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Foreword

Functional data analysis (FDA) is a branch of statistics that analyses data providing
information about curves, surfaces, or anything else varying over a continuum.
In its most general form, under an FDA framework each sample element is a func-
tion. The continuum over which these functions are defined is often time, butmay
also be spatial location, wavelength, probability, etc. In the 20 years since the first
books and papers on this topic, this field of statistics has received the attention and
encouragement of researchers in statistics and many applied disciplines and has
become an important and dynamic area ofmodern statistics. Topics that have been
covered include descriptive techniques, statistical inference,multivariate andnon-
parametricmethods, regression, generalized linearmodels, time series, and spatial
statistics.
Modern technology has made it possible to obtain large spatial and spatiotem-

poral data sets, and poses the challenge of statistical modeling of such data. The
combination of spatial statistics with FDA has emerged as a key approach. This
book presents new theories and methods to define, describe, characterize, and
model functional data indexed in spatial or spatio-temporal domains. The main
focus is on functional data obtained under a geostatistical framework, where the
domain is fixed and continuous. Specific topics considered include kriging, clus-
tering, regression, and optimal sampling, moving on in the last part of the book to
spatiotemporal data. Some chapters also consider the treatment of functional data
on lattices.
Whenwewrote our original book on the subject in the 1990s, James Ramsay and

I hoped that wewould encourage FDA as away of thinking, not simply a collection
of techniques. It has therefore been very pleasing to see the development of the
field since then, and the abundance of research activity in the area has confirmed
our hopes. I would urge readers and researchers to raise their sights above any
specific methods, obviously important that they are, to ask how considering data
as functions changes and broadens our statistical horizons. Particularly in the new
era of data science, this concerns both what data can be collected and how they
can be analyzed. I am sure this book will make a valuable contribution in helping
them to do so.

Sir Bernard SilvermanNovember 2020
University of Oxford
University of Nottingham
Oxford and Nottingham
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1

Introduction to Geostatistical Functional Data Analysis
Jorge Mateu1 and Ramón Giraldo2

1Department of Mathematics, University Jaume I of Castellon, Spain
2Department of Statistics, National University of Colombia, Bogota, Colombia

1.1 Spatial Statistics

Spatial statistics has developed rapidly during the last 30 years. We have seen
an interesting progress both in theoretical developments and in practical stud-
ies. Some early applications were in mining, forestry, and hydrology. It seems to
be honest to remark that the increasing availability of computer power and skill-
ful computer software has stimulated the ability to solve increasingly complex
problems. Clearly, these problems have some common elements: they were all
of a spatial nature. Some theory was available, for example the random function
theory as developed by Yaglom and others in the 1960s. But that was largely insuf-
ficient to find generic solutions for the whole class of problems, and hence, the
applications required a new theory. Thereupon some far-reaching theories have
been developed: image reconstruction,Markov randomfields, point process statis-
tics, geostatistics, and random sets, to mention just a few. As a next stage, these
theories were applied successfully to new disciplinary problems leading to mod-
ifications and extensions of mathematical and statistical procedures. We there-
fore notice a general scientific process that has occurred in the field of spatial
statistics: well-defined problems with a common character were suddenly on the
agenda, and data availability and intensive discussion with practical and disci-
plinary researchers resulted in new theoretical developments. Often, it is difficult
to say which was first, and what followed, but we see different theoretical models
developed for different applications.
Spatial statistics has hence emerged as an important new field of science. One

of the peculiarities is its power for visualization. A common cold-water fear of
many statisticians and mathematicians to analyze images, to communicate their

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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results by maps, and to have to trust information in pictures was overcome. It has
led to interesting theories and better and more objective procedures for dealing
with spatial variation. FollowingWittgenstein,we could state thatweneeded some
geniuses to tackle the obvious. Now, many results of a spatial statistical analysis
could be communicated smoothly toward the nonstatistical audience, like a disci-
plinary scientist, a policy-maker, or an interested student. They, in turn, were able
to judge whether a problem was solved, whether a policy measure was relevant or
was inspired by the beautiful pictures expressing deep thoughts on relevant issues.
The role in policy-making may be once more stressed. It is known that many

policy-makers are inclined to make a decision on the basis of a well developed,
well organized, and well understandable figure. They find it (rightly so!) rather
boring to use long lists of statistical data. But as political decisions affect us all, it
puts another responsibility on the back of statisticians: to make statistically sound
maps. It is often hard to say what that should be, but at the very least, we should be
able to generate pictures, maps, and graphs that rely on good data and that show
important aspects for decision-making.
In this way, spatial statistics has become a refreshing wind in statistics. We do

not need to dowellmuch longer on difficult equations, long lists of data, and tables
with simulated controlled scenarios. But, to be clear on the back of all these nice
pictures a sound sciencewith sometimes difficult and tedious derivations and deep
thoughts are still required to make serious progress.
Spatial statistics recognizes and exploits the spatial locations of data when

designing for, collecting, managing, analyzing, and displaying such data. Spatial
data are typically dependent, for which there are classes of spatial models
available that allow process prediction and parameter estimation. Spatially
arranged measurements and spatial patterns occur in a surprisingly wide variety
of scientific disciplines. The origins of human life link studies of the evolution of
galaxies, the structure of biological cells, and settlement patterns in archaeology.
Ecologists study the interactions among plants and animals. Foresters and agri-
culturalists need to investigate plant competition and account for soil variations
in their experiments. The estimation of rainfall and of ore and petroleum reserves
is of prime economic importance. Rocks, metals, and tissue and blood cells
are all studied at a microscopic level. Geology, soil science, image processing,
epidemiology, crop science, ecology, forestry, astronomy, atmospheric science, or
simply any discipline that works with data collected from different spatial loca-
tions, need to develop models that indicate when there is dependence between
measurements at different locations. Spatiotemporal variability is a relatively new
area within Spatial Statistics, which explains the scarcity of space-time statistical
tools 20 years ago. There has been a growing realization in the last decade that
knowing where data were observed could help enormously in answering the
substantive questions that precipitated their collection. One of the most powerful
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tools for spatial data analysis is the map. For example, in military applications,
the battlespace is mapped for command and control. The sensors are both in situ
and remote, and they generate spatially distributed data of many different kinds.
Producing a statistically optimal map, together withmeasures of map uncertainty,
which is always up to date, is a complicated task. Once these types of statistical
problems are solved, a geographic information system, or GIS, is well suited to
forming the decision-making maps.
Spatial statistics can be considered a natural generalization of signal processing

to higher dimensions. In traditional signal processing, one has a signal dependent
on a scalar variable t, which may belong to a discrete set or which may be contin-
uous. Spatial statistics is concerned with cases in which t is a multidimensional
index of dimension d > 1. In most practical examples d = 2, though much of the
basic theory and methodology is the same whatever the dimension. Although the
models and methods of spatial statistics have not developed as rapidly as those for
one-dimensional signal processing, there have nevertheless been substantial new
developments in recent years. Standard andmodern references on spatial statistics
include the books of [1–4] among others.
Following Cressie [5], spatial data can be thought of as resulting from observa-

tions on the stochastic process {Z(s) ∶ s ∈ D}, whereD is possibly a random set in
ℝd. If we believe that the roots of statistical science are in data, we can classify spa-
tial areas according to the type of observations encountered. Thus, (i) ifD is a fixed
subset ofℝd and Z(s) is a random vector at location s ∈ D, we are dealing with geo-
statistical data; (ii) ifD is a fixed (regular or irregular) collection of countablymany
points ofℝd and Z(s) is a random vector at location s ∈ D, we are dealing with lat-
tice data; (iii) if D is a point process in ℝd and Z(s) is a random vector at location
s ∈ D, we are dealing with point patterns; (iv) if D is a point process in ℝd and
Z(s) is itself a random set, we are dealing with spatial objects. Geostatistical-type
problems are distinguished most clearly from lattice-and point-pattern-type prob-
lems by the ability of the spatial index s to vary continuously over a subset of ℝd.
A space-time process can be denoted by {Z(s, t) ∶ s ∈ D(t), t ∈ T}, where each of
Z, D, and T is possibly random.
Spatial statistics is one of the major methodologies of environmental statistics.

Its applications include producing spatially smoothed or interpolated representa-
tions of air pollution fields, calculating regional averagemeans or regional average
trends based on data at a finite number of monitoring stations, and performing
regression analyses with spatially correlated errors to assess the agreement
between observed data and the predictions of some numerical model. The notion
of proximity in space is implicitly or explicitly present in the environmental
sciences. Proximity is a relative notion, relative to the spatial scale of the scientific
investigation. When a spatial dimension is present in an environmental study, the
statistician’s job is to create a statistical framework within which one carries out
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defensible inferences on processes and parameters of interest. These modeling
and inference strategies are not always easy to do, but are never impossible. If
statistics is to continue to be the broker of variability, it must address difficult
questions such as those found in the environmental sciences, otherwise, it will
become marginalized as a discipline. Problems in the environmental sciences are
inherently spatial (and temporal), observational in nature, and have experimental
units that are highly variable.
In the last decade, spatial statistics has undergone enormous development in

the area of statistical modeling. It started slowly, building from models that were
purely descriptive of spatial dependence. Then, it became apparent that the pro-
cess of interest was usually hidden by measurement error and that the principal
goal should be inference on the hidden process from the noisy data. It has only
been in the last few years that the full potential for hierarchical spatial statistical
modeling has been glimpsed. There is an enormous amount of flexibility in hier-
archical statistical models, such as the opportunity to account for nonlinearities.
Their attractive feature is that at each level of the hierarchy, the model specifica-
tion is simple, yet globally, the model can be quite complex. This approach could
be summarized as a model locally, analyze globally.
Applications of spatial statistics cover many areas. Much of the original impetus

for the subject was driven by geostatistics. It was in this context that the tech-
nique of kriging, optimal least squares interpolation over a random spatial field,
was originally developed. In recent years, the applications of spatial statistics have
increased enormously, with particularly fruitful applications in the environmen-
tal and ecological sciences. A typical problem is the sampling of a pollution field,
such as ozone in the atmosphere or toxic chemicals in rivers and lakes. Another
example is the use of meteorological measurements in studies of global climate
change. In these fields, as in geostatistics, the objective may be to interpolate spa-
tially between measurements, but there are also other objectives which may be
quite different. Spatial statistics has also found applications in such diverse fields
as sociology, for example social networks theory and financial economics.
The usual approach in geostatistics is based on an assumption that the spatial

random field is stationary and isotropic. In the original geophysical applications
which motivated the development of the field, this assumption was often justified
by the fact that with sparse data, there was no reasonable alternative. A further
point is that many geostatistical applications involved only one measurement at
each site (or equivalently, only one replication of the randomfield) so there was no
way of determining the complete spatial covariance function without some kind
of stationarity assumption. Inmodern environmental applications, however, there
are very often enough monitoring stations to go beyond such assumptions, and
with multiple observations per site, it is also possible to estimate the covariance
between any pair of sites without assuming stationarity across the field. Another
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consideration is that very often, simple topographymakes a stationary assumption
implausible. Therefore, there are by now many reasons to go beyond a stationary
model. In spite of this obvious need for nonstationary models; however, there is
not, as yet, a wide variety of approaches to the problem.
Environmental issues have brought atmospheric science to the center of

science and technology, where it now plays a key role in shaping national and
international policy. Weather prediction plays a significant role in the planning of
human affairs. Further, a broader appreciation of the role of weather and climate
impacts on the environment of the planet has now led to nearly universal concern
regarding potential climate change, its causes, impacts, and possible remedying.
A large variety of statistical methods are used routinely in the atmospheric
sciences. For example, techniques of multivariate time series are especially
common. These include multivariate autoregressive, moving average models and
Kalman filtering. Statistical methods for spatial data are also standard. A major
tool in the analysis of space-time data is empirical orthogonal functions (EOF).
Virtually, all atmospheric and oceanographic processes (e.g. wind, temperature,
sea surface temperature, moisture) involve variability over space and time.
One only needs examine the governing partial differential equations for wind
processes, or their selected spatial-temporal averages, to see that mathematical
and statistical descriptions of these dynamical processes depend on complicated
temporal and spatial relationships. Furthermore, observations of geophysical
processes typically include measurement errors and are often temporally and
spatially incomplete, which may obscure the signal of interest.
In studies involving spatial data, it is seldom the case that data for only a single

process are collected. Typically, there is a great expense associated with establish-
ing spatial monitoring networks or other mechanisms of spatial data collection
(e.g. satellites) and so measurements are usually made on two or more variables.
Thus, statistical techniques for multivariate spatial data are critical for effective
modeling of spatial processes.
Lately, there has been a rich and growing literature on space–time model-

ing. Fundamentally, it is clear that in the absence of a temporal component,
second-order geostatistical models can be used to represent spatial variability.
These are descriptive in the sense that, although they model spatial correlation,
there is no causative interpretation associated with them. Thus, for space-time
modeling, the geostatistical paradigm assumes a descriptive structure for both
space and time (i.e. covariance structures are directly specified). For example,
one can extend the geostatistical kriging methodology for spatial processes by
assuming that time is just another spatial dimension. Alternatively, one can treat
time slices of a spatial field as variables and apply a multivariate or cokriging
approach. Although these approaches have been successful in many applications,
there are fundamental differences between space and time, and it is not likely
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that realistic covariance structures can be specified that accurately capture the
complicated dynamical processes as found in geophysical applications.
In the absence of a spatial component, there is a large class of time seriesmodels

that could be used to represent the temporal variability. These are dynamic in the
sense that they exploit the fact that time flows in only one direction, and so the
state of the process at the current time is related to what happened at previous
times. Thus, one might consider the space–time process as a collection of spa-
tially correlated time series in continuous space, or on a spatial lattice. Although
these approaches include dynamical structures, without a descriptive spatial com-
ponent one lacks the ability to perform spatial prediction at locations without
observations. If both temporal and spatial components are present, it is natural to
combine the temporally dynamic state-space approach and the spatially descrip-
tive approach. These models are referred to as space–time dynamic models.
Spatial interpolation is an essential feature of many GIS. It is a procedure

for estimating values of a variable at unsampled locations. A map with iso-
lines is usually the visual output of such a process and plays a crucial role in
decision-making. Based on Tobler’s law of geography, which stipulates that
observations close together in space are more likely to be similar than those
farther apart, the development of models attempting to represent the way close
observations are related can sometimes be very problematic. The approaches can
be divergent and may therefore lead to very different results. As a consequence,
an understanding of the initial assumptions and methods used is the key to the
spatial interpolation process.
Surprisingly, when spatial interpolation tools are integratedwithin GIS, they are

often implemented in such a way that users have no real choice in selecting the
best possible methods, and if they do have a choice, required input parameters
are sometimes fixed, without any possible way of modifying them. One reason
for the frequent blind use of spatial interpolation methods, and spatial statistics
in general, probably has its origins in teaching. Despite the large variety of its
applications, the discipline has been confined to those fields where it has seen its
major developments. The progress made in spatial statistics is therefore usually
presented only in journals dedicated to statistics, mining, and petroleum engi-
neering. As a consequence, GIS users who have a different technical background
often do not have an in-depth knowledge of such spatial interpolation techniques.
Furthermore, since the conventional tests used in basic statistics usually gener-
ate some kind of categorical answer, the prerequisite experience and statistical
knowledge necessary for the proper use of spatial interpolation techniques are
often discouraging to this type of users. Nevertheless, during the last few years,
the diversity of the applications of these methods has encouraged the publication
of new books and new case studies and has stimulated a number of conferences
on the subject.
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1.2 Spatial Geostatistics

This section has been partially taken and summarized in parts from [6], intending
to provide a brief overview to spatial geostatistics. The reader is referred to [6] for
further and more complete details.

1.2.1 Regionalized Variables

Geostatistics can be defined as the study of regionalized phenomena, that is, phe-
nomena that stretch across space and which have a certain spatial organization or
structure. However, geostatistics is not applied to the regionalized phenomenon as
such, which is a physical reality, but to a mathematical description of that reality,
that is, a numerical function called regionalized variable or regionalization, defined
in a geographical space, which is supposed to correctly represent andmeasure that
phenomenon.
In order to delve deeper into the concept of regionalized variable, let us imagine

we are interested in a feature of a given phenomenon that spans across space and
that several measurements are taken in a domain D at a given moment in time.
If the measurements are taken on objects or similar, the objects sampled can be
considered a subset of a larger collection of objects, as many more measurements
could have been taken, but were not for many possible reasons. If the observations
were made at certain points in the domain, infinite measurements could be taken.
When s spans across the domain under study, D, the set {z(s), s ∈ D}, is called

a regionalized variable or regionalization, the set {z(si), i = 1, 2, 3,…} being a
collection of values of the regionalized variable, and each value of that collection
being a regionalized value.
It is true that a deterministic approach can be employed to describe or model

a regionalized phenomenon and obtain an accurate assessment of the values of
the regionalization on the basis of a limited number of observations. However,
this requires in-depth knowledge of the origin of the phenomenon and the phys-
ical or mathematical laws that govern the evolution of the regionalized variable.
Furthermore, many of the regionalized phenomena that are usually studied are
so complex that a deterministic approach can only partially portray them. That is
why the deterministic approach is discarded and the probabilistic approach,which
permitsmodeling both the knowledge of and also the uncertainty surrounding the
regionalized random phenomenon, is adopted.

1.2.2 Random Functions

From a probabilistic perspective, the regionalized value can be seen as the result
of a random mechanism, resulting in a random variable (r.v.). If the regionalized
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values at all the points in the domain D are considered, it can be seen as a reality
of an infinitely large set of r.v.s, one at each point in the domain, which is known
as spatial random function (synonyms: stochastic process, random field).
When s spans across the domain under study, D, we have a family of r.v.s,

{Z(s), s ∈ D}, which constitutes a spatial random field (r.f.).
This methodological decision is one of the cornerstones of geostatistics: the

regionalized variable is interpreted as a realization of a spatial r.f. At this point,
we must state that the regionalized variable is often highly locally irregular
(which makes it impossible to represent using a deterministic mathematical
function) and has a certain spatial organization or structure. The probabilistic
approach, or probabilistic geostatistics, which interprets the regionalized variable
as a realization of a r.f., can take into account all the aspects of regionalization
mentioned above, because, as stated in page 55 of [7]:

i) At each location s, Z(s) is a r.v. (hence, the erratic aspect).
ii) For any given set of points s1, s2,… , sk, the r.v.sZ(s1),Z(s2),… ,Z(sk) are linked

by a network of spatial correlations responsible for the similarity of the values
they take (hence the structured aspect).

Let Z(s) be a r.f. and let us consider the set of points (s1,… , sk). Then, the
r.f. Z(s) is characterized by its k-dimensional distribution function. The set of
k-dimensional distribution functions for all values of k and all possible choices of
(s1,… , sk) in the domain is called the spatial law of probability.
For a given r.f.,Z(s), the k-dimensional distribution functionF(z(s1)),… , (z(sk))∶

ℝd → [0, 1] is defined as

FZ1 ,…,Zk (z(s1)),… , (z(sk)) = P[Z(s1) ≤ z(s1),… ,Z(sk) ≤ z(sk)]. (1.1)

In linear geostatistics, it is enough to know the first twomoments of the distribu-
tion ofZ(s).What ismore, inmost practical applications, the available information
does not allow to infer higher-order moments.
The expectation, expected value or first-order moment of a r.f. is defined as a

nonrandom function of s that coincides at each point with the expectation of the
r.v. at that point 𝜇(s) = E(Z(s)), where 𝜇(si) = E(Z(si)), ∀i ∈ ℕ. It is also called the
drift of the r.f., especially when it varies with location.
The variance of a r.f. is defined as a nonrandom function of s that coincides at

each point with the variance of the r.v. at that point, i.e. V(s) = V(Z(s)), where
V(si) = V(Z(si)), ∀i ∈ ℕ.
The covariance function of a r.f. is defined as a nonrandom function of si and sj,

such that for any pair of values (si, sj) coincides with the covariance between the
r.v. at those two points

C(si, sj) = C(Z(si),Z(sj)) = E
(
(Z(si) − 𝜇(si))(Z(sj) − 𝜇(sj))

)
, ∀si, sj ∈ D.

(1.2)
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The variogram of the r.f. is defined as the variance of the first differences of the r.f.

2𝛾(si − sj) = V
(
(si) − Z(sj)

)
, ∀si, sj ∈ D. (1.3)

The function 𝛾(si, sj) is called semivariogram.
Z(s) is a Gaussian r.f. if for all k and any given set of points s1,… , sk, the joint dis-

tribution of Z(s1),… ,Z(sk) is a multivariate Gaussian distribution. A multivariate
Gaussian distribution is characterized by amean vector and a variance–covariance
matrix, such that the two first moments of a Gaussian r.f. completely determine
its probability structure. The Gaussianity of the r.f. is a common assumption in
geostatistics.

1.2.3 Stationarity and Intrinsic Hypothesis

regionalized variable in probabilistic terms as a particular realization of a given r.f.
{Z(s), s ∈ D}makes operational sense when it is possible to infer part or all of the
law of probability which defines that r.f. In this sense, stationarity, which indicates
a certain degree of homogeneity in the regionalization across space, is a desirable
quality.
Indeed, it would be impossible to infer the probability law of a r.f. if there was

only one realization of the r.f. In order to make inferences consistently, many real-
izations are necessary. However, in reality there is only one. The solution to this
problem is to adopt the hypothesis of stationarity or spatial homogeneity. The idea
behind the hypothesis of stationarity is to substitute repetitions of the (inaccessi-
ble) realizations of the r.f. with repetitions in space, that is, the values observed at
different locations in the domain under study have the same characteristics and
can be considered as realizations of the same r.f. in mathematical terms. However,
these realizations are not independent, and an additional hypothesis, ergodicity,
is normally assumed; see pages 19–22 of [8] for details. The hypothesis of station-
arity means that the spatial law of probability of the r.f. or part of it, is transla-
tion invariant. That is, the probabilistic properties of a set of observations do not
depend on the specific locationswhere they have beenmeasured, but only on their
separations.
Therefore, in mathematical and probabilistic terms, the hypothesis of stationar-

ity refers to the regular behavior in space of the moments of the r.f., or the func-
tion itself and, as we will see later, there are different degrees of stationarity. This
hypothesis will allow us to act as if all the variables that make up the r.f. had
the same probability distribution (or the same moments; we can even relax this
assumption) and, as a consequence, to be able to make inferences.
Using the assumed level of spatial homogeneity of the r.f. that (supposedly) gen-

erates the observed realization as a basis, we have the following cases: Stationary
random function in the strict sense, second-order stationary random function, and
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intrinsically stationary random function or random function of stationary incre-
ments. Let us briefly introduce these concepts.
The r.f. {Z(s), s ∈ D} is said to be stationary in the strict sense, or strictly sta-

tionary, if the families of r.v.s Z(s1),… ,Z(sk) and Z(s1 + h),… ,Z(sk + h) have the
same joint distribution function for all k, and for any given spatial points and any
translation vector h ∈ ℝd.
In other words, the joint distribution function of {Z(s1),Z(s2),… ,Z(sk)} is unaf-

fected by the translation of an arbitrary quantity h. As a result, density functions
with dimension lower than k do not depend on location either. Generally speak-
ing, this is a strongly strict condition, which is why this hypothesis is normally
relaxed to the so-called “assumption of second-order stationarity,” which limits
the stationarity hypothesis to the first two moments of the r.f. (recall that in linear
geostatistics, we are only interested in the two first moments of the r.f.).
The r.f. {Z(s), s ∈ D} is said to be second-order stationary, weakly stationary or

stationary in the broad sense, if it has finite second-order moments (that is the
covariance exists) and verifies that

● The expectation exists and is constant, and therefore does not depend on the
location s

E (Z(s)) = 𝜇(s) = 𝜇. (1.4)

● The covariance exists for every pair of r.v.s, Z(s) and Z(s + h), and only depends
on the vector h that joins the locations s and (s + h)

C (Z(s),Z(s + h)) = C(h), ∀s ∈ D and h. (1.5)

As the covariance function C(h) of a second-order Stationary, r.f. is only a func-
tion of h, the variance of the r.f. exists and is finite and constant:

V(Z(s)) = C(𝟎) = 𝜎2. (1.6)

In light of Eqs. (1.4) and (1.6), the second-order stationarity hypotheses can
be interpreted as if the regionalized variable takes values that fluctuate around
a constant value (the mean), and the variation of these fluctuations is the same
everywhere in the domain.
In some cases, in order tomodel the spatial dependence of second-order station-

ary r.f.s, the correlogram, or correlation function, is used instead of the covariogram,
and is defined as

Corr(Z(s),Z(s + h)) = C(h)
C(𝟎)

= 𝜌(h). (1.7)

In case of second-order stationarity, the covariance function and the semi-
variogram are equivalent when it comes to defining the structure of spatial
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dependence displayed by the phenomenon, as they verify the following mutual
relationship:

𝛾(h) = 1
2
V (Z(s + h) − Z(s))

= 1
2
(V(Z(s + h)) + V(Z(s)) + 2C(Z(s + h),Z(s)))

= 1
2
(C(𝟎) + C(𝟎) + 2C(h))

= C(𝟎) − C(h).

Notice that if a r.f. is strictly stationary, then it is also stationary in the broad
sense. The converse, however, is generally not true. Obviously, for Gaussian r.f.s,
second-order stationarity is equivalent to strict stationarity.
A r.f. is said to be quasistationary when the corresponding stationary hypothesis

(usually, the hypothesis of second-order stationarity) is valid only for distances
|h| < d, where d is a limit distance. That is, in the second-order quasistationary
case (usually referred as the quasistationary case) 𝜇(s + h) ≈ 𝜇(s) if |h| < d and
C (Z(s + h) − Z(s)) = C(h) if |h| < d.
Second-order stationarity can also be considered a strict assumption on many

occasions, as it implies the existence of the variance in the r.f. A phenomenon
may have infinite variation capacity and be impossible to model using a r.f. with
finite variance. However, there are cases in which the increments or differences
Z(s + h) − Z(s) do have finite variance and, therefore, are second-order stationary.
This type of r.f. is described as being intrinsically stationary.
The r.f. {Z(s), s ∈ D} is said to be intrinsically stationary (or simply intrinsic) if,

for any given translation vector h, the first-order increments Z(s + h) − Z(s) are
second-order stationary, that is,

E (Z(s + h) − Z(s)) = 𝜇(s), (1.8)

where 𝜇(s), the drift, is necessarily linear in h, and

C
(
(Z(s + h) − Z(s)), (Z(s + h + h′) − Z(s + h′))

)
= C(h,h′), (1.9)

which is equivalent to
1
2
V (Z(s + h) − Z(s)) = 𝛾(h), (1.10)

which is only a function of h.
Obviously, in case that the linear drift is zero

E (Z(s + h) − Z(s)) = 0

and

E(Z(s + h) − Z(s))2 = 𝛾(h),
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If a r.f. is second-order stationary, then it is also intrinsically stationary. How-
ever, the converse is not necessarily true. Intrinsic r.f.s that are not second-order
stationary are called strictly intrinsic r.f.s. In particular, a Gaussian intrinsic r.f. is
an intrinsic r.f. whose increments follow a multivariate Gaussian distribution.
A r.f. is said to be quasiintrinsic when the intrinsic hypotheses is valid only for

distances |h| < d, where d is a limit distance.
A r.f. {Z(s), s ∈ D} for which themean and/or the covariance function depends

on the location (are not translation invariant), is said to be a nonstationary r.f.
When a r.f. {Z(s), s ∈ D} has a drift, i.e. its mean is nonconstant and varies with

location, and its first-order increments Z(s + h) − Z(s) are nonstationary, it is said
that the r.f. is a nonintrinsic r.f. (some authors call them intrinsic random functions
of order k > 0).

1.3 Spatiotemporal Geostatistics

This section has been partially taken and summarized in parts from [9], intending
to provide a brief overview to spatiotemporal geostatistics. The reader is referred
to [9] for further and more complete details.
Geostatistical research has typically analyzed r.f.s, in which every spatiotempo-

ral location can be seen as a point on ℝd ×ℝ. While from a mathematical point
of view ℝd ×ℝ = ℝd+1, from a physical perspective, it would make no sense to
consider spatial and temporal aspects in the same way, due to the significant dif-
ferences between the two axes of coordinates. Therefore, while the time axis is
ordered intrinsically (as it exists in the past, present, and future), the same does
not occur with the spatial coordinates.
Assume that observations stem from a r.f. given by Z(x, s, t) = 𝜂(x(s, t), s, t, 𝛽) +

𝜖(x, s, t), s ∈ D, t ∈ T, where s denotes a spatial location, t a time point, x some
potentially space and time-dependent regressors, 𝜂 a parametrized trend model,
D ⊂ ℝd (very often d = 2), and T ⊂ ℝ. For ease of notation, we remove the term
in the covariates x, and write Z(s, t), assuming whenever necessary that any trend
coming from a set of covariates has already been removed.

1.3.1 Relevant Spatiotemporal Concepts

A spatiotemporal r.f. Z(s, t) is said to be Gaussian if the random vector
Z = (Z(s1, t1),… ,Z(sn, tn))′ for any set of spatiotemporal locations follows a
multivariate normal distribution. When not stated explicitly, the indexes i and j
will go from 1 to n.
The spatiotemporal r.f. Z(s, t) is said to have a spatially stationary covari-

ance function if, for any two pairs (si, ti) and (sj, tj) on ℝd ×ℝ, the covariance
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C((si, ti), (sj, tj)) only depends on the distance between the locations (si and sj) and
the times ti and tj. And the spatiotemporal r.f. Z(s, t) is said to have a temporarily
stationary covariance function if, for any two pairs (si, ti) and (sj, tj) on ℝd ×ℝ,
the covariance C((si, ti), (sj, tj)) only depends on the distance between the times
(ti and tj) and the spatial locations si and sj. If the spatiotemporal r.f. Z(s, t) has a
stationary covariance function in both spatial and temporal terms, then it is said
to have a stationary covariance function. In this case, the covariance function can
be expressed as

C((si, ti), (sj, tj)) = C(h,u) (1.11)

with h = si − sj and u = ti − tj the distances in space and time, respectively.
A spatiotemporal r.f.Z(s, t)has a separable covariance function if there is a purely

spatial covariance function Cs(si, sj) and a purely temporal covariance function
Ct(ti, tj) such that

C((si, ti), (sj, tj)) = Cs(si, sj)Ct(ti, tj) (1.12)

for any pair of spatiotemporal locations (si, ti) and (sj, tj) ∈ ℝd ×ℝ.
A spatiotemporal r.f. Z(s, t) has a fully symmetrical covariance function if

C((si, ti), (sj, tj)) = Cs(si, tj)Ct(sj, ti) (1.13)

for any pair of spatiotemporal locations (si, ti) and (sj, tj) ∈ ℝd ×ℝ.
Separability is a particular case of complete symmetry and, as such, any test

to verify complete symmetry can be used to reject separability. In the case of
stationary spatiotemporal covariance functions, the condition of full symmetry
reduces to

C(h,u) = C(h,−u) = C(−h,u) = C(−h,−u), ∀(h,u) ∈ ℝd ×ℝ. (1.14)

A spatiotemporal r.f. has a compactly supported covariance function if, for any
pair of spatiotemporal locations (si, ti) and (sj, tj) ∈ ℝd ×ℝ, the covariance func-
tion C((si, ti), (sj, tj)) tends toward zero when the spatial or temporal distance is
sufficiently large.
If C(si − sj, ti − tj) depends only on the distance between positions, that is(
∥si − sj∥, ti − tj

)
, the r.f., apart from being stationary, is also isotropic in space

and time. Note that if the covariance function of a stationary r.f. is isotropic in
space and time, then it is fully symmetrical.
The spatiotemporal variogram is defined as the function

2𝛾((si, ti), (sj, tj)) = V(Z(si, ti) − Z(sj, tj)), (1.15)

where V is the variance, and half this quantity is called a semivariogram.
In the case of a r.f. with a zero mean,

2𝛾((si, ti), (sj, tj)) = E[(Z(si, ti) − Z(sj, tj))2]. (1.16)
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Whenever it is possible to define the covariance function and the variogram,
they will be related by means of the following expression:

2𝛾((si, ti), (sj, tj)) = V(Z(si, ti)) + V(Z(sj, tj)) − 2C((si, ti), (sj, tj)). (1.17)

If the spatiotemporal r.f. Z(s, t) has an intrinsically stationary variogram in both
space and time, then it is said to have an intrinsically stationary variogram. In this
case, the variogram can be expressed as

2𝛾((si, ti), (sj, tj)) = 2𝛾(h,u). (1.18)

The marginals 2𝛾(⋅,u) and 2𝛾(h,⋅) are called purely spatial and purely temporal
variograms, respectively.
A r.f.Z(s, t) is strictly stationary if its probability distribution is translation invari-

ant. Second-order stationarity is a less-demanding condition than strict station-
arity. A spatiotemporal r.f. Z(s, t) is second-order stationary in the broad sense or
weakly stationary if it has a constant mean and the covariance function depends
on h and u.
A spatiotemporal r.f.Z(s, t) is said to be intrinsically stationary if it has a constant

mean and an intrinsically stationary variogram. Intrinsic stationarity is less restric-
tive than second-order stationarity. Another widely used function whenmodeling
implicit spatiotemporal dependence in a stationary r.f. is the correlation function.
Let Z(s, t) be a second-order stationary r.f. with a priori variance 𝜎2 = C(𝟎, 0) > 0.
The autocorrelation function of this r.f. is defined as

𝜌(h,u) = C(h,u)
C(𝟎, 0)

. (1.19)

If 𝜌(h,u) is a correlation function on ℝd ×ℝ, then its marginal functions 𝜌(𝟎,u)
and 𝜌(h, 0) will, respectively, be the spatial correlation function on ℝd and the
temporal correlation function on ℝ.
A functionC((si, ti), (sj, tj)) of real values, defined onℝd ×ℝ is a covariance func-

tion if it is symmetrical, C((si, ti), (sj, tj)) = C((sj, tj), (si, ti)) and positive-definite,
that is,

n∑
i=1

n∑
j=1
aiajC((si, ti), (sj, tj)) ≥ 0 (1.20)

for any n ∈ ℕ, (si, ti) ∈ ℝd ×ℝ, and ai ∈ ℝ, i = 1,… ,n. The condition (1.20) is suf-
ficient if the covariance function can take complex values. Similarly, one necessary
and sufficient condition for a nonnegative function of real values 𝛾((si, ti), (sj, tj))
defined on ℝd ×ℝ to be a semivariogram is that it is a symmetrical function and
conditionally negative-definite, that is,

n∑
i=1

n∑
j=1
aiaj𝛾((si, ti), (sj, tj)) ≤ 0 (1.21)

with
∑n

i=1 ai = 0.
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Schoenberg [10] proved the following theorem characterizing the spatiotem-
poral semivariogram. Let 𝛾((si, ti), (sj, tj)) be a function defined on ℝd ×ℝ, with
𝛾((s, t), (s, t)) = 0, ∀(s, t) ∈ ℝd ×ℝ. Then the following statements are equivalent:

● 𝛾((si, ti), (sj, tj)) is a semivariogram on ℝd ×ℝ.
● exp

(
−𝜃𝛾((si, ti), (sj, tj))

)
is a covariance function on ℝd ×ℝ, for any 𝜃 > 0.

● C((si, ti), (sj, tj)) = 𝛾((si, ti), (𝟎, 0)) + 𝛾((sj, tj), (𝟎, 0)) − 𝛾((si, ti), (sj, tj)) is a covari-
ance function on ℝd ×ℝ.

In case of stationarity, the above results reduce to functions depending on spatial
and temporal lags. Another seminal result that characterizes covariance functions
is that given in [11]. A functionC(h,u)defined onℝd ×ℝ is a stationary covariance
function if, and only if, it has the following form

C(h,u) = ∫ ∫ ei(𝛚′h+𝜏u)dF(𝛚, 𝜏), (h,u) ∈ ℝd ×ℝ, (1.22)

where the function F is a nonnegative distribution function with a finite mean
defined on ℝd ×ℝ, which is known as a spectral distribution function. Therefore,
the class of stationary spatiotemporal covariance functions on ℝd ×ℝ is identical
to the class of Fourier transforms of nonnegative distribution functions with finite
means on that domain. If the function C can also be integrated, then the spec-
tral distribution function F is absolutely continuous and the representation (1.22)
simplifies to

C(h,u) = ∫ ∫ ei(𝛚′h+𝜏u)f (𝛚, 𝜏)d𝛚 d𝜏, (h,u) ∈ ℝd ×ℝ (1.23)

where f is a nonnegative, continuous, and integrable function that is known as a
spectral density function. The covariance function C and the spectral density func-
tion f then form a pair of Fourier transforms, and

f (𝛚, 𝜏) = (2𝜋)−d−1 ∫ ∫ e−i(𝛚′h+𝜏u)C(h,u)dhdu. (1.24)

The decomposition (1.22) can be specialized for fully symmetrical covariance
functions. Let C(⋅, ⋅) be a continuous function defined on ℝd ×ℝ, then C(⋅, ⋅) is
a fully symmetrical stationary covariance function if, and only if, the following
decomposition is possible

C(h,u) = ∫ ∫ cos(𝛚′h) cos(𝜏u)dF(𝛚, 𝜏), (h,u) ∈ ℝd ×ℝ, (1.25)

where F is the nonnegative and symmetrical spectral distribution function defined
on ℝd ×ℝ.
Cressie and Huang [12] provide a theorem for characterizing the class of sta-

tionary spatiotemporal covariance functions under the additional hypothesis of
integrability. Let C(⋅, ⋅) be a continuous, bounded, symmetrical, and integrable
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function defined on ℝd ×ℝ, then C(⋅, ⋅) is a stationary covariance function if, and
only if, in view of u ∈ ℝ,

C𝛚(u) = ∫ e−i𝛚′hC(h,u)dh, (1.26)

is a covariance function for every 𝛚 ∈ ℝd except, at the most, in a set with a null
Lebesgue mean. Gneiting [13] generalizes this result for C defined on ℝd ×ℝl,
from which the previous statement is a particular case for l = 1.
Both the covariance function and the spectral density function are important

tools for characterizing random stationary spatiotemporal fields. Mathematically
speaking, both functions are closely related as a pair of Fourier transforms.
Furthermore, the spectral density function is particularly useful in situations
where there is no explicit expression of the covariance function. Stein [14] shows
the benefit of using smooth covariance functions far from the origin, which can
be tested by verifying whether their spectral densities have derivatives of certain
orders.

1.3.2 Spatiotemporal Kriging

Kriging is aimed at predicting an unknown point value Z(s0, t0) at a point (s0, t0)
that does not belong to the sample. To do so, all the information available about
the regionalized variable is used, either at the points in the entire domain or in a
subset of the domain called neighborhood.
Assume that the value of the r.f. has been observed on a set of n spatiotemporal

locations {Z(s1, t1),… ,Z(sn, tn)}. If wewant to predict the value of the r.f. on a new
spatiotemporal location (s0, t0), we use the linear predictor

Z∗(s0, t0) =
n∑
i=1
𝜆iZ(si, ti) (1.27)

constructed from the randomvariablesZ(si, ti). As in the spatial case, spatiotempo-
ral kriging equations will depend on the degree of stationarity attributed to the r.f.
that supposedly generates the observed realization. The most widely used kriging
techniques in the spatiotemporal case are simple spatiotemporal kriging, ordi-
nary spatiotemporal kriging, and universal spatiotemporal kriging. In the case of
simple spatiotemporal kriging, we assume that Z(s, t) is a second-order stationary
spatiotemporal r.f., with a constant and known mean 𝜇(s, t), constant and known
variance C(𝟎, 0), and a known covariance function C(h,u). The kriging equations
(n equations with n unknown elements) are of the form

n∑
j=1
𝜆jC

(
si − sj, ti − tj

)
= C

(
si − s0, ti − t0

)
, ∀i = 1,… ,n (1.28)
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from which we obtain the values 𝜆i that minimize the prediction error variance,
which is given by

V
[
Z∗(s0, t0) − Z(s0, t0)

]
= C(𝟎, 0) −

n∑
i=1
𝜆iC(si − s0, ti − t0). (1.29)

In the case of ordinary spatiotemporal kriging, the constant mean 𝜇(s, t) is not
known, and the covariance function C(h,u) is known, under second-order sta-
tionarity. In the case of an intrinsic r.f., the variance is unbounded. In these two
cases, simple kriging cannot be performed as the mean cannot be subtracted. We
must therefore impose a condition of unbiasedness. In these situations, ordinary
spatiotemporal kriging equations can be expressed, in the first case, in terms of
the covariance function, and in the second case, in terms of the semivariogram, as
there is no covariance at the origin.
In the universal kriging approach, assume Z(s, t) is a r.f. with drift, and so the

mean of the r.f. is not constant, but depends on the pairs (s, t). In this situation,
the so-called “condition of unbiasedness” is affected substantially. In this case, the
r.f. can be disaggregated into two components: one deterministic 𝜇(s, t) and the
other stochastic e(s, t) which can be treated as an intrinsically stationary r.f. with
zero expectation, E [e(s, t)] = 0

Z(s, t) = 𝜇(s, t) + e(s, t). (1.30)

We can assume that the mean, even unknown, can be expressed locally by

𝜇(s, t) =
p∑
h=1

ahfh(s, t), (1.31)

where
{
fh(s, t), h = 1,… , p

}
are p known functions, ah constant coefficients, and

p the number of terms used in the approximation. It must be taken into account
that this expression is only valid locally. In this case, the equations that yield the
prediction of the weights are obtained from the prediction error conditions of zero
expectation and minimum variance.

1.3.3 Spatiotemporal Covariance Models

One key stage in the spatiotemporal prediction procedure is choosing the covari-
ance function (covariogram or semivariogram) that models the structure of the
spatiotemporal dependence of the data. However, while the semivariogram is nor-
mally chosen for this purpose in the spatial case, in a spatiotemporal framework,
the covariance function is the most commonly chosen tool. By referring to a valid
covariographic spatiotemporalmodel, we are implicitly stating that the covariance
function must be positive-definite. The purely spatial and temporal covariance
models have been widely studied, and there is a long list of those which can be
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used to model spatial or spatiotemporal dependence that guarantee the (spatial
or temporal) covariance function is positive-definite. However, this is not the case
in the spatiotemporal scenario, in which constructing valid spatiotemporal covari-
ancemodels is one of themain research activities. In addition,while it is difficult to
demonstrate that a spatial or temporal function is positive-definite, it is evenmore
so when seeking to determine valid spatiotemporal covariance models. For this
reason, many authors began to study how to combine valid spatial and temporal
models to obtain (valid) spatiotemporal covariance models.
By way of introduction, the first approximations to modeling spatiotemporal

dependence using covariance functions were nothing more than generalizations
of the stationary models used in the spatial scenario. In this sense, early studies
often modeled the spatiotemporal covariance using metric models by defining a
metric in space and time that allowed researchers to directly use isotropic mod-
els that are valid in the spatial case. Such metric models were characterized by
being nonseparable, isotropic, and stationary. The next step in this initial stage
consisted of configuring spatiotemporal covariance functions bymeans of the sum
or product of a spatial covariance and a temporal covariance, both of which were
stationary, giving rise to separable, isotropic and stationary models. Later, realiz-
ing the limitations of the two procedures detailed above in terms of capturing the
spatiotemporal dependence that really exists in the large majority of the phenom-
ena studied, interest shifted toward including the interaction of space and time,
in covariance models, giving rise to the so-called “nonseparable models” (while
remaining isotropic and stationary). Development continued with the search for
nonseparable spatiotemporal, spatially anisotropic, and/or temporally asymmet-
rical models, together with general nonstationary models. There is a long list of
papers dealing with these topics in the literature, and here we refer to [6] and all
references therein.
The empirical determination of the covariance function or the variogram of

a spatiotemporal process can be generalized naturally using the procedures for
merely spatial processes. Let Z(⋅, ⋅) be an intrinsically stationary process observed
on a set of n spatiotemporal pairs {(s1, t1),… , (sn, tn)}. Two direct and popular
alternatives to obtain an estimation of the variogram 2𝛾(⋅, ⋅) (and its covariance
function C(⋅, ⋅), if the process is also second-order stationary) are the classical esti-
mator based on the method-of-moments (MoM), and the robust estimator pro-
posed by Cressie and Hawkins [15].

1.4 Functional Data Analysis in Brief

In an increasing number of applications in many disciplines of science, the data
collected corresponds to curves or surfaces. Suchdata can be generated by repeated
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measurements in space–time or by automatic recordings of a quantity of interest.
Functional data analysis (FDA) [16] has been used since the early 1990s to model
this type of information. FDA is a general way of thinking, where the basic unit of
information is an entire function rather than a set of values.
A random variable X(t), t ∈ T ⊂ ℝ is called a functional variable if it takes val-

ues in an infinite-dimensional space (or functional space). A functional random
sampleX1(t),… ,Xn(t) corresponds to the collection of n functional variables inde-
pendent and identically distributed (iid) as X(t). An observation of X(t), denoted
as x(t), is called a functional observation. For example, in a medical study xi(t), i =
1,… ,n, could represent the electrocardiogram of the ith patient of the sample. In
this case, it is reasonable to assume the independence assumption because it is
natural to think that the responses of the patients are not related. FDA tools allow
to estimate models based on a set of random variables taking values in a space
of functions (functional variables), i.e. it concerns with the statistical analysis of
multiple realizations of one (univariate FDA) or several (multivariate FDA) func-
tional variables. If there is no observational noise, a functional observation xi(t),
t ∈ T, is usually represented as a finite set of pairs (tj, xi(tj)), tj ∈ T, j = 1,… ,M.
The set of points {tj}Mj=1 can be considered the same for all the functions in a func-
tional data set, and usually, they form afine evenly spaced grid inT. Nowadays, the
numberM in real applications is usually in the order of several hundred or thou-
sands. Interpolation methods (if there is no noise) or nonparametric smoothing
methods (in the opposite case) are commonly used to represent the data (tj, xi(tj)),
j = 1,… ,M, as a real function xi(t). In this sense, we can say that FDA inher-
its methodology from nonparametric estimation. Note that, actually, the curves
are not observed, instead only points of the curves are observed. However, when
the number of points in a curve is dense for simplicity we talk about “observed
curves.”
Since the pioneering work by Deville [17] on harmonic analysis, there has been

a lot of interest in developing statistical models for functional data. Examples of
suchmethods include exploratory and descriptive data analysis [18], linearmodels
[19], generalized linear models [20, 21], quantile regression [22], analysis of vari-
ance [23], nonparametric methods [24], longitudinal data [25], additive models
[26] ormultivariable techniques [27] such as principal components [28], canonical
correlation [29], discriminant analysis [30] or cluster analysis [31]. An overview of
inference for functional data is shown in [32]. Somenewdevelopments in this field
are given in [33] and [34]. A relatively recent problem in FDA is the modeling of
univariate and multivariate misaligned functional data. This one arises when the
functional samples have systematic differences in shape. Some references in this
topic are [35, 36].
Modern technology for acquiring and storing information in real-time often

allows getting data that can be considered as functions. It is also possible to obtain
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a finite and therefore incomplete amount of information regarding a function.
For example, when collecting daily temperature data at weather stations. In this
case, it makes sense fitting curves (or surfaces) to obtain functional observations.
Generally, this stage is accomplished using smoothing and nonparametric
methods [37]. This is the first step in FDA. The purpose is to convert discrete
data into a smoothly varying function. In applied FDA, basis functions to obtain
curves from the discrete records (tj, xi(tj)) are generally used [38]. Basis functions
procedures approximate a function by using a fixed truncated basis expansion
x(t) =

∑K
l=1 clBl(t) = cTB(t) in terms of K known basis functions. Once the

representation by basis functions is adopted, three types of inquiries need to be
answered for computational issues. Which basis functions are appropriate, how
many basis functions are used to fit the data, and how the coefficients of the
vector c are estimated. Generally, Fourier (for periodic data) and B-splines (for
nonperiodic data) basis functions are applied to this purpose [16]. However, other
basis or nonparametric smoothing methods can be used [24]. The number of
basis is estimated by cross-validation. A roughness penalty can be included in the
minimization problem.
Usually, the approaches for modeling functional data are focused on the

assumption that the functions are iid, i.e. it is considered that all the functional
observations correspond to realizations of the same stochastic process. However,
in many fields of science, it is required to model correlated functional data
(temporally or spatially correlated). In these cases, the traditional approaches
based on the iid assumption may not be appropriate. An example of temporally
correlated functional data is that of daily curves of financial transaction data (time
series of functional data). The functions (curves of financial transactions) form
a time series {Xk}; k ∈ ℤ where each Xk is a (random) function Xk(t), t ∈ [a, b]
(a collection of curves temporally indexed). On the other hand, in the spatial
context suppose that penetration resistances (MPa) at different depths (meters)
are recorded in many sites (points) of an experimental farm. The set of curves
Xs(d), s ∈ ℤ and d ∈ [a, b] define a realization of a spatial stochastic process, where
the response is functional (a collection of curves spatially indexed). Methods for
analyzing correlated data have been adapted to the context of functional data.
Some works in time series analysis and spatial statistics for functional data are
proposed by Zhao et al. [39] and Delicado et al. [40]. A large number of methods
of spatial statistics have been adapted to the functional realm, and this book is a
good andmodern example of this. Indeed, when combining spatial (geostatistical)
methods with functional data we enter the field of geostatistical functional data,
which is the core of this book.
FDA has become a rapidly developing discipline in the statistical field given its

wide range of possible applications. Agronomy [41], biology [42], biomedicine
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[33, 43], criminology [44], economy [45], medicine [46], meteorology [47],
oceanography [48], psychology [49], and veterinary [50], among others, are
areas where this relatively recent and novel field of statistics is useful. Ullah
and Finch [51] presented a nice compilation of case studies analyzed from a
FDA perspective. To apply FDA to a real dataset, there is a need for appropriate
software with up-to-date methodological implementation and easy addition of
new theoretical developments [52]. R R Core Team [53] and python libraries [52]
can be used for this purpose.
In the geostatistical setting, kriging and cokriging methods have been also

extended to deal with functional data, and methods such as ordinary kriging for
functional data (OKFD), continuous time-varying kriging for functional data
(CTVKFD), and functional kriging total model (FKTM) are now easily available.
The simplest predictor abovementioned is OKFD, where each curve is weighted
by a scalar parameter. The second option (CTVKFD) is founded in the theory
of the functional linear concurrent (pointwise) regression model. In this case,
the parameters are also curves. Finally, the predictor (FKTM) considers double
indexed parameters. Here, in order to carry out the prediction at a particular
time, each observed curve is weighted by a functional parameter. This approach
follows the philosophy of the functional linear total model. Recently, in a similar
framework, these methods have been adapted for Hilbert Spaces.
All the predictors before referenced are based on the assumption that the mean

function is homogeneous into the region of interest. However, in practice, we often
found realizations of nonstationary functional processes (because there exists an
explicit spatial trend). To give solution to the problem of spatial prediction of func-
tional data in the absence of stationarity some alternatives have been proposed. All
of these have arisen as extensions to the functional framework of some classical
kriging methods for nonstationary data.
Geostatistical FDA has been a field of constant growing in the last years. New

modeling requirements in this area are opening many new research avenues. The
definition of predictors considering realizations of multivariate (possibly nonsta-
tionary) functional random fields or the spatial prediction of data belonging to
Riemannianmanifolds are only a fewnewdevelopmentswhich indicate that there
is still a long way ahead in this area of statistics. This book shows a state-of-the-art
with recent contributions in this new environment of the spatial and functional
modeling.
New theories emerge every day that allow adapting and extending traditional

statistical methods to the treatment of functional data. However, there is still a
longway ahead, given thewide range of theoretical and applied possibilities not yet
explored. There are undoubtedlymany challenges for the statistical community in
this area.
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2.1 Introduction

Modern field studies yield diverse types of observations, in the form of highly
heterogeneous and high-dimensional data. In this context, environmental obser-
vations are routinely available in the form of functional or distributional data. For
instance, these kinds of variables are found in climatic investigations, where com-
plex data are regularly collected at different sites in the study region. Examples are
temperature profiles along the year, or the precipitation distributions, which are
key to characterize and classify the domain of interest from the climatic viewpoint.
In these cases, the object of the analysis is often infinite-dimensional, i.e. it

would need an infinity of point evaluations to be fully characterized. In some
cases, constraints can be included – e.g. positivity or convexity – particularly when
distributional data are concerned. In fact, the full interpretation and statistical
treatment of such kinds of complex data poses relevant challenges for geoscience
applications.
In this broad context, a relatively large body of recent literature has been

devoted to the mathematical foundations of geostatistics for complex data, with
particular reference to data embedded in Hilbert spaces and Riemannian mani-
folds. We focus here on the approach developed within the area of object-oriented
spatial statistics (O2S2, [1]), which was developed starting from the works [2–4].
The foundational idea of the approach is to interpret data as objects: the atom of
the geostatistical analysis is the entire object, which is seen as an indivisible unit

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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rather than a collection of features. In this view, the observations are interpreted as
random points within a space of objects – called feature space –whose dimension-
ality and geometry should properly represent the data features and their possible
constraints. The O2S2 approach follows the funding ideas of object oriented
data analysis (OODA, [5]), and generalizes the theory of functional geostatistics
developed from the seminal works of [6–8], mainly for functional data in L2.
Among the challenges related to the spatial analysis of complex data, we focus

here on the problems of spatial prediction. Similarly as in classical geostatistics
(e.g. [9]), in O2S2, the latter problem is addressed by formulating optimal unbi-
ased predictors linear in the data. We review here the mathematical framework
for kriging Hilbert and manifold data, in stationary or nonstationary settings and
discuss the estimators that can be used for the mean and the covariance structure.
The remaining of this chapter is organized as follows. Section 2.2 introduces

the main definitions and assumptions which may be formulated to perform a
geostatistical analysis of Hilbert-space valued random fields. Section 2.3 describes
a global approach to kriging, interpreted as optimal linear combinations of the
data. Here, we show an example of application to climate data and thoroughly
discuss on the importance of selecting an appropriate feature space for the anal-
ysis. In Section 2.4, we briefly review an alternative approach to kriging, which
arises when the predictor is interpreted in a more general sense, grounding on
the theory of measurable linear transformations. Interestingly, this general theory
allows to draw connections between several different formulations of functional
kriging available in the literature. Section 2.5 introduces the methodologies to
perform geostatistical analysis of manifold-valued random fields, based on the
local-approximation property of such spaces. Here, for illustration, we consider
the case of positive definite matrices that are used to analyze and predict the field
of covariance matrices between temperature and precipitations in a region of
Canada.

2.2 Definitions and Assumptions

We call (Ω,𝔉,ℙ) a probability space and  a separable Hilbert space, endowed
with operations (+, ⋅), and an inner product ⟨⋅, ⋅⟩. The space  will indicate the
feature space for the geostatistical analysis: we will consider the data as realiza-
tions of random points in . In several cases in this chapter, the space  will
represent a space whose elements are real-valued functions defined over a com-
pact interval. Nevertheless, the theory presented in this chapter is entirely general
and may involve manifold data, as we shall show in Section 2.5.
In the following, we denote by 𝝌 a random element in , that is a measurable

function defined on (Ω,𝔉,ℙ) and valued in, 𝝌∶ Ω → . We indicate a realiza-
tion of 𝝌 – that is a nonrandom element of  –with the symbol 𝜒 , i.e. 𝜒 = 𝝌(𝜔),
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for 𝜔 ∈ Ω. We call (,1) the Banach space of continuous linear operators on in 1. We say that two random elements 𝝌1,𝝌2 are equivalent (indicated by
𝝌1=𝝌2, or 𝝌1 = 𝝌2 for short) if 𝝌1 = 𝝌2 almost surely.
Given a set of locations s1,… , sn in a spatial domain D ⊂ ℝd (usually d = 2, 3),

we denote by 𝜒s1 ,… , 𝜒sn the set of observations collected at these locations,
that form our dataset of spatially dependent objects. As in classical geostatistics
(e.g. [9]), we assume this dataset to be a partial observation of a random field
{𝝌 s, s ∈ D} on (Ω,𝔉,ℙ) in . The latter is defined as a collection of random
elements 𝝌 s, indexed by a continuous spatial vector s varying in D.
In this chapter, wewill always assume that, for all s ∈ D, the element𝝌 s, satisfies

𝔼[∥ 𝝌 s∥2] < ∞.Under the latter assumption, one can define the expected value of
the field in terms of Bochner integral as

ms = ∫Ω
𝝌 s(𝜔)ℙ(d𝜔), s ∈ D. (2.1)

In , the expected value (2.1) can be equivalently defined as the element ms of such that, for any x ∈ , ⟨x,ms⟩ = 𝔼[⟨x,𝝌 s⟩]. The elementsms, s ∈ D, describe
the first-order structure of the field.
The second-order structure can be fully characterized through the spatial covari-

ance function, which is themap that associates each pairs of locations (s1, s2)with
the cross-covariance operator between the random elements at those locations, i.e.

∶ D × D→ (,) (2.2)
(s1, s2) → {(s1, s2)∶  → , x → 𝔼[⟨(𝝌 s1 −ms1 ), x⟩(𝝌 s2 −ms2 )]}.

A global measure of spatial dependence is provided by the trace-covariogram C.
The latter is defined as the real-valued function C∶ D × D → ℝ that associates a
pair of locations (s1, s2) in D with the real value:

C(s1, s2) = 𝔼[⟨𝝌 s1 −ms1 ,𝝌 s2 −ms2⟩]. (2.3)

The trace-covariogram can be interpreted as the direct generalization of the
classical covariogram, the inner product in ℝ being replaced by the inner
product in . From the mathematical viewpoint, for any pair of locations
(s1, s2), the trace-covariogram C(s1, s2) coincides with the trace of the corre-
sponding cross-covariance operator (s1, s2), i.e. ∑∞

k=1⟨(s1, s2)ek, ek⟩ (see [2]
for details). Intuitively, if  was the Euclidean space ℝp, the cross-covariance
operator (s1, s2) would be the linear operator associated with the covariance
matrix between the random elements 𝝌 s1 , 𝝌 s2 , and C(s1, s2) its trace. In this
sense, the trace-covariogram provides a global measure of dependence. The
trace-covariogram can be proven to fulfill all the properties of a classical
covariogram, e.g. it is a positive-definite function [9]:

n∑
i=1

n∑
j=1

λiλjC(si, sj) ≥ 0, ∀si, sj ∈ D,∀λ1,… , λn ∈ ℝ.
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The trace-covariogram was defined in the context of L2 data in [8], and then
generalized to object data in any separable Hilbert space in [2].
The trace-covariogram is strictly related with a counterpart of the classical var-

iogram, named trace-variogram, that is defined as the function 2𝛾∶ D × D → ℝ+

that maps any pair of locations (s1, s2) as

2𝛾(s1, s2) = 𝔼[∥ 𝝌 s1 − 𝝌 s2∥
2]− ∥ ms1 −ms2∥

2. (2.4)

The trace-variogram fulfills classical properties, such as being a conditionally neg-
ative definite function (e.g. [2]):

n∑
i=1

n∑
j=1

λiλj𝛾(si, sj) ≤ 0, ∀si, sj ∈ D,∀λ1,… , λn ∈ ℝs.t.
n∑
i=1

λi = 0.

On these premises, definitions of stationarity can be stated for the random field
{𝝌 s, s ∈ D}. In particular, we focus here on definitions of second-order stationar-
ity in a strong sense (Definition 2.1) and in a global sense (Definition 2.2). The
interested reader can find weaker definitions of stationarity in [2].

Definition 2.1 A process {𝝌 s, s ∈ D} is said to be strongly second-order station-
ary if the following conditions hold:

(i) 𝔼[𝝌 s] = m, for all s ∈ D ⊆ ℝd (spatially constant mean);
(ii) 𝔼[⟨𝝌 s1 −m, ⋅⟩(𝝌 s2 −m)] = (s1 − s2) for all s1, s2 ∈ D ⊆ ℝd (spatial covariance

function depending only on the increment vector).

Definition 2.2 Aprocess {𝝌 s, s ∈ D} is said to be (globally) second-order station-
ary if the following conditions hold:

(i) 𝔼[𝝌 s] = m, for all s ∈ D ⊆ ℝd (spatially constant mean);
(ii′) 𝔼[⟨𝝌 s1 −m,𝝌 s2 −m⟩] = C(s1 − s2) for all s1, s2 ∈ D ⊆ ℝd (trace-covariogram

depending only on the increment vector).

Second-order stationarity thus concerns a spatial homogeneity in the first and
second-order structure of the field. It should be noted that stationarity does not
imply the existence of a directional homogeneity, which concerns the concept
of isotropy instead. Indeed, a strongly second-order stationary field is said to be
isotropic if condition (ii) is reinforced by the following condition (iii):

(iii) 𝔼[⟨𝝌 s1 −m, ⋅⟩(𝝌 s2 −m)] = (∥ s1 − s2)∥d), for all s1, s2 ∈ D ⊆, ∥⋅∥d being the
norm on ℝd (spatial covariance function depending only on the distance
between locations).
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A globally second-order stationary field is said to be isotropic if condition (ii′) is
reinforced by the following condition (iii′):

(iii′) 𝔼[⟨𝝌 s1 −m,𝝌 s2 −m⟩] = C(∥ s1 − s2∥d) for all s1, s2 ∈ D (trace-covariogram
depending only on the distance between locations).

Both strong and global second-order stationarity are of interest from the
application-oriented viewpoint. Indeed, the methods introduced in Sections 2.3.1
and 2.3.2 rely upon the assumption of global stationarity, while the methods
devised in Section 2.4 assume the stronger condition of strong second-order sta-
tionarity (and Gaussianity). We finally remark that, although assuming isotropy
greatly simplifies the notation, it should not be considered as essential for the
development of the methods described in Sections 2.3–2.5.

2.3 Kriging Prediction in Hilbert Space: A Trace
Approach

A key goal of a typical geostatistical analysis is to perform spatial prediction
at a target (unobserved) location. As long as one-dimensional Euclidean fields
are concerned, classical geostatistics literature advocates the use of a kriging
predictor, that is the best linear unbiased predictor (BLUP) 𝝌∗

s0 =
∑n

i=1 λ
∗
i ⋅ 𝝌 si ,

whose weights minimize the variance of prediction error under the unbiasedness
constraint (e.g. [9]). In fact, in the scalar case, no ambiguity exists in the definition
of linear predictor, as this can be equivalently interpreted either as a linear
combination of the observations, or as a linear transformation of the vector
of observations. Instead, when the feature space  is an infinite-dimensional
Hilbert space, several possible definitions of kriging are available. In this section,
we focus on the so-called trace-approach that defines the kriging predictor as
the best linear combination of the data, as presented in [8] for the stationary L2
setting, and further generalized in [2] for possibly nonstationary Hilbert data.

2.3.1 Ordinary and Universal Kriging in Hilbert Spaces

Given s1,… , sn in D and the observations of the field 𝜒s1 ,… , 𝜒sn at these location,
we look for the BLUP 𝝌∗

s0 =
∑n

i=1 λ
∗
i ⋅ 𝝌 si for 𝝌 s0 , where the weights λ

∗
1,… , λ∗n solve

the minimization problem

min
λ1 ,…,λn∈ℝ

𝔼

[‖‖‖‖‖
𝝌 s0 −

n∑
i=1

λi ⋅ 𝝌 si

‖‖‖‖‖
2]

subject to 𝔼

[ n∑
i=1

λi ⋅ 𝝌 si

]
= 𝔼[𝝌 s0 ]. (2.5)
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In the presence of second-order stationarity, one may employ an ordinary
(trace-) kriging predictor, while for nonstationary data, universal (trace-) kriging
may be employed instead. We here consider universal kriging in, following [2],
since ordinary kriging is obtained as a special case.
We represent the elements of the field {𝝌 s, s ∈ D} as 𝝌 s = ms + 𝜹s, where ms is

the drift –which describes a possibly nonconstant mean variation –whereas 𝜹s is
assumed to be a globally second-order stationary and isotropic random field with
zero-mean and trace-covariogram C. Following the approach of universal kriging
for scalar data,we describe the drift term through a linearmodelwith scalar regres-
sors and functional coefficients

ms =
L∑
l=0

fl(s) ⋅ al, s ∈ D, (2.6)

where f0(s) = 1 for all s ∈ D, fl, l = 1,… ,L, are known over the entire domain and
al, l = 0,… ,L are (possibly unknown) coefficients in . Note that the stationary
case is obtained when L = 0 as in that case the mean is spatially constant. Further,
the spatial variation is assumed to be entirely captured by the regressors {fl, l =
1,… ,L}, since the coefficients donot dependon the location s ∈ D. Note that other
approaches to model the nonstationarity of the mean are possible, e.g. based on
(scalar or functional) covariates collected together with the data (i.e. the kriging
with external drift proposed in [10], and discussed in Chapter 3).
In our setting, the unbiasedness constraint in (2.5) reads

n∑
i=1

λifl(si) = fl(s0), l = 0,… ,L,

which is included in the minimization functional through L + 1 Lagrange multi-
pliers. Hence, problem (2.5) becomes that of minimizing, with reference to λi, 𝜁l,
i = 1,… ,n, l = 0,… ,L,

Φ =
n∑
i=1

n∑
j=1

λiλjC(∥ si − sj∥d) + C(0) − 2
n∑
i=1

λiC(∥ si − s0∥d)

+ 2
L∑
l=0
𝜁l

( n∑
i=1

λifl(si) − fl(s0)

)
. (2.7)

Denote by Σ ∈ ℝn×n the variance–covariance matrix of the observations (in the
trace sense), whose (i, j)-th element is Σi,j = C(∥ si − sj∥d) for i, j = 1,… ,n,
C(∥ si − sj∥d) appearing in (2.5). Indicate with 𝔽 = (fl(si)) ∈ ℝn×(L+1) the
design matrix of the linear model (2.6), by λ⃗ = (λ1,… , λn)T the vector of
weights and 𝜁 = (𝜁0,… , 𝜁L)T the vector of Lagrange multipliers. Call 𝜎⃗0 =
(C(∥ s1 − s0∥d),… ,C(∥ sn − s0∥d)T the vector of (trace-) covariances between the
observations and the target, and f⃗ 0 = (f0(s0),… , fL(s0))T the vector of regressors at
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the target location (both appearing in (2.5)). With this notation, and under usual
assumptions on the sampling design – namely Σ positive definite and 𝔽 of full
rank – the functional (2.7) admits a unique minimum, found by solving the linear
system

(
Σ 𝔽
𝔽 T 0

)(
λ⃗
𝜁

)
=

(
𝜎⃗0

f⃗ 0

)
. (2.8)

The latter system is easily found by equating to zero the differential of Φ with
reference to the λ’s and the 𝜁 ’s.
The variance of the prediction error (i.e. the value of (2.7) at the optimum) is

called universal kriging variance and is obtained as

𝜎2UK(s0) = C(0) −
n∑
i=1

λ∗i C(∥ si − s0∥d) −
L∑
l=0
𝜁∗l fl(s0) (2.9)

=
n∑
i=1

λ∗i 𝛾(∥ si − s0∥d) +
L∑
l=0
𝜁∗l fl(s0), s0 ∈ D.

The latter quantifies the uncertainty of the prediction and can be used to build pre-
diction bands (e.g. by using the Chebychev inequality). Nonetheless, it should be
noted that it does not consider the variability of the possible estimate of the covari-
ance structure, as the latter is assumed to be known over the entire construction.
Instead, inmost cases, the trace-covariogramneeds to be estimated aswell, and the
estimated covariance is eventually plugged-in in (2.8). Classical geostatistics advo-
cates the estimate of the (trace-)variogram in place of the (trace-)covariogram. The
two functions are linked by the relation:

2𝛾(h) = C(0) − C(h), h ∈ D.

Estimators of the variogram are generally more robust than those of covari-
ogram, hence preferred.
To estimate the variogram, a two-step procedure is generally employed: (i) esti-

mate an empirical variogram, and (ii) fit a parametric model (e.g. spherical,
exponential, Matérn) to the estimate at point (i), in order to guarantee that
the properties of a valid variogram (e.g. conditional negative definiteness) are
fulfilled. If global second-order stationarity and isotropy holds true, one can use
the method-of-moment estimator to achieve point (i) [2, 8]

2𝛾̂(h) = 1
|N(h)|

∑
(i,j)∈N(h)

∥ 𝝌 si − 𝝌 sj∥
2, (2.10)

where N(h) = {(i, j) | h − Δh ≤∥ si − sj∥d ≤ h + Δh}, and |N(h)| is its cardinality.
Estimator (2.10) provides an unbiased estimate of the trace-variogram 2𝛾 only
if the assumptions of stationarity and isotropy are verified. Otherwise, such
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estimator should not be employed because it considers only the first term of
the variogram definition in (2.4) (i.e. 𝔼[∥ 𝝌 s1 − 𝝌 s2∥

2]), while it neglects the
additional term ∥ms1 −ms2∥ (which is null under stationarity). When considering
the nonstationary model here introduced, one can use estimator (2.10) on the
residuals 𝜹si , i = 1,… ,n, which are a partial observation of a globally second-order
stationary and isotropic process. Nevertheless, these are usually latent and can
be estimated by difference once the drift has been assessed. Hence, although
in principle one could perform universal kriging without having estimated the
drift in advance, whenever the trace-covariogram is unknown, providing a good
estimate of the drift is essential. Section 2.3.2 will be dedicated to this point.
Instead, in case of stationarity (and isotropy), estimating the drift is not required
for the purpose of performing spatial prediction.

2.3.2 Estimating the Drift

The problem of estimating the drift for the spatial model here considered consists
in estimating a linear model in the presence of spatially correlated random errors.
Indeed, under model (2.6), the model for the data is

𝝌 si =
L∑
l=0

fl(si) ⋅ al + 𝜹si . (2.11)

To set the notation, we call n the Hilbert space  × · · · ×, with the inner
product ⟨x⃗, y⃗⟩ = ∑n

i=1⟨xi, yi⟩, for x⃗ = (x1,… , xn)T ∈ n, y⃗ = (y1,… , yn)T ∈ n.
We denote by 𝝌⃗ = (𝝌 s1 ,… ,𝝌 sn )

T ∈ n, a⃗ = (a0,… , aL)T ∈ L+1, and 𝜹⃗ =
(𝜹s1 ,… , 𝜹sn )

T ∈ n. In this setting, model (2.11) can be expressed in matrix
form as 𝝌⃗ = 𝔽 a⃗ + 𝛿.
The theory of functional linear models was developed under the founding

hypothesis of independent and identically distributed residuals. As a con-
sequence, in the presence of correlated residuals, the ordinary least squares
approach developed in that framework turns out to provide suboptimal results.
To properly account for the spatial dependence, a generalized least squares (GLS)
criterion can be used instead [2]. The latter seeks to minimize the functional
Mahalanobis distance between the observations and the evaluation of the drift
at the sampled locations. That is, the GLS estimator for vector a⃗ is found as the
solution of the minimization problem:

min
̂⃗a∈L+1

n∑
i=1

‖‖‖‖
[
Σ−1∕2∘

(
𝝌⃗ − 𝔽 ̂⃗a

)]
i

‖‖‖‖
2
, (2.12)

∘ indicating the matrix multiplication in , that is [Ax⃗]i =
∑m

j=1 Aij ⋅ xj, for
i = 1,… , q, with x⃗ ∈ m, A ∈ ℝq×m. If rank(𝔽 ) = L + 1 ≤ n and rank(Σ) = n,
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problem (2.12) is well posed and its unique solution is found as [2]

̂⃗a
GLS

= (𝔽 TΣ−1𝔽 )−1𝔽 TΣ−1∘𝝌⃗ . (2.13)

Estimator (2.13) was proved to be the best linear unbiased estimator for a⃗. How-
ever, it depends on the matrix Σ, hence on the trace-covariogram, which can be
estimated only once the residuals have been assessed, and the latter residuals can
be only computed by difference based on the drift estimate. To jointly assess the
residuals and the trace-(co)variogram, one can then resort to an iterative algo-
rithm, initialized, e.g. to the ordinary least squares (OLSs) estimate of the drift.
Such algorithmusually convergeswithin five iterations, although theoretical argu-
ments on its convergence are yet to be proved. Having computed the drift and
the trace-variogram, the universal kriging system can be solved by plugging-in the
estimated variance-covariance matrix in (2.8).

2.3.3 An Example: Trace-Variogram in Sobolev Spaces

We discuss here through an example the key importance of the choice of the
ambient space for the (geo)statistical analysis of functional or object data.
Although there are cases in which a natural ambient space is available (e.g.
suggested by dynamical equations governing the system), the choice of the
feature space for the analysis is indeed a crucial modeling step. As a way of
example, Figure 2.1 shows a set of spatially dependent curves, simulated from
two random fields {𝝌 (m)

s , s ∈ D},m = 1, 2,D = [0, 2] × [0, 3]. The latter fields were
built in [2] by combining in different ways the same set of independent, zero
mean, second-order stationary, and isotropic scalar random fields {𝜉s,j, s ∈ D},
j = 1,… , 7, as

𝝌
(1)
s =

7∑
k=1
𝜉s,kek; 𝝌

(2)
s =

25∑
k=19

𝜉s,k−18ek, (2.14)

where {ek, k ≥ 1} denotes the Fourier basis. A detailed description of the simu-
lation setting is provided in [[2], Supplementary material]. Figure 2.1 evidences
the very different patterns displayed by the two groups of curves. Indeed, the
realizations associated with the field {𝝌 (2)

s , s ∈ D} show a much higher amplitude
variability (i.e. along the vertical direction) than those associated with the
field {𝝌 (1)

s , s ∈ D}. This is due to the fact that the second field is built upon a
higher-order truncation of the basis and involves only the 10th–12th frequencies,
while only the first three frequencies are included in the construction of the
first field.
Despite these apparent diversities between the two fields, no difference exists

in their spatial dependence structure if the fields are embedded in the space L2
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Figure 2.1 Spatially dependent curves simulated from the fields {𝝌 (1)
s , s ∈ D} (a) and

{𝝌 (3)
s , s ∈ D}, (b). (a) 7 basis functions and (b) 25 basis functions. Source: Modified from

Menafoglio et al. [2].

of square-integrable functions. Indeed, straightforward computations yield, for
m = 1, 2,

2𝛾 (m)
L2 (si, sj) = 𝔼

[‖‖‖𝝌
(m)
si − 𝝌 (m)

sj
‖‖‖
2

L2

]
=

Nm∑
k=1

𝔼
[||||𝜉

(m)
si ,k

− 𝜉(m)
sj ,k

||||
2]

=
7∑
k=1

2𝛾𝜉k ,

𝛾𝜉k
indicating the variogram of the scalar field of coefficients {𝜉s,k, s ∈ D},

k = 1,… , 7. Instead, when modeling the data as objects in the Sobolev space
H1 – i.e. the space of functions in L2 whose derivatives (in a weak sense) are in
L2 – one can capture the diverse behavior of the fields, through the geometry of
the space. The latter choice entails the use of a norm based not only on pointwise
evaluations but also on the differential properties of the elements. In such a case,
the variogram is indeed different in the two fields, being

2𝛾 (1)H1 = 2𝛾 (1)L2 +
7∑
k=2

⌊
k
2

⌋2
𝜋22𝛾𝜉k =

7∑
k=1

(
1 +

⌊
k
2

⌋2
𝜋2

)
2𝛾𝜉k ;

2𝛾 (2)H1 = 2𝛾 (2)L2 +
25∑
k=19

⌊
k
2

⌋2
𝜋22𝛾𝜉k−18 =

25∑
k=19

(
1 +

⌊
k
2

⌋2
𝜋2

)
2𝛾𝜉k−18 .

Notice that, for k = 1,… , 7, the weights associatedwith the variogram 2𝛾𝜉k depend
on the frequency associated with 𝜉k, a greater weight being assigned to a higher
frequency.
Figure 2.2 shows the empirical trace-variograms estimated in L2 (Figure 2.2a)

and in H1 (Figure 2.2b) from a sample of 100 observations 𝜒 (m)
s1 ,… , 𝜒

(m)
s100 from

each field {𝝌 (m)
s , s ∈ D}, m = 1, 2, the same sites s1,… , s100 being uniformly
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Figure 2.2 Empirical trace-variograms in L2 (a) and 1 (b). Source: Modified from
Menafoglio et al. [2].

sampled in D. Although the shapes of the variograms are quite similar in the
two cases, the orders of magnitude of the horizontal asymptotes – twice the
global variance of the process – are significantly different. Indeed, the variogram
2𝛾 (2)H1 (dashed light line) assumes much higher values than 2𝛾 (1)H1 (solid dark
line), since the random field {𝝌 (2)

s , s ∈ D} has a much higher energy. Indeed, in
dynamical system theory, the square of the Sobolev norm of the state (i.e. ∥𝝌 s∥2)
coincides with (twice) the energy of the system. Hence, the ambient space for
geostatistical analysis not only provides the feature space for the object data but
also implies a precise physical meaning for the measure of stochastic variability:
the global variance represents (twice) the mean energy of the system, while the
trace-variogram (twice) the mean energy of the increments between two states.
In conclusion, one should pay close attention to the choice of the feature space

for the analysis. The latter should be guided by the dataset structure, the possible
physical laws governing the system, and by the purposes of the analysis.

2.3.4 An Application to Nonstationary Prediction of Temperatures
Profiles

We show here an example of application of the trace-approach to nonstationary
environmental data. Following [2], the data we consider are daily mean temper-
ature profiles, collected during 1980 at 27 locations in the Maritime Provinces of
Canada (data source:Natural Resources of Canada; http://atlas.nrcan.gc.ca/). Raw
data were smoothed by using a Fourier basis of 65 elements, obtaining the set of
curves displayed in Figure 2.3.

http://atlas.nrcan.gc.ca/
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Figure 2.3 Canada’s Maritime Provinces Temperatures dataset, year 1980. (a) Map of
Maritime Provinces and sampled locations; (b) six fitted temperature curves; (c) empirical
estimate of the trace-variogram. Source: Modified from Menafoglio et al. [2].

For illustration purposes,we performed the geostatistical analysis inL2, using on
the spatial domain a geodesic distance, since coordinates are given in latitude and
longitude. The graphical inspection of the trace-semivariogram estimated from
the data suggests the presence of a nonconstant drift model. Indeed, the empir-
ical estimate does not show any apparent finite sill (i.e. horizontal asymptote, see
Figure 2.3). To select the drift model, we considered the polynomial models of
degree 2 in the coordinates and sought the one minimizing the kriging prediction
error, assessed by leave-one-out cross-validation [2]. On this basis, we found as
optimal model

m(s, t) = a0(t) + a1(t)y + a2(t)x2 + a3(t)y2 + a4(t)xy,

for s = (x, y) = (Longitude,Latitude), t ∈  = [0,366].
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Figure 2.4 Estimated trace-semivariogram from the residuals (a) and estimated drift for
the Summer Solstice (21st June; b) and the Winter Solstice (21st December; c). The drift
maps are extracted from the drift temperature profiles estimated in L2. In (a), (geodesic)
distances are given in kilometers.

Figure 2.4 displays the estimate of the drift for the days of summer solstice and
the winter solstice. Note that we may have chosen any day of the year for such
representation: the theory presented here allows obtaining joint and consistent
estimates (and predictions) for all the days of the year. The maps in Figure 2.4
have a clear climatical interpretation, as they represent the presence of currents
from the Ocean, whose circulation causes a change in the gradient of tempera-
ture along the year. In Figure 2.5, we represent the universal kriging maps for
the same days considered in Figure 2.4. From the analysis of the maps, one can
conclude that the drift term tends to drive the estimates in the colder seasons
(Figure 2.4c), whereas during the summer season (Figure 2.4b), the temperature
map displays evident local patterns, due to the peculiar geographical configuration
of the area – particularly for the Bay of Fundy. Although the spatial patterns evi-
denced during the year tend to be different, the universal kriging predictor allows
to properly capture them, thanks to its flexibility.
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Figure 2.5 Universal kriging maps for the Summer Solstice (21st June; a) and the Winter
Solstice (21st December; b), extracted from the temperature profiles predicted via
universal kriging in L2.

2.4 An Operatorial Viewpoint to Kriging

In this section, we briefly review a second approach to kriging, namely the opera-
torial ordinary kriging. Here, the kriging predictor is built upon a linear transfor-
mation of the vector of data Λ

s0 = Λ𝝌⃗ , for some linear operator Λ∶ n → .
The development of such classes of predictors is motivated by the observa-

tion that, despite its simplicity, predictor 𝝌∗
s0 =

∑n
i=1 λi ⋅ 𝝌 si does not provide,

in general, the best linear unbiased transformation of the vector of observa-
tions. The operatorial viewpoint was first considered in [7] in reproducing
Kernel Hilbert spaces (RKHSs), that are functional spaces whose elements are
more regular than general Hilbert spaces (see also Chapter 4). These authors
addressed the problem of finding the best predictor over the class of linear
unbiased Hilbert–Schmidt transformations of the observations, of the form
𝝌B
s0 =

∑n
i=1 Bi𝝌 si , where Bi∶  →  are linear Hilbert–Schmidt operators and 

a RKHS. Although all finite-dimensional Hilbert spaces are RKHS, other widely
used spaces, such as the space L2, need not be a RKHS. In [4], a more general
theory was introduced based upon the idea of working with measurable linear
transformations instead of linear Hilbert–Schmidt operators: in this particular
setting, these authors showed that the operatorial kriging problem is well posed
for any separable Hilbert space.
We now formally introduce the latter predictor and discuss its relation with the

other kriging predictors discussed here.
Given two separable Hilbert spaces,1,2, we denote by L a Borel-measurable

map from (2,𝔅(2)) to (1,𝔅(1)), 𝔅(i) being the Borel 𝜎-algebra of i, for
i = 1, 2. Given a measure 𝜇 on (2,𝔅(2)), we say that L is a measurable linear
transformation with respect to 𝜇 (𝜇-mlt), if L is linear on a subspace L ∈ 𝔅(2)
with 𝜇(L) = 1.
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Given a set of locations s1,… , sn and the observation of the process at these loca-
tions, 𝝌 s1 ,… ,𝝌 sn , we consider the operatorial ordinary kriging predictor 𝝌

Λ∗

s0 =
Λ∗𝝌⃗ for𝝌 s0 . Here,Λ

∗∶ n →  is ameasurable linear transformationwith respect
to the law 𝜇𝝌⃗ of 𝝌⃗ , and minimizes

𝔼
[‖‖‖𝝌 s0 − 𝝌

Λ
s0
‖‖‖
2]

subject to 𝔼
[
𝝌Λ
s0

]
= m, (2.15)

over allΛ ∶ n →  a 𝜇𝝌⃗ -mlt and where in the objective functional 𝝌Λ
s0 stands for

𝝌Λ
s0 = Λ𝝌⃗ .
To tackle this problem, throughout the section, we assume {𝝌 s, s ∈ D} to be a

Gaussian random field on (Ω,𝔉,ℙ) in (,𝔅()), that is, we assume that all its
finite-dimensional laws are Gaussian in . Recall that a random element in 
is Gaussian if ⟨x,𝝌⟩ has a Gaussian distribution for every x ∈ . Note that this
assumption is crucial for the validity of the results presented here, because a full
characterization of the properties of mlts is only available under Gaussianity. We
further assume that the field is strongly second-order stationary; we callm its (spa-
tially constant) mean, and  its (stationary) spatial covariance function, defined
as in (2.2).
Under this assumptions, the ordinary kriging problem can be shown to be well

posed [4]. To state such result, we need the following further notation. We call 1∶
 → n the linear operator acting on x ∈  as 1x = (x,… , x)T , and 1′ its adjoint.
We denote by 𝜇𝝌⃗0

= N
(
m𝝌⃗0

,𝝌⃗0

)
the law of the random vector 𝝌⃗0 =

(
𝝌 s0 , 𝝌⃗

T
)T

in n+1, with expected value m𝝌⃗0
=
(
m, (1 m)T

)T and covariance operator 𝝌⃗0
∶

n+1 → n+1. The latter can be expressed in block form as

𝝌⃗0
=

( 𝝌 s0
𝝌 s0 𝝌⃗𝝌⃗𝝌 s0
𝝌⃗

)
.

Here 𝝌⃗ indicates the covariance operator of 𝝌⃗ , i.e. (𝝌⃗ x⃗)i = ∑n
j=1 (si − sj)xj, for

x⃗ ∈ n, i = 1,… ,n, and 𝝌⃗𝝌 s0
is the cross-covariance operator between 𝝌⃗ and 𝝌 s0 ,

i.e. 𝝌⃗𝝌 s0
x⃗ =

∑n
j=1 (s0, sj)xj, for x⃗ ∈ n.

The following Theorem 2.1 – proved in [4] – states that the operatorial ordinary
kriging problem is well posed.

Theorem 2.1 ([4])Under the previous assumptions and notation, (2.15) admits
a unique minimizer 𝝌Λ∗

s0 = Λ∗𝝌⃗ , where Λ∗ is the 𝜇𝝌⃗ -mlt solving{
ΛC𝝌⃗ − C𝝌 s0 𝝌⃗

+ 𝜁1 1′ = 0;
Λ 1 − I = 0,

(2.16)

with 1 x = (x, x,… , x)T, for x ∈ , I∶  →  the identity operator and 𝜁1 a
𝜇𝝌0

-mlt that represents the Lagrange multiplier associated with the unbiasedness
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constraint. Moreover, for x ∈ n, one has

Λ∗x = M∗x + L(x − 1 M∗x), (2.17)

whereM∗ is the 𝜇𝝌⃗ -mlt defined, for x ∈ n, asM∗x =
(
1′C−1

𝝌⃗
1
)−1

1′C−1
𝝌⃗
x, and L is

the 𝜇𝝌⃗ -mlt of conditional expectation that acts on x ∈ n as Lx = C𝝌 s0 𝝌⃗
C−1
𝝌⃗
x.

We refer the interested reader to [4] for the proof of Theorem 2.1. We note how-
ever that (2.16) can be expressed in matrix form as

(
Λ 𝜁1

)( C 1
1′ 0

)
=
(
Cs0 I

)
, (2.18)

which as the very same form as (2.8), but in an operatorial setting. Moreover,
a second key element of Theorem (2.1) is the explicit expression for the optimal
𝜇𝝌⃗ -mltΛ∗ in (2.17). The latter involves two parts: the first related with an operato-
rial version of the GLS estimator for themean function, analogue to that described
in Section 2.3.2; the second part exploits the operator of conditional expectation L
of 𝝌 s0 given 𝝌⃗ , applied to the estimated residuals. As shown in [11, 12], the latter
operator L is the 𝜇𝝌⃗ -mlt that allows to obtain the conditional expectation 𝔼[𝝌 s0 |𝝌⃗]
when applied to the centered observations (𝝌⃗ − 1m), under the assumption that
the meanm is known, i.e.

𝔼[𝝌 s0 |𝝌⃗] = m + L(𝝌 − 1 m). (2.19)

Note that (2.19) has the very same form of the familiar expression of conditional
expectation in the multivariate setting. Hence, (2.17) shows an interesting
relation of the operatorial kriging predictor with the conditional expectation,
which has a very analogous counterpart in the finite dimensional case [9].
Indeed, kriging coincides with the conditional expectation only when the mean
is known (i.e. simple kriging [4]). In all other cases, it is a plug-in estimator
that is built upon the conditional expectation, by employing the GLS estimate of
the mean.
We finally mention that both the operatorial kriging predictor in RKHSs and

the trace-kriging predictor can be seen as particular cases of the operatorial kriging
predictor defined byTheorem2.1. Indeed, the kriging predictor proposed in [7] can
be found by embedding Theorem 2.1 in a RKHS. A particular case is then obtained
for finite-dimensional Hilbert spaces, already explored by Nerini et al. [7], that are
interpreted as finite-dimensional approximations of the BLUP 𝝌Λ∗

s0 . Similarly, in
the stationary Gaussian case, the trace-kriging predictor can be interpreted as the
finite-dimensional approximation of the operatorial kriging predictor within the
n-dimensional Hilbert space generated by the observations. We refer the reader to
[4] for further details.
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2.5 Kriging for Manifold-Valued Random Fields

While spatial statistics of functional data has recently received much attention,
as proved by the many contributions in this book, the extension to the case of
non-Euclidean data is even a greater challenge because they do not belong to a vec-
tor space. A kriging procedure has been recently proposed in [3] for data belonging
to Riemannian manifolds, where local tangent space approximations can be used.
Indeed, any Riemannian manifold admits an approximation based on a Hilbert
tangent space, where linear geostatistical methods can be developed. Thus, it is
possible to use the local geometry of the manifold to find a data-driven lineariza-
tion, i.e. looking for the tangent space where the parametric model provides the
best possible fit for the available data. Then, the spatial dependence can be mod-
eled in the tangent space using the methods for Hilbert spaces described above.
In this section, we describe the method introduced in [3] and we discuss some
possible generalization.

2.5.1 Residual Kriging

We first need to introduce some definitions and notations to model data that take
values in a Riemannian manifold. Let  be a Riemannian manifold and, given
a point P in , let  be the tangent space at the point P,  = TP. This is a
Hilbert space when equipped with an inner product ⟨⋅, ⋅⟩ in . Since our aim
is to model the spatial variation in the local tangent space in P, we need a way
to map elements of the tangent space to the manifold and vice versa. Thus, two
important objects are the exponential map and its inverse, the logarithmic map.
The exponential map is a smooth map from TP to, which is defined via the
geodesics (the shortest paths between points on the manifold) passing through P:
it maps a tangent vector T ∈ TP to an element in by traveling on the man-
ifold, for a unit of time, along the geodesic starting in P in direction T. Indeed,
under some technical assumptions on, for every pair (P;T) ∈  × TP, there
is a unique geodesic curve g(t) such that g(0) = P and g′(0) = T. The exponential
map of in P is defined as the point at t = 1 of this geodesic, i.e. g(1). We indi-
cate here with expP the exponential map in P, and with logP its inverse. Figure 2.6
shows a visualization of these concepts for the case of a sphere. More details on
these definitions and on the properties of Riemannian manifolds can be found,
e.g. in [13] and a detailed example for the case of the manifold of positive definite
symmetric matrices is discussed in Section 2.5.2.
For a location s in the spatial domainD, we can nowmodel the random element

Ss, taking value in, as

Ss(a⃗,P) = expP(A(f⃗ (s); a⃗) + 𝜹s). (2.20)
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in P on a sphere and of the exponential map of a vector
T in the tangent space.

Here,A(f⃗ (s); a⃗) is a drift term defined in the tangent space, described by a linear
model with a⃗ = (a0,… , aL) a vector of coefficients belonging to and f⃗ (s) a vector
of scalar regressors:

A(f⃗ (s); a⃗) =
L∑
l=0
fl(s) ⋅ al,

where f0(s) = 1. Instead, {𝜹s, s ∈ D} denotes a zero-mean globally second-order
stationary and isotropic random field in the Hilbert space, with covariogram C
and semivariogram 𝛾 .
Let now s1,… , sn be n locations in D, and let S1,… ,Sn be the observations of

(2.20) at these locations. The goals are to estimate the parameters P and a⃗ inmodel
(2.20) and to perform spatial prediction at an unobserved location s0. We denote
by Σ ∈ ℝn×n the covariance matrix of the array 𝜹⃗ = (𝜹s1 ,… , 𝜹sn )

T in n, that is
Σij = C(∥si − sj∥2d), and call R⃗ ∈ n the array of residualsRi = A(f⃗ (s); a⃗) − logP(Si).
To estimate (P, a⃗) accounting for the spatial dependence, the GLS functional

(
P̂, ̂⃗a

)
= argmin

P∈,a⃗∈L+1

|||
|||Σ−1∕2R⃗|||

|||
2

n
(2.21)

needs to beminimized.WhenΣ is known, problem (2.21) can be solved iteratively,
by alternatively minimizing the GLS functional in (2.21) with respect to P given
a⃗ and to a⃗ given P. The minimizer in a⃗ given P can be explicitly determined as
detailed in Section 2.3.2, i.e.

̂⃗a
GLS

(P) = (𝔽 TΣ−1𝔽 )−1𝔽 TΣ−1∘Y⃗(P), (2.22)

where 𝔽 ∈ ℝn×(L+1) is the design matrix, 𝔽il = fl(si), and Y⃗(P) is the array Y⃗(P) =
(logP(S1),… , logP(Sn))T ∈ n. On the other hand, an expression for theminimizer
in P given a⃗ is not available, in general. The complexity of such minimization
is problem dependent and may require the development of specific optimization
techniques.
When (P, a⃗) is known, it is possible to estimate Σ by estimating the semivari-

ogram 𝛾(h), for example following the strategy of Section 2.3.2. That is (i) estimate
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the empirical semivariogram from the residuals as

𝜸̂(h) = 1
2|N(h)|

∑
(si ,sj)∈N(h)

||𝜹si − 𝜹sj ||2H ,

and (ii) fit a parametric model to the empirical estimate to obtain a valid model.
A good estimate of the spatial dependence (including the choice of the model
semivariogram) is crucial in the applications. Note that, the tangent space being
Hilbert, most of the existing methods in linear geostatistics can be used in this
step of the analysis (see, e.g. [14, 15], reference therein). Since in practice both the
parameters and the spatial dependence are unknown, there is the need to resort
to a nested iterative algorithm, where the semivariogram is estimated from the
residuals at the current iteration.
Estimated the parameters of model (2.20) as (P̂, ̂⃗a, 𝜮̂), the kriging prediction can

be performed as follows: in theHilbert space, the simple kriging predictor for 𝜹s0
is well defined, and it is obtained as

∑n
i=1 λ

0
i 𝜹̂si , where 𝜹̂si stands for the estimated

residual at si, 𝜹̂si = A(f⃗ (si); ̂⃗a) − logP̂(Si), and the vector of kriging weights 𝝀⃗0 =(
𝝀01,… ,𝝀0n

)
is found as 𝝀⃗0 = 𝜮̂

−1
c⃗, with c⃗ = (Ĉ(||s1 − s0||d),… , Ĉ(||sn − s0||d))T .

The spatial prediction of S at the target location s0 is then

Ŝ0 = expP̂

(
âGLS0 (P̂) +

L∑
l=1
âGLSl (P̂)fl

(
s0
)
+

n∑
i=1
𝝀0i 𝜹̂si

)
,

where f⃗ (s0) is the vector of covariates given at the location s0.

2.5.2 An Application to Positive Definite Matrices

Positive definite matrices are an example of manifold-valued data, the modeling
of positive definite matrices random field being relevant in applications such as
Diffusion Tensor Imaging [16] and covariances between meteorological vari-
ables [3, 17]. The space PD(p) of positive definite matrices of dimension p is
a convex subset of ℝp(p+1)∕2, but it is not a linear space: in general, a linear
combination of elements of PD(p) does not belong to PD(p). The tangent space
TP PD(p) to the manifold of positive definite symmetric matrices of dimension
p in the point P ∈ PD(p) can be identified with the space Sym(p), the space of
symmetric matrices of dimension p, which is linear and can be equipped with
an inner product. A Riemannian metric in PD(p) is then induced by the inner
product in Sym(p) and the choice of the inner product in the tangent space
determines the form of the geodesic (i.e. the shortest path between two elements
on the manifold) and thus the expression of the geodesic distance between two
positive definite symmetric matrices. A possible choice for the Riemannian
metric is generated by the scaled Frobenius inner product in Sym(p), which is
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defined as ⟨A,B⟩P = trace(P−
1
2ATP−1BP−

1
2 ), where A,B ∈ Sym(p). This choice is

very popular for covariance matrices because it generates a distance which is
invariant under affine transformation of the random variables. For every pair
(P,A) ∈ PD(p) × Sym(p), there is then a unique geodesic curve g(t) such that

g(0) = P,

g′(0) = A.

When the Riemannian metric is generated by the scaled Frobenius inner product,
the expression of the geodesic becomes

g(t) = P
1
2 exp

(
tP−

1
2AP−

1
2

)
P

1
2 ,

where exp(C) indicates the exponential matrix of C ∈ Sym(p). The exponential
map of PD(p) in P is defined as the point at t = 1 of this geodesic:

expP(A) = P
1
2 exp

(
P−

1
2 AP−

1
2

)
P

1
2 .

Thus, the exponential map takes the geodesic passing through P with “direction”
A and follows it until t = 1. The exponential map has an inverse which is called
logarithmic map and is defined as

logP(D) = P
1
2 log

(
P−

1
2DP−

1
2

)
P

1
2 ,

where log(C) is the logarithmic matrix of C ∈ PD(p). The logarithmic map
returns the tangent element A that allows the corresponding geodesic to reach D
at t = 1.
With this structure, it is possible to apply the residual kriging method described

above to positive definite matrix-valued data. Kriging interpolation for the
covariance matrices between temperature and precipitation in Quebec has been
explored in [3], using data from Canadian meteorological stations made available
by Environment Canada on the website http://climate.weatheroffice.gc.ca. The
seven meteorological stations where all monthly temperature and precipitation
data are available from 1983 to 1992 are considered. For each station and for
each month from January to December, these 10-year measures are used to
estimate the 2 × 2 covariance matrix between temperature and precipitation,
obtaining and separately analyzing 12 datasets, each composed by n = 7 spatially
dependent sample covariance matrices (with the previous notation, n = 7 and
p = 2). Pigoli et al. [3] found out that the covariation between temperature
and precipitation changes across the calendar year. We report here the results
obtained for the month of January. Including only a constant term in the tangent
space model (i.e. assuming that the matrix random field has a constant mean)
leads to an estimate of the empirical semivariogram that suggests to move toward
a nonstationary model, as it can be seen in Figure 2.7. The simplest drift model

http://climate.weatheroffice.gc.ca
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Figure 2.7 (a) Empirical semivariogram (symbols) and fitted exponential model
(solid line). The geodesic distances in the spatial domain are measured in kilometers.
(b) Ordinary kriging for the (temperature, precipitation) covariance matrix field for the
month of January; filled ellipses indicate original data. A covariance matrix S at location
s is represented as an ellipse centered in s and with axis

√
𝝈j e⃗j , where Se⃗j = 𝝈j e⃗j for

j = 1, 2. Horizontal and vertical axes of the ellipses represent temperature and
precipitation, respectively. Source: Modified from Pigoli et al. [3].

which guarantees the stationarity of the residuals is found to be the following:
linear model depending on longitude:

A(𝜙i, λi) = a0 + a1𝜙i, (2.23)

(𝜙, λ) denoting longitude and latitude. A possible meteorological interpretation
is associated with the exposition of the region toward the sea, since model (2.23)
accounts for the distance between the location of interest and the Atlantic Ocean.
This is likely to influence temperatures, precipitations, and their covariability. The
estimates of the semivariogram and of the drift and the kriging prediction can be
seen in Figure 2.8.

2.5.3 Validity of the Local Tangent Space Approximation

Themethod introduced in [3] relies on a local Euclidean approximation and, albeit
the choice of the best local approximation is data-driven, one may question about
the suitability of the model for the data at hand. The authors presented a simula-
tion study to explore this issue in the case of positive-definite matrices, by evaluat-
ing the performance of the kriging predictorwhen data are generated fromamodel
different from (2.20) (i.e. the local linear approximation is not valid). In particular,
they generate a nonstationary matrix field according to a probabilistic model with
mean Gs = expP(A(f⃗ (s); a⃗)), where P and A(f⃗ , a⃗) are set parameters. This random
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Figure 2.8 Kriging of the (temperature, precipitation) covariance matrix field during
January, with a drift term depending on longitude. A covariance matrix S at location s is
represented as an ellipse centered in s and with axis

√
𝝈j e⃗j , where Se⃗j = 𝝈j e⃗j for j = 1, 2.

Horizontal and vertical axes of the ellipses represent temperature and precipitation,
respectively. In subfigures (b) and (c), filled ellipses indicate the data, empty ellipses the
estimated drift and the kriging interpolation, respectively. In subfigure (a), the residual
empirical semivariogram (symbols) and the fitted exponential model (solid line) are
reported. The geodesic distances in the spatial domain are measured in kilometers.
Source: Modified from Pigoli et al. [3].

matrix field is obtained through the sample covariance matrices generated by the
realizations of a Gaussian random vector field v⃗ in the following way. Let D ⊂ ℝ2

indicate the common spatial domain of two independent Gaussian random fields
ws, ys, s ∈ D. Both random fields ws and ys have zero mean and Gaussian spatial
covariancewith decay𝜙 = 0.1, sill equal to 1 and zero nugget. For s ∈ D, the covari-
ance matrix (between components) of the random vector field v⃗s = (Gs)

1
2 (ws, ys)′
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is equal to Gs. Then, N independent realizations of the random vector field v⃗ are
generated and, for s ∈ D, the realization of the manifold-valued random field is
given by the sample covariance matrices:

Ss =
1

N − 1

N∑
k=1

(
v⃗s,k − v⃗s

)(
vs,k − v⃗s

)T ∼ Wishart2
( 1
N − 1

Gs,N − 1
)
, (2.24)

v⃗s being the sample mean in s ∈ D. This simulation process is therefore defined
on the manifold of positive definite symmetric matrices and the parameterN con-
trols the variability of thematrix randomfield S in s. WhenN is large, the data will
be concentrated around the drift (which satisfies the tangent space approxima-
tion). Therefore,N also controls the violation of the tangent space approximation.
We want to evaluate the performance of the kriging procedure when applied to
these simulated fields by comparison with the case when data are generated by
model (2.20). Data are then generated on an equally spaced 10 × 10 grid, 15 loca-
tions are taken as known and the prediction error p = 1

85

∑85
i=1 d

(
Ssi , Ŝsi

)2
in the

remaining 85 locations is measured. Here d(⋅, ⋅) denotes the Riemannian distance
between two positive definite matrices (see [3]). This experiment is repeated with
different values of the model parameters. Since the two models are controlled by
different parameters, to compare them on the same footing, we can measure the
sample marginal variability, defined as 𝝇 = 1

100

∑100
i=1 d(Ssi ,Gsi )

2, i.e. the variation
of the realization of the field with respect to the true mean field Gs.
Figure 2.9 compares the performances of the kriging prediction when data are

generated with model (2.24) and when data are generated with the tangent space
model (2.20), for a range of values of the sample marginal variability.
This suggests that the higher the value of the sample marginal variability, the

worse is the relative performance of the kriging predictor between the two cases.
This is to be expected because a high dispersion on themanifoldmeans that no tan-
gent space can accurately describe the data. However, for low values of the sample
marginal variability, the performance of the kriging predictor in the two settings is
comparable, supporting its robustness to the violation of the model provided that
the tangent space approximation is able to describe the observations in a fairly
accurate way. More details on this simulation study can be found in [3].
By way of example, Figure 2.9b,c represents two realizations of the matrix field

generated from (2.24) for high and low values of N, respectively, i.e. low or high
values of the sample marginal variability. It can be seen that values of sample
marginal variability where the performance of the kriging predictor gets worse
correspond to random fields too noisy to be of any use in applied scenarios. How-
ever, other examples of manifold-valued datamay present cases where the tangent
space approximation is not suitable and a kriging procedure defined directly on the
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Figure 2.9 (a) Empirical prediction error as a function of the sample marginal
variability 𝝇 , with a local polynomial smoothing added to help visual comparison, for
data generated from the tangent space model (2.20) (black points and solid black line)
and from procedure (2.24) (light gray points and dashed line), both with Gaussian
covariance function. (b, c) Examples of simulated fields from procedure (2.24) for N = 6 (b)
and N = 4 (c) and Gaussian covariance function, with the respective values of sample
marginal variability 𝝇 . Source: Modified from Pigoli et al. [3].

manifold would be needed. Ordinary kriging for a stationarymanifold-valued ran-
dom field can be achieved with a weighted Fréchet mean. For example, Pigoli and
Secchi [17] used this approach to estimate the mean from a spatially dependent
sample. However, the optimal choice of the weights for the ordinary kriging pre-
dictor is still an open problem.When the field is nonstationary, the problem is even
more complex since the nonlinear nature of the data does not allow the removal of
a non-stationarymean function. A possibility currently investigated by the authors
is tomodel the response field by segmenting the spatial domain into regionswhere
the field can be assumed to be stationary and ordinary kriging prediction can be
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used. The challenge is of course the identification of the correct scale for these
subregions and how to deal with the discontinuities that may be introduced in the
predicted field, e.g. via randomized approaches. Alternatively, one can think to
extend to this setting locally stationary models in the same vein as [18].

2.6 Conclusion and Further Research

In this chapter, we introduced the ideas and mathematical foundations upon
which object spatial statistics is grounded. We recalled the model andmethods for
data which can be embedded in Hilbert spaces, such as L2 data, or Sobolev data.
In this regard, we mention that constrained data such as distributional data can
be dealt with in this context, by properly choosing the Hilbert space embedding
for the data (see Chapter 5).
Whenever data cannot be embedded into a Hilbert space, extensions of the

framework proposed in Sections 2.2 and 2.3 need to be developed. Here, we
presented a possible extension to manifold-valued data, based on the idea of
locally approximating the manifold with its tangent space.
The methods presented in this chapter are all based on global hypotheses of

stationarity, or on global drift models to describe the nonstationarity of the field.
A recent extension of the methodology presented here addresses the problem of
prediction when the field cannot be assumed to be stationary on a global scale,
but it is stationary on a local scale. In this setting, Menafoglio et al. [19] pro-
pose a divide-et-impera strategy based upon repeated Random Domain Decom-
positions, each defining a set of homogeneous subregions where to perform local
object-oriented spatial analyses, under stationarity assumptions, to be then aggre-
gated into a final global analysis. Besides being entirely general, and prone to be
usedwith numerous types of object data (e.g. functional data, density data, orman-
ifold data), the method allows to deal with complex domains, such as large and
highly textured regions, with holes or barriers. This class of methods naturally
finds application in several environmental applications, such as those focused on
the characterization of complex estuarine systems.
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The previous chapters cover ordinary functional kriging, which allows to predict
a curve at an unmonitored site under the assumption of a constant mean over the
spatial domain. However, in many applications, this is an unrealistic assumption.
Then, in order to realize spatial prediction for nonstationary processes, in classical
geostatistics a spatial trend (also called “drift”) ismodeled as a function of the coor-
dinates only or defined “externally” through some auxiliary/exogenous variables.
It is common to reserve the term Universal kriging (UK) for the case when only
the coordinates are used as regressors, whereas many authors refer to Kriging with
External Drift (KED) model when other covariates are also considered. When the
drift is estimated by Generalized Least Squares (GLS), UK, and KED prediction at
a new site can be obtained by adding up the predicted drift and the result of sim-
ple kriging applied on GLS residuals because of a mathematical equivalence [1].
For this reason, some authors use the term Residual Kriging or the more general
Regression Kriging.
This chapter introduces methods for nonstationary functional data; in partic-

ular, in Sections 3.2–3.4, three different approaches are presented in increasing
order of trend complexity: we will refer to them as UK [2, 3], residual kriging [4],
and KED [5], where the mean function depends on the spatial coordinates, scalar
covariates, and scalar and functional covariates, respectively. Section 3.5 illustrates
an iterative algorithm to take into account spatial dependence in drift estima-
tion, while a bootstrap method to evaluate prediction uncertainty is presented in
Section 3.6.
Application of the different kriging methods will be illustrated on a case study

of PM10 concentrations in the region of Piemonte, Italy (see [5, 6]) in Section 3.7.
The dataset and R code are freely available upon request to the authors.

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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3.1 Introduction

Let
{
𝜒s(t); t ∈ T

}
be a functional random variable observed at location s ∈ D ⊆ ℝd

(d = 2 or 3 generally), where T is a compact subset ofℝ. Assume that we observe a
sample of curves 𝜒si (t), for t ∈ T and si ∈ D, i = 1,… ,n, taking values in a separa-
ble Hilbert spaceH of square integrable functions, that is in L2. The set

{
𝜒s, s ∈ D

}
constitutes a functional random field or a spatial functional process [7] that is not
necessarily stationary. With the aim of predicting the curve 𝜒s0 (t) at an unmea-
sured location s0 ∈ D, the following model is assumed:

𝜒s(t) = ms(t) + 𝜖s(t), s ∈ D, (3.1)

wherems(t) is the drift describing a spatial trend and 𝜖s(t) is a zero-mean, second-
order stationary, and isotropic residual random field, with covariance function
ℂ(𝜖si (t), 𝜖sj (u)) = Cov(𝜖si (t), 𝜖sj (u)) = C(h; t,u),∀si, sj ∈ D, where h = ||si − sj||
represents the Euclidean distance between locations si and sj, t,u ∈ T. Denote
𝚺 = 𝕍ar

(
𝝐s(t)

)
, 𝜎20 (t) = 𝕍ar(𝜖s0 (t)) and c = C(𝝐s(t), 𝜖s0 (t)), t ∈ T.

Sections 3.2–3.4 describe different kriging approaches depending on the com-
plexity of the trend termms(t).

3.2 Universal Kriging for Functional Data (UKFD)

In the case where the trend ms(t) only depends on the spatial coordinates s,
Model (3.1) can be rewritten as a spatial functional regression model:

𝜒si (t) =
P∑
p=1
𝛽p(t)fp(si) + 𝜖si (t), i = 1,… ,n, t ∈ T, (3.2)

where fp(s) are functions of the spatial coordinates. Given the functional vector
of observations 𝝌 s(t) = {𝜒s1 ,… , 𝜒sn}, the model can be written in matrix form as
follows:

𝝌 s(t) = X(s)𝜷(t) + 𝝐s(t),

where X(s) is a matrix of size n × P with generic element fp(si), 𝜷(t) =[
𝛽1(t),… , 𝛽P(t)

]T is the vector of functional regression coefficients, and
𝝐(t) =

[
𝜖s1 (t),… , 𝜖sn (t)

]T is the vector of functional residuals.
Caballero et al. [2] propose the functional UK predictor of 𝜒s0 (t) as follows:

𝜒̂ s0 (t) = 𝝀
T𝝌 s(t), (3.3)

where 𝝀 =
{
𝜆1,… , 𝜆n

}
∈ ℝn is the vector of kriging weights, chosen so that

predictor (3.3) is unbiased with minimum variance. The unbiasedness condition
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means that 𝔼
[
𝜒̂ s0 (t)

]
= 𝔼

[
𝜒s0 (t)

]
for all t ∈ T, i.e.

𝝀TX(s)𝜷(t) = XT(s0)𝜷(t)

or, equivalently,
[
𝝀TX(s) − XT(s0)

]
𝜷(t) = 𝟎;

so that the predictor is unbiased if

𝝀TX(s) = XT(s0). (3.4)

The kriging weights
{
𝜆1,… , 𝜆n

}
are obtained by minimizing the variance of the

prediction error subject to the unbiasedness constraint (3.4), that is solving the
minimization problem:

min
𝜆1 ,…,𝜆n

MSE(s0) subject to 𝝀TX(s) = XT(s0),

where MSE(s0) = ∫T Var {𝜒̂ s0 (t) − 𝜒s0 (t)}dt.
The variance Var {𝜒̂ s0 (t) − 𝜒s0 (t)} can be rewritten as follows:

Var {𝜒̂ s0 (t) − 𝜒s0 (t)} = Var [𝜒̂ s0 (t)] − 2ℂ(𝜒̂ s0 (t), 𝜒s0 (t)) + Var[𝜒s0 (t)]

= 𝝀T Var(𝝌 s(t))𝝀 − 2𝝀Tℂ(𝝌 s(t), 𝜒s0 (t)) + 𝜎
2
0 (t)

= 𝝀T𝚺𝝀 − 2𝝀Tc(t) + 𝜎20 (t). (3.5)

The function to be minimized becomes

𝜙 (𝝀, v) = ∫T
(
𝝀T𝚺𝝀

)
(t)dt − 2∫T𝝀

Tc(t)dt

+ ∫T𝜎
2
0 (t)dt − 2

[
𝝀TX(s) − XT(s0)

]
v, (3.6)

where v is the vector of Lagrange multipliers for the unbiasedness condition.
Deriving equation (3.6) partially with respect to 𝝀 and v and equating to zero,

we obtain the system of equations:{[∫T𝚺dt
]
𝝀 − X(s)v = ∫Tc(t)dt,

XT(s)𝝀 + 𝟎v = X(s0),

that needs to be solved in order to have an explicit analytical expression for the
predictor (3.3) and for the variance of the prediction error MSE(s0). In particular,
from the first line, we have

𝝀 =
[
∫T𝚺dt

]−1 [
∫Tc(t)dt + X(s)v

]
(3.7)

and then substituting in the second line, we get
{[

∫T𝚺dt
]−1 [

∫Tc(t)dt + X(s)v
]}T

X(s) = XT(s0)
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or alternatively,[
∫Tc

T(t)dt + vTXT(s)
] [

∫T𝚺dt
]−1

X(s) = XT(s0).

Solving for v, we obtain

vT =

{
XT(s0) − ∫Tc

T(t)dt
[
∫T𝚺dt

]−1
X(s)

}{
XT(s)

[
∫T𝚺dt

]−1
X(s)

}−1

and finally,

v = W−1 {X(s0) − Y
}
, (3.8)

whereW = XT(s)
[∫T𝚺dt

]−1X(s) and Y = XT(s)
[∫T𝚺dt

]−1∫Tc(t)dt.
Substituting (3.8) into (3.7) we obtain

𝝀 =
[
∫T𝚺dt

]−1 [
∫Tc(t)dt

]
+
[
∫T𝚺dt

]−1
X(s)W−1 {X(s0) − Y

}
(3.9)

so that the predictor (3.3) can be expressed as

𝜒̂ s0 (t) =

{[
∫Tc

T(t)dt
][
∫T𝚺dt

]−1
+
(
X(s0) − Y

)TW−1XT(s)
[
∫T𝚺dt

]−1}
𝝌 s(t).

Given (3.5), we have MSE(s0) = ∫T
(
𝝀T𝚺𝝀

)
(t)dt − 2𝝀T∫Tc(t)dt + ∫T𝜎20 (t)dt,

where it is possible to substitute the value of 𝝀 in order to obtain the variance of
the predictor 𝜎2s0 = Var

(
𝜒̂ s0 (t)

)
, that is

𝜎2s0 = ∫T𝜎
2
0 (t)dt −

[
∫Tc(t)dt

]T[
∫T𝚺dt

]−1 [
∫Tc(t)dt

]

+
(
X(s0) − Y

)TW−1 (X(s0) − Y
)
.

It is clear that in order to evaluate the kriging coefficients and the variance of the
predictor, we need to know 𝚺 and c. To this end, the so-called “trace-variogram”
has been introduced and a method-of-moments estimator proposed in Giraldo
et al. [8] (see Chapter 1).
Remark. The UK described above is valid for spatial functional processes val-

ued in L2. A more general theory valid for Hilbert spaces in general has also been
developed by Menafoglio et al. [3]. This general theory is presented in Chapter 2
and coincides exactly with what has been described in Section 3.2 [2] when the
Hilbert space considered is L2.

3.3 Residual Kriging for Functional Data (ResKFD)

Amore general situation of nonstationarity can be modeled by allowing the trend
component ms(t) in Eq. (3.1) to depend on scalar covariates different from the
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spatial coordinates. In this case, residual functional kriging – as proposed by Reyes
et al. [4] – can be used to predict a curve at an unknown location s0. As already
stated, estimating the drift coefficients by GLS and applying simple kriging to GLS
residuals is equivalent to UK prediction in classical geostatistics [1]; indeed, this
is also true for the functional case universal kriging for functional data (UKFD)
with the kriging coefficients𝝀 derived in Section 3.2. In practice, residual kriging is
easier to implement than UK, because it consists in applying kriging to detrended
curves. Note that in UKFD, in order to evaluate 𝝀 in (3.9) it is necessary to esti-
mate 𝚺 and c. For doing so, first the trend component has to be estimated and
subsequently a theoretical model for the trace-variogram of the detrended data
(regression residuals) has to be chosen; the parameters of the latter are then esti-
mated from the regression residuals and not from the original data. Thus, from the
computational point of view, this initial detrending step is common to UKFD and
residual kriging for functional data (ResKFD).
To proceed with ResKFD in a general way, Model (3.1) can be written as follows:

𝜒si (t) =
P∑
p=1
𝛽p(t)Cp,i + 𝜖si (t), i = 1,… ,n, (3.10)

where Cp, p = 1,… ,P are scalar covariates observed at sites si and not only
functions of the spatial coordinates as in (3.2). The trend is estimated using a
functional linear regression model and one of the three kriging alternatives for
stationary spatial functional processes (see Chapter 1) is applied on the detrended
data to obtain 𝜖s0 (t): (1) ordinary kriging for functional data (OKFD) [8], where
ês0 (t) =

∑n
i=1 𝜆iesi (t) and 𝜆i ∈ ℝ; (2) continuous time-varying kriging for functional

data (CTKFD) [9], where ês0 (t) =
∑n

i=1 𝜆i(t)esi (t) so that the kriging coefficients
𝜆i(t) are functional too, and (3) functional kriging total model (FKTM) [10, 11],
where ês0 (t) =

∑n
i=1 ∫T𝜆i(𝜏, t)esi (𝜏)d𝜏 and the kriging coefficients are defined on

T × T. In doing so, the trace-variogram is used for estimating the kriging weights
in ordinary kriging, while for the continuous time-varying kriging and the FKTM
a Linear Model of Coregionalization (LMC) [12] is needed.
The final prediction 𝜒̂ s0 (t) is obtained as the sum of the estimated trend at s0 plus

the krigged residual at s0:

𝜒̂ s0 (t) =
P∑
p=1
𝛽p(t)Cp,0 + 𝜖s0 (t), (3.11)

where Cp,0 is the pth scalar covariate at site s0.
When a number of potential covariates are available, interest may be not only

in prediction but in assessing the effect of those covariates. In this sense, ResKFD
is advantageous as a trend estimation, and spatial prediction of residuals is per-
formed separately, allowing interpretation of each of the two components. Further,
the trend does not necessarily have to be linear but more complex forms or regres-
sion is possible.
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3.4 Functional Kriging with External Drift (FKED)

The third modeling strategy considers a trend component ms(t) that is allowed
to depend on both scalar and functional covariates, as proposed by Ignaccolo
et al. [5]. At a fixed site si, i = 1,… ,n, and domain point tModel (3.1) can be seen
as a functional concurrent linear model:

𝜒si (t) = msi (t) + 𝜖si (t), (3.12)

where the trend or drift term can be expressed in terms of a set of scalar and func-
tional covariates:

msi (t) = 𝛼(t) +
∑
p
𝛽p(t)Cp,i +

∑
q
𝛾q(t)Xq,i(t), (3.13)

where 𝛼(t) is a functional intercept, Cp,i is the pth scalar covariate at site si, Xq,i is
the qth functional covariate at site si, and 𝛽p(t) and 𝛾q(t) are the covariate functional
coefficients. As in the previous models, 𝜖si (t) represents the zero-mean, stationary,
and isotropic residual spatial functional process {𝜖s(t), t ∈ T, s ∈ D} at site si.
Prediction is carried out following a three-step procedure [5]. At the first step,

we need to estimate the drift coefficients of the functional regression model (3.12)
with functional response and scalar and functional covariates. The functional coef-
ficients in equation (3.13) can be estimated by means of a generalized additive
model (GAM) representation using the R packagemgcv by re-expressing the func-
tional linear model as a standard additive model [13–15]. To rewrite Model (3.12)
as a GAM, we assume that the functional coefficients in (3.13) are expandable as

𝛼(t) =
k0∑
l=1
A0,l(t)c0,l, 𝛽p(t) =

kp∑
l=1
ap,l(t)cp,l, and 𝛾q(t) =

kq∑
l=1
aq,l(t)cq,l,

where A0,l(t), ap,l(t), and aq,l(t) are known basis functions, while c0,l, cp,l, and cq,l
are the related coefficients (to be estimated). Then by plugging-in these quantities,
we have

𝛽p(t)Cp,i =
kp∑
l=1
ap,l(t)Cp,icp,l =

kp∑
l=1
Ap,l,i(t)cp,l,

and

𝛾q(t)Xq,i(t) =
kq∑
l=1
aq,l(t)Xq,i(t)cq,l =

kq∑
l=1
Aq,l,i(t)cq,l

and finally, the functional linear model (3.12) can be rewritten as a standard addi-
tive model:

𝜒si (t) =
k0∑
l=1
A0,l(t)c0,l +

∑
p

kp∑
l=1
Ap,l,i(t)cp,l +

∑
q

kq∑
l=1
Aq,l,i(t)cq,l + 𝜖si (t),
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where Ap,l,i(t) = ap,l(t)Cp,i and Aq,l,i(t) = aq,l(t)Xq,i(t) are known because Cp,i and
Xq,i(t) are “observed”without noise. To fit thismodel, a penalized regression spline
approach can be used, where the smoothing parameters can be automatically cho-
sen using the Generalized Cross Validation (GCV) criterion or estimated using
Restricted Maximum Likelihood (REML) [16, 17], as implemented in the mgcv
package. To take the spatial dependence into account when estimating the drift
term, an iterative algorithm can be implemented as described in Section 3.5.
Once the drift coefficients have been estimated, the functional residuals can be

obtained as

esi (t) = 𝜒si (t) − m̂si (t) = 𝜒si (t) −

[
𝛼̂(t) +

∑
p
𝛽p(t)Cp,i +

∑
q
𝛾̂q(t)Xq,i(t)

]
.

At the second step, the resulting functional residuals (at the last iteration of the
algorithm described in Section 3.5) esi (t) can be used to predict the residual curve
at an unmonitored site s0 via one of three kriging options described in detail
in Chapter 1 and already introduced for ResKFD: ordinary kriging, continuous
time-varying kriging, or the FKTM.
Finally, at the third step the two terms are added – as in the classical regression

kriging – to obtain the prediction at the unmonitored site s0, that is

𝜒̂ s0 (t) = m̂s0 (t) + ês0 (t),

where m̂s0 (t) = 𝛼̂(t) +
∑

p𝛽p(t)Cp,0 +
∑

q𝛾̂q(t)Xq,0(t) depends on the covariate
values Cp,0 and Xq,0(⋅) at the site s0.

3.5 Accounting for Spatial Dependence
in Drift Estimation

To take into account the spatial correlation between functional observations when
estimating the drift term, Menafoglio et al. [3] and Franco-Villoria and Ignaccolo
[18] propose an iterative algorithm to adjust the estimated functional coefficients
for spatial dependence. We refer here the details of the latter proposal [18] for
being a more general strategy that considers a drift term that may depend on both
scalar and functional covariates, while the former [3] only includes the spatial
coordinates as covariates.
Model (3.1) can be written as a GAM and subsequently as a mixed effects model

[19, 20], where the drift term ms(t) may be more or less complex depending on
the kriging model as specified in Sections 3.2–3.4. In this framework, the parame-
ters can be estimated using REML [17] assuming normally distributed functional
errors 𝜖si (t) (from a longitudinal point of view). The spatial dependence can be
incorporated considered 𝜖si (t) as a functional random intercept whose covariance
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structure can be estimated in terms of the trace-variogram [21]. This can be imple-
mented using the following algorithm:

(1) Estimate the drift term msi (t) under the assumption of independent observa-
tions and obtain the functional residuals esi (t) = 𝜒si (t) − m̂si (t).

(2) Estimate the correlationmatrixK =
{
Corr(𝜖si (t), 𝜖sj (t))

}
i,j=1,…,n

of the residual
spatial functional process using the trace-variogram [8], introduced inChapter
1.

(3) Consider the term 𝜖s(t) as a functional random effect with precision matrix
K̂−1 [21] and re-estimate Model (3.1).

(4) Iterate Steps 1–3 until convergence, defined in terms of the Akaike Informa-
tion Criterion (AIC); convergence is reached when the AIC rate, defined for
the jth iteration as

AICrate =
||||
AICj − AICj−1

AICj−1
|||| ,

is smaller than a preset tolerance value (e.g. 0.1%).

3.5.1 Drift Selection

An iterative algorithm to select the most appropriate drift term could be used,
which chooses the “best” drift from a set of candidate drifts based on cross-
validation mean square error (MSE) as proposed by Menafoglio et al. [3]
(see Chapter 2). Clearly, the selection of the drift could be performed in classical
ways, by using a validation set approach or other variable selection indexes.
When a GAM model is fitted the AIC criterion could be also adopted for model
comparison.

3.6 Uncertainty Evaluation

Quantifying the uncertainty associated with a predicted curve 𝜒̂ s0 (t) is funda-
mental; in the case of functional data, ideally, one would want an uncertainty
measure that may vary over the domain of the predicted curve, while the classic
functional kriging variance provides a unique value. Given the lack of an analytic
expression of a domain-varying kriging variance for a curve, resampling methods
(bootstrapping) need to be used for prediction interval calculation as proposed
by Franco-Villoria and Ignaccolo [18]. Given that the functional observations are
not independent, resampling directly would not be appropriate; however, if one
decorrelates the data so that they become spatially independent, sampling with
replacement can be done to obtain a bootstrap sample that has to be transformed
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again to incorporate the spatial dependence. The idea is to approximate Fn, the
distribution of 𝜒̂ s0 (t) − 𝜒s0 (t), using bootstrapping, to then build a 1 − 𝛼 prediction
interval for 𝜒s0 (t) using the quantiles of the approximated distribution F̂∗

n. This
can be achieved following the algorithm described below.

(1) Estimate the drift termmsi (t) using the algorithm described in Section 3.5 and
remove it to obtain the functional residuals.

(2) Decompose the covariance matrix of the functional residuals (that can be
estimated using the trace-variogram in the OKFD case) using Cholesky
decomposition as Σ̂n×n = L̂n×nL̂

T
n×n and transform the functional residuals

multiplying by L̂−1 so that they become (spatially) uncorrelated.
(3) Sample with replacement from the vector of uncorrelated functional residuals

obtained in Step 2 to generate B bootstrap samples of size n + 1.
(4) Transform the bootstrap samples obtained in Step 3 to reincorporate the spatial

dependence. This can be achieved using the covariance matrix Λ̂ =
[
Σ̂ ĉTn
ĉn 𝜎̂

2

]
,

where ĉn = {Ĉ(si − s0)}ni=1, Ĉ is the estimated covariance function and 𝜎̂2 =
Ĉ(0) is the estimated scale. Using the Cholesky decomposition once again, the
matrix can be decomposed as Λ̂ = R̂R̂T . The (independent) bootstrap samples
are then multiplied by the matrix R̂.

(5) Add back the drift term estimated in Step 1 to the functional residuals obtained
in Step 4 to obtain the final bootstrap sample, that includes data not only at the
s1,… , sn locations but also at the unmonitored location s0.

B prediction curves 𝜒̂∗j
s0 are then obtained by fitting a kriging model (universal,

residual, functional kriging with external drift [FKED]) to each of the bootstrap
samples {𝜒∗j

s1 ,… , 𝜒
∗j
sn }

B
j=1 and the differences between the predicted and “observed”

curves {𝜒̂∗j
s0 − 𝜒

∗j
s0 }

B
j=1 are considered. The (1 − 𝛼)% prediction interval for𝜒s0 (t) can

be obtained as(
𝜒̂ s0 (t) − q∗1−𝛼∕2, 𝜒̂ s0 (t) − q∗

𝛼∕2

)
,

where q∗𝛼 is the 𝛼th percentile of F̂
∗
n, that can be obtained ordering the set of curves

{𝜒̂∗j
s0 − 𝜒

∗j
s0 }

B
j=1. These can be ordered using different approaches, such as modified

band depth (MBD) [22] or onL2 distance between curves [23]. The former provides
a measure of centrality by calculating the proportion of times that each curve is
(fully or partially) contained in all possible bands; a band is defined as the area
contained within two curves. With this scheme, the bigger the band depth value,
the more central the curve is. In the latter, the bootstrap-based predicted curves
are ordered based on how distant they are from the zero curve, according to the L2
distance; with this scheme, the smaller the distance, the more central the curve is.
Further details, a simulation study and discussion can be found in Franco-

Villoria and Ignaccolo [18].
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3.7 Implementation Details in R

Conversion from discrete data to functional data is carried out using thefda pack-
age [24]. The drift term can be estimated using the fRegress function from the
fda package; however, this does not allow to take into account the spatial depen-
dence. Implementation of the algorithm described in Section 3.5 requires estimat-
ing themodel as a generalized additivemixedmodel, for which the function gamm
from the mgcv package can be used. As seen in Chapter 1, the geofd R package
can be used to implement ordinary kriging; the function okfd includes the auto-
matic choice of a model (among spherical, exponential, Gaussian or Matérn) for
the trace-variogram, by minimizing the sum of square errors (SSE) between the
theoretical variogram and the empirical one. Instead CTKFD and FKTM can be
carried out taking advantage of the package gstat [25] for fitting a linear core-
gionalization model.
We illustrate how to do it in practice on a case study of PM10 concentration in

the region of Piemonte, Italy. In practice for any of the three cases, we can always
do residual kriging – i.e. fitted trend at s0 plus krigged residuals (using ordinary
kriging) as explained in Sections 3.3 and 3.4. Here, we concentrate on an example
for themore complex case, i.e. FKED. The remaining two (UKFD, ResKFD) can be
easily implemented simplifying the trend termms(t) so that it only includes scalar
or spatial coordinates as covariates. The code for implementing FKED is available
upon request to the authors, while code for the uncertainty evaluation is available
as supplementary material of [18].

3.7.1 Example: Air Pollution Data

The example concerns air pollution in the Piemonte region (Italy) and has been
previously considered in the air quality literature [5, 6, 26]. Daily PM10 concen-
trations (μg∕m3) measured by the monitoring network of Piemonte are available
from October 2005 to March 2006 on 24 sites (light gray triangles in Figure 3.1)
plus 10 additional sites (dark gray dots in Figure 3.1) used as validation stations.
Daily maximum mixing height (MMH, in m), daily total precipitation (PREC, in
mm), dailymeanwind speed (MWS, m/s), dailymean temperature (TEMP, in ∘K),
and daily emission rates of primary aerosols (EMISS, in g/s) are available as func-
tional covariates; these were obtained from the output of a nested system
of deterministic computer-based models implemented by the environmen-
tal agency ARPA Piemonte [27]. Longitude, latitude (UTMX and UTMY , in
km), and altitude (ALT, in m) of the measuring stations were used as scalar
covariates.
The response variable (PM10) included a number of missing values; the dataset

used here is an imputed version with no missing values. The original dataset can
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Figure 3.1 Locations of the 24 PM10 monitoring sites (light gray triangles) and 10
validation stations (dark gray dots) in the Piemonte region.

be downloaded from the R-INLA website (http://www.r-inla.org/examples/case-
studies/cameletti-et-al) as this dataset was analyzed in the paper by Cameletti
et al. [26].
Prior to modeling, PM10 data were log transformed (Figure 3.2) and both

log(PM10) and the functional covariates were smoothed using cubic B-splines
(146 basis functions, no penalty); these were chosen using functional cross-
validation [5]). All covariates were standardized.
Prediction at the validation stationswas done using the FKEDmodel introduced

in Section 3.4. All three alternatives (ordinary, time varying, total kriging model)
were considered but ordinary kriging (with an exponential variogram model and
no nugget) turned out to be the best option in terms of model performance. The
trace-variogram cloud and the corresponding fitted variogrammodel (exponential
with estimated sill 𝜎̂2 = 46.0156 and range 𝜙̂ = 25.1335) are shown in Figure 3.3.
The estimated functional coefficients (Model 3.13) are shown in Figure 3.4;

the black curves correspond to estimates obtained under the assumption of

http://www.r-inla.org/examples/case-studies/cameletti-et-al
http://www.r-inla.org/examples/case-studies/cameletti-et-al
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Figure 3.2 PM10 raw data (in log scale) observed at the 24 monitoring sites. Source:
Modified from Ignaccolo et al. [5].
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Figure 3.3 Trace-variogram
cloud and estimated
trace-variogram.

independence. The iterative algorithm described in Section 3.5 was implemented
to take into account the spatial dependence and the resulting estimates are shown
in light gray. Even though there are no great changes in the shape of the estimated
coefficients, the pointwise confidence bands become a bit wider once the spatial
dependence is taken into account.
Model performance was evaluated by comparing the (raw) observed and pre-

dicted data at the 10 validation sites using 4 different indexes: the normalizedmean
bias factor (NMBF), the root mean square error (RMSE), the weighted normalized
mean squared error of the normalized ratios (WNNR), and the correlation coeffi-
cient (𝜌); these are summarized in Table 3.1.
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Figure 3.4 Estimated functional coefficients assuming independent observations (black)
and adjusted for spatial dependence (gray).

Table 3.1 Performance indexes over the 10 validation sites.

Site NMBF RMSE WNNR 𝝆

25 BI – Largo Lamarmora −0.020 0.196 0.003 0.943
26 Borgo San Dalmazzo −0.048 0.460 0.018 0.762
27 Bra −0.059 0.313 0.006 0.922
28 Chivasso – Edipower 0.004 0.250 0.004 0.885
29 Ivrea −0.058 0.331 0.008 0.914
30 Saliceto −0.130 0.719 0.055 0.612
31 Serravalle Scrivia 0.038 0.463 0.012 0.793
32 Susa 0.005 0.481 0.016 0.785
33 TO–Piazza Rivoli −0.005 0.199 0.002 0.940
34 TO–Via Gaidano −0.015 0.267 0.004 0.903
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For a fixed location si, let zj and ẑj be the observed and predicted time series
(in our case yij and Ŷ si (tj)), respectively, with j = 1,… ,M and let z and ẑ be the
corresponding mean values. The NMBF is defined on ℝ by

NMBF =
⎧⎪⎨⎪⎩

∑
j ẑj∑
j zj

− 1 if ẑ ≥ z

1 −
∑

j zj∑
j ẑj

if ẑ < z

and has the advantage of both avoiding inflation due to low values of observations
and overcoming the asymmetry problem between overestimation and underesti-
mation, as discussed in [28]. The WNNR is defined by

WNNR =

∑
js2j (1 − kj)2∑

jsjkj
,
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Figure 3.5 Raw data (dots), smoothed data (dashed line), predicted drift (light gray) and
predicted curve (dark gray) for two validations stations.
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where sj = zj∕z is the weight and kj = exp
(
−| ln(ẑj∕zj)|

)
is the Normalized ratio.

WNNR is positive and has the advantage of taking properly into account the peaks
of observed data (see the discussion in [29]).
Results for two validation stations are shown in Figure 3.5, where the original

data are represented as dots, the smoothed data as a dashed line, the predicted
drift m̂si (t) as a light gray, and the predicted curve (i.e. the predicted drift plus the
krigged residual) as a dark gray. These two stations correspond to the best and the
worst in terms of predictive performance (especially looking at 𝜌).
A total of 95% prediction bands can be obtained following the algorithm

described in Section 3.6. We generated 500 bootstrap samples and a FKED
model (including the same covariates as the model for the original data set)
was fitted to each of them to obtain 500 prediction curves at each validation
station. Prediction bands based on both the MBD and on L2 distance are shown
in Figure 3.6. It can be seen that overall, the two prediction bands agree well,
although in some cases, the depth based band appears to be slightly wider than
the distance based one. The domain coverage defined as the proportion over
the domain T of the observed curve within the prediction band, varies from
97.3% to 100%.
This example illustrates the potential of using kriging for functional data under

nonstationarity conditions. On one hand, it is possible to have a flexible model for
the drift, identifying the effect of available covariates as shown in Figure 3.4. On
the other hand, we can obtain a predicted curve at an unmonitored location with
a related uncertainty band.

3.8 Conclusions

In this chapter, we have used the argument t ∈ T to define the domain of the
functional observations, notation that might lead the reader to think about time,
in particular, in the example considered this argument is precisely temporal.
However, let us highlight that the domain of the function does not necessarily
have to be temporal. The three kriging alternatives introduced here include a
trend or drift component that can be more or less complex depending on the
covariate information available. As in classical geostatistics, including a complex
trend in the model might fully account for the spatial structure in the data leading
to uncorrelated residuals. Depending on the aim of the study, one can choose
to specify a rich model for the drift part or a simpler one that leaves spatial
structure in the residuals. Finally, the methods discussed in this chapter are
not the only way of approaching this kind of data. Alternative approaches for
dealing with spatially correlated functional data are illustrated in the following
chapters.
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4.1 Introduction

Suppose that we dispose of a spatial domain  where two variables are sampled
as curves (Figure 4.1).
On some sampling stations, both functional variables are observed. On other

locations, only one or the other is available. The problem that must be addressed
can be summarized by the following questions:

● Can we predict one functional variable, or the other, or both functions at
unknown location on domain using the sample on hand?

● How can we use the cross-information given by few stations on both curves for
the prediction on a station where one variable is missing?

To illustrate our purpose, the following examplewill be developed as a guideline.
A collection of N = 90 sampling locations in France (essentially airport places) is
available where weather stations have recorded temperature T (∘C) and precipita-
tion levels P (mm) for 20 years since 1991. We are interested in (i) reconstituting
the annual profiles of both temperature and precipitation from 12 monthly mean
of these climate variables, (ii) predicting temperature and precipitation curves at
an unknown location in France (Figure 4.2).
The proposed approach to answer the previous questions relies on the decom-

position of the observed curves in a particular basis. Section 4.2 focuses on
some nice properties of variance operators and provides a basis decomposition
of the observed curves using functional principal component analysis (FPCA).
After recalling some basics in functional kriging, Sections 4.3 and 4.4 give some
operational solutions to estimate the spatial covariance models required when

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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Figure 4.1 On a sampled domain , two
functional variables are observed
sometimes pairwise and sometimes alone.
How both of them can be predicted on the
cross-marked position?

kriging curves. An example is proposed where predictions of precipitation curves
are made both using a classical approach and a principal component analysis
(PCA)-based method. Following the ideas previously presented, Sections 4.5
and 4.6 are devoted to an extension of kriging in the multivariate case and
give operational solutions to perform kriging of several curves simultaneously.
A discussion is engaged in Section 4.7 about the capabilities and limits of kriging
when dealing with multivariate functional data.

4.2 Principal Component Analysis for Curves

This section briefly reminds basics of FPCA presented as a projection method for
dimension reduction. More details of this famous method can be found in [1].

4.2.1 Karhunen–Loève Decomposition

Let Z = (Zt, t ∈ 𝜏) be a continuous-time real stochastic process where 𝜏 is an inter-
val inℝ. Under some regularity properties of its sample paths,Z can be viewed as a
random function belonging to a separable Hilbert space endowed with an inner
product ⟨⋅, ⋅⟩ and the associated norm || ⋅ || . Denote by 𝜇 = 𝔼(Z) the expecta-
tion of Z which is a function and define Y = Z − 𝜇, the centered version of Z. The
covariance operator Γ applied to function f ∈  is defined as

Γ(f ) = 𝔼 [Y ⊗ Y ] (f ) = 𝔼
[⟨Y , f ⟩Y

]
= ∫

𝜏

𝛾(s, t)f (s)ds,

where 𝛾 is the associated symmetrical bivariate covariance function of Z. This lin-
ear operator is nuclear and henceHilbert–Schmidt (HS). Thismeans that Γ admits
a decomposition of the form:

Γ(f ) =
∞∑
j=1
𝜆j⟨f , 𝜉j⟩𝜉j, (4.1)

where (𝜉j) forms an orthonormal basis of eigenfunctions in and (𝜆j) is the associ-
ated ranked sequence of positive eigenvalues such that 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 0 and such
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that
∑

j≥1𝜆j = 𝔼||Y ||2 <∞. The operator Γ also belongs to a Hilbert space, and its
HS-norm is given with ||Γ||2HS =

∑
j≥1𝜆2j . Equation (4.1) is the diagonal form of Γ,

where the eigenelements (𝜆j, 𝜉j) verify

Γ(𝜉j) = 𝜆j𝜉j.

The associated spectral decomposition of the covariance function is given with

𝛾(s, t) =
∑
j≥1
𝜆j𝜉j(s)𝜉j(t), (s, t) ∈ 𝜏 × 𝜏.

Thanks to this decomposition, an approximation Z̃ of Z is constructed in a finite
Q-dimensional space generated by (𝜉q)1≤q≤Q associated with the first Q eigenval-
ues ranked in descending order and Z̃ is expressed as a linear combination of the
eigenfunctions:

Z̃ = 𝜇 +
Q∑
q=1

cq𝜉q,

with the centered random coordinates cq = ⟨Z − 𝜇, 𝜉q⟩ called principal
components and which check Var(cq) = 𝜆q. This expansion is known as the
Karhunen–Loève decomposition of Z truncated at orderQ or FPCA. For sufficient
regularity conditions on Z, it is expected that the sequence (𝜆j) rapidly decreases
to 0 which means that the value of Q can be selected small. These decomposition
properties of covariance operators will be widely used through this work.

4.2.2 Dealing with a Sample

Suppose that we dispose of a i.i.d. sample
{
Z1,… ,ZN

}
of Z, and that these func-

tions are expressed as a linear combination of known basis functions {𝜙1,… , 𝜙L}
such that

Zn(t) =
L∑
l=1
𝛼nl𝜙L(t) = 𝜶′

n𝚽(t),

where 𝜶n = (𝛼n1,… , 𝛼nL)′ is the vector of coefficients of the decomposition into
the 𝜙-basis, and 𝚽(t) = (𝜙1(t),… , 𝜙L(t))′, the vector of basis functions evaluated
in t ∈ 𝜏. Here, the space of function is of finite dimension L, and the following
equality holds:

||Zn||2 = ||𝜶n||2W = 𝜶′
nW𝜶n,

where

W = ∫
𝜏

𝚽(t)𝚽′(t)dt
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is the symmetrical Grammatrix of the basis functions with entries being the inner
product of the basis functions ⟨𝜙k, 𝜙l⟩ . Once the basis has been chosen, it is easy
to resort to numerical integration to compute this matrix. An estimator 𝜇 of the
expectation 𝜇 is chosen as

𝜇(t) = 1
N

N∑
n=1

Zn(t) = 𝜶
′𝚽(t),

where 𝜶 is the empirical mean vector of the coefficients. A classical empirical esti-
mator of the covariance function 𝛾 is then provided with

𝛾̂(s, t) = 1
N

N∑
n=1

𝚽′(s)(𝜶n − 𝜶)(𝜶n − 𝜶)′𝚽(t) = 𝚽′(s)𝚪̂𝚽(t).

The L × Lmatrix

𝚪̂ = 1
N
C′C (4.2)

is the empirical matrix of variance between coefficients of the decomposi-
tion, where C if the N × L matrix of centered coefficients. Estimation of the
eigenfunctions and associated eigenvalues is computed by solving

∫
𝜏

𝛾̂(s, t)𝜉l(s)ds = 𝜆l𝜉l(t),

where 𝜆1 ≥ · · · ≥ 𝜆L ≥ 0 are positive eigenvalues and 𝜉l are orthonormal eigen-
functions. This equation can be written in the 𝜙-basis, and solutions are obtained
by performing the eigen-decomposition of matrix 𝚪̂W such that

𝚪̂Wbl = 𝜆lbl, l = 1,… ,L,

where the bl are eigenvectors of the decomposition. The eigenfunctions can now
be reconstituted with

𝜉l(t) = 𝚽′(t)al,

where al = W− 1
2 bl areW-orthonormal eigenvectors. Notice thatW is a symmetric

positive definite matrix so it has a unique Cholesky decomposition:

W = W
1
2
′W

1
2 ,

whereW
1
2 is an invertible upper triangular matrix.

Finally, the coefficients of the curve Zn may also be approximated in a
Q-dimensional space (Q < L) as a linear combination of the eigenvectors with

𝜶̃n = 𝜶 +AQcn,

where AQ = [a1,… , aQ] is a L × Qmatrix of normalized eigenvectors and

cn = A′
QW(𝜶n − 𝜶)
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is the vector of the Q first principal coordinates of Zn. If Q = L, it is easy to check
that the norm of the centered variable Yn = Zn − 𝜇 is equal to

||Yn|| = ||ALcn||W = ||cn||L,
where || ⋅ ||L is the usual norm inℝL. If the sequence of eigenfunctions (𝜆j) rapidly
decreases to zero, it is expected that a few number Q < L of principal components
is sufficient to get a good approximation of Yn. FPCA is then a nice way to reduce
the dimension of the system.

4.3 Functional Kriging in a Nutshell

Suppose now that there is spatial dependency between functional observations{
Z1,… ,Zn

}
. From a more formal point of view, Z = (Zx, x ∈ ) can be seen as a

-valued random spatial process where weak stationarity conditions are added
over the domain. First, we will consider that the expectation of Z is the same on
any position x ∈ :

𝔼(Zx) = 𝜇, 𝜇 ∈ .
The spatial covariance operator of Z defined as:

Γx,y = 𝔼[(Zx − 𝜇)⊗ (Zy − 𝜇)],

is also supposed to satisfy

Γx+h,y+h = Γx,y, x, y, h ∈ .
The spatial covariance of Z between position x and position y is invariant for any
translation of the pair (Zx,Zy) into the spatial domain. Notice that a spatial covari-
ance operator is also HS but is nonsymmetrical i.e. Γx,y ≠ Γy,x. However, one may
associate its adjoint Γ★

x,y defined by

⟨Γ★
x,y(f ), g⟩ = ⟨f ,Γx,y(g)⟩ , f , g ∈ ,

that always verifies that Γ★
x,y = Γy,x.

Consider now that the sample
{
Z1,… ,ZN

}
comes from observations of Z on N

spatial positions
{
x1,… , xN

}
. The problem of kriging functional data consists in

estimating the curve Z0 in an unknown position x0 ∈  using a linear model of
the form

Ẑ0 =
N∑
n=1

Bn(Zn), (4.3)

where Bn ∶  →  are HS linear operators such that

Bn(f )(t) = ∫
𝜏

𝛽n(s, t)f (s)ds, f ∈ ,
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with 𝛽 being a bivariate function that forms the kriging weights. A sufficient con-
dition for Ẑ0 to be unbiased is given with∑

n
Bn = K.

The linear operator K is such that

K(f )(t) = ∫
𝜏

𝜅(s, t)f (s)ds = f (t), f ∈ , t ∈ 𝜏,

where the function 𝜅 is the bivariate kernel function of the identity operator in
called reproducing kernel. The operatorK plays the role of an identity operator but
with the additional property that ||K||2HS <∞which is not the case for the classical
identity in infinite dimension. This technical point matters because the existence
of an unbiased functional kriging estimator relies on that property. In practice and
under some mild regularity conditions, it is easy to find a useful function space
where K exists, this will be the topics of Section 4.3.1 (see [2, 3] for more details on
reproducing kernels).
Our objective is now to find the operators Bn that minimize

𝔼||Ẑ0 − Z0||2
under the constraint

∑
nBn = K.

Using Lagrange multiplier method and properties of HS spaces, it has been
shown in [4] that the best linear unbiased predictor of Z0 is solution of the
following linear system:{∑

mBmΓnm + Λ = Γn0, n = 1,… ,N∑
nBn = K

(4.4)

with Γnm being the covariance operator between Zn and Zm, Λ a Lagrange mul-
tiplier. Section 4.3.1 gives technical solutions to find kriging weights Bn and to
compute the functional kriging variance.

4.3.1 Solution Based on Basis Functions

As previously presented, each Zn is expanded in a 𝜙-basis of L known functions
such that

Zn(t) = 𝜶′
n𝚽(t).

The functional space  being of finite dimension L, it, therefore, admits a repro-
ducing kernel of the form:

𝜅(s, t) = 𝚽′(s)W−1𝚽(t), (s, t) ∈ 𝜏 × 𝜏.

The matrixW−1 is the inverse of the Grammatrix and constitutes the matrix form
of the operatorK. This suggests that the basis is nondegenerated and that theGram
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matrixWmay be invertedwhich is not systematic from a numerical point-of-view.
If we turn back to the kriging Eq. (4.3), it may be easily expressed in the space of
the coefficients with

𝜶̂0 =
N∑
n=1

B′
nW𝜶n, (4.5)

where the L × L matrix Bn is the discrete version of the operator Bn containing
kriging coefficients. These coefficients are estimated when minimizing

𝔼 ‖‖𝜶0 − 𝜶0‖‖2W
under the constraint

∑
nBn = W−1.

Following the matrix formalism proposed by Myers [5] in the multivariate case,
Nerini et al. [4] andGiraldo [6] have shown that kriging curves using a basis expan-
sion boils down to solve the following system of L(N + 1) equations:

⎡⎢⎢⎢⎢⎢⎢⎣

W𝚪11W · · · W𝚪1NW IL
⋱ ⋮

W𝚪N1W · · · W𝚪NNW IL
IL · · · IL 𝟎

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

B1
⋮

BN
𝚲

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

W𝚪10
⋮

W𝚪N0
W−1

⎤⎥⎥⎥⎥⎥⎥⎦

, (4.6)

where the matrices

𝚪nm = 𝔼
[(
𝜶n − 𝝁

) (
𝜶m − 𝝁

)′]

are the L × Lmatrices of spatial covariances between coefficients with

𝝁 = 𝔼(𝜶n), ∀xn ∈ ,
the mean vector, IL the identity matrix in ℝL and 𝚲 a L × L matrix of Lagrange
multipliers. The associated functional kriging variance (see Appendix 4.A.1 for
computational details) is given with

𝜎2FKG = Tr
(
W𝚪00

)
−
∑
n
Tr
(
BnW𝚪n0W

)
− Tr (𝚲) .

Once the kriging coefficients B1,… ,BN have been found, the function Z0 is esti-
mated with

Ẑ0(t) = 𝜶̂
′
0𝚽(t) =

N∑
n=1

𝜶′
nWBn𝚽(t).

Using a basis decomposition, the problem of kriging curves is solved in finite
dimension, in the isotopic case (all coefficients available in all stations). If the
chosen basis in orthonormal is (W = IL), it reduces to a straightforward cokriging
using the coefficients of the decomposition as raw data.
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4.3.2 Estimation of Spatial Covariances

The challenge is now to find admissible estimators of 𝚪nm in (4.6). And the prob-
lem is thatwedispose of a unique realization of {Z1,… ,Zn}: the classical empirical
estimator (see Eq. (4.2)) of covariance cannot be used in that case. Some additional
properties over the spatial functional process must be considered. We will assume
that the sample of functions, reduced to their coefficients

{
𝜶1,… ,𝜶N

}
, comes

from a L-multivariate random field 𝜶(x), x ∈ . In addition to second-order sta-
tionarity conditions:

𝔼 [𝜶(x)] = 𝝁, ∀x ∈ ,
𝚪x,y = 𝚪x+h,y+h, x, y, h ∈ ,

where the spatial covariance

𝚪(h) = 𝔼
[
(𝜶(x + h) − 𝝁)(𝜶(x + h) − 𝝁)′

]

only depends on lag h, another hypothesis is required. The spatial variation of Z
(of its coefficients) can be handled by defining the spatial increment (Zx+h − Zx)
as the difference between values of Z at locations x ∈  and x + h ∈  separated
by a lag vector h on the increments. We will suppose that the average value of the
increments is the same over the whole domain:

𝔼
[
𝜶(x) − 𝜶(x + h)

]
= 𝟎, ∀x, x + h ∈ ,

and that the variance of the increments possesses a finite value 2G(h) that depends
on the length |h| and the orientation of lag vector h, but not on the position of h in
. Under these hypotheses, the random field is said to be intrinsically stationary
because it can be expressed through a multivariate variogram L × L matrix G(h)
related to the variance of the increments with

G(h) = 1
2
𝔼
[
(𝜶(x + h) − 𝜶(x)) (𝜶(x + h) − 𝜶(x))′

]
,

that only depends on the separation vector h. Moreover, if the function G(h)
depends upon the separation vector only through its length |h|, then the process is
isotropic. Covariance and variogram matrices are thus connected by the relation:

G(h) = 𝚪(0) − 1
2
[
𝚪(h) + 𝚪(−h)

]
.

As usual in geostatistics, covariance matrices 𝚪nm between coefficients of the
decomposition will be estimated through the fitting of variogram models to
experimental ones. Fitting is realized using a linear model of coregionalization
(LMC) that states that the matrix 𝚪(h) of cross-covariances can be modeled using
a combination of a small number S of correlation functions 𝜌s(h) such that

𝚪̂(h) =
S∑
s=1
P̂s𝜌s(h),



�

� �

�

82 4 Extending Functional Kriging When Data Are Multivariate Curves

where P̂s are estimated positive semidefinite coregionalization matrices. In prac-
tice, the estimation of thematricesPs is carried out throughweighted least squares
fitting of variogram models to experimental data (see [7] chapter 26, Goulard and
Voltz [8]). Along that study, three nested covariance structures have been used. At
short scale (50 km) and large scale (700 km), correlation structures are estimated
through the fit of a Gaussian model:

g1(|h|) = 1 − exp
(
−|h|2
r

)
, r > 0,

over the experimental variogram and cross-variograms between coefficients. At
medium scale (320 km), a spherical model:

g2(|h|) =
{

3|h|
2r

− 1
2

( |h|
r

)3
for |h| ≤ r

1 for |h| ≥ r
has been fitted. Variogram models and number of covariance structure have been
chosen as discussed in [8]. Spatial ranges have been fixed by the practitioner so as
to provide the most graphically satisfactory fit.
Once the correlation function has been estimated, it can be used to solve the

kriging system (4.6) by replacing the covariance matrices with

𝚪̂nm =
S∑
s=1

P̂s𝜌s(xn − xm).

4.4 An Example with the Precipitation Observations

Functional data do not arrive as entire curves. In the weather data example, con-
sidering the annual precipitation curves only, coefficients of the decomposition
must be estimated using 12 monthly average values of precipitation. We consider
here a B-spline expansion with L = 9 coefficients that have been estimated
by regression (see [1] for technical details). The number of basis function has
been arbitrarily fixed for the example, but other choices can be relevant as well,
still dependent on the number of available raw data. For the sake of simplicity,
we will note

zPn(t) =
L∑
l=1
𝛼Pnl𝜙l(t) = 𝚽′(t)𝜶Pn, n = 1,… ,N,

the sample of estimated precipitation curves, where the𝜶Pn are now estimated coef-
ficients instead of random vectors.
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4.4.1 Fitting Variogram Model

The L × L symmetrical variogram matrix:

Ĝ(h) =
⎡⎢⎢⎢⎣

ĝ11(h) … ĝ1L(h)
⋮ ⋱ ⋮

ĝL1(h) … ĝLL(h)

⎤⎥⎥⎥⎦
is composed of simple variograms (diagonal elements) and cross-variograms
(off-diagonal elements) that have been estimated on experimental variograms
using the nested model with three structures (Figure 4.3). Experimental vari-
ograms are computed using B-spline coefficients as spatial data (see [7] p. 47 for
computational details).

4.4.2 Making Prediction

Predictions are made by leave-one-out cross-validation in each of the N towns by
considering the following kriging model:

ẑP(−n) =
∑
m≠n

Bm(zPm), n = 1,… ,N.

For curve n, experimental variograms are constructed using data of the N − 1
remaining locations. For any curve, same nested models of coregionalization are
fitted on experimental variograms. The prediction error is estimated with the
integrated squared error (ISE):

ISEn = ||̂zP(−n) − zPn||2 = ||𝜶̂(−n) − 𝜶n||2W,
and the whole error is estimated with the mean ISE:

MISE = 1
N
∑
n
ISEn.

Figure 4.4 displays some predicted curves and spatial location of the ISEs. It is
interesting to notice that worst predictions are mainly located in southwestern
area which is known to get some particular precipitation patterns. Bad predictions
also appear in mountainous areas (center and east). In that case, the stationarity
assumption does not hold anymore. More generally, bad predictions could appear
in case not only where (i) data are far from stationarity conditions but also (ii)
when a great number of coefficients is required for a good fitting of observations.
We will turn back to this issues in Section 4.7.
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Figure 4.3 An example of computation of the spatial covariance. Experimental variograms (points in gray boxes) and cross-variograms
(points in white boxes) are computed using the nine coefficients of the B-spline decomposition (precipitation curves). A theoretical nested
variogram model with three structures (50, 320, and 700 km) is fitted by weighted least squares (curves in each panel, horizontal scales in
km, vertical dashed lines show the three nested scales of the LMC). Surfaces on the top right display spatial covariance operators Γ(h)
deduced from variogram model for various distances (from bottom zero surface to top covariance map, |h| = ∞, 1000,750, 300, 0 km).
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Figure 4.4 Predictions of precipitation curves (dashed line: mean precipitation, thin line:
observed curve, thick line: predicted curve), spatial map, and boxplot of the integrated
squared errors (ISEs). From top-left to bottom-right panel, curves are, respectively, sorted
by ISE quantiles of order 0.05, 0.25, 0.5, 0.75, and 0.95. The ISE median town is the
upper-right panel. Bad predictions (black points corresponding to ISE quantiles of order
≥ 0.95) are located in areas where the stationarity hypothesis does not hold. Notice that
curve shape is generally well predicted, whereas mean precipitation level is not.

4.5 Functional Principal Component Kriging

One of the main problems with kriging curves arises from the fitting of an
unreasonable number of variogram models to the experimental data. An efficient
solution to decrease this number of fitted variograms is to take advantage of
the properties of the spectral decomposition of covariance operators. Consider
the sample of curves

{
Z1,… ,ZN

}
expressed in a finite 𝜙-basis of dimension L.
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Suppose that each function is well reconstituted as a linear combination of Q < L
eigenfunctions such that

Z̃n(t) = 𝚽′(t)
[
𝜶 +AQcn

]
,

where AQ is the matrix of eigenfunction coefficients of size L × Q, 𝜶 is the empir-
ical mean of the curve sample, and cn the Q-vector of the principal coordinates
associated with an observation Zn. Reminding that A′

QWAQ = IQ by properties
of orthogonality of eigenvectors and that

∑
nBn = W−1, it is easy to show that the

kriging estimator becomes

ĉ0 =
N∑
n=1

A′
QWB′

nWAQcn, (4.7)

where ĉ0 is the principal coordinates of the observation Z0 predicted in position
x0 ∈ . If we set

Un = A′
QWB′

nWAQ,

the kriging solutions are given when minimizing

𝔼
‖‖‖‖‖‖
c0 −

N∑
n=1

Uncn
‖‖‖‖‖‖

2

L

under the unbiased condition constraint
∑

nUn = IQ.
Principal component kriging boils down to solve the following system of

Q(N + 1) equations:

⎡⎢⎢⎢⎢⎢⎣

Σ11 · · · Σ1N IQ
⋱ ⋮

ΣN1 · · · ΣNN IQ
IQ · · · IQ 𝟎

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

U1

⋮

UN

𝚲

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

Σ10
⋮

ΣN0
IQ

⎤⎥⎥⎥⎥⎥⎦

, (4.8)

where the matrices

Σnm = 𝔼
[
cnc′m

]

are the Q × Q matrices of spatial covariances between principal coordinates, IQ
the identity matrix inℝQ, and 𝚲 a Q × Qmatrix of Lagrange multipliers. Once the
kriging coefficientsUn have been estimated by LMC, the predicted function Ẑ0 can
be computed with

Ẑ0(t) = 𝚽′(t)

[
𝜶 +

∑
n
Uncn

]
.

Note that the variance of this kriging estimator is given with

𝜎2Q = Tr(Σ00) −
∑
n
Tr(Σ0nUn) − Tr(𝚲).
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Consider the casewhereQ = L. If one remembers thatALA′
LW = IL, then it is easy

to verify that

𝜎2L = 𝜎2FKG,

since Tr(Σmn) = Tr(A′
LW𝚪mnWAL). We are in the simplest case where the solution

is given by a standard cokriging using all the principal components as variables.
Results are the sameworkingwithB-spline coefficients except thatwe gain orthog-
onality when working with the PCs. Anyway, it is often interesting to consider the
case whereQ < L i.e. where the sample of curves is approximated in a subspace of
Q eigenfunctions.
Figure 4.5 displays the LMC fitting over the first four PCs of the precipitation

curves accounting for more than 95% of the entire variability. It is remarkable to
note the decrease in magnitude of each variogram (gray boxes) as the number of
PCs increases. By properties of the PCA decomposition, the Q principal compo-
nents are orthogonal at lag |h| = 0, i.e. thematrix of empirical variance–covariance
of the PCs:

Σ̂00 =
1
N
∑
n
cnc′n,

is diagonal, i.e. the covariance between PCs is zero. The best required configura-
tion for principal component kriging is that this orthogonality property extends
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Figure 4.5 LMC fitting of the variogram model on the four PCs of precipitation FPCA.
Same models of spatial covariances were used as before. Notice that the
cross-variograms (curves in white panels) are very close to zero as if the data were
spatially independent at any scale.
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Figure 4.6 Boxplot of the errors when decreasing the number of principal components
required for kriging. Taking Q ≥ 4 principal components gives similar results. Vertical
dashed line is the median log-error for nine PCs.

for all other values of lag vector h, i.e. that the spatial covariance matrices 𝜮̂(h)
are also diagonal. This property is not guaranteed and is satisfied if the variables
are intrinsically correlated [7, 9]. In practice, a look at the cross-variogramsmakes
it possible to evaluate this property as shown on off-diagonal panels in Figure 4.5.
In our case, kriging the PCs independently would give roughly the same results
as cross-variograms are very close to zero. And only Q variogram fitting would be
needed instead of Q(Q+1)

2
. This raises an interesting question about the gain in pre-

diction accuracy when increasing the number Q of PCs for principal component
kriging.
Figure 4.6 shows the influence of the number of principal components on the

prediction error. For the precipitation data, errors start increasing when Q ≤ 4
which corresponds to the number of eigenvalueswith a significant value. But there
is no general rule for choosing this number Q which is case-dependent.

4.6 Multivariate Kriging with Functional Data

Now, the problem of kriging can be stated in a multivariate setting. Let the vari-
ableZx = ([ZTx ,ZPx ]′, x ∈ ) be a bivariate-valued spatial random process over a
domain. Denote by 𝔼(ZTx ) = 𝜇T the expectation of ZTx and 𝔼(ZPx ) = 𝜇P the expec-
tation of ZPx . Under weak stationarity conditions, these expectations are invariant
on the whole spatial domain:

𝔼(Zx) = 𝝁 =
[
𝜇T , 𝜇P

]′
, ∀x ∈ .
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WithYx = Zx − 𝝁, the 2 × 2matrix of spatial covariance operators betweenZm and
Zn is defined as

𝚪mn = 𝔼
[
Ym ⊗ Yn

]
= 𝔼

[
YT
m ⊗ YT

n YT
m ⊗ YP

n

YP
m ⊗ YT

n YP
m ⊗ YP

n

]
=

[
ΓmnTT ΓmnTP
ΓmnPT ΓmnPP

]

and only depends on the distance between sampling station. An example of such
operator is presented in Figure 4.7.
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Figure 4.7 Empirical estimate of a 2 × 2 matrix of correlation operators (normalized
version of 𝚪00) computed on the entire set of the coefficients of a B-spline expansion of
temperature and precipitation curves. In that case, the operator is symmetrical. At each
point on these mappings, it is possible to read the correlation or the cross-correlation
between both variables for different couples (t, s) ∈ 𝜏 × 𝜏 . Gray scale from black
(minimum negative correlation) to white (maximum positive correlation).
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Choose a given spatial position x0, where no data is available and set

Z0 =
[
ZT0 ,Z

P
0
]′
.

Our aim is to estimate Z0 given the knowledge of a sample
{
Z1,… ,ZN

}
of Zx. The

multivariate functional kriging linear estimator can be written in the following
form:

Ẑ0 =
N∑
n=1

Bn(Zn), (4.9)

where Bn is a 2 × 2 matrix of HS linear operators such that

Bn =

[
BnTT BnTP
BnPT BnPP

]
.

In nonmatrix form, Eq. (4.9) would be

⎧⎪⎪⎨⎪⎪⎩

ẐT0 =
N∑
n=1

BnTT(Z
T
n ) +

N∑
n=1

BnTP(Z
P
n),

ẐP0 =
N∑
n=1

BnPT(Z
T
n ) +

N∑
n=1

BnPP(Z
P
n).

Kriging each variable separately would correspond to set the operator BnPT and
BnTP to zero. Looking for an unbiased estimator Ẑ0 of Z0 leads to the condition:

∑
n
Bn =

[
K 0
0 K

]
= K,

whereK is a diagonal blockmatrix of reproducing kernels. The diagonal elements
are the same as in the univariate case because ZT and ZP are supposed to belong to
the sameHilbert space. Now, looking for a BLUP estimator of Ẑ0 leads tominimize

𝔼‖‖‖Ẑ0 − Z0
‖‖‖
2
= 𝔼 ‖‖‖ẐT0 − ZT0

‖‖‖
2

 + 𝔼 ‖‖‖ẐP0 − ZP0
‖‖‖
2


under the constraint

∑
n
Bn = K.

FollowingMyers [5] andNerini et al. [4], it is not difficult to show that the solution
is the same as in the univariate case:{∑N

m=1 𝚪nmBm + 𝚲 = 𝚪n0, n = 1,… ,N∑N
m=1 Bm = K

except that the terms above arematrix of operators. A solution of that linear system
can be found using FPCA in a multivariate setting.
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4.6.1 Multivariate FPCA

If we go back towhat we previously did in the univariate case, the observed sample{
Z1,… ,ZN

}
is composed with vectors Zn = (ZTn ,ZPn)′ whose entries are functions,

linear combination of L known basis functions such that

ZTn (t) = 𝚽′(t)𝜶Tn , ZPn(t) = 𝚽′(t)𝜶Pn.

For the sake of simplicity, we suppose that T and P curves belong to the same
Hilbert space which is a fairly natural choice and that they have the same number
of coefficients. If variability in curve shape may change drastically from a variable
to another, it is always possible to increase the number L of basis functions to catch
shape variations of interest.
Consider now the 2L-vector

𝜶n =
(
𝛼Tn1,… , 𝛼TnL; 𝛼

P
n1,… , 𝛼PnL

)′ =
(
𝜶Tn

′
,𝜶Pn

′
)′

that merges both coefficients of temperature and precipitation annual curves and
the associated mean 2L-vector of coefficients

𝜶 = (𝜶′
T ,𝜶

′
P)′.

Let C be the N × 2Lmatrix of centered coefficients and construct

𝚪̂ = 1
N
C′C

the 2L × 2Lmatrix of empirical covariances between coefficients. Themultivariate
functional principal component analysis (MFPCA) consists in finding the decom-
position of the matrix 𝚪̂WM by solving the following eigenvalue problem:

𝚪̂WMbl = 𝜆lbl, l = 1,… , 2L

where bl is the lth eigenvector associated with the positive eigenvalue 𝜆l. These
2L-eigenvectors can be ordered according to their associated eigenvalues. The
covariance matrix is structured by blocks:

𝚪̂ =

[
𝚪̂TT 𝚪̂TP
𝚪̂PT 𝚪̂PP

]
,

where matrix 𝚪̂TP denotes the L × L covariance matrix between coefficients of
variable T and variable P. The 2L × 2L matrixW ensures the metric equivalence
between the functional problem and its discrete version (working on coefficients).
It is composed by blocks as follows:

W =
[
WT 𝟎
𝟎 WP

]
,

where matrices WT and WP are Gram matrices. Here, WT = WP because same
B-splines basis has been used for constructing T and P curves, but different basis
choice might also be relevant.
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Compared to the univariate case, a significant change is carried out with the
matrixM. This block diagonal weighting matrix:

M =
[
MT 𝟎
𝟎 MP

]

of size 2L × 2L is used to balance the coefficient values when decomposing both
the variance of temperature and precipitation data. It acts as a normalization step
usual in standard PCA when variables do not have the same units or the same
orders of magnitude. Diagonal terms of matricesMT andMP are naturally chosen
with, respectively,

mT
ll = 1∕𝜎2T , mT

ll = 1∕𝜎2P,

where

𝜎2T = Tr(𝚪̂TTWT) and 𝜎2P = Tr(𝚪̂PPWP).

This weighting system will give the same importance to temperature and pre-
cipitation curves in the MFPCA decomposition.
If one remarks that the structure of a 2L-eigenvector is such that

b =
(
bT1 ,… , bTL ; b

P
1 ,… , bPL

)′ = (
b′T ,b

′
P
)′
,

normalized eigenvectors are obtained with

a =
(
a′T , a

′
P
)′ = M− 1

2W− 1
2 b.

The eigenfunctions associated with a principal axis can then be computed for each
variable with

𝜉T(t) = 𝚽′(t)aT , 𝜉Pl (t) = 𝚽′(t)aP.

Observations are projected in a space of small dimensionQ < 2Lwhen computing
the N × Qmatrix P of principal coordinates with

PQ = CAQ

with AQ = (a1,… , aQ) the 2L × Q matrix of normalized eigenvectors vertically
structured by blocks

AQ =

[
AT
Q

AP
Q

]
.

Functions are finally reconstructed through their coefficients:

𝜶̃Tn = 𝜶T +AT
Qcn, 𝜶̃Pn = 𝜶P +AP

Qcn,

where cn is the Q-vector of principal coordinates of Zn (row n in PQ) and

Z̃Tn = 𝚽′(t)𝜶̃Tn , Z̃Pn = 𝚽′(t)𝜶̃Pn.
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4.6.2 MFPCA Displays

Consider now the sample of pairwise curves (zT1 , z
P
1 ),… , (zTN , z

P
N ) estimated from

row data of temperature and precipitation by regression in a same B-spline basis of
arbitrary dimension L = 9. Once the eigen-decomposition has been achieved over
the 2L × 2L covariance matrix of B-spline coefficients, it is possible to represent
the main factors of variability as a perturbation of the mean functions such that

𝜇T(t) ±
√
𝜆l × 𝜉Tl (t), 𝜇P(t) ±

√
𝜆l × 𝜉Pl (t).

Figure 4.8 displays of three factors of the PCA associated with the highest eigen-
values (𝜆1, 𝜆2, 𝜆3) and the associated map of individuals. Size of circles indicates
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Figure 4.8 First factors of the MFPCA of temperature and precipitation profiles and
maps displaying the contribution of each sampled station to an associated factor (gray =
negative value, black = positive value). Arrows indicate changes in curve shape when
moving from black points to gray ones. Thin curves are the mean functions. Percentages
above graphs indicate from left to right: amount of variability, contribution of variable T ,
contribution of variable P to that variability.
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the contribution of each city to the variability of the axis. Color is associated with
the sign of the observation when projected of the related principal axis (gray =
negative, black = positive).
Small diameter circles indicate locations that are close to the mean curve. It is

interesting to note that these three factors account for about 93% of the entire
variability. The first factor (50% of the variability) is attached to variation in lat-
itudes. Its effects are mainly related to average temperature variations (86% of
the variability, shape of the T profiles does not change) and variations in shape
for precipitation curves (14%). These latter present two seasonal modes (maxi-
mum values in spring and autumn) for southern towns that vanish when mov-
ing to northern towns. The second factor is independent of the temperature (tiny
contribution), only attached to variations in precipitation mean (the shape of the
curves does not change). Nevertheless, it accounts for 33% of the variability. It
only concerns some erratically distributed towns which belong to specific geo-
graphical zones (mountains, local climatic conditions). The third factor (10%) is
an East-West effect that opposites oceanic to continental climate conditions. It is
characterized by changes in shape for both temperature and precipitation curves
(same contribution). A direct effect of the ocean is to modify the temperature
shape. Amplitude between winter and summer of western temperature curves,
close to the Atlantic Ocean, is less important than in continental areas. Precipita-
tion curves are V-shaped (gray curve) under the influence of the ocean, while sea-
sonal variations in spring and autumn aremuchmore pronounced for continental
areas (black curve). It is worth reminding that the approximation of any curves of
temperature and precipitation as a linear combination of these three factors only{

z̃Tn (t) = 𝜇T(t) + cn1𝜉T1 (t) + cn2𝜉T2 (t) + cn3𝜉T3 (t)
z̃Pn(t) = 𝜇P(t) + cn1𝜉P1 (t) + cn2𝜉P2 (t) + cn3𝜉P3 (t)

provides good estimations as shown in Figure 4.9.

4.6.3 Multivariate Functional Principal Component Kriging

Using the unbiased conditions, the multivariate functional kriging system (4.9)
can be expressed with the principal components of the MFPCA, such as

[
AT
Q

AP
Q

]
ĉ0 =

N∑
n=1

[
BnTT BnPT
BnTP BnPP

]′ [
WT 𝟎
𝟎 WP

][
AT
Q

AP
Q

]
cn.

Change in metric makes A′
QWMAQ = IQ and the system can be written as in

(4.7) with

ĉ0 =
N∑
n=1

A′
QWMB′

nWAQcn,



�

� �

�

4.6 Multivariate Kriging with Functional Data 95

–2 –1 0 1 2

–
3

–
2

–
1

0
1

PC1 ( 49.82%)

P
C

2
 (

3
2
.9

3
%

)

ABBEV

AGENAJCC ALBI ALEN

AMBE

AUCH

AURC

BCZE

BDX

BGAC

BIATZ

BREST

BRGS

BRIV

BSCON

BSTA

BVAIS

CAEN

CH-MZ

CHART

CHBY

CL-FRD

COGC

COLM

CRCS

DAX

DIJOEMBR

EVRE

GBLE

GOUR
LARO

LAVAL

LE-BGT

LE-HAV

LE-MS

LELUC

LEPUY

LGRES

LILLE

LIMG
LOR

LROYON

LUX

LYONMAC

MELUN

METZMLAU

MRS

MTBAN

MTLM

MTPL

NCY

NICENIMES

NIORT
NTES

NVRS
ORAN

ORLS
ORYPARIS

PAU

POIT

PONT

QUIMP

RNSROMO

ROUEN

SETE

ST-AB

ST-BCST-DZ

ST-ET

ST-GI

ST-QU

STRBG

STYA

TARB

TLNE
TLSE

TOURTPES
TRY

VCHY

PGNAN

PGNAN

PGNAN

CHTX

CHTX

CHTX

MTSAN

MTSAN

MTSAN

2 4 6 8 10 12

0

5

10

15

20

25

30

Time (m)
T
e

m
p

e
ra

tu
re

 (
°C

)

2 4 6 8 10 12

20

40

60

80

100

120

140

Time (m)

(a) (b)

(c)

P
re

c
ip

it
a
ti
o
n
 (

m
m

)

Figure 4.9 Example of PCA 2D-mapping of observations (zTn , zPn ) (a) accounting for 83%
of the variability. Panels (b) and (c) show an example of the reconstitution of three
observations of temperature and precipitation. Continuous lines are observations, and
dashed lines are reconstructions using three PCs of the MFPCA.

where the cn is the Q-principal coordinates for observation Zn =
[
ZTn ,ZPn

]′ and Bn
the block-matrix of kriging weights. IfQ = 2L, the search for a BLUP estimator Ẑ0
is achieved when minimizing

𝔼||ĉ0 − c0||22L = 1
𝜎2T

𝔼||𝜶̂T0 − 𝜶T0 ||2WT
+ 1
𝜎2P

𝔼||𝜶̂P0 − 𝜶P0 ||2WP

still under the same constraints of unbiasedness. The estimator is constructed giv-
ing same weights to T and P curves, a direct effect of additional metricM. Once
the LMC is fitted on experimental variograms, the weights Un = A′

QWMB′
nWAQ
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are determined and an observation Z0 can be estimated with

Ẑ0(t) =

[
𝚽′(t)𝜶̂T0
𝚽′(t)𝜶̂P0

]
,

where [
𝜶̂
T
0

𝜶̂
P
0

]
=

[
𝜶
T

𝜶
P

]
+

[
AT
Q

AP
Q

]
ĉ0.

As in the univariate case, we are generally interested in cases where Q < 2L.

4.6.4 Mixing Temperature and Precipitation Curves

Figure 4.10 presents an example of LMCfitting on the first four PCs of theMFPCA.
As in the univariate case, the cross-variograms are close to zero,making reasonable
the hypothesis of intrinsic correlation. For observation in position n, the integrated
prediction error is computed by leave-one-out cross-validation with

ISEn =
1
𝜎2T
||𝜶̂T(−n) − 𝜶T||2WT

+ 1
𝜎2P
||𝜶̂P(−n) − 𝜶P||2WP

.
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Figure 4.10 Empirical variograms and fitting of a coregionalization model on the first
four principal components of the MFPCA. The magnitude of the components is decreasing
very fast. It is remarkable to note the quasispatial independence between components as
cross-variograms are surprisingly close to zero functions.
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In that case, the variances 𝜎2T and 𝜎
2
P have been estimated using theN − 1 remain-

ing observed curves. The plot of some predictions (quantiles of the ISEs) is dis-
played in Figure 4.11. Again, bad predictions appear in areas with specific climatic
conditions (mountains, local climatic peculiarities) where stationarity hypothesis
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Figure 4.11 Predictions of temperature and precipitation curves (dashed line: mean
precipitation, thin line: observed curve, thick line: predicted curve), spatial map, and
boxplot of the integrated squared errors (ISEs). From top-left to bottom-right panel,
curves are, respectively, sorted by ISE quantiles of order 0.05, 0.25, 0.5, 0.75, and 0.95. The
ISE median location is displayed in the top-right panel (LROYON). Bad predictions (black
points corresponding to ISE quantiles of order ≥ 0.95) are located in areas where the
stationarity hypothesis does not hold. Because of metric M, ISEs are balanced between
temperature and precipitation.
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is not relevant. However, it is worth noting that the shape of the curves is globally
well predicted. The main source of errors is attached to bad predictions of tem-
perature or precipitation mean levels. This might suggest that the source of error
is essentially due to the assumption of constant mean over the whole domain. It
should be interesting to consider in that case kriging with external drift (refer to
Chapter 3 of this book).

4.7 Discussion

We propose a kriging method for multivariate functional data which provides an
answer to the first question addressed in the introduction: the prediction of both
temperature and precipitation curves is possible in the isotopic case, i.e. when
both T and P data are available at any position

{
x1,… , xn

}
over the domain. The

employed method relies on nice properties of the spectral decomposition of vari-
ance operators. The so-called “Karuhen–Loève” decomposition is not new and has
been applied in many fields of functional data analysis. For example, He et al. [10]
used a canonical correlation analysis, a generalization of the PCA, in the frame-
work of functional linear model. The decomposition of the variance operator is
also known as spectral cut regularization method used to find admissible solution
for the functional linear model [11].
The pioneering work of [2] on FPCA has proposed a formalism based upon

the theory of reproducing kernels. It is a well-suited strategy to get rid of
ill-conditioned problems under some hypotheses of regularity of the considered
Hilbert space.We place the functional kriging in the same context. This formalism
fits with operational situations since work is anyway achieved in finite dimension
and a reproducing kernel always exists in that case. Once the choice of the basis
has been made, the reproducing kernel attached to the identity operator in that
basis has a matrix form straightforwardly given by the inverse of the Grammatrix.
Other methods of kriging curves exist and are also presented in this book.
The original point developed in this current work is the use of amultivariate ver-

sion of the FPCA in order tomerge both temperature and precipitation profiles and
then achieve kriging on principal components. This approach allows to circum-
vent the unreasonable estimation of a huge number of variograms when working
on the basis coefficients. The functional problem of kriging is then transformed
to a multivariate cokriging problem of small dimension within the construction
of some metric that makes the functional framework equivalent. The basic idea is
that kriging a linear combination of the coefficients of the basis decomposition is
the same asworking directly on the coefficients themselves. And it should bemore
efficient in case where it is possible to concentrate a great amount of variability on
a few number of dimensions. We have shown that the variance of the proposed
kriging estimators is the same when considering all the principal components.
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Early works of [12] already proposed conditions for making equivalent the prob-
lem of kriging several real variables and kriging a linear combination of these
variables. More recently, other approaches for kriging multivariate curves have
been proposed and also rely on the use of FPCA [13, 14]. The works of [9] that
developed the use of PCs for krigingmultivariate real spatial observations, pointed
out a number of problems that are still encountered in the functional framework.
Even if principal component kriging is less computationally expensive than cok-
riging the entire set of coefficients, it suffers from several drawbacks:

● Only locations where all variables are jointly sampled can be considered: our
approach is limited to the isotopic case.

● The cross-covariance between PCs is not necessarily zero at |h| ≠ 0. Although
for the temperature and precipitation example, it is an acceptable assumption,
the intrinsic stationarity is a strong hypothesis.

● One canwonder if the estimation of a spatial covariancemodel by LMC on a few
PCs can capitalize all the spatial correlation structures available in the initial
variables.

This last point deserves to be developed. Goovaerts [15] pointed out that the
correlation between principal components may be far from negligible, especially
when the correlation structure greatly changes from one spatial scale to another.
This result must be kept in mind when one intends to replace cokriging by kriging
uncorrelated combinations (at least when |h| = 0) of the original variables. This
implies that the choice of the basis for the representation of the observed curves
may matter as shown in Figure 4.12.
It remains for us to fix the problem of kriging several curves in the heterotopic

case. How to proceed when both T and P curves are not available on same loca-
tions? The proposed approach by MFPCA works well for the isotopic case, i.e.
when data of both functional variables are available in all the sampled stations.
However, keeping in mind the problems of estimation raised above, FPCA (or any
related method) can still be used to summarize functional data in a small number
of PCs. Simple co-kriging on several functional variables can then be achieved on
a set of merged PCs computed from separate FPCAs and heterotopic cases can be
tackled in that case (see [7] for practical details or [14] for an extension of kriging
multivariate curves that deals with anisotropy).
To conclude this discussion, a word on competing approaches to kriging. The

strength of a kriging method is to propose a model for characterizing spatial
covariance. This implies that if the model is the good one, the prediction is
efficient especially in areas where no data are available or where ancillary
information is available. There exists very little theoretical works which compare
kriging approaches to other spatial methods of interpolation. In the paper of [16],
the authors concluded that when the data do satisfy the intrinsic random function
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Figure 4.12 Correlation (absolute values) between PCs of a MFPCA realized from a
Fourier basis decomposition and a B-spline basis decomposition for temperature and
precipitation curves. Gray curve is the percentage of cumulated variability (same values
for Fourier or B-splines). Even if eigenvalues are the same between Fourier and B-splines,
the structure of the points cloud changes. This can have some bad consequences when
estimating the spatial covariance model if correlation structures are strong on PCs
associated with small eigenvalues.

hypothesis and when the variogram family is known, then the kriging estimator
does perform better than nonparametric approaches, but only marginally better.
On the other hand, they pointed out that the kriging approach is not robust
when the intrinsic hypothesis does not hold. They also mention that when the
data do not come from an intrinsic random function with the right variogram,
a nonparametric approach seems consistently more advisable especially when
regarding the error estimation. Functional kriging approaches are indeed con-
stituted with a complicated assemblage of nested methods that require caution
use and experience, which make kriging an art rather than an algorithm [16].
A future challenging task is clearly required for the comparison of functional
kriging approaches to those proposed in [17] or in [18] for functional data.

4.A Appendices

4.A.1 Computation of the Kriging Variance

Using a basis expansion, the solution of kriging is given when minimizing the
variance of the errors:

𝔼||Ẑ0 − Z0||2 = 𝔼||𝜶̂0 − 𝜶0||2W
under the constraint

∑
nBn = W−1.
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Let A ∈ L and B ∈ L be L × Lmatrices. Denote by

u⊗ v = uv′

the L × Lmatrix with u and v vectors in ℝL. Reminding that

⟨Au,Bv⟩W = u′A′WBv = ⟨A,B [v⊗ u]⟩HS = Tr
(
A′WB [v⊗ u]

)
,

and thanks to the linearity of the expectation, to the properties of the trace oper-
ator, and unbiased conditions of the kriging estimator, the previous expression of
the variance can be developed with

𝔼||𝜶̂0 − 𝜶0||2W = 𝔼||𝜶̂0 − 𝝁 − 𝜶0 + 𝝁||2W
= 𝔼||𝜶0 − 𝝁||2W +

∑
n

∑
m
𝔼
⟨
B′
nW(𝜶n − 𝝁),B′

mW(𝜶m − 𝝁)
⟩
W

− 2
∑
n
𝔼
⟨
B′
nW(𝜶0 − 𝝁),𝜶n − 𝝁

⟩
W

=
⟨
IL,𝔼[(𝜶0 − 𝝁)⊗ (𝜶0 − 𝝁)]

⟩
HS

+
∑
n

∑
m

⟨
B′
nW,B′

mW𝔼[(𝜶m − 𝝁)⊗ (𝜶n − 𝝁)]
⟩
HS

− 2
∑
n

⟨
B′
nW,𝔼[(𝜶n − 𝝁)⊗ (𝜶0 − 𝝁)]

⟩
HS

= Tr(W𝚪00) +
∑
n

∑
m
Tr(WBnWBm′W𝚪nm)

− 2
∑
n
Tr(WBnW𝚪n0). (4.A.1)

Following the method of Lagrange multipliers, define the function:

F
(
B1,… ,Bn,𝚲

)
= Tr(W𝚪00) +

∑
n

∑
m
Tr(WBnWBm′W𝚪nm) − 2

∑
n
Tr(WBnW𝚪n0)

+ 2 × Tr
([∑

n
Bn −W−1

]
W𝚲

)
,

where the last term of the equation is the Lagrange multiplier term.
The Gâteaux derivative 𝛿𝚫F(Bn) of F at Bn ∈ L in direction 𝚫 ∈ L is given

with

𝛿𝚫F(Bn) = lim
𝜀→0

F(B1,… , (Bn + 𝜀𝚫),… ,BN ,𝚲) − F(B1,… ,Bn,… ,BN ,𝚲)
𝜀

.

Kriging weights are found when

𝛿𝚫F(Bn) = 0, n = 1,… ,N, 𝛿𝚫F(𝚲) = 0.

Developing the above expression of the N + 1 derivatives, solutions are found
when{∑

m Tr(W𝚪nmWBnW𝚫′) − Tr(W𝚪n0W𝚫′) + Tr(𝚲W𝚫′) = 0, n = 1,… ,N
Tr
([∑

nBn −W−1]W𝚫′) = 0
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in any direction𝚫. A sufficient condition to find theminimum is that theBns verify
the kriging system (4.6) of L(N + 1) equations. Now, when introducing

∑
m
Tr(W𝚪nmWBn) − Tr(W𝚪n0) + Tr(𝚲) = 0

in Eq. (4.A.1), the variance of the functional kriging estimator is given with

𝜎2FKG = Tr(W𝚪00) −
∑
n
Tr(BnW𝚪0nW) − Tr(𝚲).

Notice that this variance is roughly the same as in [5] within the metricW.
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5.1 Introduction and Motivations

The availability of complex, high-dimensional, and often constrained data has
recently fostered new areas of statistical research. These are typically placed at the
intersection between functional data analysis (FDA, [1]), geostatistics, and other
fields classically devoted to the analysis of constrained data, such as compositional
data analysis (CoDa, [2]). In this context, there is a general consensus that modern
geostatistical approaches should always consider the nature of the data. In some
cases, this would require resorting to a geometry which is not necessarily the one
of the space of square-integrable functions (i.e. L2).
The focus of this chapter is on functional compositions (FCs), that constitute the

generalization to the functional setting of multivariate compositional data [2, 3].
The latter are defined as vector data that only provide relative information, i.e. for
which the only relevant information is conveyed by the ratios between their com-
ponents (termed parts). Examples of data that can be interpreted as compositional
are discrete distributional data (i.e. probabilitymass functions), or,more generally,
data whose components represent parts (e.g. proportions, percentages) of a whole
(e.g. they sum up to unity) with respect to a given partition of the domain. For
instance, concentration of chemicals adsorbed onto soil samples or distribution of
population in age classes is often considered as compositional information.

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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In this broad context, FCs are functional data which only convey relative
information. One can envision FCs as positive data, constrained to integrate to a
constant – even as this might not be the case for some applications. Informally, in
FCs, the ratios between their point evaluations are considered to be informative
rather than their absolute values. For instance, probability density functions
(PDFs) can be interpreted as FCs, and their point evaluations as infinitesimal
parts of a whole, that is the probability of the sample space.
One can readily see that PDFs – as well as FCs in general – cannot simply be

considered as square-integrable functions because the geometry of L2 is not appro-
priate to treat them (e.g. the L2-sum of two FCs is meaningless). Instead, the Bayes
space geometry, introduced in [4–6] and recalled in Section 5.2, is well suited for
FC data, since it was precisely designed to correctly represent the peculiar features
of those data.
Throughout the chapter, we will illustrate the geostatistical methods for FCs

developed in [7–9], and their application to the field setting which first motivated
those works, which deals with particle-size distributions sampled in a heteroge-
neous aquifer system. These data describe the local distribution of soil particles
sizes and are relevant to problems related to groundwater hydrology, soil science,
geophysics, petroleum engineering, and geochemistry, with emphasis on appli-
cations oriented toward modeling physical and chemical processes occurring in
heterogeneous Earth systems. Here, we illustrate methods for the preprocessing,
kriging, and assessing uncertainty of such data. These methods need to be framed
within a space different from L2.
The remaining of the chapter is organized as follows. Section 5.2 introduces the

Bayes space geometry for FCs, whereas Section 5.3 illustrates the data. The station-
ary kriging for FCs is addressed in Section 5.4, and the nonstationary approach is
addressed in Section 5.5. Section 5.6 concludes the chapter.

5.2 Bayes Hilbert Spaces: Natural Spaces
for Functional Compositions

The theory of Bayes spaces [4–6, 10] was introduced as a generalization to den-
sity functions of the Aitchison geometry. The latter is commonly employed to deal
with compositional data that are multivariate observations carrying only relative
information (e.g. [2, 3] and references therein). Compositional data are usually
collected in the form of constrained objects summing up to a constant, usually set
to 1 or 100, in case of proportions or percentages, respectively. PDFs can be then
considered as compositional vectors with infinitely many parts [4], and with the
key properties of compositions (e.g. [11]).
We denote by f the density function of an absolutely continuous measure 𝜇

with respect to the Lebesgue measure on the Borel space (ℝ,(ℝ)), with compact
support I ⊂ ℝ. In the following, we will express the properties of 𝜇 through those
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of f . It should be noted that the theory of Bayes spaces was developed in a com-
pletely general framework in [5, 6, 10]. Two density functions f , g are considered
as equivalent if they are proportional, and we denote such equivalence relation
by f= g. In this setting, the integral constraint ∫I f (x)dx = 1 of PDFs singles out
a representative within an equivalence class of FCs that are equivalent from the
viewpoint of the relative information they provide. Indeed, for any other represen-
tative f̃ (i.e. such that f̃ = c ⋅ f for c > 0), the relative contribution of Borel subsets
of ℝ w.r.t. the measure of the support is the same. This property is known as scale
invariance and is related to the observation that the probability of an event has no
meaning per se – as noted in [10]. Otherwise, it is clearly framed in a relative con-
text, as it is related to the probability of the entire sample set, which is set to unity
for convenience.
Another relevant feature of FCs is the relative scale. The latter indicates that the

increase of probability should be understood and measured in a relative sense,
rather than on an absolute scale. For instance, the increase of probability over a
Borel set from 0.05 to 0.1 (2 multiple) differs from the increase 0.5 to 0.55 (1.1 mul-
tiple), although the absolute differences are the same in both cases. This property
further motivates the use of the log-ratio approach to deal with density functions.
The abovementioned properties are well-known and recognized in the mul-

tivariate setting (e.g. [2]) but are completely neglected when considering PDFs
as unconstrained objects. For instance, the notions of sum and product by a
constant that would be used for data analysis in L2 (the space of square-integrable
functions) appear to be inappropriate for compositions, their application may
yield functions that are no longer compositions. These elements motivated the
introduction of a geometry capable of capturing and properly incorporating the
properties of FCs. Such a geometry is that of Bayes Hilbert spaces, that generalize
the Aitchison geometry [12] to the functional setting.
For ease of notation, and following [7–9, 13, 14], we focus here on density

functions with compact support. Note that the theory here presented could be
extended to general supports, through the use of reference measures different
from the Lebesgue one. However, it should be noted that, in several real datasets,
finite values for the inferior and superior extremes of the support can be deter-
mined without a substantial loss of generality, or working with conditional
distributions.
We term2(I) the Bayes space of (equivalence classes of) positive FCs f on Iwith

square-integrable logarithm. In the following, the representative of an equivalence
class will be its element integrating to 1; moreover, we only consider continuous
FCs on a closed interval I = [a, b], any compact subset ofℝ being compatible with
our framework. Given two FCs f , g ∈ 2(I) and 𝛼 ∈ ℝ, we denote by f ⊕ g and
𝛼 ⊙ f the perturbation and powering operations, defined as, respectively, [4, 6]:

(f ⊕ g)(t) =
f (t)g(t)

∫I f (s)g(s)ds
, (𝛼 ⊙ f )(t) =

f (t)𝛼

∫I f (s)𝛼ds
, t ∈ I.
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Figure 5.1 Example of perturbation and powering in 2(I), compared to the typical
operations in L2(I). (a) Perturbation f ⊕ g (solid black curve) of two Gaussian densities f , g
restricted to I = [−5, 5] (gray curves), and the sum f + g in the space L2(I) (dot-dashed
curve). (b) Powering of a Gaussian density f restricted to I = [−5, 5] (gray curve) by 𝛼 = 2,
𝛼 ⊙ f (solid black curve), and its counterpart 𝛼 ⋅ f in L2 (dot-dashed curve). Source:
Modified from Egozcue et al. [14].

It is then clear that the results of such operations are still PDFs. Note that 2(I)
endowed with the operations (⊕,⊙) is a vector space [4] and that the origin of
the space 2(I) is e(t) = 1∕𝜂, with 𝜂 = b − a. Moreover, the difference between
two FCs f , g ∈ 2(I) is obtained as perturbation of f with the reciprocal of g, i.e.
f ⊖ g = f ⊕ [(−1)⊙ g].
Figure 5.1 depicts an example considered in [14] of the effect of perturba-

tion and powering operations in 2(I), as opposed to standard operations of sum
and product by a constant in L2(I). In [14], the authors considered the restriction to
I = [−5, 5] of theGaussian densities f= exp{−t2∕2} and g= exp{−(t −m)2∕(2s2)},
withm = 1 and s2 = 2. Figure 5.1a juxtaposes the perturbation of f by g (f ⊕ g) to
the sum in L2 of f and g (f + g). Note that the latter sum does not result in a PDF,
while the former does. Further, the perturbation of f by g yields a density function
that is more concentrated than f and shifted toward g: this is the consequence of
adding to f the information content in g and viceversa. Notice that the operation
of perturbation can be interpreted as a Bayesian update of information, and ⊖
as a cancellation of information [10]. As such, all conjugate priors define affine
subspaces of (I). Within the latter class, we mention the Gaussian family and,
more generally, the exponential family. Thus, it is not surprising that the result
f ⊕ g displayed in Figure 5.1 is still a Gaussian density, as shown in [14].
Figure 5.1b depicts the result of the powering operation 𝛼 ⊙ f in2(I), as well as

the multiplication 𝛼 ⋅ f in L2(I), for the same f of Figure 5.1a and the scalar 𝛼 = 2.
It is noted that 𝛼 ⋅ f is not a density function, and, as an element of2(I), it belongs
to the same equivalence class as f itself. Otherwise, the powering of f by 𝛼 = 2 has
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the effect of increasing the concentration of f around its mean (i.e. it decreases the
variance of f by a factor 2). In the Bayesian framework, this is interpreted as the
increase of information which is obtained by incrementing the “evidence” in f by
the “evidence” in f itself.
The space (2(I), ⊕,⊙) is a separable Hilbert space structure if equipped with

the inner product [4]

⟨f , g⟩ = 1
2𝜂∫I∫I ln

f (t)
f (s)

ln
g(t)
g(s)

dt ds, f , g ∈ 2(I), (5.1)

which induces the following norm

||f || =
[
1
2𝜂∫I∫I ln

2 f (t)
f (s)

dt ds
]1∕2

.

Each element of 2(I) can be mapped onto an element of L2(I), preserving its
distance and angle with any other element, that is, isometric isomorphisms exist
between2(I) and L2(I). An example of such isometric isomorphism is defined by
the centered log-ratio (clr) transformation [6, 7], which is defined, for f ∈ 2(I), as

clr(f )(t) = fc(t) = ln f (t) − 1
𝜂∫I ln f (s)ds. (5.2)

One can see that the operations and inner products among the elements in 2(I)
can be equivalently computed in L2(I) as

clr(f ⊕ g)(t) = fc(t) + gc(t), clr(𝛼 ⊙ f )(t) = 𝛼 ⋅ fc(t),

⟨f , g⟩ = ⟨fc, gc⟩2 = ∫I fc(t)gc(t)dt. (5.3)

Note that clr-transform induces, by construction, a zero-integral constraint, which
may yield model-singularities. However, this is not the case of the geostatistical
methods presented here.

5.3 A Motivating Case Study: Particle-Size Data
in Heterogeneous Aquifers –Data Description

This section illustrates the key features of the field setting within which our
theoretical framework is applied. As a showcase scenario, we consider the
Lauswiesen site, which is an experimental test site located near the city of Tuebin-
gen, Germany. The aquifer system under consideration has been the subject of an
extensive series of experimental campaigns and modeling studies. Among these,
the reader is referred to the works of Riva et al. [15–18], Hoffmann and Dietrich
[19], Rein et al. [20], Neuman et al. [21, 22], Lessof et al. [23], Barahona-Palomo
et al. [24], Handel and Dietrich [25], and Menafoglio et al. [7–9]. Characteri-
zation of the site has been based on data acquired through detailed geological,
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hydrogeological, hydraulic, sedimentological, and geophysical investigations. The
latter have been conducted at the field and laboratory scale.
The lithostratigraphic characterization has been performed through the stratig-

raphy information stemming from 150mm-diameter monitoring wells [26, 27].
The aquifer at the site has a saturated thickness of about 5m and is composed
of fluvial geomaterial, overlain by stiff silty clay and underlain by hard silty
clay. Available datasets include particle-size curves (PSCs), pumping and tracer
tests, direct-push injection logging, and down-hole impeller flowmeter records.
A detailed description of the analyses performed at the site is presented by Riva
et al. [15, 16] and Lessof et al. [23], to which the reader is referred for details.
Of particular interest to our application are a collection of more than 400 PSCs

collected along 12 vertical boreholes at the site. These indicate the presence of very
heterogeneous, highly conductive alluvial deposits and were previously employed
in [15–17] to provide a stochastic Monte Carlo-based numerical study of flow
and transport process at the site. These studies considered diverse conceptual
geological models of the structural heterogeneity of the system and analyzed
their elative skill to interpret available tracer tests data. The available PSCs were
assessed on core samples of characteristic length ranging from 5 to 26.5 cm. They
are reconstructed through grain sieve analysis performed with a set of 12 discrete
sieve diameters (i.e. 0.063, 0.125, 0.25, 0.50, 1.0, 2.0, 4.0, 8.0, 16.0, 31.5, 63.0, and
100.0mm). Figure 5.2 depicts the three-dimensional structure of the sampling
network at the site.
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Figure 5.2 Raw particle-size data at the Lauswiesen site. (a) Collection of all available
particle-size curves (PSCs) (b) Raw PSCs along boreholes B5, F3, F4, and F6. Gray scale
colors correspond to the depth of the sampling locations. Source: Modified from
Menafoglio et al. [8].
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These PSCs have been employed in [15] to classify the types of geomaterials at
the site and to construct geostatistically based models of the internal architecture
of the aquifer. In this context, the latter could then be conceptualized as formed
by a collection of regions (or blocks), randomly located in space, each formed by
a given material type. Hydraulic properties of each of these blocks can then be
estimated through available empirical formulations relating, e.g. permeability and
porosity to characteristic diameters of a PSC. For example, Riva et al. [15–17] relate
d10 andd60 (respectively, representing the particle size associatedwith the 10th and
60th percentile of a given PSC) to permeability through the Beyer’s formula [28].
A geostatistical analysis of d10 and d60 or of the associated permeability can then
be employed to characterize the heterogeneous distribution of hydraulic proper-
ties within the region occupied by each of the materials identified. The details of
these analysis can be found in [15, 17]. Barahona-Palomo et al. [24] analyze the
relationship between hydraulic conductivity estimates obtained through PSCs and
impeller flowmeter measurements, while Riva et al. [18] rely on the available data
to demonstrate their analytical study rendering relationships between the spatial
covariance of hydraulic conductivity and of representative soil particle sizes and
porosity.

5.4 Kriging Stationary Functional Compositions

5.4.1 Model Description

We term D the compact subset of ℝd (usually d = 2, 3) corresponding to the spa-
tial domain of the study and denote by s1,… , sn the sampling locations in the test
area. We denote by 𝜒s1 ,… , 𝜒sn the dataset collected at those locations, formed by
a set of positive PDFs on a compact domain I, i.e. 𝜒si ∶ I → (0,+∞), such that
∫I𝜒si (t)dt = 1. In Section 5.2, we consider 𝜒s1 ,… , 𝜒sn as objects of the Bayes Hilbert
space 2(I) and assume these to be a partial observation from a random field
{𝝌 s, s ∈ D} valued in 2(I). For instance, 𝜒s1 ,… , 𝜒sn may be the densities of the
particle-size distributions described in Section 5.3. Note that any other PDF can be
considered for the application of our theoretical framework, including, e.g. rainfall
(precipitation) distributions, or population pyramids [13], or dissolved chemical
concentrations in groundwater.
In this section, we assume the process to be globally second-order stationary and

isotropic, i.e. the following conditions hold:

(i) Spatially constant mean: 𝔼[𝝌 s] = m for all s ∈ D;
(ii) Stationary and isotropic trace-covariogram: 𝔼[⟨𝝌 s1 ⊖m,𝝌 s2 ⊖m⟩] =

C(||s1 − s2||d) for all s1, s2 ∈ D, || ⋅ ||d denoting a metric in ℝd.
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Here, the mean and the covariogram are expressed in 2(I), according to its
geometric structure illustrated in Section 5.2. In such a space, under stationar-
ity and isotropy, onemay also define the spatial dependence structure through the
trace-variogram of the process as

2𝛾(||s1 − s2||d) = 𝔼
[||𝝌 s1 ⊖ 𝝌 s2 ||2

]
.

The ordinary kriging predictor at a target location s0 ∈ D assumes in this context
the form of the best linear combination of the data, linearity being interpreted in
2(I) as 𝝌∗

s0 = ⊕n
i=1𝜆

∗
i ⊙ 𝝌 si . Informally, and in light of the example in Figure 5.1,

such a linear combination is interpreted as a weighted sum of the information
collected at each location, higher precisions (i.e. higher weight) being associated
with nearby locations. Note that a zero weight 𝜆i = 0 powering a data-object 𝜒si ,
yields a contribution to the predictor in terms of a uniform PDF. This is precisely
a null contribution in Bayes spaces, as the uniform PDF is the neutral element of
the perturbation.
The ordinary kriging predictor is then found as the Best Linear Unbiased Pre-

dictor, whose weights minimize the variance of prediction error, under the unbi-
asedness constraint, i.e.

𝔼
[‖‖‖𝝌 s0 ⊖⊕n

i=1𝜆i ⊙ 𝝌 si
‖‖‖
2]

subject to 𝔼
[
⊕n
i=1𝜆i ⊙ 𝝌 si

]
= 𝔼[𝝌 s0 ]. (5.4)

Similar to the general case discussed in Chapter 2 (under mild assumptions on the
sampling design), the optimal kriging weights are found by solving a linear system(

Σ 1
1 0

)(
𝜆

𝜁

)
=
(
𝜎⃗0
1

)
. (5.5)

Here, Σ ∈ ℝn×n denotes the variance–covariance matrix of the observations,
Σi,j = C(||si − sj||d) for i, j = 1,… ,n, 𝜆 = (𝜆1,… , 𝜆n)T the vector of weights and 𝜁
a Lagrange multiplier, and 𝜎⃗0 = (C(||s1 − s0||d),… ,C(||sn − s0||d))T the vector of
(trace-) covariances between observations and the random element at the target
location.
Whenever the spatial dependence structure is unknown, the trace-covariogram,

or the trace-variogram, can be estimated from the data by embedding the gen-
eral procedure detailed in Chapter 2 in the Bayes Hilbert setting. In particular, the
empirical estimator of the trace-semivariogram takes the form of

2𝛾̂(h) = 1
|N(h)|

∑
(i,j)∈N(h)

||𝝌 si ⊖ 𝝌 sj ||2, (5.6)

where N(h) = {(i, j) | h − Δh ≤ ||si − sj||d ≤ h + Δh}, and |N(h)| is its cardinality.
Although expression (5.1) could be directly used to estimate (5.6), it involves

double integrals, which might pose challenges for their accurate numerical eval-
uation. For the sake of efficiency, one may perform the computations on a trans-
formed dataset, built upon mapping each data-object from 2(I) to L2(I) through
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the clr transformation (5.2). The latter allows expressing operations and inner
products in 2 as operations and inner products in L2, which markedly simplifies
the calculations. We refer the reader to [7] for additional details.

5.4.2 Data Preprocessing

Data preprocessing, or data smoothing, is a first key step of almost any
(geo)statistical analysis of functional or object data. Even as a wide body of
literature has been devoted to smoothing data in L2, still limited attention has
been given to the problem of smoothing FCs. Since PDFs can be interpreted as
instances of FCs, all methods apt to smooth PDFs or cumulative distribution
functions (CDFs) can be adopted to deal with a range of FCs as well. This
approach was considered in [7], where an extension of a smoothing method
based on Bernstein polynomials [29] was proposed to deal with the particle-size
densities (PSDs) described in Section 5.3. We briefly review the method, which
serves as a basis to smooth the data described in Section 5.3.
Consider the problem of obtaining from raw data a smooth estimate of the jth

curve, 𝝌 sj , that represents the PDF at location sj (j = 1,… ,n). We first note that
the underlying distribution can be equivalently represented by the PDF 𝝌 sj (our
target), or by the corresponding CDF sj (t) = ∫ t

a 𝝌 sj (𝜏)d𝜏. As such, one can per-
form the smoothing either on 𝝌 sj or through the CDF. Bernstein polynomials are
used here to provide a smooth estimate of the CDF, a key advantage with respect
to other approaches being that these allow to explicitly obtain a smooth estimate
also of the PDF.
For convenience of notation, we assume here that 𝝌 sj is supported on the

compact domain [0, 1], for j = 1,… ,n; the case of a general compact support [a, b]
can be obtained through the variable transformation x = (t−a)

(b−a)
, with t ∈ [a, b].

Recall that, given a sample x⃗j = (x1j,… , xNjj) of i.i.d. observations from (the
distribution whose PDF is) 𝝌 sj , a (discontinuous) nonparametric estimator for
the CDF sj is given by the Empirical Cumulative Distribution Function (ECDF),
denoted by  sj (t;Nj) and defined as

 sj (t;Nj) =
1
Nj

Nj∑
i=1

Ixij<t. (5.7)

Equation (5.7) renders estimates with jump discontinuities in correspondence
of the data. Bernstein polynomials can then be introduced to obtain a smooth
estimate of sj from  sj (t;Nj). In [29], the following estimator was proposed

̂sj (t;Nj,Bj) =
Bj∑
k=0

 sj (k∕Bj;Nj)bk,Bj (t), (5.8)
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where bk,Bj (t) = Bjktk(1 − t)Bj−k, k = 0,… ,Bj, and Bj denotes the number of
Bernstein polynomials used to smooth the jth ECDF. Estimators (5.7) and (5.8)
are strongly consistent for sj , but the latter is also continuous and allows
obtaining a smooth estimate of the PDF 𝝌 sj as

𝝌̃ sj (t;Nj,Bj) = Bj

Bj−1∑
k=0

( sj ((k + 1)∕Bj;Nj) −  sj (k∕Bj;Nj)
)
bk,Bj−1(t). (5.9)

Unlike the well-known kernel smoothing estimators, estimator (5.9) is suitable
to be adopted for compactly supported PDFs. It was adapted to smooth PSCs
collected through grain sieve analysis, by considering a modified yet consistent
estimator, based on a preprocessing of partially observed ECDF. We note how-
ever that other smoothing methods based on Bernstein polynomials have been
developed for the same purpose, e.g. [30–32].
A different approach to smooth FCs was proposed in [33], by combining the

approaches of FDA and CoDa. These authors developed a B-spline representation
for the clr-transformation of an FC, estimated from a discrete clr-transformation
applied to the histogram of raw data. This idea is closer to the typical viewpoint
employed in the main literature on FDA [1]. Extending FDA methods to the
Bayes space setting is often nontrivial. For instance, in the case addressed in [33],
the B-spline representation had to imbue through appropriate conditions the
zero-integral constraints characterizing clr-transformations. Basis expansions
are, however, very useful from the computational viewpoint: the B-spline
representation of [33] was used to markedly simplify computations in [14, 34].
In general, most geostatistical methods for FCs developed in the literature are

based on the assumption that the data have been already smoothed. As such, the
smoothing procedure is seen as a separate step of the analysis, for which the tech-
nique of choice – possibly data-driven – can be applied.

5.4.3 An Example of Application

As an illustration of the approach, we consider here the analysis of the dataset of
PSCs illustrated in Section 5.3. Here, we focus on the data observed at borehole
B5, as in [7].
Menafoglio et al. [7] preprocessed the raw data described in Section 5.3 by

smoothing the PSCs through the use of 140 Bernstein polynomials. The density
functions of the PSCs were then explicitly computed from the smoothed PSCs
(see Section 5.4.2). The latter densities, hereafter called PSDs, were interpreted
as FCs, and embedded in the Bayes space 2(I). In [7], the interval I was set to
I = [log(0.001), log(200)], considered as the largest range of observation consistent
with the type of lithology at the site. Other choices are possible: for instance,
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one may consider the distribution of grain-sizes conditional to the range of
observation, as proposed in [8] and discussed in Section 5.5.
In [7], a stationary spatial model was considered for the data. Note that in this

case, the spatial domain is one-dimensional, as the data at borehole B5 were
observed along the vertical coordinate in the range D = [301.0, 308.3] meters
above the sea level (m a.s.l.).
Figure 5.3 depicts the smoothed data at borehole B5, together with the empir-

ical estimate of the variogram, estimated through (5.6). The curve in Figure 5.3c
denotes the exponential structure with nugget which was fitted to the empirical
estimate. Note that, although the empirical variogram might show some degree
of nonstationarity, prior knowledge on the field site supports adopting a station-
ary hypothesis at B5, and was thus considered as a basis assumption of the study.
From the application viewpoint, the estimated variogram displays a rapid growth
up to a lag of about 0.6m, where it reaches a sill around a value of 2.4. As such,
the range of spatial dependence appears quite small if compared with the width
of D (7.3m). This has a direct impact on predictions, as the ordinary kriging sets
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Figure 5.3 (a) Vertical distribution of smoothed densities; (b) raw particle-size curves
(symbols) and particle-size curves smoothed by Bernstein polynomials with m = 140
(solid curves); (c) estimated trace-semivariogram of the particle-size densities: empirical
trace-semivariogram (symbols), fitted model (solid curve), and sample variance (dotted
curve); the number of pairs associated with each lag is reported. Source: Modified from
Menafoglio et al. [7].
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Figure 5.4 Vertical distribution of ordinary kriging predictions results: (a) PSCs: kriged
curves (solid curves) and smoothed (dotted curves); (b) PSDs: kriged curves (solid curves)
and smoothed (dotted curves); (c) kriging variance, ranging between 0 (darkest shade,
corresponding to vertical locations where observations are available) and 2.53 (lightest
shade). Source: Modified from Menafoglio et al. [7].

the predictions to the generalized least squares (GLS) estimated mean when the
target location is at a distance higher than the variogram range (in this case 0.6m)
from the closest observed site.
Figure 5.4 shows the results of the ordinary kriging in 2(I), for a fine grid of

target locations along the vertical direction. One can clearly notice that, consistent
with our previous remark, the two widest gaps between the sample locations
(i.e. the ranges [302.0, 305.0] and [305.9, 307.1]) are mostly predicted with the
mean PSD. It is noted that, in cases of such short ranges, the experimental design,
i.e. the distribution of the sampling points within the domain (here the vertical
dimension), is key to the performance of our predictions. As such, a rigorous
assessment of the extent to which the collection of additional information about
the system can (i) reduce predictive uncertainty and (ii) yield potential benefits in
terms of, e.g. reduced sampling cost and/or risk reduction, is key to improve our
understanding of complex natural systems such as groundwater reservoirs. The
value of additional information can be quantified through a variety of approaches
(see, e.g. [35] and references therein). An example of these –which is relevant to
our application – is the multimodel data-worth assessment framework proposed
by Neuman et al. [35] and [36] and references therein. The approach is based
on a Maximum Likelihood version of the Bayesian Model Averaging (MLBMA)
and is consistent with modern statistical methods of parameter estimation.
Implementations of MLBMA data-worth assessments considered the geostatis-
tical characterization of aquifer hydraulic conductivity fields in the presence of
multiple variogram models (and eventually measured values) [35, 37].



�

� �

�

116 5 Geostatistical Analysis in Bayes Spaces: Probability Densities and Compositional Data

Dealing with functional data through an approach of the kind we illustrate here
is of interest, for example, in the context of the hydrogeological characterization of
heterogeneity of aquifers and reservoirs. PSCs are routinely assessed from soil sam-
ples in modern laboratories through simple and inexpensive procedures. These
typically involve the successive use of a series of sieves of decreasing grid size,
which are regulated by appropriate international standards. A variety of other
methods are also available to extract PSCs from soil samples, including sedigraph,
laser diffraction, and dry and wet sieving. The PSCs enable one to characterize
a number of effective grain diameters, de, defined as the representative particle
size diameter in terms of percent in mass, corresponding to the eth percentile of a
measured PSC. Having the ability to treat the whole PSC in a consistent geostatis-
tical framework enables us to transfer information not only on hydraulic but also
on sedimentological and eventually geochemical parameters which can control
solute fluxes in the subsurface.

5.4.4 Uncertainty Assessment

A kriging prediction is optimal in terms of mean squared error within the class
of linear unbiased predictors. However, it does not always represent the natural
variability of the process: the field realization is usually much “rougher” than a
typical kriging map. Quantifying the uncertainty associated with predictions is
then key to provide a full characterization of the phenomenon. For this purpose,
onemay employ the kriging variance, that is the variance of prediction error explic-
itly expressed at a target location s0 as

𝜎2∗(s0) = C(0) −
n∑
i=1
𝜆∗i C(||si − s0||d) − 𝜁∗, (5.10)

where (𝜆∗, 𝜁∗) are the solutions of the kriging system (5.5). Indeed, on these bases
one can provide Chebyshev bands on the norm of the prediction errors by using
the following inequality:

P
(||𝝌 s0 ⊖ 𝝌∗

s0 || > 𝜅 ⋅ 𝜎∗(s0)
)
<

1
𝜅2
. (5.11)

Even though expression (5.11) provides a useful bound on the prediction error,
it often proves to be very conservative, as shown in [7]. Indeed, in the study
presented in [7] and recalled in Section 5.4.3, the authors estimated via
cross-validation that the 75% prediction bands constructed through theChebyshev
inequality (5.11) were associated with an empirical level of 98.3%.
We also remark that the kriging variance does not take into account the uncer-

tainty associated with the estimate of the cross-variogram, as the latter is assumed
to be known when formally developing the kriging predictor (see Chapter 2).
Hence, prediction bands built on these bases inevitably suffer from being
approximate.
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Another perspective in assessing the uncertainty of the estimate is that of gen-
erating multiple realizations of the field, compatible with the data. This approach
was recently pursued in [9], that proposed a methodology for geostatistical simu-
lation in Bayes spaces. The idea upon which the method is grounded is to repro-
duce the variability of the phenomenon –which is only partially represented by
kriging maps – by drawing samples from the conditional distribution of 𝝌 s0 given
𝝌 s1 ,… ,𝝌 sn . Accordingly, if the procedure is performed for multiple target loca-
tions in D, one can obtain a set of maps that, although suboptimal, provide an
improved representation of the natural variability and are still “compatible” with
the data, in the sense that they coincidewith the data at themeasurement locations
(as well as kriging maps do).
Before briefly describing the method, we illustrate the results on the field data

of Sections 5.3 and 5.4.3. Figure 5.5b displays an example of a realization from
the conditional field {𝝌 s|𝝌⃗ , s ∈ D}, with 𝝌⃗ = (𝝌 s1 ,… ,𝝌 sn )

T . It is apparent that the
spatial variability associated with the realization is much higher than that of the
kriged field, displayed in Figure 5.5a.
Performing repeated conditional simulations leads to generate a wide range of

scenarios that could have been observed with the same data. As a way of example,
Figure 5.5c,d depicts a sample of 1000 conditional simulations at elevations 303.0
and 306.0m a.s.l., the corresponding prediction being depicted as black curves in
Figure 5.5a. The amplitude of the gray shade can be used to qualitatively repre-
sent the variability of the predictions at the target location. Note that, although
the predicted curves at elevations 303.0 and 306.0m a.s.l. show some similarities,
the associated uncertainty is indeed different: at an elevation of 303.0m a.s.l., the
variability is much higher due to the absence of data nearby that location.
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Figure 5.5 Kriged field and conditional realizations. (a) Kriging estimation over a grid
along the vertical direction; black curves indicate predictions at elevations of 303.0 and
306.0m a.s.l. (b) A conditional realization on the same grid considered in panel (a). (c, d)
Kriging estimation at elevations of 306.0 and 303.0 m a.s.l. (black curve) and a sample of
1000 conditional simulations at the same sites (gray curves).
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From a theoretical viewpoint, generating realizations from the distribution of
𝝌 s0 |𝝌⃗ is a problem of random generation in infinite dimension. It is clear that
a strategy based on joint simulations of pointwise values of the curves would
not be affordable either from the theoretical or the computational viewpoint.
It is also noticed that a global approach as that used for ordinary kriging did
not prove to be successful, as the trace-covariogram seems to be insufficient
for the characterization of the spatial dependence structure for simulation
purposes.
In [9], the authors proposed a simulation strategy based on an optimal

dimensionality reduction of the problem in the Bayes Hilbert space. Specifically,
to provide a conditional realization at a target location s0, they proposed to

(i) perform a functional principal component in 2(I) [14] and compute the
scores along the first K principal components (where K is sufficiently high to
represent the data variability);

(ii) model the spatial dependence of the multivariate random field of the scores
and perform geostatistical simulation of the latter, through any of the widely
employed geostatistical techniques for the simulation of multivariate random
fields.

The reason that led the authors to choose a dimensionality reduction step based
on principal component analysis is that it provides nested optimal approxima-
tions of the observations for any finite order K. The optimal choice for K is critical
because it controls the quality of the approximation of the data through the prin-
cipal components, and the complexity of step (ii) (thus the computational effort
involved in the actual computations). To set K, well-known methods in principal
component analysis can be employed, e.g. looking for an elbow in the scree-plot,
compatible with the computational power available.
Our methodology and type of results can be readily transferred to the general

context of numerically based Monte Carlo simulations of flow and transport
processes in environmentally and industrially relevant scenarios, including, e.g.
groundwater systems, oil reservoirs, and shale gas formations. A critical element
in these applications is to have at our disposal multiple realizations of (i) the
heterogeneous structure of the porous/fractured system (in terms of the spatial
arrangements of geomaterials/hydrofacies), and (ii) the distribution of properties
such as porosity and hydraulic conductivity within each of the identified facies.
This enables us to propagate uncertainty associated with the reconstruction
of the subsurface onto uncertainties characterizing target variables of interest
such as local composition of soil, pressure heads, dissolved chemical concentra-
tions, reaction rates, and fluid saturations. All of these elements will constitute
avenues of future development and exploitation of the approach we present in
this work.
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5.5 Analyzing Nonstationary Fields of FCs

In several real cases, the field data cannot be consider either stationary or isotropic.
For instance, one may have prior information about possible secondary variables
which have an influence on the response. The latter need to be taken into account
in the geostatistical model and exploited for prediction purposes, e.g. in a Univer-
sal Kriging setting. A particular case in this broad context is the situation in which
data are featured by a grouping structure. This case was addressed in [8] and was
motivated by the analysis of the entire dataset of PSCs described in Section 5.3
for which the existence of different soil types was observed. In this case, the field
was also found to be anisotropic. In this section, we recall the kriging method
of [8] – termed class-kriging – for the prediction of anisotropic random fields of
grouped FCs.
Throughout the section, we consider the setting in which the field of FCs

{𝝌 s, s ∈ D}, is observed together with a secondary field {Ts, s ∈ D}, whose
elements represent random labels associated with the grouping structure of the
data. For instance, they may represent soil types, in case PSCs are observed in a
heterogeneous system, but may also represent climatic regions, if weather data
over a large region are concerned instead.
The random elements Ts, s ∈ D, are discrete variables. We call 𝜏 (1),… , 𝜏 (K) the

K values which may be taken by the Ts (i.e. the labels of the K possible groups),
and denote by (𝜒s1 , 𝜏

(k1)),… , (𝜒sn , 𝜏
(kn)) the pairs of FCs and labels observed at the

measurement locations s1,… , sn. In [8], the authors proposed to model the field
{𝝌 s, s ∈ D}, conditional to the field of labels {Ts, s ∈ D} as the sum (in 2) of a
drift term dependent on the label at s, and a stationary residual, independent of
the grouping structure. Formally,

𝝌 s|{Ts = 𝜏 (k)} = m(k) ⊕ 𝜹s,

wherem(k) = 𝔼[𝝌 s|Ts = 𝜏 (k)] denotes the drift, and {𝛿s, s ∈ D} is a random field of
FCs, with “zero-mean” in 2, i.e. with mean coinciding with the neutral element
of perturbation 𝔼[𝜹s] = 0⊕ = 1∕𝜂. The random field {𝛿s, s ∈ D} is also assumed to
be (i) independent of the field of labels {Ts, s ∈ D}, and (ii) globally second-order
stationary (possibly anisotropic), with trace-covariogramC and trace-variogram 𝛾 :

C(s1 − s2) = 𝔼[⟨𝜹s1 , 𝜹s2⟩],
2𝛾(s1 − s2) = 𝔼

[||𝜹s1 ⊖ 𝜹s2 ||2
]
, s1, s2 ∈ D.

This model can be framed in the Universal Kriging setting introduced in
Chapter 2. Indeed, denote by {𝜓k(s), k = 1,… ,K − 1} a set of binary variable,
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which represent indicators associated with the labels: for k = 1,… ,K − 1,
𝜓k(s) = 1 if Ts = 𝜏 (k), and 𝜓k(s) = 0 otherwise; if Ts = 𝜏 (K), then 𝜓k(s) = 0 for
every k = 1,… ,K − 1. The drift in s ∈ D can then be described through a linear
model in 2, with these indicators as regressors

𝔼[s
||Πs = 𝝅s,Ts = 𝜏 (k)] = a0 ⊕⊕K−1

l=1 𝜓l(s)⊙ al, (5.12)

where a0,… , aK−1 are (possibly unknown) deterministic coefficients in 2. In the
light of model (5.12), one has

{
m(k) = a0 ⊕ ak, k = 1,… ,K − 1,
m(k) = a0, k = K.

(5.13)

Coefficients a0,… , aK−1 thus represent how different the drift in the kth group is
from that of a reference group, which is here set to the Kth group, without loss of
generality.
In [8], the authors relied on the Universal Kriging results introduced in

Chapter 2, to propose a class-kriging predictor for 𝝌 s0 at a target location s0,
given the realization of {Ts, s ∈ D} in D (i.e. the grouping structure over the
entire spatial domain). The class-kriging predictor is defined as 𝝌 s0 = ⊕n

i=1𝜆
∗
i ⋅ 𝝌 si ,

whose weights minimize the (conditional) variance of prediction error under the
unbiasedness constraint, that is, solve

min
𝜆1,…,𝜆n∈ℝ∶
𝝌𝜆s0 =⊕

n
i=1𝜆i⊙𝝌si

𝔼
[
||𝝌𝜆s0 ⊖ 𝝌 s0 ||2|||Ts0 = 𝜏 (k0),Tsi ∈ 𝜏 (ki), i = 1,… ,n

]

subject to 𝔼
[
𝝌𝜆s0

|||Ts0 = 𝜏 (k0),Tsi ∈ 𝜏 (ki), i = 1,… ,n
]
= m(k0). (5.14)

The drift being linear, the optimal weights are found by solving the system of
n + K linear equations, obtained by embedding in the Universal Kriging setting
model (5.12):

(
Σ Ψ
ΨT 0

)(
𝜆

𝜁

)
=
(
𝜎⃗0
𝜓0

)
, (5.15)

where 𝜁 = (𝜁0,… , 𝜁K−1)T areK Lagrangemultipliers associatedwith the unbiased-
ness constraint, whereas 𝜎⃗0 = (C(hi,0)) ∈ ℝn, and 𝜓0 = (𝜓k(s0)) ∈ ℝK .
From the application viewpoint, several critical points may be encountered in

class-kriging. First, the estimate of the spatial dependence structure is crucial to
solve (5.15). Here, all themethods described in Chapter 2 can be employed. In par-
ticular, onemay resort to an iterative algorithm to estimate the drift via generalized
least squares and jointly estimate the residual variogram 2𝛾 . More delicate is the
case in which the field {Ts, s ∈ D} is only observed at the measurement locations,
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or if it is completely latent. In [8], methods to deal with both the situations were
developed. For the first case (i.e. the labels are only observed at s1,… , sn), one
needs to formulate a model for the stochastic distribution of {Ts, s ∈ D}, and then
to employ such a model to predict the Ts at unsampled locations. For instance, the
Ts may be modeled as independent realizations from a multinomial variable, and
the interpolation can be consistently performed via indicator kriging, as in [8].
When the field is completely latent, one needs additionally to cluster the data.
Although several methods are available for spatial clustering of scalar data, little
attention has been paid so far to the problem of spatial clustering of FCs. In [8],
the authors proposed a spatial K-mean clustering, which is an extension of the
K-mean method, tailored on model (5.12). Other methods could be applied to this
purpose, for instance the Bagging Voronoi method illustrated in Chapter 9.
As an illustration of the class-kriging method, we illustrate the results of its

application to the dataset described in Section 5.3, following [8]. Unlike the case
discussed in Section 5.4.3, the authors focused on these restriction of the PSDs to
the actual domain of observation, because for most data no information was avail-
able on the left tail of the PSC, due to the sievemeasurement procedure. Figure 5.6
displays the full dataset of smoothed PSDs at the site. The colors of the symbols
in Figure 5.6b denote the three soil types identified in the study region, associated
with as many groups in the data.
A geometric anisotropy was found by the authors when looking at directional

variograms. This was corrected by scaling the vertical dimension by a factor
r = 25, thus working in the modified spatial domain where an isotropic model
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Figure 5.6 Field data: (a) smoothed PSDs; (b) soil types at the field site (denoted with
gray colors) and smoothed PSDs along the boreholes B5, F3, F4, and F6. Source: Modified
from Menafoglio et al. [8].
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Figure 5.7 (a) Estimated trace-semivariogram of the residuals; (b) estimated drift for the
three soil types. Source: Modified from Menafoglio et al. [8].

can be used. The estimated omnidirectional trace-semivariogram of the residuals
is displayed in Figure 5.7a, together with the fit of an exponential model with
nugget. Similarly, as in Section 5.4.3, the range of the variogram appears to be
quite short when compared to the extension of the domain. The drift estimated
within the groups is reported in Figure 5.7b. Here, the first two groups are inter-
preted as a characterization of two diverse behaviors within the right tail of the
PSD, the first cluster featuring a lighter tail than the other one. The third group,
formed by 1% of the sample, is associated with a drift displaying its main peak at
a grain size of about 0.4mm. As shown in Figure 5.6b, the first group is mainly
associated with the boreholes B1–B5 and the second group with the boreholes
F0–F6. The former group of boreholes is located in an area where the Neckar
River displays a bend, and thus favors the accumulation of the finer sediments in
this area. The PSDs at borehole B5 – considered in Section 5.4.3 – belongs to the
first group, consistent with the stationarity assumption considered before.
Figure 5.8 finally displays the prediction of the field in some unsampled loca-

tions. The kriged field is a smooth interpolation of the available data. The outlying
observations, such as the curve at z = 305.5 at borehole F6, influence prediction
results only locally. For distances higher than the estimated range, the kriged field
is representative of mean particle-size distribution associated with the soil type at
the target location.
Uncertainty assessment of such predictions is nontrivial, as it should take into

account the prediction variance as well as the uncertainty in parameters estimate
(variogram and drift). For this purpose, an extension of the simulation methods
discussed in Section 5.4.4 can be considered.
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Figure 5.8 Class-kriging of PSDs: (a) results at boreholes B5, F4, and F6 and at an
unsampled vertical (denoted as “New”). (b) Vertical distribution of predicted PSDs, for the
group of samples at elevations 301 ≤ z ≤ 306m above sea level (a.s.l.), at borehole F6.
In both panels: gray colors of the solid curves indicate depth; gray-scale colors of the
symbols denote soil type. Smoothed data are represented with solid curves colored
according to the cluster assignment. Source: Modified from Menafoglio et al. [8].

5.6 Conclusions and Perspectives

We here illustrated methods for the geostatistical analysis of FCs, which com-
bine the perspective of Object Oriented Spatial Statistics (O2S2, [38]), with that
of Compositional Data Analysis in Bayes spaces. The main points addressed in
this chapter can be summarized as follows:

(1) FCs, such as PDFs, should not be considered just as data in the space L2, but
one should pay close attention to treat them through an appropriate geometry.
A possible sensible geometry is that of Bayes Hilbert spaces. Although we
focused on FCs with compact support, the theory of Bayes spaces is available
for FCs with support in noncompact set, provided that a reference measures
other than the Lebesgue one is considered.

(2) Stationary and nonstationary methods are available to predict FCs in Bayes
spaces – and particularly PDFs – by relying on the theory of Universal Kriging
in Hilbert spaces of [39]. Unlike traditional methods based on selected fea-
tures of distributional data (e.g. moments or quantiles), predicting the entire
PDF allows taking into account the entire information content of the data, and
project it to unsampled location in the system.
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(3) Uncertainty assessment is key for a full characterization of the field under
study. Here, we illustrated a method for stochastic simulation grounded upon
dimensionality reduction in Bayes spaces. Although only the stationary case
was considered, the extension of the strategy to the nonstationary setting can
be readily envisaged.

(4) Throughout the chapter, we illustrated the methodologies with a real case
study, dealing with PSDs. Advancements of the work illustrated here include
embedding our theoretical and operational framework in the context of
(forward and inverse) stochastic analyses of subsurface flow and transport
in heterogeneous media by way of numerical Monte Carlo simulations or
groundwater flow and transport Moment Equations (e.g. [36, 40–42] and
references therein).

(5) Future perspectives for application of the approach include the analysis of
environmental and Earth system variables whose main characteristics can be
encapsulated in terms of a functional behavior. In addition to PSCs of the kind
we examine here, these might comprise, for example, relative permeability
curves (which are relevant in multiphase flow settings), mineralogic compo-
sition of rocks (for the geochemical characterization of a host reservoir), as
well as breakthrough curves of dissolved chemical migrating in water bod-
ies and/or chemical composition of fluids sampled at multiple locations in an
aquifer system (with implication on human exposure and health hazards).
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Spatial functional statistics (SFS) is a recent research area combining functional
and spatial statistics for dealing with large, complex, and high-dimensional
spatiotemporal data [1]. Starting from the functional data analysis (FDA)
paradigm [2, 3], SFS also takes into account the spatial structure of the data.
Differently from the spatiotemporal framework, the key characteristics of spa-
tiofunctional techniques consist in defining methods making no parametric
assumptions about time effects. The emerging characteristics about the developed
methods are related to the three possible spatial data structures (geostatistical,
spatial point pattern, and lattice data) that can be combined with functional data.
Geostatistical data refer to spatial data varying into a continuous space [4].

Examples can be found in many fields of science, for example dealing with soil
ph in water.
Spatial point pattern data are related to data in the form of a set of points, or

“events” of interest. Examples include locations of trees in a forest, of nests in a
breeding colony of birds, or of nuclei in a microscopic section of tissue [5]. Lattice
data involves regular or irregular spaced points linked to a nearest neighbor struc-
ture [6]. Remote sensing data from satellite offers a wealth example. Differences
among geostatistical, spatial point pattern, and lattice data consist in the different
nature of the spatial domain of definition. In analogy, in SFS, data can be distin-
guished into geostatistical functional methods, functional marked point data, and
functional areal data [7]. Formally, following Delicado et al. [8], a spatial func-
tional process can defined as{

𝝌 s ∶ s ∈ D ⊆ ℜd} , (6.1)

where s is a generic data location in the d-dimensional Euclidean space and 𝜒s
are functional random variables, defined as random elements taking values in a

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
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functional space. When D ⊆ ℜd has a positive volume and the n functions are
observed inn points s1,… , sn, it is usual to refer to themas geostatistical functional
data. When a function is observed at each point s generated by a point process, it
corresponds to a functionalmarked point process. In the case ofD being a fixed and
countable set, and there is a bijection between D and a partition of a geographical
area, we are then in the context of functional areal (or lattice) data.
In many applied contexts, the functional variables are distributions of quantity

of interest. Let us think, for instance in income distributions for several cities of a
country, in distributions of the fraction of bids submitted in an online purchasing
related to different proxy locations, and in distributions of functional magnetic
resonance imaging (fmRI) signals on medical images. In this case, the analysis
needs to give rise to the functional structure of the georeferenced distribution that
can be seen a special case of a functional variable.
Let (Ω, ,P) be a probability space and consider the process:

{
fs, s ∈ D ⊆ ℜd}

and such that for s ∈ D ⊆ ℜd, 𝜔 ∈ Ω, the data structure can be expressed by

fs ∶ I → (0,+∞), s.t. ∫I fs(t)dt = 1,

where I = [a, b] is a compact interval ofℜ.
In these situations, where the functions are probability density functions (PDFs)

located in the space, the analysis becomes difficult since constrains on density
functions need to be considered [9, 10]. Density functions are nonnegative and
integrate to 1, thus they do not live in a vector space, such as the Hilbert space
usually assumed in FDA methods. A different space of support is needed.
Even though methods for dealing with density functions without considering

any information on the spatial dependence are a growing area, methodologies
developed for carrying out their analysis in the geostatistical field are very few,
and they are mainly related to prediction problems [10, 11].
Two main approaches encompass statistical methodologies for data described

by density functions: Symbolic Data Analysis (SDA) [12], using a distributional
approach [13], and FDA, through a compositional interpretation [9, 14–16].
A distinctive feature of these types of analysis is that they make use of the

information inherent to PDF in the case of distributional data (SDA approach), or
quantile functions, and by the infinite dimensional compositional data (namely,
functional compositional data) (FDA approach).
Suppose we have a realization of fs(⋅), s ∈ D at a finite set of locations s1,… , sn,

and we focus on a geostatistical method to describe their spatial correlation. In
particular, we aim to compare and to illustrate the advantages and peculiarities of
SDA and FDA approaches by implementing a local indicator of spatial association.
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Thus, at first, we present a theoretical comparison of the FDA and SDA analysis
when data are density functions without the spatial constrains. Then, we focus on
the potentials and the drawbacks of the two approaches by evaluating their per-
formances in spatial FDA. Especially, we extend a local spatial association index,
the local Moran’s I [17], to evaluate spatial dependence among density functions
The rest of the chapter is organized as follows: in Section 6.1, we introduce the

current state-of-the-art and the formal framework of the two different statistical
approaches: SDA by a distributional approach and FDA by means of a composi-
tional approach.
Section 6.2 shows an extension of the local Moran’s I for density functions that

are spatially located. In Section 6.3, we apply the proposed indexes on an aerial
data set coming from official statistics in United States. The chapter ends with
some final conclusions.

6.1 FDA and SDA When Data Are Densities

As for the statistical techniques on standard data, the analysis of density functions
aims at representing or visualizing and at explaining or predicting the variability
of data. However, two main challenges arise when dealing with this kind of data.
First of all, since a generic density function f ∶ I → (0,+∞), with I = [a, b] ⊂ ℜ is
constrained by ∫I f (t)dt = 1, the functional spacewhere densities live is convex but
not linear, and the classic FDAmethods aswell as the classic data analysismethods
result to be inappropriate. The main difficulty consists in the fact that the obser-
vations belong to a constrained infinite dimensional space and constrains that are
not properly taken into account in the L1 space where density functions live.
As shownbyPetersen andMuller [15], the set of probability functions is a convex

subset of L1 that do not have a linear space structure when using the ordinary sum
and multiplication by real constants.
Moreover, all the usual distances, such as the L1 distance and the L2 distance

between square root density, are not invariant under relevant transformations of
densities.
In the last two decades, two main approaches are facing these challenges: the

distributional and FDA.
These two different approaches have proposed methods and techniques for the

analysis of PDFs starting by different characterizations of distributions. A distri-
bution can be described by a density (or probability) function fi or by a cumulative
distribution function (cdf ) Fi or by a quantile function (qf ) F−1

i .
In a “functional” perspective, the specific features of density functions are

accounted through the generalization to the infinite dimensional setting of the
Aitchison geometry for compositional data, the so-called “Bayes spaces” [18].
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A Bayes space is a linear space of equivalence classes of proportions, including
probability measures. It can be seen as the sample space of random compositions,
and thus, a generalization of the Euclidean structure of the simplex. This space
ensures an interesting geometric representation of density functions that permits
further analysis.
In a “distributional” perspective, density functions are analyzed by means of

quantile functions. Properties and characteristics of these functions are captured
by the use of aWassersteinmetric enlargingmethods based on ameasure of inertia
equivalent to inertia in the Euclidean space.
In the following, we introduce features of density functions as compositional

functional data and as distributional data.

6.1.1 Features of Density Functions as Compositional
Functional Data

Density functions can be considered as a special case of functional data [3], and
their proper statistical treatment represents a challenging task in FDA.
The Aitchison geometry in a simplex, defined as a particular case of a more gen-

eral spacewith-densities and 𝜎-measures called Bayes linear space, andhas been
a convenient and a simple way for dealing with their compositional nature.
In this section, focusing on the definition of theAitchison geometry in a simplex,

we recall and discuss the main characteristics of the Bayes space for dealing with
density functions in a functional space.
Denote the space of continuous and strictly positive density functions by

F(I) =
{
f ∶ I → ℝ, such that f ≥ 0 ∀t ∈ I,∫I f(t)dt = 1

}

with I = [a, b] a compact subset of ℝ.
Due to the inherent constraints related to the unit–integral constraint and to the

relative contributions of the Borel sets of real line to the overall probability, the
usual operations of the classic L2(I) defined as

L2(I) =
{
f ∶ I → ℝ, such that ‖f (t)‖ = ∫I (f (t))2dt < ∞

}
, (6.2)

are not appropriate.
Considering the compositional nature of density functions, Egozcue et al. [14]

proposed to extend the compositionalAitchison geometry to the subset of bounded
PDF over I defined by

2(I) =
{
f ∶ I → ℝ, such that f ≥ 0 and log(f) ∈ L2(I)

}

that is the set of nonnegative real functions on a compact domain I whose loga-
rithm is square integrable.
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Assuming a uniform reference measure, with the aim of finding a generating
system and to express compositions in coefficients of coordinate system, a trans-
formation of a density function is obtained by a log-ratio transformation of the
original data by an isomorphism 𝜓A ∶ F(I) → 2(I).
Let f , g be two elements of 2(I) and 𝜂 = b − a, to obtain a Euclidean space

structure, the following inner product, with associated norm and distance are
defined.
The inner product ⟨⋅, ⋅⟩ ∶ 2(I) ×2(I) → ℝ is defined through the func-

tional

⟨f , g⟩A = 1
2𝜂∫I∫I log

f (t)
f (s)

log
g(t)
g(s)

dtds (6.3)

that can be rewritten as

∫I[log f (t) log g(t)]dt −
1
𝜂∫I log f (t)dt∫I log f (s)ds.

For f ∈ 2(I), the norm ‖⋅‖ ∶ 2(I) → ℝ associated with the inner product
defined in (6.3) is given by

‖f‖ =

[
∫I log

2 f (t)dt − 1
𝜂

(
∫I log f (t)dt

)2
] 1

2

.

In addition, for f , g ∈ 2(I), the associate distance d(f , g) can be defined as

d(f , g)(x) =
[
1
2𝜂∫I∫I

(
log

f (t)
f (s)

− log
g(t)
g(s)

)2

dtds

]1∕2

. (6.4)

The obtained metric and normed space (2(I), ‖⋅‖, d(⋅, ⋅)) is shown to be an
Hilbert space of infinite dimension isometric to the L2 space. This basically says
that operations in L2(I) can be replicated in2(I) via an inverse operation given
by the isomorphism. The distance (6.4) can then be rewritten as

d(f , g)(t) =
1√
2𝜂
dL2(IxI)(f

∗, g∗),

where f ∗ and g∗ are defined analogously as f∗ ∶ I × I → ℝwith f∗(t, s) = log
(
f (t)
f (s)

)
.

This distance, based on the principles of the standard Aitchison distance for
compositions, is invariant under relevant transformations of densities. Thatmeans
that when two probability densities are updated by means of the Bayes’ theorem,
the distance between them remains invariant [14].
In this space, the perturbation (the analogous to the addition) and the powering

(the scalar multiplication by a constant) are defined by

(f ⊕ g)(t) =
f (t)g(t)

∫I f (s)g(s)ds
𝛼 ⊙ f =

f (t)𝛼

∫I f (s)𝛼ds
.
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The definedAitchison geometry is obtained by the isometric log-ratio (ilr) trans-
formation, although this is not the only possible transformation of data.
One of the advantages of the ilr transformation is that it moves thewhole Aitchi-

son geometry to the Euclidean one.
Sharing the principles of Compositional Data Analysis (CoDa), other possible

transformations of the density function such as the additive log-ratio (alr), or the
centered log-ratio (clr) transformations can be considered. Note that different alr
transformations are related by linear transformations [19]. Like the ilr, also clr has
been proposed in FDA [16], is defined as

clr(f )(t) = fc(t) = ln f (t) − 1
𝜂 ∫

b

a
ln f (𝜏)d𝜏, (6.5)

where 𝜂 stands for length of the interval I, in particular 𝜂 = b − a and

1
𝜂 ∫

b

a
ln f (𝜏)d𝜏

is the geometric mean of the functional part.
Such an isometry allows to define the following operations among the

clr-transformations in terms of their expression in L2

clr(f ⊕ g)(t) = fc(t) + gc(t) clr(𝛼 ⊙ f )(t) = 𝛼fc(t)

and the following inner product

⟨f , g⟩ = ⟨fc, gc⟩2 = ∫I fc(t)gc(t)dt.
Introducing the clr-transformation for density functions has, as in CoDa, the

advantage to give good interpretability of the transformed data and a better
visualization by means of a biplot for compositional data [20]. However, as in
CoDa, it is verified the constraint

∫I clr(f )(t)dt = ∫I ln f (t)dt − ∫I
1
𝜂 ∫

b

a
ln f (s)dsdt = 0.

That led to the loss of one dimension and needs to be taken into account for the
analysis of transformed data.
As observed in [21], this constraint may lead to computational problems for

some statistical methods, and it is still well acceptable for distance-based methods
or functional principal component analysis.
The crucial point of the introduced Aitchison geometry with both the ilr and clr

transformations is that it presents the problem that the density functions must be
strictly positive, because the log ratios, and thus the distance computed between
compositions located at the boundaries of the simplex, could degenerate.
Indeed, density functions cannot be always extrapolated as compositional data

because the set where the density functions are zero does not necessarily have zero
measure. This implies that the log ratios in the integral of (6.4) can be annulled in a
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set ofmeasure greater than zero, which implies that the logarithm tends to infinity,
which causes the integral to diverge.
In these cases, if some values of the function are null, they are usually substituted

by some positive values using different methods (i.e. the support of the functions
should be homogenized) [22, 23].
The statistical theory concerning the analysis of density functions according to

the Aitchison geometry and, more in general, to the Bayes space, has been devel-
oped in some few works.
We refer to [9] where a well-suited dimensionality reduction tool has been pro-

posedwhen functional data are densities. In particular, amultidimensional scaling
approach is evaluated with respect to three different distances: the L2 distance
between log-densities, the symmetric Kullback–Leibler divergence, and finally the
Aitchison distance between densities using a clr transformation of the data.
The ideas proposed in the approach rely on multivariate techniques that can be

applied to a special class of functional data. However, as the same author claims,
one must care about the choice of the right density function transformation and
an appropriate distance needs to be defined.
For many commonly used metrics on the space of densities, it does not exist an

isomorphism between the space of densities and the Hilbert space L2, and this is
the reason why the obtained results cannot be simply generalized.
With the aim of proposing an approach that can be generalizable, the work

of [15] proposes a representation of the densities by applying the inverse map
from the linear functional space to the density space. Log-quantile density and
log-hazard transformations are introduced and rates of convergence are derived
for their representations.
In the field of multidimensional techniques giving a key rule to the spline

approximation of the clr-transformation, a functional principal component on
density functions is proposed in [16]. The spline approximation constrained to
the clr-transformation is introduced by granting a regular covariance matrix of
the observations. However, this provides little flexibility to the approach since it
depends on the adopted transformation.
Once the data have been transformed, the smoothing splines (used for the sub-

sequent analysis) cannot always be well adapted to raw (discretized) distributional
observations.
As pointed out by Machalova et al. [21], although the methodology of Bayes

spaces was successfully applied to theoretical problems related with the Bayesian
approach to statistical analysis, its application to statistical processing of density
functions is still limited.
Smoothing the original discretized densities [9] is not coherent with the Bayes

space methodology. This is due to the absence of an approximation tool that
enables to proceed from compositional functional data to smooth functions.
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Optimal smoothing splines for clr-transformed density functions has been pro-
posed by Machalova et al. [21]. It takes all their specific features into account and
provides a concise methodology for reasonable preprocessing of raw (discretized)
distributional observations.
Further arguments in [11] and [10] consider the possibility of combining func-

tional geostatistics and compositional data in infinite dimensional spaces bywork-
ing in the framework of the Aitchison geometry. In particular, [11] proposes a
kriging predictor in a Hilbert space, Salazar et al. [10] introduces two alternative
kriging predictors that depend on the characteristics of the density function to be
predicted.
In conclusion, the compositional approach to the data analysis described by den-

sities, via the log-ratio approach and the theory of Bayes space, provides a good
mathematical framework when density functions are positive along all the shared
support. Indeed, once data have been transformed using the clr, for other suitable
transformations, the analysis is performed with the classical techniques of FDA.
On the other hand, no solutions are provided when densities assume structural
zero values. For example, if one wants to compute the distance between two daily
temperature distributions observed, let us say, the first at the North Pole and the
second at the Death Valley, it is expected that the first ranges between −32 and
0 ∘C, while the second between 11 and 39 ∘C. For avoiding the zero density prob-
lem, it would be hard to justify any assignment. So this problem may affect the
final results of an analysis on densities that are considered only in a portion of
their support and/or are modified in order to avoid the zero density problem.
All these methods have been developed for phenomena that are usually related

on a single variable observed over a continuum [9]. The problem could be also
extended to multivariate case.

6.1.2 Features of Density Functions as Distributional Data

Density functions are rarely found in a continuous form in practice. Often, the
aggregation of individual observations leads to a discretized forms in terms of
histogram data, frequency distributions, and so on. In a probabilistic perspective,
these can be seen as a realization of distributional data.
In Section 6.1.1, we noted that functional compositional data can provide

a description of density functions exploiting its compositional interpretation.
However, considering a density function in a compositional view implies doing a
transformation of the data that must be done in an accurate way. In this section,
we discuss a SDA approach for dealing with density functions, and we refer to it
as SDA approach.
Following the terminology adopted in SDA, the variables, which allow distri-

butions as description of individuals, are termed modal-numeric (probabilistic)
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variables or distributional symbolic variables. As defined byBock andDiday [24], a
modal variableY , with basic domain on the setE of objects is amappingE → 
of all possible measures 𝜋 on  (completed by a 𝜎-field):

i → Y (i) ∈ , for i ∈ E.

Typically, E = {1,… ,n}, 𝜋i is a frequency, probability or weight distribution,
thus, for ease of notation, we may write

Y (i) = {S(i), 𝜋i},

where S(i) ⊆  is the support of 𝜋i in  .
Let f be a density function of a variable Y , F be the corresponding distribution

function, and F−1 its inverse function (the quantile function).
In its distributional version proposed by Irpino and Verde [13], a modal variable

is called a distributional symbolic variable if for all i, the measure 𝜋i has a density
fi, and is written as

Y (i) = fi.

For the generic ith object, we recall that the quantile function, being the inverse
of the cdf, is a function [0, 1] → S(i) such that

F−1
i (t) = inf

{
y ∈ S(i) ∶ t ≤ Fi(y)

}
. (6.6)

It is also definedwhen the distribution is not continuous on S(i). If the distribution
is continuous on the domain S(i), the quantile function corresponds to its classical
inverse function.
This general definition includes several and different types of distributional

symbolic variables such as multivalued discrete data, interval data, and histogram
valued data that permit to consider a unique approach for their analysis.
The classical summary statistics for univariate data can be applied equally to

distributional data. As pointed out in [13], it is possible to define the so-called
Fréchet and Chisini means starting, respectively, from proximity relations among
data from the definition of a function of the observed data.
The definition of a Fréchet andChisinimeans of distributional variables requires

two conditions: the definition of a distance between distributions (or random
variables) and the definition of, at least, the sum of distributions and the product
of a distribution by a scalar.
Manymetrics or semimetrics in the space of the density functions can be defined

to compare distributional data [25]. Among them the most promising, from the
practical point of view, is the metric based on quantile functions that are in a
one-to-one correspondence with the respective density functions.
Let fi(y) and fi′ (y) be two density functions and let F−1

i (t),F−1
i′ (t) be the two cor-

responding quantile functions associated with cdf s Fi(y) and Fi′ (y). The distance
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between the probability distributions is defined by means of quantile functions as

dW (fi(y), fi′ (y)) =

√
∫

1

0

[
F−1
i (t) − F−1

i′ (t)
]2dt. (6.7)

This definition introduced by Ruschendorf [26] corresponds to the Wasserstein
distance with interesting interpretative results related to the first two finite
moments of the density functions.
Let fi(y) and fi′ (y) be two density functions having finite the first two moments.

The density function fi(y) is in a one-to-one correspondence with the cdf Fi(y) and
the quantile function F−1

i (t) (the inverse of the distribution function). Denoted by
𝜇i the expected value of fi, and by 𝜎i the standard deviation, Irpino and Verde [27]
has been shown the following equivalence:

d2W (fi(y), fi′ (y)) = ∫
1

0

[
F−1
i (t) − F−1

i′ (t)
]2dt

=
(
𝜇i − 𝜇i′

)2
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Location

+
(
𝜎i − 𝜎i′

)2
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Size

+ 2𝜎i𝜎i′ (1 − 𝜌i,i′ )
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Shape
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Variability

, (6.8)

where 𝜌i,i′ is defined as

𝜌i,i′ =
∫ 1
0
(
F−1
i (t) − 𝜇i

) (
F−1
i′ (t) − 𝜇i′

)
dt√[∫ 1

0
(
F−1
i (t) − 𝜇i

)2dt
] [∫ 1

0
(
F−1
i′ (t) − 𝜇i′

)2dt
]

=
∫ 1
0
(
F−1
i (t) − 𝜇i

)(
F−1
i′ (t) − 𝜇i′

)
dt

𝜎i𝜎i′
= ∫

1

0

(
F−1
i (t) − 𝜇i

)
𝜎i

(
F−1
i′ (t) − 𝜇i′

)
𝜎i′

dt

=
∫ 1
0 F

−1
i (t)F−1

i′ (t)dt − 𝜇i𝜇i′
𝜎i𝜎i′

(6.9)

and provides the correlation of two series of data. It is represented, respectively,
by the t-th quantile of the first distribution and the t-th quantile of the second. In
this sense, wemay consider it as the correlation between quantile functions repre-
sented by the curve of the infinite quantile points in a Q–Q plot. It is worth noting
that, as 𝜎i and 𝜎i′ are positive, 0 < 𝜌i,i′ ≤ 1 and is equal to 1 when the two standard-
ized series of quantiles are the same, or, in otherwords, when the two distributions
are identical except for the means and the standard deviations (i.e. they are two
uniforms, two normal distributions, etc.).
The L2 Wasserstein distance has been object of many works dealing with the

analysis of distributional data. The reasons are mainly related to the key rule that
its property of decomposition plays in the interpretation of results as introduced
by Irpino and Verde [28].
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First, as shown in [27], it can be used for defining an inertia measure among
distributional variables, providing a way of looking at variability in the sameman-
ner of the Euclidean distance. In addition, according to its decomposition (6.8), it
permits to investigate the kind of variability present in the data.
Starting from the properties of this distance, a number of basic statistical tools

have been extended to distributional variables [13, 29].
As for the compositional functionalmethods, but in a “symbolic” perspectives in

the context of Distributional Data Analysis (DDA), the specific features of density
functions are accounted for their complex characteristic as “informative object”
like distributional data, or multivalued data. In this case, each entity corresponds
to a distribution that may be represented by a histogram or a quantile function
[30].
Within this context, proposals regarding statistics for histogram (or distribu-

tional) valued data [13], clustering strategies [27, 31–33], regression methods
[29, 34], and time series forecasting techniques [35] have been developed.
SDA methods, contrary to FDA techniques, have been developed for more than

one single variable.
Among the mentioned methods, a good review and discussion about

the many points of view can be found in [13], where histogram-valued, or
distribution-valued data analysis is introduced by means of quantile functions.
Under this paradigm, quantile functions are seen as a way to describe informa-

tion about density functions.
Among the SDA and FDA methods, we focus here on two special cases, the

simple log-ratio and the quantile approach, and we illustrate the potential of both
the methods. In Section 6.2, a measure of spatial association for georeferenced
density functions is presented.
Even if this approach lacks some mathematical properties related to the space

of quantile functions, on the other hand, has some interpretative advantages in
explaining the variability of a distributional variable. Further, it is insensitive to
the zero density problem and does not require that the density function must be
positive on a common support.

6.2 Measures of Spatial Association for Georeferenced
Density Functions

All the elements to introduce a spatial correlation measure for evaluating perfor-
mances of SDA and FDA methods on density functions can now be introduced.
We now illustrate and compare the main characteristics of the two approaches

FDAand SDA for dealingwith density functions by using the two different recalled
measures of distances the Aitchison and the Wasserstein metrics.
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According to Tobler’s First Law of Geography, the main characteristic of
spatial data is that the units are correlated; in this framework, spatial association
and spatial autocorrelation measures are used to indicate the coincidence of
values similarity with location proximity. Although the two concepts are similar,
spatial autocorrelation is a weaker form based on second moments of a joint
distribution.
The concept of spatial autocorrelation may be viewed as a special case of corre-

lation, with ameaning related to the space of reference. Correlation statistics were
classically designed to show relationships between variables; spatial autocorrela-
tion shows the correlation within variables across a georeferenced space. Whereas
the concept of spatial correlation is related to “neighboring observations” that can
be defined using contiguity or distancematrices among the spatial units expressed
through the definition of a spatial weightsmatrix. A large number of tools to inves-
tigate the nature and extent of spatial correlation between spatial variables exist.
One of the most used is the Moran’s index I [36].
Originally introduced in 1950, it is the first measure of spatial autocorrelation

introduced to study stochastic phenomena distributed in space in two or more
dimensions. Moran’s index has been subsequently used in almost all studies
employing spatial autocorrelation.
Moran’s index I is used to estimate the strength of the correlation between obser-

vations as a function of the spatial distance separating them (correlograms). It can
be defined as an indicator of both global and local spatial association. It shares
many similarities with Pearson’s correlation coefficient since its numerator is a
covariance, while its denominator is the sample variance. And as a correlation
coefficient, its values range from +1 (meaning strong positive spatial autocorre-
lation), to 0 (meaning a random pattern) and to −1 (indicating strong negative
spatial autocorrelation).
Formally, a spatial correlation indexmeasures the spatial association in the data

considering simultaneously both locational and attribute information. Two types
ofmeasure of spatial correlation can be defined: globalmeasures summarizing the
spatial association with respect to the whole region, and local measures related to
the association of a single location with respect to all its neighborhood.
In the following, we will focus on two main types of spatial association indices:

theMoran’s index I asmeasure of global spatial autocorrelation, and the local indi-
cator of spatial association (LISA) function.

6.2.1 Identification of Spatial Clusters by Spatial Association
Measures for Density Functions

Let fs1 ,… , fsn be a set of n georeferenced density functions observed in s1,… , sn
arbitrary locations in D ⊆ ℜd.
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We can define the well-known Moran’s index I as a global measure of spatial
autocorrelation by

I =

∑
si ,sj
𝑤si ,sj f

∗
si f

∗
sj

n𝜎2(fs)
, (6.10)

where

● 𝑤sisj is an element of a n × n contiguity matrixW defined as follows:

𝑤sisj =
{
1, if a region si is next to region sj,
0, other cases;

● f ∗si = fsi − f
∗
si and f

∗
sj = fsi − f

∗
sj are the centered density functions with respect to

the mean functions f si =
1
n

∑n
1 fi and f

∗
sj =

1
n

∑n
1 fj;

● 𝜎2(fs) =
1
n

∑n
i=1 ∫T(fsi (t) − f si (t))

2dt is the sample variance.

The proximity matrixW is everywhere 0 except for contiguous locations si and
sj, where it takes the value 1. This is the simplest formalization, however, an
extended definition of this contiguity matrix can be considered by allowing for
the computation of Moran’s I at various “levels” of distance. This formalization
provides a global measure of spatial autocorrelation by the impact of distance
on the strength of spatial autocorrelation for each variable [17]. The strength of
Moran’s I lies in its simplicity; however, it presents the limitations associated with
averaging local variations. In order to overcome this problem, to examine local
autocorrelation a LISA function [17], which can be seen as the local equivalent
of Moran’s I, has been introduced. It is defined such that the sum of all local
indices is proportional to the (global) value of Moran’s statistic. Formally, it can be
expressed by

Isi =

∑
i,j𝑤sisj f

∗
si f

∗
sj

f 2si∗
. (6.11)

According to LISA values, it is possible to compute, for each location, its simi-
larity with its neighbors and also to test its significance. In addition, it is possible
to define a clustering structure by observing the observed values against the aver-
aged value of their neighbors. The clustering configuration can be identified froma
scatterplot. This is the so-called “Moran scatterplot”where four possible situations
can be configured:

● Locations with similar neighbors and high values, also named “hot spots” with
high–high relations;

● Locations with similar neighbors, but low values: low–low. Also known as
“cold spots.”
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● Locations with low-value neighbors and with high values: low–high. Potential
“spatial outliers.”

● Locations with local autocorrelation not significant.

We propose to use both indices for dealing with density functions by using the
two approaches, the SDA and FDA.

6.3 Real Data Analysis

We compare the proposed approaches using data coming directly in form of
distributions (histograms) from the US Census. We limited our data for the 254
counties of Texas (the state with the largest number of counties in United States)
considering two variables: the age distribution of the population and the income
distribution of households. Data have been extracted from the American Com-
munity Survey (ACS) with the five years estimates of the distributions for 2015.1
In particular, data comes from the S0101 and S1901 table of the survey program.
For each county, from the S0101 table, we have the estimate of the proportions
of population broken down in classes of 5 years from 0 to 85 years and a last open
class, 85 years and more, that we decided to close at 100 years, for a total of 18
age classes (the bins of the histograms). About the income of households, from
the S1901 table, we observed the distribution of households broken down in 10
classes of unequal length, as follows less than $ 10K, from $ 10K to $ 15K, from
$ 15K to $ 25K, from $ 25K to $ 35K, from $ 35K to $ 50K, from $ 50K to $ 75K,
from $ 75K to $ 100K, from $ 100K to $ 150K, from $ 150K to $ 200K, $ 200K or
more. For the application, we decided to close the first class at 0, as lower bound,
and the last one at $ 500K, as an upper bound. It is worth noting that the income
distribution has bins of different length and that, as it is commonly known, is
very skewed. The last aspect may affect the use of the functional–distributional
approach that is based on a preprocessing step where distributions are smoothed
by means of B-spline functions. In order to take into account this aspect,
we considered also a Box–Cox transformation of data with 𝜆 parameter
equal to 0.2.2
For the analysis, we used the HistDAWass package, developed in R for the

analysis using the SDA-distributional approach, while for the compositional–
functional one, we followed the strategy proposed in [16] consisting of a prepro-
cessing step of the density functions by means of particular B-splines computed

1 Source: U.S. Census Bureau, 2011–2015 ACS 5-Year Estimates.
2 After performing a cross-validation step on a grid of values ranging from −2 to 2, we observed
that the choice of 𝜆 = 0.2 allows to obtain income distribution with a low skewness for all the
densities and quasi-Gaussian distributions.
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on the clr transformations of the densities as proposed in [21], followed by a
simplicial functional principal component analysis (SFPCA) [16].
For both the approaches, we computed the LISA functions using the local

Moran index, and we plotted the resulting clusters on a map considering only
those counties having a significant value (p-value less than 0.05%) of the index.
As contiguity matrix, we used an adjacency matrix that is a binary matrix, where
the value 1 indicates that two counties have at least one point in common on
the borders.
In Figure 6.1, we show a part of the input data matrix. Consistently with the

SDA approach, each cell contains a distribution (a histogram in this case).

AGE INCOME

Anderson County

Andrews County

Angelina County

Aransas County

Archer County

0 25 50 75 100 0 100 200 300 400 500

Figure 6.1 ACS-5y 2015, Texas data: first five counties (of 254) of the input data table:
age is in years, income is in thousands of dollars. Source: Data from American Community
Survey 2015.
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6.3.1 The SDA Distributional Approach

For the spatial analysis of the two variables, we use the statistics developed in [13].
For data represented by histograms, it is possible to compute such basic statistics
in a finite time and without approximations taking advantage from the fact that
quantile functions of histograms are piecewise linear functions [27].3

For the AGE variable, we obtained a global Moran’s index equal to 0.325, while
for INCOME variable, the index is equal to 0.344.We computed the LISA functions
using the localMoran’s indices for the two variables, andwe colored those counties
having a significant index different from zero (see Figure 6.2).
Further, we considered a modified version of the Moran plot, where we

represented the observed residual quantile functions from the mean quantile
one vs. the weighted ones (with respect to the mean weighted quantile function).
In Figure 6.3, the residual functions are shown, and we labeled the countries
using the classical Moran way of labeling into four categories (HH, LH, HL,
and LL). Finally, in Figure 6.4, we represent the counties with a significant local
index, colored accordingly with their label and nothing that some clusters are
obtained. Looking at clusters, we note that counties closer at the Mexico borders
are characterized by a younger population and a low income, while the richest
zones are around Austin, Houston, and Dallas that are the main cities of the state.

AGE INCOME
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Mor
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Mor

–1

0

1

2

3

................................................................................................

Figure 6.2 ACS-5y 2015, Texas data: counties with a significant local Moran’s I.
Source: Data from American Community Survey 2015.

3 The procedures have been implemented in the HistDAWass package developed in R.
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Figure 6.3 ACS-5y 2015, Texas data: Moran’s plot for residual functions.
Source: Data from American Community Survey 2015.
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AGE INCOME

LABS

HH

LH
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NA

LABS

HH

LH

LL

NA

Figure 6.4 ACS-5y 2015, Texas data: cluster of counties with a significant local
Moran’s I. Source: Data from American Community Survey 2015.

Observing the AGE, we note also that Harris county (the one of Houston) has
younger population, while older population form some clusters in the north and
at the east of Dallas.

6.3.2 The Compositional–Functional Approach

Using the compositional–functional approach suggested in [16], we first per-
formed a preprocessing step for smoothing the clr transformed functions of the
observed densities. We used a particular procedure for B-spline smoothing of
density functions as proposed in [21]. For the AGE variable, we used a cubic
B-spline of the clr transformation of the densities using five equispaced knots
[0 25 50 75 100]. We obtained a 254 × 7 matrix of coefficients and then performed
a functional principal components using the fda package in Matlab. We stored
the first two dimensions describing, respectively, the 64% and the 18% of the
total variation (82% of variation explained by the first two eigenfunctions). We
considered the scores for the first and the second factor for computing the local
Moran’s I.
In Figure 6.5 are represented the two harmonics representing the first two eigen-

functions. For each dimension, we computed the global Moran’s indexes that are,
respectively, 0.378 and 0.008. We also derived the local Moran’s indices, and we
plotted in Figure 6.6, the counties with the significant indices, and additionally,
we also plot the clusters obtained from the first and the second factor.
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Figure 6.5 ACS-5y 2015, Texas data: AGE variable, first two harmonics after the
functional principal component analysis (FPCA) of the smoothed clr functions. In black,
the main harmonics, while in dark and light gray are drawn, respectively, the ±2 standard
deviations of each are drawn. Source: Data from American Community Survey 2015.

For the INCOME variable, we used a cubic B-spline of the clr transformation of
the densities using five knots [0 35 75 150 500]. We obtained a 254 × 7 matrix of
coefficients, and we then performed a functional principal components using the
fda package in Matlab. We stored the first two dimensions describing respectively
61% and the 33% of the total variation (94% of variation explained by the first two
eigenfunctions). We considered the scores for the first and the second factor for
computing the local Moran’s I.
In Figure 6.7 the two harmonics representing the first two eigenfunctions are

shown. For each dimension we computed the global Moran’s indices that are
respectively: 0.303 and 0.109. We also derived the local Moran’s indices, and we
plotted in Figure 6.8 the counties with the significant indexes together with the
plot with the clusters obtained from the first and the second factor.
Considering that the income distributions are skewed, we performed a Box–Cox

[37] transformation of the data using a value of 𝜆 equal to 0.2. This value has
been chosen because it allows a transformation of the distributions into Gaussian
ones. For the INCOME variable transformed with the above-mentioned Box–Cox
transformation, we used a cubic B-spline of the clr transformation of the densi-
ties using five equal-spaced knots [0 3.08 6.16 9.25 12.33]. We obtained a 254 × 7
matrix of coefficients and then we performed a functional principal components
using the fda package in Matlab. We stored the first two dimensions describing,
respectively, 83% and 12% of the total variation (95% of variation explained by the
first two eigenfunctions, a bit more than the variation explained in the previous
case). We considered the scores for the first and second factors for computing the
local Moran’s I.
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Figure 6.6 ACS-5y 2015, Texas data: AGE variable. On top, the two maps with counties
colored in gray scale accordingly to significant local Moran’s indexes. The clusters are
represented on the bottom. Source: Data from American Community Survey 2015.

In Figure 6.9, the two harmonics representing the first two eigenfunctions are
shown. For each dimension, we computed the global Moran’s indexes that are,
respectively, 0.458 and 0.124. We also derived the local Moran’s indexes, and we
plotted in Figure 6.10, the counties with the significant indexes together with the
clusters obtained from the first and second factors.

6.3.3 Discussion

Looking at the results, we note that clusters identified by using the compositional–
functional approach are greater in size with respect to the ones identi-
fied with the SDA-distributional one. It is important to note that using the
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Figure 6.7 ACS-5y 2015, Texas data: INCOME variable, first two harmonics after the
FPCA of the smoothed clr functions. In black the main harmonics, while in dark and light
gray are drawn, respectively, the ±2 standard deviations of each harmonic. Source: Data
from American Community Survey 2015.
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Figure 6.8 ACS-5y 2015, Texas data: INCOME variable. On the top, the two maps with the
counties colored in gray scale accordingly to significant local Moran’s indices. The clusters
are represented on the bottom. Source: Data from American Community Survey 2015.
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Figure 6.9 ACS-5y 2015, Texas data: INCOME variable transformed using a Box–Cox
procedure, first two harmonics after the FPCA of the smoothed clr functions. In black, the
main harmonics, while in dark and light gray, the ±2 standard deviations of each
harmonic are drawn. Source: Data from American Community Survey 2015.

compositional–functional approach, the preprocessing step plays an important
role in modifying the original data.
It appears that the choice of the number of knots and their position leads to

smoothed functions that tend to be closer with respect to the original ones. This
induces a general reduction of Aitchison distances, and, as a consequence, trans-
formed data may appear more similar, and thus, the spatial correlation is general
higher than the ones observed when densities that are not preprocessed. Further,
we note that input data are approximations of the population density. For example,
as we observed in the application, input data are histograms that can be consid-
ered as density estimators of the true densities. Thus, using a preprocessing step for
smoothing histograms introduces an additional approximation of the true density
that is made not directly on the raw data, so the combination of the two smoothers
(the histogram and the B-spline of the clr transformed histograms) may add arti-
ficial noise in the data. Finally, for the sake of brevity, we did not experiment with
different choices for the parameters of the B-spline smoothing step, but we believe
that an optimal choice may be hard to achieve.

6.4 Conclusion

In this chapter, we compared two different approaches for dealing with georefer-
enced data described by density functions. While the compositional–functional
approach related to the Aitchison geometry has nice mathematical properties,
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Figure 6.10 ACS-5y 2015, Texas data: INCOME variable transformed using Box–Cox
procedure. On top, the two maps with the counties colored in gray scale accordingly to
significant local Moran’s indices. The clusters are represented on the bottom. Source:
Data from American Community Survey 2015.

we note that it can be used after a preprocessing smoothing step, where the user
choice of the parameter may affect the whole analysis. On the other hand, even
if the SDA-distributional approach based on the Wasserstein distance between
densities has not the mathematical properties of the Bayes spaces, it is able to
work directly on the data represented as a density. In both cases, a source of error
is due to the definition of the input data, but in the SDA-distributional approach,
no transformation or smoothing of densities is performed. Finally, even if the
compositional–functional approach appears to be more elegant, it seems to be
less clear from a practical point of view.
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7.1 Introduction

The purpose of this chapter is to present two techniques for clustering spatial
functional data. Generally, in any clustering framework, data inside each cluster
should be as similar as possible, but different from those in other clusters. Recent
researches on the clustering of independent functional data are available in the
literature devoted to functional data analysis (FDA). In particular, k-means tech-
niques are adjusted to functional data, hierarchical algorithm, and some of its vari-
ants are proposed as well, mainly for independent data (e.g. [1–10]). A review of
clusteringmethods for functional data under the independentmodel is provided in
[11]. Othermodel-based approaches for clustering functional data are given in [12,
13]. In several domains, data are of spatiofunctional nature, observations may be
dependent curves at some spatial locations, and clustering these data taking into
account the spatial dependency can bemore accurate. The independence hypothe-
sis does not hold in this case. Fewworks exist on such dependent data: Dabo-Niang
et al. [14] andGiraldo et al. [15] extended some approaches on hierarchical cluster-
ing to the context of spatially correlated functional. Giraldo et al. [15]measured the
similarity between two curves by the trace-variogram [16], while the spatial vari-
ation is taken into account by using kernel mode and density estimation in [14].
Other approaches for clustering spatial functional data are given recently in [8, 17].
An appropriate clustering approach should lead to homogeneous clusters and

heterogeneity between them. Consequently, the number of clusters is an impor-
tant issue (e.g. [18]). Some clusteringmethods do not automatically determine the
number of clusters. Techniques are developed in the literature to overcome this

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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difficulty. Most of them propose to estimate or to select the number of clusters by
solving an optimization problem involving some cluster homogeneity index (e.g.
[18–20]).
We deal with a measurable spatial process X =

(
Xs, s ∈ ℝN) , N ≥ 1, defined

on some probability space (Ω, ,P). Assume that the process X is observed on
some spatial region  ⊆ ℝN of cardinal n,  = {s1,… , sn}, si ∈ ℝN , i = 1…n. We
assume also that for each location s ∈ , the random variables Xs are valued in
a metric space ( , d) of eventually infinite dimension and are locally identically
distributed (see for instance [21]). Here d(., .) is some measure of proximity, for
instance ametric or a semimetric. This means that when a site u is close enough to
site 𝑣, the variables Xu and X𝑣 have same or similar distributions. This assumption
is less restrictive that strict stationarity. It is motivated by the fact that one can
imagine that variables located at neighbors sites may be similar and have the same
local distribution that may be different to the local distribution of another set of
variables at other locations. In the classical framework of FDA, the space  is a
space of functions, typically the space of squared integrable functions defined on
some finite interval  = [0,T], T > 0.
Let S denote the set of the n curves, S = {Xs, s ∈ } (renamed sometime in an

arbitrary way, S = {X1,… ,Xn}).
First, we present the problem of clustering spatial functional data generated by a

mixture of Gaussian processes with logistic prior weights depending on the loca-
tion. Second, we present an extension to spatial data of the method studied by
Dabo-Niang et al. [2] which is a descendant hierarchical classification (HC) pro-
cedure based on distances between the modal and mean curves of a set of curves.
The two approaches are illustrated with pollution data.

7.2 Model-Based Clustering for Spatial
Functional Data

In the framework of clustering, the model-based techniques assume that there
exists a latent categorical random variable Z defining G clusters of data such that
probability distribution of data is a mixture of cluster distributions. Let f denote
the probability distribution of X and fg denote the probability distribution of X ,
given Z = g. Then, the mixture model is written as follows:

f (x) =
G∑
g=1
𝜋gfg(x), (7.1)

where 𝜋g = P(Z = g) is the prior probability of cluster g.
In the particular case of spatial dependency, we extend the model given in

Eq. (7.1) by involving the location s (s ∈ ) into the priors probabilities of clusters.
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The mixture model becomes

f (x|s) =
G∑
g=1
𝜋g(s; 𝛽)fg(x), (7.2)

where 𝛽 is some parametrization of the spatial prior. Thus, conditional to the clus-
ter Z = g, the distribution of observations within the cluster is independent of the
location, all spatial dependency being captured by the priors 𝜋g(s; 𝛽). This idea is
used in [22] for clustering spatiotemporal data. The authors propose the multino-
mial logistic regression as a model for the 𝜋g(s; 𝛽),

ln
𝜋g(s; 𝛽)
𝜋G(s; 𝛽)

= 𝛽0g + ⟨𝛽g, s⟩ℝN . (7.3)

In a parametric framework, the conditional distribution fg is depending on
parameters 𝜃g. For example, in the Gaussian model, 𝜃g is the mean and the
covariance matrix of cluster g. Let 𝜃 denote the set of all parameters including
also those defining the 𝜋g(s; 𝛽). Thus, the model becomes

f (x|s; 𝜃) =
G∑
g=1
𝜋g(s; 𝛽)fg(x; 𝜃g). (7.4)

In the finite dimensional setting (see for instance [23]), the multivariate prob-
ability density function is the main tool for estimating such a model using the
Expectation–Maximization (EM) algorithm. For functional random variables, the
notion of probability density in not well defined because of the infinite dimen-
sion of data. To overcome this difficulty, James and Sugar [13] and Bouveyron and
Jacques [24] use the expansion coefficients ofX into some finite basis of functions.
This approach allows them to get a well-defined probability density function on
the coefficients. In [25], the functional principal component analysis (PCA) is used
to define a surrogate of the probability density for functional data. This approach
is used in the context of model-based clustering in [10, 26]. In a spatial setting, [27]
have proposed a mixed-effect model in which the fix effect can take into account
the spatial dependencies.Moreover, assuming a spatial autoregressive dynamic for
the random effect, they propose a functional classification criterion to detect local
spatially homogeneous regions. In what follows, we assume that given Z = g, X is
a Gaussian process. Then, within the cluster g, we consider a modified version of
the pseudo-density defined in [25]:

f (qg)g (x; 𝜃k) =
qg∏
j=1

fgj(cgj(x); 𝜆gj)
d∏

j′=qg+1
fgj′ (cgj′ (x); 𝜆g), (7.5)

where fgj is the probability density of the j-th principal component Cgj of X
within the cluster g. The random variables Cgj (j = 1,… , qg) are independent



�

� �

�

160 7 Clustering Spatial Functional Data

Gaussian zero-mean with variance equal to the eigenvalues 𝜆gj of the covariance
operator of X , and the random variables Cgj′ (j′ = qg + 1,… , d) are independent
Gaussian zero-mean with variance equal to the mean 𝜆g of the eigenvalues
𝜆gj′ (j′ = qg + 1,… , d) of the covariance operator of X . Thus, the parameters
𝜃g = (𝜆g1,… , 𝜆gqg , 𝜆g), qg and d need to be defined. Notice that compared to the
definition of [25], we have added the term

∏d
j′=qg+1

fgj′ (cgj′ (x); 𝜆g).
In fact, the proposed surrogate density can be interpreted as a true density if the

functional data belong to a finite dimensional space of functions spanned by some
basis {𝜙1,… , 𝜙d}, d ≥ 1, i.e.

X(t) =
d∑
j=1
𝛼j𝜙j(t), t ∈ [0,T],T > 0.

Thus, we will take d as the dimension of the basis which has been used to per-
form the smoothing of the data. In this case, the principal components Ckj of the
functional PCA can be obtained by performing PCA on the expansion coefficients
of X in the metricM given by the inner product of the basis functions. Thus, if the
learning data considered are now the expansion coefficients multiplied by M1∕2,
then the proposed approach can simply be reinterpreted as learning a parsimo-
nious high-dimensional model (see [28]) on these new data.
Note that it is also possible to consider sparse versions of themixturemodel such

as to consider the homoscedastic setting (equal covariance process by cluster).

7.2.1 The Expectation–Maximization (EM) Algorithm

We are now ready to describe the EM algorithm for estimating 𝜃 and therefore the
clustering.
As in the finite setting, based on Eq. (7.5), we define a likelihood of the sample

of curves S = {xs, s ∈ } by
l(𝜃; S) =

∏
s∈

( G∑
g=1

𝜋g(s; 𝛽)f
(qg)
g (xs; 𝜃g)

)
. (7.6)

A classical way tomaximize the likelihoodwhen data aremissing (here the vari-
able Z) is to use the iterative EM algorithm.We use this algorithm tomaximize the
likelihood (7.6) and adapt it for updating the principal component scores of each
group as well as the parameters 𝛽 defining the 𝜋g(s) in (7.3).
The algorithm consists in maximizing the approximated completed

log-likelihood. Let Zg(s) be the indicator random variable for the cluster g at
location s, then the completed log-likelihood is given by

Lc(𝜃; S,Z) =
∑
s∈

G∑
g=1

Zg(s)
(
log𝜋g(s; 𝛽) + log f (qg)g (xs; 𝜃g)

)
,
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which is known to be easier to maximize than its incomplete version. Let 𝜃(h) be
the estimated parameter value at iteration h ≥ 0 of the algorithm.

7.2.1.1 E Step
As the groups belonging to Zg(s)’s are unknown, the E step consists in computing
the conditional expectation of the approximated completed log-likelihood:

(𝜃; 𝜃(h)) = E𝜃(h) [Lc(𝜃; S,Z)|S]
=
∑
s∈

G∑
g=1

t(h+1)g (s)
(
log𝜋g(s; 𝛽) + log f (qg)g (xs; 𝜃g)

)

where t(h+1)g (s) is the probability for the curve Xs to belong to the group g condi-
tionally to Cgj = cgj(xs), j = 1,… , qg:

t(h+1)g (s) = E𝜃(h) [Zg(s)|s] =
𝜋g

(
s; 𝛽(h)

)
f (qg)g

(
xs; 𝜃

(h)
g

)

∑G
𝓁=1 𝜋𝓁

(
s; 𝛽(h)

)
f (q𝓁 )𝓁

(
xs; 𝜃

(h)
𝓁

) . (7.7)

7.2.1.2 M Step
The M-step consists in maximizing the conditional expectation of the completed
log-likelihood with respect to 𝜃:

𝜃
(h+1)
g = argmax𝜃g

∑
s∈

t(h+1)g (s) log f (qg)g (xs; 𝜃g),

and

𝛽(h+1) = argmax𝛽
∑
s∈

G∑
g=1

t(h+1)g (s) log𝜋g(s; 𝛽).

Note that 𝛽(h+1) is obtained as a solution of a weighted logistic regression.
The EM algorithm starts with an initial random partition of data S into G

clusters.
If parsimoniousmodels such as homoscedasticmodels are considered, this leads

to a modification of the update of 𝜃(h+1)g , see [28] for more details.

7.2.2 Model Selection

In order to select the number of cluster G when qg (g = 1,… ,G) are known,
we propose to maximize the Bayesian Information Criterion (BIC) criterion
defined below:

BIC(G) = log l(G) −
𝜈G

2
log(n),

where 𝜈G = (N + 1)(G − 1) + Gd +
∑G

g=1(qg(d − (qg − 1)∕2) + 1) is the number of
parameters of the model (spatial mixing proportions, center means, principal
scores, and variances) and n = ||.
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When the values qg (g = 1,… ,G) are unknown, they can be selected in order to
maximize the BIC criterion by considering the following modified M-step which
tries to maximize the conditional expectation of the BIC criterion:

(
qg, 𝜃

(h+1)
g

)
= argmax

(qg ,𝜃g)

∑
s∈

t(h+1)g (s) log f (qg)g (xs; 𝜃g) −
𝜈qg

2
logn,

where 𝜈qg = qg(d − (qg − 1)∕2) is the additional number of parameters required for
the model with qg principal components.
Note that if we consider the homoscedastic setting, the value of the BIC criterion

can be easily computed at each step of the EM algorithm for each possible value
of q which does not depend on g since in this case this parameter is the same
for each cluster. In this case, the expression of 𝜈G would be 𝜈G = (N + 1)(G − 1) +
Gd + (q(d − (q − 1)∕2) + 1).
In Section 7.4, we present the results of the application of this technique to air

quality data.

7.3 Descendant Hierarchical Classification (HC) Based
on Centrality Methods

Recent advances in nonparametric FDA allow to define centrality features for
a sample of curves (see e.g. [29]). Dabo-Niang et al. [2] indicated that both the
mean and the median curves are interesting when dealing with homogeneous
data, while the modal curve would be more useful for detecting possible different
structures in the data. Consequently, Dabo-Niang et al. [2] used a descendant HC
method based on comparing the modal curve either with the mean or the median.
Location measures (mean, mode, and median) summarize the data and aim to
provide a representative element of the sample. The spatial mean used is the same
as in the independent and identically distributed (i.i.d.) setting compared to the
mode and median.
In our context, for the set of curves S, we define the mean curve as

Xmean,S =
1
n
∑
s∈

Xs.

The notion of median curve for i.i.d. functional data can be extended to the
spatial framework, see [30] and [2], for general definition in i.i.d. data and
Dabo-Niang et al. [14], for a heterogeneity spatial index. Here, let the median
curve be

Xmedian,S = arg min
Xt∈S, t∈

∑
s∈

dm(Xt,Xs),

with dm(Xt,Xs) = d(Xt,Xs)Ws,t, where Ws,t is a spatial weight. Indeed, the spatial
dependency structure between the n spatial units is described by a nonstochastic
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spatial weights n × n matrixWn that depends on n. The elementsWs,t = Ws,t,n of
this matrix are usually considered as inversely proportional to distances between
spatial units s and twith respect to somemetric (physical distance, social networks,
or economic distance, see for instance [31]) and Chapter 13 of this book. Here, the
spatial weighted matrix Wn is constructed by taking k-neighbors of each spatial
unit using k-nearest neighbor (kNN) method (k-Nearest Neighbors Algorithm).
This k-neighbors matrix can be computed by, for instance the function knn2nb of
the R package spdep [32] of the software R [33].
From a theoretical point of view, the mode, when it exists, is an observation

whose probability is locally maximum. So the modal curve of the sample S can be
estimated as follows:

Xmodal,S = arg max
Xt∈ , t∈

∑
s∈

K
(dm(Xt,Xs)

h

)

where K(⋅) is a kernel function, h = hn is a sequence of positive numbers called
bandwidth, considered as a smoothing parameter. The kernel K acts as a weight
function: the larger isdm(x,Xs), and the smaller isK

(
dm(x,Xs)∕h

)
. Thismeans that

among all the curves X in S, the modal curve defines a spatial neighboring area,
where the sample of curves is the most dense and dependent. The pertinence of
this estimate of a modal curve and asymptotic properties are similar to that given
in [14]. This last assumed a mixing condition on the spatial process and used it to
measure the spatial heterogeneity of the data.
The elements K, d(⋅, ⋅), and h are essential in nonparametric estimation. In the

functional context, a semimetric d(⋅, ⋅) is often used as a proximity measure. In
particular, a semimetric based on the first q scores of a functional PCA, used in
Section 7.4, is defined by

mPCA
q (Xi,Xj)2 = ∫

(
X (q)
i (t) − X (q)

j (t)
)2
dt,

where X (q) denotes the vector of the first q-th scores components of X (see [29]
for more details). A kernel K is a weighting function used in nonparametric
estimation techniques. There exist a large variety of kernels in the FDA context,
the most classical ones are the positive and symmetrical kernels, such as box,
triangle, quadratic, and Gaussian (see [29]). In Section 7.4, we use the following
kernel:

K(u) = 3
2
(1 − u2)1(0,1)(u).

We choose this kernel because it gives more relevant results (among several
kernel functions investigated) from the classification point of view of the air qual-
ity data considered.
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7.3.1 Methodology

The proposed methodology performs iteratively by splitting S into increasingly
homogeneous classes. Tomeasure the heterogeneity of a given sample S of curves,
Dabo-Niang et al. [2] compared modal and mean curves by computing the Sub-
sampling Heterogeneity Index (SHI). The median curve can also be used instead
of the mean, e.g. when one wants to assign to the same group all curves that have
the same shape but which are affected by some clearly horizontal shift (see [2]).
The SHI is computed by using a large numberL of randomly generated subsamples
S(l) ⊂ S of the same size

SHImean(S) =
1
L

L∑
l=1

m(Xmodal,S(l) ,Xmean,S(l) )
m(Xmean,S(l) , 0) +m(Xmodal,S(l) , 0)

, (7.8)

wherem(X , 0) denotes the proximity measure between a function X and the con-
stant null function 0. A large value ofm(Xmodal,S(l) ,Xmean,S(l) ) indicates thatXmodal,S(l)
and Xmean,S(l) have different behaviors according tom(⋅, ⋅). The larger SHImean(S) is,
the more heterogeneous the sample S will be. However, since the goal is to decide
if the set S should be split into G classes S1,… , SG another index is required. The
splitting will be accepted if the heterogeneity in each class is smaller than before
splitting. To this end, the Partitioning Heterogeneity Index (PHI) is considered. It
is defined as a weighted average of the SHI over classes:

PHImean(S; S1,… , SG) =
1

Card(S)

G∑
g=1

Card(Sg)SHImean(Sg). (7.9)

The larger PHI is, themore heterogeneous each class S1,… , SG is. Both SHImean(S)
and PHImean(S; S1,… , SG) are employed to define a score SC given by

SC = SCmean(S; S1,… , SG) (7.10)

=
SHImean(S) − PHImean(S; S1,… , SG)

SHImean(S)
A positive score SC indicates a gain of homogeneity inside classes. The splitting is
accepted if SC is greater than a fixed threshold 𝜏. For instance, 𝜏 = 5% indicates
that a splitting is accepted if it bringsmore than 5% of homogeneity within classes.
If the score is negative, then S does not require this splitting. A value of 𝜏 that is too
small indicates that the considered splitting is not required and the gain in terms
of homogeneity is not significant. The value of 𝜏 is chosen according to the type of
the data and the purpose of the classification. It is analogous to the choice of the
first-kind error in hypotheses testing. All the details concerning this methodology
are given in [29].
Aside from the above splitting criteria, it is required to define classes of S.

Ferraty and Vieu [29] proposed for independent data, a procedure to establish
the subgroups S1,… , SG as well as their number G. The procedure is related
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Put S to be the whole data set S = {X1,...,Xn}
Select τ

Compute SHImean(S)

Stop the procedure

The group S is not split

If G = 1

If G > 1

Identify the number G of peaks

of the “optimal” concentration

curve ds(·)ˆ

If SC < τ

If SC > τ

Stop the procedure

Reject the splitting of S
into S1,...,SG

Build the subsets S1,...,SG
Compute SC = SC(S;S1,...,SG)

Split S into S1,...,SG

For each g = 1,...,G
with S = Sg

Figure 7.1 Algorithm of the descendant HC.

to the choice of the bandwidth parameters h. The choice of h is done by using
the small ball probabilities. They play a key role in the theoretical properties of
mode estimate (see [2]). A small ball probability is defined as ℙ[Xi ∈ B(X , h)] for
X ,Xi ∈ S which is the probability that a curve Xi ∈ S belongs to the ball B(X , h)
with center X and radius h. For a given bandwidth h, one has at hand n probability
pointsℙ[Xi ∈ B(X , h)], i = 1,… ,n for which the corresponding density dS,h can be
estimated by a kernel estimate d̂S,h. The estimated density can be computed using,
for instance, the package np [34] of the R language [33]. The number of groups G
will be determined by the number of peaks of d̂S,ĥS . In practice, the bandwidth is
selected using the entropy such that ĥS = argmin h ∫ d̂S,h(t) log d̂S,h(t) dt.
The main algorithm of this classification approach is illustrated in Figure 7.1.

The reader is referred to [2, 14, 29] for more details. A R [33] code, in the
context of i.i.d. data, is available at https://www.math.univ-toulouse.fr/ferraty/
SOFTWARES/NPFDA/index.html.

7.4 Application

We illustrate the methodologies by using data of Ozone Concentration (OC)
(units of measurement) collected in 106 monitoring stations of United States

https://www.math.univ-toulouse.fr/ferraty/SOFTWARES/NPFDA/index.html
https://www.math.univ-toulouse.fr/ferraty/SOFTWARES/NPFDA/index.html
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Figure 7.2 Location of 106 monitoring stations (in the same number of cities) of
ozone concentration in United States. Source: Environmental Protection Agency,
https://www.epa.gov/outdoor-air-quality-data.
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Figure 7.3 Ozone concentration curves (obtained after smoothing the data by using a
Fourier basis) at 106 monitoring stations of the United States. Source: Environmental
Protection Agency, https://www.epa.gov/outdoor-air-quality-data.

(see Figure 7.2) in 2015. The dataset is available at https://www.epa.gov/outdoor-
air-quality-data.
Specifically, for each one of the 106 stations, we have data of OC recorded hourly

from19 July at 12 a.m. to 20 July at 11 p.m. (Figure 7.3).Weuse linear interpolation
to estimate some missing values. We denote the OC at time t, t ∈ [1, 48] as X(t).
In order to apply themethodologies described earlier, OC functions were obtained

https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
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(Figure 7.3) by expanding the discrete data (48 data at each station) in terms of 25
Fourier basis functions. The number of basis was chosen by using cross-validation.

7.4.1 Model-Based Clustering

We apply the EM algorithm for clustering the spatial functional data described
above.Ahomoscedasticmodel has been applied since it givesmore relevant results
from the classification point of view, and the value of qwas selected during the EM
algorithm by maximizing the BIC computed at each step for each possible value
of q.
Under this setting, the BIC indicates that two or three clusters could be appro-

priated (Figure 7.4).
In Figure 7.5, we show the classification of the monitoring stations in two and

three groups, respectively. For the clustering in two clusters, q = 18 principal com-
ponents have been retained. We see on the map that the obtained clustering well
separates the East cities from the West cities. Moreover, we see on the curves that
the clusters are also well separated from the curves point of view. On an average,
we see in Figure 7.6 that West cities have higher pollution than East cities. For
the clustering in three clusters, q = 17 principal components have been retained.
We see on the map that the obtained clustering still separates well the East curves
from the West curves, moreover it also separates the North from the South for the
West side. When looking at these curves on Figure 7.6, we see that it is in the six
first hours that cluster 1 (North) is the most different from cluster 3 (South).

Figure 7.4 Value of BIC
criterion according to the
number of clusters.
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Figure 7.5 Locations of the stations are colored according to the cluster (a, b) and curves
colored according to the cluster (c, d) for two clusters (c) and three clusters (d).
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Figure 7.6 Average curves by cluster, respectively, for two clusters (a) and three
clusters (b).

As a conclusion of this application, for the clusterings (with two or three clus-
ters), let us observe that the method makes a trade-off between the geographical
proximity and the common features of the curves, which allow to take into account
spatial dependencywhile performing clustering.We see on the application that the
obtained results are easily interpretable and give a relevant spatial segmentation.
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7.4.2 Hierarchical Classification

The previous algorithm has been used on our set of 106 curves with the threshold
parameter (𝜏) fixed at 25%, and L = 0 for reducing the computational cost (i.e. HI
is used instead of SHI). Let us denote by S the whole sample of curves, given in
Figure 7.3.
Recall that the spatial weighted matrixWn is constructed by taking k neighbors

of each unit using kNN method.
At the first iteration, the number of neighbors is equal to k = 4 and a number

q = 8 of eigenvalues used in the semimetric d(, ⋅, ) (different values have been
taken, this last gives better results in terms of homogeneity) and the data is split
into two groups (CLASS 1 and CLASS 2 of, respective, sizes 5 and 101), since the
corresponding concentration density d̂S had two modes. This splitting is accepted
since the gain of homogeneity (score SC) is larger (26%) than the threshold. Then,
for the second iteration, the second (CLASS 2) group is split into two subgroups
(CLASS 21, CLASS 22) with k = 1 and q = 7 and splitting score equal to 43%.
At the third iteration, only CLASS 21 is split into two subgroups (CLASS 211
and CLASS 212) with k = 1 and q = 6 and splitting score equal to 55%. The
procedure has been stopped with all the splitting scores smaller than 25% at the
fourth iteration.
In Figure 7.7, the results of the different iterations of our procedure are pre-

sented. The sizes of the final groups CLASS 1, CLASS 22, CLASS 211, and CLASS
212 are 5, 51, 23, and 27, respectively. The mean and mode curves are given in
Figure 7.8.
CLASS 1 (respectively CLASS 22) concerns essentially stations with higher

main peak (around the middle of a day) ozone concentration (respectively
smaller) than in other groups, particularly for the first day. The main difference

Full sample

CLASS 1

26%

CLASS 2
43%

CLASS 21
55%

CLASS 22

CLASS 212CLASS 211

Figure 7.7 The classification results of the descendant HC.
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Figure 7.8 Locations of the stations colored according to the cluster (a), mean (b), and
mode (c) curves colored according to the cluster (b, c).

between CLASS 211 and CLASS 212 comes also from the importance of the
ozone concentration peak (smaller for the second group) and the width of their
bases (larger for CLASS 211). It seems that at each iteration, the algorithm splits
according to the maximum of the ozone concentration.
Regarding Figures 7.8 and 7.9, wemay say that as in the firstmethod, the clusters

are separated from the curves point of view and geographical proximity. We see on
the map of Figure 7.8 that there are mainly two groups of curves from the west
(CLASS 1, CLASS 211, and CLASS 212) cities with higher pollution, while CLASS
22 (with the largest number of curves) is distributed in the west and east parts and
has mainly smaller ozone concentration than the other groups. The CLASS 211 is
mainly located in the west part.
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Figure 7.9 The curves of the different groups by the descendant HC.

7.5 Conclusion

The purpose of this chapter is the classification of functional spatial curves using
the functional framework. Two functional classification methods are considered,
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namely, descendant HC based on modal curve and the model-based clustering
using a mixture model. These functional classification methods are presented and
applied to ozone concentration data. We see on the application that the obtained
results are interpretable and give a relevant spatial segmentation.
Although this work is mainly practical, consistency results may be eas-

ily obtained, see the references therein. An advantage of spatial functional
approaches is that they allow the clustering to take in account some spatial
dependency. For the two different methods considered, the different classification
results allow to identify two main ozone concentration area. The first located
in the west is characterized by large peak, and the second is characterized by
high volume, it is located in the east and west parts. Two separate clustering
could be tried in the west and east parts of the considered region. This could
be adapted in order to account for regional spatial variability. Future efforts can
focus on adapting the distance measure used in the hierarchical method to the
classification objective (risk analysis, survival analysis, etc.) and to the data record
length and quality.
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8.1 Introduction

The spatial indexing, which provides geographical reference of data, is encoun-
tered in many subject areas such as oceanography, epidemiology, forestry survey,
and economy. As a consequence, the scientific research community is increasingly
interested in analyzing spatial data and then in developing more and more effi-
cient spatial statistical tools. Early spatial models appeared at the beginning of the
nineteenth century and are mainly related to parametric spatial statistics mod-
eling (see [1–5] for more details on statistics for spatial data). The nonparametric
methods are able to reveal structure in data that might bemissed by classical para-
metric ones. Nowadays, a dynamic concerns the deployment of nonparametric
methods to spatial statistics such as density estimation, regression, or prediction
(e.g. [6–11]). However, most of nonparametric spatial contributions deal with uni-
variate or multivariate data, whereas recent advances of real-time measurement
instruments and data storage resources led to the emergence of functional data.
The studied objects can then be curves, not variables or vectors of variables. This
kind of data is more and more frequently involved in statistical problems since
the 1990s. For an introduction to this field, the reader is directed to the books
of [12–14].
Currently, the literature on spatial nonparametric statistics for functional data

is not extensive (see for instance, [15–23], among others) compared to parametric
models (see, e.g. Chapters 2–4, 13, and 15 of this book).
The baseline of this current chapter is nonparametric regression estimation

for functional data presenting spatial dependence. The goal is also to predict

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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unsampled locations by taking into account neighborhood similarities imposed by
both the geographic proximity and the values of available explanatory variables.
To the best of our knowledge, very little research deals with this issue. Among
the nonparametric methods, the usual kernel density estimator (see [24]) is
often used in order to estimate the regression operator. In [11], a nonparametric
kernel prediction is considered for spatial stochastic processes when a stochastic
sampling design is assumed for selection of random locations. The particularity
of this predictor is to be constructed with a kernel function on the locations. In
the kernel-type estimator suggested in [25], the dependence structure is reduced
to the estimation of one indicator variogram, as a nonparametric alternative to
Matheron’s indicator variogram. Wang et al. [26] proposed a local linear spa-
tiotemporal prediction model, using a kernel weight function taking into account
the distance between sites. The works of [22] and [23] proposed, respectively,
a spatial density and regression estimators, for multivariate data, depending
on two kernels, one of which controls the distance between observations and
the other controls the spatial dependence structure. All these previous works
concern real-valued data. The spatial kernel density estimator proposed in [18]
for functional data does not directly take into account the spatial dependency
in the form of the estimator, but the authors explained how this can be done by
introducing a second kernel, based on distances between sites. Here, our interest
lies in proposing spatial nonparametric regression and prediction approaches
by combining these three last works using more general conditions adapted
to some local identically distributed and spatially dependent variables. The
originality of the suggested approach is to take advantage of each regression
or prediction method introduced previously. In fact, our regression estimate
uses some local identically distributed observations and permits to propose
predictions based on local geographic proximity of the sites. A similar idea has
been presented in [27] to deal with a functional regression problem for strictly
stationary processes. The idea of incorporating explicitly a spatial correlation
structure into a nonparametric regression estimator assuming that the error term
is a second-order stationary error process with a parametric correlation model,
has been used previously for real-valued data in [28] and [29]. These authors used
local linear regression estimator and a generalized cross-validation criterion for
the effect of spatial correlation. Despite these efforts, an explicit general spatial
proximity structure into a kernel predictor is still not available. The present work
goes along this direction and takes advantage of these previous works. Our model
is different since there is no parametric correlation model on the error term, and
the observations are not from strictly stationary processes.
Denote the integer lattice points in the N-dimensional Euclidean space by ℤN ,

N ≥ 1. We consider a spatial process {Zi = (Xi,Yi), i ∈ ℤN} defined over some
probability space (Ω, ,ℙ).
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A point in bold i = (i1,… , iN ) ∈ ℤN will be referred as a site. Suppose Xi takes
values in a separable semimetric space ( , d(⋅, ⋅)) of eventually infinite dimension
(i.e.Xi is a functional randomvariable andd a semimetric) andYi takes values inℝ.
In the following, || ⋅ ||will denote any norm inℝd orℝN (therewill be no ambiguity
since the vectors of ℝN are in bold), C and C′ will indicate some arbitrary positive
constants that may vary from line to line, for each real u, ⌊u⌋will indicate the inte-
ger part of u. Moreover, we write un = O(𝑣n)means that ∃C such that ||un∕𝑣n|| ≤ C
as 𝑣n → ∞ and un = o(𝑣n)means that ||un∕𝑣n|| → 0 as 𝑣n → ∞, where n ∈ ℝN .
As it is classically assumed in the literature, the process under study (Zi) is

observable over the rectangular domain n =
{
i = (i1,… , iN ), 1 ≤ ik ≤ nk, k =

1,… ,N}, where a point i ∈ ℤN refers to a site. We denote n = (n1,… ,nN ) and
let n̂ = n1 × · · · × nN be the sample size. From now on, we assume for simplicity
that n1 = n2 = · · · = nN = n (e.g. [30, 31] and [32]), but the following results can
be extended to a more general framework. We write n → ∞ if n → ∞.
We do not suppose strict stationarity. We will assume that the variables

(Xi,Yi)i∈n are locally identically distributed (see for instance [33] who considered
density estimation for local identical time-series data): a sufficient number of
(Xi,Yi) has a distribution close to that of a couple (X ,Y ). One may imagine that
when i is close to some i𝟎, and if there is enough sites i close to i𝟎 ∉ n, then
sequence (Xi,Yi)i∈n may be used to predict Yi𝟎 .
We suppose that the spatial process satisfies the following nonparametric regres-

sion model: Yi ∶= r(Xi) + 𝜖i, where r(x) = 𝔼(Yi|Xi = x) is assumed to be indepen-
dent of i, the noise 𝜖i is centered, 𝛼-mixing, and independent of Xi.
The regression estimate is defined by

rn(x) =

{ gn(x)
fn(x)
1
n̂

∑
i∈nYi otherwise,

(8.1)

where the functions fn and gn are defined by

fn(x) =
1
an

∑
i∈n

K
(
d(x,Xi)
hn

)
and gn(x) =

1
an

∑
i∈n

YiK
(
d(x,Xi)
hn

)
,

with an =
∑

i∈n𝔼
[
K

(
d(x,Xi)
hn

)]
.

The model in Eq. (8.1) is used to predict Yi𝟎 at a location i𝟎 inℤN using as input
the information (Xi,Yi) available at the neighboring locations.
The rest of the chapter is organized as follows. In Section 8.2, we provide the

assumptions and large sample properties. An application to prediction is given
in Section 8.3. Two different predictors are studied. To check the performance of
the proposed methodology, numerical results are reported in Section 8.4. Conclu-
sion is given in Section 8.5, while proofs and technical lemmas are postponed in
Appendix 8.A.
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8.2 Large Sample Properties

We first introduce some mixing assumptions. In fact, to take into account the
spatial dependency, we assume that the process {Zi = (Xi,Yi), i ∈ ℤN} satisfies
a mixing condition defined in [8] as follows: there exists a function 𝜒(t) ↘ 0 as
t → ∞, such that

𝛼(𝜎(S), 𝜎(S′)) = sup{|ℙ(A ∩ B) − ℙ(A)ℙ(B)|,A ∈ 𝜎(S),B ∈ 𝜎(S′)},
≤ 𝜓(Card(S),Card(S′))𝜒(dist(S, S′)),

where dist(S, S′) is the Euclidean distance between the two finite sets of sites S and
S′, Card(S) denotes the cardinality of the set S, 𝜎(S), and 𝜎(S′) denote, respectively,
the 𝜎-fields generated by {Zi, i ∈ S}, and {Zi, i ∈ S′}, 𝜓 is a positive symmetric
function nondecreasing in each variable. We recall that the process is said to be
strongly mixing if 𝜓 ≡ 1. As usual, we will assume that one of both following con-
ditions on 𝜒(.) is verified. These conditions are defined by

𝜒(i) ≤ Ci−𝜃, for some 𝜃 > 0, (8.2)

i.e. that 𝜒(i) tends to zero at a polynomial rate, or

𝜒(i) ≤ C exp(−si), for some s > 0,

i.e. that 𝜒(i) tends to zero at an exponential rate. Concerning the function 𝜒(⋅),
for the sake of simplicity, we will only study the case where 𝜒(⋅) tends to zero at a
polynomial rate. However, similar asymptotic results could be obtained with 𝜒(⋅)
tending to zero at an exponential rate (which implies the polynomial case). Inwhat
follows, it will be assumed that 𝜓 satisfies either

∀n,m ∈ ℕ, 𝜓(n,m) ≤ Cmin (n,m), (8.3)

or

𝜓(n,m) ≤ C(n +m + 1)𝜅 , (8.4)

for someC > 0, and some 𝜅 ≥ 1. Such functions𝜓(n,m) can be found, for instance,
in [7–9, 21, 34].
Let un =

∏N
i=1(logni)(logni)1+𝜖 for 𝜖 > 0, then

∑N
n∈ℕN 1∕n̂un <∞.

Wewill denote by pi the probability distribution ofXi and by pi,j, the joint proba-
bility distribution of (Xi,Xj), for all i and j. The small ball probabilities are denoted
by 𝜑i,x(h) = ℙ[Xi ∈ B(x, h)], recall that 𝜑i,x(h) goes to zero when h goes to zero
(see, e.g. [14] for more details).
For any random variable Z and p ∈ ℕ∗, ||Z||p = (𝔼 [|Z|p])1∕p.
The mean square consistency result of rn is obtained under the following

assumptions on r, the kernel, the bandwidth, and local dependence condition.
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-H1: The kernel K ∶ ℝ → ℝ+ is of integral 1 such that there exist two constants
C1 and C2 with 0 < C1 < C2 <∞, such that

C1𝟏[0,1](t) ≤ K(t) ≤ C2𝟏[0,1](t).

-H2: r is a Lipschitz function, that is r ∈ Lip , where

Lip = {f ∶  → ℝ,∃C3 ∈ ℝ+
∗ ,∀x, x′ ∈  , |f (x) − f (x′)| < C3d(x, x′)}.

-H3: .(i) Local dependence condition: For all i ≠ j ∈ ℕN , the joint probability
distribution pi,j of Xi and Xj satisfies

∃𝜀 ∈ (0, 1], pi,j(B(x, hn) × B(x, hn)) ≤ C4(𝜑i,x(hn)𝜑j,x(hn))
1+𝜀
2 .

(ii) Small ball probabilities: For all i and x, there exist positive constants
C′
1 and C

′
2 and a function 𝜑x(h) tending to zero as h goes to zero such

that

0 < C′
1𝜑x(h) ≤ 𝜑i,x(h) ≤ C′

2𝜑x(h).

Remark 8.1 These assumptions are very standard in the context of spatial non-
parametric modeling. Indeed, Assumptions H1 and H2 allow to control the bias of
the estimator. Assumption H1 is satisfied, for instance, by several kernels with com-
pact support such as triangular (Bartlett), biweight, triweight, Epanechnikov, and
Parzen kernels. The Lipschitz condition H2 allows the precise rate of convergence
to be found, whereas a continuity-type model would give only convergence results.
Local dependence conditionH3(i) is a classical condition in kernel estimation based
on dependent data nonnecessarily, strictly stationary (see, e.g. [8, 35] and [36]).

In order to control the constraints on the bandwidth sequence due to themixing
coefficients with polynomial decreasing rate (8.2), we define

𝛾1 =
2N − 𝜃
4N − 𝜃

and 𝛾∗1 = N − 𝜃
N(3 + 2𝜅) − 𝜃

.

The following result permits to have a bound of the mean squared error of rn.

Theorem 8.1 Assume that assumptionsH1–H3 hold with |Yi| ≤ M.

(1) If (8.3) is satisfied and

n̂𝜑x(hn)𝛾1
(
log n̂

)−𝛾1 → ∞with 𝜃 > 4N,

or
(2) if (8.4) is satisfied and

n̂𝜑x(hn)𝛾
∗
1
(
log n̂

)−𝛾∗1 → ∞with 𝜃 > (3 + 2𝜅)N,
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then

||rn(x) − r(x)||2 = O

(
hn +

√
1

n̂𝜑x(hn)

)
.

Precisely, we have

||rn(x) − r(x)||2 = C3 × hn

+
(
2C(2MC2 + 2M

√
C4 + C0) + 4M

)
×

√
1

n̂𝜑x(hn)
,

where C0 is a constant depending on the constant appearing in Lemma 8.1.

Remark 8.2 The conditions on the bandwidth in Theorem 8.1 are classical tech-
nical assumptions, which appear (in the calculations when studying the asymptotic
behavior of the estimator) in the particular case where the mixing coefficient is such
that 𝜒 tends to zero at a polynomial rate (see [37] and [38] for some examples). Each
of these conditions is related to a specific case of mixing in the spatial context and are
used, respectively, in [37] and [39].

8.2.1 Uniform Almost Complete Convergence

We consider a set such that ⊂
⋃𝑣n

k=1 Bk, where Bk = B(xk, 𝓁n) (note that such
set can always be built), 𝑣n > 0 is some integer, xk ∈  , k = 1,… , 𝑣n, and 𝓁n > 0.
We assume that

-H4 There exists a nonincreasing positive function Γ such that,
(i) limn→∞Γ(hn) = 0 and

0 < C′′
1 Γ(hn) ≤ 𝜑i,x(hn) ≤ C′′

2 Γ(hn), for all i, x ∈ ,
where C′′

1 and C
′′
2 are some constants.

(ii) limn→∞
n̂Γ(hn)
log n̂

→ ∞.

(iii) 𝑣n = n̂𝛽 for some 𝛽 > 0.
-H5 Local dependence condition: For any i ≠ j ∈ ℕN , the joint probability dis-

tribution pi,j of Xi and Xj satisfies

∃𝜀 ∈ (0, 1], pi,j(B(x, hn) × B(x, hn)) ≤ C′′
3 (Γ(hn))

1+𝜀, for all x ∈ .
-H6 There exists s > 2 and C > 0 such that

(i) supi 𝔼
(||Yi||s||Xi

)
< C.

(ii) supi,j 𝔼
(|||YiYj

|||
|||Xi,Xj

)
< C for some constant C > 0.
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Let us introduce the following functions of the mixing coefficient which is
related to the conditions on the bandwidth and the moment of the functional
covariate:

𝜃1 =
2s(N − 𝜃)

2Ns(𝛽 + 2) + 𝜃(2 − s)
, 𝜃2 =

(𝜃 − 2N)s
2Ns(𝛽 + 2) + 𝜃(2 − s)

,

𝜃3 =
2(Ns + 𝜃)

2Ns(𝛽 + 2) + 𝜃(2 − s)
, 𝜃∗1 = s(−N − 𝜃)

N(2s𝛽 + 2s𝜅 + s + 2) + 𝜃(2 − s)
,

𝜃∗2 =
s(𝜃 − N)

N(2s𝛽 + 2s𝜅+ s + 2) + 𝜃(2 − s)
, 𝜃∗3 = 2(N + 𝜃)

N(2s𝛽 + 2s𝜅+ s + 2) + 𝜃(2 − s)
.

The following theorem gives an uniform almost sure convergence of the regres-
sion estimate.

Theorem 8.2 Assume that assumptionsH1–H6 hold.

(i) If (8.3) is satisfied and

n̂Γ(hn)𝜃1
(
log n̂

)𝜃2u𝜃3n → ∞with 𝜃 > 2Ns(𝛽 + 2)∕ (s − 2) , (8.5)

(ii) or if (8.4) is satisfied and

n̂Γ(hn)𝜃
∗
1
(
log n̂

)𝜃∗2u𝜃∗3n → ∞with 𝜃 > N(2s𝛽 + 2s𝜅 + s + 2)∕ (s − 2) ,
(8.6)

then

sup
x∈

||rn(x) − r(x)|| = O
⎛⎜⎜⎝
hn +

√
log n̂
n̂ Γ(hn)

⎞⎟⎟⎠
a.s.

Recall that [18] gave an uniform almost sure bound of their regression estimate

on a specific set  that is O
(
h★n +

√
log n̂

Γ(h★n )n̂

)
with Γ(h★n ) = sup

x∈
𝜑x(hn)★ when the

considered process is strictly stationary.

8.3 Prediction

This section is concerned with the problem of predicting the process {Yi, i ∈ ℤN}
at some unobserved locations, and more particularly, to predict the unobserved
value Yi𝟎 at a location i𝟎 ∈ ℤN , i𝟎 ∉ n, where n ⊂ n is the observed spatial set
of finite cardinality tending to ∞ as n → ∞. The spatial dependence implies the
need to determine which other units in n have an influence on the considered
location i𝟎.
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Let (Xi𝟎 ,Yi𝟎 ) be of same distribution as (X ,Y ). As said in the introduction, one
may imagine that when i is close to i𝟎, and if there are enough sites i close to i𝟎,
then the sequence (Xi,Yi)i∈n

may be used to predict Yi𝟎 .
The predictor of Yi𝟎 derived from the regression estimate rn is

Ŷi𝟎 = rn(Xi𝟎 ) =

∑
i∈n

YiK
( d(Xi0 ,Xi)

hn

)

∑
i∈n

K
( d(Xi0 ,Xi)

hn

) , (8.7)

if the denominator is not null; otherwise, Ŷi𝟎 is the empirical mean of the
observed Yi.
Note that this predictor does not take into account the spatial proximity. To take

into account the spatial locations, we consider another predictor defined by

Ỹ i𝟎 =

∑
i∈n

YiK1
( d(Xi0 ,Xi)

bn

)
K2,𝜌n (||i𝟎 − i||)

∑
i∈n

K1
( d(Xi0 ,Xi)

bn

)
K2,𝜌n (||i𝟎 − i||)

, (8.8)

if the denominator is not null; otherwise, Ỹ i𝟎 is the empirical mean of the observed
Yi. The kernels K1 and K2 are defined on ℝ, bn and 𝜌n are sequences of band-
widths tending to zero as n → ∞, and we write K2,𝜌n (||i𝟎 − i||) = K2

(
𝜌−1n

‖‖‖
i𝟎−i
n

‖‖‖
)
,(

i
n
=

(
i1
n
,
i2
n
,… ,

iN
n

))
quantifying the proximity between sites. Then we have

𝜌−1n
‖‖‖
i𝟎−i
n

‖‖‖ ≤ 1 means that ‖‖i𝟎 − i‖‖ ≤ n𝜌n.
Thus, for the site i𝟎, let kn = kn,i𝟎 =

∑
i𝟙{||i−i𝟎||≤dn} denote the number of neigh-

bors i for which the distance between i and i𝟎 is less than or equal to distance
dn > 0 such that dn → ∞ as n → ∞. This last assumes that the proximity between
locations (eventually) increases as the sample size increases. Taking the Euclidean
distance and if N = 2 (square grid), we have kn ≤ 4d2n − 4dn + 4 which leads to
kn = O(d2n) and kn = o(d𝜂n), 𝜂 > 2. Moreover, if dn = o(n̂𝜖), 0 < 𝜖 < 1, then kn =
o(n̂2𝜖), See, for instance [40]. Let dn = n𝜌n; consequently, we have d2n = n̂𝜌Nn and
kn = O(n̂𝜌Nn ) as well as kn = o((n̂𝜌Nn )𝜂∕2), 𝜂 > 2. Note that the role of the kernel K2
here is to handle the nearness between locations. The corresponding weights on
the sites are assumed to decline as a measure of distance between corresponding
sites (that are normalized) increases. The predictor Ỹi𝟎 is a function of the number
kn of neighbors i for which the distance dn is chosen hereafter to be n𝜌n, with kn →
+∞, kn = O(dNn ) = O(n̂𝜌Nn ). If one assumes that dn = o(n̂𝜖), 𝜖 ∈ (0, 1), then kn can
be expressed in terms of n̂. In what follows, we assume that kn = CNdNn + O(d𝛽n)
as dn → +∞, 0 < 𝛽 < N and CN is a constant that depends on N.

Remark 8.3

● To give some examples where the assumption on kn is reasonable, consider qn as
the number of standard lattice (in ℤN) points contained in a closed ball (i𝟎, dn)
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with center i𝟎 and radius dn that is qn = Card{i ∈ ℝN , ||i − i𝟎|| ≤ dn}, where i𝟎
is any vector of ℝN. It is well known that

qn = 𝜋N∕2

Γ(N∕2 + 1)
dNn + O(dN−1

n ),

where Γ(⋅) is the gamma function; see, for instance, [41–43] and [44], and
notice that kn = CNqn. In particular, if N = 2, we have qn = 𝜋

Γ(2)
d2n + O(dn),

qn = 𝜋

Γ(2)
d2n + o(d2∕3n ).

● Note that although the predictor Ỹ i𝟎 takes into account the spatial proximity, it
does not measure the spatial dependency. However, before using this predictor, one
could evaluate the importance of the dependence, for instance, by fitting a vari-
ogram (e.g. [29, 45]) on the data to be processed.

In particular and for simplicity, as proposed in the numerical Section 8.4, let us
consider in the following that i𝟎 ∈ n,n = n∖{i𝟎}, then the previous predictors
become

Ŷ ♯i𝟎 =

∑
i∈n
i≠i𝟎

YiK
(
d(x,Xi)
hn

)

∑
i∈n
i≠i𝟎

K
(
d(x,Xi)
hn

) ,

and

Ỹ★
i𝟎 =

∑
i∈n
i≠i𝟎

YiK1
(
d(x,Xi)
bn

)
K2,𝜌n (||i𝟎 − i||)

∑
i∈n
i≠i𝟎

K1
(
d(x,Xi)
bn

)
K2,𝜌n (||i𝟎 − i||)

.

The following result gives an asymptotic property of Ŷ ♯i𝟎 and is a consequence of
Theorems 8.2. Its proof will be omitted.

Corollary 8.1 Under conditions of Theorem 8.2, Ŷ ♯i𝟎 converges almost surely to Yi𝟎
as n → ∞.

Remark 8.4

● Similar asymptotic results can be obtained for Ỹ★
i𝟎
depending on the sample size,

kn and 𝜌n.
● Instead of Ỹ★

i𝟎
, one can consider a predictor using nonnormalized sites:

Ỹ★
i𝟎 =

∑
i∈n
i≠i𝟎

YiK1
(
d(x,Xi)
bn

)
K2

( ||i𝟎−i||
𝜌n

)

∑
i∈n
i≠i𝟎

K1
(
d(x,Xi)
bn

)
K2

( ||i𝟎−i||
𝜌n

) .
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Such function allows the asymptotic result to remain valid with some minor
changes in conditions on kn.

● This current work is supported by a particular sampling scheme, which only
includes deterministic designs for the spatial locations. One can generalize this
work to random spatial sample such as in [11] (for real-valued regression) and
in [40] (for spatial heteroskedasticity-and autocorrelation-consistent [HAC]
estimation) and have a bound including 𝜌𝛼n.

Now that we have checked the theoretical behavior of our regression estimate,
we are going to study its practical features through some numerical results. To
this end, in Section 8.4, the regression estimate and the prediction procedure are
illustrated by some simulations.

8.4 Numerical Results

In this section, we study the performance of the proposed regression estimator
through some simulations which point out the importance of taking into account
the spatial locations of the data.We remind that the theoretical results are obtained
under a mixing condition whose role can be considered as that of the kernel func-
tion on the locations. We compare the two predictors, the basic one (see [18]) with
the one that does take into account a spatial dependence in its structure. We con-
sider a sample of dependent functional variablesXi. That is, on each site i, we have
a curve Xi such that Xi = {Xi(t), t ∈ [0, 1]}. Before studying the numerical results,
we propose a useful procedure for estimating the spatial regression function.

8.4.1 Bandwidth Selection Procedure

(1) Specify sets of bandwidths S(h), S(b), and S(𝜌) for respectively K, K1, and K2.
(2) For each hn ∈ S(h), bn ∈ S(b), and 𝜌n ∈ S(𝜌) and each j ∈ n, compute

Ŷ ♯j =

∑
i∈n ,
i≠j

YiK
( d(Xi ,Xj)

hn

)

∑
i∈n ,
i≠j

K
( d(Xi ,Xj)

hn

) ,

and

Ỹ★
j =

∑
i∈n ,
i≠j

YiK1
( d(Xi ,Xj)

bn

)
K2

(
𝜌−1n

‖‖‖
i−j
n

‖‖‖
)

∑
i∈n ,
i≠j

K1
( d(Xi ,Xj)

bn

)
K2

(
𝜌−1n

‖‖‖
i−j
n

‖‖‖
) .
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(3) Compute hn,opt, bn,opt, and 𝜌n,opt by applying a cross-validation procedure over
S(h), S(b), and S(𝜌). More precisely, consider the followingminimization prob-
lem, i.e. determine (bn,opt, 𝜌n,opt) and hn,opt which minimize the mean squared
errors over the n̂ sites, respectively

min
bn ,𝜌n

1
ñ

∑
j∈n

(Ỹ★
j − r(Xj))2, and min

hn

1
n̂

∑
j∈n

(Ŷ ♯j − r(Xj))2.

(4) For each j, compute Ŷ ♯j , Ỹ
★
j corresponding to hn,opt and (bn,opt, 𝜌n,opt).

8.4.2 Simulation Study

This last procedure is used in the following simulation study dealing with N = 2.
We consider observations (X(i,j),Y(i,j)), 1 ≤ i, j ≤ n (n = 30 or 50), such that

Y(i,j) = r(X(i,j)) + 𝜖(i,j) = 4 × A2
(i,j) + 𝜖(i,j),

and for t ∈ [0, 1], X(i,j)(t) is defined according to the following cases:

Case 1: X(i,j)(t) = A2
(i,j) × (t − 0.5)2 + A(i,j) × B(i,j);

Case 2: X(i,j)(t) = A(i,j) × cos(2𝜋t),

where A = (A(i,j)), B = (B(i,j)), and 𝜖 = (𝜖(i,j)) are random variables which will be
specified according to the following consideredmodel onA = (A(i,j)). Several curve
examples of X(i,j)(t), for each case, are drawn on Figure 8.1. More precisely, the
figure on the left displays some curves simulated from Case 1, while that on the
right concerns Case 2. In Case 1, an example of the function r(⋅) could be r(X) =
2X ′′ (where X ′′ denotes the second derivative of X with respect to t), whereas in
Case 2, it could be r(X) = A

𝜋2
X ′′with t = 1

2
.Wewill denote byGRF(m, 𝜎2, s) any sta-

tionary Gaussian Random Field with meanm and spatial exponential covariance
function defined by

C(h) = 𝜎2 exp

(
−
(||h||

s

)2
)
, h ∈ ℝ2 and s > 0.

Then, we define the two considered models on A = (A(i,j)) by

Model A: Ai,j = Di,j × (sin(2Gi,j) + 2 exp(−16G2
i,j));

Model B: Ai,j = Di,j × (2 cos(2Gi,j) + exp(−4G2
i,j)).

Here, the number of observations n̂ is equal to 30 × 30, i.e. 900 or 50 × 50,
i.e. 2500. The several fields are defined by Di,j =

1
625

∑
1≤m,t≤25 exp

(
− ||(i,j)−(m,t)||

a

)
,

Gi,j = GRF(0, 5, 3), Bi,j = GRF(2.5, 5, 3), and 𝜖i,j = GRF(0, 0.1, 5). We note that the
local spatial dependence depends not only on the covariance function but also on
a. In fact, the greater a is, the weaker the spatial dependency is. According to this
fact, we provide simulation results obtained with different values of a which are
a = 5, 20, and 50.
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Figure 8.1 Some simulated curves of Case 1 (a) and Case 2 (b). In Case 1, X is simulated
from X(i,j)(t) = A2(i,j) × (t − 0.5)2 + A(i,j) × B(i,j) and in Case 2, X is simulated from
X(i,j)(t) = A(i,j) × cos(2𝜋t), where A and B are random fields and t ∈ [0, 1].

Along this part, the spatial regression is computed based on the kernels K, K1
as the Epanechnikov kernel and K2 as the Parzen kernel. The choice of the semi-
metric d(⋅, ⋅) is important and depends on the information one gets on the data.
Ferraty and Vieu [14] present three families of semimetrics. The first is built from
functional principal component analysis (FPCA) and is adapted to rough curves.
The second is built from the partial least square (PLS) approach and is relevant
when one considers multivariate response. The last, based on derivatives, is well
adapted in the presence of smooth curves. Specifically, it approximates L2 metric
between derivatives of the curves based on their B-spline representation. Note that
other semimetrics are encountered in the literature. However, according to [46],
the theoretical justification of the usefulness of a particular semimetric is still an
open problem. In this work, we consider a semimetric between curves based on
their first q = 2 derivatives because of the smoothness of the curves. This semi-
metric (between Xi and Xj) is defined by√

∫
(
X (q)
i (t) − X (q)

j (t)
)2
dt, q = 0, 1, 2,…

where, for any q-times differentiable real function X , X (q) denotes the q-th deriva-
tive of X (we refer, for example, to [14] for the theoretical setting about semimet-
rics used for functional nonparametric investigations). To confirm our semimetric
choice, we tested, in addition to the semimetrics based on their first derivatives,
two other semimetrics (based on PCA and on Fourier’s decomposition) and differ-
ent parameters such as the number of derivatives, principal components, basis. It
turns out that the results are similar or worse than those obtained considering a
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semimetric between curves based on their first q = 2 derivatives. We then present
the results according to this last semimetric based on q = 2 derivatives.
To evaluate the performance of the proposed predictors, each studied model is

replicated 350 times. At each replication k, we compute the mean squared error
over the n̂ sites. The bandwidths used, different at each replication, are those
obtained using the previous procedure 8.4.1. For the kth replication, we define
the mean squared error (MSE(k)) by

MSE(k) = 1
n̂

∑
j∈n

(Ŷ †
j,opt − Yj)2,with Ŷ

†
j = Ŷ ♯j,optor Ỹ

★
j,opt. (8.9)

The obtained results are summarized in Tables 8.1 and 8.2. For each situation
(Model, Case, and value of a), the tables provide the average MSE over the 350
replications of Eq. (8.9) and the corresponding standard deviation. The AMSE★

(average mean squared error) column makes reference to the proposed estimator
Ŷ★, whereas the AMSE♯’s column corresponds to the estimator Ỹ ♯ which does not
takes into account the locations. Besides, we use a statistical hypothesis test rather
than directly compare the average MSE accuracy. The column entitled “p-value”
gives, for each considered situation, the p-value of Wilcoxon signed-rank test

Table 8.1 Simulation results for n̂ = 900 according to the models A and B, the cases 1
and 2 and the value of a = 5, 20, and 50: the table gives the average mean squared errors
(AMSE) for each situation and in brackets, the corresponding standard deviation.

Model Case a AMSE★ AMSE♯ p-value AR2★ AR2♯

A

1
5 0.0035 (0.0011) 0.0091 (0.0024) 2.04 × 10−59 0.6814 0.1846
20 0.0067 (0.0014) 0.0104 (0.0026) 2.04 × 10−59 0.9882 0.9818
50 0.0105 (0.0037) 0.0126 (0.0045) 3.02 × 10−59 0.9960 0.9953

2
5 0.0009 (0.0003) 0.0091 (0.0025) 2.04 × 10−59 0.9148 0.1820
20 0.0063 (0.0011) 0.0098 (0.0025) 2.04 × 10−59 0.9887 0.9825
50 0.0091 (0.0019) 0.0106 (0.0027) 1.54 × 10−57 0.9966 0.9960

B

1
5 0.0014 (0.0004) 0.0092 (0.0025) 2.04 × 10−59 0.9480 0.6672
20 0.0095 (0.0042) 0.0119 (0.0046) 3.66 × 10−59 0.9982 0.9977
50 0.0128 (0.0054) 0.0135 (0.0057) 1.86 × 10−33 0.9995 0.9995

2
5 0.0015 (0.0002) 0.0092 (0.0025) 2.04 × 10−59 0.9446 0.6673
20 0.0096 (0.0019) 0.0111 (0.0026) 2.79 × 10−57 0.9982 0.9979
50 0.0163 (0.0025) 0.0167 (0.0028) 1.22 × 10−15 0.9994 0.9993

The column entitled “p-value” gives the p-value of a Wilcoxon signed-rank test performing in
order to determine whether AMSE♯ is significantly less than AMSE★. The two last columns
display the average coefficients of determination (AR2).
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Table 8.2 Simulation results for n̂ = 2500 according to the models A and B with cases 1
and 2, and the value of a = 5, 20, and 50: the table gives the average mean squared
errors (AMSE) for each situation and in brackets, the corresponding standard deviation.

Model Case a AMSE★ AMSE♯ p-value AR2★ AR2♯

A

1
5 0.0039 (0.0009) 0.0096 (0.0017) 2.04 × 10−59 0.5905 0.0113
20 0.0047 (0.0008) 0.0097 (0.0017) 2.04 × 10−59 0.9647 0.9272
50 0.0077 (0.0013) 0.0102 (0.0020) 2.04 × 10−59 0.9942 0.9924

2
5 0.0011 (0.0002) 0.0096 (0.0017) 2.04 × 10−59 0.8841 0.0119
20 0.0040 (0.0005) 0.0096 (0.0017) 2.04 × 10−59 0.9699 0.9273
50 0.0074 (0.0009) 0.0099 (0.0017) 2.04 × 10−59 0.9944 0.9926

B

1
5 0.0012 (0.0004) 0.0096 (0.0017) 2.04 × 10−59 0.8764 0.0665
20 0.0050 (0.0006) 0.0098 (0.0017) 2.04 × 10−59 0.9958 0.9917
50 0.0087 (0.0012) 0.0102 (0.0018) 4.40 × 10−59 0.993 0.992

2
5 0.0011 (0.0001) 0.0096 (0.0017) 2.04 × 10−59 0.8884 0.0663
20 0.0058 (0.0006) 0.0098 (0.0017) 2.04 × 10−59 0.9951 0.9917
50 0.0111 (0.0014) 0.0119 (0.0017) 2.77 × 10−59 0.9991 0.9990

The column entitled “p-value” gives the p-value of a Wilcoxon signed-rank test performing in
order to determine whether AMSE♯ is significantly less than AMSE★. The two last columns
display the average coefficients of determination (AR2).

performing in order to determine if MSE★ is significantly less than MSE♯ (the
alternative hypothesis is then H1: MSE★ <MSE♯). The two last columns give the
average of the coefficients of determination, R2, over the 350 replications. Recall
that a value of R2 close to 1 means that the quality of estimationis reliable. Here,
we define R2 as the square of the linear correlation coefficient between the vector
of the Y ′

i s and its estimated version.
The first general point to make about this study is that, when a = 5, regardless

of the considered kind of model or case, the predictor Ŷ★
j leads to better results

since the mean squared errors are significantly lower than with Ŷ ♯j . Moreover,
it can be seen that the standard deviations are greater with Ŷ ♯j than with Ŷ★

j .
Second, we note that when the value of a increases, AMSE♯ is still higher than
AMSE★, but the difference becomes narrower. Consequently, the higher the value
of a (less spatial dependency), the lower the difference between the results of the
two estimators is. In other words, our estimator Ŷ★

j outperforms Ŷ ♯j when the spa-
tial dependence is important. However, the two estimators tend to give similar
performance in case of spatially independent fields. The low p-values obtained
with Wilcoxon signed-rank test (less than 1.22 × 10−15) confirm that Ŷ★

j produces
less errors than Ŷ ♯j . Nevertheless, the probability of erroneously rejecting the null
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hypothesis is highest when the value of a is equal to 20 or 50, rather than 5 (with-
out one exception) since the p-value increases with the value of a. Finally, we may
note that the R2 criterion strengthens the previous comments. In fact, the values
AR2★ are higher thanAR2♯ and the difference between themdecreases as the value
of a increases.
Insight into the performance of the two predictors can also be viewed from

graphical outputs. In fact, Figures 8.2–8.4 illustrate different situations. The
first deals with spatially dependent data (a = 5) simulated from Model A
and Case 1 of which a representation of {Yj, j ∈ n} is depicted in Figure 8.2a.
Figures 8.2b, 8.2c show squared errors obtained by the two predictors, respectively.
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Figure 8.2 A simulated field considering Model A, Case 1 and a = 5 with (a) an image
of the field Y ; (b) the squared errors using r♯n; (c) the squared errors using r

★
n . The sample

size is 900. More precisely, the curves X are simulated from X(i,j)(t) = A2(i,j) × (t − 0.5)2 +
A(i,j) × B(i,j) (Case 1), and the field A is simulated from Ai,j = Di,j × (sin(2Gi,j) +
2 exp(−16G2i,j)) (Model A). B and G are Gaussian random fields defined by GRF(2.5, 5, 3)
and GRF(0, 5, 3), respectively. The parameter a acts on the local spatial dependence: the
greater a is, the weaker the spatial dependency is.
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Figure 8.3 A simulated field considering Model B, Case 1, and a = 20 with (a) an image
of the field Y ; (b) the squared errors using r♯n; (c) the squared errors using r

★
n . The sample

size is 900. More precisely, the curves X are simulated from X(i,j)(t) = A2(i,j) × (t − 0.5)2 +
A(i,j) × B(i,j) (Case 1), and the field A is simulated from Ai,j = Di,j × (2 cos(2Gi,j) + exp(−4G2i,j))
(Model B). B and G are Gaussian random fields defined by GRF(2.5, 5, 3) and GRF(0, 5, 3),
respectively. The parameter a acts on the local spatial dependence: the greater a is, the
weaker the spatial dependency is.

These two figures confirm that Ŷ★
j generates less errors than using Ŷ ♯j since the

more colorful the representation is, the greater the error is. Figure 8.3 considers
lower spatial dependence (a = 20) simulated from Model A and Case 1 for which
the field Y is represented in Figure 8.3a. Figure 8.3b displays slightly less errors
than in Figure 8.3c. Finally, Figure 8.4 gives summarized results of Model B and
Case 2, with almost independent spatial data (a = 50). The two estimators seem
to provide similar errors according to Figures 8.4b, 8.4c. It is not surprising to
note that when a is high, the two estimators produce similar results. In fact, in
this situation, the bandwidths 𝜌n are large and could take the maximal distance
between observations. In short, the two predictors work in an almost identical
manner in the absence of spatial dependence.
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Figure 8.4 A simulated field considering Model B, Case 2, and a = 50 with (a) an image
of the field Y ; (b) the squared errors using r♯n; (c) the squared errors using r

★
n . The sample

size is 2500. More precisely, the curves X are simulated from X(i,j)(t) = A(i,j) × cos(2𝜋t)
(Case 2), and the field A is simulated from Ai,j = Di,j × (2 cos(2Gi,j) + exp(−4G2i,j)) (Model B).
B and G are Gaussian random fields defined by GRF(2.5, 5, 3) and GRF(0, 5, 3) respectively.
The parameter a acts on the local spatial dependence: the greater a is, the weaker the
spatial dependency is.

Regarding the bandwidths selection, we carried out a cross-validation pro-
cedure. This selection is made differently, according to Ŷ ♯j and Ŷ★

j . First, with
higher spatially dependent data (a = 5), the selected optimal bandwidths 𝜌★n,opt
have the smallest values. This result was expected because when the spatial
dependence is high, sites that are close together tend to be more related than
sites that are far apart. For the bandwidth linked to the distance between the
observations (according to K1 and K), the selection differs with respect to the
considered estimator. In fact, the optimal bandwidth are widely higher for Ŷ★

j ,
rather than Ŷ ♯j . For more details on the values of the optimal bandwidths, through
the replications, Figure 8.5 displays the corresponding boxplots. Second, when
a = 20, considering Model A and Case 1, the bandwidths are slightly higher
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Figure 8.5 Boxplots of b★n,opt , 𝜌
★
n,opt and h

♯

n,opt , respectively, over the 350 replications of
the three following situations: (a) Model A, Case 1, a = 5 and n̂ = 900 (b) Model A, Case 1,
a = 20 and n̂ = 900 (c) Model A, Case 1, a = 50 and n̂ = 900 (d) Model B, Case 1, a = 5
and n̂ = 2500 (e) Model B, Case 1, a = 20 and n̂ = 2500 (f) Model B, Case 2, a = 50 and
n̂ = 2500. Cases 1 and 2 concern the simulation of X , models A, and B concern the
simulation of the field A, the parameter a acts on the local spatial dependence and n̂ is
the number of sites.
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than when a = 5 (see Figure 8.5b,8.5a). Finally, considering a = 50 with Model B
and Case 2, the values of 𝜌★n,opt are more scattered and higher than with a = 20
(see Figure 8.5e). Moreover, for a = 20 and a = 50, the bandwidth selection is
equivalent for Ŷ ♯j and Ŷ

★
j (see Figures 8.5b,8.5c,8.5e, and 8.5f). In these situations,

the value of the bandwidth varies at each run while the locations do not change.
In fact, contrary to the case a = 5, the values of Xi,j(t) are more scattered and then
imply a change in the value of 𝜌★n,opt.
The previous study highlights the reliable performance of our estimator,

particularly in the presence of spatial dependence. But a disadvantage may be
that the cross-validation procedure on the two parameters bn and 𝜌n is very
time-consuming. To this end, we tried to deal with simulations considering a
fixed bandwidth 𝜌n as in [40], where it is advised to take dn = n𝜌n = ⌊n̂1∕4⌋ with
⌊⋅⌋ denotes the integer part. In our case, with n̂ = 900 sites, the corresponding
bandwidths would be 𝜌n ≈ 0.18. It allows to save time and obtain results that
are quite satisfactory when the spatial dependence is high. More precisely,
when a = 5, the results are similar or slightly worse than those obtained by the
cross-validation procedure on the two parameters: it is explained by the fact
that the cross-validation procedure chooses a value of 𝜌n no always close to
0.18 (different at each replication). Nevertheless, the fixed bandwidth 𝜌n = 0.18
produces better results than using the estimator Ŷ ♯j . Note that the results depend
largely on the spatial dependence structure considered. However, the results
are worse with weaker spatial dependence (a = 20 or 50). In fact, in some cases
(depending on the spatial dependency), the performance obtained by fixing 𝜌n
(according to the sample size n̂ as above) is poorer than those obtained using the
estimator Ŷ ♯j . In this case, the cross-validation procedure on the two parameters
remains necessary.

8.5 Conclusion

This work proposes a new method to model spatial regression function for
functional random fields providing an explicit general spatial proximity structure
throughout a kernel estimator. This model requires no parametric correlation
model on the error term, and the observations are supposed locally, identically
distributed. Our main theoretical contribution was to derive the convergences in
mean square and almost complete. One can see the proposed methodology as a
good alternative to the classical kernel approach for functional spatial data. More
precisely, it is apparent that the proposed approach is particularly well adapted
to prediction with functional covariate, in the presence of spatial dependence.
This good behavior is observed both from an asymptotic point of view and from a
simulation study. However, in case of low spatial dependence, the two proposed
predictors produce similar results.
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In addition, this work offers very interesting perspectives of investigation. First
of all, a future work will be tied up to the asymptotic normality of the regression
estimator. Then, we could improve the choice of hn and 𝜌n which is outside the
scope of this work. For further study, we could investigate this new approach using
local linear spatial regression (see, for example, [34]). Also, an adaptation of this
method to issues such as the spatial conditional mode or quantile regression esti-
mation could be developed. Application of the proposed regression estimator to
real data, and more particularly to data collected by the French Research Institute
for Exploitation of the Sea (Ifremer) during IBTS campaign (International Bottom
Trawl Survey), will be investigated. Moreover, another perspective is the study of
regression estimation for continuous indexed spatial functional fields {Zi, i ∈ ℝN}
that can be applied to spatial prediction.

8 Appendix

8.A.1 Some Preliminary Results for the Proofs

Lemma 8.A.1 [8] Let the sets S1, S2,… , Sk containing each m sites and such that,
for all i ≠ j, and for 1 ≤ i, j ≤ k, dist(Si, Sj) ≥ 𝛿0. Let W1,W2,… ,Wk a sequence
of random variables with real values and measurable, respectively, with respect
to (S1),… ,(Sk). Let be Wl with values in [a, b]. There exists a sequence of inde-
pendent random variables W∗

1 ,W
∗
2 ,… ,W∗

k such that W
∗
l has the same distribution

as Wl and satisfies:
k∑
l=1

𝔼|Wl −W∗
l | ≤ 2k(b − a)𝜓((k − 1)m,m)𝜒(𝛿0).

Lemma 8.A.2 [7] Denote byr( ) the class of -measurable random variables X
which satisfy: ||X||r = (𝔼|X|r)1∕r <∞. Suppose that X ∈ r((E)), Y ∈ r((E′)),
1 ≤ r, s, t <∞, and 1

r
+ 1

s
+ 1

t
= 1. Then,

|𝔼XY − 𝔼X𝔼Y | ≤ C||X||r||Y ||s{𝜓(Card(E),Card(E′))𝜒(dist(E,E′))}1∕t.

For bounded random variables with probability 1, we have:

|𝔼XY − 𝔼X𝔼Y | ≤ C{𝜓(Card(E),Card(E′))𝜒(dist(E,E′))}.
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In the following, we will often use the notation Ki(x) = K
(
d(x,Xi)
hn

)
andWni(x) =

Ki(x)∑
j∈nKj(x)

with the convention 0∕0 = 0, then
∑

i∈nWni(x) = 0 or 1. Thus, we

have

rn(x) =

{∑
i∈nWni(x)Yi if

∑
i∈nWni(x) = 1;

1
n̂

∑
i∈nYi otherwise.

Let us use the following decomposition:

rn(x) − r(x) = 1
fn(x)

[
(gn(x) − 𝔼(gn(x))) − (r(x) − 𝔼(gn(x)))

]
(8.A.1)

− r(x)
fn(x)

[
fn(x) − 1

]
.

Lemma 8.A.3 Under hypothesesH1–H2, we have

𝔼1∕2
[∑
i∈n

Wni(x)𝔼(Yi|Xi) − r(x)

]2

= O(hn).

Lemma 8.A.4 Under the conditions of Theorem 8.1, we have

𝔼1∕2
[∑
i∈n

Wni(x)(Yi − 𝔼(Yi|Xi))
]2

= O
(

1
n̂𝜑x(hn)

)1∕2

.

Lemma 8.A.5 Under the conditions of Theorem 8.1, we have

𝔼1∕2
[
1
n̂

∑
i∈n

Yi − r(x)

]2

= O
(

1
n̂𝜑x(hn)

)1∕2

.

Define

Λi(x) =
1
an

[
Ki(x) − 𝔼(Ki(x))

]
,

In(x) =
∑
i∈n

𝔼
[(
Λi(x)

)2] and Rn(x) =
∑
i≠k

|||𝔼
[
Λi(x)Λk(x)

]||| .

Lemma 8.A.6 Under the conditions of Theorem 8.1, we have

In(x) + Rn(x) = O
(

1
n̂𝜑x(hn)

)
.
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8.A.2 Proofs

8.A.2.1 Proof of Theorem 8.1

Note that

rn(x) − r(x) =

(∑
i∈n

Wni(x)𝔼(Yi|Xi) − r(x)

)
𝟏{∑

i∈nWni(x)=1
}

+

(∑
i∈n

Wni(x)(Yi − 𝔼(Yi|Xi))
)
𝟏{∑

i∈nWni(x)=1
}

+

(
1
n̂

∑
i∈n

Yi − r(x)

)
𝟏{∑

i∈nWni(x)=0
} ∶= A + B + C.

Applying Minkowski’s inequality, we get

||rn(x) − r(x)||2 ≤ 𝔼1∕2[A]2 + 𝔼1∕2[B]2 + 𝔼1∕2[C]2. (8.A.2)

Therefore, Theorem 8.1 follows from (8.2) and Lemmas 8.3, 8.4 and 8.5. ◽

8.A.2.2 Proof of Lemma A.3

By the Lipschitz condition on Assumption H2, there exists a constant C > 0
such that

𝔼1∕2[A]2 ≤ 𝔼1∕2
[(∑

i∈n
Wni(x)|r(Xi) − r(x)|

)
𝟏{∑

i∈nWni(x)=1
}
]2

≤ C𝔼1∕2
[(∑

i∈n
Wni(x)||Xi − x||

)
𝟏{∑

i∈nWni(x)=1
}
]2

≤ C𝔼1∕2
[
×
∑
i∈n

Wni(x)hn

]2

= O(hn).
◽

8.A.2.3 Proof of Lemma A.4

Define

G(x) =

(∑
i∈n

Wni(x)[Yi − 𝔼(Yi|Xi)]
)
𝟏{∑

i∈nWni(x)=1
}

∶=
en(x)
fn(x)

𝟏{∑
i∈nWni(x)=1

},

where

en(x) =
1
an

∑
i∈n

Ki(x)[Yi − 𝔼(Yi|Xi)] and fn(x) =
1
an

∑
i∈n

Ki(x).
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Note that, sinceY is bounded, we have ∀i, 0 ≤ |Yi − 𝔼(Yi|Xi)| ≤ 2M. It follows that
|G(x)| ≤ 2M and

|G(x)| = |G(x)|𝟏{∑
i∈nKi(x)>c

} + |G(x)|𝟏{∑
i∈nKi(x)≤c

}

≤ |en(x)|
fn(x)

𝟏{∑
i∈nKi(x)>c

} + 2M × 𝟏{∑
i∈nKi(x)≤c

},

where c is a given constant. Let us take c = an
2
then by assumptions H1 and H3,

𝔼[Ki(x)] ≤ C × 𝜑x(hn) since by H1, we have C1𝜑i,x(hn) ≤ 𝔼
[
Ki(x)

] ≤ C2𝜑i,x(hn).
If

∑
i∈nKi(x) > c = an

2
then fn(x) >

an
2an

>
1
2
. It follows that

||G(x)||2 ≤ 2||en(x)||2 + 2M

(
ℙ

[∑
i∈n

Ki(x) ≤ an
2

])1∕2

,

and

||en(x)||2 = 1
an

⎡⎢⎢⎣
𝔼

(∑
i∈n

𝜉i

)2⎤⎥⎥⎦

1∕2

,

where

𝜉i = Ki(x)
[
Yi − 𝔼(Yi|Xi)

]
.

To prove Lemma 8.4, we have to show that

||en(x)||2 = O(n̂𝜑x(hn))−1∕2, (8.A.3)

and

ℙ

[∑
i∈n

Ki(x) ≤ an
2

]
≤ O

(
n̂𝜑x(hn)

)−1∕2
. (8.A.4)

Observe that, by AssumptionsH1 andH3, we have
∑
i∈n

𝔼
[
𝜉2i

] ≤ ∑
i∈n

𝔼
[
K2
i (x)

[
Yi − 𝔼(Yi|Xi)

]2] = O(n̂𝜑x(hn)).

Now, let dn be a sequence of real numbers tending to∞ as n → ∞ and set

S = {(i,k) ∈ 2n, ||i − k|| ≤ dn} and Sc = {(i,k) ∈ 2n, ||i − k|| > dn}.

Using AssumptionH3, we have∑
i,k∈S

𝔼
[
𝜉i𝜉k

] ≤ 4M2
∑
i,k∈S

𝔼
[
Ki(x)Kk(x)

]

≤ 4M2
∑
i,k∈S

ℙ
[
(Xi,Xk) ∈ B(x, hn) × B(x, hn)

]

≤ 4M2C4
∑
i,k∈S

(𝜑x(hn))1+𝜀 ≤ 4M2C4n̂dNn (𝜑x(hn))1+𝜀.
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Since K is bounded, applying Lemma 8.2, we get∑
i,k∈Sc

𝔼
[
𝜉i𝜉k

] ≤ C
∑
i,k∈Sc

{𝜓(1, 1)𝜒(||i − k||)} ≤ C
∑
i,k∈Sc

𝜒(||i − k||)

≤ Cn̂
∑

||i||>dn
𝜒(||i||).

Note that∑
||i||>dn

||i||−𝜃 = ∑
||i||>dn

||i||−𝜃||i||−N−𝜀||i||N+𝜀 ≤ Cd−N−𝜀
n

∑
||i||>dn

||i||N+𝜀−𝜃.

Then, ∑
i,k∈Sc

𝔼
[
𝜉i𝜉k

] ≤ Cn̂d−N−𝜀
n

∑
||i||>dn

||i||N+𝜀−𝜃.

Choosing dn = (𝜑x(hn))
−𝜀
N
+a with a > 0 such that Na ≤ 𝜀 − N

N+𝜀
lead to

d−(N+𝜀)
n = 𝜑x(hn)(𝜑x(hn))

−(N+𝜀)(Na−𝜀)−N
N = O

(
𝜑x(hn)

)
,

which implies that∑
i,k∈S

𝔼
[
𝜉i𝜉k

] ≤ 4M2C4n̂dNn (𝜑x(hn))1+𝜀

≤ 4M2C4n̂(𝜑x(hn))1+Na = O(n̂𝜑x(hn)).

Then, we deduce that

𝔼

(∑
i∈n

𝜉i

)2

=
∑
i∈n

𝔼
[
𝜉2i

]
+

∑
i,k∈S

𝔼
[
𝜉i𝜉k

]
+

∑
i,k∈Sc

𝔼
[
𝜉i𝜉k

]
= O

(
n̂𝜑x(hn)

)
.

Consequently,
[
𝔼
(∑

i∈n𝜉i
)2]1∕2

= O(n̂𝜑x(hn))1∕2 and ||en(x)||2 = O
(
n̂𝜑x(hn)

)−1∕2
since by AssumptionH3(ii), an ≥ C′

1n̂𝜑x(hn).
Next, for (8.4), define

Sn(x) =
∑
i∈n

Λi(x) = fn(x) − 𝔼(fn(x)).

Then, we have

ℙ

[∑
i∈n

Ki(x) ≤ an
2

]
= ℙ

[∑
i∈n

(
Ki(x) − 𝔼(Ki(x))

) ≤ −an
2

]

≤ ℙ

[
1
an

||||||
∑
i∈n

(
Ki(x) − 𝔼(Ki(x))

)||||||
≥ 1
2

]

≤ ℙ
[||Sn(x)|| ≥ 𝜖

]
.

We will now introduce the spatial blocks decomposition introduced by Tran
[7] which will be useful afterwards. Without loss of generality, we suppose that
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nk = 2bqk, for 1 ≤ k ≤ N. The random variables Λi(x) can be grouped into
2Nq1… qN cubic blocks of side b. Let

U(1,n, x, j) =
(2jk+1)b∑
ik=2jkb+1,
k=1,…,N.

Λi(x),

U(2,n, x, j) =
(2jk+1)b∑
ik=2jkb+1,
k=1,…,N−1.

2(jN+1)b∑
iN=(2jN+1)b+1

Λi(x),

U(3,n, x, j) =
(2jk+1)b∑
ik=2jkb+1,
k=1,…,N−2.

2(jN−1+1)b∑
iN−1=(2jN−1+1)b+1

(2jN+1)b∑
iN=2jNb+1

Λi(x),

U(4,n, x, j) =
(2jk+1)b∑
ik=2jkb+1,
k=1,…,N−2.

2(jN−1+1)b∑
iN−1=(2jN−1+1)b+1

(2jN+1)b∑
iN=(2jN+1)b+1

Λi(x),

and so on. Noting that

U(2N−1,n, x, j) =
2(jk+1)b∑

ik=(2jk+1)b+1,
k=1,…,N−1.

(2jN+1)b∑
iN=2jNb+1

Λi(x)

U(2N ,n, x, j) =
2(jk+1)b∑

ik=(2jk+1)b+1,
k=1,…,N.

Λi(x),

for each integer 1 ≤ l ≤ 2N , we define T(n, x, l) =
∑qk−1

jk=0
k=1,…,N.

U(l,n, x, j). We

obtain Sn(x) =
∑2N

l=1 T(n, x, l). For 𝜖 > 0, P ≤ ℙ
(|||

∑2N
l=1 T(n, x, l)

||| > 𝜖
) ≤

2Nℙ
(
|T(n, x, 1)| > 𝜖

2N

)
. We enumerate in arbitrary manner the q̂ = q1 × · · · × qN

terms U(1,n, x, j) of the sum T(n, x, 1), and refer to them as W1,… ,Wq̂. Note
that U(1,n, x, j) is a measurable 𝜎-algebra generated by Xi, with i such that
2jkb + 1 ≤ ik ≤ (2jk + 1)b, k = 1,… ,N. For all l = 1,… , q̂, the sets of the sites
in Wl are separated by a distance of at least equal to b. In addition, since K2
and K1 are bounded, we can write |Wl| ≤ CbN

an
with C = ||K||∞ (where || ⋅ ||∞

is the sup norm). Lemma 8.1 insures the existence of some random variables
W∗

1 ,W
∗
2 ,… ,W∗

q̂ such that

q̂∑
l=1

𝔼|Wl −W∗
l | ≤ 2q̂C b

N

an
𝜓((q̂ − 1)bN , bN )𝜒(b)

≤ 2C n̂
2NbN

bN
an
𝜓(n̂, bN )𝜒(b).
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Markov inequality allows us to write

ℙ

( q̂∑
l=1

|Wl −W∗
l | > 𝜖

2N+1

)
≤ 2C n̂

2NbN
bN
an
𝜓(n̂, bN )𝜒(b)2N+1𝜖−1,

and by Bernstein inequality, we have

ℙ

( q̂∑
l=1

|W∗
l | > 𝜖

2N+1

)
≤ 2 exp

⎧⎪⎨⎪⎩
−𝜖2∕(2N+1)2

4
∑q̂

l=1𝔼(W
∗2
l ) + 2𝜖

2N+1
bN
an
C

⎫⎪⎬⎪⎭
,

which leads to

ℙ
[||Sn(x)|| ≥ 𝜖

] ≤ 2N+1 exp
⎧⎪⎨⎪⎩

−𝜖2∕(2N+1)2

4
∑q̂

l=1𝔼(W
∗2
l ) + 2−NC𝜖 b

N

an

⎫⎪⎬⎪⎭
+ 2N+1C n̂

2NbN
bN
an
𝜓(n̂, bN )𝜒(b)2N+1𝜖−1.

Let 𝛿 > 0, 𝜖 = 𝜖n = 𝛿

(
log n̂

n̂𝜑x(hn)

)1∕2
and b =

(
n̂𝜑x(hn)
log n̂

) 1
2N . Since the variables Wl

and W∗
l have the same distributions, we have

∑q̂
l=1 𝔼W

∗2
l =

∑q̂
l=1 var(W

∗
l ) =∑q̂

l=1 var(Wl) ≤ In(x) + Rn(x), and according to Lemma 8.6, we have
∑q̂

l=1 𝔼W
∗2
l ≤

O
(
[n̂𝜑x(hn)]−1

)
. Then,

ℙ
[||Sn(x)|| ≥ 𝜖

] ≤ 2N+1 exp
⎧⎪⎨⎪⎩

−𝜖2

22N+2
(
4 C
n̂𝜑x(hn)

+ C2−N𝜖 b
N

an

)
⎫⎪⎬⎪⎭

+ 2N+2C n̂
an
𝜓(n̂, bN )b−𝜃𝜖−1.

Since C′
1n̂𝜑x(hn) ≤ an ≤ C′

2n̂𝜑x(hn), we have

ℙ
[||Sn(x)|| ≥ 𝜖n

] ≤ 2N+1 exp
⎧⎪⎨⎪⎩

−𝛿2 log n̂
n̂𝜑x(hn)

22N+4C
n̂𝜑x(hn)

+ C2N+2𝛿

n̂𝜑x(hn)

⎫⎪⎬⎪⎭
+ 2N+2C n̂

an
𝜓(n̂, bN )b−𝜃𝛿−1

( n̂𝜑x(hn)
log n̂

)1∕2

≤ C2N+1 exp
{
log n̂−a}

+ 2N+2C𝛿−1 1
𝜑x(hn)

𝜓(n̂, bN )
( n̂𝜑x(hn)

log n̂

) N−𝜃
2N

∶= Cn̂−a + C2N+1𝛿−1Dn,
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with a = 𝛿2

22N+4C + C2N+2𝛿
> 0. Note that n̂1−a𝜑x(hn) tends to 0 for a > 1 and then

Cn̂−a = o
(
[n̂𝜑x(hn)]−1

)
. Moreover, a > 1 if and only if 𝛿 > 2N+1C(1 +

√
4C) >

2N+1C (with 𝛿 > 0). Now, we treat the second term.
When (8.3) is satisfied, i.e. 𝜓(n,m) ≤ Cmin (n,m), ∀n,m ∈ ℕ, we have

n̂𝜑x(hn)Dn ≤ Cn̂
( n̂𝜑x(hn)

log n̂

) 2N−𝜃
2N

≤ C
[
n̂
(
𝜑x(hn)

) 2N−𝜃
4N−𝜃

(
log n̂

) 𝜃−2N
4N−𝜃

] 4N−𝜃
2N
,

which tends to 0 as n → 0 since 𝜃 > 4N.
When (8.4) is satisfied, i.e. 𝜓(n,m) ≤ C(n +m + 1)𝜅 , ∀n,m ∈ ℕ, and note that

𝜓(n̂, bN ) ≤ C(n̂ + bN + 1)𝜅 ≤ Cn̂𝜅 , we have

n̂𝜑x(hn)Dn ≤ Cn̂1+𝜅
( n̂𝜑x(hn)

log n̂

) N−𝜃
2N

≤ C
[
n̂
(
𝜑x(hn)

) N−𝜃
N(3+2𝜅)−𝜃

(
log n̂

) 𝜃−N
N(3+2𝜅)−𝜃

] N(3+2𝜅)−𝜃
2N

,

which tends to 0 as n → since 𝜃 > N(3 + 2𝜅). Therefore, (8.4) follows, which
concludes the proof of Lemma 8.4. ◽

8.A.2.4 Proof of Lemma A.5

Since Yi and r are bounded, we have

𝔼1∕2[C] ≤ 𝔼1∕2
[||||||
1
n̂

∑
i∈n

Yi − r(x)
||||||
𝟏{∑

i∈nWni(x)=0
}
]

≤ 2M𝔼1∕2
[
𝟏{∑

i∈nWni(x)=0
}
]
= 2M

(
ℙ

[∑
i∈n

Ki(x) = 0

])1∕2

≤ 2M

(
ℙ

[∑
i∈n

Ki(x) ≤ an
2

])1∕2

= O
(

1
n̂𝜑x(hn)

)1∕2

,

by Lemma 8.4. ◽

8.A.2.5 Proof of Lemma A.6

First, we deal with In(x) =
∑

i∈n𝔼
[(

1
an
Ki(x)

)2]
−

∑
i∈n

(
1
an
𝔼(Ki(x))

)2
.

∑
i∈n

𝔼

[(
1
an
Ki(x)

)2
]
= 1
a2n

∑
i∈n

𝔼
[
K2
i (x)

]
= O

(
[n̂𝜑x(hn)]−1

)
,

for n sufficiently large.
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Then, we have In(x) = O
(
[n̂𝜑x(hn)]−1

)
. We now treat the term Rn(x). Since K is

bounded, applying Lemma 8.1, we get

|𝔼 [
Λi(x)Λk(x)

] | ≤ C
a2n
𝜓(1, 1)𝜒(||i − k||).

Let En be a sequence of real numbers tending to ∞ as n̂ → ∞. Set T =
{i,k ∈ n, ||i − k|| ≤ En} and denote by Tc the complementary of T. Let
R(1)
n =

∑
i,k∈T

|||𝔼
[
Λi(x)Λk(x)

]||| and R
(2)
n =

∑
i,k∈Tc

|||𝔼
[
Λi(x)Λk(x)

]|||. Hence, Rn(x) ≤
R(1)
n + R(2)

n . Moreover, using the same arguments as in the proof of Lemma 8.4, we
have In(x) + Rn(x) = O

(
[n̂𝜑x(hn)]−1

)
. ◽

8.A.2.6 Proof of Theorem 8.2

Set Tn =
(
n̂un

)1∕s, where un =
∏N

i=1(logni)(logni)1+𝜖 , and define

gn(x) =
1
an

∑
i∈n

YiKi(x), fn(x) =
1
an

∑
i∈n

Ki(x),

g̃n(x) =
1
an

∑
i∈n

Yi𝟙{Yi≤Tn}Ki(x).

Then, we can write

rn(x) − r(x) = − r(x)
fn(x)

A1(x) +
1

fn(x)
[
A2(x) + A3(x) + A4(x)

]
, (8.A.5)

where

A1(x) = fn(x) − 1,
A2(x) = 𝔼

(
g̃n(x)

)
− r(x),

A3(x) = g̃n(x) − 𝔼
(
g̃n(x)

)
,

A4(x) = gn(x) − g̃n(x).

Therefore, Theorem 8.2 follows from (8.5) and Lemmas 8.7–8.9, 8.12. ◽

Lemma 8.7 Under AssumptionsH1, H2 andH6,

sup
x∈

|||𝔼
(
g̃n(x)

)
− r(x)||| = O

⎛⎜⎜⎝
hn +

√
log n̂
n̂ Γ(hn)

⎞⎟⎟⎠
.
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Proof of Lemma A.7
Since

𝔼
(
g̃n(x)

)
− r(x)

= 1
an

∑
i∈n

𝔼
[(
Yi − Yi𝟙{|Yi|>Tn}

)
Ki(x)

]
− r(x)

= 1
an

∑
i∈n

𝔼
[
𝔼

(
Yi|Xi

)
Ki(x)

]
− 1
an

∑
i∈n

𝔼
[
Yi𝟙{|Yi|>Tn}Ki(x)

]
− r(x)

= 1
an

∑
i∈n

𝔼
[(
r(Xi) − r(x)

)
Ki(x)

]
− 1
an

∑
i∈n

𝔼
[
Yi𝟙{|Yi|>Tn}Ki(x)

]
,

we have
|||𝔼

(
g̃n(x)

)
− r(x)||| ≤

1
an

∑
i∈n

𝔼
[||r(Xi) − r(x)||Ki(x)

]

+ 1
an

∑
i∈n

𝔼
[||Yi|| 𝟙{|Yi|>Tn}Ki(x)

]
∶= I + II.

Using assumptionsH1 andH2, we have
||r(Xi) − r(x)|| ≤ sup

u∈B(x,hn)
|r(x) − r(u)| = O(hn), so that I = O

(
hn

)
.

For II, since s > 2, using AssumptionH6, we can write

II ≤ T1−sn

an

∑
i∈n

𝔼
[||Yi||sKi(x)

] ≤ T1−sn

an

∑
i∈n

𝔼
[
𝔼

(||Yi||s|Xi
)
Ki(x)

]

≤ CT1−sn = o
(
(n̂un)−1∕2

)
= o

⎛⎜⎜⎝

√
log n̂
n̂ Γ(hn)

⎞⎟⎟⎠
,

which conclude the proof of Lemma 8.7. ◽

Lemma 8.8 If Assumption (H6) (i) holds, then

sup
x∈

||gn(x) − g̃n(x)|| = 0

for sufficiently large n.

Proof of Lemma A.8
Recall that Tn =

(
n̂un

)1∕s and note that
gn(x) − g̃n(x) =

1
an

∑
i∈n

Yi𝟙{|Yi|>Tn}Ki(x).

By the Markov inequality, ℙ
(|Yi| > Tn

) ≤ T−s
n 𝔼|Yi|s for any i ∈ ℤN . Therefore,

∑
n∈ℤN

ℙ
(|Yn| > Tn

) ≤ C
∑
n∈ℤN

1
n̂un

< ∞.
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The Borel–Cantelli lemma ensures that almost surely |Yi| ≤ Tn for sufficiently
large n. Since Tn → ∞ as n → ∞, we have almost surely |Yi| < Tn for all i ∈ n
and for n sufficiently large enough, and thus the conclusion follows. ◽

Lemma 8.9 Under the assumptions of Theorem 8.2,

sup
x∈

|||g̃n(x) − 𝔼
(
g̃n(x)

)||| = O

((
log n̂
n̂Γ(hn)

)1∕2)
a.s.

Define

Λ̃i(x) = Yi𝟙{|Yi|≤Tn}Ki(x) − 𝔼(Yi𝟙{|Yi|≤Tn}Ki(x)),

Ĩn(x) =
1
a2n

∑
i∈n

𝔼
(
Λ̃i(x)2

)
and R̃n(x) =

1
a2n

∑
i≠j

||||𝔼
[
Λ̃i(x)Λ̃j(x)

]|||| . (8.A.6)

Then, arguing as in the proof of Lemma 8.6 with 𝜑x(hn) replacing by Γ(hn), one
can prove under assumptionsH1, H2,H4–H6 that,

Ĩn(x) + R̃n(x) = O
(

1
n̂Γ(hn)

)
for any x ∈ . (8.A.7)

Let us define

Ωn =

√
log n̂
n̂Γ(hn)

and choose 𝓁n ≤ CΩnhnΓ(hn)T−1
n for some constant C > 0.

We suppose that the compact set  is covered with 𝑣n cubes Bk having sides of
length 𝓁n and centered at xk. We have

sup
x∈

|||g̃n(x) − 𝔼
(
g̃n(x)

)||| ≤ Q1n + Q2n + Q3n, (8.A.8)

where

Q1n = max
1≤k≤𝑣n

sup
x∈Bk

||̃gn(x) − g̃n(xk)|| ,
Q2n = max

1≤k≤𝑣n
sup
x∈Bk

|||𝔼
(
g̃n(xk)

)
− 𝔼

(
g̃n(x)

)||| ,
Q3n = max

1≤k≤𝑣n
sup
x∈Bk

|||g̃n(xk) − 𝔼
(
g̃n(xk)

)||| .

Lemma 8.10 Under Assumptions H1, H2, and H4, Q1n = O
(
Ωn

)
and

Q2n = O
(
Ωn

)
a.s.

Proof of Lemma A.10
By AssumptionsH1,H2, andH4, for all x ∈ Bk,

||̃gn(x) − g̃n(xk)|| ≤ a−1n n̂h−1n Tn||x − xk|| ≤ Ch−1n Γ(hn)−1Tn𝓁n =
(
Ωn

)
a.s.

and Lemma 8.10 follows. ◽
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Next, we have to show that

Q3n = O
(
Ωn

)
a.s. (8.A.9)

Define

S̃n(x) = a−2n
∑
i∈n

Λ̃i(x) = g̃n(x) − 𝔼
(
g̃n(x)

)
.

Define also Ũ(i,n, x, j) and T̃(n, x, i) to be the same as U(i,n, j, x) and T(n, i, x) in
the proof of Lemma 8.4 except with Λj replacing by Λ̃j. Arguing that S̃n is a finite
sum of the T̃(n, x, i), then showing (8.9) is equivalent to show that

max
1≤k≤𝑣n

|||T̃(n, xk, 1)
||| = O

(
Ωn

)
a.s. (8.A.10)

By same arguments as in Lemma 8.4, T̃(n, 1, x) is the sum of q̂ = q1 × · · · × qN of
the Ũ(i,n, j, x)’s which aremeasurablewith 𝜎-field generated byXi, where i belong
to the set of sites which are separated by a distance at least p. Enumerate these
random variables as Z1,… ,Zq̂ and approximate them by the independent random
variables Z∗

1 ,… ,Z∗
q̂ as was done in Lemma 8.1. Define

p ∼ Ω−1∕N
n T−1∕N

n ,

and

𝛽n = TnΓ(hn)−1𝜓(n̂, pN )p−𝜃Ω
−1
n .

Lemma 8.11 Under assumptions of Theorem 8.2, there exist two positive constants
A and C such that, for any 𝜆 > 0,

ℙ
(
max
1≤k≤𝑣n

|||T̃(n, xk, i)
||| > 𝜆Ωn

)
≤ Cn̂𝛽

[
n̂−A + 𝛽n

]
.

Proof of Lemma A.11
Since T̃(n, x, i) =

∑q̂
i=1 Zi, we have, for any 𝜆 > 0,

ℙ
(|||T̃(n, x, i)

||| > 𝜆Ωn

) ≤ ℙ

( q̂∑
i=1

||Zi − Z∗
i
|| > 𝜆Ωn∕2

)

+ ℙ

(||||||

q̂∑
i=1
Z∗
i

||||||
> 𝜆Ωn∕2

)
.

By the boundedness of K, we have
||Zi|| ≤ CpNTna−1n ≤ CTnpN

(
n̂Γ(hn)

)−1
.

Note that n̂ = 2NpNq̂. Therefore, Markov inequality gives: for any 𝜆 > 0,

ℙ

( q̂∑
i=1

||Zi − Z∗
i
|| > 𝜆Ωn

)
≤ 2q̂pNTn

(
n̂Γ(hn)

)−1
𝜓(n̂, pN )𝜒(p)𝜆−1Ω−1

n ≤ C𝛽n.
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By Lemma 8.7, we get, for any 𝜆 > 0, there exists a constant C > 0 such that

ℙ

(||||||

q̂∑
i=1
Z∗
i

||||||
> 𝜆Ωn

)
≤ Cn̂−A

,

and the conclusion follows. ◽

Proof of Lemma A.9 Note that by the Fubini’s theorem, it can be seen that∑
n∈ℤN1∕(n̂un) <∞. By (8.8), Lemma 8.10, and Lemma 8.11, proving Lemma 8.9

is equivalent to show that

n̂unn̂
𝛽−A

→ 0 and n̂unn̂
𝛽
𝛽n → 0 as n → ∞. (8.A.11)

Note that, the first part of (8.11) holds by choosingA such thatA > 𝛽 + 2. For its
second part, when (8.3) is satisfied, 𝜓(n̂, pN ) = pN for n large enough. Then

n̂𝛽+1un𝛽n ≤ Cn̂𝛽
(
n̂un

)1∕s+1Γ(hn)−1Ω(𝜃−2N)∕N
n

(
n̂un

)(𝜃−N)∕sN

= Cn̂𝛽+1∕s+1+(𝜃−N)∕(sN)+(2N−𝜃)∕(2N)Γ(hn)
−𝜃
2N

(
log n̂

) 𝜃−2N
2N u

sN+𝜃
sN

n

= C
[
n̂Γ(hn)𝜃1

(
log n̂

)𝜃2u𝜃3n
] 2sN(𝛽+2)+𝜃(2−s)

2sN
,

which goes to zero when 𝜃 > (2Ns(𝛽 + 2)) ∕ (s − 2).
Similarly, when (8.4) is satisfied, we have 𝜓(n̂, pN ) ≤ Cn̂𝜅 for n large enough.

Then,

n̂𝛽+1un𝛽n ≤ Cn̂𝛽+𝜅Γ(hn)−1T
1+𝜃∕N
n Ω

𝜃−N
N

n

= Cn̂𝛽+𝜅+(N+𝜃)∕(sN)+(N−𝜃)∕(2N)(Γ(hn)
) −N−𝜃

2N
(
log n̂

) 𝜃−N
2N u

N+𝜃
sN
n

= C
[
n̂Γ(hn)𝜃

∗
1
(
log n̂

)𝜃∗2u𝜃∗3n
] N(2s𝛽+2s𝜅+s+2)+𝜃(2−s)

2sN
,

which goes to zero when 𝜃 > (N(2s𝛽 + 2s𝜅 + s + 2)) ∕ (s − 2) and Lemma 8.9 fol-
lows. ◽

Lemma 8.12 Under AssumptionsH1,H2,H4, andH5,

(1) if (8.3) is satisfied and

n̂Γ(hn)𝜃4
(
log n̂

)𝜃5u𝜃6n → ∞with 𝜃 > 2N(𝛽 + 2),

(2) or if (8.4) is satisfied and

n̂Γ(hn)𝜃
∗
4
(
log n̂

)𝜃∗5u𝜃∗6n → ∞with 𝜃 > N(2𝛽 + 2𝜅 + 3),

then,

sup
x∈

||fn(x) − 1|| = O

((
log n̂
n̂Γ(bn)

)1∕2)
a.s,
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where

𝜃4 =
𝜃

𝜃 − 2N(𝛽 + 2)
𝜃5 =

𝜃 − 2N
2N(𝛽 + 2) − 𝜃

𝜃6 =
2N

2N(𝛽 + 2) − 𝜃
,

𝜃∗4 =
−N − 𝜃

N (2𝛽 + 2𝜅 + 3) − 𝜃
𝜃∗5 = 𝜃 − N

N (2𝛽 + 2𝜅 + 3) − 𝜃

𝜃∗6 =
2N

N (2𝛽 + 2𝜅 + 3) − 𝜃
.

Proof of Lemma A.12
To prove Lemma 8.12, just adapt the arguments considered in the proof of Lemma
8.9 to the case where Yi ≡ 1 and Tn = 1. ◽
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9.1 Introduction

We aim at considering the problem of the nonparametric treatment of spatially
dependent functional data, where the curves are indexed by the sites of a spatial
finite lattice S0 ⊂ S, being S the region of interest for the analysis. The literature
on spatially dependent functional data is growing at a rapid pace [1, 2], and non-
parametric methods play an important role (see [3–8], and Chapters 8, 10, and 11).
Some functional regression techniques have recently been proposed for functional
data indexed by a lattice [9–11], even though most of the available methods tackle
the problem via spatiotemporal autoregressive models [12, 13]. Also clustering
methods suited for functional lattice data are being developed (see [14–17], and
Chapter 7).
We describe here a quite flexible nonparametric approach to the exploitation of

spatial dependence on a lattice, which can be targeted to any kind of functional
data analysis: e.g. classification, dimensional reduction, and regression. The
approach is based on bagging [18], and it consists of two phases: a bootstrap
phase, where many weak randomized analyses are repeatedly carried out, and
an aggregation phase, where the many weak results are merged into a final
strong result. Precisely, in the bootstrap phase, random connectivity maps are
repeatedly generated and used to compute local representatives of neighboring
functional data. A weak form of the target analysis (classification, dimensional
reduction, and regression) is then performed on the sample of functional local

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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representatives at each repetition of the algorithm. The final aggregation phase
has the purpose of combining all weak results together, and its structure strongly
depends on the specific target of the analysis performed.
The algorithm is completely nonparametric, since no explicit assumption

is made neither on the distribution generating functional data, nor on their
mutual dependence induced by the spatial localization. A great advantage of this
approach is its flexibility in the exploitation of further information on the consid-
ered region, which is not paid off by an excessive increment of the computational
cost. The fact that our data is functional is not irrelevant to the computational cost
of standard procedures for the analysis of lattice data, thus the use of a method
which implicitly performs a reduction in the problem dimension (by analyzing
a reduced number n of functional local representatives) has to be strongly
preferred.
This chapter is structured as follows: our motivating application, which we use

to test the different specifications of the method, is described in Section 9.2. In
Section 9.3, the Bagging Voronoi (BV) strategy for spatially dependent functional
data is introduced and described in its most general structure. In Section 9.4,
its adaptation to functional clustering (Bagging Voronoi Clustering [BVClu])
is detailed. Bagging Voronoi Dimensional Reduction (BVDim) is described in
Section 9.5, while a possible use of Bagging Voronoi for Regression (BVReg) is
sketched in Section 9.6. Concluding remarks are discussed in Section 9.7. All
analyses are performed in R [19].

9.2 The Motivating Application

In this chapter, we describe a case study in city management1 that stimulated
our research in the analysis of functional data spatially distributed on a lattice.
Data are measures along time (every 15minutes for 2weeks) of the use of the
Telecom mobile phone network across a lattice covering the area of Milan (Italy).
These measures, named Erlang, refer to the average number of mobile phones
connected to the network in each particular site of the lattice, in each considered
time interval.
The great advantage in the exploitation of Erlang measures is that they are cost-

less and freely available to any mobile phone network provider. Nevertheless, the
analysis of such a kind of data can give insight on different aspects of the urban
area they are referred to and can be developed with various scopes: the segmen-
tation of the area into districts characterized by homogeneous usage patterns; the

1 Data are courtesy of Convenzione di ricerca DiAP –Telecom Italia, Politecnico di Milano
(Italy).
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identification of a set of “reference signals” able to describe the different patterns
of utilization of themobile phone network; the description of the influence of each
telephonic pattern in each site of the lattice, via a linear model describing its link
to a set of geographic covariates, when available.
Erlang measurements show a great variability across locations and time: this

fact seems natural, since in the same lattice are included both sites referred to the
center of Milan, and sites referred to the countryside. More precisely,

● The metropolitan area of Milan is partitioned as a uniform lattice S0 of ||S0|| =
N = 10 573 rectangular sites of 232m × 309m, distributed on a grid of 97 × 109
and covering an area of 757 km2 included between latitude 45.37∘ and 45.57∘
North and longitude 9.05∘ and 95.35∘ East (see Figure 9.1).

● The data are provided every 15minute for 14 days, from 18 March 2009, 00:15,
until 31 March 2009, 23:45, as the average number of mobile phones simul-
taneously using the network for calling for 15minutes. Given the presence of
nonadmissible or missing values, we have a nonuniform time grid of p = 1308
elements, each one referring to a 15-minutes interval for which a measurement
is available in at least a lattice site (see Figure 9.2).

The Erlang Exj, associated with the lattice site x ∈ S0 in the j-th quarter of an
hour, is defined as

Exj =
1
15

Q∑
q=1

|||T
q
xj
||| , (9.1)

Figure 9.1 Map of the
region around Milan
(metropolitan area)
covered by the Telecom
Italia database.
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Figure 9.2 The total Erlang data as a function of time. Continuous vertical line separate
weekdays, while dotted lines are drawn at noon.

whereQ is the number of phones having at least one connection event to the Tele-
com network within site x during the i-th quarter, and Tqxj represents the time
interval in which phone q is calling while being within site x and during the j-th
quarter of an hour; |Tqxj| is its duration (minutes). The definition of the Erlang data
given in (9.1) is the one actually used by the company for the computation, but it
can be mathematically clarified with the following expression:

Exj =
1
15 ∫

15j

15(j−1)
Nx(t)dt. (9.2)

If we indicate with Nx(t) the number of mobile phones using the network within
site x at time t, the expression in (9.2) clearly shows that Exj is an average over the
j-th quarter of an hour. The two expressions (9.1) and (9.2) are in fact equivalent,
as it can be deduced from the following identities [20]:

1
15

Q∑
q=1

|||T
q
xj
||| =

1
15

Q∑
q=1 ∫

15j

15(j−1)
𝟏{Tqxj

}(t)dt = 1
15 ∫

15j

15(j−1)
Nx(t)dt.

The whole Erlang data set as just described includes 13 829 484 records, among
which 110 475 are missing. Erlang data can be considered as functional data with
spatial dependence, due to the high frequency of measurements in time and, on
the other hand, to the georeferentiation of observations on the spatial lattice. An
overview of the data as a function of time is given in Figure 9.2, where the sum
of the Erlang data on the whole region of interest

∑
x∈S0

Exj is shown. We can
immediately notice differences between night/day and weekdays/weekends, and
this general trend will be investigated in the analysis together with more local
behaviors, both restricted to specific time windows and/or associated to particular
subregions.

9.2.1 Data Preprocessing

The discrete sequence of Erlang values in each given site can be considered
as a sampling of a continuous process in time [21], describing the average
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number of mobile phones using the network in that site, as expressed in Eq.
(9.2). Indeed, in each site of the lattice, we observe a discrete version of the
Erlang continuous process, recorded approximately every quarter of an hour:
due to discontinuities in the information provided by the network antennas,
the Erlang measure is missing at some time instances, and hence, the time grid
of Erlang measurements is nonuniform. Moreover, some Erlang recordings are
negative due to measurement errors and should be treated as missing values.
We thus need to choose a proper basis expansion to reconstruct the functional
form of the time-varying Erlang data and to evaluate them on a common uniform
grid of time values, before applying the methodologies presented in the rest of
the chapter.
We perform a sitewise smoothing of the Erlang data via a Fourier basis expan-

sion due to the evident seasonality in the Erlang profiles. We set the period of the
Fourier basis equal to one week: hence, the reconstructed functional form of the
Erlang profile for site x ∈ S0 is a function Ex(t) such that

Ex(t) =
cx0
2

+
H∑
h=1

[
axh cos(h𝜔t) + bxh sin(h𝜔t)

]
, (9.3)

where t ∈ [0;T], 𝜔 = 2𝜋∕T, and T = 60 × 24 × 7 are the period expressed in min-
utes. The coefficients, cx0, a

x
h, and b

x
h, are estimated by means of least squares. To

choose the basis dimension H, we analyze the power spectrum associated with
the sitewise smoothing of the Erlang data with a Fourier basis of large dimension
(H = 200). The power spectrum of the Fourier expansion of a signal represents the
amplitude of the signal as a function of the frequency, and at the h-th frequency,
it is given by

Px(h) =
√(

axh
)2 + (

bxh
)2
. (9.4)

Hence, a local maximum in the power spectrum detects a frequency explaining
relevant features in the data, while when it vanishes toward zero, there is no
need to include higher frequency terms. We choose the most proper value of H
by inspecting the shape of the average power spectrum over all sites of the lattice,
i.e. P(h) = 1

N

∑
x∈S0

Px(h), plotted as a function of h in Figure 9.3: the frequencies
significantly contributing to the Erlang time variation are the smaller ones (all less
than 7), capturing differences among days or blocks of days (e.g. the working and
weekend days variation), and the multiples of 7, capturing the recurring daily
dynamics. Due to the huge dimension of the Telecom Italia database, we choose
a basis of very high dimension, in order to be reasonably sure to catch all relevant
localized features: we thus set H = 100 for subsequent analyses, which ensures
a rich enough basis. Other approaches for tuning H are of course conceivable
(MSE minimization, cross-validation,…).
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Figure 9.3 Average power spectrum P(h) obtained via sitewise smoothing of the Erlang
measures with a Fourier basis of dimension H = 200. Only the values of P(h) for
h = 1,… , 100 are shown in the plot. Dotted vertical lines are drawn for multiples of 7.

9.3 The Bagging Voronoi Strategy

Let Ex(t) be the value of the functional random variable at site x ∈ S0 and time
t. It is evident that a proper handling of spatial dependence is crucial for treat-
ing functional data indexed by a lattice: the dependency along time observed in
neighboring sites can be strong, both for physical and for technical reasons. We
treat spatial dependence by following a Bagging Voronoi strategy first introduced
in [22], and here sketched via a pseudo-code scheme in the next page.
The rationale beyond this strategy is simple, but effective: the algorithm is

divided in two main parts, a Bootstrap Phase and an Aggregation Phase, the
former consisting in the bootstrap repetition of many “weak versions” of the
target analysis, and the latter having the scope of bagging together the weak
analyses results to obtain a conclusive strong result. In the Bootstrap Phase, the
initial randomization is given by a random system of neighborhoods, differently
capturing local behaviors. The original data set is then replaced with a reduced
one, composed by functional local representatives of subsets of data belonging
to the same neighborhood, which is then analyzed. The repetition of this weak
analysis many times for different reduced data sets associated with different
randomly generated systems of neighborhoods makes the final aggregated result
more accurate, and it substantially reduces the overall computational costs
associated with the procedure.
More precisely, at the b-th bootstrap repetition, b = 1,… ,B: first, a

n-dimensional partition of the considered region S in random neighbor-
hoods is obtained by generating n random locations, or nuclei, {vb1,… , vbn} ∈ S,
and then computing the Voronoi tessellation of S0 induced by those nuclei,
i.e. Vb

i ∶ =
{
x ∈ S0∶d

(
x, vbi

)
= minj=1,…,nd

(
x, vbj

)}
for i = 1,… ,n. Hence, the

distance d(⋅, ⋅) defines the notion of closeness on the lattice, and its choice
depends on the application (it can simply be an Euclidean distance on ℝ2, or a
geodesic if the lattice is defined on a manifold). A functional local representative
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Algorithm. Bagging Voronoi.

Initialize B, n, and choose a metric d(⋅, ⋅).

Bootstrap Phase
for b ∶= 1 to B do
• step 1. generate a n-dimensional random Voronoi tessellation of the

lattice, i.e. group together neighboring sites of the lattice, where the
notion of “closeness” is defined by d(⋅, ⋅);

• step 2. identify a functional local representative for each element of
the tessellation to sum up local information: due to spatial dependence,
neighboring data are most likely drawn from the same functional
distribution;

• step 3. analyze the sample of functional local representatives with a
suitable statistical technique, depending on the scopes of the whole
analysis: functional clustering, dimensional reduction, and functional
regression.

end for

Aggregation Phase
• perform a matching of the results along the B bootstrap repetitions, to

deal with possible identifiability issues;
• aggregate the results of each single bootstrap repetition into a

stronger final result.

gbi (t) is then computed as a summary of the functional data {Ex(t)}x∈Vb
i
, via a

weighted mean with Gaussian isotropic weights (also called spatial smoothing
in [23]). The set of functional local representatives

{
gb1(t),… , gbn(t)

}
exploits a

specific structure of spatial dependence, and it is expected to be less noisy and
less spatially dependent [22]. Finally, any analysis suited to treat functional data
(functional clustering, dimensional reduction, and functional regression) can be
used on the set of functional local representatives, to obtain a coarse (or weak)
estimate of the final target analysis. The coarse estimate (a cluster label or a set of
basis scores) is then assigned to all sites of the lattice belonging to the element of
the partition associated with the considered representative.
Note that one has to fix some parameters in advance: n, the dimension of the

random partition and the size of the sample of functional local representatives;
B, the number of bootstrap replicates; d(⋅, ⋅), the most proper metric to measure
distances in the considered region. While d(⋅, ⋅) has to be chosen according to
the particular application at hand, both the choice of B and of n require further
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attention. In general, larger values of B imply a higher accuracy of the final esti-
mate, so this parameter can be tuned in order to achieve the desired accuracy;
however, we also investigate a stability analysis to guide the specification (see
Section 9.5.1.1). Also n, which sets the tessellation dimension and thus the num-
ber of local representatives to be computed, deserves some attention: the tuning of
this parameter has been extensively studied in the light of simulations [20, 22], and
for the specific purpose of maximizing analysis-specific performance indicators.
Nevertheless, these studies pointed out a quite general conclusion. The optimal
choice of n is the one that finds a good compromise between variance and bias of
the local representatives: as n decreases, noise is reduced in the local representa-
tives sample, since local representatives are weighted sample means calculated on
subsamples that are larger on average (minimal variance), but at the same time,
the associated Voronoi tessellation becomes coarser, thus including data with dif-
ferent characteristics in the computation of local representatives (maximal bias).
On the other hand, as n increases, the resulting Voronoi tessellation becomesmore
andmore refined, being able to catch very localized spatial features (minimal bias),
but at the same time, the variability reduction due to spatial smoothing is smaller
(maximal variance). The optimal value of n determined by this trade-off depends
both on the strength of spatial dependence and on the distribution of the spatial
signal generating the functional data. In [22], a tuning criterion for this parameter
based on the total entropy had been proposed for the purposes of clustering, while
in [20], the total average variance of the scores is considered, since it is more suited
to the purposes of dimensional reduction. Details of these tuning criteria will be
given for each model specification in the coming sessions.

9.4 Bagging Voronoi Clustering (BVClu)

Suppose a latent field of labels Λ0∶S0 → {1,… ,L} is associated with each site of
the lattice S0, i.e. Λ0(x) is the true unknown label associated with the site x ∈ S0∶
the label sums up some characteristics of the considered area which are interest-
ing for the scopes of the analysis, and L is the unknown number of labels present
in the area. Moreover, suppose that, given Λ0, the Erlang Ex(t) are independently
generated in each site x ∈ S0 from a distribution indexed by Λ0(x)∶ this means
that, given the characteristics of the area in site x as summarized by Λ0(x), the
Erlang profile Ex(t) will be drawn from a different distribution. This hypothesis
is the basis for models like Hidden Markov Random Fields (HMRF) are a typ-
ical setup for spatially dependent multivariate data on a lattice. However, most
algorithms for image analysis based on HMRF models (see [24, 25] for details on
these procedures) heavily depend on hypotheses on the multivariate distribution
of the observed signal, which are often too restrictive or anyhow unrealistic in
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a functional data context. Hence, our nonparametric treatment of spatial depen-
dence might help in solving the functional unsupervised classification problem
when functions are indexed on the sites of a lattice S0.
Aim of the classification procedure is to reconstruct the unknown field Λ0 of

labels. Hence, the final result of the procedure is a label assignment for each site of
the lattice. The generalmethodology described in Section 9.3 for handling spatially
dependent functional data can be adapted to the present clustering purpose by
specifying both the Bootstrap and the Aggregation Phases of the Bagging Voronoi
(BV) algorithm. This entails:

(1) performing functional clustering on the set of local representatives at each
bootstrap repetition;

(2) matching the cluster labels in each site along bootstrap repetitions, to ensure
identifiability, and then computing the frequencies of assignment of the site
to each one of the K clusters.

Point (1) refers to the Bootstrap Phase of the BV algorithm, while point (2) refers
to the Aggregation Phase. Clarifying these two points is the scope of the present
section, which will give the details of the BVClu strategy. Note that BVClu is a
refined version of the method first introduced in [22], where a different case study
was shown, since BVClu does not necessarily rely on the use of a functional basis
to project the functional lattice data.
Concerning point (1), many strategies to functional clustering are conceivable,

many of which are based on performing dimensional reduction first [26]. Given
that we already reduced the problem dimension by computing a sample of
functional local representatives at each bootstrap repetition, we here choose
a functional clustering method which directly handles the curves. Due to the
data characteristics described in Section 9.2, curves misalignment is not an issue
in this case. However, the strong localized features of the data in time have to
be properly taken into account. We thus use K-medoid functional clustering
[27], based on the L1 distance among the curves, to be reasonably robust to
localized features. The Bootstrap Phase of the BV algorithm is thus specified such
that, at each bootstrap repetition b = 1,… ,B, K-medoid functional clustering
is used on the set of local representatives

{
gb1,… , gbn

}
to obtain a set of labels{

Γb1,… ,Γbn
}
∈ {1,… ,K} assigning each local representative to one of the K

clusters. Then, all sites x ∈ Vb
i get the same label Γ

b
i at the b-th bootstrap iteration:

for k = 1,… ,K, and b = 1,… ,B,we indicate with Cbk the set of x ∈ S0 whose label
is equal to k.
Concerning point (2), the B coarse results obtained after the Bootstrap Phase

{Cbk}
b=1,…,B
k=1,…,K must be aggregated in the Aggregation Phase, which consists of two

tasks: cluster matching across bootstrap repetitions, to ensure identifiability, and
the actual aggregation of clustering results in a final frequency of assignment,
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which is indeed based on the assumption that cluster labels are coherent along
bootstrap repetitions. Cluster matching is structured as follows: for b ≥ 2, look
for the label permutation {l1,… , lK} in the set {1,… ,K} that minimizes the total
sum of the off-diagonal frequencies in the contingency table describing the joint
distribution of sites along the two classifications Cb−11 ,… ,Cb−1K and Cbl1 ,… ,CblK .
Then, the labels identifying the clusters Cb1,… ,CbK are renamed by permuting
them according to {l1,… , lK}.
Once clustermatching has been performed,we canfinally aggregate theB coarse

results of the Bootstrap Phase. The frequency distribution of assignment of each
site to each of the K clusters along the B repetitions is thus computed: for each
site x ∈ S0, one can compute 𝜋kx = #

{
b ∈ {1,… ,B}∶x ∈ Cbk

}
∕B, ∀ k = 1,… ,K.

A final assignment of site x to one of the K clusters can be obtained by selecting
that label corresponding to a mode of the distribution 𝜋x =

(
𝜋1x ,… , 𝜋Kx

)
.

In order to perform BVClu, some parameters need to be properly tuned. In order
to set n, the number of elements of each random partition, and K, the number
of clusters, we can vary them in reasonable ranges and examine the behavior of
two performancemeasures: the average normalized entropy, designed to assess the
uncertainty associated with cluster assignments along bootstrap replicates, and
the Wilks’s 𝜆, which evaluates the quality of the final classification.
The spatial entropy criterion for assessing the uncertainty associated with clus-

ter assignments was first introduced in [22]. Consider the frequency distribution
of the assignments 𝝅x =

(
𝜋1x ,… , 𝜋Kx

)
of each site x ∈ S0 to each of the K clusters.

The entropy associated with the final classification in the site x ∈ S0 is obtained as
𝜂Kx = −

∑K
k=1 𝜋

k
x ⋅ log

(
𝜋kx

)
, which is close to 0 for peaked distributions of assign-

ments and close to the maximum log(K) for quite uniform ones. The more the
frequency distribution 𝝅x is concentrated on one particular label, the more the
classification is precise and stable along replicates. Hence,minimizing the entropy
is a good strategy to assess the uncertainty of the clustering result. A global mea-
sure, involving all sites of the lattice, can be computed as

𝜂K =
∑

x∈S0
𝜂Kx

log(K) ⋅ |S0| , (9.5)

and we name this global measure average normalized entropy. Since the crite-
rion expressed in (9.5) is a measure of the uncertainty associated with the cluster
assignments, we expect 𝜂K to beminimal if n properly accounts for the (unknown)
spatial dependence in the latent field of labels.
One could guess that the average normalized entropy would be a good criterion

also for selecting K. Simulation studies performed in [22] indeed showed that the
entropy criterion generally leads to a choice for K more parsimonious than neces-
sary, and an alternative approach was there proposed, directly targeted to instead
check the goodness/quality of the final classification. This measure is close to a
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Wilks’s 𝜆 [28], a classical qualitymeasure in cluster analysis, and has the following
form:

𝜃 = tr(B)
tr(B +W)

, (9.6)

where B and W are the final between and within cluster sum of squares matrix,
respectively.

9.4.1 BVClu of the Telecom Data

9.4.1.1 Setting the BVClu Parameters
To set n and K, we examined the behavior of the previously introduced perfor-
mance measures, while for what concerns B, the number of bootstrap replicates,
we decided to fix it to a “reasonable” value (B = 50 for BVClu), meaning that it is
large enough to give meaningful results, but small enough not to make computa-
tions too intense.
We varied n ∈ {500, 750, 850, 1000, 1250}, and K ∈ {1,… , 10}. We used the

BVClu strategy with functional K-medoid clustering on the Telecom data. Results
are shown in Figure 9.4a, we plot the average normalized spatial entropy 𝜂 as
a function of n for different choices of K, and we seek to find a minimum with
respect to n for reasonable choices of K, taking also into account that the entropy
criterion might be parsimonious for lower K’s. We see that n = 750 is a good
candidate choice, showing a minimum for various reasonable K’s and showing
stabilized results for K = 2. In Figure 9.4b, we can then inspect the behavior
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Figure 9.4 Results of BVClu on the Telecom data. Average normalized entropy 𝜂 along
50 bootstrap replicates (a), and 𝜃 values for evaluating the quality of the final
classification (b), obtained for various choices of n and K.



�

� �

�

222 9 A Nonparametric Algorithm for Spatially Dependent Functional Data

1

2

3

4

5

6

0 2000 4000 6000 8000 10 000

0
2

4
6

8
10

12

Cluster medoids
(a)

(b)

Figure 9.5 Results of BVClu on the Telecom data, with n = 750 and K = 6. (a) Map of the
final cluster assignments superimposed to the map of the metropolitan area of Milan. (b)
The six final cluster medoids. The shade of gray identifying a cluster on the map in (a) is
associated with that of the cluster medoid in (b).



�

� �

�

9.5 Bagging Voronoi Dimensional Reduction (BVDim) 223

of 𝜃 with respect to K for different values of n: here we look for an “elbow,”
showing that a further increase in K does not imply a reasonable increase in the
proportion of data variability explained by the clusters. For n = 750, the elbow
is clearly visible at K = 6, but even equally reasonable values for n point to the
same conclusion. Looking back at Figure 9.4a, we recognize a clear minimum in
n = 750 in the entropy curve for K = 6. These two choices thus seem the most
reasonable ones.

9.4.1.2 Results
The results obtained performing BVClu as detailed in Section 9.4, run usingB = 50
bootstrap iterations with Voronoi tessellations of dimension n = 750, and when
estimating six clusters, are shown in Figure 9.5. In Figure 9.5a, the final clus-
ter assignments in each site of the lattice x ∈ S0 are superimposed to the con-
sidered geographical area, i.e. the metropolitan area of Milan (see Figure 9.1). In
Figure 9.5b, the six final cluster medoids estimated by the procedure are shown.
As it is evident from themedoids, themain feature distinguishing among the clus-
ters is the scale of the Erlang measurements: the medoid associated with cluster
1, which corresponds to the map to sites in the very center of Milan, has peaks
up to 12 Erlangs; clusters 2 and 3, localized in the close neighborhoods and per-
iferic areas of the city, peak at around 6 and are very similar in shape; cluster 4,
representing the suburbs, peaks at 2; cluster 5, which points at highways and at
the city ringroads, peaks at 1.2; and finally cluster 6, mainly countryside, has max-
imum value 0.3. Apart from this very neat distinction, the medoids do not show
any other relevant difference: the shape is approximately the same, with the same
daily and weekly periodicity already evident in the total Erlang data in Figure 9.2.
This result is totally realistic if we think that functional clustering with respect to
the L1 metric does not imply a distinction among the data in terms of shape, but
rather of their respective scale, especially if the scale varies consistently within the
dataset. For capturing repeated localized behaviors, either the functional distance
has to be changed, or a dimensional reductionmethod has to be employed, to cap-
ture via few time profiles the average behavior of many neighboring sites. This will
be the focus of Section 9.5.

9.5 Bagging Voronoi Dimensional Reduction (BVDim)

When the purpose of the analysis is dimensional reduction, what we have inmind
is an additive model where Ex(t) is represented by the value at t taken by a limited
number K of time-varying functions {𝜓1,… , 𝜓K}, common to the entire lattice
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S0, and coupled with the values at x taken by K latent random fields {D1,… ,DK}
indexed by the sites of S0

Ex(t) =
K∑
k=1

Dk(x)𝜓k(t) + 𝜖. (9.7)

The random error term 𝜖 is assumed to be independent on {D1,… ,DK}, with
zero mean and bounded variance. Model (9.7) is often assumed in the context
of reduced basis representation methods, like Functional Principal Component
Analysis (FPCA) and Functional Independent Component Analysis. The impor-
tant difference here stands in the fact thatwe take into account spatial dependence,
through the random fields {D1,… ,DK} generating the scores of the basis expan-
sion.
Model (9.7) implies the following regressionmodel for the collection {Ex(t)}x∈S0

of time profiles belonging to the Erlang dataset

𝔼[Ex(t)|D1 = d1,… ,DK = dK] =
K∑
k=1

dk(x)𝜓k(t), (9.8)

for x ∈ S0 and t ∈ [0,T]. The time-varying functions
{
𝜓1,… , 𝜓K

}
are unknown,

each function describing a time profile for mobile phone activity. The surfaces
{d1,… , dK} are the unobserved realizations of the random fields {D1,… ,DK}.
The K values {d1(x),… , dK(x)} represent the contributions to the Erlang time
profile Ex of their coupled time-varying functions. The other way round, the K
time-varying functions

{
𝜓1,… , 𝜓K

}
express the evolution in time of the coupled

surfaces.
The general methodology described in Section 9.3 for handling spatially

dependent functional data can be adapted to the present purpose of performing
dimensional reduction, i.e. estimating both sets of functions

{
𝜓1,… , 𝜓K

}
and

{d1,… , dK}. This entails:

(1) performing dimensional reduction on the set of local representatives at each
bootstrap repetition;

(2) matching the bases obtained across bootstrap repetitions and then combining
them into a final basis.

Note that, as in case of BVClu, point (1) refers to the Bootstrap Phase of the BV
algorithm, while point (2) refers to the Aggregation Phase, and we give here the
details of both. The strategy and results here reported are a refined version, where
the tuning of the parameters has been better explored, of the analysis described
in [20] under the name of Bagging-Voronoi Treelet Analysis. We named the proce-
dure BVDim to stress its generality for what concerns the employed dimensional
reduction strategy.
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Concerning point (1), themost common approach [29] when dealing with func-
tions is FPCA,which allowsfinding optimal subspaces for representing data.How-
ever, this kind of method usually builds the new basis as a linear combination of
all (or most of) the original variables, thus providing a global representation, with-
out being able to capture localized behaviors. Following Secchi et al. [20, 30], we
instead use treelets, which are a multiscale data-driven orthonormal basis forming
a hierarchical tree. Treelets are built on wavelets: the wavelet approach is com-
bined with a PCA performed hierarchically on the couple of most correlated vari-
ables at each level (see [30] for details on this dimensional reduction procedure).
The Bootstrap Phase of the BV algorithm is thus modified so that, at each boot-

strap repetition b = 1,… ,B, a treelet analysis is used on the set of local represen-
tatives

{
gb1,… , gbn

}
, evaluated on a fine grid of equally spaced abscissa values (see

Section 9.2.1), to obtain an orthogonal treelet basis
{
𝜑b1,… , 𝜑bJ

}
. Then, each func-

tional local representative gbi , i = 1,… ,n is orthogonally projected onto each basis
element𝜑bj , j = 1,… , J and the corresponding scoredbj (x) is assigned to all x ∈ Vb

i .
Concerning point (2), it is important to recall what is the output of the Boot-

strap Phase: a collection of reference basis functions
{
𝜑b1(t),… , 𝜑bJ (t)

}B
b=1, and of

their coupled surfaces
{
db1(x),… , dbJ (x)

}B
b=1. These B coarse results must then be

aggregated in the Aggregation Phase, which consists of two tasks: a matching of
the bases along the B bootstrap repetitions, to ensure their comparability, and their
actual aggregation in a final reference basis. We handle both tasks simultaneously
via 1-median basis alignment, which jointly computes the reference basis from the
B coarse bases, while also reordering their elements. This procedure is inspired by
the 1-medoid alignment method [31], but in the context of bases matching each
datum is a multivariate function (one of the coarse bases), and we look for the
unique prototype (the reference basis) which best describes the set of functional
objects,while also aligning their components, by permutations in the order of basis
functions. Note that the chosen aggregation strategy is a discrete variation of a Pro-
crustes alignment procedure [32–35]. For more details on the Alignment Phase in
BVDim see [20].

9.5.1 BVDim of the Telecom Data

9.5.1.1 Setting the BVDim Parameters
In order to perform BVDim, we need to fix some parameters in advance. Specif-
ically, we have to set n, the number of elements of each random partition; B, the
number of bootstrap replicates; and K, the number of selected relevant elements
of the final reference basis. The choice of n, B, and K is somehow related, thus
making their tuning even more tricky. We proceed in the following way: we first
fix B to a “reasonable” value, meaning that it is large enough to give meaningful
results, but small enough not to make computations too intense. We then perform
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BVDim for large J (i.e. without selecting K) with the scope of tuning n. Once n is
selected, we focus on a good choice for K. Finally, we perform a stability analysis
of the so obtained basis functions (for fixed n and K) to find the optimal B.
Hence, for fixed B = 50, we focus on n and K. The right value for n is based on

the optimization of a measure of stability across bootstrap replications: for each
site x ∈ S0 and J = 1,… , J, we compute the bootstrap variance of d̃bj (x) (i.e. the
aligned dbj (x)) over b = 1,… ,B; we then compute the average over x ∈ S0 and sum
over j. This quantity is called Total Average Variance (TAV) and has to be min-
imized, varying the possible number of elements in the tessellation, in order to
obtain the optimaln. In [20], the optimal value turned out to be n = 850, indicating
that 1 km is the relevant practical spatial range of the Erlang data. The numberK of
relevant basis elements, as in most dimensional reduction techniques, is instead
chosen considering the fraction of total variance explained by each component.
In particular, for each element j, given the final collection of surfaces

{
d̃bj (x)

}B
b=1,

we compute the variance over b and sum over x ∈ S0 to obtain s̃2j . The selected
elements are those associated to theK-th significantly largest variances. Following
this strategy, six basis elements turned out to have higher variance, even though
only four of them were fully commented and described in [20]. Of course, a lower
threshold on the proportion of explained total variance could lead to the inclusion
of more treelets, up to a couple dozens.
Once n and K have been selected, the number of bootstrap replicates B can

be carefully tuned so to avoid possible instabilities in the results due to the ran-
dom components of BVDim. This is what we call stability analysis: the concept of
stability relates to the variation of the basis elements with respect to a reference
result, which we set as the basis associated to Bmax = 200 (the largest number of
boostrap replicates here considered): Ψref = {𝜓1,… , 𝜓6}B=200. In each basis, for
B ∈  = {50, 80,110, 140,170, 200}, we consider the elements in decreasing order
according to their total variance s̃2j , meaning that the first or second element in a
basis is the one with the largest or second-largest value of s̃2j , and so on. We recall
that for a proper comparison of the bases {𝜓1,… , 𝜓6}B∈ an alignment of the ele-
ments is also needed, since for different values of B positions in the variance-based
order might vary. After the alignment, for each element, we measure its distance
from the corresponding element of the reference basis Ψref . A graphical represen-
tation of the stability analysis is given in Figure 9.6, where the Euclidean distance
from Ψref is plotted vs. the number of bootstrap iterations (x-axis), and the differ-
ent basis elements j = 1,… , 6 are drawn in shades of gray; we see that for the first,
second, and fifth elements, 50 bootstrap iterations are sufficient for a good match-
ing with the corresponding components of the reference basis. However, the other
elements are more unstable, and the stability of the complete basis is achieved
with a number of iterations B ≥ 140.We thus chose this threshold as the value for
B to be used in BVDim.
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Figure 9.6 Results of BVDim on the Telecom data. Euclidean distance from the reference
basis Ψref for the first six aligned basis elements, varying the number of bootstrap
iterations B ∈ .
9.5.1.2 Results
In this section, we report results obtained performing BVDim as detailed in
Section 9.5, run using B = 140 bootstrap iterations with Voronoi tessellations
of dimension n = 850. The strength of our analysis stands in finding the most
exhaustive, and at the same time synthetic, description of the signal components,
and of their action both in time and space. We discuss here only the first six
time-varying functions and the coupled surfaces, focusing on their interpretation
in the framework of our analysis of mobile phones data:

● time function 𝜓1: general mobile phone activity;
● time function 𝜓2: working/nonworking hours;
● time function 𝜓3: after-work activity;
● time function 𝜓4 and 𝜓5: rush-hour;
● time function 𝜓6: commuting vs. long-distance traveling dynamics.

The time profiles are shown in Figure 9.7, reported over a week period start-
ing fromWednesday 00:00 and ending with Tuesday 24:00, with days separated by
full vertical lines. The associated surfaces are represented in Figure 9.8, with the
map of themetropolitan area ofMilan in the background, for a better geographical
understanding of the spatial dynamics. In the maps, a value close to 0 in a partic-
ular area means that the corresponding basis function does not give a relevantly
contribution to the mobile phone activity (Erlang measurement) in that site. The
0-levels contour lines are traced in bold.
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Figure 9.7 Results of BVDim on the Telecom data: the first six elements of the reference
basis (from (a) to (f), 𝜓1 to 𝜓6), in decreasing order based on relative variance. Continuous
vertical lines separate the weekdays (WED-THU-FRI-SAT-SUN-MON-TUE), while dotted
lines are drawn every two hours starting from midnight.

● 𝜓1 - General mobile phone activity. The fist time profile 𝜓1, given in
Figure 9.7a, is associated with the surface d1(x) (Figure 9.8a), which catches
the urbanization of the area and can be related to the average population
density, distinguishing day-time low-density population areas and high-density
population areas. It can, therefore, be considered an indicator of the general
mobile phone activity. This profile brings the largest contribution to the Erlang
signal (values as large as 120), and it is clearly identified as the most relevant
one even with a low number of bootstrap iterations, indicating that it may
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(a) (b)

(c) (d)
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Figure 9.8 Results of BVDim on the Telecom data: maps of the estimated surfaces
{d1(x), d2(x), d3(x), d4(x), d5(x), d6(x)}, in lexicographic order, coupled to the elements in
Figure 9.7.
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indeed be detected throughmuch simpler analyses. The time function describes
daily and weekly periodicity, with higher peaks during the day (vs. night) and in
working days (vs. weekends) and, considering the associated map, it confirms
the city of Milan to be an attractor during the daytime of working days.

● 𝜓2 -Working/nonworking time. This basis element (Figure 9.7b) contrasts
the working time (negative, from 08:00 to 20:00) and nonworking time (positive
peaks in earlymorning, evening, andweekends). In the associated surface, given
in Figure 9.8b, we can observe negative values (indicating high activity during
working hours) in the city centerwith an extension northeast toward theCentral
Railway Station. Indeed, these areas are mostly devoted to tertiary activities and
are contrasted with a wider positive-valued (residential and recreational) area
around the center. The map clearly points out that the municipality Milan is an
attractor for work-related reasons, while the satellite towns as attractors during
nonworking hours, due to the flows of commuters.

● 𝜓3 - After-work activity. The third time profile 𝜓3 (Figure 9.7c) focuses on
late afternoon and evening, opposing the time slot 5:00–7:00 p.m. (negative) to
the slot 7:00–9:00 p.m. (positive), and can be therefore related to the after-work
activities. The associated surface (Figure 9.8c) shows a negative concentration
in the historical city center and in the area around the central station, while the
positive peaks are in the residential areas of the city, especially in the eastern
part. While the previous maps concern the general trends during nonworking
hours, and it thus takes into account dynamics involving the suburbs, this map
is more focused on the city itself, and it considers more specific features: sites
with positive value seem to be the residential and leisure areas of the city where
people spend their evening, while negative ones might be those where people
commonly go right after work, remaining close to the working site for the late
afternoon shopping and/or relax, or heading to the train station to go back home.

● 𝜓4 and 𝜓5 - Rush-hour. We describe here two different functions pointing out
the same phenomenon from two different points of view. Indeed, both𝜓4 and𝜓5
show peaks between 8:00 and 10:00 a.m. and between 5:00 and 9:00 p.m., which
correspond to the morning and evening rush hours. However, while the fourth
profile (Figure 9.7d) is positive in both time slots and negative in the central
hours of the day, 𝜓5 (Figure 9.7e) contrasts the morning rush hours (positive)
with the evening rush hours (negative). The corresponding surfaces, d4(x) and
d5(x) (Figure 9.8d,e, respectively) accordingly show two different spatial distri-
butions. The former shows that areas particularly active during the rush hours
are concentrated along the city external ring-roads, the roads connecting satel-
lite towns to Milan, at the central station, and in Linate Airport (eastern blue
spot). The latter surface shows instead a nonuniform pattern connected to dif-
ferences between the morning and evening activities: there are positive spots
(morning) in the northwest part of the city (Central Railway Station, Garibaldi
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Railway Station, new financial district) and in several crossroads in the road net-
work surrounding Milan, while the negative areas (evening) are mainly in the
center and in the southeastern part of the city.

● 𝜓6 - Commuting vs. long-distance traveling dynamics. The last function
focuses on the central hours of the day, contrasting the activities carried out
from 10:00 a.m. to 3:00 p.m. (negative) and those between 3:00 and 6:00 p.m.
(positive), highlighting some particular daytime dynamics. The map clearly
spots the Central Railway Station and Linate Airport as positive, while the
negative areas correspond to the historical center, the southeast part of the
city (within the ring-road), and the new financial district, including Garibaldi
Railway Station. Hence, this function seems to suggest contrast between some
kind of travel within or nearby the city in the first part of the day (most of the
trains in Garibaldi Station are local trains), and long-distance (Linate Airport)
or regional trips (Central Station) in the second part of the day.

9.6 Bagging Voronoi Regression (BVReg)

When dealing with the problem of modeling the relationship between a response
and a set of explanatory variables, linear regression represents the simplest and
most common approach. The matter complicates when the response is a spatially
dependent functional variable, and the aim is to find its relationship with a set of
p spatial covariates, summing up relevant characteristics of the area under study.
Note that, if we forget the spatial component, the sitewise version of model (9.8)
translates into a functional linear model with scalar predictor [29]. Aim of the
present section is to show how the Bagging Voronoi strategy described in Section
9.3 can be tailored to handle functional regression with spatial dependence, orig-
inating the BVReg procedure. A more detailed explanation of the strategy and
results here reported can be found in [36] under the name ofBaggingVoronoi Lasso
Regression (BVLR).
Precisely, we need to modify both the Bootstrap and the Aggregation Phases, in

the following directions:

(1) estimating a functional linear model at each bootstrap repetition, where each
functional local representative has to be related to the spatial covariate values,
when referred to the same Voronoi element;

(2) combining the model coefficients obtained along bootstrap repetitions into a
final regression model.

Point (1) deserves some clarifications: first, given the Voronoi element Vb
i of

the tessellation, we have to find the local representatives of the spatial covari-
ates {Z1(x),… ,Zp(x)} by computing an average (with a Gaussian isotropic ker-
nel) of the covariate values Zj(x) on x ∈ Vb

i , for j = 1,… , p and i = 1,… ,n. This
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leaves us with the set of covariate local representatives {zbi }
n
i=1 at the b-th bootstrap

repetition. Note that the vector zbi ∈ ℝp is the local representative of all covari-
ates on the i-th Voronoi element. Then, we estimate the functional linear model
gb(t) = Zb𝛽b(t),where Zb is a n × (p + 1) designmatrix combining the set of covari-
ate local representatives and including the intercept. Since the spatial covariates
are fixed, point (2) is straightforward: no matching is needed, and the set of coef-
ficients obtained along bootstrap repetitions {𝛽1(t),… , 𝛽B(t)} can be combined by
simply taking an average.

9.6.1 Covariate Information: The DUSAF Data

We consider a set of covariates {Z1(x),… ,Zp(x)}, including information about soil
use and land cover, available for the region of Milan (Lombardia) under the name
of DUSAF data: indeed, soil use and its dynamics are a strategic element for urban
and territorial planning, allowing to understand the current state of territory as the
result of past modifications, and to monitor its changes and future opportunities.
DUSAF is a geographical data bank born in 2001–2002, promoted by differ-

ent regional institutions focused on territory, agriculture, environment, and urban
planning. It is made up of categories describing the use of the area, georeferenced
via shapefiles, and each category is divided in five hierarchical levels. The first
level, giving a first rough classification of the land use, includes five general land
cover categories: “Anthropic areas,” “Agricultural areas,” “Woods and seminatu-
ral areas,” “Humid areas,” and “Water bodies.” Each of these categories is then
detailed in the levels from the second to the fifth. The resulting structure is very
complex, and it includes some very specific local categories (e.g. cemeteries, rice
fields, olive cultivations).We thus first need to select only the categories that could
be relevant for our analysis based on mobile phone data. The selection procedure
was performedmanually and resulted in p = 18 DUSAF surface covariates, which
are reported in the first column of Table 9.1. In Table 9.1, the fivemacro categories
of level 1 are highlighted in red and, when the selection is made at a deeper level,
level 2 classes are pointed out in bold. In particular, among the five macro cate-
gories, we decided to analyze in depth only “Anthropic areas,” while we stopped
at level 1 for the remaining four: this is motivated by the assumption that any fur-
ther specification for this kind of low population density classes would not have
a relevant influence in explaining mobile phone use dynamics in the metropoli-
tan area we are examining. Note that the levels of the selected categories can be
deduced also from the digits included in the label, reported in the third column of
Table 9.1. Finally, the last column of Table 9.1 shows the variable number, which
represents the covariates order in the analysis reported in Section 9.6.2 (alphabet-
ical order according to the new reference names in the first column). Four of the
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Table 9.1 DUSAF data: soil use categories and corresponding explanations

Selected Explanation Label Variable No.

Anthropic areas (1)
Urban areas (11)

urban_cont Continuous urban tissue 111 17
urban_disc Sparse urban tissue 112 18

Industrial plants and communication networks (12)
Production areas, public and private services (121)
Industrial, commercial, agricultural settlements (1211)

prod_indcomm Industrial and commercial settlements 12111 9
prod_agri Agricultural plants 12112 8

Public and private services (1212)
serv_osp Hospitals 12121 12
serv_gen Public and private services settlements 12122 11
serv_tech Technological plants 12123 13

Road and rails networks (122)
road Road networks 1221 10
train Rail networks 1222 15
aero Airports and heliports (124) 124 1

Dumps, abandoned lands, construction sites (13)
dumps Dumps and abandoned lands 131,132,134 5
constr Construction sites 133 4

Nonagricultural green areas (14)
green Urban green areas (141) 141 6
sport Sports and recreational areas (142) 1421 14

Agricultural areas (2)
agri Agricultural areas 2 2

Woods and seminatural areas (3)
bosc Woods and seminatural areas 3 3

Humid areas (4)
umid Humid areas 4 16

Water bodies (5)
idro Water bodies 5 7
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(a) (b)

(c) (d)

Figure 9.9 Four of the p = 18 selected DUSAF covariates superimposed to the
metropolitan area of Milan: agricultural areas– agri (a); water bodies – idro (b);
continuous urban tissue– urban cont (c); road networks – road (d).

p selected covariates, superimposed on the metropolitan area of Milan, are shown
in Figure 9.9. For more details on the preprocessing of covariate data, see [36].

9.6.2 BVReg of the Telecom Data

9.6.2.1 Setting the BVReg Parameters
Also in the case of BVReg, before performing the actual analysis, we need to specify
some further choices.
One of the possible approaches to estimating a functional linear model is via

basis function expansion [29]. Somehow mimicking this approach, we exploit
the BVDim strategy described in Section 9.5: instead of directly considering
the Erlang data Ex(t), we consider as response a set of selected spatial surfaces
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obtained after the Aggregation Phase of BVDim, and in particular, the first four
treelet maps

{
d1x, d2x, d3x, d4x

}
, x ∈ S0, as shown in Figure 9.8. This choice allows

us to estimate a multivariate regression, instead of a functional linear model, at
each bootstrap repetition, leaving us with a set of multivariate coefficients at the
end of the Bootstrap Phase.
Another important aspect concerns the choice of the most suited linear model:

sincewe lack any prior information about the relevance of themany regressors, we
also aim at investigating which variables, i.e. which cover land types, are actually
related to our response surfaces, thus avoiding overfitting. Hence, the proposed
BVReg approach for the Telecom data is in fact a spatial version of lasso regres-
sion, a regularization approach to variable selection [37]. This implies that the set
of multivariate coefficients obtained at the end of the Bootstrap Phase are also
dependent on the choice of 𝜆, the lasso regularization parameter: assuming to
explore L different values of the regularization parameter {𝜆1,… , 𝜆L}, we obtain
the coarse estimates {b

l }
L
l=1 = {𝜷(1),b

l ,… , 𝜷
(4),b
l }Ll=1 at the b-th bootstrap repetition,

where 𝜷(k),b
l ∈ ℝp, for k = 1,… , 4, is the estimated coefficient vector of the lasso

regression with 𝜆 = 𝜆l for predicting dkx given the covariates Zb.

9.6.2.2 Results
For the present application, we chose L = 20 values for the lasso regularization
parameter, selected uniformly in log-scale in the interval [−5,−0.5]. The final
choice of the optimal 𝜆∗ was obtained by analyzing the 10-fold cross-validation
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Figure 9.10 Results of BVReg on the Telecom data. Mean cross-validation error (10-fold)
associated to the lasso, when varying the regularization parameter 𝜆 = 𝜆1,… , 𝜆L (x-axis).
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error of BVReg with lasso regression, as shown in Figure 9.10: in the four panels,
we represent the average cross-validation errors associated with the four treelet
maps, when varying 𝜆 in the x-axis. The error tends to increase when we use a
small regularization parameter, meaning that a weak penalization implies over-
fitting along bootstrap iterations, possibly leading to a nonconsistent aggregation.
The model associated with the minimum cross-validation error, with 𝜆∗ ≅ 0.09
(i.e. log(𝜆∗) ≅ −2.4), is the best compromise between a complete and highly
explanatory model capable of accurate prediction, and a parsimonious and easily
interpretable model including only important features. The aggregated output
{𝜷(1),∗,… , 𝜷 (4),∗}, averaged over b = 1,… ,B and obtained for 𝜆 = 𝜆∗ consists of
four coefficient vectors associated with the four treelet maps responses, shown in
the four panels of Figure 9.11 (k = 1, 2, 3, 4 in lexicographic order): in each panel,
intervals are built for each coefficient i with semiwidths corresponding to one
bootstrap standard deviation around the coefficient mean, in order to assess the
variability across bootstrap replicates. The striped bars are those of coefficients
whose associated interval does not include zero, meaning that the corresponding
covariate resulted in stable results (similar estimates) across bootstrap repetitions,
and it can thus undoubtedly be considered relevant in the model.
The interpretation of the coefficients shown in Figure 9.11 confirms our

qualitative interpretation given to the first four estimated treelet surfaces in
Section 9.5.1.2: the first surface was related to the general mobile phone activity,
and indeed, coefficients showing large positive values are those of covariates
concentrated in the urban areas (including road networks and services settle-
ments), opposed to low-density population areas (agricultural and natural areas,
industrial sites). The second and third surfaces show nearly the same selected
relevant coefficients, related to residential or recreational areas (the presence
of roads could be related to travel between home and work), in contrast with
areas devoted to work activities, especially services settlements and industrial
production sites. Finally, the fourth surface, according to our interpretation,
emphasizes phenomena associated with rush hours, and indeed, the importance
of road networks is clearly identified, as well as an opposition between residential
areas (continuous and sparse urban tissue) and tertiary-devoted areas (services).
All in all, we can conclude that the BVReg results describing the dependence of
treelet-associated surfaces on land cover use allowed us to validate the heuristic
interpretation of the treelet surfaces, given in Section 9.5.1.2.

9.7 Conclusions and Discussion

In this chapter, we presented a unified view on Bagging Voronoi, a nonparamet-
ric approach to the treatment of spatial dependence when dealing with functional
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Figure 9.11 Results of the BVReg lasso regression on the first four estimated surfaces {d1(x), d2(x), d3(x), d4(x)} shown in Figure 9.8:
barplots of the aggregated lasso coefficients, with whiskers showing ± a bootstrap standard deviation around each coefficient value.
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data indexed on the sites of a lattice. The methodology was first introduced in [22]
for classification purposes, and then extended in [20] to dimensional reduction and
in [36] to regression. The present chapter introduces the main concepts in a pretty
simple and schematic way, and then specifies it further to the different purposes
(classification, dimensional reduction, and regression), thus showing the overall
flexibility of the approach. We also show the potentialities of the method on a case
study concerning the mobile phone use in the metropolitan area of Milan, which
guides us in the method explanation and interpretation along the whole chapter.
Both the clustering and the dimensional reduction approaches lead to interest-
ing results, whose interpretation was validated thanks to the use of covariate data
related to soil use and land cover.
Indeed, the Bagging Voronoi strategy can be investigated for further devel-

opments: the overall structure of the method (alignment and aggregation
procedure), the treatment of spatial dependence (Voronoi tessellation, chosen
distances, and Gaussian kernels), and the dimensional reduction technique
(orthogonality constraints, strategy for the selection of a number of relevant
basis elements, cross-validation to assess the performance) could require further
thinking. A first step in this direction was introduced in [38], where the Bagging
Voronoi strategy was combined to a joint clustering and alignment procedure
[39], to allow for joint clustering and alignment of spatially dependent functional
data. Other statistical methods for the exploration of spatial dependence, such as
Local Indicators of Spatial Association (LISA) [40], could also be investigated.
From the point of view of the considered case study, we believe that the pro-

posed analysis can find widespread applications in several fields related to urban
planning. This work provides a structuredmethodology for the understanding and
explanation of population dynamics in urban areas based on mobile phone data,
and it could be extended in several directions, possibly representing a strategic
tool to boost the trends associated to the development of smart cities. Further-
more, we can also think of other practical situations where our nonparametric
approach to the treatment of functional data indexed by a lattice might be more
natural than other model-based methods, e.g. geostatistical space–time models:
for example, when the lattice is defined on a non-Euclidean space, e.g. a mani-
fold, our approach is easily adaptable via a different choice of the distance d(⋅, ⋅),
while model-based approaches might be harder to adapt. Indeed, this is not a rare
situation: we already successfully used the Bagging Voronoi strategy on satellite
data indexed by sites on a nonhomgeneous lattice covering the Earth [22], and to
this scope, we defined d(⋅, ⋅) to be the geodesic, but, of course, the same could be
done for other kinds of non-Euclidean data such as functionalmagnetic resonance
images (fMRIs).
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10.1 Introduction

Spatiotemporal data are treated by the current literature of functional data
analysis in two different ways. They can indeed be modeled as a collection
of time-varying data possibly showing spatial dependence, or alternatively, a
collection of space-varying data possibly showing temporal dependence. In this
chapter, we discuss a general inferential technique for functional data that can
be applied to both cases, providing different local information depending on
the chosen representation of the functional data. For a complete overview of
functional inference methods for spatiotemporal data see Chapters 14, 15, and 16
and references therein.
Statistical inference for functional data is tackled by the literature from two dif-

ferent perspectives: parametric inference relying on distributional assumptions on
functional data (e.g. Gaussianity) and/or on asymptotic results (e.g. [1–6]), and
nonparametric inference relying instead on very computational intensive tech-
niques based on permutations or bootstrapping (e.g. [7–14]). Bootstrap techniques
are only asymptotically valid, i.e. exact when the sample size goes to infinity. Con-
versely, at the expense of minimal assumptions on the distribution of the data,
the permutation-based approach can generate exact statistical inference even for
small sample sizes (e.g. [15]).
Although being based on very different modeling assumptions, all the men-

tioned techniques can be classified as global inferential techniques: they look at
functions as data points and share the common aim of performing a global test
focusing on the distribution of the functional data considered as random objects in

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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a functional space. Consistently, the conclusion of these statistical tests is a unique
p-value that is used to decide whether the null hypothesis should be accepted or
rejected over the whole domain.
While being mathematically appealing, this global approach to inference may

not be not fully satisfactory inmany functional data applications:whenever a func-
tional null hypothesis is rejected, scientists are often interested in also imputing
such a rejection to specific parts of the domain of the functional data. For instance,
whenever there is strong statistical evidence to reject a null hypothesis of equal-
ity in distribution between two functional populations, one is often interested in
selecting the specific parts of the domain where the significant differences are
observed. This is why, in the recent literature, there has been growing interest in
local inferential techniques, i.e. techniques that aim at testing the null hypothesis
locally, and that provide a set of local p-values associated to specific points of the
domain. In the case of spatiotemporal data, a local p-value can be associated to
specific time instants or space locations, depending on the chosen representation
of the data.
A first approach to local inference for functional data was basically based on

finite dimensional approximations of the problem above. In detail, the inferential
procedure proposed by Vsevolozhskaya et al. [16] is based on a discretization of
the domain. In that work, a finite partition of the domain in subintervals is a priori
defined, and a global test is performed on each subinterval. Since several tests are
jointly performed on the same data set, the results of the tests are finally adjusted
for multiplicity by means of a closed testing procedure [17] on the subintervals.
Thanks to the multiplicity correction, this procedure controls the probability of
wrongly selecting any set of subintervals. The disadvantage of using such a pro-
cedure is that the conclusions of the test and the achieved control depend on the
preliminary-chosen partition of the domain, and that the control of type-I error
probability is lost within each subinterval, as discussed by Pini and Vantini [18].
Pini and Vantini [18] proposed instead a procedure for locally testing functional
data based on a finite dimensional approximation of the functional data by means
of a B-spline basis expansion. Functional data are described bymeans of the coeffi-
cients of an a priori-defined basis expansion. A statistical test is performed on each
coefficient of the basis expansion, and the results of the tests are finally adjusted
for multiplicity. The disadvantage in this case is that conclusions depend on the
preliminary-chosen basis expansion.
The extension of the latter techniques to the truly infinite-dimensional case,

avoiding both discretization of the domain and final dimensional approximation
the functional data poses at least two major challenges. The first issue is that
pointwise p-values are in general not trivially defined in functional spaces. When
functional data are, for instance, embedded in the L2 space (being such space
the natural extension of the Euclidean geometry to the functional data analysis
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framework), pointwise evaluations of functions aremeaningless. The second issue
is that any possible multiplicity correction would involve a continuous infinity of
univariate tests which Bonferroni–Holm, Benjamini–Hochberg, and closed test-
ing procedures are not able to deal with it. The challenge in this framework is
thus twofold: (i) defining a continuous infinity of tests in bijective correspondence
with the points of the domain without relying on pointwise evaluations of func-
tional data, and then (ii) developing a multiplicity correction technique for that
continuous infinity of tests.
The first issue has been first addressed by Abramovich and Heller [19],

assuming that the functional data follow a Wiener process. The second issue has
been instead addressed in a nonparametric framework by Cox and Lee [20] and
Vsevolozhskaya et al. [21], assuming instead the continuity of functional data and
proposing two different strategies to adjust pointwise p-values. Finally, Pini and
Vantini [18] present a domain-selective inferential strategy – i.e. the intervalwise
testing (IWT) procedure – that focus on both issues, and that neither requires
distributional assumptions on functional data, nor assumes their continuity.
The aim of this chapter is to present the IWT procedure for local inferential

analysis of functional data and discuss its inferential properties. As an illustra-
tion, we report the application of the IWT on a well-known benchmark functional
dataset, i.e. Canadian daily temperatures measured in Canadian weather stations
presented in [22].

10.2 Methodology

In this section, the IWT procedure is first described for the case of comparing the
means of two functional populations. The second part of the section reports an
extension of the described procedure to other more complex null hypothesis test-
ing problems.

10.2.1 Comparing Means of Two Functional Populations

Assume observing two samples of functional data taking values in the L2(T) space
of squared-integrable functions on the domain T = (a, b) ⊂ ℝ. Let 𝜒ji i = 1,… ,nj,
j = 1, 2 denote the i-th function of sample j. Finally, assume ∀i = 1,… ,nj, ∀j = 1, 2
𝜒ji = 𝜇j + 𝜀ji, where 𝜇j ∈ L2(T) is the fixed mean function of population j, and 𝜀ji
are random i.i.d. error functions. We aim at testing – in a local perspective – the
following hypotheses:

H0∶𝜇1 = 𝜇2 against H1∶𝜇1 ≠ 𝜇2, (10.1)

where the equality is defined in the usual L2 sense. Specifically, we aim at identify-
ing a local criterion to pointwise reject (or not to reject) the null hypothesis along
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the domain T such as to be able to select the portions of T, where the two means
are significantly different. The method that we describe is based on the concepts
of unadjusted and adjusted p-value functions.

Unadjusted p-value function: A function defining a p-value for a continuous
infinity of tests in bijective correspondence with the points of the domain, with-
out relying on pointwise evaluations of functional data which are not properly
defined in the L2 setting.

Adjusted p-value function:A function defining a p-value for a continuous infin-
ity of tests in bijective correspondencewith the points of the domain adjusted by
means of a suitable multiplicity correction technique for that continuous infin-
ity of tests.

Let  ⊆ T be a generic interval of the form (t1, t2) or complementary interval of
the form T∖(t1, t2), where a ≤ t1 < t2 ≤ b. For every  ⊆ T, consider the following
functional test:

H
0 ∶𝜇


1 = 𝜇

2 against H

1 ∶𝜇


1 ≠ 𝜇

2 , (10.2)

being 𝜇
j the restriction of 𝜇j over , j = 1, 2. Let p be the global p-value of test

(10.2). Different methods can be employed to compute p . We here describe two
different approaches, coming from the recent literature of global testing for func-
tional data. Both approaches are based on the same test statistic T , that is the
squared L2() distance between the two restricted sample means are divided by
the measure of :

T(𝜒11,… , 𝜒1n1 , 𝜒21,… , 𝜒2n2 ) =
||𝜒1 − 𝜒2||2L2()

|| (10.3)

= 1
||∫

(
𝜒1(t) − 𝜒2(t)

)2dt, (10.4)

where the integration is intended in the Lebesgue sense, 𝜒 j =
1
nj

∑nj
i=1 𝜒ji, j = 1, 2,

and || is the Lebesguemeasure of interval . The twomethods described here for
testing (10.2) are the following:

Parametric/asymptotic test: When assuming functional normality of the data
(i.e. ∀g ∈ L2(T), ∀j, i ∫Tg𝜒ji is a normal random variable) and the covariance
structure is known, it is possible to perform parametric tests on hypotheses
(10.2). Horváth and Kokoszka [4] provide – under some regularity conditions –
the distribution of the test statistic T under the null hypothesis. Specifically,
assuming that ∀i = 1,… ,nj; j = 1, 2: 𝔼[||𝜀ij||4] < ∞, we have

H
0 ⇒ T n1n2

n1 + n2
∼

∞∑
k=1
𝜏kN2

k ,

H
1 ⇒ T n1n2

n1 + n2

P
−−−−−→
n1 ,n2→∞

∞.
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where Nk are independent standard normal random variables and 𝜏k are the
eigenvalues of the operator with kernel (1 − 𝜃)Σ1(t, s) + 𝜃Σ2(t, s), Σj(t, s) being
the covariance function of functional data 𝜒ji, and 𝜃 = n1∕(n1 + n2). As sug-
gested by Horváth and Kokoszka [4], such properties can be used to compute
the p-value p , obtaining an exact and consistent test of hypotheses (10.2). If
functional normality cannot be assumed, it is possible to use an analogous
asymptotic test. In detail, when the sample sizes tend to infinity, regardless
of the distribution of the 𝜒ji with n1∕(n1 + n2) → 𝜃 with some 0 ≤ 𝜃 ≤ 1,
we have

H
0 ⇒ T n1n2

n1 + n2

d
−−−−−→
n1 ,n2→∞

∞∑
k=1
𝜏kN2

k .

Such a property suggests how to compute – for high sample sizes – the p-value
p , obtaining an asymptotically exact and consistent test of hypotheses (10.2).

Permutation test: When the sample sizes are low and functional normality can-
not be assumed, one can rely on nonparametric permutation methods, which
have also the advantage of not assuming any particular structure of the covari-
ance operator. For instance, Hall and Tajvidi [8] propose a permutation test
based on the test statistic T . Under the null hypothesis, the two random sam-
ples have the same distribution and are independent. All functions are therefore
exchangeable. Thus, equally likely samples underH0 are obtained by all possible
rearrangement of the values 𝜒ji across the units:

(𝜒11,… , 𝜒1n1 , 𝜒21,… , 𝜒2n2 ) → (𝜒∗
11,… , 𝜒∗

1n1
, 𝜒∗

21,… , 𝜒∗
2n2

). (10.5)

The number of possible rearrangements (or permutations) leading to a different
allocation in the two groups is

(
n1+n2
n1

)
. The p-value can be computed as the

proportion of permuted samples (among the
(
n1+n2
n1

)
possible ones) associated

with a value of the test statistic T that exceeds the value associated with the
original sample, which reads

p =

∑(
n1+n2
n1

)

b=1 𝕀
[
T(𝜒∗

11b
,… , 𝜒∗

2n2b

) ≥ T(𝜒11,… , 𝜒2n2

)]
(
n1+n2
n1

) (10.6)

with b indexing the
(
n1+n2
n1

)
permuted samples obtained from (10.5). The result-

ing test is exact for every finite sample size and consistent.

No matter the way they are computed, the p-values p of tests (10.2) are used to
define the two p-value functions.



�

� �

�

10.2 Methodology 247

Definition 10.1 The unadjusted and adjusted p-value functions are defined as
follows:

● The unadjusted p-value function p(t)∶T → [0, 1] is

p(t) = lim sup
→t

p ∀t ∈ T , (10.7)

i.e. its value at point t ∈ T is the superior limit of the p-value p as both extremes
of  converge to t.

● The adjusted p-value function p̃(t) is

p̃(t) = sup
∋t

p ∀t ∈ T , (10.8)

i.e. its value at point t is the supremumover all p-values p pertaining to intervals
and complementary intervals containing t.

Note that although the pointwise evaluations of the functions 𝜒ji in L2(T) are
generally not properly defined, both the unadjusted and the adjusted p-value
functions are instead univocally defined ∀t ∈ T. This directly derives from the
boundedness of the p-values p . Furthermore, in the special case of data embed-
ded in L2(T) ∩ C0(T), the identity between the superior limit in (10.7) and its
corresponding limit, and the integral mean value theorem jointly guarantee that
p(t) coincides with the p-value of the permutation test based on the test statistic
T(t)∶ = (𝜒1(t) − 𝜒2(t))2, ∀t ∈ T (i.e. the pointwise evaluations of the integrand in
(10.3)). In this case, we also have that both the unadjusted and the adjusted p-value
functions are continuous functions of t. Indeed, the pointwise test statistic T(t) is
continuous in T so the unadjusted p-value is continuous. In addition, the interval
test statistic T defined in (10.3) is continuous with respect to both extremes of
the interval , making the adjusted p-value function continuous as well.
The unadjusted p-value function p(t) and the adjusted p-value function p̃(t)

present different inferential properties with respect to both type I error control
and consistency. In detail:

● If all the tests used to compute the p-values p are exact, the unadjusted p-value
function p(t) provides a control of the pointwise error rate (see Theorem A.1
of [18]), that is, ∀𝛼 ∈ (0, 1):

∀t ∈ T s.t. ∃ ∋ t∶ H
0 is true ⇒ ℙ[p(t) ≤ 𝛼] ≤ 𝛼. (10.9)

If all the tests used to compute the p-values p are consistent, the unadjusted
p-value function p(t) is pointwise consistent (see Theorem A.4 of [18]), that
is, ∀𝛼 ∈ (0, 1):

∀t ∈ T s.t. ∄ ∋ t∶ H
0 is true ⇒ ℙ

[
p(t) ≤ 𝛼

]
−−−−−−−→
n1 ,n2→∞

1. (10.10)
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● If all the tests used to compute the p-values p are exact, the adjusted p-value
function p̃(t) provides a control of the intervalwise error rate (see Theorem
A.3 of [18]), that is, ∀𝛼 ∈ (0, 1):

∀ ⊆ T∶ H
0 is true ⇒ ℙ

[
∀t ∈ , p̃(t) ≤ 𝛼

] ≤ 𝛼. (10.11)

If all the tests used to compute the p-values p are consistent, the adjusted
p-value function p̃(t) is intervalwise consistent (see Theorem A.4 of [18]),
that is, ∀𝛼 ∈ (0, 1):

∀ ⊆ T s.t. ∄ ⊆ ∶ H
0 is true ⇒ ℙ

[
∀t ∈ , p̃(t) ≤ 𝛼

]
−−−−−−−→
n1,n2→∞

1 (10.12)

The results hold for any sample size n1 and n2, given the exactness and consis-
tency of the tests used to compute the p-values p . Note that – if an asymptotic test
is used to compute p-values p – the control of the pointwise and intervalwise error
rates are only guaranteed asymptotically.
Heuristically speaking, property (10.9) states that when a thresholding of p(t) is

performed at level 𝛼, for each point of the domain “where H0 is true,” the proba-
bility that H0 is rejected in that point is less or equal to 𝛼. Property (10.11) states
instead that, when a thresholding of p̃(t) is performed at level 𝛼, for each interval
of the domain “whereH0 is true,” the probability thatH0 is rejected on the interval
is less or equal to 𝛼. Thus, if one is interested in controlling the pointwise error rate
at level 𝛼 ∈ (0, 1), the points t ∈ T such that p(t) ≤ 𝛼 should be selected. Instead,
if one is interested in controlling the intervalwise error rate at level 𝛼, the points
t ∈ T such that p̃(t) ≤ 𝛼 should be selected.
In terms of consistency, property (10.10) states that when a thresholding of the

p(t) is performed at level 𝛼, the consequent domain selection criterion is such
that, for each point of the domain “where H0 is false,” the probability of that H0
is rejected in that point converges to one as the sample size increases. Property
(10.12) states instead that, when a thresholding of p̃(t) is performed at level 𝛼, for
each interval of the domain “whereH0 is false,” the probability thatH0 is rejected
on the entire interval converges to one as the sample size increases.

10.2.2 Extensions

The procedure described in Section 10.2.1 can be modified for dealing with more
complex functional null hypothesis testing problems. Indeed, the definition of
the unadjusted and adjusted p-value functions in Eqs. (10.7) and (10.8) directly
descends from the p-values p . Hence, by suitably changing the procedure used
to compute the p-values of tests on intervals, IWT can be used to tackle other null
hypothesis significance testing problems. What needs to be defined is a suitable
parametric or nonparametric test that can be used to compute the p-values p .
As an example, we describe here the extension to multiway functional analysis of
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variance (FANOVA). Extensions to functional-on-scalar linear models and to tests
for comparing different distributional properties of the samples (e.g. the variance)
can be found, respectively, in [23, 24].

10.2.2.1 Multiway FANOVA
We report here a brief description of the extension of IWT to the case of a two-way
FANOVA for testing the effects of two factorsA and B on a functional data set. The
procedure is described in detail in [25]. The procedure can be straightforwardly
extended to the general case of one-way and multiway FANOVA.
Let 𝜒ijl∶(a, b) → ℝ be the functional data, where i = 1,… , I denotes the level of

the first factor, j = 1,… , J denotes the level of the second factor, and l = 1,… ,nijl
denotes the replicate. We assume functional data to be L2(T) random functions.
The FANOVA model that we want to test is the following:

𝜒ijl = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + 𝜖ijl, (10.13)

with i = 1,… , I, j = 1,… , J, l = 1,… ,nij, nij being the number of replicates
for ith level of the first factor and jth level of the second factor. In model
(10.13), 𝜇 ∈ L2(T) is the functional grand mean, 𝛼i ∈ L2(T) and 𝛽j ∈ L2(T) are
functional main effects, and 𝛾ij ∈ L2(T) is the functional interaction effect.
The functional errors 𝜖ijl are assumed to be independent and identically dis-
tributed zero-mean random functions of L2(T). For sake of identifiability, we
require the classical constraints on the effects, i.e.

∑I
i=1 ni⋅𝛼i = 0;

∑J
j=1 n⋅j𝛽j = 0;∑I

i=1
∑J

j=1 nij𝛾ij = 0, where ni⋅ =
∑J

j=1 nij denotes the number of units at ith level
of the first factor and n⋅j =

∑I
i=1 nij denotes the number of units at jth level of the

second factor.
The aim of the analysis is to test the significance of all functional coefficients

of model (10.13). In particular, we want to perform– in a local perspective – the
functional counterparts of three classical ANOVA tests, i.e. three functional tests
for the effects of each factor and interaction:

H0,A∶ 𝛼i = 0 ∀i = 1,… , I; H1,A∶(H0,A)C (10.14)

H0,B∶ 𝛽j = 0 ∀j = 1,… , J; H1,B∶(H0,B)C (10.15)

H0,AB∶ 𝛾ij = 0 ∀i = 1,… , I; j = 1,… , J; H1,AB∶(H0,AB)C. (10.16)

For every interval , denote with H
0,A, H


1,A, H


0,B, H


1,B, H


0,AB, and H

1,AB the
restriction of null and alternative hypotheses to . Pini et al. [25] propose to
perform all tests in a permutation framework by applying permutations of the
residuals of the reduced model according to the Freedman and Lane permutation
scheme [26], and test statistics based on the integral over the interval  of the
two-way ANOVA statistics of the corresponding classical F-tests.
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In detail, the proposed test statistics are

F
A = ∫

∑I
i=1 ni⋅

(
𝜒 i⋅(t) − 𝜒(t)

)2∕(I − 1)
∑I

i=1
∑J

j=1
∑nij

l=1 (𝜒ijl(t) − 𝜒 ij(t))
2∕dfError

dt

F
B = ∫

∑J
j=1 n⋅j

(
𝜒 ⋅j(t) − 𝜒(t)

)2∕(J − 1)
∑I

i=1
∑J

j=1
∑nij

l=1 (𝜒ijl − 𝜒 ij(t))
2∕dfError

dt

F
AB = ∫

∑I
i=1

∑J
j=1 nij

(
𝜒 ij(t) − 𝜒 i⋅(t) − 𝜒 ⋅j(t) + 𝜒(t)

)2∕(I − 1)(J − 1)
∑I

i=1
∑J

j=1
∑nij

l=1 (𝜒ijl(t) − 𝜒 ij(t))
2∕dfError

dt

where, with the common ANOVA notation, 𝜒 ij(t) =
∑nij

l=1 𝜒ijl(t)∕nij, 𝜒(t) is
the grand mean, dfError =

∑I
i=1

∑J
j=1 nij − (I − 1) − (J − 1) − (I − 1)(J − 1) − 1,

𝜒 i⋅(t) =
∑J

j=1
∑nij

l=1 𝜒ijl(t)∕(ni⋅) and 𝜒 ⋅j(t) =
∑I

i=1
∑nij

l=1 𝜒ijl(t)∕(n⋅j).
This provides approximated (asymptotically exact) tests forH

0,A,H

0,B, andH


0,AB.

In addition, in the particular case of a one-way FANOVA, the corresponding test is
shown to be exact. In the following, we denote with pA, pB , and pAB as the p-values
of the corresponding tests.
The adjusted p-value functions of each test ((10.14)–(10.16)) are defined as

follows:

p̃A(t) = sup
∋t

pA, p̃B(t) = sup
∋t

pB , p̃AB(t) = sup
∋t

pAB.

Since the tests based on permutations of the residuals are in this case only
asymptotically exact, the adjusted p-value functions p̃A(t), p̃B(t), and p̃AB(t) are
provided with an asymptotic control of the intervalwise error rate.

10.3 Data Analysis

The aim of this section is to illustrate the potential of the functional IWT approach
described in Section 10.2 by applying the procedure to a well-known benchmark
functional data set derived from spatiotemporal weather records, i.e. the Canadian
daily temperatures data set [22].
The data set contains the daily temperatures along the year (averaged over

30 years) recorded by 35 weather stations in Canada (Figure 10.1a). The weather
stations are divided into four climate zones: Atlantic, Pacific, Continental, and
Arctic. The locations of the stations and the functional data are reported in
Figure 10.1a–c, respectively. Figure 10.1a shows the locations of the weather
stations on the map, and Figure 10.1b,c report the functional data and their first
derivatives. The four different shades of gray are associated with the different
climatic regions. As done by Hall and Tajvidi [8], we test the equality of the mean
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temperatures of the four climatic zones. Specifically, we first test differences
between the four zones by applying a one-way FANOVA test with one factor with
four levels. Then we test differences between each couple of zones in a pairwise
perspective. Note that the geographical information about the locations of the 35
weather stations is only exploited to assign them to the different climatic regions,
and functional data are assumed to be exchangeable, since a permutation test
is employed. Such an assumption is reasonable for the data analyzed here since
the climatic zones can capture the spatial information of data, and the functional
data are averaged temperatures in 30 years.
Since in this example, sample sizes are quite low (Atlantic region: 15 curves,

Pacific region: 5 curves; Continental region: 12 curves; Arctic region: 3 curves),
and the functional normality assumption cannot be verified, in order tomake exact
inference, we apply to each test an IWT procedure based on nonparametric per-
mutation tests. Due to the nonparametric nature of the resulting procedure, it is
possible to apply the procedure to different quantities of interest of the data set.
In detail, the comparison between the different climatic regions is performed here
on the curves and on their first derivatives. Specifically:

● the test on the curves provides an information about which climatic regions are
characterized by higher/lowermean temperatures in the different periods of the
year;

● the test on the first derivatives provides an information about which climatic
regions are characterized by faster/slower transitions of the mean temperatures
in the different periods of the year.

Testing both the curves and the derivatives can provide a highly informative
characterization of data. For instance, most models of energy consumption take
as inputs the temperature level and the temperature derivative. In particular, the
derivatives have a considerable impact on the perceived temperature, and hence,
to the heating and cooling energy consumption. In general, low temperatures and
negative derivatives are associatedwith high expenses for heating, while high tem-
peratures and positive derivatives are associated with high expenses for cooling.
In order to obtain accurate estimates of the first derivatives of the functional

data, we performed a Fourier smoothing of the raw data based on a reduced
number of harmonics as suggested in [22]. In detail, the results shown here were
obtained with seven harmonics, and the results of the inferential procedure are
robust with respect to this choice. The smoothed temperature curves and their
estimated first derivatives are shown in Figure 10.1b,c. In the following, we report
the results of the analysis on the curves and on their first derivatives.
The results of the FANOVA tests are summarized in Figure 10.2. The results of

the tests on temperature curves are reported inFigure 10.2a,b, and the ones on tem-
perature derivatives are reported in Figure 10.2c,d. For each test, Figure 10.2a,c the
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Figure 10.1 (a) Map of Canada with locations of the 35 weather stations. Smoothed
functional data (b) and first derivatives (c). Different gray colors correspond to different
climatic regions.

samplemeans of the four groups, and Figure 10.2b,d reports the adjusted (full line)
and unadjusted (dashed line) p-value functions. Note that in this example, the dif-
ference between these two curves is only perceivable in a very short time interval
during summer for the test on first derivatives. The bands in the lower parts of the
plots highlight the intervals presenting significant differences at a 5% (light) and
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FANOVA test on temperature derivatives
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Figure 10.2 FANOVA test on curves (a, b) and first derivatives (c, d) of Canadian
temperature data. (a, c) Functional sample means of the four regions. (b, d) Unadjusted
(dashed line) and adjusted (full line) p-value functions of the FANOVA test. The bands in
the lower parts of the plots highlight the intervals presenting significant differences at a
5% (light) and 1% (dark) significance level.

1% (dark) significance level, i.e. the gray dashed lines reported in Figure 10.2b,d.
The FANOVA test highlights significant differences between the four groups along
the whole year, both for temperatures and temperature derivatives.
As a comparison, both p-value of the test proposed by Cuevas et al. [1] and the

p-value of a global permutation test based on the F-test statistic result in a p-value
equal to zero for curves and first derivatives. The difference between the latter two
approaches and the IWT is that the IWT provides an adjusted p-value function
that is able to locate the areas of the domain imputable for the rejection of the null
hypothesis. To better describe the differences between the regions, we then apply
the IWT to test differences between each couple of groups.
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Figure 10.3 Pairwise comparisons between curves. Diagonal panels: all temperature
curves (gray) and in each panel curves of each of the five climatic regions (darker gray).
Upper-diagonal panels: two functional sample means of each comparison. Lower
diagonal panels: unadjusted (dashed line) and adjusted (full line) p-value functions of
each comparison. The bands in the lower parts of each extra-diagonal panel highlight the
intervals presenting significant differences at a 5% (light) and 1% (dark) significance level.

Figure 10.3 reports the results of the IWT applied to the curves in a pairwise
perspective. In detail, the IWT is applied to each comparison between two climatic
regions, using a nonparametric permutation test based on the L2 distance between
the two samplemeans. The diagonal panels of Figure 10.3 show the curves of each
of the five climatic regions. For each comparison of a couple of groups identified
in the diagonal, the upper-diagonal panels of Figure 10.3 report the two func-
tional sample means. The lower diagonal panels report instead the unadjusted
and adjusted p-value functions evaluated according to the procedure described
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Figure 10.4 Pairwise comparisons between first derivatives. Diagonal panels: all
temperature derivatives (gray) and in each panel derivatives of each of the five climatic
regions (darker gray). Upper-diagonal panels: two functional sample means of each
comparison. Lower diagonal panels: unadjusted (dashed line) and adjusted (full line)
p-value functions of each comparison. The bands in the lower parts of each
extra-diagonal panel highlight the intervals presenting significant differences at a 5%
(light) and 1% (dark) significance level.

in Section 10.2. The unadjusted and the adjusted p-value functions are reported
with dashed and full lines, respectively. Finally, the bands reported in the lower
parts of each extra-diagonal panel highlight the intervals of the domain present-
ing significant differences between each couple of regions at a 5% (light) and 1%
(dark) significance level. The displayed intervals are obtained by applying a thresh-
old to the adjusted p-value function at levels 5% and 1% (displayed in the lower
diagonal panels of Figure 10.3). Hence, such a domain selection is provided with a
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control of the intervalwise error rate, and it is intervalwise consistent, as shown in
Section 10.2. Analogously, Figure 10.4 reports –with the same scheme – the results
of the comparison between the derivatives of the functional data.
The IWT-based comparison of the curves and the first derivatives result in a

very clear interpretation of the data differences. Focusing on the curves, we notice
that both Atlantic and Pacific Zones differ from the Arctic Zone over the entire
year. Temperatures of these two zones also differ from the Continental ones during
winter. The Continental and Arctic Zones are significantly different during the
whole year from February to December. So the Continental climate is similar to
the Arctic one during winter, and similar to the Pacific and Atlantic ones during
summer. The Atlantic and Pacific zones are pointed out as significantly different
only during the first months of the year, from January to March.
The pairwise tests of derivatives (Figure 10.4) add several information about

data differences completing the characterization of the different climatic zones.
For instance, let us focus on Atlantic and Pacific zones. The temperature of these
two zones was not detected as statistically different throughout the great major-
ity of the year. Looking at data derivatives – instead –we notice how the climate of
these two zones present statistically significant differences in the spring transition
fromwinter to summer. Indeed, these two zones differ significantly in early winter
and spring, when the latter is characterized by smaller absolute derivatives. The
temperature derivatives of both Continental and Arctic zones is instead signifi-
cantly different with respect to the one of both Atlantic and Pacific zones during
Spring and Autumn. In general, Atlantic and Pacific zones are characterized by a
slower transition in the temperature profiles in such periods.

10.4 Conclusion and Future Works

In this chapter, we presented a null hypothesis testing technique for per-
forming local inference on functional data embedded in the L2(T) space of
squared-integrable functions on the domain T. The technique – namely IWT
procedure – is based on the definition of an unadjusted and an adjusted p-value
function that can be used to locally test a functional null hypothesis over the
domain of functional data. The IWT for testing differences between two popu-
lations is described in detail [18], and its extension to multiway FANOVA and
functional on scalar linear models can be found in [23–25].
When applied to spatiotemporal data, this technique can identify intervals of

time or regions of space imputable for the rejection of a functional null hypothesis.
The IWT is a very general procedure, since it can be plugged-in with either para-

metric or nonparametric exact and consistent tests for the functional hypothesis at
hand. The procedure is first described for testing the equality between themeans of
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two functional populations. Then, an extension to the case of testing hypotheses in
a functional multiway ANOVA is also detailed. IWT can be extended tomore com-
plex inferential problems such as functional linearmodels and tests for comparing
variances or higher-order moments.
In all such cases, it is possible to characterize the inferential properties of the

unadjusted and adjusted p-value functions. In detail, the unadjusted p-value func-
tion is provided with a control of the pointwise error rate and it is pointwise con-
sistent. The pointwise control implies that the probability of wrongly rejecting the
null hypothesis on a point of the domain where it is not violated – in an L2-sense
suitably defined – is controlled. The pointwise consistency instead implies that the
probability that the null hypothesis is rejected on a point of the domain where
it is violated – in an L2-sense suitably defined – converges to one as the sample
size increases. The adjusted p-value function is instead provided with a control
of the intervalwise error rate and it is intervalwise consistent. Intervalwise control
implies that the probability of wrongly rejecting the null hypothesis on an interval
where it is not violated is controlled, and intervalwise consistency implies that the
probability that the null hypothesis is rejected on an interval where it is violated
converges to one as the sample size increases.
These properties can be of help in deciding to base inference in the unadjusted or

in the adjusted p-value function. In most applications –when a selection of inter-
vals imputed to the rejection of the null hypothesis is desired – inference should
be based on the adjusted p-value function that is based on a sound control of the
probability of falsely detecting intervals. The unadjusted p-value function indeed
only pointwise controls the type I error rate, and it does not provide any global
control of the probability of type I errors.
The IWT is here applied to a spatiotemporal data set of Canadian daily tempera-

tures. The data are modeled as a collection of functional data on the time domain
pertaining to different groups – identified by climatic zones. IWT is applied to test
differences between the climatic zones. The climatic zones are compared in terms
of the level of average daily temperatures (IWT performed on curves) and the
velocity of transition in time of the average daily temperatures (IWT performed on
derivatives). Since the domain of functional data is here time, the procedure results
in a selection of the periods of the year presenting significant differences between
each pair of regions in terms of data and first derivatives. The general nature of the
IWT and the possibility of plugging it in with nonparametric tests based on very
few modeling assumptions makes its application either to curves or to differential
quantities such as derivatives straightforward. In addition, IWT-based comparison
between the climatic zones in terms of the two quantities results in a very clear and
informative characterization of data differences.
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11.1 Introduction

In this chapter, we describe the modeling of spatially dependent functional data
by regression with differential regularization [1]. The chapter is based on [2].
Spatial regression with differential regularization defines the unknown spatial

field f as deterministic and models the spatial (or spatiotemporal) variation of the
phenomenon under study via a regularizing term involving a partial differential
equation (PDE). This contrasts with the main approach of geostatistical model-
ing, where the unknown field is modeled as stochastic and the spatial variation of
the phenomenon is controlled via the definition of the covariance structure of the
random field.
The different modeling of the spatial variation considered by spatial regression

with differential regularization, combined with the use of advanced numerical
analysis techniques, such as finite element methods and isogeometric analysis
based on splines and extensions, leads to important advantages. One main advan-
tage, that we illustrate here, is the ability to efficiently deal with data distributed
over a spatial domain featuring peninsulas, islands, holes, and other complex
geometries that influence the phenomenon under study. Moreover, the method
can comply with specific conditions at the boundaries of the problem domain,
which is fundamental in many applications to obtain meaningful estimates.
As an illustrative example, consider the estimation of the temporal evolution

of the amount of per capita municipal waste produced in the towns of Venice
province. Figure 11.1 shows the Venice province, with dots indicating town cen-
ters, including municipalities and other tourist localities of particular relevance.

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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Quarto D'Altino

Venice

Figure 11.1 Spatial domain of the Venice waste data, with a line highlighting the
province boundary and dots indicating the towns centers.

The province boundary is shown by a line, highlighting the irregular shape of the
province administrative borders and its complex coastlines,with theVenice lagoon
partly enclosed by elongated peninsulas and small islands.
The data are measurements from 1997 to 2011 of the yearly amount of per

capita municipal waste (total kilograms divided by the number of municipality
residents) and are provided by the Arpav, the Agenzia regionale per la pre-
venzione e protezione ambientale del Veneto. Figure 11.2 shows the temporal
evolution of the production of per capita waste in the towns of Venice province;
Figure 11.3 is a bubble plot of the data at a fixed year, 2006. The phenomenon
portrayed by these data is expressed differently in different parts of the domain.
Consider, for instance, the two towns of Cavallino-Treporti (in the peninsula
at the northeast of Venice) and Quarto d’Altino (north of Venice), indicated by
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Figure 11.2 Temporal evolution of the yearly per capita production (kilogram per
resident) of municipal waste in the towns of Venice province. Source: Adapted from
Bernardi et al. [2].

black dots in Figure 11.3. The temporal evolution of the production of per capita
municipal waste in the two towns, highlighted in Figure 11.2, is rather different,
with strongly increasing and high values in the seaside and tourist town of
Cavallino-Treporti, opposed to the not increasing and lower values measured in
the hinterland town of Quarto d’Altino. These two towns are close in terms of their
geodesic distance, but they are much further apart in terms of land connections,
as they are separated by the Venice Lagoon. Appropriately accounting for the
shape of the domain, characterized by the strong concavity formed by the lagoon,
is crucial to accurately handle these data.
When analyzing the temporal evolutions of the amount of per capita municipal

waste, we shall make a strong simplification of the nature of these data and con-
sider them in the framework of geostatistical functional data [3], where the datum
is observable in principle in any point of the domain, instead of in the framework
of functional area data. As detailed in Section 11.4, this is due to the fact that we
miss the information concerning the urbanized areas of the municipalities, where
the type of waste considered here (that does not include agricultural, industrial,
construction/demolition, and hazardous waste) is produced.
This book reviews in detail many of recently proposed methods for the analysis

of spatially dependent functional data, mostly in the framework of kriging for
functional data (see, e.g. [3–10]). On the other hand, these methods, as well
as the extensive literature in the more classical spatial–time data framework
(see, e.g. [11] and references therein), are not well suited to handle data dis-
tributed over irregular domains, as they do not take into account the shape of the
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Figure 11.3 Per capita production (kilogram per resident) of municipal waste in the
towns of Venice province in 2006. The data include all municipalities of Venice province
and additional four localities (Bibione, Murano, Lido di Venezia, and Pellestrina), that do
not constitute a municipality on their own, but have been included due to their tourist
relevance and their location on the domain. For these additional four localities, the
considered datum is a replicate of the datum of their corresponding municipalities
(see Section 11.4).

domain; they would, for instance, smooth across concave boundary regions, thus
closely linking data points that are in fact far apart by land connections.
Recent methods for the analysis of spatiotemporal data that instead specifically

account for the geometry of the domain of interest are described in [12, 13]. These
models are based on the spatial smoother proposed by Wood et al. [14]. Here, we
describe the method proposed in [2], that extends the spatial regression models
with differential regularization described in [1, 15, 16]. Themodel is implemented
in R [17], based on the package fdaPDE [18].
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11.2 Spatial Regression with Differential
Regularization for Geostatistical Functional Data

LetΩ ⊂ ℝ2 be a bounded spatial domain, possibly with an irregular geometry, and
let {pi = (xi, yi) ∈ Ω; i = 1,… ,n} be a set of n spatial locations within this domain.
Moreover, considerm time instants {tj ∈ T; j = 1,… ,m} over the temporal inter-
val T = [tstart, tend] ⊂ ℝ. Let zij be the value of a real-valued variable observed at
locationpi and time instant tj. Additionally, letwij ∈ ℝq be a vector of q space–time
varying covariates associated with the observation zij at the spatiotemporal loca-
tion (pi, tj). In our illustrative application, the spatial domain Ω is the province of
Venice, the spatial locations pi are the centers of the towns, the time instants tj
are the years between 1997 and 2011, the variable of interest zij is the amount of
per capita municipal waste produced in the town i and year tj; furthermore, since
intuition suggest that the tourismmay play an important role in the production of
waste, we consider as covariate𝑤ij the number of beds in accommodation facilities
in the town i and year tj.
Assume the following semiparametric generalized additive model:

zij = wT
ij 𝜷 + f (pi, tj) + 𝜀ij i = 1,… ,n, j = 1,… ,m, (11.1)

where 𝜷 ∈ ℝq is a vector of q regression coefficients, f (p, t) ∶ Ω × T → ℝ is an
unknown smooth spatiotemporal function, and {𝜀ij; i = 1,… ,n; j = 1,… ,m} are
independently distributed residuals with mean zero and constant variance 𝜎2. As
detailed in Section 11.2.4, onemay as well consider a model without covariates. In
this case, the values zij can be directly seen as discrete and noisy observations of
dependent functional data, either spatially dependent curves, or time-dependent
surfaces.
The vector of regression coefficients 𝜷 and the spatiotemporal field f can be

jointly estimatedminimizing a penalized sumof square error functional. In partic-
ular, in [2],we propose to consider two roughness penalties that account separately
for the regularity of the field in space and in time. Let

J(f , 𝜷) =
n∑
i=1

m∑
j=1

(
zij −wT

ij 𝜷 − f (pi, tj)
)2

+ 𝜆Ω∫T∫Ω
(Δf (p, t))2dpdt + 𝜆T∫Ω∫T

(
𝜕2f (p, t)
𝜕t2

)2

dtdp , (11.2)

where the two smoothing parameters 𝜆Ω > 0 and 𝜆T > 0 weight the penalizations,
respectively, in space and time; the choice of these parameters will be discussed
in Section 11.2.3. The partial differential operator Δf (p, t) = 𝜕2f

𝜕x2
(p, t) + 𝜕2f

𝜕y2
(p, t) is

the Laplacian of the spatial component of the field; it provides the local curvature
of the spatial field, at a given time t. The Laplacian is invariant to rigid transfor-
mations of the spatial coordinates, thus ensuring that the concept of smoothness
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does not depend on the arbitrary choice of the coordinate system. The smooth-
ness penalties in (11.2) are isotropic and stationary. As detailed in Section 11.2.3,
they induce the spatiotemporal mean and covariance structures of the estimator.
Different regularizations may be considered, as briefly discussed in Section 11.5,
implying different mean and covariance structures and modeling anisotropic and
nonstationary effects.

11.2.1 A Separable Spatiotemporal Basis System

We represent the spatiotemporal field f (p, t) as an expansion on a separable spa-
tiotemporal basis system. Specifically, let {𝜑k(t); k = 1,… ,M} be a set ofM basis
functions defined on T and {𝜓l(p); l = 1,… ,N} a set ofN basis functions defined
on Ω. Then, f is represented by the following basis expansion:

f (p, t) =
N∑
l=1

M∑
k=1

clk 𝜓l(p) 𝜑k(t), (11.3)

where {clk; l = 1,… ,N; k = 1, ldots,M} are the coefficients of the expansion on
the separable spatiotemporal basis.
Various possible bases can be used for the expansions in the spatial and tempo-

ral domains. In this chapter, we describe the use, for the spatial domain, of a finite
element basis on a triangulation Ω𝜏 of the domain Ω. This choice leads to an effi-
cient discretization of the functional J and allows to accurately take into account
the shape of the spatial domain.
We illustrate the construction of such basis on Venice domain. Before building

the basis, we simplify the original spatial domain represented in Figure 11.1,
excluding the coastal uninhabited regions and the smaller islands, and keeping
in the domain of study only the four major islands: Venice, Murano (at the
northeast of Venice), Lido di Venezia (at the southeast of Venice), and Pellest-
rina (at the south of Lido). We then smooth the boundary of the domain with
regression splines. Finally, we obtain a piecewise linear boundary, subsampling
from this smooth curve so that the features characterizing the domain are
preserved. Figure 11.4a shows the simplified boundary of Venice province, while
Figure 11.4b shows the detail around the city of Venice. This region is particularly
interesting since it shows the four islands retained in the domain. Here the
domain includes four bridges: one linking Venice to the continent and the others
linking some of the islands between themselves; the first one is an actual bridge
with a road and a railway, while the other bridges represent regular and frequent
ferries among the islands.
A triangulation of the resulting simplified domain is then obtained using the R

package fdaPDE [18]. In particular, we start from a Delaunay triangulation, con-
strained within the simplified boundary, where each of the town locations and
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Figure 11.4 Simplified boundary of the Venice province (a) and detail of the Venice lagoon (b).
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Figure 11.5 Triangulation of the Venice province.

each point defining the simplified boundary becomes a triangle vertex. A more
regular mesh is then obtained imposing a maximum value to the triangle areas.
Figure 11.5 displays the resulting triangulation of Venice province. For this appli-
cation, here and in Section 11.4, instead of using as coordinates the latitude and
longitude, we employ the universal transversemercator (UTM) coordinate system,
which allows to compute the distance between two points on the Earth’s surface
by means of the Euclidean distance instead of the geodesic distance.
The finite element basis is composed by globally continuous functions that

coincide with a polynomial of a certain degree on each element of the domain
triangulation. In particular, we use here linear finite element basis, that are
piecewise linear functions. The dimension of the spatial basis is strictly related
to the triangulation of the spatial domain: there is one basis function for each
knot of the triangulation; for linear finite elements, each basis is associated with a
vertex of the triangulation and has value 1 at that vertex and 0 at all other vertices.
Figure 11.6 shows an example of linear basis function.
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0.0
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1.0 Figure 11.6 Example of
linear finite element basis
function.

For the temporal dimension, we use here a cubic B-spline basis with penal-
ization of the second derivative, with knots coinciding with the sampling time
instants of the dataset. Other basis systems may turn out to be more appropriate
in other applicative contexts. For instance, Fourier basis are well suited to the case
of cyclic data, possibly with penalization of the harmonic acceleration operator,
instead of the order 2 derivative considered in (11.2).
The chosen basis system should be rich enough to enable an accurate representa-

tion of the spatiotemporal evolution of the phenomenon. In general, the number of
bases, and thus of coefficients to be estimated,M × N, can be larger than the sam-
ple size,m × n. This is for instance the case of the application to Venice waste data,
as well as of the simulation studies reported in Section 11.3. In these examples, in
space, we start from a constrained Delaunay triangulation of the spatial locations,
that is further refined in the application to Venice waste data, and then consider
the associated linear finite element basis, whose dimension N (equal to number
of internal and boundary nodes) is thus larger than n. In time, we use a cubic
B-spline basis having knots at the m time instants of observation, resulting in a
basis dimensionM larger thanm. This fact does not create any problem from the
estimation point of view, thanks to the presence of the regularizing terms. We,
indeed, never experienced any numerical instability of the method. Of course, in
presence of dense sampling schemes, in space, or time, coarser spatial or temporal
grids may be preferred for computational saving.

11.2.2 Discretization of the Penalized Sum-of-Square Error
Functional

Let z ∈ ℝnm be the vector of observed data values at the n ×m spatiotemporal loca-
tions, f ∈ ℝnm the vector of evaluations of the spatiotemporal function f at the
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n ×m spatiotemporal locations, and c ∈ ℝNM the vector of coefficients of the basis
expansion (11.3) of the spatiotemporal field f , with entries ordered as follows:

z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11
⋮
z1m
z21
⋮
z2m
⋮
znm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (p1, t1)
⋮

f (p1, tm)
f (p2, t1)

⋮
f (p2, tm)

⋮
f (pn, tm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11
⋮
c1M
c21
⋮
c2M
⋮
cNM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Coherently, letW ∈ ℝnm×q be the designmatrix containing the covariates {wij; i =
1,… ,n; j = 1,… ,m}:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wT
11
⋮

wT
1m

wT
21
⋮

wT
2m
⋮

wT
nm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Set HW = W(WTW)−1WT as the matrix that projects orthogonally into the sub-
space of ℝnm generated by the columns ofW , and set Q = Inm −HW as the matrix
that projects into the orthogonal complement. We denote by Id ∈ ℝd×d the iden-
tity matrix. Let Ψ ∈ ℝn×N be the matrix of the evaluations of the N spatial basis
functions in the n spatial locations {pi; i = 1,… ,n},

Ψ =

⎡⎢⎢⎢⎢⎣

𝜓1(p1) 𝜓2(p1) · · · 𝜓N (p1)
𝜓1(p2) 𝜓2(p2) · · · 𝜓N (p2)

⋮ ⋮ · · · ⋮
𝜓1(pn) 𝜓2(pn) · · · 𝜓N (pn)

⎤⎥⎥⎥⎥⎦
.

Moreover, define the vectors 𝝍 ,𝝍x,𝝍 y ∈ ℝN of the spatial basis functions and of
their first-order partial derivatives:

𝝍 =

⎡⎢⎢⎢⎢⎣

𝜓1
𝜓2
⋮
𝜓N

⎤⎥⎥⎥⎥⎦
𝝍x =

⎡⎢⎢⎢⎢⎣

𝜕𝜓1∕𝜕x
𝜕𝜓2∕𝜕x

⋮
𝜕𝜓N∕𝜕x

⎤⎥⎥⎥⎥⎦
𝝍 y =

⎡⎢⎢⎢⎢⎣

𝜕𝜓1∕𝜕y
𝜕𝜓2∕𝜕y

⋮
𝜕𝜓N∕𝜕y

⎤⎥⎥⎥⎥⎦
.

Finally, let R0,R1 ∈ ℝN×N be two matrices, respectively, containing the integrals
over Ω𝜏 of the cross products of the N spatial basis, and the integrals over Ω𝜏 of
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the cross products of the first derivatives of the N spatial basis, i.e.

R0 = ∫Ω𝜏

𝝍𝝍T R1 = ∫Ω𝜏

(
𝝍x𝝍

T
x + 𝝍 y𝝍

T
y
)
.

Analogously, let Φ ∈ ℝm×M be the matrix of the evaluations of the M temporal
basis functions in them time instants {tj; j = 1,… ,m}:

Φ =

⎡⎢⎢⎢⎢⎣

𝜑1(t1) 𝜑2(t1) · · · 𝜑M(t1)
𝜑1(t2) 𝜑2(t2) · · · 𝜑M(t2)
⋮ ⋮ · · · ⋮

𝜑1(tm) 𝜑2(tm) · · · 𝜑M(tm)

⎤⎥⎥⎥⎥⎦
.

Moreover, define the vectors 𝝋,𝝋tt ∈ ℝM of the temporal basis functions and of
their second-order derivatives:

𝝋 =

⎡⎢⎢⎢⎢⎣

𝜑1
𝜑2
⋮
𝜑M

⎤⎥⎥⎥⎥⎦
𝝋tt =

⎡⎢⎢⎢⎢⎣

d2𝜑1∕dt2
d2𝜑2∕dt2

⋮
d2𝜑M∕dt2

⎤⎥⎥⎥⎥⎦
.

Finally, let K0 ∈ ℝM×M be the matrix of the integrals over T of the cross products
of theM temporal basis, i.e.

K0 = ∫T𝝋𝝋
T . (11.4)

Consider now the matrix B = Ψ⊗Φ ∈ ℝnm×NM , where ⊗ denotes the Kronecker
product. Then f = Bc.
We may then rewrite the sum of square error functional J in (11.2) as follows:

J = (z −W𝜷 − Bc)T(z −W𝜷 − Bc) + 𝜆ΩcT(PS ⊗ K0)c + 𝜆TcT(R0 ⊗ PT)c
= (z −W𝜷 − Bc)T(z −W𝜷 − Bc) + cTPc , (11.5)

where PS and PT are the matrix discretizations of the spatial and temporal penal-
ization terms, andP is the overall penaltyP = 𝜆Ω (PS ⊗ K0) + 𝜆T (R0 ⊗ PT). Specif-
ically, the matrix PT is obtained by direct discretization of the temporal penalty
term in (11.2):

PT = ∫T𝝋tt𝝋
T
tt ;

see [19] for details. For the matrix PS, following [1, 15], we consider a computa-
tionally efficient discretization of the spatial penalty term in (11.2), that does not
involve the computation of second-order derivatives of the basis functions, but
only of first-order derivatives. This discretization is given by PS = R1R−1

0 R1, and it
is based on a variational characterization of the estimation problem; see [15] for
details. As shown in [16], in the finite element space used to discretize the problem,
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the matrix PS is in fact equivalent to the penalty matrix that would be obtained as
direct discretization of the penalty term in (11.2) and involving the computation
of second-order derivatives.
This formulation uses the homogeneous Neumann condition at the boundary

of the domain of interest implying zero flow across the boundary 𝜕Ω. Boundary
conditions are a way to control the behavior of the estimated function at the
boundaries of the domain. Various boundary conditions are possible: Dirich-
let conditions control the value of the function, that is f |𝜕Ω = 𝛾D, Neumann
conditions control the value of the normal derivative of the function, that is
𝜕nf |𝜕Ω = 𝛾N , and Robin conditions are linear combinations of the previous two.
Homogeneous conditions correspond to the case when 𝛾D or 𝛾N are null functions.
Moreover, different types of boundary conditions can be imposed on different
parts of the boundary, forming a partition of it. In the simulations reported in
Section 11.3 and in the application to Venice waste data, we impose homogeneous
Neumann boundary conditions, i.e. null flow across the boundary; we are thus
considering closed systems with respect to the phenomenon considered. In the
context of Venice data, this means that we assume no exchange of waste between
Venice province and the sea or between Venice province and other neighboring
provinces.
To compute the estimates of the vector of regression coefficients 𝜷 and of the

vector c of coefficients of the basis expansion of the spatiotemporal field f , we
compute the first partial derivatives of J with respect to 𝜷 and c, and set them
equal to zero, getting the following explicit solution to the estimation problem:

𝜷̂ = (WTW)−1WT(z − Bĉ),
ĉ = (BTQB + P)−1BTQz.

The estimators are linear in the observed data values z; the estimator ĉ has a penal-
ized least-square form, and given ĉ, the estimator 𝜷̂ has a least-square form.

11.2.3 Properties of the Estimators

Let Sf = B(BTQB + P)−1BTQ, so that 𝜷̂ = (WTW)−1WT(Inm − Sf)z.
Since E[z] = W𝜷 + f and Var[z] = 𝜎2Inm, and exploiting the fact that the matrix

Q is idempotent and QW = 0 (where 0 is the nm × q zero matrix), we obtain

E[ĉ] = (BTQB + P)−1BTQf,
Var[ĉ] = 𝜎2(BTQB + P)−1BTQB(BTQB + P)−1
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and

E[𝜷̂] = 𝜷 + (WTW)−1WT(Inm − Sf)f,
Var[𝜷̂] = 𝜎2(WTW)−1 + 𝜎2(WTW)−1WTSfSTf W(WTW)−1. (11.6)

Consider the vectorB(p, t) = 𝝍(p)T ⊗ 𝝋(t)T of evaluations of the separable basis
system at the spatiotemporal location (p, t) ∈ Ω × T. The estimate of the field f at
this generic location is thus given by

f̂ (p, t) = B(p, t)ĉ = B(p, t)(BTQB + P)−1BTQz

and its mean and variance are given by

E[f̂ (p, t)] = B(p, t)(BTQB + P)−1BTQf
Var[f̂ (p, t)] = 𝜎2B(p, t)(BTQB + P)−1BTQB(BTQB + P)−1B(p, t)T , (11.7)

with covariance at any two spatiotemporal locations (p1, t1), (p2, t2) ∈ Ω × T
given by

Cov[f̂ (p1, t1), f̂ (p2, t2)]

= 𝜎2B(p1, t1)(BTQB + P)−1BTQB(BTQB + P)−1B(p2, t2)T . (11.8)

It should be noticed that the regularizing terms in (11.2), and their corresponding
discretization P, induce both the first-order structure (i.e. the mean) and the
second-order structure (i.e. the spatiotemporal covariance) of the estimator f̂ .
Different regularizations would imply different mean and covariance structures.
For instance, Azzimonti et al. [16] consider a regularized spatial regression model
and show that by changing the regularizing term and considering more complex
differential operators it is possible to include in the model a priori information
about the spatial variation of the phenomenon, and to model also anisotropies
and nonstationarities.
The smoothing matrix S, which maps the vector of observed values z to the vec-

tor of fitted values ẑ = Sz, is given by

S = HW + QSf.

The trace of the smoothing matrix constitutes a commonly used measure of
the equivalent degrees of freedom for linear estimators (this notion was first
introduced by Buja et al. [20]). For the model considered, this is given by
tr(S) = q + tr(Sf), thus coinciding with the sum of the q degrees of freedom corre-
sponding to the parametric part of the model and the tr(Sf) degrees of freedom
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corresponding to the nonparametric part of the model. A robust estimator of 𝜎2
is given by

𝜎̂
2 = 1

nm − tr(S)
(z − ẑ)T(z − ẑ). (11.9)

This estimate of the error variance, plugged into (11.7), can be used to compute
approximate Gaussian pointwise confidence intervals for f ; similarly, plugged into
(11.6), it can be used to compute approximate Gaussian confidence intervals for 𝜷.
Moreover, the value of a new observation at the spatial location pn+1 ∈ Ω and time
instant tm+1 ∈ T, and with associated covariates wn+1 m+1, can be predicted by
ẑn+1 m+1 = wT

n+1 m+1 𝜷̂ + f̂ (pn+1, tm+1), and approximate prediction intervals may
as well be constructed.
Finally, the values of the smoothing parameters 𝜆Ω and 𝜆T may be chosen via

generalized cross-validation (GCV), searching for the values of 𝜆Ω and 𝜆T that
minimize

GCV(𝜆Ω, 𝜆T) =
nm

(nm − tr(S))2
(z − ẑ)T(z − ẑ).

11.2.4 Model Without Covariates

If covariates are not included in the model, then (11.1) is replaced by

zij = f (pi, tj) + 𝜀ij i = 1,… ,n, j = 1,… ,m,

a classical functional data analysis model. The spatiotemporal field f can thus be
estimated minimizing the functional:

J(f ) =
n∑
i=1

m∑
j=1

(
zij − f (pi, tj)

)2

+𝜆Ω∫T∫Ω
(Δf (p, t))2dpdt + 𝜆T∫Ω∫T

(
𝜕2f (p, t)
𝜕t2

)2

dtdp. (11.10)

The numerical discretization of the functional follows as in Section 11.2.1, leading
to

J = (z − Bc)T(z − Bc) + cTPc ,

andhence, to the following estimator of the vector of coefficients for the spatiotem-
poral field:

ĉ = (BTB + P)−1BTz.

The mean and variance of this estimator are given by

E[ĉ] = (BTB + P)−1BTf,
Var[ĉ] = 𝜎2(BTB + P)−1BTB(BTB + P)−1.
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The estimator of the field f at a generic location (p, t) is thus given by

f̂ (p, t) = B(p, t)ĉ = B(p, t)(BTB + P)−1BTz

and has the following mean, variance, and covariance structures:

E[f̂ (p, t)] = B(p, t)(BTB + P)−1BTf
Var[f̂ (p, t)] = 𝜎2B(p, t)(BTB + P)−1BTB(BTB + P)−1B(p, t)T

Cov[f̂ (p1, t1), f̂ (p2, t2)] = 𝜎2B(p1, t1)(BTB + P)−1BTB(BTB + P)−1B(p2, t2)T .

These above expressions coincide with those derived in Section 11.2.3, setting
Q = I. As noted earlier, the mean and covariance structure of the estimator are
characterized by the chosen regularizing terms, through their discretization P.
Finally, the smoothing matrix is in this case given by S = B(BTB + P)−1BT . The
computation of the degrees of freedom of the estimator, the estimate of the error
variance, the optimal selection of the smoothing parameters 𝜆Ω and 𝜆T , and
the computation of confidence/prediction intervals follows along the same lines
outlined in the case of the model with covariates.

11.2.5 An Alternative Formulation of the Model

Instead of considering the functionals (11.2) or (11.10), respectively, in the case
with or without covariates, it is possible to consider alternative functionals, that
regularize directly the coefficients of the basis expansion of the spatiotemporal
field, in analogywith themodels proposed by [12, 13]. This alternative formulation
is detailed in [2], Section 5.

11.3 Simulation Studies

In [2], the performances of the proposed spatiotemporal regression with partial
differential equation regularization (ST-PDE) are tested via extensive simulation
studies under various settings, with different sampling designs in space and time,
with and without covariates, with correlated and uncorrelated noise. Spatial
regression with differential regularization is compared to separable spatiotem-
poral kriging, to the space–time models proposed by [12, 13] and based on soap
film smoothing [14], and to an analogous space–time model based on thin-plate
splines (TPS). We report here the results from two simulation studies, referring
the interested reader to [2] for details.
We consider a test function defined on a C-shaped spatial domain, shown at

three different time instants in the first row of Figure 11.7. The test function dis-
plays similar features as Venice waste data: its domain is characterized by a strong
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Figure 11.7 Simulation without covariates: test function (first row), sampled data
(second row), field estimates provided by spatiotemporal kriging (third row), by
spatiotemporal smoothing using thin-plate splines (fourth row), and by ST-PDE (fifth row).
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concavity, and different values of the field are observed in the two arms of the
domain, across the concavity, with different behaviors over time. The second row
in Figure 11.7 shows the data sampled at the three time instants, for the first sim-
ulation replicate.
The implementation of ST-PDE is based on the R package fdaPDE [18]. In

space, we use a linear finite element basis defined on the mesh shown in the
second row of Figure 11.7, a constrained Delaunay triangulation of the sampling
spatial locations. In time, we use a cubic B-spline basis, with knots coincidingwith
the sampling time instants. The values of the smoothing parameters 𝜆Ω and 𝜆T
are chosen via GCV. The field estimate obtained in the first simulation replicate,
at the three considered time instants, is shown in the last row of Figure 11.7. The
third and fourth rows of Figure 11.7 illustrate instead the field estimates obtained
by spatiotemporal kriging (KRIG), implemented using the R package gstat [21],
and by spatiotemporal smoothing with a TPS basis in space and a B-spline basis
in time, implemented using the R package mgcv [22]. For the kriging, we use
a separable variogram marginally Gaussian in space and exponential in time,
with parameters estimated from the empirical variogram. For the spatiotemporal
model based on TPS, we select the smoothing parameters via GCV. Figure 11.7
shows that KRIG and TPS return poor estimates of the true spatiotemporal
field, especially in those time instants where the true field is characterized by
different values in the two arms of the C-shaped domain (see the first and second
columns in the figure): the different values have in fact been smoothed across
the concavity in the domain. ST-PDE instead accurately estimates the spatiotem-
poral field, being able to comply with the shape of the domain. Figure 11.9a
shows the boxplots of the root mean square errors (RMSE), over 50 replicates
of the noise generation, of the space–time field estimates yielded by the three
methods. These boxplots confirm the comparative advantage of ST-PDE over
KRIG and TPS.
Figures 11.8 and 11.9b show the results from a second simulation study detailed

in [2], where we as well include a space–time varying covariate. The second row in
Figure 11.8 shows the added contributions of covariates and true function. In this
simulation setting, we do not compare to spatiotemporal kriging, as the function
krigeST of the R package gstat does not allow for the inclusion of covariates. The
results are otherwise similar to those obtained in the simulation without covari-
ates, with a superiority of ST-PDE over TPS. This superiority also reflects in the
estimation of the 𝛽 coefficient: the corresponding RMSE over the 50 replicates is
0.14 for TPS and 0.09 for ST-PDE. Also in this simulation setting, the main reason
of the comparative advantage shown by ST-PDE consists in its ability to comply
with the shape of the domain.
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Figure 11.8 Simulation with covariates: test function (first row), added contributions of
the spatiotemporal covariate field and of the test function (second row), sampled data
(third row), and field estimates provided by spatiotemporal smoothing using thin-plate
splines (fourth row), and by ST-PDE (fifth row).
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Figure 11.9 (a) Simulation without covariates: boxplots of the RMSE, over 50 simulation
replicates, of the field estimates provided by spatiotemporal kriging (KRIG), by spatio-
temporal smoothing using thin-plate splines (TPS) and by spatiotemporal regression with
PDE regularization (ST-PDE). (b) Simulation with covariates: boxplots of the RMSE, over
50 simulation replicates, of the field estimates provided by spatiotemporal smoothing
using thin-plate splines (TPS) and by spatiotemporal regression with PDE regularization
(ST-PDE).

11.4 An Illustrative Example: Study of the Waste
Production in Venice Province

We now illustrate the described method via an application to the study of the
annual amount of per capita municipal waste produced in the Venice province.

11.4.1 The Venice Waste Dataset

Open Data Veneto1 provides the gross and per capita annual amount of municipal
waste produced in each municipality of the Venice province in the period from
1997 to 2011. We consider here for the analysis the annual per capita municipal
waste, in kilogram per municipality resident.
Municipal waste includes waste that is produced in houses and public areas, but

does not include special waste, i.e. industrial, agricultural, construction and demo-
lition waste, or hazardous waste, for which there are special disposal programs.
Therefore, the data refer only to the urbanized areas of themunicipality, while they
do not refer to the agricultural or industrial areas in the municipality territories.

1 http://dati.veneto.it/dataset/produzione-annua-di-rifiuti-urbani-totale-e-pro-capite-1997-
2011

http://dati.veneto.it/dataset/produzione-annua-di-rifiuti-urbani-totale-e-pro-capite-1997-2011
http://dati.veneto.it/dataset/produzione-annua-di-rifiuti-urbani-totale-e-pro-capite-1997-2011
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Since no data identifying the urbanized areas of the municipalities is available,
we face here two possible simplifications of the problem. We can either parti-
tion the Venice province in the municipality territories and attribute each datum
to the whole territory of its municipality, or assign each datum to a point repre-
senting the center of the municipality. We adopt here the second simplification.
The spatial coordinates of the town centers are available online.2 As mentioned in
Section 11.2.1, latitude and longitude are converted into UTM coordinate system.
In some cases, there are localities that do not constitute a municipality on their

own, but are under the jurisdiction of another town. In this case, there are two
or more main urbanized areas in the municipality territory. Some of these locali-
ties are not negligible for the problem under analysis due to their tourist relevance
and their location on the domain; for this reason, we add them to the data. Specif-
ically, we include the seaside town of Bibione, the easternmost village indicated
in Figure 11.1. This popular vacation destination falls under the jurisdiction of
the municipality of San Michele al Tagliamento, northwest of Bibione; the waste
data considered for Bibione are a replicate of the data of San Michele al Taglia-
mento. Moreover, we replicate the data of Venice in the islands of Murano, Lido
di Venezia, and Pellestrina because of their tourist relevance and the particular
shape of the domain.
We include as a covariate the number of beds in accommodation facilities (such

as hotels, bed and breakfast, guesthouses, campings) divided by the number of res-
idents. This ratiomay be as large as 7 in some tourist towns by the sea. The number
of beds in accommodation facilities is provided by Istat,3 the Italian national insti-
tute for statistics.

11.4.2 Analysis of Venice Waste Data by Spatial Regression
with Differential Regularization

Figure 11.10 shows the estimated spatiotemporal field at fixed time instants. The
estimate for the coefficient 𝛽 is 39.7 meaning that one more unit in the ratio
between the number of beds in accommodation facilities and the number of
residents is estimated to increase the yearly per capita production of waste by
residents by about 40 kg. The estimated spatial field f shows the highest values,
across the years, in correspondence of the coastline, around the towns of Bibione,
Lido di Jesolo, and Cavallino-Treporti. These higher values may be due to a type of
tourism that is not captured by the available covariate, such as daily tourists who
do not stay overnight, and vacationers who either own or rent vacation houses.
The higher values of the field are also probably due to the presence of many
seasonal workers, who are not residents of these towns, and are employed in the
numerous accommodation facilities, restaurants, cafés, shops, beach resorts, and
other services.

2 http://www.dossier.net/utilities/coordinate-geografiche/
3 http://www.istat.it/it/archivio/113712

http://www.dossier.net/utilities/coordinate-geografiche/
http://www.istat.it/it/archivio/113712


�

� �

�

280 11 Modeling Spatially Dependent Functional Data by Spatial Regression

(a) (b)

(c) (d)

(e) (f)

Figure 11.10 Estimated spatiotemporal field for the Venice waste data (yearly per capita
production) at fixed time instants. (a) 1997, (b) 2000, (c) 2003, (d) 2006, (e) 2009, and
(f) 2011.
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Although Venice is one of the most visited cities in Italy, and this tourism is
active all year-round, the production of per capita waste in Venice appears to be
lower than in other nearby tourist localities by the seaside. This might be partly
explained by the fact that the tourist activities inVenice are not so highly character-
ized by seasonality as in the smaller seaside villages, and people working in tourist
activities in Venice are more likely to be themselves residents of this large city.
It is significant to notice how the estimated function does not smooth across con-

cave boundaries. For example, the area of the city of Quarto d’Altino and the one
around the city of Cavallino-Treporti show different ranges of values. Indeed, even
though the two towns are geographically close, they are separated by the Venetian
lagoon. This difference is evident also from the first two panels of Figure 11.11,
which shows the estimated spatiotemporal field at fixed localities: Quarto d’Altino,
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Figure 11.11 Temporal evolution of the estimated spatiotemporal field for the Venice
waste data (yearly per capita production) at fixed spatial locations. (a) Quarto d’Altino,
(b) Cavallino-Treporti, (c) Venezia, and (d) Bibione. Source: Adapted from Bernardi et al. [2].
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Cavallino-Treporti, Venice, and Bibione. In these plots, the dots are obtained sub-
tracting from the data the estimated contribution by the covariate, i.e. 𝛽𝑤ij.
The temporal evolution plots in Figure 11.11 show the ability of the method

to capture the temporal trend of the phenomenon. The method provides good
estimates also for the municipality of Cavallino-Treporti, which presents a strong
variation of per capita waste over the year. The large increase of the per capita
waste of Cavallino-Treporti is partly explained by the fact that, during the first
years of this study, this town was under the jurisdiction of Venice, while the data
for this new municipality are available only from 2002. In particular, the data for
Cavallino-Treporti for years 1997–2001 are a replicate of the data of the munici-
pality of Venice. Nevertheless, the strong variation in the data is well captured by
the estimated function.

11.5 Model Extensions

Various extensions of the model described in this chapter are possible. A first gen-
eralization consists in modeling data that are areal in space and integral in time,
and estimating an underlying spatiotemporal intensity function. In the application
to Venice waste data, if information about the urbanized areas of each municipal-
ity would become available, such a model extension would for instance allows to
appropriately refer the waste datum to the area and year where it is produced,
estimating a spatiotemporal intensity of waste production.
Extending the work of [16], it is also possible to include a priori information

available on the phenomenon under study, using more complex differential reg-
ularizations modeling the spatial and/or temporal behavior of the phenomenon.
This also allows to account for nonstationarities and anisotropies in space and/or
time. Along the same lines, if a priori information about the interaction between
space and time was available, then it would make sense to consider a unique
space/time regularizing term based on a time-dependent PDE that governs the
phenomenon behavior. Azzimonti et al. [16], for instance, analyze the blood flow
velocity in a section of the carotid artery at a fixed time instant corresponding to
the systolic peak, starting from Echo-Color Doppler data, and including a priori
information on the problem under study. By introducing the time dimension,
we could study how the blood flow velocity field varies during the time of the
heartbeat. PDEs are commonly used to describe complex phenomena behavior in
many fields of engineering and sciences, including biosciences, geosciences, and
physical sciences. Potential applications of particular interest of this space–time
technique in the environmental sciences would, for example concern the study
of the dispersion of pollutant released in water or in air and transported by
streams or winds, and the study of the propagation of earthquakes, tsunamis, and
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other wave phenomena. If one wishes instead to consider simpler isotropic and
stationary regularizations, then a possibility to allow for stronger interactions in
space/time, with respect to the model here presented, would consist in defining a
unique regularizing term based on a heat equation.
Finally, data distributed over curved domains, instead of over planar domains,

could be handled by extending the model proposed in [23]. Considering the same
application presented by Ettinger et al. [23], this would, for instance enable the
study of time-dependent hemodynamic forces exerted by blood-flow over the wall
of inner carotid arteries affected by aneurysms, taking into account the complex
morphology of these vessels. Another fascinating field of application of this mod-
eling extension would be in the neurosciences [24, 25], studying signals associated
to neuronal activity over the cortical surface, a highly convoluted thin sheet of neu-
ral tissue that constitutes the outermost part of the brain. In the geosciences, this
would permit the study of data distributed over regions with complex orographies.
Moreover, generalizations to time-dependent data of the spatial regression model
introduced by Wilhelm et al. [26] would be particularly well suited for important
engineering applications, especially in the automotive, naval, aircraft, and space
sectors, where space–time varying quantities of interest are observed over the sur-
face of a designed 3D object, such as the pressure over the surface of a shuttle
winglet.
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12.1 Introduction

In this chapter, we address two research areas: spatial statistics and functional
data analysis. Spatial functional random variables are becoming more common in
statistical analyses due to the availability of high-frequency spatial data and new
mathematical strategies to address such statistical objects.
Many fields, such as urban systems, agriculture, environmental science, and

economics, often consider spatially dependent data. Therefore, modeling spatial
dependency in statistical inferences (estimation of the spatial distribution, regres-
sion, prediction, among others) is a significant feature of spatial data analysis.
Spatial statistics provides tools to solve such modeling. Various spatial models
and methods have been proposed, particularly within the scope of geostatistics
or lattice data. Most of the spatial modeling methods are parametric and concern
nonfunctional data.
Several types of functional linearmodels (FLMs) for independent data have been

developed for different purposes. The most studied model is perhaps the FLM
for scalar response, originally introduced by Hastie and Mallows [1]. Estimation
and prediction problems for this model and some of its generalizations have been
reported mainly for independent data (see, e.g. [2–5]). Some research exists on
functional spatial linear prediction using kriging methods (see, e.g. [6–12],…),
highlighting the interest in considering spatial linear functional models.
Complex issues arise in spatial econometrics (statistical techniques to address

economic modeling), many of which are neither clearly defined nor completely

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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resolved but form the basis for current research. Among the practical considera-
tions that influence the available techniques used in spatial data and geostatistics
modeling, particularly in econometrics, are data dependency. This is the case, for
instance, in images analysis, remote sensing from satellites, agriculture, clima-
tology, environmental monitoring, or geology, where data are often dependent,
and a spatial model must be able to account for this characteristic. Linear spatial
models, which are common in geostatistical modeling, generally impose a depen-
dency structure model based on linear covariance relationships between spatial
locations. However, under many circumstances, the spatial index does not vary
continuously over a subset of ℝN , N ≥ 2 and may be of the lattice type, the base-
line of this current work. This is, for instance, the case in a number of problems.
In images analysis, remote sensing from satellites, agriculture, and so on, data are
often received as regular lattice and identified as the centroids of square pixels,
whereas a mapping forms often an irregular lattice. Basically, statistical models
for lattice data are linked to nearest neighbors to express the fact that data are
nearby.
We are concerned here about functional (functional covariates) spatial models

for lattice data. One of the well-known spatial lattice models is the spatial autore-
gressive (SAR) model of [13], which extends regression in time series to spatial
data. This model has been extensively studied and extended in several ways in the
case of real-valued data, compared to the functional framework.
SAR models for real-valued data proposed in the literature, closest to models

with functional variables are those with functional autoregressive coefficients.
Namely, these models are based on nonparametric spatial interactive structures.
Sun [14] proposed a nonparametric approach to estimate a functional coefficient
SAR model with the spatial dependence described by an unknown smooth func-
tion of geographic distances. In this model, the relation between the covariate
and the response is also nonparametric. In the same spirit, Koroglu and Sun [15]
provided an two-stage least squares (2SLS) estimation method for an upgraded
version of [14]’s model with a spatial dependence in the explanatory variable.
Sun and Malikov [16] extended the SAR fixed effect panel data model of [17] to a
functional coefficient SAR model for panel data with fixed effects.
So far the literature on autoregressive spatial models with functional variables

is very limited. Ruiz-Medina [18, 19] considered a spatial autoregressive Hilber-
tian(SARH(1)) processes, where the autoregressive part is given in terms of three
functional random components located in three points defining the boundary
between some notions of past and future. Recently, Pineda-Ríos and Giraldo [20]
studied FLMs with real-valued response and a functional covariate, with SAR
disturbances.
The structure of SARmodels for real-valued data, its identification, and estima-

tion, among others, 2SLS [21, 22],maximum likelihood (ML) [23], and generalized
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method ofmoments (GMM) [24] have been developed. The identification and esti-
mation of SAR models by quasi-maximum likelihood (QML) are limited. Lee [25]
and more recently [26], proposed QML estimators for a SAR model with a spatial
dependency structure based on a spatial weightsmatrix. The quasi-maximum like-
lihood estimator (QMLE) is appropriate when the disturbances in the considered
model are not normally distributed. In the literature on SARmodels for real-valued
data, the QMLE and maximum likelihood estimator (MLE) are proved to be com-
putationally challenging, consistent with rates of convergence depending on the
spatial weights matrix of the considered model [25, 26].
The present work considers an estimation of a functional spatial linear model

with a random functional covariate and a real-valued response using spatial
autoregression on the response based on a weight matrix. We investigate param-
eter identification and asymptotic properties of the QMLE estimator using the
so-called increasing domain asymptotics. We provide identification conditions
combining identification in the classical SAR model and identification in the
FLM.Monte Carlo experiments illustrate the performance of the QML estimation.
The rest of this chapter is organized as follows. In Section 12.2, we pro-

vide the functional spatial autoregressive (FSAR) model and its QMLE. In
Section 12.3, we state the consistency and asymptotic normality of the esti-
mator. To check the performance of the estimator, numerical results are
reported in Section 12.3 using different spatial scenarios, where each unit is
influenced by neighboring units. Proofs and technical lemmas are given in
the Appendix.

12.2 Model

We consider that at n spatial units located on n, a finite subset of cardinal n of a
regular or irregularly spaced, countable lattice  ⊂ ℝN , we observe a real-valued
random variable Y considered as the response variable and a functional covari-
ate {X(t), t ∈  }, a square-integrable stochastic process on the interval  ⊂ ℝ.
Assume that the process {X(t), t ∈  } takes values in space  ⊂ L2( ), where
L2( ) is the space of square-integrable functions in  . The spatial dependency
structure between these n spatial units is described by an n × n nonstochastic spa-
tial weights matrixWn that depends on n. The elements 𝑤ij = 𝑤ij,n of this matrix
are usually considered as inversely proportional to the distance between spatial
units i and j with respect to some metric (physical distance, social network, or
economic distance, see for instance [27]). Since the weight matrix changes with n,
we consider these observations as triangular array observations. This is required to
conduct an asymptotic study of the followingmodel that describes the relationship
between the response variable Y and the covariate function X(⋅) [28].
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There aremainly three different types of interaction effects thatmay explainwhy
an observation associated with a specific location may be dependent on observa-
tions at other locations:

● Endogenous interaction effects, where the variable Y at some spatial unit
depends on values of Y taken by other spatial units.

● Exogenous interaction effects, where the variableY at some spatial unit depends
on independent explanatory variables at other spatial units.

● Correlated effects, where similar unobserved characteristics result in similar
behavior.

In this work, we assume that the relationship between Y and X follows a FSAR
model with endogenous interactions:

Yi = 𝜆0

n∑
j=1
𝑤ijYj + ∫

Xi(t)𝛽∗(t)dt + Ui, i = 1,… ,n, n = 1, 2,… , (12.1)

where the autoregressive parameter 𝜆0 is in compact space Λ, 𝛽∗(⋅) is a functional
parameter assumed to belong to the space of functions L2( ), and (𝑤ij)j=1,…,n is the
i-th row ofWn.
Note that [20] introduced a FSAR model with correlated effects, meaning that

the spatial dependence is in the disturbance term. They proposed the following
SAR process:

Yi = ∫
Xi(t)𝛽∗(t)dt + Ui, i = 1,… ,n, n = 1, 2,… , (12.2)

where the vector of disturbances U =
{
Ui, i = 1,… ,n, n = 1, 2,…

}
verifies

U = 𝜌WnU + 𝜀, the vector 𝜀 =
{
𝜀i, i = 1,… ,n, n = 1, 2,…

}
is composed of

independent Gaussian random variables.
Assume that 𝑤ij = O(h−1n ) uniformly in all i, j, where the rate sequence hn can

be bounded or divergent, such as hn = o(n). This kind of matrix can be obtained
by Nearest Neighbor weights.
In practice, it is common, but not necessary, to row normalize the spatial weight

matrix so in each row-normalized weight, 0 ⩽ 𝑤ij ⩽ 1 can be interpreted as the
fraction of all spatial influence on unit i attributable to unit j. In general, these
matrices Wn can be classified into two groups: Weights Based on Distance and
Weights Based on Boundaries.
For Weights Based on Distance, one way to construct spatial weight matrices

is to use the distance dij between each pair of spatial units (regions, cities,
centroids,…) i and j.

● k-Nearest Neighbor weights

𝑤ij =
{
1 if j ∈ Nk(i)
0 Otherwise

,
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where Nk(i) is the set of the k closest units or regions to i for k = 1,… , (n − 1).
● Radial Distance weights

𝑤ij =
{
1 if 0 ≤ dij ≤ 𝛿

0 if dij > 𝛿
,

where 𝛿 is a critical distance (threshold distance or bandwidth) cut-off after
which spatial effects are considered to be negligible, it should be able to
guarantee that each region has at least one neighbor.

● Power Distance Decay weights

𝑤ij =

{
d−𝛼ij if 0 ≤ dij ≤ 𝛿

0 if dij > 𝛿
where 𝛼 is any positive exponent, typically 𝛼 = 1 or 𝛼 = 2.

● Exponential Distance Decay weights

𝑤ij =
{
exp(−𝛼dij) if 0 ≤ dij ≤ 𝛿

0 if dij > 𝛿
● Double-Power Distance weights

𝑤ij =

{[
1 − (dij∕𝛿)

]k
if 0 ≤ dij ≤ 𝛿

0 if dij > 𝛿
,

with k is a positive integer, typically k = 2, k = 3, or k = 4.
● Cliff–Ord weights
Cliff and Ord [13] suggested to use the length of the common border between
contiguous regions, weighted by a distance function:

𝑤ij = d−aij D
b
ij

where Dij is the share of common boundary between i and j, a and b are param-
eters estimated from data or chosen a priori.

● Block structure
In this case, 𝑤ij = 1 for all i and j in the same block, and the blocks are defined
according to some specific criterion.

For weights based on boundaries, spatial contiguity is often used to specify
neighboring location in the sense of sharing a common border. There are different
type of spatial contiguity, but the classical cases are those referred to Rook
contiguity (with only common boundaries), Bishop contiguity (with only common
vertices), and Queen contiguity (with both Rook and Bishop contiguity).

𝑤ij =
{
1 if i and j are contiguity
0 Otherwise

In general, we can rewrite the last equation as follows:

𝑤ij =
{
1 𝓁ij > 0
0 𝓁ij = 0

,

with 𝓁ij denotes the length of shared boundary.



�

� �

�

12.2 Model 291

The disturbances
{
Ui, i = 1,… ,n, n = 1, 2,…

}
are assumed to be independent

Gaussian random variables such that E(Ui) = 0, E(U2
i ) = 𝜎20 . They are also inde-

pendent of {Xi(t), t ∈  , i = 1,… ,n, n = 1, 2,…}.
We are interested in estimating the unknown true parameters 𝜆0, 𝛽∗(⋅), and

𝜎20 . Let Xn(𝛽∗(⋅)) be the n × 1 vector of i-th element ∫ Xi(t)𝛽∗(t)dt; then, one can
rewrite (12.2) as follows:

SnYn = Xn(𝛽∗(⋅)) +Un , n = 1, 2,… (12.3)

where Sn = (In − 𝜆0Wn), Yn, and Un are two n × 1 vectors of elements Yi and
Ui, i = 1,… ,n, respectively, and In denotes the n × n identity matrix.
Let Sn(𝜆) = In − 𝜆Wn, so the conditional log-likelihood function of the vectorYn,

given {Xi(t), t ∈  , i = 1,… ,n, n = 1, 2,…} is

Ln(𝜆, 𝛽(⋅), 𝜎2) = −n
2
ln 𝜎2 − n

2
ln(2𝜋) + ln |Sn(𝜆)|

− 1
2𝜎2

[
Sn(𝜆)Yn − Xn(𝛽(⋅))

]′ [Sn(𝜆)Yn − Xn(𝛽(⋅))
]
, (12.4)

where A′ denotes the transpose of matrix A.
Maximizing (12.4) with respect to 𝜆, 𝛽(⋅), and 𝜎2 will give us the QMLE estima-

tion of 𝜆0, 𝛽∗(⋅), and 𝜎20 . But this likelihood cannot bemaximizedwithout address-
ing the difficulty produced by the infinite dimensionality of the explanatory
random function. To solve this problem, we project, as usual, the functional
explanatory variable and parameter function into the space of the functions
generated by a basis of functions with dimensions that increase asymptotically
as the sample size tends to infinity. Several truncation techniques exist. Cardot
et al. [29] proposed the estimated eigenbasis of the sample; Cardot and Sarda
[30] considered a Spline basis, adding a penalty that controls the degree of
smoothness of the parameter function. Müller and Stadtmüller [31] proposed the
use of any basis of functions that verifies some truncation criterion. We adapt
the alternative proposed by Müller and Stadtmüller [31] to solve the infinite
dimension problem of the functional space. This method is denoted truncated
conditional likelihood method.

12.2.1 Truncated Conditional Likelihood Method

Let {𝜑j, j = 1, 2,…} be an orthonormal basis of the functional space L2( ),
usually a Fourier or a Spline basis or a basis constructed by the eigenfunctions of
the covariance operator Γ, defined by

Γx(t) = ∫
E(X(t)X(s))x(s)ds , x ∈  , t ∈  . (12.5)
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Using an expansion on this orthonormal basis, we can write X(⋅) and 𝛽∗(⋅)
as follows:

X(t) =
∑
j≥1
𝜀j𝜑j(t) and 𝛽∗(t) =

∑
j≥1
𝛽∗j 𝜑j(t) for all t ∈  ,

where the real random variables 𝜀j and the coefficients 𝛽∗j are given by

𝜀j = ∫
X(t)𝜑j(t)dt and 𝛽∗j = ∫

𝛽∗(t)𝜑j(t)dt.

Let pn be a positive sequence of integers that increase asymptotically as n → ∞;
by the orthonormality of the basis {𝜑j, j = 1, 2,…}, we can consider the following
decomposition:

∫
X(t)𝛽∗(t)dt =

∞∑
j=1
𝛽∗j 𝜀j =

pn∑
j=1
𝛽∗j 𝜀j +

∞∑
j=pn+1

𝛽∗j 𝜀j. (12.6)

The truncation strategy introduced by Müller and Stadtmüller [31] consists
of approximating the left-hand side in (12.6) using only the first term of the
right-hand side. This is possible when the approximation error vanishes asymp-
totically, where this error is controlled by a square expectation of the second term
on the right-hand side of (12.6). In particular, the approximation error vanishes
asymptotically when one considers the eigenbasis of the variance-covariance
operator Γ by remarking that

E

( ∞∑
j=pn+1

𝛽∗j 𝜀j

)2

=
∞∑

j=pn+1
𝛽∗

2

j E
(
𝜀2j

)
=

∞∑
j=pn+1

𝛽∗
2

j 𝛿j

where 𝛿j, j = 1, 2,… are the eigenvalues. Under this truncation strategy, Xn(𝛽∗(⋅))
may be approximated by 𝜉pn𝛽

∗, where 𝛽∗ = (𝛽∗1 ,… , 𝛽∗pn )
′ and 𝜉pn is an n × pnmatrix

of the (i, j)-th element given by

𝜀
(i)
j = ∫

Xi(t)𝜑j(t)dt , i = 1,… ,n j = 1,… , pn.

Now, the truncated conditional log-likelihood function can be obtained by
replacing in (12.4), Xn(𝛽(⋅)) with 𝜉pn𝛽 for all 𝛽(⋅) ∈ L2( ) and 𝛽 ∈ ℝpn . The
corresponding and feasible log conditional likelihood is

L̃n(𝜆, 𝛽, 𝜎2) = −n
2
ln 𝜎2 − n

2
ln(2𝜋) + ln |Sn(𝜆)|

− 1
2𝜎2

[
Sn(𝜆)Yn − 𝜉pn𝛽

]′ [
Sn(𝜆)Yn − 𝜉pn𝛽

]
. (12.7)

For a fixed 𝜆, (12.7) is maximized at

𝛽n,𝜆 = (𝜉′pn𝜉pn )
−1𝜉′pnSn(𝜆)Yn = (𝛽nj,𝜆)j=1,…,pn (12.8)
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and

𝜎̂
2
n,𝜆 =

1
n

(
Sn(𝜆)Yn − 𝜉pn𝛽n,𝜆

)′ (
Sn(𝜆)Yn − 𝜉pn𝛽n,𝜆

)

= 1
n
Y′
nS′n(𝜆)MnSn(𝜆)Yn, (12.9)

whereMn = In − 𝜉pn (𝜉
′

pn𝜉pn )
−1𝜉

′

pn .
The concentrated truncated conditional log-likelihood function of 𝜆 is

L̃n(𝜆) = −n
2
(ln(2𝜋) + 1) − n

2
ln 𝜎̂2n,𝜆 + ln |Sn(𝜆)|. (12.10)

Then the estimator of 𝜆0 is 𝜆̂n, which maximizes L̃n(𝜆), and those of the vector 𝛽∗
and variance 𝜎20 are, respectively, 𝛽n,𝜆̂n , 𝜎̂

2
n,𝜆̂n

. The corresponding estimator of the
function parameter 𝛽∗(⋅) is

𝛽n(t) =
pn∑
j=1
𝛽nj,𝜆̂n𝜑j(t).

The estimation of the model is given, we focus on the asymptotics results in
Section 12.3.
For that purpose, we need to define some asymptotic method. There are two

main asymptotic methods in the spatial literature: increasing domain and infill
asymptotics (see [32], p. 480). The growth of the sample in increasing domain
asymptotics is a consequence of an unbounded expansion of the sample region,
whereas under infill asymptotics, the sample region is fixed and the growth of the
sample size is due to dense sampling in the considered region. In the following,
we consider increasing domain asymptotics.

12.3 Results and Assumptions

Let us first state some combining condition assumptions related to the spatial
dependency structure and assumptions on the functional nature of the data.
Let In + 𝜆0Gn = S−1n , whereGn = WnS−1n , Bn(𝜆) = Sn(𝜆)S−1n = In + (𝜆0 − 𝜆)Gn for

all 𝜆 ∈ Λ and An(𝜆) = B′

n(𝜆)Bn(𝜆).
We assume that

Assumption 12.1

i. The matrix Sn is nonsingular.
ii. The sequences ofmatrices {Wn} and {S−1n } are uniformly bounded in both row

and column sums.
iii. The matrices {S−1n (𝜆)} are uniformly bounded in either row or column sums

and uniformly bounded in 𝜆, in compact parameter space Λ. The true 𝜆0 is in
the interior of Λ.
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Assumption 12.2 The sequence pn satisfies pn → ∞ and pnn−1∕4 → 0 as n → ∞,
and

i. pn
∑

r1 ,r2>pn
E(𝜀r1𝜀r2 ) = o(1)

ii.
∑

r1 ,…,r4>pn
E(𝜀r1 … 𝜀r4 ) = o(1)

iii.
√
n
∑pn

s=1
∑

r1 ,r2>pn
E(𝜀s𝜀r1 ) E(𝜀s𝜀r2 ) = o(1).

Remark 12.1 Assumption 12.1-i ensures that Yn has mean S−1n Xn(𝛽∗(⋅)) and
variance 𝜎20S

−1
n S′−1

n . The uniform boundedness ofWn and S−1n inAssumption 12.1-ii
enables the control of the degree of spatial correlation and plays an important role
in the asymptotic properties of the estimators. By easy computation, one can show
under this assumption that the matrix Gn = WnS−1n is uniformly bounded in
both row and column sums together with elements of order h−1n . Consequently,
the matrix An(𝜆) = B′

n(𝜆)Bn(𝜆) has a trace of order n uniformly in 𝜆 ∈ Λ by the
compactness condition of Λ in Assumption 12.1-iii. Assumption 12.1-iii makes
it possible to address the nonlinearity of ln |Sn(𝜆)| as a function of 𝜆 in (12.7). For
more detail and a discussion of Assumption 12.1, see [25]. Assumption 12.3
considers the rate of convergence of pn with respect to n. Condition iii of Assumption
12.2 is satisfied when one consider the eigenbasis, since in this case E(𝜀r𝜀s) = 0,
for s ≠ r.

To obtain the identifiability of 𝜆0, 𝛽∗, and 𝜎20 in the truncatedmodel, remark that

E
(
L̃n(𝜆, 𝛽, 𝜎2)

)
= −n

2
ln 𝜎2 − n

2
ln(2𝜋) + ln |Sn(𝜆)|

− 1
2𝜎2

E
([
Sn(𝜆)Yn − 𝜉pn𝛽

]′ [
Sn(𝜆)Yn − 𝜉pn𝛽

])
.

We have

E
([
Sn(𝜆)Yn − 𝜉pn𝛽

]′ [
Sn(𝜆)Yn − 𝜉pn𝛽

])

= E
([
Bn(𝜆)𝜉pn𝛽

∗ − 𝜉pn𝛽
]′ [

Bn(𝜆)𝜉pn𝛽
∗ − 𝜉pn𝛽

])
+ E

(
R′
nAn(𝜆)Rn

)

+ 𝜎20 tr
(
An(𝜆)

)
+ 2E

([
Bn(𝜆)𝜉pn𝛽

∗ − 𝜉pn𝛽
]′
Bn(𝜆)Rn

)
,

where Rn = (R1,… ,Rn)
′ with Ri =

∑
j>pn

𝛽∗j 𝜀
(i)
j . Let R denote the generic copy of

Ri, i = 1,… ,n, where E(R) = 0.
We then have

E
(
𝛽∗′𝜉′pnBn(𝜆)Rn

)
= tr

(
Bn(𝜆)

)
𝜖n1, where 𝜖n1 =

pn∑
r=1

∑
s>pn

𝛽r𝛽
∗
s E(𝜀r𝜀s),
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E
(
𝛽′𝜉′pnAn(𝜆)Rn

)
= tr

(
An(𝜆)

)
𝜖n2, where 𝜖n2 =

pn∑
r=1

∑
s>pn

𝛽∗r 𝛽
∗
s E(𝜀r𝜀s),

E
(
R′
nAn(𝜆)Rn

)
= tr(An(𝜆))𝜖n3, where 𝜖n3 = E(R2).

Note that 𝜖n1, 𝜖n2, and 𝜖n3 are of order o(1) by Assumption 12.2, and they are
independent of 𝜆. In addition, 𝜖n1 and 𝜖n2 are null if one uses the eigenbasis.
Consequently,

E
(
L̃n(𝜆, 𝛽, 𝜎2)

)

= − 1
2𝜎2

E
((

Bn(𝜆)𝜉pn𝛽
∗ − 𝜉pn𝛽

)′ (
Bn(𝜆)𝜉pn𝛽

∗ − 𝜉pn𝛽
))

+ ln |Sn(𝜆)| − n
2
(
ln 𝜎2 + ln 2𝜋

)
−
𝜎20

2𝜎2
tr
(
An(𝜆)

)

+ 𝜖n1 tr
(
Bn(𝜆)

)
+ 𝜖n4 tr

(
An(𝜆)

)
, (12.11)

with 𝜖n4 ∶= 𝜖n2 + 𝜖n3. Note that the terms that contain 𝜖n1 and 𝜖n4 are negligible
with respect to the others.
For fixed 𝜆, the expectation E

(
L̃n(𝜆, 𝛽, 𝜎2)

)
is maximum with respect to 𝛽 and

𝜎2 at

𝛽∗n,𝜆 =
1
n
Γ−1
pn E

(
𝜉′pnBn(𝜆)𝜉pn

)
𝛽∗ = 𝛽∗ + (𝜆0 − 𝜆)𝛽∗

1
n
tr
(
Gn
)

and

𝜎∗2n,𝜆 =
1
n
E
([
Bn(𝜆)𝜉pn𝛽

∗ − 𝜉pn𝛽
∗
n,𝜆

]′ [
Bn(𝜆)𝜉pn𝛽

∗ − 𝜉pn𝛽
∗
n,𝜆

])

+
𝜎20

n
tr
(
An(𝜆)

)

= (𝜆0 − 𝜆)2
1
n
Δn +

𝜎20

n
tr
(
An(𝜆)

)
, (12.12)

with Δn = n

(
tr

(
G′

nGn

n

)
− tr2

(Gn

n

))
𝛽∗

′Γpn𝛽
∗ since

E
(
𝜉′pnG

′
nGn𝜉pn

)
= tr(G′

nGn)Γpn and E
(
𝜉′pnGn𝜉pn

)
= tr(Gn)Γpn ,

where Γpn = E
(
1
n
𝜉
′

pn𝜉pn

)
is assumed to be positive definite. This is the case when

the eigenbasis is considered in the truncation strategy.
Based on these results, it is clear that 𝛽∗n,𝜆0 = 𝛽∗ and 𝜎∗2n,𝜆0 = 𝜎20 . Hence, the iden-

tifiability of 𝛽∗ and 𝜎20 depends on that of 𝜆0. Note that

Qn(𝜆) = E
(
L̃n
(
𝜆, 𝛽∗

𝜆
, 𝜎∗2n,𝜆

))

= ln |Sn(𝜆)| − n
2
ln 𝜎∗2n,𝜆 −

n
2
(1 + ln(2𝜋))

+ 𝜖n1 tr
(
Bn(𝜆)

)
+ 𝜖n4 tr

(
An(𝜆)

)
.
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Therefore, proving the identifiability of 𝜆0 is equivalent to showing that 𝜆0
maximizes Qn(𝜆). This will be proved before addressing the consistency of the
estimators.
We will need to compose an additional assumption

Assumption 12.3 Let limn→∞
1
n
Δn = c, where (a) c > 0; (b) c = 0. Under the

later condition,

lim
n→∞

hn
n

{
ln |||𝜎20S−1n S′−1

n
||| − ln |||𝜎2n,𝜆S−1n (𝜆)S′−1

n (𝜆)|||
} ≠ 0,

whenever 𝜆 ≠ 𝜆0, with 𝜎2n,𝜆 =
𝜎20
n
tr(An(𝜆)).

Assumption 12.4 Ui, i = 1,… ,n in Un = (U1,… ,Un)
′ are independent and

identically distributed (i.i.d.) with mean zero and variance 𝜎20 . The moment
E
(|Ui|4+𝛿

)
exists for some 𝛿 > 0. Let 𝜇4 = E(U4

i ).

Remark 12.2 Assumption 12.3 enables the identification of 𝜆0 according to the
boundless of hn. It is similar to that used in [25] in the case ofmultivariate determinis-
tic covariates. This assumption ensures that tr2(Gn∕n) is dominated by tr(G

′

nGn∕n),
which is the case when hn → ∞, as under Assumption 12.1, tr(G′

nGn) and tr(Gn)
are of order O(n∕hn). Situation (b) is related to the existence of a unique variance of
Yn. Assumption 12.4 characterizes the properties of the disturbance term.

Under assumptions similar to those used in [25] but adapted to the functional
context, we show that the proposed QMLE estimator has the same asymptotic
properties as those in the context of independent data (see e.g. [31]) and the spatial
model with real-valued covariates (see e.g. [25]). The following theorems give the
identification, consistency, and asymptotic normality results of the autoregressive,
functional, and variance parameters estimates.

Theorem 12.1 Under Assumptions 12.1–12.4 and h4n = O(n) for divergent hn,
the QMLE 𝜆̂n derived from the maximization of L̃n(𝜆) is consistent and satisfies√

n
hn

(𝜆̂n − 𝜆0) →  (0, s2
𝜆
),

with s2
𝜆
= lim

n→∞

s2nhn
n

{hn
n
[
Δn + 𝜎20 tr(Gn(G

′

n + Gn))
]}−2

, where

s2n = 𝜎20
[
𝛽∗′Γpn𝛽

∗ + 𝜎20
]
tr
(
Gn(G′

n + Gn)
)

+
[
3𝜎20𝛽

∗′Γpn𝛽
∗ + 𝜎40 − 𝜇4

] 1
n
tr2(Gn)

+
[
𝜇4 − 3𝜎40 − 𝜎

2
0𝛽

∗′Γpn𝛽
∗
] n∑
i=1
G2
ii. (12.13)

Note that when hn is divergent, the last two terms in (12.13) are of order o(1).
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Theorem 12.2 Under assumptions of Theorem 12.1, 𝜎̂2n is a consistent estimator
of 𝜎20 and satisfies√

n
(
𝜎̂
2
n,𝜆̂n

− 𝜎20
)
→  (

0, s2𝜎
)

with s2𝜎 = 𝜇4 − 𝜎40 + 4s2
𝜆
lim
n→∞

hn

[ tr(Gn)
n

]2
.

When hn is divergent, s2𝜎 will be reduced to 𝜇4 − 𝜎40 .
The following assumptions are needed to ensure the asymptotic property of the

parameter function estimator. They are similar to ones used in [31].

Assumption 12.5 We have
pn∑

r1 ,r2 ,r3,r4=0
E
(
𝜀r1𝜀r2𝜀r3𝜀r4

)
𝜈r1r2𝜈r3r4 = o(n∕p2n),

where the 𝜈kl, k, l = 1,… , pn, are the elements of Γ−1
pn .

Assumption 12.6 We assume that
pn∑

r1 ,…,r8=0
E
(
𝜀r1𝜀r3𝜀r5𝜀r7

)
E
(
𝜀r2𝜀r4𝜀r6𝜀r8

)
𝜈r1r2𝜈r3r4𝜈r5r6𝜈r7r8 = o(n2p2n).

The asymptotic normality of the parameter function estimator is given in the
following theorem:

Theorem 12.3 Under Assumptions 12.1–12.6, we have

n
(
𝛽n,𝜆̂n − 𝛽

∗
)′
Γpn

(
𝛽n,𝜆̂n − 𝛽

∗
)
− pn√

2pn
→  (0, 𝜎40 ).

Moreover, if
∑
j>pn

E
(
(𝜀j)2

)(
∫ 𝛽∗(t)𝜑j(t)dt

)2

= o(
√
pn∕n), (12.14)

where here {𝜑j, j = 1, 2,…} is the eigenbasis associatedwith the variance-covariance
operator Γ, we have

nd2
(
𝛽n(⋅), 𝛽∗(⋅)

)
− pn√

2pn
→  (0, 𝜎40 ), (12.15)

where d2(⋅, ⋅) denotes the metric defined in L2( ) through operator Γ, and defined by

d2(f , g) = ∫ ∫
(f (t) − g(t))E(X(t)X(s)) (f (s) − g(s)) dtds,

for all f , g ∈ L2( ).
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Now that we have checked the theoretical behavior of the estimator, we study
its practical features through numerical results. We investigate the numerical per-
formance of the proposed methodology based on some simulations and an appli-
cation to ozone concentrations.

12.4 Numerical Experiments

In this section, we study the performance of the proposed model based on numer-
ical results that highlight the importance of truncation of the functional covariate
and the spatial nature of the data. We first describe the estimation procedure for
the considered model.
Recall that the truncation strategy requires an appropriate selection of orthonor-

mal basis. This one can be chosen to be a fixed orthonormal basis, such as the
Fourier basis, or it can be constructed by estimating the eigenfunctions of the
covariance kernel (12.5) and applying functional principal component analysis
(FPCA) to the explanatory random functions Xi. Here we use the eigenfunctions
obtained from the FPCA to construct the expansion basis. The eigenfunctions
are those of the integral operator associated with the integral kernel defined by
the variance-covariance function of X , which is estimated for each t, 𝑣 ∈ [0, 1] as
follows:

K̂(t, 𝑣) = 1
n − 1

n∑
i=1

Xi(t)Xi(𝑣). (12.16)

A key step is the choice of the number p of functions used in the truncation
strategy. To fulfill this task, we consider three criteria: the average squared error
(ASE), the Akaike information criterion (AIC), and the Bayesian information
criterion (BIC), respectively.
The choice of p using AIC is consistent in the setting of FLM (see [31] for more

details). Note that we use a preselected p based on the cumulative inertia.We focus
on the selection of p from among those associated with cumulative inertia values
lower than some threshold (here 95%).
As a measure of accuracy of the parameter function (see [33]), the usual inte-

grated mean square error (IMSE),

IMSE = ∫
1

0

(
𝛽(t) − 𝛽(t)

)2dt, (12.17)

is considered to compare the three choice strategies for p, namely, ASE, AIC,
and BIC.

12.4.1 Monte Carlo Simulations

The main objective of the Monte Carlo Simulation is to investigate the finite sam-
ple behavior of the QMLEs of 𝛽n(⋅), 𝜆̂n, and 𝜎̂

2
n. We consider two spatial scenarios
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(see [34]) in a data grid with G = 60 × 60 locations, where we randomly allocate n
spatial units.

● Scenario 1: The spatial weight matrixWn is constructed by taking the k neigh-
bors of each unit using kNNmethod (k nearest neighbors algorithm). Let us take
k = {4, 8}.

● Scenario 2: We consider a number of districts r (block or group) with m
members in each district, where the units of the same district have the same
weight. As in [35], we can define the spatial weight matrix as block diagonal
Wn = Ir ⊗ Bm, where ⊗ is the Kronecker product, Bm = (lml

′

m − Im)∕(m − 1),
and lm is anm vector of 1.

The simulations are performed based on the following data:

Yi = 𝜆0

n∑
j=1
𝑤ijYj + ∫

Xi(t)𝛽∗(t)dt + Ui (12.18)

whereUn∼N(0, 𝜎20In) is a vector of i.i.d. normal components.
We generate the functional covariate as in [31] using the Fourier orthonormal

basis {𝜑j(t) =
√
2 sin(j𝜋t), t ∈ [0, 1], j = 1, 2,…}. Let us use the first 20 functions

of this basis to generate the explanatory random function:

X(t) =
20∑
j=1
𝜀j𝜑j(t), (12.19)

where 𝜀j ∼  (0, 1∕j) for j ≥ 1. We define the parameter function as 𝛽∗(t) =∑20
j=1 𝛽

∗
j 𝜑j(t), with 𝛽∗j = 0 for j > 3, 𝛽∗ = (𝛽∗1 , 𝛽

∗
2 , 𝛽

∗
3 )

′ = (1, 1∕2, 1∕3)′. With this
parameter function and 𝜎20 = 1, different samples are generated using different
values of the autoregressive parameter 𝜆0 = 0.2; 0.4; 0.6; and 0.8.
We apply the truncation strategy to reduce the infinite dimensionality

of our model Yi = 𝜆0
∑n

j=1𝑤ijYj +
∑pn

j=1 𝛽
∗
j 𝜀

(i)
j +

∑∞
j=pn+1

𝛽∗j 𝜀
(i)
j + Ui, i = 1,… ,n,

n = 1, 2,… to a pn-finite linear approximation and compute the quasi-likelihood
estimator. The parameters 𝜆0, 𝜎20 , and 𝛽

∗
1 ,… , 𝛽∗pn are estimated by solving the score

equations defined in Section 12.3. Different sample sizes, n = {100, 200, 400},
are tested for the first scenario; for the second, we take r = {10, 20, 30} and
m = {5, 10, 15}, with sample size n = m × r.
The studied models are replicated 200 times, and the results of Scenario 1 are

presented in Tables 12.1 and 12.2, respectively, for k = 4 and k = 8. For Scenario
2, the results are reported in Tables 12.3–12.6. Each table represents a specific
model. In each table, the rows 𝜆, 𝜎2, IMSE, and principal components (PCs) give
the averages over these replications (with the standard deviation in brackets) of
the autoregressive parameter estimate 𝜆̂n, the standard deviation parameter 𝜎̂

2
n, the

associated IMSE defined in (12.17) and the number p of eigenfunctions (used in
the truncation), respectively. For the different models, the strategies used to select
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Table 12.1 Estimation of parameters with n = {100,200, 400}, k = 4.

n = 100 n = 200 n = 400

ASE AIC BIC ASE AIC BIC ASE AIC BIC

𝜆0 = 0.2 𝜆 0.1783 0.1786 0.1800 0.2045 0.2046 0.2043 0.1955 0.1955 0.1956

(0.1150) (0.1160) (0.1144) (0.0727) (0.0727) (0.0731) (0.0493) (0.0494) (0.0495)

𝜎2 0.9669 0.9732 0.9878 0.9835 0.9858 0.9913 0.9829 0.9834 0.9870

(0.1438) (0.1465) (0.1511) (0.1036) (0.1040) (0.1055) (0.0710) (0.0711) (0.0710)

IMSE 0.1584 0.1996 0.2595 0.0796 0.1141 0.1489 0.0337 0.0478 0.0860

(0.1499) (0.1332) (0.1339) (0.0654) (0.0709) (0.0747) (0.0325) (0.0476) (0.0564)

PCs 2.920 2.170 1.715 2.965 2.445 2.115 2.990 2.785 2.415

(0.2720) (0.6349) (0.3637) (0.1842) (0.5463) (0.5226) (0.0997) (0.4119) (0.5139)

𝜆0 = 0.4 𝜆 0.3952 0.3969 0.3979 0.3992 0.3996 0.3997 0.3945 0.3947 0.3947

(0.0987) (0.1428) (0.0997) (0.0581) (0.0984) (0.0580) (0.0449) (0.0447) (0.0448)

𝜎2 0.9573 0.9609 0.9786 0.9786 0.9798 0.9865 0.9885 0.9888 0.9929

(0.1432) (0.1428) (0.1503) (0.0983) (0.0984) (0.1002) (0.0723) (0.0725) (0.0448)

IMSE 0.1778 0.2063 0.2786 0.0880 0.1067 0.1536 0.0399 0.0507 0.0977

(0.1680) (0.1574) (0.1528) (0.0830) (0.0794) (0.0908) (0.0365) (0.0464) (0.0629)

PCs 2.850 2.285 1.720 2.865 2.520 2.125 2.950 2.790 2.360

(0.3850) (0.6753) (0.6662) (0.3426) (0.5108) (0.5926) (0.2185) (0.4083) (0.5309)

𝜆0 = 0.6 𝜆 0.5859 0.5877 0.5884 0.5975 0.5990 0.5988 0.5979 0.5984 0.5985

(0.0725) (0.0722) (0.0731) (0.0452) (0.0458) (0.0455) (0.0365) (0.0366) (0.0368)

𝜎2 0.9623 0.9605 0.9773 0.9872 0.9835 0.9916 0.9981 0.9970 1.0009

(0.1357) (0.1335) (0.1387) (0.0965) (0.0947) (0.0964) (0.0743) (0.0741) (0.0744)

IMSE 0.1568 0.1770 0.2428 0.1080 0.1092 0.1642 0.0508 0.0506 0.0912

(0.1248) (0.1191) (0.1272) (0.0844) (0.0747) (0.0942) (0.0497) (0.0462) (0.0527)

PCs 2.680 2.275 1.710 2.680 2.525 2.070 2.845 2.800 2.410

(0.6160) (0.6175) (0.6387) (0.5560) (0.5393) (0.5889) (0.3764) (0.4010) (0.5032)

𝜆0 = 0.8 𝜆 0.7863 0.7889 0.7884 0.7929 0.7940 0.7938 0.7990 0.7997 0.7998

(0.0468) (0.0461) (0.0470) (0.0312) (0.0312) (0.0313) (0.0192) (0.0190) (0.0191)

𝜎2 0.9814 0.9632 0.9788 0.9978 0.9875 0.9953 0.9986 0.9892 0.9927

(0.1519) (0.1482) (0.1536) (0.0971) (0.0952) (0.0966) (0.0741) (0.0689) (0.0696)

IMSE 0.2303 0.1976 0.2422 0.1326 0.1085 0.1624 0.0932 0.0520 0.0898

(0.1469) (0.1329) (0.1281) (0.1177) (0.0809) (0.0937) (0.1007) (0.0468) (0.0520)

PCs 2.295 2.330 1.845 2.465 2.470 2.035 2.535 2.765 2.390

(0.8007) (0.6428) (0.6581) (0.7151) (0.539) (0.5525) (0.6488) (0.4251) (0.4991)

Bold formatting indicate the minimum value of the IMSE values.
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Figure 12.1 Estimated parameter function 𝛽(⋅) with the different criteria and k = 4.
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Table 12.2 Estimation of parameters with n = {100,200, 400}, k = 8.

n = 100 n = 200 n = 400

ASE AIC BIC ASE AIC BIC ASE AIC BIC

𝜆0 = 0.2 𝜆 0.1711 0.1709 0.1690 0.1876 0.1875 0.1886 0.1912 0.1912 0.1916

(0.1604) (0.1614) (0.1439) (0.1031) (0.1037) (0.1036) (0.0800) (0.0799) (0.0801)

𝜎2 0.9656 0.9706 0.9892 0.9781 0.9797 0.9860 0.9833 0.9839 0.9871

(0.1364) (0.1385) (0.1439) (0.0995) (0.1000) (0.1010) (0.0687) (0.0688) (0.0690)

IMSE 0.1612 0.1920 0.2480 0.0866 0.1116 0.1517 0.0394 0.0548 0.0881

(0.1731) (0.1693) (0.1560) (0.0795) (0.0840) (0.0955) (0.0409) (0.0484) (0.0476)

PCs 2.925 2.275 1.705 2.950 2.540 2.190 2.980 2.725 2.395

(0.2641) (0.6256) (0.1496) (0.2185) (0.5290) (0.5964) (0.1404) (0.4476) (0.4901)

𝜆0 = 0.4 𝜆 0.3803 0.3809 0.3811 0.3859 0.3861 0.3859 0.3881 0.3880 0.3877

(0.1416) (0.1416) (0.1413) (0.0822) (0.0822) (0.0834) (0.0705) (0.0727) (0.0710)

𝜎2 0.9593 0.9638 0.9782 0.9787 0.9800 0.9871 0.9945 0.0727 0.9985

(0.1438) (0.1456) (0.1501) (0.1019) (0.1024) (0.1048) (0.0725) (0.0518) (0.0724)

IMSE 0.1541 0.1821 0.2359 0.0828 0.1066 0.1490 0.0426 0.0518 0.0895

(0.1111) (0.1114) (0.1274) (0.0718) (0.0801) (0.0863) (0.0389) (0.0457) (0.0556)

PCs 2.855 2.180 1.730 2.925 2.555 2.165 2.940 2.800 2.445

(0.3669) (0.6632) (0.6237) (0.2641) (0.5554) (0.1240) (0.2381) (0.4010) (0.5180)

𝜆0 = 0.6 𝜆 0.5758 0.5791 0.5794 0.5924 0.5933 0.5935 0.5940 0.5947 0.5944

(0.1061) (0.1060) (0.1072) (0.0671) (0.0672) (0.0675) (0.0496) (0.0495) (0.0494)

𝜎2 0.9719 0.9680 0.9844 0.9792 0.9790 0.9868 0.9932 0.9921 0.9950

(0.1419) (0.1398) (0.1072) (0.0982) (0.0994) (0.1020) (0.0757) (0.0749) (0.0494)

IMSE 0.2024 0.2024 0.2628 0.0939 0.1026 0.1540 0.0477 0.0485 0.9950

(0.1581) (0.1421) (0.1414) (0.0868) (0.0739) (0.0864) (0.0476) (0.0463) (0.0755)

PCs 2.600 2.290 1.760 2.780 2.530 2.110 2.855 2.795 2.465

(0.6497) (0.6542) (0.6743) (0.4612) (0.5201) (0.0864) (0.3669) (0.4047) (0.5000)

𝜆0 = 0.8 𝜆 0.7741 0.7777 0.7771 0.7890 0.7909 0.7905 0.7941 0.7950 0.7950

(0.0630) (0.0630) (0.0633) (0.0410) (0.0411) (0.0412) (0.0321) (0.0318) (0.0321)

𝜎2 0.9852 0.9686 0.9840 1.0069 0.9984 1.0071 0.9957 0.9889 0.9925

(0.1439) (0.1374) (0.1403) (0.1037) (0.1022) (0.1044) (0.0745) (0.0720) (0.0536)

IMSE 0.2076 0.1989 0.2516 0.1199 0.1027 0.1609 0.0811 0.0492 0.0880

(0.1378) (0.1277) (0.1403) (0.1040) (0.0695) (0.0886) (0.0970) (0.0476) (0.0536)

PCs 2.245 2.200 1.720 2.545 2.505 2.035 2.615 2.775 2.405

(0.7798) (0.6725) (0.6509) (0.6858) (0.5398) (0.5616) (0.6315) (0.4186) (0.5022)

Bold formatting indicate the minimum value of the IMSE values.
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Table 12.3 Estimation of parameters associated with scenario 2 with 𝜆0 = 0.2.

m = 5 m = 10 m = 15

ASE AIC BIC ASE AIC BIC ASE AIC BIC

r = 10 𝜆 0.1457 0.1474 0.1483 0.1828 0.1842 0.1838 0.1734 0.1734 0.1746

(0.1687) (0.1700) (0.1685) (0.1466) (0.1476) (0.1468) (0.1476) (0.1479) (0.1483)

𝜎2 0.9090 0.9209 0.9463 0.9583 0.9627 0.9759 0.9810 0.9836 0.9947

(0.1897) (0.1941) (0.2047) (0.1340) (0.1353) (0.1382) (0.1076) (0.1086) (0.1108)

IMSE 0.3347 0.3603 0.3778 0.1655 0.1925 0.2412 0.1109 0.1430 0.1973

(0.2848) (0.2541) (0.2267) (0.1515) (0.1328) (0.1251) (0.1076) (0.1103) (0.1115)

PCs 2.900 1.94 1.505 2.930 2.275 1.860 2.945 2.425 1.940

(0.3170) (0.7611) (0.6497) (0.2747) (0.6010) (0.6577) (0.2286) (0.5883) (0.6232)

r = 20 𝜆 0.1794 0.1796 0.1788 0.1850 0.1851 0.1853 0.1917 0.1919 0.1914

(0.0934) (0.0938) (0.0940) (0.1079) (0.1079) (0.1073) (0.1027) (0.1023) (0.1026)

𝜎2 0.9413 0.9450 0.9602 0.9748 0.9768 0.9841 0.9832 0.9840 0.9892

(0.1429) (0.1436) (0.1498) (0.1014) (0.1018) (0.1045) (0.0809) (0.1023) (0.0823)

IMSE 0.1767 0.2133 0.2686 0.0725 0.1032 0.1507 0.0528 0.0709 0.1164

(0.1676) (0.1620) (0.1614) (0.0666) (0.0693) (0.0874) (0.0456) (0.0561) (0.0612)

PCs 2.920 2.285 1.805 2.970 2.545 2.140 2.9850 2.690 2.280

(0.2720) (0.6900) (0.7138) (0.1710) (0.5092) (0.5585) (0.1219) (0.4637) (0.5225)

r = 30 𝜆 0.1990 0.1985 0.1988 0.1942 0.1941 0.1943 0.1890 0.1890 0.1832

(0.0853) (0.0860) (0.0869) (0.0762) (0.0816) (0.0762) (0.0867) (0.0866) (0.0867)

𝜎2 0.9668 0.9692 0.9797 0.9927 0.9938 0.9986 0.9900 0.9904 0.9930

(0.1152) (0.1156) (0.0869) (0.0816) (0.0816) (0.0829) (0.0639) (0.0638) (0.0643)

IMSE 0.1112 0.1446 0.1991 0.0555 0.0755 0.1143 0.0330 0.0452 0.0755

(0.1047) (0.1088) (0.1130) (0.0615) (0.0651) (0.0680) (0.0298) (0.0452) (0.0643)

PCs 2.920 2.455 1.990 2.980 2.6500 2.2750 2.9900 2.8100 2.5150

(0.2720) (0.5653) (0.6340) (0.1404) (0.4782) (0.5299) (0.0997) (0.3933) (0.5010)

Bold formatting indicate the minimum value of the IMSE values.

p yield (on average) values close to the true parameter of p = 3, especially for ASE
and AIC and large sample sizes (see the columns titled PCs in Tables 12.1–12.6).
The parameter function estimates are given in Figures 12.2–12.3.
For all the models, the three methods used to select p and two spatial scenarios,

the performance of the parameter function and the variance estimates varies with
the sample size. A larger IMSE (the smallest is in bold) of order 0.2 is noted for
sample size n = 100 and k = 8.
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Table 12.4 Estimation of parameters associated with scenario 2 with 𝜆0 = 0.4.

m = 5 m = 10 m = 15

ASE AIC BIC ASE AIC BIC ASE AIC BIC

r = 10 𝜆 0.3590 0.3613 0.3619 0.3746 0.3756 0.3751 0.3739 0.3751 0.3748

(0.1106) (0.1134) (0.1130) (0.1184) (0.1190) (0.1186) (0.1107) (0.1110) (0.1117)

𝜎2 0.9175 0.9271 0.9487 0.9642 0.9682 0.9845 0.9862 0.9890 0.9999

(0.1891) (0.1906) (0.1943) (0.1375) (0.1399) (0.1412) (0.1245) (0.1252) (0.1276)

IMSE 0.3812 0.4078 0.4122 0.1702 0.2024 0.2702 0.1057 0.1387 0.1976

(0.3904) (0.3665) (0.3247) (0.1452) (0.1443) (0.1459) (0.0883) (0.0856) (0.1102)

PCs 2.7300 1.9150 1.5150 2.8100 2.2200 1.7000 2.8950 2.3950 1.9300

(0.5464) (0.7816) (0.3263) (0.4414) (0.6811) (0.6650) (0.3073) (0.5750) (0.6140)

r = 20 𝜆 0.3873 0.3883 0.3887 0.3733 0.3737 0.3736 0.3829 0.3830 0.3829

(0.0749) (0.0751) (0.0749) (0.0857) (0.0861) (0.0864) (0.0777) (0.0777) (0.0775)

𝜎2 0.9587 0.9618 0.9769 0.9875 0.9890 0.9966 0.9914 0.9921 0.9967

(0.1353) (0.1341) (0.1402) (0.1043) (0.1047) (0.1070) (0.0868) (0.0870) (0.0881)

IMSE 0.1700 0.1980 0.2573 0.0853 0.1070 0.1563 0.0570 0.0734 0.1157

(0.1368) (0.1240) (0.1271) (0.0681) (0.0696) (0.0838) (0.0455) (0.0539) (0.0699)

PCs 2.780 2.275 1.795 2.905 2.530 2.115 2.90 2.670 2.300

(0.4825) (0.6414) (0.1271) (0.1277) (0.5296) (0.5861) (0.3008) (0.4714) (0.5582)

r = 30 𝜆 0.3943 0.3952 0.3950 0.3867 0.3867 0.3871 0.3910 0.3911 0.3912

(0.0670) (0.0671) (0.0676) (0.0675) (0.0675) (0.0677) (0.0647) (0.0649) (0.0654)

𝜎2 0.9706 0.9718 0.9832 0.9857 0.9863 0.9913 0.9870 0.9873 0.9906

(0.1178) (0.1176) (0.1228) (0.0840) (0.0843) (0.0854) (0.0674) (0.0676) (0.0680)

IMSE 0.1150 0.1343 0.1951 0.0577 0.0722 0.1122 0.0374 0.0461 0.0830

(0.0903) (0.0861) (0.1100) (0.0604) (0.0687) (0.0652) (0.0343) (0.0470) (0.0512)

PCs 2.810 2.395 0.915 2.895 2.690 2.290 2.960 2.830 2.465

(0.4181) (0.5750) (0.6162) (0.3073) (0.4848) (0.5169) (0.1965) (0.3897) (0.5100)

Bold formatting indicate the minimum value of the IMSE values.

Themethods using theASE andAIC criteria outperform the othermethods. The
spatial structure, namely, the number of neighbors k (Scenario 1) and the number
of observations m in each district (Scenario 2), has a slight impact on the perfor-
mance of the spatial parameter estimator 𝜆̂n. Better results are obtained for lower
values, namely, k = 4 and m = 5, since the weights are more important in these
cases. For a fixed value of k orm, the performance varies with sample size.
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Table 12.5 Estimation of parameters associated with scenario 2 with 𝜆0 = 0.6.

m = 5 m = 10 m = 15

ASE AIC BIC ASE AIC BIC ASE AIC BIC

r = 10 𝜆 0.5867 0.5895 0.5903 0.5815 0.5843 0.5849 0.5736 0.5746 0.5747

(0.0746) (0.0752) (0.0744) (0.0838) (0.0840) (0.0835) (0.0998) (0.1002) (0.1009)

𝜎2 0.9536 0.9524 0.9746 0.9617 0.9573 0.9718 0.9752 0.9736 0.9823

(0.2158) (0.2105) (0.2150) (0.1464) (0.1463) (0.1522) (0.1121) (0.1100) (0.1115)

IMSE 0.3911 0.4201 0.4261 0.1919 0.2053 0.2598 0.1354 0.1441 0.1922

(0.3470) (0.3498) (0.3227) (0.1480) (0.1489) (0.1418) (0.1075) (0.0988) (0.1142)

PCs 2.454 2.025 1.640 2.5750 2.2750 1.8150 2.6700 2.3700 1.9900

(0.6558) (0.7598) (0.6948) (0.6375) (0.6256) (0.6656) (0.5501) (0.5698) (0.6179)

r = 20 𝜆 0.5875 0.5899 0.5899 0.5865 0.5884 0.5887 0.5851 0.5860 0.5860

(0.0491) (0.0493) (0.0493) (0.0571) (0.0575) (0.0574) (0.0574) (0.0580) (0.0582)

𝜎2 0.9666 0.9580 0.9732 0.9838 0.9784 0.9866 0.9810 0.9785 0.9829

(0.1403) (0.1323) (0.1385) (0.1053) (0.1005) (0.1019) (0.0791) (0.0772) (0.0582)

IMSE 0.2148 0.2138 0.2629 0.1129 0.1074 0.1615 0.0723 0.0685 0.1062

(0.1745) (0.1755) (0.1652) (0.0932) (0.0790) (0.0893) (0.0677) (0.0517) (0.0605)

PCs 2.495 2.300 1.800 2.640 2.5500 2.0950 2.7450 2.6800 2.3300

(0.6873) (0.6650) (0.6725) (0.5934) (0.5375) (0.5724) (0.4911) (0.4676) (0.5220)

r = 30 𝜆 0.5948 0.5964 0.5958 0.5879 0.5885 0.5883 0.5886 0.5888 0.5888

(0.0425) (0.0421) (0.0428) (0.0443) (0.0445) (0.0444) (0.0479) (0.0479) (0.0481)

𝜎2 0.9846 0.9798 0.9899 0.9965 0.9953 1.0009 0.9964 0.9956 0.9994

(0.1100) (0.1077) (0.1102) (0.0803) (0.0806) (0.0822) (0.0682) (0.0683) (0.0481)

IMSE 0.1293 0.1404 0.1920 0.0684 0.0689 0.1184 0.0439 0.0402 0.0814

(0.0988) (0.0910) (0.1035) (0.0592) (0.0555) (0.0798) (0.0538) (0.0418) (0.0527)

PCs 2.630 2.420 1.995 2.8050 2.7150 2.2900 2.8900 2.8850 2.4800

(0.5698) (0.5790) (0.5802) (0.3972) (0.4525) (0.5723) (0.3442) (0.3198) (0.5009)

Bold formatting indicate the minimum value of the IMSE values.

12.4.2 Real Data Application

The goal is to forecast ground-level ozone concentrations using observations from
stations within the Southeastern United States over a span of 48 hours in the sum-
mer of 2005. The data are collected from monitoring stations across the United
States and are available at https://www.epa.gov/outdoor-air-quality-data. We are
given the ozone concentration for 106 stations (located at 106 different zip codes
of several counties) for every hour from 12 a.m. 19 July to 11 p.m. 20 July 2015
(that is, 48 hours). We use linear interpolation to estimate the missing values.

https://www.epa.gov/outdoor-air-quality-data
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Table 12.6 Estimation of parameters associated with scenario 2 with 𝜆0 = 0.8.

m = 5 m = 10 m = 15

ASE AIC BIC ASE AIC BIC ASE AIC BIC

r = 10 𝜆 0.7883 0.7905 0.7900 0.7921 0.7941 0.7941 0.7834 0.7857 0.7856

(0.0474) (0.0468) (0.0474) (0.0407) (0.0404) (0.0405) (0.0432) (0.0430) (0.0430)

𝜎2 0.9461 0.9349 0.9596 0.9682 0.9549 0.9703 0.9917 0.9782 0.9883

(0.2330) (0.2326) (0.2436) (0.1353) (0.1324) (0.1379) (0.1132) (0.1073) (0.1098)

IMSE 0.3333 0.3607 0.3814 0.1946 0.1890 0.2367 0.1635 0.1405 0.1928

(0.2556) (0.2545) (0.2152) (0.1303) (0.1239) (0.1224) (0.1248) (0.1028) (0.1132)

PCs 2.265 1.950 1.515 2.340 2.275 1.785 2.415 2.420 1.975

(0.7860) (0.7749) (0.6723) (0.7464) (0.6335) (0.6088) (0.7454) (0.5703) (0.6215)

r = 20 𝜆 0.7955 0.7968 0.7968 0.7943 0.7959 0.7960 0.7945 0.7956 0.7957

(0.0297) (0.0292) (0.0296) (0.0307) (0.0302) (0.0302) (0.0285) (0.0281) (0.0280)

𝜎2 0.9782 0.9713 0.9871 0.9957 0.9821 0.9887 0.9951 0.9823 0.9872

(0.1512) (0.1527) (0.1575) (0.1096) (0.1025) (0.1055) (0.0890) (0.0835) (0.0848)

IMSE 0.1890 0.1883 0.2532 0.1340 0.1006 0.1449 0.1120 0.0737 0.1164

(0.1541) (0.1390) (0.1445) (0.1104) (0.0645) (0.0802) (0.1114) (0.0628) (0.0676)

PCs 2.470 2.250 1.735 2.430 2.570 0 2.200 2.515 2.715 2.300

(0.7153) (0.6706) (0.6534) (0.7265) (0.5162) (0.5931) (0.7158) (0.4525) (0.5399)

r = 30 𝜆 0.7938 0.7947 0.7946 0.7948 0.7957 0.7957 0.7951 0.7959 0.7959

(0.0240) (0.0238) (0.0240) (0.0214) (0.0211) (0.0212) (0.0223) (0.0224) (0.0224)

𝜎2 0.9946 0.9838 0.9949 1.0017 0.9905 0.9954 1.0027 0.9932 0.9965

(0.1199) (0.1149) (0.1201) (0.0873) (0.0854) (0.0866) (0.0731) (0.0700) (0.0707)

IMSE 0.1572 0.1310 0.1909 0.0962 0.0638 0.1074 0.0871 0.0489 0.0869

(0.1366) (0.1056) (0.1207) (0.0982) (0.0532) (0.0630) (0.0923) (0.0442) (0.0481)

PCs 2.4450 2.4400 1.9550 2.5500 2.7600 2.3450 2.5650 2.8100 2.4450

(0.7414) (0.5815) (0.5956) (0.6555) (0.4397) (0.5454) (0.6307) (0.3933) (0.4982)

Bold formatting indicate the minimum value of the IMSE values.

Since the spatial region is a fixed subset of irregular shape, partinioned into
a finite number of areal units (zip codes), it might be interesting to consider
these data as functional lattice data instead of a functional geostatistical dataset.
For instance, in health settings, some relevant outcome data are only available
at the zip level due to personal privacy constraints. Thus, investigating the
relationship between ozone exposure and some disease might be done in a zip or
county level [36].
Thus in this application, we organize the original space-time series into a set of

daily functional data to apply the proposed functional lattice methodology.
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Figure 12.2 Estimated parameter function 𝛽(⋅) with the different criteria and k = 8.
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Figure 12.3 Estimated parameter function 𝛽(⋅) with the different criteria in Scenario 2
for different values of r and m.
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Figure 12.4 Locations and areas of the 106 stations (a) and corresponding ozone
concentration curves from 12p.m., 19 July to 11 a.m., 20 July (b).

Let us consider at each station a response variable Y as the ozone concentration
at 12 p.m. on 20 July and a covariate function {X(t), t ∈ [0, 23]} corresponding to
the 24 records of ozone concentrations from 12 p.m. on 19 July to 11 a.m. on 20
July. Figure 12.4 presents the geographical positions of the 106 stations (points)
and the curves of the ozone concentration from 12 p.m. 19 July to 11 a.m. 20 July.
To highlight the performance of the spatial functional spatial autoregressive

model (FSARM) model, we compare with the usual FLM, that does not take into
account any spatial structure in the estimation procedure.
The observations (Yi, {Xi(t), t ∈ [0, 23]}), i = 1,… , 106, are then used to esti-

mate, on the one hand, the parameter function and hypothetical intercept using
the FLM methodology and, on the other hand, the parameter function and the
autoregressive parameter using the FSARM methodology developed here. Even
though the variance is estimated by the two methods, we do present it here but
focus on the covariate and autoregressive parameters. We describe the spatial
dependence between the stations using a 106 × 106 spatial weight matrixWn. We
follow the idea of [27] to define the elements ofWn by

𝑤ij =
⎧⎪⎨⎪⎩

1
1 + dij

if dij < 𝜌

0 otherwise,

where dij is the Euclidean distance between station i and station j, and 𝜌 is some
cut-off distance chosen such that each station has at least four neighbors. Other
weightmatrices have been tested, but we choose to present the results correspond-
ing to this matrix.
Note that FPCA is used to smooth the curves before we reduce the dimension of

the functional covariate using the eigenbasis, as explained above (see Figure 12.5).
The AIC is used to select the number of eigenfunctions. For the two models, we
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Figure 12.5 The three first eigenfunctions (a) and the proportion of explained
variance (b).

have the same optimal number of eigenfunctions p = 3. Table 12.7 and Figure 12.6
give the estimation results of the FLM and FSARM. Note that the curves obtained
by the two estimation methods are similar, with small differences around 12 p.m.
and 7 p.m. The FLM gives an intercept estimate close to zero, while with FSARM,
wehave a spatial structurewith an estimated autoregressive parameter close to 0.2.
Now, let us consider the following problem of prediction. At a given sta-

tion s0, we aim to predict the ozone concentration every hour, from 12 a.m.
to 11 p.m., on 20 July 2015. For this aim, assume that at s0, we observe only the
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Table 12.7 Estimated parameters for FLM and
functional spatial autoregressive linear model (FSRLM).

PCs
Autoregressive
parameter Intercept

FSARLM 3 0.19
FLM 3 0.006
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Figure 12.6 Estimated parameter functions.

24 records of ozone concentration from 12 a.m. to 11 p.m. on 19 July 2015, and
we would like to predict the ozone concentration of the following day, that is,
from 12 a.m. to 11 p.m. on 20 July 2015. To obtain these predictions, we proceed
as follows:

1. For the prediction at 12 a.m. 20 July 2015, we estimate the parameters of
FLM or FSARM, where the 105 observations (Xi,Yi) are the following:
{Xi(t), t ∈ {0,… , 23}}, the ozone concentrations from 12 a.m. to 11 p.m. on
19 July, and Yi is the ozone concentration at 12 a.m., 20 July, at station i.
The obtained estimated model is used to predict the ozone concentration at
12 a.m. 20 July at station s0 (not contained in the sample), using the covariate
{Xs0 (t), t ∈ {0,… , 23}} composed of the ozone concentrations from 12 a.m. to
11 p.m. on 20 July. Let Ŷ (1)

s0 denote this prediction.
2. For the prediction at 2 a.m. 20 July 2015, let Xi(t), t ∈ {0,… , 23} be the ozone

concentrations from 1 a.m. 19 July to 12 p.m. 20 July and Yi be the ozone con-
centration at 1 a.m. 20 July 2015, at station i. Use these observations to esti-
mate the parameters of FLM or FSARM, and use them to predict the ozone



�

� �

�

312 12 Quasi-maximum Likelihood Estimators for Functional Linear Spatial Autoregressive Models
0

.0
0

0
.0

1
0

.0
2

0
.0

3
0

.0
4

Hour

O
z
o

n
e

 c
o

n
c
e

n
tr

a
ti
o

n

12 a.m. 3 a.m. 7 a.m. 11 a.m. 3 p.m. 7 p.m. 11 p.m.

0
.0

1
0

.0
2

0
.0

3
0

.0
4

0
.0

5
0

.0
6

Hour

O
z
o

n
e

 c
o

n
c
e

n
tr

a
ti
o

n

12 a.m. 3 a.m. 7 a.m. 11 a.m. 3 p.m. 7 p.m. 11 p.m.

0
.0

1
0

0
.0

2
0

0
.0

3
0

0
.0

4
0

Hour

O
z
o

n
e

 c
o

n
c
e

n
tr

a
ti
o

n

12 a.m. 3 a.m. 7 a.m. 11 a.m. 3 p.m. 7 p.m. 11 p.m.

0
.0

0
5

0
.0

1
5

0
.0

2
5

0
.0

3
5

Hour

O
z
o

n
e

 c
o

n
c
e

n
tr

a
ti
o

n

12 a.m. 3 a.m. 7 a.m. 11 a.m. 3 p.m. 7 p.m. 11 p.m.

Observation
Prediction by FLM
Prediction by FSARLM

Figure 12.7 Ozone concentration (solid curves) at 4 stations selected randomly from the
106 stations and their predictions obtained using the FSAR model (dotted curves) and
FLM (dashed curves).

concentration of station s0 at 1 a.m. 20 July using Xs0 (t), t ∈ {0,… , 23}, where
the first 23 records are the real ozone concentrations from 1 a.m. to 11 p.m. 20
July and Xs0 (23) = Ŷ (1)

s0 . Let Ŷ
(2)
s0 denote the obtained prediction.

3. Repeat the above steps to obtain predictions from2 a.m. to 11 p.m., 20 July 2015.

We randomly select 4 stations among the 106 and apply the prediction proce-
dure. Figure 12.7 presents the prediction results; the true values are in solid curves,
while the predictions are in dotted curves for the FSARM, and in dashed curves
for the FLM (with no spatial structure). FSARM achieves some improvements,
particularly around 12p.m., when the ozone concentration is higher.

12.5 Conclusion

This work proposes a functional spatial linear regression function for functional
random field covariates. Our main theoretical contribution was to study the
consistency and asymptotic normality of the estimator. One can see the proposed
methodology and that of [20] as extensions of the real-valued SAR model to
functional data. More precisely, it is apparent that the proposed estimation
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approach based on a truncation technique is particularly well adapted to spatial
regression estimation for functional data in the presence of spatial dependence.
This good behavior is observed both from an asymptotic point of view and from
a numerical study.
However, the present work focuses mainly on a single functional covariate and

a real-valued response with endogenous interactive structures based on a weight
matrix of distances. A number of interesting perspectives and applications can be
investigated.
First, an adaptation of the proposed model to functional coefficient SAR model

may be considered with interactions between locations based on nonparametric
spatial interactive structures [14, 16], with elements of the weight matrix defined
by an unknown function of distances (economical or physical distance) between
locations. This might take into account more general interactive structures.
Second, investigating mixedmodels allow the use of several covariates (functional
and nonfunctional with eventually different domains). Notably, this could be done
by using additive models to be fit efficiently by combining the model of [20] and
that proposed in this work. Doing so permits models with endogenous/exogenous
interactions and correlated effects which could be more general. Third, it can
be of interest to investigate generalized functional linear spatial models (see,
for instance, [21, 31]). Finally, it appears important in the future to investigate
estimation of missing data (for instance a discrete or continuous part of a curve).

12.A Appendix

We start by showing the identifiability of the parameter 𝜆0 and the consistency of
the estimator 𝜆̂n when the sequence hn is bounded or not bounded. This is given
in the following proposition:

Proposition 12.A.1 Assume Assumptions 12.1–12.3.

(i) If the sequence {hn} is bounded, 𝜆0 is identifiable and 𝜆̂n is consistent.
(ii) If the sequence {hn} is divergent, 𝜆0 is identifiable and 𝜆̂n is consistent.

Proof of Proposition 12.A.1

We give the main lines of the proof, and more details can be obtained from the
authors upon request.
Proof of (i). Proving identification of 𝜆0 is equivalent to showing that the

concentrated likelihood function Qn(𝜆) is maximum at 𝜆0. This can be done by
checking the following uniqueness condition:

for any 𝜖 > 0 limsup
n→∞

max
𝜆∈N𝜖 (𝜆0)

1
n
{
Qn(𝜆) − Qn(𝜆0)

}
< 0



�

� �

�

314 12 Quasi-maximum Likelihood Estimators for Functional Linear Spatial Autoregressive Models

whereN𝜖(𝜆0) is the complement of an open neighborhood of 𝜆0 inΛwith diameter
𝜖. The rest of the proof relies on the convergence in probability of L̃n(𝜆) to Qn(𝜆)
uniformly on 𝜆 in Λ, using Lemmas 12.A.1–12.A.3.
Proof of (ii):
The proof follows from the identification uniqueness condition and the uniform

convergence (with the help of Lemma 12.A.3):

hn
n
{(
L̃n(𝜆) − L̃n(𝜆0)

)
−
(
Qn(𝜆) − Qn(𝜆0)

)}
= op(1), (12.A.1)

uniformly in 𝜆 ∈ Λ. ◽

Proof of Theorem 12.1

Identification and consistency of 𝜆̂n are given by Proposition 12.A.1. Let us now
focus on the asymptotic normality of 𝜆̂n.
Consider the first- and second-order derivatives of the concentrated log likeli-

hood L̃n(𝜆):

𝜕L̃n(𝜆)
𝜕𝜆

= 1
𝜎̂
2
n,𝜆

Y′
nW ′

nMnSn(𝜆)Yn − tr
(
WnS−1n (𝜆)

)
,

and
𝜕2L̃n(𝜆)
𝜕𝜆2

= 2
n𝜎̂4n,𝜆

[
Y′
nW ′

nMnSn(𝜆)Yn
]2

− 1
𝜎̂
2
n,𝜆

Y′
nW ′

nMnWnYn − tr
([
WnS−1n (𝜆)

]2)
.

By Proposition 12.A.1 and Lemma 12.A.3, we have

hn
n
Y′
nW ′

nMnWnYn

=
hn
n
V′
nG′

nMnGnVn +
hn
n
U′
nG′

nMnGnUn + op(1) (12.A.2)

and
hn
n
Y′
nW ′

nMnSn(𝜆)Yn

=
hn
n
U′
nG′

nMnUn + (𝜆0 − 𝜆)
hn
n
V′
nG′

nMnGnVn

+ (𝜆0 − 𝜆)
hn
n
U′
nG′

nMnGnUn + op(1)

= Op(1),

by Proposition 12.A.1 and since under Assumption 12.1, Δn and tr(GnBn(𝜆)) are
of order Op(n∕hn), uniformly in 𝜆.
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From Proposition 12.A.1, we derived that 𝜎̂2n,𝜆 = 𝜎∗2n,𝜆 + op(1). Thus, we have

hn
n
𝜕2L̃n(𝜆)
𝜕𝜆2

= − 1
𝜎∗2n,𝜆

[hn
n
V′
nG′

nMnGnVn +
hn
n
U′
nG′

nMnGnUn

]

−
hn
n
tr
([
WnS−1n (𝜆)

]2) + op(1),

uniformly onΛ. For any 𝜆̃n that converges in probability to 𝜆0, one can easily show
that

𝜎∗2n,𝜆̃n
− 𝜎∗2n,𝜆0 = op(1),

and as 𝜎∗2n,𝜆 ≥ 𝜎20 > 0 uniformly on Λ, we can conclude by the Taylor expansion

hn
n

[
𝜕2L̃n(𝜆̃n)
𝜕𝜆2

−
𝜕2L̃n(𝜆0)
𝜕𝜆2

]
=
hn
n

[
tr
(
WnS−1n (𝜆̃n)

)2 − tr
(
G2
n
)]

+ op(1)

= −2(𝜆̃n − 𝜆0)
hn
n
tr
(
G3
n(𝜆n)

)
+ op(1)

= op(1),

as under Assumption 12.1, tr
(
G3
n(𝜆)

)
is of order O(n∕hn) uniformly on Λ.

Finally, by Proposition 12.A.1 and the fact that 𝜎∗2n,𝜆0 = 𝜎20 , we have

hn
n
𝜕2L̃n(𝜆0)
𝜕𝜆2

= − 1
𝜎20

hn
n
Δn −

hn
n
[
tr(G′

nGn) + tr
(
G2
n
)]

+ op(1). (12.A.3)

Let us now prove the asymptotic normality of
√

hn
n
𝜕L̃n(𝜆0)
𝜕𝜆

.
Using the results of Lemma 12.A.3, we have

√
hn
n
Y′
nW ′

nMnSnYn =
√

hn
n
[
V′
n +U′

n
]
G′
nMnUn + op(1), (12.A.4)

and 𝜎̂
2
n,𝜆0

= 1
n
Y′
nS′nMnSnYn =

1
n
U′
nMnUn + op(1).

It follows that√
hn
n
𝜕L̃n(𝜆0)
𝜕𝜆

= 1
𝜎̂
2
n,𝜆0

√
hn
n
[
V′
nG′

nMnUn +U′
nC′

nMnUn
]
+ op(1),

where Cn = Gn − tr
(
Gn
n

)
In. Again by Proposition 12.A.1, we have

√
hn
n
U′
nC′

n𝜉pn

(
𝜉′pn𝜉pn

)−1
𝜉′pnUn = Op

(
pn√
n

)
, (12.A.5)

since under Assumption 12.1, the matrix Cn is uniformly bounded in both row
and column sums, and Cij = O(1∕hn) uniformly in i and j.
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Consider the following decomposition:

𝜉′pnG
′
n𝜉pn

(
𝜉′pn𝜉pn

)−1
𝜉′pnUn

=

[
𝜉′pnG

′
n𝜉pn

n
− tr

(Gn

n

)
Γpn

][
𝜉′pn𝜉pn

n

]−1

𝜉′pnUn

− tr
(Gn

n

)[
𝜉′pn𝜉pn

n
− Γpn

][
𝜉′pn𝜉pn

n

]−1

𝜉′pnUn + tr
(Gn

n

)
𝜉′pnUn

= tr
(Gn

n

)
𝜉′pnUn + Op

(p2n
hn

)
,

by Proposition 12.A.1 and Lemma 12.A.1. Thus,√
hn
n
V′
nG′

n𝜉pn

(
𝜉′pn𝜉pn

)−1
𝜉′pnUn

=
√
hn
n

tr
(
Gn
) V′

nUn√
n

+ Op

(
p2n√
nhn

)
. (12.A.6)

Consequently, (12.A.5) and (12.A.6) imply√
hn
n
𝜕L̃n(𝜆0)
𝜕𝜆

= 1
𝜎̂
2
n,𝜆0

√
hn
n
[
V′
nD′

nUn +U′
nC′

nUn
]
+ op(1),

with Dn = Gn + tr(Gn
n
)In.

LetGs
n = (Gn + G′

n)∕2,Csn = (Cn + C′

n)∕2, andDs
n = (Dn + D′

n)∕2. Thesematrices
satisfy Csij = Ds

ij = Gs
ij for all i ≠ j.

Now, because tr(Cn) = 0, one can consider the decomposition:

V′
nD′

nUn +U′
nC′

nUn =
n∑
i=1
Zni (12.A.7)

with Zni = DiiUiVi + Cii
(
U2
i − 𝜎

2
0
)
+ 2Ui

i−1∑
j=1
Gs
ijTj,

where Ti = Vi + Ui, i = 1,… ,n. It is easy to show that
n∑
i=1

E
(
Z2ni
)
= 𝜎20

[
E(V2) + 𝜎20

]
tr
(
Gn

(
G′
n + Gn

))

+
[
3𝜎20E(V

2) + 𝜎40 − 𝜇4
] 1
n
tr2(Gn)

+
[
𝜇4 − 3𝜎40 − 𝜎

2
0E(V

2)
] n∑
i=1
G2
ii.

Finally, let

s2Z = lim
n→∞

hn
n

n∑
i=1

E
(
Z2ni
)

and Z̃ni =
√

hn
n
Zni
sZ
.
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Note that condition C.1 in Lemma 12.A.5 implies that {Z̃ni, i = 1,… ,n;
n = 1, 2,…} form a triangular array of martingale differences sequences.
According to (Theorem A.1, [37], p. 240) and under conditions C.2 and C.3 in
Lemma 12.A.5, we have

√
hn
n
𝜕L̃n(𝜆0)
𝜕𝜆

=
sZ
𝜎̂
2
n,𝜆0

n∑
i=1
Z̃ni + op(1) → 

(
0,
s2Z
𝜎40

)
. (12.A.8)

Finally, using (12.A.3) and (12.A.8), we can conclude by the Taylor expansion,
that √

n
hn

(
𝜆̂n − 𝜆0

)
→  (

0, s2
𝜆

)
, (12.A.9)

where

s2
𝜆
= lim

n→∞
s2Z

{hn
n
[
Δn + 𝜎20 tr

(
Gn

(
G′
n + Gn

))]}−2

.

This concludes the proof of Theorem 12.A.1. ◽

Proof of Theorem 12.2

Let us consider the decomposition Sn(𝜆̂n) = Sn + (𝜆0 − 𝜆̂n)Wn and note that

𝜎̂
2
n,𝜆̂n

= 1
n
Y′
nS′nMnSnYn + 2(𝜆0 − 𝜆̂n)

1
n
Y′
nW ′

nMnSnYn

+(𝜆0 − 𝜆̂n)2
1
n
Y′
nW ′

nMnWnYn.

Lemma 12.A.3 and (12.A.5) imply that
1
n
Y′
nS′nMnSnYn =

1
n
U′
nUn + op(1).

Thus,

√
n
(
𝜎̂
2
n,𝜆̂n

− 𝜎20
)
=
√

n
hn

(𝜆0 − 𝜆̂n)2
√
hn
n

Y′
nW ′

nMnWnYn

−2
√

n
hn

(𝜆̂n − 𝜆0)
√
hn
n

Y′
nW ′

nMnSnYn

+ 1√
n

(
U′
nUn − n𝜎20

)
.

Note that Proposition 12.A.1, (12.A.2), (12.A.4), and (12.A.5) imply
√
hn
n

Y′
nW ′

nMnSnYn =
√
hn
n

tr(Gn) + op(1) = Op

(
1√
hn

)
, (12.A.10)
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√
hn
n

Y′
nW ′

nMnWnYn

=
√
hn
n

Δn + 𝜎20

√
hn
n

tr
(
GnG′

n
)
+ op(1) = Op

(
1√
hn

)
.

Consequently, the asymptotic normality of 𝜆̂n implies
√

n
hn

(𝜆0 − 𝜆̂n)2
√
hn
n

Y′
nW ′

nMnWnYn = op(1).

If limn→∞hn = ∞, (12.A.10) will be of order op(1). Hence,
√
n
(
𝜎̂
2
n,𝜆̂n

− 𝜎20
)
= 1√

n

(
U′
nUn − n𝜎20

)
+ op(1) →  (

0, 𝜇4 − 𝜎40
)
.

Otherwise, we have
√
n
(
𝜎̂
2
n,𝜆̂n

− 𝜎20
)
= 1√

n

(
U′
nUn − n𝜎20

)

−2
√
hn
n

tr(Gn)
√

n
hn

(𝜆̂n − 𝜆0) + op(1). (12.A.11)

By the asymptotic normality proof of 𝜆̂n (see (12.A.3) and (12.A.7)), one can con-
clude

√
n
hn

(𝜆̂n − 𝜆0) = −𝛿n

√
hn
n

n∑
i=1
Zni + op(1),

where 𝛿n =
n
hn

[
Δn + 𝜎20 tr

(
Gn

(
G′
n + Gn

))]−1
.

Therefore, on can rewrite (12.A.11) as

√
n
(
𝜎̂
2
n,𝜆̂n

− 𝜎20
)
= 2𝛿n

√
hn
n

tr(Gn)
√

n
hn

n∑
i=1
Z†
ni + op(1), (12.A.12)

where Z†
ni = DiiUiVi + C̃ii

(
U2
i − 𝜎

2
0
)
+ 2Ui

i−1∑
j=1
Gs
ijTj,

where C̃ii = Cii +
n

2𝛿n tr(Gn)
, C̃ii is bounded uniformly in i, when hn is bounded.

It is easy to show that
n∑
i=1
E
(
Z†2
ni

)
=

n∑
i=1
E
(
Z2ni
)
+ n

(
𝜇4 − 𝜎40

) [ n
2𝛿n tr(Gn)

]2
.

Let

s2Z† = lim
n→∞

hn
n

n∑
i=1
E
(
Z†2
ni

)
and Z̃†

ni =
√

hn
n
Z†
ni

sZ†
.
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Note that conditions C.1–C.3 in Lemma 12.A.5 hold when Zni and Z̃ni are
replaced by Z†

ni and Z̃†
ni, respectively. Therefore, (Theorem A.1, [37], p. 240)

implies that
n∑
i=1
Z̃†
ni →  (0, 1). (12.A.13)

Finally, by (12.A.12) and (12.A.13), we have√
n
(
𝜎̂
2
n,𝜆̂n

− 𝜎20
)
→  (

0, s2𝜎
)

where s2𝜎 = lim
n→∞

hns2Z†

[2𝛿n tr(Gn)
n

]2
= 𝜇4 − 𝜎40 + 4s2

𝜆
lim
n→∞

hn

[ tr(Gn)
n

]2
.

This finishes the proof. ◽

Proof of Theorem 12.3

Recall that Sn(𝜆)S−1n = In + (𝜆0 − 𝜆)G, for all 𝜆 ∈ Λ, and

𝛽n,𝜆̂n =
(
𝜉′pn𝜉pn

)−1
𝜉′pnSn(𝜆̂n)Yn. (12.A.14)

By Lemma 12.A.3, we have√
n
(
𝛽n,𝜆̂n − 𝛽

∗
)

=
√
n(𝜆0 − 𝜆̂n)

(
𝜉′pn𝜉pn

n

)−1 [
𝜉′pnGn𝜉pn

n
𝛽∗ +

𝜉′pnGnUn

n

]

+

(
𝜉′pn𝜉pn

n

)−1 [
𝜉′pnUn√

n

]
+ op(1).

By Lemma 12.A.1, we have(
𝜉′pn𝜉pn

n

)−1
𝜉′pnGn𝜉pn

n

=

(
𝜉′pn𝜉pn

n

)−1 [
𝜉′pnGn𝜉pn

n
− tr

(Gn

n

)
Γpn

]

− tr
(Gn

n

)(
𝜉′pn𝜉pn

n

)−1 [
𝜉′pn𝜉pn

n
− Γpn

]
+ tr

(Gn

n

)
Ipn

= tr
(Gn

n

)
Ipn + Op

(
p2n

hn
√
n

)
.

The asymptotic normality result of 𝜆̂n and Proposition 12.A.1, imply that

√
n(𝜆0 − 𝜆̂n)

(
𝜉′pn𝜉pn

n

)−1
𝜉′pnGnUn

n
= Op

(
pn√
nhn

)
.
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Hence,

√
n
(
𝛽n,𝜆̂n − 𝛽

∗
)
=

(
𝜉′pn𝜉pn

n

)−1 [
𝜉′pnUn√

n

]

+
√
n(𝜆0 − 𝜆̂n)tr

(Gn

n

)
𝛽∗ + op(1).

Therefore,

n
(
𝛽n,𝜆̂n − 𝛽

∗
)′
Γpn

(
𝛽n,𝜆̂n − 𝛽

∗
)

=
⎧⎪⎨⎪⎩

(
𝜉′pn𝜉pn

n

)−1 [
𝜉′pnUn√

n

]⎫⎪⎬⎪⎭

′

Γpn

⎧⎪⎨⎪⎩

(
𝜉′pn𝜉pn

n

)−1 [
𝜉′pnUn√

n

]⎫⎪⎬⎪⎭
+ 2

√
n(𝜆0 − 𝜆̂n)tr

(Gn

n

)
𝛽∗′Γpn

(
𝜉′pn𝜉pn

n

)−1 [
𝜉′pnUn√

n

]

+ n(𝜆0 − 𝜆̂n)2tr2
(Gn

n

)
𝛽∗′Γpn𝛽

∗ + op(1). (12.A.15)

Consider the last two terms in (12.A.15), we have by the asymptotic normality of 𝜆̂n

n(𝜆0 − 𝜆̂n)2tr2
(Gn

n

)
𝛽∗′Γpn𝛽

∗ = Op

(
1
hn

)
. (12.A.16)

In addition, by Proposition 12.A.1 and Lemma 12.A.1, we have

√
n(𝜆0 − 𝜆̂n)tr

(Gn

n

)
𝛽∗′Γpn

(
𝜉′pn𝜉pn

n

)−1 [
𝜉′pnUn√

n

]
= Op

(
1√
hn

)
. (12.A.17)

Let us now give the asymptotic distribution of the first term in (12.A.15). Let

Ψn = Γ
1
2

(
𝜉′pn𝜉pn

n

)−1

Γ
1
2 , n = Γ

− 1
2

pn

𝜉′pnŨn√
n
, with Ũn = 𝜎−10 Un,

and consider the following decomposition:

⎧⎪⎨⎪⎩

(
𝜉′pn𝜉pn

n

)−1 [
𝜉′pnŨn√

n

]⎫⎪⎬⎪⎭

′

Γpn

⎧⎪⎨⎪⎩

(
𝜉′pn𝜉pn

n

)−1 [
𝜉′pnŨn√

n

]⎫⎪⎬⎪⎭
= 

′
nΨ

2
nn

= 
′
nn − 2 ′

n(Ipn − Ψn)n

+ 
′
n(Ipn − Ψn)2n. (12.A.18)

We have, by Assumptions 2, 5, 6, and Proposition 7.1 of [31],


′
nn − pn√

2pn
→  (0, 1).
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Thus, we deduce by Proposition 12.A.1 and Lemma 12.A.4 that


′
n(Ipn − Ψn)n = op(

√
pn) and 

′
n(Ipn − Ψn)2n = op(

√
pn).

Therefore,

n
(
𝛽n,𝜆̂n − 𝛽

∗
)′
Γpn

(
𝛽n,𝜆̂n − 𝛽

∗
)
− pn√

2pn

= 𝜎20


′
nn − pn√

2pn
+ Op

(
1√
hnpn

)
→  (0, 𝜎40 ),

by (12.A.15), (12.A.16), and (12.A.17). This yields (12.A.15) and completes the
proof of Theorem 12.A.3. ◽

Lemma 12.A.1 Assume that E
(
𝜀4i

)
is finite, where 𝜀i = ∫ X(t)𝜑i(t)dt. Under

Assumption 12.1, we have

𝜉′pnGn𝜉pn

n
− tr

(Gn

n

)
Γpn = Op

(
pn +

√
hn

hn
√
n

)
,

and
‖‖‖‖‖
𝜉′pnGn𝜉pn

n

‖‖‖‖‖2
= Op

(
1
hn

[
1 +

pn +
√
hn√

n

])
.

Proof of Lemma 12.A.1

Note that E
(
𝜀r𝜀s

)2 ≤ E
(
𝜀2r
)
E
(
𝜀2s
)
, and E

(
𝜀2s
)
is finite since X(⋅) is square inte-

grable. Since E
(
𝜀4s
)
is finite, E

(
𝜀2r𝜀

2
s
)
is also finite.

Note that

E
(‖‖‖‖𝜉

′
pnGn𝜉pn − E

(
𝜉′pnGn𝜉pn

)‖‖‖‖
2

2

)
= O

(
p2n

n
h2n

+ ∥ Gn ∥22 +
|||tr
(
G2
n
)|||
)

= O
(
n
h2n

(
p2n + hn

))
,

since ∥ Gn ∥22 and
|||tr
(
G2
n
)||| are of orderO(n∕hn) byAssumption 12.1-ii. This con-

cludes the proof. ◽

Lemma 12.A.2 Assume that E
(
𝜀4i

)
is finite, where 𝜀i = ∫ X(t)𝜑i(t)dt. Under

Assumption 12.1, we have

𝜉′pnG
′
n𝜉pn

n

[
𝜉′pn𝜉pn

n

]−1
𝜉′pnGn𝜉pn

n
− tr2

(Gn

n

)
Γpn = Op

(
pn

h2n
√
n

[
1 +

p2n√
n

])
.



�

� �

�

322 12 Quasi-maximum Likelihood Estimators for Functional Linear Spatial Autoregressive Models

Proof of Lemma 12.A.2

Note that
𝜉′pnG

′
n𝜉pn

n

[
𝜉′pn𝜉pn

n

]−1
𝜉′pnGn𝜉pn

n
− tr2

(Gn

n

)
Γpn

=

[
𝜉′pnG

′
n𝜉pn

n
− tr

(Gn

n

)
Γpn

][
𝜉′pn𝜉pn

n

]−1 [
𝜉′pnGn𝜉pn

n
− tr

(Gn

n

)
Γpn

]

+ 2tr
(Gn

n

)
Γpn

[
𝜉′pn𝜉pn

n

]−1 [
𝜉′pnGn𝜉pn

n
− tr

(Gn

n

)
Γpn

]

+ tr2
(Gn

n

)
Γpn

[
𝜉′pn𝜉pn

n

]−1 [
Γpn −

𝜉′pn𝜉pn

n

]

= Op

(
pn

h2n
√
n

[
1 +

p2n√
n

])
,

by Lemma 12.A.1. This yields the proof. ◽

Lemma 12.A.3 Under Assumptions 12.1–12.2, we have√
hn
n
U′
nG′

nMnGnRn = op(1), (12.A.19)
√

hn
n
R′
nMnGn𝜉pn = op(1), (12.A.20)

√
hn
n
R′
nG′

nMnGnRn = op(1). (12.A.21)

Proof of Lemma 12.A.3

Let

𝜋n1 =
pn∑
r=1
E
(
R2𝜀2r

)
and 𝜋n2 =

pn∑
r=1
E
(
R𝜀r

)2
.

Consider (F19), and note that by Assumption 12.1,

E
(‖‖‖R′

nGn𝜉pn
‖‖‖
2

2

)
= O

(
n
h2n

[
hnE(R2) + 𝜋n1 + n𝜋n2

])
, (12.A.22)

E
(‖‖‖R′

n𝜉pn
‖‖‖
2

2

)
= O

(
n𝜋n1

)
, and E

([
R′
nUn

]2) = O
(
nE(R2)

)
.

(12.A.23)
Thus,

U′
nG′

nMnGnRn = op

(√
n
hn

)
+ Op

(pn
hn

√
hnE(R2) + 𝜋n1 + n𝜋n2

)
,

by (12.A.22) and (12.A.23).
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Let us treat (12.A.20),

R′
nG′

nMnGn𝜉pn = Op

(√
n

hn

[
1 +

pn
hn

]√
hnE(R2) + 𝜋n1 + n𝜋n2

)
.

Finally, considering (12.A.21), we have

R′
nG′

nMnGnRn = Op

(pn
h2n

[
hnE(R2) + 𝜋n1 + n𝜋n2

])
.

Therefore, the proof follows from Assumption 12.2. ◽

Lemma 12.A.4 Under Assumptions 12.2 and 12.5, we have

∥ Ψn − Ipn∥2 = Op(p−1n ).
For the proof of this lemma, see (Lemma 7.2, [31], p. 28).
The following lemma gives conditions under which a martingale central

limit theorem can be applicable to the triangular array of martingale difference
sequences {Zni, 1 ≤ i ≤ n, n ∈ ℕ}, for more of details see (Theorem A.1, [37],
p. 240).

Lemma 12.A.5 Under assumptions of Theorem 12.A.1, we have

C.1. The random variables {Zni, 1 ≤ i ≤ n, n ∈ ℕ} form a triangular array ofmar-
tingale difference sequence w.r.t. the filtrations
(n,i) = 𝜎

{
𝜀
(j)
r ,Uj, 1 ≤ j ≤ i, 1 ≤ r ≤ pn

}
(1 ≤ i ≤ n, n ∈ ℕ).

C.2. Conditional normalization condition:
n∑
i=1
E
(
Z̃2ni

|||n,i−1
)
→ 1, in probability as n → ∞.

C.3. There exists a constant 𝛿 > 0:
n∑
i=1
E
(||Z̃ni||2+𝛿

)
→ 0, n → ∞.

(Lyapunov condition if 𝛿 = 2).

Proof of Lemma 12.A.5

Proof of C.1 This is immediate because E
(
Zni|n,i−1) = 0.

Proof of C.2
For each i = 1,… ,n, let

Qni =
i−1∑
j=1
Gs
ijTj.

We have

E
(
Z2ni
|||n,i−1

)
= 𝜎20E(V

2)D2
ii + (𝜇4 − 𝜎40 )C

2
ii + 4𝜎20Q

2
ni,
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hence,

E

( n∑
i=1
E
(
Z2ni
|||n,i−1

))
= 𝜎20E(V

2)
n∑
i=1
D2
ii + (𝜇4 − 𝜎40 )

n∑
i=1
C2ii

+ 2𝜎20E(T
2)

n∑
i=1

i−1∑
j=1
Gs2
ij .

By definition of Z̃ni,

E

( n∑
i=1
E
(
Z̃2ni

|||n,i−1
))

= 1 + o(1).

Remark that

Var

( n∑
i=1
E
(
Z2ni
|||n,i−1

))
= 16𝜎40Var

( n∑
i=1
Q2
ni

)
, (12.A.24)

when Ui is normally distributed. Otherwise, result (12.A.27) remains valid.
Let us consider Var

(∑n
i=1 Q2

ni

)
. First, we have

n∑
i=1
E
(
Q2
ni
)
= E(T2)

n∑
i=1

i−1∑
j=1
Gs2
ij . (12.A.25)

Let for all 1 ≤ i ≤ j ≤ n,

E
(
Q2
niQ

2
nj

)
= E

(
T4
) i−1∑
k=1

Gs2
ikG

s2
jk + E(T2)2

i−1∑
k=1

j−1∑
r=i
Gs2
ikG

s2
jr

+ E(T2)2
i−1∑

k≠r=1

[
Gs2
ikG

s2
jr + 2Gs

ikG
s
irG

s
jkG

s
jr

]
.

We can rewrite (12.A.25) as follows:

[
2E(T2)2

]−1
[
E

( n∑
i=1
Q2
ni

)]2

=
n∑
j=1

j−1∑
i=1

i−1∑
k=1

Gs2
ikG

s2
jk +

n∑
j=1

j−1∑
i=1

i−1∑
k≠r=1

Gs2
ikG

s2
jr

+
n∑
j=1

j−1∑
i=1

i−1∑
k=1

j−1∑
r=i
Gs2
ikG

s2
jr .

Therefore, we have

Var

( n∑
i=1
Q2
ni

)
= O

[
n
h2n

(
E
(
T4
)
+ hnE(T2)2

)]
. (12.A.26)
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Then, by (12.A.24) and (12.A.26), we have

Var

( n∑
i=1
E
(
Z̃2ni

|||n,i−1
))

= O

(
E
(
T4
)
,+hnE(T2)2

n

)
= o(1) (12.A.27)

since E(T4) = O(E(V4)) = O(p2n) and E(T2) = O(E(V2)) = O(1). Hence, the result
follows.
Proof of C.3
For any positive constants p and q such that 1

p
+ 1

q
= 1,

|Zni| ≤ |Dii||ViUi| + |Cii||U2
i − 𝜎

2
0 | + 2|Ui|

i−1∑
j=1
|Gs

ij||Tj|

≤ |Dii|
1
p |Dii|

1
q |ViUi| + |Cii|

1
p |Cii|

1
q |U2

i − 𝜎
2
0 |

+
i−1∑
j=1
|Gs

ij|
1
p |Gs

ij|
1
q 2|Tj||Ui|.

Holder’s inequality for inner products applied to the last term, implies that

|Zni|q = O

(
|Dii||ViUi|q + |Cii||U2

i − 𝜎
2
0 |q + 2q|Ui|q

i−1∑
j=1
|Gs

ij||Tj|q
)

since underAssumption 12.1,Dii andCii are of orderO(1∕hn) andGn is uniformly
bounded in row sums.
Let q = 2 + 𝛿, and note that

n∑
i=1
E
(||Z̃ni||2+𝛿

)
= O

⎛⎜⎜⎝
h

𝛿

2
n

n
𝛿

2

[
E
(
U4+2𝛿) + hnE

(|T|2+𝛿)]
⎞⎟⎟⎠
. (12.A.28)

Let 𝛿 = 2, then (12.A.28) is of order O
(
h2np

2
n

n

)
, since E(T4) = O

(
p2n
)
and E(U8) is

finite. This yields the proof as by assumption h4n = O(n) (when hn is divergent) and
p4n = o(n). ◽
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Spatial functional data analysis is an alternative approach to spatiotemporal
modeling when the curves are time series varying spatially. Specifically, func-
tional geostatistics allows carrying out optimal spatial prediction of the whole
curve at unsampled sites. Alongwith the developments in functional geostatistics,
the framework for optimal spatial sampling designs has been extended. This
chapter is concerned with functional kriging, functional cokriging, and optimal
sampling designs for spatial prediction of functional data. The chapter is struc-
tured as follows: In Section 13.1, we introduce the definition and some properties
of multivariate functional random fields and review the theoretical framework
of functional principal components (FPC). Several proposals for functional
kriging are discussed in Section 13.2, and functional cokriging is presented in
Section 13.3. In Section 13.4, we derive the design criteria to optimize the spatial
prediction of curves using the predictors discussed in Sections 13.2 and 13.3. The
methodological proposals are illustrated in Section 13.5, by an application to a
dataset taken from the meteorological and air quality network of Mexico city. The
chapter ends with some concluding remarks in Section 13.6.

13.1 Background
13.1.1 Multivariate Spatial Functional Random Fields

Let Ds ⊂ ℝd be the spatial index set, and let 𝝌1
s (t),… ,𝝌P

s (t), s ∈ Ds, be P spatial
functional square integrable random fields, such that 𝝌p

s (t) ∈ L2 () p = 1,… ,P.
This chapter considers the case when t ∈  ⊂ ℝ, that is, the functional variable is
a curve, see [1] for a good exposition. Note that L2 () is a real separable Hilbert
space.

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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A multivariate spatial functional random field is given by {𝚵s∶s ∈ Ds ⊂ ℝd}
where

𝚵s =
(
𝜒1s (t),… , 𝜒Ps (t)

)
.

Now, let P =  ⊕ · · ·⊕ be the direct sum of the P real separable Hilbert
spaces, then𝚵s ∈ P [2, 3]. The sum, the scalarmultiplication, and the inner prod-
uct for the elements ofP are defined by

𝜉 + 𝜻 ≡ (
𝜉1 + 𝜁1,… , 𝜉P + 𝜁P

)
b𝜁 ≡ (

b𝜁1,… , b𝜁P
)

[𝜉, 𝜻] = ⟨𝜉1, 𝜁1⟩ + · · · + ⟨𝜉P, 𝜁P⟩ (13.1)

𝜉, 𝜻 ∈ P, b ∈ ℝ and ⟨𝜉p, 𝜁p⟩ is the L2-inner product.
A multivariate spatial functional dataset is an observation of 𝚵s at a particular

set of spatial sites, S ⊂ Ds. If the P functional random fields can be measured at
the same set of locations S = {s1,… , sn}, we have(

𝜒1si (t),… , 𝜒Psi (t)
)

i = 1,… ,n

In other case, each spatial functional randomfield𝜒ps (t) is observed at a different
set Sp of np spatial locations p = 1,… ,P as follows:

(
𝜒
p
s1 (t),… , 𝜒

p
snp
(t)
)
, p = 1,… ,P

Usually, at least some locations are common for several variables.

13.1.2 Functional Principal Components

Assuming that the spatial functional random fields are random elements of L2 ()
and that E

(
𝝌 s(t)

)
= 0, then the covariance operator C of 𝝌 s(t) is defined as

C(y) = E
[⟨𝜒s, y⟩𝜒s

]
y ∈ L2 () (13.2)

Thus,

C(y)(t) = ∫ c(t, r)y(r)dr, where c(t, r) = E
[
𝜒s(t)𝜒s(r)

]

with estimators given by

Ĉ(y) = 1
n

n∑
i=1

(
⟨𝜒si , y⟩𝜒si

)
, y ∈ L2 ()

and

Ĉ(y)(t) = ∫ ĉ(t, r)y(r)dr, where ĉ(t, r) = 1
n

n∑
i=1
𝜒si (t)𝜒si (r)
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A bounded continuous linear operator C on  is a covariance operator if and
only if it is symmetric positive-definite and its eigenvalues 𝜂k satisfy

∑∞
k=1 𝜂

k <∞.
The FPC are defined as the eigenfunctions of the covariance operator (13.2),

see [4]. The estimators of FPC are called the empirical functional principal
components (EFPC).

13.1.3 The Spatial Random Field of Scores

Because the main interest is the reconstruction of the curve 𝜒si , a reasonable
choice for a basis functions system is the EFPC formed by the eigenfunctions 𝜉k(t),
k = 1,… ,K of the covariance operator C of 𝜒s(t) with basis coefficients given by
the associated principal component scores f ksi , defined as

f ksi =
⟨
𝜒si , 𝜉

k
⟩
, k = 1,… ,K, i = 1,… ,n (13.3)

According to [4], the approximation of this basis is uniformly optimal, in the sense
of minimizing Ŝ2 given by

Ŝ2 =
n∑
i=1

‖‖‖‖‖‖
𝜒si (t) −

K∑
k=1

f ksi𝜉
k(t)

‖‖‖‖‖‖

2

. (13.4)

It is possible to have a very good approximation using only a few EFPC. Denoting
by 𝜂k the corresponding eigenvalue, we choose K that ensures a minimum per-
centage of accumulated variability, previously established. The most frequently
used value is 85%, but the user makes the appropriate decision. Using the
Karhunen–Loève expansion [5], we assume the model takes the form:

s(t) = 𝜇(t) + 𝜒s(t) = 𝜇(t) +
∞∑
k=1

f ks 𝜉k(t), s(t) ∈ L2 (13.5)

where E(s(t)) = 𝜇(t). The mean function 𝜇(t) is estimated by the sample mean
function 𝜇̂(t) = ̄ s(t) with ̄ s(t) = n−1

∑n
i=1 si (t). So, E(𝜒s(t)) = 0 and from now

on, we use the random variable 𝜒s(t). In addition, for k = 1,… ,K

E
(
f ksi
)
= E

⟨
𝜒si , 𝜉

k
⟩
=
⟨
0, 𝜉k

⟩
= 0 (13.6)

Note that for each k and s ∈ Ds, f ks is a scalar spatial random field, observed at
locations s1,… , sn. So the corresponding data vector for each k is f

k
s = (f ks1 ,… , f ksn )

and
(
f 1s ,… , f Ks

)
is a K-dimensional scalar spatial random field.

According to [3], 𝚵s ∈ P is a joint GaussianP-valued random field, if the real
variable

[𝚵s, 𝜻] =
⟨
𝜒1s , 𝜁

1⟩ + · · · +
⟨
𝜒Ps , 𝜁

P⟩ (13.7)

is Gaussian for all 𝜻 ∈ P.
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Let 𝜉p1,… , 𝜉pKp , p = 1,… ,P be the first Kp eigenfunctions of the covariance
operator of𝜒ps and, following the notation in (13.3), let the corresponding scores be

f pKps =
⟨
𝜒
p
s , 𝜉

pKp
⟩
. (13.8)

For b11,… , bPKP arbitrary real numbers, let the vector 𝜻 be given by

𝜻 =
(
b11𝜉11 + · · · + b1K1𝜉

1K1 ,… , bP1𝜉P1 + · · · + bPKp𝜉
PKP
)

We thus have that

[𝚵s, 𝜻] = b11f 11s + · · · + b1K1 f
1K1
s + · · · + bP1f P1s + · · · + bPKP f

PKP
s (13.9)

is a real Gaussian variable, and therefore, the vector(
f 11s ,… , f 1K1s ,… , f P1s ,… , f PKPs

)

is a joint Gaussian multivariate random field in ℝK1+···+KP .

13.2 Functional Kriging

In this section, we review some alternatives to carry out univariate spatial pre-
diction of functional data. The ordinary kriging method uses the curves directly
and models the trace-variogram, while the other proposals use the representa-
tion of the curves, in terms of basis functions and model, the spatial variability
of the scalar random field is formed by the basis coefficients. Specifically, using
the approximation of EFPC, the spatial variability is modeled through the random
field formed by the score vectors.

13.2.1 Ordinary Functional Kriging (OFK)

The ordinary kriging method to predict functions is provided by Giraldo et al. [6],
using nonparametric methods to build the curves. The predictor of the curve 𝜒s0 (t)
based on the set of functions 𝜒si (t), i = 1,… ,n, is given by

𝜒 s0 (t) =
n∑
i=1
𝜆i𝜒si (t) t ∈ T, 𝜆1, 𝜆2,… , 𝜆n ∈ ℝ (13.10)

The weights 𝜆1, 𝜆2,… , 𝜆n in (13.10) are found as the solution of the minimization
problem:

min
𝜆1 ,𝜆2 ,…,𝜆n∫T Var

(
𝜒s0 (t) − 𝜒 s0 (t)

)
dt (13.11)

subject to the constraint
∑n

i=1 𝜆i = 1 to ensure unbiasedness. The ordinary func-
tional kriging, as in the scalar case, depends on the spatial dependence structure
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which is modeled under the second-order stationarity assumption, through the
trace-variogram function 𝛾(𝜒si (t), 𝜒si′ (t)), defined as follows:

𝛾(𝜒si (t), 𝜒si′ (t)) =
1
2
Var

(
𝜒si (t) − 𝜒si′ (t)

)
= 𝛾(||si − si′ ||, t) (13.12)

Once (13.12) has been integrated for every pair of curves, the variogram obtained,
𝛾(||si − si′ ||), is scalar and modeled with usual spatial variogram models which
allow to include geometric anisotropy.

13.2.2 Functional Kriging Using Scalar Simple Kriging of the
Scores (FKSK)

Spatial functional prediction under the assumption of a known mean function
𝜇(t), and using a linear combination of the observed curves

𝜒̆ s0 (t) =
n∑
i=1
𝜆i𝜒si (t)

is solved for 𝜆1, 𝜆2,… , 𝜆n by the minimum least squares method [4],

E‖‖‖𝜒s0 (t) − 𝜒̆ s0 (t)
‖‖‖
2
= E

(
⟨𝜒s0 , 𝜒s0⟩

)
− 2

n∑
i=1
𝜆iE

(
⟨𝜒si , 𝜒s0⟩

)

+
n∑

i,i′=1
𝜆i𝜆i′E

(
⟨𝜒si , 𝜒si′ ⟩

)

, where

E
(
⟨𝜒si , 𝜒si′ ⟩

)
=

∞∑
k=1

∞∑
k′=1

E
(
f ksi f

k′
si′

) (⟨𝜉k(t), 𝜉k′ (t)⟩) =
∞∑
k=1

E
(
f ksi f

k
si′

)
(13.13)

Thus, due to the representation as a linear combination of the EFPC, see (13.4)
and (13.5), the functional covariances between two locationsE(⟨𝜒si , 𝜒si′ ⟩) are com-
pletely determined by the sum of the spatial autocovariances of all score compo-
nents f ks for the pair

(
si, si′

)
, see (13.3). Note that this procedure does not need the

cross-covariances between score vectors.

13.2.3 Functional Kriging Using Scalar Simple Cokriging of the
Scores (FKCK)

Giraldo [7] and Nerini et al. [8] approximate each function in the dataset by K
basis functions, and then perform ordinary cokriging at the unsampled site s0 with
the scalar spatial process formed by the basis-coefficient vector. However, as the
number of coefficients increases, so does the difficulty of the linear model of core-
gionalization (LMC), and this model can become intractable. Therefore, to make
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this approach useful, the use of a basis functions system that ensures a reduced
number of coefficients is required. The coefficients involved in the reconstruction
of each function with the EFPC can be two or three in many practical cases, mak-
ing the LMCamore feasible option. Thus,we present an alternative proposal using
EFPC. According to Section 13.1.3 and Bohorquez et al. [9], we have E

(
𝜒s(t)

)
= 0,

E
(
f ksi
)
= 0, i = 1,… ,n and k = 1,… ,K sowe canuse scalar simple cokriging [10]

to predict the vector

fs0 =
(
f 1s0 ,… , f Ks0

)T

at the unsampled location s0. Now, let 𝝃
T(t) be the vector containing the first K

chosen eigenfunctions. The representation of the functions in terms of their func-
tional principal components is given by

𝜒si (t) = 𝝃
T(t) fsi , i = 1,… ,n,

and our proposal to predict the curve 𝜒s0 (t) is

𝜒∗
s0 (t) = 𝝃

T(t) f ∗s0 , i = 1,… ,n

The simple cokriging predictor of the score vector at s0 is given by [10]

f ∗s0 =
n∑
i=1

f Tsi Γi,

where fsi =
(
f 1si ,… , f Ksi

)T
and Γi is a K × K-matrix formed by the weights 𝜆kk′i ,

representing the contribution of the k-th score at location si to the prediction of
the k′-th score. Then the matrix 𝚪 =

(
Γi
)
i = 1,… ,n is the solution of the system

⎛⎜⎜⎜⎜⎝

𝚺(s1 ,s1) 𝚺(s1 ,s2) · · · 𝚺(s1,sn)
𝚺(s2 ,s1) 𝚺(s2 ,s2) · · · 𝚺(s2,sn)

⋮ ⋮ ⋱ ⋮
𝚺(sn ,s1) 𝚺(sn ,s2) · · · 𝚺(sn ,sn)

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

Γ1
Γ2
⋮
Γn

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

𝚺(s0 ,s1)
𝚺(s0 ,s2)

⋮
𝚺(s0,sn)

⎞⎟⎟⎟⎟⎠
; Γi =

⎛⎜⎜⎜⎜⎝

𝜆11i 𝜆12i · · · 𝜆1Ki
𝜆21i 𝜆22i · · · 𝜆2Ki
⋮ ⋮ ⋱ ⋮
𝜆K1i 𝜆K2i · · · 𝜆KKi

⎞⎟⎟⎟⎟⎠
(13.14)

and 𝚺(si ,si′ ) =
(
Cov

(
f ksi , f

k′
si′

))
, k, k′ = 1,… ,K. Note that although we use an

orthonormal basis, the cross-covariances between the respective score coeffi-
cients depend on the cross-covariance between the observed functions, so in
general terms, there is no reason to assume independence between the score
vectors. Indeed, note that

E
(
f ksi f

k′
si′

)
= E

(⟨
𝜒si , 𝜉

k
⟩⟨

𝜒si′ , 𝜉
k′
⟩)

= E
(
∫ 𝜒si (t)𝜉

k(t)dt ∫ 𝜒si′ (r)𝜉
k′ (r)dr

)
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= E
(
∫ ∫ 𝜒si (t)𝜉

k(t)𝜒si′ (r)𝜉
k′ (r)dtdr

)

= ∫ 𝜉k
′ (r)

(
∫ E

(
𝜒si (t)𝜒si′ (r)

)
𝜉k(t)dt

)
dr

= ∫ 𝜉k
′ (r)

(
∫ csi ,si′ (t, r)𝜉

k(t)dt
)
dr

= ∫ 𝜉k
′ (r)Csi ,si′ (𝜉

k)dr

= ⟨Csi ,si′ (𝜉k), 𝜉k
′⟩ (13.15)

As a particular case, when i = i′, the covariance for different scores is 0 as in the
multivariate case,

E
(
f ksi f

k′
si

)
= ∫ 𝜉k

′ (r)
(
∫ csi ,si (t, r)𝜉

k(t)dt
)
dr

= ∫ 𝜉k
′ (r)Csi ,si (𝜉

k)dr

= ∫ 𝜉k
′ (r)𝜂k𝜉k(r)dr

= 𝜂k
⟨
𝜉k

′
, 𝜉k

⟩

=
{
𝜂k, if k = k′
0 if k ≠ k′

(13.16)

Therefore, the spatial autocovariance function for each score vector k is given by

E
(
f ksi f

k
si′

)
=
{
𝜂k, if i = i′
𝜂k𝜌k

(||si − si′ ||; Θ
)

if i ≠ i′
(13.17)

where 𝜌k(⋅) is the correlation function of the spatial scalar field f ks . Consequently,
(13.17) shows that the covariance structure is second-order stationary such that
the variance of each score vector is the corresponding eigenvalue, and so the
covariance model for each f ks has finite and known variance (sill). The matrices
in the main diagonal of (13.14) can be denoted in more general form as Σ0, that
is, Σ0 = 𝚺(si ,si) =

(
Cov

(
f ksi , f

k′
si

))
, k, k′ = 1,… ,K. Therefore, its trace is constant

and given by

Tr
(
Σ0
)
=

K∑
k=1
𝜂k (13.18)

The variance of the prediction error can be obtained as

Var
(
𝜒s0 (t) − 𝜒

∗
s0 (t)

)
= Var

(
𝝃T(t)fs0 − 𝝃

T(t)f ∗s0
)

= 𝝃T(t)Var
(
fs0 − f ∗s0

)
𝝃(t)
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= 𝝃T(t)

(
Tr
(
Σ0
)
− Tr

( n∑
i=1

(
𝚺(s0 ,si)Γi

)))
𝝃(t)

= 𝜎2fs0−f
∗
s0
𝝃T(t)𝝃(t) (13.19)

where

𝜎2fs0−f
∗
s0
= Tr

(
Σ0
)
− Tr

( n∑
i=1

(
𝚺(s0 ,si)Γi

))

is the accumulated variance of the scalar cokriging predictor of the vector fs0 ,
where Tr

(
Σ0
)
is constant, see (13.18).

13.3 Functional Cokriging

In this section, we present the spatial prediction of a functional variable at unsam-
pled sites, using spatial functional covariates. We show that through the represen-
tation of each function in terms of its EFPC, the functional cokriging method only
depends on the autocovariance and cross-covariance of the associated score vec-
tors, which are scalar random fields, see Section 13.1.3. The functional cokriging
method is developed first for the case of two spatial functional random fields and
then for the case of P spatial functional random fields.

13.3.1 Cokriging with Two Functional Random Fields

Let 𝝌1
s (t) and 𝝌2

s (t) be two spatial functional random fields such that E
(
𝝌1
s (t)

)
= 0

and E
(
𝝌2
s (t)

)
= 0. The cokriging predictor of𝝌1

s0 (t) for an unsampled site s0, using
𝝌2
s (t) as a spatial covariate, is given by

𝜒̌
1
s0 (t) =

n1∑
i=1
𝜆11i 𝜒

1
si (t) +

n2∑
j=1
𝜆12j 𝜒

2
sj (t)

where 𝜆11i i = 1,… ,n1 are the weights of the n1 observations of 𝜒1s (t) and 𝜆12j j =
1,… ,n2 are the weights of the n2 observations of 𝜒2s (t). Note that it is not required
that both processes aremeasured at the same places. In addition, the unbiasedness
of the predictor is ensured given that the mean is known,

E
(
𝜒̌
1
s0 (t) − 𝜒

1
s0 (t)

)
= E

( n1∑
i=1
𝜆11i 𝜒

1
si (t) +

n2∑
j=1
𝜆12j 𝜒

2
sj (t)

)
= 0

and 𝝀 =
(
𝜆11i

)
i = 1,… ,n1 and 𝛽 =

(
𝜆12j

)
j = 1,… ,n2 are constants that mini-

mize

 = E‖‖‖𝜒1s0 (t) − 𝜒̌1s0 (t)
‖‖‖
2
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Now, we carry out the minimization of  to obtain the system of cokriging
equations:

 = E‖‖‖𝜒1s0 (t) − 𝜒̌1s0 (t)
‖‖‖
2

= E⟨𝜒1s0 , 𝜒1s0⟩ − 2E⟨𝜒1s0 , 𝜒̌1s0⟩ + E⟨𝜒̌1s0 , 𝜒̌1s0⟩
= E⟨𝜒1s0 , 𝜒1s0⟩ − 2

n1∑
i=1
𝜆11i E⟨𝜒1si , 𝜒1s0⟩ − 2

n2∑
j=1
𝜆12j E⟨𝜒2sj , 𝜒1s0⟩

+
n1∑
i=1

n1∑
i′=1
𝜆11i 𝜆

11
i′ E⟨𝜒1si , 𝜒1si′ ⟩ + 2

n1∑
i=1

n2∑
j=1
𝜆11i 𝜆

12
j E⟨𝜒2sj , 𝜒1si⟩

+
n2∑
j=1

n2∑
j′=1
𝜆12j 𝜆

12
j′ E⟨𝜒2sj , 𝜒2sj′ ⟩ (13.20)

Thus, for i = 1,… ,n1 and j = 1,… ,n2 the partial derivatives are given by

𝜕
d𝜆11i

= −2E⟨𝜒1si , 𝜒1s0⟩ + 2
n1∑
i′=1
𝜆11i′ E⟨𝜒1si , 𝜒1si′ ⟩ + 2

n2∑
j=1
𝜆12j E⟨𝜒2sj , 𝜒1si⟩

and

𝜕
d𝜆12j

= −2E⟨𝜒2sj , 𝜒1s0⟩ + 2
n1∑
i=1
𝜆11i E⟨𝜒2sj , 𝜒1si⟩ + 2

n2∑
j′=1
𝜆12j′ E⟨𝜒2sj , 𝜒2sj′ ⟩

Therefore, the cokriging equations are
n1∑
i′=1
𝜆11i′ E⟨𝜒1si , 𝜒1si′ ⟩ = E⟨𝜒1si , 𝜒1s0⟩ −

n2∑
j=1
𝜆12j E⟨𝜒2sj , 𝜒1si⟩ (13.21)

and
n2∑
j′=1
𝜆12j′ E⟨𝜒2sj , 𝜒2sj′ ⟩ = E⟨𝜒2sj , 𝜒1s0⟩ −

n1∑
i=1
𝜆11i E⟨𝜒2sj , 𝜒1si⟩ (13.22)

Replacing (13.21) and (13.22) in (13.20) we obtain

E‖‖‖𝜒1s0 (t) − 𝜒̌1s0 (t)
‖‖‖
2
= E⟨𝜒1s0 , 𝜒1s0⟩ −

n1∑
i=1
𝜆11i E⟨𝜒1si , 𝜒1s0⟩ −

n2∑
j=1
𝜆12j E⟨𝜒2sj , 𝜒1s0⟩

(13.23)

Let f 1ks k = 1,… ,K and f 2ls l = 1,… ,L be the scalar spatial random fields formed
by the scores of the functions 𝜒1s (t) and 𝜒2s (t), respectively. Expressing each func-
tion in (13.23) in terms of their principal components, we obtain

E⟨𝜒1s0 , 𝜒1s0⟩ =
K∑
k=1

K∑
k′=1

E⟨f 1ks0 f 1k
′

s0 ⟩⟨𝜉1k, 𝜉1k
′⟩
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n1∑
i=1
𝜆11i E⟨𝜒1si , 𝜒1s0⟩ =

n1∑
i=1

K∑
k=1

K∑
k′=1

𝜆11i E
(
f 1ksi f

1k′
s0

)
⟨𝜉1k, 𝜉1k′⟩

n2∑
j=1
𝜆12j E⟨𝜒2sj , 𝜒1s0⟩ =

n2∑
j=1

L∑
l=1

K∑
k=1
𝜆12j E

(
f 2ksi f

1k
s0

)
⟨𝜉2k, 𝜉1k⟩

where 𝜉1k, k = 1,… ,K are the eigenfunctions of the covariance operator of 𝜒1s (t)
and 𝜉2l, l = 1,… ,L are the eigenfunctions of the covariance operator of 𝜒2s (t). Due
to the orthonormality of the EFPC, we have that

⟨𝜉1k, 𝜉1k′⟩ =
{
0 ifk ≠ k′
1 ifk = k′

Also note that
K∑
k=1

E
(
f 1ks0 f

1k
s0

)
=

K∑
k=1
𝜂1k

Thus, E‖‖‖𝜒1s0 (t) − 𝜒̌1s0 (t)
‖‖‖
2
can be simplified as follows:

K∑
k=1

E
(
f 1ks0 f

1k
s0

)
−

n1∑
i=1

K∑
k=1
𝜆11i E

(
f 1ksi f

1k
s0

)
−

n2∑
j=1

L∑
l=1

K∑
k=1
𝜆12j c

lk
12E

(
f 2lsi f

1k
s0

)
(13.24)

=
K∑
k=1
𝜂1k −

n1∑
i=1

K∑
k=1
𝜆11i E

(
f 1ksi f

1k
s0

)
−

n2∑
j=1

L∑
l=1

K∑
k=1
𝜆12j c

lk
12E

(
f 2lsi f

1k
s0

)

where clk12 = ⟨𝜉2l, 𝜉1k⟩. Hence, once the representation with the functional princi-
pal components of the functional variables involved is used, the variance and the
equation system of functional cokriging depend only on the autocovariances and
cross-covariances of the scores vectors, which are scalar processes.

13.3.2 Cokriging with P Functional Random Fields

The more general goal is the optimization of the spatial functional prediction of
𝜒 rs0 (t) 1 ≤ r ≤ P at the unsampled site s0 based on theP spatial functional variables,

𝜒̆
r
s0 (t) =

P∑
p=1

np∑
i=1
𝜆
rp
i 𝜒

p
si (t)

The interest is the minimization of the squared norm of the prediction error
given by

 = E‖‖‖𝜒 rs0 (t) − 𝜒̆ rs0 (t)
‖‖‖
2

(13.25)
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Form = 1,… ,P, the derivatives and the cokriging equations take the form:

𝜕
d𝜆rmi

= −2E⟨𝜒msj , 𝜒 rs0⟩ + 2
P∑
p=1

np∑
i=1
𝜆
rp
i E⟨𝜒msj , 𝜒psi⟩, j = 1,… ,nm (13.26)

and

E⟨𝜒msj , 𝜒 rs0⟩ =
P∑
p=1

np∑
i=1
𝜆
rp
i E⟨𝜒msj , 𝜒psi⟩, j = 1,… ,nm (13.27)

respectively. Replacing (13.26) and (13.27) in the squared norm of the prediction
error (13.25), we obtain

E‖‖‖𝜒 rs0 (t) − 𝜒̆ rs0 (t)
‖‖‖
2
= E⟨𝜒 rs0 , 𝜒 rs0⟩ −

P∑
p=1

np∑
i=1
𝜆
rp
i E⟨𝜒psi , 𝜒 rs0⟩ (13.28)

Now, using the functional principal components representation, we show that
(13.28) only depends on the autocovariances and cross-covariances between the
score vectors chosen for each random field, that is,

E‖‖‖𝜒 rs0 (t) − 𝜒̆ rs0 (t)
‖‖‖
2
=

K∑
k=1

E
(
f rks0 f

rk
s0

)
−

np∑
i=1

K∑
k=1

L∑
l=1

P∑
p=1
𝜆
rp
i c

lk
rpE

(
f pksi f

rl
s0

)
(13.29)

where, as before, denoting by 𝜂rk, k = 1,… ,K the eigenvalues of the observation
of 𝜒 rs , we have that

K∑
k=1

E
(
f rks0 f

rk
s0

)
=

K∑
k=1
𝜂rk

and

cklrp =
⎧⎪⎨⎪⎩

1 If p = r and k = l
0 If p = r and k ≠ l
⟨𝜉pk, 𝜉rl⟩ If p ≠ r

In most of the cases, it is sufficient with a few principal components, maybe one
or two for each functional random field, due to the fact that the eigenvalue of the
first principal component is too much larger than the rest of them 𝜂1r ≫ 𝜂2r . This
simplifies the use of the LMC. Note that all spatial processes of scores considered
have constant mean, finite variance, and covariance structure depending only on
the distance between locations, see (13.17), that is, all processes of score vectors
are second-order stationary processes. Bohorquez et al. [11] illustrate and evaluate
the performance of this proposal through a simulation study showing good results.
Finally, as a global measure for the quality of the optimal prediction of the func-

tional random field 𝜒 rs0 (t) at B unsampled sites, we can use
B∑
b=1

(
E
‖‖‖‖𝜒

r
sb0
(t) − 𝜒̆ rsb0

(t)
‖‖‖‖
2)
. (13.30)



�

� �

�

340 13 Spatial Prediction and Optimal Sampling for Multivariate Functional Random Fields

13.4 Optimal Sampling Designs for Spatial Prediction
of Functional Data

An optimal sampling design is the one that finds the best combination predictor-
design or estimator-design, according to the optimization of a criterion previously
established. Therefore, the optimal design criterion must be defined based on the
aims of the study. Thus, we establish the methodology to determine the spatial
sampling locations that allow to obtain univariate andmultivariate optimal spatial
functional prediction. For this purpose, we define design criteria for the predictors
considered in Sections 13.2 and 13.3.
An optimal design S∗n is defined by [12] as one that

S∗n = arg max
Sn∈Ξn

Φ(Θ, Sn) (13.31)

where Φ(Θ, Sn) is the design criterion and any scalar measure of information
obtained with the design Sn that depends on the parameter vector Θ. The design
criteria in the spatial sampling context depend on the uncertainty measure of the
prediction, which, in turn depends on the spatial covariance structure [9, 11].
Ξn is the set of all n-observation designs. However, Ds is a continuous set, so
there are infinite options for the new locations. Thus, in practice, the criterion
is computed over a set D′

s ⊂ Ds that contains a finite number of available possi-
bilities previously determined. In addition, it does not make sense to take sites
extremely close because the spatial correlation leads to a redundant information
and therefore, to a waste of resources. Therefore, D′

s must be built according to
some knowledge of the region conditions, the possibility of access, and maybe
economic criteria. In other cases, the best option is the evaluation of the criterion
over a fine regular grid.
For all spatial processes considered, we assume second-order stationarity, that

is, constant mean and finite variance and covariance structure depending only on
the distance between locations. We now set the procedure to select the optimal
spatial configuration in the sense of minimum uncertainty of prediction. The goal
is the optimal prediction of B curves in a set of interest locations S0 =

{
s10,… , sB0

}
.

Let

S = {s1,… , sn}

be the current set of sampling locations and

Sm = {sn+1,… , sn+m}

the set of new locations that must be determined. The enlarged network is then

S′ = S ∪ Sm = {s1,… , sn, sn+1,… , sn+m}

Therefore, among all possible subsets of size m such that Sm ⊂ D′
s, we must

choose the one that minimizes the total variance of the prediction error.
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13.4.1 Optimal Spatial Sampling for OFK

The uncertainty associated with the ordinary kriging prediction for an unsampled
site s0, is called the trace-variance and is given by

∫T Var
(
𝝌 s0 (t) − 𝝌̃ s0 (t)

)
=

n∑
i=1
𝜆i𝛾(||si − s0||) − 𝛿

where 𝛿 is a Lagrange multiplier. The trace-variance when m new loca-
tions {sn+1,… , sn+m} are added for the prediction at an unsampled site is∑n+m

i=1 𝜆i𝛾(||si − s0||) − 𝛿. Now, the constraint to ensure unbiasedness turns into∑n+m
i=1 𝜆i = 1. According to the optimization in (13.11) and the trace-variogram

model (13.12), the solution for the weights vector 𝜆 = (𝜆1, 𝜆2,… , 𝜆n+m) and the
Lagrange multiplier 𝛿 are given by

𝜆 =
(
𝛾 + 𝟏1 − 𝟏TΓ−1𝛾

𝟏TΓ−1𝟏

)T

Γ−1 and 𝛿 = −1 − 𝟏TΓ−1𝛾

𝟏TΓ−1𝟏

respectively. Note that 𝛾T = (𝛾(||s1 − s0||),… , 𝛾(||sn+m − s0||)) and Γ is a
(n +m) × (n +m) matrix whose (i, i′)th element is 𝛾(||si − si′ ||). Therefore, the
design criterion for the optimal prediction of B curves in a set S0 =

{
s10,… , sB0

}
of

interest locations using the total trace-variance, is given by

arg min
Sm⊂D′

s

B∑
b=1

(n+m∑
i=1
𝜆bi 𝛾

(‖‖‖si − sb0
‖‖‖
)
− 𝛿b

)
(13.32)

and depends only on the distances. This predictor admits intrinsic stationarity for
the trace-variogram. If the trace-variogram model has to be estimated from the
data, its classical empirical estimator given by the method-of-moments as pro-
posed in [6] takes the form

𝛾̂(||h||) = 1
2|N(||h||)|

∑
|N(||h||)|∫T

(
𝜒si (t) − 𝜒si′ (t)

)2
dt

where for a fixed ||h||, N(||h||) = {(si, si′ )∶||si − si′ || = ||h||}, i, i′ = 1,… ,n +m
with number of elements |N(||h||)|. Now, model parameters can be estimated as
usual.

13.4.2 Optimal Spatial Sampling for FKSK

The total squared norm of the prediction error for an unsampled site s0 based on
the enlarged network S ∪ Sm, applying (13.13), takes the form

∞∑
k=1
𝜂k − 2𝜍𝜆 + 𝜆TΩ𝜆
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where 𝜍 andΩ are the (n +m)-vector and the (n +m) × (n +m)-matrix formed by
the sum of the sequence of functional autocovariances between observations and
the prediction site, and given by

𝜍 =

( ∞∑
k=1

E
(
f ksi f

k
s0

))
, Ω =

∞∑
k=1

Ωk and Ωk = E
(
f ksi f

k
si′

)

for i = 1,… ,n +m. The solution vector with simple kriging is 𝜆 = Ω−1
𝜍, hence,

∞∑
k=1
𝜂k − 2𝜍𝜆 + 𝜆TΩ𝜆 =

∞∑
k=1
𝜂k − 𝜍Ω−1

𝜍

reducing the design criterion for the optimal prediction of B curves to

arg max
Sm⊂D′

s

B∑
b=1
𝜍bΩ

−1
𝜍b (13.33)

where 𝜍b =
(∑∞

k=1 E
(
f ksi f

k
sb0

))
, b = 1,… ,B. The covariance function that deter-

mines Ωk and 𝜍b depends only on the distances between observations and predic-
tion sites. The value of K that truncates the representation in terms of EFPC can
be even more flexible, and we can include more terms until the cumulative vari-
ance reaches some prefixed threshold; this method does not use cross-covariances
between score vectors and fitting the model for autocovariances is simpler.

13.4.3 Optimal Spatial Sampling for FKCK

Given that 𝜉(t) is known, the uncertainty of the prediction error for an unsampled
site based on the enlarged network S ∪ Sm only depends on 𝜎2fs0−f∗s0

, see (13.19),

𝜎2fs0−f
∗
s0
= Tr

(
Σ0
)
− Tr

(n+m∑
i=1

(
𝚺(s0 ,si)Γi

))
=

K∑
k=1
𝜂k − Tr

(n+m∑
i=1

(
𝚺(s0,si)Γi

))

The design criterion for the optimal prediction of B curves in a set
S0 =

{
s10,… , sB0

}
of interest locations using the total prediction error variance,

goes through the calculation of

arg max
Sm⊂D′

s

B∑
b=1

(
Tr

(n+m∑
i=1

(
𝚺(sb0 ,si)Γi

)))
(13.34)

Denoting by 𝛥b0 =
(
𝚺(sb0 ,si)

)
i = 1,… ,n +m, see (13.14), the cokriging solution is

𝚪 =
∑−1

𝛥b0. Therefore, the LMC and criterion (13.34) depend only on the distance
between observations and prediction sites due to the assumption of second-order
stationarity.



�

� �

�

13.4 Optimal Sampling Designs for Spatial Prediction of Functional Data 343

13.4.4 Optimal Spatial Sampling for Functional Cokriging

We need to design or redesign the p sets Sp = {s1,… , snp} p = 1,… ,P, or at least
those that can be changed, of observed spatial locations ensuring an optimal spa-
tial functional prediction of 𝜒 rs (t) in a set of interest locations S0 =

{
s10,… , sB0

}
based on the P spatially correlated functional random fields. We now set the pro-
cedure to select the optimal spatial configuration in the sense of the totalminimum
square norm of the prediction error for functional cokriging, see (13.30). Sup-
pose first that mp stations can be added for the observation of each random field
𝜒
p
s (t), p = 1,… ,P. Therefore, the enlarged network for each case is then

S′p = Sp ∪ Smp
= {s1,… , snp , snp+1,… , snp+mp

}, p = 1,… ,P

Let
⋃P

p=1 Smp
= Sm1

∪ · · · ∪ SmP
⊂ D′

s be the set of new locations that must be
determined. Therefore, among all possible subsets

⋃P
p=1 Smp

, we must choose the
one that minimizes the total minimum square norm of the prediction error for
functional cokriging. Therefore, according to (13.29) and (13.30) the design crite-
rion is given by

argmin⋃P
p=1Smp⊂D

′
s

B∑
b=1

E
‖‖‖‖𝜒

r
sb0
(t) − 𝜒̆ rsb0

(t)
‖‖‖‖
2

(13.35)

where
∑K

k=1 𝜂
rk is constant and, therefore, the criterion (13.35) turns into

argmax⋃P
p=1Smp⊂D

′
s

B∑
b=1

np+mp∑
i=1

K∑
k=1

L∑
l=1

P∑
p=1
𝜆
rp
i c

lk
rpE

(
f pksi f

rl
sb0

)
. (13.36)

The criterion (13.36) establishes the general case, but, frequently, all random
fields are measured at the same set of places S = {s1,… , sn}. Here, the optimiza-
tion is over the possible sets Sm ⊂ D′

s, and there is only one enlarged network
S ∪ Sm ⊂ D′

s for all random fields.
Once again, due to the second-order stationarity, the LMC and criterion (13.36)

depend only on the distance between observations and prediction sites. The
numbers K and L of the chosen principal components are usually small, 1 or 2;
therefore, the iterative computation of the inverse of covariance matrix does not
represent a high computational cost, if the spatial points are not too dense.
All design criteria shown in this section depend on parameter 𝚯. If this

parameter is unknown and has to be estimated, the design is no longer optimum,
it is only locally optimum because the optimization process is based also on 𝚯
and not only on the design Sn. Thus, (13.31) turns into S∗n = argmaxSn∈ΞnΦ(𝚯̂, Sn).
For the covariance structures necessary for the predictors given in Sections 13.2
and 13.3, the classical empirical variogram and cross-variogram can be used, and
the model parameters can be fitted by ordinary or weighted least squares to avoid
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distributional assumptions, or by methods based on the likelihood function.
We use the plug-in estimators in the LMC and trace-variogram models to carry
on the optimization of the sampling criteria for each case. That is, in every place,
where the terms 𝜂k𝜌k

(||si − si′ ||;𝚯
)
or 𝛾(||si − si′ ||;𝚯) appear we replace them

with 𝜂k𝜌k(||si − si′ ||; 𝚯̂) and 𝛾(||si − si′ ||; 𝚯̂). Harville and Jeske [13] propose a
correction of the kriging variance to incorporate the uncertainty due to the lack of
knowledge of 𝚯. Zhu and Stein [14] find that this correction could be important
only for weak spatial autocorrelation cases. Nevertheless, this correction is based
on the Gaussian assumption, on the use of the maximum likelihood or Restricted
Maximum Likelihood estimation and it depends on 𝚯. Therefore, the best option
is to use the plug-in method as long as the spatial autocorrelation is moderate or
strong, see [15].

13.5 Real Data Analysis

We analyze network data for air quality in México city during the dry season
because in the rainy season all air pollutants diminish. The data correspond to
consecutive hours from 01 January 2015, at 1:00 a.m. to 30May 2015, at 12:00 a.m.,
at 23 environmental stations (see Figure 13.1a). The stations in the Mexico City’s
automatic air quality (RAMA) monitor hourly particulate matter up to 10 μm in
size (PM10) and nitrogen dioxide (NO2), among others. See [11] for details about
the network and of the adverse effects of the PM10 and NO2 on human health and
human-made materials. The temperature (Temp) data are taken from the Mexico
City’s meteorological monitoring network (REDMET). RAMA and REDMET
have 15 stations in common. The Secretariat of Environment of México currently
operates the network of air quality monitoring in order to obtain, process, and
disclose air quality to assess compliance with standards and the basis for the
definition of policies pollution control. The data are obtained from the Automatic
Monitoring System [16]. To convert the datasets to curves, we use B-splines
basis functions of order 4 with equally spaced knots and a smoothing parameter
0.000 01. For the dataset of PM10, we use a set of 163 B-splines basis functions,
for the dataset of NO2, we use a set of 157 B-splines basis functions, and for the
data set of Temp, we use 121 B-splines basis functions. Figure 13.1b–d shows the
curves for the last week in the dataset. The first principal component explains
75%, 84.6%, and 85.7% of the variability for PM10, NO2, and Temp, respectively,
and the second principal component only accounts for 13.9%, 13.8%, and 13.1%.
Thus, using 85% as a threshold, we include two score vectors for PM10, while
only the first score vector is included for NO2 and Temp. Our interest is the spatial
functional prediction of PM10 using NO2 and Temp as functional covariates.
According to the notation in Section 13.3, PM10 is 𝜒1s (t), NO2 is 𝜒2s (t), and
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Figure 13.1 (a) México city. Air quality network RAMA (stations shown in light gray). The
dark gray points are the stations that measure temperature but belong to REDMET. (b)
PM10, 23–30 May 2015. (c) NO2, 23–30 May 2015. (d) Temperature, 23–30 May 2015.

Temp is 𝜒3s (t). Figure 13.2 shows the empirical and theoretical variograms fitted
according to the LMC. We use two nested Matérn structures linearly combined,
with smoothing parameters 0.1 and 5, and ranges 3000 and 13 000. Thus, 𝛾11f and
𝛾12f are the variograms for the first two principal components of PM10, 𝛾21f and 𝛾31f
are the variograms for the score vectors corresponding to the first principal com-
ponent of NO2 and Temp, respectively, and the rest of variograms in Figure 13.2
and in Table 13.1 are the cross-variograms between each pair of score vectors.
From the empirical variograms, there is no reason to assume discontinuity at
the origin, since there is no jump in ||si − si′ || = 0. Therefore, we kept the nugget
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Figure 13.2 Empirical and theoretical variograms fitted according to the linear model of
coregionalization.
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Table 13.1 Nested variogram components of the linear model of coregionalization model using
two nested Matérn structures.

𝜸̂
pk
f

𝜸̂f 11 𝜸̂f 21 𝜸̂f 31 𝜸̂f 11 f 12 𝜸̂f 11 f 21 𝜸̂f 11 f 31 𝜸̂f 12 𝜸̂f 12 f 21 𝜸̂f 12 f 31 𝜸̂f 21 f 31

𝑣 = 0.1 216 778.0 24 415.3 56 381.7 −11 931 71 160.1 104 764.3 −11 931.2 31 932.8 −3508.696 −6856.4

𝑣 = 5 1 923 456.9 386 064.8 1 181 738.7 202 568 −680 077.6 −92 372.9 202 568.5 388 685.0 3251.8 164 083.5
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Figure 13.3 (a) Optimal location for one additional station. (b) Cross-validation
residuals and residual mean.

parameter fixed and equal to zero. To illustrate the methodology for optimal
sampling designs, we choose two interests locations for prediction, s10 and s

2
0, see

Figure 13.3a. As for the set D′
s, we took the sampling grid of 375 spatial points

separated by 2 km, 25 points west to east and 15 south to north, restricted to the
area with stations. Figure 13.3a shows the locations of interest s10 and s

2
0 and the

optimal sampling location (OL) to add a new station keeping fixed the current
network, and using (13.36). For the optimization procedure, we use simulated
annealing [17] with state given by the spatial sampling design criterion applied
at each iteration. The energy function is given by the criterion (13.36). In order
to assess the quality of the spatial prediction based on the functional cokriging,
we use the leave-one-out functional cross-validation method [18]. Although there
are some large residuals at the beginning of the season due to the variation of
pollutants in this period, the performance is good; the residual mean function
varies close to zero, from −20 to 20 in most of the cases, see Figure 13.3b.
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13.6 Discussion and Conclusions

We have presented univariate andmultivariate spatial functional predictors based
on the representation of functions in terms of its EFPC. Based on this approach,
we have shown that the system of equations for functional kriging and functional
cokriging depend only on the autocovariances and cross-covariances of the scalar
random field of the associated score vectors. An additional advantage of our pro-
posal is that it only uses the functional principal component representation of
each random field and does not require multivariate functional principal compo-
nent analysis. Thus, the advantages and drawbacks of the functional kriging and
functional cokriging are the same of the scalar cokriging. The limitation of the
dimension for the LMC is the most critical issue of the cokriging method. How-
ever, this difficulty is solved by the fact that the EFPC representation does not
usually need too many eigenfunctions, even with one or two could be sufficient in
most of the cases, making feasible to use this type of covariance model. The spa-
tial optimal sampling design for spatial functional data is a natural extension of its
counterpart with scalar variables. The criteria used here are useful when moving
only one location or even lots of them. Once the covariance between curves has
been modeled, the optimization process to find an optimal design has the same
computational effort as in the scalar case. Its performance depends on the quality
of the covariance parameter estimators, and on the optimization algorithm used.
Some networks contain pmobile stations, S = {s1,… , sp, sp+1,… , sn}, p < n, then
the criterion is computed for all possible sets Sp = {s1,… , sp} ⊂ D′

s. Finally, these
criteria allow determining the performance of the whole set so that all sampling
locations could be changed. Also, our statistical criteria can be used to decide the
number of observation sites n. In this case, a maximum prediction variance is pre-
viously determined, and the optimization is carried out for n = 1. Then keeping
this location fixed, the second location is optimized, and so on until finding that n
that reaches the established threshold.

References

1 Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis:
Theory and Practice. Springer-Verlag.

2 Reed, M. and Simon, B. (1980). Methods of Modern Mathematical Physics I:
Functional Analysis. San Diego, CA: Academic Press, Inc.

3 Bongiorno, E.G., Salinelli, E., Goia, A., and Vieu, P. (2014). Contributions in
Infinite-Dimensional Statistics and Related Topics. Societa Editrice Esculapio.

4 Horvath, L. and Kokoszka, P. (2012). Inference for Functional Data with Appli-
cations. Springer.



�

� �

�

References 349

5 Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications,
vol. 149. Springer.

6 Giraldo, R., Delicado, P., and Mateu, J. (2011). Ordinary kriging for
function-valued spatial data. Environmental and Ecological Statistics 18 (3):
411–426.

7 Giraldo, R. (2014). Cokriging based on curves, prediction and estimation of the
prediction variance. InterStat 2: 1–30.

8 Nerini, D., Monestiez, P., and Manté, C. (2010). Cokriging for spatial functional
data. Journal of Multivariate Analysis 101 (2): 409–418.

9 Bohorquez, M., Giraldo, R., and Mateu, J. (2015). Optimal sampling for
spatial prediction of functional data. Statistical Methods and Applications.
https://doi.org/10.1007/s10260-015-0340-9.

10 Myers, D. (1982). Matrix formulation of co-kriging. Mathematical Geology
14 (3): 249–257.

11 Bohorquez, M., Giraldo, R., and Mateu, J. (2017). Multivariate functional
random fields: prediction and optimal sampling. Stochastic Environmental
Research and Risk Assessment 31 (1): 53–70.

12 Müller, W. (2007). Collecting Spatial Data: Optimum Design of Experiments for
Random Fields. Springer-Verlag.

13 Harville, D. and Jeske, D. (1992). Mean squared error of estimation or
prediction under a general linear model. Journal of the American Statistical
Association 87 (419): 724–731.

14 Zhu, Z. and Stein, M. (2006). Spatial sampling design for prediction with
estimated parameters. Journal of Agricultural, Biological, and Environmental
Statistics 11 (1): 24–44.

15 Schabenberger, O. and Gotway, C. (2004). Statistical Methods for Spatial Data
Analysis. CRC Press.

16 México City Air Quality Monitoring Network (Sistema de monitoreo atmosfé
rico de la Ciudad de México) (2016). http://www.aire.df.gob.mx/default.php
(accessed 30 July 2016).

17 Brooks, S. and Morgan, B. (1995). Optimization using simulated annealing.
Journal of the Royal Statistical Society: Series D (The Statistician) 44 (2):
241–257.

18 Montero, J., Fernandez-Aviles, G., and Mateu, J. (2015). Spatial and
Spatio-Temporal Geostatistical Modeling and Kriging. Wiley.

http://www.aire.df.gob.mx/default.php
https://doi.org/10.1007/s10260-015-0340-9


�

� �

�



�

� �

�

351

Part III

Spatio–Temporal Functional Data



�

� �

�



�

� �

�

353

14
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14.1 Introduction

The objective of this chapter is to review some recent developments in inference
for spatio–temporal functional data. We consider data of the form

Xn(sk; tj), 1 ≤ n ≤ N, 1 ≤ k ≤ K, 1 ≤ j ≤ J.

To focus attention, it is convenient to consider the following prototypical example.
The data are available over N years; the index n refers to year. They are observed
at K locations, so k is a location index. In each year, n, measurements or averages
are available at times tj, which are typically days or months, so J = 365 or J = 12.
For example, Xn(sk; tj) can be the maximum daily temperature on day tj of year n
at location sk. Another example is average concentration of a pollutant inmonth tj
of year n at a monitoring station located at site sk. Similar data structures occur in
brain studies, but n has a different interpretation; it is a subject index. So Xn(sk; tj)
is a measurement on subject n, at a brain location sk at time tj. In abstract terms,
such data can be viewed as a discretely observed sample of a spatio–temporal field
X(s; t), with a continuous spatial index s and a continuous temporal index t. In cli-
mate and pollution studies, there is generally some dependence in the index n. In
brain studies, independence in n can safely be assumed for unrelated subjects. For
temperature data, N is generally about 100 as consistent climatological measure-
ments start around the end of the nineteenth century. The number of locations,
K, can be several hundred per large, developed country or continent. The mete-
orological stations however start operation at different times, some are closed or
change locations, so these data have many gaps distributed unevenly over time
and space. Generally, the number of gaps decreases with year n, but this is not the
case for all types of data, see Section 14.5. In brain studies, N is generally small,

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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10–20 subjects, but K can be huge. The number of pixels can exceed several thou-
sand. The number of temporal measurements can be large or small, depending on
what is measured. In this chapter, we focus onmethods developed for geophysical
data; we think of relatively sparsely distributed locations sk, and relatively dense tj.
It is convenient to think that we observe functions Xn(sk; t), with a continuous
argument t, one function per year and per location. One could refer to such data
as functional and spatio–temporal, with index n corresponding to time and sk to
space, with the units of observations being functions. Some research has recently
been done for data of this form, and it is our objective in this chapter to survey and
illustrate the methods, we are most familiar with.
Spatial (rather than spatio-temporal) functional data have been considered for

at least two decades. Such data are a collection of curves at spatial locations {sk}.
Each curve X(sk; ⋅) can be the concatenation of the curves Xn(sk; ⋅) considered
above, but in most applications that stimulated the development of methodology
for spatial functional data, X(sk; ⋅) is an average of the N curves Xn(sk; ⋅). For
example, the X(sk; ⋅) can be average annual temperature curves computed using
data collected over several decades. The Canadian temperature data considered
in [1] is a well-known example. Methodology for spatial functional data is
presented in [2, 3], where many references are given.
The remainder of this chapter is organized as follows: We begin in Section 14.2

with a test of randomness whose null hypothesis is that the K dimensional vec-
tors of functions Xn(sk; ⋅) are independent and identically distributed across n.
Such vectors are often called functional panels, and the test is intended to verify if
these panels form a simple random sample. In particular, under the null hypothe-
sis, there can be dependence in space, but no dependence in time n. The assump-
tion of a simple random sample is strong, a weaker assumption is stationarity. A
simple departure from stationarity is a change-point model. The data are assumed
to have the form Xn(s, t) = 𝜇n(s; t) + 𝜀n(s; t). The goal of a change-point test is to
determine if themean functions,𝜇n, are the same acrossn or if they change at some
unknownpoint. This problem is discussed in Section 14.3. The second-order struc-
ture of a random field X(⋅, ⋅) is described by the covariance function 𝜎(s, s′; t, t′) =
Cov(X(s, t),X(s′, t′)). Theoretical and computational aspects of most procedures
can be significantly simplified if one can assume that 𝜎(s, s′; t, t′) =  (s, s′)(t, t′),
that is, that the spatio–temporal covariance function factors into the product of
a purely spatial and purely temporal covariance functions. If the above decom-
position holds, we say that the functional random field is separable. In particu-
lar, the spatial dependence structure is the same for any time t. Separability tests
are explained in Section 14.4. Section 14.5 is devoted to the problem of testing
for trends in in spatio–temporal functional data. We conclude with fairly recent
research on extreme events defined in terms of the dataXn(sk, tj). Thiswork,whose
many aspects are still under development, is outlined in Section 14.6.
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14.2 Randomness Test

In this section,wediscuss summarize thework of [4], testing if the spatio–temporal
observations, Xn(s, t), are independent and identically distributed across n. In
settings where n represents year, it is maybe reasonable to assume independence,
while if n represents days such assumption becomes more precarious. Regardless,
it is useful to determine if this assumption holds so that further statistical analyses
remain valid. Thus, the null hypothesis we aim to test is

H0∶ Xn(s, t) are independent and identically distributed across n.

While there are many potential alternative hypotheses, we focus on testing for
serial dependence.
To test H0, we outline a generalization of the Box–Ljung test from time series

analysis, by considering lagged covariance operators in place of autocorrelations.
In particular, we define

Ch(s, t, s′, t′) = Cov(Xn(s, t),Xn+h(s′, t′)).

To evaluate H0, we test if Ch is zero for h = 1,… ,H, where H is some prede-
termined number of lags. The approach used by Kokoszka et al. [4] is based on
reducing the temporal dimension using functional principal component analysis
(FPCA), and if needed, reducing the spatial domain using multivariate principal
component analysis (PCA). The temporal dimension reduction is done at each spa-
tial location separately, though one could also use a pooling approach as described
in Section 14.4. Using the Karhunen–Loève (KL) expansion, we approximate

Xn(sk, t) ≈ 𝜇(sk, t) +
pk∑
i=1
𝜉n;ki𝑣k,i(t).

Here the eigenfunctions 𝑣̂k,i and their corresponding eigenvalues, 𝜆k,i, are allowed
to change with location, sk. Note that if one assumes separability as discussed
in Section 14.4, then the population-level eigenfunctions are the same at every
location and thus once can pool across space to estimate them, as opposed to esti-
mating them individually at each spatial location. While our results are stated
assuming the eigenfunctions are known, the asymptotic results do not change if
they are replaced with consistent estimates.
We now work with the scores the {𝜉n,k,i} to evaluate H0, in particular, if H0 is

true, then the scores should also be iid across n. To test this assumption, we stack
the scores into a single vector for each n:

𝝃n = (𝜉n;11, 𝜉n;21,… , 𝜉n;Kp)⊤.

We then estimate the lagged covariance terms

V̂h = N−1
N−h∑
n=1
𝝃n ⊗ 𝝃n+h and Ĉ0 = N−1

N∑
n=1
𝝃n𝝃

⊤
n ,
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where ⊗ here denotes a Kronecker product. If H0 is true, then 𝝃n is independent
of 𝝃n+h and one can show with some linear algebra that

Cov(V̂h) =
(N − h)
N2 C0 ⊗ C0,

where C0 = E[𝝃n𝝃
⊤
n ]. Thus [4] proposed the following test statistic:

Q̂n = N−1
H∑
h=1

V̂
⊤

h (Ĉ0 ⊗ Ĉ0)−1V̂h,

note that (C0 ⊗ C0)−1 = C−1
0 ⊗ C−1

0 , which is more computationally convenient.
When H, pk, and K are all relatively small then, under H0, one can use the fol-

lowing asymptotic result to get a p-value:

Q̂n
d
→ 𝜒2Hp2 ,

where p =
∑

kpk. However, if any of these quantities is large, one can instead use
the result

Q̂n −Hp2

2p
√
H

d
→ 𝒩 (0, 1).

Note that this result is based on letting p → ∞ with the sample size, see [4] for
more details.
As an illustration, we will apply this test to a set of daily temperature obser-

vations from Russian meteorological stations. The full database contains daily
records from 518 Russian weather stations numbered according to the names
given by the World Meteorological Organization (WMO). It was put together by
the CarbonDioxide Information Analysis Center (CDIAC), who collaboratedwith
National Oceanic and Atmospheric Administration (NOAA’s) National Climatic
Data Center (NCDC) and the All-Russian Research Institute for Hydrometeo-
rological Information–World Data Center (RIHMI–WDC). The data was made
available as a part of the Agreement on Protection of the Environment [5].
Observations exist from 1881 through 2010, although most stations do not have
records for this entire period. It is freely available at https://cdiac.ess-dive.lbl.gov/
ndps/russia_daily518.html.
To limit the amount of missing data, we selected a subset of 220 stations with

observations from 1980 to 2009. None of these 220 stations have more than five
missing daily observations in a given year, andmost have nomissing observations.
A map of the locations of these stations is given in Figure 14.1. An example of five
such curves form 2000 are given in Figure 14.2.
We take Xn(sk, t) to correspond to the daily maximum temperature observed at

location sk, in year n, on the tth day. The number of projections, pk, are chosen
separately for each series; each is chosen to explain at least 85% of the variance

https://cdiac.ess-dive.lbl.gov/ndps/russia_daily518.html
https://cdiac.ess-dive.lbl.gov/ndps/russia_daily518.html
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Figure 14.1 Locations of the 220 Russian weather stations, with 14 stations around
Moscow marked using solid circles.
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Figure 14.2 Daily temperature maxima for five weather stations during 2000.
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of each curve. To minimize the potential for nonstationarity in the data, the func-
tional objects are fit to the residuals of mean detrended data for a mean function
which is linear in time (see Section 14.5). Randomness tests are performed using
maximal lags H between 1 and 10. We carried out the test on two sets of sta-
tions, the first includes all 220, Table 14.1, while the second focuses on the 14 sta-
tions aroundMoscow, Table 14.2. Interestingly, there is strong evidence against the
randomness assumptionwhen looking acrossRussian, however,when focusing on

Table 14.1 Randomness test results applied to the
Russian weather data.

Maximal lag Test statistic p-value

H = 1 87.6 < 10−5

H = 2 120.2 < 10−5

H = 3 146.2 < 10−5

H = 4 167.0 < 10−5

H = 5 185.2 < 10−5

H = 6 201.1 < 10−5

H = 7 215.5 < 10−5

H = 8 228.2 < 10−5

H = 9 240.7 < 10−5

H = 10 258.2 < 10−5

Table 14.2 Randomness test results applied to a subset of
14 Russian weather stations near Moscow.

Maximal lag Test statistic p-value

H = 1 0.441 0.330
H = 2 1.455 0.073
H = 3 1.564 0.059
H = 4 1.867 0.031
H = 5 1.811 0.035
H = 6 1.915 0.028
H = 7 1.855 0.032
H = 8 1.821 0.034
H = 9 1.732 0.042
H = 10 1.668 0.048
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the region around Moscow the evidence becomes much weaker. This will be an
ongoing theme in the chapter; the spatio–temporal dynamics are much simpler
when focusing on smaller regions.

14.3 Change-Point Test

Change-point analysis has been an area of interest for statisticians for decades.
Change-point methods allow researchers to determine if data collected over time
is stationary, or if the underlying dynamics of the data has changed at some point.
These tools can be used to justify stationarity assumptions so that other proce-
dures that rely on stationarity remain valid. However, the changes themselves
might also be of scientific import. Change-point detection among temperature
extremes is a question of interest in climatology, as extreme temperatures can
have devastating effects on ecosystems and crop yields [6]. In this chapter, we will
describe a spatio–temporal change-point procedure and apply the discussed tools
to the Russian data on daily maximum temperatures.
The approach described here was given by Aston et al. [7]. There is an accom-

panying R package, scpt, that can be downloaded from R-Forge and can be used
to carry out the procedures described in this section. The goal here is to test if the
mean function, E[Xn(s, t)] = 𝜇n(s, t) remains constant over n or if there is some
sudden change. For example, in the Russian weather data, clearly temperature is
going to vary with location, s, and over the course of a year, t; however, it is of
interest to know if the temperature is constant from year to year, n. The goal is
therefore to test

H0∶𝜇1(s, t) = … = 𝜇N (s, t) against

HA∶𝜇1(s, t) = … = 𝜇n∗ (s, t) ≠ 𝜇n∗+1(s, t) = … = 𝜇N (s, t).

We assume that the observations can be expressed as

Xn(s, t) = 𝜇n(s, t) + 𝜀n(s, t),

where 𝜀n is assumed to be iid across n with a finite covariance. We will also
assume that the covariance of 𝜀n is separable, as describe in Section 14.4. Assum-
ing separability is not strictly necessary, but makes it much easier to estimate the
spatio–temporal covariance function, which will be important for the procedures
described below. An additional feature of separability is that the eigenfunctions
used for temporal FPCA, 𝑣i, are the same across space, meaning that one can pool
across space to estimate them, which typically results in much sharper estimates.
The test statistics described by Aston et al. [7] all revolved around the following

CUSUM statistic:

Γr(sk, t)∶ =
r∑

n=1
Xn(sk, t) −

r
N

N∑
n=1

Xn(sk, t), r = 1,… ,N.
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Intuitively, if H0 is true, then Γr should not be too large, regardless of r, whereas
HA is true, then Γr should be large when r is close to n∗. Three test statistics were
presented in [7], each of which takes a slightly different approach to determining
if Γr is large for some r:

Λ̂1 =
1
N2

K∑
k=1
𝑤̂k

p∑
i=1
𝜆̂
−1
i

N∑
r=1

⟨
Γr(sk), 𝑣̂i

⟩2
,

Λ̂2 =
1
N2

K∑
k=1
𝑤̂k

p∑
i=1

N∑
r=1

⟨
Γr(sk), 𝑣̂i

⟩2
,

Λ̂
∞
2 = 1

N2

K∑
k=1
𝑤̂k

∞∑
i=1

N∑
r=1

⟨
Γr(sk), 𝑣̂i

⟩2 = 1
N2

K∑
k=1
𝑤k

N∑
r=1

‖Γr(sk)∥2.

The terms {𝜆̂i, 𝑣̂i} are the estimated (temporal) eigenvalues and eigenfunctions,
which are estimated by pooling across space. How this pooling is done is up to
the user as it will not affect the asymptotic distribution of the test statistics as
long as the estimates are consistent. One could use the procedure described in
Section 14.4; however, those estimates will be poor choices under HA and may
reduce power (since there is a change in the mean). An alternative as described
in [7] is to work with the differences, with respect to n, of the series as this min-
imizes the effect of any change-points. Once the differences are taken, the proce-
dures described in Section 14.4 can be used as well some alternative approaches
described in [7]. If the 𝜀n are iid, then the covariance function of the difference is
simply two times the covariance of the original, furthermore, under HA, changes
in the mean will have a relatively small impact as long as they are not too large.
The weights, 𝑤̂k, can be any data-driven choice as long as they converge in

probability to some fixed values, 𝑤k, as N → ∞. Practically, the weights should
be chosen to maximize the power of the test, though this is challenging as it will
depend heavily on the alternative. One option that works well is to choose the
weights so that the pooled estimate of C(t, s), the temporal covariance, is unbiased
and has the smallest possible variance. If one assumes that the data is Gaussian,
then these weights are given by

ŵ = (1⊤𝚺̂
−1
1)−1𝚺̂1,

where 𝚺̂ is a matrix of the estimated spatial covariances. We refer the reader to [7]
for more details.
The first procedure, Λ̂1, reduces the temporal dimension of the problem and at

each spatial location applies a multivariate change-point test, which normalizes
by the estimated eigenvalues, 𝜆̂i. The second procedure is the same but removes
the normalization by 𝜆̂i. Often, one must be especially careful when normalizing
by small eigenvalues as they can produce an unstable test statistic and harm the
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specificity of the test. The third test is the same as the second, but without reducing
the dimension in time, instead using the L2[0, 1] norm.
Under appropriate assumptions, the asymptotic distribution of each of described

test statistics is a weighted sum of sum of normed Brownian bridges:

Λ̂1
D
→ Λ1∶=

K∑
k
𝑤k

p∑
i=1

∫ Bik(t)2 dt,

Λ̂2
D
→ Λ2∶=

K∑
k
𝑤k

p∑
i=1
𝜆i ∫ Bik(t)2 dt,

Λ̂
∞
2

D
→ Λ∞

2 ∶=
K∑
k
𝑤k

∞∑
i=1
𝜆i ∫ Bik(t)2 dt,

where the Bik(t) satisfy Cov(Bik(t),Bi′k′ (s)) = 𝛿ii′Σkk′ min {t, s}, with 𝛿ii′ being the
Kronecker delta.
We now return to the Russian climate data. The emphasis of this analysis is on

illustrating the change-point methods rather than conducting a thorough clima-
tological analysis. Using the scpt package in R, we apply a Monte Carlo version of
the described tests, using 1000 replicates. As we can see from Table 14.3, none of
the tests suggest a detectable change-point. This conclusion still holds if we focus
on the area around Moscow, Table 14.4. This suggests that there has been little
change in the annual pattern of daily maximum temperatures in Russia over the
last three decades. Of course, this is just one type of temperature pattern that one
could test.

Table 14.3 p-Values for each change-point test applied to
the Russian weather data.

Test statistic 𝚲̂1 𝚲̂2 𝚲̂∞
2

p-Value 0.663 0.515 0.353

None of the tests support the existence of a change-point
between 1980 and 2009.

Table 14.4 p-Values for each change-point test applied to
a subset of 14 Russian weather stations near Moscow.

Test statistic 𝚲̂1 𝚲̂2 𝚲̂∞
2

p-Value 0.118 0.153 0.118

None of the tests support the existence of a change-point
between 1980 and 2009.
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14.4 Separability Tests

Separability is a common assumption in spatio–temporal statistics. It is primar-
ily used to simplify the dependence structure in the data, as it assumes that the
spatio–temporal covariance function factors into a product of two functions, one
depending only on space and the other depending only on time. In this way, one
can model space and time separately, as well as pooling across one dimension to
help estimate the parameters of the other. However, such an assumption must be
verified to ensure that other inferential tools that rely on it are still valid. Separa-
bility tests for functional data have been explored in [8–10]. The tools discussed
in [9] were specifically targeted at spatio–temporal functional data and will be the
ones discussed here.
The goal of this section is to test the hypotheses

H0∶Cov(Xn(s, t),Xn(s′, t′)) =  (s, s′)(t, t′),
against the alternative that the covariance is not separable. To test this hypothe-
sis, we first need to be able to estimate the functions  (s, s′), and (t, t′). There
are a few things to note before doing this though. First, clearly (s, s′) cannot be
estimated where there is no data, thus, the most one could hope for is either an
estimate of (sk, sk′ ) or with a dense enough sampling in space and/or spatial sta-
tionarity assumptions, one could also use smoothing techniques to estimate the
entire  (s, s′) function, as was done in [7]. The approach we take here is to esti-
mate  (sk, sk′ ) only. Second, the functions  and  are only identifiable up to a
constant, and thus some constraint must be imposed to make the model identifi-
able. The approach we take here is to assume that trace(U) = K, where the matrix
U is a K × K matrix with entries (sk, sk′ ). Other constraints can be used and the
test statistics we propose are independent of the chosen constraint.
Estimating and  turns out to be challenging if one wants to do it optimally.

The primary issue is that optimal estimation of  requires using and vice versa.
To address this, Constantinou et al. [9] explored a “flip-flop” estimation procedure
where one iterates between estimating the two, while [8] and [10] chose instead to
use a suboptimal estimate for the sake of simplicity, both in terms of computation
and deriving mathematical properties.
If H0 is true, then [9] proposed using a temporal FPCA to model the data using

a lower dimension:

Xn(sk, t) ≈ 𝜇(sk, t) +
p∑
i=1
𝜉n;ik𝑣i(t),

where 𝑣i are the eigenfunctions of  and 𝜉n,ik is the ith score at location sk.
To testH0, it is then enough to test if the covariance of the scores is also separable.
Namely, under H0 we have that

Cov(𝜉n;ik, 𝜉n;i′k′ ) = Vii′Ujj′ ,
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and, more specifically, Vii′ = 𝜆i𝛿ii′ . In principle, any basis could be used for the
dimension reduction; one need not use the FPCA basis, in which case V is no
longer diagonal. Thus, Constantinou et al. [9] proposed first doing a dimension
reduction in time and then testing of the resulting scores were separable. The ini-
tial dimension reduction was based off using the following pooled estimate of the
temporal covariance function

̂0(t, s) = 1
NK

N∑
n=1

K∑
k=1

(Xn(sk, t) − X(sk, t))(Xn(sk, t′) − X(sk, t′)).

Next, use the eigenfunctions of ̂0 to reduce the dimension of Xn(s, t):

Xn(s, t) ≈ 𝜇(s, t) +
p∑
i=1
𝜉ni(sk)𝑣̂i(t).

Here 𝜉ni(sk) = ∫ (Xn(sk, t) − X(sk, t))𝑣̂i(t) dt, are the scores. The covariance assum-
ing separability is then estimated by iterating the equation

V̂ = 1
NK

N∑
n=1

𝚵⊤n Û
−1
𝚵n and Û = 1

Np

N∑
n=1

𝚵nV̂
−1
𝚵⊤n ,

where 𝚵n is the K × p matrix of scores for the n observation. The form of these
estimates comes from themaximum likelihood estimators formultivariate version
of this problem. Note that whenH0 is true, we have Cov(vec(𝚵n)) ≈ V⊗U. When
the covariance is not separable, it is estimated using

𝚺̂ = 1
N

N∑
n=1

vec(𝚵n)⊤vec(𝚵n).

In [9] three different tests were then considered to see if V̂⊗ V̂ and 𝚺̂ are estimat-
ing the same thing (in which case H0 holds) or if they are significantly different
than each other. The first test uses the Frobenius norm (𝓁2 norm for matrices) of
the difference:

T̂F = N‖V̂⊗ Û − 𝚺̂‖2F .
The second test tries to normalize by the covariance of the difference so that the
test is pivotal, resulting in a Wald-type test:

T̂W = Nvec (V̂⊗ Û − 𝚺̂)⊤Ŵ
+
vec(V̂⊗Û − 𝚺̂).

The term Ŵ is an estimate of the covariance of the difference. Since we are deal-
ing with covariance matrices, they are symmetric and thusW does not have full
rank; hence, we use a generalized inverse Ŵ

+
which is equivalent to dropping the

redundant entries. The last test is based on the likelihood ratio statistic (for the
nonfunctional setting):

T̂L = N
(
p log det (Û) + K log det (V̂) − log det (𝚺̂)

)
.
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UnderH0, both T̂L and T̂W are asymptotically chi-squared,while T̂F is asymptot-
ically a weighted sum of chi-squares, with weights given by the eigenvalues ofW.
While estimatingW is possible, it is quite involved, and we thus refer the inter-
ested reader to [9]. If the data is normally distributed, then T̂L actually doesn’t
depend on the underlying parameters. Exploiting this, Mitchell et al. [11] pro-
vided aMonte-Carlo algorithm for calculating p-values of T̂L formultivariate data,
which can be applied here. Practically, T̂F performs fairly well even when using
the asymptotic distribution, while T̂L and T̂W often have poor specificity when
using their asymptotic distributions. Thus using T̂F or T̂L in conjunction with
Monte-Carlo often works best. Lastly, while we only described dimension reduc-
tion in time, for very large spatial data sets a reduction in space may be required
as well, in which case one would reduce in both time and space, and then test the
separability of the resulting scores as discussed.
Returning to the Russia data, we consider each test under varying reduced spa-

tial and temporal dimensions. Temporal dimensions of J = 3, 4, 5, 6 and spatial
dimensions of K = 3, 4, 5 are considered. The results of these tests are given in
Table 14.5 for all 220 stations, while in Table 14.6, we provide the results for the
14 stations around Moscow. For J > 3 and except in the case of K = 3, J = 4, the
tests indicate that the daily maximum temperature fields possess a nonseparable

Table 14.5 p-Values for norm-based separability test (TF ) applied to the Russian
weather data with reduced spatial dimension K and temporal dimension J.

K∖J 3 4 5 6

3 0.26 0.053 0.025 0.017
4 0.08 0.031 0.014 0.011
5 0.072 0.019 0.011 0.0083

For J > 3 and except in the case of K = 3, J = 4, the tests give evidence of a nonseparable
covariance structure.

Table 14.6 p-values for norm-based separability test (TF ) applied to a subset of
14 Russian weather stations near Moscow with reduced spatial dimension K and
temporal dimension J.

K ∖ J 3 4 5 6

3 0.159 0.14 0.134 0.115
4 0.079 0.093 0.056 0.22
5 0.132 0.135 0.102 0.095

No tests give evidence against a separable covariance structure at an 𝛼 = 0.05 level.
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covariance structure at an 𝛼 = 0.05 level when looking across all of Russia. How-
ever, the p-values are not overwhelmingly small, and we see that when focusing
on the smaller region around Moscow, separability does indeed seem to hold.

14.5 Trend Tests

In this section, we discuss two trend tests for spatio–temporal functional data.
They pertain to different statistical models motivated by two distinct applied prob-
lems: testing for the increase in the intensity of tropical storms and testing for the
presence of a cooling trend in the ionosphere.
The formulation of the first testing problem does not involve locations sk. It is

motivated by the question of whether the strength of tropical storms increases
from year to year. The raw data do not have the form of curves; these are appro-
priately processed wind speeds of individual storm events. Examples of such data
are shown in Figure 14.3. From these data, expectile curves can be constructed;
examples are shown in Figure 14.4. The definition of the expectile curves would
take too much space to be presented here; we refer to [12], who also provide a
number of references. The idea is that for each year, a family of curves indexed by
𝜏 ∈ (0, 1) can be constructed. The index 𝜏 refers to the a quantity similar to a
quantile level. The curve with 𝜏 = 0.5 describes a sort of median of wind speeds
of storms in a given year. The curve with 𝜏 = 0.9, shows the pattern of the
strongest storms.

Five consecutive years of typhoon data
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Figure 14.3 Five consecutive years (2006–2010) of typhoon data. The dots represent
the wind speed measurements. Dashed vertical lines separate the years.
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Typhoones in 2005
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Figure 14.4 Typhoons (a) and hurricanes (b) data in 2005 with expectile curves for
𝜏 = 0.1, 0.5, and 0.9. The dots represent the wind speed measurements. Generally, a
vertical streak of dots represents one tropical storm event. The lines are the estimated
expectile curves.

The statistical analysis is performed for each expectile level 𝜏 separately. For
example, if we take 𝜏 = 0.9, our objective is to determine if there is a trend in the
strongest storms. For this purpose, we assume the following model for the expec-
tile curves (dependence on 𝜏 is suppressed):

Xn(t) = 𝛼(t) + 𝛽(t)n + 𝜀n(t). (14.1)

We consider the testing problem:

H0∶ 𝛽 = 0, vs. HA∶ 𝛽 ≠ 0.

In the above problem, the parameter 𝛽 is a square integrable function. Denoting
by 𝛽 its suitably defined estimate, one can show that the statistic

Λ̂N = N3

12 ∫
1

0
𝛽(t)2dt

converges to a limit distribution under H0 and exceeds the critical values of this
distribution with probability approaching 1 under HA. The limits are taken as the
number of years, N, increases. The limit distribution does not have a closed form,
but can be readily simulated.
The application of the test to typhoon and hurricane data shows that there is

no significant trend in the strength of typhoons. There is a significant upward
trend in the strength of hurricanes, but only for large values of 𝜏, approximately
for 𝜏 ≥ 0.6. This means that the wind speeds of typical or weak hurricanes are
not increasing, but those of the strongest hurricanes are. The significance of
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the function 𝛽 is concluded from the p-values, the conclusion of an upward
trend from the fact that 𝛽(t) is positive for almost all values of inter-year time t.
The paper of [12] contains a more detailed discussion, comparison with related
atmospheric science research, and several references to related trend tests.
The second test is motivated by an interesting and extensively studied problem

of space physics. The account presented here is based on [13] and [14]. We first
describe the space physics problem, and then explain the idea of the test.
Increased concentration of greenhouse gases in the upper atmosphere is asso-

ciated with global warming in the lower troposphere (the atmosphere roughly
below 10 km). Roble and Dickinson [15] suggested that the increasing amounts of
these radiatively active gases, mostly CO2 and CH4, would lead to a global cool-
ing in the ionosphere (atmosphere roughly 300 km above the Earth’s surface).
Rishbeth [16] pointed out that this would result in a thermal contraction of the
ionosphere. The height of the ionosphere can be approximately computed using
data from a radar-type instrument called the ionosonde. Relevant measurements
have been made for many decades by globally distributed ionosondes. In prin-
ciple, these observations could be used to quantitatively test the hypothesis of
Roble and Dickinson. The difficulty in testing the contraction hypothesis comes
from several sources. The height of the ionosphere depends on magnetic coordi-
nates, the season, long-term changes in the strength and direction of the inter-
nal magnetic field, and, most importantly, on the solar cycle; more solar radia-
tion leads to greater ionization. This is illustrated in Figure 14.5. Another diffi-
culty stems from the fact that ionosonde records are not complete. Most observa-
tion stations do not operate continuously for many decades. They start and end
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Figure 14.5 Gray lines represent ionosonde measurements obtained at observatories
located in mid-latitude northern hemisphere, with the scale on the left-hand side. The
black line represents the observed solar radio flux with the scale on the right-hand side.
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Figure 14.6 Number of available stations in the mid-latitude northern hemisphere.

operation at different times, some of them are out of service for many years, or
even decades. In the mid-latitude northern hemisphere, there are 81 ionosonde
stations, but at any given time, data from no more than 40 are available, as shown
in Figure 14.6. This means estimation methods designed for complete records,
developed by Gromenko et al. [17], cannot be used, as they require computation
of integrals of products of functions. If the functions have disjoint supports, due to
gaps, the integrands will be mostly zero, and the values of the integrals will intro-
duce large biases to the estimators. More complexmethods for incomplete records
are needed.
Let Y (sk; 𝜏i) be the original record at location sk, measured from 1958 to 2015,

possibly with long gaps. The set of all locations is
{
sk, 1 ≤ k ≤ K

}
, and the

set of time points at which measurements may be available is
{
𝜏i, 1 ≤ i ≤ T

}
;

in [14] these are months from January 1958 to December 2015. The following
spatio–temporal model is postulated the entire time span

Y (sk; 𝜏i) = 𝜇(sk; 𝜏i) + 𝜀(sk; 𝜏i) + 𝛿ki, (14.2)

where 𝛿ik represents a random noise, which can be associated with measurement
error. The second term, 𝜀(s; 𝜏), describes the spatio–temporal variability away from
the mean function, 𝜇(s, 𝜏). Stochastic modeling of this term is needed to develop
inferential procedures. A simple form of the mean function relevant to the space
physics problem is

𝜇(s; 𝜏) = 𝛽1 + 𝛽2𝜏 + 𝛽3 SRF(𝜏) + 𝛽4 M(s; 𝜏),

where SRF(𝜏) is the solar radio flux, cf. Figure 14.5, andM(s; 𝜏) is a suitable func-
tion computed from the coordinates of the internal magnetic field. The interest
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lies in the estimation of the mean function and testing if it contains a linear trend,
i.e. testingH0∶𝛽2 = 0. The function 𝜇(⋅, ⋅) is treated as known, except for the scalar
parameters 𝛽1, 𝛽2, 𝛽3, and 𝛽3. The details of the estimation and testing procedures
are too complex to describe here, but an important aspect is that the estimation
proceeds by splitting records from 1958 to 2015 into years. This means that at the
estimation stage, one works with the spatio–temporal functional data of the form
Xn(sk; tj), which was discussed in the introduction. The conclusion is that 𝛽2 is
significantly negative, confirming the hypothesis of global ionospheric contrac-
tion. The software to perform the test is available and can be used to test for the
presence of global trends in other data of this type, for example in near-surface
temperatures. Records of this type also contain large gaps.

14.6 Spatio–Temporal Extremes

In this section, we summarize the work of [18] which deals with the computation
of probabilities of heat waves. As before, the raw data are spatially indexed
time series of daily temperature measurements. As argued above, due to the
natural annual climate cycle, for each site, we partition the data into year
and view the resulting 365-dimensional vectors as samples from a functional
time series:

Xn(sk; ⋅) =
{
Xn(sk; ti), i ∈ {1, 2,… , 365}

}
. (14.3)

Here, t → Xn(sk; t) is the temperature curve at site sk for year n, viewed as a func-
tion of time t in days. In contrast to the setting of previous sections, the data used
by French et al. [18] are not historical records, but data generated by a computer
climate model. These artificial data are of much higher quality than historical
records; there are no gaps, and the daily records are available at 16 100 locations
forming a grid coveringmuch ofNorthAmerica. It is, at this point, not clear how to
extend the methodology of [18] to historical records. The advantage of using com-
puter model data is that they are predicted future temperatures ([18] work with
the period 2041–2070), which are more relevant to the prediction of future heat
waves. On the other hand, these data do depend on a model, and the poor-quality,
geostatistical historical records are the real data.
Many functionals were proposed in [18] that can quantify a heat wave, but here

we focus on one specific approach that explains the general idea. A heat wave is
characterized by its spatial and temporal extents and by its intensity. The intensity
is typically quantified by a threshold. Public health concerns call for a fixed thresh-
old, like 105 ∘F. However, in climate studies of large spatial regions, with many
climatic zones, such a fixed threshold is not appropriate. Also the variability of
temperatures depends greatly on the geographical location, with coastal locations
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exhibiting much smaller variability than locations far away from large bodies of
water. It is therefore reasonable to work with standardized temperatures

Zn(sk, ti) =
Xn(sk, ti) − X(sk, ti)

SD(sk, ti)
, (14.4)

where

X(sk, ti) =
1
N

N∑
n=1

Xn(sk, ti) and (14.5)

SD2(sk, ti) =
1

N − 1

N∑
n=1

(Xn(sk, ti) − X(sk, ti))2.

If the Zn(sk, ti) exceed a fixed threshold z, e.g. z = 2, for a number of neigh-
boring locations and over a period of time, then we have observed a heat wave
(the Zn(sk, ti) are practically normal). The severity of a heat wave increases with
the size of the region, the duration, and the threshold z that is exceeded. Suppose
the Xn(sk, ti) are maximum daily temperatures, and set

Z⋆n (sk, tj) =
1
𝓁

∑
tj−𝓁<ti≤tj

Zn(sk, ti).

This is the average maximum temperature over the 𝓁 days preceding day tj. Next,
define

Z⋆n (tj) = min
1≤k≤KZ

⋆
n (sk, tj).

If Z⋆n (tj) > z, then the average maximum temperature over 𝓁 days over K (neigh-
boring) locations exceeds, z; this corresponds to a heatwave defined by this specific
functional.We are interested in the probability of a heat wave in any given year.We
assume that this probability does not depend on year n. We thus want to compute,
for some relevant z > 0,

p(z) = P(∃ j ∶ Zn(tj) > z) = P
(
max
1≤j≤JZ

⋆
n (tj) > z

)
= P(MJ > z),

where J = 365, and

MJ
d
= MJ,n∶= max

1≤j≤JZ
⋆
n (tj).

The concatenated sequence Z⋆(tj) is stationary and weakly dependent, so (see,
e.g. [19], Chapter 10), there are sequences aJ and bJ such that

lim
J→∞

P
(MJ − bJ

aJ
≤ z

)
→ H(z),

where H is a univariate Generalized Extreme Value distribution function. The
function H depends on three parameters, which can be estimated, together with
the constants aJ and bJ , using now standard R implementations.
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Figure 14.7 A map of the
neighborhood structures for
different locations using 50, 150,
and 450 nearest neighbors.
Each × marks a neighborhood
centroid and the sequences of gray
shading mark the extents of the
increasing neighborhood sizes.

Figure 14.7 shows examples of regions corresponding to 50, 150, and 450 neigh-
boring locations. Figure 14.8 shows a map of the probability of a heat wave for
d = 50 for three durations 𝓁, with (a) corresponding to 𝓁 = 3, (b) to 𝓁 = 10, and
(c) to 𝓁 = 30.When 𝓁 = 3, there is a surprisingly high probability of localized heat
waves over the Labrador Peninsula. Such short heat spells may occur with prob-
ability approaching 50%, that is on average every second year. While our extreme
value theory (EVT) approximation may break down for such high probabilities, it
is, nevertheless, obvious that part of Canada will see heat spells much more fre-
quently than in the past. Generally, we see that the area around the Hudson Bay
will experience an increased frequency of hot spells lasting a few days. There is a
noticeable drop in the probability of such a heat wave around the RockyMountain
Range. The probability is also very low along the Eastern seaboard of the United
States. Increasing the duration to 𝓁 = 10 days, dramatically reduces the proba-
bility of a heat wave of the corresponding magnitude. The reader will note the
different probability scale. Many parts of Canada once again show an increased
probability of a heat wave of this magnitude, as well as parts of Iowa and Illi-
nois, certain regions in Texas, and, most visibly, the Pacific Ocean off the Southern
California coast. Increasing the duration to approximately one month (𝓁 = 30)
causes the probability of a heat wave to drop even further; generally, through-
out North America, heat waves of this magnitude will occur with probability of
less than 1%, i.e. once per one hundred years, on average. Over the Canadian
Plains and the Canadian Rockies, this probability increases only slightly to about
1.5%. There are two patches, in Arizona and Southern Texas, with probabilities
elevated to 2–3%.
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Figure 14.8 Probability of a heat wave with amplitude more than two standard
deviations above the mean for spatial extent d = 50 and durations of (a) 𝓁 = 3,
(b) 𝓁 = 10, and (c) 𝓁 = 30.
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15.1 Introduction

In many fields, such as environmental, forestry, climatology, meteorology, and
medical sciences, the spatial variation of objects in the form of curves is of interest
to study. It could be, e.g. ocean temperature, salinity, or other variables measured
over time (or at different depths) at a set of spatial locations. With today’s modern
technology and huge storage capability, it is, in principal, possible to observe entire
curves by recording them over a dense raster of time (depth) points. In particular,
it may be of interest to predict a curve at a new spatial location given that such
curves have been observed at n other locations, utilizing the information inherent
in the spatial dependence between curves.
Kriging predictors have a long history of being used to predict objects at new

locations based on information observed at a set of other locations. There is a
rich geostatistical literature about kriging prediction when the objects are real- or
vector-valued, see, e.g. Chiles and Delfiner [1], Cressie [2], Cressie and Wikle [3],
and references therein. Functional kriging predictors, used when the objects are
functions with infinite dimension, have been proposed in the last decades, see, e.g.
pioneering work by Goulard and Voltz [4], and further the work of Giraldo et al.
[5, 6] and Nerini et al. [7]. They assume that the expected value of the curves is
the same irrespective of the spatial location, so-called “ordinary functional krig-
ing.” More recently, functional kriging methods where the expected value of the
curves may also depend on location are investigated, e.g. by Caballero et al. [8],
Menafoglio et al. [9], Ignaccolo et al. [10], and Reyes et al. [11].

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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A kriging predictor is typically defined to be the best linear unbiased predictor
(BLUP) minimizing the mean squared prediction error (MSPE). A kriging predic-
tor is thus a weighted sum of the objects observed at the n spatial locations. The
optimal kriging weights to be determined turn out to be functions of the (spatial)
dependence structure of the objects, which in practice is not known and needs to
be estimated. Typically, estimators of the dependence structure rely on stationarity
assumptions, unless parametric and distributional assumptions are made.
Here, we will compare two kriging approaches to predict spatial functional

random processes. A functional random process, {𝜒s ∶ s ∈ D ⊂ Rd}, is a process
with stochastic functional objects (curves) 𝜒s = 𝜒s(t), t ∈ T ⊂ R over the “time”
domain T at each spatial location s ∈ D. Such a process can also be viewed as
a spatiotemporal (Sp.T.) stochastic process {Z(s, t) = 𝜒s(t), (s, t) ∈ D × T}. Given
that the process has been observed at n different locations, a curve at a new
location s0, 𝜒s0 , can be predicted by a functional kriging approach, i.e. as a linear
combination of the n observed curves. As an alternative, a Sp.T. kriging approach
could be used. The curve 𝜒s0 (t), t ∈ T would then be predicted at a dense grid of
values over T, based on a linear combination of a time-grid of values over the
observed curves. As pointed out by Delicado et al. [12], the question of which
approach, functional kriging or Sp.T. kriging, should be used to analyze a particu-
lar data set is an important one (with no complete answer). Here, we compare the
two approaches with respect to prediction performance and computation time.
The presented material in this section comes to a large extent from the article
written by Strandberg et al. [13], with some modifications.
In Section 15.2, notation and definitions are given. Section 15.3 presents the two

kriging approaches for Sp.T. processes. In Section 15.3.1, we describe functional
kriging methods in more detail, including how to estimate the dependence
structure. We also discuss how the functional kriging methods relate to each
other and under which circumstances they may coincide. The Sp.T. kriging
approach is described in Section 15.3.2, with a discussion on how to estimate
the Sp.T.-dependence structure. In Section 15.4, the two kriging approaches
are evaluated by a simulation study. Sp.T. stationary (isotropic) processes with
separable and nonseparable covariance functions are considered, as well as some
nonstationary Sp.T. (but stationary functional) random processes with constant
mean. We also apply both kriging approaches to Canadian temperature data in
Section 15.5. A discussion and concluding remarks are found in Section 15.6.

15.2 Preliminaries

A spatial functional random process {𝜒s ∶ s ∈ D ⊂ Rd} [5, 12], is a process where
for each given s ∈ D, the observed random element is a functional random
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variable, 𝜒s, taking values in an infinite dimensional space (or function space).
We will consider the case where 𝜒s, for every fixed s, is a real-valued function,
𝜒s(t), t ∈ T ⊂ R, from the compact set T to R and with s ∈ D ⊂ R2. It is usu-
ally assumed that the realizations of the curves (functions) 𝜒s(t), t ∈ T, s ∈ D
belong to a separable Hilbert space H of square integrable functions defined
on T. Let the mean function be denoted by ms(t) = E[𝜒s(t)], the covariance
function (covariogram) by C(s, r, 𝑣, t) = Cov[𝜒s(r), 𝜒𝑣(t)], and the semivariogram
by 𝛾(s, r, 𝑣, t) = V[𝜒s(r) − 𝜒𝑣(t)]∕2.
The spatial functional random process is said to be second-order stationary if for

each t ∈ T the corresponding spatial randomprocess {𝜒s(t), s ∈ D} is second-order
stationary, i.e. if

(i) E[𝜒s(t)] = m(t) and V[𝜒s(t)] = 𝜎2(t) ∀s ∈ D and ∀t ∈ T,
(ii) Cov[𝜒s(r), 𝜒𝑣(t)] = C(s − r, 𝑣, t) ∀s, 𝑣 ∈ D and ∀r, t ∈ T.

For (second-order) stationary functional processes, the covariance structure can
equivalently be described by the variogram

V[𝜒s(r) − 𝜒𝑣(t)] = 2𝛾(s − 𝑣, r, t),

via the relation

2C(s − 𝑣, r, t) = 𝜎2(r) + 𝜎2(t) − 2𝛾(s − 𝑣, r, t). (15.1)

Here, we will mainly focus on spatial functional random processes that are
second-order isotropically stationary, i.e.

(i) E[𝜒s(t)] = m(t) and V[𝜒s(t)] = 𝜎2(t) ∀s ∈ D and ∀t ∈ T,
(ii) Cov[𝜒s(r), 𝜒𝑣(t)] = C(||s − 𝑣||, r, t) ∀s, 𝑣 ∈ D and ∀r, t ∈ T,

(15.2)

where || ⋅ || denotes the Euclidean distance. For any given t ∈ T, 𝛾t(h) ∶= V[𝜒s(t) −
𝜒𝑣(t)]∕2, h = ||s − 𝑣||, is the semivariogram of the spatial random process {𝜒s(t) ∶
s ∈ D}, satisfying 𝛾t(h) = 𝜎2(t) − Ct(h), where Ct(h) = C(h, t, t) is the correspond-
ing covariogram. In order to ensure that V

[∑n
i=1 li𝜒si (t)

] ≥ 0 for any set of con-
stants l1,… , ln ∈ R,n = 1, 2,…, the variogram (as a function of h) needs to be a
conditional negative definite function and the covariogram needs to be a positive
definite function, see, e.g. [2].
As previously mentioned, a spatial functional random process can also be

viewed as a Sp.T. process Z(s, t) = 𝜒s(t), where Z(s, t) takes values in R and is
mapped from (s, t) ∈ D × T, cf. [3]. A Sp.T. process is said to be second-order
stationary and spatially isotropic if

(i) E[Z(s, t)] = m and V[Z(s, t)] = 𝜎2Z ∀s ∈ D and ∀t ∈ T, (15.3)

(ii) Cov[Z(s, r),Z(𝑣, t)] = CZ(||s − 𝑣||, ∣ r − t ∣) ∀s, 𝑣 ∈ D and ∀r, t ∈ T.

Note that the concept of stationarity differs between functional and Sp.T.
random processes: A stationary Sp.T. process implies that the corresponding
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functional random process also is stationary, while the opposite may not be true.
Hence, the class of stationary Sp.T. processes is a subset of the class of stationary
functional random processes.

15.3 Kriging

In this section, we describe the functional and Sp.T. kriging approaches, in
Sections 15.3.1 and 15.3.2, respectively. A way to evaluate prediction performance
using functional cross-validation (FCV) is given in Section 15.3.3.

15.3.1 Functional Kriging

For the presentation below, unless otherwise stated, we will assume that the spa-
tial functional random process is second-order stationary and isotropic. Within
the functional kriging framework, it is of interest to predict the complete random
function 𝜒s0 (t), t ∈ T, at a new location s0, given that a sample of random functions
have been observed at n different locations, s1,… , sn. We will consider unbiased
functional predictors, 𝜒̂ s0 (t), t ∈ T, that minimize the mean integrated squared
error (MISE).

MISE(s0) = E
[
∫T(𝜒̂ s0 (t) − 𝜒s0 (t))

2dt
]
. (15.4)

By Fubini’s theorem (assuming that the realizations of the random functions are
square integrable), we may change the order of expectation in MISE(s0), and fur-
ther, due to the unbiasedness of the kriging predictor, i.e. E[𝜒̂ s0 (t) − 𝜒s0 (t)] = 0 for
all t ∈ T, we have that (15.4) equals:

MISE(s0) = ∫TE
[
(𝜒̂ s0 (t) − 𝜒s0 (t))

2
]
dt = ∫TV[𝜒̂ s0 (t) − 𝜒s0 (t)]dt. (15.5)

15.3.1.1 Ordinary Kriging for Functional Data
One of the first functional kriging predictors was proposed by Goulard and
Voltz [4], the so-called curve kriging predictor being of the form:

𝜒̂ s0 (t) =
n∑
i=1
𝜆i𝜒si (t), t ∈ T. (15.6)

Giraldo et al. [6, 14] further discussed this predictor and gave it the name ordi-
nary kriging for functional data (OKFD). The optimal weights 𝜆1,… , 𝜆n ∈ R that
minimizes MISE(s0) given that the predictor is unbiased, are called the kriging
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weights. Under assumption (15.2) unbiasedness of (15.6) implies that
∑n

i=1 𝜆i = 1.
From this fact, combined with (15.5) and (15.1), it follows that

MISE(s0) =
n∑
i=1

n∑
j=1
𝜆i𝜆j∫T Cov[(𝜒si (t), 𝜒sj (t)]dt + ∫T𝜎

2(t)dt

− 2
n∑
i=1
𝜆i∫T Cov[𝜒si (t), 𝜒s0 (t)]dt

= −
n∑
i=1

n∑
j=1
𝜆i𝜆j𝛾(||si − sj||) + 2

n∑
i=1
𝜆i𝛾(||si − s0||),

where

𝛾(h) = 1
2
E
[
∫T(𝜒si (t) − 𝜒sj (t))

2dt
]
= ∫T𝛾t(h)dt, ∀si, sj ∈ D, (15.7)

and h = ||si − sj||, is called the (isotropic) trace-semivariogram. The second equality
in (15.7) holds by Fubini’s theorem under the assumption that the realizations of
the random functions are square integrable. Since MISE(s0) only depends on the
trace-semivariogram, sowill the optimal 𝜆i’s, for amore detailed derivation see [6].
Note that the trace-semivariogram often has the same property as the classical
semivariogram, being a conditional negative definite function [9].
In practice, the trace-variogram is unknown and thus needs to be estimated

from the data. To estimate the trace-variogram under assumption (15.2), first a
(consistent) method of moments estimator of (15.7) is formed as

𝛾̂(h) = 1
2|N(h)|

∑
i,j∈N(h)

∫T(𝜒si (t) − 𝜒sj (t))
2dt, (15.8)

where N(h) = {(si, sj)∶||si − sj|| = h}, and |N(h)| is the number of distinct
elements in N(h). For irregularly spaced observations, it is rare to have several
pairs of observations separated at exactly distance h and then N(h) is modified to
{(si, sj) ∶ ||si − sj|| ∈ (h − 𝜖, h + 𝜖)}, with 𝜖 > 0 being some small positive value, in
order to obtain a more stable estimate. To obtain a valid (variogram) estimate for
any h, a parametric variogram model 𝛾(h ∣ 𝜃), e.g. the spherical, exponential, or
stable model, is fitted to a set of estimated values {𝛾̂(hl), hl}, l = 1,… ,L, by a least
squares method, cf. [2]. Here we use the ordinary least squares (OLS) method to
estimate 𝜃.
Typically, the random functions 𝜒si (t) are observed only at a finite number of

time points ti1,… , timi
, i = 1,… ,n. Goulard and Voltz [4] suggested to fit a para-

metric model 𝜒si (⋅, 𝛼i) to the observed values and replace 𝜒si (t) by 𝜒si (t, 𝛼̂i) in (15.6)
and (15.8). Giraldo et al. [6] instead suggested a nonparametric approach, where
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the observed random functions are represented (approximated) by linear combi-
nations of p known basis functions, B(t) = (B1(t),… ,Bp(t))⊺, as

𝜒 si (t) =
p∑
k=1

aikBk(t) = a⊺iB(t). (15.9)

The basis functions could, e.g. be B-splines, Fourier basis, or wavelets. The coeffi-
cients (ai’s) are typically determined by the least squares method. Giraldo et al. [6]
suggested to choose the number of basis functions p by cross-validation. In the
final ordinary kriging predictor (15.6), the estimated trace-variogram values are
plugged into the kriging weights (𝜆i’s), and the 𝜒 si (t)’s replacing the 𝜒si (t)’s.

15.3.1.2 Pointwise Functional Kriging
To allow more flexibility than the OKFD predictor (15.6), Giraldo et al. [5, 15]
suggested the pointwise functional kriging predictor (PWFK) which allows the 𝜆i’s
to depend on t and is defined as

𝜒̂ s0 (t) =
n∑
i=1
𝜆i(t)𝜒si (t), t ∈ T.

The BLUPminimizing themean squared integrated prediction error is found by
choosing the 𝜆i(t)-functions such that (15.4) is minimized subject to the unbiased-
ness constraint of the predictor,

∑n
i=1 𝜆i(t) = 1, for all t ∈ T. In order to solve the

optimization problem, the 𝜆i(t)-functions are represented by a linear combination
of K known basis functions:

𝜆i(t) =
K∑
k=1

bikB𝜆k(t) = b⊺iB𝜆(t), i = 1,… ,n, (15.10)

where the bi’s are to be determined. Moreover, the 𝜒si (t)’s are represented
as in (15.9), implying that E[𝜒si (t)] = E[ai]⊺B(t) and Cov[𝜒si (t), 𝜒sj (u)] =
B(t)⊺ Cov[ai, aj]B(u). The optimization problem then reduces the infinite
dimensional problem to a multivariate geostatistics problem. Given that the
weights satisfy (15.10), the unbiasedness condition implies that

n∑
i=1
𝜆i(t) =

n∑
i=1
b⊺iB𝜆(t) = c⊺B𝜆(t) = 1, for all t ∈ T, (15.11)

where c =
∑n

i=1 bi. Hence, only basis functions B𝜆(t) that satisfy (15.11) for
some constant vector c give admissible solutions to the kriging optimization
problem. When B𝜆(t) are B-splines, (15.11) is fulfilled when c = 𝟏, and for Fourier
basis functions when c = (1, 0,… , 0)⊺. In fact, any set of basis functions where
one (the first say) basis function is a constant, B𝜆1(t) = k, satisfies (15.11) for
c = (1∕k, 0,… , 0)⊺. The full derivation of the equation system to be solved in order
to find the bi’s is given by Giraldo et al. [5] when B𝜆(t) = B(t), and for general
B𝜆(t) in [13].
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It turns out that the bi’s are functions of the covariances between the various ai’s,
which in practice are not known and thus need to be estimated, e.g. by the least
squares method. If ai = a(si), and a(s) = [a1(s),… , ap(s)]⊺ is a p-variable second-
order isotropically stationary spatial random field for all s ∈ D, with E[a(s)] = ma
and Cov[a(si), a(sj)] = Σ(||si − sj||) = {ckl(hij)} ∈ Rp×p, where ckl(hij) = Cov[ak(si),
al(sj)], hij = ||si − sj||, it follows that {𝜒s(t) = a(s)⊺B(t), s ∈ D, t ∈ T} satisfies
(15.2). Under this assumption, [5] suggest estimating the covariograms and
cross-covariograms (the ckl(⋅)’s) via a linear model of coregionalization [16].
This means that a(s) can be expressed as a(s) = Pr(s), where P ∈ Rp×q and
r(s) = (r1(s),… , rq(s))⊺ are q latent univariate (second-order isotropically station-
ary) random fields, typically assumed to be independent. Given available data,
ai = a(si), i = 1,…n, the ckl(⋅)’s (and P) can be estimated using the R-package
gstat [17]. In order to perform the estimation, the value of q and the variogram
models of the ri(s)’s need to be specified.
The PWFK may have the potential to give better prediction performance than

OKFD since it allows more flexible kriging weights. In which situations this
could be true is still not completely known. Strandberg et al. [13] have confirmed
situations in which PWFK and OKFD coincide: Suppose that E[𝜒s(t)] = m(t) and
Co𝑣[𝜒s(t), 𝜒𝑣(t)] = 𝑤(t)C(s, 𝑣) ∀s, 𝑣 ∈ D and ∀t ∈ T, where 𝑤(t) is a real-valued
deterministic function. These type of processes include second-order stationary
spatial functional random processes and also some non-stationary variants. Then,
under some mild conditions on B𝜆(t), that ensures a unique solution, the optimal
kriging weights of PWFK satisfy 𝜆i(t) = 𝜆i, for all i = 1,… ,n, and thus coincide
with those of OKFD.
Strandberg et al. [13] experienced that the computational time of PWFK (using

R-code kindly provided by Giraldo et al. [5]) was much larger than that of OKFD
(using the R-package geofd, Giraldo et al. [18]). They also found bugs in the PWFK
R-code, which after correction gave constant weights for PWFKwhenB𝜆(t) = B(t)
were B-splines and Fourier basis functions.

15.3.1.3 Functional Kriging Total Model
The OKFD and PWFK methods predicts the spatial functional process at a new
location s0 and time point t by a linear combination of the n observed functions
(𝜒si (t)’s) at the same time point t, but does not utilize the information from other
time points of the observed functions. A third functional krigingmethod, proposed
by Giraldo and [19, 20], and independently by Nerini et al. [7], addresses this and
allows the usage of all time points of the observed functions. The method is called
the functional kriging total model (FKTM), and the predictor defined as

𝜒̂ s0 (t) =
n∑
i=1

∫T𝜆i(t, 𝑣)𝜒si (𝑣)d𝑣, t ∈ T. (15.12)
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This modeling approach is coherent with the functional linear model for func-
tional responses (total model), see e.g. [21]. Assuming that the random functions
𝜒si (t)’s satisfy (15.9) and that the kriging weights satisfy

𝜆i(t, 𝑣) =
p∑
k=1

p∑
l=1
clikBk(t)Bl(𝑣) = B(t)⊺CiB(𝑣), i = 1,… ,n,

Giraldo [20] proposed a way to determine the 𝜆i(t, 𝑣)’s (i.e. theCi’s) such that the
predictor (15.12) is unbiased and minimizes (15.4). Also here, the Ci’s turn out to
be functions of the covariances between the various ai’s, which in practice are not
known and can be estimated as proposed in Section 15.3.1.2. For more detailed
derivations, see [20].
The FKTM method is, just like PWFK, computationally heavy in comparison

with OKFD [19]. Moreover, Menafoglio and Petris [22] showed that if the real-
izations of 𝜒s(t) belong to the Hilbert space of square integrable functions on T,
and the functional second-order stationary random process is Gaussian, then the
kriging weights of FKTM and OKFD agree almost surely for any orthonormal
base B(t).

15.3.2 Spatiotemporal Kriging

Alternatively, the spatial functional process can be viewed as a Sp.T. process,
Z(s, t) = 𝜒s(t), taking values in (s, t) ∈ D × T, and hence, be predicted by Sp.T.
kriging methods. The Sp.T. kriging predictor at location s0 and time point t ∈ T,
given the observations Z(si, tij), j = 1,… ,mi, i = 1,… ,n, is of the form

Ẑ(s0, t) =
n∑
i=1

mi∑
j=1
𝜆tijZ(si, tij), (15.13)

being the BLUP minimizing the MSPE

MSPE(s0, t) = E[(Ẑ(s0, t) − Z(s0, t))2]. (15.14)

Note that for each s0, the Sp.T. krigingweights (𝜆tij’s) are allowed to change for each
t ∈ T. When themean value of the process is constant, the unbiasedness condition
implies that

∑n
i=1

∑mi
j=1 𝜆

t
ij = 1. Moreover, if the constant mean value of the process

is unknown, the kriging weights depend on the Sp.T. covariance structure solely,
and (15.13) is referred to as the so-called Sp.T. ordinary kriging predictor. In prac-
tice, the dependence structure is unknown too and needs to be estimated from
the data and then plugged into the kriging weights (𝜆tij’s). Under the assumption
that the Sp.T. process is second-order stationary and spatially isotropic, satisfying
(15.3), the dependence structure, given by the (spatially isotropic) Sp.T. variogram,

E[(Z(s, r) − Z(𝑣, t))2] = 2𝛾Z(||s − 𝑣||, |r − t|), s, 𝑣 ∈ D and r, t ∈ T,
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where h = ||s − 𝑣|| and u = |r − t| is typically estimated via the following steps:
First, an empirical (spatially isotropic) Sp.T. semivariogram is computed from lag
classes as

𝛾̂Z(h,u) =
1

2|N(h,u)|
∑

(i,j,k,l)∈N(h,u)
(Z(si, tik) − Z(sj, tjl))2,

where N(h,u) = {(si, tik), (sj, tjl) ∶ ||si − sj|| ∈ (h − 𝜖, h + 𝜖), and |tik − tjl| ∈ (u − 𝛿,
u + 𝛿)}, for some 𝜖, 𝛿 > 0, and |N(h,u)| is the number of distinct elements in
N(h,u). A parametric semivariogram model, 𝛾(h,u|𝜃), is then fitted to a set of
{𝛾̂(hl,ul), (hl,ul)}, l = 1,… ,L by a least squares method. Three types of stationary
Sp.T. semivariogram (covariogram) models that are commonly used to estimate
the Sp.T.-dependence structure is described below: the separable, product-sum,
and metric models. In Gräler et al. [23], it is illustrated how to perform Sp.T.
ordinary kriging prediction with these three models in the R-package gstat.
The separable model assumes that the Sp.T. covariance function can be modeled

by the product of the spatial and the temporal covariance functions:

CZ(h,u) = Cs(h)Ct(u). (15.15)

The corresponding semivariogram is given by

𝛾Z(h,u) = 𝜎2Z(𝛾 s(h) + 𝛾 t(u) − 𝛾 s(h)𝛾 t(u)),

where 𝛾 s(h) and 𝛾 t(u) are standardized spatial and temporal semivariograms with
separate nugget effects and (joint) sill of 1. The parameter 𝜎2Z is the overall sill, i.e.
the variance of the process Z(s, t). This model has the computational advantage of
being able to express the covariancematrix as the Kronecker product between two
covariance matrices (space and time) which simplifies and speeds up the compu-
tation of its determinant and inverse.
The product-summodel is an extension of the separable model and relies on the

assumption that the covariance function can be written as follows:

CZ(h,u) = kCs(h)Ct(u) + Cs(h) + Ct(u),

where k > 0. The corresponding semivariogram is given by

𝛾Z(h,u) = (k𝜎2t + 1)𝛾s(h) + (k𝜎2s + 1)𝛾t(u) − k𝛾s(h)𝛾t(u),

where 𝜎2t and 𝜎
2
s are the temporal and spatial sills, respectively.Moreover, the value

of k needs to satisfy 𝜎2Z = 𝜎2t + 𝜎
2
s + k𝜎2t 𝜎

2
s .

The metric model is another way of modeling the covariance function. Here the
covariance function is a function of the (weighted) Euclidean distance between
two observations. To treat the spatial and temporal distances equally, the spatial
and temporal dimensions are matched by an anisotropy parameter 𝜅. The metric
Sp.T. covariance model is given by

C(h,u) = Cjoint(
√
h2 + (𝜅u)2).
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The corresponding semivariogram becomes

𝛾(h,u) = 𝛾joint(
√
h2 + (𝜅u)2) = 𝜎2Z − Cjoint(

√
h2 + (𝜅u)2).

Note that when 𝜅 = 1, this covariance model corresponds to an isotropic
second-order stationary random process in R3.
More generally, in Sp.T. kriging modeling, the process is often described as

Z(s, t) = 𝜇(s, t) + 𝜖(s, t),

where𝜇(s, t) = ms(t) is a deterministic trend and 𝜖(s, t) is amean zero Sp.T. random
field, usually assumed stationary. The trend is typically modeled by

𝜇(s, t) = 𝜷⊺x(s, t),

where x(s, t) ∈ RM is a set ofM known covariates, often chosen to be polynomials
of s and t, and 𝜷 ∈ RM is an unknown parameter to be determined.
When the Sp.T. process has a deterministic (unknown) nonconstant trend,

then the BLUP (15.13) that minimizes (15.14) is called the Sp.T. universal kriging
predictor, and the kriging weights are functions of both the dependence struc-
ture and the covariates evaluated at the observed and predicted locations, see
e.g. [3] Chapter 4.1.2, page 148. In order to estimate 𝜷 and the Sp.T. variogram
parameter 𝜃, without relying on distributional assumptions, an iterative weighted
least squares method may be used. First, 𝜷 is estimated by the OLS method,
minimizing

n∑
i=1

mi∑
j=1

(Z(si, tij) − 𝜷
⊺x(si, tij))2.

Based on the resulting regression residuals, the Sp.T. semivariogram is then esti-
mated by fitting a parametric Sp.T. semivariogram model to the corresponding
empirical Sp.T. semivariogram by a least squares method. The parameter 𝜷 is then
re-estimated using a weighted least squares method, taking into account the esti-
mated dependence structure of the residuals [2]. The dependence structure (vari-
ogram) is again estimated based on the updated residuals and thewhole procedure
iterated until convergence.
Note that if there is a deterministic time trend, but no spatial, such that 𝜇(s, t) =

ms(t) = m(t), the functional kriging methods do not need to specify and estimate
the trend, whereas the Sp.T. kriging methods need to.

15.3.3 Evaluation of Kriging Methods

A common way of evaluating the prediction performance of prediction methods
for functional data is FCV , as suggested by Giraldo et al. [5, 6]. In FCV, the data
from each observed spatial location is removed, one at a time, and then it is
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predicted at all observed time points by the prediction method using the observed
functional data at the remaining locations. The MSPE is computed as

MSPE = 1
n

n∑
i=1

mi∑
j=1

(Z(si, tij) − Ẑ−i(si, tij))2∕mi, (15.16)

where Ẑ−i(si, tij) denotes the predicted value at location (si, tij) based on the
functional data with the observations Z(si, tij), j = 1,… ,mi excluded.

15.4 A Simulation Study

Here we present a simulation study that aims to shed light over the relative merits
of Sp.T. and functional kriging, with particular focus on Gaussian second-order
stationary functional processes inR2. Since the functional krigingmethodsOKFD,
PWFK, and FKTM often coincide for such processes (see Sections 15.3.1.2 and
15.3.1.3), we restrict our comparisons to Sp.T. kriging vs. OKFD.We simulate data
from three main types of Gaussian processes. The first two scenarios correspond
to stationary isotropic Sp.T. processes with separable and nonseparable covariance
functions, respectively. The third scenario corresponds to second-order stationary
functional (but nonstationary Sp.T.) processes with constant mean. For all three
scenarios, several different cases are simulated, with varying strengths of spatial
and temporal dependence. All the considered cases in the study are presented in
Table 15.1, where the different parameters control the Sp.T. correlation structure
in the three different main scenarios. Examples of simulated data for six cases are
illustrated in Figure 15.1.
For each case in Table 15.1, data at m = 50 time points, equally distributed on

[0, 1], were generated at each of n = 6 × 6 = 36 spatial locations, located on a reg-
ular grid in [0, 1] × [0, 1]. For each case, N = 100 independent realizations were
generated. An extended version of this simulation study is presented by Strand-
berg et al. [13], where two other sample sizes also were considered; small refer-
ring to n = 6 × 6 spatial locations and m = 12 time points, and large referring to
n = 15 × 15 spatial locations and m = 50 time points. The sample size presented
here is referred to asmedium.Moreover, the presence of a deterministic time trend,
m(t) = 9 + 3 sin(2𝜋t), for cases 1–18 was also investigated by Strandberg et al. [13].
Below we present each of the three main scenarios in more detail, together with
the simulated results.

15.4.1 Separable

The first nine cases in Table 15.1 were simulated using the R-package Random-
Fields [24] and are Gaussian stationary Sp.T. processes with separable covariance
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Table 15.1 The 24 different types (cases) of simulated Gaussian processes and their
parameters: isotropic second-order stationary Sp.T. processes with separable (cases 1–9)
and nonseparable (cases 10–18) covariance functions, and second-order stationary
functional (but non-stationary Sp.T.) processes (cases 19–24) with constant means.

Generated data Generated data Generated data

Case Type 𝜶 𝜷 Case Type 𝜶 𝜷 Case Type #bases (p) 𝜶

1

Se
pa
ra
bl
e

0.1 10

N
on
-s
ep
ar
ab
le

0.1 19

N
on
-s
ta
tio
na
ry

0.1
2 0.1 1 11 0.1 1 20 7 0.5
3 10 12 10 21 2

4 0.1 13 0.1 22 0.1
5 0.5 1 14 0.5 1 23 15 0.5
6 10 15 10 24 2

7 0.1 16 0.1
8 2 1 17 2 1
9 10 18 10

The larger the value of 𝛼 and 𝛽 the weaker the spatial and temporal correlation, respectively.

functions (15.15). The spatial covariance function Cs(h) in Eq. (15.15) was set to
the exponential covariance function with nugget effect, taking the form:

Cs(h) = (1 − 𝜈) exp(−𝛼h) + 𝜈I{h = 0},

where 𝜈 ∈ (0, 1] is the nugget effect and 𝛼 controls the strength of the spatial cor-
relation structure. The parameter 𝜈 was set to be 0.04, while the following values
of 𝛼 were considered; 0.1, 0.5, and 2, corresponding to effective ranges 30, 6, and
1.5 (very strong,medium andweak spatial correlation), respectively. The temporal
covariance function Ct(u) in (15.15) was given by the stable covariance function:

Ct(u) = exp(−(𝛽u)𝛾 ), (15.17)

where 𝛽 controls the strength of the temporal correlation structure and 𝛾 is a
parameter that should be in the interval (0, 2] in order to provide a valid covari-
ance function. Here, 𝛾 was fixed to be 0.5, while the following values of 𝛽 were
considered: 0.1, 1, and 10, corresponding to the effective ranges 90, 9, and 0.9 (very
strong, medium, and weak temporal correlation), respectively.
Estimation of the OKFD model was performed using the R-package geofd [18].

Given the generated data Z(si, tj), i = 1,… , 36, j = 1,… , 50, the OKFD model was
estimated using two types of basis functions for p = 5, 15, 25, 35, 45, 47, and 49, in
order to study the effect of changing the number of basis functions in (15.9). We
usedFourier (the first p) and cubic B-spline basis functions. The (p) cubic B-splines
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Figure 15.1 Examples of simulated data for: (a) case 3 (𝛼 = 0.1, 𝛽 = 10), (b) case 7
(𝛼 = 2, 𝛽 = 0.1), (c) case 10 (𝛼 = 0.1, 𝛽 = 0.1), (d) case 18 (𝛼 = 2, 𝛽 = 10), (e) case 21
(𝛼 = 2, p = 7), and (f) case 22 (𝛼 = 0.1, p = 15). The larger the value of 𝛼 and 𝛽 , the
weaker the spatial and temporal correlation, respectively.

were constructed based on p − 4 equally distributed interior knots on the interval
[0, 1]. For each p and type of basis function, the exponential, spherical, and stable
semivariogrammodels were fitted to the empirical trace-semivariogram. For each
case (1–9), a total of 2 × 7 × 3 = 42 different estimated OKFD models were thus
fitted to the generated data, predictions made and evaluated by FCV in terms of
the MSPE (15.16), and the minimum MSPE over the 42 models registered. The
overall MSPE for each case was computed as the average minimum MSPEs over
the 100 replicates.
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Estimation of the Sp.T. krigingmodelswas performedusing theR-packages gstat
[17] and space-time [25]. Separable semivariogram models (15.15) were fitted to
the empirical Sp.T. semivariogram, being all pairwise combinations of the expo-
nential, spherical, and stable variograms for the spatial (isotropic) and temporal
variogram models. Hence, a total of 3 × 3 = 9 Sp.T. kriging models were fitted to
the data, predictions evaluated by FCV, minimum MSPE registered over the nine
models, and overall MSPE computed for each case (1–9).
The overall MSPEs for the OKFD and the Sp.T. separable model for cases 1–9

with medium sample size are presented in Table 15.2. The numbers highlighted

Table 15.2 Prediction performance in terms of MSPEs for the simulated cases 1–18.

Generated data Overall MSPE Comparison

Case Type 𝜶 𝜷 OKFD Sp.T. separable #Times P-value

1

Se
pa
ra
bl
e

0.1 0.061 (0.2) 0.062 (26.7) 27 0.552
2 0.1 1 0.068 (0.2) 0.067 (26.1) 23 0.059
3 10 0.069 (0.2) 0.066 (24.7) 13 <0.001
4 0.1 0.134 (0.2) 0.143 (23.6) 56 <0.001
5 0.5 1 0.131 (0.2) 0.135 (29.8) 42 0.011
6 10 0.139 (0.2) 0.137 (27.6) 24 0.044
7 0.1 0.334 (0.2) 0.357 (29.0) 64 <0.001
8 2 1 0.368 (0.2) 0.400 (29.3) 65 <0.001
9 10 0.372 (0.2) 0.386 (28.7) 54 0.001

10

N
on
-S
ep
ar
ab
le

0.1 0.066 (0.2) 0.067 (26.2) 38 0.050
11 0.1 1 0.066 (0.2) 0.065 (25.7) 25 0.082
12 10 0.065 (0.2) 0.064 (24.4) 27 0.075
13 0.1 0.128 (0.2) 0.139 (25.8) 49 0.001
14 0.5 1 0.134 (0.2) 0.140 (24.2) 55 <0.001
15 10 0.137 (0.2) 0.140 (27.4) 41 0.006
16 0.1 0.366 (0.2) 0.398 (26.8) 67 <0.001
17 2 1 0.354 (0.2) 0.390 (24.8) 63 <0.001
18 10 0.373 (0.2) 0.391 (27.4) 52 0.003

The smallest overall MSPE for each case is highlighted in bold. The numbers in parentheses
represent the average computational time in seconds over the corresponding estimated models
and replications. The column #Times represents the number of times, out of the 100
realizations, that OKFD had lower (minimum) MSPE than the Sp.T. separable model. The last
column shows P-values from two-sided paired t-tests comparing the overall MSPEs between the
OKFD and the Sp.T. separable models.
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in bold correspond to the smallest overall MSPE (per case), while the numbers
in parentheses report the average computation time (for estimation and FCV) in
seconds over all estimated models and replications (when run on a 3.5GHz Intel
Core i7 processor with 32GB RAMmemory). The second to last column presents
the number of times, out of the 100 realizations, that OKFD had lower (mini-
mum)MSPE than the Sp.T. separablemodel. The last column in Table 15.2 reports
p-values from paired two-sided t-tests comparing the overall MSPEs between the
OKFD and the Sp.T. separablemodels, and thus reflects for which cases significant
differences occur.
It is interesting to note that for cases 1–9, the overall MSPE was often (signif-

icantly) lower for OKFD (cf. Table 15.2), even though the simulated data were
generated from Sp.T. models with separable covariance functions. A closer look
at the overall MSPEs reveals that the weaker the spatial correlation and the
stronger the temporal correlation, the better the OKFD performs and the worse
the Sp.T. separable model performs. As an example, for case 3, corresponding to
strong spatial and weak temporal correlation, the Sp.T. separable model has a
significantly lower overall MSPE compared to the OKFDmodel (p < 0.001), while
the result is reversed (p < 0.001) for case 7, which corresponds to data generated
with weak spatial and strong temporal correlation. Moreover, a comparison of the
computation time shows that prediction by and estimation of an OKFD model is
substantially (over 100 times) faster than the Sp.T. separable model for cases 1–9
(Table 15.2).
Figure 15.2 presents how the type and number of basis functions used in the

OKFD model affect the prediction performance (minimum MSPE over the three
trace-semivariogrammodels, averaged over the 100 realizations) for cases 3 and 7.
The number of basis functions turns out to be an important factor for prediction
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Figure 15.2 Prediction performance (minimum MSPE over the three
trace-semivariogram models, averaged over the 100 realizations) for cases 3 and 7 when
the estimated OKFD model is based on different numbers (p) of basis functions, being
both Fourier and cubic B-spline bases. The solid black lines represent the corresponding
overall MSPE of the Sp.T. separable model.
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Case 9

Case 8

Case 7

Case 6

Case 5

Case 4

Case 3

Case 2

Case 1

0.0 0.1 0.2 0.3 0.4

Differences in MSPE

Figure 15.3 Box plots for cases 1–9 of the differences in (minimum) MSPE between the
two kriging approaches (MSPE(Sp.T)–MSPE(OKFD)) for the 100 replicates, for medium
sample size.

performance; in general using more basis functions results in a smaller prediction
error. On the other hand, the type of basis functions, Fourier or cubic B-splines, is
of less importance. These findings are consistent with all cases (1–9) and for small,
medium, and large sample sizes [13].
To see how prediction performance may vary between replicates, Figure 15.3

presents box plots of the differences in (minimum)MSPE between the two kriging
approaches (MSPE(Sp.T)–MSPE(OKFD)) for the 100 replicates. Here it becomes
clear that OKFD produces more robust predictions. The Sp.T. kriging method
(with estimated separable covariance function) produced much higher MSPEs
than OKFD (casewise) for many realizations, especially for cases 1, 4, 5, 7, 8,
and 9.
The study made by Strandberg et al. [13] further indicates that, in general, the

larger the sample size, the more likely it is that the estimated Sp.T. (separable)
models perform better than OKFD. They also show that the presence and estima-
tion of a deterministic (sinusoidal) time trend did not have a large effect on the
prediction performance, and more or less gave the same conclusions with respect
to the relative performance of the two kriging approaches.

15.4.2 Non-separable

Cases 10–18 in Table 15.1 were simulated using the R-package RandomFields, and
correspond to Gaussian stationary Sp.T. processes with nonseparable covariance
functions of the form

CovNSEP(h,u) = (1 − 𝜈)(2 − Ct(u))−𝛿∕2 exp

(
− 𝛼h√

2 − Ct(u)

)
+ 𝜈I{h = 0}.
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Here 𝛿 is a parameter that must be greater than or equal to the spatial dimension
of the field. The parameter 𝛿 was fixed to be 2, 𝜈 = 0.04, and 𝛼 = 0.1, 0.5, and 2.
The covariance function Ct(u) was set to be the stable covariance function (15.17)
with 𝛾 = 0.5 and 𝛽 = 0.1, 1, and 10.
The same (42) OKFD models and (9) Sp.T. kriging models (with separable var-

iograms) as estimated in Section 15.4.1 were fitted to the simulated data sets of
cases 10–18 using the R-packages geofd, gstat, and space-time, each with 100 real-
izations. In addition to the Sp.T. separable kriging models, Strandberg et al. [13]
also fitted Sp.T. kriging models with product sum and metric variogram models.
Prediction performance was evaluated in the same way as described in

Section 15.4.1 and is summarized in Table 15.2 for medium sample size. In
general, when comparing the two kriging approaches for the nonseparable cases
10–18, similar conclusions as for the separable cases 1–9 were drawn; the weaker
the spatial correlation and the stronger the temporal correlation, the better
the OKFD performs and the worse the Sp.T. separable model performs; OKFD
works better for smaller sample sizes, whereas fitted Sp.T. separable kriging
models performs better for large sample sizes, cf. [13]; more basis functions in
OKFD generally improve prediction performance; computation times are much
shorter for OKFD; the presence of a deterministic time trend did not change the
conclusions. For more details see [13].
A more detailed comparison of the overall MSPEs in Table 15.2 reveals that

prediction performance of OKFD in general improves in comparison to the Sp.T.
separable krigingmodels for the simulated data sets with nonseparable covariance
functions (cases 10–18) compared to those simulated from separable covariance
functions (cases 1–9). This result is to be expected, since none of the fitted (Sp.T.)
kriging models coincide with the models that generated the data for cases 10–18.
This tendency holds also for small and large sample sizes [13].

15.4.3 Nonstationary

Generation of simulated data sets of second-order isotropic stationary functional,
but nonstationary Sp.T. Gaussian processes with constant mean (cases 19–24 in
Table 15.1) were based on the model:

𝜒si (t) = ai⊺B(t) + 𝜖si (t), i = 1,… ,n. (15.18)

Here B(t) = (B1(t),… ,Bp(t))⊺ are p = 7, and 15 cubic B-spline basis func-
tions, defined on equally space knots on the interval [0, 1]. Moreover,
ai = (a1(si),… , ap(si))⊺, where ak(s), k = 1,… , p, were chosen to be p inde-
pendent identically distributed second-order stationary isotropic mean zero
Gaussian processes in R2 with exponential covariance function C(h) = exp(−𝛼h)
with 𝛼 set to 0.1, 0.5, and 2. Hence, the vectors (ak(s1),… , ak(sn))⊺, k = 1,… , p, are
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p independent realizations of a multivariate Gaussian random variable Nn(𝟎,𝚺),
where the n × n covariance matrix equals 𝚺 = {exp(−𝛼||si − sj||)}. Finally, the
𝜖si (t)’s correspond to white noise measurement errors, assumed to be independent
identically normally distributed random variables with mean 0 and variance 0.04
for all i and t, i.e. 𝜖si (t) ∼ N(0, 0.04). For each of the 2 × 3 = 6 cases (19–24), 100
independent realizations were generated using the R-package fda [26].
We fitted the same OKFDmodels as those fitted in Section 15.4.1 to the data sets

using the R-package geofd. However, this timewe extended the choices of number
of basis functions to 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 35, 45, 47, and 49, using both
Fourier and cubic B-splines basis functions, yielding a total of 2 × 15 × 3 = 90 dif-
ferent estimated OKFDmodels. For each case (19–24) and realization, predictions
were made and evaluated by FCV for all 90 models, and the minimumMSPE over
the 90 models registered. The overall MSPE for each case was finally computed
as the average minimum MSPE over the 100 replicates. Furthermore, the nine
Sp.T. ordinary kriging models with separable covariance functions, fitted to the
data in Section 15.4.1, were also estimated for these data sets. Additionally, Sp.T.
universal kriging models were fitted, with a deterministic time trend specified by
a linear combination of the same basis functions that were used to generate the
data set. Hence, a total of 2 × 9 = 18 Sp.T. kriging models were fitted to the data,
predictions evaluated by FCV, minimumMSPE registered over the 18models, and
overall MSPE computed for each case (19–24).
Note that these simulated data sets have time-varying variances and covariances,

which the Sp.T. kriging approach is not designed to capture, whereas the OKFD
model can handle such situations. For cases 19–24, we would therefore expect
OKFD to perform better than the Sp.T. kriging approach. This is indeed the case,
as can be seen in Table 15.3, which summarizes the prediction performance of the
two kriging approaches for medium sample size. In fact, OKFD has significantly
lower overall MSPE for all cases 19–24. This is generally also true for small and
large sample sizes [13]. Moreover, we again note that the computation time for
OKFD is much shorter than for the Sp.T. separable model.
Figure 15.4 illustrates how the type and number of basis functions used in the

fitted OKFD models affect the prediction performance (minimumMSPE over the
three trace-semivariogram models, averaged over the 100 realizations) for cases
21 and 22. Case 21 corresponds to simulated data generated by 7 B-splines with
weak spatial dependence, whereas case 22 corresponds to simulated data gen-
erated by 15 B-splines with strong spatial dependence. In contrast to the simu-
lated stationary Sp.T. models (cases 1–18) where prediction performance typically
increases with the number of basis functions used in the fitted OKFDmodels, here
we observe this phenomena only when Fourier basis are used in the fitted OKFD
models. For B-spline bases, the best prediction performance is (naturally) achieved
using the same number of B-splines in the OKFD fittedmodels as used to generate
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Table 15.3 Prediction performance in terms of MSPEs for the simulated cases 19–24.

Generated data Overall MSPE Comparison

Case Type #bases (p) 𝜶 OKFD Sp.T. separable #Times P-value

19

N
on
-s
ta
tio
na
ry

0.1 0.050 (0.2) 0.055 (24.8) 100 <0.001
20 7 0.5 0.083 (0.2) 0.092 (24.4) 100 <0.001
21 2 0.202 (0.2) 0.212 (28.7) 98 <0.001

22 0.1 0.052 (0.2) 0.056 (26.1) 100 <0.001
23 15 0.5 0.087 (0.2) 0.094 (28.0) 100 <0.001
24 2 0.209 (0.2) 0.218 (28.2) 100 <0.001

The smallest overall MSPE for each case is highlighted in bold. The numbers in parentheses
represent the average computational time in seconds over the corresponding estimated models
and replications. The column #Times represents the number of times, out of the 100
realizations, that OKFD had lower (minimum) MSPE than the Sp.T. separable model. The last
column shows P-values from two-sided paired t-tests comparing the overall MSPEs between the
OKFD and the Sp.T. separable models.
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Figure 15.4 Prediction performance (minimum MSPE over the three trace-
semivariogram models, averaged over the 100 realizations) for cases 21 and 22 when the
estimated OKFD model is based on different numbers (p) of basis functions, being both
Fourier and cubic B-spline bases. The solid and dashed black lines represent the
corresponding overall MSPE of the Sp.T. separable model with and without an estimated
deterministic time trend, respectively.

the simulated data set (7 for case 21 and 15 for case 22). In fact, using too many
B-splines may give substantially poorer predictions, especially when the spatial
dependence is weak, as for case 21, cf. Figure 15.4. It can also be noted that the best
OKFDmodel using B-splines has significantly smaller MSPE than the best OKFD
model using Fourier basis. If the simulated data sets would have been generated
by a set of Fourier basis instead, we would most likely see the opposite behavior,
i.e. that the same number of Fourier basis in the fitted OKFDmodel as in the data
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generation model would probably give the best prediction performance, and do
better than the OKFD models using B-splines.
For the Sp.T. separable kriging models, it turned out that it was advantageous

to use universal kriging (estimating a deterministic time trend), especially for the
cases with weak spatial dependence, see Figure 15.4, whereas the prediction per-
formance was about the same for cases with strong spatial dependence. This was
true also for small and large sample sizes [13]. It was also noted by Strandberg et al.
[13] that Sp.T. kriging models with fitted metric variograms sometimes had better
prediction performance than the Sp.T. separable kriging models, but still worse
than the best OKFD models.

15.5 Application: Spatial Prediction of Temperature
Curves in the Maritime Provinces of Canada

Here, we analyze meteorological data with the same structure as the Canadian
weather data set introduced in [21] but observed over a smaller region. Our data
set, available in the R package geofd [18], consists of temperature measurements
recorded at n = 35 weather stations (spatial locations) at Canada’s Atlantic coast
in theMaritime Provinces (Figure 15.5a). An additionalweather station,Moncton,
which is not used to estimate the kriging models, is also considered to illustrate
out-of-sample prediction performance. For each station, the data contain infor-
mation of the daily mean temperature averaged over the period 1960–1994 (29
February combined with 28 February). The resulting functional data (365 mea-
surements for each of the 35 stations) are displayed in Figure 15.5b, connected
by light gray lines. These data have previously been analyzed by e.g. Giraldo [19],
Giraldo et al. [5], and Menafoglio et al. [9] to illustrate and compare the ordinary
functional kriging approaches OKFD, PWFK, FKTM, and a universal kriging for
functional data (UKFD). Here we use the data to compare the prediction perfor-
mance of Sp.T. kriging models with the OKFD model.
First the data was predicted by the OKFD model using the R-package geofd.

In coherence with the abovementioned analyses, we represented the functional
data at each weather station by a linear combination of Fourier basis functions
using (15.9). The OKFD model was estimated using 51, 101, 151, 201, 251, 301,
and 351 Fourier bases, in order to study how the number of basis functions affected
the prediction performance. Moreover, three semivariogrammodels (exponential,
spherical, and stable) were fitted to the empirical trace-semivariogram by the OLS
method. Thus, in total, we estimated 7 × 3 = 21 OKFD models. Predictions were
then made and evaluated by FCV in terms of their MSPEs (15.16).
The stable trace-semivariogram (Figure 15.6a) resulted in the best prediction

performance for all considered numbers of Fourier bases. Figure 15.6b presents
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Figure 15.5 The locations of the 36 weather stations in the Canadian Maritime
provinces (a) where the average (over 30 years) daily temperature curves (b) were
registered. The bottom panel also presents the estimated common time trend specified
as linear combinations of the first 3 and 7 Fourier basis functions, respectively.

how the number of Fourier basis functions used in the fitted OKFDmodels affects
the prediction performance (minimumMSPE over the three trace-semivariogram
models). The figure clearly reveals that the prediction performance increases
with the number of bases. Thus, the best performance was attained with 351
Fourier bases and its MSPE was 0.5738. Furthermore, it was also noted that the
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Figure 15.6 (a) The empirical trace-semivariogram and the best fitted stable model for
the Canadian temperature curves, represented by 351 Fourier basis functions. (b)
Minimum MSPE over the three trace-semivariogram models for OKFD, based on different
number of Fourier basis functions. The solid black line represents the MSPE of the best
Sp.T. model.

computation time for running OKFD increased slightly with the number of bases.
The average computation time for an estimated OKFD model based on 51 and
351 Fourier bases was less than one and three seconds, respectively.
Next, the datawas predicted using Sp.T. kriging. Since the data show a clear time

trend, universal Sp.T. kriging was first applied. The deterministic time trend was
modeled by a linear combination of the 3 (and 7) first Fourier bases,

m(t) = 𝛽0 +
p∑
k=1

(
𝛽k1 cos

(
2k𝜋(t − 1)

364

)
+ 𝛽k2 sin

(
2k𝜋(t − 1)

364

))
,

where t ∈ T = [1,365], for p = 1 (and 3), and estimated by the OLS method. The
dependence structure of the residuals obtained from the fitted trend was then esti-
mated by fitting Sp.T. second-order stationary and isotropic semivariogram mod-
els to the empirical Sp.T. semivariogram of the residuals (see Figure 15.7a). The
Sp.T. semivariogram models (separable, product-sum, and metric) described in
Section 15.3.2 were estimated, letting their corresponding spatial, temporal, and
joint semivariogram models be altered between the exponential, spherical, and
stable semivariogram models. This resulted in nine separable, nine product-sum,
and three metric Sp.T. semivariogrammodels. As a comparison, we also predicted
the original data by Sp.T. ordinary kriging which assumes a constant deterministic
trend. The Sp.T. semivariogrammodels fitted to the empirical Sp.T. semivariogram
based on the original data were the same as those used for the Sp.T. universal
kriging models. Thus, in total, we investigated (9 + 9 + 3) × 3 = 63 Sp.T. kriging
models. All models were fitted to the data and predictions evaluated by FCV.
Figure 15.7a illustrates the dependence structure in terms of the empirical Sp.T.

semivariogram, computed based on the residuals after estimating a deterministic
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Figure 15.7 The empirical Sp.T. semivariogram (a) and the best-fitted Sp.T. separable
model (with the stable variogram models used for both the spatial and temporal
variograms) based on the residuals obtained from a deterministic time trend with three
Fourier bases (b), for the Canadian weather data.

time trend with three Fourier basis functions. The corresponding fitted Sp.T. sep-
arable semivariogrammodel, yielding the best prediction performance, is given in
Figure 15.7b. The increasing values of the Sp.T. semivariograms in both the spatial
and temporal dimensions indicate that there is dependence structure left in the
residuals.
The best Sp.T. models, in terms of smallest MSPE, within each of the three

groups of dependence structure (separable, product-sum, and metric), and for
each type of trend are presented Table 15.4. The numbers in parentheses report
the corresponding average computation time in seconds over the estimated

Table 15.4 Prediction performance of different Sp.T. kriging models for the Canadian
weather data.

MSPE

Trend Sp.T. separable Sp.T. product-sum Sp.T. metric

No trend 0.5730 (1.8 ⋅ 102) 0.5861 (1.3 ⋅ 104) 0.5730 (1.3 ⋅ 104)
3 Fourier basis 0.5730 (1.8 ⋅ 102) 0.5731 (1.3 ⋅ 104) 1.1126 (1.4 ⋅ 104)
7 Fourier basis 0.5734 (1.6 ⋅ 102) 0.5731 (1.3 ⋅ 104) 1.0670 (1.4 ⋅ 104)

For each type of trend and Sp.T. variogram model, the (minimum) MSPE is reported. The
numbers in parentheses represent the average computational time in seconds over the
corresponding estimated models.
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models. Among the Sp.T. models, many of them have about the same prediction
performance in terms of (minimum) MSPE, the exceptions being the Sp.T. metric
models with estimated trend, cf. Table 15.4, which worked less well. Note that
the best Sp.T. models have approximately the same magnitude of MSPE as the
best OKFD model (MSPE being 0.5738). In terms of computation time, an OKFD
model (taking one to three seconds to compute) was 100–10 000 times faster to
compute compared to a Sp.T. kriging model (Table 15.4).
Figure 15.8Apresents the FCV residuals obtained by the bestOKFD (a) and Sp.T.

(b) models, per location. The dark gray corresponds to the residuals at one of the
locations, Bertrand, the black solid line to the pointwise residual means and the
dashed line to the pointwise standard errors. The spatial distribution of the corre-
sponding MSPEs (averaged over time) at each location, are given in Figure 15.8B,
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Figure 15.8 (A) Functional cross-validation residuals (gray lines) resulting from the best
OKFD (a) and Sp.T. (b) model together with residual means (solid black lines) and
standard deviations (dashed black lines) of the respective methods. (B) The MSPE
(averaged over time) over the different sites for the best OKFD (a) and Sp.T. (b) model. The
size of the points is proportional to the MSPE. The location with the highest MSPE
(Bertrand) and its corresponding residual curve is highlighted in dark gray.
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Figure 15.9 Predicted temperatures at locations Bertrand (a) and Moncton (b) obtained
by the best OKFD model (solid gray line) and the best Sp.T. model (dashed black line)
together with the observed (dotted) values.

where the size of each circle shows the magnitude of the MSPE. Bertrand has
the largest prediction error as indicated by the dark gray circle in Figure 15.8B.
Indeed, it can be noted that there are very small differences between the best
OKFD and Sp.T. models in terms of prediction performance. This is emphasized
in Figure 15.9, where the observed daily temperatures at locations Bertrand and
Moncton are presented togetherwith the corresponding predicted values using the
best OKFD and Sp.T. kriging models.
Giraldo [19] analyzed this data set for the ordinary functional kriging methods

OKFD, PWFK, and FKTM. The number and type of basis functions used in (15.9)
to represent the 𝜒si (t)’s were chosen to be the first 65 Fourier basis functions, deter-
mined by FCV. Giraldo [19] concluded that the three methods have similar FCV
prediction performance.Menafoglio et al. [9] investigated the effect of usingUKFD
instead of OKFD for the Maritime data set, also representing the functional data
by 65 Fourier basis functions. Menafoglio et al. [9] concluded that UKFD is bet-
ter performing in terms of FCV prediction performance compared to OKFD. The
FCVperformancewas there computedwith respect to thefitted data, thus differing
from previous work, including ours, where raw data was used.
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15.6 Concluding Remarks

In this section, we have presented and compared functional and Sp.T. kriging
approaches with respect to prediction performance and computation time, mainly
by a simulation study but also on a real data set. The comparisons were restricted
to Sp.T. kriging vs. the functional kriging method OKFD, since the more flexible
functional kriging approaches PWFK and FKTM coincide with OKFD in several
situations (Sections 15.3.1.2 and 15.3.1.3).
First, we noted that the prediction performance of OKFD (in terms of FCV) nor-

mally was improved when the number of basis functions used to represent the
functional data increased. Second, it turned out that OKFD typically performed
similarly or better than the Sp.T. kriging models for small and medium sample
sizes. This is likely due to that it is more complicated to find good estimates of
the Sp.T. variogram compared to the trace-variograms used in OKFD, since it has
one dimension less. The large number of choices of Sp.T. variogram models and
parameters to estimate makes the Sp.T. estimation process more vulnerable, espe-
cially for small data sets. For larger sample sizes, the Sp.T. kriging starts to perform
better for the stationary Sp.T. processes, whereas OKFD continues to work best
for the nonstationary Sp.T. (but stationary functional) processes. Furthermore, it
was noted that OKFD performed better relative to Sp.T. kriging, the stronger the
temporal- and the weaker the spatial dependence considered.
For all considered cases, OKFDwas computationally much faster than the Sp.T.

krigingmodels. This ismainly related to the largematrices that need to be inverted
in order to perform Sp.T. kriging prediction at each location. One way of reducing
the computation time for the Sp.T. kriging models is to use only the local neigh-
borhood (e.g. the k closest neighboring locations) when prediction is made. This
can often be done without much loss in prediction performance.
To conclude, the prediction performance of the two kriging approaches (func-

tional and Sp.T.) is in general rather equal, with a tendency for functional kriging
to work better for small sample sizes and Sp.T. kriging to work better for large
sample sizes, when data are generated from stationary Sp.T. processes. However,
from a computational perspective, OKFD is substantially faster than Sp.T. kriging.
OKFD also has the possibility to give good predictions for a class of nonstation-
ary Sp.T. processes where Sp.T. kriging may have problems. On the other hand,
the functional kriging methods are designed to work on a common time domain,
whereas this is not an issue for Sp.T. kriging.
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16.1 Introduction

In the context of spatial data, the ideas of smoothing has been present for many
years. For example, Kammann and Wand [1] combined kriging with low- rank
smoothing for continuous covariates. Most recently, Cressie and Johannesson [2]
built up on this idea and developed a spatial random effects model and fixed rank
kriging, based on predicting the coefficients of a set of basis functions. In a sim-
ilar context, Lee and Durbán [3] proposed the use of two-dimensional B-spline
basis with random coefficients whose covariance structure was given by a penalty
matrix controlled by separate smoothing parameters for each dimension.
In the last 20 years, several approaches have been developed in the context

of spatiotemporal data. Some of them are based on the idea of Kalman filters
[4, 5]. Others have a Bayesian perspective, in particular, hierarchical models
based on Markov Random fields have become very popular [6, 7]. Here, we
adopt the method introduced by Lee and Durbán [8] based on penalized smooth
mixed models. These models use B-spline basis and discrete penalties [9] in a
multidimensional setting [9, 10], but the methodology can be applied for any
basis and quadratic penalty. Penalized splines do not rely on stochastic processes,
and so, there is no need to model the covariance function. Although the number
and position of the knots for the basis functions have to be chosen, the use
of penalties relaxes the importance of the knots placement [11]. The mixed
model representation of P-splines [12] solves the problems of the selection of the

Geostatistical Functional Data Analysis, First Edition. Edited by Jorge Mateu and Ramón Giraldo.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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smoothing parameter (since they become a ratio of variance parameters), and the
nonidentifiability common in additive models (see [13] for further details).
Smoothing is also a key tool in the context of FDA where sample functions are

usually observed with error and need to be presmoothed. An interesting review
of different ways of including smoothing in FDA methodologies can be seen in
[14]. In this context P-splines were used for smoothing the sample curves and
estimating different FDA models such as principal component analysis (PCA),
functional logit regression, and functional partial least squares (PLSs), among
others [15–18].
Alternative approaches for predicting spatiotemporal data are based on using

different FDA methodologies for modeling a set of continuous-time curves with
spatial dependence. On the one hand, classical geostatistical tools such as kriging
were extended for this purpose in [19–23]. On the other hand, functional regres-
sion models with a functional response have been recently applied in [24]. The
spatial information is introduced in terms of scalar covariates and considering a
three dimensional P-spline penalty that combines the two-dimensional P-spline
discrete penalty used for spatial regression [3, 25] with the continuous penalty
(based on the second-order squared derivatives of the parameter functions) used
for functional regression [14].
The rest of the chapter is organized as follows: Section 16.2 introduces a

penalized approach for smoothing spatial data and the reparametrization of this
approach into amixedmodel is presented in Section 16.3. Section 16.4 gives a gen-
eral framework for smoothing spatiotemporal data using an (analysis-of-variance)
ANOVA-type decomposition. The benefits of this approach are shown in a small
simulation study. P-spline functional spatial regression is introduced in Section
16.5. Finally, in Section 16.6, we analyze an air pollution dataset in Spain using
both the functional spatial regression and spatiotemporal smoothing approach.

16.2 Smoothing Spatial Data via Penalized Regression

Suppose, for simplicity, that we observe a response variable, yi, at a finite set of
spatial locations si = (ui, 𝑣i), i = 1,… ,n, and yi is normally distributed. There are
many different approaches to smoothing and predicting spatial data: geostatisti-
cal models [26], Bayesian hierarchical models [27], or penalized regression [28],
among others. Although they approach the smoothing problem from different
perspectives, they are intimately related, for example, penalized splines can be
interpreted as Bayes estimates with a suitable Gaussian process prior [29, 30], and
spline fitting is well known to be a special case of kriging [31]. In this section, we
focus on the use of penalized regression splines (this will help us to see immedi-
ately the links with spatial functional regression).
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Penalized regression splines or P-splines [9, 32] are based on the use of a rich
basis for regression and a penalty on the coefficients to control the smoothness of
the fit. There are many possibilities for the choice of basis (B-splines, thin plate
regression splines, etc.) and penalties (differenced or derivative based penalties),
we will illustrate (without loss of generality) the methodology using B-spline basis
and second-order difference penalties. The model proposed to capture the spatial
dependence is

yi = f (ui, 𝑣i) + 𝝐i, 𝝐i ∼ N(0, 𝜎2), (16.1)

where the smooth function f can be expressed in terms of a number of basis
functions. Some authors suggest the use of radial basis functions or thin plate
splines, or a more computationally efficient version of thin-plate regression
splines proposed by Wood [33]. These bases have the limitation of being isotropic
smoothers and the selection of knots to construct the basis is not trivial. We follow
the approach of [34], and use tensor product of B-spline basis with equally spaced
knots. Although the e domain of the tensor product smooth is a rectangle or
cuboid, it is often the case that the covariates only occupy part of the domain; in
that case, a simple solution is to drop the basis functions that are to be evaluated
at zero, and the corresponding components of the penalty. In the case of scattered
data, the basis is constructed from the tensor product of marginal B-spline basis
defined in [35] so that

f (u, 𝑣) =
q∑
k=1

r∑
l=1
aklBUk (u)B

V
l (𝑣) (16.2)

where
{
BUk (u) ∶ k = 1,… , q

}
and

{
BVl (𝑣) ∶ l = 1,… , r

}
are themarginalB-spline

basis for each spatial coordinate. Let us denote by BU the n × q matrix of values
of the B-spline basis along u evaluated at the sample spatial locations ui and by
BV the n × r matrix of values of the B-spline basis along 𝑣 evaluated at the sample
spatial coordinates 𝑣i.
If unpenalized regression was used, then, the coefficients akl could be chosen by

minimizing the least squared problem:

S =
n∑
i
(yi − f (ui, 𝑣i))2 =

∑
i

(
yi −

q∑
k=1

r∑
l=1
aklBUk (ui)B

V
l (𝑣i)

)2

. (16.3)

In this case, the smoothness of the spatial surface is controlled by the number
of B-spline basis in each dimension. As an alternative approach, it is possible to
introduce a penalty that constraints coefficients that are next to each other to be
similar. By construction, the domain of the tensor product smooth is a rectangle,
and the coefficientsakl are arranged in amatrixA of size q × r, and so,we penalized
the coefficients along the rows and columns of that matrix, i.e.

PEN(A) = 𝜆u

r∑
l=1

||Pua.l||2 + 𝜆𝑣
q∑
k=1

||Pva.k||2, (16.4)
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Figure 16.1 Portion of the B-spline
basis (tensor product of nine cubic
splines) in the case of data in a
regular grid.

wherePu imposes a penalty on the columns ofA (a.l corresponds to column l) and
Pv imposes a penalty on each row ofA (a.k). One important feature of (16.4) is the
fact that 𝜆u and 𝜆𝑣 can be different. This allows different amounts of smoothing
along the two dimensions.
Using expression (16.2, model (16.1) can be expressed inmatrix form as follows:

y = f (u, v) + 𝝐 = Ba + 𝝐, 𝝐 ∼ N(𝟎, I𝜎2),

where the “row-Tensor” product of two matrices denoted by symbol ◽ is defined
as follows:

B = BU◽ BV = (BV ⊗ 𝟏′q)⊙ (𝟏′r ⊗ BU ) . (16.5)

The basis B is of dimension n × qr, the operator ⊙ is the Hadamard or “element-
wise” matrix product, and 𝟏q and 𝟏r are column vectors of ones of length q and r,
respectively. In the case of data on a regular grid, the basis is calculated as the Kro-
necker product of the marginal basis, B = BU ⊗ BV . Figure 16.1 plots a portion of
the basis functions in this case.
Then, the penalized least squares problem is written as follows:

S(a; y, 𝜆u, 𝜆𝑣) = (y − Ba)′(y − Ba) + a′Pa, (16.6)

where P is expressed as follows:

P = 𝜆uIr ⊗ Pu + 𝜆𝑣P𝑣 ⊗ Iq. (16.7)

In particular, whenPu andP𝑣 are based on second-order differences, i.e.Pu = Δ′Δ
(and Δ a matrix that forms differences of order 2), the structure imposed by this
penalty is such that each coefficient akl depends on the eight next neighboring
coefficients along the coordinate axes (in the Bayesian approach, this would be
the covariance structured of the coefficients). Of course, the dependence can be
easily modified if differences are necessary along other directions.
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Conditional on the values of 𝜆u and 𝜆𝑣,

ŷ = f̂ (u, v) = B(B′B + P)−1B′y = Hy.

The matrix H is called the hat matrix, and it is very useful tool. It shows that the
smoother is linear, and its trace gives a measure of the effective dimension of the
model [36].
Optimization of smoothing parameters can be done using leave-one-out

cross-validation, information criteria, etc. We choose an approach that takes
advantage of the connections between penalized splines and mixed models.
Details are given in Section 16.3.

16.3 Penalized Smooth Mixed Models

The connection between nonparametric regression and mixed models was estab-
lished many years ago [37, 38], but it became popular much later [12, 25]. This
approach hasmany advantages: (i) the smoothing parameter is estimated viamax-
imum likelihood and (ii) it can deal easily with the identifiability problems that
appear in models with more than one smooth term.
Smoothing penalties can also be viewed as resulting from improper Gaussian

prior distributions on the spline coefficients, i.e. model (16.1) can be expressed as
follows:

y = Ba + 𝝐, a ∼ N(𝟎,P−), 𝝐 ∼ N(𝟎, I𝜎2), (16.8)

since P− is the Moore–Penrose pseudo-inverse of P (since penalties based on
differences or derivatives are semidefinite positives, within the number of zero
eigenvalues equal to the order of the difference/derivative). To avoid the improper
distribution we propose a reparametrization of the model in which we separate
the penalized and unpenalized coefficients yielding a mixed model. Our aim will
be to reformulate model (16.1) (and therefore model (16.8)) as follows:

f (u, v) = X𝜷 + Z𝜶, with 𝜶 ∼ N(𝟎,G),

where the basis and coefficients are reparameterized as follows:

B → [X ∶ Z] and a → (𝜷,𝜶).

The transformation is based on the singular value decomposition (SVD) of the
penalty matrix given in (16.7) (which is a function of the SVD of the marginal
penalties Pu and P𝑣). Using a similar approach to [13], we find that the transfor-
mation T needed to reparameterized the model bases is

T = [Uunu⊗U𝑣n ∶ Uus ⊗U𝑣n ∶ Uun ⊗U𝑣s ∶ Uus ⊗U𝑣s], (16.9)
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where Uun and Uus are the eigenvectors corresponding to the zero and nonzero
eigenvalues of Pu (and similarly for P𝑣). Then, the matrices of fixed and random
effects are BT = [X ∶ Z],

X =
(
XU◽XV) , (16.10)

Z =
(
ZU◽XV ∶ XU◽ ZV ∶ ZU◽ZV

)
, (16.11)

where ZU = BUUsu. Then, columns of X span the polynomial null space of P and
the columns of Z span its complement. The covariance matrix of the random
effects 𝜶 is diagonal with elements:

G =
⎛⎜⎜⎝

𝜆u𝚺̃U ⊗ Id
𝜆𝑣Id ⊗ 𝚺̃V

𝜆u𝚺̃U ⊗ Ir−d + 𝜆𝑣Iq−d ⊗ 𝚺̃V ,

⎞⎟⎟⎠

−1

, (16.12)

𝚺̃U and 𝚺̃V are the nonzero eigenvalues of the marginal penalty matrices, I is an
identity matrix, and d is the dimension of the null space of P. This partition allows
the representation of the fitted surface in terms of the sum of three components:
one for u (latitude), one for v (longitude), and an interaction component which
depends on both geographical components simultaneously.
The estimates of the coefficients 𝜷 and 𝜶 follow from standard mixed model

theory [39],

𝜷̂ = (X′V−1X)−1X′V−1y, (16.13)

𝜶̂ = GZ′V−1(y − X𝜷̂), (16.14)

whereV = 𝜎2I + ZGZ′. In the mixed model setting, smoothing parameters 𝜆u and
𝜆u become the ratio of variances, therefore, they may be estimated by maximizing
the residual log-likelihood (REML) of [40]:

𝓁(𝜆1, 𝜆2, 𝜎2) = −1
2
log |V| − 1

2
log |X′V−1X| (16.15)

−1
2
y′(V−1 − V−1X(X′V−1X)−1X′V−1)y.

Recently, Rodriguez-Alvarez et al. [41] presented a fast algorithm for the estima-
tion of smoothing parameter in the context of multidimensional smooth mixed
models.
The definition of matrix Z and covariance matrix G suggests that the smooth

function f (u, v) accounting for the spatial structure in the data can be decomposed
as the sum of three components: one latitude, on for longitude and another for the
interaction between them. This decomposition has inspired a new class of smooth
models called P-spline ANOVA models that have an immediate application in the
case of spatial and spatiotemporal data.
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16.4 P-spline Smooth ANOVA Models for Spatial
and Spatiotemporal data

Sometimes, fitting a multidimensional smooth model of the form f (x1,… , xk) can
be restrictive. For example, in the case of spatiotemporal data, using the model

y = fst(u, v, t) + 𝝐 , 𝝐 ∼ 𝒩 (𝟎, 𝜎2I) (16.16)

can lead to a poor fitting. For example, if there is a strong additive effect of time,
but the interaction with the geographical location is relatively small, fitting model
(16.16) using multidimensional P-splines will impose an interaction model and
not an additive one. In order to accommodate all possible settings, we propose the
use of the following model as a general approach for the smoothing of space-time
data:

E[y] = 𝛾 +
k∑
i=1

fi(xi) +
∑
i<j

fij(xi, xj) + · · · + f1,…,k(x1,… , xk), (16.17)

where 𝛾 is a constant term, fi are additive univariate functions of the ith covariate,
fij a two-dimensional interaction smooth function of the pair of covariates (xi, xj),
and so on, until a kth order interaction. These types of models can be seen as
a functional version of ANOVA. Using this terminology, model (16.17) is the
sum of smooth functions of main effects and two-way interactions, three-way
interactions, and so on. These models have been considered in the literature in
the context of Smoothing Splines, as SS-ANOVA models [42, 43]. Since, main
effects are contained in the higher-order interactions, it is necessary to impose
constraints in order to make the model identifiable. This may be complicated
and computationally expensive when there are higher-order interactions. As an
alternative, we propose a Low-rank S-ANOVA model. P-splines use low-rank
bases functions, and so, they are computationally less demanding than other
approaches.
In the case of spatiotemporal data, amodel such as (16.17)might not be realistic.

In general, we will be interested in the spatial effect, the temporal effect, and the
interaction between them. Expressing the model in this way, we are, implicitly,
giving more flexibility to the spatiospatial structure in the model, and we can gain
insight on process behind our data (for example, we can test whether space and
time are separable). Therefore, we will consider a reduced version of model (16.17)
(see [13] for a full description)

y = 𝛾 + fs(u, v) + ft(t) + fst(u, v, t) + 𝝐, 𝝐 ∼ 𝒩 (𝟎, 𝜎2I). (16.18)

fs represents the spatial structure common along time, ft is the common tempo-
ral pattern shared by all locations, and fst would account for departures from this
overall functions across space and along time. Each of these functions is expressed
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again in terms of basis functions and coefficients. The B-spline regression basis for
this model would be

B = [𝟏nt ∶ Bs ⊗ 𝟏t ∶ 𝟏n ⊗ Bt ∶ Bs ⊗ Bt], (16.19)

where Bs is the two-dimensional basis defined in (16.5), Bt is the B-spline
basis for the time effect and Bs ⊗ Bt is the basis for the interaction. If data are
collected at the same time points for all locations, the 3D-basis is constructed
using the Kronecker product, if time points are different, the box-product is used
instead.
The vector of regression coefficients is a = (𝛾, a(s)′, a(t)′, a(st)′)′ and the penalty

matrix is block-diagonal with penalties over a of the form

P = blockdiag(0,P(s),P(t),P(st)), (16.20)

where P(s) is the two-dimensional penalty matrix for the spatial component, with
smoothing parameters 𝜆u and 𝜆𝑣 as in (16.7), i.e.

P(s) = 𝜆uPu ⊗ Ir + 𝜆𝑣Iq ⊗ P𝑣, (16.21)

P(t) is the one-dimensional penalty matrix for the time component, with smooth-
ing parameter 𝜆t, and P(st) is the three-dimensional penalty matrix for the spa-
tiotemporal component with smoothing parameters 𝜏u, 𝜏𝑣, and 𝜏t:

P(st) = 𝜏uIt ⊗ Pu ⊗ Ir + 𝜏𝑣uIt ⊗ Iq ⊗ P𝑣 + 𝜏tPt ⊗ Ir ⊗ Iq. (16.22)

The B-spline model matrix for this model is not of full rank since the space
spanned by Bt is contained in the space spanned by Bs ⊗ Bt, and therefore, we
encounter the identifiability problems mentioned above. Several approaches have
been taken to overcome this problem: (i) add a ridge penalty [44] or (ii) identify
and impose the constraints numerically [10]. However, the first alternative may
induce to numerical problems, and the second method is difficult to extend in the
case of more than two-way interactions. We use here a simpler and more efficient
approach based on removing the linearly dependent columns of the basis (identify-
ing the columns to be removed is immediatewhen themixedmodel representation
is used).We adapt the transformation given (16.9) to the spatiotemporalmodel and
find that the mixed model matrices are

X =

fs(u,v)
⏞⏞⏞⏞⏞⏞⏞

[𝟏t ⊗ xs ∶

ft(t)
⏞⏞⏞⏞⏞

t⊗ 𝟏n ∶

fs,t(u,v,t)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

t⊗ x̆]
Z = [𝟏t ⊗ Zs ∶ Zt ⊗ 𝟏n ∶ t⊗ Zs ∶ Zt ⊗ X̆s ∶ Zt ⊗ Zs],

(16.23)

where x̆ = (u ∶ v ∶ xs), xs = v◽u, and covariance of the random effects is given by

G = blockdiag (F(s),F(t),F(s,t))−1 (16.24)
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with blocks

F(s) =
⎛⎜⎜⎝

𝜆u𝚺̃u ⊗ Id
𝜆𝑣Id ⊗ 𝚺̃𝑣

𝜆u𝚺̃u ⊗ Ir−d + 𝜆𝑣Iq−d ⊗ 𝚺̃𝑣

⎞⎟⎟⎠
,

F(t) = 𝜆t𝚺̃t ,

F(s,t) = blockdiag
(
F(1)
(s,t),F

(2)
(s,t),F

(3)
(s,t)

)
.

where

F(1)
(s,t) =

⎛⎜⎜⎝

𝜏u𝚺̃u ⊗ Id
𝜏𝑣Id ⊗ 𝚺̃𝑣

𝜏u𝚺̃u ⊗ Ir−2 + 𝜏2Iq−2 ⊗ 𝚺̃𝑣

⎞⎟⎟⎠
,

F(2)
(s,t) =

⎛⎜⎜⎝

𝜏t𝚺̃t ⊗ Id
𝜏uIp−d ⊗ 𝚺̃u + 𝜏t𝚺̃t ⊗ Iq−d

𝜏𝑣Ip−d ⊗ 𝚺̃𝑣 + 𝜏t𝚺̃t ⊗ Ir−d

⎞⎟⎟⎠
,

F(3)
(s,t) = 𝜏uIp−d ⊗ 𝚺̃u ⊗ Ir−d + 𝜏𝑣Ip−d ⊗ Iq−d ⊗ 𝚺̃2 + 𝜏t𝚺̃t ⊗ Iq−d ⊗ Ir−d .

Again, estimation of fixed effects coefficients, prediction of random effects, and
estimation of smoothing parameters can be done by using standard mixed mod-
els methodology. However, the size of the data sets in the spatiotemporal context,
makes difficult the use of standard software. We overcome this problem by using
the Generalized Linear Array Models (GLAM) algorithms developed by Currie
et al. [34] to calculate (16.13), (16.14), and (16.15) (see [13] for details).

16.4.1 Simulation Study

We undertake a small simulation study to show that an ANOVA-type model is
preferable to an additive model, or a pure interaction model (which is a common
spatiotemporal model with nonseparable covariance structure). For simplicity,
we restrict our simulation to the 2D-case and generate data from three possible
models:

𝜼(1) = f1(x1) + f1(x2), (“Two main effects model”)

𝜼(2) = f1,2(x1, x2), and (“Interaction model”)

𝜼(3) = f1(x1) + f2(x2) + f1,2(x1, x2) (“Two main effects and interaction”)

and,

f1(x1) = sin(2𝜋x1),

f2(x2) = cos(3𝜋x2), and

f1,2(x1, x2) = 3 sin(2𝜋x1) (2x2 − 1).
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(c) f1,2(x1,x2) (d) f1(x1) + f2(x2) (e) f1(x1) + f2(x2) + f1,2(x1,x2)
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Figure 16.2 Simulated functions: (a) and (b) are the nonlinear main effects of x1 and x2;
(c) is the additive surface of main effects; (d) is interaction surface; and (e) is the sum of
the main effects and the interaction surfaces.

We consider the case of data on a regular grid, the covariates x1 and x2 chosen
in [0, 1] with dimensions n1 = 30 and n2 = 20, respectively. Figure 16.2 shows the
simulated true smooth functions and true surfaces for the proposed scenarios.
Two hundred replicates of three smooth mixed models (additive, anova and

interactionmodels) were fitted for each scenario, with a combination of 𝜎 = 0.25,
𝜎 = 0.5, and 𝜎 = 1. Marginal B-splines bases B1 and B2 were calculated with 8
and 6 knots respectively, with cubic splines. Second-order marginal penalties
were used in the fitting procedure, and smoothing parameters were chosen by
minimizing by REML. To check each model’s performance, we computed the
mean square error (MSE) for each replicate. Figure 16.3 shows the box-plots of the
log(MSE) values for fitted smooth models. The gray shaded box-plot corresponds
to the model from which we have simulated each scenario (i.e. in scenario 1,
we consider 𝜼(1) as a function of two main effects, and thus the additive model
is the favored model). S-ANOVA model clearly gave better results in scenarios 2
and 3 (interaction model and additive plus interaction model). Additive model
performed slightly better than the S-ANOVAmodel in scenario 1. In this case, the
S-ANOVA model reduces to an additive model when the smoothing parameters



�

� �

�

16.5 P-spline Functional Spatial Regression 413

‒2
‒3

‒4
L
o
g
(M

S
E

)

Additive ANOVA

(a) 𝜎 = 0.25

Interaction

‒5

‒1
0

‒2
‒3

‒4
‒5

L
o
g
(M

S
E

)
Additive ANOVA

(b) 𝜎 = 0.5

Interaction

‒6

‒1
0

‒2
‒3

‒4
L
o
g
(M

S
E

)

Additive ANOVA

(c) 𝜎 = 1
Interaction

‒2
‒3

‒4
L
o
g
(M

S
E

)

Additive ANOVA

(d) 𝜎 = 0.25

Interaction

‒5

‒2
.0

‒1
.5

‒3
.0

‒2
.5

‒3
.5

‒4
.0

L
o
g
(M

S
E

)
Additive ANOVA

(f) 𝜎 = 1
Interaction

‒2
.0

‒1
.5

‒2
.5

‒3
.0

‒3
.5

‒4
.0

L
o
g
(M

S
E

)

Additive ANOVA

(e) 𝜎 = 0.5

Interaction

‒4
.5

‒2
‒3

‒4
L
o
g
(M

S
E

)

Additive ANOVA

(g) 𝜎 = 0.25

Interaction

‒5

‒1
0

‒2
‒3

‒4
‒5

L
o
g
(M

S
E

)

Additive ANOVA

(h) 𝜎 = 0.5

Interaction

‒6

‒1
0

‒3
‒2

‒4
L
o
g
(M

S
E

)

Additive ANOVA

(i) 𝜎 = 1
Interaction

Figure 16.3 log(MSE) of fitted smooth model for R = 200: scenario 1 (a–c), scenario 2
(d–f), and scenario 3 (g–i).

in the interaction (𝜏1, 𝜏2) → ∞. The poor performance of the S-ANOVA model in
some replicates might be due to numerical problems, since we have considered
an upper bound for the smoothing parameters equal to 106.

16.5 P-spline Functional Spatial Regression

An alternative method for modeling and predicting spatiotemporal data is using a
FDA based approach as the one developed in [24]. In this case, we have a sam-
ple of spatially correlated sample curves {yi(t) ∶ t ∈ T, i = 1,… ,n} which have
been observed with error at a finite set of time points {tj ∶ j = 1,… ,m} for each
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geographical location si. Then, the data can be seen as realizations of a spatial
functional variable (spatiotemporal stochastic process)

{
X (s, t) ∶ s ∈ S ⊆ ℝ2, t ∈ T ⊆ ℝ

}
, (16.25)

where s = (u, 𝑣) is a generic data location in the spatial domain S = U × V and
U,V , and T are real intervals.
Let us assume that the realizations of the functional variable X are square inte-

grable functions in the spatiotemporal domain and belong to the pqr-dimensional
tensor function space generated by the three univariate basis of B-splines, so that

x(s, t) =
q∑
k=1

r∑
l=1

p∑
h=1

aklhBUk (u)B
V
l (𝑣)B

T
h (t). (16.26)

This means that for all spatial locations, the associated sample curves belong to
the finite-dimension space generated by the basis

{
BTh ∶ h = 1,… , p

}
, so that they

admit the basis expansion:

x(s, t) =
p∑
h=1

ah(s)BTh ,

where the basis coefficients are realizations of a multivariate spatial process
given by

ah(s) =
q∑
k=1

r∑
l=1
aklhBUk (u)B

V
l (𝑣).

For each time point, the associated sample surfaces belong to the tensor func-
tion space generated by the basis

{
BUk B

V
l ∶ k = 1,… , q; l = 1,… , r

}
so that can

be expressed as

x(., t) =
q∑
k=1

r∑
l=1
akl(t)BUk B

V
l ,

where the basis coefficients are realizations of a multivariate stochastic process
given by

akl(t) =
p∑
h=1

aklhBTh (t).

Once the basis coefficients in Eq. (16.26) are estimated from the discrete obser-
vation yij, the spatiotemporal functional variable can be estimated at unobserved
locations and times (s0, t0) by replacing in such equation. This way we can predict
the curve of temporal evolution of the variable across the temporal domain for not
sampled geographical locations and the surface of spatial evolution of the variable
across the spatial domain for any time point in the temporal domain.
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The basis coefficients in Eq. (16.26) can be estimated by introducing the spatial
variability through the following functional spatial regression model [24]:

y(t) = Bs𝛼(t) + 𝜖(t), ∀t ∈ T, (16.27)

where y(t) = (y1(t),… , yn(t))′ is the vector of response functions, Bs is the
two-dimensional B-spline basis for the geographical position described in
Section 16.2, 𝛼(t) = (𝛼1(t),… , 𝛼qr(t))′ is the vector of parameter functions to be
estimated and 𝜖(t) = (𝜖1(t),… , 𝜖n(t))′ the vector of error terms.
Let us assume a basis representation for the functional response y(t) = CBT(t),

and a basis representation for the the functional parameter 𝛼(t) = ABT(t) with
C = (cih)n×p and A = (a(kl)h)qr×p being the corresponding matrices of basis coeffi-
cients and BT(t) = (BT1 (t),… ,BTp (t))′ being the vector of basis functions. Then, the
model becomes

CBT(t) = BsABT(t) + 𝜖(t), ∀t ∈ T.

Thematrix of parameters is estimated by penalized sum of squares, where we have
separated regularization for space and time, furthermore, we use a nonisotropic
penalty term for space to allow more flexibility, i.e.

PSSE(y, 𝛼) = ∫ (CBT(t) − BsABT(t))′(CBT(t) − BsABT(t))dt

+ vec (A)′[PENU,V ,T]vec(A), (16.28)

where PENU,V ,T is defined as in (16.22). Interchanging the integration and sum-
mation operations implied by thematrix products, calculating the derivatives with
respect to A, and using some properties of the Kronecker product, we obtain

vec(A) =
[
Ψ⊗ (B′

sBs) + PENU,V ,T]−1 vec(B′
sCΨ

′),

where Ψ = ∫ BTBT is the inner product matrix between the basis functions in the
temporal domain.

16.6 Application to Air Pollution Data

In this section, we illustrate both penalized approaches (spatiotemporal smooth-
ing and functional regression) with an application of air pollution data. The data
set consists medians over the years 2005 to 2012 of daily ozone levels (O3) at the
55 monitoring stations in Spain and Portugal. The raw data set together with the
map with the geographical locations are shown in Figure 16.4.
The data can be obtained from the R package openair available at compre-

hensive R archive network (CRAN). The Openair project is an initiative of the
Natural Environment Research Council (NERC) that aims to provide a collection
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Figure 16.4 Medians of daily ozone curves (from 2002 to 2015) observed at 55 site in
Spain and Portugal. Four locations are highlighted.

of open-source tools for the analysis of air pollution data (more details can be found
at http://www.openair-project.org/).

16.6.1 Spatiotemporal Smoothing

The P-spline ANOVA model in (16.18) was fitted with 10 basis functions for each
longitude and latitude covariates to construct the spatial main effect basis Bs, 18
basis functions for the temporal main effect basis Bt, and the Kronecker product
of both matrices for the basis of the interaction effect.
The model is fitted using the mixed model formulation in (16.23) and REML

for the estimation of the variance components. The smooth effects of space and
time (i.e. f̂s and f̂t including the constant terms 𝛾̂) are shown in Figure 16.5 and
represents the main spatial and temporal effects of the ANOVA decomposition.
Figure 16.6 shows the space–time interaction estimated by the ANOVAmodel for
four selected days in a year. We can clearly see that the spatial trend is not con-
stant along the days, and it is quite different from the overall spatial trend shown
in Figure 16.5, showing the need for a space–time interaction. Approximate F-test
also concluded that the interaction term was significant in the model. Finally,
Figure 16.7 shows the fitted curves at four selected locations (we will compare
them later with the results from the spatial functional approach).

16.6.2 Spatial Functional Regression

To apply the penalized functional spatial regression model (PFSRM) (16.27), we
start by constructing a cubic B-spline representation of the curves in terms of 18

http://www.openair-project.org/
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Figure 16.5 Smoothed spatial and temporal main effects for the ANOVA model. (a)
Spatial main effect. (b) Temporal main effect.
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Figure 16.6 Smoothed spatiotemporal interaction for ANOVA model at four selected
days.
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Figure 16.7 Smoothed spatiotemporal fit for ANOVA model at four selected locations.
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Figure 16.8 Regression splines fitted from the ozone raw data by using a cubic B-spline
basis with dimension 18 (a). A sample path (dashed line) together with its basis
representation (solid line) using 18 B-spline basis functions (b).

basis functions. The regression splines fitted this way can be seen in Figure 16.8.
The PFSRM model is then estimated by using the Kronecker sum of three
second-order P-spline penalties (two for space and one for time) and marginal
temporal and spatial basis of dimension 365 × 18 and 55 × 100, respectively. The
smoothing parameters were selected by generalized cross-validation (see [24] for
details).
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Figure 16.9 Predicted curve from
the regression splines of the ozone
raw data using 18 cubic B-spline
basis functions (solid line) and the
observed raw data (solid line) in one
site.
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Figure 16.10 Predicted curves
(gray) from the regression splines of
the ozone raw data using 18 cubic
B-spline basis functions) join to its
mean curve (black and solid line)
and the pointwise confidence bands
according to the mean ± two times
the standard deviation (black and
dashed line).
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The predicted curves for each of the considered sites were computed by leave-
one-out cross-validation. Figure 16.10 displays the predicted curves provided by
PFSRM next to their mean curve and point wise confidence bands (computed as
the mean ± two times the standard deviation). An example of predicted curve for
one site superposed with its raw data is displayed in Figure 16.9.
Finally, we compare the fit of both approaches for four selected locations in

Figure 16.11. The curves are quite similar although some discrepancies appear
at the beginning and the end of the year.
Inspired by model (16.17), a more flexible functional approach would be

y(t) = 𝛾 + f (u, v) + 𝜶(t) + Bs𝛽(t) + 𝜖(t), ∀t ∈ T, (16.29)

and so model (16.27) becomes

C𝜽(t) = Ba + 𝝐(t), ∀t ∈ T,



�

� �

�

420 16 From Spatiotemporal Smoothing to Functional Spatial Regression: a Penalized Approach

2006 2008 2010 2012

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

PT01044

O
z
o
n
e

2006 2008 2010

DayDay

DayDay

2012

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

ES1516A

O
z
o
n
e

Raw
ANOVA
FSRM

Raw
ANOVA
FSRM

Raw
ANOVA
FSRM

Raw
ANOVA
FSRM

2006 2008 2010 2012

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

ES1685A

O
z
o
n
e

2006 2008 2010 2012

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

ES1501A

O
z
o
n
e

Figure 16.11 Smoothed spatiotemporal fit for ANOVA model at four selected locations.

where B is given in (16.19), and the vector of regression coefficients is
a = (𝛾, a(s)′, a(t)′, a(st)′)′. Each component of the vector would be penalized
separately as described in (16.20). In order to properly identify the terms in the
model, constraints need to be imposed. A possible approach is to constrain the
coefficients in the model as follows (see [13]) for details)∑

h
a(t)h =

∑
k
a(s)kl =

∑
l
a(s)kl = 0,

∑
h
a(st)klh =

∑
k
a(st)klh =

∑
l
a(st)klh = 0.
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