963 W 2732 A 92 
10 B 2021 963 W 2732 C 74 
11 B 2022 772 W 2732 A 150 
12 B 2022 772 W 2732 C 139 
13 C 2020 752 Z 2036 A 140 
14 C 2020 752 Z 2036 B 106 
15 C 2021 557 Z 2036 A 118 
16 C 2021 557 Z 2036 B 141 
17 C 2022 727 Z 2036 A 140 
18 C 2022 727 Z 2036 B 58 
19 D 2020 832 Z 2229 <NA> NA 
20 D 2021 851 Z 2229 <NA> NA 
21 D 2022 546 Z 2229 <NA> NA 

On the other hand, if we set all.y = TRUE we drop D because it is not in the 
y data set, i.e. in trade 

> df4 <- merge(gdp2_l, trade, 
+ by.x = c("country", "year"), 
+ by.y = c("reporter", "year"), 
+ all.y = TRUE) 
> df4 

country year GDP region totalGDP partner export 
1 A 2020 681 W 1306 B 80 
2 A 2020 681 W 1306 C 63 
3 A 2021 NA W 1306 B 128 
4 A 2021 NA W 1306 C 116 
5 A 2022 625 W 1306 B 100 
6 A 2022 625 W 1306 C 91 
7 B 2020 997 W 2732 A 99 
8 B 2020 997 W 2732 C 63 
9 B 2021 963 W 2732 A 92 
10 B 2021 963 W 2732 C 74 
11 B 2022 772 W 2732 A 150 
12 B 2022 772 W 2732 C 139 
13 C 2020 752 Z 2036 A 140 
14 C 2020 752 Z 2036 B 106 
15 C 2021 557 Z 2036 A 118 
16 C 2021 557 Z 2036 B 141 
17 C 2022 727 Z 2036 A 140 
18 C 2022 727 Z 2036 B 58
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Next we repeat the same operations with the functions from the dplyr package. 
We use again x and y to refer to the data set we input in the left argument and in the 
right argument in the function. 

By using the inner_join() function, we include all the rows in x and y. We  
match the variables in the two data sets to join by with by 
> df5 <- inner_join(gdp2_l, trade, 
+ by = c("country" = "reporter", 
+ "year" = "year")) 
> df5 
# A tibble: 18 x 7 
# Groups: country [3] 

country year GDP region totalGDP partner export 
<chr> <dbl> <int> <chr> <int> <chr> <int> 

1 A 2020 681 W 1306 B 80 
2 A 2020 681 W 1306 C 63 
3 A 2021 NA W 1306 B 128 
4 A 2021 NA W 1306 C 116 
5 A 2022 625 W 1306 B 100 
6 A 2022 625 W 1306 C 91 
7 B 2020 997 W 2732 A 99 
8 B 2020 997 W 2732 C 63 
9 B 2021 963 W 2732 A 92 

10 B 2021 963 W 2732 C 74 
11 B 2022 772 W 2732 A 150 
12 B 2022 772 W 2732 C 139 
13 C 2020 752 Z 2036 A 140 
14 C 2020 752 Z 2036 B 106 
15 C 2021 557 Z 2036 A 118 
16 C 2021 557 Z 2036 B 141 
17 C 2022 727 Z 2036 A 140 
18 C 2022 727 Z 2036 B 58 

By using the full_join() function, we include all the rows in x or y 
> df6 <- full_join(gdp2_l, trade, 
+ by = c("country" = "reporter", 
+ "year" = "year")) 
> df6 # include D 
# A tibble: 21 x 7 
# Groups: country [4] 

country year GDP region totalGDP partner export 
<chr> <dbl> <int> <chr> <int> <chr> <int> 

1 A 2020 681 W 1306 B 80 
2 A 2020 681 W 1306 C 63 
3 A 2021 NA W 1306 B 128 
4 A 2021 NA W 1306 C 116 
5 A 2022 625 W 1306 B 100 
6 A 2022 625 W 1306 C 91 
7 B 2020 997 W 2732 A 99 
8 B 2020 997 W 2732 C 63 
9 B 2021 963 W 2732 A 92 

10 B 2021 963 W 2732 C 74 
# ... with 11 more rows 

By using the left_join() function, we include all the rows in x 
> df7 <- left_join(gdp2_l, trade, 
+ by = c("country" = "reporter", 
+ "year" = "year")) 
> df7 # include D 
# A tibble: 21 x 7 
# Groups: country [4] 

country year GDP region totalGDP partner export 
<chr> <dbl> <int> <chr> <int> <chr> <int> 

1 A 2020 681 W 1306 B 80
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2 A 2020 681 W 1306 C 63 
3 A 2021 NA W 1306 B 128 
4 A 2021 NA W 1306 C 116 
5 A 2022 625 W 1306 B 100 
6 A 2022 625 W 1306 C 91 
7 B 2020 997 W 2732 A 99 
8 B 2020 997 W 2732 C 63 
9 B 2021 963 W 2732 A 92 

10 B 2021 963 W 2732 C 74 
# ... with 11 more rows 

By using the right_join() function, we include all the rows in y 

> df8 <- right_join(gdp2_l, trade, 
+ by = c("country" = "reporter", 
+ "year" = "year")) 
> df8 # does not include D 
# A tibble: 18 x 7 
# Groups: country [3] 

country year GDP region totalGDP partner export 
<chr> <dbl> <int> <chr> <int> <chr> <int> 

1 A 2020 681 W 1306 B 80 
2 A 2020 681 W 1306 C 63 
3 A 2021 NA W 1306 B 128 
4 A 2021 NA W 1306 C 116 
5 A 2022 625 W 1306 B 100 
6 A 2022 625 W 1306 C 91 
7 B 2020 997 W 2732 A 99 
8 B 2020 997 W 2732 C 63 
9 B 2021 963 W 2732 A 92 

10 B 2021 963 W 2732 C 74 
11 B 2022 772 W 2732 A 150 
12 B 2022 772 W 2732 C 139 
13 C 2020 752 Z 2036 A 140 
14 C 2020 752 Z 2036 B 106 
15 C 2021 557 Z 2036 A 118 
16 C 2021 557 Z 2036 B 141 
17 C 2022 727 Z 2036 A 140 
18 C 2022 727 Z 2036 B 58 

Other two useful functions are semi_join() which returns all rows from x 
with a match in y and anti_join() which returns all rows from x without a 
match in y. 

Finally, we implement the same operations with the merge() function from the 
data.table package. The arguments of this function are the same as the base 
merge() function. Before merging the data frames, we set them as data.table 
objects 

> gdp2_ldt <- setDT(gdp2_l) 
> trade_dt <- setDT(trade) 
> dfdt <- merge(gdp2_ldt, trade_dt, 
+ by.x = c("country", "year"), 
+ by.y = c("reporter", "year")) 
> dfdt 

country year GDP region totalGDP partner export 
1: A 2020 681 W 1306 B 80 
2: A 2020 681 W 1306 C 63 
3: A 2021 NA W 1306 B 128 
4: A 2021 NA W 1306 C 116 
5: A 2022 625 W 1306 B 100 
6: A 2022 625 W 1306 C 91 
7: B 2020 997 W 2732 A 99 
8: B 2020 997 W 2732 C 63 
9: B 2021 963 W 2732 A 92
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10: B 2021 963 W 2732 C 74 
11: B 2022 772 W 2732 A 150 
12: B 2022 772 W 2732 C 139 
13: C 2020 752 Z 2036 A 140 
14: C 2020 752 Z 2036 B 106 
15: C 2021 557 Z 2036 A 118 
16: C 2021 557 Z 2036 B 141 
17: C 2022 727 Z 2036 A 140 
18: C 2022 727 Z 2036 B 58 
> class(dfdt) 
[1] "data.table" "data.frame" 
> df2dt <- merge(gdp2_ldt, trade_dt, 
+ by.x = c("country", "year"), 
+ by.y = c("reporter", "year"), 
+ all = TRUE) 
> df2dt 

country year GDP region totalGDP partner export 
1: A 2020 681 W 1306 B 80 
2: A 2020 681 W 1306 C 63 
3: A 2021 NA W 1306 B 128 
4: A 2021 NA W 1306 C 116 
5: A 2022 625 W 1306 B 100 
6: A 2022 625 W 1306 C 91 
7: B 2020 997 W 2732 A 99 
8: B 2020 997 W 2732 C 63 
9: B 2021 963 W 2732 A 92 

10: B 2021 963 W 2732 C 74 
11: B 2022 772 W 2732 A 150 
12: B 2022 772 W 2732 C 139 
13: C 2020 752 Z 2036 A 140 
14: C 2020 752 Z 2036 B 106 
15: C 2021 557 Z 2036 A 118 
16: C 2021 557 Z 2036 B 141 
17: C 2022 727 Z 2036 A 140 
18: C 2022 727 Z 2036 B 58 
19: D 2020 832 Z 2229 <NA> NA 
20: D 2021 851 Z 2229 <NA> NA 
21: D 2022 546 Z 2229 <NA> NA 

country year GDP region totalGDP partner export 

> df3dt <- merge(gdp2_ldt, trade_dt, 
+ by.x = c("country", "year"), 
+ by.y = c("reporter", "year"), 
+ all.x = TRUE) 
> df3dt 

country year GDP region totalGDP partner export 
1: A 2020 681 W 1306 B 80 
2: A 2020 681 W 1306 C 63 
3: A 2021 NA W 1306 B 128 
4: A 2021 NA W 1306 C 116 
5: A 2022 625 W 1306 B 100 
6: A 2022 625 W 1306 C 91 
7: B 2020 997 W 2732 A 99 
8: B 2020 997 W 2732 C 63 
9: B 2021 963 W 2732 A 92 

10: B 2021 963 W 2732 C 74 
11: B 2022 772 W 2732 A 150 
12: B 2022 772 W 2732 C 139 
13: C 2020 752 Z 2036 A 140 
14: C 2020 752 Z 2036 B 106 
15: C 2021 557 Z 2036 A 118 
16: C 2021 557 Z 2036 B 141 
17: C 2022 727 Z 2036 A 140 
18: C 2022 727 Z 2036 B 58 
19: D 2020 832 Z 2229 <NA> NA 
20: D 2021 851 Z 2229 <NA> NA 
21: D 2022 546 Z 2229 <NA> NA
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country year GDP region totalGDP partner export 

> df4dt <- merge(gdp2_ldt, trade_dt, 
+ by.x = c("country", "year"), 
+ by.y = c("reporter", "year"), 
+ all.y = TRUE) 
> df4dt 

country year GDP region totalGDP partner export 
1: A 2020 681 W 1306 B 80 
2: A 2020 681 W 1306 C 63 
3: A 2021 NA W 1306 B 128 
4: A 2021 NA W 1306 C 116 
5: A 2022 625 W 1306 B 100 
6: A 2022 625 W 1306 C 91 
7: B 2020 997 W 2732 A 99 
8: B 2020 997 W 2732 C 63 
9: B 2021 963 W 2732 A 92 

10: B 2021 963 W 2732 C 74 
11: B 2022 772 W 2732 A 150 
12: B 2022 772 W 2732 C 139 
13: C 2020 752 Z 2036 A 140 
14: C 2020 752 Z 2036 B 106 
15: C 2021 557 Z 2036 A 118 
16: C 2021 557 Z 2036 B 141 
17: C 2022 727 Z 2036 A 140 
18: C 2022 727 Z 2036 B 58 

Aggregating Data 

Another operation that we often implement consists in aggregating some variables 
in the data frame. In this example, we compute the mean of GDP and export by 
country and partner in df4. Again, we show how we can accomplish this task 
with the base aggregate() function, with dplyr, and with data.table 

In aggregate(), in a  list() we indicate the variables to aggregate, in by a 
list of grouping elements, and in FUN the function to use to aggregate. 
> df4agg <- aggregate.data.frame(list(GDP_mean = df4$GDP, 
+ export_mean = df4$export), 
+ by = list(country = df4$country, 
+ partner = df4$partner), 
+ FUN = function(x) mean(x, na.rm = T)) 
> df4agg 

country partner GDP_mean export_mean 
1 B A 910.6667 113.6667 
2 C A 678.6667 132.6667 
3 A B 653.0000 102.6667 
4 C B 678.6667 101.6667 
5 A C 653.0000 90.0000 
6 B C 910.6667 92.0000 

With the dplyr package, we combine group_by() with summarize(). 
Here, I show you two ways. You can refer to https://dplyr.tidyverse.org/reference/ 
summarise_all.html for additional examples. 
> df4agg2 <- df4 %>% 
+ group_by(country, partner) %>% 
+ summarize(GDP_mean = mean(GDP, na.rm = TRUE), 
+ export_mean = mean(export, na.rm = TRUE)) 
‘summarise()‘ regrouping output by ’country’ (override with ‘.groups‘ argument) 
> df4agg2

https://dplyr.tidyverse.org/reference/summarise_all.html
https://dplyr.tidyverse.org/reference/summarise_all.html
https://dplyr.tidyverse.org/reference/summarise_all.html
https://dplyr.tidyverse.org/reference/summarise_all.html
https://dplyr.tidyverse.org/reference/summarise_all.html
https://dplyr.tidyverse.org/reference/summarise_all.html
https://dplyr.tidyverse.org/reference/summarise_all.html
https://dplyr.tidyverse.org/reference/summarise_all.html
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# A tibble: 6 x 4 
# Groups: country [3] 

country partner GDP_mean export_mean 
<chr> <chr> <dbl> <dbl> 

1 A B 653 103. 
2 A C 653 90 
3 B A 911. 114. 
4 B C 911. 92 
5 C A 679. 133. 
6 C B 679. 102. 
> df4agg2 <- df4 %>% 
+ group_by(country, partner) %>% 
+ summarize(across(c("GDP", "export"), 
+ ~ mean(.x, na.rm = TRUE))) 
‘summarise()‘ regrouping output by ’country’ (override with ‘.groups‘ argument) 
> df4agg2 
# A tibble: 6 x 4 
# Groups: country [3] 

country partner GDP export 
<chr> <chr> <dbl> <dbl> 

1 A B 653 103. 
2 A C 653 90 
3 B A 911. 114. 
4 B C 911. 92 
5 C A 679. 133. 
6 C B 679. 102. 

Finally, with data.table 
> df4dtagg <- df4dt[, list(GDP_mean = mean(GDP, na.rm = TRUE), 
+ export_mean = mean(export, na.rm = TRUE)), 
+ by = list(country, partner)] 
> df4dtagg 

country partner GDP_mean export_mean 
1: A B 653.0000 102.6667 
2: A C 653.0000 90.0000 
3: B A 910.6667 113.6667 
4: B C 910.6667 92.0000 
5: C A 678.6667 132.6667 
6: C B 678.6667 101.6667 

Detecting Missing Values 

In gdp2_l we have a missing value. We can clearly see it in this small data frame. 
But how can we detect it in a larger data frame? 

First, we can run the summary() function 
> summary(gdp2_l) 

country year GDP region 
Length:12 Min. :2020 Min. :546.0 Length:12 
Class :character 1st Qu.:2020 1st Qu.:653.0 Class :character 
Mode :character Median :2021 Median :752.0 Mode :character 

Mean :2021 Mean :754.8 
3rd Qu.:2022 3rd Qu.:841.5 
Max. :2022 Max. :997.0 

NA’s :1 
totalGDP 

Min. :1306 
1st Qu.:1854 
Median :2132 
Mean :2076 
3rd Qu.:2355 
Max. :2732
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We see that GDP has one missing value. 
Alternatively, we can use the is.na() function. The TRUE value indicates the 

presence of the missing value 
> is.na(gdp2_l) 

country year GDP region totalGDP 
[1,] FALSE FALSE FALSE FALSE FALSE 
[2,] FALSE FALSE TRUE FALSE FALSE 
[3,] FALSE FALSE FALSE FALSE FALSE 
[4,] FALSE FALSE FALSE FALSE FALSE 
[5,] FALSE FALSE FALSE FALSE FALSE 
[6,] FALSE FALSE FALSE FALSE FALSE 
[7,] FALSE FALSE FALSE FALSE FALSE 
[8,] FALSE FALSE FALSE FALSE FALSE 
[9,] FALSE FALSE FALSE FALSE FALSE 

[10,] FALSE FALSE FALSE FALSE FALSE 
[11,] FALSE FALSE FALSE FALSE FALSE 
[12,] FALSE FALSE FALSE FALSE FALSE 

Let’s locate it by nesting is.na() in the which() function 
> which(is.na(gdp2_l)) 
[1] 26 

The output indicates that the missing value is the 26th value by counting from 
top to down from the first column. Still is quite hard to spot it in a large data set. 
To get a better location for the missing value, we add arr.ind = TRUE to the 
previous function to return the indices for the matrix 
> which(is.na(gdp2_l), arr.ind = TRUE) 

row col 
[1,] 2 3 

Now we know that the missing value is located at row 2 and column 3. 
In the next part of this section, we simply learn a few functions to work with 

missing values. 
First, we can omit the observation with the missing value by using na.omit() 

> gdp_NAomit <- na.omit(gdp2_l) 
> gdp_NAomit 

country year GDP region totalGDP 
1: A 2020 681 W 1306 
2: A 2022 625 W 1306 
3: B 2020 997 W 2732 
4: B 2021 963 W 2732 
5: B 2022 772 W 2732 
6: C 2020 752 Z 2036 
7: C 2021 557 Z 2036 
8: C 2022 727 Z 2036 
9: D 2020 832 Z 2229 

10: D 2021 851 Z 2229 
11: D 2022 546 Z 2229 

We dropped the observation for country A and year 2021. 
Alternatively, we can use complete.cases() which returns a logical vector 

indicating which cases are complete, i.e. have no missing values 
> gdp2_l[complete.cases(gdp2_l), ] 

country year GDP region totalGDP 
1: A 2020 681 W 1306 
2: A 2022 625 W 1306 
3: B 2020 997 W 2732 
4: B 2021 963 W 2732
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5: B 2022 772 W 2732 
6: C 2020 752 Z 2036 
7: C 2021 557 Z 2036 
8: C 2022 727 Z 2036 
9: D 2020 832 Z 2229 

10: D 2021 851 Z 2229 
11: D 2022 546 Z 2229 

Without going into detail of missing data analysis, let’s see how we can simply 
replace the missing value. For example, we can forward the previous value. For 
this task we use the na.locf() function from the zoo package. Since we have to 
make sure that the previous value belong to the same country, we use group_by() 
> gdp2_l %>% 
+ group_by(country) %>% 
+ mutate(gdp_NAomit = na.locf(GDP)) 
# A tibble: 12 x 6 
# Groups: country [4] 

country year GDP region totalGDP gdp_NAomit 
<chr> <dbl> <int> <chr> <int> <int> 

1 A 2020 681 W 1306 681 
2 A 2021 NA W 1306 681 
3 A 2022 625 W 1306 625 
4 B 2020 997 W 2732 997 
5 B 2021 963 W 2732 963 
6 B 2022 772 W 2732 772 
7 C 2020 752 Z 2036 752 
8 C 2021 557 Z 2036 557 
9 C 2022 727 Z 2036 727 

10 D 2020 832 Z 2229 832 
11 D 2021 851 Z 2229 851 
12 D 2022 546 Z 2229 546 

In this example, we generated a new column gdp_NAomit where we replaced 
the missing value. Instead of forwarding, we can backward a value. We use the same 
function as before but we add fromLast = TRUE 
> gdp2_l %>% 
+ group_by(country) %>% 
+ mutate(gdp_NAomit = na.locf(GDP, 
+ fromLast = TRUE)) 
# A tibble: 12 x 6 
# Groups: country [4] 

country year GDP region totalGDP gdp_NAomit 
<chr> <dbl> <int> <chr> <int> <int> 

1 A 2020 681 W 1306 681 
2 A 2021 NA W 1306 625 
3 A 2022 625 W 1306 625 
4 B 2020 997 W 2732 997 
5 B 2021 963 W 2732 963 
6 B 2022 772 W 2732 772 
7 C 2020 752 Z 2036 752 
8 C 2021 557 Z 2036 557 
9 C 2022 727 Z 2036 727 

10 D 2020 832 Z 2229 832 
11 D 2021 851 Z 2229 851 
12 D 2022 546 Z 2229 546 

Alternatively, we can replace it with the average of the previous and following 
value. We can use na.approx() for this task. Note that this is a generic function 
for replacing each NA with interpolated values. 
> gdp3 <- gdp2_l %>% 
+ group_by(country) %>%
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+ mutate(GDP = na.approx(GDP)) 
> gdp3 
# A tibble: 12 x 5 
# Groups: country [4] 

country year GDP region totalGDP 
<chr> <dbl> <dbl> <chr> <int> 

1 A 2020 681 W 1306 
2 A 2021 653 W 1306 
3 A 2022 625 W 1306 
4 B 2020 997 W 2732 
5 B 2021 963 W 2732 
6 B 2022 772 W 2732 
7 C 2020 752 Z 2036 
8 C 2021 557 Z 2036 
9 C 2022 727 Z 2036 

10 D 2020 832 Z 2229 
11 D 2021 851 Z 2229 
12 D 2022 546 Z 2229 

Another alternative to replace missing values is to use fill() 

> gdp2_l %>% 
+ group_by(country) %>% 
+ fill(GDP, .direction = "up") 
# A tibble: 12 x 5 
# Groups: country [4] 

country year GDP region totalGDP 
<chr> <dbl> <int> <chr> <int> 

1 A 2020 681 W 1306 
2 A 2021 625 W 1306 
3 A 2022 625 W 1306 
4 B 2020 997 W 2732 
5 B 2021 963 W 2732 
6 B 2022 772 W 2732 
7 C 2020 752 Z 2036 
8 C 2021 557 Z 2036 
9 C 2022 727 Z 2036 

10 D 2020 832 Z 2229 
11 D 2021 851 Z 2229 
12 D 2022 546 Z 2229 

Creating Lag Variables 

There are different options to create lag variables but in this example we will see 
only a case with the lag() function from dplyr. We will use another approach in 
Sect. 2.2 with the plm package. 

Since we have different countries, we have to make sure that the lag variable 
belongs to the appropriate country. Consequently, we need to use group_by() 
to group the series by country. Note that we use dplyr::lag to tell R that we 
want to use the lag() function from the dplyr package. Since there are more than 
one functions named lag(), by specifying the package we avoid possible errors. 
In lag(), n gives the number of positions to lead or lag by. 

> gdp3 <- gdp3 %>% 
+ group_by(country) %>% 
+ mutate(Lgdp = dplyr::lag(GDP, n = 1))  
> gdp3 
# A tibble: 12 x 6 
# Groups: country [4]
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country year GDP region totalGDP Lgdp 
<chr> <dbl> <dbl> <chr> <int> <dbl> 

1 A 2020 681 W 1306 NA 
2 A 2021 653 W 1306 681 
3 A 2022 625 W 1306 653 
4 B 2020 997 W 2732 NA 
5 B 2021 963 W 2732 997 
6 B 2022 772 W 2732 963 
7 C 2020 752 Z 2036 NA 
8 C 2021 557 Z 2036 752 
9 C 2022 727 Z 2036 557 

10 D 2020 832 Z 2229 NA 
11 D 2021 851 Z 2229 832 
12 D 2022 546 Z 2229 851 

Subsetting a Data Frame 

We have already seen how to subset by using subset() 

> gdp3W <- subset(gdp3, region == "W") 
> gdp3W 
# A tibble: 6 x 6 
# Groups: country [2] 

country year GDP region totalGDP Lgdp 
<chr> <dbl> <dbl> <chr> <int> <dbl> 

1 A 2020 681 W 1306 NA 
2 A 2021 653 W 1306 681 
3 A 2022 625 W 1306 653 
4 B 2020 997 W 2732 NA 
5 B 2021 963 W 2732 997 
6 B 2022 772 W 2732 963 
> gdp3Z <- subset(gdp3, region != "W") 
> gdp3Z 
# A tibble: 6 x 6 
# Groups: country [2] 

country year GDP region totalGDP Lgdp 
<chr> <dbl> <dbl> <chr> <int> <dbl> 

1 C 2020 752 Z 2036 NA 
2 C 2021 557 Z 2036 752 
3 C 2022 727 Z 2036 557 
4 D 2020 832 Z 2229 NA 
5 D 2021 851 Z 2229 832 
6 D 2022 546 Z 2229 851 

An alternative is to use filter() from dplyr 

> gdp3C <- gdp3 %>% 
+ filter(country == "C") 
> gdp3C 
# A tibble: 3 x 6 
# Groups: country [1] 

country year GDP region totalGDP Lgdp 
<chr> <dbl> <dbl> <chr> <int> <dbl> 

1 C 2020 752 Z 2036 NA 
2 C 2021 557 Z 2036 752 
3 C 2022 727 Z 2036 557
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1.8 Retrieve the Data Sets from the WTO 

After reviewing the main features of R and the main data management operations, 
we are almost ready to start. We need to retrieve the data sets from the WTO for 
replication. We have two options. The first option is to visit the WTO website 
at https://www.wto.org/english/res_e/publications_e/practical_guide12_e.htm and 
download the files from the link “Download application and exercises files”. The 
second option is to download the data sets directly from R. Let’s use this second 
option. First, we download the files that are zipped. Please note that the download 
can last several minutes because we are downloading quite large data sets. Second, 
we unzip the files. Following, I show both the code from the R Script file 
download.file("https://www.wto.org/english/res_e/reser_e/PracticalGuideFiles. 

zip", destfile = "PracticalGuideFiles.zip") 
unzip("PracticalGuideFiles.zip") 

and from the console pane 

> download.file("https://www.wto.org/english/res_e/reser_e/PracticalGuideFiles. 
zip", + destfile = "PracticalGuideFiles.zip") 

trying URL ’https://www.wto.org/english/res_e/reser_e/PracticalGuideFiles.zip’ 
Content type ’application/x-zip-compressed’ length 467548975 bytes (445.9 MB) 
downloaded 445.9 MB 

> unzip("PracticalGuideFiles.zip") 

The files downloaded include all the data sets, the Stata do files where the code is 
written in Stata, and other files. Since we only use a few data sets, we create a new 
directory, datWTO, where we move the data sets of interest. 

dir.create("datWTO") 

We have to copy the data sets from the folder where they are stored into datWTO. 
We will use a for() loop for this task. First, we store the name of the data sets we 
use in dat1, dat2, and dat3. The corresponding data sets are stored in three 
different folders. Second, we generate a list that contains these three objects. Third, 
we use the for() loop where we define the path to the three folders where the data 
sets are stored and the path to datWTO 

dat1 <- c("aBilateralTrade.dta", "BilateralTrade.dta", 
"comtrade_exports_all_countries_2000.dta", 
"germany_trade_2004_hs6.dta", 
"GravityData.dta", 
"openness.dta", 
"TPP.dta", 
"unctad_tot_data.dta") 

dat2 <- "PMA_MEX.dta" 

dat3 <- c("dist_cepii224.dta", "Religion.dta", 
"tradeflows.csv", "joinwto.txt", 
"GDP.csv") 

datList <- list(dat1, dat2, dat3) 

for(i in 1:3){ 
p <- paste0("Practical guide to TPA/Chapter", i,  

"/Datasets/")


 -624
6942 a -624 6942 a
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file.copy(from = paste0(p, datList[[i]]), 
to = paste0("datWTO/", datList[[i]])) 

} 

Note the loop can take a few seconds to copy all the data sets. 
Now we are ready to work.



Chapter 2 
Analyzing Trade Flows 

2.1 Openness Across Countries 

Learning Objectives

� Import a Stata file
� Generate new variables
� Replace variables
� Subset a data set
� Run a regression
� Reproduce Stata robust standard errors
� Plot with plot() and ggplot()
� Generate new variables with ifelse()
� Handle missing values 

In this section we replicate the UNCTAD & WTO’s Stata code in R for assessing 
and estimating trade openness across countries.1 

Country’s trade openness is defined as 

.Opennessi = Exporti + Importi
GDPi

(2.1) 

1 The corresponding Stata code is available in openness.do. 
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Table 2.1 Openness for G20 countries, 2016 

Country GDP Export Import EXP/GDP IMP/GDP Openness 

ARG 554.8 57.7 55.6 10.4% 10.0% 20.4% 

AUS 1208.0 189.6 189.4 15.7% 15.7% 31.4% 

BRA 1793.9 185.2 137.5 10.3% 7.7% 18.0% 

CAN 1535.7 389.0 402.9 25.3% 26.2% 51.6% 

CHN 11190.9 2097.6 1587.9 18.7% 14.2% 32.9% 

FRA 2465.1 488.8 560.5 19.8% 22.7% 42.6% 

DEU 3477.7 1340.7 1060.6 38.6% 30.5% 69.1% 

IND 2274.2 260.3 356.7 11.4% 15.7% 27.1% 

IDN 932.2 144.4 135.6 15.5% 14.6% 30.0% 

ITA 1859.3 461.5 404.5 24.8% 21.8% 46.6% 

JPN 4949.2 644.9 606.9 13.0% 12.3% 25.3% 

KOR 1414.8 495.4 406.1 35.0% 28.7% 63.7% 

MEX 1077.7 373.9 387.0 34.7% 35.9% 70.6% 

RUS 1284.7 285.4 182.2 22.2% 14.2% 36.4% 

SAU 644.9 183.6 140.1 28.5% 21.7% 50.2% 

ZAF 295.7 74.1 74.7 25.1% 25.3% 50.3% 

TUR 863.7 142.5 198.6 16.5% 23.0% 39.5% 

GBR 2650.8 411.4 636.3 15.5% 24.0% 39.5% 

USA 18624.4 1450.4 2248.2 7.8% 12.1% 19.9% 

Source: GDP data from the World Bank. Trade data from COMTRADE 
Note: Values in billion US dollars 

Trade openness measures the integration of an economy into the world trade 
circuit. Table 2.1 reports the openness indicator for the G20 countries for the 2016. 
We observe different degrees of openness. Mexico and Germany record the highest 
degree of openness, around 70%, while United States and Brazil the lowest, around 
20%. 

Open a new script file in RStudio and save it as 02_openness_2edn. 
Let’s load the following packages by using the library() function. 

library("haven") # import STATA .dta file 
library("ggplot2") # plot with ggplot 
library("ggpubr") # combine ggplot plots 
library("sandwich") # replicate Stata robust standard errors 
library("lmtest") # replicate Stata robust standard errors 
library("estimatr") # estimation with Stata robust standard errors 

We start by importing the WTO’s openness.dta data set in R by using 
read_dta() from the haven package. Next, follow these steps: 

1. Check the class of the imported data set with class(); 
2. View the data set using View(); 
3. Retrieve the dimension of the data set with dim(); 
4. Obtain additional information about the structure of the data set using the str() 

function.
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#’ Note I assume that you set up the R project as described 
#’ in the introductory chapter and that you saved the data sets 
#’ in datWTO as shown in the last section in the introductory 
#’ chapter. 
openness <- read_dta("datWTO/openness.dta") 
class(openness) 
View(openness) 
dim(openness) 
str(openness) 

openness is a tibble data frame2 with 3161 observations and 10 variables 
such as reporter, ccode, year, year, trade openness in current terms, openc, 
trade openness in real terms, openk, total population, pop, GDP in current terms, 
gdp_current, landlocked, i.e. if a country has no access to the sea, ldlock, 
island, i.e. if a country is an island country, island, remoteness, remoteness, 
and remoteness as defined by Head, remoteness_head. Data cover the years 
1976–2004. 

Let’s start preparing the data set for the analysis. First, we create new variables. 
We do this simply by adding $ to the data set before the name of the new variable. 
Then we use the assignment operator <- to assign values to the new variable. 
In the first line of the next code block, for example, we create gdppc, GDP per 
capita, dividing gdp_current, current GDP, by pop, population, in the data set 
openness. 

Then, we create new variables as the logarithm of existing variables by using the 
log() function. Finally, we scale the variable for GDP capita, gdppc, dividing by 
1000. We simply assign a new value to replace it. 
# GDP per capita (gdppc) 
openness$gdppc <- openness$gdp_current / openness$pop 

# Log of variables 
openness$ln_open <- log(openness$openc) 
openness$ln_gdp <- log(openness$gdp_current) 
openness$ln_gdppc <- log(openness$gdppc) 
openness$ln_pop <- log(openness$pop) 
openness$ln_remot <- log(openness$remoteness) 
openness$ln_remot_head <- log(openness$remoteness_head) 

# Replace gdppc and ln_gdppc 
openness$gdppc <- openness$gdppc / 1000 
openness$ln_gdppc <- log(openness$gdppc) 

Our aim is to plot the data for year 2000 for countries whose trade openness in 
current terms, openc, is less or equal to 200. The first step is to subset the data set. 
We use the subset() function to subset the original data set if year is 2000 and 
if openc is less or equal to 200. 
# subset openness data set with year = 2000 and openc <= 200 
openness_2000 <- subset(openness, year == 2000 & openc <= 200) 
dim(openness_2000) 

Note that we create a new data set, openness_2000, to not overwrite the 
original data set. In the subset() function, first we enter the name of the data

2 Here, we just refer to it as a special class of data frame. You may refer to Wickham (2019a, p. 58) 
for more details. 
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set to subset and then the conditional statement, i.e., in this case, year equal to 
2000 (double equal sign) and openc less than or equal to 200. 

Now we are ready to plot. For this first example, we will plot by using the 
basic plot() function and the ggplot() function to highlight some differences. 
Afterwards, we will use ggplot() in the rest of this section and in the rest of the 
book. We will use again plot() only in Sect. 2.6. 
# Linear regression 
openness_2000_lm <- lm(openc ~ gdppc, data = openness_2000) 

# Basic plot 
plot(openness_2000$gdppc, openness_2000$openc, 

xlab = "GDP per Capita", 
ylab = "Openness", 
main = "Trade Openness") 

abline(openness_2000_lm, col ="red") 

# ggplot 
ggplot(openness_2000, aes(x=gdppc, y=openc)) + 

geom_point() + 
stat_smooth(method = "lm", col ="red") +  
labs(x = "GDP per Capita", y =  "Openness", 

title = "Trade Openness") 

The entries of the plot() function are the x and y coordinates of points in 
the plot. Then we add labels for the x-axis and y-axis, xlab = and ylab = 
respectively, and the main title, main = . We add a regression line with the 
abline() function. Note that we run a linear regression and store its results in 
an object called openness_2000_lm. This is the first entry of the abline() 
function. More on regression in Sects. 3.2 and 4.2. The argument col = specify 
the color of the line. 

In ggplot() we first identify the data set that must be a data frame. Second 
we map the data to the x-axis and y-axis in aes(). Then we specify the kind of 
plot we want to create. In this case, geom_point() is used to create scatter-plots. 
Then we add the regression line using stat_smooth() and specifying method 
= "lm". In the argument labs() we set axes labels and title. Figure 2.1 shows 
the outcome of these plots. 

A feature of the ggplot() function is that the + operator is part of the code 
and it is used to combine the different layers of the plot. For example, observe the 
commands in the console pane for plot() and ggplot() after running the code 
in the script file. 
> plot(openness_2000$gdppc, openness_2000$openc, 
+ xlab = "GDP per Capita", 
+ ylab = "Openness", 
+ main = "Trade Openness") 

> ggplot(openness_2000, aes(x=gdppc, y=openc)) + 
+ geom_point() + 
+ stat_smooth(method = "lm", col ="red") + 
+ labs(x = "GDP per Capita", y = "Openness", 
+ title = "Trade Openness") 
‘geom_smooth()‘ using formula ’y ~ x’ 
Warning messages: 
1: Removed 1 rows containing non-finite values (stat_smooth). 
2: Removed 1 rows containing missing values (geom_point).
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Fig. 2.1 Comparing basic plot and ggplot layout. (a) Plot function. (b) ggplot function 

The command line for plot() reports a + that is not in the code. This + just 
signals that the code continues on the second line. We do not need it when we edit 
in the R Script file. On the other hand, the command line for ggplot() reports 
a double +. This is due to the fact the one + is part of the code of the ggplot() 
while the second + just signals that the code continues on the second line. We do 
not need the second + when we edit in the R Script file. 

Finally, note that ggplot() prints that geom_smooth() uses the formula y 
. ∼ x because we did not explicitly write the formula we want. However, we are fine 
with this choice (more on the formula shortly). 

The following codes generate the plots with a quadratic fit using ggplot(), 
without and with log transformation, respectively plot_qdt and plot_lnqdt. 
Note that in ggplot() the x value is mapped to gdppc in plot_qdt while 
to ln_gdppc in plot_lnqdt. ln_gdppc is the log transformation of gdppc 
generated at the beginning. 

Before plotting, we create new variables that store a character value. This will be 
use for mapping the color and legend in aes() in ggplot(). In this section, we
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introduce the basics to plot with ggplot(). We will see later in Sect. 2.3 how to 
reshape the data set to plot and how to set properly the legend. 

# add variables to openness_2000 for mapping in aes() in ggplot() 
openness_2000$map_fit <- "fitted" 
openness_2000$map_open <- "openness" 

Now we are ready to plot with ggplot(). 

# Plot 

plot_qdt <- ggplot(openness_2000, 
aes(x = gdppc, y = openc, 

color = "openness")) + 
geom_point() + 
stat_smooth(method = "lm", 

formula = y  ~ x +  I(x^2), 
aes(color = "fitted")) + 

ggtitle("Quadratic fit") +  
xlab("GDP per capita") + ylab(" ") +  
theme(plot.title = element_text(hjust = 0.5, 

size = 10), 
legend.position = "bottom") +  

scale_color_discrete(name="Legend") 

plot_lnqdt <- ggplot(openness_2000, 
aes(x = ln_gdppc, y = openc, 

color = "openness")) + 
geom_point() + 
stat_smooth(method = "lm", 

formula = y  ~ x +  I(x^2), 
aes(color = "fitted")) + 

ggtitle("Quadratic fit after log transformation") +  
xlab("GDP per capita") + ylab(" ") +  
theme(plot.title = element_text(hjust = 0.5, size = 10), 

legend.position = "bottom") +  
scale_color_discrete(name="Legend") 

plot_qdt 
plot_lnqdt 

## combine plots 
ggarrange(plot_qdt, plot_lnqdt, 

ncol = 1,  nrow = 2)  

Note that this time in stat_smooth() we specify the method = "lm" 
and we define a quadratic formula for the quadratic fit line, formula = y . ∼
x + I(xˆ2).3 Furthermore, note that we add new lines of code. For example, 
the labels are written in ad hoc arguments, xlab(), ylab() and the title of the 
plot in ggtitle(). This method is alternative to the one we coded in Fig. 2.1. 
It is recommended if we change other scale options. In theme(plot.title = 
element_text()) we set the horizontal adjustment, hjust = and the size, 
size = for the title. The last two arguments manage color and the legend. We say 
more about them in Sects. 2.2 and 2.3. Note that we store the plots in two objects. 
Therefore, to view the plots we have to run the objects. Finally, we combine the two 
plots with ggarrange() from the ggpubr package to reproduce the outcome

3 The I() function is used to inhibit the interpretation of operators such as "+", "-", "*" and "ˆ" as 
formula operators, so they are used as arithmetical operators. 
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Fig. 2.2 Adding a quadratic fit to a ggplot 

as in Fig. 2.2. We specify the number of rows, nrow and the number of columns, 
ncol, to arrange the plot grid in two rows and one column.4 The plots are shown 
in Fig. 2.2. 

Note that the different appearance of the two plots is due to the log transforma-
tion. In the second plot, the influence of the outliers is reduced. 

Next, we compute the turning point for the quadratic estimation. In an estimated 
quadratic equation with .β̂1 > 0 and .β̂2 < 0, the turning point (or maximum of the 
function) is always achieved at the coefficient on . x over twice the absolute value of 
the coefficient on . x2 (Wooldridge, 2012, p.195)

4 Note that a plot generated by plot() cannot be stored in an object. I combined the plots in 
Fig. 2.1 directly when editing this book in LATEX. 
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.x∗ = β̂1

2|β̂2|
(2.2) 

# turning point of equation "quadratic fit" 
reg_1 <- lm(openc ~ gdppc + I(gdppc^2), data = openness_2000) 
reg_1$coefficients 
turning_point1 <- reg_1$coefficients[2]/(2*abs(reg_1$coefficients[3])) 
turning_point1 

> reg_1$coefficients 
(Intercept) gdppc I(gdppc^2) 

6.683052e+01 3.146966e-03 -9.560138e-08 
> turning_point1 <- reg_1$coefficients[2]/(2*abs(reg_1$coefficients[3])) 
> turning_point1 

gdppc 
16458.79 

The calculated turning point is $ 16458.79. Note how we extracted the coeffi-
cients from the fitted model object. We use the $ mark and extract the position from 
coefficients with [ ]. Note the position of the estimated coefficients. 

We add this information on the plot by drawing a vertical line with 
geom_vline(xintercept = ). In the second plot, we zoom in by using 
coord_cartesian(). Note the we just add the new layers to previous stored 
plots (Fig. 2.3). 

# Plot with vertical line at turning point 

plot_qdt_tp <- plot_qdt + 
geom_vline(xintercept = turning_point1, 

linetype = "dotted" ) 

plot_qdt_tp 

### zoom-in 
plot_qdt_zoom <- plot_qdt_tp + 

coord_cartesian(xlim = c(10000, 25000), 
ylim = c(75, 110)) + 

labs(caption = "zoom in") 

ggarrange(plot_qdt_tp, plot_qdt_zoom, 
ncol = 1,  nrow = 2,  
common.legend = TRUE, 
legend = "bottom") 

Note that in ggarange() we set common.legend equal TRUE so that the 
two plots share the same legend. 

Now, let’s add another kind of information to our plots. Suppose we want 
to identify which countries have a trade openness greater than 150 and add this 
information to our plots. We can add this information as label, geom_label(), 
or text, geom_text() to the plot. 

In the following code, we create a new object, openness_2000sub, which is 
a subset of openness_2000 data set by countries with a trade openness greater 
than 150. This object stores the information we want to add to the plot (Fig. 2.4). 

# add text to ggplot() 
## subset if openc > 150 
openness_2000sub <- openness_2000[openness_2000$openc > 150, ]
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Fig. 2.3 Adding an x intercept line to a ggplot 

head(openness_2000sub) 

plot_qdt_lbl <- plot_qdt + 
geom_label(aes(gdppc, openc, label = ccode), 

size = 2.5, data = openness_2000sub) +  
labs(caption = "a) label") +  
theme(plot.title = element_text(hjust = 0.5, size = 11.5), 

plot.caption = element_text(hjust = 0.5, size = 12)) 

plot_lnqdt_txt <- plot_lnqdt + 
labs(caption = "b) text") +  
theme(plot.title = element_text(hjust = 0.5, size = 11.5), 

plot.caption = element_text(hjust = 0.5, size = 12), 
legend.position = "bottom") +  

geom_text(aes(ln_gdppc, openc, label = ccode), 
size = 2.5, data = openness_2000sub, 
alpha= 0.5, hjust = 1.2)
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Fig. 2.4 Adding labels and text to a ggplot 

plot_qdt_lbl 
plot_lnqdt_txt 

ggarrange(plot_qdt_lbl, plot_lnqdt_txt, 
ncol = 1,  nrow = 2,  
common.legend = TRUE, 
legend.grob = get_legend(plot_lnqdt_txt), 
legend = "bottom") 

In the second part of this example, we compare the observed values with fitted 
values to check how much a country trades relatively to how much it can be 
expected. First, we estimate the following equation 

.ln_open = β0 + β1ln_gdppc + β2ln_pop + β3ccode + u (2.3)
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First, we use the lm() function that is a base R function. The first entry is the 
model, i.e. is the dependent variable separated by the independent variables by a 
tilde, . ∼. Between independent variables we insert a + operator. Finally, we include 
data = with the name of the database where these variables are located. 

Let’s store the result in a new object, open_reg. To see the result we use the 
summary() function. Note that to reproduce robust standard errors as in Stata we 
have to call for another function, coeftest() in lmtest package and choose the 
option vcov = vcovHC(x, "HC1"), where x represents a fitted model object. 
open_reg <- lm(ln_open ~ ln_gdppc + ln_pop + factor(ccode), 

data = openness) 
summary(open_reg) 
coeftest(open_reg, vcov = vcovHC(open_reg, "HC1")) 

Now, we replicate the same results with the lm_robust() function from 
the estimatr package. With this function, we just need to write se_type = 
"stata" to reproduce Stata robust standard errors. 
open_reg_rob <- lm_robust(ln_open ~ ln_gdppc + ln_pop + factor(ccode), 

data = openness, 
se_type = "stata") 

summary(open_reg_rob) 

Let’s continue the example with open_reg. Let’s extract the fitted values and 
store in a new variable in the openness data set. If we do it, we get the following 
error. 
> openness$fitted <- open_reg$fitted.values # error 
Error: Assigned data ‘open_reg$fitted.values‘ must be compatible with existing 

data. 
x Existing data has 3161 rows. 
x Assigned data has 3039 rows. 
i Only vectors of size 1 are recycled. 
Run ‘rlang::last_error()‘ to see where the error occurred. 

We read the the data set has 3161 rows and the fitted values 3039. Let’s check 
the dimension of the data set and the length of the fitted values. 
> dim(openness) 
[1] 3161 17 
> length(open_reg$fitted.values) 
[1] 3039 

Note that when we run the regression with the lm() function, we can add the 
argument na.action, a function which indicates what should happen when the 
data contain NAs. The default is set by the na.action setting of options, and is 
na.fail if that is unset. The ‘factory-fresh’ default is na.omit. Another possible 
value is NULL, no action. Value na.exclude can be useful. 

In the next step we omit the missing values from our data set with na.omit(). 
Note that before omitting the missing values we test the values with the function 
is.na(). It returns TRUE for values with missing values and FALSE otherwise. 
We nested the is.na() in any() and which() to obtain more info about the 
missing values. 
# omit data with missing values 
is.na(openness) 
any(is.na(openness)) 
which(is.na(openness), arr.ind = TRUE)
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Note that if we call for the summary() function, it provides the number of 
missing values, NA. For example, 
> summary(openness$ln_gdppc) 

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s 
4.203 6.027 7.173 7.413 8.644 10.910 122 

Note that the number of NA is the difference between 3161 and 3039. 
openness_omit <- na.omit(openness) 

openness_omit has 3039 observations. 
> nrow(openness_omit) 
[1] 3039 

Then, we add a new variable to the data set that contains the result of fitted 
values from our previous regression. To access these values, we extract them from 
open_reg, the object that stores our results from the regression analysis. We use 
$ to extract fitted values from the regression object and assign them to the new 
variable fitted which we generate in the openness_omit data set. 

Finally, we compare the observed values with the fitted values. We generate a new 
column in our data set, trade_more with the ifelse() function. The first entry 
of the function states the conditional statement. In this case, if the observed values 
are greater than the fitted values. If they are greater, it assigns 1 to trade_more, 
0 otherwise. Finally, we table the results by using the table() function. Note that 
we nest table() in with() and head(). with() evaluates an R expression 
in an environment constructed from data. Therefore, it allows us to avoid writing 
the name of the data set for the two variables. head() allows us to view the first 
entries of the data set. By default head() shows the first 6 entries. Here, we set 
head() to show the first 15 entries.5 

# Predict 
openness_omit$fitted <- open_reg$fitted.values 

# check if trade more 
openness_omit$trade_more <- ifelse(openness_omit$ln_open > 

openness_omit$fitted, 
1, 0) 

# crosstable 
head(with(openness_omit, table(ccode, trade_more)), 15) 

> head(with(openness_omit, table(ccode, trade_more)), 15) 
trade_more 

ccode 0 1 
AGO 7 13 
ARE 14 13 
ARG 16 13 
AUS 17 12 
AUT 18 11

5 Note that some results for 0 (trade less) differ from the output in Stata. The reason is that Stata 
is comparing the observed values with the fitted values even though the value is indeed missing. It 
assigns the result of this comparison to 0. If you drop the missing values for fitted values in Stata 
you will get the same results as in R. 
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BDI 12 17 
BEN 16 13 
BFA 15 14 
BGD 18 11 
BOL 19 10 
BRA 16 13 
BWA 15 14 
CAF 15 14 
CAN 18 11 
CHE 15 14 

2.2 Geographical Orientation of Exports 

Learning Objectives

� Import a Stata file
� Conversion of objects
� Generate new variables
� Group operations with ave()
� Group operations with group_by()
� Sort data set by variables
� Collapse a data set with aggregate()
� Rename column names
� Label variables
� Generate lag variables in a panel data set
� Merge two data sets with merge()
� Replace if
� Subset a data set
� Plot with ggplot() 

In this section we replicate the UNCTAD & WTO’s Stata code in R for plotting the 
geographical orientation of exports of Colombia and Pakistan.6 

Open a new script file inRStudio and save it as 03_growth_orientation_of_exports 

_2edn. 

Let’s load the following packages by using the library() function. 

library("haven") # import Stata .dta file 
library("Hmisc") # for label 
library("ggplot2") # plot with ggplot

6 The corresponding Stata code is available in growth_orientation_of_exports.do. 
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library("plm") # for making lag variables in panel data 
library("dplyr") # data management 
library("ggpubr") # combine ggplot plots 

We start by importing the data set aBilateralTrade.dta as aBT in R. aBT 
is a data frame with 403,135 observations and 5 variables: reporter, ccode, partner, 
pcode, year, year, export value, exp_tv, and import value, imp_tv. Data cover 
the years 1976–2004. 

aBT <- read_dta("datWTO/aBilateralTrade.dta") 
class(aBilateralTrade) 
View(aBT) 
dim(aBT) 
str(aBT) 

We generate a new variable, tot_exp, that is the total value of exports of an 
exporter towards all partners by year. To calculate it, we need to sum the export 
value, exp_tv, by country, ccode, for a given year, year. We group these two 
operations using the ave() function.7 The first entry of ave() is the variable we 
want to operate, i.e., exp_tv in this case. In the term interaction() we define 
the grouping variables. In this case, ccode, for the exporting country, and year, 
for the year. Finally, we define a function to apply for each level combination. In 
this case we define a sum() function. Note that x refers to exp_tv, the first entry 
of ave(), and na.rm = T removes missing values. 

Then, we create a new variable, export_share as export value, exp_tv, 
divided by total value of exports, tot_exp. Finally, we sort the aBT data set by 
ccode and year with the order() function. 

## Generate total export value 
aBT$tot_exp <- ave(aBT$exp_tv, interaction(aBT$ccode, aBT$year), 

FUN = function(x) sum(x, na.rm = T))  
aBT$export_share <- aBT$exp_tv / aBT$tot_exp 
aBT <- aBT[order(aBT$ccode, aBT$year), ] 

summary(aBT$export_share) 

The following is the output of the summary() function applied to 
export_share. R signals the presence of missing values, NA. 

> summary(aBT$export_share) 
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s 

0.000 0.000 0.000 0.008 0.002 1.000 3567 

In the next step, let’s label the variable export_share with the upData() 
function from the Hmisc package. In the first entry we input the data set. Then, in 
label = we set a label to the variable of interest. The label() function shows 
the labels of your variables in the data set. If you View() the data set, you will note 
that the label has been also added below the variable name. 

aBT <- upData(aBT, labels = c(export_share = 
"pcode’s share in ccode’s total exports")) 

label(aBT) 
View(aBT)

7 We will implement another approach with the dplyr package to group by later in this section. 
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> label(aBT) 
ccode pcode 

"Country code" "Partner code" 
year exp_tv 

"Year" "(sum) exp_tv" 
imp_tv tot_exp 

"(sum) imp_tv" "(sum) exp_tv" 
export_share 

"pcode’s share in ccode’s total exports" 

Next, we use again the ave() function to generate the sum of total imports, 
tot_imppcode, by partner, pcode, and year, year. Then, we label it as reported 
in the following code. 

aBT$tot_imppcode <- ave(aBT$exp_tv, interaction(aBT$year, aBT$pcode), 
FUN = function(x) sum(x, na.rm = T)) 

aBT <- upData(aBT, labels = c(tot_imppcode = 
"total import of importing country (pcode)")) 

label(aBT) 
View(aBT) 

Next, we collapse the data set by aggregating tot_imppcode by pcode and 
year. We use  the  aggregate() function. The first argument of aggregate() 
is the variables to be summarized, the second argument is a list containing the 
variables to be used for grouping, and the third argument is the function to be used 
to summarize the data. We assign this operation to a new data set, aBTc, to not 
overwrite aBT. 

aBTc <- aggregate(list(tot_imppcode = aBT$tot_imppcode), 
by = list(pcode = aBT$pcode, year = aBT$year), 
mean, na.rm = T)  

View(aBTc) 

In the next lines of code, we generate a new variable for the year over 
year change, gamma_totimppcode. For this task we need to create a lag 
variable for tot_imppcode. First, we sort the data set aBTc by pcode with 
the order() function. Second, we make the aBTc data set as a panel data 
frame object by using the function pdata.frame() from the plm package. 
The index attribute describes its individual and time dimensions. Third, we 
use the lag() function from the plm package to create the lag variable for 
imppcode, lag_totimppcode. Again, note that we specify that R has to use 
the lag() function from the plm package. Finally, we create the new variable, 
gamma_totimppcode and replace infinity value Inf with NA. 

# making lag variable in panel data 
aBTc <- aBTc[order(aBTc$pcode),] 

aBTc <- pdata.frame(aBTc, index = c("pcode", "year")) 
class(aBTc) 
str(aBTc) 
View(aBTc) 

aBTc$lag_totimppcode <- plm::lag(aBTc$tot_imppcode) 
aBTc$gamma_totimppcode <- (aBTc$tot_imppcode / aBTc$lag_totimppcode) - 1 

# replace Inf with NA 
any(is.infinite(aBTc$gamma_totimppcode)) 
aBTc$gamma_totimppcode[is.infinite(aBTc$gamma_totimppcode)] <- NA
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If you noted, when we run str(aBTc) the variable year is reported as a factor. 
Here, we show how to convert factor into a numeric value. We nest the level() 
function in as.numeric(). This is the advice from FAQ on CRAN to convert 
factors to numeric.8 

# change factor to numeric 
aBTc$year <- as.numeric(levels(aBTc$year))[aBTc$year] 

In the next lines of code, we create new variables that represent average 
for all the years of the data set, 1974–2004 (avg_imp_g_1974_2004), 
for the period 1990–2000 (avg_imp_g_1990_2000), and for the period 
1994–2004 (avg_imp_g_1994_2004). We use the dplyr package. We use 
group_by() to group the data by pcode. Then, we compute just the mean for 
avg_imp_g_1974_2004 by making sure to remove the missing values for the 
computation. The other two variables are generated by using the case_when() 
function from dplyr. When the year corresponds to our period of interest, we 
compute the mean for gamma_totimppcode for that period.9 

# create average variables ----

aBTc <- aBTc %>% 
group_by(pcode) %>% 
mutate(avg_imp_g_1974_2004 = mean(gamma_totimppcode, na.rm = T), 

avg_imp_g_1990_2000 = case_when( 
year >= 1990 & year <= 2000 ~ mean( 

gamma_totimppcode[year >= 1990 & year <= 2000], na.rm = T)  
), 
avg_imp_g_1994_2004 = case_when( 

year >= 1994 & year <= 2004 ~ mean( 
gamma_totimppcode[year >= 1994 & year <= 2004], na.rm = T)  

)) 

View(aBTc) 

Next, we use merge() to merge the data in aBT and aBTc. We define the 
keyword for the merge in by =. Note that in this case, we have the same column 
titles for the two data sets. That’s why the code differs from the example from 
section “Merging Data Sets” where the column titles had different names. 

# merge aBT and aBTc -> aBTm 

aBTm <- merge(aBT, aBTc, 
by = c("pcode", "year", "tot_imppcode"), 
all = TRUE) 

View(aBTm) 

Next, we generate the logarithm of export_share and avg_imp_g_1990_ 
2000. When we check the summary, we see that some -Inf values are 
returned for ln_x. This is caused by taking the log of 0. We replace these

8 See https://cran.r-project.org/doc/FAQ/R-FAQ.html#How-do-I-convert-factors-to-numeric_003f. 
9 Note that this chunk of code differs from the code in the first edition. I found out that the function 
I wrote for the first edition did not return the correct results for avg_imp_g_1990_2000 for 
about 15% of the countries. It seems that the issued I overlooked was related to the fact that for 
those countries the series of data starts after 1990. 
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values with NA. Note again that [ ]  is a subset operator. Therefore, in 
aBTm$ln_x[is.infinite(aBTm$ln_x)] <- NA we are replacing the 
value of ln_x with NA if this value is equal to infinity. We label this new variable 
as Log of export share to destination j with upData(). 

Finally, we create two variables for mapping the legend in the plots, fitted 
and log, which store the text that will appear in the legend. 
aBTm$ln_x <- log(aBTm$export_share) 
aBTm$ln_y <- log(aBTm$avg_imp_g_1990_2000) 

summary(aBTm$ln_x) 
summary(aBTm$ln_y) 

any(is.infinite(aBTm$ln_x)) 
aBTm$ln_x[is.infinite(aBTm$ln_x)] <- NA 

summary(aBTm$ln_x) 

# label 
aBTm <- upData(aBTm, 

labels = c(ln_x =  "Log of export share to destination j")) 

aBTm$fitted <- "Fitted" 
aBTm$log <- "log average import growth of destination j, 1990-2000" 

To plot the geographical orientation of exports of Colombia and Pakistan we first 
subset the data set for Colombia and year 2000 and then for Pakistan and year 2000 
with the subset() function. 
# select only Colombia and year == 2000 
aBTm_col <- subset(aBTm, ccode == "COL" & year == 2000) 
View(aBTm_col) 

# select only Pakistan and year == 2000 
aBTm_pak <- subset(aBTm, ccode == "PAK" & year == "2000") 
View(aBTm_pak) 

Finally, we create two plots and then combine them. We add more options with 
respect to the plots we made in Sect. 2.1. In particular, we control for the legend with 
aes() and with the options in theme(), we add a new format for the the title and 
define a new background, theme_classic(). Add the options gradually to see 
what they do. Note that n in the title splits a title over two lines (Fig. 2.5). 
# plot Geographical orientation of Colombia’s exports, 2000 

plot_col <- ggplot(aBTm_col, aes(x = ln_x, y = ln_y)) + 
geom_point(shape = 1, color = "blue", 

aes(fill = factor(log))) + 
geom_smooth(method=lm, aes(color = "Fitted")) + 
geom_text(aes(label = pcode), size = 2, hjust=0, vjust=1) + 
theme_classic() + 
xlab("log of export share to destination j") + ylab("") +  
ggtitle("Geographical orientation of \n Colombia’s exports, 2000") +  
theme(plot.title = element_text(hjust = 0.5, size = 10, face="bold"), 

axis.title.x = element_text(size = 7.5)) + 
theme(legend.position = "bottom", legend.box = "vertical", 

legend.text = element_text(size = 7.5), 
legend.key.size = unit(0.2, "cm"), 
legend.title = element_blank())
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Fig. 2.5 More elaborated plots with ggplot2 

# plot Geographical orientation of Pakistan’s exports, 2000 

plot_pak <- ggplot(aBTm_pak, aes(x = ln_x, y = ln_y)) + 
geom_point(shape = 1, color = "blue", 

aes(fill = factor(log))) + 
geom_smooth(method=lm, aes(color = "Fitted")) + 
geom_text(aes(label = pcode), size = 2, hjust=0, vjust=1) + 
theme_classic() + 
xlab("log of export share to destination j") + ylab("") +  
ggtitle("Geographical orientation of \n Pakistan’s exports, 2000") +  
theme(plot.title = element_text(hjust = 0.5, size = 10, face="bold"), 

axis.title.x = element_text(size = 7.5)) + 
theme(legend.position = "bottom", legend.box = "vertical", 

legend.text = element_text(size = 7.5), 
legend.key.size = unit(0.2, "cm"), 
legend.title = element_blank())
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ggarrange(plot_col, plot_pak, 
ncol = 1,  nrow = 2,  
common.legend = TRUE, 
legend = "bottom") 

2.3 Sectoral Orientation of Exports 

Learning Objectives

� Import a Stata file
� Conversion of objects
� Generate new variables
� Group operations with ave()
� Sort data set by variables
� Generate ranking for variables
� Generate group id
� Reshape the data set
� Subset a data set
� Plot with ggplot() 

In this section we replicate the UNCTAD & WTO’s Stata code in R to plot the 
sectoral orientation of exports of Colombia.10 

Open a new script file in RStudio and save it as 
04_sectoral_geographical_orientation_of_trade_2edn. 

Let’s load the following packages by using the library() function. 

library("haven") # import Stata .dta file 
library("dplyr") # group id 
library("data.table") # reshape the dataset with dcast 
library("ggplot2") # plot with ggplot 

Let’s import the data set TPP.dta in R. TPP is a data frame with 81,200 
observations and 40 variables. Data cover the years 1976–2004. 

TPP <- read_dta("datWTO/TPP.dta") 
class(TPP) 
View(TPP) 
dim(TPP) 
str(TPP)

10 The corresponding Stata code is available in sectoral_geographical_orientation_of_trade.do. 
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We generate total export variable, total_export, with the ave() func-
tion. Refer to Sect. 2.2 for details on the ave() function. Then, we generate 
the export share, export_share, as export value, exp_tv, divided by total 
export, total_export. Finally, we sort the TPP dataset by ccode, year and 
export_share using the order() function. Note that the - operator before 
the variable sorts it in descending order. The summary() function applied to 
export_share shows that export_share has missing values, NA. 

## Main export sectors, Colombia, 1990 and 2000 

TPP$total_export <- ave(TPP$exp_tv, interaction(TPP$ccode, TPP$year), 
FUN = function(x) sum(x, na.rm = T)) 

TPP$export_share <- TPP$exp_tv / TPP$total_export 

# ordering:minus (-) before the variable for descending order 
TPP <- TPP[order(TPP$ccode, TPP$year, -TPP$export_share),] 

summary(TPP$export_share) 

In the next line of code, we generate a ranking for export share, ranking, by  
ccode and year, nesting the rank() function in the ave() function. Note that 
the - operator before x in the rank() function sorts the ranking in descending 
order. 

# ranking 
TPP$ranking <- ave(TPP$export_share, interaction(TPP$ccode, TPP$year), 

FUN = function(x) rank(-x)) 

We keep only ranking, sector, ccode, year, and export_share by 
applying [ ]  to TPP data set. Let’s assign this operation to a new object, TPP2. 

We generate group id variable, id, by  ccode and sector using the 
cur_group_id() function from the dplyr package.11 Let’s copy the TPP2 in 
a new object, TPP3. 

Finally, we have to reshape the data set wide. We want to generate new columns 
with the ranking per each year and the export share per each year for id, country 
(ccode) and sector. For this operation, I prefer to use the dcast() function from 
the data.table package. You can refer to Sect. 1.7.2 for an alternative method. 
Note that before reshaping the data set, we convert the data set in a data.table 
using setDT() from the data.table package. The first entry in dcast is a 
data set that must be a data.table or a data.frame. Note that when casting 
multiple variables it is better to have the data set as data.table. The variables 
on the left hand side of . ∼ will be in rows while the variables on the right hand side 
of . ∼ will become column names. The argument value.var = assigns the name 
of the column whose values will be filled to cast. 

TPP2 <- TPP[, c("ranking", "sector", "ccode", "year", "export_share")] 

# generate group id by ccode & sector 
TPP2 <- TPP2 %>%

11 The cur_group_id() function replaces group_indices() that was used in the first 
edition because it is now a deprecated function. 
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group_by(ccode, sector) %>% 
mutate(id = cur_group_id()) 

View(TPP2) 

# make the dataset wide 
## convert the dataset in a data.table before using dcast 
TPP3 <- setDT(TPP2) 

TPP3s <- dcast(TPP3, id + ccode + sector ~ year, 
value.var = c("ranking", "export_share")) 

View(TPP3s) 

Now we can prepare the data set for plotting. We plot the data for Colombia only. 
Therefore, the first step consists in subsetting by Colombia using subset(). This  
operation is stored in a new object, TPP_col. We keep only the following variables: 
ccode, sector, ranking_1990, ranking_2000, export_share_1990, 
and export_share_2000. We use  [ ]  for this operation and we assign it to a 
new object, TPP_col2. 

To plot the following bar plot we need to reshape the data long. We use 
melt() from data.table package. The first entry is the data set to be reshaped. 
The argument id.vars = is a vector of id variables, i.e., the variables that 
identify individual rows of data. It can be integer (variable position) or string 
(variable name). The argument measure.vars = is a vector of measured 
variables. It can be integer (variable position) or string (variable name). By default, 
melt() names the new variables variable and value. You can rename using 
variable.name = and value.name =. Finally, we sort the data set by 
ranking using order(). 

# subset for Colombia 
TPP_col <- subset(TPP3s, ccode == "COL") 
View(TPP_col) 

TPP_col2 <- TPP_col[, c("ccode", "sector", "ranking_1990", "ranking_2000", 
"export_share_1990", "export_share_2000")] 

dim(TPP_col2) 
View(TPP_col2) 

## make dataset long with melt() 
TPP_col3 <- melt(TPP_col2, id.vars = c("sector", "ccode", 

"ranking_1990", "ranking_2000"), 
measure.vars = c("export_share_1990", 

"export_share_2000")) 

TPP_col3 <- TPP_col3[order(TPP_col3$ranking_1990),] 
head(TPP_col3) 

By using head() we see the first six entries of the data set as reported in the 
following output.12 

12 Note that I shortened the name for sector to show the output in a more readable way. The name 
of the sector should be Petroleum refineries, Food products, and Iron and steel.
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> head(TPP_col3) 
sector ccode ranking_1990 ranking_2000 variable value 

1: Petroleum COL 1 1 export_share_1990 0.22075888 
2: Petroleum COL 1 1 export_share_2000 0.14273302 
3: Food COL 2 2 export_share_1990 0.15854882 
4: Food COL 2 2 export_share_2000 0.12791253 
5: Iron COL 3 6 export_share_1990 0.09223055 
6: Iron COL 3 6 export_share_2000 0.06149664 

Now we are ready to plot a bar plot with ggplot(). Note that the general 
structure is the same as the previous plots with ggplot(). Here, we describe the 
different arguments. 

reorder() in aes() order the sector by ranking_1990. If you 
want to reverse the order of the bars, from high to low, remove the - before 
ranking_1990. 

fill = maps the color conditional on a variable. In this case, this variable is 
called variable. It is the column name in the TPP_col3 dataset that contains 
the values export_share_1990 and export_share_2000. 

To generate a bar plot we use geom_bar(). position = "dodge" 
puts the bars side-by-side. Remove it to see the different output. With stat = 
"identity" the heights of the bars represent values in the data. coord_flip() 
flips the plot. 

In xlab() and ylab() we only insert " "  because we do not want any label 
for x and y axis. If we do not include xlab() and ylab() with " ", R will 
generate default labels for the axes. 

With scale_fill_manual() we define manually the labels name and 
colors. 

Figure 2.6 shows the outcome of this plot. 

# plot 

plot_TPP_col <- ggplot(TPP_col3, 
aes(x = reorder(sector, -ranking_1990), 

y = value, fill = variable)) + 
geom_bar(position = "dodge", stat="identity") +  
coord_flip() + 
xlab("") + ylab("") + theme_classic() + 
ggtitle("Sectoral share in total exports, 1990-2000") +  
scale_fill_manual(labels = c("Share 1990", "Share 2000"), 

values = c("blue", "red")) + 
theme(plot.title = element_text(hjust = 0.5, size = 10, 

face="bold"), 
axis.title.x = element_text(size = 7.5), 
axis.text.y = element_text(size = 7.5)) + 

theme(legend.position = "bottom", legend.box = "vertical", 
legend.text = element_text(size = 7.5), 
legend.key.size = unit(0.2, "cm"), 
legend.title = element_blank()) 

plot_TPP_col
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Fig. 2.6 Bar plot with ggplot2 

2.4 Overlap Trade and Similarity Index 

Learning Objectives

� Import a Stata file
� Conversion of objects
� Generate new variables
� Drop duplicates 

(continued)
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� Attach a data set
� Subset a data set
� Rename column names
� Sort data set by variables
� Replace if
� Remove leading and/or trailing whitespace from character strings
� Reshape the data set
� Group operations with ave() and the dplyr package
� Generate new variables with ifelse()
� Merge two data sets with merge()
� Plot with ggplot() 

In this section we plot the similarity index and the share of overlap trade between 
Germany and its trading partners for 2004.13 

The similarity index is defined following Helpman (1987) as  

.SIij = 1 −
[

GDPi

GDPi + GDPj

]2
−

[
GDPj

GDPi + GDPj

]2
(2.4) 

The trade overlap index is defined as the sum of exports and imports in products
(HS, six digit) characterized by two-way trade (Grubel-Lloyd (GL) index > 0),
divided by the sum of total exports and imports.

By combining these two pieces of information, we observe the relations between
economic size and intra-industry trade between two partners. Typically, similar
countries (in terms of economic size, e.g. GDP) share more intra-industry trade.
Refer to UNCTAD & WTO (2012, p. 20) for more insights. 

Open a new script file in RStudio and save it as 05_overlap_trade_2edn. 
Let’s load the following packages by using the library() function. 

library("haven") # import Stata .dta file 
library("stringi") # count the number of code points 
library("data.table") # reshape the data set 
library("dplyr") # data management 
library("ggplot2") # plot with ggplot 
library("ggpubr") # combine ggplot plots 

First, we build the similarity index. Let’s import the UNCTAD & WTO’s 
GravityData.dta as GravityData in R by using read_dta() from the 
haven package. GravityData has 3,950,635 observations and 27 variables. 
Data cover the years 1976–2004. Since it is quite big, we make a copy and work 
with GD. Therefore, in case we make an error, it is not necessary to import it again 
because we do not modify GravityData.

13 The corresponding Stata code is available in overlap_trade.do. 
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GravityData <- read_dta("datWTO/GravityData.dta") 
class(GravityData) 
GD <- GravityData 
dim(GD) 
str(GD) 

We keep only the following columns: ccode, pcode, year, cgdp_c2000, 
and pgdp_c2000. Then, we drop the duplicates using the unique function. This 
last operation may take a while. 
GD <- GD[, c("ccode", "pcode", "year", "cgdp_c2000", "pgdp_c2000")] 
GD <- unique(GD) 

We attach the data set GD by using the attach() function. This means that the 
database is searched by R when evaluating a variable, so objects in the database can 
be accessed by simply giving their names. Then, we detach the data set by using the 
detach() function before moving on. 

Next, we build the similarity index, simil_index, as in Eq. (2.4) .
Then, we keep only the following variables: ccode, pcode, year, and

simil_index. We assign this operation to a new object, GD2. Then, we subset
it by year equal 2004 and country equal Germany (ccode == "DEU"). We store
the results in GDger. Let’s sort the data set by ccode, pcode, and year by using
the order() function. Finally, we check basic statistics for simil_index.
attach(GD) 
GD$temp1 <- cgdp_c2000 / (cgdp_c2000 + pgdp_c2000) 
GD$temp2 <- pgdp_c2000 / (cgdp_c2000 + pgdp_c2000) 
detach(GD) 

GD$simil_index <- 1 - GD$temp1^(2) - GD$temp2^(2) 
GD2 <- GD[, c("ccode", "pcode", "year", "simil_index")] 
GDger <- subset(GD2, year == "2004" & ccode == "DEU") 
GDger <- GDger[order(GDger$ccode, GDger$pcode, GDger$year),] 
summary(GDger$simil_index) 

In this part, we build the trade overlap index. Let’s import the UNCTAD & 
WTO’s germany_trade_2004_hs6.dta as GT_2004HS6 in R by using 
read_dta() from the haven package. GT_2004HS6 has 874,975 observations 
and 11 variables. 
GT_2004HS6 <- read_dta("datWTO/germany_trade_2004_hs6.dta") 
class(GT_2004HS6) 
View(GT_2004HS6) 
dim(GT_2004HS6) 
str(GT_2004HS6) 

We rename reporter as ccode and partner as pcode using the 
colnames() function. Then, we replace the value Gross Exp. in flow_name 
as Exports and the value Gross Imp. in flow_name as Imports. Finally, 
we drop the first column. 
colnames(GT_2004HS6)[2] <- "ccode" 
colnames(GT_2004HS6)[4] <- "pcode" 
GT_2004HS6$flow_name[GT_2004HS6$flow_name == "Gross Exp."] <- "Exports" 
GT_2004HS6$flow_name[GT_2004HS6$flow_name == "Gross Imp."] <- "Imports" 
GT_2004HS6 <- GT_2004HS6[, -1] 

Next, we remove leading and/or trailing whitespace from product using the 
trimws() function. By default, trimws() removes both leading and trailing
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whitespace. However, it is possible to remove only the leading or trailing whites-
pace, specifying in the function "left" or "right", respectively. 
GT_2004HS6$product <- trimws(GT_2004HS6$product) 

Next, we drop observations from the data set if product is equal to Total. 
Then, we subset again if the length of the values in the product column is longer 
than 6. We use the stri_length() function from the stringi package to 
accomplish this step. Finally, we remove the rowname column. 
GT_2004HS6_2 <- subset(GT_2004HS6, !product == "Total") 
GT_2004HS6_3 <- subset(GT_2004HS6_2, 

stri_length(product) >= "6") 
GT_2004HS6_3 <- GT_2004HS6_3[, -10] 

Next, we reshape the data set wide by using the dcast() function from the 
data.table package. Refer to Sect. 2.3 for the use of dcast(). We assign this 
operation to a new object, overlap_temp. 
overlap_temp <- dcast(setDT(GT_2004HS6_3), 

ccode + pcode + year + product ~ 
flow_name, 
value.var = "trade_value") 

After sorting the data set by pcode and product, we build the Grubel-Lloyd 
(GL) index. The GL index is defined as follows: 

.GLij,k = 1 − |Xij,k − Mij,k|
Xij,k + Mij,k

(2.5) 

where

• Xij,k is i’s exports to j in sector k 
• Mij,k is i’s imports from j in sector k 

By definition, we have 0 ≤ GL ≤ 1. GL = 0 means that a country does 
not engage in intra-industry trade, i.e. either Xij,k = 0 or  Mij,k = 0. GL = 1 
means that a country exports and imports the good in sector k in equal amounts, i.e. 
Xij,k = Mij,k . Consequently, a greater GL index indicates a larger intra-industry 
trade between two countries. 

We replace the NA values of the GL index, gl_i_j_k, with 0 and sort the 
dataset by pcode. 
overlap_temp <- overlap_temp[order(overlap_temp$pcode, 

overlap_temp$product), ] 

## Grubel-Lloyd (GL) Index 
overlap_temp$gl_i_j_k <- 1 - (abs(overlap_temp$Exports - overlap_temp$Imports) / 

(overlap_temp$Exports + overlap_temp$Imports)) 
overlap_temp$gl_i_j_k[is.na(overlap_temp$gl_i_j_k)] <- 0 
overlap_temp <- overlap_temp[order(overlap_temp$pcode), ] 

In the next lines of code, we generate two new variables, x1 and x2, which are 
given by the sum of Exports and Imports, respectively, by partner, pcode. 
We accomplish these operations with the ave() function that we encountered in 
Sects. 2.2 and 2.3. Then, we generate the denominator, denom, as the sum between
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x1 and x2. Finally, we generate a new variable, dd, which reports the max value of 
denom by pcode. We use again the ave() function. Note that now the function 
to apply for each factor level combination is max. 
overlap_temp$x1 <- ave(overlap_temp$Exports, overlap_temp$pcode, 

FUN = function(x) sum(x, na.rm = T)) 
overlap_temp$x2 <- ave(overlap_temp$Imports, overlap_temp$pcode, 

FUN = function(x) sum(x, na.rm = T)) 

overlap_temp$denom <- overlap_temp$x1 + overlap_temp$x2 

overlap_temp$dd <- ave(overlap_temp$denom, overlap_temp$pcode, FUN = max) 

Next, we generate two new variables, x11 and x22 which are given by the sum 
of Exports and Imports, respectively, by partner, pcode, as  x1 and x2, but  
subject to the condition that gl_i_j_k is greater than 0. Remember that this is the 
condition stated in the definition of the trade overlap index. 

In this case, instead, we sum the values by using functions from the dplyr 
package as in Sect. 2.2. 
overlap_temp <- overlap_temp %>% 

group_by(pcode) %>% 
mutate(x11 = ifelse(gl_i_j_k > 0,  

sum(Exports[gl_i_j_k > 0], na.rm = T), 
NA), 

x22 = ifelse(gl_i_j_k > 0,  
sum(Imports[gl_i_j_k > 0], na.rm = T), 
NA)) 

Note again that %>% is an operator which pipes a value forward into an expression 
or function call. The group_by() function performs the operation by groups 
of observations within a data set. The mutate() function adds new variables 
that are functions of existing variables and preserves existing variables. We use 
in mutate() the ifelse() function to state the conditional statement of the 
operation, i.e. GL index greater than 0. 

Next, we generate the numerator, numer, as the sum between x11 and x22, and 
the variable nn. Conceptually, nn is similar to dd in terms of code. However, we 
need to take care of missing values and infinite values. 

Then, we generate the trade overlap index, overlap, as the ratio between nn 
and dd. Finally, we create a new data set, overlap, which contains 4 variables 
from overlap_temp: ccode, pcode, year, and overlap. 
overlap_temp$numer <- overlap_temp$x11 + overlap_temp$x22 
overlap_temp <- overlap_temp %>% 

group_by(pcode) %>% 
mutate(nn = max(numer, na.rm = T)) 

overlap_temp$nn[is.infinite(overlap_temp$nn)] <- NA 

overlap_temp$overlap <- overlap_temp$nn / overlap_temp$dd 

overlap <- overlap_temp[, c("ccode", "pcode", "year", "overlap")] 

Now, we are ready to merge overlap and GDger, the data set that stores 
the similarity index for Germany. We use the merge() function. We assign this 
operation to a new object, overlap_m. After merging, we drop the duplicates. 
overlap_m <- merge(overlap, GDger,
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by = c("ccode", "pcode", "year"), 
all.x = T, all.y = F)  

overlap_m <- unique(overlap_m) 

Before plotting, we add two new columns to the dataset overlap_m for 
mapping the legend in the plots, Fitted and leg_overlap, that store the text 
that will appear in the legend. 

overlap_m$Fitted <- "Fitted Values" 
overlap_m$leg_overlap <- "Share of overlap trade" 

The following code generates Fig. 2.7. 

plot_lft <- ggplot(overlap_m, 
aes(x = simil_index, y = overlap)) + 

geom_point(shape = 1, color = "blue", 
aes(fill = factor(leg_overlap))) + 

geom_smooth(method = lm, aes(color = "Fitted Values")) + 
geom_text(aes(label = pcode), size = 2, hjust = 0, vjust = 1) + 
theme_classic() + 
xlab("Share of overlap trade") + ylab(" ") +  
ggtitle("Similarity index") + labs(caption = "a) linear fit") +  
theme(plot.title = element_text(hjust = 0.5, size = 10, face="bold"), 

plot.caption = element_text(hjust = 1, size = 10), 
axis.title.x = element_text(size = 7.5)) + 

theme(legend.position = "bottom", legend.box = "vertical", 
legend.text = element_text(size = 7.5), 
legend.title = element_blank(), 
legend.key.height = unit(0.1, "cm")) 

plot_lft 

plot_qft <- ggplot(overlap_m, 
aes(x = simil_index, y = overlap)) + 

geom_point(shape = 1, color = "blue", 
aes(fill = factor(leg_overlap))) + 

geom_smooth(method = lm, formula = y  ~ x +  I(x^2), 
aes(color = "Fitted Values")) + 

geom_text(aes(label = pcode), size = 2, hjust = 0, vjust = 1) + 
theme_classic() + 
xlab("Share of overlap trade") + ylab(" ") +  
ggtitle("Similarity index") +labs(caption = "b) quadratic fit") +  
theme(plot.title = element_text(hjust = 0.5, size = 10, face="bold"), 

plot.caption = element_text(hjust = 1, size = 10), 
axis.title.x = element_text(size = 7.5)) + 

theme(legend.position = "bottom", legend.box = "vertical", 
legend.text = element_text(size = 7.5), 
legend.title = element_blank(), 
legend.key.height = unit(0.1, "cm")) 

plot_qft 

ggarrange(plot_lft, plot_qft, 
ncol = 1,  nrow = 2,  
common.legend = TRUE, 
legend = "bottom")
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Fig. 2.7 Scatterplot with linear and quadratic fitted lines with ggplot2 

2.5 Terms of Trade 

Learning Objectives

� Import a Stata file
� Conversion of objects
� Subset a data set 

(continued)
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� Plot with ggplot()
� Convert a static plot into a dynamic plot with gganimate() 

In this section we replicate the UNCTAD & WTO’s Stata code to plot a line 
plot which shows the trend of terms of trade (TOT) of developing countries 
between 2001 and 2009. TOT is defined as the percentage ratio of the export 
unit value indexes to the import unit value indexes, measured relative to a base 
year.14 

Open a new script file inRStudio and save it as 06_terms_of_trade_2edn. 
Let’s load the following packages by using the library() function. 

library("haven") # import Stata .dta file 
library("ggplot2") # plot with ggplot 
library("png") # graphics devices for BMP, JPEG, PNG and TIFF format bitmap 
library("gifski") # converts image frames to high quality GIF animations 
library("gganimate") # animated plot 

We will use the packages png, gifski, and gganimate at the end of this 
section to convert a static plot into a dynamic plot. 

Let’s import the UNCTAD & WTO’s unctad_tot_data.dta data set in R 
by using the read_dta() function from the haven package. un_data has 3321 
observations and 15 variables. Data cover the years 2001–2009. 
un_data <- read_dta("datWTO/unctad_tot_data.dta") 
class(un_data) 
View(un_data) 
dim(un_data) 
str(un_data) 

Next, we convert the year variable, year, which has a numeric class in a factor 
class. This choice depends on the fact that year will be on the x-axis. In this case, 
it is useful to treat it as a categorical variable instead of a numeric one. Note that if 
the x-axis variable is continuous, it should be kept as numeric. 
un_data$year <- as.factor(un_data$year) 

Next we subset un_data by countries of interest by using the subset() 
function. 
un_data_s <- subset( 

un_data, 
country=="Selected exporters of agricultural products (TDR)" | 

country=="Selected exporters of manufactured goods and primary commodities 
(TDR)" | 
country=="Selected exporters of minerals and mining products (TDR)" | 
country=="Selected manufactured goods exporters (TDR)" | 
country=="Selected petroleum exporters (TDR)") 

Now we are ready to plot. We use geom_line() in ggplot() to generate 
a line plot. We have new layers compared to previous plots. group groups data

14 The corresponding Stata code is available in terms_of_trade.do. 
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Fig. 2.8 Line plot with ggplot2 (static version of the dynamic plot) 

points so that ggplot() knows which points to connect. Note that we grouped 
them by country. We use  country to set colour, shape, and linetype as 
well. legend.direction indicates the direction of the legend, “horizontal” or 
“vertical”. Figure 2.8 illustrates the outcome. 

plot_line <- ggplot(un_data_s, aes(x = year, y = tot, 
group = country, 
shape = country, 
colour = country)) + 

geom_line(aes(linetype = country), size = 1) + 
theme_classic() + 
ylab(" ") +  
ggtitle("Barter TOT, selected groups of countries") +  
theme(plot.title = element_text(hjust = 0.5, size = 10, face="bold"), 

axis.title.x = element_text(size = 8.5)) + 
theme(legend.position = "bottom", legend.box = "vertical", 

legend.direction = "vertical", 
legend.text = element_text(size = 8),
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legend.key.size = unit(0.5, "cm"), 
legend.title = element_blank()) 

plot_line 

We can easily convert this static plot into a dynamic plot by adding the 
transition_reveal() function to the previous plot. Note that we also add 
geom_point() to generate a leading shape 

plot_line_anim <- plot_line + 
geom_point(size = 2) + 
transition_reveal(as.numeric(year)) 

Now we can visualize it by running plot_line_anim 

> plot_line_anim 

Frame 100 (100%) 
Finalizing encoding... done! 

We can modify the window size and save it as a GIF object by using animate() 

> animate(plot_line_anim, height = 538, width = 866, 
+ renderer = gifski_renderer("images/gganim.gif")) 

Frame 100 (100%) 
Finalizing encoding... done! 

2.6 Intensive and Extensive Margins 

Learning Objectives

� Import a Stata file
� Conversion of objects
� Generate new variables
� Group operations with ave()
� Subset a data set
� Collapse a data set with aggregate()
� Replace if
� Drop duplicates
� Rename column names
� Plot with plot() 

In this section we replicate the UNCTAD & WTO’s Stata code in R to calculate and 
plot extensive and intensive margins of diversification.
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Open a new script file in RStudio and save it as 06_IM_EM_hummels_klenow_2edn.15 

Let’s load the following package by using the library() function. 

library("haven") # import Stata .dta file 

Let’s import the data set comtrade_exports_all_countries_2000 
.dta as exp2000 in R. exp2000 has 358,871 observations and 9 variables. Vari-
ables identifies reporter, reporter and reporter_name, partner, partner 
and partner_name, year, year, product name, product_name, flow name, 
flow_name, trade value, trade_value, and product, product. Data cover 
the year 2000. 

exp2000 <- read_dta("datWTO/comtrade_exports_all_countries_2000.dta") 
class(exp2000) 
dim(exp2000) 
View(exp2000) 
str(exp2000) 

In the next lines of code we build the intensive and extensive margin of 
diversification based on the Hummels-Klenow decomposition for products and 
geographical markets. 

The intensive margin for products is given by 

. IMi =
∑

Ki XW
k∑

Ki XW
k

The extensive margin for products is given by 

. EMi =
∑

Ki Xi
k∑

KW XW
k

where 

• . Ki is the set of products exported by country i 
• . Xi

k is the dollar value of i’s exports of product k to the world 
• .XW

k is the dollar value of world exports of product k 

Note that we use the ave() function. Refer to Sects. 2.2 and 2.3 for description 
of the ave() function. 

exp2000$x_i_k <- exp2000$trade_value 

### Sum of i’s export of all products exported by i 
exp2000$sum_i_x_i_k <- ave(exp2000$x_i_k, 

interaction(exp2000$reporter, exp2000$year), 
FUN = function(x) sum(x, na.rm = T)) 

exp2000 <- exp2000[order(exp2000$reporter, exp2000$year), ] 

exp2000$temp1 <- ifelse(exp2000$reporter == "All",

15 The corresponding Stata code is available in IM_EM_hummels_klenow.do. 
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exp2000$x_i_k, NA) 

### World exports of product k in year t 
exp2000$temp2 <- ave(exp2000$temp1, 

interaction(exp2000$year, exp2000$product), 
FUN = function(x) max(x, na.rm = T)) 

### Total world exports of all products exported by i 
exp2000$sum_i_x_w_k <- ave(exp2000$temp2, 

interaction(exp2000$reporter, exp2000$year), 
FUN = function(x) sum(x, na.rm = T)) 

### Total world exports of all products in the world 
exp2000$sum_w_x_w_k <- ave(exp2000$x_i_k, 

interaction(exp2000$year), 
FUN = function(x) sum(x, na.rm = T)) 

exp2000$im_i <- exp2000$sum_i_x_i_k / exp2000$sum_i_x_w_k 
exp2000$em_i <- exp2000$sum_i_x_w_k / exp2000$sum_w_x_w_k 

summary(exp2000$im_i) 
summary(exp2000$em_i) 

We keep only reporter, year, im_i, and em_i. We store the results of this 
operation in a new object, exp2000_2. Then, we drop the duplicates by using 
the unique() function. Finally, multiply the intensive margin, im_i, and the 
extensive margin, em_i, by 100. 
exp2000_2 <- exp2000[, c("reporter", "year", "im_i", "em_i")] 

# drop duplicates 
exp2000_3 <- unique(exp2000_2) 
dim(exp2000_2) 
dim(exp2000_3) 

exp2000_3$im_i <- exp2000_3$im_i*100 
exp2000_3$em_i <- exp2000_3$em_i*100 

summary(exp2000_3$im_i) 
summary(exp2000_3$em_i) 

The intensive margin for geographical markets is given by 

. IMi =
∑

Di XW
d∑

Di XW
d

The extensive margin for geographical markets is given by 

. EMi =
∑

Di Xi
d∑

DW XW
d

where 

• . Di is the set of destination markets where i exports 
• . Xi

d is the dollar value of i’s total exports to destination d 
• .XW

d is the dollar value of world exports to destination d 
• .DW is the set of all destination countries
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To calculate it, we need to import the data set BilateralTrade.dta in R. 
We work on a new object, BT that has 5,563,268 observations and 11 variables. Data 
cover the years 1976–2004. 
# Geographical decomposition ----

## Construction of IM and EM 
BilateralTrade <- read_dta("datWTO/BilateralTrade.dta") 
BT <- BilateralTrade 
class(BT) 
dim(BT) 
View(BT) 
str(BT) 

In this last part, we focus on how to plot with plot(). 
In the next lines of code, we use aggregate(), ave(), and unique() 

functions. Note that this time we indicate two variables, exp_tv and imp_tv, 
to aggregate in the data set. We include both variables in list() in the first entry 
of the aggregate() function. 
BT$tt <- sum(BT$exp_tv, na.rm = T)  
summary(BT$tt) 

BTc <- aggregate(list(exp_tv = BT$exp_tv, 
imp_tv = BT$imp_tv), 

by = list(ccode = BT$ccode, 
pcode = BT$pcode, 
year = BT$year), 

FUN = function(x) sum(x, na.rm = T)) 
dim(BTc) 

BTc2 <- BTc 
BTc2$x_i_d <- BTc2$exp_tv 

# Sum of ccode’s export to all its destinations 
BTc2$sum_i_x_i_d <- ave(BTc2$exp_tv, 

interaction(BTc2$ccode, BTc2$year), 
FUN = function(x) sum(x, na.rm = T)) 

# Total world exports to each destination 
BTc2$x_w_d <- ave(BTc2$exp_tv, 

interaction(BTc2$pcode, BTc2$year), 
FUN = function(x) sum(x, na.rm = T)) 

# Total world exports to all destinations served by ccode 
BTc2$sum_i_x_w_d <- ave(BTc2$x_w_d, 

interaction(BTc2$ccode, BTc2$year), 
FUN = function(x) sum(x, na.rm = T)) 

# Total world exports to all destinations in the world 
BTc2$sum_w_x_w_d <- ave(BTc2$exp_tv, 

interaction(BTc2$year), 
FUN = function(x) sum(x, na.rm = T)) 

BTc2$em_i <- BTc2$sum_i_x_w_d / BTc2$sum_w_x_w_d 
BTc2$im_i <- BTc2$sum_i_x_i_d / BTc2$sum_w_x_w_d 

summary(BTc2$em_i) 
summary(BTc2$im_i) 

BTc3 <- BTc2[, c("ccode", "year", "em_i", "im_i")] 
BTc3 <- unique(BTc3) 
dim(BTc3) 

BTc3$em_i <- BTc3$em_i * 100
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BTc3$im_i <- BTc3$im_i * 100 

summary(BTc3$em_i) 
summary(BTc3$im_i) 

We build a double y-axis plot with the intensive margin on the left side y-axis and 
the extensive margin on the right side y-axis margin. It is possible to plot a double y-
axis plot with ggplot(). However, to my knowledge, ggplot() does not allow 
the rescale of the second y-axis. With ggplot() we need to transform the data 
for representation. However, the transformation of the data in the two y-axes is a 
.1 : 1 transformation. On the other hand, plot() automatically rescales the second 
y-axis. Therefore, to reproduce the same plot as in Stata, this time we use plot(). 

We plot the intensive and extensive margins for four countries: Argentina, 
Colombia, Mexico, and Spain. We use subset() to subset BTc3 by each of these 
countries and assign each of them to new objects. 

# plot double y-axis with plot() for ARG, COL, MEX and ESP 
### subset ccode == "ARG" 
BT_arg <- subset(BTc3, ccode == "ARG") 
summary(BT_arg$em_i) 
summary(BT_arg$im_i) 

### subset ccode == "COL" 
BT_col <- subset(BTc3, ccode == "COL") 
summary(BT_col$em_i) 
summary(BT_col$im_i) 

### subset ccode == "MEX" 
BT_mex <- subset(BTc3, ccode == "MEX") 
summary(BT_mex$em_i) 
summary(BT_mex$im_i) 

### subset ccode == "ESP 
BT_esp <- subset(BTc3, ccode == "ESP") 
summary(BT_mex$em_i) 
summary(BT_mex$im_i) 

The first lines of code draw the plot for Argentina. Note the use of par(). 
par() can be used to set or query graphical parameters. In the first line of code, 
we use the parameter mfrow = to define the arrangement of the plotting space 
by number of rows and number of columns. In this specific case, we are arranging 
a .2 x 2 space where to draw the four plots. Note that at the very last line we code 
par(mfrow = c(1,1)) to set back the plotting space to the whole area. 

In the second line, we modify the margins inside par(). xpd = TRUE sets all 
plotting clipped to the figure region. mar = par()$mar + c(0, 0, 0, 2) 
expands the margins on the right. Note that at the end of the code for each plot we 
restore the margins. 

In plot(), the first entries represent the coordinates of points in the plot. In 
this case, we use . ∼. This allows to plot formula, such as y . ∼ x. pch = define 
a plotting character. las = sets the label style, where 1 means always horizontal. 
cex = indicates the amount by which plotting text and symbols should be scaled 
relative to the default that is 1. Therefore, cex.main = and cex.axis = define 
the magnification to be used for main title and axis notation.
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Fig. 2.9 A double y-axis plot 

We set par(new = T) to not clean the first plot. Therefore, the new plot is 
added in the same frame. In fact, now we code the second plot. Note that for the y-
axis we use the extensive margin, em_i, while in the first plot we used the intensive 
margin, im_i. We add two arguments, axis() and mtext(). Note the both have 
side = 4. This means that the options in these arguments apply to the second 
y-axis. 

Finally, we define the legend. Note that with inset = we define the position 
of the legend outside the box. bty defines the box style. The value n suppress the 
box around the plot. 

Repeat this codes for the other three countries to reproduce Fig. 2.9. 
# plot 

par(mfrow = c(2,2)) 
par(xpd = T, mar = par()$mar + c(0, 0, 0, 2)) 
plot(BT_arg$im_i ~ BT_arg$year, col = "blue", 

ylab = "IM", xlab = "Years", pch = 20, 
main = "Argentina Intensive and Extensive Margin",



106 2 Analyzing Trade Flows

las = 1, 
cex.main = 0.8, cex.axis = 0.8) 

par(new = T)  
plot(BT_arg$em_i ~ BT_arg$year, col = "red", 

axes = F, xlab = "", ylab = "", pch = 20) 
axis(side = 4, las = 1, 

cex.main = 0.8, cex.axis = 0.8) 
mtext("EM", side = 4, line = 2.5, cex = 0.7) 
legend("bottomright", 

legend = c("Intensive Margin", "Extensive Margin"), 
col = c("blue", "red"), 
pch = c(20, 20), cex = 0.8, bty = "n", 
inset=c(-0.05,-0.25)) 

par(mar = c(5, 4, 4, 2) + 0.1) 

par(xpd = T, mar = par()$mar + c(0, 0, 0, 2)) 
plot(BT_col$im_i ~ BT_col$year, col = "blue", 

ylab = "IM", xlab = "Years", pch = 20, 
main = "Colombia Intensive and Extensive Margin", 
las = 1, 
cex.main = 0.8, cex.axis = 0.8) 

par(new = T)  
plot(BT_col$em_i ~ BT_col$year, col = "red", 

axes = F, xlab = "", ylab = "", pch = 20) 
axis(side = 4, las = 1, 

cex.main = 0.8, cex.axis = 0.8) 
mtext("EM", side = 4, line = 2.5, cex = 0.7) 
legend("bottomright", 

legend = c("Intensive Margin", "Extensive Margin"), 
col = c("blue", "red"), 
pch = c(20, 20), cex = 0.8, bty = "n", 
inset=c(-0.05,-0.25)) 

par(mar = c(5, 4, 4, 2) + 0.1) 

par(xpd = T, mar = par()$mar + c(0, 0, 0, 2)) 
plot(BT_mex$im_i ~ BT_mex$year, col = "blue", 

ylab = "IM", xlab = "Years", pch = 20, 
main = "Mexico Intensive and Extensive Margin", 
las = 1, 
cex.main = 0.8, cex.axis = 0.8) 

par(new = T)  
plot(BT_mex$em_i ~ BT_mex$year, col = "red", 

axes = F, xlab = "", ylab = "", pch = 20) 
axis(side = 4, las = 1, 

cex.main = 0.8, cex.axis = 0.8) 
mtext("EM", side = 4, line = 2.5, cex = 0.7) 
legend("bottomright", 

legend = c("Intensive Margin", "Extensive Margin"), 
col = c("blue", "red"), 
pch = c(20, 20), cex = 0.8, bty = "n", 
inset=c(-0.05,-0.25)) 

par(mar = c(5, 4, 4, 2) + 0.1) 

par(xpd = T, mar = par()$mar + c(0, 0, 0, 2)) 
plot(BT_esp$im_i ~ BT_esp$year, col = "blue", 

ylab = "IM", xlab = "Years", pch = 20, 
main = "Spain Intensive and Extensive Margin", 
las = 1, 
cex.main = 0.8, cex.axis = 0.8) 

par(new = T)  
plot(BT_esp$em_i ~ BT_esp$year, col = "red", 

axes = F, xlab = "", ylab = "", pch = 20) 
axis(side = 4, las = 1, 

cex.main = 0.8, cex.axis = 0.8) 
mtext("EM", side = 4, line = 2.5, cex = 0.7) 
legend("bottomright", 

legend = c("Intensive Margin", "Extensive Margin"),
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col = c("blue", "red"), 
pch = c(20, 20), cex = 0.8, bty = "n", 
inset=c(-0.05,-0.25)) 

par(mar = c(5, 4, 4, 2) + 0.1) 
par(mfrow = c(1,1))



Chapter 3 
Analyzing Trade Tariffs 

3.1 Summary of Tariff Statistics 

Learning Objectives

� Import a Stata file
� Conversion of objects
� Generate new variables
� Describe variables
� Export data set
� Reshape the data set
� Subset a data set
� Plot with ggplot()
� Make an interactive plot with ggplotly() 

In this section we summarize, reorganize and export basic statistics for tariffs. We 
conclude the section by plotting tariffs for Colombia and Japan using histogram, 
density plot and scatter plot.1 

Open a new script file in RStudio and save it as 08_tariff_statistics_ 
2edn. 

Let’s load the following packages by using the library() function. 

library("haven") # import Stata .dta file 

1 The code in this section is base on the Stata code available in AnalyzingTradePolicy.do. 
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library("Hmisc") # describe variable 
library("data.table") # reshape the data set 
library("dplyr") # combine operations 
library("doBy") # summarise by 
library("ggplot2") # plot with ggplot 
library("plotly") # interactive plot 

Let’s import the UNCTAD & WTO’s TPP.dta data set in R. TPP is a data 
frame with 81,200 observations and 40 variables. Data cover the years 1976–2004. 
TPP <- read_dta("datWTO/TPP.dta") 
class(TPP) 
View(TPP) 
dim(TPP) 
str(TPP) 

We access basic statistics by using the general function summary(). In the  
following lines of code, we obtain basic statistics for Colombia and Japan.We obtain 
information such as minimum, 1st quartile, median, mean, 3rd quartile, maximum, 
and, if present, number of missing values. Note that we can obtain information about 
a variable also with the describe() function from the Hmisc package. 
# summary statistics for Colombia and Japan 
summary(subset(TPP, ccode == "COL")) 
summary(subset(TPP, ccode == "JPN")) 

describe(TPP$isic3d_3dig) 

In the next lines of code, we compute mean, media, standard deviation, minimum 
and maximum for tariffs for Colombia and Japan. 

First, we subset the data set for Colombia and Japan, respectively. Then, we 
keep only the following variables: sector, sector, simple average of applied 
tariffs on imports, tar_savg_ahs, weighted average of applied tariffs on 
imports, tar_iwahs, simple average import tariff for most favored nation MFN 
tar_savg_mfn, and weighted average tariff rate for MFN tar_iwmfn. 
TPP_col <- subset(TPP, ccode == "COL") 
TPP_col <- TPP_col[, c("sector", "tar_savg_ahs", "tar_iwahs", 

"tar_savg_mfn", "tar_iwmfn")] 

TPP_jpn <- subset(TPP, ccode == "JPN") 
TPP_jpn <- TPP_jpn[, c("sector", "tar_savg_ahs", "tar_iwahs", 

"tar_savg_mfn", "tar_iwmfn")] 

We use the summaryBy() function from the doBy package. This is a function 
to calculate group wise summary statistics The first entry is a formula object. In 
this case, we calculate statistics by each tariff per sector. We indicate the data set in 
the second entry. Then, we include the list of functions that we want to apply. The 
argument na.rm=TRUE will remove the missing values.2 The calculations for each 
tariff will be stored in a new object. 
tar_col <- summaryBy(tar_savg_ahs + tar_iwahs + 

tar_savg_mfn + tar_iwmfn ~ sector, 
TPP_col, na.rm = T,  
FUN=c(mean, median, sd, min, max))

2 na.rm = is passed as an extra argument to the function. We need to be sure the all the functions 
in FUN accept the extra argument to pass it. 



3.1 Summary of Tariff Statistics 111

View(tar_col) 

tar_jpn <- summaryBy(tar_savg_ahs + tar_iwahs + 
tar_savg_mfn + tar_iwmfn ~ sector, 

TPP_jpn, na.rm = T,  
FUN=c(mean, median, sd, min, max)) 

View(tar_jpn) 

Finally, we export the data sets as a tab delimited text files using 
write.table(). 

## export dataset as tab delimited txt file 
write.table(tar_col, "AverageTariff_COL.txt", 

row.names = F, sep="\t") 
write.table(tar_jpn, "AverageTariff_JPN.txt", 

row.names = F, sep="\t") 

Following, we plot the data. We use a histogram for Colombia’s tariffs distribu-
tion, a density plot for Japan’s tariffs distribution, and a scatter plot for Japan split 
by tariffs.3 

The first step to plot the histogram for Colombia’s tariffs distribution is to reshape 
the data set long. We use the melt() function from the data.table package. 
Refer to Sect. 2.3 for details about the function. 

TPP_col_l <- melt(setDT(TPP_col), id.vars = "sector", 
measure.vars = c("tar_savg_ahs", "tar_iwahs", 

"tar_savg_mfn", "tar_iwmfn"), 
variable.name = "tariff_name", 
value.name = "tariff_value") 

Now we are ready to plot. By now, most of the lines of the following 
code is well known. Note that we use the function geom_histogram(). 
bins specifies the number of bins. The default value is 30. ..density.. 
plots the histogram with density instead of count on y-axis. Finally, we add 
guides(fill=guide_legend(nrow = 2, byrow = TRUE)) to break 
the legend by two rows. The output of this plot is shown in Fig. 3.1. 

ggplot(TPP_col_l, aes(tariff_value, ..density.., 
fill = tariff_name)) + 

geom_histogram(bins = 17, position="dodge") +  
theme_classic() + 
xlab("tariffs") +  
ggtitle("Tariffs Distribution in Colombia") +  
scale_fill_manual(labels = c("simple average of applied tariffs on imports", 

"weighted average of applied tariffs on imports", 
"simple average import tariff for most favored 

nation MFN", 
"weighted average tariff rate for MFN"), 

values = c("red", "blue", "green", "pink")) + 
theme(legend.position = "bottom", 

legend.text = element_text(size = 7.5), 
legend.key.size = unit(0.2, "cm"), 
legend.title = element_blank()) + 

guides(fill=guide_legend(nrow = 2,byrow = TRUE))

3 Note that the plots in this chapter divert from the code in Practical Guide to Trade Policy Analysis 
to show new features of ggplot(). 
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Fig. 3.1 Histogram with ggplot2 

Next, we plot a density plot for Japan’s tariffs. The steps are the same as for the 
previous plot. First, we reshape the data set. 

TPP_jpn_l <- melt(setDT(TPP_jpn), id.vars = "sector", 
measure.vars = c("tar_savg_ahs", "tar_iwahs", 

"tar_savg_mfn", "tar_iwmfn"), 
variable.name = "tariff_name", 
value.name = "tariff_value") 

Now we are ready to plot. We use the geom_density() function. The rest of 
the code is the same as the previous figure. However, note that we add na.rm = T. 
If FALSE, the default, missing values are removed with a warning. If you replicated 
the plot for Colombia, you should have received the following warning 

Warning message: 
Removed 2016 rows containing non-finite values (stat\_bin). 

By setting TRUE, missing values are silently removed.
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Fig. 3.2 Density plot with ggplot2 

Finally, note that the value of alpha is used to control the level of transparency. 
The output of this plot is shown in Fig. 3.2. 

TPP_jpn_plot <- ggplot(TPP_jpn_l, aes(tariff_value, 
fill = tariff_name)) + 

geom_density(alpha = .3, na.rm = T) +  
theme_classic() + 
xlab("tariffs") +  
ggtitle("Tariffs Distribution in Japan") +  
scale_fill_manual(labels = c("simple average of applied tariffs on imports", 

"weighted average of applied tariffs on imports", 
"simple average import tariff for most favored 
nation MFN", 
"weighted average tariff rate for MFN"), 

values = c("red", "blue", "green", "pink")) + 
theme(legend.position = "bottom", 

legend.text = element_text(size = 7.5), 
legend.key.size = unit(0.2, "cm"), 
legend.title = element_blank()) + 

guides(fill=guide_legend(nrow = 2,byrow = TRUE))
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Fig. 3.3 Interactive plot 

TPP_jpn_plot 

We can easily turn the previous plot in an interactive plot by using the plotly 
package. We just need to pass the ggplot2 plot to the ggplotly() function. 
Figure 3.3 shows the output.4 

ggplotly(TPP_jpn_plot) 

Finally, we plot a scatter plot for Japan split by tariffs. Each scatter plot, where 
the point represents a sector, is built with tariffs on the horizontal x-axis and non-
tariff barrier (NTB) ad valorem equivalents (AVE) on the y-axis. 

First, we subset the data set for Japan by keeping values greater than zero. It is 
suggested that when the number of zero values is high, it is best to drop them from 
the plot to see a clearer picture. We use filter() from the dplyr package. Note 
that we name this data set TPP_jpn as the previous one. This means that it will be 
overwritten. If you do not want to overwrite it, just choose a different name. Then, 
we reshape it long. This time we also keep year that will be used to compare the 
values in the plot. 
TPP_jpn <- TPP %>% 

filter(ccode == "JPN" & ave_core_sim > 0 & tar_savg_ahs > 0) %>% 
filter(ccode == "JPN" & ave_core_sim > 0 & tar_iwahs > 0) %>% 
filter(ccode == "JPN" & ave_core_sim > 0 & tar_savg_mfn > 0) %>% 
filter(ccode == "JPN" & ave_core_sim > 0 & tar_iwmfn > 0) 

TPP_jpn_l <- melt(setDT(TPP_jpn), 
id.vars = c("sector", "year", "ave_core_sim"), 
measure.vars = c("tar_savg_ahs", "tar_iwahs", 

"tar_savg_mfn", "tar_iwmfn"), 
variable.name = "tariff_name", 
value.name = "tariff_value") 

View(TPP_jpn_l)

4 Figure 3.3 is a screenshot. 
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Fig. 3.4 Facets with ggplot2 

Now we are ready to plot. The main difference with the previous plots is the 
facet_grid() function. facet_grid() forms a matrix of panels defined by 
row and column facetting variables. The first entry is a formula with the rows (of the 
tabular display) on the LHS and the columns (of the tabular display) on the RHS. If 
we replace one of the variables in the formula with the dot, we indicate that there 
should be no faceting on that dimension (either row or column). Refer to Sect. 3.3 
and Appendix A for other examples with facet_grid(). Additionally, we use a 
different background for the plot by using theme_bw(). The output of this plot is 
shown in Fig. 3.4. 

plot_jpn <- ggplot(TPP_jpn_l, 
aes(x = tariff_value, 

y =  ave_core_sim, 
colour = as.factor(year))) + 

geom_point(size = 2) + 
facet_grid(year ~ tariff_name) +
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theme_bw() + 
xlab("Tariffs") + ylab("average Core NTB Coverage Ratio") +  
ggtitle("Tariffs versus NTBs in JPN") +  
theme(plot.title = element_text(hjust = 0.5, 

size = 10, face="bold"), 
axis.title.x = element_text(size = 7.5)) + 

theme(legend.position="bottom", 
legend.title = element_blank()) 

plot_jpn 

In Appendix A, we will create an interactive dashboard with R Shiny to show 
some of these results. 

3.2 Determinants of Tariffs 

Learning Objectives

� Import a Stata file
� Generate new variables
� Pipe operations with %>%
� Sort data set by variables
� Collapse a data set with aggregate()
� Replace if
� Subset a data set
� Generate group id
� Label variables
� Export data set
� Run a regression
� Reproduce Stata robust standard errors
� Export results with stargazer() 

The aim of this section is to estimate the determinants of tariffs by regressing 
average tariff on establishment size, proportion of female workers, wage per 
employee, and import-penetration ratio.5 First, we generate the covariates and then 
we estimate the equation. 

Open a new script file in RStudio and save it as 09_determinants_of_tariffs_2edn. 
Let’s load the following packages using the library() function.

5 The corresponding Stata code is available in AnalyzingTradePolicy.do. 
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library("haven") # import Stata .dta file 
library("Hmisc") # for label 
library("dplyr") # combine operations and group id 
library("plm") # panel regression 
library("sandwich") # replicate Stata robust standard errors 
library("lmtest") # replicate Stata robust standard errors 
library("stargazer") # export regression results 

Let’s import the UNCTAD & WTO’s TPP.dta data set in R. TPP is a data 
frame with 81,200 observations and 40 variables. Data cover the years 1976–2004. 

TPP <- read_dta("datWTO/TPP.dta") 
class(TPP) 
View(TPP) 
dim(TPP) 
str(TPP) 

First, we calculate the import-penetration ratios for each sector, defined as 

.muij = Mj

Cj

(3.1) 

where

• . Mj is imports of good j for a given year; 
• . Cj is domestic consumption (final demand) of the same good in the same year. 

After generating the new variables, we label them and we sort the data set by 
ccode and isic3d_3dig with the order() function.6 

TPP$M_j <- TPP$imp_tv 
TPP$C_j <- TPP$imp_tv + TPP$output 
TPP$mu <- TPP$M_j / TPP$C_j 

TPP <- upData(TPP, 
labels = c(M_j =  "imports of good j", 

C_j =  "domestic consumption of good j", 
mu = "Import-Penetration")) 

TPP <- TPP[order(TPP$ccode, TPP$isic3d_3dig), ] 

In the next step, we calculate the rate of growth of import-penetration between 
1983–1985 and 1998–2000. We need to generate two new variables, mu_83_85 
and mu_98_00, which store the average for 1983–1985 and 1998–2000, respec-
tively. We accomplish this task by using the dplyr as shown in Sect. 2.4. After  
generating the new variables, we label them using the upData() function from 
the Hmisc package. 

TPP <- TPP %>% 
group_by(ccode, isic3d_3dig) %>% 
mutate(mu_83_85 = ifelse(year >= 1983 & year <= 1985, 

mean(mu[year >= 1983 & year <= 1985], 
na.rm = T), NA), 

mu_98_00 = ifelse(year >= 1998 & year <= 2000, 
mean(mu[year >= 1998 & year <= 2000],

6 The isic3d_3dig is the Sector-Identifier which divides the economic activities into 28 sectors 
(isic identifier from 311 to 390). 
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na.rm = T), NA)) 

View(TPP[, c(1, 2, 3, 44, 45)]) 

TPP <- upData(TPP, 
labels = c(mu_83_85 = "Average Import-Penetration for 1983-1985", 

mu_98_00 = "Average Import-Penetration for 1998-2000")) 

Next, we collapse mu_83_85 and mu_98_00 by ccode and isic3d_3dig 
by using the aggregate() function. Refer to Sects. 2.2 and 2.6 for its use. We 
assign this operation to a new object, TPP_c. 

TPP_c <- aggregate(list(mu_83_85 = TPP$mu_83_85, 
mu_98_00 = TPP$mu_98_00), 

by = list(ccode = TPP$ccode, 
isic3d_3dig = TPP$isic3d_3dig), 

FUN = function(x) mean(x, na.rm = T)) 

Next, we generate the growth rate of import-penetration, mugrate. We replace 
Inf value with NA and we label it. 

TPP_c$mugrate <- (TPP_c$mu_98_00 - TPP_c$mu_83_85)/TPP_c$mu_83_85 

TPP_c$mugrate[is.infinite(TPP_c$mugrate)] <- NA 

TPP_c <- upData(TPP_c, 
labels = c(mugrate = "Growth Rate of Import-Penetration")) 

Finally, we sort TPP_c by ccode and isic3d_3dig with the order() 
function. Then, we subset for Colombia and Japan and export the results as a CSV 
file by using write.csv(). 

TPP_c <- TPP_c[order(TPP_c$ccode, TPP_c$isic3d_3dig), ] 

TPP_col <- subset(TPP_c[, c(1, 2, 5)], ccode == "COL") 
TPP_jpn <- subset(TPP_c[, c(1, 2, 5)], ccode == "JPN") 

# export dataset 
write.csv(TPP_col, "TPP_col.csv", row.names = FALSE) 
write.csv(TPP_jpn, "TPP_jpn.csv", row.names = FALSE) 

Next, we generate the other covariates, establishment size as the ratio of 
employees to establishments, estabsize, the proportion of female workers, 
femalework, and wages per employee, wagepe, and label them. 

We keep only the following variables: ccode, year, isic3d_3dig, 
tar_savg_ahs, tar_iwahs, tar_savg_mfn, tar_iwmfn,ave_core_sim, 
ave_core_wgt, estabsize, femalework, wagepe, and mu. We assign this 
operation to a new object, Ratios. 

TPP$estabsize <- TPP$n_employees/TPP$n_establ 
TPP$femalework <- TPP$n_female_emp/TPP$n_employees 
TPP$wagepe <- TPP$wage_bill/TPP$n_employees 

TPP <- upData(TPP, labels = c(estabsize = "establishment size", 
femalework = "proportion of female workers", 
wagepe = "wage per employee")) 

Ratios <- TPP[, c("ccode", "year", "isic3d_3dig", "tar_savg_ahs", 
"tar_iwahs", "tar_savg_mfn", "tar_iwmfn", 
"ave_core_sim", "ave_core_wgt", "estabsize", 
"femalework", "wagepe", "mu")]
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Next, we generate the panel id, id, with the cur_group_id() function from 
the dplyr package. Then, we convert the variables into logarithms. 

Ratios <- Ratios %>% 
group_by(ccode, isic3d_3dig) %>% 
mutate(id = cur_group_id()) 

Ratios$ln_estabsize <- log(Ratios$estabsize) 
Ratios$ln_wagepe <- log(Ratios$wagepe) 
Ratios$ln_tar_savg_ahs <- log(Ratios$tar_savg_ahs + 1)  
Ratios$ln_femalework <- log(Ratios$femalework + 1) 
Ratios$ln_mu <- log(Ratios$mu + 1)  

Replace the NaN values7 in ln_tar_savg_ahs, ln_wagepe, and ln_mu 
with NA. We use  the  is.nan() function that tests if a numeric value is NaN. Do  
not test equality to NaN, or even use identical, since systems typically have many 
different NaN values. 

Ratios$ln_tar_savg_ahs[is.nan(Ratios$ln_tar_savg_ahs)] <- NA 
Ratios$ln_wagepe[is.nan(Ratios$ln_wagepe)] <- NA 
Ratios$ln_mu[is.nan(Ratios$ln_mu)] <- NA 

Now we are ready to estimate the following two equations by using fixed effects 
with the plm() function from the plm package: 

. ln_tar_savg_ahs = β0 + β1ln_estabsize + β2ln_f emalework

+ β3ln_wagepe + u (3.2) 

. ln_tar_savg_ahs = β0 + β1ln_estabsize + β2ln_f emalework

+ β3ln_wagepe + β4ln_mu + u (3.3) 

The first entry of the plm() is a formula. index = enables the estimation
functions to identify the structure of the data, i.e., the individual and the time period
for each observation, model = indicates the kind of model to be estimated. In this
case, we choose within for fixed effects.

Finally, note that to reproduce robust standard errors as in Stata we have to call for
another function, coeftest() from the lmtest package and choose the options
type = "sss" and cluster = "group" in vcov = vcovHC().

reg_plm_fe <- plm(ln_tar_savg_ahs ~ ln_estabsize + 
ln_femalework + ln_wagepe, 

data = Ratios, 
index = c("id", "year"), 
model = "within") 

summary(reg_plm_fe) 

reg_plm_fe_r <- coeftest(reg_plm_fe, 
vcov = vcovHC(reg_plm_fe, 

type = "sss", 
cluster = "group"))

7 NaN means “Not a Number”. 
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reg_plm_fe_r 

reg_plm_fe2 <- plm(ln_tar_savg_ahs ~ ln_estabsize + 
ln_femalework + ln_wagepe + ln_mu, 

data = Ratios, 
index = c("id", "year"), 
model = "within") 

summary(reg_plm_fe2) 
reg_plm_fe_r2 <- coeftest(reg_plm_fe2, 

vcov = vcovHC(reg_plm_fe2, 
type = "sss", 
cluster = "group")) 

reg_plm_fe_r2 

Here, I print the results of the first model with the conventional standard errors 
and Stata robust standard errors. 

> summary(reg_plm_fe) 
Oneway (individual) effect Within Model 

Call: 
plm(formula = ln_tar_savg_ahs ~ ln_estabsize 

+ ln_femalework + ln_wagepe, data = Ratios, 
model = "within", index = c("id", "year")) 

Unbalanced Panel: n = 1170, T = 1-9, N = 3594 

Residuals: 
Min. 1st Qu. Median 3rd Qu. Max.

-2.569936 -0.090951 0.000000 0.098789 2.670879 

Coefficients: 
Estimate Std. Error t-value Pr(>|t|) 

ln_estabsize 0.184586 0.015049 12.2654 < 2.2e-16 *** 
ln_femalework 0.536223 0.172928 3.1008 0.001952 ** 
ln_wagepe -0.141421 0.026634 -5.3098 1.198e-07 ***
---
Signif. codes: 

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Total Sum of Squares: 289.73 
Residual Sum of Squares: 269.81 
R-Squared: 0.06876 
Adj. R-Squared: -0.38205 
F-statistic: 

59.5863 on 3 and 2421 DF, p-value: < 2.22e-16 

> reg_plm_fe_r
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t test of coefficients: 

Estimate Std. Error t value Pr(>|t|) 
ln_estabsize 0.184586 0.017933 10.2932 < 2.2e-16 *** 
ln_femalework 0.536223 0.235487 2.2771 0.0228685 * 
ln_wagepe -0.141421 0.038066 -3.7151 0.0002077 ***
---
Signif. codes: 

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

However, note that Stata output reports an intercept with fixed effects model.8 

To replicate that result for the intercept with the plm package, we need to use the 
within_intercept() function. 

> within_intercept(reg_plm_fe, 
+ vcov = function(x) vcovHC(x, type="sss", 
+ cluster = "group")) 
(overall_intercept) 

1.671349 
attr(,"se") 
[1] 0.108322 

After estimating the models, we may want to export the results. We can 
accomplish this task with the stargazer package. 

First, note that we store all the regressions results in objects. The first entries of 
stargazer() are one or more model objects (for regression analysis tables) or 
data frames/vectors/matrices (for summary statistics, or direct output of content). 
type = specifies what type of output the command should produce. The possible 
values are latex, (default) for LaTeX code, html for HTML/CSS code, text 
for ASCII text output. title = is a character vector with titles for the tables. 
digits = indicates how many decimal places should be used. column.labels 
=, dep.var.labels =, and covariate.labels = indicate the labels for 
columns, dependent variable, and independent variables, respectively. add.lines 
= is a list of vectors (one vector per line) containing additional lines to be included 
in the table. Each element of the listed vectors will be put into a separate column. 
out = contains the path of output files. Depending on the file extension (.tex, .txt, 
.htm or .html), either a LaTeX/HTML source file or an ASCII text output file will 
be produced (see Table 3.1). 

Note that the code for stargazer() differs from the code in the first edition of 
the book. In the first edition, we used reg_plm_fe_r and reg_plm_fe_r2 as 
models to get the desired robust standard errors. In this code we use reg_plm_fe 
and reg_plm_fe2 as models and we modify the standard errors and the p-values

8 Refer to https://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/. 

https://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/
https://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/
https://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/
https://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/
https://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/
https://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/
https://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/
https://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/
https://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/
https://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/
https://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/
https://www.stata.com/support/faqs/statistics/intercept-in-fixed-effects-model/
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in the stargazer() function by passing a list of numeric vectors to se = and 
p =, respectively. The values are matched to covariates by their element names. 
By doing like this, stargazer() automatically will print some statistics such as 
number of observations, R-squared, Adjusted R-squared, and F statistics. 

Refer to Sect. 4.3 for another example with stargazer. 

stargazer(reg_plm_fe, reg_plm_fe2, 
type = "latex", 
title ="Regression output of the determinant of tariffs with 
stargazer", 
digits = 4, 
dep.var.labels = "Log of simple average of applied tariffs on 
imports", 
covariate.labels = c("log of establishment size", 

"log of proportion of female workers", 
"log of wage per employee", 
"log of Import-Penetration"), 

se = list(reg_plm_fe_r[, 2], 
reg_plm_fe_r2[, 2]), 

p =  list(reg_plm_fe_r[, 4], 
reg_plm_fe_r2[, 4]), 

add.lines = list(c("FE", "YES", "YES")), 
out = "regression_tar.tex") 

Table 3.1 Regression output of the determinant of tariffs with stargazer 

Dependent variable: 

Log of simple average of applied tariffs on imports 

(1) (2) 

log of establishment size 0.1846.∗∗∗ 0.1847. ∗∗∗

(0.0179) (0.0184) 

log of proportion of female workers 0.5362.∗∗ 0.6716. ∗∗∗

(0.2355) (0.2541) 

log of wage per employee . −0.1414.∗∗∗ . −0.1210. ∗∗∗

(0.0381) (0.0406) 

log of Import-Penetration 0.1979 

(0.2231) 

FE YES YES 

Observations 3,594 3,295 

R.2 0.0688 0.0722 

Adjusted R.2 . −0.3821 . −0.3797 

F Statistic 59.5863. ∗∗∗ (df = 3; 2421) 43.1112. ∗∗∗ (df = 4; 2215) 

Note: . ∗p. <0.1; . ∗∗p. <0.05; . ∗∗∗p. <0.01



3.3 Analyzing Preferential Market Access 123

3.3 Analyzing Preferential Market Access 

Learning Objectives

� Import a Stata file
� Conversion of objects
� Generate new variables
� Pipe operations with %>%
� Drop duplicates
� Label variables
� Reshape the dataset
� Replace if
� Plot with ggplot() 

In this section we replicate the UNCTAD & WTO’s the code to calculate the tariff 
trade restrictiveness index (TTRI) and the relative preferential margin (RPM) as 
defined in Fugazza & Nicita (2011).9 

Fugazza & Nicita (2011) observe that “one consequence of the large number 
of PTAs is that an increasing share of international trade is not subject to the 
most favoured nation (MFN) tariff, but enters markets through preferential access. 
Preferential access affects trade because, by providing some countries with a relative 
advantage, it is essentially a discriminatory practice”. 

They provide two indices to measure market access conditions that take into 
account the complex structure of tariff preferences: the tariff trade restrictiveness 
index (TTRI) and the relative preferential margin (RPM). 

TTRI is defined as 

.T T RIjk =
∑

hs expjk,hsεk,hsT
j
k,hs∑

hs expjk,hsεk,hs

(3.4) 

where exp are exports, . ε is the import demand elasticity, T is the tariff, and hs are 
HS six-digit categories. 

TTRI index captures direct market access conditions (the overall tariff faced by 
exports). 

RPM is defined as

9 The corresponding Stata code in available in AnalyzingPreferentialMarketAccess.do. 
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.RPMjk =
∑

hs expjk,hsεk,hs

(
Tw

k,hs − Tj
k,hs

)
∑

hs expjk,hsεk,hs

, j �= k (3.5) 

with

.Tw
k,hs =

∑
v expvk,hsT

v
k,hs∑

v expvk,hs

(3.6) 

where exp are exports, . ε is the import demand elasticity, T is the tariff, hs are HS six-
digit categories, v are exporters competing with country j in exporting to country k, 
and .Tw

k,hs is the trade-weighted average of the tariffs applied by country k to imports 
originating from each country v (for each HS six-digit product). 

RPM index captures relative market access conditions (the overall tariff faced by 
exports relative to that faced by competitors). 

Refer to Fugazza & Nicita (2011) for more details on these indexes and their 
applicability. 

In this section, we calculate the TTRI and RPM for Mexico. We will add a bar 
plot of the two indexes for year 2000 and 2008 that is not included in Practical 
Guide to Trade Policy Analysis.10 

Open a new script file in RStudio and save it as 
10_AnalyzingPreferentialMarketAccess_2edn. 

Let’s load the following packages by using the library() function. 

library("haven") # import Stata .dta file 
library("Hmisc") # for label 
library("dplyr") # combine operations 
library("data.table") # reshape the data set 
library("ggplot2") # plot with ggplot 
library("stargazer") # export results 

Let’s import the UNCTAD & WTO’s PMA_MEX.dta in R by using the 
read_dta() function from the haven package. Assign this operation to a new 
object, PMA_MEX. PMA_MEX is a data frame with 94,699 observations and 7 
variables: year, year, importer-reporter, ccode, bilateral trade, exp, HS-6 code, 
hs6, exporter-partner, pcode, applied tariff, T, and import demand elasticity, eps. 

PMA_MEX <- read_dta("datWTO/PMA_MEX.dta") 
class(PMA_MEX) 
View(PMA_MEX) 
dim(PMA_MEX) 
str(PMA_MEX) 

First of all, we rename the applied tariff, T as AT because T is short for TRUE 
which is a reserved name in R. 
colnames(PMA_MEX)[6] <- "AT" 

In the next lines of code we will compute step by step the TTRI and RPM indexes.

10 The corresponding Stata code in available in AnalyzingPreferentialMarketAccess.do. 



3.3 Analyzing Preferential Market Access 125

# COMPUTE THE PREFERENTIAL MARKET ACCESS 
## Compute the TTRI measure ----
PMA_MEX <- PMA_MEX %>% 

group_by(ccode, year, pcode) %>% 
mutate(num = sum((exp * AT * eps), na.rm = T)) 

PMA_MEX <- PMA_MEX[order(PMA_MEX$year, PMA_MEX$pcode), ] 

PMA_MEX <- PMA_MEX %>% 
group_by(ccode, year, pcode) %>% 
mutate(den = sum((exp * eps), na.rm = T)) 

PMA_MEX$TTRI_elas <- PMA_MEX$num/PMA_MEX$den 

PMA_MEX <- PMA_MEX %>% 
group_by(ccode, year, pcode) %>% 
mutate(num_ = sum((exp * AT), na.rm = T), 

den_ = sum((exp), na.rm = T)) 

PMA_MEX$TTRI_noelas <- PMA_MEX$num_/PMA_MEX$den_ 

# Compute the weighted average tariff for competitors at the hs level (Twc) 
PMA_MEX <- PMA_MEX %>% 

group_by(ccode, year, hs6) %>% 
mutate(TotalexpT = sum((exp * AT), na.rm = T), 

Totalexp = sum((exp), na.rm = T)) 

PMA_MEX$Twc <- ((PMA_MEX$TotalexpT - PMA_MEX$exp * PMA_MEX$AT) / 
(PMA_MEX$Totalexp - PMA_MEX$exp)) 

# Compute the RPM measure ----
PMA_MEX <- PMA_MEX %>% 

group_by(ccode, year, pcode) %>% 
mutate(num2 = sum((exp * Twc * eps), na.rm = T)) 

PMA_MEX$TTRI_others_elas <- PMA_MEX$num2 / PMA_MEX$den 
PMA_MEX$RPM_elas = PMA_MEX$TTRI_others_elas - PMA_MEX$TTRI_elas 

PMA_MEX <- PMA_MEX %>% 
group_by(ccode, year, pcode) %>% 
mutate(num2_ = sum((exp * Twc), na.rm = T)) 

PMA_MEX$TTRI_others_noelas <- PMA_MEX$num2_ /  PMA_MEX$den_ 
PMA_MEX$RPM_noelas <- PMA_MEX$TTRI_others_noelas - PMA_MEX$TTRI_noelas 

# Compute the trade-weighted average for MEX 
PMA_MEX <- PMA_MEX %>% 

group_by(ccode, pcode, year) %>% 
mutate(exports = sum((exp), na.rm = T))  

PMA_MEX2 <- PMA_MEX[, c(2, 1, 5, 23, 10, 13, 18, 21, 19, 22)] 
PMA_MEX2 <- unique(PMA_MEX2) 

PMA_MEX2 <- PMA_MEX2 %>% 
group_by(ccode, year) %>% 
mutate(Totalexports = sum((exports), na.rm = T), 

TTRI_elas_bar = mean((TTRI_elas), na.rm = T), 
TTRI_elas_sd = sd((TTRI_elas), na.rm = T), 
TTRI_noelas_bar = mean((TTRI_noelas), na.rm = T), 
TTRI_noelas_sd = sd((TTRI_noelas), na.rm = T),  
TTRI_elas_wbar = sum(((TTRI_elas * exports)/Totalexports), 

na.rm = T),  
TTRI_elas_wsd = sd(((TTRI_elas * exports)/Totalexports), 

na.rm = T), 
TTRI_noelas_wbar = sum(((TTRI_noelas * exports)/Totalexports), 

na.rm = T),
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TTRI_noelas_wsd = sd(((TTRI_noelas * exports)/Totalexports), 
na.rm = T),  

RPM_elas_bar = mean(RPM_elas, na.rm = T), 
RPM_elas_sd = sd(RPM_elas, na.rm = T), 
RPM_noelas_bar = mean(RPM_noelas, na.rm = T), 
RPM_noelas_sd = sd(RPM_noelas, na.rm = T), 
RPM_elas_wbar = sum(((RPM_elas * exports) / Totalexports), 

na.rm = T), 
RPM_elas_wsd = sd(((RPM_elas * exports) / Totalexports), 

na.rm = T), 
RPM_noelas_wbar = sum(((RPM_noelas * exports) / Totalexports), 

na.rm = T), 
RPM_noelas_wsd = sd(((RPM_noelas * exports) / Totalexports), 

na.rm = T)) 

PMA_MEX2 <- upData(PMA_MEX2, 
labels = 
c(TTRI_elas = "Tariff trade restrictiveness index", 

TTRI_noelas = "Tariff trade restrictiveness index 
without elasticities as weights", 

RPM_elas = "Relative preferential margin with 
elasticities as weights", 

RPM_noelas = "Relative preferential margin without 
elasticities as weights", 

TTRI_elas_bar = "TTRI simple average", 
TTRI_elas_sd = "TTRI simple standard deviation", 
TTRI_elas_wbar = "TTRI trade weighted average", 
TTRI_elas_wsd = "TTRI trade weighted standard 

deviation", 
RPM_elas_bar = "RPM simple average", 
RPM_elas_sd = "RPM simple standard deviation", 
RPM_elas_wbar = "RPM trade weighted average", 
RPM_elas_wsd = "RPM trade weighted standard 

deviation")) 

PMA_MEX3 <- PMA_MEX2[, c(1, 2, 12:27)] 
PMA_MEX3 <- unique(PMA_MEX3) 

RPM <- PMA_MEX3[, c("year", "ccode", "TTRI_elas_bar", "TTRI_elas_wbar", 
"RPM_elas_bar", "RPM_elas_wbar")] 

colnames(RPM) <- c("year", "ccode", "TTRIsimpleavg", "TTRIweightedav", 
"RPMsimpleavg", "RPMweightedav") 

RPM 

Following, the output of RPM. 
> RPM 
# A tibble: 2 x 6 
# Groups: ccode, year [2] 

year ccode TTRIsimpleavg TTRIweightedav RPMsimpleavg RPMweightedav 
<labelled> <labelled> <labelled> <labelled> <labelled> <labelled> 

1 2000 MEX 0.12813437 0.01855284 -0.08799973 0.03814564 
2 2007 MEX 0.09382693 0.02245499 -0.04912892 0.01055606 

Now, let’s reshape the data set long. We use the pattern in the name of the 
variables two reshape the data set long with two columns, one for the TTRI 
index and the other one for the RPM index. We accomplish this operation with 
the melt() function from the data.table package. Note that we introduce 
the patterns() argument where we identify the pattern in the name of the 
variables with ˆ. The argument variable.factor = FALSE prevents the 
variable column from being converted to factor. 
RPM2 <- melt(setDT(RPM), id.vars = c("year", "ccode"),
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measure = patterns("^TTRI", "^RPM"), 
variable.name = "statistics", 
variable.factor = FALSE, 
value.name = c("TTRI", "RPM")) 

class(RPM2$statistics) 
RPM2$statistics[RPM2$statistics == "1"] <- "simple average" 
RPM2$statistics[RPM2$statistics == "2"] <- "weighted average" 

RPM2 

> RPM2 
year ccode statistics TTRI RPM 

1: 2000 MEX simple average 0.12813437 -0.08799973 
2: 2007 MEX simple average 0.09382693 -0.04912892 
3: 2000 MEX weighted average 0.01855284 0.03814564 
4: 2007 MEX weighted average 0.02245499 0.01055606 

Now, let’s suppose we want to plot the data as a bar plot. We want to display 
information of the indexes by statistics and by year. We use geom_bar(). The  
first step is to reshape the data set long because we need our indexes in the same 
column. We use again the melt() function. 

RPM3 <- melt(setDT(RPM2), 
id.vars = c("year", "ccode", "statistics"), 
measure.vars = c("TTRI", "RPM")) 

RPM3 

As you can see from the printed output, our data set is now long. 

> RPM3 
year ccode statistics variable value 

1: 2000 MEX simple average TTRI 0.12813437 
2: 2007 MEX simple average TTRI 0.09382693 
3: 2000 MEX weighted average TTRI 0.01855284 
4: 2007 MEX weighted average TTRI 0.02245499 
5: 2000 MEX simple average RPM -0.08799973 
6: 2007 MEX simple average RPM -0.04912892 
7: 2000 MEX weighted average RPM 0.03814564 
8: 2007 MEX weighted average RPM 0.01055606 

Now we are ready to plot with ggplot(). All the arguments of the following 
plot should be clear (see Fig. 3.5 for the output). 

ggplot(RPM3, aes(x = variable, y = value, 
fill = factor(statistics))) + 

geom_bar(stat = "identity", position = "dodge") +  
facet_grid(. ~ year) + 
theme_classic() + 
xlab("") + ylab(" ") +  
ggtitle("TTRI and RPM") +  
theme(plot.title = element_text(hjust = 0.5, 

size = 10, face="bold"), 
axis.title.x = element_text(size = 7.5), 
legend.title = element_blank())
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Fig. 3.5 Bar plot and facets with ggplot2



Chapter 4 
The Gravity Model of Trade 

The gravity model for international trade was introduced by Jan Tinbergen in 1962. 
This model was based on an equation that approximated the theory of gravitation 
of Newton and therefore it is known as the gravity equation. Basically, the model 
shows that trade flows between two countries are positively affected by the size of 
the gross domestic product (GDP) of the two countries and negatively affected by 
their distance. In its simplest form, the model is represented as follows: 

.Xij = G
GDPiGDPj

Distij
(4.1) 

where:

• . Xij denotes exports from country i to country j; 
• . G denotes the inverse of world production; 
• .GDPi and .GDPj denote the GDP of country i and country j, respectively; 
• .Distijdenotes the geographical distance between the two countries that approxi-

mates the total trade costs between country i and country j. 

Traditionally, the gravity equation has been estimated through ordinary least-
squares (OLS) as the following: 

.lnXij = β0 + β1lnGDP i + β2lnGDPj + β3lnDistij + εij (4.2) 

where:

• . β0 is a constant; 
• . ε is the error term; 
• the other variables have the meaning explained above but in natural logarithmic 

form. 
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In order to account for trade costs, a set of dummy variables, denoting whether 
two countries share a common border, language, religion and colonial ties and 
whether a country is an island or is landlocked, is generally added to Eq. (4.2) .

The gravity equation has been successfully applied to several fields other than
trade, such as immigration, investments and tourism. In order to focus on a policy
of interest, researchers need to include relevant variables. For example, to estimate
the effects of FTAs a dummy variable is added to Eq. (4.2) :

. lnXij = β0 + β1lnGDP i + β2lnGDPj + β3lnDistij + β4Zi + β5FT Aij + εij

(4.3) 
where:

• . Zi is a vector of the aforementioned dummy variables (common border, lan-
guage, religion, . . . .); 

• .FT Aij is a dummy variable capturing the presence of a free-trade agreement 
between partners i and j; 

• the other variables have the meaning explained above. 

Generally, the “traditional” empirical strategy in estimating (4.3) through OLS
consists of estimating it with, firstly, random effect and, secondly, with fixed effect;
then test the suitability of the random effect model through the Hausman test.

From its basic version in Eqs. (4.1) –(4.3) , the gravity model underwent several
developments both in theory and estimation technique. From a theoretical point of
view, the gravity equation was initially introduced without any strong theoretical
foundations. For this reason, it was criticized by trade economists despite its power
to explain bilateral trade flows. Anderson (1979) was the first who tried to fill 
the gap between the empirical evidence and theory. He derived the gravity model 
based on constant elasticity of substitution (CES) preferences and goods that are 
differentiated by country of origin. The gravity model was also derived based 
on a model of monopolistic competition (Bergstrand, 1989) and on a Ricardian 
framework (Eaton & Kortum, 2002). Anderson & Van Wincoop (2003), building 
on Anderson (1979), showed that estimations of gravity equation suffered from 
omitted variable bias because empirical analysis did not take account of multilateral 
resistance terms. Anderson & Van Wincoop (2003, p.183) state that “multilateral 
resistance variables are critical to understanding the impact of border barriers on 
bilateral trade”. Solving the McCallum border puzzle by including the multilateral 
resistance terms in the estimation of the gravity equation, Anderson & Van Wincoop 
(2003, p.184) find that “to the extent that border barriers raise average trade barriers 
faced by an importer and an exporter (multilateral resistance), it dampens the 
negative impact of the bilateral border barrier on trade between the two countries”. 
The specification of the model due to Anderson & Van Wincoop (2003) is widely 
recognized and represents a solid basis for further improvements of the gravity 
model. The gravity model derived by Anderson & Van Wincoop (2003) that includes 
multilateral resistance terms takes the following form:
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.Xij = GDPiGDPj

GDPw

(
tij

�iPj

)1−σ

(4.4) 

where:

• . Xij denotes exports from country i to country j; 
• .GDPi , .GDPj and .GDPw denote the GDP of country i, the GDP of country j, 

and world GDP, respectively; 
• . tij denotes the bilateral trade costs between country i and country j that account 

for geographical distance, the set of aforementioned dummy variables, bilateral 
tariffs, whether the countries are parties to an FTA; 

• . �i denotes the outward multilateral resistance and captures the fact that the 
exports from country i to country j also depend on the trade costs borne by 
country i towards all possible markets; 

• . Pj denotes the inward multilateral resistance and captures the fact that the 
imports of country i from country j also depend on the trade costs borne by all 
possible suppliers in country i’s market; 

• . σ denotes the elasticity of substitution. 

The contribution of Anderson & Van Wincoop (2003) is not limited to theoret-
ical development. It paved the way for development in the estimation technique 
because of the issue of how to properly estimate the multilateral resistance terms. 
Equation (4.4) could be estimated through OLS as follows:

.lnXij = β0 + β1lnGDP i + β2lnGDPj + β3lntij + β4�i + β5Pj + εij (4.5) 

However, it should be noted that the multilateral resistance terms are not directly
observable. The empirical literature proposed different ways to estimate them.
Anderson & Van Wincoop (2003) estimated them through a nonlinear least-squares 
(NLS) estimator, which, however, has not been much applied in the empirical 
literature. An alternative is to include a proxy for the multilateral resistance terms 
in the form of a “remoteness” index that measures a country’s average weighted 
distance from its trading partners. However, Anderson & Van Wincoop (2003) 
criticize this “remoteness” index because it does not capture any trade barrier other 
than distance. The empirical literature mainly estimates the multilateral resistance 
terms using country fixed effects for importers and exporters in cross-section 
estimations and using exporter-time and importer-time fixed effects in a dynamic 
estimation with panel data.1 

1 “It should be noted that in addition to accounting for the unobservable multilateral resistance 
terms, the exporter-time and importer-time fixed effects will also absorb the size variables (.Ej,t and 
. Yi,t ) from the structural gravity model as well as all other observable and unobservable country-
specific characteristics which vary across these dimensions, including various national policies, 
institutions, exchange rates, etc.” (Piermartini & Yotov, 2016, p. 7).
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Recent econometric best practices include the use of country –pair fixed effects to 
address the problem of endogeneity bias due to unobservable heterogeneity across 
pairs (Baier & Bergstrand, 2007), estimation in panel data with time interval because 
“fixed-effects estimation is sometimes criticized when applied to data pooled over 
consecutive years on the grounds that dependent and independent variables cannot 
fully adjust in a single year’s time” (Cheng & Wall, 2005), and the use of a Poisson 
Pseudo Maximum Likelihood (PPML) estimator (Santos & Tenreyro, 2006). Santos 
& Tenreyro (2006) showed the advantages of the PPML estimator compared to OLS. 
In particular, the PPML estimator accounts for the patterns of heteroskedasticity that 
plague trade data and performs well even when the proportion of zeros in the sample 
is very large (Santos Silva & Tenreyro, 2011). 

These last developments will be not shown in this book. Refer to An Advanced 
Guide to Trade Policy Analysis: The Structural Gravity Model by the UNCTAD 
& WTO for practical applications of last best practices in estimating the gravity 
equations. Furthermore, the book The gravity model of international trade: a user 
guide [R version], published by the United Nations ESCAP (Shepherd et al., 2019) 
available at https://www.unescap.org/resources/gravity-model-international-trade-
user-guide-r-version, shows several econometric techniques applied to the gravity 
model of international trade. Therefore, it can be a natural integration to this book. 
Finally, note that an ad hoc package to estimate the gravity equation, gravity, has 
been developed by Woelwer & Burgard (2017). This package provides estimation 
methods for log-log models and multiplicative models, such as the PPML estimator. 

Learning Objectives 

. � Import csv, txt, and Stata files 

. � Conversion of objects 

. � Drop duplicates 

. � Generate new variables 

. � Group operations with ave() 

. � Sort data set by variables 

. � Collapse a data set with aggregate() 

. � Rename column names 

. � Append data sets 

. � Use of complete() 

. � Reshape the data set 

. � Replace if 

. � Subset a data set 

. � Generate dummy variables with ifelse() 

. � Generate group id 

. � Label variables 

(continued)
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. � Export data set 

. � Run a regression 

. � Replicates Stata robust standard errors 

. � Export results with stargazer() 

In this chapter, we are going to build a database to estimate a gravity equation.2 

We will follow eight steps: 

1. import data sets 
2. create all possible country-year combinations 
3. reshape and merge country-specific data with bilateral trade flows 
4. merge with pair-specific data (CEPII, gravity data) 
5. generate new country-pair variables 
6. compute the log of variables and generate the panel id 
7. estimate the model 
8. export the results 

Open a new script file in RStudio and save it as 
11_building_database_approach_2edn. 

Let’s load the following packages by using the library() function. 

library("readr") # import .csv file 
library("haven") # import Stata .dta file 
library("Hmisc") # label 
library("tidyr") # complete observations 
library("data.table") # reshape the dataset 
library("plm") # panel regression 
library("dplyr") # group id 
library("sandwich") # replicate Stata robust standard errors 
library("lmtest") # replicate Stata robust standard errors 
library("stargazer") # export regression results 

4.1 Building the Database 

In this section we follow the UNCTAD & WTO’s good practice to build the data set 
for the gravity model. First, we import data sets from different sources. We make 
operations on each of them before importing the next data set. We prepare the data 
sets to be merged in a single final data set which will contain all the information to 
run the regression. 

Let’s start by importing the UNCTAD & WTO’s tradeflows.csv in R 
by using read_delim() from readr package. We indicate ; as delimiter.

2 The corresponding Stata code is available in BuildingDatabaseApproach.do. 
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The option trim_ws = TRUE trims leading and trailing white space. If the file 
contains double quotes, the option escape_double = TRUE makes the value 
"" "" represent a single quote, " ". 

We store the data set as tf. tf is a data frame with 369,178 observations and 
4 variables, importer, exporter, year, and imports. Data cover the years 
1990–2005. 

# Step 1: Import data ----
# Import trade flows data (; delimiter) 
tf <- read_delim("datWTO/tradeflows.csv", 

";", escape_double = FALSE, 
trim_ws = TRUE) 

class(tf) 
View(tf) 
dim(tf) 
str(tf) 

Next we import the UNCTAD & WTO’s dataset for WTO accession data, 
joinwto.txt. This is a text file. We use again read_delim(). Note that this 
time the delimiter is tab, \t. We store the data set as jw. jw is a data frame with 
176 observations and 2 variables, country and join. join reports the date of 
accession to the WTO. 

# Import WTO accession data (tab delimiter) 
jw <- read_delim("datWTO/joinwto.txt", 

"\t", escape_double = FALSE, 
trim_ws = TRUE) 

class(jw) 
View(jw) 
dim(jw) 
str(jw) 

We need to correct the data set for Belgium and Luxembourg. If the value of 
country is equal to BEL or, |, LUX, we replace the value with BLX. We also  
replace COD with ZAR. Drop duplicates with the unique() function and sort the 
data set by country with order(). For the use of unique() refer to Sect. 2.6. 
For the use of order() refer to Sects. 2.2, 2.3 and 2.6. The data set jw has 174 
observations after dropping duplicates. Note that the imported data set, joinwto, 
reports two values for COD. 

# replace if 
jw$country[jw$country == "BEL" | jw$country == "LUX"] <- "BLX" 
jw$country[jw$country == "COD"] <- "ZAR" 
jw <- unique(jw) 
jw <- jw[order(jw$country), ] 
dim(jw) 
View(jw) 

Next we import the data set storing GDP data, GDP.csv. This is a csv file. 
This time we use another function to import the data set in R, read_csv(). 
We store the data set in gdp. gdp is a data frame with 228 observations and 
54 variables. Variables include Country Name, Country Code, Indicator 
Name, Indicator Code and years from 1960 to 2009. 

# Import GDP data 
gdp <- read_csv("datWTO/GDP.csv") 
class(gdp)
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dim(gdp) 
View(gdp) 
str(gdp) 

We need to correct for Belgium and Luxembourg also for this data set. We replace 
the values as we did for the jw dataset. 

In this case, however, we need to sum the values of the GDP for the two countries. 
We do this in a few steps. 

We subset the gdp data set twice. First, we drop from the data set BLX. We subset 
gdp if ‘Country Code‘ != "BLX", where != is a logical operator that means 
inequality. We assign this operation to a new object, gdp_no_blx. 

Second, we keep only BLX in the dataset. We subset gdp if ‘Country Code‘ 
== "BLX", where == is a logical operator that means exact equality. We assign this 
operation to a new object, gdp_blx. 

Next, we keep only GDP value per years in gdp_blx. Therefore, we keep 
columns from 5 to 54. We use [ ]  operator and assign this operation to a new 
object, gdp_blx2. We sum the values in the columns using colSums() and 
append the outcome to gdp_blx2 by using rbind(). We assign this operation to 
a new object, gdp_blx3. Next, we eliminate the first two rows, which correspond 
to the single values of Belgium and Luxembourg using the [ ]  operator. We assign 
this operation to a new object, gdp_blx4. 

We create a new object from gdp_blx which includes Country Name, 
Country Code, Indicator Name, and Indicator Code for BLX. We  
assign this operation to a new object, gdp_blx_lab. 

Next, we bind by columns, by using cbind(), gdp_blx_lab and 
gdp_blx4. We assign this operation to a new object, gdp_blx5. Now  we  have  
the data for BLX of the right dimension to be appended to the data set without BLX, 
gdp_no_blx. We append these two data sets by using rbind.data.frame() 
in a new object, gdp2. We have corrected the data set. We have 227 observations. 
Finally, we sort the gdp2 by ‘Country Code‘ using order(). 
######################################! 
# Adjust for BLX = BEL + LUX 
gdp$‘Country Code‘[gdp$‘Country Code‘ == "BEL" | 

gdp$‘Country Code‘ == "LUX"] <- "BLX" 
gdp$‘Country Name‘[gdp$‘Country Name‘ == "Belgium" | 

gdp$‘Country Name‘ == "Luxembourg"] <- "BENELUX" 

# subset eliminating BLX 
gdp_no_blx <- subset(gdp, gdp$‘Country Code‘ != "BLX") 
dim(gdp_no_blx) 

# subset only BLX 
gdp_blx <- subset(gdp, gdp$‘Country Code‘ == "BLX") 
dim(gdp_blx) 
View(gdp_blx) 

# keep only value in gdp_blx for sum 
gdp_blx2 <- gdp_blx[, 5:54] 
View(gdp_blx2) 
gdp_blx3 <- rbind(gdp_blx2, colSums(gdp_blx2)) 
gdp_blx4 <- gdp_blx3[-c(1,2),] 
View(gdp_blx4)
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gdp_blx_lab <- gdp_blx[1, c(1:4)] 
View(gdp_blx_lab) 

gdp_blx5 <- cbind(gdp_blx_lab, gdp_blx4) 
View(gdp_blx5) 

# rbind gdp with and without BLX 
gdp2 <- rbind.data.frame(gdp_no_blx, gdp_blx5) 
dim(gdp2) 
gdp2 <- gdp2[order(gdp2$‘Country Code‘), ] 
View(gdp2) 
#####################################################! 

Next, we import the data set dist_cepii224.dta as dist_cepii. This  
data set contains gravity variables such as distance between two countries in km 
dist, contiguity (dummy variable which takes value 1 if two countries share same 
borders, 0 otherwise), contig, language (dummy variable which takes value 1 if 
two countries share the same language, 0 otherwise), comlang_off, landlocked 
(dummy variable which takes value 1 if a reporter, REPlandlocked, or a partner, 
PARTlandlocked, have no access to the sea, and so on. The source of this data 
set is the French Centre d’Etudes Prospectives et d’Informations Internationales 
(CEPII). In total, the data set contains 50,176 observations and 30 variables. 

# Import dataset with gravity variables 
dist_cepii <- read_dta("datWTO/dist_cepii224.dta") 
class(dist_cepii) 
View(dist_cepii) 
dim(dist_cepii) 
str(dist_cepii) 

We rename country, partner, repnum, and partnum as shown in the next 
block of code. Then, we adjust for Belgium and Luxembourg. 

# Open gravity variables and correct for BLX = BEL + LUX 
## rename 
colnames(dist_cepii)[1] <- "exporter" 
colnames(dist_cepii)[2] <- "importer" 
colnames(dist_cepii)[15] <- "exporternum" 
colnames(dist_cepii)[23] <- "importernum" 

dist_cepii$exporter[dist_cepii$exporter == "BEL" | 
dist_cepii$exporter == "LUX"] <- "BLX" 

dist_cepii$importer[dist_cepii$importer == "BEL" | 
dist_cepii$importer == "LUX"] <- "BLX" 

Next, we use aggregate() to collapse the variables exporternum, 
importernum, contig, comlang_off, colony, dist, REPlandlocked, 
and PARTlandlocked by exporter and importer. Refer to Sect. 2.6 for 
details about aggregate(). Note that we nest aggregate() in with(). 
Refer to Sect. 2.1 for the use of with(). We assign this operation to a new object, 
dist_cepii2. 

Finally, we keep the observations if exporter is different from importer, 
exporternum != importernum, by using  subset(). We assign this 
operation to a new object, dist_cepii3. Then, we sort the data set by 
exporter and importer. We assign this operation to a new object, cepii. 

dist_cepii2 <- with(dist_cepii, 
aggregate(list(exporternum = exporternum,
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importernum = importernum, 
contig = contig, 
comlang_off = comlang_off, 
colony = colony, 
dist = dist, 
REPlandlocked = REPlandlocked, 
PARTlandlocked = PARTlandlocked), 

by = list(exporter = exporter, 
importer = importer), 

FUN = function(x) mean(x, na.rm = T))) 

View(dist_cepii2) 
dist_cepii3 <- subset(dist_cepii2, exporternum != importernum) 
dim(dist_cepii3) 

View(dist_cepii3) 
cepii <- with(dist_cepii3, dist_cepii3[order(exporter, importer),]) 

In Step 2 of the gravity database building approach, we create all possi-
ble country-pairs-year combinations. We use the complete() function. The 
complete() function turns implicit missing values into explicit missing values. 
The first entry of the function is a data frame. To find all unique combinations 
of importer, exporter, and year, including those not found in the data, we 
supply each variable as a separate argument. The argument fill allows to supply 
a value per variable instead of NA. In this case, we supply 0 to imports. We assign 
this operation to a new object, tf2. 

Finally, we keep the observations if exporter is different from importer, 
exporter != importer, using  subset(). We assign this operation to a 
new object, gvty_t1. gvty_t1 has 996,000 observations and 4 variables. 

# Step 2: Create all possible country-pairs-year combinations ----
tf2 <- complete(tf, importer, exporter, year, fill = list(imports = 0)) 
View(tf2) 
dim(tf2) 
gvty_t1 <- subset(tf2, exporter != importer) 
dim(gvty_t1) 

We start Step 3 by keeping only ‘Country Code‘ and years in gdp2. We  
assign this operation to a new object, gdp3. Then, we reshape the data set long 
with the melt() function. We assign this operation to a new object, gdp4. Refer 
to Sect. 2.3 for details about melt(). We rename the columns of gdp4 with 
colnames(). 

Finally, we copy gdp4 in two new objects, gdp_exporter and 
gdp_importer and rename countrycode as exporter and importer, 
respectively, and rename gdp as gdp_exporter and gdp_importer, 
respectively. 

# Step 3: Reshape and Merge country-specific data with bilateral trade flows ----
gdp3 <- gdp2[, c(2, 5:54)] 
View(gdp3) 
gdp4 <- melt(setDT(gdp3), id.vars = 1, measure.vars = c(2:51)) 
colnames(gdp4) <- c("countrycode", "year", "gdp") 
View(gdp4) 

gdp_exporter <- gdp4 
colnames(gdp_exporter)[which( 

colnames(gdp_exporter) == "countrycode")] <- "exporter"
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colnames(gdp_exporter)[which( 
colnames(gdp_exporter) == "gdp")] <- "gdp_exporter" 

gdp_importer <- gdp4 
colnames(gdp_importer)[which( 

colnames(gdp_importer) == "countrycode")] <- "importer" 
colnames(gdp_importer)[which( 

colnames(gdp_importer) == "gdp")] <- "gdp_importer" 

Now we are ready to start to merge the data sets. We add the information 
with gdp per exporter, gdp_exporter, and importer, gdp_importer, to the  
data set with bilateral data, gvty_t1. by using  the  merge() function. First, 
we merge gvty_t1 and gdp_exporter. We merge the two data sets only 
with observations which appear in both data sets. We assign this operation to a 
new object, gvty_t1m. Next, we merge gdp_importer to gvty_t1m. We  
assign this operation to a new object, gvty_t2. Then, we sort it by exporter, 
importer, and year. 

# Merge the country-specific data with bilateral trade 
gvty_t1 <- gvty_t1[order(gvty_t1$exporter, 

gvty_t1$year), ] 

gvty_t1m <- merge(gvty_t1, gdp_exporter, 
by = c("exporter", "year")) 

gvty_t1m <- gvty_t1m[order(gvty_t1m$importer, gvty_t1m$year), ] 

gvty_t2 <- merge(gvty_t1m, gdp_importer, 
by = c("importer", "year")) 

gvty_t2 <- gvty_t2[order(gvty_t2$exporter, 
gvty_t2$importer, 
gvty_t2$year), ] 

dim(gvty_t2) 
View(gvty_t2) 

We repeat the same operation for the WTO accession data, jw. This data set 
reports the year of accession to the WTO. Therefore, contrary to the previous 
operation, we need to choose the option all.x = TRUE in the merge() 
function. This option adds extra rows to the output, one for each row in x that has 
no matching row in y. These rows will have NAs in those columns that are usually 
filled with values from y. The final data set after these operations will be gvty_t3. 

jw_exp <- jw 
colnames(jw_exp)[which(colnames(jw_exp) ==  "country")] <- "exporter" 
colnames(jw_exp)[which(colnames(jw_exp) ==  "join")] <- "join_exporter" 

jw_imp <- jw 
colnames(jw_imp)[which(colnames(jw_imp) == "country")] <- "importer" 
colnames(jw_imp)[which(colnames(jw_imp) == "join")] <- "join_importer" 

gvty_t2 <- gvty_t2[order(gvty_t2$exporter, gvty_t2$year), ] 
gvty_t2m <- merge(gvty_t2, jw_exp, 

by = c("exporter"), all.x = TRUE) 
dim(gvty_t2m) 
gvty_t2m <- gvty_t2m[order(gvty_t2m$importer,gvty_t2m$year), ] 

gvty_t3 <- merge(gvty_t2m, jw_imp, 
by = c("importer"), all.x = TRUE)
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dim(gvty_t3) 
View(gvty_t3) 

In Step 4, we start by merging gvty_t3 with the gravity data from CEPII, 
cepii. We keep the data in the new object, gvty_t3m if they appear in both data 
sets. 

# Step 4: Merge with pair-specific data (CEPII Gravity data) ----
gvty_t3 <- gvty_t3[order(gvty_t3$exporter, 

gvty_t3$importer, 
gvty_t3$year), ] 

gvty_t3m <- merge(gvty_t3, cepii, 
by = c("exporter", "importer")) 

Next, we import the data set Religion.dta as rel with read_dta(). rel 
has 41,820 observations and 3 variables, exporter, importer, and religion. 
relion takes value 1 if exporter and importer share the same religion, 0 
otherwise. 

Then, we merge rel with gvty_t3m in a new object, gvty_t4. We also  
replace NA values in religion with 0 

rel <- read_dta("datWTO/Religion.dta") 
class(rel) 
View(rel) 
dim(rel) 
str(rel) 

gvty_t4 <- merge(gvty_t3m, rel, 
by = c("exporter", "importer"), 

all.x = T) 

gvty_t4 <- gvty_t4[order(gvty_t4$exporter, 
gvty_t4$importer, 
gvty_t4$year), ] 

any(is.na(gvty_t4$religion)) 
gvty_t4$religion[which(is.na(gvty_t4$religion))] <- 0 
dim(gvty_t4) 

In Step 5, we generate dummy variables for the WTO membership with 
ifelse(). First, replace NA in join_exporter and join_importer with 
a random number, 9999, which is functional to building the WTO membership. 

We generate the following dummy variables: 

• onein equal 1 if one of the country pair is member of the WTO, 0 otherwise; 
• bothin equal 1 if both countries are members of the WTO, 0 otherwise; 
• nonein equal 1 if none of the country pair is member of the WTO, 0 otherwise. 

After generating the dummy variables for the WTO membership, we drop 
join_exporter and join_importer from the data set. We assign this 
operation to a new object, gvty_def. Now the data set is complete with all the 
data for the gravity model. 

# Step 5: Generate new country-pair variables ----

gvty_t5 <- gvty_t4
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gvty_t5$join_exporter[which(is.na(gvty_t5$join_exporter))] <- 9999 
gvty_t5$join_importer[which(is.na(gvty_t5$join_importer))] <- 9999 
View(gvty_t5) 
dim(gvty_t5) 

# dummy variables 
gvty_t5$onein <- with(gvty_t5, ifelse( 

join_exporter <= year & join_importer > year | 
join_importer <= year & join_exporter > year, 
1, 0)) 

gvty_t5$bothin <- with(gvty_t5, ifelse( 
join_exporter <= year & join_importer <= year, 
1, 0)) 

gvty_t5$nonein <- with(gvty_t5, ifelse( 
join_exporter > year & join_importer > year, 
1, 0)) 

# drop the columns with join_exporter join_importer 
gvty_def <- gvty_t5[, -c(7, 8)] 
dim(gvty_def) 
View(gvty_def) 

In Step 6, we compute the log of the variables imports, imports, GDP for 
exporter, gdp_exporter, GDP for importer, gdp_importer, and distance, 
dist. 

We replace -Inf in the log of imports, limports, with NA. 
We generate the panel id, pairid, by exporter and importer by using the 

cur_group_id() function from the dplyr package. 
Then, we label the variables by using upData(). 
The data set is now complete. We can export it by using the write.csv() 

function. The argument file = " " write the file to your working directory. The 
argument row.names = FALSE omit the row names. 

# Step 6: Compute the log of the variables imports, GDPs and distance ----
gvty_def$limports <- log(gvty_def$imports) 
gvty_def$lgdp_exporter <- log(gvty_def$gdp_exporter) 
gvty_def$lgdp_importer <- log(gvty_def$gdp_importer) 
gvty_def$ldist <- log(gvty_def$dist) 

# susbstitute -inf in imports with NA 
gvty_def$limports[gvty_def$limports == -Inf] <- NA 

# generate panel id 
gvty_def <- gvty_def %>% 

group_by(exporter, importer) %>% 
mutate(pairid = cur_group_id()) 

# label 
gvty_def <- upData( 

gvty_def, 
labels = c(importer = "reporter", 

exporter = "partner", 
imports = "Imports value in thousand", 
gdp_exporter = "GDP in current USD", 
gdp_importer = "GDP in current USD", 
exporternum = "IFS code exporter", 
importernum = "IFS code importer", 
contig = "1 for contiguity", 
comlang_off = "1 for common official language", 
colony = "1 for pairs ever in colonial relationship", 
dist = "simple distance", 
REPlandlocked = "1 if exporter landlocked",
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PARTlandlocked = "1 if importer landlocked", 
religion = "1 if common main religion for both countries", 
onein = "one of the country pair is member of the WTO", 
bothin = "both countries is member of the WTO", 
nonein = "none of the country pair is member of the WTO", 
limports = "Log of imports value", 
lgdp_exporter = "log of exporter’s GDP", 
lgdp_importer = "log of importer’s GDP", 
ldist = "log of distance", 
pairid = "panel id")) 

label(gvty_def) 

View(gvty_def) 

### export dataset as csv 
write.csv(gvty_def, file = "gvty_def.csv", 

row.names = FALSE) 
# Note that the file is written to your working directory. 
# row.names = FALSE -> omit the row names 

Finally, we copy the data set to be used in Appendix B 
## make a copy of the data set 

df <- gvty_def 

4.2 Estimating the Gravity Model 

The data set gvty_def contains all the information needed for the estimation of 
the following equation: 

. limports = β0 + β1lgdp_exporter + β2lgdp_importer + β3ldist + β4colony

+ β5contig + β6comlang_off + β7onein + β8bothin

+ β9nonein + u (4.6) 

First, we estimate Eq. (4.6) with OLS with country and year fixed effects. We use
the lm() function that specifies a linear regression of limports on the regressors
and an implicitly defined constant. . ∼ is the regressor operator. To add dummy 
variables for year, exporter and importer, we simply add these values as factor. We 
can use the factor() function inside lm(). Finally, data = refers to the data 
frame which contains the variables in the model. 

Note that to reproduce robust standard errors as in Stata we have to call for 
another function, coeftest() in lmtest package and choose the option vcov 
= vcovHC(x, "HC1"), where x represents a fitted model object. 
# Step 7: estimating the gravity model ----

## ols with country fixed effects 
reg_lm <- lm(limports ~ lgdp_exporter + lgdp_importer + 

ldist + colony + 
contig + comlang_off + onein + bothin + 
factor(year) +
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factor(exporter) + factor(importer), 
data = gvty_def) 

summary(reg_lm) 
reg_lm_r <- coeftest(reg_lm, vcov = vcovHC(reg_lm, "HC1")) 
reg_lm_r 

Second, we estimate the model with fixed effects using the plm() function for 
estimating linear model for panel data. The first entry of the plm() is a formula. 
index enables the estimation functions to identify the structure of the data, i.e., the 
individual and the time period for each observation. model indicates the kind of 
model to be estimated: within for fixed effects and random for random effects.3 

Note that to reproduce robust standard errors as in Stata we have to call for 
another function, coeftest() in lmtest package and choose the options type 
= "sss" and cluster = "group" in vcov = vcovHC(). 

## fixed effects 
reg_plm_fe <- plm(limports ~ lgdp_exporter + lgdp_importer + 

onein + bothin + 
factor(year), 

data = gvty_def, 
index = c("pairid", "year"), 
model = "within") 

summary(reg_plm_fe) 
reg_plm_fe_r <- coeftest(reg_plm_fe, 

vcov = vcovHC(reg_plm_fe, 
type = "sss", 
cluster = "group")) 

reg_plm_fe_r 

Finally, we estimate a random effects model. Note we change the kind of model 
to random. 4 

## random effects 
reg_plm_re <- plm(limports ~ lgdp_exporter + lgdp_importer + 

ldist + colony + 
contig + comlang_off + onein + bothin + 
factor(year), 

data = gvty_def, 
index = c("pairid", "year"), 
model = "random") 

summary(reg_plm_re) 
reg_plm_re_r <- coeftest(reg_plm_re, 

vcov = vcovHC(reg_plm_re, 
type = "sss", 
cluster = "group")) 

reg_plm_re_r

3 Please note that the effects are introduced in the model by the plm() function by setting effect 
= one of "individual", "time", "twoways", or  "nested". The approached followed 
here is to replicate the same R-squared computed by Stata for the fixed effects model. 
4 In random model, we find slightly different results between 
plm() and Stata because they use different procedures. Refer to 
https://cran.r-project.org/web/packages/plm/vignettes/B_plmFunction.html for more info 
regarding the estimation with the plm function. To get closer results, you may want to use 
the Swamy-Aurora version of the random effects model in Stata. I took this suggestion from 
https://rlhick.people.wm.edu/stories/econ_407_notes_panel_companion.html. 
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4.3 Exporting Regression Output 

Finally, we may want to export our results. We can accomplish this task with the 
stargazer package. 

First, note that we stored all the regression in objects. The first entries of 
stargazer() are one or more model objects (for regression analysis tables) or 
data frames/vectors/matrices (for summary statistics, or direct output of content). 
type = specifies what type of output the command should produce. The possible 
values are latex, (default) for LaTeX code, html for HTML/CSS code, text 
for ASCII text output. title = is a character vector with titles for the tables. 
digits = indicates how many decimal places should be used. column.labels 
=, dep.var.labels =, and covariate.labels = indicate the labels for 
columns, dependent variable, and independent variables, respectively. omit = 
specifies which of the explanatory variables should be omitted from presentation in 
the table. For se = and p =  refer to the code to generate Table 3.1. add.lines 
= is a list of vectors (one vector per line) containing additional lines to be included 
in the table. Each element of the listed vectors will be put into a separate column. 
keep.stat = specifies which of the statistics should be printed. out = contains 
the path of output files. Depending on the file extension (.tex, .txt, .htm or .html), 
either a LaTeX/HTML source file or an ASCII text output file will be produced (see 
Table 4.1 for the output). 

## Step 8: export results ----
stargazer(reg_lm, reg_plm_fe, reg_plm_re, 

type = "latex", 
title ="Regression output with Stargazer", 
digits = 4, 
column.labels = c("OLS", "FE", "RE"), 
dep.var.labels = "Log of imports value", 
covariate.labels = c("log of exporter’s GDP", 

"log of importer’s GDP", 
"log of distance", 
"1 for pairs ever in colonial relationship", 
"1 for contiguity", 
"1 for common official language", 
"one of the country pair is member of the WTO", 
"both countries is member of the WTO"), 

omit = c("factor"), 
se = list(reg_lm_r[, 2], reg_plm_fe_r[, 2], reg_plm_re_r[, 2]), 
p =  list(reg_lm_r[, 4], reg_plm_fe_r[, 4], reg_plm_re_r[, 4]), 
add.lines = list(c("Year FE", "YES", "YES", "YES"), 

c("Country FE", "YES", "NO", "NO")), 
keep.stat = c("n", "rsq", "adj.rsq"), 
out = "regression.tex")
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Table 4.1 Regression output with Stargazer 

Dependent variable: 

Log of imports value 

OLS panel 

linear 

OLS FE RE 

(1) (2) (3) 

log of exporter’s GDP 0.3290.∗∗∗ 0.3450.∗∗∗ 1.0046. ∗∗∗
(0.0216) (0.0237) (0.0050) 

log of importer’s GDP 0.5966.∗∗∗ 0.6860.∗∗∗ 0.8386. ∗∗∗
(0.0201) (0.0211) (0.0052) 

log of distance . −1.5007.∗∗∗ . −1.1940. ∗∗∗
(0.0060) (0.0157) 

1 for pairs ever in colonial relationship 1.0812.∗∗∗ 1.5722. ∗∗∗
(0.0258) (0.0854) 

1 for contiguity 0.6540.∗∗∗ 1.0844. ∗∗∗
(0.0291) (0.0934) 

1 for common official language 0.8206.∗∗∗ 0.8893. ∗∗∗
(0.0130) (0.0335) 

one of the country pair is member of the WTO . −0.2772.∗∗∗ 0.0574 . −0.0092 

(0.0264) (0.0421) (0.0365) 

both countries is member of the WTO . −0.0589 0.1462.∗∗∗ 0.1055. ∗∗∗
(0.0359) (0.0456) (0.0383) 

Constant . −5.1910.∗∗∗ . −26.7828. ∗∗∗
(0.6323) (0.2398) 

Year FE YES YES YES 

Country FE YES NO NO 

Observations 291,859 291,859 291,859 

R.2 0.7194 0.0681 0.1554 

Adjusted R.2 0.7191 . −0.0352 0.1553 

Note: . ∗p. <0.1; . ∗∗p. <0.05; . ∗∗∗p. <0.01



Appendix A 
Interactive Dashboard with R Shiny 

In this appendix, we create a simple R Shiny interactive dashboard to allow the 
reader to interact with the results of the tariff analysis from Sect. 3.1. 

The code to build an interactive dashboard in R Shiny has some peculiarities that 
make it different from the code we have written until now. Here, we will cover the 
essential elements to build our dashboard. The reader is referred to the following 
resources to learn more about R Shiny: 

• Shiny, Shiny Tutorial, https://shiny.rstudio.com/tutorial/written-tutorial/lesson1/
• Mastering Shiny (Wickham, 2021) that is also made free available online at the 

following address: https://mastering-shiny.org/index.html 

Let’s start! 
First, we need to open and save the app.R file where we code our dash-

board. Refer to Fig. A.1 to open the file and to Fig. A.2 to save it. Save it as 
08b_tariff_statistics_2edn. This will generate a folder with that name 
that will contain the app.R file. Copy the TPP data set we used in Sect. 3.1 in this 
folder (Fig. A.3) 

The beginning of the file starts by loading the packages we need to run our code 
with the library() function. We need the same packages we used in Sect. 3.1 
with the addition of shiny. 

Then, we import the TPP data set with the read_dta() function and convert 
sector and year in factors. We convert sector and year in factors because 
we will make a slight modification to the plot. 

From now on, the code starts to differ from the code we are used to. First, we 
need to understand the structure of the R Shiny app. 

The file to build the app is structured in three parts: 

1. definition of user interface for application, ui 
2. definition of the server logic, server 
3. run of the application, shinyApp() 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
M. Porto, Using R for Trade Policy Analysis, 
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Fig. A.1 Create a new Shiny web dashboard (1) 

Fig. A.2 Create a new Shiny web dashboard (2) 

A.1 User Interface 

We create the page layout with fluidPage(). The horizontal space is divided in 
12-unit wide grid. We will return to this number shortly. All the remaining code for 
the user interface will be inside fluidPage(). 

The first line of code is shinyFeedback::useShinyFeedback(). We  
need this line of code to give feedback to the users of our dashboard. Since it is a 
two step process, we will cover it in Sect. A.2.
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Fig. A.3 Create a new Shiny web dashboard (3) 

We create a panel containing the application title with titlePanel(). Below  
we write additional information about our app by using h3() and p(). 

Our dashboard will have two viewable sections. One will show the plot as 
output and the other one will show a table with tariff statistics. We generate 
multiple viewable sections with tabsetPanel(). The first panel is built with 
tabPanel(). We set a title for it "Data visualization" and then we 
organize it in two panels: a sidebarLayout() and a mainPanel(). 

In sidebarLayout() we create the input controls to control for the output. 
selectInput() creates a select list that can be used to choose a single or 
multiple items from a list of values. In our case, we create the list from the unique 
values of ccode in TPP and we do not allow for multiple selections (multiple 
= FALSE, default value), and we set the width to 100%. The first two entries are 
the inputId and the label. The  inputId needs to be unique. We set it as 
"ccode1". The  label is the label that will describe the input control. We choose 
"Select country: ". 

We also create two buttons. The first button is an action button, actionButton(). 
Again, the first entry is the inputId and the second entry is the label. We set  
"button1" as inputId and "Plot" as label. We also choose a CSS class 
to apply to the tag for the button. Briefly, this is the button that the user will have to 
push to generate the plot in the dashboard. 

The second button is a downloadButton(). By pushing this button, the 
user can download on her/his computer the data used for the plot. We just set the 
outputId as "download1". We keep the default value for the label that is 
"Download". 

Finally, we set the width of the sidebarLayout() to 2.



148 A Interactive Dashboard with R Shiny

Next, we need to define the content of the mainPanel(). In this case, 
we want to produce an interactive plot with plotly. Therefore, we choose 
plotlyOutput() and we set its outputId as "Plot". Finally, we set the 
width of the mainPanel() to 10. Therefore, in total we covered the 12-unit space. 

Then, we generate the second panel where we show some summary statistics as 
an interactive table. We will use the same code used for the first panel. However, we 
have to make some necessary modifications. 

In sidebarPanel(), we need to modify the inputId and outputId. We  
just replace 1 with 2. For example, "ccode2" instead of "ccode1". For the  
action button we will change the label as well. This modification is not strictly 
necessary for the functioning of the dashboard. However, since we are going to 
calculate statistics instead of plotting, we replace "Plot" with "Compute". 

In mainPanel(), we choose dataTableOutput() and set "statistics" 
as outputId. 

A.2 Server Logic 

In Sect. A.1, we set up the user interface. Next step consists in defining the 
underlying logic to make our dashboard work. We write the server as a function 
of two inputs function(input, output). If now we jumped directly to 
Sect. A.3 and run the app, we would create the dashboard. However, if we pushed 
the buttons nothing would happen. Because the app does not know what to do. 
Therefore, we write the steps the app needs to implement inside the function. 

First, we need to prepare the data for the plot and generate the plot with 
ggplot(). In  temp1, first we subset the data set TPP, then we reshape it and 
finally we pass it to ggplot() to make the plot. In this plot, we also group by 
sector. Note three key elements:

• eventReactive(): in this case the subset is triggered when the user click the 
button. Note that the first argument of eventReactive() is the id that we set 
for the button that we call with input$button1;

• req(): ensure that the values are available. In this case, we make sure that the 
user selected a country (input$ccode1) to plot;

• in the subset() function, the country to subset for is associated with 
input$ccode1. That is, the user will select the name of the country among the 
options provided by unique(TPP$ccode) and by clicking the action button 
will trigger the subset. We also use input$ccode1 for the title of the plot in 
ggtitle() 

Another key aspect of the code in R Shiny is that temp1, that has been 
generated with eventReactive(), is treated as a function. In fact, it is passed to 
ggplotly() as temp1(). The interactive plot with ggplotly() is rendered 
by renderPlotly(). This is our output in the first panel and it is assigned to
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output$Plot because Plot is the id that we chose in plotlyOutput() in 
mainPanel() defined in the user interface. 

Another output of the first panel is generated by the download button. In 
output$download1, with downloadHandler() we return a csv file, that 
takes the name of the selected country, containing the data used to plot. Note that in 
write.csv() we retrieve the data set from the ggplot2 object temp1(). 

Next, we move to define the output for the second panel. Here we have an 
interactive table that is rendered by renderDataTable() and a csv file to 
download containing the summary statistics showed in the table. 

Finally, let’s discuss about shinyFeedback. When a user uses an app, some 
commands or requests may cause the app to crash. In our case, for example, the 
main problem is related to the subset of the data set to produce the plot in the first 
panel because the conditions for subsetting can not be hold true for all countries. 
This implies that a data set with no rows could be returned. If this is the case, the 
plot will fail and the error message from the console pane will be printed. 

There are two issues related to it: 

1. the printed error message does not explain what the issue is to the user. Therefore, 
we want to generate our own message to communicate what the problem is with 
the selection of the user; 

2. the crash of the app is not aesthetically pleasing. Consequently, if the error is 
generated, we want to prevent the app from updating and printing the error 
message from the console pane. 

For these tasks we use the functions from the shinyFeedback package. As we 
said, this is two step process. First, we add useShinyFeedback to the ui to set 
up “the needed HTML and JavaScript for attractive error message display” (Wick-
ham, 2021). Second, in the server() function we add feedbackWarning(). 
The first argument is the inputId that takes the same id of the input where the 
feedback should be placed. In our case, "ccode1". The second argument is the 
condition to be checked. In our case that number of rows of the subsetted data 
set is zero. The third argument is the message we want to print in case of error. 
In our case, "No subset data for this country". The fourth argument 
sets the color of the message as red. We can also omit because the color has a default 
value. 

With these modifications we took care of the issue 1, i.e. we generate our 
error message to communicate the issue to the user. However, only with these 
modifications the app will continue to work and definitely crash, i.e. it will not 
produce the plot but it will print the error message from the console pane. To prevent 
the app from running after we identified the cause of error, we add another req(). 
This time the condition is that the number of rows of the data set is greater than 
zero. In other words, if the data set after being subsetted has no rows the app has to 
stop running.
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A.3 Run the Application 

Now we are ready to run the app with shinyApp() where the two arguments 
are ui and server. We can run it as shown in Fig. A.3 or by using the keyboard 
shortcut CTRL + SHIFT + ENTER on Windows (CMD + SHIFT + ENTER on 
Mac). Figures A.4, A.5, and A.6 show the output of our dashboard. 

Fig. A.4 Our R Shiny dashboard—panel 1 

Fig. A.5 Our R Shiny dashboard—panel 2
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Fig. A.6 Our R Shiny dashboard—error message 

# library ----
library("shiny") 
library("haven") # import STATA .dta file 
library("data.table") # reshape the data set 
library("dplyr") # combine operations 
library("doBy") # summarise by 
library("ggplot2") # plot with ggplot 
library("plotly") # interactive plot 

# import data ----
TPP <- read_dta("TPP.dta") 

TPP$sector <- as.factor(TPP$sector) 
TPP$year <- as.factor(TPP$year) 

# Define UI for application 
ui <- fluidPage( 

shinyFeedback::useShinyFeedback(), 

# Application title 
titlePanel("Analyzing Trade Tariffs"), 
h3("Summary of Tariff Statistics"), 
p("Porto M., Using R for Trade Policy Analysis. 

R Codes for the UNCTAD and WTO Practical Guide, 
Springer, 2nd edition, 2023."), 

# Panels 
tabsetPanel(# Panel 1 

tabPanel("Data visualization", 
sidebarLayout( 

sidebarPanel( 
selectInput("ccode1", 

"Select country:", 
choices = unique(TPP$ccode), 
width = "100%"), 

actionButton("button1", "Plot", class = "btn-block"), 
br(), 
br(),
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downloadButton("download1"), 
width = 2 

), 

mainPanel( 
plotlyOutput("Plot"), 
width = 10 

) 
) 

), 
# Panel 2 
tabPanel("Summary of Tariff Statistics", 

sidebarLayout( 
sidebarPanel( 

selectInput("ccode2", 
"Select country:", 
choices = unique(TPP$ccode), 
width = "100%"), 

actionButton("button2", "Compute", class = "btn-block"), 
br(), 
br(), 
downloadButton("download2"), 
width = 2 

), 

mainPanel( 
dataTableOutput("statistics"), 
width = 10 

) 
)) 

) 
) 

# Define server logic 
server <- function(input, output) { 

# plot 
temp1 <- eventReactive(input$button1, { 

req(input$ccode1) 

TPP_s <- TPP %>% 
filter(ccode == input$ccode1 & ave_core_sim > 0  & tar_savg_ahs > 0) %>% 
filter(ccode == input$ccode1 & ave_core_sim > 0  & tar_iwahs > 0) %>% 
filter(ccode == input$ccode1 & ave_core_sim > 0  & tar_savg_mfn > 0) %>% 
filter(ccode == input$ccode1 & ave_core_sim > 0  & tar_iwmfn > 0) 

# check subset data set 
shinyFeedback::feedbackWarning("ccode1", isTRUE(nrow(TPP_s) == 0), 

"No subset data for this country", 
color = "red") 

req(nrow(TPP_s) > 0)  

TPP_s_l <- melt(setDT(TPP_s), 
id.vars = c("sector", "year", "ave_core_sim"), 
measure.vars = c("tar_savg_ahs", "tar_iwahs", 

"tar_savg_mfn", "tar_iwmfn"), 
variable.name = "tariff_name", 
value.name = "tariff_value") 

plot_s <- ggplot(TPP_s_l, 
aes(x = tariff_value, 

y =  ave_core_sim, 
colour = year, 
group = sector)) + 

geom_point(size = 2) +



A Interactive Dashboard with R Shiny 153

facet_grid(. ~ tariff_name) + 
theme_bw() + 
xlab("Tariffs") + ylab("average Core NTB Coverage Ratio") +  
ggtitle(paste0("Tariffs versus NTBs in ", input$ccode1)) + 
theme(plot.title = element_text(hjust = 0.5, 

size = 10, face="bold"), 
axis.title.x = element_text(size = 7.5)) + 

theme(legend.title = element_blank()) 

}) 

output$Plot <- renderPlotly({ 
ggplotly(temp1()) 

}) 

# download 
output$download1 <- downloadHandler( 

filename = function() { 
paste0(input$ccode1, ".csv") # create the name of the file 

}, 
content = function(file) {  

write.csv(temp1()$data, file, 
row.names = FALSE) 

} 
) 

# table 
temp2 <- eventReactive(input$button2, { 

req(input$ccode2) 

TPP_s2 <- subset(TPP, ccode == input$ccode2) 

tar <- summaryBy(tar_savg_ahs + tar_iwahs + 
tar_savg_mfn + tar_iwmfn ~ sector, 

TPP_s2, na.rm = T,  
FUN=c(mean, median, sd, min, max)) 

}) 

output$statistics <- renderDataTable( 
temp2(), options = list(pageLength = 16) 

) 

# download 
output$download2 <- downloadHandler( 

filename = function() { 
paste0(input$ccode2, "_tariff_statistics.csv") 

}, 
content = function(file) {  

write.csv(temp2(), file, 
row.names = FALSE) 

} 
) 

} 

# Run the application 
shinyApp(ui = ui, server = server)
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Now we have created the dashboard but this is only available on our computer. 
When we build a dashboard with R Shiny in most cases it is because we want to 
share it. I will not cover how to deploy the app. You can refer to “Lesson 7” of the 
Shiny Tutorial I indicated at the beginning of this section to learn several ways to 
share your app that may meet your needs. 

In my case, I use shinyapps.io, RStudio’s hosting service for Shiny apps. 
You can visit the dashboard we created at the following address: 

https://mporto.shinyapps.io/example_using_r_trade_policy/ 

For an example of a more elaborated dashboard that uses the same framework, 
you may visit 

https://mporto.shinyapps.io/japanese-affiliates-italy 

that is an interactive dashboard I built to narrate the evolution of the network of 
Japanese affiliates in Italy.
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Appendix B 
Additional Code for Chap. 4: Conditional 
Replacement with Nested Loop 

In Chap. 4, we built a database to estimate a gravity model by following the approach 
shown in the the Stata do file BuildingDatabaseApproach.do. 

At Step 6 in that file, the author mentions a limitation in computing country-time 
dummies for Stata/IC users, since they will not be able to increase the number of 
variables to create all the dummies. To address this issue, the author proposes three 
solutions. Here, I am interested in the solution number 2 that consists in computing 
country-period dummies. 

To accomplish this task, the author use a conditional replacement with a nested 
for loop. I think it is a good exercise for us because this is a kind of code that we 
did not implement in the book. Additionally, I think the code may be useful in other 
cases. 

Therefore, in this section we implement that part of code that leads us to generate 
country-period id. 

The main part of the code consists in a nested loop generate with for() and a 
conditional replacement inside the inner loop. 

First, we subset df, that we created at the end of Step 6 in Sect. 4.1, if  year 
> 1995. We assign this operation to dfs. Then, we initialize a column time 
in dfs. Before setting the loop, we generate step that defines the steps of the 
sequence in the loop. We set equal to 3. It corresponds to the number of years 
for a period. Additionally, we coerce the tibble data frame to a data frame with 
as.data.frame(). 

Second, we implement the nested for() loop. We have an external loop and an 
internal loop. In the external loop, the loop runs over a sequence from the minimum 
year to the maximum year in the data frame. The increment of the sequence is 
controlled by by =. In this case the increment corresponds to the number stored 
in step. Then we have the internal loop that runs over a sequence from 0 to the 
number stored in step. 
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Third, we write the conditional statement inside the loop. That is, if year is 
equal to the sum of i and j, we replace the value that currently is NA with that of 
the formula. 

## subset the dataset if year > 1995 

dfs <- subset(df, year > 1995) 
View(dfs) 

# initialize column 
dfs$time <- NA 

# conditional replacement with for loop 
step <- 3 

dfs <- as.data.frame(dfs) 

for(i in seq(min(dfs$year), max(dfs$year), by = step)){ 

for(j in 0:step){ 

dfs[dfs$year == (i+j), "time"] <- (i - min(dfs$year))/step 

} 

} 

head(dfs[, c("year", "time")], 20) 

Following, I print a section of the output 

> head(dfs[, c("year", "time")], 20) 
year time 

1 1996 0 
2 1997 0 
3 1998 0 
4 1999 1 
5 2000 1 
6 2001 1 
7 2002 2 
8 2003 2 
9 2004 2 
10 2005 3 
11 1996 0 
12 1997 0 
13 1998 0 
14 1999 1 
15 2000 1 
16 2001 1 
17 2002 2 
18 2003 2 
19 2004 2 
20 2005 3 

Finally, we generate the country-period id. 

dfs <- dfs %>% 
group_by(exporter, time) %>% 
mutate(exportertime = cur_group_id()) 

dfs <- dfs %>% 
group_by(importer, time) %>% 
mutate(importertime = cur_group_id())
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