

Mark Conway Munro

Learn FileMaker Pro 16

The Comprehensive Guide to

Building Custom Databases

Mark Conway Munro

Lewisburg, Pennsylvania, USA

Any source code or other supplementary material

referenced by the author in this book is available to readers

on GitHub via the book's product page, located at

www.apress.com/978-1-4842-2862-3 . For more detailed

information, please visit http://www.apress.com/source-code

.

http://www.apress.com/978-1-4842-2862-3
http://www.apress.com/source-code

ISBN 978-1-4842-2862-3 e-ISBN 978-1-4842-2863-0

https://doi.org/10.1007/978-1-4842-2863-0

Library of Congress Control Number: 2017950736

© Mark Conway Munro 2017

This work is subject to copyright. All rights are reserved by

the Publisher, whether the whole or part of the material is

concerned, specifically the rights of translation, reprinting,

reuse of illustrations, recitation, broadcasting, reproduction

on microfilms or in any other physical way, and transmission

or information storage and retrieval, electronic adaptation,

computer software, or by similar or dissimilar methodology

now known or hereafter developed.

Trademarked names, logos, and images may appear in this

book. Rather than use a trademark symbol with every

occurrence of a trademarked name, logo, or image we use

the names, logos, and images only in an editorial fashion

and to the benefit of the trademark owner, with no intention

of infringement of the trademark. The use in this publication

of trade names, trademarks, service marks, and similar

terms, even if they are not identified as such, is not to be

taken as an expression of opinion as to whether or not they

are subject to proprietary rights.

While the advice and information in this book are believed

to be true and accurate at the date of publication, neither

the authors nor the editors nor the publisher can accept any

legal responsibility for any errors or omissions that may be

made. The publisher makes no warranty, express or implied,

with respect to the material contained herein.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-2863-0

Distributed to the book trade worldwide by Springer

Science+Business Media New York, 233 Spring Street, 6th

Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax

(201) 348-4505, e-mail orders-ny@springer-sbm.com, or

visit www.springeronline.com. Apress Media, LLC is a

California LLC and the sole member (owner) is Springer

Science + Business Media Finance Inc (SSBM Finance Inc).

SSBM Finance Inc is a Delaware corporation.

Foreword

In the 1990s and 2000s, I ran TECSoft, an AppleScript and

FileMaker Pro development shop in New York City. Our

specialty was database publishing – the powerful ability of

Apple’s AppleScript technology to intelligently extract data

from FileMaker databases and to format it ready-for-print in

page layout applications such as QuarkXPress and Adobe

InDesign.

We worked closely with Apple and Claris, the predecessor

of FileMaker Inc., to showcase the abilities of their

technologies. In 1994, growing – and needing additional

developer talent, we asked our pal Eric Silver, the then New

York area sales rep at Claris, to be on the lookout for us. He

told me about a FileMaker wizard he knew named Mark

Munro working at Jack Morton, an AV production company in

New York.

Mark was responsible for organizing Morton’s production

project data and managing their workflow. We met and he

explained their workflow and showed me how he had

organized it in FileMaker so that management was able to

track projects from start to finish, track the various assets

involved, and track and accurately bill their clients for the

time and materials involved.

Mark’s work was amazing and I immediately realized we

had come across FileMaker gold. All aspects of his

company’s workflow were logically organized in a functional

workflow management tool – and most impressively of all –

was clearly presently in an easy-to-follow interface. It is

mind-bending to realize that Mark had accomplished this

before FileMaker was a relational database.

We began working with Mark as a freelance FileMaker Pro

and AppleScript gun slinger. We threw our most complicated

and demanding projects at him – a huge workflow

management and catalog publishing project at Sony Music,

a very complex and mission-critical graphic file creation

project with drop-dead deadlines for Associated Press, to

name just a couple.

In short order, Mark had more than enough work to go

out on his own as a full-time FileMaker and AppleScript

developer. As TECSoft’s focus turned to working with Apple

delivering AppleScript seminars and training sessions, we

created the TECSoft Developers Consortium (TDC) to handle

the huge demand for FileMaker and AppleScript integration

projects our seminars generated. With Mark as TDC

developer #1, we were able to create an international

referral network of FileMaker Pro and AppleScript developers

that became the largest FileMaker Pro and AppleScript brain

trust on earth.

Mark has now been running his own successful

development company, Write Track Media, for over 20

years. What Mark possesses, more than any other developer

I’ve worked with, is a true talent for organization. Mark’s

passion makes him eminently qualified to pass along his

mastery of FileMaker’s powerful organization tool. He just

had to write this book.

John Thorsen Jr.

Introduction

Back in late-1988 while working at Tannen’s Magic Store in

Manhattan, I was introduced to FileMaker. A discussion arose

about using computers to improve the efficiency and

accuracy of the pen and paper-based ordering system. To do

that, we first needed to enter the inventory into a database.

My boss handed me what was then a state of the art

personal computer; a Macintosh SE , which was a small box

with a tiny 9-inch black and white screen. It was loaded with

a copy of the newly released FileMaker II by Claris

Corporation. That version was expressed in Roman numerals

and this was two years before the “Pro” suffix would be

added and the versioning reset to 1.0.

With the computer, a small rolling cart and a long

extension cord, I headed into the stock room to begin

computerizing the inventory. I barely used a computer prior

to that day and it was my first glimpse at FileMaker. I spent

about ten minutes becoming acquainted with the software,

then quickly created a database file and set up a handful of

fields. This rapid adoption is not so much a testament to my

intuitive ability with software but more attributable to the

extremely primitive nature of that early version. The

database I created was extraordinarily crude but it allowed

us to begin entering product information and to print on

paper “labels” that could be taped onto product boxes to

improve the hand-written names and prices.

For the next few weeks, with the help of another

employee, I entered batches of products into the database.

There was no network at the store at the time, so we

periodically shuttled the database by 3.5” floppy disk to the

main office computer to print out box labels displaying the

information. These were affixed to boxes as the next batch

of products were entered. Finally, we had a complete

database of every available product. From there, I

developed an order management system that pulled

product information from that inventory file and installed a

small network of computers each with access to a server.

The project changed order fulfillment at the store and the

course of my life.

Fast forward almost three decades, about twenty

significant version increments later and we reach FileMaker

Pro 16 , an astonishingly powerful piece of software.

Keeping with tradition, it is packed with features for users

and developers in an integrated application. It contains a

development environment and a customizable runtime. It

balances an ease of use making it approachable by

beginners and contains powerful standard technologies and

robust customization options demanded by professionals.

The age of the software and its multi-decade evolution

shows in an esthetic hodgepodge of styles throughout the

development interface. The design of some dialogs look a

little dated when compared to the newer additions; palettes

and workspaces sporting a modern design. This seems to

hint at a steadfast dedication to stability and a desire to

avoid the frequent pitfall of many software titles; changing

things for the sake of changing things. This gradual

evolution of components contributes to the stable nature of

the software across time even as it routinely takes leaps to

evolve and keep pace with new technologies.

The complexity of different modes and perspectives so

tightly integrated in a single application, and the sheer

number of functions, tools and customization options

available proved a challenge when deciding how to best

present the material in a book. In the end, I divided the

material into the following six parts, logically arranged in a

hierarchy so that each chapter builds on the previous:

Part 1 — Using FileMaker

Part 2 — Defining Data Structures

Part 3 — Writing Formulas and Using Functions

Part 4 — Designing Interfaces

Part 5 — Automating Tasks with Scripts

Part 6 — Sharing and Networking

My hope is that the arrangement of material might serve

both those who want to read it cover to cover and those

who use it as a reference guide to look up specific topics

and examples. I would enjoy hearing from you about your

experience with the book and am open to suggestions for

how to improve future editions. If you want to send

feedback, ask a question, or read exclusive online content,

visit my website for the book:

www.learn-filemaker.com

Unlike those early versions I used decades ago, FileMaker

Pro 16 is a mature application with a solid track record,

evolving feature set, substantial user base that should

appeal to professional developers. And, while no one today

should expect to learn it in ten minutes, it is still

approachable for beginners and casual programmers. I hope

this book convinces people to give it a try, both seasoned

professionals and newcomers who are beginning their

adventure into the world of custom database development.

Mark Conway Munro

May 2017 / Lewisburg, PA

Acknowledgments

This book was an enormous challenge and would not have

been possible without the contributions and encouragement

of many.

Some long overdue thanks to Peter Samelson and Tony

Spina who played a role in my early introduction to

FileMaker decades ago. To Sylvia Griffiths for hiring me at

http://www.learn-filemaker.com/

Jack Morton and to Laura Shuler for asking me to develop a

budget management database. To John Thorsen, Jr., for

development opportunities he offered me and for being

such a prolific source of advice, knowledge, and humor.

Continuing thanks to all my incredible clients for finding

new challenges that push me to find new technological

solutions to improve their database and workflow systems.

To the whole team at Apress for providing me with this

opportunity and for all their hard work in bringing

everything together.

Most of all, a huge thanks to two close friends. To Brian

Sanchez for his work reviewing the material with a keen eye

for technical accuracy. His feedback led to many key

improvements that greatly enhanced the quality of the

material. Also, to Walker Stevenson for reading a draft of the

manuscript and providing some additional technical notes

and suggestions for improvement.

Contents

Part I: Using FileMaker

Chapter 1: Introducing FileMaker

The History of FileMaker in a Nutshell

Nashoba Nutshell

Early FileMaker

FileMaker 4

Claris

FileMaker Inc.

Exploring Database Basics

Defining a Database

Database Structure

Relational Databases

User Interface

Scripted Procedures

Identifying Different Database Architectures

The Traditional Multitier Database Architecture

FileMaker’s Integrated File Architecture

Taking a Bird’s Eye Anatomical and Functional

Overview

Application Resources

Database File Resources

The FileMaker Product Family

FileMaker Pro

FileMaker Pro Advanced

FileMaker Server

FileMaker Go

FileMaker WebDirect

Summary

Chapter 2: Exploring the Application

Installing and Launching FileMaker Pro

Launching the Installer

Running the Installation Process

Launching the Application

Default Windows

Get Started Screen

Launch Center

Application Preferences

General Settings

Layout Settings

Memory

Plug-Ins

Permitted Hosts

Default Menu Bar

The Application Menu

File Menu

Edit Menu

View Menu

Insert Menu

Format Menu

Records Menu

Scripts Menu

Tools Menu

Window Menu

Help Menu

Contextual Menus

Contextual Menus for Fields

Contextual Menus for Record Content Area

Contextual Menus for Web Viewers

Contextual Menus for Window Components

Contextual Menus for Calculation Formulas

Summary

Chapter 3: Exploring a Database Window

Using a Starter Solution

Listing FileMaker’s Starter Solutions

Creating a Database from a Starter Solution

Defining the Database Window

Identifying Window Areas

Defining Window Modes

Defining Content Views

Exploring the Window Header

Status Toolbar (Browse Mode)

Formatting Bar

Window Ruler

Managing Multiple Windows

Creating a New Window

Closing a Window

Selecting a Window from the Menu

Hiding and Showing Windows

Opening an Existing Database

Opening a Database through the Launch Center

Managing Favorite Databases

Summary

Chapter 4: Working with Records

Entering Data

Opening a Record

Understanding Field Focus

Moving to Another Field with Tab Order

Modifying Field Contents

Formatting Field Contents

Closing a Record

Managing Records

Creating a New Record

Deleting a Record

Deleting All Records

Duplicating a Record

Searching for Records

Performing Fast Searches

Using Find Mode

Working with Found Sets

Defining a Found Set

Changing the Records in the Found Set

Sorting Records in the Found Set

Modifying Field Values for Records in the Found

Set

Find and Replace

Spell Checking

Printing

Page Setup

Using Preview Mode

Print Dialog Options

Summary

Chapter 5: Transferring Data

Importing and Exporting Records

Supported File Types

Downloading Sample Data

Importing Records

Exporting Records

Exporting Field Contents

Summary

Part II: Defining Data Structures

Chapter 6: Working with Database Files

Creating a New Database File

Configuring a Sandbox Table

Changing the Default Table Name

Creating Data Entry Fields

Creating a Calculation Field

Creating a Summary Field

Setting Up Layouts

Database File Options

Open Settings

Icon Settings

Spelling Settings

Text Settings

Script Triggers Settings

Maintaining Healthy Files

Database Maintenance Functions

Avoiding Design and Training Deficiencies

Restraining File Size

Understanding File Damage

Specifying File Paths

Formatting Paths

Building Dynamic Paths

Summary

Chapter 7: Working with Tables

Modeling Tables

Introducing the Manage Database Dialog (Tables)

Table Properties

Naming Tables

Managing Tables

Selecting Tables

Adding Tables

Modifying a Table Name

Deleting Tables

Summary

Chapter 8: Defining Fields

Defining Field Data Types

Entry Fields

Display Fields

Exploring Field Content Types

Introducing the Manage Database Dialog (Fields)

Naming Fields

Highlighting the Visibility of Field Names

Defining Standard Fields

Ideas for Standard Fields

Naming Standard Fields

Managing Fields

Selecting Fields

Adding Fields

Modifying a Field Name

Modifying a Field Type

Deleting Fields

Setting Field Options

Options for Entry Fields

Options for Display Fields

Expanding the Learn FileMaker Object Model

Defining Standard Fields

Defining Custom Fields

Summary

Chapter 9: Connecting Tables with Relationships

Introducing Relationships

Defining Relationships

Defining Uses for Relationships

Defining Connection Types

Organizing Relationships

Planning the Learn FileMaker Relational Object

Model

Managing Data Sources

Introducing the Manage External Data Sources

Dialog

Exploring the Edit Data Source Dialog

Introducing the Manage Database Dialog

(Relationships)

Working with Table Occurrences

Selecting Table Occurrences

Interacting with Table Occurrences

Arranging Table Occurrences

Viewing Options

Formatting Table Occurrences

Editing Table Occurrences

Adding Table Occurrences

Deleting Occurrences

Printing the Relationship Graph

Building Relationships

Adding Relationships

Manipulating Relationships

Adding Notes to the Graph

Finalizing the Learn FileMaker Relational Model

Summary

Chapter 10: Managing Containers

Inserting Files into Containers

Insert Menu

Drag and Drop

Copy and Paste

Understanding Container Storage Options

Storing the Actual File

Storing a Reference to a File

Using Managed External Storage

Defining Base Directories

Defining a Field to Store Container Data

Externally

Extracting Files from Containers

Summary

Chapter 11: Managing Value Lists

Using Value Lists

Exploring the Value List Interface

Introducing the Value Lists Dialog

Introducing the Editing Value List Dialog

Creating Value Lists

Using Custom Values

Using Values from Another File

Using Values from a Field

Building Value Lists from Field Values

Summary

Part III: Writing Formulas and Using Functions

Chapter 12: Writing Formulas

Introducing Formulas

How Formulas Work

Defining Formula Components

Comments

Constants

Field References

Functions

Operators

Reserved Words

Variables

Exploring the Calculation Interface

Exploring the Specify Calculation Dialog

Writing Formulas

Getting Started with Simple Formulas

Inserting Components into Formulas

Creating Repeating Calculation Fields

Using Space to Your Advantage

Adding Calculations to the Learn FileMaker File

Company Contact Count

Contact Address Label

Summary

Chapter 13: Text Functions

Text Function Reference

Char

Code

Exact

Filter

FilterValues

Furigana

GetAsCSS

GetAsDate

GetAsNumber

GetAsSVG

GetAsText

GetAsTime

GetAsTimestamp

GetAsURLEncoded

GetValue

Hiragana

KanaHankaku

KanaZenkaku

KanjiNumeral

Katakana

Left

LeftValues

LeftWords

Length

Lower

Middle

MiddleValues

MiddleWords

NumToJText

PatternCount

Position

Proper

Quote

Replace

Right

RightValues

RightWords

RomanHankaku

RomanZenkaku

SerialIncrement

SortValues

Substitute

Trim

TrimAll

UniqueValues

Upper

ValueCount

WordCount

Summary

Chapter 14: Text Functions (JSON)

Introducing JSON

Defining the JSON Format

Referring to JSON Elements

JSON Function Reference

JSONDeleteElement

JSONFormatElements

JSONGetElement

JSONListKeys

JSONListValues

JSONSetElement

Summary

Chapter 15: Text Formatting Functions

Text Formatting Function Reference

RGB

TextColor

TextColorRemove

TextFont

TextFontRemove

TextFormatRemove

TextSize

TextSizeRemove

TextStyleAdd

TextStyleRemove

Summary

Chapter 16: Number Functions

Number Function Reference

Abs

Ceiling

Combination

Div

Exp

Factorial

Floor

Int

Lg

Ln

Log

Mod

Random

Round

SetPrecision

Sign

Sqrt

Truncate

Summary

Chapter 17: Date, Time, and Timestamp Functions

Date Function Reference

Date

Day

DayName

DayNameJ

DayOfWeek

DayOfYear

Month

MonthName

MonthNameJ

WeekOfYear

WeekOfYearFiscal

Year

YearName

Time Function Reference

Hour

Minute

Seconds

Time

Timestamp Function Reference

Timestamp

Summary

Chapter 18: Container Functions

Container Function Reference

Base64Decode

Base64Encode

Base64EncodeRFC

CryptAuthCode

CryptEncrypt

CryptEncryptBase64

CryptDecrypt

CryptDecryptBase64

CryptDigest

GetContainerAttribute

Examples

GetHeight

GetThumbnail

GetWidth

HexEncode

HexDecode

TextEncode

TextDecode

VerifyContainer

Summary

Chapter 19: Aggregate, Summary, and Repeating

Functions

Aggregate Function Reference

Average

Count

List

Max

Min

StDev

StDevP

Sum

Variance

VarianceP

Summary Functions

GetSummary

Repeating Function Reference

Extend

GetRepetition

Last

Summary

Chapter 20: Financial and Trigonometric Functions

Financial Function Reference

FV

NPV

PMT

PV

Trigonometric Function Reference

Acos

Asin

Atan

Cos

Degrees

Pi

Radians

Sin

Tan

Summary

Chapter 21: Logical Functions

Logical Function Reference

Case

Choose

Evaluate

EvaluationError

ExecuteSQL

GetAsBoolean

GetAVPlayerAttribute

GetField

GetFieldName

GetLayoutObjectAttribute

GetNthRecord

If

IsEmpty

IsValid

IsValidExpression

Let

Lookup

LookupNext

Self

Summary

Chapter 22: Get Functions

Get Function Reference

Get (AccountExtendedPrivileges)

Get (AccountGroupName)

Get (AccountName)

Get (AccountPrivilegeSetName)

Get (ActiveFieldContents)

Get (ActiveFieldName)

Get (ActiveFieldTableName)

Get (ActiveLayoutObjectName)

Get (ActiveModifierKeys)

Get (ActivePortalRowNumber)

Get (ActiveRepetitionNumber)

Get (ActiveSelectionSize)

Get (ActiveSelectionStart)

Get (AllowAbortState)

Get (AllowFormattingBarState)

Get (ApplicationArchitecture)

Get (ApplicationLanguage)

Get (ApplicationVersion)

Get (CalculationRepetitionNumber)

Get (ConnectionAttributes)

Get (ConnectionState)

Get (CurrentDate)

Get (CurrentExtendedPrivileges)

Get (CurrentHostTimestamp)

Get (CurrentPrivilegeSetName)

Get (CurrentTime)

Get (CurrentTimestamp)

Get (CurrentTimeUTCMilliseconds)

Get (CustomMenuSetName)

Get (DesktopPath)

Get (Device)

Get (DocumentsPath)

Get (DocumentsPathListing)

Get (EncryptionState)

Get (ErrorCaptureState)

Get (FileMakerPath)

Get (FileName)

Get (FilePath)

Get (FileSize)

Get (FoundCount)

Get (HighContrastColor)

Get (HighContrastState)

Get (HostApplicationVersion)

Get (HostIPAddress)

Get (HostName)

Get (InstalledFMPlugins)

Get (LastError)

Get (LastExternalErrorDetail)

Get (LastMessageChoice)

Get (LayoutAccess)

Get (LayoutCount)

Get (LayoutName)

Get (LayoutNumber)

Get (LayoutTableName)

Get (LayoutViewState)

Get (MenubarState)

Get (ModifiedFields)

Get (MultiUserState)

Get (NetworkProtocol)

Get (NetworkType)

Get (PageNumber)

Get (PersistentID)

Get (PreferencesPath)

Get (PrinterName)

Get (QuickFindText)

Get (RecordAccess)

Get (RecordID)

Get (RecordModificationCount)

Get (RecordNumber)

Get (RecordOpenCount)

Get (RecordOpenState)

Get (RegionMonitorEvents)

Get (RequestCount)

Get (RequestOmitState)

Get (ScreenDepth)

Get (ScreenHeight)

Get (ScreenScaleFactor)

Get (ScreenWidth)

Get (ScriptAnimationState)

Get (ScriptName)

Get (ScriptParameter)

Get (ScriptResult)

Get (SortState)

Get (StatusAreaState)

Get (SystemDrive)

Get (SystemIPAddress)

Get (SystemLanguage)

Get (SystemNICAddress)

Get (SystemPlatform)

Get (SystemVersion)

Get (TemporaryPath)

Get (TextRulerVisible)

Get (TotalRecordCount)

Get (TouchKeyboardState)

Get (TriggerCurrentPanel)

Get (TriggerExternalEvent)

Get (TriggerGestureInfo)

Get (TriggerKeystroke)

Get (TriggerModifierKeys)

Get (TriggerTargetPanel)

Get (UserCount)

Get (UserName)

Get (UseSystemFormatsState)

Get (UUID)

Get (WindowContentHeight)

Get (WindowContentWidth)

Get (WindowDesktopHeight)

Get (WindowDesktopWidth)

Get (WindowHeight)

Get (WindowLeft)

Get (WindowMode)

Get (WindowName)

Get (WindowOrientation)

Get (WindowStyle)

Get (WindowTop)

Get (WindowVisible)

Get (WindowWidth)

Get (WindowZoomLevel)

Summary

Chapter 23: Design Functions

Design Function Reference

DatabaseNames

FieldBounds

FieldComment

FieldIDs

FieldNames

FieldRepetitions

FieldStyle

FieldType

GetNextSerialValue

LayoutIDs

LayoutNames

LayoutObjectNames

RelationInfo

ScriptIDs

ScriptNames

TableIDs

TableNames

ValueListIDs

ValueListItems

ValueListNames

WindowNames

Summary

Chapter 24: Mobile Functions

Mobile Function Reference

Location

LocationValues

RangeBeacons

Summary

Chapter 25: Creating Custom Functions

Defining Custom Functions

Exploring the Custom Function Dialogs

The Manage Custom Functions Dialog

The Edit Custom Function Dialog

Building Custom Functions

Creating a Simple Custom Function

Adding Parameters to a Custom Function

Accessing Fields from Custom Functions

Building Recursive Custom Functions

Summary

Chapter 26: Introducing ExecuteSQL

Defining the ExecuteSQL Function

How the ExecuteSQL Function Works

Understanding Some Limitations of ExecuteSQL

Creating SQL Queries

Defining SELECT Statements

Using the SELECT Statement

Inserting Literal Text in the Field List

Concatenating Results

Using the WHERE Clause

Using the ORDER BY Clause

Using the JOIN Clause

Using the GROUP BY Clause

Using the UNION Clause

Limiting the Results of a Query

Accessing the Database Schema

Selecting FileMaker_Tables

Selecting FileMaker_Fields

Exploring Other SQL Features

Summary

Part IV: Designing Interfaces

Chapter 27: Introducing Layout Mode

Emphasizing the Importance of Layout Design

Using Layout Mode

Identifying Layout Mode

Status Toolbar (Layout Mode)

Menu Changes (Layout Mode)

Summary

Chapter 28: Getting Started with Layouts

Planning Layouts

Classifying Layouts into Type Categories

Sketching a Layout Flow Chart

Working with Layout Parts

Exploring Layout Regions and Controls

Defining Part Types

Managing Parts

Adding Layouts

Creating a New Layout

Configuring Layouts

Deleting Layouts

Using the Manage Layouts Dialog

Optimizing Layout Performance

Summary

Chapter 29: Exploring Layout Palettes

Exploring the Field Picker

Exploring the Inspector

Panel One — Defining Position Settings

Panel Two — Style Settings

Panel Three — Appearance Settings

Panel Four — Data

Exploring the Layout Objects Palette

Using the Shortcuts in the Layout Objects

Palette Contextual Menu

Summary

Chapter 30: Creating Layout Objects

Introducing Layout Objects

Inserting an Object onto the Layout

Configuring an Object

Working with Field Objects

Clarifying Field Terminology

Field Basics

Configuring Field Control Style

Exploring the Benefits of Pop-Up Menus for Two-

Field Value List

Bypassing Value List Entry Restrictions

Using Placeholders

Working with Text

Static Text

Dynamic Placeholder Symbols

Merge Fields

Merge Variables

Working with Button Controls

Working with Buttons

Popover Button

Button Bar

Working with Panel Controls

Tab Control

Slide Control

Working with Portals

Illustrating How Portals Work

Exploring the Portal Setup Dialog

Adding Objects to Portal Rows

Creating Records in a Portal

Deleting Portal Rows

Filtering Portal Records

Working with Web Viewers

Exploring the Web Viewer Setup Dialog

Interacting with Web Viewer Content

Building a Web Page Using Data from Fields

Working with Charts

Creating Charts

Summary

Chapter 31: Manipulating Objects

Selecting Objects

Resizing Objects

Moving Objects

Layout Positioning Helpers

Arranging & Aligning Objects

Align

Resize To

Distribute or Space

Rotate

Group

Lock

Object Stacking

Hiding Objects

Conditional Formatting

Condition Formula Options

Conditional Format Settings

Conditionally Formatting an Invoice Status Field

Understanding Tab Order

Changing the Tab Order

Using Functions of the Set Tab Order Dialog

Naming Objects

Summary

Chapter 32: Using Themes and Styles

Introducing Themes and Styles

Defining Styles

Defining Themes

Using Themes

Choosing a Layout’s Theme

Managing Themes

Using Styles

Changing an Object’s Style Assignment

Editing a Style’s Settings

Summary

Chapter 33: Customizing Menus

Exploring the Capabilities of Customize Menus

Getting Started with Custom Menus Basics

Exploring Custom Menu Set Options

Understanding Customization Exceptions

Exploring the Manage Custom Menus Dialog

Creating a Custom Menu Set

Adding Copies of Standard FileMaker Menus

Customizing Menu Items

Exploring the Edit Custom Menu Dialog

Modifying Standard Menu Items

Adding a Custom Menu

Installing a Menu Set

Exploring the Link Between Commands and Menus

Creating a Status-Based Custom Menu

Summary

Part V: Automating Tasks with Scripts

Chapter 34: Introduction to Scripting

Identifying the Benefits of Scripting

Exploring Scripting Basics

Calling Other Scripts

Understanding the Importance of Context

Exploring the Script Workspace

Workspace Toolbar

Script Pane

Script-Editing Pane

Script Step Pane

Script Workspace Menu Changes

Writing Scripts

Script Step Basics

Summary

Chapter 35: Common Scripting Tasks

Allowing User Abort

Setting Variables

Creating Navigation Scripts

Go to Layout

Go to Record/Request/Page

Go to Related Record

Interacting with Fields

Go to Field

Set Field

Set Field by Name

Set Selection

Set Next Serial Value

Get Directory

Working with Records

Import Records

Export Records

Using Show Custom Dialog

Configuring a Dialog

Configuring a Dialog for Field Input

Capturing the Button Click

Conditionally Branching with If Statements

Building Simple If Statements

Building Compound If Statement

Building Nested If Statement

Performing Searches

Working with Found Sets

Iterating with a Loop Statement

Looping Through a Found Set of Records

Looping Through Lists of Data

Confirming a Dialog Field Value

Scripting Portal Functions

Navigating to a Portal Row’s Record

Adding a Portal Row

Managing Windows

Creating a New Window

Introducing the Card Window

Managing Errors

Summary

Chapter 36: Debugging Scripts

How Script Debugging Works

Uses for the Script Debugger

Defining Basic Debugging Concepts

Activating the Debugger

Exploring the Debugging Interface

Debugging Options Under the Tools Menu

Exploring the Script Debugger Window

Exploring the Data Viewer Window

Using Custom Breakpoints

Summary

Chapter 37: Using Script Triggers

Script Trigger Reference

File Option Triggers

Layout Triggers

Layout Object Triggers

Working with Script Triggers

Finding Script-Triggered Objects

Remembering Event Precedence

Using Caution with Script Parameters

Exceptions to Event Triggers

Summary

Chapter 38: Extending Features with Plugins

Purchasing Plug-Ins

360 Works

Productive Computing

Trio Automatisering

Finding Other Plug-ins

Locating Installed Plug-Ins

Installing Plug-Ins

Accessing Plug-In Functions

Summary

Part VI: Sharing and Networking

Chapter 39: Introducing Network Sharing

How Network Sharing Works

Limitations to Sharing

Setting Up Peer-to-Peer Database Sharing

Using a FileMaker Server

Understanding Client License Options and

Limitations

Exploring FileMaker Server Basics

Hosting Databases with FileMaker Cloud

Accessing Databases from Outside FileMaker

Sharing Bookmarks with Snapshot Links

Using the FileMaker URL

Using AppleScript to Automate FileMaker

Summary

Chapter 40: Securing Database Access

Exploring the Benefits of Security

Defining Default Security

Exploring the Security Dialog

Exploring the Interface Modes

Creating Accounts

Creating a New Local Account

Creating a New External Account

Exploring Privilege Sets

Default Privilege Sets

Creating Custom Privilege Sets

Exploring Extended Privileges

Defining Built-In Extended Privileges

Using Custom Extended Privileges

Controlling File Access

Summary

Chapter 41: Advanced Sharing and Analysis Tools

Database Design Report

Generating a Design Report

Exploring a Design Report

Introducing Professional DDR Tools

Developer Utilities

Exploring the Developer Utilities Dialog

Specifying Solution Options

Summary

Chapter 42: Getting Connected

Connect with Mark Munro

Learn FileMaker Pro 16 Official Sites

FileMaker Inc.

Database Design Report (DDR) Analysis Tools

Plug-Ins

Communities

Technology Sites

Function Background Information

Index

Contents at a Glance

About the Author

About the Technical Reviewer

Foreword

Acknowledgments

Introduction

Part I: Using FileMaker

Chapter 1: Introducing FileMaker

Chapter 2: Exploring the Application

Chapter 3: Exploring a Database Window

Chapter 4: Working with Records

Chapter 5: Transferring Data

Part II: Defining Data Structures

Chapter 6: Working with Database Files

Chapter 7: Working with Tables

Chapter 8: Defining Fields

Chapter 9: Connecting Tables with Relationships

Chapter 10: Managing Containers

Chapter 11: Managing Value Lists

Part III: Writing Formulas and Using Functions

Chapter 12: Writing Formulas

Chapter 13: Text Functions

Chapter 14: Text Functions (JSON)

Chapter 15: Text Formatting Functions

Chapter 16: Number Functions

Chapter 17: Date, Time, and Timestamp Functions

Chapter 18: Container Functions

Chapter 19: Aggregate, Summary, and Repeating Functions

Chapter 20: Financial and Trigonometric Functions

Chapter 21: Logical Functions

Chapter 22: Get Functions

Chapter 23: Design Functions

Chapter 24: Mobile Functions

Chapter 25: Creating Custom Functions

Chapter 26: Introducing ExecuteSQL

Part IV: Designing Interfaces

Chapter 27: Introducing Layout Mode

Chapter 28: Getting Started with Layouts

Chapter 29: Exploring Layout Palettes

Chapter 30: Creating Layout Objects

Chapter 31: Manipulating Objects

Chapter 32: Using Themes and Styles

Chapter 33: Customizing Menus

Part V: Automating Tasks with Scripts

Chapter 34: Introduction to Scripting

Chapter 35: Common Scripting Tasks

Chapter 36: Debugging Scripts

Chapter 37: Using Script Triggers

Chapter 38: Extending Features with Plugins

Part VI: Sharing and Networking

Chapter 39: Introducing Network Sharing

Chapter 40: Securing Database Access

Chapter 41: Advanced Sharing and Analysis Tools

Chapter 42: Getting Connected

Index

About the Author and About the

Technical Reviewer

About the Author

Mark Conway Munro

is an author, software developer and entrepreneur. A 1988

introduction to FileMaker led Mark to pursue a career as a

developer. Soon after, he was using AppleScript and

FileMaker for information management and process

automation. In 1994, Mark founded Write Track Media, a

computer consultancy to develop custom database and

workflow automation solutions for clients.

Today, Mark continues in that mission, using AppleScript

and FileMaker Pro in combination with other tools and

technologies to build time-saving systems for a diverse list

of clients. By fully understanding the virtue of using

technology to free humans from repetitive computer tasks

so they can pursue a higher level of productivity, Mark’s

passion for the work is unwavering.

Mark is also the author of AppleScript: Developer

Reference (2010, Wiley).

About the Technical Reviewer

Brian Sanchez

is a FileMaker developer, a consultant with wide experience,

and a founding member of aACE Software. Brian’s

experience is wide reaching. For nearly 20 years, he has

designed and implemented custom apps for inventory

tracking, digital catalogs built with FileMaker Go, plus asset

management and pricing tools. His clients range from

catering businesses to TV casting agencies to European

vacationing services. Brian holds multiple FileMaker

certifications. His development philosophy is to build

systems with such integrity in the code and architecture

that the client never needs to call again — unless they’re

looking to upgrade the solution. Brian is the technical editor

of Learn FileMaker Pro 16 (2017, Apress).

Part I

Using FileMaker

Using FileMaker

FileMaker Pro combines a runtime user interface with a

development environment into a single application. To

become familiar with the software, start by reviewing the

basics of using the software from a user perspective.

These five chapters are intended primarily for

newcomers so readers who have prior experience using

databases built with FileMaker may find some of this

material relatively basic. However, experienced users and

expert developers who are looking to brush up on the latest

features may appreciate this as a solid foundation for the

remaining portions of the book.

The topics covered in these chapters include:

1. Introducing FileMaker — Includes the history of

FileMaker, database basics and architectures, a

bird’s eye overview of FileMaker’s unique

architecture and the entire FileMaker product family.

2. Exploring the Application — Includes FileMaker Pro

installation process, default windows, application

preferences, the default Browse mode menu bar,

and various contextual menus throughout the

interface.

3. Exploring a Database Window — Using a FileMaker-

provided Contacts starter solution, this includes the

anatomy of a database window, how to use

windows, and how to open an existing database.

4. Working with Records — Explores the process of

entering, managing, searching, and printing

records.

5. Transferring Data — Provides an overview of the

various methods of importing and exporting

records.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_1

1. Introducing FileMaker

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

FileMaker Pro is a relational data management system

published by Apple subsidiary FileMaker Inc.

Since its origin, the product has expanded and evolved

with improved capabilities to keep pace with standard

technologies. The current incarnation is a powerful, feature-

rich and easy-to-use integrated development tool, available

in fifteen different languages. FileMaker databases can be

shared across a network with multiple simultaneous users

working on Mac and Windows computers as well as iOS

devices.

FileMaker is popular with millions of developers and

users, including independent consultants, employees of

small businesses, and members of teams working at

medium to large businesses, non-profits, and government

agencies. Beginners are empowered by the ease of use and

approachable interface. Professionals are won over by its

rapid development capabilities for prototyping and the

ability to build powerful user-friendly solutions. Business

owners who don’t have time to learn to program can easily

find a professional consultant to develop a system tailored

to meet their individual needs.

Whatever your skill set, if you are frustrated with an

existing database system or are looking to develop

something new, FileMaker is an excellent choice.

In this chapter, we introduce FileMaker by discussing

topics such as the following:

The history of FileMaker in a Nutshell

Exploring database basics

Identifying different database architectures

Taking a bird’s eye anatomical and functional overview

The FileMaker product family

The History of FileMaker in a

Nutshell

The early history of FileMaker is a zigzag between various

publishers, and it employed a rather haphazard naming and

numbering system before finally settling into its consistent

and logical modern track.

Nashoba Nutshell

FileMaker started its life in the early 1980s as Nutshell , an

MS-DOS computer program that was developed by Nashoba

Systems in Concord, Massachusetts, and distributed by

electronics marketer Leading Edge.

Early FileMaker

When the Macintosh computer was introduced in early

1984, Nashoba saw an opportunity. They worked to combine

the database engine with a graphic user interface and

created a new forms-based database product. When

Leading Edge announced that they wished to remain a DOS-

only vendor, Nashoba began working with a new distributor.

Forethought, Inc. FileMaker v1.0 was released in April 1985

for the Macintosh platform. In 1986, it was renamed

FileMaker Plus to match the release of the Macintosh Plus.

By today’s standards, the early versions of FileMaker

were incredibly crude and limited in capabilities. However,

for the time, the software filled an important need with an

easy-to-use design and steadily became popular with the

do-it-yourself crowd.

FileMaker 4

When Microsoft purchased Forethought, they tried to

negotiate a purchase of FileMaker, which was outselling

their own Microsoft File database application. However,

Nashoba declined and decided to begin self-publishing the

program, now named FileMaker 4 .

Claris

In 1987, Apple formed Claris Corp. as a wholly owned

subsidiary to develop and publish Macintosh software titles

such as MacWrite and MacPaint. In 1988, Claris purchased

Nashoba Systems to acquire FileMaker. By this time Leading

Edge and Nutshell had disappeared as other DOS and

Windows database products dominated the market.

In 1988, FileMaker II was released by Claris to match the

naming scheme of their other products. After a few minor

updates, the product was rebranded in 1990 under its

modern naming format when FileMaker Pro version 1.0 was

released.

Claris upgraded the product in 1992 with Windows

support, making FileMaker Pro 2.0 the first cross-platform

version. They began publishing a server application in 1994.

It wasn’t until 1995 with the release of version 3.0 that

FileMaker became fully relational.

By 1997, with version 4.0, FileMaker was a widely popular

product and was outselling all other Claris products. Apple

absorbed those products in-house and renamed the

subsidiary after their only remaining product.

FileMaker Inc.

FileMaker Inc., the newly renamed subsidiary, released

FileMaker Pro 4.1v2 in June of 1999. Since that time, they

have steadily improved and expanded the product. Some

highlights are included in Table 1-1.

Table 1-1. A summary of major new features in recent FileMaker Pro versions

Year Version Feature Improvements

2001 5.5 Native support for Mac OS X

2004 7.0 Multiple table file architecture, multiple windows, relationship

graph, calculation variables

2005 8.0 Tabs on layouts, script variables

2006 8.5 Web Viewer, layout object names

2007 9.0 SQL support, conditional formatting of layout objects

2009 10 Script triggering

2010 11.0 Charting, snapshot link, filtered portals, first version of FileMaker

Go for iOS released

2012 12.0 Themes, floating and modal windows, ExecuteSQL function

introduced, enhanced container field, improved charting

2013 13.0 WebDirect and HTML5 features; enhanced interface, hide layout

object calculation, enhanced ExecuteSQL function, Perform

Script on Server script step

2015 14.0 Script workspace, Button Bar layout tools, Launch Center

2016 15.0 Enhanced script workspace, concealed edit box

2017 16.0 Layout Objects window, copy/paste value lists, JSON support,

enhanced security, enhanced script steps, built-in function

changes, variable support in data sources, extended privilege

changes

Since its start in 1985 as a modest, single-user database,

the product has greatly improved. What began as a simple,

easy-to-use tool for non-technical people has matured into a

considerably more sophisticated platform. Today, FileMaker

offers an astonishing array of technical features and

capabilities that are sure to fill the most advanced

development needs. By integrating this power with an

intuitive graphical interface, it continues to be approachable

by those new to programming .

Exploring Database Basics

Before getting into the specifics of FileMaker, let’s review a

few basic database concepts.

Defining a Database

A database is a structured collection of information

efficiently stored in a generic format that makes it easily

accessibility for reuse in a variety of different ways.

Most applications are focused on one specific data type

with predefined properties and procedures. A calendar

application allows a user to create and manage events with

properties of date, time, attendees, notes, and alerts.

Similarly, an email application allows management of

messages with predefined properties of sender, recipients,

subject, and body. These could each be thought of

colloquially as an “event-base” and a “message-base”

since, at their base, they store and provide access to events

and messages.

From a wider perspective, both events and messages are

types of information; they are both forms of data. A

calendar app manages an event database. A mail

application manages a message database. Unlike these, an

open-ended database application like FileMaker Pro has no

predefined data type; at its base is data, any data. It allows

a developer-user to create a custom management system

for any kind of data depending on a specific custom need.

Specific applications, such as the calendar or mail app

mentioned above, provide a metaphorical filing cabinet that

is locked and preconfigured to fit only certain predefined

folders containing a specific type of information. A user is

free to enter information into this predefined framework but

have little or no control over the framework itself. By

contrast, a database is the metaphorical equivalent of that

same filing drawer completely empty and unlocked so that

you can define the content it accepts, how that information

is stored, related, displayed, used and shared. Every project

starts fresh with the same blank slate waiting for you to

define the framework and establish the capabilities it will

make available to the user.

Databases can store information about anything a

developer defines them to manage: companies, messages,

notes, people, products, tasks, etc.

Database Structure

Fundamentally, a database is made up of only a few basic

components. These include tables, relationships, a user

interface, and scripted procedures.

A table can be visualized as a set of rows and columns in

a spreadsheet tab that is dedicated to a single type of

entity. The simple table example, shown in Figure 1-1, is

modeled after People.

Figure 1-1. The basic anatomy of a database table

A field, represented by a column in the table, is a defined

container in which one piece of information about the entity

modeled will be stored. In the example shown, each

component of a name and address is an individual field.

A record, represented by a row in the table, is one

individual entity stored within a table. While the table in the

example represents people in general, a row, or record,

represents one person. The record is one instance of the

table’s defined field set containing information about a

specific person.

A cell is the formal name of an intersection of a field and

record. In FileMaker, these are commonly referred to as

fields with the understanding that each is an instance of a

field for a record (cell), which is distinct from the field

definition itself (field).

Relational Databases

A database is considered relational when its tables can be

interconnected to form relationships between the records

they contain based on one or more key fields. While any

field can act as a key, most often a unique identification

number is assigned to each record, which is used to locate

matching values in a field in another table.

A relationship allows information from one table to be

accessed from the other through the connection. They allow

data to be stored in separate tables but used elsewhere and

help to eliminate redundant data entry.

A relationship, like the one shown in Figure 1-2 , is a

connection between two tables established by linking one or

more fields from one table to one or more fields in another.

In this example, the unique ID field in the Company table is

linked to the Company ID field in the People table forming

the relationship. We see that there are two matches,

meaning two people have been linked to the same

company. Using the relationship, the two-related people can

be displayed on a layout for the company and used in

calculations and scripted procedures from within that

context.

Figure 1-2. An example relationship established between two tables

User Interface

The user interface is made up of the layouts, menus, and

windows that allows the user to view and interact with the

data in a graphical, human-friendly format.

A layout is a visual display of fields and controls from the

perspective of a single table’s records. Tables can have

many layouts for different purposes. For example, a list

layout might show a couple fields for all the records for a

table to allow faster navigational scrolling. Another layout

might show every field for a single record, optimized for

data entry.

The current layout is whichever layout is being displayed

in the database window at a given time. This layout can be

changed to another by the user manually selecting a

different one or by a script. Figure 1-3 shows a database

with two tables, each with a list and entry layout. The

window is shown currently displaying the People Entry

layout.

Figure 1-3. Illustrating layouts displaying data from their corresponding tables

with the window displaying the current layout

A found set of records is a subset of the total records

contained in the table being displayed in a window, typically

after a search. The current record is whichever record from

the found set is displayed within a window showing one

record or whichever record is selected within a window

showing a list of records.

Scripted Procedures

A script is a stored set of actions that can be automatically

performed in response to user activity or on a schedule.

Scripts can generally perform any function with which a user

has access.

Identifying Different Database

Architectures

FileMaker employs a uniquely integrated architecture that

skillfully manages to maintain an intuitive environment that

allows most users to acclimate regardless of their level of

development experience. However, it may be somewhat

foreign to experienced developers who are familiar with

traditional multitier architecture of database systems like

SQL. Ironically, this may cause those with more database

development experience to have a greater learning curve

with certain FileMaker concepts.

The following comparison provides an overview sketch of

the situation and may help any developer new to FileMaker

better understand the integrated nature of the application

and the database file structure it is used to create.

The Traditional Multitier Database

Architecture

Most databases are built using a multitier architecture. For

database software engineers, a multitier architecture,

illustrated in Figure 1-4, is an arrangement in which three

functions — presentation front-end interface, process logic

middleware, and back-end data — are usually physically

separated and often built with different languages.

Figure 1-4. Showing an overview of the traditional multitiered database

architecture with data, interface, and script as separate but interacting systems

Presentation Tier (Front End)

The Presentation Tier is a front-end interface . This top layer

is where information is displayed in human readable form

specifically for user interaction; data is viewed and edited

on layouts and scripted procedures are accessible through

menus and buttons.

Examples of a presentation tier include the following:

A web page that includes database elements.

A desktop or mobile application that presents data via

windows and layouts .

Process Logic Tier (Middleware)

The Process Logic Tier is the middle layer that contains

business logic: code that does much of the work to process

commands, make decisions, evaluate requests, format

results, and generally facilitate processes between the

interface and the stored data.

Examples of the logic tier include these:

PHP

Java

Stored Data Tier (Back End)

The Stored Data Tier is a back-end data system . This

bottom layer is generally hidden out of sight, which handles

information storage and retrieval from a database or file

system.

Examples of the stored data tier include these:

Oracle databases

MySQL database

FileMaker’s Integrated File Architecture

Unlike the distributed, multitiered design, FileMaker is an

integrated file-based architecture, illustrated in Figure 1-5 .

An integrated architecture is one in which all components

that make up a database are built and stored together into a

single file or system that is accessed all at once.

Figure 1-5. An overview of FileMaker’s integrated database architecture with

data, interface, and script combined in a single file

While FileMaker’s integrated file structure is most likely

inherited from its early development as a simple, end-user,

file-building tool — this characteristic has been retained as it

has evolved into the modern powerhouse it is today. Newer

features that allow external data sources, including SQL

tables, to be pulled into a FileMaker database and used as if

they were internal, result in a flexibility that provides the

best of both worlds.

Some benefits of this approach include the following:

Develop the entire database system from within a

single, easy-to-use application.

Databases are files and can be hosted from a central

server or a desktop, or used and shared like self-

contained, portable packages just like any other

document on a computer.

Since a database can include and use external data

sources, it is possible to approximate a multitiered

structure. For example, some developers store data

tables in a file separate from the user interface and

scripted processes.

Taking a Bird’s Eye Anatomical and

Functional Overview

FileMaker’s unique integration doesn’t stop at the file

structure. Each version of the desktop application —

FileMaker Pro and FileMaker Pro Advanced — provides a

slight variation on a single, complex but remarkably intuitive

and uncluttered interface that ingeniously blends all

functions for the development and use of feature-rich

database files, including the following:

Developing back-end data structures

Developing front-end interfaces

Developing scripted processes

Providing front-end user access to the database

This seemingly impossible feat is accomplished by the

skillful use of different window modes for specific functions,

context-sensitive menus, and separate windows for certain

development functions. This seamless and almost artfully

designed environment obscures an enormous complexity,

which can present a challenge for both new users and

authors of books such as this one. Therefore, a bird’s eye

overview of the many components involved and topics to

cover herein may be beneficial.

The application resources and defined file components

that work together to organize, store, and manage

information are shown in Figure 1-6. Although there are

points of overlap, the components can be roughly divided

into five categories, split between the application and the

database file.

Figure 1-6. The component breakdown between the FileMaker application and

a database file, grouped by primary role

The five major categories of components are these:

Application

Application resources

User experience

Database File

Data structure

User interface

Scripted processes

Application Resources

The FileMaker application contains basic resources that

interpret settings and information in a database file to

generate a user experience.

Application Resources

Application resources are those things that make up the

application programming interface (API) used to develop

custom databases and create the development-user and

end-user experience, including the following:

Preferences (Chapter 2)

Plug-ins (Chapter 38)

Default menus (Chapter 2)

Built-in functions (Part 3 — or — Chapters 13-24)

Built-in script steps (Chapters 34 and 35)

Sharing and networking (Chapters 39-41)

User Experience

The user experience covers what the user sees and how

they interact with a database in general use. This includes

the menus (default or custom) and the windows that the

application presents to the user in the interface. The user

can then take actions, including these:

Viewing an interacting with database windows (Chapter

3)

Creating, opening, and navigating a database file

(Chapter 3)

Working with records (Chapter 4)

Importing and exporting data (Chapter 5)

Database File Resources

A database file contains everything unique to your project:

all the settings for the data structure, user interface and

scripted processes, as well as the records of data entered to

date.

Data Structure

The data structure portion of a database contains all the

settings that define what is stored in the file, how it

connects, and what functions can be performed on it, and

the data itself, including the following:

Tables (Chapter 7)

Fields (Chapter 8)

Data sources, table occurrences, and relationships

(Chapter 9)

Calculation formulas (Chapter 12)

Custom functions (Chapter 25)

SQL queries (Chapter 26)

Container settings (Chapter 10)

Value lists (Chapter 11)

User Interface

The user interface of a database contains all the settings

that define the way things are displayed on layouts in

windows, including the following:

Layouts (Chapters 27-31)

Themes and styles (Chapter 32)

Custom menus (Chapter 33)

Security settings (Chapter 40)

Scripts

The scripts of a database define the procedures that can be

performed automatically or at a user’s request. (Chapters

34-37).

The FileMaker Product Family

The FileMaker Pro 16 product family is made up of five

different applications, shown in Figure 1-7.

Figure 1-7. The FileMaker 16 product family lineup

Each of these applications has a unique feature set and is

either purpose or device specific in its ability to develop,

use, and host databases as listed in Table 1-2.

Table 1-2. The supported devices and fundamental features for each product in

the FileMaker family

Product Name Platform(s) Develop Use Host

FileMaker Pro Mac, Windows Yes Yes Yes

FileMaker Pro Advanced Mac, Windows Yes Yes Yes

FileMaker Server Mac, Windows No No Yes

Product Name Platform(s) Develop Use Host

FileMaker Go iOS Devices No Yes No

FileMaker WebDirect Web Browser No Yes No

FileMaker Pro

The standard desktop application is named FileMaker Pro.

This application provides general development features ,

including the following:

User Access — provides intuitive front-end access to

database features.

Import/Export — easily exchange data between a

FileMaker database and CSV, Tab, XML, ODBC, Microsoft

Excel files, other FileMaker databases, and more.

Customize — a graphical development environment

makes it easy to create custom databases.

Reporting — easily build layouts for summarizing data in

reports or charts.

Automate — create scripts to repeat a sequence of

actions automatically.

Sharing — easily share a database with other users by

turning on peer-to-peer networking or uploading a

database to a FileMaker Server.

Secure — create accounts and passwords to limit user

acess and activity.

Integrate — connect external SQL data sources and

interact with them; create custom workflows with

scripting languages that allow interaction with other

applications using AppleScript (macOS) and Dynamic

Data Exchange (Windows).

FileMaker Pro Advanced

The developer version of the desktop application is called

FileMaker Pro Advanced, which has all the features of the

standard version plus a handful of additional features

intended for advanced developers, including the following:

Custom Functions — allow the creation of your own

functions.

Custom Menus — allow the FileMaker menu to be

overridden and replaced with custom menus and items

that perform custom scripts.

Data Viewer — easily monitor fields, variables, and

calculations while troubleshooting your custom

database.

Database Design Report — generate a detailed report of

all the elements that make up a database.

Database Encryption — enable AES 256-bit encryption

to protect a shared database.

Multiple Table Import — enhanced ability to import

multiple tables from one database to another.

Script Debugger — helps to identify script problems and

evaluate performance problems .

Tip To follow along as we explore many of the advanced

subjects discussed in this book, you will want a copy of

FileMaker Pro Advanced installed on your computer.

FileMaker Server

FileMaker Server is database-hosting software that is based

on industry-standard security technology to offer user-

scalable, secure, and reliable round-the-clock access to

databases for authorized users. Its features include the

following:

Host Databases — dedicated server allows

simultaneous, multi-user access to databases from

across a network by users of FileMaker Pro, FileMaker

Go, and FileMaker WebDirect.

Media Streaming — container field content uses

progressive downloading technology where applicable to

begin streaming content for immediate display. For

example, a user will not have to wait for a movie stored

in a container field to fully download before it begins

playing.

Scheduled Events — allow various events to be

scheduled for automatic execution including database

backups, run system-level scripts (shell script or batch

file), and run FileMaker script in a FileMaker database.

Perform Script on Server — databases can opt to have

specific scripts run from the server rather than on a

user’s computer to offload tasks and save time.

Logging — administrators can access event and error

logs to troubleshoot problems and to help optimize

database performance.

Web Direct — authorized users can access databases

securely across the Web through a browser window.

Note FileMaker Cloud is another option for hosting

databases on the Internet for wide area sharing. The

service combines Amazon Web Services (AWS) and

FileMaker Server software (Chapter 39).

FileMaker Go

FileMaker Go is a free iOS app available for both the iPad

and iPhone that allows users to access database resources

when away from their desktop computer. With the app,

users can access databases stored locally on their iOS

devices or from a FileMaker Server across a network. The

app does not include an API, so databases must be

developed on the desktop application prior to use on a

device.

Note Accessing a database hosted on a FileMaker

Server from FileMaker Go or with FileMaker WebDirect

requires an available user connection license for each

connection (Chapter 39: Understanding Client License

Options and Limitations).

FileMaker WebDirect

Although FileMaker offers other options for web hosting,

deploying a database on the Web is a lot easier with

FileMaker WebDirect. Once a database has been built with

the desktop application, it can be easily enabled for web

sharing and hosted on a FileMaker Server. Users can then

access the database through a web browser. Layouts are

automatically rendered in the browser and, except for

certain incompatible script steps and the ability to work in

multiple windows, most functionality is identical to that on a

desktop or iOS device.

Summary

In this chapter, we discussed an overview of FileMaker and

basic database concepts. We looked at the big picture

history, architecture differences, anatomical overview of

components, and we reviewed the FileMaker product line.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_2

2. Exploring the Application

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

In this chapter, we will start exploring the FileMaker Pro

Advanced application, covering the following topics:

Installing and launching FileMaker Pro

Default windows

Application preferences

Default menu bar

Contextual menus

Installing and Launching FileMaker

Pro

If you haven’t already done so, take a moment to install the

FileMaker Pro application. To ensure access to every

developer feature and everything discussed in this book,

install FileMaker Pro Advanced.

Launching the Installer

Once you have purchased and downloaded a copy of

FileMaker Pro, locate and double-click on the package file,

shown in Figure 2-1. This file will have a .pkg extension. On

a Macintosh computer, this file should be found in a

Mac_Installer folder inside of the User’s downloads folder

located at:

Figure 2-1. The FileMaker Pro Advanced 16 installer disk image, installer disk,

and installer window

∼/Downloads/

Double-clicking the package file, to open the installer

wizard.

Running the Installation Process

Double-click on the FileMaker Pro 16 Advanced.pkg file. This

will launch the package into the macOS Installer application,

shown in Figure 2-2.

Figure 2-2. The FileMaker Pro 16 Advanced installer

To begin installing the application, click the Continue

button on the dialog attached to the installer window and

then on the Continue button on the window itself. Then

follow these steps:

1. Enter your name, organization, and FileMaker

license key, then click the Continue button.

2. On the software license agreement panel, click

Continue and then click the Agree button to agree

to the stated terms.

3. Choose the installation type and location; the

default Standard Install options are recommended.

Then click the Install button.

4. Authenticate as an administrative user of the

computer by either using a Touch ID or by entering

a user name and password, then click the Install

b tt

button.

5. Fill out the registration information.

6. When the installation process is complete, a window

will appear notifying you of this fact. Click the Close

button to close and complete the process.

7. The installer should offer you a choice of what to do

with the installer package. You can Keep the

installer in the downloads folder or choose to Move

to Trash.

Launching the Application

Once finished installing, locate and launch the FileMaker Pro

application. If you performed the Standard installation, the

application should be in the /Applications/ folder. Double-

click it to launch the application. It may be available from

the dock and can be launched with a single click.

Default Windows

FileMaker has two default windows, one or both of which

may appear when the application is launched.

Get Started Screen

When launched for the first time, the application will

welcome you with a FileMaker Get Started screen. This

scrollable window, shown in Figure 2-3, summarizes several

functions into a convenient window especially suited for

beginners or for anyone wanting to create a database with

one of the starter solutions provided by FileMaker. The

options in this window include the following:

Creating a new copy of one of FileMaker’s prebuilt basic

or advanced starter solution templates.

Creating a new custom solution.

Converting an existing solution .

Taking a tour of FileMaker Pro.

Quick link to videos and other learning resources.

Quick link to FileMaker support website.

Figure 2-3. The FileMaker Get Started window

Once closed, the FileMaker Get Started window will not

reappear. However, it can be manually opened by selecting

the File > Get Started menu.

Launch Center

After the first launch, the default window that FileMaker will

open is the Launch Center, shown in Figure 2-4.

Figure 2-4. The FileMaker Launch Center window

This window provides a personalized interface for

opening or creating FileMaker database files with functions

including the following:

My Solutions Tab

Favorite and recently used database files are displayed

in a searchable list and are available for quick opening

by double-clicking.

The Browse button is used to locate, select, and open a

database file from any directory folder or networked

FileMaker Server.

Recently opened databases can be quickly marked as

favorites.

The New button menu allows creation of a new

database file.

Hosts Tab

Favorite and local FileMaker Servers are available in a

searchable list.

The currently selected FileMaker Server’s database files

are available in a searchable list.

FileMaker Server host computers can be quickly marked

as favorites.

The Launch Center window will appear each time you

launch the application and can be accessed manually by

selecting the File > Open menu.

For more information about using the Launch Center

window, see Chapter 3: Opening an Existing Database.

Application Preferences

The FileMaker application has preferences that control

behaviors and allow users to personalize certain aspects of

the experience on their computer. To open the preference

dialog, select the applicable menu item: FileMaker Pro

Advanced > Preferences (macOS) or Edit > Preferences

(Windows).

Preference settings are separated into five tabs:

General

Layout

Memory

Plug-ins

Permitted Hosts

Note Some preferences are denoted with the author’s

recommendation in parentheses after the description.

General Settings

The General Preference tab, shown in Figure 2-5, contains

settings that control the user interface, user name, and

notifications for updates.

Figure 2-5. The General tab of the Preference dialog

User Interface Options

Allow drag-and-drop text selection — Check this box to

allow drag and drop between fields, between layouts,

and between fields and content from other applications

(recommended on).

Show recently opened files — Check this box to enable a

display of recently opened files in the File menu and the

Launch Center. The text box next to it will become

enabled and allow you to specify how many recent files

are shown.

Use Manage Database dialog to create files — Check

this box to automatically open the Manage Database

dialog window after creating a new file. When not

selected, a new database opens in Layout mode with

the Field Picker open (recommended on).

Reset dialog sizes and positions — Click this button to

force all dialogs to revert to their default size and

position.

The following Windows only options are not shown in

Figure 2-5:

Enlarge window contents to improve readability —

Check this box to make text easier to read with an

increase to the size of layout objects.

User Interface Language — A menu of available

languages with a default selection of English.

Font smoothing style — A menu of options to make text

sharper and less fuzzy with these options. In macOS,

font smoothing is controlled in the operating system

preferences.

User Name

This setting identifies the name of the user. The behavior

varies slightly by platform:

In macOS , the user name defaults to “System,” which is

set in the operating system preferences; choosing

“Other” allows entry of a different user name.

In Windows , a user name must be entered in the space

provided.

Application

Two check boxes control whether FileMaker checks for and

notifies the user when an update or new version is

available:

Notify me when an update is available.

Notify me when a new version is available.

Layout Settings

The Layout Preference tab, shown in Figure 2-6, contains

settings that control certain behavior when a window is in

Layout mode.

Figure 2-6. The Layout tab of the Preference dialog

Layout Options

Always lock layout tools — When this box is checked, a

selection of a layout tool will be locked until another

layout tool is selected. The default behavior is for the

tool to be released back to the cursor after creating or

editing an object (recommended off).

Add newly defined fields to current layout — When this

box is checked, any newly defined field will appear at

the bottom of the current layout (recommended off).

Save layout changes automatically (do not ask) — When

this box is checked, any changes made while in Layout

mode will be automatically saved when switching back

to browse mode. If left unchecked, a dialog will confirm

whether or not changes should be saved.

Memory

The Memory Preference tab, shown in Figure 2-7, contains

settings that control the limitations of the file cache.

Figure 2-7. The Memory tab of the Preference dialog

File Cache Settings

As you work in a database, FileMaker stores changes in the

RAM cache and periodically saves the accumulated data to

the hard disk. File Cache settings control how often the

cache is saved.

Attempt to set file cache to — a number representing

the amount of memory allocated to the file cache. For

improved performance, set this number to a higher

value.

Save cache contents — allows control over when the

cache is saved back to disk; either during idle time or at

regular specified intervals.

Caution Changes to these settings take effect after you

quit and re-launch the application.

Plug-Ins

The Plug-In Preference tab, shown in Figure 2-8, contains a

list of installed plug-ins and various controls. For more

information on plug-ins, see Chapter 38.

Figure 2-8. The Plug-Ins tab of the Preference dialog

Permitted Hosts

The Permitted Hosts Preference tab, shown in Figure 2-9,

will contain a list of any host computers whose SSL

certificates cannot be verified. When this happens,

FileMaker may notify the user before connecting and, if

permitted, add the host to the list shown on this tab in

preferences. To delete a host, once added to the list, select

it and type backspace.

Figure 2-9. Permitted Hosts tab of the Preference dialog

Default Menu Bar

The FileMaker Pro default menu bar , shown in Figure 2-10,

contains commands for a variety of functions.

Figure 2-10. The Default Menu Bar

Specific menu items may be enabled or disabled

depending on various factors. Some menu items are

disabled when:

No database is open.

A database script is running or paused.

A data has a modal window open.

The user’s current access privileges don’t allow certain

functions.

The user’s current action or context doesn’t allow

certain functions.

Similarly, some or all menus and/or items may be

completely different when:

The Get Started screen is open showing a limited menu

set.

A database is in Find mode with a modified menu set

(Chapter 4).

A database is in Preview mode with a modified menu set

(Chapter 4).

A database is in Layout mode with a modified menu set

(Chapter 27).

A modifier key such as Option is held down.

A database using custom menus is open.

A developer dialog is open.

This chapter provides an overview of the default menu

bar set when viewed with a database open in Browse mode

with no modifier keys held down.

The Application Menu

The Application menu, shown in Figure 2-11 , contains

general application functions and some macOS functions.

Figure 2-11. The Application Menu

About FileMaker Pro Advanced — opens a dialog window

showing the application version and other information.

Preferences — opens the preferences dialog window.

Services — displays any macOS or third-party

application services available based on the current

selection.

Hide FileMaker Pro Advanced — hides the FileMaker

application and all open database windows.

Hide Others — hides every application except FileMaker.

Show All — brings all applications to the front, including

FileMaker.

Quit FileMaker Pro Advanced — closes all open

databases and quits the application.

File Menu

The File menu, shown in Figure 2-12 , contains many file

and developer-related functions.

Figure 2-12. The File Menu

Get Started — opens the FileMaker Get Started default

window.

New Solution — opens a New File dialog window,

allowing creation of a new empty database file.

Open — opens the Launch Center for access to recent

files, favorites.

Open Remote — opens the Launch Center for quick

access to hosted files.

Open Recent — displays a submenu of recently open

database files.

Open Favorite — displays a submenu of favorite

database files.

Close — closes the current window.

Manage — displays a submenu of developer functions

(see details below).

Sharing — displays a submenu of network sharing

functions (see details below).

File Options — opens a dialog window giving access to

preferences for the current database file (see details

below).

Change Password — opens a dialog that allows the user

to change the password setting for the current account

for the current database file.

Page Setup — opens a dialog for adjusting settings prior

to printing.

Print — opens a dialog for printing the front window.

Import Records — displays a submenu of import options

(Chapter 5).

Export Records — opens a dialog to begin an export

process (Chapter 5).

Save/Send Records As — displays a submenu of options

for saving records from the front window in Excel, PDF,

or Snapshot link format.

Send — displays a submenu allowing the option to send

an email or a Snapshot link (Chapter 39; Sharing

Bookmarks with Snapshot Links).

Save a Copy As — opens a dialog for saving a copy of

the file in various formats (see details below).

Recover — opens a dialog to begin a database recovery

process (Chapter 6).

File > Manage Submenu

The Manage submenu of the File menu, shown in Figure 2-

13 , contains most developer-related functions for the

current database file.

Figure 2-13. The File > Manage Database submenu

Database — opens the Manage Database window ,

which is used to create, edit, and import tables, fields,

and relationships for the current database file (Chapters

7-9).

Security — opens the Manage Security dialog window,

which is used to create and edit accounts and privilege

settings for the current file (Chapter 40).

Value Lists — opens the Manage Value Lists window,

which is used to create and edit lists of values (Chapter

11) that can later be assigned to fields on layouts

(Chapter 30).

Layouts — opens the Manage Layouts dialog, which is

used to create, edit and organize layouts (Chapter 28).

Scripts — opens the Script Workspace window, which is

used to manage scripts (Chapter 34).

External Data Sources — opens the Manage External

Data Sources window, which is used to create and edit

connections to other FileMaker and ODBC databases

(Chapter 9).

Containers — opens the Manage Containers window,

which is used to define the location and method of

storing container field content (Chapter 10).

Custom Functions — opens the Manage Custom

Functions window, which is used to create and edit with

custom functions (Chapter 25).

Custom Menus — opens the Manage Custom Menus

window, which is used to create and edit custom menus

(Chapter 33).

Themes — opens the Manage Themes window, which is

used to manage custom themes (Chapter 32).

File > Sharing Submenu

The Sharing submenu of the File menu, shown in Figure 2-

14 , contains functions used to share the current database

file on a network (Chapter 39).

Figure 2-14. The File > Sharing submenu

Upload to FileMaker Server — opens a dialog used to

upload a local database to a FileMaker Server for

hosting.

Share with FileMaker Clients — opens a dialog used to

configure a database for peer-to-peer sharing or hosting

on a FileMaker Server.

Enable ODBC/JDBC — opens a dialog used to configure a

database for sharing using these protocols.

Configure for FileMaker WebDirect — opens a dialog

used to configure a database for sharing on the Web.

Edit Menu

The Edit menu, shown in Figure 2-15 , contains a suite of

typical editing features that are enabled when editing the

contents of a field.

Figure 2-15. The Edit menu

Undo — reverts the contents of the field back one step.

Redo — reapplies reverted change change to contents

of a field.

Cut — puts the selected contents of a field into the

clipboard and removes it from the field.

Copy — copies the selected contents of a field into the

clipboard and leaves it in the field.

Paste — inserts the contents of the clipboard at the

selection point of the current field.

Paste Text Only — inserts the contents of the clipboard

at the selection point of the current field as plain text.

Clear — deletes the selected text from the current field.

Select All — sets the selection to the entire contents of

the current field.

Find/Replace — displays a submenu of features to

perform a find and replace of text values within a field

(Chapter 4).

Spelling — displays a submenu of functions related to

spell checking the contents of one or more fields

(Chapter 4).

Export Field Contents — opens a dialog used to specify a

name and location of a file in which to save the contents

of the current field.

View Menu

The View menu, shown in Figure 2-16 , contains functions

that control the view of the front database window, many of

which are explained in Chapter 4.

Figure 2-16. The View Menu

Browse Mode — switches the mode of the current

window to regular database usage: browsing and editing

records.

Find Mode — switches the mode of the current window

to begin a search process.

Layout Mode — switches the mode of the current

window for layout editing (Chapter 27).

Preview Mode — switches the mode of the current

window to display a print preview of the current

record(s) as formatted on the current layout.

Go to Layout — displays a submenu of available layouts

for the front database to which the user can navigate

with a click.

View As Form — switches the current window view to

form view.

View As List — switches the current window view to list

view.

View As Table — switches the current window view to

table view.

Status Toolbar — toggles the visibility of the status

toolbar at the top of the current database window.

Customize Status Toolbar — opens a panel attached to

the current window with toolbar customization options

(Chapter 3).

Formatting Bar — toggles the visibility of the formatting

bar between the toolbar and the content area of the

current database window.

Ruler — toggles the visibility of a ruler along the top of

the content area of the current window.

Zoom In — increases the magnification of the current

window by 50%.

Zoom Out — decreases the magnification of the current

window by 50%.

Insert Menu

The Insert menu, shown in Figure 2-17 , contains

contextually enabled functions for inserting content into the

currently selected field in the current window (Chapter 4,

“Insert Functions” section).

Figure 2-17. The Insert Menu

Format Menu

The Format menu, shown in Figure 2-18 , contains standard

text styling functions.

Figure 2-18. The Format menu

Records Menu

The Records menu, shown in Figure 2-19 , contains record

functions, many of which are explained in Chapter 4.

Figure 2-19. The Records menu

New Record — creates a new empty record in the front

window.

Duplicate Record — creates a duplicate of the current

record in the front window, with a confirmation dialog.

Delete Record — deletes the current record in the front

window, with a warning dialog.

Delete All Records — deletes all records in the found set

in the front window, with a warning dialog.

Go to Record — displays a submenu of options to

navigate to the next or previous record or to enter a

number that identifies the desired record to navigate to

within the found set.

Refresh Window — refreshes the front window,

redrawing any layout elements that require updating.

Show All Records — converts the found set to include all

records in the table of the current window.

Show Omitted Only — converts the found set to display

only those records that are not part of the current found

set.

Omit Record — excludes the current record from the

found set in the current window.

Omit Multiple — displays a dialog allowing the entry of a

number indicating how many records to exclude from

the current found set, starting from the current record.

Modify Last Find — enters find mode with the last find

criteria re-created.

Saved Finds — displays a submenu containing

commands to save the current find, edit saved finds or

perform a recent or saved find.

Sort Records — opens a dialog allowing the user to

specify a sort order for the records in the found set of

the current window.

Unsort — reverts the sort order of the records in the

found set of the current window to their creation order.

Replace Field Contents — opens a dialog allowing the

user to specify criteria to change the value in the

current field for every record within the found set.

Relookup Field Contents — refreshes the current field’s

contents for every record in the found set based on its

lookup settings in field definitions (Chapter 8).

Revert Record — closes the current record without

saving any changes.

Scripts Menu

The Scripts menu, shown in Figure 2-20 , provides access to

the Script Workspace window and displays a list of individual

scripts that have been configured to appear here (Chapter

34).

Figure 2-20. The Scripts menu

Tools Menu

The Tools menu, shown in Figure 2-21 , is only available in

FileMaker Pro Advanced and contains the following

commands:

Script debugging features (Chapter 36)

Access to the data viewer window (Chapter 36)

Custom menu setup (Chapter 33)

Database design report (Chapter 41)

Developer utilities (Chapter 34)

Figure 2-21. The Tools menu

Window Menu

The Window menu, shown in Figure 2-22 , contains many

window-related functions. For more information, see Chapter

3.

Figure 2-22. The Window menu

New Window — opens a new window defaulting to the

same size, layout and found set as the current window.

Show Window — displays a submenu of all windows that

are currently hidden that can be brought to the front

with a click; the selected window will be repositioned on

screen if it is hidden off-screen.

Hide Window — hides the current window.

Minimize Window — minimizes the current window into

the macOS dock.

Tile Horizontally — repositions all open windows

horizontally across the screen.

Tile Vertically — repositions all open windows vertically

across the screen.

Cascade Windows — repositions all open windows in a

cascade, one overlaping the next.

Bring All To Front — brings all windows to the front,

although some may remain off-screen.

Help Menu

The Help menu, shown in Figure 2-23 , contains help and

other application related functions.

Figure 2-23. The Help menu

Contextual Menus

A contextual menu is a pop-up menu that appears within a

specific context of a graphical user interface when the user

right-clicks the cursor on an area possessing one, like the

one shown in Figure 2-24. These menus can increase the

speed of accomplishing certain tasks. A user can quickly

locate and trigger the command they are looking for directly

from the object or location upon which the command will

act, much faster than locating the command in the more

cluttered menu bar.

Figure 2-24. A window with a contextual menu visible

FileMaker has numerous different contextual menus,

summarized here into four categories :

Fields

Record content area

Web viewer

Window

Contextual Menus for Fields

There are six different contextual menus for fields,

depending on type of the field or current mode of the

window:

Text-Based Field (Browse Mode) — contains functions for

cut-copy-paste, formatting, inserting content, sorting or

searching for records by that field, chart creation, and

exporting the contexts of the field.

Text-Based Field (Find Mode) — This contains functions

for cut-copy-paste and insert operator.

Container Field (Browse Mode) — contains functions for

cut-copy-paste, insert file, and exporting the contents of

the field.

Summary Field (Browse Mode) — contains functions for

cut-copy-paste, formatting, chart creation, and

exporting the contents of the field.

Toolbar > Quick Search Field (Browse Mode) — contains

functions for cut-copy-paste, spell and grammar check,

text substitutions, and transformations and speech

functions.

Any Field (Layout Mode) — contains functions for cut-

copy-paste, text orientation, object style, specifying the

field, opening button setup, opening the Conditional

Formatting dialog, opening the Script Triggers dialog,

formatting and arranging.

Contextual Menus for Record Content Area

There are four different contextual menus for the content

area of a window where record data or layout components

are displayed, depending on the window mode:

Browse Mode — contains functions for copying, creating,

duplicating, deleting, sorting, and saving/sending

records.

Find Mode — contains functions for copying, adding, and

deleting find requests.

Preview Mode — contains functions for copying the

page, page setup, and printing.

Layout Mode — contains functions for pasting, setting

the style of the background, and opening the Change

Theme, Layout Setup, or Part Setup dialogs.

Contextual Menus for Web Viewers

There are two contextual menus for Web Viewers depending

on window mode:

Browse Mode — contains a single function to reload the

displayed content.

Layout Mode — contains functions for cut-copy-paste,

setting the style of the object, button setup,

configuration of the viewer, opening the Conditional

Formatting dialog, opening the Script Triggers dialog,

formatting and arranging.

Contextual Menus for Window

Components

There are three contextual menus for a window component:

Layout Part — contains functions for opening the Part

Definition dialog and setting the style or fill color of the

part.

Ruler — contains functions for switching the units to

points, inches, or centimeters.

Toolbar — contains functions for opening the Customize

Toolbar dialog; switching the toolbar icon, text, or

combination mode; or hiding the toolbar completely .

Contextual Menus for Calculation Formulas

There is one contextual menu available in every instance of

the Specify Calculation dialog:

Specify Calculation Formula — contains functions for

manipulating text in various ways.

Summary

In this chapter, we discussed the basics of the FileMaker Pro

application, including its preferences and default Browse

mode menus.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_3

3. Exploring a Database Window

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Over the next three chapters, we will focus on the user

experience of working in a database file. This will provide a

familiarity with interface and general FileMaker concepts.

Readers already familiar with the basic appearance and

behaviors of FileMaker may can skip ahead but may find a

review of these topics useful.

For this process, we will create a database from a starter

solution provided by FileMaker. It is important to note that

the window of the solution we create contains both default

window resources and custom sample database layouts.

Although that solution is created by FileMaker, Inc. and does

provide a nice example for this orientation tour, it is not

necessarily indicative of how a custom solution will or

should be designed. In later chapters, we will create a new

database and discuss how to develop a custom solution with

design custom layouts.

In this chapter, we will discuss topics such as the

following:

Using a starter solution

Defining the database window

Exploring the window header

Managing multiple windows

Opening an existing database

Using a Starter Solution

A starter solution is a template for a common type of

database, provided by FileMaker Inc., intended as an

example of basic database structures and functions or for

use as a starting point upon which to build out a custom

solution.

Listing FileMaker’s Starter Solutions

FileMaker provides both basic and advanced starter

solutions:

Simple solutions

Contacts

Inventory

Content management

Tasks

Advanced solutions

Assets

Contacts

Content management

Estimates

Event management

Expense report

Inventory

Invoices

Meetings

Personnel records

Product catalog

Projects

Research notes

Resource scheduling

Tasks

Time billing

Creating a Database from a Starter

Solution

To focus on the basics of user interface concepts, we will use

the basic Contacts template. You can freely explore the

details of the advanced templates at your leisure.

To create a copy of the Contacts template, follow these

steps:

1. Select the File > Get Started menu.

2. In the Get Started window, click on the Choose a

Starter Solution button; this will scroll you down to

the start of the list of available starter solutions

starting with Contacts.

3. Click the Create from This Starter Solution button.
A copy of the starter solution should appear on your

desktop and then automatically open in a window as shown

in Figure 3-1.

Figure 3-1. The default window of the new database created from the Contacts

starter solution template

Defining the Database Window

A database window is where records are created, edited,

and viewed. A window provides a single perspective on a

layout representing a table of data. A user can navigate to

other records within that table or view other layouts for the

same or for other tables, one at a time.

Identifying Window Areas

A database window can be broken down into two general

areas:

1. Status Toolbar — running along the top of the

window, this area contains navigation, buttons and

controls for managing records , switching modes,

and changing between available views. This area is

the same for every layout in a file (depending on

the window mode) but can be customized by the

user on their computer. It can be hidden by the user

or hidden and/or locked with a script.

2. Content Area — the bottom, expandable area of the

window contains the user interface for the current

layout as designed by a developer . In this example,

the window is preconfigured with interface elements

for the contacts table as designed by FileMaker Inc.

Defining Window Modes

A window mode is a state in which everything displayed

within the entire window is optimized for a functional

purpose. FileMaker has four possible window modes:

Browse mode

Find mode

Preview mode

Layout mode

A user can change the mode of a window by:

Clicking a mode button in the status toolbar.

Selecting a different mode from the View menu or

typing the equivalent key command.

Running a script or clicking a button that uses an Enter

<mode> script step such as Enter Browse Mode or

Enter Find Mode.

Each mode changes various elements of the window

including the following:

Status toolbar control set

Content area appearance and function

Menu availability and functionality

Browse Mode

Browse mode, the default and most common window state,

is used to view and perform data entry interactions with

records. In this mode, the content area of the window

represents the actual data stored in the current layout’s

table. A user can create, view, edit, delete, duplicate, sort,

and omit records, click buttons and other controls, and run

scripts. For more information on working with records, see

Chapter 4.

Find Mode

Find mode is a window state in which the layout transforms

to display a blank record where the user enters criteria used

to search for a desired set of records. In this mode, a record

is considered a request. Users can interact with requests

just as they do with records, but requests only exist

temporarily as a means of collecting the criteria prior to

performing the search. For more information on searching

for records, see Chapter 4.

Preview Mode

Preview mode is a window state that displays the current

layout as a preview of how it will appear on a printed page.

The layout will look generally the same except that fields

will not be editable, and objects may slide and compress,

summarize, and change formatting depending on the layout

settings. For more information on previewing and printing

records, see Chapter 4.

Layout Mode

Layout mode is a window state that displays the current

layout in a design mode. This allows users with

development access to edit which fields and controls will

appear in Browse, Find, and Preview modes and configure

their formatting and functional settings. For more

information on designing layouts, see Chapters 27-31.

Defining Content Views

A content view is a view format that determines how records

are displayed in the content area of a Window. A user can

select to view records as one of three formats depending on

the layout settings:

Form view

List view

Table view

The content view of a window can be changed by:

Selecting the corresponding menu item under the View

menu.

Clicking the corresponding View As icon in the toolbar.

Running a script or clicking a button that uses the View

As script step.

Form View

The Form view format displays records one record at a time

as a form for data entry. When in this view, the user must

navigate forward or backward using the navigation controls

in the toolbar to see other records instead of scrolling

through a list within the window frame.

List View

The List view format displays all the records in the current

found set as a continuous list, repeating the layout elements

once for each record. When in this view, the user can scroll

up or down to see other records.

Table View

The Table view format displays all the records in teh current

found set in a spreadsheet-style arrangement of columns

and rows with no rich interface formatting.

Note For additional information about Content Views

see Chapter 28, “Planning Layouts”.

Exploring the Window Header

There are three horizontal bars that can be displayed or

hidden depending on the user’s access privileges,

preferences, or the settings established by the developer.

These are:

Status toolbar

Formatting bar

Ruler

Status Toolbar (Browse Mode)

The status toolbar is an area running along the top of the

window containing controls pertinent to the current window

mode.

Unless locked by a script, the visibility of the toolbar can

be toggled by:

Selecting the View > Status Toolbar menu item.

Running a script or clicking a button that uses the

Show/Hide Toolbars script step.

For each window mode, the toolbar options can be either

the default set for that mode or a user-customized set that

applies to all databases on the user’s computer. The default

set of toolbar options for Browse mode is discussed in this

chapter. Find and Preview modes are discussed in Chapter 4.

Layout mode is discussed in Chapter 27.

Note Every toolbar control is connected to basic

FileMaker commands and is automatically enabled or

disabled based on the respective command’s

representation and enabled in the menu bar. See Chapter

33, “Exploring the Link Between Commands and Menus.”

Default Status Toolbar Items (Browse

Mode)

The default status toolbar for Browse mode is shown in

Figure 3-2.

Figure 3-2. The default status toolbar of a database window in Browse mode

The Browse mode toolbar can be divided into the

following areas:

1. Record navigation controls
2. Function buttons

3. Quick search field

4. Layout menu

5. View buttons

6. Preview button

7. Formatting bar button

8. Edit layout

Record Navigation Controls

At the top left of the toolbar are the navigation controls,

shown in Figure 3-3.

Figure 3-3. The default toolbar navigation controls in Browse mode

The available navigation controls are the following:

1. Record Navigation Arrows — click to navigate

backward or forward , one record at a time through

the current found set of records.

2. Record Slider — displays the number of the record

currently viewed or selected within the found set.

The user can move the slider or type a record

The user can move the slider or type a record

number and Enter to quickly jump to another record

within the found set.

3. Found Set Status — displays the sort status of the

found set, the total number of records contained in

the layout’s table and the number of records in the

found set when that set is less than the total

records.

Caution The record navigation arrows are sometimes

confused with general navigation arrows like those in a

web browser. Instead of navigating backwards and

forwards to different layouts, these buttons navigate to

records within the found set on the current layout.

Function Buttons

The function buttons region of the toolbar, shown in Figure

3-4, includes controls to manage records and share a

database.

Figure 3-4. The default toolbar buttons in Browse mode

The button functions in this group are the following:

Show All — expands the found set of records to include

all records contained within the current table (Chapter

4).

New Record — creates a new empty record within the

current table (Chapter 4).

Delete Record — deletes the currently viewed or

selected record, after presenting a warning dialog

(Chapter 4).

Find Menu — starts a find process with a click or

displays a menu of Find options (Chapter 4).

Sort— displays a dialog allowings a new sort order for

the records displayed in the current found set (Chapter

4).

Share Menu— displays a menu with options to share a

file from the current computer or to upload the file to a

FileMaker Server (Chapter 39).

Quick Find Search Field

At the top right of the toolbar is the search text field , shown

in Figure 3-5. After a user types text into the field and the

Enter key, a search is performed in every field on the layout

with Include field for Quick Find selected (Chapter 4,

“Searching with Quick Find”).

Figure 3-5. The default toolbar Quick Search field in Browse mode

Layout Menu

The lower, non-customizable level of the toolbar starts with

the Layout menu on the left. In Browse mode, this pop-up

menu displays a list of layouts that have the Include in

Layouts Menu option selected checked (Chapter 28). When

a user selects a layout from the list, the window view

switches to display the selected layout.

Layout navigation is also available from the View > Go To

Layout menu.

View Buttons

Next in the lower portion of the status toolbar are three

buttons that will change the current window’s view to that

selected. The view buttons that are enabled here are

controlled by the current layout’s view settings (Chapter

28).

Preview Button

The Preview button will switch the window into print preview

mode (Chapter 4).

Formatting Bar Button

On the right of the lower, non-customizable portion of the

toolbar, the formatting bar button will toggle the visibility of

a bar between the status toolbar and the content area of

the window that contains text-formatting controls (described

below).

Edit Layout Button

The Edit Layout button , located on the far right, will switch

the window to Layout mode (Chapter 27).

Customizing the Status Toolbar (Browse

Mode)

The status toolbar is customizable at the user-computer

level. This means that a user can customize the contents

and arrangement of objects in the toolbar, which will affect

all databases they open on their computer.

Opening the Customization Panel

To begin customizing the toolbar, select the View >

Customize Toolbar menu. This will open the customization

panel attached to the window as shown in Figure 3-6.

Figure 3-6. The customize toolbar panel attached to the Contacts database

window in Browse mode

Choosing Toolbar Button Style

At the lower level of this dialog is a Show menu, which

allows the user to choose which type of controls will be

displayed in the toolbar. These are also available in a

contextual menu, accessible by right-clicking on the

background of the toolbar. The choices are:

Icon and text (default)

Icon only

Text only

Removing Toolbar Items

To remove an item from the toolbar, follow these steps:

1. Click and hold the icon with the cursor.

2. Drag the object until it is clear of the toolbar area.

3. Release the mouse button to delete the object in a

small graphical puff of smoke.

Note Don’t be afraid to experiment. Later, we will

review how to restore the entire toolbar to its default set

of controls.

Adding Toolbar Items

To add an item to the toolbar, follow these steps:

1. Click and hold the cursor on the desired object from

the customization panel.

2. Drag the object up into the toolbar at the desired

location among the other objects.

3. Release the mouse button to finalize its placement

in the toolbar .

To avoid duplication of items in the toolbar , FileMaker will

automatically replace any object already present in the

toolbar when that same control is added.

Rearranging Toolbar Items

Items can be rearranged within the toolbar by dragging

them back and forth to the desired location when the

customization dialog is open.

Restoring the Default Toolbar Set

To restore the toolbar to its default set of controls, drag the

group in the rectangle at the bottom of the customization

panel up to the toolbar. It will automatically replace

everything and restore all controls to their default state.

Formatting Bar

The formatting bar is a thin bar that contains text-

formatting controls for quick access. Not visible by default,

this bar, shown in Figure 3-7, will appear between the status

toolbar and the window’s content area when the View >

Formatting Bar menu is selected or the icon on the lower

right of the toolbar is clicked.

Figure 3-7. The formatting bar and toggle button

When a user is editing a text field in Browse mode, the

following controls will become enabled in the formatting

toolbar, providing access to the following formatting

settings of a field’s text:

Font

Font style

Font size

Font color

Text alignment

When a window is in Layout mode, the formatting bar

contains a few additional options for object fill color as well

as line style, thickness, and color .

Window Ruler

A FileMaker window can display a horizontal ruler when in

Browse mode, shown in Figure 3-8. To toggle the visibility of

this ruler, select the View > Ruler menu.

Figure 3-8. A window with the Browse mode ruler visible between the toolbar

and the content area

In Browse mode, the ruler doesn’t offer much value when

displayed across the entire window. However, when the

cursor focus is inside a text field, the ruler scales down to

the size of that field, as shown in Figure 3-9, and will then

display any tabs set for that field and allow margin

adjustments (for that field’s content for current record only).

Figure 3-9. The window ruler when focus in inside of a field

When a window is in Layout mode, the ruler option

displays a horizontal and vertical ruler that is useful when

designing interfaces (Chapter 31).

The units can be changed within the ruler’s contextual

menu. The available units are:

Inches

Points

Centimeters

Managing Multiple Windows

FileMaker has many window management functions that

give a user some control over their interface experience

when using a database.

When a database opens, a single window is automatically

generated. It represents the open file and displays records

for the default table. A user can then change layouts and

perform other functions. They can also open new windows

to gain access to multiple views into the database’s content.

Using multiple windows makes it easy to do the following

simultaneously:

View different field sets or arrangements of fields for the

same record on different layouts.

View different records from the same table.

View records from different tables.

Preserve your position in a found set while pausing to

perform work on another record in the same table or a

record in a different table.

View one record in different modes.

As a developer, you can take advantage of multiple

windows. For example, you can edit different layouts

simultaneously or use multiple windows to access separate

lists of records with scripts.

Creating a New Window

To create a new window, select the Window > New Window

menu. The new window will open slightly offset from the

current window, as an exact duplicate with the same

properties, including:

Name (with a numeric suffix)

Window mode

Content view type

Width and height

Status toolbar visibility and locked status

Formatting bar visibility state

Ruler visibility state

Layout

Found set of records

Current record

Once the window has appeared, the user can work within

it as they could in the original window. The window can be

moved and resized for side-by-side viewing. Each window

has its own context so you can change layouts and work

with different record sets.

Closing a Window

A window can be closed just like any document window,

using any of the following methods:

Select the File > Close Window menu item.

Click the red dot in the upper-left corner of the window.

FileMaker requires one window to remain open as a

representation of the database file. If the last remaining

window for a database is closed, the file itself will be closed.

Selecting a Window from the Menu

As new windows are created, they are added to the list at

the bottom of the Window menu, as shown in Figure 3-10.

This list is blended, meaning that it shows all open windows,

regardless of their source database in the layering order as

they are currently stacked and displayed on the screen. To

switch to a different window, select it from the list in the

menu and it will be brought to the front.

Figure 3-10. The list of open windows at the bottom of the Window menu

Hiding and Showing Windows

A window can be temporarily hidden from view by selecting

the Window > Hide Window menu item or by running a

script that uses the Hide Window command. When hidden,

windows are listed under the Window > Show Window

submenu, as shown in Figure 3-11. From here, they can be

made visible and brought to the front with a click.

Figure 3-11. The submenu containing hidden windows

Note In some cases, a database may open with the

default window immediately hidden. This can be

intentionally done by a script or when a file is

automatically opened in the background because its fields

or scripts are used by another open file.

Minimizing a Window

A database window can be minimized into the toolbar by

any of these methods:

Select the Window > Minimize Window menu item.

Click the orange dot in the upper-left corner of the

window.

Minimizing will cause the current window to shrink down

into an icon in the dock; however, FileMaker will continue to

list it as an open window rather than a hidden window.

Clicking the window icon in the dock or selecting it from the

bottom of the Window menu will cause it to reappear at its

former location and size on screen, in front of any other

windows.

Opening an Existing Database

Once created and closed, a database file can be reopened in

a way like any other document on your computer. The

methods of opening an existing FileMaker database are

these:

Double-click on the file icon in a directory.

Drag and drop the file on the FileMaker Pro application

in the application folder or its icon in the dock.

Select the File > Open menu item to open up the

Launch Center for access to favorites, recent, and more.

Select the File > Open Recent menu item to access a

submenu of recently opened databases.

Select the File > Open Favorite menu item to access a

submenu of favorite databases.

Select the File > Open Remote menu item to open the

Launch Center Host’s tab and access databases hosted

on a FileMaker Server.

Opening a Database through the Launch

Center

To open the Launch Center, shown in Figure 3-12, select the

File > Open menu item. When the window opens, it displays

a list of any recent databases opened and any files you have

marked as favorites on the local computer. Click on the icon

or name of the file to open any of these databases.

Figure 3-12. The FileMaker Pro Launch Center

To open a file not already displayed in the window, click

the Browse button on the lower left to access an Open File

dialog, shown in Figure 3-13. Navigate to the directory

containing the desired file, select it and then click the Open

button.

Figure 3-13. The macOS Open File dialog window

Managing Favorite Databases

Adding frequently used databases to your computer’s local

favorites list is a great way to save time locating and

opening a file. This can be done one of three ways:

If the file is listed in the Launch Center’s recent list, click

the star that is either to the left of the file icon (list view)

or on the upper-left corner of the file icon (icon view),

both appearing when the cursor is moved over the icon.

When the file is open, click the File > Open Favorite >

Add Current File to Favorites menu.

When the file is open, click the File > Open Favorite >

Manage Favorites menu to open a dialog where you can

add or remove favorites from a list.

Summary

In this chapter, we created a new database from a starter

solution template and discussed the basics of a FileMaker

Pro window.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_4

4. Working with Records

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

A record is a collection of values that make up a single entry

in a table. Similar to a row of a spreadsheet, each record

contains field values that together represent the properties

of one entity of the type after which a table is modeled. For

example:

In a Contacts table a record would represent one

person.

In a Projects table a record would represent one job.

In an Inventory table a record would represent one

product.

Most of a user’s work in a database will be spent

interacting directly with records, from within the content

area of a window. Records can be created, edited, deleted,

omitted, searched, exported, imported, printed, and viewed.

In this chapter, we will focus on how a user interacts with

records, covering topics such as the following:

Entering data

Managing records

Searching for records

Working with found sets

Printing

Note

Throughout this chapter, we will continue working in the

Contacts database we built in Chapter 3 using FileMaker’s

starter template.

Entering Data

Data entry tasks are performed while a window is in Browse

mode and a record is opened into an editable state. Data

can be entered, edited, and formatted in whatever field has

current focus on the current open record. Once finished, the

record is closed and changes are either reverted or

committed.

Opening a Record

Once a user has identified a record they want to edit, they

must open it. If a user begins typing while viewing a record

before opening it, an error dialog indicating this fact will

appear.

Opening a record means that the record is activated into

an edit state in which the fields are no longer simply

displaying information, they are activated and ready for

data input.

To open the current record for data entry, perform any

one of these steps:

Click into any editable field.

Type the Tab key.

Run a script or click a button that uses the Open

Record/Request script step.

Once a record is open for data entry, it may appear like it

does when viewed. However, differences in appearance

between viewing and editing states will depend on the

choices made by whoever developed the database. It’s a

good practice for developers to program some visual

change to help a user clearly see that the record is opened

and ready for input. For example, the field borders might

become visible or change thickness or color. Unfortunately,

the Contact starter solution from FileMaker doesn’t provide

such an indication and instead only makes clear that a

single field has focus and is ready to accept input.

Understanding Field Focus

When a record is opened for editing, one field will be in

focus. Focus means that the field is currently active and has

the text cursor blinking within it, as shown in Figure 4-1. Any

keyboard input will flow into the field with current focus.

Figure 4-1. A field in focus in the Contacts starter solution

Once again, other formatting changes may occur

depending on the theme used or the formatting choices

made by the developer of the layout.

Moving to Another Field with Tab Order

When finished editing the content of one field , the user can

move on to other fields one of two ways:

Clicking directly onto any other editable field on the

layout will move focus to that field and allow the user to

continue editing.

Typing the Tab key will move the cursor to the next field

based on the layout tab order. The tab order is a

number assigned to fields by a developer while

designing the user interface (Chapter 31). The number

controls the cascade from one field to the next each

time the user types the Tab key. This is sometimes

called tabbing into a field, and it allows the user to

maintain contact with the keyboard, avoiding the mouse

for almost all data entry work. Once they reach the last

field in the tab order, the sequence repeats back to the

first field.

Note:

A keys that allow navigating to the next object in the tab

order can be customized with the Go to next object

setting (Chapter 29).

Modifying Field Contents

Once a record is open and a field has focus, the value in the

field can be changed in several different ways depending on

the field’s data type (Chapter 8) and layout behavior and

formatting options (Chapters 29 and 30). These include:

Typing

Cut, copy, paste, undo, redo

Drag and drop

Insert functions

Mouse clicks

Typing

The most basic method of entering data into any data entry

field (except containers) is by typing on the keyboard once

field focus has been established.

Cut, Copy, Paste, Undo, Redo

Like all standard applications that accept text input,

FileMaker’s Edit menu has commands for Cut, Copy, Paste,

Undo, and Redo . Where applicable, these allow standard

manipulations to content stored in fields and development

resources such as formulas, layout objects and value lists.

Caution Undo does not include reversing actions such

as record deletion.

Drag and Drop

If the application’s Allow drag and drop text selection

preference is checked, FileMaker allows the following:

Rearranging text within a single field with drag and

drop.

Copying text from one field to another by dragging.

Dragging content from sources in other applications and

dropping it into fields.

Insert Functions

The Insert menu and Insert submenu of a field’s contextual

menu make available several functions for quickly inserting

various content into fields such as pictures, files, and text.

Each of these menu items are contextually enabled

depending on the data type of the field being edited and

based on the enabled status of a container field (Chapter

29).

Insert Picture — select an image file that will be inserted

into a current container field, where it will be displayed

as an image.

Insert Audio/ Video — select an audio or video file that

will be inserted into a current container field. This option

is only available if the container field is configured to

allow interactive content; otherwise use Insert File.

Insert PDF — select a PDF file that will be inserted into a

current container field. This option is only available if

the container field is configured to allow interactive

content; otherwise use Insert File.

Insert File — select any file that will be inserted into a

current container field, where it will be displayed as an

enclosed file icon.

Current Date — insert today’s date into the current text

or date field.

Current Time — insert the current time into the current

time field or the current timestamp into the current

timestamp field.

Current User Name ` — insert the current user name

into the current field.

From Index — displays a dialog showing a list of unique

values for all records for the current field. The user can

double-click on any of these values to automatically

insert it into the field for the current record.

From Last Visited Record — inserts the value of the

current field from the last record viewed into the current

record.

Mouse Clicks

When a field is configured with a control style other than

Edit Box (Chapter 30) entering or selecting data may be

require or optionally be performed with mouse clicks. For

example, a check-box style formatting requires a click onto

boxes next to the desired value(s) while a calendar style

formatting gives the option of entering a date by selecting

one from a graphical calendar.

Formatting Field Contents

Depending on a field’s format settings on a layout, text

entered within it will conform to that formatting unless

additional formatting is allowed and applied by the user

directly to the text within the field. Fields can contain rich

text formatting using the Format menu, Formatting Bar, or

the field’s contextual menu.

Closing a Record

Once a user is finished editing, the record needs to be

closed by either committing or reverting the changes.

Committing a record closes the record while saving all

changes made during the editing session. A record can be

committed by:

Clicking on the layout outside of any field and away

from any other object.

Typing the Enter key.

Navigating forward or backward to another record.

Running a script or clicking a button that uses the

Commit Records/Requests script step.

FileMaker will perform any data entry validations prior to

committing a record and will halt and report problems if any

are detected.

Reverting a record closes the record while omitting all

changes made during the editing session. A record can be

reverted by:

Selecting the Records > Revert Record menu.

Running a script or clicking a button that uses the

Revert Records/Requests script step.

Managing Records

Users can create, delete, and duplicate records.

Creating a New Record

A new record can be created in the table displayed on the

layout in the front window by using one of these methods:

Select the Record > New Record menu item.

Select New Record from the record contextual menu.

Clicking the New Record icon in the toolbar.

Running a script or clicking a button that uses the New

Record/Request script step.

The new empty record will appear in the front window,

open and ready for entry with focus on the first field in the

tab order.

Deleting a Record

The current record in the front window can be deleted by

using one of these methods:

Select the Record > Delete Record menu item.

Select Delete Record from the record contextual menu.

Clicking the Delete Record icon in the toolbar.

Running a script or clicking a button that uses the

Delete Record/Request script step.

FileMaker will confirm that the user wants to continue

with the deletion by presenting a warning dialog, shown in

Figure 4-2. If the user confirms the deletion by clicking the

Delete button, the record will be permanently deleted from

the table. Clicking the Cancel button will dismiss the dialog

without any further action taken.

Figure 4-2. The delete record warning dialog presented to the user prior to

deleting a record

Note

A user can bypass this warning dialog and instantly delete

a record by holding Option (macOS) or Shift (Windows)

while selecting the Delete Record option! While this

feature may be a useful tip for power users, it can be

dangerous for new users and perhaps shouldn’t be shared

with everyone. Custom Menus (Chapter 33) can be used

to suppress this feature.

Deleting All Records

The entire found set of records in the front window can be

deleted all at once by using one of these methods:

Select the Record > Delete All Records menu item.

Running a script or clicking a button that uses the

Delete All Records script step.

FileMaker will confirm that the user wants to continue

with the deletion by presenting a warning dialog, shown in

Figure 4-3. If the user confirms the deletion by clicking the

Delete All button, the records in the found set will be

permanently deleted from the table. Clicking the Cancel

button will dismiss the dialog without any further action

taken.

Figure 4-3. The delete all records warning dialog presented to the user prior to

deleting all records in the found set

Duplicating a Record

The current record in the front window can be duplicated

using one of these methods:

Select the Record > Duplicate Record menu item.

Select Duplicate Record from the record contextual

menu.

Running a script or clicking a button that uses the

Duplicate Record/Request script step.

Once initiated, FileMaker will immediately create a

duplicate of the current record, that is open and ready for

entry with focus on the first field in the tab order.

Searching for Records

Searching allows a large list of records to be temporarily

pared down to a subset based on the criteria specified by a

user or script. Instead of scrolling through a table to visually

locate one or more desired records, a search instantly

displays only records with matching criteria.

FileMaker offers several methods for searching records:

Performing fast searches with quick find

Performing fast searches with find matching records

Using find mode

Searching with scripts (Chapter 35)

SQL queries (Chapter 26)

Except for the SQL Query, each of these is context

sensitive, meaning they are constructed and executed from

within the user interface and are, therefore, based on the

context of the table for the layout viewed in the current

window.

Performing Fast Searches

FileMaker offers two options for fast searching, each based

on a single criterion:

Searching with Quick Find

Searching with Find Matching

Searching with Quick Find

The quick find feature will search for records that contain a

specified value in any field on the current layout that is

configured for this purpose (Chapter 29). Access to quick

find is through the search text field located in the status

toolbar, shown in Figure 4-4.

Figure 4-4. The quick find search field in the status toolbar

Performing a Quick Find

To begin a quick find, follow these steps:

1. Open a database window.
2. Navigate to a layout that displays records from the

table you want to search.

3. Make the status toolbar visible if it is hidden.

4. Click into the search text area in the status toolbar.

5. Type the search criteria.

6. Type the Enter key.
The find is performed instantaneously and the window is

updated with the result; a found set of records that contains

the criteria entered. If no records match the criteria, a

dialog, shown in Figure 4-5, will appear informing the user of

this fact.

Figure 4-5. The dialog notification of no matching records for the quick find

criteria entered

Changing the Quick Find Criteria

After a quick find is complete, the criteria entered will

remain within the search field and will be highlighted. This

allows the user to instantly type new criteria in its place and

hit the Enter key again to initiate a new or updated find if

necessary. Since the search field is a text field you can copy,

paste, drag and drop just as you would with any other text

on a computer.

Clearing the Quick Find Criteria

The quick find criteria can be cleared by:

Clicking the “x” icon inside the search field.

Selecting the entire text entry and typing Delete.

Clearing the quick find criteria does not affect the current

found set, which will continue to display the records from

the last find performed.

Using the Recent Search Menu

Clicking on the magnifying icon on the left within the quick

find text field displays a menu of the last ten recent quick

finds. Any recent find can be re-performed by clicking on the

item from this list.

At the bottom of this menu is a Clear Recent Searches

option. Clicking this will clear the menu of all recent

searches. The recent search menu is automatically cleared

when the database file is closed.

Searching with Find Matching

Another rapid find technique is the Find Matching functions ,

which are available from the field’s contextual menu, shown

in Figure 4-6.

Figure 4-6. The find matching records function selected in the field contextual

menu

Each of these three functions will instantly perform a

predefined type of search for records that match the value

in the current field:

Find Matching Records — This function will perform a

new find in the current field for the value in that field on

the current record.

Constrain Found Set — This function will narrow the

current found set of records to only those within the

found set that match that field value for the current

record.

Extend Found Set — This function will expand the

current found set of records to include other records

that match that field on the current record.

Note

The behavior for constraining and extending a found set

from the contextual menu varies slightly from that

performed by the same options available in the menu bar

and script steps.

Using Find Mode

Find mode is a transitional window state that provides an

opportunity to enter search criteria directly into one or more

fields on one or more find requests using the current layout

before initiating a search.

Find mode can be initiated one of the following ways:

Select the View > Find Mode menu item.

Click the “Find” icon in the status toolbar.

Select the Create New Find from the menu on the “Find”

icon in the status toolbar.

Running a script or clicking a button that uses the Enter

Find Mode script step.

Identifying Find Mode

The appearance of a window in Find mode will be like

Browse mode with a few important differences.

The status toolbar contains a different set of options

when in Find mode (described below).

The content area of the window displays an empty

temporary find request waiting for input that will be

used as criteria for locating matching records. In

addition to appearing as a blank version of the layout,

the availability of some controls and their formatting

might change depending on how the layout components

are configured (Chapters 27-31).

Status Toolbar (Find Mode)

When a window is placed into Find mode the options

available in the status toolbar will change to functions

specific to searching. The options displayed will either be

the default Find mode options or the user’s customized set.

Default Status Toolbar Items (Find Mode)

The default status toolbar for Find mode, shown in Figure 4-

7, contains:

Navigation controls

Function buttons

Saved finds menu

Layout menu

View buttons

Matching records options

Insert operators menu

Figure 4-7. The default status toolbar for Find mode

Navigation Controls

At the top left of the toolbar are the navigation controls that

appear and function exactly as they do in Browse mode with

one important difference; they refer to and control find

requests rather than records. A find request is a record-like

version of the current layout that is used to enter search

criteria.

Function Buttons

The following buttons are included in the default Find mode

toolbar:

New Request — creates a new find request for entering

alternative criteria.

Delete Request — deletes the current find request if it is

not the only find request.

Perform Find — performs the find, based on the criteria

entered in the find request(s) and returns to browse

mode with a found set of the results.

Cancel Find — aborts the find process and returns the

window to Browse mode displaying the previous found

set.

Saved Finds Menu

Figure 4-8. The Saved Finds menu

On the top right of the Find mode toolbar, is the Saved

Finds menu button, which makes available the following

functions:

Save Current Find — saves the current find criteria so

that the identical search process can be easily repeated

in the future.

Edit Saved Finds — opens the Edit Saved Finds dialog.

Saved Finds — displays a list of saved finds, which can

be performed with a click.

Recent Finds — displays the last 10 recent finds, which

can be performed with a click.

Clear All Recent Finds — clears all the recent finds.

Caution

Saved finds only store the criteria and not the resulting

found set of records! Each time a find is performed, that

criteria is applied in searching every record in the table,

including those that may not have existed at the time the

find was saved.

Layout Menu

The lower, non-customizable level of the Find mode toolbar

starts with the Layout menu, which operates like it does in

Browse mode. This pop-up menu displays a list of layouts

that have the Include in Layouts Menu option selected

(Chapter 28).

When a user selects a layout from the list the window

view switches to display the selected layout while

maintaining Find mode. This can be useful if the user wishes

to create a find using multiple fields for the same table that

are spread over several different layouts. However, if the

user switches to a layout for a different table, criteria

entered in layouts representing other tables will be ignored

and the find will be performed based on the context and

criteria entered for the last table.

View Buttons

Next on the lower portion of the Find mode toolbar are three

buttons that will change the current window’s view, like they

do in Browse mode (Chapter 3). The views that are enabled

are controlled by the current layout’s view settings (Chapter

28).

Matching Records Options

The matching records option, unique to Find mode, is a

toggle switch between two opposing options that control

how records matching the criteria entered in the current find

request will be handled in relation to the resulting found set:

Include — This is the default behavior for any new find

request; any record matching the criteria entered will be

included in the resulting found set.

Omit — Selecting this option will cause any record

matching the criteria entered to be omitted from the

resulting found set.

When building complex finds, these two settings can be

used in various combinations on different find requests to

create precisely refined results.

Insert Operators Menu

Clicking the Insert Operators menu in the Find mode toolbar

will reveal a pop-up menu of available operators. An

operator selected from this menu will be inserted into the

field with focus and may be used with or without other

criteria to enhance the search parameters. Operators are

discussed later in this chapter.

Customizing the Status Toolbar (Find Mode)

The status toolbar in Find mode is customizable at the user-

computer level exactly as it is in Browse mode (Chapter 3).

The only difference is in the specific button functions

available.

To begin customizing the status toolbar, enter Find mode

and then select the View > Customize Toolbar menu to open

the customization panel attached to the window as shown in

Figure 4-9.

Figure 4-9. The customize toolbar panel attached to the Contacts database

window in Find mode

Entering Find Criteria

Once a window is in Find mode, criteria can be typed into

any field on the layout that is configured to allow it. Typed

input does not result in a new record but a temporary find

request that will be used to perform the search. When you

type text into a field it indicates to FileMaker that you want

to search for records containing this value in that field.

Unlike with the Quick Find and Find Matching Record

functions, criteria can be typed into more than one field in

Find mode. When doing so, each field with criteria acts like

an “and” type search. In other words, when you enter

criteria into two fields, a record will only be a match if it has

both the value from the first field and the second field. It is

like indicating that you want to search for records where

value A is in field A and value B is in field B. The same holds

true regardless of the number of fields entered on a single

find request. To enter an “or” type search, create a new find

request for each set of criteria.

Entry in Find mode works essentially the same as in

Browse mode; use keystrokes, the insert menu or mouse

clicks to enter data depending on the control type and use

the Tab key to move the focus on to other fields.

Using Search Operators

A search operator is a character or set of characters that are

used to narrow the focus of the search. Operators can be

added to a field while in Find mode using these methods:

Typing the operator directly into a field.

Clicking the Insert Operators control in the second level

of the toolbar to.

Selecting the Operators submenu from the field’s

contextual menu.

The Insert Operators menu, shown in Figure 4-10, allows

quick access to a list of operators. An operator selected

from this menu will be inserted into the current field.

Figure 4-10. The Insert Operators menu

The available Find mode operators are described in Table

4-1:

Table 4-1. A description of the avaiable Find mode operators

Operator Description

= Use in front of a value to match a whole word within the field.

Entered by itself, it will match records where that field is empty.

== Use in front of a value to match an entire phrase within the field.

! Use to find any records where the field has one or more duplicate

values on other record(s).

< Use to find numeric or text values that are less than the value

entered after the symbol.

≤ Use to find numeric or text values that are less than or equal to the

value entered after the symbol.

> Use to find numeric or text values that are greater than the value

entered after the symbol.

≥ Use to find numeric or text values that are greater than or equal to

the value entered after the symbol.

… Use to find a range of values. For example, entering “1/15/2017…

1/30/2017” will find all records where the field contains a date

including or between the two dates entered.

// Use to find records where the field contains today’s date.

? Use to find records where the field contains an invalid date or time.

@ Use to find records where the field contains any one character or

combined string of any character. For example, “@” will find “D” or

“T” and “@@@@” will find “Door” or “Test.”

Use to find records where the field contains any one number or

combined length of any number. For example, “#” will find “3” or “8”

and “##” will find “33” or “81.”

* Use in place of a character to create a search pattern. For example,

“1/15/*” will find any records where the field contains a date of

January 15 for any year.

\ Use to escape the next character. This can be useful when searching

for a literal operator by treating the operator as part of the search

criteria and not as an operator. For example, to search for any

records where the field contains a quote symbol, enter \”.

“” Use to match the phrase typed between the quote marks.

*“” Use to match the phrase typed between the quote marks. In a field

containing a lot of text.

∼ Use to perform a relaxed search in Japanese text.

Managing Find Requests

Find requests are like Browse mode records both in their

location within the content area of a Window, similar

appearance, and the options available for managing them.

Like with records, it is possible to create, delete, and

duplicate find requests to create complex searches.

Creating New Find Requests

Adding additional criteria to a single find request will narrow

the results since a matching record must contain each value

specified in each respective field. By contrast, adding an

additional find request, each with their own criteria will

expand the results since matching records must contain the

criterion from one request or the other.

When in Find mode, a new request can be created as

easily as creating new records in Browse mode. Any of these

methods will create a new request:

Select the Request > New Request menu item.

Select New Request from the record contextual menu.

Clicking the New Request icon in the toolbar.

Running a script or clicking a button that uses the New

Record/Request script step.

The new request will appear as a new, empty record

awaiting find criteria. Each request is then accessible from

the navigation area of the toolbar, shown in Figure 4-11.

Figure 4-11. The navigation area showing two requests in Find mode

The navigation controls work just as they do in Browse

mode, except you are clicking or scrolling back and forth

between find requests instead of actual records.

In a Contacts file, to search for records that contain

either “NY” or “OH” in a State field, follow these steps:

1. Enter Find Mode.

2. Type “NY” into the State field.

3. Create a new find request.

4. Type “OH” into the State field.

5. Click the Perform Find button or type the Enter key.
The results of this find should be all contacts that work in

either state blended into a found set in the order in which

they were created.

Note

When creating many find requests, FileMaker will

eventually present a dialog reminding you that you are in

Find mode. This is designed as a warning to avoid a

situation where a user might mistakenly assume they are

creating records when they are really creating find

requests since the views and process are so similar.

Deleting a Find Request

By its nature, a Find session must contain at least one

request. Therefore, the default find request that is

automatically created at the start of a new Find session

can’t be deleted. However, once the session contains more

than one request, the Delete Request function becomes

active, and it is possible to delete any requests as needed

provided that at least one is retained.

Any of these methods will delete the current find request:

Select the Request > Delete Request menu item.

Select Delete Request from the record contextual menu.

Clicking the Delete Request icon in the toolbar.

Running a script or clicking a button that uses the

Delete Record/Request script step.

Caution

Unlike when deleting records, deleting a find request

happens instantly without a warning dialog.

Duplicating Find Requests

Like records, find requests can be duplicated by any of the

following methods:

Select the Request > Duplicate Request menu item.

Select Duplicate Request from the record contextual

menu.

Clicking the Duplicate Request icon in the toolbar.

Running a script or clicking a button that uses the

Duplicate Record/Request step.

Performing a Find

Once all the criteria are entered into the appropriate fields ,

the search process can be performed by any of these

methods:

Type the Enter key.

Click the Perform Find button in the toolbar.

Select the Requests > Perform Find menu.

Once initiated, FileMaker will search the current table and

display the results. If there are no results, a dialog will be

presented notifying the user of this fact with an option to

modify the find or cancel the process. If results are found,

they will be listed in creation order as the current found set

in the window.

Manipulating a Previously Executed Find

Once a find has been performed, FileMaker offers three

methods for further refining the results without having to

start over with a new request:

Modifying the last find

Extending the last find

Constraining the last find

The first of these is triggered from Browse mode as an

alternative method to using the Enter Find Mode command;

it will automatically enter find mode and restore the last find

criteria. The Extend and Constrain commands are available

when criteria is specified: either in a new find session when

they are used in place of the Perform Find command or

when field contents are selected and the command is

selected from the contextual menu. These control how the

new criteria should be used in relation to an existing found

set in the same window.

Modifying the Last Find

The Modify Last Find command will re-create the find

request(s) and criteria of the last find performed in the

current table as a new Find mode session. This quickly

creates a new find request identical to the last performed

without requiring it to have been formally saved the last

find.

The last find criteria can be recreated by using any of

these methods from any window in Browse mode:

Select the Record > Modify Last Find menu item.

Select Modify Last Find from the menu connected to the

toolbar’s Find icon.

Run a script or click a button that includes the Modify

Last Find script step.

Extending the Last Find

The Extend Found Set command will use the new criteria to

add records to the existing found set. Any records that

match the new criteria that are not yet included will be

added to the found set.

This command can be used the following ways:

Select Extend Found Set from the field contextual menu

when highlighting some text within a field in Browse

mode.

Select the Request > Extend Found Set menu instead of

Perform Find after setting up some criteria in a Find

mode session.

For example, if viewing a found set of contacts generated

by searching for a Work State of “NY”, this result can be

extended to include contacts that have a Work State of

“OH,” by following these steps:

4. Enter find mode.

5. Type “OH” into the Work State field.

6. Select the Request > Extend Found Set menu.
The resulting found set should consist of a list of records

with a Work State of “NY” or “OH” in creation order.

Constraining the Last Find

The Constrain Found Set command will use the new criteria

of the find request(s) to reduce to the existing found set.

Any records within the current found set that match the new

criteria will be included while any that do not match the new

criteria will be excluded. Any previously excluded records

will continue to be excluded. In other words, the new search

is only performed against the records within the current

found set.

This command can be used the following ways:

Select Constrain Found Set from the field contextual

menu when highlighting some text within a field in

Browse mode.

Select the Request > Constrain Found Set menu instead

of Perform Find after entering some criteria in a Find

mode session.

For example, if viewing a found set of contacts generated

by searching for a Work State of “NY”, this result can be

constrained to only include contacts that have a Work City

of “New York,” by following these steps:

4. Enter find mode.

5. Type “New York” into the Work City field.

6. Select the Request > Constrain Found Set menu.
The resulting found set should be only those records with

both a Work State of “NY” and a Work City of “New York.”

Building Complex Finds

Using multiple requests with a combination of the Include

and Omit options , it is possible to build extremely

sophisticated find requests. Although many users may never

need to construct a find more complex than a single request

with a few fields worth of criteria, professionals and power

users will.

For example, to find every contact that works in the state

of NY or OH but does not work in a city of New York or

Columbus, follow these steps:

1. Enter find mode.

2. On the default find request, enter “NY” in the Work

State field.

3. Create a new find request.

4. Enter “OH” in the Work State field.

5. Create a new find request and click the “Omit”

option in the toolbar.

6. Enter “New York” in the Work City field.

7. Create a new find request and click the “Omit”

option in the toolbar.

8. Enter “Columbus” in the Work City field.

9. Perform the find.

Working with Saved Finds

FileMaker includes a rather complex set of dialogs in which a

user can save , create, and edit stored find request criteria

for future use.

Saving a Find

The last executed find can be saved by one of these

methods:

Select the Records > Saved Finds > Save Current Find

menu item while in Browse mode.

Select Save Current Find from the menu on the Find

toolbar icon while in Browse mode.

Select Save Current Find from the menu on the Saved

Finds toolbar icon after entering find criteria in Find

mode.

Each of these will open the current or last find in a

Specify Options for the Saved Find dialog, shown in Figure 4-

12.

Figure 4-12. The Specify Options for the Saved Find dialog

The dialog allows the user to edit the name and criteria

of the find being saved.

Naming a Saved Find

The name of the find being saved will default to the criteria

of the find. It is a good idea to enter an enhanced name to

provide clarity about what the find represents. For example,

it is a good idea to include the name of the table and field(s)

being searched rather than just the criteria.

In a multi-table database, the list of saved finds is not

filtered based on the current layout’s table. Since a find will

be executed from the current layout, including the table in

the name will help the user to understand the proper

context for successful use of the saved find.

Including the name of the field(s) being searched will

help avoid confusion about where exactly the criterion is

used. In the example above, “New York” was entered into

the Work City field but it could have been entered into the

Home City field.

In this example, a better name that includes the table

and field name and the criteria could take the following

form:

(Contacts) Work City = New York

Understanding the Criteria Selection

The find criteria, accessible by clicking the Advanced button

in the dialog, will vary depending on the context when the

save process was initiated. When in Browse mode or in Find

mode when no find criteria have been entered, the criteria

from the previous find will be stored. When in Find mode

with new criteria entered, the new values will be stored.

Saving or Canceling the Process

Clicking the Save button will close the dialog and complete

the save process. The find will be stored within the database

file and accessible by other users with the same level of

access. Clicking the Cancel button closes the dialog without

saving.

Performing a Saved Find

A saved find can be quickly executed by one of the following

methods:

Selecting it by name from the Records > Saved Finds

submenu.

Selecting it by name from the pop-up menu of the Find

icon in the toolbar in Browse mode.

Selecting it by name from the pop-up menu of the

Saved Finds icon in the toolbar in Find mode.

When this command is selected in Browse mode, the find

is immediately executed and the results become the found

set in the current window. In Find mode, the selection of a

saved find sets up the request(s) and then waits for the user

to modify them or perform the find.

Managing Saved Finds

Saved finds can be managed from within the Edit Saved

Finds dialog, shown in Figure 4-13. This dialog is accessible

from the following menus:

Select the Records > Saved Finds > Edit Saved Finds

menu item when in Browse mode.

Select Edit Saved Finds from the Find menu in the

toolbar when in Browse mode.

Select Edit Saved Finds from the Saved Finds menu in

the toolbar when in Find mode.

Figure 4-13. The Edit Saved Finds dialog

The dialog displays a list of all finds stored within the

current database file and the following function buttons:

New — creates a new, empty find and opens it in the

Specify Options for the Saved Find dialog.

Edit — opens the selected find in a Specify Options for

the Saved Find dialog.

Duplicate — creates a duplicate of the selected find.

Delete — deletes the selected find.

Cancel — closes the dialog without saving changes.

OK — saves changes and close the dialog.

Managing a Find Request

Click the Advanced button from a Specify Options for the

Saved Find dialog to display the stored criteria in a Specify

Find Requests dialog shown in Figure 4-14.

Figure 4-14. The Specify Find Requests dialog

The dialog displays a list of the requests that make up

one stored find. Each line represents a single find request

containing one or more criterion. These can be managed

using the following function buttons:

New — creates a new, empty find request for the

current find in an Edit Find Request dialog, shown in

Figure 4-15.

Figure 4-15. The Edit Find Request dialog

Edit — allows editing of a selected request by opening it

in an Edit Find Request dialog.

Duplicate — creates a duplicate of the selected request.

Delete — deletes the selected request.

Cancel — closes the dialog without saving changes.

OK — saves changes and closes the dialog.

Editing a Find Request Criteria

A find request in a Specify Find Request dialog can be edited

by opening an Edit Find Request dialog, shown in Figure 4-

15. This dialog can be opened by one of two methods:

Selecting the request in the list and clicking the Edit

button.

Double-clicking on the request in the list.

This dialog is a rather complex set of interface elements

that allows a batch of find requests to be edited one by one

in a single interface. The dialog controls include the

following:

1. Action — choose Find Records or Omit Records,

which are the equivalent of the Include and Omit

matching records option in the toolbar’s second

row.

2. Criteria List — lists each field-criteria pair that

makes up the request. Whichever row is selected

will be displayed in the bottom of the dialog for

editing.

3. Table — contains a list of all related tables with the

table containing the current field-criteria pair

selected.

4. Fields — displays all the fields for the selected

table with the search field.

5. Criteria — This text area contains the value that

will be search for within the selected field.

6. Insert Operator — contains a list of available

operators; select one to insert it into the current

criteria.

7. Add — creates a new field-criteria pair in the

request list based on the values selected.

8. Change — modifies the currently selected field-

criteria pair based on the edited values.

9. Remove — deletes the currently selected field-

criteria pair.

p

10. Cancel — closes the dialog without saving

changes.

11. OK — saves changes and closes the dialog.

Tip

To avoid confusion, especially for complex finds, create

the find in the interface and then save it and look at the

request in this dialog. That will help you understand how

to construct a find in the dialog.

Working with Found Sets

Unless a find matches every record within the table, the

result is likely a subset of the total record count. Once

established, the records in this set can be manipulated in

various ways.

Defining a Found Set

A found set is a group of records that are visible and

navigable within a given window for a particular table. While

the found set may contain all records within a table, the

term generally refers to a subset of records generated by a

search. Records that are not part of the found set, and

therefore not actively visible or navigable, are called the

omitted set.

With the toolbar hidden, it is impossible to know if there

is an active found set of less than the total number of

records unless a developer has created layout elements to

inform the user. Even with the toolbar visible, it’s easy to

miss. An uninitiated user might panic at first wondering

where all their records have gone.

The difference can always be seen in the record count

located in the navigation area of the toolbar, as shown in

Figure 4-16. When all records are accessible, one number is

displayed: the total count of records. When a found set is

active, the first number displayed indicates how many

records make up the visible found set, while the second

number indicates the total number of records in the table

including those that are omitted from the found set.

Figure 4-16. The different information displayed in the navigation area when

viewing all records or a found set

When navigating to other layouts that display records for

the same table within the same window, the found set

remains constant until the user or a script changes it. Every

table within a window has its own found set. When using

multiple windows, each window has its own context and,

therefore, a unique found set for each table contained in the

file.

Changing the Records in the Found Set

The records that are included within a found set can be the

result of a find. However, once established, membership in

the set can be adjusted or transformed in various ways with

the following commands:

Show All Records

Omit Record

Omit Multiple

Show Omitted Only

Each of these commands can be accessed from the

Records menu while in Browse mode or by running a script

or clicking a button that includes them. None will affect the

actual records contained within the table, only their

inclusion within the found set.

Show All Records

The Show All Records command will replace the found set in

the current window with all records in the table. This

command is available in both Browse and Find modes. When

used in Find mode, it acts as the find criteria and perform

find command, returning to Browse mode and displaying all

records. If the initial found set is sorted, using this command

will unsort the records.

Omit Record

The Omit Record command will move the current record

from the found set to the omitted set. This helps to fine-tune

the results of a find without the need to perform a new,

more complex search.

Omit Multiple

The Omit Multiple command displays a dialog for the user to

enter a number indicating how many records they wish to

move from the found set to the omitted set, starting from

the current record. This helps to fine-tune the results of a

find like the single-record Omit command but in larger

record chunks.

For example, if the user is viewing the first record of a

found set of 100 records and they choose this command and

enter the number 10, the first 10 records will be omitted

leaving the remaining 90 records as the new found set.

However, if they are viewing record 50 of 100 and do the

same thing, then record 50–59 will be omitted leaving

records 1-49 and 60-100 as the new reduced found set.

Show Omitted Only

The Show Omitted Only command will replace the current

found set with the omitted set, effectively causing the two

sets to trade places. The found set will become the omitted

set, and the previously hidden omitted set will become the

visible found set.

Sorting Records in the Found Set

After searching, the found set of records will be displayed in

creation order, which is considered an unsorted state. The

records can be re-sorted as needed by any local or related

field(s) and unsorted again using the Sort command

configurable through a dialog, shown in Figure 4-17. The

dialog can be opened using any of the following methods

from Browse mode:

Select the Records > Sort Records menu item.

Select Sort Records from the Record contextual menu.

Clicking the Sort button in the toolbar.

Figure 4-17. The Sort Records dialog

The following controls are available on the Sort Records

dialog:

1. Field selector — The field list displays every field for

the table or layout selected from the pop-up menu

above, which contains every table occurrence in the

current file but only allows selection of the current

table or those related to it.

2. Sort field order — This list specifies the order of

field(s) by which the found set will be sorted. A field

can be added to the list by either double-clicking it

in the field selector or selecting it and clicking the

Move button. When a field in the sort order is

selected the Move button will become a Clear

button. To remove a field from sort order list,

double-click it or select it and click the Clear button.

All fields listed can be removed by clicking the Clear

All button. Fields can be dragged and dropped to

rearrange the order within the sort order list.

3. Sort field direction — This choice of three radio

buttons control the direction or order of the sort for

a selected field in the sort order. The options are

ascending (default); descending; or a custom,

nonstandard order based on a value list. The

adjacent icons are displayed next to each field in

the sort field order indicating which option will be

used for which field. Fields retain the sort option

based on the radio button selected at the time a

field is added to the sort order. To change the option

for a field, select it in the sort order and click

another directional option.

4. Reorder based on summary field— This check box

and associated Specify button allows the selection

of a summary field that will be used as a secondary

sort to reorder records based on a field value that is

first sub-summarized by another sort field. First add

the field that is used by a summary field. Then, with

that field selected, check this box and select the

summary field to re-sort the summarized records.

When used, a small document icon will appear in

place of the sort direction indicator next to the field

in the sort order.

5. Override field’s language for sort — This check box

and associated pop-up menu allows the selection of

a different language to control indexing for the sort

for text fields.

6. Keep records in sorted order — When this box is

checked, changes to the values of sort fields on

records will not automatically update the sort order.

Uncheck this box to have the sort dynamically

update after any change is committed

update after any change is committed.

7. Unsort — This button will unsort the found set of

records and close the dialog.

8. Cancel — This button will close the dialog without

modifying the sort order of the found set.

9. Sort — This button will re-sort the records in the

found set and close the dialog.

The sort status of records will be indicated in the record

navigation area of the toolbar as shown in Figure 4-18. If the

Sort dialog is reopened while records are already sorted, it

will display the fields controlling the current sort order.

Figure 4-18. The record count with an indication that the records are currently

sorted

Modifying Field Values for Records in the

Found Set

In addition to the obvious advantage of isolating a set of

records for manual work, creating a found set allows

changes to field values to be applied to a batch of records

all at once. There are several commands that always or

optionally apply to all the records in a found set, including

the following:

Replace Field Contents

Relookup Field Contents

Find and Replace

Spell Checking

Replace Field Contents

The Replace Field Contents command allows a field value to

be updated for the field in focus for every record in the

current found set at once. The new replacement value can

be a choice of:

The value in the field for the current record.

Serial numbers, starting from a specified number on the

first record and incremented a specified amount for

each subsequent record.

The result of a calculation formula.

These options are available from the Replace dialog,

shown in Figure 4-19.

Figure 4-19. The Replace Field Contents dialog

Replacing with Current Contents

To apply the contents of a field on the current record to that

same field for all records in the found set, click into the field

and use one of the following methods to open the dialog:

Select the Records > Replace Field Contents menu item.

Run a script or clicking a button that uses the Replace

Field Contents command.

The default option in the dialog is to replace the contents

of the current field for every record in the found set with the

value of that field for the current record. Clicking the

Replace button will close the dialog and complete that task,

instantly inserting “USA” into the Work Country field for

every record.

Replacing with Serial Numbers

When a field containing serial numbers needs to be updated

for a group of records, select the Replace with serial

numbers radio button and follow these steps:

1. Enter the initial value that should be entered into

the field for the first record in the found set. The

value entered can have a non-numeric prefix if

desired. For example, entering a value of “Test-1” is

valid and only the numeric portion will be

incremented for subsequent records.

2. Enter a numeric value in the increment by field.

This indicates the amount by which the serial

number will be incremented for each subsequent

record in the found set.

3. If the field being updated is defined to have a serial

number auto-assigned during data entry, checking

the Update serial number in Entry Options check

box will update the settings so that the next value

entered on a new record will be the incremented

value of the last record in the found set after the

Replace function is concluded.

Once these settings are configured, click the Replace

button to close the dialog and complete that task.

Replacing with Calculated Result

To specify a calculated result as the value to be entered into

the field for the found set, click the Specify button. This will

open a Specify Calculation dialog, into which you can

choose a function or type a custom calculation (Chapter 12).

The calculation can evaluate to a standard result that will

be applied to the field of every record in the found set or it

may use field values and other criteria to dynamically

calculate a unique value for each record.

Relookup Field Contents

Fields that pull data from related records using the Lookup

feature (Chapter 8) are not automatically updated when the

match field of the related table or the lookup source field is

modified. The Relookup Field Contents command will force

all fields looked up by the selected match field for every

record in the found set.

To perform a Relookup, follow these steps:

1. Create a found set containing only the records you

wish to update.

2. In Browse mode, click into the match field that

establishes the relationship through which you want

to update.

3. Select the Records > Relookup Field Contents menu

item or run a script containing a Relookup Field

Contents script step.

p p

4. Click the OK button in the alert dialog.

Find and Replace

FileMaker features a traditional, word-processing style, Find

and Replace command .

This function will locate text within one or all fields for

one or all records in the current found set and optionally

replace it with alternate text. The following methods can be

used to access this function:

Select an option from the Edit > Find/Replace >

Find/Replace menu item.

Run a script or clicking a button that uses a Find/Replace

script step.

This will open the Find/Replace dialog, shown in Figure 4-

20. This dialog is modal and will not allow any other input on

records until it is dismissed.

Figure 4-20. The Find/Replace dialog

The features available should be familiar to anyone with

minimal computing knowledge and word-processor

experience so an exhaustive tutorial should be unnecessary.

The following summarization of the available features

accessible through the dialog should suffice:

The text to search for is typed into the Find what field.

Optional replacement text is entered into the Replace

with field.

The Direction pop-up menu offers the choice of moving

through the fields on a record and the records in a found

set forwards or backwards.

Selecting the Match case check-box will force the find

process to only consider a match when the case of text

in the field matches what is typed in the Find what field

exactly.

Selecting the Match whole words only check box will

force the find process to only consider a match when

the text in a field contains the entire, separate word(s)

typed into the Find what field.

The Search across radio buttons instructs the function

whether it should search all records in the found set or

just the current record.

The Search within radio buttons instructs the function

whether it should search all fields on the layout or just

the current field.

The Find Next button will locate and highlight the next

instance of the text from the Find what field in the

current field, next field, or next record, depending on

the other settings in the dialog.

The Replace & Find button will either locate the first

instance of a match, if one has not yet been made, or

replace the currently highlighted matched text with the

replacement text and then locate the next instance of a

match.

The Replace button will perform the replace function if a

find has already selected a matching instance of the

search text. Afterwards, the cursor remains immediately

after the replaced text.

The Replace All button will replace all matching

instances of the search text based on the settings in the

dialog.

The Close button will close the Find/Replace dialog.

The other options only available in the Edit >

Find/Replace submenu are the following:

Find Again — will repeat the last Find command,

stepping to the next instance of a match if the

command is already in process.

Replace & Find Again — will either perform the first find

match or, if one is already selected, perform the replace

and move to the next instance of a match.

Find Selected — will find the next instance of the

selected text using the last settings from the dialog but

without opening it.

Spell Checking

FileMaker has a fully featured spell checker that can check

and correct a selected piece of text, the contents of a field,

every field on a record or field(s) for all records within the

found set.

Check Spelling Menu

The Edit > Check Spelling submenu has several commands

that provide standard spell checking functionality:

Check Selection — spell check the selected text in the

current field, stepping through each questionable word

and offering alternatives through the Spelling dialog.

Check Record — spell check every field on the layout for

the current record, stepping through each questionable

word and offering alternatives through the Spelling

dialog.

Check All — spell check every field on the current layout

for every record in the found set, stepping through each

questionable word and offering alternatives through the

Spelling dialog.

Correct Word — This function will only be enabled when

the Check spelling as you type file option is set to Beep

on questionable spellings. Once a word is typed and is

detected as a potentially misspelled word, selecting this

function in the menu will open the last word typed in the

Spelling dialog.

Select Dictionaries — opens a dialog that allows the

choice of a language and dictionary.

Edit User Dictionary — opens a dialog that allows

custom terms to be added to, imported to, or exported

from the user dictionary on the local computer.

Contextual Spelling Features

There are spelling-related features available from the File

Options dialog (Chapter 6). One of these will cause

questionable words to be highlighted with a red underline

like that found in word-processing applications.

When this feature highlights a word, suggested spellings

and alternate words are available at the top of the text

contextual menu, shown in Figure 4-21.

Figure 4-21. The spelling features at the top of the text contextual menu when

selecting a questionable word

The following spelling-related commands appear at the

bottom of this menu:

Ignore All — will ignore all instances of the questionable

spelling of the word.

Learn — will add the selected word to the user

dictionary.

Spelling — will open the Spelling dialog to begin a more

formal spell check of the selected word.

This feature can be turned off for individual fields on a

layout (Chapter 29, “Include field for Quick Find” setting).

Printing

The contents of a database window can be previewed

and/or printed using one of several commands available

through the standard Print dialog window. The print settings

and page setup configuration for the window can be

configured manually through standard Page Setup and Print

dialogs by a user, directly with a script, or a combination of

the two.

While layouts can be designed specifically for printing

(Chapter 28), any layout can be printed.

Page Setup

A database file’s page setup options can be configured while

in Browse, Preview, or Layout mode, using one of the

following two methods:

Selecting File > Page Setup to open the Page Setup

dialog, shown in Figure 4-22.

Figure 4-22. The Page Setup dialog window

Running a script or clicking a button that uses a Page

Setup script step.

The Page Setup dialog is a standard operating system

dialog that allows control of how layouts in the file will

behave when printing.

Using Preview Mode

Preview mode is a transitional window state that gives a

user the opportunity to view a layout exactly as it will

appear when printed.

Preview mode can be initiated one of the following ways:

Select the View > Preview Mode menu item.

Click the “Preview” button in the status toolbar.

Select “Preview” from the mode menu in the window

footer.

Running a script or clicking a button that uses the Enter

Preview Mode script step.

Identifying Preview Mode

The appearance of a window in Preview mode will be like

Browse mode with the following differences:

The status toolbar contains a different set of button

options when in Preview mode.

The content area displays the layout formatted as one

or more pages as they will appear when printed.

Interactive layout objects such as buttons, tabs, and

slide controls may still be displayed but no longer be

functional.

Some layout objects and data may be invisible,

reformatted, or positioned depending on their settings

(Chapter 29).

Status Toolbar (Preview Mode)

When a window enters Preview mode, the options available

in the status toolbar will change to functions specific to

printing. The options displayed will either be the default

Preview mode options or a user-customized set that applies

to all databases on a user’s computer.

Default Status Toolbar Items (Preview Mode)

The default status toolbar for Find mode, shown in Figure 4-

23, contains the following:

Navigation controls

Function buttons

Layout menu

Exit preview button

Figure 4-23. The status toolbar for Preview mode

Navigation Controls

At the top left of the toolbar are the navigation controls that

appear and function like how they do in Browse mode with

one important difference: they refer to and control pages

rather than records. At first, the page count will be

displayed as a question mark because the entire document

has not yet been rendered. Clicking through pages or

scrolling to the end will force the page count to be updated.

Function Buttons

The following function buttons are included in the default

Preview mode toolbar:

Save as Excel — opens a Save Records as Excel dialog

that allows the user to configure how the records

displayed will be exported into an excel format.

Save as PDF — opens a Save Records as PDF dialog that

allows the user to configure how the pages displayed

will be saved as a PDF file.

Print — opens the Print dialog.

Page Setup — opens the Page Setup dialog.

Layout Menu

The lower, noncustomizable level of the Preview mode

toolbar starts with the Layout menu, which operates the

same as it does in Browse and Layout modes.

Exit Preview Button

The only other control in the lower level of the Preview

mode toolbar is an Exit Preview button that will return the

window to Browse mode.

Customizing the Status Toolbar (Preview Mode)

The status toolbar in Preview mode is customizable at the

user-computer level exactly as it is in other modes. The only

difference is the types of button functions that can be made

available.

To begin customizing the status toolbar, enter Preview

mode and then select the View > Customize Toolbar menu

item to open the customization panel attached to the

window as shown in Figure 4-24.

Figure 4-24. The customize toolbar panel attached to the Contacts database

window in Preview mode

Print Dialog Options

When ready to print the current window, the Print dialog ,

shown in Figure 4-25, can be opened by any of these

methods:

Select the File > Print menu item.

Click the Print button in the toolbar (Preview mode only).

Run a script or click a button that uses the Print

command.

Figure 4-25. The Print dialog showing the FileMaker details

The dialog is a standard operating system dialog and

shouldn’t need much elaboration. The FileMaker options

available are the following:

Number pages from — Enter a number in this field to

indicate the page number of the first page.

Print: Records being browsed — Selecting this radio

button will indicate that every record in the found set

should be included in the printout.

Print: Current record — Selecting this radio button will

indicate that only the current record should be included

in the printout.

Print: Blank record, showing fields — Selecting this radio

button will indicate that the layout should be printed

with record data. The adjacent pop-up menu allows the

selection of formatting options for fields: as formatted,

with boxes, with underlines, or with placeholder text.

Clicking the Print button will perform the print operation

as configured in the dialog and close the dialog.

Summary

In this chapter, we discussed numerous subjects pertaining

to how a user interacts with records.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_5

5. Transferring Data

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

FileMaker supports many file types and offers various

options when transferring data in or out of a database.

These functions can all be performed manually or

automatically with scripts (Chapter 35).

In this chapter, we are concerned only with importing

and exporting manually.

Importing and Exporting Records

Data needs to be fluid, with the ability to be transferred,

shared, and repurposed. There are many reasons one might

need to import or export records into or out of a database,

including the following:

Importing records that already exist in another system

to avoid retyping.

Importing records into a newer version of a database

system when upgrading.

Importing records from a template table for use in a

content table.

Importing records from one copy of a database to

another to synchronize them.

Exporting records to share with coworkers or clients.

Exporting records for use in other programs without

retyping.

Supported File Types

FileMaker can exchange data into the ten file types listed in

Table 5-1.

Table 5-1. The file types FileMaker supports for exporting and importing data

File Type Extension(s) Export Import

Tab-Separated Text .tab, .txt Yes Yes

Comma-Separated Text .csv .txt Yes Yes

dBase .dbf No Yes

DBF .dbf Yes No

Merge .mer Yes Yes

HTML Table .htm Yes No

FileMaker Pro .fmp12 Yes Yes

XML — Yes No

Excel Workbooks .xlsx Yes Yes

Excel 95-2004 Workbooks .xls No Yes

In addition to the file types above, FileMaker supports

importing from several different sources including:

A folder of pictures, movies, or text.

A XML file contain data with an accompanying XSL style

sheet.

An ODBC data source.

Downloading Sample Data

One of the many great resources on the Brian Dunning

website is free sample contact data that can be imported

into a database for testing purposes. Before moving

forward, take a moment to download a sample contacts file

that we will use to import and export with the Contacts

starter solution that we have been working with.

1. Launch your favorite web browser.

2. Open — https://www.briandunning.com/sample-

data/ .

3. Locate the link to download 500 U.S. records, shown

in Figure 5-1.

Figure 5-1. Download link for free sample data for testing from

briandunning.com

4. Find the us-500.csv file on your computer. In

macOS, it should be in the ∼/Downloads folder.

5. Drag the file to your desktop.
The file should open in Excel and display 500 rows of

sample data in the following twelve columns:

First_name

Last_name

Company_name

Address

City

https://www.briandunning.com/sample-data/

County

State

Zip

Phone1

Phone2

Email

Web

Importing Records

The Import Records process will create or update records in

the current layout’s table from a file of any of the supported

type listed at the start of this chapter.

To begin an import:

1. Open the database into which records will be

imported. For the examples in this chapter, open

the Contacts database we have been working with.

2. Navigate to the desired layout into which the

records will be imported. Since the Contacts

database has only one table, any layout is fine.

3. Select the File > Import Records > File menu item to

open a Choose File dialog, as shown in Figure 5-2.

Figure 5-2. The import records Choose File dialog

There are two options available in the footer of this

dialog:

Show — select a specific file type to make it easier to

locate a file from within a crowded folder.

Set up as automatic recurring import — check this box

to route the import process to an alternate dialog

described next.

Setting Up an Automatic Recurring Import

Selecting the optional Set up as automatic recurring import

check box and clicking the Open button will open the

Recurring Import Setup dialog shown in Figure 5-3 that

completely bypasses the rest of the import process. This

feature provides a convenient way to quickly create a new

table, layout and script that can be used to periodically

update the data from the external file.

Figure 5-3. The Recurring Import Setup dialog

Once the dialog is configured and the OK button is

clicked, FileMaker will perform these functions automatically:

Create a new table named the same as the selected

incoming file.

Create a field for every column of data in that file.

Create a layout with the specified name, assigned to

that table, set to table view and with every field

displayed.

Create a script with the specified name that will go to

that layout, delete every record, and import the records

from the file thereby refreshing the data.

This dialog remembers the path of the source data and

has three configurable options:

Don't import first record — If the first row of data in the

source file contains field names instead of data content,

check this box.

Layout Name — specify the name for the new layout

that will be created. The default will be the name of the

source file.

Script Name — specify a name for the new script that

will be created. The default will be the name of the

source file.

When this option is used and the import finishes, you will

need to rename fields, reconfigure the layout, and

customize the script to suit your needs and preferences.

Performing an Import

To continue with a manual import , point the Choose File

dialog at the us-500.csv file on the Desktop and click the

Open button. This will open the Import Field Mapping dialog,

shown in Figure 5-4.

Figure 5-4. The import field-mapping dialog

The field-mapping dialog is used to instruct FileMaker

where the incoming data should flow. The dialog allows the

selection of a table and control over various import

behaviors.

Browsing the Source Records

By default, the dialog displays the first row of data as a

vertical list on the left under the “source fields” heading.

Since the first row of a data file often contains the field

names, it helps when mapping fields for import. However,

the dialog has actually loaded the entire source file, and

additional records can be viewed in order by clicking the left

and right arrows on the left just below the field lists. This

can be quite useful if the source field names aren’t

completely clear about what content is contained within or if

the first record begins with data and has some empty fields.

Clicking through the list of incoming records provides a

quick way to figure out what content is contained in which

position directly it is from within the dialog.

Selecting a Target Table

The target table is the table into which the incoming data

will be imported. The table whose records are displayed in

the window will be the default selection in the Target pop-up

menu at the upper right corner of the import dialog, shown

in Figure 5-5.

Figure 5-5. The import target table pop-up menu

While this universal menu will list other related and

unrelated tables that exist in the database, these options

will remain disabled since you can only import into the

current layout’s table (unless you use the option to create a

new table).

The target menu contains two additional options:

New Table — selecting this option will configure the

dialog to automatically create a new table during the

import and flow the data into it. The field names will

default to a sequential generic list, f1, f2, f3, etc. Unless

you check the Don't import first record check box on the

lower left indicating that the values of the first incoming

record should be used as the field names.

Manage Database — selecting this option or clicking the

button of the same name at the bottom of the dialog will

open the developer dialog for defining tables, fields and

relationships (Chapters 7-9). This allows you to create a

new table with custom field names or to add fields to an

existing table. Unfortunately, any new table you create

will not be available from the menu unless you cancel

the import process, create a layout for the table, and

restart the process while that table is current. But this

can be a great way to quickly add a new field to the

current table.

Mapping Fields

The central part of the import dialog is used to align fields

from the source file on the left with fields from the database

on the right.

The Arrange By pop-up menu located below the field list,

shown in Figure 5-6, is used to automatically reorder the list

of target fields to any of the predefined list of options. These

options can sometimes help to quickly match fields by name

when the lists are more similarly matched than our

example. In the case of our sample data, they do not.

Figure 5-6. The options available for arranging the list of target fields

When the two lists of field names are not closely

matched, target fields must be dragged to align them

correctly with their corresponding source field. The target

fields can be dragged up or down by grabbing the small

black two-sided arrow icon just to the left of the field name,

shown in Figure 5-7.

Figure 5-7. The two-sided arrow icon is used to drag a target field up or down in

the list

When a field is dropped somewhere in the list, the two

fields — the one dragged and the one it is dragged onto —

exchange positions. Continue dragging the fields until they

align to the correct fields, shown in Figure 5-8.

Figure 5-8. A final arrangement of properly aligned source and target fields

The icon in the middle column indicates how the fields

are mapped to each other and, therefore, how they will

behave during the import. There are four possible icons that

will appear here depending on the import action selected.

Each is labeled in the Field Mapping key on the right of the

dialog layout. For the default Add new records import action,

the icon should be the Import this field arrow shown in

Figure 5-9.

Figure 5-9. The Import this field icon

If you see two square dots as shown in Figure 5-10, this is

the Don’t import this field icon and indicates that the

adjacent field will not be imported. To include it, click the

icon to toggle it until it displays the arrow.

Figure 5-10. The Don't import this field icon

A target field displayed with gray coloring indicates a

field that can’t receive data, such as a calculation or

summary field. Clicking the icon for these will toggle to the

Target cannot receive data icon shown in Figure 5-11.

Figure 5-11. The Target cannot receive data icon

Once the fields are lined up and the icons set, optionally

select the Don't import first record check box to indicate

that records should be imported starting from the second

row/record of the source data file. This avoids importing a

record containing only field names with no real data, which

would need to be deleted.

When ready to proceed, click the Import button.

Setting Import Options

The Import Options dialog, shown in Figure 5-12, is the final

step in a manual import process.

Figure 5-12. The import options dialog

There are three options presented in the dialog:

Perform auto-enter options while importing — checking

this box will cause any fields with auto-enter options

defined to be updated as part of the import. For new

records this box should be checked. If updating records

or importing data with serial numbers or creation and

modification dates that should be preserved, this box

should be unchecked. For more information on field

options, see Chapter 8.

Import values in repeating fields by — this radio button

allows you to choose between keeping repeating fields

together in a single record or splitting them into one

imported record per repetition during the import. When

this latter is selected, all the non-repeating fields will be

duplicated for each record generated for one of the

repetitions.

Preserve external container storage — checking this box

will suppress container field content validation, allowing

the target table to use existing external container

contents. This is useful when reimporting data back into

an existing file or a copy of a file, avoiding decrypting

and re-encrypting external files when the base directory

of the source and target fields are the same.

Notification of Results

Once the import process is complete, the Import Summary

dialog, shown in Figure 5-13, will appear with a notification

of the results including the following:

Total records added or updated

Total records skipped because of errors

Total fields skipped because of errors

Name of a table created when the New Table option was

selected

Figure 5-13. The Import Summary of results dialog after a successful import of

the sample contact data

A text file named Import.log will be saved to the desktop

containing details about the import process and noting any

errors that may have occurred.

Resulting Found Set

After the import process, the found set in the window will be

that of the imported data only.

Performing an Update Import

Besides the Add new records import option used above, the

following two import options perform a slightly different

process:

Update existing records in found set

Update matching records in found set

Each of these is available only when there are existing

records in the target table before the import process begins

because they are used to overwrite existing records rather

than create new ones.

Update Existing Records in Found Set

The Update existing records in found set option will import

the source records by overwriting matched fields on existing

records starting from the first record in the found set.

This can be useful in a situation where you need to

export a set of data, manipulate it outside of FileMaker, and

then replace some or all field values of those same records

by means of the import process. FileMaker expects the

source data and the target table’s current found set to

contain the same number of records. If this is not the case,

one of two warnings will be presented to the user:

If the source data record count is more than the target

table’s found set, the import will stop after the number

of records in that found set are finished, thereby

excluding the remaining source records.

If the source data record count is less than the target

table’s found set, records in the found set beyond that

number will not be modified.

When this action is selected, the Add remaining data as

new records check box will become enabled. If checked, any

records in the source data beyond the number in the target

table’s found set will be imported as new records. After the

import, the found set will remain unchanged unless this box

was checked, in which case, the found set will contain the

additional new records.

When finished, a dialog, like that in Figure 5-12, will

notify of the success or failure of the process.

Update Matching Records in Found Set

The Update matching records in found set option will import

each record of the source data into a record based on one or

more matching fields.

A matching field is denoted in the field list by a double

arrow icon, shown in Figure 5-14, which instructs FileMaker

to look for records in the target table where the field

matches the corresponding value in the source table and to

update the remaining fields in that record. So, instead of

simply updating records in linear fashion like the previous

action, this action dynamically searches for records with the

same value in match field(s), updating them in a nonlinear

fashion.

Figure 5-14. The double arrow icon indicates a pair of matching fields that will

be used when updating records on import

To denote match fields, click the icon between two fields

to toggle between three choices; import (arrow), don’t

import (two dots), and match (double arrow).

When importing based on matching fields, selecting the

Add remaining data as new records check box will cause any

records in the source data that can’t establish a match to be

imported as new records. After the import, the found set will

remain unchanged unless this box was checked, in which

case, the found set may contain the additional new records.

When finished, a dialog, like that in Figure 5-12, will

notify of the success or failure of the process.

Exporting Records

The Export Records process will save one or more selected

fields from every record in the current found set of the front

window into a file of any of the supported types listed at the

start of this chapter.

To begin an export:

1. Open the database containing the records to be

imported. For the examples in this chapter, open

the Contacts database we have been working with.

2. Navigate to the desired layout containing the

records to be exported. To follow these examples,

switch to the Desktop > Contacts layout.

3. Perform a Find or Find All to establish a found set

containing the records to be exported.

4. Select the File > Export Records menu item to open

a Save File dialog, as shown in Figure 5-15.

Figure 5-15. A save file dialog, configured to save a tab-separated

text sample export file

In addition to the standard save options such as name

and location, the following options can be specified:

Type — choose from any of the available file types.

Automatically open file — check this box to have the

exported file automatically open after saving.

Create email with file as attachment — check this box to

have the exported file automatically attached to a new

email on your default mail application.

Once the dialog options are configured, click the Save

button.

Specifying Export Fields

Next, the Specify Field Order for Export dialog will appear,

as shown in Figure 5-16. This dialog is used to select the

fields that will be exported, the order they will be saved in

the output file, and some formatting options.

Figure 5-16. The specify field order for Export dialog

The controls at the top of the dialog are used to specify

which fields should be exported. On the left side, a field

picker contains a popup menu from which a layout or table

can be selected. The list below it displays the fields

available for export from that selection. On the right is a list

of fields that will be exported. In the middle are buttons to

add or remove fields from the export list.

Selecting a Table

The pop-up menu above the field list has the current layout

selected by default. This is apparently done as a

convenience to narrow the list of available fields to just

those visible on the layout you are viewing. While this can

sometimes be a benefit, it can also be error-prone if you

hastily click the Move All button thinking you are selecting

all fields for the table when you are not. Selecting “Current

Table” from the menu will refresh the list of fields to show all

fields for the Contacts table.

Multi-table database files will include a list of related and

non-related tables in this menu. While it is possible to

include a mixture of fields from the local table and fields

from other related tables, this can have unexpected results

so experimentation is advisable.

Adding Fields to the Export Order

Fields can be added to the export order by any of the

following methods:

Double-clicking a field from the available field list will

add it to the export list.

Clicking the Move button will add the currently selected

field(s) to the export list.

Clicking the Move All button will add all the fields to the

export list.

Removing Fields to the Export Order

Fields can be removed from the export order by any of the

following methods:

Double-clicking a field in the export list will remove it.

Typing the Delete key on the keyboard will remove any

selected field(s) from the export list.

Clicking the Clear button will remove any selected

field(s) from the export list.

Clicking the Clear All button will remove all fields from

the export list.

Reordering Fields in the Export List

The fields in the export list will be saved in the output file in

the order they appear. Drag and drop the fields within the

export list until they are in the desired order.

Setting Up the Sample Export

Since our sample data only populated a portion of the fields

in the Contacts database, we will set up the export that

includes only the following fields, in the order shown in

Figure 5-17.

Figure 5-17. The field export order for the sample export

Output File Character Set

The Output file character set pop-up menu specifies which

character encoding will be used during the export. The

selected value will be the default for the file type of the

export, but it can be changed as needed.

Apply Current Layout’s Data Formatting to Exported Data

If the Apply current layout's data formatting to exported

data check box is selected, any number, date, or time field

will be exported with the data formatted as it is on the

current layout rather than the format of the actual data

entered.

For example, if a number field contains “10” but is

formatted on the current layout as currency “$10.00,” this

box must be checked to export the number formatted as

currency. See Chapter 29, “Data Formatting — Decimal” for

information about imposing formatting to field contents on a

layout.

Group by Option

Although not applicable to our example Contacts export, the

Group by feature is allows values to be sub-summarized

during the export. If the found set of records is sorted, the

Group By area of the dialog will contain a list of the sort

which can be used to summarize data during the export.

For example, imagine a found set of records with three

fields containing the values shown in Table 5-2. The

Quantity Summary field is a summary that automatically

totals the Quantity field for the six records (Chapter 8,

“Summary Fields”).

Table 5-2. Hypothetical records showing how a non-grouped summary behaves

Industry Quantity Quantity Summary

Education 20 95

Education 15 95

Finance 5 95

Finance 10 95

Industry Quantity Quantity Summary

Publishing 35 95

Publishing 10 95

If these three fields were exported, the resulting file

would look the same as it does in the example. However,

the data can be exported as a summary report of the total

quantity for each industry following these steps:

1. Sort the records by the Industry field.

2. Begin an export, and when you reach the Specify

Field Order dialog, the Group by area will have a

check box for the Industry field.

3. Add the Industry field to the export list.
4. Add the Quantity Summary field to the export list.

Two fields will be automatically added: Quantity

Summary and Quantity Summary by Industry. The

second one will be italicized, highlighting the fact

that this is not an actual field in the database, but a

sub-summary of the quantity by industry, as shown

in Figure 5-18. For this example, delete the Quantity

Summary field, leaving just Industry and Quantity

Summary by Industry.

Figure 5-18. An example of a field export order using the group by

feature

With this configuration, the result would be one row for

each industry, the total quantity for all three industries (only

on the first row), and the total of each industry in the third

column, as shown in Table 5-3.

Table 5-3. Hypothetical data showing how data is summarized using the Group

by option

Education 95 35

Finance 15

Publishing 45

Finishing the Export

Once the field order and other options are configured, click

the Export button to finish the process. The exported file will

be saved to the location specified.

There is no visual indication of the completion of the

process for smaller found sets. If the found set is large

enough, a progress dialog will indicate the records

remaining. When it disappears, the process is complete.

Exporting Field Contents

The content of any individual field accessible on the current

layout can be exported by selecting Export Field Contents

from the Edit menu or the field’s contextual menu. This will

open a Save File dialog, as shown in Figure 5-19, into which

a name and location can be specified. The content will then

be saved into a file as specified, with a file type

automatically determined based on the content.

Figure 5-19. The save file dialog for the Export Field Contents process

If the field is a container, the saved file will be the same

file type as the content. If the field is any other text-based

content, the saved file will be a text file with an extension of

.txt.

Summary

In this chapter, we discussed the basics of manually

importing and exporting records from a database.

Part II

Defining Data Structures

Defining Data Structures

The basic structure of a database is made up of files, tables,

fields, relationships, containers, and value lists. These

provide the foundational data structure upon which

interfaces and scripts are later built.

6. Working with Database Files — Provides an

overview of creating, configuring, and maintaining

a new database file.

7. Working with Tables — Covers the process for

creating and managing data tables.

8. Defining Fields — Discusses the different types of

fields that make up a table and how to define,

manage, and configure them.

9. Connecting Tables with Relationships — Explores

data sources, table occurrences, and

interconnecting tables into relationships.

10. Managing Containers — Explores the options for

file containers and storage options.

11. Managing Value Lists — Provides an overview of

defining value lists.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-4842-

2863-0_6

6. Working with Database Files

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

A database file is a type of document that contains all the

structural elements you define and the data entry content that

users enter.

This chapter covers basic details about creating, configuring,

and maintaining a database file, including topics such as the

following:

Creating a new database file

Configuring a sandbox table

Database file options

Maintaining healthy files

Specifying file paths

Creating a New Database File

With the FileMaker application launched, close any other

database windows you may have open to establish an

uncluttered workspace and to avoid confusion. With only the

application menu bar visible and your computer's desktop

behind it, follow these steps to create the new database file:

1. Select the File > New Solution menu.

2. When the New File dialog appears, type the name

“Learn FileMaker” into the Save As text area and select

the Desktop folder as the save location, as shown in

Figure 6-1.

Figure 6-1. The New File dialog, configured to create a Learn FileMaker

database on the Desktop

3. Click the Save button or type the Enter key to close the

dialog and create the new database.

4. The Learn FileMaker.fmp12 file should appear on the

Desktop and automatically open in FileMaker.

Configuring a Sandbox Table

To get a head start with a practical example of creating some

basic structural elements, begin by configuring a sandbox table

within the new Learn FileMaker database.

In software development, a sandbox is a testing environment

that provides a realistic workplace for experimentation, safely

isolated from a live system containing actual data. While it

usually refers to a safe area or mode for working in a non-

destructive way within some existing complex system, we will

use it to denote a practice area that can be freely used to follow

along with early basic examples presented in the forthcoming

chapters.

Our sandbox file will perform several crucial functions in

learning FileMaker :

Creating the Sandbox table will provide a quick immersion

into building a database from scratch, giving a brief

overview of building a basic database including elements

that won’t be discussed until much later in the book.

Once these elements are constructed, they will provide an

experimental workspace for working through the remaining

lessons.

By providing a basic interface right from the outset, it

provides a place in which you can see the practical results

of more abstract topics of building a data structure.

To elaborate this last point, the material in this book is

arranged in a logical hierarchy, with each lesson building on the

last. We start with the foundational data structure of tables,

fields, and relationships well before learning how to express

that structure in a visible user interface. However, without an

interface available now, it may become too abstract and

difficult to fully grasp the practical implications of some of these

early lessons. This is especially true when experimenting with

calculation formulas (Chapter 12) with results that are not

viewable without an interface. The sandbox will solve this

problem by instantly providing a quick and simple data

structure, with fields displayed on a basic layout, which can

make the results of abstract calculation examples visually

perceivable.

Changing the Default Table Name

When any new database file is created, FileMaker will

automatically build a default table with the same name as the

file. So, your file should have a table named “Learn FileMaker”

already set up with no fields. Often this default name will suffice

and not require any modification. However, for our purposes

and to help gain a little more practical experience, let’s rename

the default “Learn FileMaker” table to “Sandbox” by following

these steps:

1. Depending on your settings, the new file will either open

in Layout mode or will open in Browse mode with the

Manage Database dialog opened. If in Layout mode, you

will need to take these extra steps to open the Manage

Database dialog:

a. Switch to Browse mode by selecting the View >

Browse Mode menu item.

b. Open the Manage Database dialog, by either

selecting the File > Manage > Database menu

item.

2. The default tab displayed in the dialog is usually Fields.

Click on the Tables tab to switch the view.

3. Change the name of the default table from “Learn

FileMaker” to “Sandbox” by following these steps,

shown in Figure 6-2:

a. Select the Learn FileMaker table in the table list.

b. Type “Sandbox” in the Table Name field.

c. Click the Change button.

Figure 6-2. Steps highlighted showing the process of renaming a table

Creating Data Entry Fields

In the newly renamed Sandbox table, create one field of each

data type to serve as an example for any experimentation you

may perform on topics presented in forthcoming chapters. To

get started, click on the Fields tab in the Manage Database

dialog. Next, create a text field named “Example Text,” by

following these steps as shown in Figure 6-3:

1. Type “Example Text” into the Field Name text area.

2. Select “Text” from the Type pop-up menu.

3. Click the Create button or hit either the Return or Enter

key.

Figure 6-3. Steps highlighted showing the process of creating a text field in the

Sandbox table

Follow these same instructions for each of these field types:

1. Create a number field named “Example Number”

2. Create a date field named “Example Date”

3. Create a time field named “Example Time”

4. Create a timestamp field named “Example Timestamp”

5. Create a container field named “Example Container”
For now, just ignore any other field options. These will be

covered in depth in Chapter 8.

Creating a Calculation Field

Next, create a calculation field named “Example Calculation” by

following these steps:

1. Type “Example Calculation” into the Field Name field.

2. Select “Calculation” from the Type pop-up menu.

3. Click the Create button.
When the Specify Calculation dialog appears, follow these

steps shown in Figure 6-4 to enter a temporary calculation

formula of 0:

1. Type a 0 in the text area; we will learn about writing

calculation formulas in Chapter 12.

2. Select Number for a result type .

3. Click the OK button to close and save.

Figure 6-4. Steps highlighted showing the process of creating a calculation field in

the Sandbox table

For now, just ignore the rest of the dialog controls and

features. These will be covered in depth in Chapters 12-24.

Creating a Summary Field

Create a summary field named “Example Summary” by

following these steps:

1. Type “Example Summary” into the Field Name field.

2. Select “Summary” from the Type pop-up menu.

3. Click the Create button.
When the Options for Summary Field dialog appears, follow

these steps shown in Figure 6-5 to configure its settings:

Figure 6-5. Steps highlighted showing the process of creating a summary field in

the Sandbox table

1. Click the Total of radio button.
2. Select the Example Number field from the Available

Fields list.

3.

Click the OK button to save the Options for Summary

Field dialog.

For now, just ignore any other summary options . These will

be covered in depth in Chapter 8.

Now the Sandbox table should contain the eight fields shown

in Figure 6-6.

Figure 6-6. The complete list of example fields

Click the OK button to close the Manage Database dialog

and save all changes made to the Sandbox table.

Setting Up Layouts

Although some tables will have more, most have at least two

layouts. Let’s quickly create these, each with a different content

view specialized for a specific purpose:

A Form layout is used for viewing and performing data entry

tasks.

A List layout is used for viewing and scrolling through many

records, navigating to a Form layout, and for batch

processing data entry tasks.

Renaming the Default Layout

Every new database file will automatically contain a single

empty Form view layout with the same name as the default

table. So, initially there would have been a single layout

automatically created in your file named “Learn FileMaker.”

However, when we changed the name of the table to

“Sandbox,” the name of that default layout should have

changed as well. So, if you have followed the instructions in this

section so far, there should be a single empty Form view layout

named “Sandbox.” To help denote the function of the layout

and to distinguish it from the other layout we will construct,

rename it “Sandbox Form” by following these steps:

1. Enter Layout mode by selecting the View > Layout

menu item.

2. Open the Layout Setup dialog by selecting the Layout

> Layout Setup menu item.

3. In the Layout Name text area on the General tab,

shown in Figure 6-7, change the name to “Sandbox

Form.”

Figure 6-7. The Layout Setup dialog with the new layout name entered

4. Click the OK button to close the window and save the

change.

Ignore the other settings in this dialog and other layout

features. These will be covered in more detail in Chapter 28.

Adding Fields to a Layout

There are three ways to add fields to a layout (Chapter 30). We

will use the Field Picker for now since it makes it quick and easy

to add multiple fields to a layout at once in a neat and orderly

fashion.

While still in Layout mode, add all eight fields to the layout

by following these steps:

1. Select the Field Picker by either selecting the View >

Field Picker menu item.

2. Select the entire list of all eight fields, shown in Figure 6-

8, by clicking in the field list and then selecting the Edit

➤ Select All menu item.

Figure 6-8. Dragging fields from the Field Picker dialog onto the layout

3. Click, hold, and drag the list of fields onto the layout and

then release. The fields should appear on the layout,

neatly aligned and sized according to their data type.

Creating a List Layout

With a Form layout finished, we next need to add a second

layout for viewing lists of records. While still in Layout mode,

select the Layout > New Layout/Report menu item to open the

New Layout/Report dialog, shown in Figure 6-9.

Figure 6-9. The New Layout/Report dialog window

Then follow these steps:

1. Enter “Sandbox List ” into the Layout Name text area.

2. Click to select a layout type of Computer in the first row

of option icons.

3. Click a computer type of List in the second row of

option icons.

4. Click the Finish button to close the dialog and complete

the process. An empty list layout should appear with

three parts: Header, Body, and Footer.

Ignore the other settings in this dialog. These will be covered

in more detail in Chapter 28.

Due to the vertical space constraints of a List view, we will

change the process of adding fields slightly, following the steps

shown in Figure 6-10:

Figure 6-10. The expanded Field Picker, configured to place fields onto the list

layout

1. In the Field Picker dialog , click the Drag Options

disclosure triangle to reveal additional controls at the

bottom.

2. Select the Horizontal option icon for Field Placement.

3. Select the Place labels above fields icon for the Labels

option.

4. Select every field except the container field by clicking

on each field while holding Command (macOS) or

Windows (Windows). We’ll skip the container field on the

List view since it will default to a large vertical footprint

and attempt to expand the layout.

5. Next drag the selected fields onto the layout. Be sure to

place them high enough so you don’t receive a dialog

asking if you want to expand the layout space.

6. Once placed, drag them down so that the fields are

roughly centered in the Body part, as shown in Figure 6-

11.

Figure 6-11. The fields placed in the Body part of the layout

7. Select only the field labels by clicking and dragging the

cursor around them. Then move them up slightly into

the Header area of the layout , as shown in Figure 6-12.

You can move selected objects on a layout with the

mouse or arrow keys.

Figure 6-12. The field labels moved up into the Header area

8. To finish up, remove the repetitive “Example” portion of

the field labels. To edit a text label, double-click the

cursor to activate it, then select and delete the

extraneous word. When finished, click on the

background and repeat with the other labels.

9. Finally, scroll to the right and adjust the size and

position of the last two fields so nothing extends into

the gray area beyond what will be the visible layout, as

shown in Figure 6-13.

Figure 6-13. The fields with cleaned-up labels and adjusted so none

extend too far to the right into the gray area

Database File Options

FileMaker has several preference options that control various

behaviors of an open database. Unlike application preferences,

these file options are accessible from the File menu only when a

database is open. When creating a new database, default

values are assigned that may or may not require modification to

reflect your desired settings.

To open the file options dialog, select the File > File Options

menu item. File options are separated into five tabs:

Open

Icon

Spelling

Text

Script triggers

Open Settings

The Open settings tab, shown in Figure 6-14, contains settings

that control behaviors and actions that take place when a

database file is opened.

Figure 6-14. The Open settings tab of the File Options dialog

Minimum Version Allowed to Open This File

The Minimum version allowed to open this file setting allows

selection of a FileMaker version between 12 and 16 that the

database requires as a minimum. Since these versions share a

file format, the setting allows you to stop a user from opening a

database that uses newer features in an older version of the

application. If you regularly use newer features and do not add

conditional support for older versions of FileMaker, it is a good

idea to keep this set to the latest version.

When Opening This Field

Log In Using — This setting allows a database to

automatically open with a specific default account and

password. This eases user access to a file that doesn’t need

multilevel security while maintaining protection over the

programming. Holding Option (macOS) or Shift (Windows)

when opening a database will bypass this setting and open

a standard password prompt instead (Chapter 40).

Allow Keychain Access to save passwords — This setting

allows a user the option to store thier account and

password in their computer’s local repository, such as the

macOS Keychain, for automatic entry into the password

dialog during future log-in attempts. This should not be

enabled for databases with multilevel security in an

environment where users might share a computer or where

tight security is an important consideration. The secondary

setting allows the requirement of a device passcode on iOS

devices even when the database password is automatically

entered.

Switch to layout — This setting allows a database to

automatically switch to a specific layout when opened by

any user. Script Triggers can also accomplish this task with

greater variability based on the identity of the user or on

other contextual circumstances (Chapter 37).

Hide all toolbars — This setting will hide the toolbar and

formatting bar automatically each time the file is opened,

allowing the user to manually show them again as needed.

A script that uses the Toggle Toolbar script step can also

perform this function with greater variablity at startup or in

response to other events.

Tip The Switch to layout preference will be executed

preceding all Script Triggers in the file’s launch sequence.

Use this setting to instantly open a splash screen or menu

while avoiding screen refresh “flashes,” which can be a

distraction to users.

Icon Settings

The Icon settings tab, shown in Figure 6-15, allows an icon to be

assigned that will represent the database file in the Launch

Center in FileMaker Pro or FileMaker Go. The default icon is the

FileMaker document icon.

Figure 6-15. The Icon settings tab of the File Options dialog

The assigned icon can be either:

Selected from the library of built-in icons provided by the

FileMaker app, which are accessible in the pop-up menu.

A custom 288 pixels square PNG or JPEG file, which can be

selected through an Open File dialog accessible by clicking

the Custom button.

Note The assigned icon does not affect the file icon on a

macOS or Windows desktop, only how it appears in FileMaker

Go.

Spelling Settings

The Spelling settings tab, shown in Figure 6-16, contains

settings that control automatic spell check within a database

file.

Figure 6-16. The Spelling settings tab of the File Options dialog

Indicate questionable words with special underline — This

setting will cause FileMaker to display a red dotted line

under any potentially misspelled words in a field with focus

unless that field or object has been configured in the

Inspector to disable the feature (Chapter 29).

Check spelling as you type — When Beep on questionable

spellings is selected, a beep will sound anytime a user

types a word that the dictionary indicates might be

misspelled.

Text Settings

The Text settings tab, shown in Figure 6-17, contains settings

that control how text is entered in fields.

Figure 6-17. The Text settings tab of the File Options dialog

Text Handling

The following settings control various text handling functions :

Use smart quotes — This setting will cause FileMaker to

enter apostrophes and double-quotation marks into fields

as curly quotes.

Use Asian language line-breaking — This setting controls

how line endings are handled when a word reaches the

edge of a text field when using Asian languages.

Use Roman language line-breaking — This setting controls

how line endings are handled when a word reaches the

edge of a text field when using Roman languages.

Data Entry Handling

When a new FileMaker database file is created, it is encoded

with regional settings from the operating system of the

computer used to create the file. These include date and time

formats, currency symbols, and more. On macOS, these can be

found in the System Preferences > Language & Region >

Advanced panel. Once these settings are burned into a

database file, they can’t be modified. However, the group of

radio buttons on the Data Entry group of the Text tab of the File

Options dialog, allow control over which formatting is used for

data entry:

Always use current system settings — With this option

selected, the file will automatically use the current system

settings of the user’s computer.

Always use file’s saved settings — With this option selected,

the file will automatically use the database’s settings.

Ask whenever settings are different — With this option

selected, if the file’s settings differ from the user’s

computer, the database will ask the user which settings to

use.

Script Triggers Settings

The Script Triggers tab, shown in Figure 6-18, allows database

events to trigger custom scripts (Chapter 37).

Figure 6-18. The Script Triggers tab of the File Options dialog

Maintaining Healthy Files

As you work in a database, committing content and structural

changes, FileMaker continuously saves those changes to disk so

there is no need or ability to explicitly perform a save function.

Users can modify records and developers can design layouts,

scripts, and other resources without much concern. However,

things can occasionally go wrong, and it’s important to know

how to avoid, identify and remedy problems when they do

occur and how to maintain healthy files.

Database Maintenance Functions

FileMaker has a several functions that make copies, help to

maintain the integrity of database files and troubleshoot

problems. These functions are:

Save a copy as

Check consistency

Recover a file

Each of these functions must be performed on a local

database file in a folder directory. Files hosted on a network

with FileMaker Server must be taken offline and manipulated

directly in a copy of the FileMaker application.

Saving a Copy As

FileMaker allows you to save a copy of an open database file for

various purposes including:

Making backup copies

Creating a portable, self-contained copy

Maintaining the health of a file

Troubleshooting damage

Repairing damage

To use the function, follow these steps:

1. Open the database you want to copy.

2. Select the File > Save a Copy As menu item. This will

open the Create a copy named dialog, shown in Figure

6-19.

Figure 6-19. The Create a copy named dialog

3. The default entry in the Save As text area of the dialog

will be the name of the original with the word “Copy”

added to the end. However, you can enter a new name

if desired.

4. Select the folder location into which the new file should

be saved.

5. In the shaded options area at the bottom of the dialog,

the Type pop-up menu, offers a choice of the following

four options for the type of copy to be saved:

Copy of current file — This option will save a literal

copy of the database.

Compacted copy (smaller) — This option will save

an optimized copy of the database with empty

space removed, resulting in a smaller file size. This

can be performed periodically to maintain the

health of a file, especially if a lot of resources or

records are deleted from a file.

Clone (no records) — This option will save a copy of

the database structure including tables, fields, page

setup options, field definitions, custom functions,

setup options, field definitions, custom functions,

layouts, scripts and other resources but without any

records. This is useful for some troubleshooting

tasks as it quickly isolates file structure.

Self-contained copy (single file) — This option will

save a copy of the database with any external

container data embedded in the file’s container

fields, making it fully self-contained.

6.
Once the desired options are selected, click the Save

button to complete the process. A copy of the file will

be saved in the folder you specified.

Checking Consistency

Every time a database is opened, FileMaker checks the file and,

if it detects the need, automatically performs a consistency

check. This typically happens after a file has been improperly

closed.

A consistency check will read every block that makes up a

file and verify that the internal structure of the block is valid

and the block is properly linked to other blocks. It does not read

the data within blocks or check the file schema or higher-level

structures; these functions are only performed by the full

Recover command.

A manual consistency check can be performed on a file that

is suspected of damage. To do so, follow these steps:

1. Launch the FileMaker application.

2. Select the File > Recover menu.

3. Navigate to the folder containing the file suspected of

damage and select it.

4. Instead of clicking the Select button, which would begin

the Recover process, click the Check Consistency

button, shown highlighted in Figure 6-20.

Figure 6-20. Click the Check Consistency button in the Select Damaged

File dialog after selecting a database.

FileMaker will immediately check the file and report the

results in a dialog and Recover.log file saved in the same folder

that contains the file. Dismiss the results dialog by clicking the

OK button.

If no problems have been reported, the file is probably safe

to continue using. If damage is reported, it may recommend

performing the full Recover process. If you suspect there may

still be a problem with the file, continuing this process may be a

good idea.

After the consistency check is complete, the Select Damaged

File dialog remains open as a convenience. You can either

choose to continue the full recovery process on the file, which is

still selected, or opt to select a different file and quickly perform

the consistency check on it as well. When finished checking

files, click the Cancel button to dismiss this dialog.

Recovering a File

When a FileMaker database becomes damaged beyond other

means of repair, the Recover function can be used to rebuild a

file, regain access, and prevent the loss of data. This function is

aggressive and will do whatever is necessary to restore access

to a file. It will rebuild the file block by block and attempt to

correct any corruption. However, if an object can’t be repaired,

it may be deleted. Because of its aggressive nature, the

function should not be used as regular maintenance.

Before recovering a file, be sure to rule out other issues as

the result of odd behavior you may be witnessing. While not an

exhaustive list, a few examples of problems caused by

development errors or other problems include:

Incomplete or incorrect find results may be the result of

either corruption (which would be repaired by saving the file

as a compacted copy) or something like mismatched field

types, such as a calculation field that is configured to result

in a number or date when it returns a text value.

Poorly designed scripts might accidently delete records or

overwrite data.

Incorrect or broken relationship settings can result in odd

behavior.

Networking issues may cause weird behavior, which a

simple quit and re-launch of the database may remedy.

Problems that may require recovery include:

Inability to open a file.

Odd indexing behavior.

Records appearing blank or with question marks in every

field.

Random crashing of the application.

To perform a recovery follow these steps:

1. Launch the FileMaker Pro application.

2. Select the File > Recover menu item.
3. In the Select Damage File dialog, locate and select the

damaged database, then click the Select button.

4. A Save dialog will appear, allowing you to name the

new recovered file, choose a save location, and

optionally specify advanced options.

5. Once finished, click the Save button.

6. A dialog message will inform you when the process is

complete and summarize the activity performed. A

Recover.log file, saved in the same directory as the new

file, will contain additional information about the

activity performed and the results.

Based on the results , you can determine if the file is safe for

use or if you should transfer the records into a previously saved

backup copy.

Advanced Recovery Options

The optional Advanced Recover Options dialog, shown in Figure

6-21, contains a variety of different settings that allow you to

control exactly how a recovery is performed.

Figure 6-21. The Advanced Recover Options dialog

The Generate new file radio buttons provide the choice of

one of three options for how the new file is generated:

Copy file blocks as-is — This option will copy all file blocks

exactly as they exist in the source file. The resulting file

may still include damaged blocks. This is the equivalent of

using the File > Save a Copy As menu item and choosing

the Copy of current file option.

Copy logical structure (same as Compacted Copy) — This

option will copy all the data in the source file without

checking the blocks but it will rebuild the tree structure. The

resulting file may still include damaged blocks. This is the

equivalent of using the File > Save a Copy As menu item

and choosing the Compacted Copy (Smaller) option.

Scan blocks and rebuild file (drop invalid blocks) — This

option rebuilds the file, including only undamaged and non-

duplicate blocks. The resulting file can be used but may be

structurally unsound and should be used to extract data

into a reliable backup copy of the solution.

The remaining check boxes can be selected as needed to

achieve the desired result.

Scan blocks and rebuild file (drop invalid blocks) — Check

this box to rebuild the file’s database schema (tables, fields,

and relationships). This option will find and remove any

fields or records found to be at invalid locations within the

file and will re-create missing fields and table definitions, all

of which may take a long time depending on the size of the

file.

Scan and rebuild scripts, layouts, etc. (structure) — Check

this box to rebuild the file’s structure (layouts, scripts,

themes).

Rebuild field index — Check this box to choose an option of

whether to rebuild indexes Now or Later. Rebuilding indexes

now makes the recovery process take longer but the work is

done before users access the file. Rebuilding later forces

indexing to occur as users begin searching or performing

other functions, which can be time consuming. Uncheck the

box to copy indexes without modification.

Delete cached settings— Check this box to remove

recent/last settings such as page format, print settings,

layout formatting defaults, import/export order, sorts, finds,

and send mail options.

Bypass startup script and layout (requires admin privileges)

— Check this box to bypass any OnFirstWindowOpen or

OnWindowOpen script triggers (Chapter 37) for the file and

open to a newly created blank layout.

Once finished, click the OK button to save settings and

return to the Save dialog and continue with the recovery

process.

Avoiding Design and Training Deficiencies

Users and developers must contend with the possibility of

accidental data loss. Putting aside loss caused by file damage,

there are several methods for losing data. They range from a

misunderstanding to poor interface design.

There are many design techniques that can be incorporated

into an interface and/or script design that can help users avoid

data entry-related errors, including:

Layout text can provide clear instructions.

Style changes and other graphical prompts can make a

more vivid indication of the current window mode and

record state.

Scripts attached to custom menus can override default

vague notifications and instead include descriptive

messages that make clear what action will be performed

and confirm that an action has performed as expected.

However, even with the best interface and technical design,

training is important. Any training sessions or manuals for users

of your database, even for experienced users, should include at

least a mention of risky topics and an emphasis on the proper

methods of data entry and other tasks.

Some areas of risk to consider:

Overwriting an existing record

Forgetting to commit a record

Deleting records carelessly

Misidentifying a found set

These erroneous actions are not limited to a human user. A

poorly designed or inadequately tested script can perform all

the same mistakes as a user, and they can do so in much

greater volume with the speed and efficiency unmatched by a

human user.

When writing scripts Chapters 34-27 ensure that the script’s

actions are correct, properly limited, context sensitive, and well

tested. Spend adequate time designing and testing every

script, especially those that perform automatic record deletions

or field modifications to ensure that they are designed with

safety in mind and will only carry out functions exactly as

intended.

Overwriting an Existing Record

Overwriting data on existing records is more common a

problem than you might think. Be aware that there are several

scenarios in which a record may be accidentally overwritten:

Ignorance — People inexperienced with computers in

general or databases in particular will often not realize that

they need to create a new record prior to typing data and

mistakenly type over an existing record with new

information. This is generally the fault of inadequate

training.

Failed Duplicate — If a user unknowingly fails to create a

duplicate of a record, they may begin typing over the

original record thinking it is a duplicate. This is often an

interface and script design failure that does not offer the

user enough of a visual indication that they have

successfully duplicated a record.

Find Mode — Similarly, if a user fails to enter Find mode,

they may begin typing over a live record thinking it is a

temporary find request.

Forgetting to Commit a Record

For a new or edited record to be successfully saved, a user

must commit or exit the record. While this happens

automatically when a file is properly closed, it is still a good

idea to manually close out a record after editing (Chapter 4,

“Closing a Record”). Failure to do so can be an annoyance when

the database is shared on a network and other users are

waiting to gain access to the information; they won’t see

changes or be able to edit the record until the user who

performed the data entry commits.

Not committing a record can even be dangerous. Various

events can cause the changes to an uncommitted record to be

lost, including:

If the user’s computer crashes.

If the FileMaker application unexpectedly quits or is force

quit by the user.

If the network connection is dropped as it is when the user’s

computer goes to sleep.

Deleting Records Carelessly

The careless deletion of one or more records can be the result

of inexperience. However, more often it is the most experienced

and efficient user that commits this error. The problem here is

two-fold:

Vague Dialogs — FileMaker’s default Delete Record and

Delete All Records dialogs, which are intended to be

generically applicable for any record in any table, present a

rather minimalistic message that does not adequately

notify the user about which record(s) in which window will

be deleted.

User Efficiency — When an experienced user mistakenly

deletes the wrong record(s), it is often the result of their

own efficiency within the system. While a conscientious

new user will carefully read a dialog message and proceed

with more caution, an experienced user, especially those

who use key commands to more quickly perform various

tasks, can get into a sort of “road hypnosis” autopilot mode

that makes them more error prone. Combine a vague dialog

with a user who thinks they know exactly what they are

doing, anticipating dialogs without reading them, and you

may find yourself with erroneous deletions.

The best way to address this problem is to override the

default Delete Record and Delete All Records commands WITH

custom menus (Chapter 33). This allows the implimentation of

one or more protective measures, including:

Restrict Access — The security settings of a database

(Chapter 40) can completely restrict access to either or

both delete commands for certain users in some or all

tables. This option won’t work for every situation, but is

prudent when there is a class of users who never require

the ability to delete records.

Explicit Dialogs — With a custom script overriding the

delete functions, the message presented in the dialog can

be improved to include additional information such as the

table name to make it clear exactly what is going to be

deleted. For example, the message might read, “Really

delete the 100 Contact records in the found set?”

Multiple Dialogs — Adding a second confirmation dialog can

help avoid accidental deletions, especially those involving

large groups of records. This can be inconvenient for the

user but helps avoid the greater inconvenience of deleting

something mistakenly.

Require Explicit Confirmation — When a confirmation dialog

is generated using a layout rather than the Show Custom

Dialog script step, you can include a field into which the

user must type the word “Delete” or some other explicitly

confirmation of the impending action.

Set Limits — Setting limits on how many records can be

deleted at once is a good can help avoid accidents. If a

found set is greater than a chosen limit, an alternative

dialog can inform the user that their request to delete the

found set is denied.

Misidentifying a Found Set

A person unfamiliar with how to identify what is in a found set

may accidentally perform functions that affect more records

than they intend, including the following functions, all

introduced in Chapter 4:

Delete All Records — If the user thinks the found set

contains ten records but it really contains ten thousand,

they may inadvertently make a mistake.

Replace Field Contents — Without a clear knowledge of

what records comprise the found set, using this command

to batch modify the field contents of every record in that

set can be extremely dangerous, especially for novice

users.

Find/Replace — This command has an option to apply the

find-and-replace functions to every record in the found set.

If used with a misidentified found set or used accidentally,

the results can be devastating.

Restraining File Size

Everything you add to a database will increase the size of the

file. Defining tables and fields, designing layouts, building

scripts, and entering hundreds, thousands or millions of

records; it all slowly adds up to a larger file. This is a natural

process and doesn’t pose a problem, at least not at first.

FileMaker’s database file size allowance is rather large,

limited to the amount of disk space available with a technical

maximum of 8 terabytes. Therefore, the likelihood of running

out of space is rather slim in all but the most extreme cases.

However, despite this incredible allowance, it is still a good idea

to follow the adage “less is more” and design files to be as

efficient as possible. Larger files can be slower, especially

running across a network and may be prone to other problems.

There are two primary issues that can make a file larger than

it needs to be:

Inefficient design

Fragmentation

Inefficient Design

An inefficient design can greatly increase the size of a file and

may discourage the addition of time saving features a for fear

of creating more clutter.

Some examples of things to watch for include:

Internal Container Storage — If a database doesn’t need to

be portable, use external container storage instead of

internal (Chapter 10). This will keep all attachments linked

and accessible from within the database but store them in a

folder outside the database, which greatly reduces the size

of the file.

Redundant Technical Structures — When planning tables,

fields, relationships, and layouts, be sure to avoid anything

that would cause a redundancy. Remember when tables are

related, field information can be accessed and shared

across a database’s information hierarchy. If possible, avoid

repeating anything anywhere.

Indexing — Field indexing will impact file size you can’t

avoid indexing completely and wouldn’t want to; however,

be sure you learn how to use the options wisely to minimize

excessive indexing (Chapter 8).

Graphics on Layouts — Designing a graphically rich

interface can improve the user experience and help

workflow efficiency. However, it can increase the size of the

file and the length of time it takes to load and draw layouts.

Consider these strategies to avoid this problem:

Use FileMaker’s built-in icons for buttons where

possible.

Optimize graphics for screen use, especially if they are

not on print layouts.

Keep commonly used graphics, such as logos, in a

single global container field that stores externally if

possible; then place the field on multiple layouts as

needed.

Please don’t feel limited by these suggestions. There are

doubtless many other ways to be inefficient in a database and

numerous creative techniques for maximizing efficiency.

Further, it would be improper to consider any of these

suggestions as appropriate in every context, and a violation of

them where needed may be perfectly valid and even

recommended in some situations.

Fragmentation

Even a file with an award winning and highly efficient technical

design will eventually require some maintenance to avoid the

bloat of empty “ghost” blocks. As records and resources are

created and deleted through the course of normal data entry

work and development changes, empty space will accumulate

within the database file. Over time , this will artificially inflate

the file size and may impact performance and stability.

To solve this problem, use the Save a Copy as command and

choose the Compacted Copy option (described previously in this

chapter). This will safely re-create the file, fitting as much data

into each block as possible and reclaiming unused space.

Understanding File Damage

Like any digital information, a database file can become

damaged. Unlike other file types, databases tend to get a lot of

continuous use and are, therefore, more vulnerable. Even

following all the best advice from countless experts, carefully

crafting a perfect database and rolling it out with weeks of user

training and detailed user manuals, at some point a power

failure or some other tragedy will befall you. It is important that

you understand how to avoid, detect, troubleshoot, and repair

damaged files.

Generally, if you have a corrupt database, you’ll know it by

one of the following symptoms:

A database is automatically run through a consistency

check when opened.

The FileMaker application is randomly crashing.

A dialog states that the file is damaged, can’t be opened or

should be recovered.

Causing File Damage

Typically, the cause of file damage is that a database file isn’t

closed properly. This can result in the loss of record data and

structural flaws to the file. The damage may initially go

unnoticed but can manifest as unexpected behavior or make a

file unable to open.

Some of the situations that can result in database file being

improperly closed are:

Computer power is interrupted, resulting in abrupt

shutdown while FileMaker hosts a database.

A system-wide crash that also crashes FileMaker Pro.

FileMaker unexpectedly quits due to a disk-read or file-

damaged error.

FileMaker is forced to quit by a user or some other process.

Avoiding File Damage

There are many things you can do to help keep your files free of

damage.

Maintaining Hardware and Software

Always maintain stable and up-to-date hardware and software,

paying close attention to these details:

Perform extensive testing before running a live production

database on upgraded hardware or software.

Keep the operating system of host and user computers

updated to the latest compatible and stable version.

Use the latest updater for your version of FileMaker Pro to

ensure the latest bug fixes.

Keep an adequate uninterruptable power supply and surge

protector on all computers, especially the database host, to

avoid sudden shutdowns in the event of a power loss.

Run regular hardware maintenance using a disk utility

program and don’t let computers get outdated to the point

of risking failure.

Use fast hardware and networking equipment with

adequate cabling .

Avoiding Risky Behavior

Be sure to train users to avoid risky behavior such as the

following:

Don’t force quit the FileMaker Pro application unless

necessary.

Don’t leave databases running overnight or when your

computer is idle.

Don’t allow your computer to put the hard drive or

processor to sleep ; use monitor dimming instead.

Using a FileMaker Server

Host files on a FileMaker Server to assist with regular backups

and cushion databases from user computer crashes (Chapter

39).

Performing Maintenance

Perform regular database file maintenance, including:

Save as compacted

Run consistency checks

Check for file damage

Improving Development Standards

Avoid mistakes that require a force quit or confuse users into

thinking one is required.

Avoid scripts with endless loops or modal dialogs without

close buttons. Sometimes the only way to escape these is

to force quit the database.

Make sure users understand that when a complex script

runs, it may take a long time. They may mistakenly assume

their computer is crashing and force quit the application or

perform a hard reboot .

Troubleshooting Process for Random

Crashing

When a file explicitly reports damage or won’t open, the course

of action is clear; recover the file, and transfer the data into a

known safe backup copy of the file structure. However, when

corruption manifests itself in a file that seems to function

properly but is plagued with random crashes, a more thorough

troubleshooting and repair process is possible.

Copy the File

Start with a backup copy of the damaged database. If your files

are hosted on a FileMaker Server, run a scheduled backup and

then copy the backup to the desktop. If working locally on your

computer, make a copy of the file onto the desktop.

Locate the Damage

First you want to determine if the damage is in the database

structure or record data. Depending on what you find, your

recovery option and choice of file for future use will vary

slightly.

Checking the Database Structure

To determine if the database structure is damaged, follow these

steps:

1. First, isolate the structure by making a copy without

any record data. Open the backup copy of the file and

perform the Save a Copy as command, selecting Clone

(no records) option. Then close the file.

2. Then, compact the clone to preemptively fix any minor

issues. Open the clone from step 1 and perform the

Save a Copy as command, selecting compacted copy

(smaller) option. Then close the file.

3. To diagnose the structure, Recover the compacted

clone from step 2 using default recovery settings

(uncheck Advanced options).

If damage is found, you can skip checking the record data

and transfer record data from a recovered copy of the original

backup file into a good structure.

Ideally use a clone of a backup from a time prior to the

introduction of corruption. If the corruption has been lingering

awhile, you may not have access to such a file and can use the

recovered file generated above as the structure. However, keep

in mind that the recovery process may result in renamed or

deleted objects that could not be recovered so some work to

remedy these may be required. For example, a field might be

renamed “Recovered Field ,” indicating that there was some

loss of data.

Checking the Record Data

Once the file structure has been ruled out as the source of

corruption, follow these steps to determine if the record data is

damaged:

1. First, compact the backup copy (the original copy with

records intact) to preemptively fix any minor issues. To

do this, open the backup copy and perform the Save a

Copy as command, selecting compacted copy (smaller)

option. Then close the file.

2. Recover the compacted backup from step 1 using

default recovery settings (uncheck Advanced options).

Determine the Best Course of Action

If no damage is reported in both the file structure and record

data, you can try to use the recovered file from the conclusion

of the record data check. If random crashes continue to occur,

consider transferring the record data into a safe structure.

If the structure or record data reported damage, immediately

transfer the record data to safe structure

Transferring Record Data from Recovered File to Good Structure

To move record data from the recovered file into a known good

structure, you can do so by following these steps:

1. Choose either the recovered file from the conclusion of

the record data check or the original backup file as the

source of records.

2. Open the file.

3. Perform a Find All to make sure the found set includes

all records.

4. Export all records using the Excel Workbooks (.xlsx)

type option . Be sure to check the Use field names as

column names in first row option in the Excel Options

dialog. In the Export Options dialog, take care to select

all fields from the Current Table and not just the ones

visible on the current layout.

Caution By exporting to a non-FileMaker format,

we guarantee that the data is cleanly separated from

any structural file corruption. However, container

fields are not supported in these other formats and

fields are not supported in these other formats and

can’t be exported. If the database has containers,

those must be manually restored into the new

database at the completion of this process when

performing this process. In this case, you may

attempt to export to the FileMaker format, but should

double-check to confirm that no corruption

accompanies the data.

5. Repeat steps 3 and 4 for every table in the database.

6. Identify a stable copy of the database structure

(without records). Ideally use a clone that was created

from a time prior to the corruption event. If that is not

available, use the recovered copy generated after the

database structure check.

7. Import the records from the spreadsheet into this

structure, being sure to use the Arrange by Matching

Names option.

8. Repeat steps 6 and 7 for every Excel export generated

above.

Specifying File Paths

Throughout the development interface, there are many Specify

File dialogs that request a File Path List like the one shown in

Figure 6-22.

Figure 6-22. An example of a Specify File dialog

This option exists in the following developer dialogs:

The Edit Data Source dialog when linking to external

FileMaker Pro databases.

Various Insert script steps for picture, audio/video, PDF, and

file.

The Export Field Contents script step.

The Import Records and Export Records script steps.

Various Save Records script steps for excel, PDF, and

snapshot link.

The Convert File script step.

The Save a Copy As script step.

The Recover File script step.

The Send Mail script step when adding an attachment.

The Send Event script step when sending an AppleEvent to

a document.

Formatting Paths

As indicated by the text examples shown at the bottom of the

dialog, FileMaker can handle a variety of different types of

paths. The path(s) entered can be a local directory, server

folder directory or a FileMaker Server network address. The File

Path List text areas can contain one or more carriage return-

delimited file paths. If more than one path is entered, FileMaker

will check each one, in the order entered, until it finds a valid

path. This comes in handy when working in a network with a

mixture of macOS and Windows users of the database, as you

may need to enter multiple paths to handle each user’s

operating environment.

Properly formatting a path or knowing when to use multiple

paths can be tricky, especially when addressing files in a

directory instead of addressing a file hosted on a FileMaker

Server. There are various prefixes that can be somewhat mixed

and matched with different path format types. If a path is

incorrectly entered or the target file is moved after a path has

been defined, an file missing error will occur.

To avoid errors, it is generally a good idea to use the Add

Files button and subsequent Open File dialog to select a

database file because FileMaker will then formulate the best

path option automatically. This can be a good way to learn

exactly how a path should be formatted. Once entered, you can

always customize the path as needed.

Path Prefixes

There are four path prefixes that can be used depending on the

type of path and the operating system:

file: — used to create a generic, cross-platform path.

filemac: — indicates a path to a folder for use on a macOS

computer.

filewin: — indicates a path to a folder for use on a Windows

computer.

filenet: — indicates a path to a FileMaker Server hosted

database.

To create a file path for use with the Insert PDF script step or

the Insert Picture script step, use a prefix of image, imagemac,

or imagewin.

To create a file path for use with the Insert Audio/Video script

step or the Insert QuickTime script step, use a prefix of movie,

moviemac, or moviewin.

Path Types

FileMaker paths can be defined as the following different types:

Relative path

Full path

Network path (Windows)

FileMaker server network address path

Relative Path

A relative path is a path to a target database file that is

specified from the context of the database’s location. This type

of path assumes the current file and the target database have a

portion of their directory location in common and only specifies

the difference between them. The formula for a relative path is:

file:[pathDifferential]fileName

The file: prefix and fileName are required values and the

path differential is only included if there is a difference between

the two folders containing them.

In the following examples, we assume two files: Test Source

and Test Target, with the former defining a data source

targeting the latter.

Within the Same Folder

If these two files are contained in the same directory folder (or

hosted on the same FileMaker Server), the relative path will be:

file:Test Target

In this case, there is no need to include any information

about the difference between their locations because they are

located together.

Both Removed by One Subfolder

If we move the files, one to the Desktop folder and one to the

user’s Documents folder, the path will need to be modified to

still locate the file. In this example, the two files are in the

following locations:

Macintosh HD/Users/john_doe/Desktop/Test Source

Macintosh HD/Users/john_doe/Documents/Test Target

Given this, the data source path in Test Source that points to

the target file would be:

file:../Documents/Test Target

The first part of the path differential, the two periods and

forward slash, together indicate that, to locate the target, we

must first move up the directory hierarchy one folder. The

second part indicates the downward folder structure that is

required to locate the file.

Adding Additional Subfolders

Leaving the source file in the Desktop folder, if the target was

placed into a folder named “Target Subfolder” within

Documents, that make the new path:

file:../Documents/Target Subfolder/Test Target

However, when the source is placed into a new folder on the

Desktop, we must add and additional set of periods and forward

slash to indicate the need to move up the hierarchy twice

before navigating downward. In this example, the two files are

in the following locations:

Macintosh HD/Users/john_doe/Desktop/Source Subfolder/Test

Source

Macintosh HD/Users/john_doe/Documents/Target

Subfolder/Test Target

Given this, the data source path in Test Source that points to

the target file would now be:

file:../../Documents/Target Subfolder/Test Target

Now we are telling FileMaker to look for the target file two

folders up from the source folder and then down into

Documents and then into Target Subfolder.

Generally, you may want to avoid using relative paths unless

the databases will always be within the same folder or inside of

a mix of subdirectories within the same root project folder that

will always remain intact and static — or if the files are hosted

on the same FileMaker Server.

Full Path

A full path is a path to a target database file in a directory that

is specified from the context of the disk or volume containing it.

This establishes an absolute path that doesn’t change,

regardless of where the source database is located. These can

be used for macOS directories locally or on a server and for

Windows local directories.

The formula of an absolute path varies slightly depending on

the operating system of the user computer:

filemac:/volume/directoryName/fileName

filewin:/driveLetter:/directoryName/fileName

For example, if the file is in the /User/Documents folder on a

macOS computer, the path might be:

filemac:/Macintosh HD/Users/alex_smith/Documents/Test

Target

Alternatively, the generic file: prefix will work for full paths

that are cross-platform:

file:/Macintosh HD/Users/alex_smith/Documents/Test Target

Network Path (Windows Shared Directory Only)

A network path is a path to a target database file located in a

server directory in a Windows environment. The formula of a

network path is:

filewin:/computerName/shareName/directoryName/fileName

For example, a path might be:

filewin:/Company_Server/Databases/Sales/Test_Target

FileMaker Server Network Address Path

A network path is a path to a target database file hosted on a

FileMaker Server computer. The formula of a network path is:

fmnet:/addressOrName/fileName

Some examples include:

fmnet:/192.100.50.10/Test Target

fmnet:/FileMaker-Server.local/Test Target

If the source database is located on the same FileMaker

Server as the target, a relative path can be used:

file:/Test Target

Building Dynamic Paths

Keeping your database future-flexible is a prudent approach.

One method is to keep all paths soundly formatted and able to

dynamically change over time without extra development

effort. There are a few techniques that can be used to construct

dynamic paths and avoid future problems.

Using Variables in Paths

Paths can include global or local script variables (Chapter 12),

either containing the entire path or mixed with the text of a

path.

The Set Variable script step can place a value into a variable,

which can be used in other steps that require a path. For

example:

Set Variable [$pathToExport ; Value: "filemac:" & Get (

DesktopPath) & "Reports/"

Import Records [With dialog: On ; "$pathToExport" ; Add;

UTF-8]

The path text can include variables mixed in with literal text.

This allows certain values to be set universally by storing them

in a global variable and inserting the variable in their place in a

path. For example, if a network address and file name for a

commonly used target file is each stored in respective

variables, the path becomes more dynamic, as shown here:

fmnet:/$$ServerAddress/$$FileName

Caution Variables are only fully supported in script steps

that use stored paths. Stored container fields may accept a

variable path but it will not perform in a desirable manner.

Using Functions to Generate Contextual

Paths

Some of FileMaker’s built-in Get functions (Chapter 22) will

automatically generate paths to standard folders on the user’s

computer, which can be used in calculation formulas (Chapter

12) and put into a variable for use in scripts (Chapter 34). These

include:

Get (DesktopPath) — returns the path to the user’s

Desktop folder.

Get (DocumentsPath) — returns the path to the user’s

Documents folder.

Get (PreferencesPath) — returns the path to the user’s

Preferences folder.

Get (TemporaryPath) — returns a path to a temporary

folder that will be automatically deleted when the FileMaker

application is quit.

Get (SystemDrive) — This function returns the name of the

Startup Disk, which can easily be converted, into a path.

Using these when generating a path eliminates the problem

of differences from one user’s computer to the next or having to

clean up files exported temporarily for emailing or other

functions.

Excluding File Extensions

File extensions in paths of a target database are completely

optional. Since FileMaker tends to update the database file

extension every three or four versions whenever a new file

format is introduced, it is a good idea to either drop extensions

or use a variable so they can be universally updated in the

future.

For example, any of these paths should locate and open the

same file:

filemac:/Macintosh HD/Users/alex_smith/Documents/Test

Target

filemac:/Macintosh HD/Users/alex_smith/Documents/Test

Target.fmp12

filemac:/Macintosh HD/Users/alex_smith/Documents/Test

Target.$$Extension

Avoiding Obsolete Wildcards

Previous versions of FileMaker allowed an asterisk to be used as

a wildcard character in network file paths in place of the

address. For example:

fmnet:/*/Test Target

This prompted FileMaker to search the network for the file on

any eligible FileMaker Server. However, due to the impact these

have on network traffic it is recommended that you not use

these and, if converting an older file, search and replace these

with a proper path .

Summary

In this chapter, we discussed the basics of creating, configuring,

and maintaining database files as well as the how to refer to

files by specifying paths.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-4842-

2863-0_7

7. Working with Tables

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

A table is a collection of information pertaining to some specific

type of entity, made up of a collection of records. They are the

central focal point of the database structure, or schema. Tables

define the field structure of the data that will be stored within

them (Chapter 8). Instances of tables can be interconnected to

form relationships (Chapter 9). A table’s fields can be displayed

on layouts (Part 4) and manipulated with scripts (Part 5).

In this chapter, we will begin defining and building tables.

Topics will include:

Modeling tables

Introducing the manage database window (Tables)

Naming tables

Managing tables

Modeling Tables

Data modeling is a term used to describe the process of

planning and creating an abstract, virtual representation of the

various properties, relationships and actions that describe a set

of related entity classes that will be managed within a

database. This term is used because the resulting table, field,

and relational structures of a database are sometimes called a

virtual model of the types of entities that are represented by

the data structure.

The first step in planning a database model is to determine

the names of the tables required. A table’s object category

might be a broad category (people or products) or a narrower

subcategory (employees or cars), depending on the specific

needs of the database you are building. In some cases, a table

may even model some aspect or property of an entity or

action, such as a quality of an object or process of an event.

In the early planning stages, a data model can simply be a

list of table names. Later, you will want to sketch out a list of

the fields that will be defined within each and indicate how the

tables will interconnect to form a relational hierarchy.

For now, our hypothetical data model can simply list the

entitiy classes that will each be represented by a table. For

example:

Company

Contact

Project

As we expand into other areas of the data structure in later

chapters, we will expand this model.

Introducing the Manage Database

Dialog (Tables)

Tables are defined from the Tables tab of the Manage Database

dialog. Once a database is open, this dialog can be opened by

any of the following methods:

In browse or layout mode, select the File > Manage >

Database menu item.

In layout mode, click the Manage icon in the toolbar and

select Database from the pop-up menu.

Running a script or clicking a button that uses the Open

Manage Database script step.

In the Import Field Mapping dialog (Chapter 5), click the

Manage Database button.

In most table selection pop-up menus throughout the

programming interface, select the Manage Database option

at the bottom.

Once open, make sure the Tables tab is selected, as shown

in Figure 7-1.

Figure 7-1. The Tables tab of the Manage Database dialog

The controls on the Tables tab are:

1. Table List — This area displays a list of all the tables

that are defined within the current database file. The

list can be sorted by either clicking on a column

heading or choosing an option from the View by pop-

up menu in the upper right corner. By default, a newly

created file will automatically contain a single table

with the same name as the file. However, in this case,

it is different because we renamed that default table in

the last chapter.

2. Table Name — This text area contains the name of the

currently selected table. It is used to edit the table

name or to enter a new table name.

3. Help — This button opens the FileMaker help guide to

the “Defining Database Tables” page.

4. Print — This button will print the field definitions for

the selected table(s).

5. Cancel — This button will close the dialog without

saving changes in any tab after displaying a warning.

6. OK — This button will save changes and close the

dialog.

7. Buttons — This group of six buttons is used to add

tables and control table management functions

described later in this chapter.

Table Properties

Tables are made up of five components, each listed as a

column in the Table List on the Tables tab of the Manage

Databases dialog.

Table Name — This column contains the name of each

table in the list.

Source — This column contains the source type of each

table, either “FileMaker” or the name of an ODBC data

source.

Fields — The Details column includes a count of the fields

that are defined for each table (Chapter 8).

Records — The Details column includes a count of the

records that are stored in each table.

Occurrences in Graph — This column contains a comma-

separated list of every occurrence of the table in the

relationship graph (Chapter 9).

Naming Tables

Table names can be flexible depending on a developer’s

preferences. Depending on the database’s design, users may

never even be aware of a table name so naming isn’t typically

important from an interface perspective. However, from the

perspective of an often-overlooked technical design , naming

can greatly impact your performance as a developer when

working in the programming interface.

Table names should at least follow these rules:

They should be a unique word or phrase.

They should not contain the name of functions, especially

those that have no parameters such as Random or Pi.

Although many reserved symbols and words can be used in

a name, avoiding them altogether is a good idea. Some will

cause conflicts in calculation formulas and FileMaker will

warn you about these and confirm that you want to

continue.

Including spaces in table names is optional. For some web

integrations, other than FileMaker Web Direct, you may want to

avoid them completely. Generally, any of these name formats

are perfectly fine for tables:

Project Resources

Project_Resources

ProjectResources

Beyond these, consider what constitutes a good table name.

Ideally, the name of any object in a database should be

carefully planned to be clearly descriptive, concise but not

cryptic, and integrated with similar objects into groups but still

differentiated from each another. All this while considering how

the name affects sorting with other objects in a list.

Here are a few guidelines to consider:

A table name should clearly indicate the class of entity

being modeled by the table while being concise without

being cryptic.

In almost every case, using full words is preferred over

abbreviations. If a word seems too long, consider using a

thesaurus to find a replacement.

Remember, the choice of naming should be considered in

the full context of other tables in the file. For example,

Stuff may be unclear but acceptable in a database that

manages only one kind of stuff. However, as a database

expands to include multiple tables containing data for

several different kinds of stuff, it becomes prudent to use

more descriptive names like Inventory, Resources,

Supplies, etc.

Consider using several words to increase clarity where

applicable. When there are other tables that store data for

similarly named entities, make sure that their names

differentiate each table’s uniqueness. This will help avoid

developer confusion.

Including prefixes to group tables will help to integrate

them into subgroups by causing them to sort together

alphabetically. This is especially helpful when selecting a

table in pop-up menus throughout the developer interface.

A prefix can be one or more words but shouldn't expand

the name to the point where it causes the opposite of

cryptic vagueness, cluttered overload. Sometimes a

grouping prefix may require a reversal of common

language order. For example, instead of Company Property

and Personal Property, reversing these as Property

Company and Property Personal allows the common term

to become a sorting prefix as well as entity class identifier.

Be consistent in usage. For example, consider keeping all

names either singular or plural; Contact and Company or

Contacts and Companies are both fine, while Contacts and

Company is inconsistent.

Using the above advice, consider a few examples of good

table naming below:

Company

Company Offices

Contact People

Contact Company

Contact Log

Project

Project Budget

Project Scheulde

Invoice

Invoice Line Item

Invoice Purchase Order

Note Remember, your preferences and needs for naming

may be validly different than the isolated suggestions above.

Never assume there is an absolute, context-less rule for

naming that must be followed all the time.

Managing Tables

Tables can be selected, added, renamed, and deleted using the

buttons on the Tables tab of the Manage Database dialog.

Selecting Tables

Many table management functions require a selection of at

least one table. Selections can be made in the following ways :

To select a single table, click on it in the list with the cursor.

To change the selected table, click on a different table or

use the Up and Down arrow keys to select the previous or

next table.

To select multiple consecutive tables, hold down the Shift

key and click on two tables at the outside of the range

desired.

To select multiple non-consecutive tables, hold down the

Command key and click on each desired table, one at a

time.

Adding Tables

There are six different methods for adding tables to a database

file:

Creating a new table.

Adding a table from an ODBC data source.

Duplicating an existing table.

Importing a table.

Automatically converting a data file to a database.

Importing records (Chapter 5, “Selecting a Target Table”).

Creating a New Table

Manually creating a new table from the Tables tab of the

Manage Database dialog is a quick and easy two-step process :

1. Type the name of the new table into the Table Name

text area.

2. Click the Create button.

The new table should appear in the list above with any other

tables already defined.

Adding a Table from an ODBC Data Source

Open Database Connectivity (ODBC) is a standard application

programming interface (API) that provides client applications a

common language for interacting with other database systems

written in the C language. Java Database Connectivity (JDBC) ,

which FileMaker supports, is a similar API for accessing systems

written in the Java language.

An ODBC or JDBC client application communicates with a

Driver Manager application that uses a client driver to

communicate with the external data source, as shown in Figure

7-2.

Figure 7-2. The connection between a FileMaker and an external data source

through an ODBC connection

FileMaker can act as an ODBC client application or as an

ODBC and JDBC data source. As a client application, FileMaker

supports connections to external SQL data sources such as

those from Oracle, Microsoft SQL, and MySQL. Once connected,

tables from the external database can be added to a FileMaker

database and, except for a few exceptions, can be used like a

native FileMaker table.

The process of configuring a host computer and database

for ODBC access is a relatively straightforward three-step

process :

1. Prepare the host computer for an ODBC connection

with a Driver Manager and Client Driver.

2. Connect the FileMaker database to the ODBC client

driver.

3. Insert and use ODBC tables in the FileMaker database.

Preparing a Computer for an ODBC Connection

The first step to connecting a FileMaker database to an external

ODBC source is to prepare the host computer for an ODBC

Connection. This involves installing the ODBC Manager

application (freeware for macOS), installing a client driver

(such as Actual Technologies ODBC Pack), and then configuring

the driver for a specific external data source.

The host computer is the computer upon which the

database is installed (rather than a client computer that may

be accessing it). This might be your computer with the

database open in a client version of the FileMaker client

application, used locally or shared across the network, or a

dedicated FileMaker Server.

Installing the ODBC Manager Application

Download and install the freeware ODBC Manager application

onto the host computer, by following these steps:

1. Download the ODBC Manager disk image from

http://www.odbcmanager.net .

2. Locate the ODBC_Manager_Installer.dmg file in your

Downloads folder and launch it.

3. The ODBC Manager disk image will appear on your

desktop and open in a window.

4. Double-click on the ODBC Manager.pkg file to launch

the installer.

5. Step through the installer panels to complete the

installation.

http://www.odbcmanager.net/

 Once the installer has run, the ODBC Manager application

should be in your /Applications/Utilities/ folder.

Installing the ODBC Driver

Next, download and install an ODBC driver, like the one

described here from Actual Technologies, by following these

steps:

1. Download the Actual ODBC Pack disk image, available

at http://www.actualtech.com/download.php

2. Locate the Actual_ODBC_Pack.dmg file in your

Downloads folder and launch it.

3. The Actual ODBC Pack disk image will appear on your

desktop and open in a window.

4. Double-click on the Actual ODBC Pack.pkg file to

launch the installer.

5. Step through the installer panels to complete the

installation.

Note The driver is a fully functional demo, limited to

display only the first three rows resulting from any query.

Purchase a license key from Actual Technologies web store to

remove this limit. They have two editions available, one for

use on a single user database and another for shared

databases.

Configuring Driver

Next, add and configure a driver for the specific database to

which a connection will be made by following these steps:

1. Open the ODBC Manager application, shown in Figure 7-

3.

http://www.actualtech.com/download.php

Figure 7-3. The ODBC Manager application window with a single ODBC

connection configured to a sample database

2. Click on the System DSN tab.

3. Click the Add button.

4. A panel will appear attached to the dialog. Choose the

appropriate driver from the list for the specific database

you are connecting to. The list will include the following

four driver options from Actual Technologies:

Actual access

Actual open source databases

Actual oracle

Actual SQL server

5. Enter settings into the multi-panel driver configuration

dialog. The specific settings required will vary slightly

depending on your choice of driver. However, generally,

you must enter the server address, database name,

username, and password.

6. When finished, click the Done button to close the

configuration dialog.

7. The final panel of the configuration dialog allows you to

test the connection to ensure that you have entered

everything properly.

8. Quit the ODBC Manager application.

Connecting a FileMaker Database to the ODBC Client Driver

Next you must connect your FileMaker database to the ODBC

driver you just configured in the ODBC Manager application.

This is done by setting up an external data source in the

database and then adding the table(s) from the external source

into the FileMaker relationship graph.

Setting Up External Data Source

Select the File > Manage > External Data Sources menu item

to open the Manage External Data Source dialog, shown in

Figure 7-4, then click the New button.

Figure 7-4. The Manage External Data Sources dialog

An empty Edit Data Source dialog will appear, like the one

shown in Figure 7-5. Following the steps below to configure the

connection to the Client Driver for the external data source.

Figure 7-5. The process for setting up an external data source

1. Enter a name for the data source in the Name text

area, which will be used to refer to the data source

within the FileMaker database. It can be the same as

the Data Source Name or a more descriptive name (as

shown).

2. Select the ODBC radio button for the Type.

3. Click the Specify button on the right of the DSN text

area.

4. In the Select ODBC Data Source dialog that opens,

select from the available ODBC Data Sources. The list

will include any you have previously defined in the

ODBC Manager application. Once you select the

desired driver, click the OK button to close the dialog.

5. Choose the Authentication option to indicate how a

username and password should be entered at the user

level when they attempt to access resources in the

external database from within FileMaker. For the

smoothest user experience, hard-code the user name

and password directly in this area. For a more secure

experience, have them prompted to enter these values

at runtime.

6. Optionally, you can add filtering criteria to control

which tables are displayed when a connection is made.

This can be helpful when a database has many tables

and you want to limit which are available from

FileMaker.

7. Click the OK button to close the Edit Data Source

dialog and save the current configuration.

The new external data source should appear in the list on

the Manage External Data Sources dialog, shown in Figure 7-6.

Click the OK button to close the dialog and save the

configurations.

Figure 7-6. The dialog after setting up the connection to the external data source

Adding to Relationship Graph

Any table created directly within the Tables tab of the Manage

Databases dialog will automatically be added to the

Relationship graph, while an ODBC table must be manually

added. To get started, open the Manage Database dialog and

click on that tab. Then follow the steps shown in Figure 7-7.

Figure 7-7. The process for adding an external data source to the relationship

graph

1. Click the Add a table icon button, which is located on

the far left of the row of icons.

2. In the Specify Table dialog that opens, click the Data

Source pop-up and select the ODBC data source

containing the table you want to add. This should

refresh the list of available tables.

3. Click the table you want to add.

4. Click the OK button.
A new table occurrence box should appear in the

relationship graph. If you switch to the Tables tab you will see

the table in the list with italic formatting, which indicates an

ODBC “shadow table.”

Using an ODBC Table in FileMaker

Once an ODBC table occurrence is added to the relationship

graph, it is available throughout the database in almost the

same way as any native FileMaker occurrence. However, it is

important to remember that the table really exists on the

external server and is represented within FileMaker as a

“shadow table ” so there are a few notable differences. These

include:

Schema Lock — The structure of the external data source is

not available for modification from within FileMaker. The

shadow table created within FileMaker allows some

modifications but they do not affect the remote table.

Deleting Fields — Fields can be deleted from the shadow

table to help thin out the amount of data queried but the

fields remain intact in the remote table.

Modifying Fields — Auto-Enter settings for remote fields

can be modified in the shadow table since they essentially

operate in the same way as users entering information into

a field.

Adding Supplemental Fields — You can add additional fields

to the shadow table but are limited to unstored calculations

and summary fields and the new fields are FileMaker-only

and will not be added to the remote table.

Data Types — SQL has separate data types for certain

information, such as integers and floating-point data, which

FileMaker handles as a single data type. In some cases, you

may need to create a calculation field to convert data from

the external table into a FileMaker data type using one of

the GetAs functions (Chapter 13).

Data Entry Limitations — When there are differences in the

amount of data some field types can hold in the remote

table, FileMaker will do its best to validate and enforce

these limits to avoid any data loss or confusion. For

example, MySQL fields tend to be more limited in content

size than are native FileMaker fields.

Data Updates — Updates to refresh record changes in the

external table are less frequent across the network than

changes to native FileMaker tables. Use the Refresh script

step to force a window to update and ensure that the data

the user sees is current.

Record Locking — Unlike with FileMaker native tables, when

a user begins editing a record in an external table, other

users are not blocked from making changes to the same

record. So, two users can be editing the same record

simultaneously. The user who commits the record second,

thereby submitting their changes after the other user, will

see a warning dialog informing them that the record had

been modified since they began editing and give them the

ability to stop to avoid overwriting the other user’s

changes.

Indexing — FileMaker can’t index SQL fields so searches in

external tables should be limited to those fields already

indexed by the remote table to avoid long delays.

Getting More Information

FileMaker has a technical brief document available on its

website entitled “Introduction to External SQL Sources” that

provides more information about ODBC, JDBC, and the various

connection options to and from FileMaker databases.

Duplicating an Existing Table

When an existing table is similar enough to the requirements of

a new table, consider duplicating it rather than starting from

scratch. While there is no Duplicate button , the Copy and

Paste buttons serve this purpose. To duplicate a table, follow

these steps:

1. Select the table(s) that will be duplicated.

2. Copy the table(s) by clicking the Copy button.

3. Paste a duplicate of the copied table(s) by clicking the

Paste button.

The duplicate table(s) will appear in the list, highlighted as

shown in Figure 7-8. Each new table will have the same name

as the original with a numeric suffix added to ensure it is

unique. Every field from the original table will be present as an

exact duplicate in the new table, with the same names and

settings. Furthermore, a similarly named occurrence will be

placed on the relationship graph (Chapter 9). The only

difference is that the new table will not copy records from the

original.

Figure 7-8. A duplicate of the Sandbox table after pasting

Note Tables can be copied and pasted within a file and

between two files.

Importing a Table

The Import button on the Tables tab of the Manage Database

dialog allows one or more tables to be imported from a

different file directly. To import, follow these steps:

1. Click the Import button . An Open File dialog will

appear.

2.

Locate and open the database file containing the

desired tables. This can be a file in a folder directory or

hosted by a FileMaker Server. It can be the same file

you are editing or a different file. Once opened,

FileMaker will present an Import Tables dialog, shown

in Figure 7-9, listing all the tables available for import

from the selected database.

Figure 7-9. The Import Tables dialog

3. Check the check box next to the table(s) to import and

click the OK button.

The selected table(s) will be copied into the current

database and an Import Summary dialog will report the results,

including:

The number of items imported

The number of items that were automatically renamed due

to conflicts

The number of errors that occurred

An Import.log file will be saved into the folder contains the

destination file or onto the Desktop. If the destination file is

remotely hosted.

Converting a Data File to Database

FileMaker can instantly convert a text or spreadsheet file into a

new database when these are dropped on the application. The

columns and rows of data from the source file will be

automatically converted into a table, fields and records in the

new file created by this process.

When the file is dropped onto the application, a dialog will

offer two choices for field name handling, depending on what

information the first row of incomiong data:

Field names — This option indicates that the first row of

data in the file being imported contains field names rather

than actual data. If selected, the first row of data will be

used to provide the names of fields into which the

remaining information will flow.

Data — This option indicates that the first row of data in

the file being imported contains actual data and not field

names. If selected, field names will be given a default

value (f1, f2, f3, etc.) and the first row will be imported as a

record.

Once this choice is made and the OK button clicked, the

process will build a new file with the following resources:

The new database’s name will be the same as the data file

with a suffix of “Converted” and the FileMaker file

extension.

A default table will be created with the same name as the

new database file.

A field will be created for each column of data with naming

based on the choice made in a dialog.

A record will be created for each row of incoming data, with

each column of information entered in a corresponding

field.

Two layouts will be created: a form layout named “Layout

#1” and a list layout named “Layout #2.”

Modifying a Table Name

Changing the name of an existing table is a simple three-step

process.

1. Select the table to be renamed.

2. In the Table Name text area, type the new name.

3. Click the Change button.
Once complete the name of the table in the list should be

updated. Click the OK button to commit this change.

Deleting Tables

Depending on which of the previous examples you performed,

the Learn FileMaker database may now have a bunch of

duplicate tables. Fortunately, deleting tables is a simple

process:

1. Select the table(s) to be deleted.

2. Click the Delete button.

3. A Delete Tables warning dialog will appear to confirm

you want to continue, as shown in Figure 7-10.

Figure 7-10. The warning dialog when deleting tables

The dialog includes a check bo that hen selected

4.
The dialog includes a check box that, when selected,

will delete both the tables and their corresponding

occurrences in the relationship graph. This choice is

optional and can vary depending on the reason for

deleting the tables. For now, you should check the box.

If you were deleting a table whose relationships will be

repurposed with a new or existing table, you would

want to uncheck the box to retain those connections.

The table occurrences in the graph will become

<missing table> indicating that they require

reassignment.

5. Click the Delete button in the dialog to complete the

process.

6. Manually delete and repurpose any layouts assigned to

the deleted table(s).

Once complete the selected table(s) will disappear from the

list. Click the OK button to commit this change.

Caution When deleting a table, all records that were

contained within it will also be permanently deleted.

Summary

In this chapter, we discussed the basics of working with tables,

including accessing external SQL data sources from within

FileMaker.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_8

8. Defining Fields

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Before a table can store records of information, fields must

be defined. A field is a named container for one unit of

information. Fields allocate a data entry space, define what

data can be placed into that space, and control many

aspects of how that data will be managed.

Tip Using a spreadsheet metaphor, a field is like a

column; a record is like a row; and an instance of a field

for a record is like a cell: the intersection of a column at a

row.

In this chapter, we will focus on defining fields. Topics will

include:

Defining field data types

Exploring field content types

Introducing the manage database dialog (fields)

Naming fields

Defining standard fields

Managing fields

Setting field options

Expanding the learn FileMaker object model

Note Technically, a single field can contain more than

one unit of information when configured with repetitions .

For example, a person might have multiple contact

methods — phone, email, social media, messaging, etc.

— and these can be placed in multiple separate fields, a

single field configured with multiple repetitions or in a

single field on multiple related records using relationships

(Chapter 9) and displayed in portals (Chapter 30).

Defining Field Data Types

There are eight different types of fields supported in

FileMaker that fall into one of two fundamental categories:

entry and display.

Entry Fields

An entry field is a field capable of accepting data entered by

a user or a script. FileMaker has six types of entry fields,

each dedicated to a specific data type :

Text

Number

Date

Time

Timestamp

Container

Note The ability to enter data into entry-type fields is a

potentiality based on their nature. The ability to actually

enter information into these will depend on various

factors such as the field’s presence and configuration on

a layout (Part 4), the configuration of a script (Part 5), the

user’s security access level (Chapter 40), or some

combination of these.

Text Fields

A text field is used to store any combination of letters,

symbols, or numbers as a string of any length up to ten

million characters per repetition. The values can contain any

text, including other data types entered as text. This

includes any mixture of text, dates, times, and numbers.

Numbers in text fields can contain leading zeros.

The structure of the text can vary depending on the

field’s settings. One field may be configured to impose

various rules on an entry, requiring it to be an unformatted,

single paragraph, limited to a few words, etc., and

automatically force compliance with these rules. Another

field may be configured to allow multiple paragraphs of

robustly formatted text. Depending on the field, formatting

can either be applied directly to the text through the

interface by a user, applied dynamically to the text based

on the field settings, or some combination of these two. Text

formatting can also be superimposed on the text when a

field is displayed on a layout.

When sorting records by a text field, the values in the

field will be sorted in alphabetical order. This means that

numbers contained within the text will be sorted as text. In

other words, numbers will be evaluated one character at a

time so the number 10 will sort before 2, since 1 comes

before 2.

Number Fields

A number field is used to store any numeric value ranging

from 10^–400 to 10^400 up to one billion characters per

field.

A value in a number field can include non-numeric

characters that are used to format numbers. For example, a

number field can contain 5000 or $5,000.00. While these

additional characters don’t adversely affect data entry or

finding and sorting records, ideally only numeric characters

should be physically entered into the field and the currency

formatting should be applied dynamically based on the field

display settings on a layout (Chapter 29, “Data Formatting”)

or through a separate calculation field that converts the

numeric value to formatted text for display.

When sorting records by a number field, the values in the

field will be sorted in numeric order.

Date Fields

A date field is used to store a formal date within a range

from January 1, 0001, through December 31, 4000.

Dates must be typed into a date field using the short

date format that matches the database’s settings for dates

and times, which are inherited from the computer upon

which the file was created. Files can be configured to allow

entry and display of dates based on the user’s local system

(Chapter 6, “Data Entry Handling”) or with the Use System

Formats script step. The format of a date entry will vary

from one country to another so you may need to take that

into consideration if your database will be used

internationally. In the United States, the default format is

typically the following:

<month>/<day>/<year>

For example, January 15, 2017, would be entered into a

date field as follows:

1/15/2017

If the date entry is not properly formatted or contains

extraneous text, FileMaker will present an error dialog.

Although all dates must be entered as short dates, a field on

a layout can be configured to display the value in one of a

variety of formats (Chapter 29, “Data Formatting”). Some

examples include:

01/15/17

2017.01.15

January 15, 2017

Sunday 15 Jan 2017

When sorting records by a date field, the values in the

field will be sorted in chronological order.

Date Calculations

When entering a value into a date field, FileMaker stores the

value as a number that expresses the number of days have

passed since January 1, 0001. This is invisible to all users

but allows a calculation to add or subtract a number of days

to a previously entered date value. For example:

(1/15/2017 + 10) = 1/25/2017

(1/15/2017 - 10) = 1/5/2017

Two-Digit Date Conversion

FileMaker requires all dates to have four-digit years. Any

entry of a date with a two-digit year into a date field will

automatically be converted to a four-digit year using a

formula based on the year the data entry takes place. This

includes all entries, including those manually typed,

imported, auto-entered, or entered by a script step.

The conversion process assumes that a date with a two-

digit year is more likely to reach further into the past than

into the future. Therefore, when automatically converting a

date’s year from two to four digits, the value will be

adjusted to fall within either the next 30 years or the

preceding 70 years based on the current year, when the

data is entered. The borderline moment of this scale is

illustrated by the conversion examples in Table 8-1 , which

assumes data entry in the year 2016.

Table 8-1. Showing two years on each side of the temporal divide where

FileMaker switches four-digit date conversions from the past to the future

Date Entered FileMaker’s Conversion Direction

1/1/48 1/1/1948 Back to Past

1/1/47 1/1/1947 Back to Past

1/1/46 1/1/2046 Forward to Future

1/1/45 1/1/2045 Forward to Future

A database managing dates that fall outside of this 100-

year range or that don’t fit this division pattern must be:

Manually entered with four-digit years

Entered as text

Be entered in a field with an auto-enter formula or script

trigger that converts the date to a four-digit equivalent

before FileMaker imposes its conversion rule

There is one exception to the automatic conversion

process. Back before the now-forgotten Y2K bug era, older

versions of FileMaker allowed two-digit dates to exist.

Therefore, when performing an upgrade conversion to a

database built with one of these older copies of FileMaker,

two-digit dates will not be converted using the same

method but will instead automatically receive a century of

1900. Therefore, when upgrading an ancient database that

used two-digit years for any century other than the

twentieth, care should be taken to first convert all dates

prior to upgrading to a more modern version of FileMaker or

import the dates into a text field and convert them after

import prior to reverting the field to a date field.

Time Fields

A time field is used to store a formal time string , which, like

dates, must be entered with a time format matches the

database’s settings, which were inherited from the

computer upon which the file was created. The format used

will vary from one country to another so you may need to

take that into consideration if your database will be used

internationally. In the United States, the default formal is

typically:

<hours>:<minutes>:<seconds> <optional_AM_PM>

For example:

11:30:59 AM

The values in a time field will sort chronologically.

When placed on a layout, a time field can be configured

to display the time it contains in a variety of different

formats (Chapter 29, “Data Formatting”).

Time Calculations

When entering a value into a time field, FileMaker stores the

value as a number that expresses the number of seconds

have passed since midnight. This is invisible to all users but

allows a calculation to add or subtract a number of seconds

to a previously entered time value. For example:

(11:30:59 AM + 11) = 11:31:10

(11:30:59 AM - 11) = 11:30:48

Timestamp Fields

A timestamp field is used to store a combination of a formal

date and time as a single, unified string pinpointing a

specific point in calendar time.

As with date and time values, a timestamp must be

entered in a short format matching the database’s settings

for each component, which are inherited from the computer

upon which the file was created.

The two components are entered with a space between

them, as shown here:

<date> <time>

A timestamp value can fall anywhere within the range

from January 1, 0001 12:00 AM through December 31, 4000

11:59:59 PM.

Timestamp Calculations

When entering a value into a timestamp field, FileMaker

stores the value as a number that expresses the number of

seconds have passed since midnight on January 1, 0001.

This is invisible to all users but allows a calculation to add or

subtract a number of seconds to a previously entered

timestamp value. For example:

(1/15/2017 11:30:59 AM + 360000) = 1/19/2017

3:30:59 PM

Container Fields

A container field is used to store any kind of document

within a database, that can be entered into a record as

easily as text, dates, or numbers. Some document file types

have an Interactive content layout setting that allow for

interactivity like that provided by their native applications

(Chapter 29). For example, a PDF file can be stored in a field

that is placed and configured on a layout to allow a user to

view and navigate through the pages of the document as if

they were viewing it in Apple's Preview application or with

Adobe Acrobat. Other file types with interactive potential

are photos, movies, and audio files.

Files can be placed into container fields by using a

variety of functions including Insert, Copy & Paste or Drag &

Drop. Depending on the configuration of the database and

field, the files displayed in container fields can exist within

the file structure or be linked from an external folder

location (Chapter 10).

Display Fields

A display field is a field that automatically displays a value

that is determined by its settings. FileMaker has two types

of display fields:

Calculation

Summary

Calculation Fields

A calculation field is a field defined with a formula

statement that is evaluated by FileMaker to produce a result

automatically (Chapter 12). These are like a cell in a

spreadsheet that has a formula applied except that it is

impossible for a user to type into the cell, wipe out the

formula, and enter data. Just as the spreadsheet displays

the result of the formula in the cell for each row in the

spreadsheet, a calculation field displays the result of the

formula for each record in the database.

Summary Fields

A summary field is a field defined to automatically calculate

another field’s values across a set of records within the

same table, taking into consideration the current user’s

context of found sets and sort orders. For example, a

summary field can calculate and display the total value of a

field for every record in a found set or for subsets of records

based on key sort fields. Summaries are configured with a

combination of field options (explained later in this chapter)

and layout configurations (Part 4).

Exploring Field Content Types

While FileMaker defines field types based on the type of

data they can contain, fields can store all kinds of content

and serve a variety of different information management

purposes.

The most obvious type of data that a field might store is

an aspect or property of the entity class modeled by the

table. For example, an entity’s name, location, description,

price, specifications, or any number of other values

describing that type of entity. The information stored about

an entity can range across an entire spectrum from

properties relating to its appearance, use, status, possible

actions, etc. However, describing entities is not the only use

for fields.

Fields can be used to store information about the record

rather than the entity the record represents. For example, in

a Contacts table, instead of fields only storing information

about the actual contact person that the record represents,

some might contain information about the contact record.

For example, some may store record’s data entry status,

notes, instructions, content warnings, hints, and tutorials.

Fields can store data used to form more sophisticated

dynamic connections with records in other tables.

Further, instead of storing information pertaining to an

entity or the record representing that entity, some fields

may even store data about the table itself. They may also

store information about the file, user, computer, and other

contextual data.

In still other cases, a field may be used to store global

resources or temporary information that is used by other

fields, formulas, or scripts.

Don’t limit yourself in how you think about fields. They

can serve a variety of different purposes to suit any number

of different situations.

Introducing the Manage Database

Dialog (Fields)

Fields are created from the Fields tab of the Manage

Database dialog as shown in Figure 8-1.

Figure 8-1. The Fields tab of the Manage Database window

The controls on the Fields tab are the following:

1. Table Popup — This pop-up menu contains a list of

all the tables defined in the current file.

2. Field List — This area displays a list of all the fields

that are defined for the selected table. The list can

be sorted by either clicking on a column heading

or choosing an option from the View by pop-up

menu in the upper right corner.

3. Field Name — This text area contains the name of

the selected field. It is used to edit the field name

or to enter a new field.

4. Field Comment — This text area is used to add a

short developer comment for the selected field.

5. Field Type — This pop-up menu displays the data

type for the selected field and allows the selection

of a different type when changing a field or

creating a new one.

6. Field Options — This button will open the Options

for Field dialog, discussed later in this chapter,

which contains detailed settings for the selected

field depending on its field type.

7. Help — This button opens the FileMaker help

website directly to the “Defining Database Fields”

page.

8. Print — This button will print the field definitions

for the selected fields.

9. Cancel — This button will close the dialog without

saving changes made in any tab after displaying a

warning

warning.

10. OK — This button will save changes and close the

window.

11. Field Buttons — This group of six buttons are used

to manage fields (see “Managing Fields,” this

chapter).

Naming Fields

Field naming should follow the same rules and guidelines as

tables (Chapter 7, “Naming Tables”). Like tables, field

names can have spaces, should avoid reserved words, and

should be consistently either singular or plural. They should

be descriptive of the content they contain or the function

they serve, without being too lengthy or cryptic. They can

be named with prefixes to become visually organized when

alphabetically sorted in lists and pop-up menus, even if this

requires a reversal of language; for example, using Name

First and Name Last instead of First Name and Last Name.

Any of these name formats are perfectly fine for fields:

Company Name

Company_Name

CompanyName

The examples in this book will use follow the pattern of

the first, with a space between each word of the field name.

Highlighting the Visibility of Field Names

There are a few things to consider when naming fields.

Unlike tables, a field name may need to be considered from

the perspective of both technical and interface design.

When a field is placed on a layout, the field label, a piece

of text that identifies the field for users, will default to the

actual field name. To avoid confusing users with technical

oriented naming, the label can be modified to a user-friendly

variant. So, a field defined with a name of Contact Name

First can have a visible label of First Name. This gives you

the best of both worlds: a clear and organizing technical

name and a shorter, human-readable, visible label name.

However, depending on a user’s access settings and the

use of custom menus, there are some circumstances where

a user can be exposed to the actual field names. If those

names are too developer-centric and different from the

layout labels they are used to seeing, users may become

confused. They may be unable to recognize fields in certain

dialogs. Some of the dialogs where this occurs are:

Import Records

Export Records

Replace

Sort

Saved Find > Advanced

Before you consider abandoning field name prefixes to

benefit development tasks, consider that, even if fields are

named from a user’s perspective, there will still be instances

of field confusion in these dialogs. For example, many fields

that exist for strictly technical purposes and are not

displayed on any user layout will be visible in these dialogs.

In this case, it may be better to include prefixes to group

more technical fields away from the fields for which a user

might be searching.

The benefits of naming from a technical perspective are

huge and you can always educate users who may access

fields through these dialogs. You can override the dialogs

with your own custom menus (Chapter 33) and scripts (Part

5), although that limits users to only functionality predefined

and controlled by you. You could even design your own

dialogs with field name translations to ease this burden, but

that can become a lot of work some will find unnecessary. In

the end, you will have to find the right balance for you, your

projects, and users.

Defining Standard Fields

Some developers prefer to define standard fields that are

universal to all or most tables in any database file,

regardless of the variety of information those tables contain.

Often standard fields contain information about the record

itself, instead of the entity represented by the record, so

they can apply to almost any circumstance. This practice is

completely optional but can be beneficial in establishing a

consistent framework around which custom fields are

constructed.

Ideas for Standard Fields

There are several examples of the kinds of fields that are

obvious candidates for standardization across all tables.

These include:

A record creation and modification date, time, and name

of the account or user responsible for those actions.

The data entry status of the record. Although the

content and available values for a status field will

probably change greatly from one table to the next, the

idea of having a field that indicates the record’s current

state can be invaluable. This informs users about the

status, allows managers to review work done by others,

and allows sorting by or searching for records based on

their status.

A freeform notes field used to store information about

the record and/or the entity represented by the record.

A unique record identification number sometimes called

a primary key that is used for differentiating, tracking,

identifying, and searching. These are useful for precise

record identification and when linking records between

tables using relationships (Chapter 9).

A text calculation used to compile error notifications

that can be placed on layouts to provide instant

feedback to the user about data entry issues that are

automatically detected but can't be automatically

repaired by other means.

A record title calculation that combines key fields into a

single text string that can help the user quickly identify

which record they are currently viewing. These can be

displayed prominently at the top of a layout, in the body

of list views, and in portal rows as a means of record

identification by humans.

As you develop more complex databases and accumulate

experience with more and more fields, ideas for standard

fields may become plentiful. You’ll need to learn to identify

fields that should be universal standards from those that are

applicable only to some groups of tables (group standards)

or those that are applied sparingly as needed (optional

standards). A universal standard field should be established

only when they are truly useful to all or most all tables.

Naming Standard Fields

Once a list of standard fields is established, take some time

to think about how to name them. In addition to the

FileMaker imposed rules for naming fields, consider a wider

set of rules to govern the naming of standard fields.

Making Standard Field Names Universal

To help make their universal status clear, don’t regard their

function and format as a standard alone; consider using the

same name for a standard field in every table.

Many people use and prefer to name a field containing a

unique serial number identifier with a table-identifying

prefix followed by the word “ID.” For example, Contact ID,

Company ID, and Project ID would each be a field containing

a respective table’s primary serial number while this does

establish a standard naming pattern, it makes locating the

primary id field for any given table a little difficult

alphabetically, since the field’s position will change from

one table to the next as the table name changes.

Essentially, using this approach, an id field is mixed in with

other fields. To help alleviate this, some developers prefer to

make “id” a field prefix so that, when scrolling through a list,

every serial number fields in the table, are all grouped

together, for example, ID Contact, ID Parent Company, etc.

However, to really emphasize the universal nature of

such a field, still others prefer to make the primary key in

every table have the exact same name. Something like ID

Primary or Record ID. This makes standard fields

consistently named, quickly recognizable, and easy to

locate across all tables.

Using Super Group Prefixes to Emphasize

Standard Fields

For table and field names, we discussed the idea of using a

prefix to push items into groups when they appear sorted

alphabetically. The same idea applies when developing

standard fields, but you can take it an additional step

further and develop a super group prefix .

A super group prefix is a single word or abbreviation

used at the beginning of every field name to separate all

fields into two fundamental groups: standard and custom.

When naming standard fields, you might notice that

some can be grouped together with logical prefixes like

those discussed earlier. For example, Creation Date,

Creation Time, and Creation User are clearly named and will

sort together in a list. Similarly, Modification Date,

Modification Time, and Modification User help group those

fields together. However, as you begin developing additional

standard fields and mix them with other table-specific fields,

the need for an additional level of prefix will become clear.

Tip Professional developers pay as much or more

attention to technical design and naming as they do to

interface design.

To help illustrate this point, consider a list of standard and

custom fields mixed together in alphabetical order:

Creation Date

Creation Time

Creation User

Contact Name First

Contact Name Last

Modification Date

Modification Time

Modification User

Notes

Phone Cell

Phone Home

Phone Work

Record ID

While these fields are nicely arranged in subgroups due

to the use of prefixes, the intermixture of the custom fields

with standard can be visually distracting and even

confusing. And from one table to the next, the position of

the standard fields will change in relation to different table-

specific prefixes.

Now, consider the difference when you add a super group

prefix. Since the fields in the example are from a table

containing contact records, we use Contact as the super

prefix for every single custom (non-standard) field. Since all

the standard fields contain information pertaining to a

record, we use Record as the prefix for them. The resulting

list of fields immediately appears more orderly.

Contact Name First

Contact Name Last

Contact Phone Cell

Contact Phone Home

Contact Phone Work

Record Creation Date

Record Creation Time

Record Creation User

Record ID

Record Modification Date

Record Modification Time

Record Modification User

Record Notes

Now we have a clear separation of standard fields from

custom fields. Since standard fields have the same name

and prefix in every table, they become much easier to

locate and select, or to ignore when focusing on a custom

field.

Not to belabor the point, but as you add additional fields

to both super groups, you may consider additional sub-

prefixes to help further group similar fields. For example, the

two sets of creation and modification fields both contain a

type of status for the record, so adding an additional prefix

will further refine the list by pushing these two groups

together as shown here:

Contact Name First

Contact Name Last

Contact Name Full

Contact Phone Cell

Contact Phone Home

Contact Phone Work

Record ID

Record Status Creation Date

Record Status Creation Time

Record Status Creation User

Record Status Modification Date

Record Status Modification Time

Record Status Modification User

Record Notes

Not everyone will appreciate this approach, and certainly

there is the risk of getting carried away and adding too

many prefixes. However, some sort of visual organization to

field names can be a huge efficiency boost for developers

when navigating around the programming interface of a

complex database.

Managing Fields

From the Fields tab of the Manage Database window, fields

can be selected, added, renamed, modified, and deleted.

Selecting Fields

Many field management functions require a selection of at

least one field. Selections can be made in the following

ways:

To select a single field, click on it with the cursor. To

change the selected field, click on a different field or use

the Up and Down arrow keys to select the previous or

next field.

To select multiple consecutive fields, hold down the Shift

key and click on two fields at the outside of the range

desired.

To select multiple non-consecutive fields, hold

Command (macOS) or Windows (Windows) and click on

each desired field, one at a time.

To select every field, click on any one field and type “A”

while holding Command (macOS) or Control (Windows).

Adding Fields

There are four methods for adding fields to a database file:

Creating a new field.

Duplicating an existing field.

Importing records (Chapter 5, “Selecting a Target

Table”).

Importing a table (Chapter 7, “Importing a Table”).

Creating a New Field

Manually creating a new field from the Fields tab of the

Manage Database dialog is a quick and easy process:

1. From the pop-up menu, select the Table into which

the new field will be added.

2. Type the name of the new field into the Field Name

text area.

3. Select the data type for the new field from the Field

Type pop-up menu.

4. Click the Create button.

The new field should appear in the list, sorted with any

other fields already defined. If the new field is a Summary or

Calculation field, FileMaker will immediately open the

respective options dialog for the selected type (described

later in this chapter).

Duplicating an Existing Field

When an existing field in any table is similar enough to the

requirements of a new field, consider creating a duplicate of

the field rather than starting from scratch. There are two

ways to achieve this, depending on the final location of the

duplicate being made.

Using the Duplicate Button

To duplicate a field into the same table, follow these steps:

1. Select the field(s) that will be duplicated.

2. Click the Duplicate button.
The new, duplicate field(s) will appear in the field list,

highlighted as shown in Figure 8-2. It will have all options

configured identically to the original and be named the

same with a suffix of “Copy” added to ensure it is unique

within the table. However, any content that the original field

may have contained across all existing records will not be

copied into the duplicate during this process, so the new

field will be empty for existing records.

Figure 8-2. A duplicate of the Example Text field is selected

Using Copy and Paste

A field can be duplicated using the Copy and Paste buttons

or menu commands. This not only works to duplicate fields

within a table but can duplicate fields from one table to

another and even between tables in two different database

files.

To duplicate a field this way, follow these steps:

1. Select the field(s) that will be duplicated.

2. Copy the field(s) by clicking the Copy button.
3. If the destination table is different from the source

table, select the source table from the Table pop-up

menu. If the destination table is in a different file,

close the Manage Database dialog and navigate to

the appropriate table’s field list in the other file.

4. Paste the field(s) in the clipboard by clicking the

Paste button.

The new, duplicate field(s) will appear highlighted in the

list. The name of any new field will vary depending if the

destination table already contains a field with the same

name. If it does, the new field will have a numeric suffix

appended. If it does not, the new field will be named the

same as the original.

Modifying a Field Name

Changing the name of an existing field is a three-step

process.

1. Select the field to be renamed.

2. In the Field Name text area, type the new name for

the field.

3. Click the Change button.
Once complete, the name of the field in the list should be

updated. Click the OK button to close the dialog and fully

commit to this change.

Note Changing the field’s comment can be

accomplished by following this same process.

Modifying a Field Type

Field type changes should be a rare occurrence, since the

data entered in fields generally dictates the types. Minimal

planning and attention paid while creating fields will help to

avoid the need to change the type later. However, it may

become necessary because of a mistake or a structural

change to the database. To modify a field's type, follow

these steps:

1. Select the field to be modified.

2. Select the new Field Type from the Type pop-up

menu.

3. Click the Change button.
Depending on the field type selected, FileMaker may

warn that any content already present in the field will be

converted to the new type across all existing records. This

includes automatic changes such as:

Changing to a date or timestamp will convert dates

previously entered as text into formal dates and convert

any two-digit years to four digits.

Changing from a container to another data type will

remove any non-textual data from the field. For

example, the actual embedded file or image data would

be removed leaving only the name or path of the file.

Changing to a calculation or summary field will result in

the permanent loss of any previous input in favor of the

new, automatically calculated result.

Caution When no warning dialog is displayed, any data

in existing records will be automatically converted to the

new type and should be fine. However, it is a good idea to

at least spot check to confirm this fact.

Deleting Fields

One or more fields can be deleted by following this process:

1. Select the field(s) to be deleted.

2. Click the Delete button.

3. A warning dialog, like that shown in Figure 8-3, will

confirm that the deletion process should continue.

Figure 8-3. The warning dialog when deleting fields

4. Click the Delete button to continue with the

deletion, or the Cancel button to halt the process.

5. Once completed, the selected fields(s) will

disappear from the list. Click the OK button in the

Manage Database dialog to fully commit to this

change and permanently delete the field(s) and any

data previously entered.

FileMaker should clean up any instances of the field on

layouts. However, you may need to manually delete any

uses of the now <missing field> references found on

layouts in other files, script steps, and formulas. Also, any

field labels on layouts that were previously edited from the

actual name of the field will remain and must be manually

deleted.

Setting Field Options

Beyond the obvious properties of a field’s name, type, and

comment, there are many other options that can be

configured through one of three dialogs, depending on type

of field being edited:

Entry fields

Calculation field

Summary field

To edit a field’s options, select the field in the Manage

Database dialog and click the Options button.

Options for Entry Fields

All entry fields — text, number, date, time, timestamp, and

container — have similar options that only vary slightly from

one to the next. When one of these types of field is selected

and the Options button clicked, an Options for Field dialog

will open, making available numerous settings spread across

four tabs :

Auto-Enter

Validation

Storage

Furigana

Auto-Enter Options

The Auto-Enter tab of the Options for Field dialog, shown in

Figure 8-4, contains settings that control specific data that

will be automatically entered into the field when a new

record is created or when certain conditions are met.

Figure 8-4. The Auto-Enter tab of the options dialog for an entry field

Automatically Enter the Following Data into This Field

Some of these settings are limited or disabled for certain

entry fields depending on the specific data type they

contain.

The available options include:

Creation — automatically enter one of the creation

options available in the adjacent popup: Date, Time,

Timestamp, Name, or Account Name.

Modification — automatically enter one of the

modification options available in the adjacent pop-up:

Date, Time, Timestamp, Name, or Account Name.

Serial Number — configure the entry of a serialized

number into the field based on the value in the next

value text area that will automatically increment for

each new record based on the value in the increment by

text area.

Value from last visited record — automatically enter a

value into the field for a new record from the same field

on the last record the user viewed.

Data — automatically enter the static text value in the

adjacent text area.

Calculated value — used to define a calculation formula

that evaluates and places a result into the field. The

formula is entered in a Specify Calculation dialog

(Chapter 12), which is accessible by clicking the

adjacent Specify button. When checked, the Do not

replace existing value of field (if any) check box below

will cause the field to not evaluate the calculation if the

field already has a value from an option above or

contains data previously entered by the user. Calculated

values are auto-entered when a record is created and

when key fields used in the formula are modified.

Looked-up value — used to copy the value from a

related field into this field. Values are inserted when a

record is created, immediately after the relationship is

established. Once copied into a field, the value is

retained regardless of the state of the related record

and can be edited by users and scripts (assuming

access and layout settings). However, the value can be

updated when the Records > Relookup Field Values

menu item is selected.

Caution Although all seven options are check box

controls, the first five operate as radio buttons, allowing

only one to be selected at a given time. The last two

operate as radio buttons with each other but can be

combined with the first set as needed.

Prohibit Modification of Value During Data Entry

When this check box is selected, it makes the field non-

editable at the data level regardless of a user’s security

settings or the field’s configuration on a layout. After any

auto-enter option(s) have been performed the field will

become non-editable.

Lookup for Field Dialog

When the Looked-up value check box is selected on the

Auto-Enter tab of the Options for Field dialog, a Lookup for

Field dialog, shown in Figure 8-5, will open allowing the

selection of a related field that will be looked up through

what relationship.

Figure 8-5. The Lookup for Field dialog

The Lookup for Field dialog contains the following

controls:

1. Starting with table — This pop-up menu contains a

list of every table occurrence that exists in the file

for the table of the field being defined. The

selection establishes the starting context, the table

containing the field being defined.

2. Lookup from related table — This pop-up menu

contains a list of every table occurrence that is

y

related to the starting table selected above. The

selected occurrence identifies the relational conduit

through which a field value will be copied.

3. Copy value from field — This area will display a list

of all the fields in the table occurrence selected in

the Lookup from related table pop-up. Select the

field whose value should be copied into the field

being defined.

4. Don’t copy contents if empty — Check this box to

halt the lookup process if the selected field in the

related record is empty. This will avoid deleting a

value in the local field in favor of an empty value in

the related field.

5. If no exact match then — These options allow an

alternate course of action if no related record is

found:

a. Do not copy — will not attempt to copy any

value and will not modify the local field at

all.

b. Copy next lower value — will look through a

relationship for a record with the next lower

value in the source field.

c. Copy next higher value — will look through

a relationship for a record with the next

higher value in the source field.

d. Use — will enter the literal text typed in the

adjacent text area into the local field.

6. Cancel — Click this button to close the dialog

without saving changes.

7. OK — Click this button to save changes and close

the dialog.

Validation Options

The Validation tab of the Options for Field dialog, shown in

Figure 8-6, contains settings that define the data entry

requirements for the field, allowing the database to

automatically validate what the user enters and enforce

certain rules. When a field fails a validation check, FileMaker

will notify the user of the error and give them a choice of

subsequent action.

Figure 8-6. The Validation tab of the options dialog for an entry field

Validation Control

The options at the top of this dialog control when field

content is validated and whether a user can override a

validation warning. The two options are:

Always — When selected, data will always be validated

as it is entered by a user or when importing records.

Only during data entry — When selection, data will only

be validated as it is entered by a user.

Caution When importing records with validation set to

Always, if a field can’t be validated, FileMaker will not

import the record and report it in the Import Results

Dialog as a count of the total incidence of import errors

without providing any additional detail!

Checking the Allow user to override during data entry will

change the validation warning dialog as shown in Figure 8-7.

Figure 8-7. The two versions of the validation warning dialog

With the override option unchecked, the only options in

the warning dialog are:

Revert Field — removes the recent data entry changes

and restores the previous value to the field.

OK — returns the user to the uncommitted record where

they can edit their entry to comply with the validation

requirements before attempting to commit again.

With the override option checked, the Revert Field option

remains the same but the OK option transforms into a

Yes/No button combination and the message text changes,

phrased as a question rather than a strict statement:

No — Does the same thing as the OK button in the other

version of this dialog, returning the user to the

uncommitted record where they can edit their entry.

Yes — Clicking this button will ignore the validation

warning, accept the changes as entered, and continue

with the Record Commit process.

Validation Requirements

This series of check boxes on the lower portion of the

Validation tab of the Options for Field dialog allows one or

more of teh following requirements to be imposed on data

entry in the field:

Strict data type — This option restricts data entry to one

of the following options from the adjacent pop-up menu:

Numeric Only, 4-Digit Year Date, or Time of Day.

Tip The 4-Digit Year option forces them to enter a

date with a full year before FileMaker performs its

automatic date conversion based on a 100-year span.

This can be helpful in avoiding entry errors and

inadvertent conversions for fields that may contain

dates outside of that span.

Not empty — This option requires a value to be present

in the field before the record can be committed. It can

contain any value but must contain some value.

Unique value — This option requires that the value

entered in the field for the current record be unique for

the same field across all records in the table.

Existing value — This option requires that the value

entered in the current record already exist in the same

field for at least one other record in the table.

Member of value list — This option requires the value

entered in the field to be present within the value list

selected from the adjacent pop-up menu. This feature

can stop a user from typing or pasting a value into a

field to bypass the assigned value list.

In range — This option requires that the value entered

fall within a range mandated by the entries in the two

adjacent text areas. This works well not only with

numeric values but with text, dates, and times.

Validated by calculation — This option allows a totally

customized validation by way of a formula (Chapter 12)

entered by clicking the adjacent Specify button. The

formula entered must evaluate to true (non-zero) for the

field to pass the validation test.

Maximum number of characters — This option requires

that the value entered have a character length that is

equal to or less than the number entered in the adjacent

text area. This option is not available for container

fields.

Maximum number of kilobytes — This option replaces

the one above for container fields, allowing you to

specify in the adjacent text area an upper limit on the

size of a file that can be placed into the field.

Display Custom Message if Validation Fails

When the validation of a field entry fails , FileMaker will

generate a dialog message like those shown previously in

Figure 8-6. The default message will include details about

the specific validation failure, which can be helpful when

multiple validation criteria are applied to a single field.

However, for any circumstance where a custom message is

desired, check this box and type the message below.

Exploring Validation Alternatives

There are alternatives to using FileMaker’s validation options

that some developers prefer. For example:

Some entry errors can be automatically corrected with

an Auto-Enter > Calculated value formula that analyzes

and modifies the data instantly after the user enters it.

This allows the database to instantly correct certain

common mistakes rather than report them and burden

the user with such things.

When an error can’t be auto-corrected, another

alternative is to put a calculation field on the layout that

displays a list of all the validation errors detected within

the record. This removes the obtrusive dialog but makes

it possible for the user to ignore the error that may not

be acceptable in some situations.

A OnObjectValidate script trigger (Chapter 37) assigned

to a field can run a script (Chapter 34) that checks the

field for any validation errors. The script can then

perform a combination of auto-correction and/or

reporting with a fully custom dialog before returning the

user to the field until they correct the problem(s)

detected.

Similarly, an OnRecordCommit script trigger can

perform a script that checks the entire record for any

validation errors and then auto-correct and/or report.

Storage Options

The Storage tab of the Options for Field dialog, shown in

Figure 8-8, contains options that control various aspects

pertaining to how information is stored within a field.

Figure 8-8. The Storage tab of the options dialog for an entry field

Global Storage

When first created, every field is local. Being a local field

means the field is essentially replicated as a unique

instance of itself for each record, like a cell in a spreadsheet.

The value placed within the field is local to a single record,

which is separate and different from the same field on the

next record.

By contrast, a field can be defined as a global field, which

is a field that contains one value that will be shared by

every record in the database. The value placed within the

field is global to every record and usable anywhere in the

file. Using the spreadsheet analogy where a column

represents a defined field and a row a record, a global field

is like a column with the same value in every cell for every

row.

Check the Use global storage check box to convert the

field to use global storage. When converting a previously

defined field to a global FileMaker will present a warning

dialog reminding you that any values contained within the

field will be lost when the change occurs.

Global fields have various purposes, including:

Making a fixed value available to any calculation

formula regardless of the context or a lack of a

relational connection.

Creating a popup menu on a layout to allow user access

to actions or options. Being a global field means a

selection can remain the same for any record in the

table and can even be added to unrelated tables.

Providing temporary storage of information used by or

assembled by scripts. Although, except for exporting,

variables can usually be more effective for this purpose.

Acting as the match field for a parent table in a

relationship to vary the match criteria based on user

input or other factors.

Storing static text or graphics that will be displayed on a

layout as iconography, branding, or other purposes.

For storing temporary print report headings or other

information.

Global field values are persistent from one session to the

next only when entered locally with the database open in a

copy of FileMaker Pro or FileMaker Pro Advanced. That value

will be the default value each time the file is opened across

a network from a FileMaker Server. Any changes made by

one user are only applicable to their session and do not

persist in future sessions.

Tip In the past, global fields were more heavily used for

a variety of functions that are better managed with

variables (Chapter 12), merge variables (Chapter 30), and

script parameter passing (Chapter 34). Global fields

should not be used for any task that is more efficiently

handled using these modern features.

Repeating

A repeating field is any field defined to store multiple values

for a single record. Instead of creating new, separate fields

for additional values of a certain type, a single field can be

defined repeat any number of times.

To make any type of entry field repeat, enter the number

of desired repetitions in the text area provided on the

Storage tab of the Options for Field dialog. That number

indicates the maximum number of separate values the field

can contain. To make a calculation field repeat, enter the

number of repetitions in the Specify Formula dialog for a

calculation field (Chapter 12). Summary fields can be

configured as repeating in an unusual way, described later

in this chapter.

Field repetitions have many uses such as storing multiple

phone numbers or email addresses into a single field.

However, there are a few implications that should be

considered, including:

Whatever upper limit you choose for the field and make

accessible on a layout will establish the maximum

number of values that can be typed into the field. You

can increase this number later, but then you need to

make the additional repetitions visible on any relevant

layouts, which may require rearrangement since you

can’t make repeating values scrollable within a finite

layout space.

A Find process will search in all repetitions, including

those not displayed on the current, or any layout. It is

not possible to limit a find to just a specific repetition.

A Sort process will only look at the first repetition.

Calculations that use a combination of repeating and

non-repeating fields may not work together without the

usage of the Extend function (Chapter 19).

Auto-enter calculation will only work on the first

repetition.

Repeating field values can’t be easily summarized when

creating reports. You need to condense them into a

single value with a calculation using an aggregate such

as List (Chapter 19).

Due to the above limitations and their status as a

somewhat archaic tool, repeating fields are largely

superseded today by portals (Chapter 30) to display fields

as a scrollable and expandable list of related records. While

there are still valid uses for repetition, it should be avoided

in most cases.

Indexing

A field index is a list of words or values generated from a

non-global field’s contents behind the scenes by FileMaker

that are used when performing searches, determining the

uniqueness of a field value, and connecting records through

relationships. Although index data will increase the file size

of a database, they are required by the nature of these

actions and desirable to improve performance. An index for

a database field serves a function similar to those we are

familiar with at the end of physical books. The value of a

database index can be analogously grasped by anyone

considering the different amount of effort required to find a

subject in a large book by scanning each page from front to

back instead of finding the topic in the book’s index and

flipping to the indicated page number.

FileMaker uses two different kind of indexes, depending

on the type of field and the option selected:

A value index is created from every carriage return-

delimited line in a text, number, date, time, and

timestamp field, including calculation fields that return

any of these data types. This index is used to match

related records and to search any field type except text.

Here, it helps to think of “value” as a paragraph.

A word index is created from each unique word in a text

field and a calculation field that returns a text value. It is

used only for searching.

Indexing options on the Storage tab of the Options for

Field dialog include:

Indexing: None — This option prevents FileMaker from

indexing the field at all. Use this for fields that don’t

require searching and won’t be used to form

relationships.

Indexing: Minimal — This option, available for text fields

only, will limit FileMaker to creating a value index for the

field.

Indexing: All — This option will create a value index for

number, date, time, and timestamp fields and both a

word and value index for text fields.

Automatically create indexes as needed — This check

box allows FileMaker to automatically create indexes as

needed. For example, when a user performs a search on

a previously unindexed field set to None, checking this

box would allow it to switch automatically to All and

generate and store the index.

Default language — This pop-up menu allows

specification of the language to be used for indexing

and sorting values in a text field. Initially the selected

value will be that of the operating system language of

the computer upon which the file was created.

Tip There will always be situations where you might

need to customize the indexing settings. However, in

many cases, you can leave the default indexing settings

as they are and FileMaker will adjust them as needed

based on user and developer activity.

Container Storage Options

Container fields can’t be indexed so, the Storage tab of the

Options for Field dialog does not have the above options

available when editing them and instead display container

storage options (Chapter 10).

Furigana Options

The Furigana option specification of a field that will receive a

phonetic translation of Japanese text typed into the field. For

more information on Japanese functions, see FileMaker Pro’s

documentation website.

Options for Display Fields

Calculation and summary fields are different than other field

types and their options reflect this fact. Clicking the Options

button or double-clicking on a calculation or summary field

will open an alternative dialog of options specifically focused

for the field type.

Calculation Field Options

The Specify Calculation dialog allows the entry of a

calculation formula and selection of the resulting value’s

data type, number of repetitions, storage options, and an

option to not evaluate if all referenced fields in the formula

are empty (Chapter 10).

Summary Field Options

The Options for Summary Field dialog, shown in Figure 8-9,

allows specification of the type of summarization and field

to be summarized as well as other options.

Figure 8-9. The Options for Summary Field dialog

Summarization Types

The following summarization options are available in a set of

radio buttons along the left side of the dialog:

Total of — calculates the total value for the selected

field in the context-set.

Average of — calculates the average value for the

selected field in the context-set.

Count of — counts the number of records in the context-

set that have any value.

Minimum of — extracts the lowest value in the selected

field for the records in the context-set.

Maximum of — extracts the highest value in the

selected field for the records in the context-set.

Standard Deviation of— calculates the standard

deviation from the mean of all the values in the selected

field for the records in the context-set.

Fraction of Total of— calculates the ratio of the value in

the selected field to the total of all the values in that

field.

List of — creates a carriage return-delimited list of every

non-blank value in the selected field.

Options for Summary Field Dialog Overview

The Options for Summary Field dialog can be somewhat

deceptive in appearance. There are many conditional

controls and a surprising variety of functionality available.

The dialog can be divided into five general sections, shown

in Figure 8-10.

Figure 8-10. The Options for Summary Field dialog with additional options

visible, marked up for a sectional overview

Caution This section contains an overview description

of the functions for defining the summary field but may

be rather abstract until one integrates it with an

understanding of how these fields behave when placed on

different layout parts (Part 4).

The Options for Summary Field dialog contains the following

controls:

1. Summarization Type — Choose the type of

summarization that will apply to the selected field

to generate a value for the field you are defining.

Depending on your choice, the conditional options

will vary.

2. Available Fields — This list displays the available

fields for the table in which the summary field being

defined exists. Ineligible fields, such as text,

container, and other summary fields will be gray

and non-selectable. Click to select the field that

should be summarized into the field being defined.

3. Conditional Options — This area will display either

one, two, or no options depending on which

summarization type is selected. The potential

options in this area include:

Running total

Restart summary for each sorted group

Weighted average

Running count

By population

Subtotaled

4. Repeating Field Handling — This pop-up menu

controls how a selected repeating field will be

handled: All together or Individually. Selecting

Individually in this pop-up menu will cause the

summary field to be displayed with repetitions

matching the selected field. Choosing All together

will cause the sum of all the values in repetitions of

the field for a given record to be treated as a single

unit in the summarization.

5. Conditional Secondary Field Choice — Depending on

the options selected, a second list of fields will

appear in this area allowing the selection of a

secondary mathematical function that should occur

within the found set of records being summarized.

The options here are:

a. When sorted by — Some summarization

options allow the selection of a field in the

same table or a related table that will

restart the summarization when a new sort

value is detected. This creates summaries

for multiple subgroups of records within a

single found set. For example, you might

want to summarize sales per employee or

revenue per client using this feature. This

option is available with the Total of or Count

of summarization with the Restart summary

for each sorted group option selected, or

when the Fraction of Total of summarization

is used with the Subtotaled option selected.

b. Weighted by — When using the Average of

summarization type with the Weighted

average option selected, a field can be

a e age op o se ec ed, a e d ca be

selected that will be used to weight the

results.

Expanding the Learn FileMaker

Object Model

To provide an example of planning fields and to keep the

Learn FileMaker example file updated with resources that

will be required later in this book, revisit the sparse object

model we outlined in the last chapter with three tables:

Company, Contact, and Project. Using the information

presented in the current chapter, we can expand this model

to include a list of some of the fields required for each and

then add these to the database.

It isn’t important that one plan every field for every table

before starting to develop a database. However, doing so

can help you visualize the proposed system and better

anticipate other resources that may be needed. For now, we

will list some basic fields that make sense in tables of these

types. Define these fields in your copy of the database but

don’t worry yet about putting them on layouts.

Defining Standard Fields

Every table will have these standard fields .

Tip You might consider creating the Company table with

standard fields only and then duplicating that for each

additional table before adding the custom fields below to

each.

Record ID (text or number) — This field will contain a

unique identification number for the record, defined to

receive an auto-enter value of a serial number, starting

at some value and incremented by 1 for each

subsequent record. Modification should be prohibited.

Tip Serial numbers can be text or numbers, but

whichever you use you should be consistent throughout

a database. Keeping all values the same width can be

visually pleasing for developers and any users who may

be exposed to them on layouts. If you choose to format

these as a number, consider starting at the first number

that contains the number of digits desired; start at 1000

for four-digit numbers. To start a sequence at 1, use text

formatted serial numbers with a leading zero; start at

0001. The examples in the rest of the book will assume

six-digit, text-based serial numbers with leading zeros.

Record Status Creation Date (date) — Receive an auto-

enter value of the creation date and prohibit

modification.

Record Status Creation Time (time) — Receive an auto-

enter value of the creation time and prohibit

modification.

Record Status Creation User (text) — Receive an auto-

enter value of the creation user name and prohibit

modification.

Record Status Modification Date (date) — Receive an

auto-enter value of the modification date.

Record Status Modification Time (time) — Receive an

auto-enter value of the modification time.

Record Status Modification User (text) — Receive an

auto-enter value of the modification user name.

Record Notes (text) — A freeform text field allowing

users to enter notes about the entity represented by the

record or the record itself.

Defining Custom Fields

Each table in the Learn FileMaker database should have at

least a few custom fields defined that are specific to the

type of entity the table represents. While not

comprehensive enough for a real world solution, these fields

will provide enough of an example for our continued

exploration.

Defining Company Fields

A company table should have some obvious entry fields:

Company Name (text) — The full name of the company.

Company Name Code (text) — A short code that can be

a stand-in for the company name in cases where that is

beneficial. Perhaps a stock ticker symbol for companies

that are publicly traded.

Company Industry (text) — The name of the industry in

which the company operates.

Company Website (text) — The company website

address (URL).

Defining Contact Fields

A contact table should have some obvious entry fields:

Contact Name First (text) — The first name of the

person.

Contact Name Last (text) — The last name of the

person.

Contact Name Honorific (text) — The title prefixing the

person’s name: Mr., Mrs., Ms., etc.

Contact Company ID (text) — The ID of the parent

Company record to which a contact is connected.

Contact Address Street (text) — The street address of

the person.

Contact Address City (text) — The city where the person

lives.

Contact Address Zip (text) — The zip code where the

person lives.

Contact Address Country (text) — The name of the

country where the person lives.

Defining Project Fields

A project table should have some obvious entry fields:

Project Company ID (text) — The Record ID of the parent

company.

Project Name (text) — The name of the project.

Project Budget (number) — The dollar amount of a

project budget.

Summary

In this chapter, we discussed the basics of working with

fields.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_9

9. Connecting Tables with

Relationships

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

FileMaker Pro databases can be relational. A relational

database allows tables to be interconnected to form

relationships between records that act as a conduit for data

access.

This chapter covers the following topics pertaining to

relationships:

Introducing relationships

Managing data sources

Introducing the manage database dialog (Relationships)

Working with table Occurrences

Building relationships

Adding notes to the graph

Organizing the learn FileMaker object model

Introducing Relationships

Relationships are powerful mechanisms of integration and

add a new dimension to data management. Without

relationships, a database is like a bunch of separate

documents containing one or more separate lists. By virtue

of being contained within a single database file, these lists

are certainly easier to search, sort, print, edit, and share.

The layout and scripting functions allow information to be

merged into various visual formats and automatically

manipulated in many useful ways. However, without

relationships, the lists are separated from each other and

can’t easily interact or share information. Relationships

allow data to be dynamically connected.

Defining Relationships

A relationship is a single, bidirectional connection that

integrates two tables. Relationships establish the criteria for

matching records between two tables with one or more field

pairs called match fields.

A match field is any field that is used to form one side of

a relationship. Two match fields, conjoined with an operator,

form a single criterion for establishing a relationship

between records. In this example, a Company record will be

related to a Contact record when the former’s Record ID

field matches the latter’s Contact Company ID field:

Company::Record ID = Contact::Contact Company ID

To be established, a relationship must contain at least

one pair of match fields. However, they can be made up of

various such pairs. When more than one criterion is defined,

records will only match when they all criteria return a true

value.

While match fields can contain any type of value, most

relationships are established with one set containing serial

numbers. These are formally referred to as local keys and

foreign keys. When a match field containing a serial number

is native to a table, such as the Record ID representing a

company record in a Company table, it is referred to as a

local key or a primary key . This means that the value in the

field represents the local record. Conversely, when a match

field contains a serial number that represents a record from

the table on the other side of the relationship, it is called a

foreign key . This means that the value in the field

represents a record in a different table. For example, a

Company ID entered into a field in a Contact table is a value

from the other side of the relationship and is, therefore,

foreign to the Contact record.

There are some strict indexing requirements for match

fields containing foreign keys. While a field containing a

primary key need not be indexed and can even be a global

field, those containing foreign keys must be indexed and,

therefore, cannot be global fields.

Relationships are viewed and managed in a graphical

worksheet area called the relationship graph , which is

where table occurrences are placed, connected, and

configured. A table occurrence is one instance of a table

represented on the graph by a visual object. Occurrences

are pulled in from a data source , which is a file containing

the table. The data source can be the default instance of the

database you are working within or accessed from an

external FileMaker file or ODBC compliant database.

By default, every FileMaker table is represented in the

relationship graph by one occurrence automatically when

created. However, they can be added into the graph as

many times as necessary to each provide a unique

relational context. This will be necessary when creating

multiple relationships between the same set of tables to

avoid forming a circular structure, which is strictly

forbidden.

Later, when developing user interfaces, layouts are

assigned a table occurrence to establish the records it will

display and its context in relation to other connected

occurrences. The context of an occurrence is important to

remember when designing layouts and writing scripts as it

will control which fields in other tables are accessible from a

given layout. Every layout must be assigned a table

occurrence; however, it isn’t mandatory that every table

occurrence is assigned a layout unless the context it

establishes requires an interface for user or script access. In

cases where a table doesn’t require any occurrences, the

default instance can be deleted.

Generally, relationships connect two different tables to

form a hierarchical connection. However, it is possible and

sometimes beneficial to connect a table to another instance

of itself to form connections between records within the

same table.

Table occurrences can be joined together into a chain of

successive relationships, as illustrated in Figure 9-1. This is

sometimes referred to as multiple hops, referring to the

number of occurrence steps removed from the first.

Figure 9-1. A diagram showing an example of a relationship chain with four

“hops”

Relationships within a file can be grouped into one multi-

pronged chain or into multiple separate chains depending

on the specific needs of the database and your preferences

as a developer.

Defining Uses for Relationships

Once a connection is established between two tables,

records and fields from one can be accessed from the other.

This has many positive implications for fields, layouts,

scripts, and users.

Fields can be defined to copy content from another field

in a related record as easily as they can from fields

within the same table. This includes:

Using the Lookup command.

Pulling information into an auto-enter Calculation

value.

Using the Validated by calculation option.

Calculation fields can access and manipulate related

fields in their formulas.

Layouts can display individual fields from related

records for viewing or editing. Using portals, they can

display scrollable lists of related records. They can also

use values from related fields within calculation

formulas for conditional formatting, placeholder text,

script parameters, tooltips, and hide functions (Part 4).

Script steps can reach through relationships connected

to the context of the current layout’s table occurrence to

pull information into formulas, change related values,

sort, search, and more (Part 5).

Users can include fields from related records in search

requests, sort orders or exports depending on their level

of security access (Chapter 40).

Defining Connection Types

There are three types of relational connections that each

focus on a quantitative potential for matches. These are not

governed by settings in FileMaker but are conceptually

useful to understand when working with relationships. They

are established by the nature of the interconnection and/or

the limitations imposed in layout and script configurations.

The three types are:

One-to-one

One-to-many

Many-to-many

One-to-One Relationship

A one-to-one relationship is a type of connection where any

one record in either table can only be connected to a single

record in the other table. Essentially, this means that the

foreign key is limited to a single use of any one primary key

in the related table. In the example illustrated in Figure 9-2,

the Contact table’s primary key is contained in the Record

ID field. The id for each contact record can only be assigned

to a single Cubicle record’s Contact ID field. Therefore, each

Contact can be assigned one Cubicle and each Cubicle on

Contact.

Figure 9-2. Illustrating a one-to-one relationship between a Contact and

Cubicle table

The one-to-one arrangement is perhaps the least

common of the connection types since it can result in the

equivalent of two sets of information in separate tables for

the same entity. While one shouldn’t use such a technique

arbitrarily, there are situations where a one-to-one

configuration makes sense.

For example, consider the case illustrated in Figure 9-2

with a Contact table connected to a Cubicle table for office

space assignments. In this case, even though one person

can only be assigned to a single cubicle and each cubicle is

designed for a single individual, there are still reasons to

keep the two sets of fields in separate tables. First, they are

two different types of entities, each with different

properties. Further, over time, people tend to change offices

due to job changes or during a reorganization. If the fields

describing a cubicle were merged into the Contact table, it

would not only confuse the entity class being described by

making a cubicle a property of a person, but also create

extra work when a person moves to a new location. By

keeping them in separate tables, users avoid the tedious job

of deleting and reentering cubicle information into a

different Contact record and instead simply delete the

identification number from one Cubicle record and reenter it

on another, thereby linking the person to a new cubicle.

In this kind of situation, there is no clear requirement of

which side of the relationship the primary key should be

placed. A field from either side can be selected as the entry

value for the other side. As a developer, you need to choose

to build the database so either a cubicle is assigned to a

person or a person is assigned to a cubicle, depending on

your preference. Whenever the physical union between a

contact and a cubicle changes in reality, a user would enter

or select the new id assignment from whichever side of the

relationship your interface design allows.

The one-to-one relationship is usually achieved by means

of layout design restrictions. For example, requiring the

foreign key field to be a unique value will make it impossible

for a user to assign a user to multiple cubicles or a cubicle

to multiple users.

Another less common reason for a one-to-one

relationship occurs when a record is connected to itself. This

may be done for error detection purposes or when

generating a value list from a field value. Linking the unique

serial number field between two occurrences of the same

table can only result in the establishment of a one-to-one

relationship.

One-to-Many Relationship

A one-to-many relationship is a type of connection where

one record in the primary key table can be connected to

many records located in the related table. In the example

illustrated in Figure 9-3, the Company table’s primary key

Record ID field for a given record can be assigned to one or

more Contact records in the foreign key Company ID field,

while each Contact record is limited to a single company

assignment. So, one Company record can be linked to many

Contact records.

Figure 9-3. Illustrating a one-to-many relationship between a Company and

Contact table

This setup is the most common of the three because

there are so many entities that can be related to multiple

entities in this way. A single company can have many

employees, many products, many clients, and many

projects. One person generally has many methods of

contact in the form of phone numbers, email addresses, and

web pages. A parent can have many children.

This last example is why this arrangement is often

referred to as a parent-child type relationship since,

biologically, a child only has a single father and a single

mother but either parent can have many children. So, the

table containing the primary key contains the parent record

and the table containing the foreign key contains the child

record(s). Technically speaking, this term can be applied to a

one-to-one relationship as well, where the side of the

relationship containing the primary key is referred to as the

parent and the side containing the foreign key is referred to

as the child.

With this arrangement, records can be assigned from

either side of the relationship. From the parent record, a

portal can be configured to allow the creation of multiple

records; each assigned the parent’s primary id as their

foreign key. From an existing child record, a field can be

configured to allow a parent’s primary key to be entered as

the foreign key. Both will assign a child record to the parent

and form the relational connection.

A one-to-many relationship is controlled completely by

layout design.

Many-to-Many Relationship

A many-to-many relationship is a type of connection where

records in both tables can be connected to any number of

matching records in the other. There are two methods of

achieving this type of relationship:

Using a join table

Using a multi-key field

Note In addition to these, it is possible to create the

equivalent of a many-to-many by establishing two

separate relationships, a one-to-many and a reverse

many-to-one. However, strictly speaking, this is not a

relationship type since it is spread across two separate

relationships.

Using a Join Table

A join table is a third table added between two tables with

two foreign key fields that contains both primary keys from

either of the other two tables being connected. Join tables

are the most common method for establishing a many-to-

many connection. In the example illustrated in Figure 9-4,

the primary key from both Table 1 and Table 2 are each

present in a foreign key field in the join table, thereby

establishing one connecting record between the two. If the

interface is designed to allow it, every record in the tables

on either side can be connected to any number of records

from the other through the join table.

Figure 9-4. Illustrating a many-to-many relationship with the use of a join table

A many-to-many relationship has many practical uses.

For example, when connecting people to a company,

consider a situation where you would want to not only

connect a person to their current employer but also keep

track of past employers. This is possible with a join table as

illustrated in Figure 9-5.

Figure 9-5. Illustrating an example of a practical many-to-many relationship

In this example, a Company table and a Contact table are

connected through an Assignment Company to Contact join

table. The ABC Company has two contacts connected to it,

Jane Doe and Alex Martin. Jane Doe has two companies

connected to her record: ABC Company and Awesome Inc.

In addition to allowing many-to-many connections, one of

the benefits of a join table is that fields can be added in the

join table that contain information specific to the union of

the two records. So, instead of a value pertaining to a

company or to a contact person, fields in the join table allow

a value to be stored with the connection between a

company and a contact. For example, a field that indicates

which employment is current could exist in the join table

and be visible from the Contact side, so Jane Doe would

show two company connections, one “Active” and the other

“Inactive.” Also, the contact’s current (or last) title at a

company would need to be stored in a field in the join table

since that would change from one job to the next.

Once the table occurrences are connected, a portal

displaying records from the join table would be placed in

both the Company and Contact tables allowing a record on

either side to be assigned to any number of records on the

other.

Using a Multi-Key Field

FileMaker allows the use of a multi-key or complex key list

field to expand the possible matching values through a

relationship. A multi-key field is a text field or a calculation

field resulting in a text value that contains a carriage-return

delimited list of keys and is used to form a relationship. This

has the effect of creating a many-to-many relationship

without the need of an intervening join table.

When a match field contains a list of values, each

paragraph is treated as its own value and used to detect

matching records in the other table, as illustrated in Figure

9-6.

Figure 9-6. An illustration of a multi-key field relationship showing matched

relationships for the first record in Table 1

In this example, we see the power of a multi-key field

relationship. The primary key field in the first record in Table

1 matches three records in Table 2 even though none of the

primary key fields in those records contain all the same

values. When separated by a carriage return, each value is

used to form a match, so the presence of any one value

from one match field found in the other will form a valid

relationship. It is important to note that, in this example,

Table 1 establishes the context perspective for the lines

indicating a match. From a Table 2 perspective, for example,

the fourth record in Table 2 would connect to both records 1

and 2 in Table 1.

The primary drawback to this technique is that, without a

join table, there is no convenient location to add fields that

store information about a specific union of two records.

However, if a relationship doesn’t need such fields, this

technique can be enormously useful for logistical reasons.

One example is the ease of having a duplicate of a record

retains all its relationships. Normally, when duplicating a

record in a table, none of the join records will be duplicated

so the new duplicate record will no longer be connected to

the records in the other table unless a custom script is

created and used to override the Duplicate menu item to

explicitly perform that task. However, with a multi-key

relationship, when the foreign keys of all the related records

are contained in a single field located on the record you are

duplicating, there is no additional development work

required to maintain the connection to related records.

This technique is useful when creating a temporary

storage and display mechanism of related information in a

selection dialog where a cancel option needs to quickly wipe

out the temporary relationship. With a single field in a

temporary record containing multiple keys that form a

relationship for an adjacent portal, it is easy to remove the

relationship by deleting the keys from the field.

Organizing Relationships

There are two primary methods for organizing relationships

in the graph:

Hub-and-spoke monolith

Table occurrence groups

Tip Although your choice between these will depend on

your preferences and the complexity of the database you

are building, the table occurrence group method is often

chosen on principle for the sake of establishing an easily

scalable relationship graph and to maintain good

performance.

Defining Hub-and-Spoke Monoliths

The hub-and-spoke monolith, illustrated in Figure 9-7, is a

method of organizing table occurrences by directly

attaching them together, usually into one massive

interconnected web, and utilizing any of the occurrences for

the context of layouts. The use of the word monolith here

refers partially to the lack of separation between groups but

also to the lack of distinction between a primary and

secondary instance of a table for calculation and layout

context. It is possible to separate occurrences into groups

and have them still be a hub-and-spoke that is only slightly

less monolithic.

Figure 9-7. An illustration of the pattern of a generic hub-and-spoke monolithic

relationship web

Due to the bidirectional nature of relationships, a field

calculation or layout can use any occurrence in the graph

for its context. For beginners or simple databases, this tends

to be the default approach and is perfectly valid, although it

is not recommended.

As more and more tables are added and interconnected,

it can quickly become confusing for even the most skilled

developer to keep straight which context is which, especially

if secondary duplicate occurrences are poorly named. Each

time an occurrence is duplicated, the default name is the

same as the original with a numeric suffix added to ensure it

is unique. But distinguishing between Contacts-1 thru

Contacts-8 can be confusing six months later. However,

even with the best naming scheme applied, it can still get

confusing. In extreme situations, a giant mass of

interlocking table occurrences can even cause bad

performance.

Defining Table Occurrence Groups

The table occurrence group method , illustrated in Figure 9-

8, involves lining up a row of non-connected occurrences,

one for each table in the database, which are regarded as

primary table occurrences. These occurrences are never

interconnected. Instead, any time two primary tables must

be related, a duplicate of the primary instance of one table

is created and attached as a secondary instance to another

table. This is sometimes called an anchor-buoy model since

the primary occurrences act as an anchor to which related

table’s float off to the right.

Figure 9-8. An illustration of the pattern of a generic table occurrence group

organization

Note The phrase “table occurrence group” is somewhat

awkwardly acronymized as TOG and referred to

collectively as TOGs.

In this illustration, the primary tables are shaded gray and

running in a column down the left side and secondary tables

are clear and hanging off to the right in one or more hops.

When using this method, all calculation fields and layouts

should be strictly limited to using only a primary instance of

a table to establish their context. From there, they can reach

out and access related material from connected occurrences

within the group.

Primary occurrences can be named the same as the

actual table, Company, Contact, Project, etc. Secondary

occurrences, which will be duplicates of these primary ones,

should be named in a way that indicates their relational

path back to the primary. This will cause them to sort

together in pop-up menus and lists. For example, a

secondary instance of the Contact table attached to a

primary instance of a Company table could be called

Company | Contacts indicating it is a secondary occurrence

of the Contact table connected to the primary Company

table occurrence.

Using this method will necessitate some redundancy in

the relationship graph that might at first seem cumbersome

and counterintuitive in making the graph more cluttered

than it needs to be. However, as a database grows and

becomes more complex, this method will avoid the

performance issues that plague monolithic relationship

design and, when combined with consistent naming rules

for secondary occurrences, it can eliminate developer

confusion when trying to select the appropriate table from a

pop-up list in the development interface.

Introducing the Unifying Selector-

Connector Concept

The previous statement about never connecting primary

occurrences shouldn’t be accepted as a dogmatic rule,

superimposed upon any situation without an understanding

of its purpose. Instead of viewing it as a rule to be blindly

followed, consider it a principled technique that avoids

certain problems inherent with a monolithic interconnection

of table occurrences and generally a good rule to follow.

In recent years, an interesting new idea called Selector-

Connector has been introduced by Todd Geist (Geist

Interactive) and Jason Young (Seedcode). This idea grew out

of many frustrations with the inefficiencies in the occurrence

graph that were created by the strict group separation

model. By keeping groups strictly separated, tables that

provide centralized resources must be repeated on the

graph, one for each group that requires access to the table.

The Selector-Connector solution represents an evolutionary

return to an integrated occurrence graph. The technique is

specifically designed to carefully unite the performance

benefits of group separation with the structural efficiencies

of sharing resources in a monolithic structure.

The technique calls for the creation of a Connector table,

containing only global fields, which is cross-connected to

every primary interface occurrence with a Cartesian Join

(discussed later in this chapter). This provides a conduit

through which any interface context can access central

repositories of information for uses such as the lists,

navigation portals, accessing utility fields, and more. These

central resources are then customized using interface

controls such as portal filtering.

Selector-Connector doesn’t remove every redundancy

from the graph, only the unnecessary duplication required

to share centralized resources.

Although it is a somewhat advanced idea, it is a rather

straightforward approach that shows enormous promise for

avoiding the problems of a monolithic model while

maintaining efficiency within the occurrence graph. This

technique makes the monolithic vs. grouping argument

appear like a false alternative and it should probably have

been the original solution: a method of solving performance

issues without completely severing the possibility of

efficiently sharing resources.

For more information about using this technique, search

the Internet for “FileMaker Selector-Connector.”

Tip Another method to provide access to central

resources without extraneous duplication of occurrences

or even the need for any connection is using the new

Card option of the New Window script step to display

records and selection controls from a context other than

that of the current window (Chapter 35, “Createing a New

Window”).

Planning the Learn FileMaker Relational

Object Model

As a practical example, apply these organizational methods

to the Learn FileMaker example database. If we were to use

the hub-and-spoke method to organize table occurrences,

they would be interconnected as illustrated in Figure 9-9. A

Contact and Project record can be assigned to a Company

record and each occurrence would represent a layout: nice

and simple.

Figure 9-9. A simple hub-and-spoke configuration of the three example tables

in the Learn FileMaker database

By contrast, the table occurrence group method would be

organized based on the illustration in Figure 9-10. Each of

the three primary occurrences on the left will be used as the

context for calculations and a layout while calculations,

portals, and scripts would draw values from a related

secondary occurrence on the right. Even though this

appears unnecessarily complex now, by adopting this

method, it prepares for more complexity over time and

serves as a good object lesson.

Figure 9-10. A more complex table occurrence group configuration of the three

example tables in the Learn FileMaker database with duplicate, secondary

occurrences attached prepares your database for growth

Managing Data Sources

A data source is a defined reference to an external database

file that allows access to other FileMaker and ODBC

databases from within a FileMaker database. Although

FileMaker refers to all data sources as external data sources,

the current FileMaker file, which is most certainly internal, is

the default source.

If all table occurrences are contained in the one database

file that you are working in, don’t worry about defining data

sources. The data source will always be that same file.

However, when creating complex multi-file systems or

integrating ODBC tables, data sources are important.

Introducing the Manage External Data

Sources Dialog

Data sources are defined and managed in the Manage

External Data Source dialog, shown in Figure 9-11. From this

dialog, data sources can be created, edited, and deleted.

Figure 9-11. The Manage External Data Sources window

Once a database is open, this dialog can be accessed by

any of the following methods:

Select the File > Manage > External Data Sources menu

item while in browse or layout mode.

Run a script or click a button that uses the Open

Manage Data Sources script step.

Select one of three options at the bottom of the Data

Source pop-up menu on the Specify Table dialog, shown

in Figure 9-12, which is used to add a table to the

relationship graph.

Figure 9-12. The Data Source pop-up menu in a Specify Table dialog

Exploring the Edit Data Source Dialog

Creating or editing a data source is performed in an Edit

Data Source dialog, shown in Figure 9-13. This dialog can be

opened by any of the following methods from the Manage

External Data Source dialog:

Click the New button to open a new empty dialog.

Click the Edit button to open the dialog for the selected

data source.

Double-click on a data source in the list to open the

dialog for that data source.

Figure 9-13. The Edit Data Source dialog

The controls on the Edit Data Source dialog are:

1. Name — In this text area, enter a name for the data

source. This is how the source will appear in Data

Source pop-up menus throughout the development

interface and is not required to be the actual name

of the external database.

2. Type — Select FileMaker or ODBC depending on the

type of data source you are adding.

The lower part of the dialog changes depending

on the Type selected. The remainder of this section

assumes a selection of FileMaker. For details on

adding an ODBC type data source see Chapter 7

adding an ODBC type data source, see Chapter 7.

3. File Path List — This text area is used to enter the

path to the file containing the source table.

4. Add File — This button is used to select a file path

through an Open File dialog, which can be useful to

avoid errors one may encounter when manually

entering a path.

Tip Beginning with FileMaker Pro 16, the file path

entered can be a global variable allowing for dynamically

changing data sources.

Introducing the Manage Database

Dialog (Relationships)

Like tables and fields, table occurrences and relationships

are created from within the Manage Database dialog . Once

open, make sure the Relationships tab is selected, as shown

in Figure 9-14.

Figure 9-14. The Relationships tab of the Manage Database window

The controls on the Relationship tab are:

1. Relationship Graph — This expanding and scrollable

graphical workspace is where you create and edit

table occurrences and relationships. Each defined

table will already be present in the graph with no

relationships connecting them.

2. Button Controls — These 19 icon buttons perform

various tasks within the graph area (see “Managing

Relationships,” this chapter).

3. Help — This button opens the FileMaker help guide

to the “Creating and Changing Relationships” page.

4. Print — This button will print the relationship graph.
5. Cancel — This button will close the window, without

saving changes after displaying a warning dialog.

sa g c a ges a e d sp ay g a a g d a og

6. OK — This button will save changes and close the

window.

Working with Table Occurrences

A table occurrence is graphical representation of a table

displayed as a box containing a list of fields defined for the

table. Figure 9-14 shows an example of the Learn FileMaker

database relationship graph with four table occurrences,

one for each table currently contained within the file. Before

we discuss relating occurrences, let’s review the following

topics for working with them:

Selecting table occurrences

Interacting with table occurrences

Arranging table occurrences

Viewing options

Formatting table occurrences

Editing table occurrences

Adding table occurrences

Deleting occurrences

Selecting Table Occurrences

When an occurrence is selected , it will be highlighted with a

blue shaded border. You will then be able to modify its name

and data source as well as manipulate its size, position, and

formatting. The Object Selector Cursor tool with the icon of

a standard cursor, shown in Figure 9-15, is used to make

selections. This tool will be selected by default when the

Manage Database window is open, but can be re-selected as

needed.

Figure 9-15. The Object Selector Cursor tool

Once the Object Selector Cursor tool is chosen,

occurrences can be selected using any of the following

methods:

To select a single occurrence, click on it.

To select multiple non-grouped occurrences, hold the

Shift key and click on each desired occurrence. A second

click on a previously selected occurrence will deselect it.

To select multiple occurrences clustered together in a

group, click on the background in a space just outside

the upper corner of the group, then hold and drag. A box

with a thin black line will be traced out based on the

direction and distance you drag the mouse. When this

box encompasses all the desired occurrences, let go of

the mouse button and everything within the box or

touched by the box frame should be selected. Holding

the Command (macOS) or Windows (Windows) key while

dragging will requires that an item be completely within

the boundaries of the box before it will be selected.

With one occurrence selected, you can use the options

in the menu under the Select Tables tool, shown in

Figure 9-16. The two options here are:

Figure 9-16. The Select Tables tool

Select related tables 1-away — This option will

select every table occurrence that is directly related

to the selected table.

Select tables with the same source table — This

option will select every other table occurrence that

shares the same source table as the selected table.

Interacting with Table Occurrences

Table Occurrences can be manipulated in a variety of ways.

The box representing them can be moved, collapsed,

resized, and scrolled at the points highlighted in Figure 9-17.

A table occurrence box can be toggled between two states

when not connected to another table or three when

connected.

Figure 9-17. The manipulation points on a table occurrence

For each of these manipulations , the Object Selector

Cursor tool must be selected:

1. The heading of a table occurrence is a thick gray

bar at the top of the box in which the name of the

table appears. Regardless of whether the

occurrence is collapsed or expanded, clicking and

holding on this region allows you to drag the box

around within the relationship graph to reposition it.

2. On the right of the heading is a small expansion

toggle icon. A single-click on this icon will toggle the

state of the occurrence between one of three

states, two if it isn’t yet connected to any other

occurrence. Without a connection, one click

collapses the box completely and another click

expands it fully. When connected to other tables,

there is an intermediate state where the box

collapses to show only the match fields used to

form relationship(s) to other occurrences.

3. The thin gray bar on the sides and bottom of the

box is used to resize the box in one direction. Click

and drag on either side to expand or contract the

width of the box or on the bottom to adjust the

height.

4. Click and drag from the bottom corners to resize the

box in two directions at once, adjusting the width

and height to the amount based on the direction

and duration of the drag motion.

5. Depending on the current scroll state of the field list

within the box, a small arrow icon will appear at the

top, bottom, or both. This is used to scroll up or

down the list to locate a desired field. Individual

clicks will move up or down one field at a time while

a click and hold will continuously scroll the list until

released.

To prepare our four Learn FileMaker occurrences, collapse

them all and move them one above the other so they are

roughly lined up in a vertical stack, as shown in Figure 9-18.

Figure 9-18. The four table occurrences collapsed and arranged in a stack

Arranging Table Occurrences

Keeping the relationship graph neat and orderly is important

if you want to maintain an efficient development

environment. The relationship graph provides four tools

under the “Arrange” heading that are used to organize

groups of selected occurrences relative to each other using

terminology that is standard in most layout applications.

The Horizontal Alignment tool, shown in Figure 9-19,

contains a pop-up menu with the following functions:

Align Left Edges

Align Centers

Align Right Edges

Figure 9-19. The Horizontal Alignment tool icon

The Vertical Alignment tool, shown in Figure 9-20,

contains a pop-up menu with the following functions:

Align Top Edges

Align Centers

Align Bottom Edges

Figure 9-20. The Vertical Alignment tool icon

The Distribute tool, shown in Figure 9-21, contains a pop-

up menu with the following functions:

Distribute Horizontally

Distribute Vertically

Figure 9-21. The Distribute tool icon

The Resize tool, shown in Figure 9-22, contains a pop-up

menu with the following functions:

Resize to Smallest Width

Resize to Smallest Height

Resize to Smallest Width & Height

Resize to Largest Width

Resize to Largest Height

Resize to Smallest Width & Height

Figure 9-22. The Resize tool icon

Viewing Options

Under the “Tools” heading, to the right of the Object

Selection Cursor and Text Note tools are four tools, shown in

Figure 9-23 that allow manipulation of the graph view.

Figure 9-23. Viewing tools used to adjust the view of the relationship graph

Working from left to right, the viewing tools include:

1. Zoom in — Click this tool to activate the size

increasing cursor, then click in the graph to

increase the zoom by 25%.

2. Zoom out — Click this tool to activate the size

decreasing cursor, then click in the graph to

decrease the zoom by 25%.

3. Adjust Magnification — Click this tool to instantly

adjust the magnification up or down to allow every

table occurrence to fit in the view without scrolling.

4. This text area allows manual adjustment of the

magnification to any percentage from 1 to 400.

Formatting Table Occurrences

There is only one formatting option for table occurrences

and that is to assign a custom color. As the number of table

occurrences increases, it can be enormously helpful to apply

a color scheme to distinguish between groups of

occurrences. These ideas may be helpful in deciding how to

color code the relationship graph:

Apply one color to primary table occurrences and

another to secondary. Other colors might be used to

denote the type of table or how it is used. For example,

all join tables might be one color, all tables used in the

interface another, while any for data relationships a

third.

Apply one color to each group of tables. For example,

any occurrence of Company, Contacts, and other tables

pertaining to the management of people might be one

color while occurrences for Project, Budget or other

similar tables another.

Colors can indicate the type of operator used to connect

a secondary occurrence to a primary one. For example,

any occurrences that use an equal match operator could

be a different color from those using other operators.

Colors can be used to indicate the development status

of groups within the graph.

To apply a color, select the occurrence(s), click the color

tool, and choose the desired color from the palette, shown

in Figure 9-24.

Figure 9-24. The color palette tool used to apply a color to an occurrence

Editing Table Occurrences

Table occurrences can be edited by opening the Specify

Table dialog. This dialog is opened by either double-clicking

an occurrence box in the graph or by selecting one and

clicking the Edit Selection button icon , shown in Figure 9-

25.

Figure 9-25. The Edit Selection button icon

Introducing the Specify Table Dialog

From the Specify Table dialog , shown in Figure 9-26, the

data source, assigned table, and occurrence name can all be

modified as needed.

Figure 9-26. The Specify Table dialog

Adding Table Occurrences

Table occurrences can be added to the graph for any table

that exists in a data source defined in the current database

file. This can be done one of two ways:

Creating a new table occurrence

Duplicating an existing table occurrence

Creating a New Occurrence

To create a new table occurrence, follow these steps:

1. Click the Add Table button icon, shown in Figure 9-

27. This will open the Specify Table dialog.

Figure 9-27. The Add Table button icon

2. Choose the data source containing the table you

want to add, and then click to highlight the table.

3. The name field will automatically be filled with a

suggested name. This will be the name of the table

with a numeric suffix as needed to ensure a unique

table name. Optionally, type a new name into this

field to clarify the specific context and usage of the

new instance of the table in the graph.

4. Click the OK button to complete the process. The

new table occurrence will appear in the relationship

graph for the selected table with the specified

name.

5. Resize and position the new occurrences as needed.

Duplicating an Existing Occurrence

There are advantages to duplicating existing occurences

instead of creating new ones. First, if an occurrence exists

for the same table you want to add, duplicating it saves you

the step of assigning the table manually. However, even if

the table doesn’t have a current representation in the

graph, duplicating an existing table’s occurrence and

assigning to it a different table will still save time sizing and

formatting the new occurrence as it will retain these

properties from the original. This is helpful in maintaining a

neat and visually pleasing relationship graph.

To duplicate the selected occurrence(s), click the

Duplicate Table button icon, shown in Figure 9-28.

Figure 9-28. The Duplicate Table button icon

Deleting Occurrences

Deleting an occurrence will not delete the actual table

definition, but it will cause several actions throughout a

database, including:

The occurrence itself will be deleted.

Any layouts that used the occurrence as its relational

context will have an <unknown> table assignment, and

will need to be reassigned an existing occurrence or

deleted.

Any field on a layout that is based on the context of the

occurrence will become a <missing field>.

Any portals displaying records from the occurrence will

be broken.

Any script steps that relied on the context of the

occurrence will be broken.

To delete one or more selected occurrences, type Delete

on the keyboard or click the Delete Table tool shown in

Figure 9-29.

Figure 9-29. The Delete Selection button icon

Before deleting the selected occurrence(s), FileMaker will

present a warning dialog confirming the request. If you

mistakenly confirm the deletion, click the Cancel button at

the bottom of the Manage Database dialog to discard all

changes, including the deletion.

Printing the Relationship Graph

The relationship graph includes several functions that

control printing of table occurrences and the relationships

that connect them. Instead of using the standard print

menus, printing the graph is controlled by tools in the bar.

Click the Page Setup tool , shown in Figure 9-30, to open

a standard dialog for selecting printer type, paper size,

orientation, and scale.

Figure 9-30. The Page Setup button icon

Click the Page Break tool, shown in Figure 9-31, to toggle

the visibility of page breaks in the graph area.

Figure 9-31. The Page Breaks button icon

Once the page setup is properly configured for the

desired paper and printer, click the Print button at the

bottom of the dialog to open a standard Print dialog.

Building Relationships

Once table occurrences are added and neatly organized

within the graph, it is time to begin connecting them to form

relationships.

Adding Relationships

There are two methods available that connect occurrences

and form a relationship: pulling a connection between two

occurrences or using the Add Relationship button.

Pulling a Connection Between Occurrences

The most intuitive way of creating a connection between

two occurrences is to use the cursor to drag a connection

from a field in one occurrence to a field in another, thereby

establishing a relationship based on those two match fields.

To do this, follow these steps:

1. Adjust the view of the graph so that the two

occurrences are viewable, preferably side-by-side

although this is not required.

2. Click the icon in the upper-right corner of both

occurrences until they are fully expanded.

3. Scroll each list of fields so that the match fields for

the relationship are visible.

4. Click and hold on a match field from one

occurrence. As you begin to drag the cursor toward

the other occurrence, a line will appear connected

to the first match field, shown in Figure 9-32.

Figure 9-32. The process of dragging one match field toward the

other with a relationship connection in tow

5. Once the cursor is on top of the desired match field

for the other occurrence, release it, and the line

connecting the two will be fully established.

Using the Add Relationship Button

The other method to creating a relationship is using the Add

Relationship button in the toolbar, shown in Figure 9-33.

Figure 9-33. The Add Relationship button icon

Clicking this button will immediately open an empty Edit

Relationship dialog with both tables set to <unknown>.

From there, you can select the two table occurrences from

the pop-up menus and selected the match fields.

Tip Consider using a combination of these two

techniques to improve your efficiency. To avoid having to

scroll the occurrence boxes or enlarge them to locate the

desired match fields, drag to connect any two fields that

are currently visible to quickly establish the connection.

Then, open the Edit Relationship dialog to select other

fields from the larger and more easily scrollable lists.

Since you will probably open the edit dialog anyway to

configure other settings, this method offers the fastest

and still rather intuitive method for creating a new

relationship.

Manipulating Relationships

Once a relationship is established, it is represented as a line

connecting the two occurrences with a box in the middle, as

shown in Figure 9-34.

Figure 9-34. The relationship appears as a line with a small selector box in the

middle

The box will display the operator used to form a match

between the two fields, with the default being an equal sign

as shown.

At each end of the line is an indication of the type of

relationship established, shown enlarged in Figure 9-35. A

straight line, like that on the left, indicates a “one”

connection and the “crow’s feet” on the right side indicates

a “many.” Therefore, we have a one-to-many relationship

between the Company and Contact table occurrences.

FileMaker determines this by looking only at the auto-enter

settings for the fields. Since the Record ID field in Company

is configured to auto-enter a unique serial id for each

record, FileMaker assumes that this is a “one.” On the other

side, it doesn’t see this setting so it assumes that it is a

“many.” Although these symbols are accurate in the case of

our example, this is the extent of the logic used to

determine the type of relationship. FileMaker does not

consider your layout rules, field content. or script behaviors,

which may enforce a different type of relationship.

Figure 9-35. End-of-line symbols indicate the type of connection for that side

of the relationship

When moving occurrence boxes, the relationship line will

stay connected on both sides, regardless of one box’s

position relative to the other box. The single, straight line

will split into three segments and change angles so each

remains straight and maintains the connection, as shown in

Figure 9-36. At a certain point, the line will snap from one

side of the occurrence box to the other to maintain a

connection.

Figure 9-36. As a box moves , the line splits into three straight segments that

angle in relation to each other

To select a relationship for editing, click on the small box

in the middle of the relationship line. When selected, the

line will darken and the box will turn blue. In the toolbar, the

Edit Selection and Delete Selection tools will become

enabled.

To open the Edit Relationship dialog, either double-click

on the box or click the Edit Selection tool, shown in Figure 9-

25. To delete the relationship between the occurrences,

either type Delete or click the Delete Selection tool, shown

previously in Figure 9-29. Deleting a relationship will not

affect the two occurrences.

Caution Typing Delete or clicking the Delete Selection

button will delete any a selection of table occurrence(s),

relationship or note(s). Although a warning dialog is

presented prior to deleting a table occurrence, it is still a

good idea to be aware of what is selected before using

these.

Introducing the Edit Relationship Dialog

Relationships are edited in the Edit Relationship dialog,

shown in Figure 9-37, which can be opened by either

double-clicking on the relationship line’s box or by selecting

the relationship and clicking the Edit Selection tool.

Figure 9-37. The Edit Relationship dialog

The following controls are available in this dialog:

1. Table Occurrence — The pop-up menus on either

side of the dialog contain a list of every table

occurrence in the file. These are only enabled when

creating a new relationship. When editing an

existing relationship, they are disabled and non-

editable since the table for each occurrence is

already set.

2. Selected Match Field — Below each occurrence

menu is a list of the fields contained within its table.

This is where match fields are selected before being

added or changed in the list below.

3. Comparative Operator — This pop-up menu

contains a list of available operators that determine

how the two selected match fields will be compared

(described later in this chapter).

4. Selected Match Field Buttons — These two buttons

are used to Add a match field combination from the

lists above into the list below or to Change the

selected combination below to the match field

combination above.

5. Link Field(s) — This area contains a list of one or

more match field combinations that make up the

total relationship criteria.

6. Link Field Buttons — These two buttons are used to

Duplicate or Delete the selected Link Fields above.

7. Relationship Options — Two identical sets of three

check boxes allow specification of certain behaviors

for each side of the relationship (described later in

this chapter).

Comparative Operators

A comparative operator is used to compare two match

fields, one on each side of a relationship, to determine the

type of equation used to detect a match. The available

operators, shown in Table 9-1, are standard operators

familiar to any student of math.

Table 9-1. A description of the comparative operators available for forming

relationships

Operator Description

= The values in both match fields must be equal to each another.

≠ The values in both match fields must be not equal.

Operator Description

< The values in the left match field must be less than the value in the

right match field.

≤ The values in the left match field must be less than or equal to the

value in the right match field.

> The values in the left match field must be greater than the value in

the right match field.

≥ The values in the left match field must be greater than or equal to

the value in the right match field.

X All records on the left side of the relationship will be matched to all

records on the right side, regardless of the actual values contained in

the selected match fields. This is often referred to as a Cartesian

Product, Cartesian Join or Cross Join, which means a join between

two tables that is unrestricted by any criteria since every record will

be a match no matter the criteria. Some prefer to think of the “x” as

a wheel of an old stage coach or cart where the spokes branch out in

many directions, relating everything to the hub in the center.

Relationship Options

The three options available at the bottom of the Edit

Relationship dialog, shown in Figure 9-38, control basic

functionality for each side of the relationship.

Figure 9-38. The options at the bottom of the Edit Relationship dialog

Allowing Dynamic Creation of Related Records

When selected, the first check box on either side will allow a

user to click into a field from one side of a relationship

(Contact) on a layout context from the other side (Company)

and enter data even though the field is not yet associated

with a related record. When the user types, the related

record is instantly created with all required match field

values in place to establish the relationship to the record

being edited.

This is commonly used in portals. It has the effect of

displaying a blank, empty row at the bottom of the portal

(Chapter 30). Users can create a new related record by

typing in any field in that empty portal row. Without this

feature, you must create a script assigned to a button that

creates the new, empty related record before a user can

begin typing.

Deleting Related Records

The second check box specifies that records on one side

should be automatically deleted when the related record on

the other side is deleted by a user or script. This is

especially useful when considering one side of a relationship

a “parent,” hierarchically above the other “child.” For

example, when a parent Company record is deleted, any

related Contact records will be deleted as well if this check

box is selected under Company | Contact in Figure 9-38.

Sorting Related Records

The final box allows a data level sort of records when

viewed through the relationship. A check in the box will

bring up a Sort dialog in which you can specify a sort order

that will be automatically applied as the default sort order

when displaying records for that relationship. Alternatively,

or to override this setting, a portal can be assigned a sort

order for related records.

Adding Notes to the Graph

A relationship note is a free floating, colored box that can be

added in the graph, as shown in Figure 9-39. These can be

used to add titles to divide groups of occurrences, store

developer notes, and other information.

Figure 9-39. An example of a relationship note

A new note can be created following these steps:

1. Select the Text tool, shown in Figure 9-40.

Figure 9-40. The Add Note toolbar icon

2. Using the mouse, click on the background of the

graph, then hold and drag. A note will appear,

steadily growing based on the direction and

distance you drag the mouse. When it is large

enough, let go of the mouse button.

Tip A note can be quickly created by clicking and

dragging on the background while holding Option

(macOS) or Alt (Windows).

Once created the note will appear on the graph and an Edit

Note dialog will automatically open. The dialog, shown in

Figure 9-41, allows entry and editing of the note text as well

as specification of the font, size, text color, and background

color of the note.

Figure 9-41. The Edit Note dialog

When finished editing, click the OK button to save

changes. Clicking the Cancel button will cause one of two

results depending on the status of the note:

If the note has not yet been saved, clicking Cancel will

close the dialog and delete the new note.

If the note has previously been saved, clicking Cancel

will close the dialog without saving any changes to the

text or settings, leaving the note unchanged by any

actions taken in the dialog.

Once saved, a note can be moved, resized, or minimized

using the cursor as you would a table occurrence or window.

Double-clicking on the note or selecting it and clicking the

Edit Selection tool will reopen the Edit Note dialog. To delete

a note, select it and type the Delete key or click the Delete

Selection icon in the toolbar.

Finalizing the Learn FileMaker

Relational Model

Finally, we can impliment the relationship model plan shown

previously in Figure 9-10 into the Learn FileMaker database,

as shown in Figure 9-42.

Figure 9-42. The Learn FileMaker relational model

These basic connections will allow each table to connect

to another table as follows:

Company — Each record for a company will be able to

display a portal listing every related “child” contact

record: the people who work at the company.

Contact — A record for a contact will be able to connect

to its “parent” company and display the name of the

company on the layout.

Project — A record for a project will be able to connect

to its “parent” company record as well.

Summary

In this chapter, we discussed the basics of table occurrences

and connecting them to form relationships.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_10

10. Managing Containers

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

A container field is used to store any kind of document.

Traditionally, and in some circles to this day, the content of

a container is referred to as a binary large object or basic

large object, both commonly expressed as the acronym

“BLOB,” which is a collection of binary data representing

image, audio, or other multimedia files and stored as a

single entry in a database.

The options for and behaviors of a container field depend

on several factors. Various settings influence how users or

scripts insert a file into a container, how that material is

stored, and how it is displayed in a field on a layout. These

factors often intersect in a somewhat confusing mixture,

and your choices may be influenced by the competing

needs of functionality, user preference, and installation type

– all juggled while trying to maintain optimum performance

by maintaining a lean file size.

This chapter provides an overview of the options for

defining and managing containers, covering the following

topics:

Inserting files into containers

Understanding container storage options

Using managed external storage

Extracting files from containers

For more information about the options for containers on

a layout, see Part 4.

Inserting Files into Containers

When a container field is visible and accessible to a user on

a layout, a document file can be inserted using the following

methods :

Using an Insert Menu option

Copying and pasting

Dragging and dropping

Depending on the container management settings for a

field, each method has different options or limitations, which

can impact how the document is inserted and the size of the

database file.

Insert Menu

The Insert menu contains four options for inserting a file into

a container field, shown in Figure 10-1. Each of these is also

available in the field’s contextual menu.

Figure 10-1. The Insert menu options for placing content into a container field

Choosing any of these options will open a Choose File

dialog, optimized for the type of file corresponding to the

menu item. The four options are:

Insert Picture — This option allows the selection and

insertion of an image file into the field, which will be

displayed as a picture rather than a file.

Insert Audio/Video — This option allows the selection

and insertion of an audio or video file and is only visible

when the field’s layout settings are configured to allow

for Interactactive content. This allows the content to be

played directly from within the field without having to

open it in another application. Audio and video files can

be placed into a field using the Insert File option or other

methods but will not be interactive.

Insert PDF — This option allows the selection and

insertion of a PDF file and is visible only when the field’s

layout settings are configured to allow for Interactactive

content. This allows pages of the PDF document to be

viewed directly from within the field without having to

open it in another application. PDF files can be inserted

using the Insert File or Insert Picture menus as well as

other methods but will not be interactive.

Insert File — This option will inset any type of file into a

field. The file will appear as it does in a directory folder,

represented by an icon with no option to access or view

its content.

Drag and Drop

Files can be dragged and dropped into a container field that

is visible and configured to be accessible on a layout. When

dropping a file, FileMaker will automatically use the

appropriate storage method based on the file type and the

configuration of the field.

For example, if you drop an image it will be inserted and

displayed as if you selected the Insert Picture menu item. If

you drop a PDF or audio file into a field that has not been

configured for Interactactive content, the file will be placed

into the field and displayed as a preview of the first page of

the PDF or as a file icon. However, if the field is configured

for interactivity, the file will be inserted as if you chose the

menu corresponding to the file type.

Using this method there is no way to manually specify

external storage except by using FileMaker-managed

external storage, discussed later in this chapter.

Copy and Paste

Files can be placed in a container field using the Copy and

Paste commands when a container field is visible and

accessible on a layout. The clipboard can contain an actual

file copied from a folder or the content of an image copied

from a picture file. The placement of this material into the

field is identical to that of dragging and dropping.

Using this method there is no way to manually specify

external storage unless using FileMaker-managed external

storage, and unless pasting the text required to establish an

external reference instead of a file.

Understanding Container Storage

Options

A container field can store files in one of two ways:

Storing the actual file inside the database.

Storing a reference to the file located outside the

database.

Storing the Actual File

By default, newly defined fields are configured to store files

within the actual database file. When a user or script inserts

a document into a container field using any method, a copy

of that document will be stored inside the field as part of the

database file, increasing its overall file size. This isn’t a

major problem, especially when a database has few records

or the embedded files are small. In time however, it may

become an issue.

A FileMaker database can be up to 8 terabytes in size.

However, as the size of the file grows, performance can

become degraded, especially when many users share

access to a database over a network. One of the goals of an

efficient technical design is to maintain the smallest

possible file size, so this method of storage should be

limited in use to situations where a file must be completely

self-contained and portable.

Storing a Reference to a File

The best way to maintain a lean database and help support

optimal performance is to not store container documents

inside the database, Instead, store only a reference to the

file as a text string like this:

size:731,960

image:../../../../../../../../../Desktop/Flower Picture.jpg

imagemac:/Macintosh HD/Users/john_smith/Desktop/

Flower Picture.jpg

The string above contains a typical reference to an image

file but may vary slightly depending on computer platform

and whether the database is hosted locally or accessed from

a remote server. It contains three pieces of information:

If the file is an image, the dimensions of the original file.

A path to the file relative to the database.

An absolute path to the database.

There are two ways to store references; one chosen

manually during file insertion and the other by defining a

property of the field itself.

Storing a Reference to the File in Any

Directory

When a document is selected for insertion into a container,

whether by a script or a person, there is an option to insert

a reference to the file instead of copying the actual file. This

choice is made in the Insert dialog by selecting the Store

only a reference to the file checkbox, shown in Figure 10-2.

Figure 10-2. The check box option to store a reference instead of copying the

entire file

When this option is selected, the container field will

display the document as if it is stored within the database,

depending on the type of file and layout settings of the field.

However, it will have stored only a small amount of text

within the field that points to the file in whatever directory it

is stored.

This helps to maintain a lean database since the textual

reference to the file is minuscule in size. However, it has

some serious drawbacks that need to be considered. Most

notably, if the document being referenced is moved to a

new folder directory, the field will no longer be able to

locate it and will display a text message indicating that the

file cannot be found. Also, if one user of a networked

database inserts a reference to a document that is stored

locally on their computer or on a server location to which

other users don’t have access, other users will see the same

error.

When references point to files in a static server location

that every user of the database has equal access to, this

method will work fine.

Storing a Reference to the File in a

Managed Directory

The best choice for container field storage, especially for

networked databases, is to use FileMaker-managed external

storage. With this feature the database automatically makes

an external copy of the inserted document into a managed

folder and inserts a reference into the field.

It doesn’t matter if other users have access to the actual

folder directory that contains the files, although there are

options to allow for that. Depending on configuration,

FileMaker acts as a broker between the end user and the

stored material, allowing documents to remain safely in

place while being displayed for or downloaded by users in a

“pass through” manner. There is an choice for each field to

store files securely encrypted or open and accessible, which

provides a nice degree of flexibility depending on your

needs.

This feature is configured by defining a storage location

in the database and configuring each container field to use

that location.

Using Managed External Storage

To use FileMaker-managed external storage for container

fields, there are several steps that need to be taken. These

include defining one or more base directories and assigning

these to container fields.

Defining Base Directories

A base directory is a developer-defined path to a folder

directory that acts as the root location into which one or

more container fields can store documents. The folder

defined is fully managed by FileMaker, which will

automatically create the folder if it doesn’t yet exist and

then manage the internal directory structure of subfolders

and files depending on the settings defined for the base

directory.

Every new database file contains one default directory

defined with the same name as the database and will

automatically have a formula prefix of [database location].

In addition to this default location, any number of alternate

directories can be defined.

Note If a database file is renamed, the default base

directory will not automatically update the folder name to

match. This can be done manually.

Exploring the Manage Containers Dialog

The Manage Containers dialog is where you define the folder

locations into which FileMaker will store and manage

documents. To open the dialog, select the File > Manage >

Containers menu item. This dialog has two tabs: Storage

and Thumbnails.

Exploring the Storage Tab

The Storage tab of the Manage Containers dialog, shown in

Figure 10-3, contains a list of defined base directories.

Figure 10-3. The Storage tab of the Manage Containers dialog

From this tab, you can create, edit, and delete base

directories. You can initiate a transfer of documents using

the Transfer Data button, which becomes highlighted after a

field’s assigned base directory is changed and documents

are detected in the old location (see “Changing a Field

Container Settings” later in this chapter).

Creating a New Base Directory

To create a new base directory, click the New button on the

Storage tab of the Manage Containers dialog. This will open

an Edit Base Directory dialog, shown in Figure 10-4.

Figure 10-4. The Edit Base Directory tab dialog

This window contains a single text area into which you

can either type a directory path or drop a folder to

automatically insert its path. A path must be formatted as

shown in the examples (Chapter 6, “Specifying File Paths”).

When finished, click OK to save the path or Cancel to

close without saving or creating the new base directory.

Editing a Base Directory

Once a base directory is created, double-clicking on it in the

list or selecting it and clicking the Edit button will reopen the

dialog. However, if the selected directory is already in use

by a field and has managed files stored within it, an error

dialog will appear stating this fact and denying you the

ability to open the directory and modify the path. The only

way around this is to create a new directory, point any field

using the old one to the new one; and transfer the existing

container documents into the new folder, which will release

the editing restriction on the old.

Deleting a Base Directory

When a base directory is no longer used, its reference can

be deleted from the list by selecting it and clicking the

Delete button. The same restrictions imposed when

attempting to edit a directory apply when deleting. The

directory can’t be in use or contain any referenced files.

Also, FileMaker requires there to be at least one base

directory defined, so a delete request will be rejected if

there is only one in the list.

Note FileMaker will not delete the actual folder, just the

reference to it in the base directory list.

Exploring the Thumbnails Tab

The Thumbnails tab of the Manage Containers dialog, shown

in Figure 10-4, contains the option to have FileMaker

automatically generate thumbnails for larger images to

speed up network transfers. Since it not usually necessary

to display an image in full resolution when the field it is

stored in is displayed on a layout, using this option can

greatly improve the performance of window refreshes.

Figure 10-5. The Thumbnails tab of the Manage Containers dialog

Once the Generate and store thumbnails for images

check box is selected, FileMaker will automatically begin

generating and displaying a thumbnail for images when a

layout attempts to display them. There are two storage

options:

Permanent storage — This option will cache thumbnails

both on-disk and in-memory, with the on-disk portion

retained when the database is closed.

Temporary storage — This option will cache thumbnails

in-memory only. When the database is closed, the

cache is discarded.

Defining a Field to Store Container Data

Externally

Once the appropriate base directory is created, it can be

assigned to container fields.

Exploring the Field Options for Containers

A container field’s external storage settings are configured

through the Storage tab of the Options for Field dialog,

shown in Figure 10-6. To open this dialog, follow these steps:

1. Select the File > Manage > Database menu item.

2. Click on the Fields tab of the Manage Database

dialog.

3. In the Table pop-up menu, choose the table in which

the container field exists. For example, in the Learn

Filemaker database, choose the Sandbox table.

4. Double-click on a container field to open the

Options for Field dialog.

5. Click on the Storage tab.

Figure 10-6. The Options for Field dialog for a container field

Select the Store container data externally checkbox to

activate managed external storage.

The relative to pop-up menu contains a list of all the

directories defined in the Manage Containers dialog with the

first in the list selected by default. Select one to specify

which base directory will be used to store documents for the

container field.

Once the directory is selected, there is a choice between

two types of storage methodology: secure or open.

Using Secure Storage

This option will encrypt the document data and

automatically distribute the files randomly across

subdirectories that are automatically created in a “Secure”

subdirectory within the base directory.

Using Open Storage

This option will keep document data in their original file

format and store them in the developer-specified

subdirectory indicated in the adjacent text area.

Caution When more than one field uses the same base

directory, each should be assigned a unique subdirectory.

While Secure storage automatically handles duplicate file

names, with open storage your choice of a subdirectory may

need to take this into consideration if similarly named files

will be placed into a field for different records. To protect

against this, click the adjacent Specify button and define a

subdirectory with a dynamic calculation formula that

includes a unique field, such as a serial id like this:

"Sandbox/Example Container/" & Record ID

This will ensure that each file placed in that field for any

record is stored in its own subdirectory and that no naming

conflicts will ever occur.

Changing a Field Container Settings

When a container field’s settings are modified, FileMaker will

automatically recognize that a transfer of data is required.

This applies to any change , including:

Switching from unmanaged internal storage to managed

external storage.

Switching from managed external storage to

unmanaged internal storage.

Changing the field’s assigned base directory.

Once these changes are made and the field definition is

saved, FileMaker will present a Container Data Transfer

dialog, like the one shown in Figure 10-7.

Figure 10-7. The Container Data Transfer dialog informs you that documents

need to be transferred to, from, or between managed directories

This dialog lists all the container fields that have been

changed. Selecting a field from the list will display that

field’s new destination settings, indicating the type of

storage and new base directory. To immediately transfer the

documents to their new base directory, click Transfer. If you

close instead, these changes will be retained in a queue and

can be transferred later with the Manage Containers dialog

Transfer Data button, which becomes enabled any time

there are pending transfers in the queue.

Extracting Files from Containers

When a user has access to a container field on a layout,

they can extract a file contained within and save it into a

folder directory. This is done by one of the following

methods:

Select the Edit > Export Field Contents menu item.

Click the field with the Control key down and choose

Export Field Contents in the contextual menu.

Run a script or click a button that uses the Export Field

Contents script step.

Once selected, an Export Field to File dialog will open,

allowing the user to choose a folder in which to save the

document. The file name will default to the name of the

document in the container but can be renamed in this

dialog. From the dialog, the user can choose to

automatically open the file and/or create an email with it as

an attachment after the save is complete.

Summary

In this chapter, we discussed the various methods of

managing containers and the ramifications of different

document storage methods.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_11

11. Managing Value Lists

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

A value list is a carriage-return delimited group of unique

text values that can be assigned to layout objects to give

users a fast and reliable method of entering standard or

frequently used information into a field in a consistent and

error-free manner. With only one exception, value lists are

essentially context insensitive so a list can be generated

from any table occurrence regardless of the current layout

context.

Lists can be defined to contain static, predefined values

or values dynamically compiled from the contents of a field

gathered directly from a table or through a relationship.

This chapter covers the following topics:

Using value lists

Exploring the value list interface

Creating value lists

Using Value Lists

Values lists can be assigned to text fields as one of four

different control styles from within the Layout Inspector.

These are:

Pop-up menu

Drop-down list

Radio buttons

Check boxes

For each of these, the items in a value list become easily

selectable options that can be entered in a field with a click.

However, this chapter focuses on creating and managing

value list definitions. For more information on how to assign

and configure these on a layout, see Chapter 30.

Exploring the Value List Interface

Value lists are defined, managed, and edited from two

primary interface dialogs.

Introducing the Value Lists Dialog

Value lists are defined from the Manage Value Lists dialog,

shown in Figure 11-1. Once a database is open, this dialog

can be opened by any of the following methods:

In browse or layout mode, select the File > Manage >

Value Lists menu item.

Click the pencil icon button in the Layout Inspector

when a value list control style is applied to the selected

field (Chapter 29).

Run a script that uses the Open Manage Value Lists

script step.

Figure 11-1. The Manage Value Lists dialog

The controls on the Manage Value Lists dialog are:

1. Value Lists — displays all the value lists that are

defined within the file. The list can be sorted by

either clicking on a column heading or choosing an

option from the View by pop-up menu in the upper-

right corner.

2. New — creates a new value list and opens it in the

Edit Value list dialog.

3. Edit — opens the selected value list in the Edit

Value list dialog.

4. Duplicate — creates a duplicate of the selected

value list.

5. Delete — deletes the selected value list.
Cancel closes the dialog ithout sa ing changes

6.
Cancel — closes the dialog without saving changes

after presenting a warning.

7. OK — saves changes and closes the dialog.

Tip As of FileMaker Pro 16, you can copy and paste

value lists within a file or between two files.

Introducing the Editing Value List Dialog

After creating a new value list or when editing an existing

one, the Edit Value List dialog, shown in Figure 11-2, will

open. This dialog is used to define the values that make up

the list.

Figure 11-2. The Edit Value List dialog

The controls on the Edit Value List dialog are:

1. Value List Name — contains the developer-assigned

name of the value list.

2. Use values from field — causes the value list to be

generated automatically from values contained in a

field selected in a Specify Field dialog.

3. Use value list from another file — activates the

adjacent pop-up menus that allow a selection of a

value list from an external FileMaker database file

which will provide the values for the value list being

edited in the current file.

4. Use custom values — activates the text area below

into which you can manually enter a carriage-return

list of custom values that will become the available

values in the value list.

5. Cancel — closes the dialog without saving changes.

6. OK — saves changes to the value lists and close the

dialog.

Creating Value Lists

There are three settings that control where and how value

lists generate their content :

Using custom values

Using values from another file

Using values from field

Using Custom Values

Creating a value list with static values is an easy process.

Once the Manage Value Lists dialog is open, follow these

steps:

1. Click the New button. This will open the Edit Value

List dialog.

2. Enter a name for the value list.

3. Select the Use custom values radio button.

4. Enter some values into the text area. In the

example shown in Figure 11-3, three values are

entered: Red, Green, and Blue.

Figure 11-3. An example of a value list using custom values

5. Click the OK button to save the changes.

Using Values from Another File

When building multi-file database systems, using a value list

from another file can help eliminate redundancy between

the different files. A value list can be created in one

database file and then be used by other files. Any changes

to the list in the primary file are automatically updated in

any values lists that subscribe to it.

Once you have another file with at least one value list

entered, open the Manage Value Lists dialog in the file that

will use it and then follow these steps:

1. Click the New button. This will open the Edit Value

List dialog.

2. Enter a name for the value list.

3. Select the Use value list from another file radio

button.

4. If you have already defined the other database as

an external file source, it will show up in the first

pop-up menu. If not, you will need to define that

now by selecting Add FileMaker Data Source from

that menu. In the Open File dialog, locate and select

the other database and click OK. This will add the

file to the list of external data sources and add it to

the pop-up menu.

5. Once the file has been selected from the first pop-

up menu, the Value list pop-up menu below will

become activated. From this menu, you can select

any of the value lists in the external file, as shown

in Figure 11-4.

Figure 11-4. The value list menu displaying all the lists defined in

an external database file

6. Click the OK button to save the changes.

Using Values from a Field

The most dynamic of the list options, Using values from

field, will automatically create a list of values from the

actual contents of one or two fields and manage that

content based on various settings. The values in the list will

be constantly updated to reflect the data in the selected

fields. Like the other list types, most of the options available

when using values from a field do not care about context.

Create a new value list, assign it a name, and select the

Use values from field radio button. This will automatically

open a Specify Field dialog, shown in Figure 11-5.

Figure 11-5. The Specify Fields for Value List dialog

The top portion of the dialog contains controls for

specifying which field(s) will be used to generate the value

list. The lower portion contains settings that control which

values are included and how they are sorted and displayed.

1. Use values from first field — This combination of a

table occurrence pop-up menu and corresponding

field list allows the selection of the primary field

that will be used to generate values for the list.

2. Also use values from second field — Optionally, a

value list can be a generated from a combination of

two fields by checking this box and selecting

another table occurrence and field. The second

field, which can be in the same table as the first or

a related one, is used for display purposes only on

the list of values and is not entered in a field when

the user selects a value. The most common

example of a use for this feature is when the first

example of a use for this feature is when the first

field uses a serial number field to generate a list of

record ids that can be selected for placement into a

field when assigning one record to another. By

choosing a second field, the list will include a

descriptive component so the user knows what they

are selecting even though the serial number is what

will be entered in the field. For example, if the first

field contains 052136 and the second field contains

a name John Smith, it will show up in the value list

as a combination of the two: 052136 John Smith.

The user looks at the second field to identify the

record they are selecting while the serial number

from the first field is what is entered in the field

when they do so.

3. These two radio buttons control which values are

included. The choices are:

a. Include all values — Choosing this option

will generate a list of unique values from

the selected field for all records in the

table.

b. Include only related values starting from —

Choosing this option will generate a list of

unique values from the selected field for

only those records related through the

context of a table occurrence you select

from the adjacent pop-up menu. This

provides the ability to create a contextual

value list that changes values depending on

which record a user is viewing (see

“Creating Conditional Lists,” this chapter).

Show values only from second field — When

4.

Show values only from second field When

enabled, this option will hide values from the first

field and only display values from second field.

However, when the user selects a value, the value

from the first field is still entered. For example,

when the first field contains a serial number and the

second field a name, the user only sees the name

and makes their selection, but the serial number is

entered in the field they are editing.

5. Sort values using — When generating a value list

from two fields, these radio buttons allow you to

control which field will be used to sort the list.

These are disabled and set by default when the list

doesn’t use two fields or when the Show values only

from second field option is selected.

6. Resort values based on — This check box activates

an adjacent pop-up menu allowing the selection of a

language by which the values should be sorted. This

is especially useful when using languages where the

dictionary sort order is different from the indexed

sort order, like languages that distinguish between

characters with and without diacritical marks in a

dictionary sort but not in an index sort. For more

information on the implications of this setting,

consult the FileMaker documentation.

Building Value Lists from Field Values

When building a value list from a field, there are two

primary choices:

Creating lists of all records in a table

Creating conditional lists

Creating Lists of All Records in a Table

The easiest type of field-generated value list is one that

displays values pulled from every record in a table. This

type of value list is useful in a variety of situations, for

example:

A Contact record may have a field allowing the selection

of a parent Company.

A Product record may be selected and assigned to an

Invoice record.

A Template record may be selected as the source body

content for an Email record.

In each of these cases, the value list must show every

available record in the other table giving the user the option

to choose the one that should be assigned. Such a list would

be configured using the Include all values radio button and

selecting the desired field(s) from the primary occurrence of

the table. For example, a value list in the Learn FileMaker

database named Company All would be configured as

shown in shown in Figure 11-6.

Figure 11-6. A value list configuration that will show all company records

Once saved, this value list can be assigned to a field as a

pop-up menu in any table. For example, in the Contact

table, the Contact Company ID field is used to store a

foreign key that connects a contact to a company through

the Contact | Company relationship. So, to allow a user to

quickly enter the Record ID for a company, the value list can

be assigned to that field as a pop-up menu on the Contact

Form layout.

When the user clicks on the field, a list of every company

will be displayed. Because the first field is the Record ID, a

selection will cause the ID of the company to be entered in

the field, thereby establishing the foreign key and

connecting the two records.

Creating Conditional Lists

The previous example generates a value list of every

Company record in a table. However, to generate a list that

varies, you need to use some type of conditional value list.

A conditional value list is a list of field values that is

limited to include only a subset of the total values contained

in the specified field(s).

This type of value list is useful in a variety of situations,

for example:

When assigning a parent Company to a Contact limiting

the value list to only include active companies.

When assigning a Product to an Invoice limiting the

value list to only include a certain category of products.

When selecting a Template to use as the source body

content for an Email limiting the value list to only

include approved records for categories that are

relevant to the type of email being generated.

There are two ways to create a conditional value list:

Using a dedicated relationship.

Using a calculation field.

For examples of each, we will use the Company Status

field in the Company table of the Learn FileMaker database

to create a value list that is conditioned to only display the

Company Name of records that have a status value of

active.

Using a Dedicated Relationship

The first method of creating a conditional value list was

briefly mentioned in our exploration of the Specify Fields for

Value List dialog, using the Include only related values

starting from radio button.

It requires a dedicated relationship that connects a table

occurrence acting as the layout context where the user will

see and interact with the value list and another related table

occurrence from which the values will be pulled. In this

configuration, the relationship acts as the limiting agent; the

list is constructed from only those records that are matched

to the current record through the relationship to another

table. This may sound confusing, but it is easy to set up.

Before working on the value list, performed these steps

to create the required relationship:

1. Create a new calculation field in the Contact table

named Contact Company Status Match with a

formula that evaluates to a literal text string of

"Active" and has a calculation result type of text.

Since the resulting value will be the same for every

record and since it will be a local key, the field can

be configured to store a global value.

2. Create a new occurrence of the Company table and

name it Contact | Company for Active List and

position it to the right of the Contact table. This will

be the occurrence from which the list will pull

values.

3. Create a relationship that connects the new

Contact::Contact Company Status Match field to the

Company Status field in the new occurrence, as

shown in Figure 11-7. From the perspective of the

Contact table, this relationship limits the accessible

values to only those where the match fields both

contain a value of Active, thereby filtering the

values so that only active companies are accessible

through that relationship.

Figure 11-7. The new relationship that will be used to pull values

into a conditional value list

Next, create a new value list, as shown in Figure 11-8,

which uses the new related occurence to generate a

conditional list of active companies.

Figure 11-8. The new value list that will generate a list of active companies

using the new relationship

The new list should be configured as follows:

1. The Include only related values starting from radio

button is selected to indicate that the values used

to generate a list will be pulled through a

relationship the context specified in the adjacent

pop-up menu.

2. The Contact table occurrence is selected to

establish the starting context, which indicates the

side of the relationship represented by the layout

upon which the user will be perceiving the value list

and making a selection. In other words, the user will

be looking at a Contact layout when editing a field

using the value list.

3. The selection of the new table occurrence instructs

the value list to pull values through our new limiting

relationship instead of directly from the table.

Once saved, this value list can be assigned to the

Contact Company ID field on a Contact layout as the source

for a pop-up menu and it will display a list of only the active

companies (Chapter 30).

Understanding the Drawback of Using a Dedicated

Relationship

Using a dedicated relationship is a great way to create a

conditional value list and is required in many cases.

However, in the example above and many similar situations,

it is not always the best choice.

Consider that we added a calculation field to the Contact

table with a hard-coded value, a table occurrence, and a

relationship. These resources would be necessary if the user

was given the option to select a status of Active or Inactive

and then have the value list filter accordingly. However,

when the list is hard-coded to Active only, creating these

resources is unnecessary.

Furthermore, by gathering values through a relationship,

the list is inherently limited to only being used on layouts for

the starting table occurrence, in this case, Contacts. But a

list of active companies could be used in every table that

needs to connect a record to a company. In a typical

database, this might include quite a few tables including

Contact, Project, Budget, Resource, Equipment, and more.

The problem with the relational method is that, since the

filtering mechanism is a relationship, which is always based

on the usage context, each use of the same list would need

its own set of duplicate resources: a link match field, a

dedicated new table occurrence of Company, a relationship

between that and the usage occurrence, and a dedicated

value list. So, implementing a value list of active Company

records in six different tables would require one set of those

four resources for each use, giving you a total of twenty-four

additional components. This is horribly impractical and

easily avoidable.

In cases like this, using a calculation field in the remote

table alleviates these extraneous resources.

Using a Calculation Field

Where possible, it is more technically efficient to create a

conditional value list using a calculation. This is especially

true when there is a single condition, determined by a local

indexed field, which determines whether a record should be

included on or excluded from the list. The example from the

last section is a perfect candidate for this approach.

A conditional value list controlled by a calculation field

does not require the new match field, the additional table

occurrence, or the new relationship. Also, because it is not

dependent on a relationship to filter values, once a single

value list is built using a calculation field, it can be used on

any layout without requiring any additional resources!

The technique works exactly like a value list that

generates values from every record except that it draws

values from a calculation field with a formula that includes

or excludes the value from another field based on some

filtering criteria. For example, a calculation field can result in

a Company Name if the Company Status field has a value of

Active and an empty string or nothing if the value is

Inactive. When the value list is generated from this

calculation field, it ignores all the blank records that makes

a list of the names of only those companies who are active.

Note If using a secondary field when generating the

conditional list, only the second field needs to be

generated from a conditional calculation.

To create a calculation-driven conditional value list that

provides a result identical to the previous example, follow

these steps:

1. Create a new calculation field named Company

Active ID that returns a text result and has a

formula of:

Case (Company Status = "Active" ; Company

Name ; "")

2. Create a value list that uses the new calculation

field for the second field and choose Include all

records, as shown in Figure 11-9.

Figure 11-9. The new value list that will generate a list of active

companies using the new calculation field

The result will be a conditional value list that can be used

from any layout context, regardless of the source table and

without a relationship between that table and the Company

table.

Summary

In this chapter, we discussed how to define value lists from

the perspective of the data structure.

Part III

Writing Formulas and Using

Functions

Writing Formulas and Using

Functions

FileMaker provides a library of over 300 built-in functions

that are ready to insert into calculation formulas, custom

functions, and script step configuration panels. These

chapters discuss formula creation and provide a

comprehensive, categorized reference to every available

function:

12. Writing Formulas

13. Text Functions

14. Text Functions (JSON)

15. Text Formatting Functions

16. Number Functions

17. Date, Time, and Timestamp Functions

18. Container Functions

19. Aggregate, Summary, and Repeating Functions

20. Financial and Trigonometric Functions

21. Logical Functions
22. Get Functions

23. Design Functions

24. Mobile Functions

25. Creating Custom Functions

26. Introducing ExecuteSQL

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-4842-2863-0_12

12. Writing Formulas

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

A calculation formula is an equation made up of one or more text

statements expressing operation(s) that will be performed to manipulate

values and arrive at a result. Relationships add to the basic data

framework by allowing for the interconnection of tables and fields.

Formulas unlock another level by allowing the manipulation of the

information stored within that structure.

Formulas can be written to analyze, compare, concatenate, condense,

convert, expand, format, parse, replace, or summarize any of FileMaker’s

supported data types. They can range in size from a simple mathematical

equation to an extremely complex collection of interrelated expressions

and nested logical clauses. The only limitation is that a single formula

cannot exceed FileMaker’s limit of 30,000 characters.

In this chapter, we will discuss the following topics:

Introducing formulas

Defining formula components

Exploring the calculation interface

Writing formulas

Adding calculations to the Learn FileMaker file

Throughout this chapter, use the Sandbox table and layout in the Learn

FileMaker database to experiment with the example formulas mentioned

in this chapter.

Introducing Formulas

Formulas are written in a Specify Calculation dialog window , like the one

shown in Figure 12-1.

Figure 12-1. A Specify Calculation dialog window for defining a calculation field formula

These dialogs are found throughout the FileMaker development

environment in the locations listed in Table 12-1. Generally, any of the

following interface elements indicate that a calculation formula can be

entered:

An Options button.

A Specify button.

A Fx icon button.

A pencil icon button.

A Specify... option at the bottom of a pop-up menu.

Table 12-1. Places where formulas are used to dynamically calculate a value within a database

Location

Category

Uses

Custom

Menus

• Menu name.

• Menu visibility.

Field

Definitions

• Auto-enter value.

• Calculation field formula.

• Field validation formula.

Specify

Dialogs

• Repetition number in a Specify Field dialog.

• Parameter in a Specify Script dialog.

Layout

Inspector

Options

• Hide object formula (Data panel).

• Placeholder text formula (Data panel).

• Tooltip text formula (Position panel).

Location

Category

Uses

Layout

Objects

• Button Bar name formula.

• Button name formula.

• Popover name formula.

• Tab name formula.

• Portal filtering formula.

• Chart (various dynamic content).

• Web Viewer (various dynamic content).

Miscellaneous

Locations

• Replace Field Contents dialog.

• Custom function formula (old style specify calculation dialog).

• From the Data Viewer, the Edit Expression dialog.

• Numerous script steps.

• The Edit Privilege Set dialog access through the Manage Security dialog has

numerous options to dynamically specify actions that a privilege can perform.

How Formulas Work

Much like their mathematical counterparts, calculation formulas are

composed by assembling various components together to form one or

more expressions that make up the overall formula statement.

First, a formula must be written and saved to become part of the

database’s functionality. During the save process, FileMaker will scan the

statement and check its expressions for syntax errors such as broken field

references, missing function or incorrectly structured statements. When a

problem is detected, the save process is halted, the error highlighted in

the statement, and a dialog message explains the details of the error.

After the developer corrects the error and another save is attempted, this

process will be repeated until there are no remaining errors and the code

can be successfully compiled and saved.

Once saved, a formula remains idle until it is called when some process

requests that it evaluate and produce a result. A call may come because

of the following:

A layout attempting to render a calculation field.

The execution of a script that contains a step with a calculation.

A user typing into a field with an auto-enter calculation.

A call from one calculation that uses another in its formula.

When called, the formula’s statement is evaluated, which means that

the code is converted into a result by working through each expression’s

operations from left to right based on specific operator precedence.

Formulas are evaluated within a context to allow local and related

fields to be accessed from the perspective of a specific table occurrence.

A formula that provides a value for an interface element will use the

context of the table occurrence of the layout upon which the object is

being rendered. A formula used in a field definition requires a manually

selected context of any table occurrence for the table in which the field

exists.

The formula’s result is a single value that will be returned to whatever

process requested the execution of the formula. A calculation field’s

formula displays the result on a layout as if it were data typed into the

field. The Set Variable script step places the result of its formula into a

variable. The type of object that called the formula determines the

destination or use of the result.

If the formula is unable to create a result due to an error, it will return a

question mark. For example, if a formula is using a field that has been

deleted or is inaccessible from the current context, the formula may

return an error. Also, using a custom function that has been deleted or

returning a data type inconsistent with the expectations of the calling

process will return an error.

Defining Formula Components

Formula expressions can be built using any combination of the following

items:

Comments

Constants

Field references

Functions

Operators

Reserved keywords

Variables

Comments

A comment is a text string inserted into a formula that is ignored when

the code is evaluated. Comments are intended to act as integrated

documentation for developers and can be beneficial as a reminder both to

yourself and to others who may see your code in the future. Comments

can provide details about how the formula works, how to use it, and to list

recent changes and any other information you may think necessary to

embed in your code. A comment may be placed at the top of the formula

or between different statements.

There are two styles of comment available; multi-line (C style) and

single-line (C++ style).

Multi-Line Comment

A multi-line comment uses an initiating and terminating symbol to

indicate the start and end of the comment and can, therefore, comment

out multiple lines of text. To enter a multi-line comment , use a /* to

indicate the start of the comment and */ to indicate the end of the

comment. Any text between these two symbols will be ignored by

FileMaker when the formula is evaluated.

/*This is a comment

The comment continues on additional lines

Until you terminate it*/

If desired, extra carriage returns can be added to make the text more

readable.

/*

This is a comment

The comment continues on additional lines

Until you terminate it

*/

Single-Line Comment

A single-line comment uses a symbol at the beginning of a paragraph,

commenting out any text between it and a next carriage return.

To enter a single-line comment , place two forward slashes at the start

of the line or at the point on a line where a comment should begin. Any

text to the right of these symbols but before the next carriage return will

be ignored by FileMaker when the formula is evaluated.

// This is a comment

// To continue on a second line you must use another set of symbols

2 + 2 // This comment starts in the middle of a line, after a formula

Throughout this book, the result of a formula will be included after the

code as a comment. For example:

<CodeExpression> // result = <value>

Constants

A constant, sometimes referred to by developers as a literal, is a static,

unchanging value that is literally typed into a formula. The value can be

any of FileMaker’s data types: text, number, date, time, or timestamp. A

quantity, city name, event date, and start time are all examples of

constants when they are typed directly into a formula as part of the

formula rather than being represented dynamically by a variable or field.

Numeric constants can be typed directly into a formula. A text constant

must be contained within quotation marks so that it is interpreted as a

literal value instead of as a field or function name. Date and time

constants must be typed within quotation marks and, to be recognized

and treated as something other than text, they may need to be converted

into date and time objects using a built-in function: GetAsDate,

GetAsTime, and GetAsTimestamp (Chapter 13).

The following are examples of each type of constant, as they might

appear in a formula:

150

"New York"

"1/15/2017"

GetAsDate ("1/15/2017")

"10:15:00"

GetAsTime ("10:15:00")

"1/15/2017 10:15:00"

GetAsTimestamp ("1/15/2017 10:15:00")

Field References

A field reference is a dynamic pointer to a field. References inform

FileMaker to extract a value from a specific field, through a specific

context, and to use that value in place of the reference when evaluating

the expression.

Depending on the type of calculation and the location of the field

relative to the evaluation context of the calculation formula, a field

reference is considered either local or related and can be stated as either

the name of the field or the name of the table occurrence and field.

A local field is a field that exists within the table of the current context.

For a calculation field, the current context is the table containing the field.

For a formula used in a custom menu, script step, custom function, etc.,

the context will always be the source table of the table occurrence

assigned to the layout displayed in the current window at the time of

evaluation.

A local field reference inside of a calculation field’s formula can take

the form of only the name of the field. For example:

First Name

Project Name

Invoice Number

All other field references must include the name of the table

occurrence preceding the field name and separated by two colons. The

addition of the table occurrence informs FileMaker of precisely which field

you are referring to and allows it to attempt to acquire the value through

the appropriate relational conduit.

For example:

Contact::First Name

Project::Project Name

Invoice::Invoice Number

This applies to both:

References to a related field inside of a calculation field’s formula.

Both local and related field references used in any other object’s

formula.

Keeping Field References Dynamic

Unlike a static text string, a field reference is dynamic and will

automatically updated to reflect any change in the name of the field or

table occurrence. A field reference can be placed within quotation marks

as a constant and still work as expected in most cases. However, as a text

string, it will no longer be updated if a name change were to occur.

Putting a field reference in a formula as a constant imposes the burden on

you to manually change every field reference each time a table or field

name is changed. Therefore, it is highly recommended that all field

references remain dynamic.

To illustrate the difference between a dynamic field reference and a

constant field reference, consider the example below, which shows two

methods of accessing a field value using the GetField function (Chapter

21). The first is a text-based reference, hard-coded into a static text

string, while the second is a dynamic reference. Once set up, they each

return the identical field value.

GetField ("Contact::First Name") // result = John

GetField (Contact::First Name) // result = John

However, when the name of the field is changed from First Name to

NameFirst, only the second will automatically update since it is a dynamic

reference instead of static text. Since the first example no longer refers to

an actual field, it will evaluate to an error.

GetField ("Contact::First Name") // result = ?

GetField (Contact::NameFirst) // result = John

The same problem will occur if the table name is modified.

The problem is that some built-in functions require a text-based field

reference. In these cases, use the GetFieldName function (Chapter 21) to

convert a dynamic field reference into a text string for that purpose, as

shown here:

GetFieldName (Contact::NameFirst) // result = "Contact::NameFirst"

A dynamic reference converted this way can be used in other

expressions that require a text-based reference without a concern for

future name changes.

Functions

A function is a predefined, named formula that may accept parameters

and is evaluated to return a single result. Functions are like subroutines in

other programming languages. They allow a subset of functionality to be

offloaded to a process outside of the current formula and make possible

efficient organization of code. Within FileMaker, there are two kinds of

functions: Built-in functions (Chapters 13-24) and Custom functions

(Chapter 25). In this section we will briefly illustrate how to call any

function from within a formula.

Calling a Function from a Formula

Any function can be called from within a formula by invoking its name in

the statement. Generally, functions are named with two or more

capitalized words together without spaces that briefly describe the

processing performed. For example, in pattern:

FunctionName

Note The capitalization and lack of spacing shown in this example

are used consistently for FileMaker’s built-in functions but are not a

requirement for custom functions. Although not required, for the sake

of consistency and readability, you may want to adhere to this

convention for your custom functions.

Calling a Function with Parameters

Most functions will accept parameters. A function parameter is a value

that can vary with each call to the function. This allows information to be

sent by the calling formula, pushed into the function. It might be raw

material that the function will manipulate, instructions about the desired

processes that should be performed, or information about what is being

requested.

Note Except for any limitations imposed by a specific function or by

the nature of the data a parameter is designed to accept, a parameter

can accept data as a constant, field reference, expression, variable,

literal, or even a nested function.

Parameters are listed after the function name, enclosed within a set of

parentheses, as shown here:

FunctionName (parameter)

If a function accepts more than one parameter, they are listed in order,

separated with semicolons after the function name, enclosed within a set

of parentheses, as shown here:

FunctionName (parameter1 ; parameter2 ; parameter3)

The value inserted into a parameter can be an expression. In this

example, the one parameter is made up of two fields being multiplied

together, the result of which will be sent to the function as the single

parameter:

FunctionName (Invoice Tax Rate * Invoice Subtotal)

Optional Parameters

Some built-in functions offer optional parameters that can be used or

ignored as needed. When inserting a function call into a formula,

FileMaker will surround optional parameters with braces as shown in this

example:

FunctionName (parameter1 {; parameter2 ; parameter3})

In this case, the braces indicate that parameter1 is required while

parameter2 and parameter3 are optional. Optional parameters that you

won’t be used can be removed by deleting them along with the braces. If

they will be used, only the braces should be removed. This example

illustrates the pattern of a single function call without optional parameters

and a second call to the same hypothetical function with the optional

parameters included:

FunctionName (parameter1)

FunctionName (parameter1 ; parameter2 ; parameter3)

Nesting Function Calls

Since a parameter can accept an expression as a value, calls to other

functions can be nested as a parameter value. In this example, Function2

will be evaluated first and that result will be used as the parameter for

Function1.

Function1 (Function2 (parameter))

Operators

An operator is a symbol used to express a type of operation within a

formula. The most familiar examples are mathematical operators where

the plus symbol in 2 + 2 is the operator. FileMaker has many different

operators, each executing in an order of precedence.

Defining Operators

FileMaker has four categories of operators:

Comparison operators

Logical operators

Mathematical operators

Text operators

Note For clarity, most of the examples provided in this section use

operators with formulas containing only constants. However, they can

certainly be used with any combination with other formula components.

Comparison Operators

A comparison operator is a symbol used to construct an equation that

compares two values, either a literal value or the evaluated results of two

expressions. The result of an expression using a comparison operator will

be a true or false Boolean value, represented respectively by a 1 or 0.

Equal To

An equal to symbol is used to compare two values for similarity. The

equation will evaluate to true if the values are identical and false if they

are not.

100 = 100 // result = 1

150 = 100 // result = 0

"New York" = "New York" // result = 1

"New York" = "NY" // result = 0

GetAsDate ("1/15/2017") = GetAsDate ("1/15/2017") // result = 1

GetAsDate ("1/15/2017") = GetAsDate ("7/20/2018") // result = 0

GetAsTime ("9:30:00") = GetAsTime ("9:30:00") // result = 1

GetAsTime ("9:30:00") = GetAsTime ("12:15:00") // result = 0

Not Equal To

Comparing two values for dissimilarity can be performed using either a

not equal to symbol or a less than and greater than symbol side by side.

An equation will evaluate to false if the values are identical and true if

they are not, as demonstrated in these examples:

100 ≠ 100 // result = 0

150 ≠ 100 // result = 1

"New York" <> "New York" // result = 0

"New York" <> "NY" // result = 1

GetAsDate ("1/15/2017") ≠ GetAsDate ("1/15/2017") // result = 0

GetAsDate ("1/15/2017") ≠ GetAsDate ("7/20/2018") // result = 1

GetAsTime ("9:30:00") ≠ GetAsTime ("9:30:00") // result = 0

GetAsTime ("9:30:00") ≠ GetAsTime ("12:15:00") // result = 1

Tip The ≠ symbol can be created by typing an equal sign while

holding the Option key on macOS.

Greater Than

A greater than symbol is used to compare the relative alphabetical or

numerical positions of two values. The equation will evaluate to true if the

value on the left is greater in position compared to the value on the right.

150 > 100 // result = 1

100 > 100 // result = 0

"Bear" > "Automobile" // result = 1

"Atlanta" > "New York" // result = 0

GetAsDate ("1/15/2017") > GetAsDate ("7/20/2016") // result = 1

GetAsDate ("1/15/2017") > GetAsDate ("7/10/2017") // result = 0

GetAsTime ("12:30:00") > GetAsTime ("9:15:00") // result = 1

GetAsTime ("9:30:00") > GetAsTime ("10:45:00") // result = 0

Greater Than or Equal To

Comparing the relative alphabetical or numerical positions of two values

can be performed using either a greater than or equal to symbol or a

greater than symbol followed by an equal sign. The equation will evaluate

to true if the value on the left is greater in position or the same value

compared to the value on the right, as shown in these examples:

100 ≥ 100 // result = 1

100 ≥ 150 // result = 0

"Bear" >= "Automobile" // result = 1

"New York" >= "Ohio" // result = 0

GetAsDate ("1/15/2017") ≥ GetAsDate ("7/20/2016") // result = 1

GetAsDate ("1/15/2017") ≥ GetAsDate ("7/10/2017") // result = 0

GetAsTime ("12:30:00") ≥ GetAsTime ("12:30:00") // result = 1

GetAsTime ("9:30:00") ≥ GetAsTime ("10:45:00") // result = 0

Tip The ≥ symbol can be created by typing a greater than symbol

while holding the Option key on macOS.

Less Than

A less than sign < is used to compare the relative alphabetical or

numerical positions of two values. The equation will evaluate to true if the

value on the right is greater in position than the value on the left.

100 < 350 // result = 1

100 < 100 // result = 0

"Automobile" < "Car" // result = 1

"New York" < "New York" // result = 0

GetAsDate ("7/20/2016") < GetAsDate ("1/15/2017") // result = 1

GetAsDate ("7/10/2017") < GetAsDate ("1/15/2017") // result = 0

GetAsTime ("9:15:00") < GetAsTime ("12:30:00") // result = 1

GetAsTime ("10:45:00") < GetAsTime ("9:30:00") // result = 0

Less Than or Equal To

Comparing the relative alphabetical or numerical positions of two values

can be performed using either a less than or equal to symbol or a less

than symbol followed by an equal sign. The equation will evaluate to true

if the value on the left is greater in position or the same value compared

to the value on the right, as shown in these examples:

100 ≤ 100 // result = 1

100 ≤ 150 // result = 0

"Automobile" <= "Bear" // result = 1

"Ohio" <= "New York" // result = 0

GetAsDate ("7/20/2016") ≤ GetAsDate ("1/15/2017") // result = 1

GetAsDate ("7/10/2017") ≤ GetAsDate ("1/15/2017") // result = 0

GetAsTime ("12:30:00") ≤ GetAsTime ("12:30:00") // result = 1

GetAsTime ("10:45:00") ≤ GetAsTime ("9:30:00") // result = 0

Tip The ≤ symbol can be created by typing a greater than symbol

while holding the Option key on macOS.

Logical Operators

A logical operator is a keyword used to build compound conditions into a

formula by joining two or more separate expressions into a single

expression or, in one case, to negate a single expression, thereby

reversing a Boolean result. The result of an expression using a logical

operator will be a Boolean.

AND

The AND operator is used to combine two separate Boolean expressions

into a combined equation that will evaluate to true only if the result of

both expressions are true.

150 > 100 AND "Bear" > "Automobile" // result = 1

150 > 100 AND "Bear" = "Automobile" // result = 0

OR

The OR operator is used to combine two separate Boolean expressions

into a combined equation that will evaluate to true if the result of at least

one of the two expressions is true.

150 > 100 OR "Bear" < "Automobile" // result = 1

150 < 100 OR "Bear" = "Automobile" // result = 0

XOR

The XOR operator is used to combine two separate Boolean expressions

into a combined equation that will evaluate to true if the result of only

one of the two equations is true. If both equations are true, it will return

false.

150 > 100 XOR "Bear" < "Automobile" // result = 1

150 > 100 XOR "Bear" ≠ "Automobile" // result = 0

150 < 100 XOR "Bear" = "Automobile" // result = 0

NOT

The NOT operator is a unique logical operator that will negate the result

of any expression to its right, thereby reversing the Boolean result of that

expression. If an expression evaluates to true, putting this operator in

front of it will reverse it to return false.

NOT 150 < 100 // result = 0

NOT "Tuesday" < "Monday" // result = 1

A similar reveresal can also be achieved by the following statement,

which will return true if the expression in parenthesis evaluates false.

(150 < 100) = 0

Tip While the order of operator precedence should always be kept in

mind, some developers prefer to enclose the expression(s) after a NOT

operator in parentheses to avoid any confusion and ensure the

appropriate result, especially with compound expressions.

Mathematical Operators

A mathematical operator is a symbol used to perform or control

arithmetic computations with one or more values or expressions. The

mathematical operations can be performed not only on numbers but on

other data types such as dates, times, and timestamps.

Addition

The plus symbol is used to add the value on the right to the value on the

left.

100 + 50 // result = 150

GetAsDate ("1/5/2017") + 5 // result = 1/10/2017

GetasTime ("1:15:00") + 300 // result = 1:20:00

Subtraction

The minus symbol is used to subtract the value on the right from the

value on the left.

100 – 50

GetAsDate ("1/5/2017”) - 2 // result = 1/3/2017

GetasTime ("1:15:00") - 300 // result = 1:10:00

Multiplication

The multiply symbol is used to multiply the value on the left by the value

on the right.

100 * 50

Division

The division symbol is used to divide the value on the left by the value on

the right.

100 / 50

Raising to a Power

The power of symbol is used to raise the value on the left to the power of

the value on the right.

100^2

Precedence

A set of parentheses is used to change the order of evaluative precedence

(discussed later in this chapter). FileMaker will evaluate formulas from left

to right after first evaluating expressions that are enclosed within

parentheses, working from the inside out and based on an order of

precedence. Although these two equations perform the same

mathematical operations on the same numbers in the same order, the

results are drastically different due to the control of precedence imposed

with parentheses:

100 * 2 + 50 / 25 // result = 202

((100 * 2) + 50) / 25 // result = 10

Text Operators

A text operator is a symbol that is used to construct an equation that

combines text items into a single item and performs other text-related

functions.

Quotations Mark

A pair of quotation marks is used to indicate a literal text constant. Text

entered into a formula without quotation marks will be interpreted as a

field, function, or variable name. Date and time constants must be

enclosed in quotation marks.

"John"

"1/15/2017"

Concatenate Text

The ampersand symbol & is used to join two text values into a single

value.

"John" & " " & "Smith" //result = "John Smith"

Carriage Return

The paragraph carriage return symbol is used to insert a carriage return

into a text value.

"John Smith" & "¶" & "Jim Smith"

// result =

John Smith

Jim Smith

Tip The carriage return symbol can be created by typing a 7 while

holding down the Option key on macOS.

Backslash

The backslash symbol \ is used to make an operator character be used

literally instead of as an operator. For example, a backslash+quote

inserted at the end of this example can represent 5 inches as a text string

with the extra quote mark treated as part of the resulting text value.

"5\"" // result = 5"

Without the backslash, FileMaker will interpret the formula as having a

syntax error and not allow it to be saved.

"5""

Reserved Name

Although it is not advisable to do so, you can use a reserved function

name or keyword as a table name or field name. However, when doing so

and using these in a formula, FileMaker must be informed of the fact so it

interrupts the information as the value you intend rather than the function

or keyword it also represents. This is accomplished by wrapping the name

within curly brackets with a preceding dollar symbol.

The following will be interrupted as a field or table name rather than an

AND operator:

${AND}

Understanding Operator Precedence

Like with standard mathematical equations, operators in a calculation

formula are evaluated in the following order:

1. Comments

2. Space, backslash, paragraph return, reserved name

3. Parentheses

4. NOT

5. Power of (^)

6. Multiplication, division

7. Addition, subtraction

8. Ampersand

9. Equal to, not equal to, greater than, less than, greater than or

equal to, less than or equal to

10. OR, XOR
To force an expression to be evaluated in a different order, use

parentheses.

Reserved Words

A reserved word is a word, term, or symbol that is used by FileMaker for

function names, predefined parameters, operators, and to construct SQL

statements. These should not be used as names for tables, fields, custom

functions, and other objects to avoid problems when referring to these

objects in a formula. FileMaker reserves the words shown in Table 12-2.

Table 12-2. FileMaker’s reserved words

AllStyles And Bold CentralEurope Condense

Cyrillic DatabaseNames DoubleUnderline Extend False

Greek Higher HighlightYellow Italic Lower

Lowercase Not OEM Or Other

Pi Plain Random Roman Self

ShiftJIS SimplifiedChinese SmallCaps Strikethrough Subscript

Superscript Symbol Titlecase TraditionalChinese True

Underline Uppercase WordUnderline Xor

Operators and other symbols, shown in Table 12-3, are reserved.

Table 12-3. FileMaker’s reserved operators

+ - * / ˆ &

= ≠ < > ≤ ≥

(, ;) []

" :: $ }

FileMaker reserves SQL keywords, shown in Table 12-4. To avoid syntax

errors with the ExecuteSQL function, avoid these as well.

Table 12-4. FileMaker’s reserved SQL keywords

ABSOLUTE ACTION ADD ALL ALLOCATE

ALTER AND ANY ARE AS

ASC ASSERTION AT AUTHORIZATION AVG

BEGIN BETWEEN BINARY BIT BIT_LENGTH

BLOB BOOLEAN BOTH BY CASCADE

CASCADED CASE CAST CATALOG CHAR

CHARACTER CHARACTER_LENGTH CHAR_LENGTH CHECK CHR

CLOSE COALESCE COLLATE COLLATION COLUMN

COMMIT CONNECT CONNECTION CONSTRAINT CONSTRAINTS

CONTINUE CONVERT CORRESPONDING COUNT CREATE

CROSS CURDATE CURRENT CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR CURTIME CURTIMESTAMP

DATE DATEVAL DAY DAYNAME DAYOFWEEK

DEALLOCATE DEC DECIMAL DECLARE DEFAULT

DEFERRABLE DEFERRED DELETE DESC DESCRIBE

DESCRIPTOR DIAGNOSTICS DISCONNECT DISTINCT DOMAIN

DOUBLE DROP ELSE END END_EXEC

ESCAPE EVERY EXCEPT EXCEPTION EXEC

EXECUTE EXISTS EXTERNAL EXTRACT FALSE

FETCH FIRST FLOAT FOR FOREIGN

FOUND FROM FULL GET GLOBAL

GO GOTO GRANT GROUP HAVING

HOUR IDENTITY IMMEDIATE IN INDEX

INDICATOR INITIALLY INNER INPUT INSENSITIVE

INSERT INT INTEGER INTERSECT INTERVAL

INTO IS ISOLATION JOIN KEY

LANGUAGE LAST LEADING LEFT LENGTH

LEVEL LIKE LOCAL LONGVARBINARY LOWER

LTRIM MATCH MAX MIN MINUTE

MODULE MONTH MONTHNAME NAMES NATIONAL

NATURAL NCHAR NEXT NO NOT

NULL NULLIF NUMERIC NUMVAL OCTET_LENGTH

OF OFFSET ON ONLY OPEN

OPTION OR ORDER OUTER OUTPUT

OVERLAPS PAD PART PARTIAL PERCENT

POSITION PRECISION PREPARE PRESERVE PRIMARY

PRIOR PRIVILEGES PROCEDURE PUBLIC READ

REAL REFERENCES RELATIVE RESTRICT REVOKE

RIGHT ROLLBACK ROUND ROW ROWID

ROWS RTRIM SCHEMA SCROLL SECOND

SECTION SELECT SIZE SMALLINT SOME

SPACE SQL SQLCODE SQLERROR SQLSTATE

STRVAL SUBSTRING SUM SYSTEM_USER TABLE

TEMPORARY THEN TIES TIME TIMESTAMP

TIMESTAMPVAL TIMEVAL TIMEZONE_HOUR TIMEZONE_MINUTE TO

TODAY TRAILING TRANSACTION TRANSLATE TRANSLATION

TRIM TRUE UNION UNIQUE UNKNOWN

UPDATE UPPER USAGE USER USERNAME

USING VALUE VALUES VARBINARY VARCHAR

VARYING VIEW WHEN WHENEVER WHERE

WITH WORK WRITE YEAR ZONE

Variables

A variable is a developer-named letter, word, or phrase that can store and

be used in place of a value in a calculation formula and elsewhere in the

development environment, including some less-obvious places such as:

Script steps that include a formula.

File paths dialogs.

Find request criteria dialogs.

On layouts as merge variables.

Data source dialogs.

Types of Variables

FileMaker has three different variable types, each with different naming

requirements and scope:

Local Let statement variables

Local script/function variables

Global database variables

The last two have a specific name prefix requirement, a single and

double dollar sign respectively. In addition, these general naming

guidelines for all variables should be considered:

Avoid keywords and field names to avoid confusion.

Be concise; keep the name as short as possible to save space and

avoid clutter.

Be descriptive; make sure the name is clear and indicates what data it

will contain.

Be consistent in case; choose “camel case” (variableNameExample),

dot-delimited (variable.name.example), underscore delimited

(variable_name_example) or some other format and then stick with it

throughout the database.

Caution Using dot-delimited naming may cause conflicts with JSON

functions!

Local Let Statement Variable

A local Let Statement variable is a variable that is created and accessible

within a single Let statement (Chapter 21). These variables exist

temporarily during the evaluation of the calculation portion of the

statement. Except for the normal restrictions, FileMaker imposes no

naming requirements to a local variable defined in a Let statement.

Names can be as short as a single character or a lengthy, multi-word

phrase. For example:

x

data

firstName

first_Name

dateToProcess

table.name

Since these variables are temporary and only accessible from within

the confines of the Let statement in which they are defined, there is no

fear of them conflicting with variables in other formulas or within the

same formula outside of the Let statement containing them. Therefore, to

maintain consistency, standardized names can be reused from one

formula to the next without concern about them overwriting each other.

Local Function or Script Variable

A local variable is a variable that persists temporarily during the

evaluation of a custom function or the execution of a script. A local

variable can be initialized by two different methods:

Within a Let function (Chapter 21)

Using the Set Variable script step (Chapter 35)

Local variables are used for a variety of purposes, including:

Storing information at one position in a script for use later in the same

script

Sharing information between a script and a custom function

Storing results or control values from one iteration to the next in a

recursive custom function (Chapter 25)

FileMaker requires that local variables be named with a single dollar

symbol prefix. Beyond that, the name can be as short as a single

character or a lengthy, multi-word phrase and can use any of a variety of

delimiters. For example:

$data

$firstName

$recordNumber

$dateToProcess

$date.to.process

$date_to_process

Since these variables are shared within a script but not between

scripts, there is no fear of them conflicting with variables in other scripts.

For consistency, standardized names can be reused from one script to the

next without concern about them conflicting with each other.

Local variables can be monitored in the Data Viewer during the

execution of a script (Chapter 36).

Caution Local variables with the same name can conflict when a

script calls a custom function multiple times.

Global Database Variable

A global database variable is a variable that is globally accessible from

any formula anywhere within a single database file and will persist until

the file is closed. Like local variables, a global variable can be initialized

by two different methods:

Within a Let function.

Using the Set Variable script step.

They are used for a variety of storage purposes, such as:

The storage of custom preferences and settings for variable behavior

within a database.

The storage of temporary data being prepared for some output or

reporting use.

The storage of troubleshooting information to help track down

problems in complex multi-script processes.

Tip To avoid clutter and confusion, global variables should not be

overused. Limit their use to information that is truly required

universally within the file due to widespread use by scripts and

calculations. Avoid using global variables to pass information between

scripts by using parameter passing instead (Chapter 34).

FileMaker requires that global variables be named with a double dollar

symbol prefix. Beyond that, names can be as short as a single character

or a lengthy, multi-word phrase and can use any of a variety of delimiters.

For example:

$$data

$$firstName

$$recordNumber

$$dateToProcess

$$date.to.process

$$date_to_process

Since these variables are global, they must each be uniquely and

carefully named to avoid confusion and conflicts with other global

variables in the same file. However, since they are not shared between

files, standardized names can be reused from one database to the next

without concern about them conflicting with each other.

Global variables can be monitored in the Data Viewer (Chapter 36).

Exploring the Calculation Interface

For now, we will write formulas exclusively in the Example Calculation

field of the Sandbox table in our Learn FileMaker database.

To get started experimenting with the examples in this chapter, follow

these steps:

1. Open the Learn FileMaker database.

2. Switch to the Sandbox layout.

3. Select the File > Manage > Database menu item.

4. Click on the Fields tab.

5. Choose Sandbox from the Tables pop-up on the upper left.

6. Click on the Example Calculation field.

7. Click the Options button.
That should open the Specify Calculation dialog window.

Exploring the Specify Calculation Dialog

All calcuations are written in a Specify Calculation dialog, shown in Figure

12-2. The empty text area in the center of the dialog is where you enter

and edit formula code. Surrounding this are several lists that can assist in

building a formula and other elements that give you control over certain

behaviors.

Figure 12-2. The Specify Calculation dialog window

While these controls will be explained in more detail as we create some

example formulas, let’s take a brief tour to become familiar with these

controls:

1. Formula Text Area — This central text area is where the

calculation formula is written. You can type, drag-drop, copy-

paste, or insert content by clicking on the panels to the left and

right.

2. Field Selector Pane — These controls assist with the insertion of

a selected field reference into the formula.

3. Context Indicator — When defining a field, formulas require the

selection of a table occurrence to act as the context from which

the formula will be evaluated. If only one occurrence is available

for the table the menu will be disabled. If the formula evaluates

from the context of the current window, the menu will be

hidden.

4. Operators — Click on any of these buttons to add the

corresponding operator at the insertion point within the text of

the formula.

5. Help Icon — Click for the documentation web page of

information about this window and its functions.

6. Functions Pane Toggle Button — Click this icon to toggle the

visibility of the Functions Pane below.

7. Functions Pane — These controls allow functions to be selected

and added into the formula.

8. Calculation Result Data Type — Field definition formulas require

selection of the resulting data type from this pop-up menu;

other formulas mandate a data type based on the object or

property to which the formula pertains. For example, button

labels must be text, layout number must be a number, etc.

9. Number of repetitions — Field definition formulas can be made

repeating by entering a number into this text area.

10. Do not evaluate checkbox — Checking this box will cause the

calculation to not evaluate and automatically return no value if

calculation to not evaluate and automatically return no value if

every field referenced within it is empty.

11. Storage options — This button opens a dialog containing

indexing and other storage options for calculation fields.

12. Buttons — Click the Cancel button to close the window without

saving changes. Click OK to save changes and close the window.

Writing Formulas

Formulas can contain any combination of components and range greatly

in complexity. Before attempting to write your first masterpiece of coded

wizardry, take a moment to work through some simple examples that

demonstrate the basic concepts involved.

Getting Started with Simple Formulas

Working through some simple formula examples, starting with the most

basic and gradually expanding is a great way to quickly learn the basics.

All the examples in this section assume the formula is being typed into

the Sandbox::Example Calculation field in the Learn FileMaker database,

so you can see the results on the Sandbox Form layout.

Constant-Only Formula

A constant-only formula is a formula that evaluates to a literal value

without performing any actual operations. It is basically a statement

containing a single value that will evaluate to a result of the same value.

These have a practical value as a way of storing static information such

as a current tax rate or value(s) used as a relationship match field to

connect to a subset of related records of a certain type. For now, it will

serve as the most basic example to get us started writing a simple

formula.

To create your first constant-only formula, enter the value below and

select a calculation result data type of “text.”

"Hello World"

The dialog should now look like the one shown in Figure 12-3.

Figure 12-3. A simple “Hello World” calculation formula

Click the OK button to save the formula. The Example Calculation field

on the layout should now display the text “Hello World” on every record. It

is the same on each record because the formula returns a static value. For

it to vary from one record to the next, the expressions must contain some

variable components such as field values that change from one record to

the next.

Creating Intentional Errors

Before moving forward, let’s pause to clarify the difference between a

syntax error and a result error.

A syntax error is an error with the format or language of the code

entered causing it to fail to compile. To illustrate this with the simple

constant formula, remove the final quotation symbol from the formula:

"Hello World

When you then click the OK button, FileMaker should display the error

dialog message shown in Figure 12-4. When a syntax error is detected,

FileMaker will not allow you to save the formula until it is correctly

formatted.

Figure 12-4. An example error message for formula syntax errors

By contrast, a result error is a resulting question mark that indicates a

problem with the formulas settings or a component used within one or

more of its operations.

To illustrate this, restore the formula’s closing quote mark to eliminate

the syntax error. Then change the calculation result to date, time, or

timestamp. FileMaker will let you save the formula because the syntax is

correct even though you have selected a result type inconsistent with the

type of data (text) being returned by the calculation. When you look at

the field on a record, the result will be displayed as a question mark.

Try each data type and see how the results vary.

"Hello World"

// result as text = Hello World

// result as number = Hello World

// result as date = ?

// result as time = ?

// result as timestamp = ?

// result as container = Hello World

Three of the data types will result in an error. However, even though

the number and container results appears to display the correct

information, the data in the field will not necessarily behave the way you

might expect when searching, sorting, or using the information in other

formulas. FileMaker will assume the data is the type you specify in the

calculation result setting and this could cause more obvious problems

elsewhere in both behavior and performance.

Caution Troubleshooting error results is a necessary skill as

databases develop and begin to involve more and increasingly complex

formulas.

Experimenting with Storage Options

As with entry fields, calculation fields have editable storage options that

control how the result of a formula is stored. These are edited in a Storage

Options dialog, shown in Figure 12-5.

Figure 12-5. The Storage Options dialog with indexing disabled

The global storage and indexing features work the same as they do for

Entry fields (Chapter 8). However, there is an additional option for

indexing; Do not store calculation results. This feature is used to force a

calculation to never automatically index results and instead to always

recalculate a result anytime the field is accessed or displayed.

To illustrate the importance of this feature, restore the formula in the

Sandbox::Example Calculation field to the original example — a result

type of Text and the following formula:

"Hello World"

Save the formula and confirm that the field displays correctly on

records viewed on the Sandbox layout. Once confirmed, open the formula

again and type two forward slashes in front of the text to convert it into a

comment. Now the formula should look like this:

// "Hello World"

Without making other changes, save the formula and again view it on

the Sandbox layout. Don’t be surprised if it still displays the value “Hello

World” as if nothing changed. Select the Record > New Record menu and

notice that the new record will correctly display a blank value in the field.

The reason for this is the indexing setting for the calculation field.

While other field types use index settings primarily to pre-process data in

a way that will speed up searches and help establish relational

connections, a calculation field may not refresh its result when nothing

else triggers it to reevaluate, especially when the index settings forbids it.

If you change and save a formula significantly, it will prompt every

record to refresh the results. For example, change the formula for the

Sandbox::Example Calculation field to a completely different text constant

and when you save, every record will update to display the new value.

However, as the example above demonstrates, FileMaker doesn’t always

force a simple calculation to update when its text constant is commented

out or some other minor change is made. To make our simple example

work correctly, follow these steps to turn indexing completely off for the

calculation field:

1. Open the formula.

2. Click the Storage Options button.

3. Check the Do not store calculation results check box.

4. Click OK to close the Storage Options dialog.

5. Click OK to save the formula.
This simple example isn’t practical and not representative of the kinds

of challenges you will face with indexing. However, there will be many

times when you need to adjust the index settings. It will take you some

time to gain experience to know what will force an update or not. For

example, a formula that uses built-in functions to return contextual values

such as the number of records in the found set or the current record

number within the found set will require the Do not store calculation

results selected to update as you would expect when the user navigates

through a found set. By contrast, formulas that include references to

fields will update automatically when those field values are modified,

even when indexing is allowed.

Inserting Components into Formulas

Within the calculation area, you can enter field references, functions, and

other components by various methods including, typing, copying-pasting,

dragging-dropping, or double-clicking on a field or function from the

panels on either side of the dialog.

Using Auto-Complete

When typing the examples in this chapter so far, you may have noticed

FileMaker presenting an auto-complete suggestion interface that

continuously filters based on the word you are typing. In the example

shown in Figure 12-6, after typing just the letter “E,” a list of available

components is presented including a mixture of every built-in function,

custom function, and field that contains the letter “E”.

Figure 12-6. An example of the auto-complete function when typing into formulas

As you continue typing — “Ex,” “Exa,” “Exam” — you will see the list

continuously filter the list down until you see only a list of our example

fields.

When the auto-complete list appears, you have the option to ignore it

and continue typing or to use it to automatically insert a value from the

list. To do so, select the desired item and initiate its entry into your

formula.

To select an item from the auto-complete list, you can either:

Use the cursor to scroll the list and click directly on an item.

Navigate up and down the list using the Up and Down arrow keys.

Continue typing enough text until the desired item is at the top of the

list and selected.

As your selection changes within the list of available components, the

text in the shaded area at the bottom will update to display a brief

description of the current selection. Function and field descriptions will

appear here.

Once you have selected the desired component, you can enter it into

the formula by either typing Enter or double-clicking on it in the list.

Tip For the fastest entry method using auto-complete, skip the cursor

and arrow keys. Instead, type just enough of the component’s name

until it appears at the top of the list and then type Enter.

Using the Field Selection Panel

The field selection panel, shown in Figure 12-7, is used to locate and

quickly insert a reference to a local or related fields.

Figure 12-7. The field selection panel

The following controls are available to aid in the location and selection

of a field:

1. Table occurrence menu — The pop-up menu at the top will

default to the current context’s table. For a calculation field, this

means the table containing the field. When working with formulas

for script steps or other interface components, this will be the

table of the layout in the current window.

2. Filter search field — This text area is used to enter a search value

that will narrow the list of fields.

3. Field sort menu — Click this icon to open a pop-up menu of sort

options for the list of fields below. The available choices are the

same as the sort options in the Fields tab of the Manage

Database dialog:

a. Creation order

b. Field Name

c. Field Type

d. Custom Order

4. Field list — This list displays the fields for the selected table

occurrence that match any search filter criteria entered, sorted in

the order indicated by the sort menu.

Once a field is selected, double-click it to add it to the formula at the

insertion point.

Handling Empty Fields

At the bottom of the Specify Calculation dialog is a check box labeled

Don't evaluate option when fields empty. Enabling this box instructs

FileMaker that the formula should not be evaluated when all the fields

referenced within are empty. This is an easy way to eliminate a little

unnecessary processing for instances where the result in such a case

would be an empty value anyway. However, if the formula has a condition

that will return a constant or other value when all the referenced fields

are empty, be sure to uncheck this box.

Using the Function Selection Panel

Locating, selecting, and inserting a function through the Specify

Calculation dialog interface is done using the function selection panel,

shown in Figure 12-8. This panel contains a list of every built-in function,

custom functions that you have added, and functions from any external

plug-ins that are installed.

Figure 12-8. The function selection panel

The following controls are available to aid in the location and selection

of a function:

1. Filter search field — This text area is used to enter a search value

that will narrow the list of functions.

2. Function option menu — Click this icon to open a pop-up menu of

options for the list of functions below. There are choices:

Show and organize All functions by name.

Show and organize All functions by type.

Show one selected category of functions sorted by name.

3. Function list — This list displays either all installed functions or

those matching the sort/category menu selection.

Once the function is selected in the list, double-click it to add it to the

formula at the insertion point. For a complete reference list of all available

built-in functions, see Chapters 13-24.

Creating Repeating Calculation Fields

A calculation field can be defined to be repeating by entering a number in

the Number of repetitions text area at the bottom of the Specify

Calculation dialog. A repeating calculation works like a repeating entry

field (Chapter 8). However, since returning a repeating calculated result is

slightly more complex than simply allowing data entry in multiple

repetitions of a field, there are a few different techniques and built-in

functions that are crucial to consider when using this feature.

Using Repeating Fields in a Repeating Calculation

The most straightforward situation for a repeating calculation is to

manipulate repeating fields where all fields involved are configured with

the same number of repetitions. The example illustrated in Figure 12-9

involves two entry fields containing numbers that are added into a sum

within a calculation field. Each field is defined with three repetitions.

Figure 12-9. An illustration of a simple repeating calculation, manipulating values in other

repeating fields

In this example, the calculation field’s formula would be defined to add

the numbers together:

Repeating Number 1 + Repeating Number 2

This formula will be automatically applied to each set of repetitions,

and the resulting value for each is placed into the corresponding

repetition in the calculation field.

Using Non-Repeating Fields in a Repeating

Calculation

When non-repeating fields are used in a repeating calculation, the formula

must use the Extend function (Chapter 19) to extend the non-repeating

field out to match the number of repetitions required to work in the

repeating calculation. The example illustrated in Figure 12-10 involves

one single-repetition entry field containing a single number, another entry

field with three repetitions, and a calculation field with three repetitions.

Figure 12-10. An illustration of a repeating calculation manipulating a mixture of repeating and

non-repeating fields

For the formula to successfully add the value in the non-repeating field

to each value in the repeating field and generate three results, one in

each repetition, the calculation formula would be defined as follows:

Extend (Non-Repeating Number) + Repeating Number

This essentially duplicates the single value in the non-repeating field

value into three separate virtual repetitions, each populated with the

same value, as if it were a repeating the same number of times as the

other field(s) involved in the calculation.

Other Repetition Functions

Other built-in functions that are useful in both repeating and non-

repeating calculations include:

Get (ActiveRepetitionNumber) — This function returns a number

indicating which repetition of the current field has the cursor focus

(Chapter 22).

Get (CalculationRepetitionNumber) — This function returns a number

indicating which repetition of the repeating field is currently being

evaluated, allowing a calculation field formula to know which

repetition of its own structure is currently being evaluated (Chapter

22).

Get Repetition — This function returns the value from a specified

repetition of a specified field (Chapter 19).

Using Space to Your Advantage

FileMaker enforces syntax rules to confirm the integrity of a formula. For

example, literal text must be enclosed within quotes and all parentheses

must be properly closed. However, extra spaces, tabs, and carriage

returns, outside of quoted text, can be added throughout a formula to

spread out the code and make it easier to read without affecting the

syntax of the formula.

Throughout the examples in this book, the space-expanding

techniques described here are used to make the code more readable in

print. However, these practices can and should be followed when writing

actual code to make it more readable and easier to edit.

Adding a Space Between Items

Adding a space between operators, function names, and delimiters will

spread everything out horizontally and make the code much easier to

read.

Each of the following statements exhibit some level of crowding, which

makes them difficult to read and visually evaluate.

(150+50)/25

$FirstName&$Space&$LastName

Get(CurrentDate)

With space added, these will function the same, but are now easier to

read.

(150 + 50) / 25

$FirstName & $Space & $LastName

Get (CurrentDate)

Expanding Complex Statements

Some functions quickly become difficult to follow once they reach a

certain size. The Case, Let, and Substitute functions are especially prone

to this. Adding horizontal space helps but it’s not enough. When

statements grow and include lengthy and complex expressions, consider

using tabs and carriage returns to help spread them out onto multiple

lines.

To illustrate this point, consider the following hypothetical formula that

will accept a field or static value in place of the Input placeholder and

return that value with the number of characters it contains in

parentheses. For example, if Input = "Hello World" the result will be "Hello

World (11)" with 11 being the count of characters in the input. To

accomplish this, the formula uses a Case statement nested within a Let

statement. With no extra spaces, it is difficult to read.

Let([data=Input];data&Case(data≠"";" (" & Length(data)&")"))

Adding spaces between components helps a little, but even this short

example is still somewhat visually hard to follow.

Let ([data = Input] ; data & Case (data ≠ "" ; " (" & Length (data) &

")"))

In addition to the spaces between components, by adding tabs and

carriage returns, the formula is expanded in away that separates and

highlights the inner portions of the two statements.

Let ([

 data = Input

] ;

 data &

 Case (

 data ≠ "" ; " (" & Length (data) & ")"

)

)

The benefit of this approach becomes even more apparent when the

formula begins to grow. Just imagine the example below expressed as a

continuous string without spaces, tabs, or returns.

Let ([

 data1 = input1 ;

 data2 = input2 ;

 data3 = input3 ;

 data4 = input4 ;

 data5 = input5 ;

] ;

 Case (

 data1 ≠ "" ; data1 & " (" & Length (data1) & ")" ;

 data2 ≠ "" ; data2 & " (" & Length (data2) & ")" ;

 data3 ≠ "" ; data3 & " (" & Length (data3) & ")" ;

 data4 ≠ "" ; data4 & " (" & Length (data4) & ")" ;

 data5 ≠ "" ; data5 & " (" & Length (data5) & ")" ;

)

)

The Substitute function can benefit greatly from indentation and

carriage returns when it contains numerous find-replace value pairs. This

example shows a formula for a hypothetical statement where each of five

find-replace value pairs is on its own line, making the overall statement

easy to view and edit:

Substitute (

 input ;

 [find1 ; replace1] ;

 [find2 ; replace2] ;

 [find3 ; replace3] ;

 [find4 ; replace4] ;

 [find5 ; replace5]

)

Managing Formulas That Exceed 30,000 Characters

While it is unlikely to happen, the more complex your formulas become

the greater the odds are of bumping into FileMaker’s limit of 30,000

characters. As this happens, many will avoid adding additional spaces,

tabs, and carriage returns to save space. However, there are techniques

that can be employed to manage space without requiring code to become

condensed and less readable. These include:

Split up the formula into multiple variables or fields.

Use the Let command to condense lengthy and repeated field

references into short variables. For example, Contact::Contact Name

First can be placed into a variable called n.first and used repeatedly,

with each subsequent instance using up less space.

Offload some of the formula to a custom function (Chapter 25).

Adding Calculations to the Learn FileMaker

File

Maintaining the Sandbox table for calculation experimentation, let’s add a

couple of simple calculation fields to the Company and Contact tables.

Company Contact Count

In the Company table, add a new calculation field called Company

Contact Count and define the formula to get a count of the related

contact records, following these steps:

1. On the Fields tab of the Manage Database dialog, select the

Company table.

2. Enter the name for the new field, select Calculation as the type,

and click the Create button.

3. Select the Company | Contact table occurrence from the pop-up

menu in the field selection panel on the left side of the dialog.

4. Begin typing “Count” and select the Count function from the

auto-complete list.

5. Double-click on the Record ID field from the Company | Contact

table occurrence.

6. Make sure the Calculation result type is Number.

7. If the formula reads Count (Company | Contact::Record ID) click

OK to close the Specify Calculation dialog.

Contact Address Label

In the Contact table, add a new calculation field called Contact Address

Label and define the formula to contain the address formatted as a single

text value. The formula will look like this:

Contact::Address Street & "¶" &

Contact::Address City & ", " & Contact::Address State & " " &

Contact::Address Zip & "¶" &

Contact::Address Country

Note The examples provided in this chapter are relatively simple.

More complex calculations will appear throughout the remaining

chapters.

Summary

In this chapter, we discussed the basics of writing formulas.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_13

13. Text Functions

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Text functions are used to analyze, convert, combine,

extract, and create text strings.

Text Function Reference

FileMaker provides the following text functions:

Char

Code

Exact

Filter

FilterValues

Furigana

GetAsCSS

GetAsDate

GetAsNumber

GetAsSVG

GetAsText

GetAsTime

GetAsTimestamp

GetAsURLEncoded

GetValue

Hiragana

KanaHankaku

KanaZenkaku

KanjiNumeral

Katakana

Left

LeftValues

LeftWords

Length

Lower

Middle

MiddleValues

MiddleWords

NumToJText

PatternCount

Position

Proper

Quote

Replace

Right

RightValues

RightWords

RomanHankaku

Roman Zenkaku

Serial Increment

SortValues

Substitute

Trim

TrimAll

UniqueValues

Upper

ValueCount

WordCount

Char

The Char function converts a number into its equivalent

Unicode text character.

Format Char (number)

Parameters number = a number between 1 and 99,999.

Result The Unicode text character for number provided.

More Info For a complete list of available Unicode numbers visit:

http://www.ssec.wisc.edu/~tomw/java/unicode.html .

These examples show the function operating on different

input:

Char (65) // result = "A"

Char (97) // result = "a"

Char (0) // result = "" (an empty string)

Char (9) // result = "" (a tab character)

http://www.ssec.wisc.edu/~tomw/java/unicode.html

Code

The Code function converts a text value into an equivalent

Unicode number.

Format Code (text)

Parameters text = a text value.

Result The number for the Unicode text character provided.

These examples show the function operating on different

input:

Code ("A") // result = 65

Code ("a") // result = 97

Code ("") // result = 0

Exact

The Exact function compares two values and determines if

they are the same or not. The function is case sensitive and

looks for precisely the same characters unlike a simple

comparison with the is equal to operator.

Format Exact (originalText ; comparisonText)

Parameters originalText = any data type.

comparisonText = any data type.

Result A Boolean as follows:

1 = the two values are an exact match.

0 = the two values are not an exact match.

Here are some examples of comparing text constants:

Exact ("A" ; "B") // result = 0

Exact ("A" ; "A") // result = 1

Exact ("Hello World" ; "World Hello") // result = 0

To see the how this function differs from the is equal to

operator when comparing values of different cases:

"a" = "A" // result = 1

Exact ("a" ; "A") // result = 0

Comparing text constants to field contents, these

examples assumes a record in a Contact database with two

fields: State containing a value of “NY” and “Age” containing

a value of 21.

Exact (Contact::State ; Age) // result =

0

Exact (Contact::State ; "PA") // result = 0

Exact (Contact::State ; "NY") // result =

1

Exact (Contact::Age ; 21) // result = 1

Exact (Contact::State & Contact::Age ; "NY21") //

result = 1

Examples of comparing other data types, including

container fields:

Exact (150 ; 150) // result = 1

Exact ("1/15/2017" ; $LastDate) // result

= 1

Exact (Photo::Image1 ; Photo::Image2) //

result = 0

Filter

The Filter function removes any unwanted characters from a

text value.

Format Filter (textToFilter ; filterText)

Parameters textToFilter = a text value to be filtered.

filterText = a string of the characters that are allowed to remain;

any character not listed will be removed from textToFilter.

Result The text from textToFilter without any unwanted characters not

specified in filterText.

Here are some examples of removing any non-numeric

characters:

Filter ("Hello World" ; "1234567890") // result

= ""

Filter ("1 Hello 2 World 3" ; "1234567890") //

result = "123"

Filter ("Las Vegas, NV 89101" ; "1234567890") //

result = "89101"

Filter ("(212) 555-1234" ; "1234567890") //

result = "2125551234"

Here is an example of removing anything besides a dollar

amount:

Filter ("The total purchase is $5,000.00" ;

"1234567890$.,") // result = "$5,000"

FilterValues

The FilerValues function removes out any unwanted values

from a list of values.

Format FilterValues (textToFilter ; filterValues)

Parameters textToFilter = a carriage return-delimited list of text values to be

filtered.

filterValues = a carriage return-delimited list of text values that

are allowable; any values not listed will be removed from

textToFilter.

Result The text from textToFilter without any unwanted values not

specified in filterValues.

Here are some examples of removing a list of constants:

FilterValues ("One¶Two¶Three¶Four" ; "Two¶Four") //

result = "Two¶Four"

FilterValues ("NY¶IN¶OH¶PA" ; "PA¶NY") //

result = "NY¶PA"

Furigana

The Furigana function converts Japanese text into one of

five different alternatives. For more information on Japanese

functions, see FileMaker’s documentation.

GetAsCSS

The GetAsCSS function converts formatted text into the

Cascading Style Sheet (CSS) format, thereby preserving the

font, font size, font color and font style attributes.

Format GetAsCSS (text)

Parameters text = a text value.

Result The text provided with all formatting information converted into

CSS tags.

Converting the text from a field, this example assumes a

record in a Contact table with a field named First Name that

contains the name “John” where the font is “Arial,” the font

size is 18 pt, the font style is bold, and the font color is red:

GetAsCSS (Contact::First Name)

// result = <span style="font-family: 'Arial';font-size:

18px; color: #FF2712;font-

 weight:bold;" >John

GetAsDate

The GetAsDate function converts a text-based date into a

date object to ensure proper results when compared to or

sorted with other dates.

Format GetAsDate (text)

Parameters text = a date in a text string with a format consistent with the

operating system date format or a number indicating the number

of days that have passed since January 1, 0001; works up to

1460970 (December 31, 4000).

Result The text provided formatted as a date object.

Dates can contain leading zeros or not, as shown in these

examples:

GetAsDate ("1/5/2017") // result = 1/5/2017

GetAsDate ("01/05/2017") // result = 1/5/2017

Dates should always contain a four-digit year to ensure

correct handling. However, this function will handle dates

with two-digit years with pretty good results if the intented

four-digit year is either within the next 30 years or the

preceding 70 years from the current date. Outside of that

range you may get unexpected results if you don't use four-

digit years. These examples assume a current date of

January 5, 2017:

GetAsDate ("1/5/17") // result = 1/5/2017

GetAsDate ("1/5/95") // result = 1/5/1995

GetAsDate ("1/5/50") // result = 1/5/1950

When a number is provided, it is used to calculate the

number of days that have passed since January 1, 0001. For

example:

GetAsDate (736334) // result = 1/5/2017

GetAsNumber

The GetAsNumber function converts a text-based number

value into a number object to ensure proper results when

compared to or sorted with other numbers.

Format GetAsNumber (text)

Parameters text = a number in a text string.

Result The text provided formatted as a number.

When providing numbers as text, they are converted

back into numbers. For example:

GetAsNumber ("1234") // result = 1234

GetAsNumber ("015") // result = 15

GetAsNumber ("13.75") // result = 13.75

Here are some examples of converting values that

contain non-numeric characters:

GetAsNumber ("$25.09") // result = 25.09

GetAsNumber ("He ran 9.75 miles.") // result = 9.75

In some cases, relying on automatic filtering of non-

numeric characters might not provide in a desirable result.

For example:

GetAsNumber ("3 men ran 9.75 miles.") // result =

39.75

The examples below assume a value of “03” is contained

in a text field called Qty. They show the importance of

converting text into numbers when comparing to other

numeric values. Because of the leading zero on the text-

based number in the field, the two values don't appear to be

the same (in the first example) until the text is converted to

a number (in the second example).

(3 = Qty) // result = 0

(3 = GetAsNumber (Qty)) // result = 1

The examples below assume a value of “20” is contained

in a text field called Qty. Since it is a text value, 20 will

appear as a smaller value than 3 because the text is

compared character by character rather than the entire

value compared as a number. Once converted to text, as

shown in the second example, it evaluates correctly.

(3 > Qty) // result = 1

(3 > GetAsNumber (Qty)) // result = 0

GetAsSVG

The GetAsSVG function converts text to the Scalable Vector

Graphics (SVG) format, which supports more text formats

than HTML so it may represent text more accurately in some

cases.

Format GetAsSVG (text)

Parameters text = any text.

Result The text provided with all formatting information converted into

SVG tags.

The example below assumes a record in a Contact table

with a field named First Name that contains the name “John”

where the font is “Arial,” the font size is 18 pt, the font style

is bold, and the font color is red.

GetAsSVG (Contact::First Name)

// result =

 <stylelist>

 <style#0>"font-family: 'Arial';font-size: 18px;color:

#FF2712;font-weight: bold;",

 begin: 1, end: 4</style>

 </stylelist>

 <data>

 John

 </data>

GetAsText

The GetAsText function converts a number, date, time, or

timestamp expression or any field containing any data type

(including containers) into text.

Format GetAsText (data)

Parameters data = any text-based data (non-container).

Result The data provided formatted as text.

No matter the type of data, it will be converted into a

text string as seen in these examples:

GetAsText (58.75) // result = "58.75"

GetAsText (05:15:00) // result = "5:15:00"

GetAsText (6/30/2016 5:20:49 PM) // result =

"6/30/2016 5:20:49 PM"

A container field that contains a reference to an image

file will return the metadata in the form of name, size, and

path of the file as shown in this example:

GetAsText (Contact::Image)

// result =

 size:191,175

 image:Mark Munro.jpg

 imagemac:/Macintosh

HD/Users/admin/Desktop/Mark Munro.jpg

If the field contains an image rather than just a

reference, the function returns the name of the image file as

shown in this example:

GetAsText (Contact::Image) // result = Mark

Munro.jpg

GetAsTime

The GetAsTime function converts a text-based time or

timestamp value into a time object to ensure proper results

when compared to or sorted with other times.

Format GetAsTime (text)

Parameters text = a time or timestamp in a text string with a format

consistent with the operating system date.

Result The text provided formatted as time.

Only text strings containing time values will be properly

converted. For example:

GetAsTime ("5:15:00") // result = 5:15:00

GetAsTime ("Hello World") // result = ?

GetAsTimestamp

The GetAsTimestamp function converts a text-based time or

timestamp value into a time object to ensure proper results

when compared to or sorted with other times.

Format GetAsTimestamp (text)

Parameters text = a date, time or timestamp as a text string with a format

consistent with the operating system date and time, or a number

indicating the number of seconds that have passed since January

1, 0001.

Result The text provided formatted as a timestamp.

When the text contains full timestamp information, it is

converted into the proper data format as shown in this

example:

GetAsTimestamp ("1/5/2017 5:15:00") // result =

1/5/2017 5:15:00

If a date is provided without time information, the

function returns a timestamp for midnight on the specified

date, as shown here:

GetAsTimestamp ("1/1/2017") // result =

1/1/2017 12:00 AM

If only a number is provided, the function returns

timestamp for that number of seconds since 1/1/0001, as

shown here:

GetAsTimestamp (100000) // result =

1/2/0001 3:46:40 AM

GetAsURLEncoded

The GetAsURLEncoded function encodes text for use in a

Uniform Resource Locator (URL) as follows:

All style information is removed from the text.

The characters are converted to UTF-8 format.

Any characters that are not a letter or digit, or are in the

upper ASCII range are percent encoded, meaning they

are converted to a percent symbol followed by the

hexadecimal value of the character (%HH).

Format GetAsURLEncoded (text)

Parameters text = a text value.

Result The text provided encoded for use in a URL.

More Info For more information on URL encoding, visit:

http://www.w3.org .

These examples show how some characters will be

percent encoded:

GetAsURLEncoded ("Hello World") // result =

"Hello%20World"

GetAsURLEncoded ("10% Surcharge") // result

"10%25%20Surcharge"

GetValue

The GetValue function extracts a value from a list of values.

Format GetValue (listOfValues ; valueNumber)

Parameters listOfValues = a carriage return-delimited list of text values.

valueNumber = a number specifying the desired value to extract

from the list.

Result The text of the specified value from the list provided.

http://www.w3.org/

Some examples showing the specified value will be

returned:

GetValue ("John¶Jane¶Jim¶Joe¶" ; 3) // result = "Jim"

GetValue ("159¶245¶396¶721¶" ; 2) // result = = 245

If the specified value is greater than the number of

values in the list, an empty string will be returned, as shown

in this example:

GetValue ("John¶Jane¶Jim¶Joe¶" ; 18) // result = ""

Hiragana

The Hiragana function converts Katakana (Hankaku and

Zenkaku) in text to Hiragana. For more information on

Japanese functions, see FileMaker’s documentation.

KanaHankaku

The KanaHankaku function converts Zenkaku Katakana in

text to Hankaku Katakana. For more information on

Japanese functions, see FileMaker’s documentation.

KanaZenkaku

The KanaZenkaku function converts Hankaku Katakana in

text to Zenkaku Katakana. For more information on Japanese

functions, see FileMaker’s documentation.

KanjiNumeral

The KanjiNumeral function converts Arabic numerals to

Japanese Kanji numerals. For more information on Japanese

functions, see FileMaker’s documentation.

Katakana

The Katakana function converts Hiragana in text to Zenkaku

Katakana. For more information on Japanese functions, see

FileMaker’s documentation.

Left

The Left function extracts a specified number of characters

from the provided text starting from the first character on

the left.

Format Left (text ; numberOfCharacters)

Parameters text = any text from which to extract characters.

numberOfCharacters = a number indicating how many characters

to extract.

Result A text string containing the specified number of characters from

the text provided.

Here is an example showing the number of characters

specified being returned:

Left ("Hello World" ; 8) // result = "Hello Wo"

When the number specified is greater than the number of

characters in the text provided, the function will return the

original value, as shown in this example:

Left ("Hello World" ; 28) // result = "Hello World"

LeftValues

The LeftValues function extracts a specified number of

values from a list of values starting from the first value.

Format LeftValues (text ; numberOfValues)

Parameters text = a carriage return-delimited list of text values.

numberOfValues = a number indicating how many values to

extract.

Result The specified number of carriage return-delimited list of text

values from the text provided.

Some examples showing the number of values specified

extracted:

LeftValues ("John¶Jane¶Jim¶Joe¶" ; 2) // result =

"John¶Jane"

LeftValues ("159¶245¶396¶721¶" ; 3) // result =

"159¶245¶396

When the number specified exceeds the available values,

the entire text provided will be returned, as shown in this

example:

LeftValues ("John¶Jane¶Jim¶Joe¶" ; 10) // result = "

John¶Jane¶Jim¶Joe¶"

LeftWords

The LeftWords function extracts a specified number of words

from the text provided, starting from the first word on the

left.

Format LeftWords (text ; numberOfWords)

Parameters text = a text value from which words will be extracted.

numberOfWords = a number indicating how many words to

extract.

Result A text string containing the requested number of words from the

text provided.

The specified number of words will be returned with any

punctuation that falls within the range, as shown here:

LeftWords ("Hello World. How are you?" ; 3) // result =

"Hello World. How"

When punctuation falls at the end of the range, will not

be included, as shown here:

LeftWords ("Hello World. How are you?" ; 2) // result =

"Hello World"

Length

The Length function counts the number of characters in a

piece of text.

Format Length (text)

Parameters text = any text, number, date, time, timestamp or container

value.

Result A number indicating the count of characters in the text provided.

Any text will be counted as part of the length, as shown

here:

Length ("Hello World") // result = 11

This example shows that odd results can be expected

when providing non-text values:

Length (1/15/2017) // result = 17

Lower

The Lower function transforms a text string into all

lowercase.

Format Lower (text)

Parameters text = a text value.

Result The text provided converted to all lowercase.

These examples show the function operating on different

input:

Lower ("Hello World") // result = "hello world"

Lower ("THIS IS SCREAMING") // result = "this is

screaming"

Middle

The Middle function extracts a specified number of

characters from a specified position within a text string.

Format Middle (text ; start ; numberOfCharacters)

Parameters text = a text value from which to extract characters.

start = a number indicating the character position from which to

start the extraction.

numberOfCharacters = a number indicating the quantity of

characters to extract from the starting position.

Result A text string containing only the requested characters from the

specified location within the text provided.

These examples show the function operating on different

input:

Middle ("Hello World" ; 7 ; 5) // result = "World"

Middle (123456789 ; 4 ; 3) // result = 456

MiddleValues

The MiddleValues function extracts a specified number of

values from a list of values starting from a specified value.

Format MiddleValues (text ; startingValue ; numberOfValues)

Parameters text = a text value containing a carriage return-delimited list of

text values.

startingValue = a number indicating the value from which to start

the extraction.

numberOfValues = a number indicating how many values to

extract from the starting value.

Result The specified number of carriage return-delimited list of text

values from the text provided.

Here is an example showing the extraction of two values

from the middle of a list of values:

MiddleValues ("John¶Jane¶Jim¶Joe¶" ; 2 ; 2) // result =

"Jane¶Jim¶"

MiddleWords

The MiddleWords function extracts a specified number of

words from the text provided, starting from a specified

word.

Format MiddleWords (text ; startingWord ; numberOfWords)

Parameters text = a text value.

startingWord = a number indicating the word from which to start

the extraction.

numberOfWords = a number indicating how many words to

extract from the starting word.

Result A text string containing the requested number of words from the

specified location within the text provided.

Here is an example of extracting two words from the

middle of some text:

MiddleWords ("Hello World. How are you?" ; 3 ; 2) //

result = "How are"

NumToJText

The NumToJText function converts Arabic numerals to

Japanese text. For more information on Japanese functions,

see FileMaker’s documentation.

PatternCount

The PatternCount function counts of the number of times a

specific pattern of text appears in the text provided.

Format PatternCount (text ; searchString)

Parameters text = a text value in which a pattern will be detected.

searchString = a text value that will be searched for in the text

provided.

Result A number indicating the number of times the searchString

appears within the text provided.

These examples show the function operating on different

input:

PatternCount ("Hello World. How is your world today?" ;

"world")

// result = 2

PatternCount (Invoice::Tax Exempt ; "Yes")

// result = 0 (if the Tax Exempt field does not contain the

word "Yes")

Remember that PatternCount looks for matches

anywhere in the text provided, including as part of a word or

paragraph. When checking for the presence of a value in a

list of carriage return-delimited values, it is important to

avoid partial matches like those returned by the

PatternCount function. For example, the following code will

find two matches for “age” in the text provided. However, if

we are looking for a match to “age” as a value — as a single

paragraph — those results are faulty.

PatternCount ("Guage¶Page" ; "age") //

result = 2

To avoid this, one may use the cumbersome technique of

including paragraph returns to detect a value match,

however, this requires that both the source text and the

pattern we are searching start and end with a return to

catch the value at the beginning or end as well as the

middle. So, one may be tempted to approach the problem

like this:

PatternCount ("¶Guage¶Page¶" ; "¶age¶") //

result = 0

Alternatively, by combining several functions, this

formula will safely detect only a full value match without the

need to worry about leading or trailing carriage returns:

Not IsEmpty (FilterValues ("Guage¶Page" ; "age")) //

result = 0

Position

The Position function finds the starting character position of

a specified occurrence of some text in the provided text.

Format Position (text ; searchString ; start ; occurrence)

Parameters text = a text value in which a string will be located.

searchString = a text value containing the text that will be

searched for in the text provided.

start = a number indicating the character position, counting from

the left, where the search will begin.

occurrence = a number indicating the occurrence of a match of

the search string after the starting position that should be used

as the result.

Result A number indicating the starting character location of the

matched occurrence within the text provided.

These examples show the function operating on different

input:

Position ("Where is Waldo today?" ; "Waldo" ; 1 ; 1)

// result = 10

Position ("Where is Waldo today?" ; "Waldo" ; 1 ; 2)

// result = 0

Position ("Waldo is looking for Waldo?" ; "Waldo" ; 1 ; 2)

// result = 22

Proper

The Proper function transforms the text provided into a

“proper” case, with only the first letter of each word

capitalized.

Format Proper (text)

Parameters text = a text value that will be transformed to proper case.

Result The text provided converted to proper case.

These examples show the function operating on different

input:

Proper ("hello world") // result = "Hello World"

Proper ("THIS IS SCREAMING") // result = "This Is

Screaming"

Quote

The Quote function encloses a piece of text in quotation

marks.

Format Quote (text)

Parameters text = a text value that should be wrapped in quotation marks.

Result The text provided wrapped in quotation marks.

Here is an example of building a string with some quoted

text in the middle:

"Say " & Quote ("Hello World") & " now."

// result = Say "Hello World" now.

Replace

The Replace function replaces a specified number of

characters at a certain position within a piece of text with

some replacement text.

Format Replace (text ; start ; numberOfCharacters ; replacementText)

Parameters text = a text value in which some characters will be replaced.

start = a number indicating the character position where the

replacement should begin.

numberOfCharacters = a number indicating the number of

characters that should be replaced from the start position.

replacementText = a text value that will replace the original text;

it does not need to be the same number of characters as that

which it is replacing.

Result The text provided with the requested replacement of characters

performed.

Here is an example of replacing some text in a string:

Replace ("Hello Something" ; 7 ; 9 ; "World") // result =

"Hello World"

Right

The Right function extracts a specified number of characters

from the provided text starting from the last character on

the right.

Format Right (text ; numberOfCharacters)

Parameters text = the text from which to extract characters.

numberOfCharacters = a number indicating how many characters

to extract.

Result A text string containing the requested number of characters from

the text provided.

Here is an example of extracting text from the right side

of a string:

Right ("Hello World" ; 8) // result = "lo World"

RightValues

The RightValues function extracts a specified number of

values from a list of values starting from the last value.

Format RightValues (text ; numberOfValues)

Parameters text = a carriage return-delimited list of text values.

numberOfValues = a number indicating how many values to

extract.

Result The specified number of carriage return-delimited list of text

values from the text provided.

Here are some examples of extracting values from the

right (bottom) of a list:

RightValues ("John¶Jane¶Jim¶Joe¶" ; 2)// result =

"Jim¶Joe"

RightValues ("159¶245¶396¶721¶" ; 3) // result =

"245¶396¶721"

RightWords

The RightsWords function extracts a specified number of

words from the text provided, starting from the last word on

the right.

Format RightWords (text ; numberOfWords)

Parameters text = a text value from which words will be extracted.

numberOfWords = a number indicating how many words to

extract.

Result A text string containing the requested number of words from the

text provided.

Here is an example of extracting words from the right

side of a string:

RightWords ("Hello World. How are you?" ; 3) // result =

"How are you"

RomanHankaku

The RomanHankaku function converts Zenkaku

alphanumeric and symbols in text to Hankaku alphanumeric

symbols. For more information on Japanese functions, see

FileMaker’s documentation.

RomanZenkaku

The RomanZenkaku function converts Hankaku

alphanumeric and symbols in text to Zenkaku alphanumeric

and symbols. For more information on Japanese functions,

see FileMaker’s documentation.

SerialIncrement

The SerialIncrement function detects the first numeric value

from the right within a text string and increments it by a

specified number.

Format SerialIncrement (text ; incrementBy)

Parameters text = a text value containing a number.

incrementBy = a number indicating how much to increment the

text by.

Result The text provided with the final number incremented by one.

These examples show how values in values are

incremented:

SerialIncrement ("Hello " ; 1) // result = "Hello 1"

SerialIncrement ("Hello 50" ; 1) // result = "Hello 51"

SerialIncrement ("Hello50" ; 1) // result = "Hello51"

SerialIncrement ("Hello 50.9" ; 1) // result = "Hello

50.10"

SerialIncrement (1/5/2017 ; 1) // result = 1/5/2018

SortValues

The SortValues function will rearrange the order of carriage

return-delimited values.

Format To sort values as text using the file’s default locale, only a single

parameter is required:

SortValues (values)

Optional parameters allow specification of data type and locale:

SortValues (values ; datatype ; locale)

Parameters values = a list of carriage return-delimited text values to be

sorted.

datatype = (optional) a number indicating the data type of the

values. A positive number results in an ascending sort, a negative

value results in a descending sort.

locale = (optional) a text value indicating the locale that should

control the sort.

Options for

Datatype

The options for the datatype parameter are:

1 — sort as text (default when no datatype is specified)

2 — sort as numeric

3 — sort as date

4 — sort as time

5 — sort as timestamp

Options for

Locale

The options for the locale parameter are:

Arabic, Bengali, Bulgarian, Catalan, Catalog, Chinese,

Chinese_Stroke, Croatian, Czech, Danish, Dutch, English,

Estonian, Finnish, Finnish_Custom, French, German,

German_Dictionary, Greek, Greek_Mixed, Gujarati, Hebrew, Hindi,

Hugarian, Icelandic, Italian, Japanese, Kannada, Korean, Latvian,

Lithuanian, Malayalam, Marathi, Norwegian, Panjabi, Persian,

Polish, Portuguese, Romanian, Russian, Serbian, Slovak,

Slovenian, Spanish, Spanish_Traditional, Swedish,

Swedish_Custom, Tamil, Telugu, Thai, Turkish, Ukrainian,

Unicode_Raw, Unicode_Standard and Vietnamese.

These only need to be specified when the language of or sorting

methodology for the values differs from that of the operating

system upon which the database file was created.

Result The carriage return-delimited list of values reordered based on

the parameters specified.

This example sorts text values, using the file’s default

locale:

SortValues ("New York¶Illinois¶Pennsylvania¶California")

// result =

 California

 Illinois

 New York

 Pennsylvania

This example shows numbers sorting as text values when

no datatype is specified:

SortValues ("100¶10¶200¶20")

// result =

 10

 100

 20

 200

This example shows numbers sorting as numeric values

when a datatype is specified:

SortValues ("100¶10¶200¶20" ; 2)

// result =

 10

 20

 100

 200

To change the sort order from ascending to descending

results, the datatype should be a negative value:

SortValues ("100¶10¶200¶20" ; -2)

// result =

 200

 100

 20

 10

Substitute

The Substitute function replaces one or more text strings

anywhere it appears within a piece of text with a different

string.

Format When substituting a single search-replace pair, the function

should be called with three parameters:

Substitute (text ; searchString ; replacementString)

Optionally, the function accepts multiple search-replace pairs, in

any quantity, each contained within square brackets and

separated by a semi-colon:

Substitute (text ;

[searchString1 ; replacementString1] ;

[searchString2 ; replacementString2] ;

[searchString3 ; replacementString3]

)

Parameters text = a text value representing the text to be manipulated.

searchString = a text value representing the text to be located

and replaced.

replacementString = a text value representing the text to be used

to replace the searchString.

Result The text provided with the specified replacements tasks

performed.

These examples demonstrate single search-replace pairs:

Substitute ("One Two Four" ; "Four" ; "Three")

// result = "One Two Three"

Substitute ("Hello World? It is good to see you?" ; "?" ;

"!")

// result = "Hello World! It is good to see you!"

This example demonstrates multiple search-replace

pairs:

Substitute ("One Two Four Six" ; ["Four" ; "Three"] ; [

"Six" ; "Four"])

= "One Two Three Four"

In this example, the text in the “Name” field will be

cleared of carriage returns and tabs:

Substitute (Table::Name ; ["¶" ; ""] ; [" " ; ""])

This example shows a method of clearing extra space

throughout a piece of text. It contains three substitutions:

quadruple space, tripled space, and double space, each

replaced with a single space in succession to ensure that

most extra spaces is removed:

Substitute (Table::Text Field ; [" " ; " "] ; [" " ; " "] ; ["

" ; " "])

Trim

The Trim function removes all leading and trailing spaces

from a piece of text. This is useful to correct data entry

errors or when importing from an external data source that

contains a fixed number of characters per field.

Format Trim (text)

Parameters text = a text value that may contain extraneous spaces.

Result The text provided without leading or trailing spaces.

Here is an example of trimming excessive spaces from a

string:

Trim (" Hello World ") // result = "Hello World"

TrimAll

The TrimAll function manages spaces in a text string based

on various criteria. Many of its options are useful only for

non-Roman languages like Japanese and are not specified

here. For more information on Japanese functions, see

FileMaker’s documentation.

Format TrimAll (text ; trimSpace ; trimType)

Parameters text = a text value.

trimSpace = a Boolean indicating whether to remove full-width

spaces from non-Roman; leave this false for Roman languages.

trimType = a number from 0-3 indicating how spaces should be

handled.

Result The text provided with the specified spaces adjusted.

This example will remove all spaces between Roman

characters while always leaving one space between Roman

words:

TrimAll (" Hello World " ; 0 ; 0) // result = "Hello

World"

This example will remove all spaces between Roman

characters:

TrimAll (" Hello World " ; 0 ; 3) // result =

"HelloWorld"

UniqueValues

The UniqueValues function returns a carriage return-

delimited list of values with duplicates removed.

Format To manipulate values as text using the file’s default locale, only a

single parameter is required:

UniqueValues (values)

Optional parameters allow specification of data type and/or

locale:

UniqueValues (values ; datatype ; locale)

Parameters values = a text value that provides a list of carriage return-

delimited values to be processed.

datatype = (optional) a number indicating the data type of the

values.

locale = (optional) a text expression indicating the locale that

should control the sort.

Result The original carriage return-delimited list of values without

duplicates.

Here is an example of extracting a list of unique values

from a list:

UniqueValues ("15¶125¶10¶125¶10.0" ; 2)

// result =

 15

 125

 10

Note See SortValues for a list of available values for the

datatype and locale parameters.

Upper

The Upper function transforms the text provided into

uppercase.

Format Proper (text)

Parameters text = a text value that will be transformed to uppercase.

Result The text provided converted to all uppercase.

These examples show the function operating on different

inputs:

Upper ("Hello World") // result = "HELLO WORLD"

Upper ("this is screaming") // result = "THIS IS

SCREAMING"

ValueCount

The ValueCount function counts the number of values in a

list of values.

Format ValueCount (text)

Parameters text = a carriage return-delimited list of text values.

Result A number indicating the count of values detected within the text

provided.

Here is an example of counting values in a list:

ValueCount ("John¶Jane¶Jim¶Joe¶") // result = 4

WordCount

The WordCount function counts the number of words in a

piece of text.

Format WordCount (text)

Parameters text = a text value.

Result A number indicating the number of words detected within the

text provided.

Here is an example of counting the number of words in a

string:

WordCount ("Hello World") // result = 2

Summary

In this chapter, we explored all the built-in functions for

manipulating text strings.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_14

14. Text Functions (JSON)

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

JSON functions were introduced in FileMaker 16 as a subset

of Text Functions. These are used to create and manipulate

JSON objects that contain information stored in a structured

text format.

Introducing JSON

JavaScript Object Notation (JSON) provides a lightweight

data-interchange format that is both human readable and

easy for computers to manipulate. This popular data format

is widely used on websites that use Representational State

Transfer (REST) web services. These functions improve the

techniques used within FileMaker when manipulating data

provided by external resources. However, they can also be

enormously useful internally as a data exchange format

between scripts and other functions.

For more technical information on JSON, visit:

http://www.json.org .

Defining the JSON Format

http://www.json.org/

The JSON format allows information to be stored as

key/value pairs, where one component denotes the name or

key of the other stored value. These are commonly referred

to by various terms in different languages: object, record,

struct, dictionary, hash table, keyed list, or associative array.

Therefore, the terminology used in this section may not

exactly match what you are accustomed to, depending on

your experience with different languages.

A JSON object is a bracketed list of elements. A JSON

element is a combination of an identifying key and

associated value, like this:

{ "<Key>":<Value> }

Additional elements can be added with a comma

delimiter

{ "<Key1>":<Value1>,"<Key2>":<Value2> }

They key portion, sometimes called a member, is always

a text string that names the associated value, acting kind of

like a field name. The value portion contains an actual

stored value that can be one of the following data types :

JSONString — a text string.

JSONNumber — a numeric value.

JSONBoolean — a value that is either true or false.

JSONArray — an ordered list of comma-separated values

contained within square brackets. For example,

[1,2,3,4].

JSONObject — a nested JSON object.

JSONNull — a null value.

JSONRaw — a value that will be determined by the JSON

parser.

A JSON object identifying a person, may contain elements

such an identification number, first name, last name, and

title, as shown here:

{"id":5103,"First":"John","Last":"Smith","Title":"Chief

Technology Officer”}

The object can be typed into a more readable multi-line

format, as shown here :

{

"id":5103,

"First":"John",

"Last":"Smith",

"Title":"Chief Technology Officer”

}

This example shows a JSON object containing two

elements, Product1 and Product2, each containing a nested

JSON object.

{

"Product1":

 {

 "id":1000,

 "name":"Widget 1",

 "price":39.99,

 "aisles":[3,8]

 },

"Product2":

 {

 "id":1001,

 "name":"Widget 2",

 "price":59.99,

 "aisles":[2,4]

 }

}

This example shows a JSON object containing an array at

the top level. Notice that the curly brackets are only used

within the array if the value at a given position is a JSON

Object .

[

15,

"Hello World",

{"First":"John","Last":"Smith"}

]

Tip When writing JSON objects by hand, you can

validate them using the tool at: http://www.jsonlint.com .

Referring to JSON Elements

As indicated by the keyOrIndexOrPath , we will see in the

forthcoming JSON functions that an element in an object can

be referred to by one of three different methods:

Key

Array index

Path

Referring to an Element by Key

To refer to an element by key, use the name of the key.

Using the following example object, referring to the Title

element would be done by assigning keyOrIndexOrPath a

value of “Title”:

{

"id":5103,

"First":"John",

http://www.jsonlint.com/

"Last":"Smith",

"Title":"Chief Technology Officer”

}

Referring to an Element by Array Index

When referring to an element in an array at the root level of

the object, use the index value. For example, to extract the

second value below, assign keyOrIndexOrPath a value of

“[2]”:

[

15,

"Hello World",

{"First":"John","Last":"Smith"}

]

When referring to a value in an array that is contained

within another element rather than at the root level, you will

need to either specify the path or extract the element’s

value first and then use the index position.

Referring to an Element by Path

The value stored in a JSON element can be another JSON

object. To refer to an element within a nested object or to

refer to an array item by index when the array is not at the

root level of the object, you must specify a path to the

element.

A path is specified by denoting each key in a period

delimited list that is necessary to traverse the hierarchical

structure down to the desired element. This pattern

demonstrates how to navigate down three levels deep:

key1.key2.key3

An array, at any level, must denote a numeric index

value instead of a named key. In this pattern, the second

level would be an array containing several JSON objects and

the path indicates the second of these is desired:

key1.[2].key3

Using this JSON object, let’s work through some

examples of using paths to refer to nested elements:

{

"Product1":

 {

 "id":1000,

 "name":"Widget 1",

 "price":39.99,

 "aisles":[3,8]

 },

"Product2":

 {

 "id":1001,

 "name":"Widget 2",

 "price":59.99,

 "aisles":[2,4]

 }

}

If the keyOrIndexOrPath parameter is “Product2” it will

return the entire nested object stored under that key, as

shown here:

Product2 =

{

 "id":1001,

 "name":"Widget 2",

 "price":59.99,

 "aisles":[2,4]

}

However, if the keyOrIndexOrPath parameter contains a

path “Product2.name” it will only return the specified

element from that product’s object, as shown here:

Product2.name = Widget 2

To access a specific store aisle from the array of values

stored in that element, the path would include the index to

the desired array value. For example:

Product2.aisles.[2] = 4

JSON Function Reference

FileMaker provides the following JSON text functions :

JSONDeleteElement

JSONFormatElements

JSONGetElement

JSONListKeys

JSONListValues

JSONSetElement

JSONDeleteElement

The JSONDeleteElement function deletes a specified

element from a JSON object.

Format JSONDeleteElement (json ; keyOrIndexOrPath)

Parameters json = a text value that contains a JSON object.

keyOrIndexOrPath = a text value that specifies the JSON element

that should be deleted.

Result Returns the JSON object with the specified element removed.

This example assumes a field named Data that contains

the following JSON object:

Sandbox::Example Text =

{"First":"John","Last":"Smith","Title":"Chief Technology

Officer"}

An element can be deleted from the object by element

name, as shown here:

JSONDeleteElement (Sandbox::Example Text; "Title")

// result = {"First":"John","Last":"Smith"}

JSONFormatElements

The JSONFormatElements function inserts extra space into a

JSON object to render it in a more readable format.

Format JSONFormatElements (json)

Parameters json = a text value that contains a JSON array.

Result The JSON object converted into a more user-friendly format.

Here is an example of the formatted results of this

function:

JSONFormatElements (

{"First":"John","Last":"Smith","Title":"Chief Technology

Officer"})

// result =

{

 "First" : "John",

 "Last" : "Smith",

 "Title" : "Chief Technology Officer"

}

JSONGetElement

The JSONGetElement function extracts the value for a

specific element from a JSON object.

Format JSONGetElement (json ; keyOrIndexOrPath)

Parameters json = a text value that contains a JSON array.

keyOrIndexOrPath = the name or path to a desired element or an

index to a desired array value.

Result The specified value, extracted from the specified JSON object.

Here is an example showing the results of the function:

$JSON = {"First":"John","Last":"Smith","Title":"Chief

Technology Officer"}

JSONGetElement ($JSON ; "Title")

// result = "Chief Technology Officer"

JSONListKeys

The JSONListKeys function extracts a list of the keys of the

specified element of a JSON object.

Format JSONListKeys (json ; keyOrIndexOrPath)

Parameters json = a text value that contains a JSON array.

keyOrIndexOrPath = the name or path to a desired element or an

index to a desired array value. Leave as an empty string to list

the keys at the root level of the object.

Result A carriage return-delimited list of the root-level keys for the

specified element.

Here is an example showing the resulting list of keys:

JSONListKeys ({"First":"John","Last":"Smith","Title":"Chief

Technology Officer"})

// result =

 First

 Last

 Title

JSONListValues

The JSONListValues function extracts a list of the keys of the

specified element of a JSON object.

Format JSONListValues (json ; keyOrIndexOrPath)

Parameters json = a text value that contains a JSON array.

keyOrIndexOrPath = the name or path to a desired element or an

index to a desired array value. Leave as an empty string to list

the keys at the root level of the object.

Result A carriage return-delimited list of the root-level values for the

specified element.

Here is an example showing the resulting list of values:

JSONListValues (

{"First":"John","Last":"Smith","Title":"Chief Technology

Officer"})

// result =

 John

 Smith

 Chief Technology Officer

JSONSetElement

The JSONSetElement function adds or modifies the value for

a specific element from a JSON object.

Format To modify a single element:

JSONSetElement (json ; keyOrIndexOrPath ; value ; type)

To modify multiple elements, add square brackets around the last

three parameters, which can repeat with a semicolon delimiter:

JSONSetElement (json ;

 [key1 ; value1 ; type1] ;

 [key2 ; value2 ; type2] ;

 [key3 ; value3 ; type3]

)

Parameters json = a text value that contains a JSON array.

keyOrIndexOrPath = the name or path to a desired element or an

index to a desired array value. If the element doesn’t exist, it will

be created.

value = a text value that should become the new value for the

specified element.

type = the name of the data type of the new element.

Result The JSON object with the new or modified element.

To create a new JSON object:

JSONSetElement (""; "id" ; 1000 ; JSONNumber)

// result = {"id":1000}

To create a new JSON object with multiple elements:

JSONSetElement ("";

 ["id" ; 1000 ; JSONNumber] ;

 ["first" ; "John" ; JSONString] ;

 ["last" ; "Smith" ; JSONString] ;

 ["title" ; "Chief Technology Officer" ; JSONString]

)

// result =

{"first":"John","id":1000,"last":"Smith","title":"Chief

Technology Officer"}

To modify an element in an existing JSON object:

JSONSetElement ({"first":"John","last":"Smith"} ; "first" ;

"Jane" ; JSONString)

// result = {"first":"Jane","last":"Smith"}

Summary

In this chapter, we introduced JSON objects and explored all

the built-in functions for creating, parsing, and manipulating

them.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_15

15. Text Formatting Functions

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Text formatting functions are used to modify the font, style,

size, and color of text strings, giving developers control over

how text appears in fields on layouts and how it is stored in

fields.

These functions are used to apply formatting to the text

contained within a field. When a field object is placed on a

layout, formatting can be applied that controls how field

content appears for every record when displayed on a

layout. This is completely independent of the actual data

stored in the field. When displayed, layout format settings

are superimposed on the field’s text content unless that

content has format settings applied within the field. In that

case, the field settings override the layout settings for the

portion of text that has format applied.

All of these functions only affect the formatting of text

within the field and not the actual text content.

Text Formatting Function Reference

FileMaker provides the following built-in text formatting

functions:

RGB

TextColor

TextColorRemove

TextFont

TextFontRemove

TextSize

TextSizeRemove

TextStyleAdd

TextStyleRemove

When formatting is applied to text, it will be retained only

if the data type returned is text and the result is placed into

a field. Similarly, when all of a certain type of formatting is

removed — fonts, size, color style — and the text is placed

into a field, it will then display using the field’s layout format

settings.

Some actions performed with formatted text may result

in it being converted into plain, unformatted text. For

example, formatting is not retained when text is added to

the body of an email using the Send Email script step.

RGB

The RGB function is used to generate an integer that

represents a specific color by combining red, green, and

blue values.

Format RGB (red ; green ; blue)

Parameters red = a number between 0 and 255 representing the amount of

red.

green = a number between 0 and 255 representing the amount

of green.

blue = a number between 0 and 255 representing the amount of

blue.

Result A number between 0 and 16777215 that is derived by evaluating

the following formula using the parameters provided:

red * 256^2 + green * 256 + blue

These examples show the function operating on different

input:

RGB (255 ; 0 ; 0) // result = 16711680

RGB (0 ; 0 ; 0) // result = 0

TextColor

The TextColor function applies a specified color to a text

string.

Format TextColor (text ; RGB)

Parameters text = a text value to which a font color should be applied.

RGB = an integer from 0 to 16777215 indicating the desired color

for the text provided. Can be generated by a nested call to the

RGB function.

Result The text provided with the specified color applied.

Here is an example of the function:

TextColor ("Mark Munro" ; RGB (255 ; 0 ; 0))

// result (formatted in red) = "Mark Munro"

TextColorRemove

The TextColorRemove function removes all font colors or one

specific color from a text string depending on the

instructions it receives.

Format To remove all color settings from the entire text, only a single

parameter is required:

TextColorRemove (text)

To remove one color used anywhere in the text, add a second

optional parameter that specifies that color:

TextColorRemove (text ; RGB)

Parameters text = a text value that contains text formatted in one or more

colors.

RGB = (optional) an integer from 0 to 16777215 indicating the

desired color for the text provided. Can be generated by a nested

call to the RGB function.

Result The text provided with all or the specified color settings removed.

This example pulls the text out of a field named “Notes”

in a Contacts table and removes all color settings:

TextColorRemove (Contact::Notes)

The following example uses several functions to apply

different colors to some sample text and then uses

TextColorRemove to remove only the green color. If the

resulting text is placed into a field, the other colors would

remain while the green text returns to black or whatever

layout color setting is applied to the field object.

Let ([

 textRed = TextColor ("Hello World Red. " ; RGB (

255 ; 0 ; 0)) ;

 textGreen = TextColor ("Hello World Blue. " ; RGB (

0 ; 255 ; 0)) ;

 textBlue = TextColor ("Hello World Green. " ; RGB (

0 ; 0 ; 255)) ;

 textMulti = textRed & textGreen & textBlue

] ;

 TextColorRemove (textMulti ; RGB (0 ; 255 ; 0))

)

TextFont

The TextFont function changes the font of a text string.

Format TextFont (text ; fontName)

Parameters text = a text value from which font styling should be applied.

fontName = a text value containing the name of the desired font.

Result The text provided with the specified font applied.

Here are some examples of applying a font to some text:

TextFont ("Hello World" ; "Arial Narrow")

TextFont ("Hello World" ; "Courier New")

TextFontRemove

The TextFontRemove function removes all fonts or one

specific font from a text string.

Format To remove all font settings from the entire text, only a single

parameter is required:

TextFontRemove (text)

To remove one font used anywhere in the text, add a second

optional parameter that specifies that font name:

TextFontRemove (text ; fontToRemove)

Parameters text = a text value from which specific font styling should be

removed.

fontToRemove = a text value containing the name of the desired

font.

Result The text provided with either all or the specified font settings

removed.

This example will remove all font settings from any text

within a Notes field in a Contacts table:

TextFontRemove (Contact::Notes)

This example will remove any application of Courier New

from anywhere within the text in the field:

TextFontRemove (Contact::Notes ; "Courier New")

TextFormatRemove

The TextFormatRemove function removes all text formatting

from a text string including fonts, styles, font sizes, and font

colors.

Format TextFormatRemove (text)

Parameters text = a text value from which text formatting should be

completely removed.

Result The text provided as a plain, unformatted string.

These examples show the use of the function to remove

all formatting from a text string and from text extracted

from a field:

TextFormatRemove ("Hello World")

TextFormatRemove (Contact::Notes)

TextSize

The TextSize function changes the font size of a text string.

Format TextSize (text ; fontSize)

Parameters text = a text value to which a font size should be applied.

fontSize = a font size expressed as an integer.

Result The text provided with the desired font size applied.

These examples show the application of a font size to a

text string and to text extracted from a field:

textSize ("Hello World" ; 18)

textSize (Contact::Notes ; 12)

TextSizeRemove

The TextSizeRemove function removes all font size settings

or one specific size from a text string.

Format To remove all sizes from the entire text, only a single parameter is

required:

TextSizeRemove (text)

To remove one size used anywhere in the text, add a second

optional parameter that specifies that one size:

TextSizeRemove (text ; sizeToRemove)

Parameters text = a text value from which text size formatting should be

removed.

sizeToRemove = a font size expressed as an integer.

Result The text provided with all or the specified font sizes removed.

This example will remove all font sizes from any text

within a “Notes” field in a “Contacts” table:

TextSizeRemove (Contact::Notes)

This example will remove any application of 18 pt. font

size from anywhere within the text:

TextFontRemove (Contact::Notes ; 18)

TextStyleAdd

The TextStyleAdd function changes the font style of a text

string.

Format TextStyleAdd (text ; styles)

Parameters text = a text value to which text styles should be applied.

styles = one or more style, names delimited with a plus symbol

(+).

Options for

Styles

Plain, Bold, Italic, Underline, HighlightYellow, Condense, Extend,

Strikethrough, SmallCaps, Superscript, Subscript, Uppercase,

Lowercase, Titlecase, WordUnderline, DoubleUnderline.

Result The text provided with the desired font style(s) applied.

These examples show the application of one or more

styles to a text string or to text extracted from a field:

textSize ("Hello World" ; Plain)

textSize ("Hello World" ; Italic+Underline)

textSize (Contact::Notes ; Strikethrough)

TextStyleRemove

The TextStyleRemove function removes all font style

settings or one or more specific styles from a text string

depending on the instructions it receives.

Format To remove all styles from the entire text, only a single parameter

is required:

TextStyleRemove (text)

To remove one or more specific styles used anywhere in the text,

add a second optional parameter that specifies which styles:

TextSizeRemove (text ; styles)

Parameters text = a text value from which text styles should be removed.

styles = one or more style names delimited with a plus symbol

(+).

Result The text provided with all or the specified font style(s) removed.

This example will remove all font styles from the text

extracted from a Notes field in a Contacts table:

TextStyleRemove (Contact::Notes)

This example will remove any application of specific

styles from anywhere within text extracted from a field:

TextStyleRemove (Contact::Notes ; bold)

TextStyleRemove (Contact::Notes ; italic+underline)

Summary

In this chapter, we explored the built-in functions for

formatting text.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_16

16. Number Functions

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Number functions are used to manipulate numbers.

Number Function Reference

FileMaker provides the following built-in number functions :

Abs

Ceiling

Combination

Div

Exp

Factorial

Floor

Int

Lg

Ln

Log

Mod

Random

Round

SetPrecision

Sign

Sqrt

Truncate

Abs

The Abs function calculates the absolute value of a number,

which is a non-negative value representing its distance from

zero.

Format Abs (number)

Parameters number = any number.

Result A number representing the absolute value of the number

provided.

These examples show the function operating on a

positive number, negative number, math expression, a text

string containing a number, and a number extracted from a

field:

Abs (8.75) // result = 8.75

Abs (-5) // result = 5

Abs (4 - 8) // result = 4

Abs ("-9") // result = 9

Abs (Invoice::Balance Due) // result = 95

Ceiling

The Ceiling function rounds a number up to the next integer.

Format Ceiling (number)

Parameters number = any number.

Result The number provided rounded up to the next integer.

Here are some examples of the function operating on a

positive and negative number:

Ceiling (1.4) // result = 2

Ceiling (-2.5) // result = -2

Ceiling (2.00000001) // result = 3

Combination

The Combination function calculates the number of

combinations possible based on a specific set size and

number of choices, which can be useful in statistics and

other mathematics.

Format Combination (setSize ; numberOfChoices)

Parameters setSize = any positive number.

numberOfChoices = a number indicating the number of choices.

Result A number indicating the possible combinations of choices given

the parameters specified.

Given a set size of three values (a, b, c) and making

choices of two values, the number of possible unique

combinations is three; ab, ac, bc. No matter the set size or

number of choices, the function will calculate the possible

combinations, as shown in these examples:

Combination (3 ; 2) // result = 3

Combination (4 ; 2) // result = 6

Combination (8 ; 3) // result = 56

This example demonstrates an erroneous attempt to

calculate the impossible combinations of six values with a

set of only four values:

Combination (4 ; 6) // result = ?

Div

The Div function calculates the next lowest integer from the

result of a number being divided by a divisor.

Format Div (number ; divisor)

Parameters number = any number.

divisor = a number to be used as a divisor.

Result An integer number.

These examples show the function operating on different

input:

Div (10 ; 3) // result = 3

Div (6.25 ; 2.75) // result = 2

Exp

The Exp function calculates the mathematical constant e

(approximately equal to 2.7182818) raised to the power of a

specified number.

Format Exp (number)

Parameters number = any number.

Result The value of the constant raised to the specified power.

These examples show the function operating on different

input:

Exp (1) // result = 2.71828182

Exp (3) // result = 20.0855369231876677

Factorial

The Factorial function calculates a non-negative integer (n!),

which is the product of multiplying all positive integers less

than or equal to a specified number (n), stopping at 1, or at

an optional number of factors.

Format When not specifying a limit to the number of factors, a single

parameter is required:

Factorial (number)

To limit to the number of factors, a second, optional parameter is

added:

Factorial (number ; numberOfFactors)

Parameters number = a positive integer which will be used as n.

numberOfFactors = a positive integer that indicates how many

factors should be included.

Result A number representing the factorial of the number provided.

These examples show the function operating on different

input:

Factorial (3) // result = 6

Factorial (4) // result = 24

Factorial (4 ; 2) // result = 12

Floor

The Floor function rounds a number down to the next

integer.

Format Floor (number)

Parameters number = any number.

Result The number provided rounded down to the next integer.

These examples show the function operating on different

input:

Floor (1.4) // result = 1

Floor (-2.5) // result = -3

Int

The Int function returns the integer part of a number without

rounding by dropping any digits to the right of the decimal.

Format Int (number)

Parameters number = any number.

Result An integer of the number provided.

These examples show the function operating on different

input:

Int (34.2653) // result = 34

Int (-2.85) // result = -2

Int (10 / 3) // result = 3

Lg

The Lg function calculates the base-2 logarithm of a

number, which is the power to which the number must be

raised to obtain the value desired.

Format Lg (number)

Parameters number = a positive number.

Result A number.

These examples show the function operating on different

input:

Lg (4) // result = 2

Lg (-2) // result = ? (Error)

Ln

The Ln function calculates the base-e (natural) logarithm of

a number, which is the power to which the mathematical

constant e (2.71828182) would have to be raised to equal

the number specified.

Format Ln (number)

Parameters number = any number.

Result A number.

These examples show the function operating on different

input:

Ln (4) // result = 1.3862943611198906

Ln (4) // result = 1.3862943611198906

Ln (10 / 5) // result = .6931471805599453

Log

The Log function calculates the base-10 (common)

logarithm of a number.

Format Log (number)

Parameters number = a positive number.

Result A number.

These examples show the function operating on different

input:

Log (50) // result = 1.6989700043360188

Log (100) // result = 2

Log (-75) // result = ? (Error)

Mod

The Mod function calculates the remainder from the result of

a number being divided by a divisor. This is useful when

converting units of measure, such as converting seconds to

minutes, minutes to hours, or days to years.

Format Mod (number ; divisor)

Parameters number = any number.

divisor = a number to be used as the divisor.

Result A number.

These examples show the function operating on different

input:

Mod (100 ; 60) // result = 40

Mod (410 ; 365) // result = 45

This example shows the function used with the Int

function to convert 310 minutes into a text string that

expresses that as hours and minutes:

Int (310 / 60) & " hours, " & Mod (310 ; 60) & "

minutes"

// result = 5 hours, 10 minutes

Random

The Random function calculates a pseudo-random number

between 0 and .99999999999999999999.

Format Random

Parameters Not applicable

Result A random number.

These examples show the function providing a different

value each time it is called:

Random // result = .69521348632189605699

Random // result = .49928041600104466902

Random // result = .16828354164749970145

These examples show how to use the function to

generate a random integer between 0 and 10:

Int (10 * Random) // result = 8

Int (10 * Random) // result = 3

Int (10 * Random) // result = 6

Round

The Round function rounds a number to specified number of

decimal places.

Format Round (number ; precision)

Parameters number = a number that will be rounded.

Result The number provided rounded as specified.

These examples show the function operating on different

input:

Round (10.1564 ; 2) // result = 10.16

Round (10 / 3 ; 0) // result = 3

SetPrecision

The SetPrecision function evaluates a math expression with

a specified precision between 16 and 400.

Format SetPrecision (expression ; precision)

Parameters expression = any number or numeric expression.

precision = a number between 16 and 400 indicating the desired

precision.

Result The result of the equation provided, expressed to the specified

precision.

These examples show the function operating on different

input:

SetPrecision (10 / 3 ; 16) // result =

3.3333333333333333

SetPrecision (150.756234915268458475965 ; 0) //

result = 150.7562349152684585

Sign

The Sign function determines if a given number is negative

or positive.

Format Sign (number)

Parameters number = any number.

Result A number indicating the sign of the number provided as follows:

-1 = the number provided is negative

1 = the number provided is positive

0 = the number provided is zero

These examples show the function operating on different

input:

Sign (15) // result = 1

Sign (3 - 20) // result = -1

Sqrt

The Sqrt function calculates the square root of a number.

Format Sqrt (number)

Parameters number = a positive number.

Result A number that is the square root of the number provided.

These examples show the function operating on different

input:

Sqrt (4) // result = 2

Sqrt (10) // result = 3.1622776601683793

Truncate

The Truncate function shortens a number to a specified

number of decimal places without rounding.

Format Truncate (number ; precision)

Parameters number = a number.

precision = a numeric expression or field indicating the desired

number of decimal places.

Result The number provided with the number of decimal places adjusted

as specified.

These examples show the function operating on different

input:

Truncate (10.246913 ; 2) // result = 10.24

Summary

In this chapter, we explored all the built-in functions for

manipulating numeric values.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_17

17. Date, Time, and Timestamp

Functions

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

These three categories provide functions that manipulate

date and time values.

Date Function Reference

Date functions are used to create and manipulate dates.

FileMaker provides the following built-in date functions:

Date

Day

Day Name

DayNameJ

DayOfWeek

DayOfYear

Month

MonthName

MonthNameJ

WeekOfYear

WeekOfYearFiscal

Year

YearName

Date

The Date function creates a date object from separate

numeric month, day, and year values.

Format Date (month ; day ; year)

Parameters month = a number indicating a month.

day = a number indicating a day of the month.

year = a number indicating a year.

Result A date object constructed from the values provided.

This basic example constructs a date object from three

numeric values:

Date (1 ; 15 ; 2017) // result = 1/15/2017

This example demonstrates that any of the parameters

can be expressions that will be evaluated prior to the

construction of the date:

Date (1 ; 15 ; 2027 - 10) // result = 1/15/2017

The function will automatically wrap to a new month, day

or year if the month or day provided falls out of range. For

example, a month value of 13 will cause the function to

automatically return a date for January of the following year:

Date (13 ; 15 ; 2017) // result = 1/15/2018

Day

The Day function extracts the day number of the month for

a given date.

Format Day (date)

Parameters date = a date.

Result A number.

These examples show the function operating on different

input:

Day (Date (1 ; 15 ; 2017)) // result = 15

Day ("2/26/2017") // result = 26

DayName

The DayName function calculates the name of the weekday

for a given date.

Format DayName (date)

Parameters date = a date.

Result A text string containing the name of the weekday for the date

provided.

These examples show the function operating on different

input:

DayName (Date (1 ; 15 ; 2017)) // result = Sunday

DayName ("6/27/1758") // result = Tuesday

DayNameJ

The DayNameJ function performs the same function as

DayName but returns text in Japanese. For more information

on Japanese functions, see FileMaker’s documentation.

DayOfWeek

The DayOfWeek function calculates a number representing

the day of the week for a given date.

Format DayOfWeek (date)

Parameters date = a date.

Result A number from 1 to 7 indicating where the date provided falls on

the calendar week from Sunday to Monday.

These examples show the function operating on different

input:

DayOfWeek (Date (1 ; 15 ; 2017)) // result = 1

DayOfWeek ("6/27/1758") // result = 3

DayOfYear

The DayOfYear function calculates a number representing

the day of the year for a given date.

Format DayOfYear (date)

Parameters date = a date.

Result A number from 1 to 365 indicating where the date provided falls

within a year.

These examples show the function operating on different

input:

DayOfYear (Date (1 ; 15 ; 2017)) // result = 15

DayOfYear ("6/27/1758") // result = 178

Month

The Month function calculates the number of the month for

a given date.

Format Month (date)

Parameters date = a date.

Result A number from 1 to 12 indicating the month number of the date

provided.

These examples show the function operating on different

input:

Month (Date (1 ; 15 ; 2017)) // result = 1

Month ("6/27/1758") // result = 6

MonthName

The MonthName function calculates the name of the month

for a given date.

Format MonthName (date)

Parameters date = a date.

Result A text string containing the name of the month of the date

provided.

These examples show the function operating on different

input:

MonthName (Date (1 ; 15 ; 2017)) // result =

"January"

MonthName ("6/27/1758") // result =

"June"

MonthNameJ

The MonthNameJ function performs the same function as

MonthName but returns text in Japanese. For more

information on Japanese functions, see FileMaker’s

documentation.

WeekOfYear

The WeekOfYear function calculates a number representing

the week of the year for a given date.

Format WeekOfYear (date)

Parameters date = a date.

Result A number from 1 to 52 indicating the week number within a year

of the date provided.

These examples show the function operating on different

input:

WeekOfYear (Date (1 ; 15 ; 2017)) // result = 3

WeekOfYear ("6/27/1758") // result = 26

WeekOfYearFiscal

The WeekOfYearFiscal function calculates a number

representing the week of a year for a given date based on a

specified starting date for a workweek. This is sometimes

useful in accounting to calculate if a year has an extra pay

period because a week is split across the calendar year

boundary.

Format WeekOfYearFiscal (date ; startingDay)

Parameters date = a date.

startingDay = a number indicating the start of a workweek: 1 =

Sunday, 2 = Monday, 3 = Tuesday, etc.

Result A number indicating the week of the year for the date provided

based on the start of the workweek specified.

These examples show how January 2, 2009, which falls

on a Friday, can be either the first week of 2009 or the fifty-

third week of 2008 depending on the day considered to be

the start of the week:

WeekOfYearFiscal ("1/2/2009" ; 1) // result = 53

WeekOfYearFiscal ("1/2/2009" ; 2) // result = 1

WeekOfYearFiscal ("1/2/2009" ; 3) // result = 1

WeekOfYearFiscal ("1/2/2009" ; 4) // result = 1

WeekOfYearFiscal ("1/2/2009" ; 5) // result = 1

WeekOfYearFiscal ("1/2/2009" ; 6) // result = 1

WeekOfYearFiscal ("1/2/2009" ; 7) // result = 53

Year

The Year function returns the year for a given date.

Format Year (date)

Parameters date = a date.

Result A number that is the year for the date provided.

These examples show the function operating on different

input:

Year (Date (1 ; 15 ; 2017)) // result = 2017

Year ("6/27/1758") // result = 1758

YearName

The YearName function calculates the Japanese year name

of a given date. For more information on Japanese functions,

see FileMaker’s documentation.

Time Function Reference

Time functions are used to create and manipulate time

values. FileMaker provides the following built-in time

functions:

Hour

Minute

Second

Time

Hour

The Hour function extracts the number of hours of a given

time.

Format Hour (time)

Parameters time = a time.

Result The hour number of the time provided.

These examples show the function operating on different

input:

Hour ("09:15:55 AM") // result = 9

Hour ("4/20/2017 03:30:00 PM") // result = 15

Minute

The Minute function extracts the number of minutes from a

given time.

Format Minute (time)

Parameters time = a time.

Result The number of minutes from the time provided.

These examples show the function operating on different

input:

Minute ("09:15:55 AM") // result = 15

Minute ("4/20/2017 03:30:00 PM") // result = 30

Seconds

The Seconds function extracts the number of seconds from

a given time.

Format Seconds (time)

Parameters time = a time.

Result The number of seconds from the time provided.

These examples show the function operating on different

input:

Seconds ("09:15:55 AM") // result = 55

Seconds ("4/20/2017 03:30:00 PM") // result = 0

Time

The Time function creates a time object from separate

numeric hours, minutes, and seconds values.

Format Time (hours ; minutes ; seconds)

Parameters hours = a number representing hours.

minutes = a number representing minutes.

seconds = a number representing seconds.

Result A time object constructed from the values provided.

These examples show the function operating on different

input:

Time (9 ; 15 ; 55) // result = 9:15:55

Time (2 ; 8 ; 19) // result = 2:8:19

Timestamp Function Reference

Timestamp functions are used to create and manipulate

timestamp data, which is a combination of a date and time

value in a single string. FileMaker provides the following

built-in timestamp function:

Timestamp

Timestamp

The Timestamp function creates a timestamp based on a

given date and time.

Format Timestamp (date ; time)

Parameters date = a date.

time = a time.

Result A timestamp from the date and time provided.

These examples show that timestamps will automatically

add the appropriate AM/PM suffix to the time portion:

Timestamp ("1/15/2017" ; "9:15:55")

// result = 1/15/2017 9:15:55 AM

Timestamp (Date (5 ; 10 ; 1990) ; Time (10 ; 30 ; 00))

// result = 5/10/1990 10:30:00 AM

If the hours are out of range, as in military time, the

function will automatically convert to civilian time, also with

the appropriate AM/PM suffix:

Timestamp ("1/15/2017" ; "15:15:55")

// result = 1/15/2017 3:15:55 PM

Summary

In this chapter, we explored all the built-in functions for

manipulating date, time, and timestamp values.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_18

18. Container Functions

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Container functions are used to analyze, manipulate, and

report about data in container fields.

Container Function Reference

FileMaker provides the following built-in container functions:

Base64Decode

Base64Encode

Base64EncodeRFC

GetContainerAttribute

GetHeight

GetThumbnail

GetWidth

VerifyContainer

Base64Decode

The Base64Decode function converts Base64 encoded text

into its original content: either text or container data. Since

Base64 format does not preserve the file name or extension,

these can be included as an optional parameter.

Base64 is a group of encoding schemes for converting

binary content to ASCII strings. Generally, it is used to

encode graphics, files, and applications for transmission

using methods designed to deal with textual data. In

FileMaker, these types of data are stored in container fields.

Format Without specifying a file name and extension, generic values will

be automatically created. In this case, only the text being

decoded need be included:

Base64Decode (text)

To specify a file name with an extension for the file being created,

add a second parameter:

Base64Decode (text ; fileNameWithExtension)

Parameters text = a text value encoded as Base64 that will be decoded.

fileNameWithExtension = (optional) a text value that contains a

file name and extension for the file being created from the

Base64 text.

Result A text string suitable for placement in a text or container field.

More Info For more information about Base64 visit:

https://www.base64decode.org .

This example shows the encoded contents of a field

named EncodedData being converted into an image with a

name of sample.jpg:

Base64Decode (EncodedData ; "sample.jpg")

// result = an image ready for placement within a

container field

Base64Encode

The Base64Encode function converts text or container data

into Base64 formatted text.

Format Base64Encode (sourceField)

https://www.base64decode.org/

Parameters sourceField = a text value that will be encoded.

Result A text string encoded in Base64 format.

These examples show the function operating on different

input:

Base64Encode (Image::PreviewImage)

// result = the image as a string of text characters in

Base64 format

Base64Encode ("Hello World")

// result =

aHR0cHM6Ly95b3V0dS5iZS9kUXc0dzlXZ1hjUQ==

Base64EncodeRFC

The Base64EncodeRFC function converts text or container

data into the specified Base64 formatted text.

A Request for Comment (RFC) is a series of documents

that emerged from the research efforts that created the

ARPANET and later the Internet. When the Internet

Engineering Task Force (IETF) was formed in the mid-1980s,

RFCs were the primary vehicle for publishing IETF standards,

many pertaining to the Internet protocols.

Format Base64EncodeRFC (RFCNumber ; data)

Parameters RFCNumber = a number indicating the RFC standard number to

use.

data = a text value that will be encoded.

Options for

RFCNumber

The function supports the following RFC standards:

1421 — 64-character line length with CRLF (carriage return, line

feed) line endings.

2045 — 72-character line length and CRLF line endings.

3548 — No line breaks.

4648 — No line breaks. This is the default RFC standard that will

be used if the value provided is empty or an unrecognized value.

4880 — 76-charcter line length, CRLF line ends with a 24-bit CRC

value appended.

Result A text string encoded in Base64 format using the RFC standard

specified.

More Info For more technical information, visit:

https://www.ietf.org/rfc.html .

This example shows the function encoding some text

using the 3548 RFC:

Base64EncodeRFC (3548 ; "Hello World")

// result = SGVsbG8gV29ybGQ=

CryptAuthCode

The CryptAuthCode function returns a binary keyed-hash

message authentication code (HMAC) of text or container

data using a specified cryptographic hash algorithm.

Format CryptAuthCode (data ; algorithm ; key)

Parameters data = a text value containing data that should be encrypted.

algorithm = the name of a supported cryptographic algorithm

that should be used to generate the HMAC.

key = a text value that will be used as the key to encrypt the

data.

Options for

Algorithm

The following cryptographic algorithms are supported by this

function:

MD5

MDC2

SHA

SHA1

SHA224

SHA256

SHA384

SHA512

Result An encrypted text file that can be placed into a container field.

When this example is used as a calculation field resulting

in container data or when the result is placed into a

container field by script, the result will be an encrypted text

file named hmac.data:

https://www.ietf.org/rfc.html

CryptAuthCode ("Hello World" ; "MD5" ;

"S3cr3at3Password")

CryptEncrypt

The CryptEncrypt function encrypts text or container data

into an encrypted file.

To convert the key parameter into a cryptographic key,

the function uses the Password-Based Key Derivation

Function 2 (PBKDF2) algorithm, which is part of RSA

Laboratories’ Public-Key Cryptography Standards (PKCS)

series that was published as RFC 2898 by the Internet

Engineering Task Force.

The cryptographic key is then used to encrypt the data

using the Advanced Encryption Standard Galois/Counter

Mode (AES-GCM) 128-bit algorithm. The resulting encrypted

file includes an encrypted 256-bit Secure Hash Algorithm

(SHA-256) digest of the data that is used to validate the

data during encryption.

Caution The Crypt functions are not supported in

runtime solutions (Chapter 41, “Developer Utilities”) and

will return an error.

Format CryptEncrypt (data ; key)

Parameters data = a text value that should be encrypted.

key = a text value containing text that will be used as the key to

encrypt the data.

Result An encrypted text file that can be placed into a container field.

When this example is used as a calculation field resulting in

container data or when the result is placed into a container

field by script, the result will be an encrypted text file

named encrypted.data:

CryptEncrypt ("Hello World" ; "S3cr3at3Password")

CryptEncryptBase64

The CryptEncryptBase64 function encrypts text or container

data into Base64 text.

Format CryptEncryptBase64 (data ; key)

Parameters data = a text value that will be encrypted.

key = a text value containing text that will be used as the key to

encrypt the data.

Result The data provided, encrypted into a Base64 text string.

Example

CryptEncryptBase64 ("Hello World" ; "S3cr3at3Password"

)

// result =

qgGBz8icxONPAyGiIIRSW/Jf0HIVApOmyZ8OD5vxWxPsiYxv14

HBJUl/Ar8MXcjOpiENVeuwnbDcc+X4+m3ZNwFH3/uws8580H

PmtASBs9ZK

CryptDecrypt

The CryptDecrypt function converts an encrypted data file

from a container back into its original content.

Format CryptDecrypt (container ; key)

Parameters container = data representing an encrypted file resides.

key = a text value containing text that will be used as the key to

decrypt the data.

Result The original text or container content restored to its original

unencrypted form.

This example assumes a field containing the

encrypted.data file generated from the CryptEncrypt

example:

CryptDecrypt (Sandbox::Example Container ;

"S3cr3at3Password")

// result = "Hello World"

CryptDecryptBase64

The CryptDecryptBase64 function converts text encrypted

in Base64 format back into its original content.

Format CryptDecryptBase64 (data ; key)

Parameters data = data that was previously encrypted with into Base64

format.

key = a text value containing text that will be used as the key to

decrypt the data.

Result The original text or container content restored to its original form.

This example assumes that the Example Calculation field

contains the encrypted text that resulted from the

CryptEncryptBase64 example:

CryptEncrypt (Sandbox::Example Calculation ;

"S3cr3at3Password")

// result = "Hello World"

CryptDigest

The CryptDigest function returns a binary hash value of text

or container data using a specified cryptographic hash

algorithm.

Format CryptDigest (data ; algorithm)

Parameters data = a text value that will be encrypted.

algorithm = the name of a supported cryptographic algorithm

that should be used to generate the HMAC (see CryptAuthCode

for list of supported algorithms).

Result A text file that can be placed into a container field, containing the

encrypted digest of the original data.

When this example is used as a calculation field resulting

in container data or when the result is placed into a

container field by script, the result will be an encrypted text

file named digest.data:

CryptDigest ("Hello World" ; "MD5" ; "S3cr3at3Password"

)

GetContainerAttribute

The GetContainerAttribute function returns an attribute from

the file metadata of a container field.

Format GetContainerAttribute (sourceField ; attributeName)

Parameters sourceField = a container field reference.

attributeName = the name of an attribute or group.

Result Various, depending on the information requested and the file type

stored in the container.

AttributeName Options

The attributeName parameter can contain the name of an

individual attribute or a group of attributes.

Caution When attributes are retrieved in groups they

always include a label with the value, while individual

attributes only return the value. Some attributes will

return either a number that indicates a value or a number

with the text explanation of the value in parentheses. For

more details on the values returned, experiment with

groups or consult FileMaker’s help documentation.

Groups of Attributes

The following groups of attributes can be retrieved:

all = returns every attribute applicable to the file in the

container

general = returns every attribute applicable to all files

types

audio = returns every attribute applicable to audio files

image = returns every attribute applicable to images

photo = returns every attribute applicable to

photographs

barcode = returns every attribute applicable to

barcodes

signature = returns every attribute applicable to

signatures

General Attributes

The following attributes are in the general group and are

applicable to every file type:

filename = the name of the file

MD5 = a cryptographic has function result for the file,

which can be used to identify duplicates with different

file names

storageType = the method of storage for the file;

Embedded, External (Secure), External (Open), File

Reference, Text

fileSize = the size of the file in bytes

internalSize = the amount of space used inside the

database by the container field (in bytes)

externalSize = the amount of space that is used outside

the database by the container field (in bytes)

externalFiles = a list of external files in the container

field

Image Attributes

The following attributes are in the image group and are

applicable to images:

width

height

dpiWidth

dpiHeight

transparency

Photo Attributes

The following attributes are in the photo group and are

applicable to jpeg and tiff files only:

orientation = the orientation of the photo

created = the earliest timestamp available for the photo

modified = the latest timestamp available for the photo;

an empty string indicates the photo has not been

modified

latitude = the latitude of the location where the photo

was taken

longitude = the longitude of the location where the

photo was taken

make = the manufacture of the camera used to take the

photo

model = the model of the camera used to take the

photo

Audio Attributes

The following attributes are in the audio group and are

applicable to mp3 and m4a files only:

title

artist

year

track

genre

composer

cover Art

duration

bitRate

Barcode Attributes

The following attributes are in the barcode group and are

applicable to barcode files only:

barcodeText

barcodeType

Signature Attributes

The following attributes are in the signature group and are

applicable to signatures only:

signed = the timestamp when the signature was

captured

Examples

These examples retrieve an individual attribute from the

general group:

GetContainerAttribute (Example::ContainerField;

"filename")

// result = Img_1036.jpg

GetContainerAttribute (Example::ContainerField;

"storageType")

// result = Embedded

These examples retrieve an individual attribute from the

photo group:

GetContainerAttribute (Example::ContainerField; "width"

)

// result = 2448

GetContainerAttribute (Example::ContainerField;

"dpiwidth")

// result = 72

GetContainerAttribute (Example::ContainerField;

"orientation")

// result = 6 (Rotated 90 degrees counterclockwise)

This example retrieves the entire photos group:

GetContainerAttribute (Example::ContainerField; "photo"

)

// result =

 Orientation: 1 (Normal)

 Created: 10/6/2009 6:55:56 AM

 Modified:

 Latitude:

 Longitude:

 Make: Canon

 Model: Canon EOS 5D

This example retrieves the all attributes from an audio

file:

GetContainerAttribute (Example::ContainerField; "all")

// result =

 all: [General]

 Filename: 04 Since I've Been Loving You.m4a

 Storage Type: Embedded

 MD5: 5992BBD29308F52967E747B2EFFE9AA4

 File Size: 7182880

 Internal Size: 7182941

 External Size: 0

 External Files: 0

 [Audio]

 Title: Since I've Been Loving You

 Artist: Led Zeppelin

 Album: Led Zeppelin III

 Year: 1970

 Track: 4/10

 Genre: Rock

 Composer:

 Cover Art:

 Duration: 0:07:23

 Bit Rate: 128 kbps

GetHeight

The GetHeight function returns the height in pixels of an

image in a container.

Format GetHeight (sourceField)

Parameters sourceField = a container field reference.

Result A number indicating the height of the image provided in pixels.

This example shows the function returning the height of

an image stored in a container field:

GetHeight (Example::ContainerField) // result = 3264

GetThumbnail

The GetThumbnail function creates data representing a

thumbnail image of the content in a container field to a

specified height and width.

Format GetThumbnail (sourceField ; fitToWidth ; fitToHeight)

Parameters sourceField = a container field reference.

fitToWidth = a number, smaller than the original image,

specifying the desired width for the thumbnail.

fitToHeight = a number, smaller than the original image

specifying the desired height for the thumbnail.

Result Data representing a thumbnail of an image that can be placed

into a container field. When both a height and width are specified,

the proportion of the image will be automatically maintained

favoring the height.

This example shows the function scaling an image from a

container field. Notice that the fitToWidth measurement is

ignored to preserve the proportions of the image, favoring

the fitToHeight specification.

GetThumbnail (Example::ContainerField ; 2000 ; 500)

// result = a thumbnail of the image scaled down to 375 x

500

This example shows the function scaling an image to half

the height and width, which are both dynamically calculated

using the GetWidth and GetHeight functions:

GetThumbnail (

 Example::ContainerField ;

 GetWidth (Example::ContainerField) / 2 ;

 GetHeight (Example::ContainerField) / 2

)

// result = a thumbnail of the image scaled to 50%

GetWidth

The GetWidth function returns the width in pixels of an

image in a container.

Format GetWidth (sourceField)

Parameters sourceField = a container field reference.

Result A number indicating the width of the image provided in pixels.

This example shows the function calculating the width of

an image stored in a container field:

GetWidth (Example::ContainerField) // result = 2448

HexEncode

The HexEncode function will encode text or container data

into hexadecimal (base-16) format.

Format HexEncode (data)

Parameters data = a text value that will be encoded.

Result A text value containing the original data encoded into

hexadecimal format.

This example shows the function converting a text string

into hexadecimal format:

HexEncode ("Hello World") // result =

48656C6C6F20576F726C64

HexDecode

The HexDecode function will decode text from hexadecimal

(base-16) format back into regular text or container data.

Format When converting text encoded as hexadecimal, only the text

being decoded need be included:

Base64Decode (text)

To specify a file name with an extension when decoding a file for

insertion into a container being, add a second parameter:

Base64Decode (text ; fileNameWithExtension)

Parameters data = a text value that was previously encoded into

hexadecimal format.

fileNameWithExtension = (optional) a text value that contains a

file name and extension for the file being decoded.

Result Text or container data.

This example shows the function converting a

hexadecimal string back into its original decoded format:

HexDecode ("48656C6C6F20576F726C64") // result =

"Hello World"

TextEncode

The TextEncode function encodes text, converting it into a

text file that can be placed into a container field and then

exported.

Format TextEncode (text ; encoding ; lineEndings)

Parameters text = a text value that will be encoded.

encoding = the name of a character encoding scheme to use.

lineEndings = a numeric value indicating the line endings to use.

Options for

encoding

The following options can be used as the encoding parameter:

utf-8 — for Unicode encoding

iso-8859-1 — for Latin 1 encoding

windows-1251 — for Cyrillic encoding

shift_jis — for Japanese encoding

windows-1252 — for Windows encoding

gb18030 — for Simplified Chinese encoding

euc-kr — for Korean encoding

big5 — for Traditional Chinese encoding

macintosh — for Mac Roman encoding

Options for

lineEndings

The following options can be used as the lineEndings parameter:

1 — leave line endings unchanged

2 — use carriage return (legacy Macintosh standard)

3 — use line feed (Unix/Linux/MacOS standard)

4 — use carriage return followed by a line feed (Windows

standard)

Result The text encoded as a text file for placement into a container

field. The name of the file will be the encoding option with an

extension of .txt.

When this example is used as a calculation field resulting

in container data or when the result is placed into a

container field by script, the result will be a text file named

macintosh.txt:

TextEncode ("Hello World" ; "macintosh" ; 3)

TextDecode

The TextDecode function decodes a text file in a container

field, converting it into a plain text that can be placed into a

field.

Format TextDecode (container ; encoding)

Parameters container = a container field reference.

encoding = the name of a character encoding scheme to use (see

TextEncode for list of available options).

Result The text contents of the file in the specified container field.

When a text file containing the phrase “Hello World” is

stored in a container field named Example Container:

TextDecode (Sandbox::Example Container ; "macintosh"

) // result = "Hello World"

VerifyContainer

The VerifyContainer function determines if the data in a

container field was changed or deleted outside of FileMaker.

Format VerifyContainer (sourceField)

Parameters sourceField = a container field reference.

Result A value indicating the status of the container field’s contents:

1 = no changes or deletions have occurred in the original file

outside of FileMaker

0 = the external file was modified or deleted

? = the field is not a container field

This example shows the function confirming that the data

container field has not been modified externally.

VerifyContainer (Example::ContainerField) // result = 1

Summary

In this chapter, we explored all the built-in functions for

working with container data.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_19

19. Aggregate, Summary, and

Repeating Functions

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

There are three categories of functions that handle the

manipulation of multiple values.

Aggregate Function Reference

Aggregate functions are used to summarize fields and to

perform statistical computations on numbers, dates, and

times.

FileMaker provides the following built-in aggregate

functions:

Average

Count

List

Max

Min

Steve

StDevP

Sum

Variance

VarianceP

These functions can accept a single repeating field or a

list of non-repeating, repeating, or related fields. Due to the

similarity in behavior and the number of possibly different

combinations of input, all the examples use the same data

as shown in Figure 19-1.

Figure 19-1. A set of fields, local and related, with simple values that are used

for all the examples in this section

Average

The Average function calculates the average of all values in

one or more fields.

Format A single repeating or related numeric field can be specified with

one parameter:

Average (field)

Multiple numeric fields (repeating or not) or numeric values can

be used, with a semicolon delimiter:

Average (field1 ; field2 ; field3 ; etc.)

Parameters field = numeric values.

Result A number representing the average of the values specified,

varying based on the combination of literal values, non-repeating

fields, repeating fields, or related fields included in the

parameter(s).

Average Examples

The examples in this section assume the data shown in

Figure 19-1.

Using the Average Function with Local Fields

A list of non-repeating local fields will return the average

based on all the values contained within the fields provided:

Average (Example::NonRepeating1 ;

Example::NonRepeating2 ; Example::NonRepeating3)

// result = 2

A single repeating local field will return the average

based on all the values contained within that field:

Average (Example::Repeating1)

// result = 6

A list of repeating local fields used in a non-repeating

calculation will return the average based on the first

repetition from each field provided:

Average (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// result = 9

A list of repeating local fields used in a repeating

calculation returns the average for each repletion of the

result based on the corresponding repetition from each field

provided:

Average (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// repetition 1 = 9

// repetition 2 = 10

// repetition 3 = 11

// repetition 4 = 12

// repetition 5 = 13

Using the Average Function with Related Fields

A single related, non-repeating field will return the average

based on all the values from that field for each record

related to the local record performing the calculation:

Average (Related::NonRepeating1)

// result = 32

A list of related, non-repeating fields returns the average

based on the values from the fields provided for the first

related record:

Average (Related::NonRepeating1 ;

Related::NonRepeating2 ; Related::NonRepeating3)

// result = 20

A single related, repeating field will return the average

based on the values from every repetition from every record

related to the local record performing the calculation:

Average (Related::Repeating1)

// result = 37

A list of related, repeating fields used in a non-repeating

calculation will return the average based on the values from

the first repetition of those fields from the first record

related to the local record performing the calculation:

Average (Related::Repeating1 ; Related::Repeating2)

// result = 24.5

A list of related, repeating fields used in a repeating

calculation will return the average based on the values from

the corresponding repletion from each field provided from

the first record related to the local record performing the

calculation :

Average (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 24.5

// repetition 2 = 25.5

// repetition 3 = 26.5

// repetition 4 = 27.5

// repetition 5 = 28.5

Count

The Count function counts the number of values in one or

more fields.

Format A single repeating or related field can be specified with one

parameter:

Count (field)

Multiple fields (repeating or not) or values can be used, with a

semicolon delimiter:

Count (field1 ; field2 ; field3 ; etc.)

Parameters field = any text values.

Result A number: the total count of the values provided, varying based

on the combination of literal values, non-repeating fields,

repeating fields, or related fields included in the parameter(s).

Count Examples

The examples in this section assume the data shown in

Figure 19-1.

Caution Although all the examples below count lists of

numeric values, remember that the Count function can

count any text values. For example, the result of counting

"8¶10¶2" and "Mon¶Tues¶Wed" are the same: 3.

Using the Count Function with Local Fields

A list of non-repeating local fields will return the total non-

blank value count based on all the values contained within

the fields provided:

Count (Example::NonRepeating1 ;

Example::NonRepeating2 ; Example::NonRepeating3)

// result = 3

A single repeating local field will return the total non-

blank value count based on all the values contained within

that field:

Count (Example::Repeating1)

// result = 5

A list of repeating local fields used in a non-repeating

calculation will return the total non-blank value count based

on the first repetition from each field provided:

Count (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// result = 3

A list of repeating local fields used in a repeating

calculation return the total non-blank value count for each

repletion of the result based on the corresponding repetition

from each field provided :

Count (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// repetition 1 = 3

// repetition 2 = 3

// repetition 3 = 3

// repetition 4 = 3

// repetition 5 = 3

Using the Count Function with Related Fields

A single related, non-repeating field will return the total non-

blank value count based on all the values from that field for

each record related to the local record performing the

calculation:

Count (Related::NonRepeating1)

// result = 3

A list of related, non-repeating fields returns the total

non-blank value count based on the values from the fields

provided for the first related record:

Count (Related::NonRepeating1 ;

Related::NonRepeating2 ; Related::NonRepeating3)

// result = 3

A single related, repeating field will return the total non-

blank value count based on the values from every repetition

from every record related to the local record performing the

calculation:

Count (Related::Repeating1)

// result = 15

A list of related, repeating fields used in a non-repeating

calculation will return the total non-blank value count based

on the values from the first repetition of those fields from

the first record related to the local record performing the

calculation:

Count (Related::Repeating1 ; Related::Repeating2)

// result = 2

A list of related, repeating fields used in a repeating

calculation will return the total non-blank value count based

on the values from the corresponding repetition from each

field provided from the first record related to the local

record performing the calculation:

Count (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 2

// repetition 2 = 2

// repetition 3 = 2

// repetition 4 = 2

// repetition 5 = 2

List

The List function generates a carriage return-delimited list

of values for one or more fields.

Format When listing values from a single repeating field or a single

related field, only one parameter is required:

List (field)

Optionally, multiple fields can be added with semicolon

delimiters:

List (field1 ; field2 ; field3 ; etc)

Parameters field = a field reference.

Result A carriage return-delimited text-based list of values from the

specified field(s), varying based on the combination of non-

repeating, repeating, or related fields included in the

parameter(s).

List Examples

The examples in this section assume the data shown in

Figure 19-1.

Using the List Function with Local Fields

A list of non-repeating local fields will return a carriage

return-delimited list based on all the values contained within

the fields provided:

List (Example::NonRepeating1 ;

Example::NonRepeating2 ; Example::NonRepeating3)

// result = 1¶2¶3

A single repeating local field will return a carriage return-

delimited list based on all the values contained within that

field:

List (Example::Repeating1)

// result = 4¶5¶6¶7¶8

A list of repeating local fields used in a non-repeating

calculation will return a carriage return-delimited list based

on the first repetition from each field provided:

List (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// result = 4¶9¶14

A list of repeating local fields used in a repeating

calculation return a carriage return-delimited list for each

repetition of the result based on the corresponding

repetition from each field provided :

List (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// repetition 1 = 4¶9¶14

// repetition 2 = 5¶10¶15

// repetition 3 = 6¶11¶16

// repetition 4 = 7¶12¶17

// repetition 5 = 8¶13¶18

Using the List Function with Related Fields

A single related, non-repeating field will return a carriage

return-delimited list based on all the values from that field

for each record related to the local record performing the

calculation :

List (Related::NonRepeating1)

// result = 19¶32¶45

A list of related, non-repeating fields return a carriage

return-delimited list based on the values from the fields

provided for the first related record:

List (Related::NonRepeating1 ; Related::NonRepeating2 ;

Related::NonRepeating3)

// result = 19¶20¶21

A single related, repeating field will return a carriage

return-delimited list based on the values from every

repetition from every record related to the local record

performing the calculation:

List (Related::Repeating1)

// result =

22¶23¶24¶25¶26¶35¶36¶37¶38¶39¶48¶49¶50¶51¶52

A list of related, repeating fields used in a non-repeating

calculation will return a carriage return-delimited list based

on the values from the first repetition of those fields from

the first record related to the local record performing the

calculation:

List (Related::Repeating1 ; Related::Repeating2)

// result = 22¶27

A list of related, repeating fields used in a repeating

calculation will return a carriage return-delimited list based

on the values from the corresponding repetition from each

field provided from the first record related to the local

record performing the calculation :

List (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 22¶27

// repetition 2 = 23¶28

// repetition 3 = 24¶29

// repetition 4 = 25¶30

// repetition 5 = 26¶31

Max

The Max function extracts the highest value from a list of

values.

Format A single repeating or related numeric field can be specified with

one parameter:

Max (field)

Multiple numeric fields (repeating or not) or numeric values can

be used, with a semicolon delimiter:

Max (field1 ; field2 ; field3 ; etc)

Parameters field = numeric values.

Result A number representing the highest value from the values

provided, varying based on the combination of separate numeric

values, non-repeating fields, repeating fields, or related fields

included in the parameter(s).

Max Examples

The examples in this section assume the data shown in

Figure 19-1.

Using the Max Function with Local Fields

A list of non-repeating local fields will return the highest

value based on all the values contained within the fields

provided :

Max (Example::NonRepeating1 ;

Example::NonRepeating2 ; Example::NonRepeating3)

// result = 3

A single repeating local field will return the highest value

based on all the values contained within that field:

Max (Example::Repeating1)

// result = 8

A list of repeating local fields used in a non-repeating

calculation will return the highest value based on the first

repetition from each field provided:

Max (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// result = 14

A list of repeating local fields used in a repeating

calculation returns the highest value for each repetition of

the result based on the corresponding repetition from each

field provided:

Max (Example::Repeating1 ; Example ::Repeating2 ;

Example::Repeating3)

// repetition 1 = 14

// repetition 2 = 15

// repetition 3 = 16

// repetition 4 = 17

// repetition 5 = 18

Using the Max Function with Related Fields

A single related, non-repeating field will return the highest

value based on all the values from that field for each record

related to the local record performing the calculation:

Max (Related::NonRepeating1)

// result = 45

A list of related, non-repeating fields return the highest

value based on the values from the fields provided for the

first related record:

Max (Related::NonRepeating1 ; Related::NonRepeating2

; Related::NonRepeating3)

// result = 21

A single related, repeating field will return the highest

value based on the values from every repetition from every

record related to the local record performing the calculation:

Max (Related::Repeating1)

// result = 52

A list of related, repeating fields used in a non-repeating

calculation will return the highest value based on the values

from the first repetition of those fields from the first record

related to the local record performing the calculation:

Max (Related::Repeating1 ; Related::Repeating2)

// result = 27

A list of related, repeating fields used in a repeating

calculation will return the highest value based on the values

from the corresponding repetition from each field provided

from the first record related to the local record performing

the calculation:

Max (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 27

// repetition 2 = 28

// repetition 3 = 29

// repetition 4 = 30

// repetition 5 = 31

Min

The Max function extracts the lowest value from a list of

values.

Format A single repeating or related numeric field can be specified with

one parameter:

Min (field)

Multiple numeric fields (repeating or not) or numeric values can

be used, with a semicolon delimiter:

Min (field1 ; field2 ; field3 ; etc)

Parameters field = numeric values.

Result A number representing the lowest value from the values

provided, varying based on the combination of separate numeric

values, non-repeating fields, repeating fields, or related fields

included in the parameter(s).

Min Examples

The examples in this section assume the data shown in

Figure 19-1.

Using the Min Function with Local Fields

A list of non-repeating local fields will return the lowest

value based on all the values contained within the fields

provided:

Min (Example::NonRepeating1 ;

Example::NonRepeating2 ; Example::NonRepeating3)

// result = 1

A single repeating local field will return the lowest value

based on all the values contained within that field:

Min (Example::Repeating1)

// result = 4

A list of repeating local fields used in a non-repeating

calculation will return the lowest value based on the first

repetition from each field provided:

Min (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// result = 4

A list of repeating local fields used in a repeating

calculation return the lowest value for each repetition of the

result based on the corresponding repetition from each field

provided:

Min (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// repetition 1 = 4

// repetition 2 = 5

// repetition 3 = 6

// repetition 4 = 7

// repetition 5 = 8

Using the Min Function with Related Fields

A single related, non-repeating field will return the lowest

value based on all the values from that field for each record

related to the local record performing the calculation:

Min (Related::NonRepeating1)

// result = 19

A list of related, non-repeating fields returns the lowest

value based on the values from the fields provided for the

first related record:

Min (Related::NonRepeating1 ; Related::NonRepeating2 ;

Related::NonRepeating3)

// result = 19

A single related, repeating field will return the lowest

value based on the values from every repetition from every

record related to the local record performing the calculation:

Min (Related::Repeating1)

// result = 22

A list of related, repeating fields used in a non-repeating

calculation will return the lowest value based on the values

from the first repetition of those fields from the first record

related to the local record performing the calculation:

Min (Related::Repeating1 ; Related::Repeating2)

// result = 22

A list of related, repeating fields used in a repeating

calculation will return the lowest value based on the values

from the corresponding repetition from each field provided

from the first record related to the local record performing

the calculation:

Min (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 22

// repetition 2 = 23

// repetition 3 = 24

// repetition 4 = 25

// repetition 5 = 26

StDev

The StDev function calculates the standard deviation of a

list of values. Standard deviation is a measure of how

spread out a set of numbers are from their mean, which is

calculated by taking the square root of the average of the

squared deviations of the values from their average value.

Format A single repeating or related numeric field can be specified with

one parameter:

StDev (field)

Multiple numeric fields (repeating or not) or numeric values can

be used, with a semicolon delimiter:

StDev (field1 ; field2 ; field3 ; etc)

Parameters field = numeric values.

Result A number representing the standard deviation from the values

provided, varying based on the combination of separate numeric

values, non-repeating fields, repeating fields, or related fields

included in the parameter(s).

More Info For background information on standard deviation visit:

https://en.wikipedia.org/wiki/Standard_deviation .

StDev Examples

The examples in this section assume the data shown in

Figure 19-1.

Using the StDev Function with Local Fields

A list of non-repeating local fields will return the standard

deviation based on all the values contained within the fields

provided:

StDev (Example::NonRepeating1 ;

Example::NonRepeating2 ; Example::NonRepeating3)

// result = 1

A single repeating local field will return the standard

deviation based on all the values contained within that field:

StDev (Example::Repeating1)

// result = 1.5811388300841897

A list of repeating local fields used in a non-repeating

calculation will return the standard deviation based on the

first repetition from each field provided:

StDev (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// result = 5

https://en.wikipedia.org/wiki/Standard_deviation

A list of repeating local fields used in a repeating

calculation return the standard deviation for each repetition

of the result based on the corresponding repetition from

each field provided:

StDev (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// repetition 1 = 5

// repetition 2 = 5

// repetition 3 = 5

// repetition 4 = 5

// repetition 5 = 5

Using the StDev Function with Related Fields

A single related, non-repeating field will return the standard

deviation based on all the values from that field for each

record related to the local record performing the calculation

:

StDev (Related::NonRepeating1)

// result = 13

A list of related, non-repeating fields returns the standard

deviation based on the values from the fields provided for

the first related record:

StDev (Related::NonRepeating1 ;

Related::NonRepeating2 ; Related::NonRepeating3)

// result = 1

A single related, repeating field will return the standard

deviation based on the values from every repetition from

every record related to the local record performing the

calculation:

StDev (Related::Repeating1)

// result = 11.0840941378690418

A list of related, repeating fields used in a non-repeating

calculation will return the standard deviation based on the

values from the first repetition of those fields from the first

record related to the local record performing the calculation:

StDev (Related::Repeating1 ; Related::Repeating2)

// result = 3.5355339059327376

A list of related, repeating fields used in a repeating

calculation will return the standard deviation based on the

values from the corresponding repetition from each field

provided from the first record related to the local record

performing the calculation :

StDev (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 3.5355339059327376

// repetition 2 = 3.5355339059327376

// repetition 3 = 3.5355339059327376

// repetition 4 = 3.5355339059327376

// repetition 5 = 3.5355339059327376

StDevP

The StDevP function calculates the standard deviation of a

population represented by a list of values.

Format A single repeating or related numeric field can be specified with

one parameter:

StDevP (field)

Multiple numeric fields (repeating or not) or numeric values can

be used, with a semicolon delimiter:

StDevP (field1 ; field2 ; field3 ; etc)

Parameters field = numeric values .

Result A number representing the standard deviation of a population

from the values provided, varying based on the combination of

separate numeric values, non-repeating fields, repeating fields, or

related fields included in the parameter(s).

StDevP Examples

The examples in this section assume the data shown in

Figure 19-1.

Using the StDevP Function with Local Fields

A list of non-repeating local fields will return the standard

deviation of a population based on all the values contained

within the fields provided:

StDevP (Example::NonRepeating1 ;

Example::NonRepeating2 ; Example::NonRepeating3)

// result = .816496580927726

A single repeating local field will return the standard

deviation of a population based on all the values contained

within that field:

StDevP (Example::Repeating1)

// result = 1.414213562373095

A list of repeating local fields used in a non-repeating

calculation will return the standard deviation of a population

based on the first repetition from each field provided:

StDevP (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// result = 4.0824829046386302

A list of repeating local fields used in a repeating

calculation return the standard deviation of a population for

each repetition of the result based on the corresponding

repetition from each field provided:

StDevP (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// repetition 1 = 4.0824829046386302

// repetition 2 = 4.0824829046386302

// repetition 3 = 4.0824829046386302

// repetition 4 = 4.0824829046386302

// repetition 5 = 4.0824829046386302

Using the StDevP Function with Related Fields

A single related, non-repeating field will return the standard

deviation of a population based on all the values from that

field for each record related to the local record performing

the calculation:

StDevP (Related::NonRepeating1)

// result = 10.6144555520604384

A list of related, non-repeating fields return the standard

deviation of a population based on the values from the fields

provided for the first related record:

StDevP (Related::NonRepeating1 ;

Related::NonRepeating2 ; Related::NonRepeating3)

// result = .816496580927726

A single related, repeating field will return the standard

deviation of a population based on the values from every

repetition from every record related to the local record

performing the calculation:

StDevP (Related::Repeating1)

// result = 10.7082522694726737

A list of related, repeating fields used in a non-repeating

calculation will return the standard deviation of a population

based on the values from the first repetition of those fields

from the first record related to the local record performing

the calculation:

StDevP (Related::Repeating1 ; Related::Repeating2)

// result = 2.5

A list of related, repeating fields used in a repeating

calculation will return the standard deviation of a population

based on the values from the corresponding repetition from

each field provided from the first record related to the local

record performing the calculation :

StDevP (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 2.5

// repetition 2 = 2.5

// repetition 3 = 2.5

// repetition 4 = 2.5

// repetition 5 = 2.5

Sum

The Sum function adds a series of numbers into a total.

Format A single repeating or related numeric field can be specified with

one parameter:

Sum (field)

Multiple numeric fields (repeating or not) or numeric values can

be used, with a semicolon delimiter:

Sum (field1 ; field2 ; field3 ; etc)

Parameters field = numeric values.

Result A number representing the total of the values provided, varying

based on the combination of separate numeric values, non-

repeating fields, repeating fields , or related fields included in the

parameter(s).

Sum Examples

The examples in this section assume the data shown in

Figure 19-1.

Using the Sum Function with Local Fields

A list of non-repeating local fields will return the sum total

based on all the values contained within the fields provided

:

Sum (Example::NonRepeating1 ;

Example::NonRepeating2 ; Example::NonRepeating3)

// result = 6

A single repeating local field will return the sum total

based on all the values contained within that field:

Sum (Example::Repeating1)

// result = 30

A list of repeating local fields used in a non-repeating

calculation will return the sum total based on the first

repetition from each field provided:

Sum (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// result = 27

A list of repeating local fields used in a repeating

calculation returns the sum total for each repetition of the

result based on the corresponding repetition from each field

provided:

Sum (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// repetition 1 = 27

// repetition 2 = 30

// repetition 3 = 33

// repetition 4 = 36

// repetition 5 = 39

Using the Sum Function with Related Fields

A single related, non-repeating field will return the sum total

based on all the values from that field for each record

related to the local record performing the calculation:

Sum (Related::NonRepeating1)

// result = 96

A list of related, non-repeating fields returns the sum

total based on the values from the fields provided for the

first related record:

Sum (Related::NonRepeating1 ; Related::NonRepeating2

; Related::NonRepeating3)

// result = 60

A single related, repeating field will return the sum total

based on the values from every repetition from every record

related to the local record performing the calculation:

Sum (Related::Repeating1)

// result = 555

A list of related, repeating fields used in a non-repeating

calculation will return the sum total based on the values

from the first repetition of those fields from the first record

related to the local record performing the calculation:

Sum (Related::Repeating1 ; Related::Repeating2)

// result = 49

A list of related, repeating fields used in a repeating

calculation will return the sum total based on the values

from the corresponding repetition from each field provided

from the first record related to the local record performing

the calculation:

Sum (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 49

// repetition 2 = 51

// repetition 3 = 53

// repetition 4 = 55

// repetition 5 = 57

Variance

The Variance function calculates the variance of a series of

numbers. Variance is a measure of how varied a distribution

of numbers is from its mean.

Format A single repeating or related numeric field can be specified with

one parameter:

Variance (field)

Multiple numeric fields (repeating or not) or numeric values can

be used, with a semicolon delimiter:

Variance (field1 ; field2 ; field3 ; etc)

Parameters field = numeric values.

Result A number representing the variance of the values provided,

varying based on the combination of separate numeric values,

non-repeating fields, repeating fields, or related fields included in

the parameter(s).

More Info For more general information about variance, visit:

https://en.wikipedia.org/wiki/Variance .

Variance Examples

The examples in this section assume the data shown in

Figure 19-1.

Using the Variance Function with Local Fields

A list of non-repeating local fields will return the variance

based on all the values contained within the fields provided:

Variance (Example::NonRepeating1 ;

Example::NonRepeating2 ; Example::NonRepeating3)

// result = 1

A single repeating local field will return the variance

based on all the values contained within that field:

Variance (Example::Repeating1)

https://en.wikipedia.org/wiki/Variance

// result = 2.5

A list of repeating local fields used in a non-repeating

calculation will return the variance based on the first

repetition from each field provided:

Variance (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// result = 25

A list of repeating local fields used in a repeating

calculation returns the variance for each repetition of the

result based on the corresponding repetition from each field

provided:

Variance (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// repetition 1 = 25

// repetition 2 = 25

// repetition 3 = 25

// repetition 4 = 25

// repetition 5 = 25

Using the Variance Function with Related Fields

A single related, non-repeating field will return the variance

based on all the values from that field for each record

related to the local record performing the calculation :

Variance (Related::NonRepeating1)

// result = 169

A list of related, non-repeating fields returns the variance

based on the values from the fields provided for the first

related record:

Variance (Related::NonRepeating1 ;

Related::NonRepeating2 ; Related::NonRepeating3)

// result = 1

A single related, repeating field will return the variance

based on the values from every repetition from every record

related to the local record performing the calculation:

Variance (Related::Repeating1)

// result = 122.8571428571428571

A list of related, repeating fields used in a non-repeating

calculation will return the variance based on the values from

the first repetition of those fields from the first record

related to the local record performing the calculation:

Variance (Related::Repeating1 ; Related::Repeating2)

// result = 12.5

A list of related, repeating fields used in a repeating

calculation will return the variance based on the values from

the corresponding repetition from each field provided from

the first record related to the local record performing the

calculation:

Variance (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 12.5

// repetition 2 = 12.5

// repetition 3 = 12.5

// repetition 4 = 12.5

// repetition 5 = 12.5

VarianceP

The VarianceP function calculates the variance of a

population distribution of a series of numbers.

Format A single repeating or related numeric field can be specified with

one parameter:

VarianceP (field)

Multiple numeric fields (repeating or not) or numeric values can

be used, with a semicolon delimiter:

VarianceP (field1 ; field2 ; field3 ; etc)

Parameters field = numeric values .

Result A number representing the variance of a population distribution

of the values provided, varying based on the combination of

separate numeric values, non-repeating fields, repeating fields, or

related fields included in the parameter(s).

VarianceP Examples

The examples in this section assume the data shown in

Figure 19-1.

Using the VarianceP Function with Local Fields

A list of non-repeating local fields will return the variance of

a population based on all the values contained within the

fields provided:

VarianceP (Example::NonRepeating1 ;

Example::NonRepeating2 ; Example::NonRepeating3)

// result = .6666666666666667

A single repeating local field will return the variance of a

population based on all the values contained within that

field:

VarianceP (Example::Repeating1)

// result = 2

A list of repeating local fields used in a non-repeating

calculation will return the variance of a population based on

the first repetition from each field provided:

VarianceP (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// result = 16.6666666666666667

A list of repeating local fields used in a repeating

calculation returns the variance of a population for each

repetition of the result based on the corresponding

repetition from each field provided:

VarianceP (Example::Repeating1 ; Example::Repeating2 ;

Example::Repeating3)

// repetition 1 = 16.6666666666666667

// repetition 2 = 16.6666666666666667

// repetition 3 = 16.6666666666666667

// repetition 4 = 16.6666666666666667

// repetition 5 = 16.6666666666666667

Using the VarianceP Function with Related Fields

A single related, non-repeating field will return the variance

of a population based on all the values from that field for

each record related to the local record performing the

calculation :

VarianceP (Related::NonRepeating1)

// result = 112.6666666666666667

A list of related, non-repeating fields returns the variance

of a population based on the values from the fields provided

for the first related record:

VarianceP (Related::NonRepeating1 ;

Related::NonRepeating2 ; Related::NonRepeating3)

// result = .6666666666666667

A single related, repeating field will return the variance of

a population based on the values from every repetition from

every record related to the local record performing the

calculation:

VarianceP (Related::Repeating1)

// result = 114.6666666666666667

A list of related, repeating fields used in a non-repeating

calculation will return the variance of a population based on

the values from the first repetition of those fields from the

first record related to the local record performing the

calculation:

VarianceP (Related::Repeating1 ; Related::Repeating2)

// result = 6.25

A list of related, repeating fields used in a repeating

calculation will return the variance of a population based on

the values from the corresponding repetition from each field

provided from the first record related to the local record

performing the calculation:

VarianceP (Related::Repeating1 ; Related::Repeating2)

// repetition 1 = 6.25

// repetition 2 = 6.25

// repetition 3 = 6.25

// repetition 4 = 6.25

// repetition 5 = 6.25

Summary Functions

Summary functions are used to calculate a summary of

values for a field in all records in a found set or to

summarize values for records into different subgroups.

FileMaker provides one built-in summary function:

GetSummary

GetSummary

The GetSummary function returns the value of a summary

field for the current found set of records. This allows a

calculation formula to perform a similar function to what a

summary field can display on a layout (Chapter 8,

“Summary Fields”).

Format GetSummary (summaryField ; breakfield)

Parameters summaryField = a reference to a summary field.

breakField = a reference to a field, which will break a large group

of fields down into smaller subgroups if the set of records are

sorted by that field.

Result A number date, time, or timestamp depending on the summary

field provided. If the breakField is the same as the summaryField,

the summary value will be for all records in the found set. If the

fields are different and the found set is sorted by the breakField,

the summary will be of records with a matching value.

Assume a table with the fields, records and values,

sorted shown in Table 19-1 . The Example Summary field is

defined to be a total summary of the Example Value field.

Table 19-1. Example Records

Record

ID

Example Value

(number)

Example City

(text)

Example

Summary

1 10 Atlanta 50

2 10 Atlanta 50

3 10 New York 50

4 10 New York 50

5 10 New York 50

On a layout, the summary field displays the total for all

records unless it is placed within a sub-summary layout part

(Chapter 28, “Defining Summary Parts”). Since summary

fields only summarize on layouts and are not accessible to

calculations, you must create a new calculation field named

Example Summary Calculation and a formula using the

GetSummary function in order to access the summary for

further manipulation.

In this first example, both parameters are pointing to the

Example Summary field. The result is the total for all records

in the found set, like what would appear on a layout.

GetSummary (Example Summary ; Example

Summary) // result = 50

However, in the following example, the breakField

parameter points to the Example City field. The result will

now vary from one record to the next. Because it will be

sub-summarizing the result based on the Example City field,

a result of 20 will appear on the first two records and a

value of 30 on the last three.

GetSummary (Example Summary ; Example City)

Repeating Function Reference

Repeating functions are used to perform calculations

involving repeating fields. FileMaker provides the following

built-in repeating functions:

Extend

GetRepetition

Last

Extend

The Extend function allows a repeating and a non-repeating

field to be used together within a repeating calculation. The

non-repeating field is “extended” so that it can be used or

compared with each repetition in a repeating field as if it

were a repeating field (Chapter 8, “Repeating”).

Format Extend (non-repeatingField)

Parameters non-repeatingField = a reference to a non-repeating field or an

expression that returns a reference to a non-repeating field.

Result The contents of the field for use in a calculation with repeating

fields.

This example assumes an Invoice database where a

record’s SubTotalCost field contains 100.00. This single

amount must be combined with the cost of five different

shipping methods to arrive at five different grand totals that

are offered to a customer. Each shipping cost is stored in

one cell of a repeating field named ShippingCost with values

of 5, 28, 15, 40, and 13. The formula and results below are

for a GrandTotal calculation field that has five repetitions.

Since the SubTotalCost field is extended, its single value will

be successfully added to all five values in ShippingCost to

arrive at five results.

Extend (Invoice::SubTotalCost) + Invoice::ShippingCost

// repetition 1 = 105.00

// repetition 2 = 128.00

// repetition 3 = 115.00

// repetition 4 = 140.00

// repetition 5 = 113.00

GetRepetition

The GetRepetition function returns the contents of a single

repetition of a repeating field.

Format GetRepetition (repeatingField ; number)

Parameters repeatingField = a reference to a repeating field.

number = a number indicating the specific repetition desired.

Result The contents of the specified repetition of the field.

These examples show the different results pulled from

different repetitions of the same field. It assumes an Invoice

database has a Line Item Qty field with five repetitions

containing the following values: 5, 28, 15, 40, and 13:

GetRepetition (Invoice::Line Item Qty ; 1) // result = 5

GetRepetition (Invoice::Line Item Qty ; 2) // result =

28

GetRepetition (Invoice::Line Item Qty ; 3) // result =

15

GetRepetition (Invoice::Line Item Qty ; 4) // result =

40

GetRepetition (Invoice::Line Item Qty ; 5) // result =

13

Last

The Last function returns the last non-blank value from a

repeating field.

Format Last (repeatingField)

Parameters repeatingField = a reference to a repeating field.

Result The value from the last repetition that contains a value from the

specified field.

This example shows the result when an invoice database

has a Line Item Qty field with 5 repetitions containing the

following three values: 5, 28, and 15:

Last (Invoice::Line Item Qty) // result = 15

Summary

In this chapter, we explored all the built-in functions for

performing aggregate, summary, and repeating

calculations.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_20

20. Financial and Trigonometric

Functions

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

These two categories of functions handle financial and

advanced mathematical calculations.

Financial Function Reference

Financial functions are used to calculate financial results for

investment and interest payments. FileMaker provides the

following built-in financial functions:

FV

NPV

PMT

PV

FV

The FV function returns the future value of an investment,

based on a fixed interest rate and payment amount for a

specified period of months.

Format FV (payment ; interestRate ; periods)

Parameters payment = a number indicating the amount of payment to be

made each period.

interestRate = a number representing the interest rate per

period.

periods = a number indicating the total periods over which the

investment will be repaid.

Result A number calculated as the total amount to be paid over the

entire load period.

More Info For more general information about future value, visit:

https://en.wikipedia.org/wiki/Future_value .

This example shows the total payment on a loan of

$1,000 that will be paid back over 10 months with an

interest rate of 2.75%, rounded to two decimal places:

Round (FV (100 ; .0275 ; 10) ; 2) // result = 1133.28

NPV

The NPV function returns the net present value of a series of

unequal payments that are made at regular intervals at a

fixed rate of interest.

Format NPV (payment ; interestRate)

Parameters payment = a reference to a repeating field.

interestRate = a number indicating the interest rate charged at

regular intervals.

Result A number indicating the total amount of profit to be made from

this transaction.

More Info For more general information about net present value, visit:

https://en.wikipedia.org/wiki/Net_present_value .

This example assumes that the repeating field, Payments

contains -5000 (the loan amount), 1000, 1200, 500, 500,

3000.

NPV (Example::Payments ; .05) // result = 223.49

https://en.wikipedia.org/wiki/Future_value
https://en.wikipedia.org/wiki/Net_present_value

PMT

The PMT function returns the payment required by a loan

amount and interest rate for a given term.

Format PMT (principal ; interestRate ; term

Parameters principal = a number indicating the amount of the loan principal.

interestRate = a number indicating in the rate of interest.

term = a number indicating the loan term in months.

Result A number indicating the amount of monthly payment to pay off

the loan plus interest .

A 30-month loan for $10,000 at an interest rate of 5%

would require a payment calculated as follows:

Round (PMT (10000 ; .05 ; 30) ; 2) // result = 650.51

If the interest is an annual rate, divide it by 12, as shown

in this example:

Round (PMT (10000 ; (.25 / 12) ; 30) ; 2) // result =

451.63

PV

The PV function returns the present value, or present

discounted value, of a loan, which is an expectation of the

value of income as of the current date.

Format PV (payment ; interestRate ; periods)

Parameters payment = a number indicating the amount of a payment that is

made per period.

interestRate = a number indicating the interest rate per period.

periods = a number indicating the number of total periods.

Result A number representing the present value of the loan.

More Info For more general information on present value, visit:

https://en.wikipedia.org/wiki/Present_value .

https://en.wikipedia.org/wiki/Present_value

This example shows a calculation of the present value of

a loan with 30 payments of $350 each at a 5% interest rate,

rounded to two digits:

Round (PV (350 ; .05 ; 30) ; 2) // result = 5380.36

Trigonometric Function Reference

Trigonometric functions are used to perform geometric

calculations. FileMaker provides the following built-in

trigonometric functions:

Acos

Asin

Atan

Cos

Degrees

Pi

Radians

Sin

Tan

Acos

The Acos function returns the arccosine, or inverse cosine,

of a number.

Format Acos (number)

Parameters number = a number ranging from -1 to 1.

Result A number representing an angle in radians from 0 (zero) to Pi.

This example shows the function calculating the

arccosine of .75:

Acos (.75) // result = .7227342478134157

Asin

The Asin function returns the arcsine, or inverse sine, of a

number.

Format Asin (number)

Parameters number = a number ranging from -1 to 1.

Result A number representing an angle in radians from Pi/2 to Pi/2.

This example shows the function calculating the arcsine

of .75:

Asin (.75) // result = .848062078981481

Atan

The Atan function returns the arc tangent, or inverse

tangent, of a number.

Format Atan (number)

Parameters number = a number.

Result A number representing the angle, in radians, whose tangent is

equal to the number provided.

This example shows the function calculating the arc

tangent of .5:

Atan (.5) // result = .4636476090008061

Cos

The Cos function returns the cosine of an angle.

Format Cos (angleInRadians)

Parameters angleInRadians = a number expressed in radians.

Result The cosine of the angle provided.

This example shows the function calculating the cosine of

.95:

Cos (.95) // result = .5816830894638836

Degrees

The Degrees function converts an angle to degrees.

Format Degrees (angleInRadians)

Parameters angleInRadians = a number expressed in radians.

Result A number representing the radians provided expressed in

degrees.

This example shows the function converting an angle of

.95 into degrees:

Degrees (.95) // result = 54.4309905374282048

Pi

The Pi function returns the value of the constant Pi.

Format Pi

Parameters Not applicable

Result The constant Pi to 16 decimal places.

This example shows the function returning the Pi

constant :

Pi // result = 3.1415926535897932

Radians

The Radians function converts an angle expressed in

degrees into radians.

Format Radians (angleInDegrees)

Parameters angleInDegrees = a number expressed in degrees.

Result A number representing the degrees provided expressed in

radians.

This example shows the function converting a 90-degree

angle into radians:

Radians (90) // result = 1.5707963267948966

Sin

The Sin function returns the sine of an angle expressed in

radians.

Format Sin (angleInRadians)

Parameters angleInRadians = a number expressing an angle in radians.

Result The sine of the number provided.

This example shows the function calculating the sine of

an angle:

Sin (.75) // result = .6816387600233342

Tan

The Tan function returns the tangent of an angle expressed

in radians.

Format Tan (angleInRadians)

Parameters angleInRadians = a number expressing an angle in radians.

Result The tangent of the number provided.

This example shows the function calculating the tangent

of an angle:

Tan (60) // result = .3200403893795629

Summary

In this chapter, we explored all the built-in functions for

performing financial and trigonometric calculations.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-4842-2863-0_21

21. Logical Functions

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Logical functions are used to test conditions to produce variable

results and perform other evaluative functions.

Logical Function Reference

FileMaker provides the following built-in logical functions :

Case

Choose

Evaluate

EvaluationError

ExecuteSQL

GetAsBoolean

GetAVPlayerAttribute

GetField

GetFieldName

GetLayoutObjectAttribute

GetNthRecord

If

IsEmpty

IsValid

IsValidExpression

Let

Lookup

LookupNext

Self

Case

The Case function evaluates one or more expressions, in order, and

returns a result corresponding to the first expression to return a true

result. If none of the expressions are true, an optional default result

will be returned. Case is somewhat like an if-then function but can

handle multiple statements with less verbiage.

Format With a single test-result pair and no default result, only two parameters are

required:

Case (test1 ; result1)

Add additional test-result pairs as needed:

Case (test1 ; result1 ; test2 ; result2)

A default result can be included, which will be used if none of the other test

expressions produce a result:

Case (test1 ; result1 ; test2 ; result2 ; defaultResult)

As these statements grow, consider adding carriage returns to reformat them

vertically, putting each pair on its own line and making the statement easier to

read:

Case (

test1 ; result1 ;

test2 ; result2 ;

test3 ; result3 ;

test4 ; result4 ;

defaultResult

)

Parameters test = a text or numeric expression that evaluates to a Boolean.

result = a literal result or expression that generates a result that will

correspond to the paired test.

defaultResult = (optional) a result that will be used if none of the provided tests

are true.

Result A result provided that corresponds to the true test in whatever data type is

generated.

This simple example uses the number of days from a field named

“Elapsed” to determine how overdue a payment has become.

Case (

 Elapsed > 90 ; "Severe" ;

 Elapsed > 60 ; "Delinquent" ;

 Elapsed > 30 ; "Past Due" ;

 "On Time"

)

The result of the calculation will vary depending on the number in

that field.

// when Elapsed = 20, the result = "On Time"

// when Elapsed = 32, the result = "Past Due"

// when Elapsed = 64, the result = "Delinquent"

Choose

The Choose function evaluates a single test condition to generate an

integer that is used to select from a list of one or more provided

results. The results are zero-based, so the first result is returned if the

test condition evaluates to a 0, the second result for a 1, and so on.

Format If there is only one possible result, only two parameters are required:

Choose (test ; result0)

Additional results can be added with a semicolon delimiter:

Choose (test ; result0 ; result1 ; result2 ; etc.)

As these statements grow, consider adding carriage returns to reformat them

vertically, putting each pair of conditions on its own line and making the

statement easier to read:

Choose (

test1 ;

result0 ;

result1 ;

result2 ;

result3

)

Parameters test = a number of expression that evaluates to an integer.

result = a literal result or expression.

Result The result located at the position indicated by the integer generated by the

test expression.

This simple example uses a value from a field named “Status” to

determine how overdue a payment has become.

Choose (Status ; "On Time" ; "Past Due" ; "Delinquent" ; "Severe")

The result of the above calculation will vary depending on the

number contained in the Status field, as shown here:

// when Status = 0, the result = "On Time"

// when Status = 1, the result = "Past Due"

// when Status = 2, the result = "Delinquent"

// when Status = 3, the result = "Severe"

Evaluate

The Evaluate function converts any text-based expression into a

calculation and then executes it to generate a result. Creative use of

this function gives developers a powerful ability to create variable

functionality in the form of dynamic calculations that can be built

automatically by the database and executed as needed.

Format Without the optional field parameter(s):

Evaluate (expression)

When used as the formula for a calculation field, use the optional list of fields

to control when the function is triggered. A change to any of the fields listed

will cause the function to evaluate the expression. They should be added as a

second parameter as a list of semicolon delimited field references that are

enclosed in square brackets:

Evaluate (expression ; [field1 ; field2 ; etc])

Parameters expression = a text value.

field = (optional) a list of field references that should trigger the expression to

evaluate when a change is made to any of them.

Result The result of the evaluated expression.

This shows a simple math equation being evaluated. Notice that

the formula is a text string and not a compiled equation.

Evaluate ("5 + 5") // result = 10

This example shows a formula pulled from a field named

CalcFormula that will execute anytime the First Name or Last Name

fields are modified.

Evaluate (Contacts::CalcFormula ; [Contacts::First Name ;

Contacts::Last Name])

One use of this function is to create dynamic variables with a

variable name based on a text value pulled from a specific record. In

this example, an invoice contains a company code, which is used as

the name of a new variable that will store the amount due :

Evaluate (

 "Let [$$" & Invoice::CompanyCode & " = " &

 Quote (Invoice::AmountDue) & "] ;

 " & Quote ("") & ")"

)

The above example demonstrates just how quickly even a simple

use of this function can become confusing. To avoid this, write a

compiled formula as an example of what functions the dynamic one

will perform and then work backwards, converting it into a text string

and evaluating that to see if the result is the formula you started with.

Then, wrap it in an Evaluate function and make generic any hard-

coded values it may contain and it will be ready for use. The text

expression above is dynamically generating the code below (with

spaces added for clarity), inserting a field value for the variable name

and the amount, and then evaluating it.

Let [

 $$WriteTrackMedia = "$15.00"

] ;

 ""

)

EvaluationError

The EvaluationError function returns an code if an error is generated

by an Evaluate function call. A script can use this function to first test

an expression and report errors more intelligently to a user.

Format EvaluationError (expression)

Parameters expression = a text expression or text field containing a call to the Evaluate

function.

Result a number representing the error that occurred when evaluating the expression

or a 0 (zero) if there are no errors.

This example attempts to evaluate a text-based Get (Current Date

) function that is missing the closing parenthesis and will, therefore,

generate an error:

EvaluationError (Evaluate ("Get (CurrentDate "))

// result = 1207

Note Error 1207 indicates an error of “Unbalanced Parenthesis.”

For a complete list of errors, visit

http://www.filemaker.com/help/14/fmp/en/html/error_codes.html

http://www.filemaker.com/help/14/fmp/en/html/error_codes.html

When the formula in the text string is corrected, the function confirms

it by returning zero:

EvaluationError (Evaluate ("Get (CurrentDate)"))

// result = 0

ExecuteSQL

The ExecuteSQL function performs an SQL query statement in a

FileMaker database. This function is discussed in detail in Chapter 26.

GetAsBoolean

The GetAsBoolean function converts an expression into a Boolean

based on it evaluating to true or false.

Format GetAsBoolean (data)

Parameters data = an expression or field containing an expression.

Result A Boolean:

1 = the expression provided evaluated to true

0 = the expression provided evaluated to false

These examples show the function operating on different input:

GetAsBoolean (10 = 10) // result = 1

GetAsBoolean (10 > 20) // result = 0

GetAVPlayerAttribute

The GetAVPlayerAttribute function returns one or more attributes for

the audio, video, or image file being played within in a container field

on FileMaker Go.

Format GetAVPlayerAttribute (attributeName)

Parameters attributeName = a text string or text expression resulting in the name of the

desired attribute.

Options for

attributeName

The attributeName parameter can contain any of the following values:

 all

sourceType

source

playbacksState

presentation

position

statOffset

endOffset

duration

triggerEvent

triggerEventDetail

sequence

result

hideControls

disableInteraction

disableExternalControls

pauseInBackground

zoom

volume

pictureInPicture

externalPlayback

imageSourceType

imageSource

imageDuration

Result A text string with the attribute(s) requested.

Requesting all attributes returns a nice, readable list of every

attribute in a human-readable format:

GetAVPlayerAttribute ("all")

// result =

 [AVPlayer Attributes]

 Source Type: None

 Source:

 Playback State: Stopped

 Presentation: Embedded

 Position: 0.000000 seconds

 Start Offset: 0.000000 seconds

 End Offset: 0.000000 seconds

 Duration: 0.000000 seconds

 Trigger Event: Internal

 Trigger Event Detail: Unknown

 Sequence: None

 Result: Success

 Hide Controls: 0 (No)

 Disable Interaction: 0 (No)

 Disable External Controls: 0 (No)

 Pause In Background: 0 (No)

 Image Source Type: None

 Image Source:

 Image Duration: 0.000000 seconds

However, when requesting a single attribute, it returns a code

indicating the result.

GetAVPlayerAttribute ("playbackState") // result = 0

FileMaker’s help documentation includes a full list of these codes

and their readable translation. However, another option is to request

all attributes and then parse out the information desired using several

other functions, as shown in this example:

Let ([

 values = GetAVPlayerAttribute ("all");

 attribute = "Playback State" ;

 start = Position (values ; attribute ; 1 ; 1) ;

 data = Right (values ; Length (values) - start) ;

 data = Substitute (data ; ": " ; "¶") ;

 data = GetValue (data ; 2)

] ;

 data

)

GetField

The GetField function returns the contents of a field based on the

name of the field in a text string rather than a dynamic reference.

Format GetField (fieldName)

Parameters fieldName = a text expression that contains the name of field.

Result Whatever data is contained in the field provided.

The parameter can be either the name of the field or a text-based

reference to the field. Use the latter for a field from a related table.

GetField ("Full Name") // result = Mark Munro

GetField ("People::Full Name") // result = Mark Munro

Caution When using this function, it is advisable to not use hard-

coded text for field names since they will not be updated when field

names change. Instead use the GetFieldName function to convert a

dynamic field reference into a text-based field reference and then

pass that to the GetField function.

If the parameter is a field reference and that field’s contents are the

name of a field, the function will return the contents of the field named

within the field specified. For example, if there is a field named

ReferringField that contains the value People::Full Name, the result of

this example will be the same as above:

GetField (People::ReferringField) // result = Mark Munro

However, if a field reference points to a field that contains anything

other than the name of a field, the result will be an error.

GetField (People::Full Name) // result = ?

GetFieldName

The GetFieldName function returns the name of a field reference.

Format GetFieldName (field)

Parameters field = a field reference or expression that results in one.

Result A text string containing the fully qualified name of the field.

This example shows the function converting a dynamic field

reference into a text-based field reference:

GetFieldName (People::Full Name) // result = "People::Full

Name"

Caution In most cases, when a field reference is provided to a

function, the function is using the reference to access and

manipulate the field value. However, in this case, the function

ignores the field value and instead focuses on the field reference

itself, returning the reference as a text string.

GetLayoutObjectAttribute

The GetLayoutObjectAttribute function will return an attribute of a

named layout object from the current layout.

Format Without optional parameters:

GetLayoutObjectAttribute (objectName ; attributeName)

Optionally, when retrieving an attribute of a repeating field, the repetition

number can be added. If the parameter is excluded or set to a value of 0, the

first repetition will be used for applicable attributes:

GetLayoutObjectAttribute (objectName ; attributeName ; repetitionNumber)

Optionally, when retrieving an attribute of a portal row, the number can be

added. If the parameter is excluded or set to a value of 0, the first row will be

used for applicable attributes:

GetLayoutObjectAttribute (objectName ; attributeName ; portalRowNumber)

Parameters objectName = the name of the layout object (Chapter 31,” Naming Objects”).

attributeName = the name of the desired attribute (see list below).

repetitionNumber = (optional) an integer indicating the repetition number for

the object for which to retrieve the attribute.

portalRowNumber = (optional) an integer indicating the portal row from which

to retrieve the attribute.

Result A text string containing the value of the specified attribute.

AttributeName Options

The attributeName parameter can contain any of the following

attributes:

objectType

hasFocus = returns a Boolean indicating if the object has focus

containsFocus = returns a Boolean indicating if the object contains

the object that has focus

isFrontPanel = (tab or slide panel only) returns a Boolean

indicating if the object his in front

isActive = returns a Boolean indicating if the object is active or not

isObjectHidden = returns a Boolean indicating if the object is

currently hidden or not

bounds = returns a list of four space-separated numeric values

that indicate the position of the object on the layout, in the

following order: top, left, bottom, right, rotation degrees; based on

the current object size and position that may change as a window

is resized

left = returns a number representing the left edge of the object on

the layout; based on the current object position that may change

as a window is resized

right = returns a number representing right-left edge of the object

on the layout; based on the current object position that may

change as a window is resized

top = returns a number representing the top edge of the object on

the layout; based on the current object position that may change

as a window is resized

bottom = returns a number representing the bottom edge of the

object on the layout; based on the current object position that

may change as a window is resized

width = returns the width of the object; based on the current

object size that may change as a window is resized

height = returns the height of the object; based on the current

object size that may change as a window is resized

rotation = returns a number representing the rotation of the object

(degrees)

startPoint = returns two space-separated numeric values that

indicate the start position of a line or the upper-left corner of

another object type in the following order: top, left; based on the

current object position that may change as a window is resized

endPoint = returns two space-separated numeric values that

indicate the end position of a line or the lower-right corner of other

object types, in the following order: bottom, right; based on the

current object position that may change as a window is resized

source = returns a text string containing the source information of

the object, varying by type listed in Table 21-1

Table 21-1. The result of the source and content attribute based on object type

Object Type Source returns Content returns

Button &

Popover

— The text of the button

Chart An XML description of the chart

object

A bitmap representation of the chart

object

Field A fully qualified field name with

table

The field contents formatted based on

the object’s settings

Graphic Information about the image

such as filename

Information about the image such as

filename

Portals The name of the related table N/A

Text Object The text The text

Web

viewers

The URL currently displayed The HTML code of the current web page

displayed

content = returns a text string containing the content of object,

varying by type listed in Table 21-1

enclosingObject = returns the name of the object that encloses

the object specified

containedObjects = returns a list of named objects contained by

the object specified

These examples show the function operating with different input:

GetLayoutObjectAttribute ("image" ; "bounds") // result =

532 625 955 953 0

GetLayoutObjectAttribute ("image" ; "objectType") // result =

field

Caution The bounds, left, right, top, and bottom measurements

returned by the GetLayoutObjectAttribute function are based on the

layout object’s position relative to the top-left corner of the primary

display’s desktop area and not the object’s position within a layout.

That means that as a window is moved around the screen, these

values will change. This behavior is consistent with past versions of

FileMaker Pro for macOS but is a change for Windows.

GetNthRecord

The GetNthRecord function returns the contents of a field from a

specified record within the found set regardless of the current record.

Format GetNthRecord (fieldname ; recordNumber)

Parameters fieldName = a reference to a field.

recordNumber = a number of the desired record.

Result The contents of the field for the record specified.

This example would return the contents of the Full Name field from

the fifth record in the found set from the People table :

GetNthRecord (People::Full Name ; 5)

If

The If function conditionally returns a value depending on the outcome

of a text expression. Although the function can be nested to handle

more than two results, the Case function is recommended.

Format When one conditional result is required, only two parameters must be included:

a test expression and a result to be returned if the test is true:

If (test ; resultOne)

Where the above will return a null or blank result if the test is false, an optional

second result parameter can be included, which will be returned instead if the

test is false:

If (test ; resultOne; resultTwo)

Parameters test = a numeric value or logical expression that evaluates to a Boolean.

resultOne = a value will be returned if the test expression is true.

resultTwo = (optional) a value that will be returned if the test expression is

false.

Result The appropriate result based on the value returned from the expression.

This simple example will determine if the date of an invoice is in

the past or the future. If the value in the Invoice record’s Date field is

less than or equal to today’s date, the test expression will return true

and the function will return the word Past. If the date is greater than

today’s date, the test expression will return false and the function will

return the word Future.

If (Invoice::Date ≤ Get (CurrentDate) ; "Past" ; "Future")

IsEmpty

The IsEmpty function determines if a value is empty.

Format IsEmpty (field)

Parameters field = a field reference or expression.

Result A Boolean:

1 = true; the parameter evaluates to an empty string

0 = false; the parameter evaluates to a text value; anything other than an

empty string.

These examples show the functions operating with different input:

IsEmpty ("") // result = 1

IsEmpty ("Hello World") // result = 0

IsValid

The IsValid function determines if another field’s value is valid.

Format IsValid (field)

Parameters field = a field reference or expression.

Result A Boolean indicating if the field provided is valid or not. A false result may

indicate either:

—A field’s contents are a different data type than the field is defined to contain;

a calculation returning a text string when it is defined to return a number.

—A related field or entire table could not be found or has been deleted.

If the Invoice record’s Date Due calculation field is defined to

contain a date and instead evaluates to a number, it will return 0

(zero) indicating an invalid result:

IsValid (Invoice::Date Due) // result = 0

IsValidExpression

The IsValidExpression function determines if an expression’s syntax is

correct and will execute successfully. This can be helpful to confirm the

validity of some dynamically compiled code that will be sent to the

Evaluate function.

Format IsValidExpression (expression)

Parameters expression = an expression.

Result A Boolean:

1 = true; the expression is valid

0 = false; the expression is not valid.

This example will return a false result because the Get (

CurrentDate) function in the text string is missing a closing

parenthesis and will not evaluate to a valid result:

IsValidExpression ("Get (CurrentDate ") // result = 0

Once the error is corrected, the result will be true:

IsValidExpression ("Get (CurrentDate)") // result = 1

Let

The Let function forms a statement in which one or more temporary

variables can be named and initialized and then used during the

execution of a nested calculation formula. The function allows for the

compression of lengthy field names and expressions into shorter

variables, which can then be used multiple times within a complex

formula. It also allows the un-nesting of complex formulas: separating

shorter expressions and putting them into variables one after the

other and then using them together in a compressed formula.

Format When setting a single variable, two parameters are required: first, a

combination parameter of a variable, equal sign operator and expression; and

second, a calculation formula:

Let (var1 = expression ; calculation)

When multiple variables are required, they are added within a set of square

brackets and a semicolon delimiter (shown here in a preferred, optional multi-

line format to improve clarity):

Let ([

 var1 = expression1 ;

 var2 = expression2 ;

 var3 = expression3

] ;

 calculation

)

Parameters var = the name of a calculation local variable, script local variable, or database

local variable.

expression = a field reference, constant, or expression, the result of which will

be placed into the corresponding variable.

calculation = a formula that has access to all the variables defined above.

Result The result of the calculation.

This is a simple example of a single variable being initialized as a

text string and then returned as the result:

Let (textString = "World" ; "Hello " & textString)) // result =

"Hello World"

The following example has only one variable, but the calculation is

more realistic. First, the value in the Number of Days Overdue field is

placed into a daysOver variable. The calculation portion of the

statement uses the Case function to create a text string with content

that varies if daysOver is greater than 30 or not. Notice how the field

is used twice in the calculation by means of the shorter daysOver

variable name.

Let (

 daysOver = Invoice::Number of Days Overdue

;

 Case (daysOver > 30 ; "Past Due (" & daysOver & " days)" ;

"Current")

)

The following example demonstrates how a Let statement can be

used to set global variables. This example performs the same function

and returns the same result as the previous one. The only difference is

that it puts the value from the Customer ID field into a global variable

named $$LastCustomerID and it increments the value in another

global variable $$CustomerCount by 1.

Let ([

 $$LastCustomerID = Invoice::Customer ID ;

 $$CustomerCount = $$CustomerCount + 1 ;

 daysOver = Invoice::Number of Days Overdue

] ;

 Case (daysOver > 30 ; "Past Due (" & daysOver & " days)" ;

"Current")

)

Expressions with the Let statement can get complex. Remember

that this function can be nested within other functions and other

functions can be nested within its variable expressions and

calculations .

Lookup

The Lookup function attempts to return a value from a related field

through a specific relationship.

Format Without an optional parameter:

Lookup (sourceField)

Optionally, a second parameter can be included to define a result when the

function fails to find a related match:

Lookup (sourceField ; failExpression)

Parameters sourceField = a field reference to a related field from which a value should be

returned.

failExpression = (optional) an expression indicating the result when no related

value is found.

Result The contents of the specified field or the optional failExpression.

These examples assume two tables — Products (shown in Table 21-

2) and Invoice Line Items — and a relationship named Invoice Line |

Product that connects them by the Product ID fields in each.

Table 21-2. An example Products table

Product ID Product Name

1 Widget A

2 Widget B

3 Widget C

Table 21-3. An example of an empty Invoice Line Items table.

If the Invoice Line Product Name was a calculation that will look up

the product name when the user types in a Product ID, the formula

would look like this with the results shown depending on the values

entered:

Lookup (Invoice Line | Product: Product Name)

// entering "1" result = "Widget A"

// entering "3" result = "Widget C"

// entering "4" result = ""

By providing an optional failExpression, the result of a missing

Product ID would no longer be an empty string:

Lookup (Invoice Line | Product::Product Name ; "Error: Product ID

Not Found")

// entering "1" result = "Widget A"

// entering "3" result = "Widget C"

// entering "4" result = "Error: Product ID Not Found"

Caution This function is a somewhat outdated method for

accessing related information. When defining fields, the auto-enter

calculation feature is preferable to lookups and any formula can

reach through a relationship and access-related values with ease.

LookupNext

Like Lookup, the LookupNext function attempts to return a value from

a related field through a specific relationship. However, it has a fail

option that will automatically retrieve the next lower or higher value

when no exact match is found.

Format LookupNext (sourceField ; lower/higherFlag)

Parameters sourceField = a field reference to a related field from which a value should be

returned.

lower/higherFlag = the keyword lower or higher indicating which value should

be used if no exact match is found.

Result The contents of the specified field from a record with an exact match through

the relationship or the next higher or lower value depending on the keyword

provided.

Using the same example from the Lookup function, the failure to

find a match for a Product ID of 4 will now retrieve the next lower

value: Widget C, which has a Product ID of 3.

Lookup (Invoice Line | Product::Product Name ; lower)

// entering "4" result = "Widget C"

Self

The Self-function returns the content of an object without naming or

referring to it explicitly. This allows a single calculation to be applied to

many objects without modification since the reference to the object is

the function. The function can be used in layout calculations for

conditional formatting, hiding layout objects, and tooltips. It is also

useful in the field definition as an auto-enter calculation for other field

types.

Format Self

Parameters Not applicable

Result The contents of the object that are associated with the calculation using the

function.

A field’s auto-enter formula, can clean up user-entered data with a

formula like the example below, which removes all text formatting,

non-alphabetic characters, and extra spaces. If the user entered " M a

r k — M u n r o 1/5/2017 @ %$ ", their entry would instantly be

cleaned up to "Mark Munro" helping to ensure neat and consistent

data entry.

Let ([

 entry = TextFormatRemove (Self) ;

 entry = Filter (entry ;

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz ") ;

 entry = TrimAll (entry ; 0 ; 0)

] ;

 entry

)

Summary

In this chapter, we explored all the built-in functions for performing

logical calculations.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_22

22. Get Functions

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Get functions provide a single piece of information about the

computer’s system, the user’s environment, the current

database context, and the status of various processes or

current settings. These are useful when creating conditional

formulas or scripts that return different results or perform a

different task based on some aspect of the current context

or situation. They each require a single unchanging

parameter — a keyword that indicates the desired

information.

Get (<StaticParameter>)

Get Function Reference

FileMaker provides the following built-in get functions :

Get (AccountExtendedPrivileges)

Get (AccountName)

Get (AccountPrivilegeSetName)

Get (ActiveFieldContents)

Get (ActiveFieldName)

Get (ActiveFieldTableName)

Get (ActiveLayoutObjectName)

Get (ActiveModifierKeys)

Get (ActivePortalRowNumber)

Get (ActiveRepetitionNumber)

Get (ActiveSelectionSize)

Get (ActiveSelectionStart)

Get (AllowAbortState)

Get (AllowFormattingBarState)

Get (ApplicationArchitecture)

Get (ApplicationLanguage)

Get (ApplicationVersion)

Get (CalculationRepetitionNumber)

Get (ConnectionAttributes)

Get (ConnectionState)

Get (CurrentDate)

Get (CurrentExtendedPrivileges)

Get (CurrentHostTimestamp)

Get (CurrentPrivilegeSetName)

Get (CurrentTime)

Get (CurrentTimestamp)

Get (CurrentTimeUTCMilliseconds)

Get (CustomMenuSetName)

Get (DesktopPath)

Get (Device)

Get (DocumentsPath)

Get (DocumentsPathListing)

Get (EncryptionState)

Get (ErrorCaptureState)

Get (FileMakerPath)

Get (FileName)

Get (FilePath)

Get (FileSize)

Get (FoundCount)

Get (HighContrastColor)

Get (HighContrastState)

Get (HostApplicationVersion)

Get (HostIPAddress)

Get (HostName)

Get (InstalledFMPlugins)

Get (LastError)

Get (LastExternalErrorDetail)

Get (LastMessageChoice)

Get (LayoutAccess)

Get (LayoutCount)

Get (LayoutNumber)

Get (LayoutTableName)

Get (LayoutViewState)

Get (MenubarState)

Get (ModifiedFields)

Get (MultiUserState)

Get (NetworkProtocol)

Get (NetworkType)

Get (PageNumber)

Get (PersistentID)

Get (PreferencesPath)

Get (PrinterName)

Get (QuickFindText)

Get (PrivilegeSetName)

Get (RecordAccess)

Get (RecordID)

Get (RecordModificationCount)

Get (RecordNumber)

Get (RecordOpenCount)

Get (RecordOpenState)

Get (RequestCount)

Get (RequestOmitState)

Get (ScreenDepth)

Get (ScreenHeight)

Get (ScreenScaleFactor)

Get (ScreenWidth)

Get (ScriptAnimationState)

Get (ScriptName)

Get (ScriptParameter)

Get (ScriptResult)

Get (SortState)

Get (StatusAreaState)

Get (SystemDrive)

Get (SystemIPAddress)

Get (SystemLanguage)

Get (SystemNICAddress)

Get (SystemPlatform)

Get (SystemVersion)

Get (TemporaryPath)

Get (TextRulerVisible)

Get (TotalRecordCount)

Get (TouchKeyboardState)

Get (TriggerCurrentPanel)

Get (TriggerExternalEvent)

Get (TriggerGestureInfo)

Get (TriggerKeystroke)

Get (TriggerModifierKeys)

Get (TriggerTargetPanel)

Get (UserCount)

Get (UserName)

Get (UseSystemFormatsState)

Get (UUID)

Get (WindowContentHeight)

Get (WindowContentWidth)

Get (WindowDesktopHeight)

Get (WindowDesktopWidth)

Get (WindowHeight)

Get (WindowLeft)

Get (WindowMode)

Get (WindowName)

Get (WindowOrientation)

Get (WindowStyle)

Get (WindowTop)

Get (WindowVisible)

Get (WindowWidth)

Get (WindowZoomLevel)

Get (AccountExtendedPrivileges)

This function returns extended privileges assigned to the

account used to authenticate the connection to the

database file.

Format Get (AccountExtendedPrivileges)

Result A text string containing the name of extended privilege for the current

user.

This example shows a typical result from this function:

Get (AccountExtendedPrivileges)

= "fmapp"

Get (AccountGroupName)

This function returns the account group name when the

account is using an external server or OAuth authentication

method.

Format Get (AccountGroupName)

Result A text string containing the name of the account group for the current

user.

This example shows a typical result from this function :

Get (AccountGroupName) // result = "dbmarketing"

Get (AccountName)

This function returns the account name used to authenticate

the connection to the database file.

Format Get (AccountName)

Result A text string containing the name of the current user account.

This example shows a typical result from this function:

Get (AccountName) // result = "Joanne Miller"

Get (AccountPrivilegeSetName)

This function returns the name of the privilege set for the

account used to authenticate the connection to the

database file.

Format Get (AccountPrivilegeSetName)

Result A text string containing the privilege set for the current user’s account.

This example shows a typical result from this function:

Get (AccountPrivilegeSetName)

= "[Full Access]"

Get (ActiveFieldContents)

This function returns the contents of the field that has

current focus in the front window.

Format Get (ActiveFieldContents)

Result The contents of the field or an empty string if no field has focus.

This example assumes the user is viewing a record in a

table named Contacts for a person named “John Smith” and

has the cursor in a field named Full Name:

Get (ActiveFieldContents) // result = Mark Munro

Get (ActiveFieldName)

This function returns the field that has current focus in the

front window.

Format Get (ActiveFieldName)

Result A text string with the name of the field that has current focus (empty

string if no field is in focus).

This example assumes the user is viewing a record in a

table named Contacts for a person named “John Smith” and

has the cursor in a field named Full Name:

Get (ActiveFieldName) // result = Full Name

Get (ActiveFieldTableName)

This function returns the table to which the field with focus

belongs.

Format Get (ActiveFieldTableName)

Result A text string containing the name of the table for the current field. If

the current field is from a related table rather than the current table,

the result will be the name of that related table. Don’t assume the

active field table is the same as the active layout table. If no field has

focus, it will return an empty string.

This example assumes the user is viewing a record in a

table named Contacts for a person named “John Smith” and

has the cursor in a field named Full Name:

Get (ActiveFieldTableName) // result = "Contacts "

Get (ActiveLayoutObjectName)

This function returns the name current active layout object:

fields, buttons, portals, tabs, web viewers (Chapter 31,

“Naming Objects”).

Format Get (ActiveLayoutObjectName)

Result A text string containing the object name of the currently active layout

object or an empty string if no object is active or the active object

does not have a name assigned.

This example shows the result from the function if active

focus is on a portal with an assigned name of “Invoice

Portal”:

Get (ActiveLayoutObjectName) // result = "Invoice

Portal"

Get (ActiveModifierKeys)

This function returns a value indicating which modifier

key(s) the user is currently pressing.

Format Get (ActiveModifierKeys)

Result A number that is calculated by adding together the following,

depending on which key(s) is being held down by the user:

Shift key = +1

Caps Lock key = +2

Ctrl key (Windows) or Control key (macOS) = +4

Alt key (Windows) or Option key (macOS)= +8

Command key (macOS) = +16

This example indicates that the user is holding down the

Control and Command keys on macOS.

Get (ActiveModifierKeys) // result = 20

This example uses several other functions to build a

carriage return-delimited list of the names of every modifier

key held down at the time it is evaluated.

Let ([

 keys = Get (ActiveModifierKeys) ;

 list = Case (Mod (keys; 32) ≥ 16 ; "Command¶" ;

"") ;

 list = list & Case (Mod (keys; 16) ≥ 8 ; "Option¶" ;

"") ;

 list = list & Case (Mod (keys; 8) ≥ 4 ; "Control¶" ;

"") ;

 list = list & Case (Mod (keys; 4) ≥ 2 ; "Caps Lock¶"

; "") ;

 list = list & Case (Mod (keys; 2) ≥ 1 ; "Shift¶" ; "")

] ;

 list

)

Get (ActivePortalRowNumber)

This function returns which portal row is currently selected.

Format Get (ActivePortalRowNumber)

Result A number indicating the portal row that has focus or contains the field

with focus. If no portal row is selected it will return 0.

This example shows a typical result from this function:

Get (ActivePortalRowNumber) // result = 5

Get (ActiveRepetitionNumber)

This function returns the active field repetition of the field,

which has focus in the front window.

Format Get (ActiveRepetitionNumber)

Result A number indicating which repetition has current focus. It will return

an empty string if no field is selected.

This example shows a typical result from this function :

Get (ActiveRepetitionNumber) // result = 3

Get (ActiveSelectionSize)

This function returns the length in characters of selected

text within the active field.

Format Get (ActiveSelectionSize)

Result A number indicating the number of characters that makes up the

selection.

This example shows a typical result from this function:

Get (ActiveSelectionSize) // result = 13

Get (ActiveSelectionStart)

This function determines the character position at which a

selection of text within a field begins in the front window.

Format Get (ActiveSelectionStart)

Result A number indicating where a selection of text begins within a field. If

no selection exists or no field has current focus, it will return an empty

string.

This example shows the function returning the number of

characters that make up the selection:

Get (ActiveSelectionSize) // result = 5

This example uses several functions to extract the text of

just the current selection from a field:

Let ([

 count = Get (ActiveSelectionSize) ;

 start = Get (ActiveSelectionStart) ;

 text = Get (ActiveFieldContents)

] ;

 Middle (text ; start ; count)

)

Get (AllowAbortState)

This function determines if the user has the option to abort

a script or not.

Format Get (AllowAbortState)

Result A Boolean indicating if the user can abort the current script or not:

1 = true; the user can abort the current script

0 = false; the user can’t abort the current script

This example shows a typical result from this function:

Get (AllowAbortState) // result = 1

Get (AllowFormattingBarState)

This function determines if the formatting bar is able to be

made visible or not.

Format Get (AllowFormattingBarState)

Result A Boolean indicating if the formatting bar can be made visible:

1 = true

0 = false

This example shows a typical result from this function:

Get (AllowFormattingBarState) // result = 1

Get (ApplicationArchitecture)

This function return the architecture of the version of the

application used to open the database file, which can be

useful if installing a plug-in that has processor-specific

versions.

Format Get (ApplicationArchitecture)

Result A text string containing the architecture of the FileMaker Pro

application. The possible values are:

i386 — indicates a 32-bit version of FileMaker Pro.

x86_64 — indicates a 64-bit version of FileMaker Pro, FileMaker Server,

FileMaker WebDirect, and Custom Web Publishing.

arm7 — indicates FileMaker Go running on an ARMv7-based device.

arm7s — indicates FileMaker Go running on an ARMv7s-based device.

arm64 — FileMaker Go running on a 64-bit ARM-based device.

This example shows a typical result from this function :

Get (ApplicationArchitecture) // result = "x86_64"

Get (ApplicationLanguage)

This function returns the current language version of the

application used to open the database file.

Format Get (ApplicationLanguage)

Result An English text string containing the name of the language version of

the FileMaker Pro application or of the web browser for FileMaker

WebDirect used to open the database file.

This example shows a typical result from this function:

Get (ApplicationLanguage) // result = "English"

Get (ApplicationVersion)

This function returns the product name and version for the

current version of FileMaker Server used to open the

database file.

Format Get (ApplicationVersion)

Result A text string containing an application identification string and full

version number for the FileMaker Pro product running on the host

computer or an empty string if the database is running locally instead

of accessed across a network from a host.

This example shows all the possible results:

Get (ApplicationVersion)

// = "Pro 16.0.1"

// = "ProAdvanced 16.0.1"

// = "Runtime 16.0.1"

// = "Web Publishing Engine 16.0.1"

// = "xDBC 16.0.1"

// = "Server 16.0.1"

// = "Go 16.0.1"

// = "Go_iPad 16.0.1"

Get (CalculationRepetitionNumber)

This function returns the repetition of a repeating

calculation field being evaluated. This is useful when each

repetition of a calculation field must pull a value from a

corresponding repeating field or perform slightly different

functions depending on the repetition.

Format Get (CalculationRepetitionNumber)

Result The number of the repetition of a calculation field that is currently

being evaluated.

This example assumes a Start Date field with a value of

1/5/2017. A second calculation field with five repetitions will

display the dates of weekly reviews. Using this formula,

each repetition will calculate a different number of days to

add based on an identification of its own position using this

function.

Extend (Example::Start Date) + (7 * Get (

CalculationRepetitionNumber))

// repetition 1 = 1/12/2017

// repetition 2 = 1/19/2017

// repetition 3 = 1/26/2017

// repetition 4 = 2/2/2017

// repetition 5 = 2/9/2017

Get (ConnectionAttributes)

This function returns details about the connection to a host

computer, assuring the connection is secure.

Format Get (ConnectionAttributes)

Result The host server’s name and SSL certificate issuer.

This example shows a typical result from this function:

Get (ConnectionAttributes)

// result =

 [Peer Certificate]

 commonName: office_server

 CA issuers: ABC SSL Inc.

Get (ConnectionState)

This function returns the security state of the connection to

a database accessed across a network from a host

computer.

Format Get (ConnectionState)

Result A number indicating the connection state. The possible values are:

0 = indicates no network connection (file is used locally)

1 = indicates a non-encrypted connection that is not encrypted (no

SSL certificate)

2 = indicates an unverifiable encrypted connection (SSL certificate

that can’t be verified)

3 = indicates a verifiable encrypted connection (SSL certificate that is

verified)

This example shows a typical result from this function:

Get (ConnectionState) // result = 1

Get (CurrentDate)

This function returns the current date.

Format Get (CurrentDate)

Result A date text string containing the current date, formatted based on the

operating system preferences of the computer evaluating the function;

generally, the user’s computer unless the Perform Script On Server

command was used in a script.

This example shows a typical result from this function:

Get (CurrentDate) // result = 1/15/2017

Get (CurrentExtendedPrivileges)

This function returns the name of the extended privileges

enabled based on the user’s method of logging into the

database file.

Format Get (CurrentExtendedPrivileges)

Result The name of the active extended privileges.

This example shows a typical result from this function :

Get (CurrentExtendedPrivileges) // result = "fmapp"

Get (CurrentHostTimestamp)

This function returns the current date and time of the host

computer, which is useful if the client is located in a

different time zone than the server. Using this function in an

unstored calculation that is visible on a list layout may

severely degrade the performance of your database since it

will attempt to update the value for every record in the

found set each time the layout view is updated.

Format Get (CurrentHostTimestamp)

Result A timestamp text string containing the current date and time,

formatted based on the operating system preferences of the host

computer.

This example shows a typical result from this function:

Get (CurrentHostTimestamp) // result = "1/15/2017

1:53:09 PM"

Get (CurrentPrivilegeSetName)

This function returns the name of the privilege set based on

the user’s method of logging into the database file.

Format Get (CurrentPrivilegeSetName)

Result The name of the active privilege set.

This example shows a typical result from this function:

Get (CurrentPrivilegeSetName) // result = "[Full

Access]"

Get (CurrentTime)

This function returns the current time.

Format Get (CurrentTime)

Result A time text string containing the current time, formatted based on the

operating system preferences of the computer evaluating the function;

generally the user’s computer unless the Perform Script On Server

command was used in a script.

This example shows a typical result from this function :

Get (CurrentTime) // result = "2:05:10 PM"

Get (CurrentTimestamp)

This function returns the current date and time.

Format Get (CurrentTimestamp)

Result A timestamp text string containing the current date and time,

formatted based on the operating system preferences of the computer

evaluating the function; generally, the user’s computer unless the

Perform Script On Server command was used in a script.

This example shows a typical result from this function:

Get (CurrentTimestamp) // result = "1/15/2017

2:05:10 PM"

Get (CurrentTimeUTCMilliseconds)

This function returns the current time in Coordinated

Universal Time (UTC) to the nearest millisecond without

regard to the current time zone. UTC was previously known

as Greenwich Mean Time (GMT).

Format Get (CurrentTimeUTCMilliseconds)

Result A number representing the current time of the computer running the

script in milliseconds without regard to the user’s current time zone.

More

Info

For more information on UTC, visit:

https://en.wikipedia.org/wiki/Coordinated_Universal_Time .

This example shows a typical result from this function:

Get (CurrentTimeUTCMilliseconds) // result =

63603934624024

To calculate the time for a specific time zone, just factor

in the UTC time zone adjustment for the region. For

example, New York City is five hours behind UTC during

Eastern Standard Time, so this formula will return the time

adjusted for that region :

Let ([

 timeUTC = Get (CurrentTimeUTCMilliseconds) ;

https://en.wikipedia.org/wiki/Coordinated_Universal_Time

 timeNY = Round ((timeUTC + (-5 * 3600000)) /

1000 ; 0)

] ;

 GetAsTimestamp (timeNY)

)

Get (CustomMenuSetName)

This function returns the name of the active custom menu

set (Chapter 33).

Format Get (CustomMenuSetName)

Result A text string containing the name of the active menu set. If the

Standard FileMaker Menus are currently active or if the function

evaluates when running FileMaker WebDirect, it will return an empty

string.

This example shows a typical result from this function:

Get (CustomMenuSetName) // result = "Project

Custom Menu Set"

Get (DesktopPath)

This function returns the path to the user’s local desktop

folder.

Format Get (DesktopPath)

Result A text string containing the path.

This example shows a typical result from this function:

Get (DesktopPath)

// macOS result = /Macintosh HD/Users/admin/Desktop/

// Windows result = /C:/Users/Admin/Desktop/

Get (Device)

This function returns the type of computer or device upon

which the user is running a FileMaker Product.

Format Get (Device)

Result A number indicating the device type. The possible values are:

0 = an unknown device

1 = a macOS computer

2 = a Windows computer

3 = an iPad

4 = an iPhone or iPod touch

5 = an Android device

This example shows a typical result from this function:

Get (Device) // result = 1

Since the function is zero based, the best method to

convert the result into the device name is to use the Choose

function .

Choose (Get (Device) ;

 "Unknown" ;

 "macOS" ;

 "Windows" ;

 "iPad" ;

 "iPhone" ;

 "Android" ;

 "")

It is also possible to do this with the GetValue function;

however, you will need to add 1 to the result to adjust it

from zero-based to one-based, as shown in this example:

GetValue (

"Unknown¶macOS¶Windows¶iPad¶iPhone¶Android" ; Get (

Device) + 1)

// result = macOS

Get (DocumentsPath)

This function returns the path to the documents folder.

When the function is evaluated from a client version of the

software, it returns their local Documents folder. When

evaluated by a FileMaker Server, it returns the /FileMaker

Server/Data/Documents/ folder.

Format Get (DocumentsPath)

Result A text string containing the path.

This example shows a typical result from this function:

Get (DocumentsPath)

// Mac result = /Macintosh HD/Users/admin/Documents/

// Windows result = /C:/Users/admin/Documents/

Get (DocumentsPathListing)

This function returns a list of every item within the user’s

local documents folder, including all nested items.

Format Get (DocumentsPathListing)

Result A carriage return-delimited list of paths.

This example shows a typical result from this function:

Get (DocumentsPathListing)

// result =

 /Macintosh HD/Users/admin/Documents/Expense

Reports/

 /Macintosh HD/Users/admin/Documents/Expense

Reports/Q1.xlsx

 /Macintosh HD/Users/admin/Documents/To Do

List.txt

Get (EncryptionState)

This function returns a database file’s current encryption

state.

Format Get (EncryptionState)

Result A Boolean indicating the encryption state:

0 = the file is not encrypted

1 = the file is encrypted

If the file is encrypted, the Shared ID will be included after the 1,

delimited with a carriage return.

This example shows the result when the file is not

encrypted:

Get (EncryptionState)

// result =

 0

This example shows a result when the file is encrypted:

Get (EncryptionState)

// result =

 1

 51836

Get (ErrorCaptureState)

This function returns the state of error capture in scripts.

Format Get (ErrorCaptureState)

Result A Boolean indicating if the Set Error Capture script step has been

turned on or off (Chapter 35, “Managing Errors”):

0 = error capture is off

1 = error capture is on

This example shows a typical result from this function :

Get (ErrorCaptureState) // result = 1

Get (FileMakerPath)

This function returns the path to the local FileMaker Pro

application running the database file.

Format Get (FileMakerPath)

Result A text string containing the path to the application.

This example shows a typical result from this function:

Get (FileMakerPath)

// macOS result = /Macintosh HD/Applications/FileMaker

Pro 16/

// Windows result = /C:/Program Files/FileMaker/FileMaker

Pro 16/

Get (FileName)

This function returns the name of the current database file.

Format Get (FileName)

Result A text string containing the name of the file without extension.

This example shows the result when the function is

performed within a database file named Contacts.fmp12:

Get (FileName) // result = "Contacts"

Get (FilePath)

This function returns the path to the current database file.

Format Get (FilePath)

Result A text string containing the path to the file.

If the database is accessed from a folder directory, the

result will be a path to the file:

Get (FilePath)

// macOS result = /Macintosh

HD/Users/admin/Documents/Contacts.fmp12

// Windows result =

/C:/Users/admin/Documents/Contacts.fmp12

If the database is accessed from across the network to a

host computer and the function evaluates on the local client

computer, the result will be in the form of a fmurl :

// Hosted database result =

fmnet:/10.0.1.51/Contacts.fmp12

Get (FileSize)

This function returns the file size of the current database.

Format Get (FileSize)

Result A number indicating the file size in bytes.

This example shows a typical result from this function:

Get (FileSize)

= 352256

To convert the value to megabytes, divide the result and

round it:

Round (Get (FileSize) / 1024^2 ; 2)

= .34

Get (FoundCount)

This function returns the number of records in the found set

of the current window.

Format Get (FoundCount)

Result A number indicating the count of records in the found set.

This example shows a typical result from this function:

Get (FoundCount) // result = 47

Get (HighContrastColor)

This function returns the current high-contrast, default color

scheme name if an option is enabled and selected in

Windows Ease of Access Center.

Format Get (HighContrastColor)

Result A text string containing the name of the high-contrast color option

selected or an empty string if this option is not enabled, or if used on a

macOS computer.

This example shows a typical result from this function:

Get (HighContrastColor) // result = High Contrast

White

Get (HighContrastState)

This function determines if High Contrast is available and

active in Windows Ease of Access Center.

Format Get (HighContrastState)

Result A Boolean indicating if the feature is available and active:

0 = indicates either the contrast option is not available, inactive or the

current computer is a macOS computer

1 = indicates the contrast option is available and inactive

This example shows a typical result from this function:

Get (HighContrastState) // result = 1

Get (HostApplicationVersion)

This function returns the product name and version for the

current database file’s host from which the file is being

accessed across a network. The host might be a copy of

FileMaker Pro, FileMaker Pro Advanced, or FileMaker Server.

If the file is running locally (unhosted), the function will

return an empty value.

Format Get (HostApplicationVersion)

Result A text string containing an application specifier and full version

number of the FileMaker Pro product running on the host computer or

an empty string if the database is running locally instead of accessed

across a network from a host.

This example shows the three possible results :

Get (HostApplicationVersion)

// = Pro 16.0.1

// = ProAdvanced 16.0.1

// = Server 16.0.1

Get (HostIPAddress)

This function returns the IP Address for the current database

file’s host FileMaker Server. The result will be an empty

string if the current database is not hosted.

Format Get (HostIPAddress)

Result A text string containing the address of the host computer or an empty

string if the database is running locally instead of accessed across a

network from a host.

This example shows a typical result from this function:

Get (HostIPAddress) // result = 10.0.1.50

Get (HostName)

This function returns the name of the current database file’s

host FileMaker Server as displayed in the macOS System

Preferences or Windows Control Panel.

Format Get (HostName)

Result A text string containing the name of the host computer.

This example shows a typical result from this function:

Get (HostName) // result = Production-FileMaker-

Server.local

Get (InstalledFMPlugins)

This function returns a list of installed plug-ins.

Format Get (InstalledFMPlugins)

Result A carriage return-delimited list of every installed plug-in, listing the

name, version, and status of each with a semicolon delimiter. If the

plug-in developer has included the version information into the

Windows resource file it will be included. The status options are:

Enabled = The plug-in is enabled and can be loaded

Disabled = The plug-in is not enabled and can be loaded

Ignored = The plug-in is unable to load possibly due to an

incompatibility

This example shows a typical result from this function :

Get (InstalledFMPlugins)

// result =

 ExamplePlugin;2.4;Enabled

 HypotheticalPlugin;1.3;Enabled

 UselessPlugin;1.0;Disabled

 VersionlessPlugin; ;Enabled

Get (LastError)

This function returns the error number of the most recently

executed script step.

Format Get (LastError)

Result A number indicating the error that occurred.

This example shows a typical result from this function:

Get (LastError)

// Field is missing result = 102

// Record access is denied result = 200

// Unable to create file on disk result = 800

Note For a complete list of errors visit:

http://www.filemaker.com/help/14/fmp/en/html/error_code

s.html

Get (LastExternalErrorDetail)

This function returns details about errors that occur

externally to FileMaker.

Format Get (LastExternalErrorDetail)

Result The text of any errors that occurred during ODBC imports, Execute

SQL script steps, or actions that attempt to connect to a host securely

.

Get (LastMessageChoice)

This function returns a number indicating the button clicked

in a dialog created with the Show Custom Dialog script step

(Chapter 35). This allows a script to perform a different

action depending on which button the user clicks.

Format Get (LastMessageChoice)

Result The button position, from 1 to 3, starting from the right of the

message dialog.

This example shows a typical result from this function:

Get (LastMessageChoice) // result = 1

Get (LayoutAccess)

http://www.filemaker.com/help/14/fmp/en/html/error_codes.html

This function returns the current level of access the user has

to records on the current layout.

Format Get (LayoutAccess)

Result A number indicating the level to records on the current layout access

granted to the user:

0 = no access to records

1 = view only access to records

2 = modifiable access to records

This example shows a typical result from this function:

Get (LayoutAccess) // result = 2

Get (LayoutCount)

This function returns a count of all the layouts in the current

database file.

Format Get (LayoutCount)

Result A number indicating the total number of layouts in the file.

This example shows a typical result from this function :

Get (LayoutCount) // result = 7

Get (LayoutName)

This function returns the name of the layout displayed in the

current window.

Format Get (LayoutName)

Result A text string containing the name of the current layout.

This example shows a typical result from this function:

Get (LayoutName) // result = "People – List"

Get (LayoutNumber)

This function returns the number of the layout displayed in

the current window.

Format Get (LayoutNumber)

Result A number indicating the position of the current layout in the list of all

available layouts.

This example shows a typical result from this function:

Get (LayoutNumber) // result = 3

Get (LayoutTableName)

This function returns the name of the table for the layout of

the current window.

Format Get (LayoutTableName)

Result A text string containing the layout’s table name.

This example shows a typical result from this function:

Get (LayoutTableName) // result = "People"

Get (LayoutViewState)

This function returns the current window’s layout view state.

Format Get (LayoutViewState)

Result A number indicating the current view. The possible values are:

0 = Form View

1 = List View

2 = Table View

This example shows a typical result from this function:

Get (LayoutViewState) // result = 1

Get (MenubarState)

This function determines the current status of the menu bar

in FileMaker Go or FileMaker WebDirect.

Format Get (MenubarState)

Result A number indicating the menu bar status. The possible values are:

0 = hidden and unlocked

1 = visible and unlocked (FileMaker Pro’s only option)

2 = visible and locked

3 = hidden and locked

This example shows a typical result from this function:

Get (MenubarState) // result = 1

Get (ModifiedFields)

This function returns a list of fields for the current table that

have been modified since the last time the current record

was committed: the equivalent of unsaved changes.

Format Get (ModifiedFields)

Result A carriage return-delimited list of field names whose value has

changed for the current record since the last record commit. If no

fields have been modified, an empty string is returned.

This example shows a typical result from this function :

Get (ModifiedFields)

// result =

 First Name

 Last Name

 Status

Get (MultiUserState)

This function shows the sharing status of the current file on

the network.

Format Get (MultiUserState)

Result A number indicating the current sharing status of the file. The possible

values are:

0 = network sharing is off

1 = sharing is on and the current user is accessing the file from the

host computer and some or all users have access to the file on the

network

2 = sharing is on and the current user is accessing the file from a

client computer and some or all users have access to the file on the

network.

This example shows a typical result from this function:

Get (MultiUserState) // result = 1

Get (NetworkProtocol)

This function returns the network protocol that FileMaker is

using on the local computer.

Format Get (NetworkProtocol)

Result A text string containing the name of the protocol.

This example shows a typical result from this function:

Get (NetworkProtocol) // result = TCP/IP

Get (NetworkType)

This function returns the current network connection when

using FileMaker Pro on an iOS device. This allows a database

to vary behavior depending on the connection type and

potentially save a user bandwidth charges for excessive

data use.

Format Get (NetworkType)

Result A number indicating the network type. The possible values are:

“” = (empty string) the current file is not running in FileMaker Go

0 = the current file is local on the iOS device so network type is not

applicable

1 = unknown network type

2 = cellular network

3 = Wi-Fi network

This example shows a typical result from this function:

Get (NetworkType) // result = 3

Get (PageNumber)

This function returns the number of the current page when

printing or previewing.

Format Get (PageNumber)

Result A number representing the current page. Returns a 0 if no page is

being previewed or printed.

This example shows a typical result from this function:

Get (PageNumber) // result = 3

Get (PersistentID)

This function returns a unique identifier for the device used

to access the database file.

Format Get (PersistentID)

Result A text string containing a 32-digit hexadecimal string that uniquely

identifies the computer or device the user is operating.

This example shows a typical result from this function :

Get (PersistentID) // result =

J55559W953DC11520389A441F0342754

Get (PreferencesPath)

This function returns the path to the user’s local preferences

folder.

Format Get (PreferencesPath)

Result A text string containing a folder path.

This example shows a typical result from this function:

Get (PreferencesPath)

// macOS result = /Macintosh

HD/Users/admin/Library/Preferences/

// Windows result = /C:/Users/Admin/AppData/Local/

Get (PrinterName)

This function returns the name of the default printer.

Format Get (PrinterName)

Result A text string containing the name of the printer.

This example shows a typical result from this function:

Get (PrinterName) // result = "HP LaserJet 8150

Series"

Get (QuickFindText)

This function returns the text that is currently entered in the

Quick Find text box in the toolbar.

Format Get (QuickFindText)

Result A text string containing the current Quick Find text.

This example shows a typical result from this function :

Get (QuickFindText) // result = "New York"

Get (RecordAccess)

This function returns a value indicating the user’s access to

the current record based on the privilege settings of the

account they used to log into the database.

Format Get (RecordAccess)

Result A number indicating their access level. The possible values are:

0 = No access to view or edit the record

1 = Some or all access to view the record

2 = Some or all access to edit the record

This example shows a typical result from this function:

Get (RecordAccess) // result = 2

Get (RecordID)

This function returns the unique FileMaker ID for the current

record.

Format Get (RecordID)

Result A number indicating the id for the record.

This example shows a typical result from this function:

Get (RecordID) // result = 256859

Get (RecordModificationCount)

This function returns a count of the total number of times a

particular record has been modified and committed.

Format Get (RecordModificationCount)

Result A number representing the count of past modifications.

This example shows a typical result from this function :

Get (RecordModificationCount) // result = 4

Get (RecordNumber)

This function returns the current record’s position within the

found set of the current window.

Format Get (RecordNumber)

Result A number indicating the position of the record in the found set.

This example shows a typical result from this function:

Get (RecordNumber) // result = 15

Get (RecordOpenCount)

This function returns the number of records (local and

related) in the current window that have uncommitted

modifications.

Format Get (RecordOpenCount)

Result A number indicating the records with modifications pending.

This example shows a typical result from this function:

Get (RecordOpenCount) // result = 2

Get (RecordOpenState)

This function returns the current state of a record indicating

if it is committed (closed), new, or modified.

Format Get (RecordOpenState)

Result A number indicating the current state. The available options are:

0 = a committed (closed) record

1 = a new, uncommitted record

2 = a modified, uncommitted record

This example shows a typical result from this function :

Get (RecordOpenState) // result = 2

Get (RegionMonitorEvents)

This function returns information about events that

triggered the script specified by a Configure Region Monitor

Script step monitoring for iBeacon encounters.

Format Get (RegionMonitorEvents)

Result The name of the region monitor, a timestamp indicating when the iOS

device entered or exited the region being monitored, and a numeric

Boolean indicating if the device entered the region (1) or exited the

region (2).

More

Info

For more information on iBeacons, visit:

https://developer.apple.com/ibeacon/ .

This examples shows results that indicate that the iOS

device entered the region of an iBeacon named

StoreBeacon at 3:24 PM on March 15, 2017, and then exited

the region 20 minutes later.

Get (RegionMonitorEvents)

// result =

StoreBeacon

15/3/2017 3:24 PM;1

15/3/2017 3:44 PM;0

Get (RequestCount)

This function returns a count of the number of find requests

defined in the current window.

Format Get (RequestCount)

Result A number indicating the number of requests that exist.

This example shows a typical result from this function :

Get (RequestCount) // result = 3

Get (RequestOmitState)

https://developer.apple.com/ibeacon/

This function indicates whether omit is selected for the

current find request or not.

Format Get (RequestOmitState)

Result A Boolean indicating if omit is selected or not.

This example shows a typical result from this function:

Get (RequestOmitState) // result = 0

Get (ScreenDepth)

This function returns the color depth of the main script,

which is the number of bits required to represent the color

of a single pixel.

Format Get (ScreenDepth)

Result A number indicating the bit depth of the screen.

This example shows a typical result from this function:

Get (ScreenDepth) // result = 32

Get (ScreenHeight)

This function returns the height of the computer’s monitor

screen.

Format Get (ScreenHeight)

Result A number indicating the height of the computer monitor in points. If

the computer has multiple screens, it will return the width for the

screen enclosing the current window. If the current window spans

multiple screens, it will return the width of the screen that contains

most the window’s width.

This example shows a typical result from this function :

Get (ScreenHeight) // result = 1440

Get (ScreenScaleFactor)

This function returns the scale factor of the current device

screen.

Format Get (ScreenScaleFactor)

Result An integer indicating the scale factor based on the relative pixel

density of the current screen.

1 = a device without a Retina display (also the default for Custom Web

Publishing)

2 = a Mac with a Retina display or an iPhone 6

3 = an iPhone 6 Plus

This example shows a typical result from this function:

Get (ScreenScaleFactor) // result = 1

Get (ScreenWidth)

This function returns the width of the computer’s monitor

screen.

Format Get (ScreenWidth)

Result A number indicating the width of the computer monitor in points. If the

computer has multiple screens, it will return the width for the screen

enclosing the current window. If the current window spans multiple

screens, it will return the width of the screen that contains most of the

window’s width.

This example shows a typical result from this function:

Get (ScreenWidth) // result = 2560

Get (ScriptAnimationState)

This function returns the current layout animation setting

(FileMaker Go only).

Format Get (ScriptAnimationState)

Result A Boolean indicating the current state of the layout animation setting:

0 = layout animations is false

1 = layout animations is true

This example shows a typical result from this function:

Get (ScriptAnimationState) // result = 1

Get (ScriptName)

This function returns the name of the script that is currently

running or paused.

Format Get (ScriptName)

Result A text string containing the name of the script.

This example shows a typical result from this function:

Get (ScriptName) // result = "Create New Contact"

Get (ScriptParameter)

This function returns the parameter that was passed to the

current script.

Format Get (ScriptParameter)

Result A text string containing the contents that were passed to the script.

This example detects the absence of a script parameter

and displays an error.

If [Get (ScriptParameter) = ""]

 Show Custom Dialog ["Error: No Script Parameter

provided."]

 Exit Script []

End If

Note Script parameters and results are discussed in

Chapter 34, “Exchanging Data Between Scripts.”

Get (ScriptResult)

This function returns the result to a script from the last sub-

script that it ran.

Format Get (ScriptResult)

Result Any data the script returns including text, number, date, time,

timestamp, or container.

This example shows a typical result from this function:

Get (ScriptResult) // result = "Task Complete"

This function shows a script using an If statement to take

conditional action depending on the results from a sub-

script. For example, an error in the sub-script might require

a different course of action or an alert dialog for the user.

This can be accomplished by placing a few extra script steps

after a Perform Script step.

Perform Script ["Generate Reports"]

If [Get (ScriptResult) = "Error"]

 Show Custom Dialog ["The report script

encountered an error."]

 Exit Script [Text Results:]

End If

Get (SortState)

This function returns the current sort state of the found set

of records in the current window.

Format Get (SortState)

Result A number indicating the sort state. The possible values are:

0 = unsorted

1 = sorted

2 = semi-sorted

This example shows a typical result from this function:

Get (SortState) // result = 1

Note When records are imported into a found set of

sorted records, it will result in a semi-sorted state,

meaning that some records are sorted and some are not.

A script can use this function to determine such a state

and use the Sort script step to resort the records.

Get (StatusAreaState)

This function returns the current state of the status toolbar.

Format Get (StatusAreaState)

Result A number indicating the toolbar state. The possible values are:

0 = hidden

1 = visible

2 = visible and locked

3 = hidden and locked

This example shows a typical result from this function:

Get (StatusAreaState) // result = 0

Get (SystemDrive)

This function returns the name of the hard drive running the

current operating system.

Format Get (SystemDrive)

Result The macOS startup volume name or the Windows drive letter.

This example shows a typical result from this function:

Get (SystemDrive) // result = "Macintosh HD"

Get (SystemIPAddress)

This function returns a list of active Internet Protocol (IP)

addresses for the current computer. The results may include

multiple addresses if the computer is connected to multiple

networks, such as Ethernet and WiFi.

Format Get (SystemIPAddress)

Result A carriage return-delimited list of addresses for the current computer.

This example shows a typical result from this function :

Get (SystemIPAddress)

// result =

 10.0.1.27

 10.0.1.5

Get (SystemLanguage)

This function returns the name of the language set for the

computer in the macOS System Preferences, Windows

Control Panel, or the language of the Web Browser in

WebDirect.

Format Get (SystemLanguage)

Result An English text string indicating the name of the language currently

used.

This example shows a typical result from this function:

Get (SystemLanguage) // result = "English"

Get (SystemNICAddress)

This function returns the hardware address of all installed

Network Interface Controller (NIC) circuit board cards that

allow the current user’s computer to be connected to a

network. This can identify the specific hardware that a user

is accessing a database from.

Format Get (SystemNICAddress)

Result A text string containing a carriage return-delimited list of network

addresses for the computer’s hardware.

This example shows a typical result from this function:

Get (SystemNICAddress)

// result =

 4c:37:04:1j:67:2b

 dc:be:88:10:71:c2

 f6:9f:64:44:hd:12

 8e:00:5d:10:k7:00

 8e:00:5d:10:k7:01

 8e:00:5d:10:k7:04

 8e:00:5d:10:k7:05

Get (SystemPlatform)

This function returns the platform of the current device and

can be used to create branching scripts that provide

different functionality depending on the device.

Format Get (SystemPlatform)

Result A number indicating the current platform. Available values are:

1 = Intel-based Mac

2 = Windows

3 = iOS Device (iPhone or iPad)

4 = FileMaker WebDirect

This example shows a typical result from this function :

Get (SystemPlatform) // result = 1

Get (SystemVersion)

This function returns the version number of the current

operating system or device.

Format Get (SystemVersion)

Result A text string containing the version number or name of device or web

browser upon which the FileMaker database is running.

This example shows a typical result from this function:

Get (SystemVersion) // result = 10.11.5

Get (SystemVersion) // result = 10.12.4

Get (TemporaryPath)

This function returns a path to an temporary session folder

automatically generated by FileMaker Pro application and

the computer system on which it is running. This path can

be used as a staging location to which to export files that

will be emailed or otherwise processed when ready. Once

the FileMaker application is shut down, the folder is

automatically deleted.

Format Get (TemporaryPath)

Result A text string containing a path to a temporary folder. The exact path

will vary depending on the type and version of the operating system.

This example shows a typical result from this function :

Get (TemporaryPath)

// result = /Macintosh

HD/var/folders/79/4gh7yxxj7zd1xpd2dcqm0qw80000gn/T/S

10/

Get (TextRulerVisible)

This function indicates if the text ruler is visible or hidden.

Format Get (TextRulerVisible)

Result A Boolean indicating if the ruler is visible (1) or hidden (0).

This example shows a typical result from this function:

Get (TextRulerVisible) // result = 0

Get (TotalRecordCount)

This function returns the total count of records in the current

table.

Format Get (TotalRecordCount)

Result A number indicating the total number of records in the table (including

all records, even those excluded from the current found set).

This example shows a typical result from this function:

Get (TotalRecordCount) // result = 1523

Get (TouchKeyboardState)

This function determines if the touch keyboard will be

displayed automatically when needed or not. This feature is

only supported in FileMaker Go and Windows.

Format Get (TouchKeyboardState)

Result A Boolean indicating the state of the touch keyboard:

0 = the touch keyboard is disabled

1 = the touch keyboard is enabled

This example shows a typical result from this function :

Get (TouchKeyboardState) // result = 1

Get (TriggerCurrentPanel)

This function will return information about the panel being

switched from when using the OnPanelSwitch script trigger

(Chapter 37). This allows a script to identify which panel the

user was on prior to requesting navigation to a different

one.

Format Get (TriggerCurrentPanel)

Result A text string containing the number of the tab panel or slide panel

being switched from. If the object has a name assigned, it is included

on a second paragraph.

This example assumes a tab control named Contact

Details with four tabs and an OnPanelSwitch script trigger

that runs a script with a step containing the formula below.

The user, viewing tab 3, clicks on tab 1. The result will be

the number of the tab they were viewing (3) and the name

of that tab control (Contact Details) as shown here:

Get (TriggerCurrentPanel)

// result =

 3

 Contact Details

Get (TriggerExternalEvent)

This FileMaker Go function returns a number indicating the

event that activated an OnExternalCommandReceived script

trigger (Chapter 37).

Format Get (TriggerExternalEvent)

Result A number indicating the source of the external command. The

available options are:

0 = Unknown

1 = RemotePlayMedia

2 = RemotePause

3 = RemoteTogglePlayPause

4 = RemotePlayNext

5 = RemotePlayPrevious

6 = RemoteSeek (start or end seeking forward or backwards)

7 = RemoteStop

This example shows a typical result from this function :

Get (TriggerExternalEvent) // result = 4

Get (TriggerGestureInfo)

The Get (TriggerGestureInfo) function returns information

about a gesture on an iOS or Windows device that activates

the OnGestureTap script trigger (Chapter 37).

Format Get (TriggerGestureInfo)

Result A carriage return-delimited list of the following values:

The word “Tap” indicating the script was activated by an

OnGestureTap script trigger

A number indicating the number of taps received (one or two)

A number indicating how many fingers were involved

A number indicating the x coordinate in the window where the gesture

occurred (center point when multiple figures involved)

A number indicating the y coordinate in the window where the gesture

occurred (center point when multiple figures involved)

The following combinations are possible:

A single tap with 1-3 fingers (iOS)

A double-tap with one figure (iOS)

A tap with two fingers (Windows)

This example shows a typical result from this function:

Get (TriggerKeystroke)

// result =

 Tap

 1

 2

 185

 312

Get (TriggerKeystroke)

This function returns the character that activated an

OnObjectKeystroke or OnLayoutKeystroke script trigger

(Chapter 37).

Format Get (TriggerKeystroke)

Result The text character typed.

This example shows a typical result from this function:

Get (TriggerKeystroke) // result = "A"

Get (TriggerModifierKeys)

This function returns the modifier keys that were held down

at the moment the script trigger was activated. This

function returns the same information as Get (

ActiveModifierKeys) but may be received after the user has

already let go of the keys so it is more useful when running

a script trigger.

Get (TriggerTargetPanel)

This function will return information about the panel being

switched to when using the OnPanelSwitch script trigger

(Chapter 37). This allows a script to identify which panel the

user has clicked on.

Format Get (TriggerTargetPanel)

Result A text string containing the number of the tab panel or slide panel

being switched to. If the object has a name assigned it is included on a

second paragraph.

This example assumes a tab control named Contact

Details with four tabs and an OnPanelSwitch script trigger

that runs a script with a step containing the formula below.

The user, viewing tab 3, clicks on tab 1. The result will be

the number of the tab they were viewing (3) and the name

of that tab control (Contact Details) as shown here:

Get (TriggerTargetPanel)

// result =

 1

 Contact Details

Get (UserCount)

This function returns the number of users actively

connected to a database file.

Format Get (UserCount)

Result A number indicating the user count.

This example shows a typical result from this function:

Get (UserCount) // result = 3

Get (UserName)

This function returns the name of the current user, which is

specified in Preferences.

Format Get (UserName)

Result A text string containing the name of the user.

This example shows a typical result from this function:

Get (UserName) // result = Joanne Miller

Get (UseSystemFormatsState)

This function indicates if the Format > Use System Formats

format menu bar is on or off (Chapter 3, “File Options”).

Format Get (UseSystemFormatsState)

Result A Boolean indicating if the menu option is on (checked) or off

(unchecked).

This example shows a typical result from this function:

Get (UseSystemFormatsState) // result = 0

Get (UUID)

This function generates a Universally Unique Identifier

(UUID), which is a non-guaranteed unique id number that

can be used to decentralize certain aspects of database

record tracking. If used as the primary key for database

records, users in a duplicate file who are in a remote

location or offline could create new records without causing

duplicate ids when their records are later imported into the

central database .

Format Get (UUID)

Result A unique 16-byte (128-bit) string representing the unique identifier.

More Info For more information about UUID visit:

https://en.wikipedia.org/wiki/Universally_unique_identifier .

This example shows a typical result from this function:

Get (UUID) // result = 1E01C315-4807-41C5-B233-

E7F4F19EAD89

Get (WindowContentHeight)

This function returns the height of the visible content area

of the current window.

Format Get (WindowContentHeight)

Result A number indicating the height of the portion of the window that can

contain layout content; it excludes the window border, the zoom

control area, and page margins, making it slightly smaller than the

number returned by Get (WindowHeight).

This example shows a typical result from this function:

Get (WindowContentHeight) // result = 1560

Get (WindowContentWidth)

https://en.wikipedia.org/wiki/Universally_unique_identifier

This function returns the width of the visible content area of

the current window.

Format Get (WindowContentWidth)

Result A number indicating the width of the portion of the window that can

contain layout content; it excludes the window border, the scroll bars,

and page margins, making it slightly smaller than the number returned

by Get (WindowWidth).

This example shows a typical result from this function:

Get (WindowContentWidth) // result = 2430

Get (WindowDesktopHeight)

This function returns the height of the computer’s desktop

space.

Format Get (WindowDesktopHeight)

Result A number indicating the height of the desktop space in points.

This example shows a typical result from this function:

Get (WindowDesktopHeight) // result = 1417

Get (WindowDesktopWidth)

This function returns the width of the computer’s desktop

space.

Format Get (WindowDesktopWidth)

Result A number indicating the width of the desktop space in points. If the

computer has multiple screens, it will return the width for the screen

enclosing the current window. If the current window spans multiple

screens, it will return the width of the screen that contains the

majority of the window’s width.

This example shows a typical result from this function:

Get (WindowDesktopWidth) // result = 2560

Get (WindowHeight)

This function returns the height of the current window.

Format Get (WindowHeight)

Result A number indicating the height of the window in points.

This example shows a typical result from this function:

Get (WindowHeight) // result = 852

Get (WindowLeft)

This function returns the distance from the left of the screen

to the outside left of the current window.

Format Get (WindowLeft)

Result A number indicating the distances in points for the left position of the

current window.

This example shows a typical result from this function:

Get (WindowLeft) // result = 35

Get (WindowMode)

This function returns the mode of the current window.

Format Get (WindowMode)

Result A number indicating the current mode of the window. The available

values are:

0 = Browse mode

1 = Find mode

2 = Preview mode

3 = Printing is in progress

4 = Layout mode (only from FileMaker Pro Advanced Edit Expression

dialog from the Data Viewer interface)

If the current window is in layout mode, a script using this function will

cause the window to revert to browse mode and return a zero.

This example shows a typical result from this function:

Get (WindowMode) // result = 0

Get (WindowName)

This function returns the name of the current window.

Format Get (WindowName)

Result A text string containing the title of the window.

This example shows a typical result from this function :

Get (WindowName) // result = "Contacts"

Get (WindowOrientation)

This function returns the orientation of the current window,

which can be most useful with FileMaker Go on a tablet or

phone that can be rotated into different views.

Format Get (WindowOrientation)

Result A number indicating the orientation of the window. The available

values are:

-2 = landscape left

-1 = landscape right

0 = square

1 = portrait

2 = portrait upside down

This example shows a typical result from this function:

Get (WindowOrientation) // result = 1

Get (WindowStyle)

This function returns the style of the current window.

Format Get (WindowStyle)

Result A number indicating the style of the window. The available values are:

0 = a document window

1 = a floating document window

2 = a dialog window

This example shows a typical result from this function:

Get (WindowStyle) // result = 0

Get (WindowTop)

This function returns the distance from the bottom of the

menu bar to the outside top of the current window.

Format Get (WindowTop)

Result A number indicating the distances in points for the top of the current

window.

This example shows a typical result from this function:

Get (WindowTop) // result = 78

Get (WindowVisible)

This function determines if the current window is visible or

not.

Format Get (WindowVisible)

Result A Boolean indicating if the window is visible or hidden.

This example shows a typical result from this function:

Get (WindowVisible) // result = 1

Get (WindowWidth)

This function will return the width of the current window.

Format Get (WindowWidth)

Result A number indicating the width of the window in points.

This example shows a typical result from this function:

Get (WindowWidth) // result = 1373

Get (WindowZoomLevel)

This function returns the zoom percentage of the current

window.

Format Get (WindowZoomLevel)

Result A number indicating the percentage of zoom to which the user has the

window set.

This example shows a typical result from this function :

Get (WindowZoomLevel) // result = 100

Summary

In this chapter, we explored all the built-in functions for

accessing many different static values.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_23

23. Design Functions

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Design functions are used to acquire information about the

structure of a database file.

Design Function Reference

FileMaker provides the following built-in design functions :

DatabaseNames

FieldBounds

FieldComment

FieldIDs

FieldNames

FieldRepetitions

FieldStyle

FieldType

GetNextSerialValue

LayoutIDs

LayoutNames

LayoutObjectName

RelationInfo

ScriptIDs

ScriptNames

TableIDs

TableNames

ValueListIDs

ValueListItems

ValueListNames

WindowNames

DatabaseNames

The DatabaseNames function returns a list of database files

currently open.

Format DatabaseNames

Parameters Not applicable.

Result A carriage return-delimited list of open database names.

This example shows a typical result from this function:

DatabaseNames

// result =

 Contacts

 Invoices

 Projects

FieldBounds

The FieldBounds function returns the location of a field on a

layout.

Format FieldBounds (fileName ; layoutName ; fieldName)

Parameters fileName = a text expression or field containing the name of a

database file.

layoutName = a text expression or field containing the name of a

layout.

fieldName = a text expression or field containing a text-based

field reference.

Result Four space-delimited values indicating the distance of the field

from the top left corner of the layout in points, in the following

order: left, top, right, bottom.

This example shows a typical result from this function:

FieldBounds ("Contacts" ; "People – Data Entry" ;

GetFieldName (People::First Name))

// result = 25 50 380 70

Combine this result with other functions to calculate the

width and height of the field . The example below places the

field bounds into a variable named data and uses the

GetValue function to parse each measurement into a

separate variable. These are then used to calculate the

width and height and place them each into a variable that

can then be used by other code.

Let ([

 fieldName = GetFieldName (People::First Name) ;

 data = FieldBounds ("Contacts" ; "People – Data

Entry" ; fieldName) ;

 left = GetValue (data ; 1) ;

 top = GetValue (data ; 2) ;

 right = GetValue (data ; 3) ;

 bottom = GetValue (data ; 4) ;

 width = right – left ;

 height = bottom – top

] ;

 // Add additional code

)

Tip To help future-proof your code, use dynamic

references when functions require a file or field name.

Use Get (FileName) instead of “Contacts” and

GetFieldName (People::First Name) instead of

“People::First Name” to allow your code to dynamically

adapt to future name changes.

FieldComment

The FieldComment function returns the comment for a field

from the field definitions dialog, if one has been entered.

Format FieldComment (fileName ; fieldName)

Parameters fileName = a text expression or field containing the name of a

database file.

fieldName = a text expression or field containing a text-based

field reference.

Result A text string containing the specified field’s comment.

This example shows a typical result from this function:

FieldComment ("Contacts" ; GetFieldName (

People::Status))

// result = "This field is used to indicate if a contact

record is active or not"

FieldIDs

The FieldIDs function returns a list of the FileMaker ids of

every field on a layout.

Format LayoutIDs (fileName ; layoutName)

Parameters fileName = a text expression or field containing the name of a

database file.

layoutName = a text expression or field containing the name of a

layout or a table.

Result A carriage return-delimited list of IDs of every field appearing on

the specified layout. If a table name is provided for the

layoutName parameter and there is no layout by the same name,

the function will return a list of all field IDs for that table,

regardless of layout. If fields have been deleted, the list of values

returned may be non-consecutive.

This example shows a typical result from this function:

FieldIDs ("Contacts" ; "People")

// result =

 1

 2

 5

 10

 12

 Etc.

FieldNames

The FieldNames function returns a list of the name of every

field on a layout.

Format FieldNames (fileName ; layoutName)

Parameters fileName = a text expression or field containing the name of a

database file.

layoutName = a text expression or field containing the name of a

layout or a table.

Result A carriage return-delimited list of names of every field appearing

on the specified layout. If a table name is provided for the

layoutName parameter and there is no layout by the same name,

the function will return a list of all field names for that table,

regardless of layout.

This example shows a typical result from this function:

FieldNames ("Contacts" ; "People – List")

// result =

 First Name

 Last Name

 Record ID

 Status

 Notes

 Etc.

FieldRepetitions

The FieldRepetitions function returns the number and

orientation of repetitions applied to a field on a layout.

Format FieldRepetitions (fieldName ; layoutName ; fieldName)

Parameters fileName = a text expression or field containing the name of a

database file.

layoutName = a text expression or field containing the name of a

layout.

fieldName = a text expression or field containing a text-based

field reference.

Result A text value containing two space-delimited values:

The number of repetitions assigned to the field on the layout

specified

The orientation of those repetitions: horizontal or vertical

Fields defined to be non-repeating will return a value of 1 vertical

This example shows a typical result from this function:

FieldRepetitions (Get (FileName) ; Get (LayoutName) ;

GetFieldName (People::Status))

// result = 1 Vertical

FieldStyle

The FieldStyle function returns the formatting applied to a

field on a layout.

Format FieldStyle (fieldName ; layoutName ; fieldName)

Parameters fileName = a text expression or field containing the name of a

database file.

layoutName = a text expression or field containing the name of a

layout.

fieldName = a text expression or field containing a text-based

field reference.

Result A text string indicating the format of the field on the layout

specified. The available options are:

Standard = a standard field without special formatting

Scrolling = a standard field formatted with a vertical scroll

Popuplist = a field formatted with a drop-down list

Popupmenu = a field formatted with a pop-up menu

Checkbox = a field formatted as a check box

RadioButton = a field formatted as a radio button

Calendar = a field formatted with a drop-down calendar

This example shows a typical result from this function:

FieldStyle (Get (FileName) ; Get (LayoutName) ;

GetFieldName (People::Status))

// result = Checkbox

FieldType

The FieldType function returns information about a field

including data type, index status, storage settings, and

number of repetitions.

Format FieldType (fileName ; fieldName)

Parameters fileName = a text expression or field containing the name of a

database file.

fieldName = a text expression or field containing a text-based

field reference.

Result a text value containing four space-delimited values:

Status — one of the following values: Standard, StoredCalc,

Summary, UnstoredCalc, External(Secure), External(Open), or

Global

Type — the data type of the field or of the calculation result: text,

number, date, time, timestamp, or container

Index Status — Indexed or Unindexed

Repetitions — a number representing the maximum number of

repetitions defined for the field (1 for non-repeating fields)

This example shows a typical result from this function:

FieldType ("Contacts" ; GetFieldName (People::Record ID

))

// result = Standard Text Indexed 1

The function can be combined with other functions to

extract specific values. This example uses a Let statement

to place the field’s information into a variable named data

and then uses the GetValue function to parse the various

components into separate variables:

Let ([

 data = FieldType (Get (FileName) ; GetFieldName (

Example Input)) ;

 data = Substitute (data ; " " ; "¶") ;

 storage = GetValue (data ; 1) ;

 type = GetValue (data ; 2) ;

 index = GetValue (data ; 3) ;

 repetitions = GetValue (data ; 4)

] ;

 // Add additional code

)

GetNextSerialValue

The GetNextSerialValue function returns the next serial

number for a field.

Format GetNextSerialValue (fileName ; fieldName)

Parameters fileName = a text expression or field containing the name of a

database file.

fieldName = a text expression or field containing a text-based

field reference for a field with an auto-entered serial number.

Result A number indicating the next serial number that will be assigned

for the field specified if a new record were to be created. If the

field does not have an auto-entered serial number assigned, an

empty string will be returned. Since this does not reserve the

next number, in a multi-user environment, the number returned

from this function would be obsolete if another user creates a

new record after this function returns a value.

This example shows a typical result from this function:

GetNextSerialValue ("Contacts" ; GetFieldName (

People::Record ID))

// result = 1562

LayoutIDs

The LayoutIDs function returns a list of the ID of every

layout in a database file.

Format LayoutIDs (fileName)

Parameters fileName = a text expression or field containing the name of a

database file.

Result A list of carriage return-delimited layout IDs. If layouts have been

deleted, the list of values returned may be non-consecutive.

This example shows a typical result from this function:

LayoutIDs ("Contacts")

// result =

 1

 2

 5

 10

 12

 13

LayoutNames

The LayoutNames function returns a list of the names of

every layout in a database file.

Format LayoutNames (fileName)

Parameters fileName = a text expression or field containing the name of a

database file.

Result A carriage return-delimited list of layout names.

This example shows a typical result from this function:

LayoutNames ("Contacts")

// result =

 Company - List

 People – List

 People – Data Entry

 People – Notes

 Correspondence – List

 Phone Numbers - List

LayoutObjectNames

The LayoutObjectNames function returns a list of the names

of every named object on a layout.

Format LayoutObjectNames (fileName ; layoutName)

Parameters fileName = a text expression or field containing the name of a

database file.

layoutName = a text expression or field containing the name of a

layout file.

Result A carriage return-delimited list of every object with a name

assigned on the layout specified. Any object with no name

assigned is not included.

This example shows a typical result from this function:

LayoutObjectNames ("Contacts" ; "People – Data Entry")

// result =

 Correspondence Portal

 Company Website Viewer

 Phone Numbers Portal

RelationInfo

The RelationInfo function returns data on the relationship(s)

connected to a specified table.

Format RelationInfo (fileName ; tableName)

Parameters fileName = a text expression or field containing the name of a

database file.

tableName = a text expression or field containing the name of a

table.

Result A list of four carriage return-delimited pieces of information about

each relationship, separated from other lists by two carriage

returns:

The name of file containing the base table (not the occurrence)

with a prefix of “Source:”

The name of the related table occurrence with a prefix of “Table:”

The relationship option check boxes that were selected on the

side of the related table in the Edit Relationship dialog; Delete,

Create, Sorted; delimited with a space after the “Options:” prefix

A list of the field connections that form the relationship, one per

paragraph

This example shows a typical result from this function:

RelationInfo ("Contacts" ; "Person")

// result =

 Source:Contacts

 Table:Person | Phone Numbers

 Options:Delete Create Sorted

 Person::Record ID = Person | Phone Number::Record

Parent ID

 Source:Contacts

 Table:Person | Correspondence

 Options:

 Person::Record ID = Person |

Correspondence::Record Parent ID

 Person::Person Correspondence Status = Person |

Correspondence::Record Status

ScriptIDs

The ScriptIDs function returns a list of the ID of every script

in a database file.

Format ScriptIDs (fileName)

Parameters fileName = a text expression or field containing the name of a

database file.

Result A list of carriage return-delimited script IDs. If scripts have been

created and deleted, the list may be non-consecutive.

This example shows a typical result from this function:

ScriptIDs ("Contacts")

// result =

 9

 14

 15

 26

ScriptNames

The ScriptNames function returns a list of the names of

every script in a database file.

Format ScriptNames (fileName)

Parameters fileName = a text expression or field containing the name of a

database file.

Result A carriage return-delimited list of script names.

This example shows a typical result from this function:

ScriptNames ("Contacts")

// result =

 Create New Contact

 Create New Correspondence

 Find Contacts at the Same Company

 Etc.

TableIDs

The TableIDs function returns a list of the IDs of every table

in a database file.

Format TableIDs (fileName)

Parameters fileName = a text expression or field containing the name of a

database file.

Result A list of carriage return-delimited table IDs. If tables have been

deleted, the list of values returned may be non-consecutive.

This example shows a typical result from this function:

TableIDs ("Contacts")

// result =

 2

 4

 10

 11

TableNames

The TableNames function returns a list of the names of

every table in a database file.

Format TableNames (fileName)

Parameters fileName = a text expression or field containing the name of a

database file.

Result A carriage return-delimited list of table names.

This example shows a typical result from this function:

TableNames ("Contacts")

// result =

 Company

 Contact

 Phone Numbers

 Correspondence

ValueListIDs

The ValueListIDs function returns a list of the IDs of every

values list in a database file.

Format ValueListIDs (fileName)

Parameters fileName = a text expression or field containing the name of a

database file.

Result A list of carriage return-delimited value list IDs. If value lists have

been deleted, the list of values returned may be non-consecutive.

This example shows a typical result from this function:

ValueListIDs ("Contacts")

// result =

 1

 15

 18

 31

ValueListItems

The ValueListItems function returns a list of the values that

make up a value list.

Format ValueListItems (fileName ; valueList)

Parameters fileName = a text expression or field containing the name of a

database file.

valueList = a text expression or field containing the name of a

value list.

Result A carriage return-delimited list of the values in the specified value

list.

This example shows a typical result from this function:

ValueListItems ("Contacts" ; "Phone Types")

// result =

 Home

 Work

 Mobile

Create a more dynamic approach by nesting other

functions. This example will get a list of value list names for

the current file and then get the items for the first three

lists:

Let ([

 lists = ValueListNames (Get (FileName)) ;

 items1 = ValueListItems (GetValue (lists ; 1) ;

 items2 = ValueListItems (GetValue (lists ; 2) ;

 items3 = ValueListItems (GetValue (lists ; 3)

] ;

 // additional code

)

ValueListNames

The ValueListNames function returns a list of the names of

every values list in a database file.

Format ValueListNames (fileName)

Parameters fileName = a text expression or field containing the name of a

database file.

Result A carriage return-delimited list of value list names.

This example shows a typical result from this function:

ValueListNames ("Contacts")

// result =

 Status

 Phone Types

 Industry List

 Salutation Options

WindowNames

The WindowNames function returns a list of the names of

open FileMaker Pro windows.

Format When no parameters are specified:

WindowNames

Optionally include the name of a database file to only return a list

of the windows open for that file:

WindowNames (fileName)

Parameters fileName = (optional) a text expression or field containing the

name of a database file for which window names should be

limited.

Result A carriage return-delimited list of the name of every open window

or every open window for the file specified.

This example shows a typical result from this function:

WindowNames

// result =

 Contacts

 Phone Numbers

 Correspondence

 Invoices

 Projects

Limit the results to a specific file by including the file

name:

WindowNames ("Contacts")

// result =

 Contacts

 Phone Numbers

 Correspondence

Summary

In this chapter, we explored all the built-in functions for

accessing various design information.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_24

24. Mobile Functions

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Mobile functions are used to get information that is specific

to a mobile device running a database on FileMaker Go.

Mobile Function Reference

FileMaker provides the following built-in mobile functions :

Location

LocationValues

RangeBeacons

Location

The Location function returns the location of an iOS device

running FileMaker Go.

Format Without optional parameters:

Location (accuracy)

An optional parameter can be added to override the default

timeout:

Location (accuracy ; timeout)

Parameters accuracy = a numeric expression or field that contains a number

to represent a distance in meters for the desired accuracy of the

results.

timeout = (optional) a numeric expression or field containing a

number that indicates the maximum number of seconds to wait

for a response (default is 60).

Result A list of comma-delimited values:

Latitude

Longitude

Horizontal Accuracy (+/- in meters)

This example shows a typical result from this function :

Location (100 ; 70)

// result =

 50.682532, -85.915032, 5

To extract a value from these results, combine this with

other functions:

Let ([

 data = Location (100 ; 70) ;

 data = Substitute (data ; "," ; "¶")

 latitude = GetValue (data ; 1) ;

 longitude = GetValue (data ; 2) ;

 accuracyHorizontal = GetValue (data ; 3)

] ;

 // Add additional code here

)

Tip To maximize speed and avoid battery consumption

when using Location and LocationValues, use larger

accuracy and smaller timeouts. It can take 40 seconds to

return accuracy to 100 meters.

LocationValues

The LocationValues function returns a list of values

containing the latitude, longitude, and altitude of an iOS

device running FileMaker Go, including an evaluation of

accuracy and minutes since the values were returned.

Format Without optional parameters:

LocationValues (accuracy)

An optional parameter can be added to override the default

timeout:

LocationValues (accuracy ; timeout)

Parameters accuracy = a numeric expression or field that contains a number

to represent a distance in meters for the desired accuracy of the

results.

timeout = (optional) a numeric expression or field containing a

number that indicates the maximum number of seconds to wait

for a response (default is 60).

Result A list of carriage return-delimited values:

Latitude

Longitude

Altitude

Horizontal Accuracy (+/- in meters)

Vertical Accuracy (+/- in meters)

Age of value in minutes

This example shows a typical result from this function:

LocationValues (5)

// result =

 50.682532

 -85.915032

 5

 8

 0.004355

To extract a value from these results, combine this with

other functions:

Let ([

 data = LocationValues (5) ;

 latitude = GetValue (data ; 1) ;

 longitude = GetValue (data ; 2) ;

 accuracyHorizontal = GetValue (data ; 3) ;

 accuracyVertical = GetValue (data ; 4) ;

 age = GetValue (data ; 5)

] ;

 // Add additional code here

)

RangeBeacons

The RangeBeacons function returns a list of iBeacons and

their proximity to an iOS device. iBeacons use Bluetooth

Low Energy (BLE) to establish a region around an object,

allowing iOS devices to determine when it has entered or

left the region, along with an estimation of proximity to a

beacon.

Format Without optional parameters:

RangeBeacons (UUID)

To control how the function response and with what information,

several optional parameters can be added:

RangeBeacons (UUID ; timeout ; major ; minor)

Parameters UUID = a text string containing a Universally Unique Identifier

(UUID) to search.

timeout = (optional) a number indicating how long to wait before

returning a value; default is 5 seconds.

major = (optional) a text string containing an identification of a

group of specified iBeacons.

minor = (optional) a text string containing an identification of

specified iBeacons within a group.

Result a carriage return-delimited list of nearby iBeacons with the

following comma-space delimited values for each:

UUID = the id of the current iBeacon.

major = a value identifying the group of iBeacons.

minor = a value indentifying specific iBeacons within the group.

proximity = a number representing the proximity of the device to

an iBeacon, from 0 to 3 indicating: Unknown, Immediate, Near,

Far.

accuracy = a number representing the accuracy in meters of the

proximity value with any negative value indicating accuracy was

indeterminate.

rssi = a number representing the received signal strength in

decibels of the iBeacon.

More Info For more information about iBeacons visit:

https://developer.apple.com/ibeacon/ .

This example shows a typical result from this function:

RangeBeacons ("W5T5M11J-AAAA-BBBB-23T4-

5H55A5BCD55E")

// result =

 W5T5M11J-AAAA-BBBB-23T4-5H55A5BCD55E, 1, 1,

2, 10, 5

 W5T5M11J-AAAA-BBBB-23T4-5H55A5BCD55E, 1, 2,

3, 6, 3

 W5T5M11J-AAAA-BBBB-23T4-5H55A5BCD55E, 2, 5,

0, -13, 2

Summary

In this chapter, we explored all the built-in functions for

accessing information on a mobile device.

https://developer.apple.com/ibeacon/

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_25

25. Creating Custom Functions

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

When built-in functions don’t provide the functionality that

your database requires, and you find yourself reusing

portions or entire calculation formulas repeatedly with little

or no modification, it’s time to create a custom function.

Custom functions make possible the creation of open-ended,

reusable code that reduces the complexity and repetition in

the formulas that call them. This helps to condense code,

making it more efficient and easier to navigate. As a result,

it makes a solution more stable, easier to troubleshoot and

more amenable to future expansion.

In this chapter, we will discuss the process of building

and using custom functions with topics such as:

Defining custom functions

Exploring the custom function dialogs

Building custom functions

Defining Custom Functions

A custom function is a developer named and defined

formula that can be used from any formula throughout the

database. With custom functions, you decide the name of

the function, define its parameters, and write the code that

is executed. Once installed, custom functions are identical in

appearance and accessibility as built-in functions. The only

difference is that custom functions can’t have optional

parameters.

Custom functions can improve code just like subroutines

in other programming languages. They can be created from

existing formulas by extracting some or all of a statement

and adjusting it as needed into a generic and reusable

function. They can be created from scratch as new open-

ended functionality that anticipates usage from various

contexts in a database. Any formula or portion of a formula

that is or can be made generic enough to be widely useful,

or which is used repeatedly within a single formula or

throughout a database file, can and should be converted

into a custom function.

For example, a database with multiple formulas that

compile separate address fields into a single value for a

label or envelope, would benefit from a custom functions

that carried out this task and can be called repeatedly as

follows:

createAddress (first ; last ; street1 ; street2 ; city ; state ;

zip)

Note Custom functions can only be created and edited

within the FileMaker Pro Advanced application. However,

once a function is installed in a database file using this

application, they can be accessed and used by

calculations and scripts running a database with any

other application in the FileMaker family of software.

Exploring the Custom Function

Dialogs

Custom functions are managed and edited from within two

dialogs.

The Manage Custom Functions Dialog

Custom functions are created and managed from the

Manage Custom Functions dialog, shown in Figure 25-1.

Figure 25-1. The Manage Custom Functions dialog

To open this dialog, select the File > Manage > Custom

Functions menu item.

This dialog displays a list of all custom functions installed

in the current database file. From here functions can be

viewed, sorted, created, edited, duplicated, deleted, and

imported using the following controls:

1. Function list — This area displays every function

installed in the current database file. The list can be

sorted by clicking on one of the three column

headings or by selecting one of the following

options from the View by pop-up list in the upper-

right corner:

Creation Order

Function Name

Custom Order where the functions can be

sorted by dragging items up or down the list

2. New — This button will open a new Edit Custom

Function dialog.

3. Edit — This button will open the selected function in

the Edit Custom Function dialog.

4. Duplicate — This button will create a duplicate copy

of the selected function(s).

5. Delete— This button will delete the selected

function(s).

6. Import— This button will allow one or more custom

functions from a selected database to be imported

into the current database.

7. Cancel — This button will close the dialog window

with a warning that no changes will be saved.

8. OK — This button will close the dialog window,

saving all changes .

Importing Custom Functions

To duplicate custom functions from one database to

another, either use the Copy and Paste commands or use

the Import button on the Manage Custom Functions dialog

by following these steps:

1. Open the Manage Custom Functions dialog.

2. Click the Import button.

3. In the Open File dialog, navigate to the file

containing the functions that you want to import

into the current file.

4. An Import Custom Functions dialog will appear,

listing every custom function available in the

selected file.

5. Select the desired functions and then click OK to

import them into the current file.

Review the results in the Import Summary dialog, which

lists the number of items that were imported, how many

were renamed due to a conflict, and how many errors were

detected. It is a good idea to review each function to

confirm that it imported correctly. Any functions that have a

dependency on another function or field that is not available

in the current file will be imported but the code will be

commented out. These must be uncommented and

corrected before they will operate as expected.

The Edit Custom Function Dialog

The Edit Custom Function dialog window, shown in Figure

25-2, provides the interface for editing custom functions in

an old style Specify Formula dialog.

Figure 25-2. The Edit Custom Functions dialog window

To open this window, click on the New button on the

Manage Custom Functions dialog.

The Edit Custom Function dialog contains the following

controls:

1. Function Name — This text area contains the name

of the function, which will be used to call the

function from other formulas.

2. Parameter Name — This text area contains the

name of a new or currently selected parameter.

Once a parameter name is entered or modified, the

parameter can be created, updated, or deleted

using the adjacent buttons.

3. Parameter List — This area contains the list of every

parameter defined for the function. These can be

rearranged by dragging up or down the list.

Parameters are positional, so values included as

parameters in a call to the function in other

formulas will be inserted into the parameter at the

corresponding position shown here. Changing the

order of parameters will require rearranging the

values in every existing call to the function for them

to be inserted into the correct variable.

4. Operators — This area contains controls for the

quick insertion of an operator into the code. The

most popular operators are included as two rows of

buttons with the remaining available in a list. A

single-click on a button or a double-click on a list

item will insert the corresponding operator into the

current selection point of the function’s formula.

5. Functions — This area contains a list of functions.

By default, all functions are displayed sorted by

name. However, the pop-up menu above the list

contains options to display them categorized by

type or to filter the list to a single category. The list

not only includes all built-in functions but also any

other custom functions and external functions from

any installed plug-ins .

6. Formula Text Area — This text area is where the

calculation formula is written. As with the standard

Specify Calculation dialog, you can type, drag/drop,

copy/paste, or insert content by double-clicking on

the parameter or function list.

7. Availability — By default, any new custom function

will be accessible to all accounts. However,

selectively you can choose to make a function

accessible to only accounts with full access

(Chapter 40).

8. Cancel — This button will close the dialog window

without saving changes.

9. OK — This button will close the dialog window,

saving all changes.

Building Custom Functions

The process of building a custom function is like writing a

calculation formula. The only differences are that custom

functions can have parameters, can be recursive, and

adding fields must be done manually and very carefully.

Creating a Simple Custom Function

Creating a custom function without parameters is identical

to creating a regular calculation formula. Simply write the

statements that expresses the desired functionality.

As a simple example, consider a function we will name

GetMonday that will dynamically calculate the date for

Monday of the current week. The formula will use the Get (

CurrentDate) function to ascertain today’s date and

establish today’s day number for the current week.

For example, imagine that the current date is a Friday,

which is the sixth day of the week. Since we want to

determine the corresponding Monday, the second day of the

week, we can subtract 2 from 6 to arrive at the number of

days we need to subtract from the current day in order to

arrive at a Monday for the current week.

Using a Let statement to initialize a couple of local

variables, we can accomplish this task with the following

formula:

Let ([

 dateToday = Get (CurrentDate) ;

 numAdjustment = DayOfWeek (dateToday) - 2

] ;

 dateToday - numAdjustment

)

To create the custom function, follow these steps:

1. Open the Manage Custom Functions dialog.

2. Click the New button to open the Edit Custom

Function dialog.

3. Enter the name of the function as GetMonday.

4. Enter the formula.
Once entered, the custom function should appear as

shown in Figure 25-3 and can be saved by clicking the OK

button.

Figure 25-3. The GetMonday function, ready for saving

Once saved, any formula can call the function. Test this in

the Sandbox table by following these steps :

1. Open the Fields tab for the Sandbox table in the

Manage Database dialog.

2. Double-click the Example Calculation field or select

it and click the Options button.

3. Change the field’s formula to GetMonday.

4. Change the field’s Calculation result type to date.

5. Click OK to save the calculation formula and close

the Specify Calculation dialog.

6. Click OK to save and close the Manage Database

dialog.

7. View the result on the Sandbox Form layout for any

record.

If the calculation containing this function call were

evaluated on January 5, 2017, a Thursday, the result should

be the preceding Monday, 1/2/2017.

Adding Parameters to a Custom Function

The GetMonday custom function from the previous example

is fine as a simple demonstration of how to construct a

function without parameters. However, it is somewhat

lacking in usefulness due to its limited flexibility. The use of

the Get (CurrentDate) function does allows some variability

since it will continue functioning into the future but it

excludes the possibility of processing based on a past or

future date. Similarly, by hard-coding the result to always

return a Monday, it excludes the possibility of using the

function to calculate any of the other six days in a week

relative to the date being processed. Both limitations can be

overcome with parameters.

Tip When choosing a name for a parameter, be sure to

give it an adequate amount of thought. There is no way to

restrict the type of data a calling formula passes into a

parameter, so be sure to choose a name that clearly

describes the intended data type(s) to avoid developer

confusion and errors. For example, a parameter named

input is too vague so consider using dateToProcess

instead to clearly state what type of data it is expecting.

Look at built-in function parameters for guidance on this

topic.

Adding a Date Parameter

To create a new custom function that can calculate the

corresponding Monday from any date provided by the

calling formula, follow these steps to duplicate and modify

the previous function example:

1. Open the Manage Custom Functions dialog.

2. Select the GetMonday function and click the

Duplicate button. This will create a new function

named GetMonday Copy, which should already be

selected.

3. Click the Edit button to open the Edit Custom

Function dialog.

4. Change the name of the function to GetMonday2.

5. Type the name dateInput into the Function

Parameters text box, then click the + button to

create the parameter in the list below.

6. Modify the code so that the dateInput parameter is

used in place of the current date and placed into a

renamed variable of dateToProcess, which is applied

throughout as shown in bold here:

Let ([

 dateToProcess = GetAsDate (dateInput) ;

 numAdjustment = DayOfWeek (dateToProcess) -

2

] ;

 dateToProcess - numAdjustment

)

Once this code is entered, the custom function should

appear as shown in Figure 25-4. To save it, click the OK

button.

Figure 25-4. The GetMonday2 function, ready for saving

Now modify the formula in the Example Calculation to

refer to the new GetMonday2 function. Since the function

converts the input to a date automatically, the parameter

can be any of the following:

A text field containing a date value — GetMonday2 (

Sandbox::Example Text)

A date field — GetMonday2 (Sandbox::Example Date)

A literal text string containing a date — GetMonday2 (

"1/5/2017")

A date value built with a function — GetMonday2 (Date

(1 ; 5 ; 2017))

Depending on the date provided to the function in the

new parameter, the result should be the Monday relative to

that date.

Adding a Day Requested Parameter

To further expand the function’s flexibility, an additional

parameter will allow it to return the date for any day of the

week relative to the dateInput provided. To get started:

1. Create a duplicate of the GetMonday2 function.

2. Since the new, expanded function will no longer be

locked to returning a Monday, the new function’s

name should be changed more dramatically; from

GetMonday2 to GetDay.

3. Add a new, second parameter named

dayRequested.

The code will need some changes to accommodate the

desired functionality, as shown highlighted here:

Let ([

 dateToProcess = GetAsDate (dateInput) ;

 list =

"Sunday¶Monday¶Tuesday¶Wednesday¶Thursday¶Fri

day¶Saturday" ;

 list = Left (list ; Position (list ; dayRequested

; 1; 1)) ;

 dayNumber = ValueCount (list) ;

 numAdjustment = DayOfWeek (dateToProcess) -

dayNumber

] ;

 dateToProcess - numAdjustment

)

A new list variable is first initialized to contain a carriage

return-delimited list of weekday names, which will be used

to determine where in the week the requested day falls. In

the next line, list is modified using the Left and Position

functions to include only the days prior to the day name

being requested. Finally, the ValueCount function is used to

determine the number of days remaining in the list, which is

placed into the dayNumber variable. This is used to

determine the numAdjustment value in a manner like the

other versions of this function.

Once the new function is saved, modify the formula in

the Example Calculation to refer to the new GetDay

function. In this example, the result will be the date of

Friday for the week that January 5, 2017, falls within:

GetDay ("1/5/2017" ; "Friday") // result = 1/6/2017

The pattern of progression through these three

expanding steps demonstrates the true power of custom

functions. They allow the development of open-ended

formulas that can be used repeatedly with parameter-driven

variability .

Adding a Default Current Date

When a parameter requests a value like a date, it is

sometimes useful to consider adding a default condition

that fills in the parameter automatically when it is not

specified by the calling formula. For example, right now, a

formula that was requesting the Friday for today would be

required to explicitly include that in the call:

GetDay (Get (CurrentDate) ; "Friday")

By modifying the first line of the Let statement from the

last example to include a condition to default to the current

date when none is provided, the formula can pass an empty

string instead and still receive a result.

Modify the first line with a Case statement that uses the

current date if dateInput is empty or the date provided if

dateInput has a value, as shown here:

dateToProcess = Case (dateInput = "" ; Get (

CurrentDate) ; GetAsDate (dateInput)) ;

Now, a formula can request a day relative to the curent

date by passing in an empty string in the first parameter:

GetDay ("" ; "Friday")

Stressing the Importance of Thorough

Testing

Any new or modified formula should always be carefully

tested before being used and relied on in a live production

database. Since custom functions are globally accessible

and can be used repeatedly, it is critical that they be well

tested.

In our simple example, testing a single date and

receiving a correct result is not enough. Instead, we must

perform as many tests as possible with a variety of different

input to confirm that it will handle a full range of possible

values.

The testing requirements of each custom function will be

different. Start by asking what variety of input might be

received. In our example, what if the date provided is at the

start of the week; a Sunday or Monday? What if the date is

at the end of the week; a Friday or Saturday? What if the

day requested is the same day of the date provided? Will

the function work under each of these circumstances? Will it

operate correctly when requesting any day of the week

relative to any date? Do all the anticipated data types —

date, timestamp, and text string with a date — return an

accurate result? To confirm this, we must test each condition

and confirm that the formula is working correctly.

To begin, convert the list of questions into a list of test

scenarios that will be adequate to confirm the desired

functionality with a large sampling of input. In our example,

at the minimum, the following tests should be performed:

dateInput — Run seven tests, one test for each day of a

week as input. Also, at least one test of each accepted

data type: date, timestamp, text string with date, text

string with timestamp.

dayRequested — Run seven tests, one test for each day

of the week.

This indicates the need for sixteen tests on the GetDay

custom function. Rather than perform these tests one by

one, the following single calculation formula, entered in the

Example Calculation field in the Sandbox table that covers

them all:

Let ([

 dateInput = Date (1 ; 15 ; 2017)

] ;

 "Input = " & dateInput & " (" & DayName

(dateInput) & ")¶" &

 "+1 Sunday=" & GetDay (dateInput + 1 ; "Sunday"

) & "¶" &

 "+2 Sunday=" & GetDay (dateInput + 2 ; "Sunday"

) & "¶" &

 "+3 Sunday=" & GetDay (dateInput + 3 ; "Sunday"

) & "¶" &

 "+4 Sunday=" & GetDay (dateInput + 4 ; "Sunday"

) & "¶" &

 "+5 Sunday=" & GetDay (dateInput + 5 ; "Sunday"

) & "¶" &

 "+6 Sunday=" & GetDay (dateInput + 6 ; "Sunday"

) & "¶" &

 "Sunday=" & GetDay (dateInput; "Sunday") & "¶"

&

 "Monday=" & GetDay (dateInput ; "Monday") & "¶"

&

 "Tuesday=" & GetDay (dateInput; "Tuesday") & "¶"

&

 "Wednesday=" & GetDay (dateInput; "Wednesday"

) & "¶" &

 "Thursday=" & GetDay (dateInput; "Thursday") &

"¶" &

 "Friday=" & GetDay (dateInput; "Friday") & "¶" &

 "Saturday=" & GetDay (dateInput; "Saturday") &

"¶" &

 "Timestamp=" & GetDay (GetAsTimestamp (

dateInput) ; "Sunday") & "¶" &

 "Text Date=" & GetDay (GetAsText (dateInput) ;

"Sunday") & "¶" &

 "Text TS=" & GetDay (GetAsText (GetASTimestamp

(dateInput)) ; "Sunday") & "¶"

)

// result =

 Input = 1/15/2017 (Sunday)

 +1 Sunday=1/15/2017

 +2 Sunday=1/15/2017

 +3 Sunday=1/15/2017

 +4 Sunday=1/15/2017

 +5 Sunday=1/15/2017

 +6 Sunday=1/15/2017

 Sunday=1/15/2017

 Monday=1/16/2017

 Tuesday=1/17/2017

 Wednesday=1/18/2017

 Thursday=1/19/2017

 Friday=1/20/2017

 Saturday=1/21/2017

 Timestamp=1/15/2017

 Text Date=1/15/2017

 Text TS=1/15/2017

The formula uses a Let statement to make repeated calls

to the GetDay function with a variety of different input,

placing each result in a variable. It then concatenates those

variables into a single string. It is important to change the

Example Calculation field’s Calculation result to Text for this

result for it to be displayed properly in the field.

The first six results show that, as the dateInput is

incremented to cover an entire week, the resulting value for

the requested Sunday is the same. The next seven results

show that using the same dateInput while requesting a

different day of the week works since the results span a

seven-day period. Finally, the last three results show that

when the dateInput is a timestamp, text-based date, or text-

based timestamp, the result is always the same.

With this test completed, it should now be safe to use

this custom function with a wide variety of input.

Accessing Fields from Custom Functions

Although the Edit Custom Function dialog interface does not

include any tools for selecting and inserting fields into a

formula, it is possible to include field references. There are

two ways to do this:

Accept a field reference as a parameter

Type or paste a field reference within the formula

As with any non-field formula, a custom function does not

have the ability to specify an evaluation context, so care

must be taken when using field references, especially when

hard-coding them into the formula.

When a formula calls a function that accepts a field

reference as a parameter, it is important to be certain that

the reference provided is valid within the context at the time

the function is called.

Hard-coded field references are almost never a good idea

in a custom function unless the function will be limited in

use to a single context or is accessing a global field, which

works regardless of context .

Building Recursive Custom Functions

In FileMaker, the only formulas that can be recursive are

custom functions. A recursive function is a function that can

call itself from within itself, allowing an overall functional

process to be solved in repeated smaller steps. This has the

effect of allowing a formula to act as a repeating loop,

incrementally stepping through a list of data or performing a

sequence actions. Functions that benefit from recursion are

those that would require too much code to achieve within a

single calculation formula or are impossible to perform

without placing some limit on the number of iterations

allowed. For example, adding a list of numbers into a total

or merging multiple lists of values into a blended table are

two examples that would be difficult to perform without

recursion.

By its looping nature, as illustrated in Figure 25-5,

recursion can be very confusing to conceptualize, describe,

and use effectively without accidentally ending up in an

endless loop and hitting the limits imposed by FileMaker. It

is imperative that every recursive function be carefully

constructed and that have an exit condition.

Figure 25-5. An illustration of a function calling itself recursively four times

after the initial call from another formula

Building a Simple Recursive Function

A simple example of recursion is a custom function that will

add a carriage return-delimited list of numbers as

demonstrated by this example named AddNumbers (

numberList):

Let ([

 current = GetValue (numberList ; 1) ;

 remaining = RightValues (numberList ; ValueCount

(numberList) - 1)

] ;

 current + Case (remaining = "" ; 0 ; AddNumbers

(remaining))

)

In this example, the Let statement first splits the input in

numberList into two variables. The first, named current, is

initialized to contain the first number in the numberList. The

second, named remaining, is initialized to contain any

remaining numbers after the first one. In the calculation

portion of the statement, the number in current is added to

the result of a Case statement, which is either an exit

condition returning zero or a recursive call to the function if

there are numbers left within the remaining variable.

Once created and saved , the function can be called as

follows with any quantity of carriage return-delimited

numbers and it will return the total of these, as shown in

this example:

AddNumbers ("5¶10¶20") -- Result = 35

Understanding the Limitations to

Recursion

Recursion allows a formula to iterate as many times as

necessary if it does not violate either of two technical

limitations. If either of these two is exceeded, the result of

the function will be an error expressed as a question mark.

These limits depend on the type of recursion used in the

function:

50,000 total recursive calls when using properly

optimized, tail-recursion.

10,000 deep call stack when using head-recursion.

The term tail-recursion refers to the placement of a

recursive call as the final step at the end of the function’s

formula so that no further processing is required to

complete the current iteration of the function at the point

when it calls itself for the next iteration. In other words,

when the recursive call returns a result to the current

iteration, no unfinished processing tasks are piling up in a

pending stack. This is the preferred method and has the

larger limit of 50,000 total recursive calls because there is

no need to juggle the growing call stack.

By contrast, head-recursion is a term that refers to the

placement of a recursive call anywhere within the formula .

In this case, when the recursive call is made, there are still

additional processing steps that must be carried out once a

result is returned. FileMaker must queue up all the pending

processes in a call stack while it waits for the results of

every successive recursive call.

The previous section’s example of the AddNumbers

function might at first seem to be an example of tail-

recursion since the recursive call is at the end of the

calculation portion of the Let statement. However, it is not.

Even though the recursive call is at the end, the value in the

current variable must be held in the call stack waiting for

the results of the Case statement.

current + Case (remaining = "" ; 0 ; AddNumbers (

remaining))

Once each iteration is complete, its current value must

be held in place until the final number in the list is reached,

and then each number is added in reverse as the stack is

collapsed back up to produce a result.

So, this example is limited to 10,000 iterations instead of

50,000. While this limit usually far exceeds the needs of

most custom functions, it is a good idea to be aware of how

to work around it. In this case, the function can be

converted to use tail-recursion with a local variable .

Using Local Variables Across Iterations of

Recursion

Any formula can initialize local or global variables using a

Let statement. Local variables are especially useful with

recursive custom functions since they persist across all

iterations of the function session. Since they are restricted

to the function session and don’t persist beyond it, there is

no risk of conflict with other processes, unlike with global

variables.

Local variables are a safe and effective way to store

running totals or results for recursive functions and can

even be beneficial in converting a function limited by head-

recursion into the more versatile tail-recursion, expanding

the maximum iteration limit from 10,000 to 50,000.

With a couple of quick changes, the AddNumbers

function can be converted to use a local variable named

$Total to store the running total of values and freeing itself

from the head-recursion limitation. These changes are

highlighted in this example:

Let ([

 current = GetValue (numberList ; 1) ;

 $Total = $Total + current ;

 remaining = RightValues (numberList ; ValueCount

(numberList) - 1)

] ;

 Case (remaining = "" ; $Total ; AddNumbers (

remaining))

)

In each iteration of this revised version, the current

number is added to the running total leaving the Case

statement to either return that total as the result or call the

next recursive iteration. Since there is nothing else

remaining to be added or processed, FileMaker does not

need to add anything to the call stack and can, therefore,

handle substantially more recursive loops.

Embedding Test Code Inside a Function

Earlier we discussed writing elaborate test code to confirm

that a custom function can handle a wide range of different

input. Recursion opens the possibility of storing that test

code inside of the custom function being tested. This is a

rather advanced idea and, if you are new to custom

functions, might seem daunting to undertake. However,

given the importance of testing after any function

modifications made in the future, having test code for a

function stored within the function makes future testing an

easy proposition.

A Case statement can be used to detect special values in

one or more parameters indicating a request for test results.

In this example, the dateInput parameter would be used to

determine if the call to the function was asking for test

results or normal operations:

Case (dateInput = "Test" ; <<perform test>> ;

<<normal operations>>)

Combining this statement with the original code and our

test code from the previous examples, we can duplicate the

GetDay function to create a new function called GetDay2

with the same two parameters but containing the following

code:

Case (dateInput = "Test" ;

 Let ([

 dateInput = Date (1 ; 15 ; 2017)

] ;

 "Input = " & dateInput & " (" & DayName

(dateInput) & ")¶" &

 "+1 Sunday=" & GetDay (dateInput + 1 ;

"Sunday") & "¶" &

 "+2 Sunday=" & GetDay (dateInput + 2 ;

"Sunday") & "¶" &

 "+3 Sunday=" & GetDay (dateInput + 3 ;

"Sunday") & "¶" &

 "+4 Sunday=" & GetDay (dateInput + 4 ;

"Sunday") & "¶" &

 "+5 Sunday=" & GetDay (dateInput + 5 ;

"Sunday") & "¶" &

 "+6 Sunday=" & GetDay (dateInput + 6 ;

"Sunday") & "¶" &

 "Sunday=" & GetDay (dateInput; "Sunday") &

"¶" &

 "Monday=" & GetDay (dateInput ; "Monday")

& "¶" &

 "Tuesday=" & GetDay (dateInput; "Tuesday")

& "¶" &

 "Wednesday=" & GetDay (dateInput;

"Wednesday") & "¶" &

 "Thursday=" & GetDay (dateInput; "Thursday"

) & "¶" &

 "Friday=" & GetDay (dateInput; "Friday") &

"¶" &

 "Saturday=" & GetDay (dateInput; "Saturday"

) & "¶" &

 "Timestamp=" & GetDay (GetAsTimestamp (

dateInput) ; "Sunday") & "¶" &

 "Text Date=" & GetDay (GetAsText (dateInput

) ; "Sunday") & "¶" &

 "Text TS=" & GetDay (GetAsText (

GetAsTimestamp (dateInput)) ; "Sunday") & "¶"

)

;

 Let ([

 dateToProcess = GetAsDate (dateInput) ;

 list =

"Sunday¶Monday¶Tuesday¶Wednesday¶Thursday¶Friday¶S

aturday" ;

 list = Left (list ; Position (list ; dayRequested ;

1; 1)) ;

 dayNumber = ValueCount (list) ;

 numAdjustment = DayOfWeek (dateToProcess

) - dayNumber

] ;

 dateToProcess - numAdjustment

)

)

Now, if the dateInput receives a value of "Test" it will

perform the test routine; otherwise it will assume the

parameter contains a date and will perform its normal

function.

To test its normal operations, enter the following formula

for the Example Calculation field of the Sandbox table and

make sure it is set to return a date value:

GetDay2 ("1/5/2017" ; "Friday") // result = 1/6/2017

To trigger the function's test mode operations, enter the

following formula for the Example Calculation field of the

Sandbox table and make sure it is set to return a text value:

GetDay2 ("test" ; "")

This should return the same results we received in the

previous test example.

Tip This example illustrates that recursion shouldn’t be

thought of as only a looping phenomenon but a self-

referencing one. It is possible to create recursive

functions with multiple modes that self-refer for a variety

of different functions.

Summary

In this chapter, we discussed the powerful benefits of

developing your own custom functions.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_26

26. Introducing ExecuteSQL

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

The Structured Query Language (SQL) is a standardized

programming language that is used to manage relational

databases and perform numerous operational functions to

the data they store. SQL was initially created in the 1970s

and soon became the standard programming language for

relational databases. The American National Standards

Institute (ANSI) and the International Organization for

Standardization (ISO) adopted an official SQL standard in

1986 and 1987 respectively. Since then, many updates to

the standard have been released jointly by both

organizations, with the most recent version adopted in

December of 2011. Numerous companies now develop

proprietary and open source SQL-compliant database

systems.

In version 9.0 (2007), FileMaker introduced its first

support for a SQL feature with the ability to create live

connections to external ODBC data sources (Chapter 7).

FileMaker version 12.0 (2012) introduced the ExecuteSQL

function, adding the ability to perform SQL queries against

FileMaker tables from any calculation formula within a

FileMaker database.

A SQL Query is a text-based statement used to instruct a

database to perform an action. The most frequently used

type of query and the only one supported by the

ExecuteSQL function in FileMaker is the SELECT query,

which contains data retrieval instructions for a desired result

set.

Experienced SQL programmers will appreciate the back-

end functionality that this command adds to FileMaker but

may find the function’s limitation to the SELECT command

constraining. Newcomers to database programming will find

the function a little intimidating and divergent from

FileMaker’s more intuitive methods of data access. However,

strictly from a FileMaker perspective, ExecuteSQL is like a

miracle opening a new realm of possibility. The benefits of

this function are immeasurable.

In FileMaker version 16, the ExecuteSQL function is

matured. It allows a search, sort, and summarization of data

to be performed directly from a calculation formula in a

completely context-independent manner. It can perform a

search in any table occurrence, including those that have no

layout representation, and can even form temporary

relationships dynamically. The functions it makes possible

would otherwise require the creation of a multi-line script

and extra table occurrences, relationships, and layouts to

establish the necessary context to achieve the same result.

Using this command, it is possible to severely limit the

number of relationships required for data retrieval.

You don’t need to learn SQL or use this command to

create databases with FileMaker since the function is

intended as a complement rather than a replacement to the

more intuitive features available. However, once you realize

what this function can do and how many resources it makes

obsolete, you will want to use it everywhere it proves

practical.

In this chapter, we will define and discuss the process of

using the ExecuteSQL function, with topics such as:

Defining the ExecuteSQL function

Creating SQL queries

Accessing the database schema

Tip To experiment with the ExecuteSQL function, be

sure to enter some test data into the database. To

prepare the Learn FileMaker database for use with the

examples in this chapter, import the us-500.csv download

(Chapter 5) into the Contact table, matching up the name

and address fields that we have already created.

Defining the ExecuteSQL Function

The ExecuteSQL function allows any calculation formula to

retrieve data from any table occurrence within the

relationship graph completely independent of any defined

relationship or user interface context. Data can be accessed

directly from the data table of any table occurrence without

requiring hard-coded relationships, leaving the relationship

graph less cluttered and convoluted.

A call to the ExecuteSQL function must include three

parameters but can accept one or more optional arguments

parameters, as shown in these two examples:

ExecuteSQL (sqlQuery ; fieldSeparator; rowSeparator)

ExecuteSQL (sqlQuery ; fieldSeparator; rowSeparator ;

arguments)

The parameters in the statement are defined as follows:

sqlQuery — a text expression or reference to a field that

contains a SELECT statement.

fieldSeparator — a text string containing the

character(s) that should be used as a separator between

fields in the result. If left empty, a comma will be used

as a default separator .

rowSeparator — a text string containing the character(s)

that should be used as a separator between records in

the result. If left empty, a carriage return will be used as

a default separator.

arguments — one or more text values that are used as

dynamic parameters in the query, replacing question

marks typically in a WHERE clause.

How the ExecuteSQL Function Works

The ExecuteSQL function works by accepting a Select

statement that specifies which field(s) and record(s) should

be extracted from a table and returned as text. It can

optionally include delimiters to be inserted between fields

(columns) and records (rows) in the result, as illustrated in

Figure 26-1.

Figure 26-1. An illustration of the basic functioning of the ExecuteSQL

function, which specifies the data to be retrieved and optional delimiters to be

inserted into that data

The following three parameters are required by the

function:

1. The sqlQuery parameter contains a SELECT query

statement that informs FileMaker which field(s) to

extract, which record(s) to include, and the table

from which to extract them. The extracted

information is in a temporary abstract columnar

format that will be converted into a text result.

2. The optional fieldSeparator parameter allows you to

define a delimiter, other than the default comma,

which will be used between each field value

returned when more than one field is requested.

3. The optional rowSeparator parameter allows you to

define a delimiter other than the default carriage

return, which will be used between each record .

The result is returned to the calling formula as a text

string. When default delimiters are used, the string will take

the form of a list of comma-separated field values in

carriage-return separated records.

This example shows the formula pattern for requesting

every field from a fictional table using default delimiters:

ExecuteSQL ("Select * FROM Table" "", "")

-- Result =

 Record1Field1,Record1Field2,Record1Field3,Record1

Field4¶

 Record2Field1,Record2Field2,Record2Field3,Record2

Field4¶

 Record3Field1,Record3Field2,Record3Field3,Record3

Field4¶

This example shows a formula pattern for requesting the

same information using an alternative fieldSeparator:

ExecuteSQL ("Select * FROM Table" "--", "")

-- Result =

 Record1Field1--Record1Field2--Record1Field3--

Record1Field4¶

 Record2Field1--Record2Field2--Record2Field3--

Record2Field4¶

 Record3Field1--Record3Field2--Record3Field3--

Record3Field4¶

This example shows the formula pattern of a request

using both an alternative fieldSeparator and rowSeparator:

ExecuteSQL ("Select * FROM Table" "--", "#")

-- Result =

 Record1Field1--Record1Field2--Record1Field3--

Record1Field4#Record2Field1--

 Record2Field2--Record2Field3--

Record2Field4#Record3Field1--Record3Field2--

 Record3Field3--Record3Field4#

Understanding Some Limitations of

ExecuteSQL

Before moving on to actual examples , there are some

limitations to the ExecuteSQL functions that should be

understood to avoid frustration. These include:

As mentioned in the introduction of this chapter, the

ExecuteSQL function is currently limited to the SELECT

command only. It is not compatible with other standard

SQL functions that perform record changes or database

schema modification such as DELETE, INSERT, UPDATE,

INSERT INTO, CREATE TABLE, DELETE TABLE, etc.

Relationships created in FileMaker are not recognized or

required. However, a SELECT statement can use a JOIN

clause to dynamically create temporary relationships for

use within the query .

The function does not recognize or require layout

context. Instead it allows access to table records directly

based on a named table occurrence.

Values must be sent in an SQL-92 compliant date and

time formats with no braces to be properly recognized.

To apply the correct formatting to dates and times in a

query, use a DATE, TIME, or TIMESTAMP conditioning

operator, preceding the string to have it properly

recognized. Failure will cause the value to be evaluated

as a literal string rather than a date or time. ExecuteSQL

will not accept the ODBC/JDBC formats for date, time,

and timestamp constants contained in braces.

ExecuteSQL will return date, time, and number data

using the Unicode/SQL format rather than the date and

time settings of the database file or operating system.

Sorting for SQL in FileMaker uses the Unicode binary sort

order.

ExecuteSQL is a calculation function and is not the same

as the similarly named Execute SQL script step.

Creating SQL Queries

At minimum, the sqlQuery portion of the ExecuteSQL

function requires a SELECT statement, which has numerous

optional clauses available.

Defining SELECT Statements

The ExecuteSQL function’s sqlQuery parameter must be a

properly formatted SELECT statement. Minimally, it must

contain an indication of what to find and from where,

following this pattern:

SELECT <what> FROM <where>

The <what> is the name of one or more fields that

should be selected and the <where> is the name of the

table occurrence from which to extract them. Therefore, the

pattern above can be formally expressed as the following

formula:

SELECT <field(s)> FROM <table>

For example, this statement would return the contents of

a field named Name from every record in a table occurrence

named Contact:

SELECT Name FROM Contact

The above formula defines a SELECT statement

requesting all records without further processing. In addition

to this basic requirement, the statement can include many

optional clauses that expand the functionality of the query

and offer refinement of and manipulation to the results. The

SELECT command makes available features such as:

SELECT — Request one or more fields from one or more

tables.

SELECT DISTINCT — Eliminate duplicates from the

result.

JOIN — Create temporary relationships.

WHERE — Find sets of records matching specific criteria.

AS — Create dynamic aliases of tables and fields to

shorten the length of clauses.

The full formula, including every optional clause except

aliasing, is:

SELECT/SELECT DISTINCT <fields>

FROM <tables>

JOIN <table> ON <formula>

WHERE <formula>

GROUP BY <fields>

HAVING <formula>

UNION <select>

ORDER BY <fields>

OFFSET <number> ROW/ROWS

FETCH FIRST <number>

PERCENT/ROWS/ROW/ONLY/WITH TIES

Each available clause is defined in Table 26-1.

Table 26-1. The definitions of each available clause of a SELECT statement

Keyword Clause Description

SELECT Specifies one or more fields to select. Can include fields, constants,

calculations, and functions. Use an asterisk to select all fields.

SELECT

DISTINCT

Adding the DISTINCT operator will remove any duplicates from the

result.

FROM Specifies one or more tables from which to select the fields.

JOIN Contains a table and relationship formula to allow for the extraction

of fields through a temporarily established relationship.

WHERE Contains one or more formulas that specify the criteria that all results

must match, like filtering the results based on search criteria.

GROUP

BY

Specifies one or more fields to use to summarize the results.

HAVING Contains one or more formulas that specify the criteria for the

inclusion of a summarized result. HAVING is to a GROUP BY what a

WHERE is to a SELECT.

UNION Used to combine two or more SELECT statements into a single result.

ORDER

BY

Specifies one or more fields to use to sort the results.

OFFSET Used to specify the number at which results should begin, thereby

excluding a set of records prior to that number.

Keyword Clause Description

FETCH

FIRST

A number specifying the how many rows that should be retrieved

from the starting point.

AS Used to create a shorter alias for a table name that can be used in its

place elsewhere in the statement as a prefix to identify a field’s

table, especially when there is more than one table involved as when

using a JOIN clause.

Each of these operational clauses are woven into a text

string with other combinations of literals, keywords, table

occurrences, and field names to form a SELECT SQL query,

which can be passed as the first parameter to the

ExecuteSQL function.

Formatting Requirements

There are a few formatting requirements to keep in mind

when writing SELECT statements for the ExecuteSQL

function. These include:

Command and Object Names — The names of tables,

fields, and even statement commands within a query

are not case sensitive. For example, using either select

or SELECT will work the same. However, using

capitalization for all commands and operators can help

to differentiate them from the value of specific tables,

fields, and other variable information in the query. The

examples in this chapter will adhere to that approach.

Criteria — Literal criteria, such as that used within a

JOIN, WHERE, and HAVING clause, is case sensitive and

will fail to locate matching values of a different case.

Also, all textual criteria must be enclosed in single

quotations.

Name Separators — When listing multiple tables and

fields, always use a comma-space delimiter between

them.

Quotations — Table and field names don’t need to be

enclosed in double quotations unless they contain

spaces. Table names that begin with non-alphabetic

characters must be enclosed in double quotations even

when they don’t contain spaces.

Using the SELECT Statement

Although the SELECT statement is the only one supported

by the ExecuteSQL function in FileMaker, it is quite powerful

and flexible. Before delving into the many different optional

clauses, let’s explore the basic statement’s capabilities and

discuss techniques for using it effectively.

Selecting an Entire Table

The most basic SQL query is one in which every field/column

will be selected for every record/row. This can be performed

with a simple statement:

SELECT * FROM <Table>

The statement must always begin with the word SELECT

since that is the only primary function currently supported

by FileMaker. After this the statement must indicate which

fields to select and FROM which table. In this case, the

asterisk informs FileMaker to select all fields. The <Table>

placeholder is replaced with the name of an actual table

occurrence whose base table the function should access.

Change this portion of the formula to Contact and the

following SELECT statement we fetch every field from the

Contact table will read as follows:

SELECT * FROM Contact

This SELECT statement becomes the first parameter of

the ExecuteSQL statement:

ExecuteSQL ("SELECT * FROM Contact" ; "" ; "")

Open the Learn FileMaker database and enter this as the

formula for the Example Calculation field. After confirming

that the Calculation result type is of Text, save the formula,

and the result displayed in Figure 26-2 should appear in the

field. Each paragraph of the result is a single record that

contains a comma-separated list of field values. Both

records and fields are displayed in creation order .

Figure 26-2. An example result of the ExecuteSQL function when requesting

every field from every record of the Contact table

Caution Any table names that include spaces or begins

with non-alpha characters must be enclosed in double

quotations to work correctly in an SQL query. Since the

Select statement is contained in quotes within the

ExecuteSQL, the inner quotations around the table name

must be escaped (backslash-quote) as shown in this

example showing a hypothetical table named Expense

Data :

ExecuteSQL ("SELECT * FROM \"Expense Data\"" ; "" ; "")

Selecting Individual Fields

While there may be situations where a formula requires

access to every field for every record in a table, most of the

time you will be selecting data with more specificity.

Fortunately, the SELECT statement allows the selection of

one or more individual fields, producing a more focused

result.

Caution Like table names, field names that contain

spaces or reserved words must be enclosed in double

quotations.

Specifying a Single Field

To select a single field from a Contact table , change the

asterisk to the name of the field. The formula for this would

be:

SELECT <Field> FROM <Table>

To select the Contact Address City field from the Contact

table, write the following formula:

ExecuteSQL ("SELECT \"Contact Address City\" FROM

Contact" ; "" ; "")

This statement will result in a carriage return-delimited

list of city names from every record in the table, partially

shown in Figure 26-3. Notice that the list includes the field

value for every record, so it will include many duplicates like

those highlighted.

Figure 26-3. The list of city names selected from the Contact table

Specifying Multiple Fields

To select multiple fields from the Contact table with a single

query, list each field in a comma-space separated string.

The formula for this would be:

SELECT <Field1>, <Field2>, <Field3> FROM <Table>

To select the Contact Address City and Contact Address

State fields from the Contact table, write the following

formula:

ExecuteSQL (

 "SELECT \"Contact Address City\", \"Contact Address

State\" FROM Contact" ;

 "" ; "")

The result of this statement will be a comma-delimited

list of city and state names, partially shown in Figure 26-4.

Figure 26-4. The list of cities and states selected from the Contact table

Keeping References Dynamic

When building a query , it is a good idea to avoid typing the

name of tables and fields as static text and instead use

dynamic references. Then, if the name of a table or field

changes in the future, the query will continue to function

without modification since the reference to the field updates

automatically.

The following formula demonstrates a simple example of

this technique:

Let ([

 reference = GetFieldName (Contact::Contact Name

First) ;

 reference = Substitute (reference ; "::" ; "¶") ;

 table.name = GetValue (reference ; 1) ;

 field.name = Quote (GetValue (reference ; 2))

] ;

 ExecuteSQL ("SELECT " & field.name & " FROM " &

table.name ; "" ; "")

)

The Let statement converts the dynamic field reference

into a text string and places it into the reference variable.

The Substitute function is then used to replace the two

colons with a paragraph return, placing the following text

value into the reference variable:

Contact

Contact Name First

Finally, each value is extracted and placed into the

table.name and field.name variables respectively. From

there, they can be used to construct the SELECT statement

that is placed into an ExecuteSQL function.

This extra effort ensures that any changes to the table or

field name will automatically be updated and the query will

continue to function as expected.

Using SELECT DISTINCT to Return Unique

Values

To automatically eliminate duplicate values and alphabetize

the results, use the SELECT DISTINCT command, as shown

in this formula:

SELECT DISTINCT <Field> FROM <Table>

The following formula will generate a list of alphabetically

sorted, unique values from the Contact Address City field of

the Contact table:

ExecuteSQL ("SELECT DISTINCT \"Contact Address City\"

FROM Contact" ; "" ; "")

The uniqueness of the list is based on the entire record

value of the result, not individual fields within it. For

example, when selecting only the city, the results will

include only one entry for San Jose. However, if multiple

fields are selected, like the street address and city, as

shown in the example below, the results will include

multiple entries for San Jose since the rest of the record/row

includes other values.

ExecuteSQL (

"SELECT DISTINCT \"Contact Address Street\", \"Contact

Address City\" FROM Contact"

; "" ; "")

Since 123 First Street,San Jose is not equal to 555 Selma

Ave,San Jose, both will appear in the result .

Reformatting SELECT Statements for

Clarity

The preceding examples are intentionally short and easy to

read. However, a SELECT statement can and will grow and

begin wrapping onto multiple lines due to the following:

Additional SELECT clauses.

Dynamic construction of a SELECT clause using

FileMaker resources: field references, functions, and

variables.

Dynamic construction of a SELECT clause with variable

components.

Requesting multiple fields in a single clause.

There are two basic methods one can employ to reformat

the statements to improve clarity and readability: adding

carriage returns and tabs or using a Let statement.

Adding Carriage Returns and Tabs

FileMaker will ignore carriage returns and tabs in the

sqlQuery text string so these can be used to separate the

statement into hierarchically readable blocks. Doing so will

break up the continuous text flow and make the statement

easier to read and troubleshoot, as shown here:

ExecuteSQL ("

 SELECT <field>

 FROM <table>

 JOIN <table> ON <formula>

 WHERE <formula>

 ORDER BY <field>

" ; "" ; "")

In the formula above, a carriage return is used to

separate the actual query from the enclosing ExecuteSQL

statement. Also, a combination of a carriage return and tab

is used to separate each clause of the statement onto its

own line, where it is indented to stand out from the

enclosing statement.

When multiple fields, find conditions, or other

components are used, those can be pushed onto their own

line, further indented for additional clarity as shown here:

ExecuteSQL ("

 SELECT

 <field1>,

 <field2>,

 <field3>

 FROM <table>

 JOIN <table> ON <formula>

 WHERE

 <condition1> and

 <condition2> and

 <condition3>

 ORDER BY

 <field1>,

 <field2>

" ; "" ; "")

Using a LET Statement

Another method of eliminating the visual confusion of a

complex query is the use of a LET statement. The entire

SELECT query can be built in pieces using separate

variables and then combined into a single variable before

being inserted into the ExecuteSQL statement , as shown

here:

Let ([

 s.Fields = "SELECT <Fields>" ;

 s.Table = "FROM <Table> " ;

 s.Join = "JOIN <table> ON <formula> " ;

 s.Where = "WHERE <formula> " ;

 s.Group = "GROUP BY <fields> " ;

 SQL = s.Fields & s.Table & s.Join & s.Where &

s.Group

] ;

 ExecuteSQL (SQL ; "" ; "")

)

Exploring the Benefits of Aliases

In a SQL query , an alias is a short text string made up of

one or more characters that can act as a proxy for a table

name elsewhere in a SELECT statement. When a SELECT

statement contains references to more than one table, as in

a JOIN clause, aliases are used to identify the table to which

a field belongs.

Although an alias can be made up of one or more

characters, as a space-saving mechanism, shorter is better.

To establish an alias, use the AS clause after the

identification of a table and follow it with a text alias, as

shown here:

SELECT <field> FROM <table> AS <alias>

For example, to create an alias named c for the Contact

table, the FROM clause would appear like this:

FROM Contact AS c

Once the alias c is established, it can be used as a prefix

on any field name, in any clause, to identify the table to

which a field belongs. While aliases are not required when

selecting fields from a single table, this example illustrates

that it is possible.

SELECT c.Notes FROM Contact AS c

Note Although the AS clause establishes the alias at

the end, it can be used anywhere within the statement.

Again, in such a simple statement, using an alias is

unnecessary as illustrated with these three examples that

all generate the exact same result:

SELECT Notes FROM Contact

SELECT Contact.Notes FROM Contact

SELECT c.Notes FROM Contact AS c

When a field with spaces in its name is enclosed in

double quotations, the alias prefix should precede the

name, outside of the quotes , as shown here:

SELECT c.\"Contact First Name\" FROM Contact AS c

Inserting Literal Text in the Field List

Literal text strings can be inserted before, between, or after

field names within the SELECT statement and will be

repeated in the results for each record. Literals must be

enclosed in single quotation marks anywhere they are used.

Note Literals are also used in clauses that include

formulas such as WHERE and JOIN, which are discussed

later in this chapter.

This example demonstrates a literal value inserted into the

field results as a field label:

ExecuteSQL ("

 SELECT

 'Name: ',

 \"Contact Name First\",

 \"Contact Name Last\"

 FROM Contact"

; " " ; "")

By placing a literal 'Name:' with the field names and

using a fieldDelimiter of a space in the second parameter of

the ExecuteSQL function, this example will return a list of

names with a preceding label:

Name: Josephine Darakjy

Name: Art Venere

Name: Shannon Miller

Concatenating Results

Concatenation is the action of linking things together in a

chain or series and is possible within SQL queries. Instead of

receiving a raw comma-delimited set of field values and

then parsing and manipulating that information with other

formulas or scripts, concatenation allows pre-processing of

field values into more useful results directly within a query

statement.

Concatenation of text values is achieved using either the

+ or || operators x. However, the latter has been reportedly

more reliable and may be less likely to be confused with the

same operator used in mathematical calculations. The code

below shows an example of concatenation of a contact’s

first and last names into a single string, with a literal space

inserted between them. This is achieved by replacing the

comma-space between the fields with a space, double-bar,

space , single quote, space, single quote, space, double-bar,

space, as shown here:

ExecuteSQL ("

 SELECT \"Contact Name First\" || ' ' || \"Contact

Name Last\"

 FROM Contact

" ; "" ; "")

Using the alternative plus-sign delimiter, the SELECT line

of the above example, would be:

SELECT \"Contact Name First\" + ' ' + \"Contact Name

Last\"

In both examples, each record of the result should

contain the first and last name of a contact with a space

between them. For example, with concatenation, the

examples would return a result of Art Venere instead of

Art,Venere, without it. While the same result could have

been achieved using the fieldDelimiter parameter, by

concatenating the fields directly in the statement, that

delimiter remains available for use between other fields that

may be included in the query but not concatenated within

the same statement.

This example shows how to return a contact's full name

and entire mailing address as a continuous concatenated

string:

ExecuteSQL ("

 SELECT

 \"Contact Name First\" + ' ' +

 \"Contact Name Last\" + ' ' +

 \"Contact Address Street\" + ' ' +

 \"Contact Address City\" + ', ' +

 \"Contact Address State\" + ' ' +

 \"Contact Address Zip\"

 FROM Contact

" ; "" ; "")

Using the WHERE Clause

The WHERE command can be added to a SELECT statement

to specify criteria for the records that should be included in

the result, as shown here:

SELECT <field> FROM <table> WHERE <formula>

The <formula> portion of the clause must contain one or

more expressions that specify the criteria used to qualify

records that should be returned. These will typically include

a field, operator, and either a literal value or another field.

Creating a Single Expression WHERE

Clause

To select Contact records with a California address, the

expression of the formula would be:

"Contact Address State" = 'CA'

Note Just like when using fields in the select list, fields

in the WHERE clause must be enclosed in double

quotations if they contain spaces. Also, literal textual

values must always be enclosed in single quotations.

The following shows an example of a SELECT statement with

this expression in a WHERE clause to extract the first and

last name of every contact with an address in California

from a Contact table:

SELECT

 "Contact Name First",

 "Contact Name Last"

FROM Contact

WHERE "Contact Address State" = 'CA'

Creating a Multiple Expression WHERE

Clause

When using multiple expressions , they must be separated

by a comparison operator of AND or OR.

For example, when searching for contacts living in a city

that is common to many states, such as Milford, you might

need two expressions to specify both the city and the state.

In that case, you would use the AND operator between the

two expressions, as shown in this example:

WHERE "Contact Address City" = 'Milford' AND "Contact

Address State" = 'PA'

Similarly, to find contacts from two different states, for

example, from Pennsylvania or Ohio, you would use an OR

operator, as shown in this example:

WHERE "Contact Address State" = 'PA' OR "Contact

Address State" = 'OH'

Using the ORDER BY Clause

The ORDER BY clause can be added to a SELECT statement

to specify the field(s) by which the results should be sorted,

as shown in this formula:

SELECT <field> FROM <table> ORDER BY <fields>

For example, to return a list of every contact’s last name

sorted by state:

SELECT "Contact Name Last" FROM Contact ORDER BY

"Contact Address State"

Combining the ORDER BY with a WHERE clause, this

example will return the last name of every contact living in

a city named “Milford” sorted by state:

SELECT "Contact Name Last"

FROM Contact WHERE "Contact Address City" = 'Milford'

ORDER BY "Contact Address State"

Using the JOIN Clause

A JOIN clause can be added to a SELECT statement to create

a temporary relationship between two table occurrences.

Joining tables is useful when selecting fields from both a

local and related table, blending them into a single result.

Joins allow other clauses with field references to use fields

from either or both tables. For example, a WHERE or ORDER

BY clause can each contain fields from either table, once

joined.

The JOIN clause must contain the name of a table that

should be related to the FROM table and include a formula

containing one or more expressions that specify the criteria

used to connect records into a temporary relationship, as

shown in this formula:

SELECT <field> FROM <table1> JOIN <table2> ON

<formula>

To connect the Contact and Company tables in the Learn

FileMaker database, assign them an alias of con and com

respectively and add a JOIN clause. To retrieve the Contact

Name First field and the related Company Name field, use

the following query:

SELECT

 con."Contact Name First",

 com."Company Name"

FROM Contact AS con

JOIN Company AS com ON

 con."Contact Company ID" = com."Record ID"

The example above declares aliases in the SELECT and

JOIN statements and then uses them throughout the

statement .

Tip The JOIN clause can also be used to create self-

joins, which is a table related to itself.

Using the GROUP BY Clause

The GROUP BY clause can be added to a SELECT statement

to generate an aggregate value based on one or more

fields, as shown in this formula:

SELECT <fields> FROM <table1> GROUP BY <field>

The clause acts much like a FileMaker-native summary

field when placed in a sub-summary part on a layout

displaying records sorted by the appropriate field. It

generates a summarization of data based on a sort/grouping

field.

For example, if the Contact table had a field called

Invoices that contained a total of a customer’s invoices, the

following code without a GROUP BY clause will return a list

of each contact’s State and their Invoice amount:

SELECT State, Invoices FROM Contact ORDER BY State

-- Result =

AK,1000

AK,500

AK,250

AZ,500

AZ,750

Etc.

By contrast, using the Sum function on the Invoices field

and adding a GROUP BY clause to group by state, this

example will return a summary of invoices by state:

SELECT State, Sum (Invoices) FROM Contact GROUP BY

State

-- Result =

AK,1750

AZ,1250

Etc.

Notice that the ORDER BY clause is removed from the

example above since the GROUP BY clause will

automatically sort the results by the grouping field(s).

Adding a HAVING Clause

The HAVING clause can be added to a GROUP BY clause of a

SELECT statement to filter the results based on a formula:

SELECT <fields> FROM <table> GROUP BY <field>

HAVING <formula>

The clause acts like a WHERE clause but for grouped

results. Using the previous example, we can add a HAVING

clause to only include states where the summary of Invoices

is greater than a certain dollar amount, as shown here:

SELECT State, Sum (Invoices) FROM Contact GROUP BY

State HAVING Sum (Invoices) > 1500

-- Result =

AK,1750

CA,2500

Etc.

In the results, the summarized entry for AZ has been

removed because the summary of 1250 was under the

threshold of 1500 that is specified in the HAVING clause .

Using the UNION Clause

The UNION clause will combine the results of two or more

SELECT statements, whether from the same table or from

different tables, if two conditions are met:

Each SELECT statement must select the same number

of fields.

Each field position must return the same data format

across all SELECT statements.

For example, if the first SELECT statement returns three

fields with the data types of text, number, and text, the

second SELECT statement must also return three fields with

the same data types in the same order.

The formula for the UNION clause is:

SELECT <fields1> FROM <table1> UNION SELECT

<fields2> FROM <table2>

By default, the clause will automatically exclude

duplicate entries from the merged result. Use UNION ALL to

include all results , even duplicates, for example:

SELECT <fields1> FROM <table1> UNION ALL SELECT

<fields2> FROM <table2>

Limiting the Results of a Query

The OFFSET and FETCH FIRST clauses can be used

separately or in unison to control the number of results

returned by a query.

Using the OFFSET Clause

The OFFSET clause can be added to a SELECT statement to

indicate the number of records/rows in the result to skip

over, as shown in this formula:

SELECT <fields> FROM <table> OFFSET n ROWS

This example will return a list of all the Record ID field

values from the Contact table, starting from record 21:

SELECT \"Record ID\" FROM Contact OFFSET 20 ROWS

Using the FETCH FIRST Clause

The FETCH FIRST clause can be added to a SELECT

statement to limit the number of rows returned, as shown in

this formula:

SELECT <fields> FROM <table> FETCH FIRST n ROWS

ONLY

This example will return the Record ID for the first 10

records:

SELECT \"Record ID\" FROM Contact FETCH FIRST 10

ROWS ONLY

Combining the OFFSET and FETCH FIRST

Clauses

When combined, the OFFSET and FETCH FIRST clauses allow

you to access groups of results one batch after the other, a

process often referred to as “paging” through results, since

each group is presented as the next “page” in a list of

results.

SELECT <fields> FROM <table> OFFSET n ROWS

FETCH FIRST n ROWS ONLY

The OFFSET portion indicates where the desired group

starts and the FETCH FIRST portion limits the number of

records accessed from that starting point. This code shows

several examples of accessing batches of records ten at a

time:

SELECT \"Record ID\" FROM Contact FETCH FIRST 10

ROWS ONLY

SELECT \"Record ID\" FROM Contact OFFSET 10 ROWS

FETCH FIRST 10 ROWS ONLY

SELECT \"Record ID\" FROM Contact OFFSET 20 ROWS

FETCH FIRST 10 ROWS ONLY

SELECT \"Record ID\" FROM Contact OFFSET 30 ROWS

FETCH FIRST 10 ROWS ONLY

SELECT \"Record ID\" FROM Contact OFFSET 40 ROWS

FETCH FIRST 10 ROWS ONLY

The first statement will return records 1 through 10. The

second statement will return records 11 thru 20, the third

will return records 21 thru 30 and so on.

Accessing the Database Schema

One of the lesser known uses of the ExecuteSQL function is

the ability to access two “virtual tables,” hidden in every

FileMaker database that provide information about the

scheme. These are:

FileMaker_Tables

FileMaker_Fields

These tables can be used in a SELECT statement just like

a custom table.

Selecting FileMaker_Tables

The FileMaker_Tables table contains one record for every

table occurrence defined in the relationship graph with the

following fields of information:

TableName — The name of the table occurrence.

TableID — FileMaker’s identification number for the table

occurrence is unique within the database.

BaseTableName — The name of the actual table upon

which the table occurrence is based.

BaseFileName — The name of the file in which the table

occurrence’s base table exists.

ModCount — The number of modifications made to the

table.

Each of these fields can be used in a SELECT statement

just like a custom field from your tables.

To get all five fields for every table in the database, use

the asterisk, as shown here:

ExecuteSQL ("SELECT * FROM FileMaker_Tables" ; "" ; "")

 -- Result =

 Company,1065101,Company,Learn FileMaker,20

 Company | Contact,1065105,Contact,Learn

FileMaker,24

 Contact,1065102,Contact,Learn FileMaker,24

 Contact | Company,1065106,Company,Learn

FileMaker,20

 Project,1065103,Project,Learn FileMaker,4

 Project | Company,1065107,Company,Learn

FileMaker,20

 Sandbox,1065089,Sandbox,Learn FileMaker,134

To get a list of every table occurrence in the database,

specify the TableName field only:

ExecuteSQL ("SELECT TableName FROM

FileMaker_Tables" ; "" ; "")

 -- Result =

 Company

 Company | Contact

 Contact

 Contact | Company

 Project

 Project | Company

 Sandbox

To limit the results to the actual table names, use SELECT

DISTINCT and request the BaseTableNamee :

ExecuteSQL ("SELECT DISTINCT BaseTableName FROM

FileMaker_Tables" ; "" ; "")

 -- Result =

 Company

 Contact

 Project

 Sandboxe

Tip All the clauses and options available in the SELECT

statement can be used when accessing the hidden

FileMaker_Tables and FileMaker_Fields tables.

Selecting FileMaker_Fields

The FileMaker_Fields table contains one record for every

field defined in the database file with the following fields of

information, all accessible through the ExecuteSQL function:

TableName — The name of the table occurrence whose

base table contains the field exists.

FieldName — The name of the field.

FieldType —The SQL data type of the file.

FieldID — FileMaker’s identification number for the field

is unique within the base table containing the field.

FieldClass — The class of the field: Normal, Summary, or

Calculated.

FieldReps — The number of maximum repetitions

defined for the field.

ModCount — The number of modifications made to the

table.

Each of these fields can be used in a SELECT statement

just like any custom field from your tables.

To get all seven fields for every field in the database, use

the asterisk, as shown here:

ExecuteSQL ("SELECT * FROM FileMaker_Fields" ; "" ; "")

Since the hidden fields table contains fields based on

table occurrences, the results will include duplicates if there

is more than one occurrence for a given base table. A

custom script or a recursive custom function like the one

below named Unique_FileMaker_Fields can be used to get a

list of the name of every base table and then retrieve the

fields for each, resulting in a clean list of base tables and

their fields without any duplicates:

Let ([

 current.table = GetValue (baseTables ; 1) ;

 baseTables = RightValues (baseTables ; ValueCount

(baseTables) - 1)

] ;

 ExecuteSQL (

 "SELECT * FROM FileMaker_Fields WHERE

TableName='" & current.table & "'"

 ; "" ; "") &

 Case (baseTables ≠ "" ; Unique_FileMaker_Fields (

baseTables))

)

Exploring Other SQL Features

FileMaker’s SQL functionality is a lot more feature rich than

the material covered in this chapter. For example:

Numerous functions can be embedded into a SELECT

statement to manipulate the results, many providing

functionality like FileMaker’s own functions. These

include functions for:

Date and time manipulation

String manipulation

Aggregating numeric values

Performing mathematical computations

Taking conditional action

Numerous operators can be used with field values and

SQL functions to manipulate results within the SELECT

statement.

The Execute SQL script step allows more robust

manipulation of external ODBC/JDBC data sources from

external databases.

FileMaker can be used as an ODBC/JDBC data source

and supports SQL queries from external databases.

For more information about these topics, visit

filemaker.com and look for these and other guides :

The FileMaker ODBC and JDBC Guide is available at:

https://fmhelp.filemaker.com/docs/16/en/fm16_odbc_jdbc

_guide.pdf.

The FileMaker SQL Reference is available at:

https://fmhelp.filemaker.com/docs/16/en/fm16_sql_refere

nce.pdf.

Summary

In this chapter, we introduced the ExecuteSQL function and

discussed many features of the SELECT statement.

Part IV

Designing Interfaces

Designing Interfaces

The user interface of a database is composed of one or

more layouts with fields and other objects that allow a user

to interact with the underlying data structure. These

chapters cover the basics of constructing user interfaces :

27. Introducing Layout Mode — Provides a general

orientation to Layout mode.

28. Getting Started with Layouts — Discusses how to

plan, create, and manage layouts.

29. Exploring Layout Palettes — Explores the tools

available on the Field Picker, Inspector, and Layout

Objects palettes.

30. Creating Layout Objects — Covers the creation of

layout objects.

31. Manipulating Objects — Discusses the placement

and organization of layout objects.

32. Using Themes and Styles — Introduces the use of

themes and styles to improve the management of

the formatting of layout objects.

33. Customizing Menus — Explains how to create

custom menus to take total control over the user

interface.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_27

27. Introducing Layout Mode

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

A database layout is a developer-designed graphical

template that transforms the raw data stored in fields,

records, and tables into an interface: an interactive visual

presentation. Layouts provide users and scripts with access

to record data from the perspective of a specific table

occurrence, which is called a context. A database file’s

layouts are limited only by disk space, up to the maximum

overall file size of 8 terabytes.

In this chapter, we will introduce layout mode ,

discussing:

Emphasizing the importance of layout design

Using layout mode

Caution Many new tools and concepts about layout

mode will be briefly introduced in this chapter and then

explored in more detail in subsequent chapters.

Emphasizing the Importance of

Layout Design

Every interaction of a user and stored data will occur on a

layout. These include actions such as:

Viewing records.

Performing data entry tasks.

Searching and navigating records.

Viewing visualizations of complex data in various forms,

including text reports or graphs.

Previewing and printing forms, reports, and labels.

Layout design is crucially important. The entire

experience a user has with the stored data is through a

layout. Except for menus and toolbars, every representation

of the data they see, and every button they click is

displayed on a layout. The appearance and functionality of a

layout’s design will greatly influence each user’s evaluation

of the database and of you as its developer.

Layouts can range in complexity depending on functional

requirements budget restrictions, user needs, and the skills

of the developer building them. Often a simple,

spreadsheet-like table view, constructed informally,

provides just the ad hoc simplicity that adequately serves a

need. Typically, a more elaborate design is appropriate and

even expected by skilled users.

Poorly designed layouts can be a cluttered, visual

nightmare that confuses the user, frustrates the workflow,

and causes more problems than they are intended to solve.

By contrast, a well-designed layout can be an artistically

expressed robustly featured, efficiently visualized graphical

masterpiece that anticipates a user’s needs and extends

powerful, time-saving tools for manipulating and

repurposing data in a convenient and intuitive way.

As you begin working with layouts, remember to keep

design in mind.

Caution When learning the design tools or working on

a proof of concept for a new feature, design can be

temporarily disregarded. Also, the layout examples shown

in this book are not created with design in mind, only

functionality presented for demonstration purposes. Don’t

assume they are intended as examples of good design.

Using Layout Mode

Layout mode is a window state that transforms the content

area of a window from a rendered graphical user interface

into a structural interface editing environment. In this mode,

a developer can add, configure, and style objects that

display data and provide controls for users to interact with

when they are viewing it in Browse mode.

Layout mode can be initiated using any one of the

following ways:

Select the View > Layout Mode menu.

Click the Edit Layout button in the status toolbar.

Run a script that uses the Enter Layout Mode script

step.

Identifying Layout Mode

In Layout mode , the appearance of the window and

application menus will closely resemble those in Browse

mode with a few important differences. These are especially

striking when comparing a window rendered in Browse

mode to the same window in Layout mode with optional

rulers, grids, guides, and palettes visible, as shown side by

side in Figure 27-1.

Figure 27-1. The differences between Browse mode (left) and Layout mode

(right), with optional rulers, grids, guides, and three palettes currently visible

The most notable differences in Layout mode include:

Status Toolbar — The status toolbar will transform to a

completely different set of options (discussed next in

this chapter).

Menus — Several menu changes occur in Layout mode

(discussed later in this chapter).

Design Area — The content area of the window becomes

a design area, showing all the layout elements arranged

as they were in Browse mode but transformed into

editable objects. Separate regions of the content area,

called parts, will become visible and editable (discussed

later in this chapter). Fields no longer display record

data or allow data entry but can be moved, resized, and

otherwise manipulated (Chapter 31).

Rulers, Guides, and Grids — Depending on View

settings, several design tools and overlays that are used

to position objects precisely might be visible (Chapter

31):

The layout ruler may be seen running along the left

and top of the content area .

Orange guides may overlay dimension on the

layout, demarcating the area that will fit on certain

device screens or monitor sizes.

Blue guides may be visible on the layout.

A grid pattern may be superimposed over the

background of the content area.

Palettes — The Field Picker, Layout Inspector , and

Layout Objects palettes may be visible if they were left

open during the layout editing session. These can be

opened and closed as needed in layout mode (Chapter

29).

Status Toolbar (Layout Mode)

When a window is placed into Layout mode the options

available in the status toolbar will change dramatically.

Controls for managing records and performing data entry

tasks will be replaced with tools that add objects to the

layout and perform other design-related functions. These

controls will be the default Layout mode items or the user’s

customized set.

Default Status Toolbar Items (Layout

Mode)

The default status toolbar for Layout mode is shown in

Figure 27-2.

Figure 27-2. The default status toolbar for Layout mode

The toolbar can be divided into the following regions,

discussed further in this section:

1. Navigation controls

2. New Layout / Report button

3. Layout tools

4. Manage Database menu

5. Layout navigation menu

6. Layout Settings button

7. Theme selector

8. Field Picker toggle button

9. Screen dimension overlay menu

10. Layout Inspector palette toggle button

11. Layout Objects palette toggle button

12. Formatting Bar toggle button

13. Exit Layout button

Navigation Controls

At the top left of the toolbar are navigation controls that

appear and function exactly as they do in Browse mode with

one important difference: they refer to and control layouts

rather than records. The total refers to the total number of

layouts that exist in the current file and the number in the

text box indicates which layout is being currently viewed.

To move to a different layout:

Click the Next or Back arrows.

Drag the slider to the left or right.

Type the number of the desired layout in the box above

the slider and type the Enter key.

New Layout / Report Button

The only function button included in the default Layout

mode toolbar is:

New Layout / Report — This button begins the process of

creating a new layout by opening a dialog of options.

Other function buttons, such as Delete Layout and

Duplicate Layout, which are accessible in the menu by

default, can be added by customizing the status toolbar on

a local user’s computer.

Layout Tools

Running along the center of the toolbar are a row of Layout

Tools, defined in Table 27-1, that are used to insert layout

objects. Some of these can be clicked and dragged

downward to place a specific object type onto the layout.

Others are clicked to temporarily change the cursor to either

perform a new function or allow a corresponding object type

to be drawn in the layout design area.

Table 27-1. Each layout tool defined

Icon Tool Description

Selection tool — This tool is used to select objects on the layout, move ,

or manipulate them.

Text tool — This tool is used to edit text on a layout or within certain

object types such as buttons.

Line tool — This tool is used to draw a line on a layout. Once selected,

click and hold the cursor at a point on the layout and then drag in the

direction of the line. When the line has reached the desired length,

release the cursor. To maintain a straight line, hold the Shift key while

dragging horizontally or vertically.

Shape menu — Click this icon to automatically select the Rectangle

shape tool. Click and hold to reveal the hidden menu with the following

three options:

•The Rectangle shape tool is used to draw a rectangle.

•The Rounded Rectangle shape tool is used to draw a rectangle with a

default Corner radius setting of 5%.

•The Oval shape tool is used to draw an ellipse.

To draw a shape maintaining a uniform height and width (a square or

circle), hold down the Option key while dragging out its boundaries.

Field menu — This icon hides a menu that allows the quick insertion of

a field onto a layout with a choice of a Control style. Click and hold on

the icon to see the menu.

Button menu — Click this icon to automatically select the Button tool.

Click and hold to reveal the hidden menu with the following two

options:

•The Button tool is used to draw a push-style button.

•The Popover Button tool is used to draw a button that, when clicked,

will pop open an attached content area that floats over the layout.

Icon Tool Description

Button Bar tool — This tool is used to draw a segmented bar that can

be configured with multiple attached buttons and/or popover button

controls.

Multi-Panel Object menu — Click this icon to automatically select the

Tab Control tool. Click and hold to reveal the hidden menu with the

following two options:

•The Tab Control tool is used to draw an object made up of one or more

content areas identified and accessible through tabs.

•The Slide Control tool is used to draw an object made up of one or

more content areas represented by a dot icon at the bottom and

accessible by clicking a dot or swiping left or right on an iOS device.

Portal tool — This tool is used to draw a portal.

Chart tool — This tool is used to draw a chart.

Web Viewer tool — This tool is used to draw a web viewer object.

Field tool — This tool is used to drag a new field down onto a layout.

Part tool — This tool is used to drag a new layout part onto a layout.

Format Painter tool — This tool is used to copy formatting from one

object to another. With an object selected, click this tool to copy its

formatting into memory. The cursor will change to a combination

selection tool and eyedropper, indicating that the next object you click

on will be reformatted with the settings previously copied.

Locking a Layout Tool Selection

Tools that operate as toggle buttons, being actively selected

or not, can be locked as active by double-clicking on them.

This allows you to quickly create multiple objects of the

same type, one after the next, without having to reselect

the tool. When finished, the tool can be unlocked by clicking

on a different tool.

Manage Database Menu

On the far right of the top of the Layout mode toolbar is a

Manage Database menu. Clicking the icon reveals a pop-up

menu containing the developer options that are also

accessible through the File > Manage menu (Chapter 2).

Layout Menu

The lower, non-customizable level of the toolbar starts with

the Layout menu on the left. This menu is used is used to

select the layout one wishes to view in the window, which

can also be achieved by selecting a layout from the View >

Go To Layout submenu.

Unlike the Browse mode equivalent of this menu, which

displays only those layouts that have the Include in Layouts

Menu option selected, in Layout mode this menu displays a

list of all layouts in the file. It includes a Manage Layouts

option at the top that will open a Manage Layouts dialog.

Layout Settings Button

The layout settings button opens the Layout Setup dialog

where various layout options and behaviors can be specified

for the current layout.

Theme Selector

The layout theme selector displays the name of the theme

assigned to the layout with a button that will open a dialog

to select a different theme. A layout theme is a collection of

stylistic settings that can be applied to layout parts and

objects (Chapter 32).

Field Picker Toggle Button

The field picker toggle button is used to toggle the visibility

of the Field Picker palette. As a visual indicator, the color of

the button text and icon changes blue when the palette is

visible (Chapter 29).

Screen Stencil Menu

The screen stencil menu is a combination of a small dual-

box icon and arrow that provide dual functionality. Clicking

the arrow to the right of the icon will reveal a menu of

screen dimension overlays. A selection of one or more

options from the list will draw an orange border outlining the

dimensions of a device or monitor screen. These guides are

useful when designing layouts optimized for distinct screen

sizes, especially those on mobile devices. Clicking the box

portion of the icon will toggle the visibility of all the overlay

boxes for any currently selected dimensions.

Inspector Toggle Button

The Inspector toggle button is a small icon that, when

clicked, will toggle the visibility of the Layout Inspector,

which is a palette of tools used to edit the appearance,

behavior, and content of layout objects (Chapter 29).

Layout Objects Toggle Button

The Layout Objects toggle button is a small icon that, when

clicked, will toggle the visibility of the Layout Objects

palette, which contains tools used to select objects,

manipulate their stacking order and more (Chapter 29).

Formatting Bar Button

The formatting bar button will toggle the visibility of a bar

between the status toolbar and the design area of the

window that contains text-formatting controls (Chapter 3,

“Formatting Bar”).

Exit Layout Button

The Exit Layout button will switch the window back to

Browse mode with a preference-optional dialog asking if you

want to save changes (Chapter 2, “Layout Settings”).

Customizing the Status Toolbar (Layout

Mode)

The status toolbar in Layout mode is customizable at the

user-computer level exactly as it is in Browse mode (Chapter

3, “Customizing the Status Toolbar”). The only difference is

that the button functions available are layout specific.

To begin customizing the status toolbar, enter Layout

mode and then select the View > Customize Toolbar menu

to open the customization panel attached to the window as

shown in Figure 27-3.

Figure 27-3. The customize toolbar panel attached to the Learn FileMaker

database window in Layout mode

Once open, items can be added, removed, or rearranged

in the same manner as in Browse mode .

Menu Changes (Layout Mode)

In Layout mode, several changes occur in the menu bar. In

addition to the Records menu being completely removed,

the following menus are changed or added:

Edit

View

Insert

Format

Layouts (New)

Arrange (New)

Edit Menu

There are many changes to the items in the Edit menu when

switching from Browse to Layout mode, as shown in Figure

27-4.

Figure 27-4. A comparison of the Edit menu in Browse and Layout modes

The differences to the Edit menu in Layout mode include:

Copy Object Style — This new item allows the style

information of a selected layout object to be copied to

the clipboard.

Paste Object Style — This new item allows style

information held in the clipboard to be applied to a

selected layout object.

Revert Changes to Style — This new item will revert the

style of the selected object to the settings prior to

pasting style information .

Duplicate — This new item will create a duplicate of any

selected layout objects.

Export Field Contents — This function is not applicable

in Layout mode and is removed.

View Menu

There are many changes to the items in the View menu

when switching from Browse to Layout mode, as shown in

Figure 27-5.

Figure 27-5. A comparison of the View menu in Browse and Layout modes

The differences to the View menu in Layout mode

include:

Go to Layout — Like the Layout menu in the lower

portion of the toolbar, this submenu displays all layouts

when in Layout mode. Also, a new Manage Layout menu

item is added that opens a dialog used to managing

layouts.

View as — The three View as menu items are not

applicable in Layout mode and are removed.

Ruler / Rulers— The only difference here is one of

quantity . In Layout mode, the menu is pluralized and

indicates that it will toggle the visibility of both

horizontal and vertical rulers. In Browse mode, the

menu is singular and indicates that it will toggle the

visibility of a horizontal ruler.

Page Margins — When selected, this menu item

transforms the layout's background by superimposing a

graphical representation of the page borders that will be

imposed by the current print settings. Unlike preview

mode, which displays record and field data as a print

preview, this feature shows a pseudo-preview overlay

while still in Layout mode. This allows adjustment to

design elements from the context of a printed page.

Page Breaks— When selected, this menu item

superimposes dashed lines on the background of the

layout demarcating page breaks based on the current

settings. When the Page Margins menu is on, these page

breaks only show horizontal divisions between pages

within the actual print area. However, when that option

is off, page breaks will run both horizontally and

vertically, breaking the entire layout area into a grid of

page-sized portions.

Grid — This menu item contains a submenu of two

choices that control the visibility and magnetic quality of

a grid of major and minor lines, reminiscent of graph

paper, which are intended to assist in more precise

alignment of objects:

Show Grid — This item toggles the visibility of grid

lines on layouts in the current database file.

Snap to Grid — This item toggles the magnetic

property of the grid lines. When activated, objects

dragged on a layout will be pulled to the next

available grid line, helping ease the burden of

precision alignment.

Guides — This menu item contains a submenu of two

choices that control the visibility of guide lines:

Show Guides — This item toggles the visibility of

guide on layouts in the current database file.

Snap to Guides — This item toggles the magnetic

property of guides. When activated, objects dragged

on a layout will be attracted to the next available

guide, helping ease the burden of precision

alignment.

Dynamic Guides — When selected, this menu item

controls the visibility of automatic guides that are used

to help position items with uniform precision. When an

item is dragged around a layout, dynamic guides will

appear around and between objects showing distance

and spacing in relation to other objects on the layout.

Developers with experience using modern interface

design tools such as Apple’s Xcode will recognize and

appreciate this feature .

Note See a more detailed discussion of Rulers, Grids,

Guides and Dynamic Guides in Chapter 31, “Layout

Positioning Helpers.”

Show — This submenu contains a list of options for how

objects are displayed when in Layout mode including:

Instead of fields displaying their name in Layout

mode, there is an option to display Sample Data

instead.

There are options to show Text Boundaries and Field

Boundaries, making visible an object’s dimension

regardless of styled appearance.

The remaining options all toggle the visibility of a

small icon called an object badge superimposed

over objects that indicates the use of the feature

corresponding to the menu, each defined in Table

27-2.

Table 27-2. A list of every layout badge that can be superimposed

on a layout object to indicate its use of a feature

Icon Description

The object is formatted as a button.

The object has conditional formatting features applied.

The object will not be visible when printing.

The object has placeholder text applied.

The object is a popover button.

Icon Description

The object has a formula that may hide the object under certain

conditions.

The object is searchable with Quick Find (Chapter 4, “Searching

with Quick Find”).

The object is searchable with Quick Find but will be slower due

to indexing or other considerations.

The object has Quick Find disabled.

The object or layout has one or more script triggers assigned.

The object will slide left when printing.

The object will slide up when printing.

The object has a tooltip text assignment.

Field Picker — This item will toggle the visibility of the

Field Picker.

Inspector — This item will toggle the visibility of the

Layout Inspector, which is used to configure layout

objects.

New Inspector — This item will create a new instance of

the Inspector. FileMaker allows multiple inspectors to be

visible at once, each with a different tab selected or in

different places around your computer screen(s).

Accessibility Inspector — This new item opens a small

window into which allows Title and Help Text to be

assigned to a field label.

Layout Objects — This new item opens the Layout

Objects palette for selecting, layering, and hiding

objects.

Note See a more detailed discussion of the Field Picker,

Inspector, and Layout Objects palette in Chapter 29.

Insert Menu

There are many changes to the items in the Insert menu

when switching from Browse to Layout mode, as shown in

Figure 27-6.

Figure 27-6. A comparison of the Insert menu in Browse and Layout modes

The first two sections of the Layout mode version of the

Insert menu provide an alternate method of inserting any

type of layout object, essentially mirroring the toolbar icon

features .

In the middle are several shortcuts for placing static text

directly on a layout in a manner like inserting the same into

a field:

Picture

Current Date

Current Time

Current User Name

Below these are options that provide a shortcut for the

insertion of various dynamic placeholder symbols. These are

specially formatted text that is automatically replaced with

current values at the time a layout is rendered in other non-

layout modes. These include:

Date Symbol — This item inserts the text symbol for the

display of the current date; {{CurrentDate}}.

Time Symbol — This item inserts the text symbol for the

current date; {{CurrentTime}}.

User Name Symbol — This item inserts the text symbol

in the current user’s computer name; {{UserName}}.

Page Number Symbol — This item inserts the text

symbol for the current page number when a page is

printed or previewed; {{PageNumber}}.

Record Number Symbol — This item inserts the text

symbol for the current record’s number within the found

set; {{RecordNumber}}.

Other Symbol — This item opens a dialog that allows the

selection of any of over a hundred different symbols,

each corresponding to a Get function (Chapter 22).

While the symbols above allow dynamic insertion of

numerous standard values, it is also possible to place a

merge field or merge variable into layout text. A merge

value is a text string enclosed between a set of left shift

(<<) and right shift (>>) symbols that indicates to

FileMaker that it is a placeholder that should be dynamically

replaced with the actual contents of a field or variable when

a layout is rendered in a mode other than Layout.

These features are at the bottom of the Insert menu:

Merge Field — This item opens a Specify Field dialog and

places the selected local or related field on the layout,

formatted as a merge field; <<FieldName>> or

<<TableName::FieldName>>.

Merge Variable — This item inserts two dollar symbols

enclosed in merge brackets <<$$>> into which you can

type the name of a global variable. For example, a

global variable named $$CurrentSeason would be

enclosed in symbols like a merge field to form the

string: <<$$CurrentSeason>>.

Once a standard symbol or merge value is present on the

layout, it can be manipulated and formatted like any other

text or combined with static text in a single string. Any

symbol or merge value will be detected and replaced with

dynamic values when FileMaker renders the layout for

Browse, Find, or Preview mode .

Note Dynamic placeholder symbols, merge fields, and

merge variables are also discussed in Chapter 30,

“Working with Text.”

Format Menu

There are many changes to the items in the Format menu

when switching from Browse to Layout mode, as shown in

Figure 27-7. In Layout mode, items in this menu are enabled

or disabled depending on the type of object(s) currently

selected on the layout.

Figure 27-7. The Format menu in Browse and Layout modes

The differences to the Insert menu in Layout mode

include:

Orientation — This new submenu has two options;

Horizontal, which is the default; and Sideways (Asian

text only).

Setup Options — The central section of the menu

contains a list of Setup menu items that are enabled

when an object of the corresponding type is selected.

Selecting one of these will open the appropriate setup

dialog based on the object type one is configuring

(Chapter 30).

Format Painter — This new menu item performs the

same function as the Format Painter tool in the toolbar:

copying format settings of a selected object that can

then be applied to any other object with a click.

Conditional — This new menu item opens the

Conditional Formatting dialog, in which contextual

formatting settings are applied based on a calculation

formula (Chapter 31).

Set Script Triggers — This new menu item opens the Set

Script Triggers dialog in which scripts can be assigned to

run when certain events are performed to an object

(Chapter 37).

Layouts Menu

The Layouts menu, shown in Figure 27-8, provides access to

functions related to managing, designing , and configuring

layouts.

Figure 27-8. The Layouts menu

New Layout/Report — Starts the process of creating a

new layout.

Duplicate Layout — Creates a duplicate of the current

layout.

Delete Layout — Deletes the current layout after

displaying a warning dialog.

Note See a more detailed discussion of creating and

deleting layouts in Chapter 28.

Go To Layout — Displays a submenu of options to allow

a layout designer to go to the next or previous layout or

to enter a Layout number to quickly navigate within the

list of layouts.

Change Theme — Opens the Change Theme dialog

allowing the assignment of a different theme to the

current layout (Chapter 32).

Layout Setup — Opens the Layout Setup dialog in which

layout properties and behaviors are configured (Chapter

28).

Part Setup — Opens the Part Definition dialog in which

layout part properties and behaviors are configured

(Chapter 28).

Set Tab Order — Opens the Set Tab Order dialog, which

allows configuration of the order of objects a user will

jump to when typing Tab in Browse mode (Chapter 31).

Save Layout — Saves any accumulated unsaved layout

changes while remaining in Layout mode .

Revert Layout — After a confirmation dialog, this item

discards any unsaved changes and reverts the layout to

its previously saved state while remaining in Layout

mode.

Arrange Menu

The Arrange menu, shown in Figure 27-9, provides access to

functions used when moving or layering objects on layouts,

most of which are described in Chapter 31.

Figure 27-9. The Arrange menu

Group — This item groups all the currently selected

objects into a single object. Grouped objects can be

selected and moved while remaining in positions

relative to each other. A selection can include groups,

which means you can create nested groups.

Ungroup — This item ungroups the currently selected

object(s), one level back toward their singular status.

Lock — This item will lock the selected object(s)

positions and settings. The object can’t be modified or

moved until it is unlocked.

Unlock — This item will unlock the selected object(s) for

editing.

Bring to Front — This item will move the selected

object(s) to the top of the stack of objects in front of any

other objects .

Bring Forward — This item will move the selected

object(s) forward one step in the stack of objects.

Send to Back — This item will move the selected

object(s) to the bottom of the stack, behind of any other

objects.

Send Backward — This item will move the selected

object(s) backward one step in the stack of objects.

Rotate — This item will rotate the selected object(s) 90

degrees (clockwise).

Align — This submenu contains commands that align

selected objects horizontally (Left Edges, Center, Right

Edges) or vertically (Top Edges, Middle, Bottom Edges).

Distribute — This submenu contains commands to

evenly distribute selected objects Horizontally or

Vertically.

Resize To — This submenu contains commands to resize

selected objects relative to the smallest or largest of the

group by height, width, or both .

Summary

In this chapter, we introduced Layout mode and identified

changes to the window, toolbar, and menu.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_28

28. Getting Started with Layouts

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

A new database file is created with a single empty layout

representing the default table. As a developer, you are

responsible to define the fields and relationships that make

up the data structure. Similarly, you are responsible for the

user interface and must add, rename, design, delete, and

organize layouts.

In this chapter, we explore the following subjects:

Planning layouts

Working with layout parts

Adding layouts

Deleting layouts

Using the manage layouts dialog

Optimizing layout performance

Planning Layouts

Before building layouts, take a moment to review the

classification methods available for categorizing layouts and

to sketch out a layout navigation flow.

Classifying Layouts into Type Categories

When planning an interface, it is important to consider the

different types of layouts required to fulfill the needs of

users and automated functions. Identifying similarities in

design and function between different layouts will help

establish unifying standards in how you refer to and design

layouts for different tables.

While the categorization may vary from one project to

the next based on a variety of unique circumstances, there

are many kinds of layouts that can be found in most

databases. For example, every table that requires user

interaction typically has at least one layout displaying

multiple records in a list view and another layout showing

one record at a time for data entry tasks as a form view.

Similarly, most databases will require one or more layouts

with groups of buttons to allow for the main menu of

navigation, a choice of available actions or quick selection

from a group of properties, or other resources.

Before delving further, however, let’s take a moment to

clarify a point of confusion about layout types in FileMaker.

Strictly speaking, there are no official layout types in

FileMaker. Fundamentally, there is only a single type of

layout: an empty space onto which you can add parts and

define objects for any function. However, two areas of focus

in the application development interface use terms that can

be easily blurred into a mistaken assumption that there are

official layout types :

Content view

Layout creation options

Let’s take a moment to clarify these before focusing on

the more important functional categories of layouts that are

common to most databases.

Refuting Content View Options as a Layout

Type

Although the names used to identify window content views

are like those used to describe the structure and function of

a layout, these are really different ways of viewing a layout

and do not refer to any real structural categorization

criteria. When enabled in the Layout Setup Dialog

(described later in this chapter), a user can apply them to a

layout regardless of its design structure or intended

function.

To illustrate this point, consider that content views each

control two aspects of the way a layout is viewed:

The number of records displayed at once in a scrollable

window (one or many).

The rendered appearance of the layout as designed or

not.

These two properties overlap between the three view

options, as shown in Figure 28-1.

Figure 28-1. The different perspectives of the available content view options

Form and List views are similar in that they both always

display the layout as designed and are different only in how

many records are visible at a time.

List and Table views are similar in that they both display

a list of the records in the found set but different in that one

displays the layout as designed while the other imposes a

predetermined display format that supersedes the layout

design .

The similarly in terminology here, especially for List and

Form, blur the line between function and content view and

are easily confused or informally construed to be the

layout’s type. However, from the perspective of the

classification of the layout instead of how it is viewed, it’s

generally best to ignore the content view options.

The only relevant consideration is that a layout’s design

or function will usually imply a specific view and might

influence which views you enable for user selection. If a

layout is structured to serve the function of displaying a list

of records a user can view it as a single record Form instead,

if that view option is enabled. Similarly, if a layout is

structured to serve the function of displaying a single record

at a time as a form, a user can view it as a List instead, if

that view option is enabled. The layout design doesn’t

change when a different view is selected, only its

appearance as viewed in the window.

Refuting Layout Creation Options as a

Layout Type

As we will see later in this chapter, when creating a new

layout, FileMaker offers a choice of six default configuration

options: Form, List, Table, Report, Label, Envelope. The first

three blur the distinction between structure and view by

using identical terminology while the last three introduce a

new dilemma, since they each are just a more structurally

evolved version of a List view.

These classifications are important when creating a

record if you remember that you are choosing between

different sets of defaults properties for the new layout, and

select the one that most closely represents the intended

function of the layout. Although we will refer to these layout

types later, the choice is between sets of helpful options in

the layout creation wizard for the default configuration of a

new layout. They do not necessarily indicate or dictate the

functional intent of the layout.

Classifying Properly by Primary Functional

Intent

When designing a layout, the intended function should be

the primary point of focus in classifying the layout as a

certain type. Here the type may be a summarization of the

fundamental purpose, device type, record structure, shape,

appearance, and purpose of the layout. The chart illustrated

in Figure 28-2 shows twelve different commonly used type

categories for layouts, each organized hierarchically in

relationship to each other and to various other criteria.

Figure 28-2. An organization of common layout types into a hierarchy based

on various factors

This chart has a couple of levels of hierarchy at the top to

help illustrate some broader categories for a layout’s

purpose and usage. These aren’t critically important but

help to establish some of the different wider groupings into

which a layout may fall.

For example, a layout can typically serve one of two

different fundamental purposes. It may be used as either:

A user interface access point where humans view and

manage data. These may be designed for a specific type

of device, as needed.

A hidden staging context point that provides access for

developers to test and troubleshoot or for scripts to

perform automatic functions from a specific context.

Finally, a layout is usually designed to display either a

single record form or a multi-record list. As mentioned

earlier, these may imply a view choice but they aren’t

necessarily synonymous.

Identifying Form Layouts

A form layout displays a single record with lots of fields and

controls arranged and optimized to accommodate a singular

purpose. These allow users to focus on a single record or set

of options without distraction.

Some examples of form layouts include:

A data entry layout is used to display a single record,

containing many fields into which a user can enter,

view, edit, and otherwise manage record information.

A browser layout is used to display a single record that

acts as an overview of one or more different tables,

summarizing information and possibly listing various

related records in portals. For example, a browser may

act as a user control panel on which a user sees related

task assignments and other records that require their

attention, all summarized into a single view.

A dialog layout is a layout that is used in conjunction

with the New Window script step to open a window as a

dialog or palette for any number of purposes including:

A menu dialog contains a set of buttons used to a

navigate to layouts and windows within the

database solution.

A message dialog presents information to a user

such as warnings or advice, which are often used in

place of the Show Custom Dialog script step when

fields or other layout objects are required.

An options dialog presents a set of buttons or other

interface elements that act like a palette of optional

functions.

Identifying List Layouts

A list layout displays a record with a small subset of fields,

usually arranged in a single horizontal row that is viewed

with other records so a user can quickly scroll through a

found set. A list view is typically constructed with at least

three parts: a Header, Body, and Footer. The Header

contains labels acting as field/column identifiers, running

horizontally, each above a corresponding field contained in

the Body. Lists may have other parts for navigation and

summarizing data as needed.

The fields included in a list view can vary, but should at

least include key fields with identifying information to allow

a user to quickly know what entity the record represents.

For example, a Contact table’s list layout should contain the

name of the person represented while a Project table’s

layout should contain the company and project name.

Generally, lists should have a minimum of one button to

provide a convenient single click to navigate to a Form view

for any record displayed. Numerous other fields and controls

can be added as needed for a specific list.

Some examples of different functional types of list

layouts include:

A navigation layout is used to present the minimal

information required for a user to identify records in

which they can scroll through a found set of records and

click to navigate to a form layout for data entry. Search

scripts often will present the resulting found set on a list

layout.

A batch entry layout allows a user to perform some

specialized data entry task on a found set of records.

An output layout is used by scripts to generate material

that will be sent to a printer, saved as a PDF, exported,

or emailed, such as:

A report layout contains parts and fields specifically

configured to present and summarize information in

a logical manner.

A label layout contains parts and fields specially

configured to print onto a specific label product.

An envelope layout contains parts and fields

configured to print onto a specific envelope size.

Tip Most references to a layout type in this book will be

focused on the function of the layout unless specifically

referring to a FileMaker feature or settings in a dialog.

The common layout types described above can be

combined with other specific interface needs demanded by

a project to compile a custom list of layout requirements.

Sketching a Layout Flow Chart

Once you have a list of the types of layouts required to

cover the needs of every table and function, consider

creating a navigational flow chart showing how the user will

traverse the interface. It’s not a requirement, but it can be

helpful to visualize the total interface in a single view. Even

a rough sketch of layout planning can be helpful, like the

one shown in Figure 28-3.

Figure 28-3. A rough sketch of a rather simple hypothetical layout flow with

optional placeholders denoting areas for expansion

In this diagram, we have a rough representation of the

Learn FileMaker database with an added menu layout and

placeholders for hypothetical other layouts. Remember, the

navigational arrows are only illustrating hypothetical

connections that may be required. These may vary in

complexity depending on the number of tables, the style of

the navigational controls you develop, and other factors.

Working with Layout Parts

A layout part is a horizontal section of a layout that

determines how the components contained within the area

will behave when rendered in a non-Layout mode.

Depending on creation method and selected configuration

options, each newly created layout will have at least three

default parts: Header, Body, and Footer. Every layout must

have at least one part but can be made up of as many parts

as necessary for your design.

Exploring Layout Regions and Controls

There are several layout regions and controls pertaining to

parts, highlighted in Figure 28-4. These include visible

layout parts, part boundaries, part labels, and a part label

orientation toggle button.

Figure 28-4. A typical layout with minimum default layout parts, highlighting

various components

Defining the Part Label

A part label is a small box attached to the left side of the

part. These contain the part type name and can act as a

button, providing access to three functions:

Double-click on the label to open the Part Definition

dialog and modify the part’s settings.

Click on any label while holding the Command (macOS)

or Windows (Windows) key to toggle the labels between

a vertical and horizontal alignment. When horizontal,

the label can be dragged up or down for easier part

resizing.

Open the label’s contextual menu which contains the

following features:

Part Definition — Opens the Part Definition dialog

and allows modification of the part’s settings.

Part Style — Opens a submenu listing all the

available part styles for the layout’s selected Theme

(Chapter 32). Selecting a style will reformat the

layout part according to the styles settings.

Fill Color — Opens a submenu containing a color

palette, which is used to assign a new fill color to

the part.

Identifying the Visible Layout Area of a

Part

The visible part area of the layout defines a delimited

portion of the layout space that runs horizontally from the

left side of the window to the part boundary. This area

contains the stack of all parts that make up the entire

layout. This is the total area into which elements can be

placed and still be rendered when viewing the window in a

non-Layout mode. Nothing can be placed below the part

stack as that area is non-layout space into which the part

stack can extended as needed.

Identifying the Part Boundary and Off-

screen Developer Area

The part boundary represents a vertical line that separates

the entire stack of visible parts on its left from the off-screen

developer area to its right. When a window is viewed in any

other mode, everything on the left of this boundary will be

rendered as the content area while everything to the right

will remain hidden off-screen.

The off-screen area on the right can store notes and

other layout elements that are not accessible to the end

user since they will not be rendered.

Resizing a Part Area

Parts can be resized vertically and horizontally to any

dimension that does not exceed the limit of 32,000 x 32,000

points.

To vertically resize a part, position the cursor at the line

below the part area until the cursor changes into a short

horizontal black line with two arrows on either size, pointing

up and down. Then click, hold, and drag the cursor up or

down to contract or expand the height of the part as

needed. When the part labels are viewed horizontally, you

can grab the label and drag to resize the part.

To horizontally resize the part stack, position the cursor

at the part boundary line until it changes into a short

vertical black line with two arrows on either size, pointing

left and right. Then click, hold, and drag the cursor left or

right to contract or expand the width of the part stack as

needed.

Defining Part Types

There are ten different available part types, each controlling

a certain type of information display and behavior. These

are broken down into two categories: standard (non-

summary) parts and summary parts.

Defining Standard Parts

A standard part displays layout elements without any

summarization function. Each layout is limited to a single

instance of each and they must fall within an automatically

enforced stack order.

There are seven different standard part types:

Top Navigation — This part type will appear on screen

only at the top of the layout but will not print or appear

in preview mode. It is intended for general information

and navigation buttons and other controls. Fields placed

in this part will display content drawn from whichever

record is currently selected.

Title Header — This part type will appear once at the top

of the first screen or page when printing or previewing a

layout but will not be displayed in Browse mode. When

printing, it will replace the first instance of a Header and

act like a unique title page or section. Fields placed in

this part will display the content drawn from the first

record in the found set.

Header — This part type will appear at the top of every

screen or printed page, except for the first instance

when printing or previewing if a Title Header is present.

Body — This part represents a single instance of a

record. When viewing in a non-Layout mode such as

Browse in a list view, the Body and every object placed

within it will be repeated once for every record in the

found set. When viewed as a form, this part type will

display only the current record.

Footer — Like a Header, this part type will appear at the

bottom of every screen or page, except for the first

instance if a Title Footer is present.

Title Footer — Like a Title Header, this part type will

appear at the bottom of the first screen or page,

replacing the first instance of a Footer if one is present.

Bottom Navigation — Like Top Navigation, this part type

is intended to contain navigation buttons and other

controls. It will only appear onscreen at the bottom of

the layout but will not print or appear in preview mode.

Defining Summary Parts

A summary part is used to insert summarization values for

groups of records. There are two types of summary parts,

each with a leading and trailing variety, depending on their

placement within the part stack relative to the Body (before

or after it).

Grand Summary — A summary field placed within this

part type will display a summarized value for all records

in the found set. It is used to calculate grand totals and

can be placed at the beginning (Leading Grand

Summary) or end (Trailing Grand Summary) of a report

layout.

Sub-summary when sorted by — A summary field placed

within this part type will display summarized values for

a sorted sub-grouping of records within the found set. It

is used to calculate subtotals based on a specified break

field that is used to separate records into sorted groups.

One or more sub-summary parts can be placed both

above or below the Body and they will appear only if

records are sorted by the specified break field. A single

sub-summary part will be repeated once for every group

of records that result from the break field sort.

Managing Parts

Beyond the default parts automatically added during the

layout creation process, parts can be added, deleted, and

reordered as needed to create a simpler or more complex

layout. This can be done directly in the window in Layout

mode or through the Part Setup dialog.

Managing Parts Directly

When working directly in a window in Layout mode, you can

add, edit, and delete parts.

Adding a Part Using the Toolbar Button

To add a new part into an existing layout using the toolbar,

grab the Part Tool in the toolbar, shown in Figure 28-5. As

you drag down into the layout area, the cursor will turn into

a clenched fist dragging a thin, black horizontal line. Move

this line into a position just above or below a part that

approximates the location you wish to insert the new part,

and then let go. This will open a Part Definition dialog into

which you can select and configure the desired part type.

Once finished and the dialog is closed, you can resize the

part as needed and begin adding layout objects within it.

Figure 28-5. The Part Tool

Tip Adding a part to a layout with this method is

somewhat imprecise and always changes the size of an

existing part. Instead, use the Part Setup dialog described

later in this chapter to add new parts without adversely

affecting existing ones.

Editing a Part

When creating a new part, the Part Definition dialog, shown

in Figure 28-6, is automatically opened. An existing part can

be edited by opening this dialog using any of the following

methods:

Double-clicking on the part label.

Selecting a part label and then the Layout > Part Setup

menu.

Choosing Part Definition from the contextual menu when

clicking on a part label.

Figure 28-6. The Part Definition dialog in which parts are configured

This Part Definition dialog contains the following settings:

1. Part Type — This list of radio buttons allows the

selection of a part type that will be assigned to the

part being added or edited. These are automatically

enabled or disabled to limit the selection to only

those part types that are appropriate based on the

part’s location within the part stack. For example, if

editing a Top Navigation part, you can’t change it to

a Title Header if there is already one defined nor

can you change it to any other part type because of

its location in the stack.

2. Field Selection — This combination of a pop-up

menu of table occurrences and corresponding field

list allows the selection of a field that will be used

as the break field when defining a Sub-Summary

part. For all other part types, these controls are

disabled.

3. Page break before each occurrence — Enable this

check box to insert a page break before a Trailing

Grand Summary, Body or Sub-Summary.

4. Page break after every X occurrence — Enable this

check box to specify the insertion of a page break

after the part has been displayed a specified

number of times. This makes it possible to limit the

number of times a Body or a Sub-Summary part can

be repeated on a single page.

5. Restart page numbers after each occurrence —

Enable this check box to cause FileMaker’s page

numbering to restart after each occurrence of the

part. This can be used with a Title Header to

effectively create a title page that is not included in

the numbering sequence or with a Sub-Summary to

create separately numbered sections.

6. Allow part to break across page boundaries —

FileMaker will not automatically split a part across a

page boundary unless the contents of the part

won’t fit on a single page. Instead it will leave blank

space at the bottom of the current page and start

the part on the next page. However, enabling this

check box will force the part to be split across a

page break. The adjacent Discard remainder of part

before new page check box will truncate any

remaining content for the part instead of displaying

it on the next page, effectively only displaying the

portion of the part that fits in the available space at

the bottom of the page.

Use alternate row state — Enable this check box to

7.
Use alternate row state — Enable this check box to

cause Body parts to be alternatively styled to

visually provide a clear delineation between one

record and the next.

8. Use active row state — Enable this check box to

cause the Body part of the currently selected record

to be differently styled to visually provide an

indication of that state. This formatting option only

affects onscreen display of records and does not

appear in preview mode or when a layout is printed.

Deleting a Part

To delete a part, select the part label and type Delete.

Managing Parts with the Part Setup Dialog

A special Part Setup dialog, shown in Figure 28-7, can be

opened by the following two methods:

Select the Layout > Part Setup menu.

Select Part Setup from the contextual menu available

anywhere on the visible part area.

Figure 28-7. The Part Setup dialog allows for more precise control over the

part stack

The Part Setup dialog displays a list of all the parts

defined on the current layout and makes available the

following actions:

Reorder — Drag and drop existing parts to reorder them

within the list if they are not locked into a position within

the hierarchical stack because of their type restrictions,

indicated with a lock icon next to the part name.

Add — To create parts with more precision click the

Create button. This will open the Part Definition dialog

allowing configuration of the part type immediately. The

new part will be inserted into the layout between

existing parts without resizing or adversely affecting

them.

Edit — To change a part’s type or settings, select it in

the list and click the Change button. This opens the Part

Definition dialog for the selection.

Delete — To delete a part from the list and the layout,

select it and click the Delete button.

Adding Layouts

There are two different ways to add layouts to a database

file:

Creating a new layout

Duplicating an existing layout

Creating a New Layout

A new layout can be created by any of the following

methods :

Select the Layout > New Layout/Report menu item.

Clicking the New Layout/Report button in the toolbar.

Clicking the New button on the Manage Layouts dialog.

Each of these will open the New Layout/Report dialog,

shown in Figure 28-8. This dialog is a setup assistant, like a

“wizard” in other systems, which guides you through the

settings for the new layout. The options allow configuration

of default settings based on the type of device for which the

layout is intended or the function it will serve. However, any

of these settings can be modified later and some developers

just choose Computer and click Finish to bypass the setup

assistant and quickly create a new empty layout.

Figure 28-8. The New Layout/Report dialog

The New Layout/Report dialog contains the following

controls:

1. Show records from — This pop-up menu contains a

list of every table occurrence defined in the

database file. Choose the occurrence to indicate

which records will be displayed on the layout and

from what context within the relational model.

2. Layout Name — The default name for the new

layout will be the layout number. However, the

name in this text area can and should be modified

to a more informative name that includes the table

name and some detail about the function or format

of the layout.

3. Device Type — Select the primary type of device for

which the layout is intended. This selection will

contextually change the available options on the

remainder of the dialog. The Computer and Printer

icons are buttons while the Touch Device icon in the

center hides a pop-up menu with three choices:

iPad, iPhone, and Custom Device.

4. Layout Type — Select from the available layout

types. This will control the default configuration of

the new layout and determine which other

configuration dialogs will follow when clicking the

Finish button.

5. Touch Device Orientation — If designing the new

layout for a touch device, click on the portrait or

landscape icon to indicate the desired orientation

for the layout.

6 Custom Device Measurements — This area will

6. Custom Device Measurements — This area will

display a width and height field for entering layout

dimensions when designing for a custom touch

device.

7. Cancel — Click this button to close the dialog

without creating a new layout.

8. Finish — Clicking this button will continue the new

layout configuration process. Certain layout types

will open additional dialogs prior to the creation of

the new layout.

Choosing a Layout Type

The New Layout/Report dialog contains six different types of

layout choices, as defined in Table 28-1. Remember that

these only determine which additional panels are presented

in the process and which parts and objects will be included

on the new layout.

Table 28-1. A list of layout choices when creating a new layout

Icon Description

A form layout is generally used to view one record or find

request at a time. They are so named since they resemble a

paper form and are the primary layout format into which data

is entered.

A list view is used to display a list of multiple records in a

found set. These are used to quickly scroll through records,

sort them, compare values, and locate a desired record to

which edits will be made after navigating to a form view.

Icon Description

A table view is a kind of dynamic list view that displays

records and fields in a format resembling a spreadsheet. Each

record is a row and each field is a column. The user can

rearrange and resize columns by dragging their headings or

sort the records by clicking on a heading. New fields

(columns) and new records (rows) can be created intuitively.

Also, a layout actions pop-up menu is hidden within each

field’s heading and provides quick access to various features

including sorting, summarization, field control, and view

control. Table views aren’t high on design and customized

functionality but are a considerably more user flexible than

plain lists and provide, in default functionality, a more

familiar environment for those used to working with

spreadsheets.

A report view is a type of list view that is optimized for either

viewing or printing summarized lists of data. Reports are

similar to list views but generally have more complex grand

and sub-summaries of data based on a sort order.

A label view is a type of list or report view that is optimized

for printing directly onto labels. These can be automatically

created vertically or horizontally and sized to one of a list of

preconfigured Avery or Dymo label formats, or developer-

entered custom measurements.

An envelope view is type of list or report view that is

optimized for printing directly onto envelopes.

Specifying Settings for Certain Layout

Types

When creating a new layout, certain selections within the

first dialog will result in one or more additional type-specific

dialogs containing options. These dialogs are provided as a

convenience, and any setting they apply can be applied or

modified manually to an existing layout.

Additional Options for New Table Layouts

When creating a new Table layout, the Finish button on the

New Layout / Report dialog will open two dialogs, one atop

the other, as shown in Figure 28-9.

Figure 28-9. The Modify Table View and Add Fields dialogs for selecting which

fields are options on a table view

On the top will be an Add Fields dialog, which allows the

selection of one or more fields to be included on the new

Table layout’s list of available fields. The other, behind it and

accessible when the first one is closed, is the Modify Table

View dialog, which lists the fields already assigned to the

layout and allows fields to be added or removed and

activated or deactivated on the layout.

Note Any field physically placed on the layout will

automatically be assigned and visible in the table. Any

field only assigned through the Modify Table View

interface will only be visible if enabled and can be

disabled by users.

The Modify Table View Dialog

The Modify Table View dialog is opened automatically as

part of the layout creation process behind the Add Fields

dialog. It can be opened for existing layouts from the pop-up

menu that is hidden in the heading of each field displayed

on a Table layout. To do so, place the cursor over the

heading, click on the small arrow that appears, and then

select Table > Modify from the menu options.

The Modify Table View dialog contains the following

controls:

A list of all the fields that have been assigned to the

layout from within the Add Fields dialog. The adjacent

check box indicates fields that are actively displayed on

the layout in browse mode while unchecked fields are

attached to the layout but not currently visible.

The + button is used to open the Add Fields dialog and

add additional fields to the list.

The Delete icon will delete the selected field(s) from the

list if those fields were added through the Add Fields

dialog. A lock icon will appear next to any field that was

manually placed directly on the layout, indicating that

they can’t be deleted through this interface.

The Add Fields Dialog

The Add Fields dialog is opened automatically as part of the

layout creation process but can be reopened later by

clicking on the + button on the Modify Table View dialog.

This dialog allows the selection of one or more fields from

the selected table occurrence and will add them to the list

of assigned fields for the layout’s Table view. The pop-up

menu lists all table occurrences in the database file with a

default selection of the table occurrence specified at the

start of the New Layout / Report dialog process or the one

assigned to the layout (if existing). The remaining

occurrences listed in the menu can be selected to include

fields from related tables into the Table view.

Caution When viewed in Layout mode, a Table view

layout will not be displayed as a table, but as an

arrangement of standard layout parts and manually

inserted fields and other objects. The table formatting

and features are superimposed when the layout is viewed

in Browse mode. This allows a developer to offer users

the option of viewing a layout in either a standard full-

design Form or List view or, if they choose, as a Table.

This can be helpful in some cases to allow a user to

choose a more familiar or data-centric focus with other

design elements obscured.

Fields in the list can be selected in a continuous sequence

by clicking one at the start of the sequence and one at the

end of the sequence while holding down the Shift key.

Selecting a non-continuous group of fields can be

accomplished by clicking on individual fields while holding

the Command (macOS) or Windows (Windows) key.

Once finished selecting the desired field(s), click the OK

button to close the dialog and save the selected fields into

the available field list of the other dialog. Clicking the

Cancel button instead will close the dialog without adding

the select fields to the available field list.

Additional Options for New Report Layouts

New report layouts have a dizzyingly complex sequence of

up to eight separate dialogs that step through the options

for preconfiguring the parts, content, summarization,

sorting, and other options for a new report layout. However,

the options offered in these dialogs are an enormous

convenience as it would be complex and laborious to

manually configure them directly on a layout. To help

illustrate the use of these, let’s work through an example of

an invoice report.

Defining Report Parts

A report layout can include many different parts, including

multiple leading and trailing sub-summaries and grand

summaries to create a complex hierarchical display of

information. The illustration in Figure 28-10 dissects a

hypothetical Invoice report into its component parts that,

when sorted by Year and Month, summarize records into

groups with subtotals.

Figure 28-10. An illustration of the parts of a hypothetical invoice report

summarizing sales by year and then by month

This report is made up of the following layout parts:

1. Sub-summary when sorted by Year (Leading) —

when records are sorted by an Invoice Year field,

this part will be repeatedly displayed once before

each group of records where that field contains a

unique value. It acts as a divider emphasizing the

fact that the records to follow fall into a new year.

2. Sub-summary when sorted by Month (Leading) —

when records are sorted by an Invoice Month field,

this part will be repeatedly displayed once before

each group of records where that field contains a

unique value. It acts as a divider emphasizing the

fact that the records to follow fall into a new month.

Since this part appears immediately above the

individual records is summarizes, field column

labels are added here.

3. Body — repeats once for every invoice record in the

found set, displaying the invoice number, date,

client, and amount for each record.

4. Sub-summary when sorted by Month (Trailing) —

when records are sorted by an Invoice Month field,

this part will be repeatedly displayed once after a

group of records with the same month and before

starting a new batch of records with a different

value. Summary fields placed here will

automatically calculate a subtotal of the counts and

totals for the group of records summarized for the

month.

Sub summary when sorted by Year (Trailing)

5.
Sub-summary when sorted by Year (Trailing) —

when records are sorted by an Invoice Year field,

this part will be repeatedly displayed once after a

group of records with the same year and before

starting a new batch of records with a different

value. Summary fields placed here will

automatically calculate a subtotal of the counts and

totals for the group of records summarized for the

year.

6. Grand Summary (Trailing) — At the end of the

report, after all the Invoice records and various sub-

summaries have been displayed for the entire found

set, a trailing grand summary part will appear.

Summary fields placed here will automatically

calculate a grand total of the counts and totals for

the entire found set.

The Invoice Count Summary and Invoice Total Summary

are the same field in both sub-summaries and the trailing

grand summary. These are summary fields that generate a

count of the Invoice Number field and a total of the Invoice

Total fields. Since they are placed within a summary part

type, they automatically summarize the values for the

records in the group they subsume.

Tip When creating a new report record, most dialogs

include a small color coded graphical representation of

the report being built. This allows you to visually

understand which part(s) of the layout are being referred

to by the interface controls in the setup assistant.

Preparing for the Invoice Report Demonstration

To construct the layout illustrated in Figure 28-10, an Invoice

table must be defined containing some entry, summary, and

calculation fields, as shown in Figure 28-11.

Figure 28-11. The field definitions for the report layout demonstration to

follow

The first four fields are used for data entry to store the

date, amount, customer, and number of an invoice. The two

summary fields will be used to display the total count and

the total dollar amount of invoices in the various sub-

summary and trailing grand summary parts. The three

calculation fields are used to sort records and display values

in summary fields.

To begin creating a new report layout, open the New

Layout/Report dialog and follow these steps:

1. Select the Invoice table.

2. Enter a Layout Name of “Invoice Report.”

3. Click on the Computer icon.

4. Click on the Report icon.

5. Click the Continue button.
This will begin a sequence of eight steps of the setup

assistant for report layouts.

Step 1 — Include Subtotals and Grand Totals

The Include Subtotals and Grand Totals dialog shown in

Figure 28-12, contains two check boxes providing the option

to Include subtotals and to Include grand totals.

Figure 28-12. The first step in the sequence for creating a new report layout is

the Include Subtotals and Grand Totals dialog

Select both options so that the Specify Subtotals dialog

(Step 6) and Specify Grand Totals dialog (Step 7) are

included in the configuration process. Click the Next button

to continue the layout setup process.

Step 2 — Specify Fields

The next dialog in the sequence is the Specify Fields dialog,

shown in Figure 28-13, with the fields necessary to build the

Invoice Report. This dialog allows the selection and ordering

of the fields that will be placed somewhere on the report.

Figure 28-13. The second step in the sequence for creating a new report

layout is the Specify Fields dialog

To add fields to the list, select the appropriate table

occurrence from the pop-up menu and then use one of

these options:

Click the Move All button to copy all the available fields

over to the layout list.

Select one or more available fields and click the Move

button to copy them over to layout list.

Double-click directly on individual available fields to

quickly copy them over to the layout list.

Once added, dragging fields up or down in the list will

determine the order in which they are added to the new

report layout.

When the desired fields are selected, click the Next

button to continue to the next step.

Step 3 — Organize Records by Category

The next dialog in the sequence is the Organize Records by

Category dialog, shown in Figure 28-14, in which you can

specify one or more sort fields that act as grouping criteria

for the report’s sub-summaries.

Figure 28-14. The third step in the sequence for creating a new report layout

is the Organize Records by Category dialog

Report fields selected in Step 2 are displayed in the left-

hand list. These can be added to, removed from, or enabled

in the Report categories list as follows:

To add one or more fields into the Report categories list,

double-click directly on them in the Report fields list or

select them and click the Move button.

To remove one field from the Report categories list,

double-click on it in list or select it and click the Clear

button.

To remove all fields from the Report categories list, click

the Clear All button.

Once in the list, a field will be included as a summarizing

category for groups of sorted records. Enable the adjacent

check box to include a field in both the sub-summary layout

part and the body of the report.

In our invoice report example, the Invoice Year and

Invoice Month fields are both added as categories because

these will be used to summarize groups of Invoice records.

Once the desired options are selected, click the Next

button to continue to the next step.

Step 4 — Sort

Next in the sequence is the Sort dialog , shown in Figure 28-

15, in which you can specify a sort order from the list of

fields added to the report layout. This dialog contains a

typical sort interface (Chapter 4, “Sorting Records in the

Found Set”).

Figure 28-15. The fourth step in the sequence for creating a new report layout

is the Sort dialog

The Report fields list on the left contains a list of every

field added to the report. The Sort order list on the right

contains a list specifying how the records will be sorted

when the report is generated. Any fields added as Report

categories in Step 3, will automatically appear in the sort list

and be locked at the top of the sort order, as they are

required to establish the summarized groups.

One or more fields from the Report fields list can be

added to the Sort order list, each with the ability to be

sorted in Ascending order, Descending order, or in a Custom

order based on value list. There is an option to Reorder

based on a selected summary field. Sort fields will be used

in several forthcoming steps.

In our invoice report example, the Invoice Year and

Invoice Month fields are both added as categories because

these will be used to summarize groups of Invoice records.

They must be placed in the same order as their

corresponding sub-summary parts on the layout: year first,

month second.

Once the desired options are selected, click the Next

button to continue to the next step.

Step 5 — Specify Subtotals

The Specify Subtotals dialog , shown in Figure 28-16, will

only appear if the Specify subtotals check box was selected

in Step 1. This dialog allows the selection of one or more

summary fields that can be displayed above or below

groups of records sorted and categorized by selected fields.

Figure 28-16. The fifth step in the sequence for creating a new report layout is

the Specify Subtotals dialog

Across the top, a summary field can be selected for

inclusion on the report by clicking the Specify button. Next,

a field can be selected from the Category to summarize by

pop-up menu, which lists all the fields added as report

categories in Step 3. The Subtotal placement pop-up menu

specifies where the subtotal will appear in relation to the

group of records that it is summarizing, with the following

choices:

Above record group

Below record group

Above and below

Once these choices are made along the top of the dialog,

click Add Subtotal to insert them into the list below. Multiple

summaries can be added to the list to build up a more

robust report with additional levels of summarized hierarchy.

To remove one of the Subtotals from the list, select it and

click the Remove Subtotal button or type the Delete key.

In our invoice report example, the Invoice Count

Summary and Invoice Amount Summary fields are both

added as subtotals that will appear below the record group,

summarized by both Invoice Month and Invoice Year so that

they appear in both sub-summaries.

Once the desired options are selected, click the Next

button to continue to the next step.

Step 6 — Specify Grand Totals

The Specify Grand Totals dialog, shown in Figure 28-17, will

only appear if the Specify grand totals check box (Step 1)

was selected. This dialog works like the subtotal options in

Step 5 but uses summary fields to display a total of all

records on the report rather than a subset of them.

Figure 28-17. The sixth in the sequence for creating a new report layout is the

Specify Grand Totals dialog

A summary field can be selected and added to the list of

grand totals with the Grand total placement pop-up allowing

a choice of a location for the grand total relative to the

entire report, with the following options:

Beginning of report

End of report

Beginning and end

Once these choices are made along the top of the dialog,

clicking Add Grand Total will insert them into the list below.

Multiple summaries can be added to the list to create a

more robust report. To remove a Grand Total from the list,

select it and click the Remove Grand Total button or type

the Delete key.

In our invoice report example, the Invoice Count

Summary and Invoice Amount Summary fields are both

added as grand totals that should appear at the end of the

report.

Once the desired options are selected, click the Next

button to continue to the next step.

Step 7 — Header and Footer Information

The Header and Footer Information dialog, shown in Figure

28-18, allows the selection from a menu of standard

information that can be automatically placed on the new

layout in six different locations: the left, center and right on

the Header (top) and Footer (bottom).

Figure 28-18. The seventh step in the sequence for creating a new report

layout is the Header and Footer Information dialog

The pop-up menus are the same for all six options and

include the following values:

None — Nothing will be added to this region on the new

layout.

Page Number — This choice will place the

{{PageNumber}} placeholder on the layout in the

desired position. This symbol will be dynamically

replaced with the current page number when printing

the report or viewing in Preview mode.

Current Date — This choice will place the

{{CurrentDate}} placeholder on the layout in the

desired position. This symbol will be dynamically

replaced with the current date when printing the report

or viewing in Preview mode.

Layout Name — This choice oddly places a literal text

string containing the layout name on the layout in the

desired position instead of the dynamically updating

{{LayoutName}} placeholder.

Large Custom Text — This choice displays a Custom Text

dialog, shown in Figure 28-19, into which any custom

text string can be entered, which will be added to the

layout in the desired position in a large font size.

Figure 28-19. The Custom Text dialog for specifying literal text to add to

the newly created layout

Small Custom Text — This choice displays a Custom Text

dialog, into which any custom text string can be

entered, which will be added to the layout in the desired

position in a small font size.

Logo — This choice displays an Insert Picture file

selection dialog, which allows the selection of a picture

file, which will be added to the layout in the desired

position.

Once the desired options are selected, click the Next

button to continue to the next step.

Step 8 — Create a Script

The Create a Script for this Report dialog, shown in Figure

28-20, allows the automatic creation of a FileMaker script to

generate the report.

Figure 28-20. The eighth step in the sequence for creating a new report layout

is the Create a Script for this Report dialog

With the Do not create a script radio button selected, the

setup process will not create a script for the report. The user

must perform a find, navigate to the report, sort records,

and print or preview the report manually, unless a developer

manually creates a script to do so.

Clicking the Create a Script radio button will prompt the

report setup process to automatically create a script. Enter

a name for the new script in the adjacent Script name text

area. The name will default to the same name as the layout

being created, but can be modified to be more descriptive if

desired. The script will include up to three steps

automatically configured depending on other options in this

process:

Enter Browse Mode

Go to Layout

Sort Records

The Sort Records script step will only be included if sort

fields were specified in Step 4. Selecting the Run script

automatically check box, will automatically assign an

OnLayoutEnter Script Trigger (Chapter 37) that will be

configured to run the new script whenever a user or another

script navigates to the layout being created.

Once the desired options are selected, click the Finish

button to continue to complete the creation of the new

layout.

Refining the Report Layout

Once the report layout is created, it can be further refined

and customized as needed. The example shown in Figure

28-21 shows the resulting Invoice Report layout based on

the options selected in the setup assistant and helps to

illustrate the need for further refinement.

Figure 28-21. The layout automatically created based on the options selected

in the setup assistant dialogs

Some of the issues with the default report configuration

include:

The height of various parts might need to be tightened

up to save space.

The background color choices will be based on your

current theme and may not be appropriate for a printed

report.

If a logo was included, the size and position might

require adjustment.

Additional text can be added to the Header such as a

company and report name.

The font, size, and position choices for the fields may

not suit your preferences.

The field labels for the body are automatically added

into the Header. These can be moved down to the sub-

summary just above the body part so they are repeated

directly above each group of fields. Also, the field labels

automatically show the full name of the field and may

overlap as shown. These can be edited and adjusted in

size to make them fit more appropriately.

Additional Options for New Label Layouts

When creating a new layout for printing labels, there are

two additional dialogs that assist in the configuration of the

layout.

Step 1 — Specify Label Layout

The Specify Label Layout dialog , shown in Figure 28-22,

provides an intuitive interface for specifying label

dimensions and assist in creating a new layout for printing

labels.

Figure 28-22. The Specify Label Layout dialog

The dialog contains two primary choices:

Use label measurement for — Choosing this option

activates a pop-up menu listing popular Avery and

Dymo label sizes. Once selected, the dimensions and

configuration of labels on the page are automatically

entered.

Use custom measurements — This option enables the

label measurement settings in the lower portion of the

dialog. Use this to enter custom configuration and

dimensions for labels not available using standard

labels. Here you can enter the number of labels across a

page, width, and height, and optionally, edit fixed page

margins for Top, Bottom, Left, and Right.

Step 2 — Specify Label Contents

The second step when creating a label layout is the Specify

Label Contents dialog, as shown in Figure 28-23. This dialog

allows the quick construction of a single sequence of merge

fields that will be automatically placed on the layout when it

is created .

Figure 28-23. The Specify Label Content dialog

This dialog allows the selection and insertion of merge

field tags into the Label contents text area. Mentioned

Chapter 27 and 30, a merge field is the name of a field

encased in a set of left-shift (<<) and right-shift (>>)

symbols that, when present on a layout, will be rendered in

non-Layout modes as actual field contents for the current

record. Merge fields can be intermixed with any other text

contents such as static values and paragraph carriage

returns to create a formula for generating multi- line label

content.

To add a field to the Label contents area, either double-

click it in the list or select it in the list and click the Add Field

button. You can selectively edit the Label contents by

highlighting some or all the text and typing the Delete key.

To completely clear all data entered so far, click the Clear All

button.

Additional Options for New Envelope Layouts

When creating a new layout for printing envelopes, there is

a single dialog that assists. The Specify Envelope Contents

dialog, shown in Figure 28-24, enables the quick

construction of a sequence of merge fields that will be

automatically placed on the layout when it is created.

Figure 28-24. The Specify Envelope Content dialog

This dialog allows the selection and insertion of merge

field tags and other text in the exact same manner as the

Specify Label Contents dialog .

Duplicating an Existing Layout

Duplicating an existing layout has the advantage of

precisely replicating the position and size of every layout

part and object from the original onto the duplicate. This is a

benefit when designing many complex layouts with a

uniform design.

There are two methods to duplicate a layout:

Navigate to the layout that you want to duplicate and

select the Layouts > Duplicate Layouts menu.

Open the Manage Layouts dialog from the Layouts pop-

up menu in the toolbar and use the duplicate feature

there (see “Managing Layouts” later in this chapter).

Either method will immediately create a duplicate copy of

the layout and display it as the current layout. The new

layout will have the same name as the original with the

word “Copy” appended to it. Everything else about the

layout will be the same as the original including all parts,

theme, objects, formatting, and settings as well as the

assigned table occurrence. Once created, the new layout

can be renamed and edited as needed.

Configuring Layouts

Once a layout is created, there are many layout

configuration settings that customize its features and

behavior.

Exploring the Layout Setup Dialog

The Layout Setup dialog contains options that control the

behaviors, appearance, and functions of the layout. This

dialog can be opened by any of the following methods:

Select the Layouts > Layout Setup menu.

Click the Layout Setup icon in the lower portion of the

toolbar next to the Layout pop-up menu.

From the Manage Layouts dialog, double-click a layout

or select a layout and clicking the Edit button.

The dialog is divided into four tabs:

General

Views

Printing

Script Triggers

General

The General tab of the Layout Setup dialog, shown in Figure

28-25, contains general settings of the current layout.

Figure 28-25. The General tab of the Layout Setup dialog, showing default

values for check boxes

The controls on the General tab of the Layout Setup

dialog include:

1. Layout Name — This text area contains the name of

the layout and can be modified as needed. Although

FileMaker will allow you to create two layouts with

the same name, to avoid confusion, this should be

avoided.

2. Include in layout menus — Check this box to have

the layout name appear in the toolbar Layout pop-

up menu and the View > Go to Layout menu when

viewing the database in any non-Layout mode.

3. Show records from — This pop-up menu contains a

list of every table occurrence in the database. The

selected occurrence establishes both the relational

context for the layout and determines which table’s

records will be displayed on the layout when

browsing. If the selection is changed for a layout,

the relationship context for any fields will need to

be changed.

4. Save record changes automatically — Check this

box to automatically save changes anytime a user

or script commits a record by clicking on the

background away from any field, navigating to a

new record or closing the file. If left unchecked,

when performing any of these actions, a dialog will

appear asking if the user wants to save changes,

giving them the following options:

Save — closes the record and saves changes.

Cancel — returns to edit mode within the record

without saving.

Don't Save — reverts to the previous values in

every field that was modified during the user’s

editing session.

5. Show field frames when record is active — When

editing a record, the field with focus will be styled

uniquely according to its layout settings. Checking

this box will cause the borders of every other field

on a layout to be displayed with dotted lines,

emphasizing that the record has editing focus.

6. Delineate fields on current record only — Enabling

this check box will change the way field borders and

fills are displayed in Browse mode when viewing

List layouts. When checked, only the current record

will display field border and fill settings. While fields

on other records will still draw their content, they

will not display any border or fill settings at all if this

box is enabled. Any empty fields will seem to

disappear.

7. Show current record indicator in list view — When

this box is checked, a small vertical black bar will

appear along the left side of the currently selected

record in a list view. This provides a somewhat

outdated way of indicating which record has active

focus. The Use active row state check box on the

Part Definition dialog for the Body part provides a

preferable modern method of identification of the

current record.

8. Menu Set — This pop-up menu lists all menu sets

defined in the file and an option to open the

Manage Custom Menus dialog (Chapter 33).

9. Enable Quick Find — This check box allows enabling

or disabling of the Quick Find feature (Chapter 4) for

the entire layout. When the feature is enabled and

some fields have had their Quick Find feature

turned off in the Layout Inspector (Chapter 29),

clicking the Reset Quick Find button here will return

all fields back to their default setting.

Views

The Views tab of the Layout Setup dialog, shown in Figure

28-26, controls which Content Views will be available to

users for the current layout (Chapter 3, “Defining Content

Views”).

Figure 28-26. The Views tab of the Layout Setup dialog, showing default

values for check boxes

This dialog contains a set of three check boxes that

determine which content view types are accessible to a user

through the toolbar and which is the default when a user or

script first navigates to a layout.

When the Table view check box is selected, the adjacent

Properties button becomes enabled. This button will open

the Table View Properties dialog, shown in Figure 28-27,

which provides control over how a layout appears in Browse

mode when viewed in Table view.

Figure 28-27. The Views tab of the Layout Setup dialog, showing default

values for check boxes

This dialog has the following controls for Grids:

Horizontal — Check this box for the view to display grid

lines horizontally between records.

Vertical — Check this box for the view to display grid

lines vertically between fields.

Grid style — The color well contains the current color

selection for grid lines. Click here to open a color palette

from which you can select and assign a new color.

Line Style — The pop-up menu selection controls the

line style and contains the following values: None, Solid,

Dashed, and Dotted.

The next section of the dialog contains four check boxes

that determine if those Parts, when present in the layout’s

defined structure, will be visible in other non-layout modes.

The choices are:

Top Navigation

Header

Footer

Bottom Navigation

The third section of the dialog contains choices that

control column headings. The options are:

Include column headers — Check this box to make

column headers visible. When selected, the two other

check boxes become enabled.

Resizable columns — Check this box to allow a user to

resize the columns for their view.

Reorderable columns — Check this box to allow a user

to reorder the columns by dragging and dropping them

between other columns.

The final section of the dialog controls the height of the

record rows. Check the box to activate custom row height

and enable the adjacent controls. Then you can enter a row

height number in the text area and choose a unit of Inches,

Centimeters, or Points.

Printing

The Printing tab of the Layout Setup dialog, shown in Figure

28-28, contains controls for print settings of the layout’s

columns and page margins. These should not be confused

with settings for print and paper size that are accessible

through the File > Page Setup and File > Print menus.

Instead, these focus on spacing and columns of the layout

as a means of controlling the available printable area in

which to place fields and other layout objects.

Figure 28-28. The Printing tab of the Layout Setup dialog

Specifying Multiple Columns

Selecting the Print In check box will cause the layout to be

divided into the number of columns specified in the adjacent

text area. When selected, the radio buttons immediately

below become enabled and allows a choice of the following

two directional flows for the records:

Across first — This option will cause records to flow in

order from left to right in as many columns as specified

before starting a new row and continuing this process

down the page.

Down first — This option will cause records to flow from

top to bottom until reaching the end of the page and

then moving to the next column, repeating this for the

specified number of columns before starting a new

page.

When configured to print in columns, certain layout parts

will appear shaded in Layout mode. This indicates non-

editable areas that will become additional columnar

instances of the unshaded areas.

Specifying Fixed Page Margins

When selected, the Use fixed page margins check box

specifies fixed page margins in the text areas provided.

By default, you can enter a measurement for the Top,

Bottom, Left, and Right of the page. The units for these text

areas will match the current unit selection in the window’s

ruler. When the Facing Pages check box is selected, the Left

and Right measurement are renamed and repurposed for

Inside and Outside measurements.

Script Triggers

The Script Triggers tab of the Layout Setup dialog, shown in

Figure 28-29, contains controls for triggering scripts in

response to layout events (Chapter 37).

Figure 28-29. The Script Triggers tab of the Layout Setup dialog

Deleting Layouts

Deleting an unused layout can be performed one of two

ways:

Navigate to the layout that you want to delete and

select the Layouts > Delete Layouts menu item.

Open the Manage Layouts dialog from the Layouts pop-

up menu in the toolbar and use the delete feature there.

FileMaker will present a dialog confirming that you want

to delete the layout. Click Delete to permanently delete the

layout from the file or Cancel to stop the deletion process.

Using the Manage Layouts Dialog

At the top of the Layout pop-up menu in the second row of

the toolbar is a Manage Layouts option that opens a dialog

of the same name, shown in Figure 28-30.

Figure 28-30. The Manage Layouts dialog

The Manage Layouts dialog integrates into one simple

dialog the ability to quickly create, view, locate, edit,

duplicate, delete, and open layouts. It also provides the

exclusive functions of reordering, adding separator lines and

grouping layouts into folders. The following controls are

available on this dialog:

1. Layout List — The central area contains a list of

every layout defined in the file, showing columns

containing the Layout Name, Associated Table, and

Assigned Menu Set. Drag a layout, folder, or

separator line up and down the list to reorder, or

drag them inside of folders to re-group.

2. Quick Filter Popup — This pop-up menu contains a

list of every layout folder defined in the list below.

Selecting a folder from the list will filter the list

down to include only those layouts that are

contained within that selection. The default value,

and the only option when there are no folders

defined, is Show All.

3. Search Filter — Type text into the search field to

filter the list of layouts to only include those whose

name contains the text entered.

4. Include in layout menus — This check box and the

ones above it next to each individual layout

determine if the layout name will appear in the

toolbar’s Layout pop-up menu and the View > Go to

Layout menu when in non-Layout modes such as

Browse. Select multiple layouts to enable or disable

this check box across a batch of layouts all at once.

hi b d h h d

5. New — This button and the attached pop-up menu

create items in the list above. Click the button or

select New Layout/Report from the adjacent menu

to start the process of adding a new layout to the

file, described earlier in this chapter. The menu

includes options for creating a separator line and

folder in the list, which are both useful methods for

delimiting and organizing layouts.

6. Edit — Select a layout and click this button to open

the Layout Setup dialog.

7. Duplicate — This button will duplicate the layout(s)

selected in the list.

8. Delete — This button will delete the layout(s)

selected in the list after presenting a confirmation

dialog.

9. Open — This button will open a new window for the

selected layout(s).

Tip As a database file’s list of layouts grows, it is a good

idea to organize them into folders. The easiest way to do

this is by their associated table; however, you may decide

to use some other organizational methodologies based on

your own preferences. Folders can be nested

hierarchically, so you can create sub-groupings based on

various criteria, such as category of table or making a

distinction between layouts intended for users vs. layouts

intended for developers or hidden script access.

Optimizing Layout Performance

FileMaker provides some guidance for optimizing layouts for

efficient performance. These include:

In places where multiple records are displayed at once,

like a List view or portal, try to minimize the number of

layout objects displayed simultaneously.

Within a single layout, try to minimize the number of

advanced controls such as portals and panels.

Divide complex layouts across multiple smaller layouts

instead of trying to fit everything into a single view.

Keep the quantity and size of shadows on objects to a

minimum.

Minimize the number of unstored calculations.

Use script triggers sparingly, only when necessary.

Use custom themes and custom styles instead of

overriding formatting directly on objects without

updating the theme.

Summary

In this chapter, we discussed planning an interface and

creating, deleting, managing, and optimizing layouts.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_29

29. Exploring Layout Palettes

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

FileMaker provides three palettes for adding, manipulating,

and configuring layout objects. In this chapter, we explore

all the options available on these:

Field picker

Inspector

Layout objects

A familiarity with the various tools and settings available

on these palettes is essential when building layouts.

Exploring the Field Picker

The Field Picker, shown in Figure 29-1, is a palette that

integrates many field functions including the selection and

placement of fields onto a layout. The visibility of the Field

Picker can be toggled using any of the following methods

while in Layout mode:

Select the View > Field Picker menu.

Click the Field Picker button in the second row of the

toolbar.

Figure 29-1. The Field Picker palette

The following controls are available on the Field Picker

palette:

1. Table Occurrence — This pop-up menu contains a

list of every table occurrence organized into two

groups: those related to the current layout’s table

and those not related. The default selection will

always be the current layout’s table.

2. Manage Database — This button provides a shortcut

to quickly open the Manage Database dialog

(Chapters 7-9).

3. Search fields — When typing into this area, the list

of fields below will be filtered to include only those

of fields below will be filtered to include only those

whose name contains the text entered.

4. Sort fields — This icon contains a pop-up menu that

offers the following sort options for the list of fields:

Creation Order, Field Name, Field Type, and Custom

Order.

5. Fields — This area lists the fields for the selected

occurrence’s table, either every field, or those

consistent with any filtering criteria entered. There

is a deceptively large number of features integrated

into this list. Double-click a field to edit its defined

name. Click on the adjacent data type to reveal a

hidden pop-up menu, used to change the defined

format of the field. One or more fields can be

selected and dragged onto the current layout where

they will be added in a default size and format

based on their data type and the Field Placement

options selected at the bottom of the palette. Also,

the field list’s contextual menu, contains the

following two options:

Field Options — Choose this item to directly

open the Options for Field dialog for the

selected field. This allows fast changes to field

definitions.

Delete Field — Choose this item to permanently

delete the field from the table after a warning

dialog.

6. New Field — This button provides a shortcut for

quickly creating a new field in the selected

occurrence’s table. The new field will appear in the

list, highlighted so a name and data type can be

quickly assigned before it is dragged onto the

layout.

7. Field Placement — These two buttons control

whether fields dragged onto a layout will be placed

side by side horizontally or stacked one above

another vertically. The former is good for list

layouts while the latter is better for form layouts.

8. Labels — These four buttons control if a field label is

automatically created when a field is dragged onto

the layout and where that label is placed in relation

to the field.

Caution The palette features that allow editing of a

field’s definition or the creation of new fields directly from

the palette will not be available to a user with security

access to edit layouts without access to define fields.

Exploring the Inspector

The Inspector is a palette packed full of configuration

controls that are used to edit the format and behavior

settings of a selected layout part or object. The options on

the palette will dynamically enable, disable, and reconfigure

to provide only the settings applicable to the object(s)

selected.

The Inspector can be displayed or hidden by toggling the

View > Inspector menu item. The Inspector palette will

retain its last size and screen location when toggled on or

off and even from one session to the next.

The controls on the Inspector are spread across the

following four panels, each represented by an icon running

along the top of the palette:

Position

Style

Appearance

Data

Each of these panels has various controls that are

grouped into collapsible regions, which can be opened or

closed in any combination.

Tip For fastest access to tools in the Inspector, open it

to the maximum height with all the regions expanded.

It is possible to open multiple instances of the

Inspector simultaneously and position them anywhere on

the available display space. This makes it possible to

have all four panels open and fully expanded to provide

the fastest access to the variety of settings and tools

within.

Panel One — Defining Position Settings

The Position settings are located on the first panel of the

Inspector and are divided into five collapsible regions.

Position

The Position group, shown in Figure 29-2, contains options

for naming and position.

Figure 29-2. The Position subgroup of the Position panel of the Inspector

The following controls are available in this group:

1. Name — This text area allows the entry of an object

name for the selected object (Chapter 31, “Naming

Objects”).

2. Tooltip — This text area allows the entry of static or

formula-generated text that will be displayed as a

standard operating system style tooltip when the

user positions the cursor over the object in Browse

mode. The adjacent icon button will open a Specify

Calculation dialog into which more complex

formulas can be entered.

3. Position — These four text areas allow precise

positioning of the object within the layout area by

defining the Left, Top, Right, and Bottom values as

an alternative to manually moving the object

around the layout with the mouse These numbers

around the layout with the mouse. These numbers

are locked in proportion, so changing one value will

automatically adjust the opposing value to maintain

the Width or Height values entered below.

4. Size — These two text areas allow precise sizing of

the object within the layout area by defining a

Width and Height value as an alternative to

manually expanding or contracting the dimensions

with the mouse.

Tip The position and size units will match the current

ruler’s settings but can be changed by clicking on the unit

labels, which cycles through the options: centimeters

(cm), points (pt), inches (in).

Autosizing

The Autosizing group, shown in Figure 29-3, contains

anchoring controls that allow fine control over how an object

moves or grows when a user resizes the window.

Figure 29-3. The Autosizing subgroup of the Position panel of the Inspector

The selected object(s) can be anchored to the Left, Top,

Right, or Bottom of the layout by toggling the lock icon on or

off on the respective side of the box. A lock on any side

means that the distance between that side of the object and

the corresponding edge of the layout will remain fixed as

the window is resized while unlocked means that distance

will vary. By using various combinations of locked and

unlocked, an object can be made to either:

Remain firmly in place at the same size by anchoring it

to a corner such as locking Top and Left.

Slide to the right or down as the window is resized by

anchoring it just to the Bottom and/or Right sides.

Grow in width and/or height as the window is resized by

anchoring it to two opposing corners such as Left/Right

or Top/Bottom.

Float in the center of the window as it is resized by

anchoring it to no side.

Arrange & Align

The Arrange & Align group, shown in Figure 29-4, contains

numerous buttons that control object alignment, distributed

space, relative size, group status, arrangement, and locked

status.

Figure 29-4. The Arrange & Align subgroup of the Position panel of the

Inspector

The following controls are available in this group:

Align — These six buttons allow quick alignment two or

more selected objects by Left, Center, Right, Top,

Middle, or Bottom.

Space — These two buttons allow quick distribution by

two or more selected objects evenly Horizontally or

Vertically.

Resize — These six buttons allow quick synchronization

of the sizes of two or more selected objects to a uniform

height and/or width based on the smallest or largest

among them.

Group — These two buttons allow you to quickly Group

or Ungroup one or more selected objects.

Arrange — These four buttons allow quick changes to

the stacked arrangement of one or more selected

objects in relation to other objects on the layout: Bring

to Front, Bring Forward, Send Backward, Send to Back.

Lock — These two buttons allow you to quickly Lock or

Unlock one or more selected objects.

Tip Each of these settings are available in the Arrange

menu and can therefore be invoked from the keyboard

using a menu’s corresponding Command key

combination.

Sliding & Visibility

The Sliding & Visibility group, shown in Figure 29-5, contains

several check box options that control how objects behave

when printing a layout or viewing it in Preview mode.

Figure 29-5. The Sliding & Visibility subgroup of the Position panel of the

Inspector

The following controls are available in this group:

1. Sliding left — Enable this check box to cause the

selected object(s) to shrink its width to the

minimum required to display its content and to slide

left as far as possible based on the other objects

within the same horizontal plane.

2. Sliding up based on — Enable this check box to

cause the selected object(s) to shrink its height to

the minimum required to display its content and to

slide up as far as possible based on the other

objects in the same vertical plane. When this object

is selected, other options below will become

enabled:

a. All objects above — Choose this option to

j p

cause the selected object(s) in a common

horizontal plane to slide up together based

on the amount the objects above have

been resized.

b. Only objects directly above — Choose this

option to cause the selected object(s) in a

common horizontal plane to slide up

independent of each other based on the

amount the objects above have been

resized.

c. Also resize enclosing part — Enable this

check box to cause the layout part

enclosing the selected object(s) to also

shrink vertically based on the amount that

the selected objects shrink.

3. Hide when printing — Enable this check box to

cause the selected object(s) to be hidden when

printing or previewing the layout.

Grid

The layout grid is a sequence of evenly spaced horizontal

and vertical lines overlaid on a layout background that form

a regular grid of minor and major areas, shown in Figure 29-

6. This is only visible in Layout mode and can assist with

precision manual placement and spacing of objects.

Figure 29-6. The grid visible on the background of a layout

The Grid group, shown in Figure 29-7, contains settings

that allow control over the layout grid for the entire file.

Figure 29-7. The Grid subgroup of the Position panel of the Inspector

The following controls are available in this group:

1. Show grid — Enable this check box to make the grid

visible on all layouts within the file. This can also be

toggled by selecting the View > Grid > Show Grid

menu item.

2. Snap to grid — Enable this check box to cause

layout objects to always fall on a grid lines as you

drag them around a layout.

3. Major Grid Spacing — This text area contains the

major grid spacing and can be overridden with a

custom value.

4. Minor Grid Steps — This text area contains the

number of minor steps within each major grid area

and can be overridden with a custom value.

Panel Two — Style Settings

The Style settings are located on the second panel of the

Inspector and shown in Figure 29-8.

Figure 29-8. The Style panel of the Inspector

This panel provides information about the layout’s

assigned theme and allows saving theme changes.

Depending on the state of the Show All check box, the list

displays either a list of all defined styles organized by object

type or only those applicable to the selected object type.

The selected object’s assigned style is always highlighted.

Click on a style to apply it to the selected object.

Note For more information about Themes and Styles,

see Chapter 32.

Panel Three — Appearance Settings

The Appearance settings are located on the third panel of

the Inspector and are divided into six regional categories, all

but one of which can be collapsed or expanded.

Theme and Style

The Theme and Style group, shown in Figure 29-9, is non-

collapsible and displays information about the theme and

style of the layout and selected object(s).

Figure 29-9. The Theme and Style subgroup of the Appearance panel of the

Inspector

The following controls are available in this group:

1. Theme — This area displays the name of the theme

assigned to the current layout. The adjacent icon

hides a pop-up menu that allows saving, renaming,

or reverting of theme changes.

2. Style — This area displays the name of the style of

the currently selected object(s). The adjacent icon

hides a pop-up menu that allows saving, renaming,

or reverting of style changes.

3. Object Type — This pop-up menu automatically

displays the object type of the currently selected

object(s). For object types that are made up of a

hierarchy of components, this list will contain all

available component types for the select object

type. For example, when a portal is selected, the list

will include Portal and Portal:Row, since each of

these can have different appearance formatting.

4. Object State — This pop-up menu displays a list of

available object states for the selected object. Each

state can have different format settings so the

selection from this list indicates which state is being

edited with the controls in the rest of the

Appearance panel. While some objects have

additional states available, an object state is

generally one of four possible conditions with

respect to the user’s interaction with the object:

a. Normal — The state of the object when it is

displayed on a layout without active

interaction.

b. Hover — The state of the object when the

user places the cursor over it without

clicking.

c. Pressed — The state of the object when the

user has pressed the mouse button onto

the object and not yet released it.

d. In focus — The state of the object when it is

active. For example, a field is considered in

focus when the cursor is within it as the

user is entering data.

5. Copy Paste Style — These two sets of buttons allow

the selected object type or state styling to be

copied and then pasted onto other objects.

Note For more information about an object’s Theme,

Style, Type, and State, see Chapter 32.

Graphic

The Graphic group , shown in Figure 29-10, contains controls

over the graphical settings of the chosen state of the

selected layout object.

Figure 29-10. The Graphic subgroup of the Appearance panel of the Inspector

The following controls are available in this group:

1. Fill Type — This pop-up menu contains four options

for the fill of an object:

a. None — The object will be transparent.

b. Solid Color — The object can be assigned a

color by selecting it from the color well in

the Fill Settings area below the menu.

c. Gradient — The object can be assigned

gradient settings in the Fill Settings area

below the menu. Two or more gradient color

stops can be defined to establish the range

and variety of color. Buttons allow for the

selection of gradient, linear, or radial; the

direction can be reversed and the angle

customized.

d. Image — The object can be assigned an

image that will be displayed as its

background fill. The pop-up menu allows

selection of how the image is handled with

the following options: Original Size, Scale to

Fit, Scale to Fill, Slice and Tile.

2. Fill Settings — This area changes to present settings

specific to the selected Fill Type.

3. Line Style — This pop-up menu offers a choice of

line style for the selected object’s border: None,

Solid, Dashed, and Dotted.

4. Line Thickness — This combination text area and

drop-down menu allows the entry or selection of a

number representing the thickness of the line.

5. Line Color — Clicking this color well allows the

selection of a line color from a palette

selection of a line color from a palette.

6. Line Border — These icon buttons allow toggling of

specific line border settings: All borders, Left, Top,

Right, Bottom, and between field repetitions of

repeating fields.

7. Line Corner Radius — This combination of text area

and four icon buttons allows control over the radius

of corners. Enter the percentage of desired

rounding on the object corners into the text area

and click buttons that correspond with the corner(s)

to which this will apply.

Advanced Graphic

The Advanced Graphic group, shown in Figure 29-11,

contains controls over the advanced graphical settings of

the chosen state of the selected layout object.

Figure 29-11. The Advanced Graphic subgroup of the Appearance panel of the

Inspector

The following controls are available in this group:

1. Effects — Two check boxes allow the application of

an outer and inner shadow effect to the selected

objects. Once selected, the adjacent icon button

becomes enabled allowing specific configuration of

the effect settings.

2. Effect Settings — Each button opens a pop-up panel

with the following settings for the effect:

a. Color — The color well shows the selected

color of the effect. Clicking it will open a

color palette from which a new color can be

assigned.

b Horizontal Offset — The number within this

b. Horizontal Offset The number within this

text area dictates how far the shadow effect

extends to the right of the object (Outer

Shadow) or in from the left side of the

object (Inner Shadow).

c. Vertical Offset — The number within this

text area dictates how far the shadow effect

extends beneath the object (Outer Shadow)

or in from the top of the object (Inner

Shadow).

d. Opacity — The number within this text area

indicates the percentage of opacity of the

shadow effect.

e. Blur — This number indicates the amount of

blur applied to the shadow effect.

f. Spread — This number indicates the

amount of spread applied to the shadow

effect. The spread is the amount of height

and width applied to the shadow beyond

the size of the original object.

3. Padding — An object’s padding is the amount of

distance between the border of the object and the

content contained within it. The four text areas

allow specific distance to be specified between the

content and the Top, Left, Bottom, and Right sides

of the object. These settings may compete with

those of Indentation in the Paragraph group and

may cause confusion if used in simultaneously.

Text

The Text group, shown in Figure 29-12, contains controls of

the text and style settings of the chosen state of the

selected layout object.

Figure 29-12. The Text subgroup of the Appearance panel of the Inspector

The following controls are available in this group:

1. Font Family — This pop-up menu lists every font

installed on the local computer and is used to

change the font assigned to the selected object.

FileMaker automatically summarizes fonts into

families where possible and lists the available styles

in the Font Style pop-up menu below.

2. Font Style — If the selected Font Family contains

multiple styles those are available in this pop up

multiple styles, those are available in this pop-up

menu.

3. Font size — This combination text area and pop-up

menu allows the entry or selection of a size for the

selected object’s text.

4. Text color — This opens a text color selection

palette.

5. Text style — This row of buttons and adjacent pop-

up menu are used to apply text styles to the

selected object. Between the two, the available

options are the following:- Highlight, Bold, Italic,

Underline, Plain, Word Underline, Double Underline,

Strike Thru, Condense, Extend, Small Caps, Title

Case, Uppercase, Lowercase, Superscript, and

Subscript. When a selected Font Family contains

style options that FileMaker automatically separates

into the Font Style pop-up menu, the interface

elements on this row will synchronize with that

menu.

6. Text baseline — This pop-up menu allows the

selection of one of the following baseline types for

the text within a field: None, Solid, Dashed, or

Dotted.

7. Baseline thickness — This combination text area

and drop-down menu allows the entry or selection

of a number representing the thickness of the text

baseline for the selection field.

8. Baseline color — The color well shows the selected

color of the text baseline. Clicking it will open a

color palette from which a new color can be

color palette from which a new color can be

assigned.

9. Baseline offset — This text area contains a number

indicating the amount of offset for the baseline in

the selected field.

Paragraph

The Paragraph group, shown in Figure 29-13, contains

controls over the paragraph alignment and spacing settings

of an interface state of the selected element.

Figure 29-13. The Paragraph subgroup of the Appearance panel of the

Inspector

The following controls are available in this group:

1. Alignment — This row of buttons control the

horizontal and vertical alignment of text within the

object. The horizontal settings are Left, Center,

Right, Full Justification. The vertical settings are Top,

Middle, Bottom.

Line spacing — This row of settings allows

2.

e spac g s o o se gs a o s

adjustment to the line spacing of the text of the

object. You can adjust the number for Height, space

Above and Below, as well as select the type of Units

from the pop-up menu, choosing between the

default lines and a unit of measure: centimeters,

inches, or points.

3. Indents — This row of settings allows adjustment to

the indentation of the text in the object. You can

adjust the number for indenting the First line, Left,

or Right as well as select a preferred unit of

measure: centimeters, inches, or points.

Caution The Line Spacing and Indents settings may

compete with those of Padding in the Advanced Graphic

group and may cause confusion if used simultaneously.

Tabs

The Tabs group, shown in Figure 29-14, provides control

over the tab settings of a selected object.

Figure 29-14. The Tabs subgroup of the Appearance panel of the Inspector

Click the + or – buttons to add or remove Tab positions

from the list. Click on a Tab position to edit the

measurement and to choose an Alignment and Leader

character.

Panel Four — Data

The Data settings are located on the fourth and final panel

of the Inspector and are divided into three collapsible

regions.

Field

The Field group, shown in Figure 29-15, contains controls

over the settings of a selected field.

Figure 29-15. The Field group of the Data panel of the Inspector

The following field controls are available in this group:

1. Display data from — This text area controls which

table field is assigned to a selected field object on

the layout. The adjacent button allows

reassignment of the field object to a different field

through a Specify Field dialog.

2. Placeholder text — This text area contains static

text or a formula that evaluates to text, which will

be displayed in a field when it is empty. This can

replace field labels or be an additional helpful hint

about the field’s intended content.

3. Show placeholder in Find mode — This check box’s

state determines if a field’s placeholder text is

displayed in Find mode or not. Alternatively, the

actual formula can contain conditional clauses that

evaluate to a different result depending on the

current window mode.

4. Control style — This pop-up menu selects a field

control style for the selected field. The settings in

the shaded area below it will vary depending on the

style selected. Control styles include:

Edit box — The field will be formatted as a

standard field area, with or without a scroll bar,

into which a user can click to begin data entry.

Drop-down list — The field will be formatted as

an edit field with an optional attached value list,

allowing a user to select or type a value.

Depending on the settings, the list will appear

instantly when the user enters the field or when

they click an optional attached arrow icon. It

can be configured to present potential matching

values as they begin typing, which can auto-

complete the entry.

Pop-up menu — The field will take the form of a

pop-up menu, displaying a value list. Users can

p p p p y g

choose or paste in a value but can’t type

directly into the field.

Check box set — The field will display value list

items as a set of check boxes. Users can select

or unselect values with mouse clicks or by

pasting. The field will contain a carriage-return

delimited list of selected or entered values but

will only display on a layout check boxes for

those defined in the assigned value list.

Radio button set — The field will display a value

list as a set of radio buttons allowing a single

value selection.

Drop-down calendar — The date field will be

formatted as an edit field into which the user

can type a date with an optional drop-down

graphical calendar to facilitate faster data entry.

Concealed edit box — The field will be

formatted as a standard field area but all data

typed will be obscured will bullets (but not

encrypted).

5. Show repetitions — These settings allow control

over which repetitions of a field are displayed on

the layout and the orientation in which they are

drawn.

Note Control Style options are discussed in more detail

in Chapter 30.

Behavior

The Behavior group, shown in Figure 29-16, contains

controls that affect various object behaviors on the layout

such as visibility, mode accessibility, and other features.

Figure 29-16. The Behavior group of the Data panel of the Inspector

The following field controls are available in this group:

1. Hide object when — This text area contains a

calculation formula that, when evaluated to a result

of true, will cause the object to be hidden in any

non-Layout mode. A formula can be typed or pasted

directly into the field, or the adjacent button can be

used to open a Specify Calculation dialog for

creating more complex formulas.

2. Apply in Find mode — Enable this check box to

apply the Hide object when formula in Find mode.

Alternatively, the actual formula can contain

conditional clauses that evaluate to a different

result depending on the current window mode.

3. Field entry — These check boxes control when a

user can click into the selected field or not and what

happens when they do:

a. Browse mode — Enable this check box to

allow a user to click into the field in Browse

mode.

b. Find mode — Enable this check box to allow

a user to click into the field in Find mode.

c. Select entire contents on entry — Enable

this check box to automatically select the

entire contents of the field when a user

clicks into it. This is useful when a value is

likely to change completely every time a

user makes an edit.

4. Go to next object using — These check boxes

control if the Tab, Return, and Enter keys jump to

the next field or are entered into the field as literal

text. By default, FileMaker uses a Tab keystroke to

jump between fields and an Enter keystroke to

commit a record. These check boxes allow that

behavior to be overridden.

5. Include field for Quick Find — Enable this checkbox

to allow the selected field to be included in Quick

Find feature (Chapter 4; Searching with Quick Find).

6. Do not apply visual spell checking — Enable this

check box to exclude the selected field from visual

spell checking.

7. Select input method — This pop-up menu contains

options for choosing a specific input language

method for the selected field in situations where

certain foreign languages are used such as

Japanese.

8. Touch keyboard type — This pop-up menu contains

a choice over which keyboard type will be available

to the user when they click into the selected field

on an iOS device. For layouts that will be used on

such devices, this allows a specific keyboard to be

specified that relates to the field’s data type (text,

number) or its intended content (email, phone,

URL).

Data Formatting

The Data Formatting group provides control over the

formatting overlay based on a selected field’s specific data

type. When a field has editing focus, it will show the

information as entered. However, these settings allow a field

to display that information with special formatting

characteristics depending on its type.

The top portion of the group, shown in Figure 29-17,

displays an icon indicating the data type of the selected

field: decimal, date, time, or container. The Format pop-up

menu contains the formatting options based on that data

type and the area beneath this contains controls that vary

by the selection made within this menu.

Figure 29-17. The Data Formatting group of the Data panel of the Inspector

Caution When exporting records, the actual value in

the field will be exported instead of the formatting

imposed by these settings, unless the Apply current

layout’s data formatting to exported data check box is

selected (Chapter 5).

Data Formatting — Decimal

When a number field is selected, the Format pop-up menu

contains the following options, each subsequently displaying

contextual controls beneath:

General — This choice will display the numeric value as

it was entered with no formatting options available. The

value will be rounded or expressed in scientific notation

as needed to fit within the boundaries of a field on a

layout.

As entered — This choice will display the numeric value

exactly as it was entered with no formatting options

available. If the value contains more digits than can be

displayed in the field on a layout, it will display a

question mark instead.

Boolean — This choice allows the entry of a value that

should replace zero and non-zero values. The default is

Yes and No, but these can be replaced with True or False

or any other values.

Decimal — This choice presents options for how the

number should be formatted, including number of

decimals, notation, negative value formatting, choice of

separators, and more. For example, using this option,

entering a numeric value of 1003.7568 into a field,

could be automatically displayed as 1,003.75 or #1003

depending on the selected settings.

Currency — This choice presents options like Decimal for

how the number should be formatted as currency. For

example, using this option, entering a numeric value of

5.75 into a field, could be automatically displayed as

$5.75, $5, £5.00, etc., depending on the selected

settings.

Percent — This choice presents options like Decimal for

how the number should be formatted as a percentage.

For example, using this option, entering a numeric value

of .62 into a field, could be automatically displayed as

62% or 62.00% depending on the selected settings.

Data Formatting — Date

When a date field is selected, the Format pop-up menu

contains a variety of literal preconfigured date formats and

an option to enter a custom format using the controls shown

in Figure 29-18.

Figure 29-18. The custom date options for the Data Formatting group of the

Data panel of the Inspector

The Custom date format presents a flexible modular set

of controls that allow the selection of any date component

arranged in any order with any delimiter placed between

them and with leading zero options for day and month

numbers. Using these controls, a date entered as 1/15/2017

can be displayed in any number of different combinations

including:

January 15, 2017

01.15.2017

01.15.17

15 Jan 2017

Sunday Jan 15, 2017

01/15/2017 (Thursday)

Data Formatting — Time

When a time field is selected, the Format pop-up menu

contains a variety of literal preconfigured time formats and

other optional control over separate, military vs. civilian

time, leading zeros for hours and minutes, and more.

Data Formatting — Container

When a container field is selected, the Format pop-up menu

contains the following options that control how an image

should resize for display purposes only (the actual file

contents will not be affected):

Crop to frame — Choosing this option will leave the

image sized as entered, cropping it to fit the frame if it

exceeds the space available.

Reduce image to fit — Choosing this option will cause

the displayed image to be reduced until it fits within the

frame.

Enlarge image to fit — Choosing this option will cause

the displayed image to be enlarged so that it fits within

the frame.

Reduce or enlarge image to fit — Choosing this option

ensure that the displayed image fits exactly within the

frame, reducing or enlarging it as needed.

Many settings are available in the area below the Format

menu, shown in Figure 29-19.

Figure 29-19. The container options for the Data Formatting group of the Data

panel of the Inspector

These settings include:

1. Maintain original proportions — Check this box to

keep the image’s aspect ratio fixed when it is

reduced or enlarged for display within the selected

field.

Ali t Th b tt i ll t l

2. Alignment — These button icons allow control over

how an image will be aligned within the selected

field.

3. Optimize for — These options control how the

container contents are displayed, with options

including:

a. Images — Optimize content for images,

causing an image file in the container to be

displayed as an image rather than a file.

b. Interactive content — Optimize content for

PDF, MP3, and movie files. Users will be

able to view and interact with these types

of media as if they were viewing them in an

application optimized for manipulating

them. Checking the start playback

automatically will cause an audio or video

file contained in the field to begin playing

as soon as a record displaying it on a layout

is loaded.

Exploring the Layout Objects Palette

The Layout Objects palette, shown in Figure 29-20, is used

to locate, select, reorder, and hide layout objects. The

palette can be opened by selecting the View > Layout

Objects menu item and will remain open automatically any

time you return to Layout mode unless you explicitly close

it.

Figure 29-20. The Layout Objects palette

The Layout Objects palette contains the following

controls :

1. Objects List — The palette lists every object on the

current layout. Each object will be displayed with a

generic name based on the object type and/or field

name unless a custom name has been assigned.

Items in the list can be selected to perform many

different functions:

Selecting an object in the list selects the

corresponding object on the layout. Conversely,

selecting on object on the layout while the

palette is open, selects the object there as well.

Multi-layered objects such as portals, tab

controls, and slide controls can be toggled to

show or hide the nested object structure they

contain.

Dragging an object up or down in the list

performs a function like the arrangement

features, bringing the corresponding object

forward or backward on the layout. Reordering

only works when viewing all objects on the

layout in a non-filtered list.

Objects can be temporarily hidden on the layout

to declutter the view when editing complex

layered objects. This hides the object when

viewed in Layout mode only and does not hide

the object in Browse mode.

2. Search Filter Menu — Clicking the icon at the top of

the palette will open a menu of layout types. Select

a type to filter the list in the palette to include only

objects of the selected type.

3. Search Filter — The list of objects can be filtered by

typing search criteria into this text area.

4. Hide Group — This button becomes enabled when

one or more objects are hidden on the layout. Click

it to restore all hidden objects to their normal visible

state.

5. Hide Object — This button will toggle the selected

object(s) hidden status.

Tip For faster selection and editing of objects, open the

Layout Objects palette and Inspector(s) side by side.

Select an object from the Layout Objects palette and edit

its settings in the Inspector.

Using the Shortcuts in the Layout Objects

Palette Contextual Menu

The palette’s contextual menu contains several convenient

options and shortcuts , as shown in Figure 29-21.

Figure 29-21. The contextual menu for an item within the Layout Objects

palette

The following commands are available in the contextual

menu depending on the type of object selected:

Hide All Other Objects — This will hide every object on

the layout except for the object(s) currently selected in

the Layout Objects palette. This provides a quick way to

isolate the selected object(s) and remove all other

distractions from the layout.

Hide Objects in Front — This will hide every object that

is layered in front of the selected object(s). This allows

you to quickly see an object that is hidden behind other

overlapping elements.

Hide Objects in Front and Back— This will hide every

object that is layered in front of and behind the selected

object(s).

Specify Object Name — By default object names will

appear in the palette generically by object type and/or

field name. This command reveals an edit box in place

of this generic name into which you can enter a custom

name for the object, as shown in Figure 29-22. Object

names are not widely used in FileMaker but are

important in some instances such as when using the Go

to Object script step, which requires an object name as

an identifier rather than a field name or other reference

.

Figure 29-22. The Edit Object Name text area

Conditional Formatting — This item provides a shortcut

to open the Conditional Formatting dialog for the

selected object(s). For more on conditional formatting,

see Chapter 31.

Set Script Triggers — This item provides a shortcut to

open the Set Script Triggers dialog for the selected

object(s). For more on script triggers, see Chapter 37.

Tip If you use the Layout Objects palette a lot,

assigning object names will greatly improve your

efficiency.

Summary

In this chapter, we introduced the Layout mode palettes and

explored their various tools and settings.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_30

30. Creating Layout Objects

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Over the last three chapters, we introduced Layout mode,

layout parts, managing layouts, and the palettes available

for working with objects. Now, we can begin creating layout

objects.

This chapter discusses each type of object that can be

placed on a layout, including:

Introducing layout objects

Working with field objects

Working with text

Working with button controls

Working with panel controls

Working with portals

Working with web viewers

Working with charts

Note The illustrations of layout objects pictured in this

chapter are designed with default formatting. However,

as indicated previously, FileMaker’s design tools allow for

a much more professional design than is shown in these

simple examples.

Introducing Layout Objects

A layout object is an interface element used to display

information, allow user entry, or provide access to a script

function. The basic layout object types are:

Fields — are used to display a field from the current

record in the layout’s table or from tables related to that

table, each displayed as either editable or read-only.

Text — can be static or dynamic, and help to

communicate information and to identify other objects.

Buttons — make script functions accessible to users and

hide expandable interface panels.

Panels — make efficient use of space by alternating

between different groups of objects within the same

space when the user clicks a tab or swipes.

Portals — can display a limited set of fields in a list of

records from another table that are related to the record

being viewed in the window.

Web Viewers — display web pages, directly from the

Internet or dynamically generated by a formula using

information from the database.

Charts — display data graphically with charts and

graphs.

Inserting an Object onto the Layout

Generally, a new instance of any available object type can

be inserted onto a layout, using the following methods:

Click the toolbar icon corresponding to the type of

object, then click and drag anywhere on the layout to

define the outline of the object. When you release the

cursor, the object will appear in the size and position

indicated.

Select the desired object type from the corresponding

Insert menu item to quickly place a new instance at a

default size and position on the layout.

Duplicate an existing object to a new instance by

selecting it and choosing the Edit > Duplicate menu

item.

Use the Copy and Paste functions to create a new copy

of an existing object on the same or on a different

layout.

Note Some object types have alternative insertion

methods that will be noted throughout the chapter.

Configuring an Object

Once a new object instance is inserted on a layout, it will be

in a raw state ready to be formatted and configured.

Depending on the type, an object can be configured using

some or all of the following methods:

Double-clicking on most object types will open a

configuration dialog, usually focused on data

configuration options rather than formatting or other

behavioral control.

When an object is selected:

the Format and Arrange menus contain many styling

and positioning options.

the Inspector contains many configuration options

(Chapter 29).

Working with Field Objects

The primary purpose of most a layout is to allow users to

view and interact with data stored in fields. Therefore, fields

are likely to be the most common object on most layouts

and they have the most varied set of configuration options .

This section covers many aspects of using and

configuring fields, including:

Clarifying field terminology

Field basics

Choosing a field control style

Exploring the benefits of pop-up menus for two-field

value lists

Bypassing value list entry restrictions

Using placeholders

Clarifying Field Terminology

Within the context of a discussion about layouts, it is

important to first clarify the often-blurred difference

between the following four uses of the term, each illustrated

in Figure 30-1:

Figure 30-1. An illustration of the various uses of the term “field”

A table’s field definition

An instance of a field for a record

A field on a layout being designed

A field rendered on a layout being viewed by a user

These are all generally referred to as a “field” and, while

quite common and acceptable, it might be confusing to

newcomers.

Elaborating on the material discussed in previous

chapters, a field definition for a table is an individual unit of

storage potential that establishes the type of data and

certain informational behaviors of that data. These will be

replicated as a field cell for every record created within that

table, making an actual unit of storage that will contain

information entered by a user or automatically by a

calculation or script process.

Tip Remember the spreadsheet metaphor: a field

definition is like a column; a record is like a row; and an

instance of a field for a record is like a cell, the

intersection of a column at a row.

Because a database user always interacts with the data

structure through a layout, the metaphorical spreadsheet

described above is completely hidden from view when

thinking of the interface. When designing a layout, a field

object is a graphical element that defines the position,

behavior, and appearance of where and how a referenced

field cell should be displayed. In Layout mode, the field

object is assigned a field reference, pointing to a field

definition. When viewed in Browse mode, the layout object

is rendered as a field display showing information stored in

the field cell for the record currently viewed: formatted and

behaving in accordance with the settings of both the field

definition and the layout field object.

It isn’t crucial that one remembers all the terminological

details here. However, when thinking or reading about

something referred to as a “field,” just remember that the

usage context should be kept in mind to avoid confusion.

Field Basics

Working with field objects requires a minimum

understanding of a few basics.

Adding Fields to a Layout

More than any other object type, a field object can be added

to a layout by one of numerous methods. Some will place

the object and then ask which defined field the field object

should represent. Others don’t ask because a field must be

specified as part of the process of adding the object. Finally,

one method varies in this regard depending on the specifics.

Let’s work through all the methods for adding a field object

to a layout.

Specifying the Field After Adding the Object

Any of these methods will add an empty field object to the

layout and then present a dialog asking for a field selection:

Drag the Field tool from the toolbar down onto the

layout.

Use the Field/Control toolbar menu to set the cursor into

a mode that allows you to draw a field by clicking and

holding the cursor on the layout and dragging down and

to the right, defining the area for the field before

releasing to create the field. This tool can be used one

of two ways:

Click once on the icon to auto-select the Edit box

control type for the new field.

Click and hold to activate the hidden menu from

which you can select a field control type for the new

field.

Select the Insert > Field menu.

Specifying the Field Before Adding the Object

These methods of adding fields require a field to be

specified as part of the process of using them:

Drag one or more fields from the Field Picker palette

onto the layout.

When viewing a layout in Table view, use the hidden

menu that appears in the upper-right corner of the

column heading when the cursor is placed over it.

Choose the Table View > Modify option.

Copy and paste one or more existing fields from any

layout in the same or another database file.

Add fields through one of the interface dialogs during

the process of creating a new layout (Chapter 28,

“Creating a New Layout”).

Drag and drop a field from a layout in one open window

onto a different layout open in another window by

holding the Option (macOS) or Windows (Windows) key.

You can even drag and drop a field to a layout in

another FileMaker database file, although it will vary in

the receiving file depending on the presence of a table

and field named the same:

If the receiving file has a field defined with the same

name as the field being dragged in a table with the

same name, the field object will be placed

referencing that field.

If the receiving file does not have a field with the

same name but does have a matching table name,

the field object will be placed with a < Field Missing

> reference and will need to be manually pointed to

an existing field.

If the receiving file does not have a matching field

or table name, the field object will be placed as a

blank field object and will need to be manually

pointed to an existing field.

Adding a Field by Duplication

This final method varies regarding a specify field prompt:

You can duplicate one or more existing fields to the

same layout by selecting the Edit > Duplicate menu

item. This method will ask you to specify a field when

duplicating a single field. However, when duplicating

multiple selected fields as once, it will not ask and will

instead create exact duplicates pointing to the same

field(s) as the originals.

Exploring the Specify Field Dialog

Adding a field to a layout using the methods that do not

require a pre-selected field will place a blank field object on

the layout, as shown in Figure 30-2.

Figure 30-2. Dragging a field onto a layout with the toolbar icon adds a blank

field object on the layout before presenting a Specify Field dialog

Once the object is positioned and the cursor released,

the blank field object will be tentatively placed at the drop

point and become the currently selected object. Since a new

field object must contain a defined field reference, a Specify

Field dialog, shown in Figure 30-3, will automatically open.

Figure 30-3. The Specify Field dialog is used to establish a reference to a field

in a selected table occurrence

The Specify Field dialog is used to identify the field

definition assigned to a field object on the layout. The dialog

includes the following controls:

1. Table Occurrence — This pop-up menu lists every

table occurrence defined in the database with the

default selection being the layout’s assigned

occurrence. At the bottom of the menu is a Manage

Database shortcut.

2. Fields — This area lists every field defined within

the selected table occurrence. Click to select the

field you want to assign to the selected field object.

3. Create label — Check this box to have FileMaker

automatically create a field label next to the field

object on the layout.

4. Manage Database — This button provides an

additional shortcut into the Manage Database

dialog to quickly create or edit fields without leaving

the Specify Fields dialog.

5. Cancel — Click this button to close the dialog

without saving any changes. If this button is clicked

during the automatic process of adding a field to a

layout, the field will not be added to the layout and

its temporary blank instance will be removed.

However, if this dialog is opened to edit an existing

field, the field object on the layout will remain

unchanged.

6. OK — Click this button to close the dialog and

update the field object on the layout.

Once finished, the field object will remain selected and

will display the name of the selected field definition that it

represents, as shown in Figure 30-4. If the Create label

check box in the Specify Field dialog was selected, a text

object will be present to the left of the field and contain the

full name of the field.

Figure 30-4. The newly added field object selected on the layout with a

corresponding label

Editing a Field Object’s Reference

There are many occasions where an existing field object

may require reassignment to a different field reference.

Correcting a mistaken field assignment might be rare, but it

happens. Modifying a layout to reflect structural changes to

field definitions might be required if a field moves to

another table or if a new field is created to replace an older

one. Finally, re-configuration of field objects that were

created by duplication of existing fields or entire layouts is a

more common practice.

To reassign the reference for a field object, open the

Specify field dialog using any of these methods:

Double-click on the field object.

Bring up the object’s contextual menu and choose the

Specify field option.

Select the field and then click the pencil icon next to the

Display data area of the Field group on the Data panel of

the Inspector.

Once open, the Specify field dialog will have the current

table and field assignment selected, which can each be

modified to point to another table occurrence and/or field.

Then, click OK to save the change.

Working with Field Labels

A field label is a text object placed adjacent to a field object

that helps a user identify the assigned field definition and,

therefore, the type of information that should be entered or

will be displayed within.

A label can be created manually by typing into a text

object or automatically using the Create label check box in

the Specify Field dialog. Once placed on a layout, labels can

be moved, formatted, and manipulated like any other text

object.

Creating a label automatically has one advantage over

manual labels. If the text of the label hasn’t been manually

edited since it was automatically created, the label remains

dynamically linked to the field. This means that, if the field’s

defined name is modified, the label automatically updates

to reflect the new name. Labels that are automatically

created but later manually edited will no longer be linked to

the field and will not automatically update.

Note When a field’s name is technically descriptive or

arranged to accommodate sorting in the development

environment, the layout instance will require an edited

label. For example, a field defined as Contact Name First

might have a layout label of First Name or just First. If

dynamically linked field labels are desired, the field’s

defined name must match whatever text one wants

displayed on layouts.

A label that has been modified and unlinked from the

defined field can be deleted and re-created as a dynamically

linked label by reopening the Specify Field dialog for the

field and selecting the Create label check box before clicking

OK. The label will reappear as a dynamically linked value.

Configuring Field Control Style

A control style is a field object setting that influences the

general appearance of and entry options available to a field

on a layout. Fields can be assigned one of the following

seven control styles :

Edit box (default)

Pop-up menu

Drop-down list

Checkbox set

Radio button set

Drop-down calendar

Concealed edit box

To change the control style, select a field and open the

Field group on the Data panel of the Inspector. Click the

Control style pop-up menu, shown in Figure 30-5, and select

the desired style.

Figure 30-5. The Control style pop-up menu is used to change the appearance,

options, and behavior of a field

Once a control style is selected, the options in the

shaded area of the Inspector beneath the pop-up menu will

change to reflect the choice, enabling only those options

that are applicable.

Note The ability of a user to view or edit any field can

depend on many factors including the field’s configuration

and what access privileges the user is granted based on

their login credentials. The assumption throughout this

chapter is that a user has full access, which may not be

the case when a database uses security settings.

Edit Box

An Edit box is the default field control style that renders a

field as a box into which the user can type, paste, or drag

information. These can vary in size to accommodate data

ranging, including these shown in Figure 30-6:

A single line able to contain a short piece of text.

Multiple lines or paragraphs of text.

A scroll bar to allow entries longer than the size of the

field object.

Figure 30-6. Examples of various edit style boxes

Any field data type can be formatted as an edit box even

though the content doesn’t allow for multiple lines. For

example, a date field can be formatted with multiple lines

and a scroll bar even though, by its nature as a date

container, it can only contain a date.

Note Container fields are automatically locked to an

Edit box control style.

Control Options for Edit Boxes

The shaded option area below the Control style pop-up

menu in the Layout Inspector, shown in Figure 30-7, will

update to show only those options available to an Edit box.

Figure 30-7. Examples of various edit style boxes

The following control options are available for Edit boxes:

Show vertical scroll bar — Use this box to add or remove

a scroll bar on the selected field. When the box is

checked, a radio button choice below will become

enabled with two options:

Always — When selected, the scroll bar will be

visible on the field all the time, even when the field

does not have focus. The user can enter the field

and scroll by swiping on a touch-enabled device, like

a trackpad, or by clicking and dragging up or down

on the scroll bar.

When scrolling — This option will only display the

scroll bar when the field has focus and the user is

actively scrolling when the content exceeds the

height of the field dimensions. There will be no scroll

bar to click and drag using this option.

Auto-complete using existing values — Check this box to

cause the field to automatically make suggestions

based on similar past entries. The suggestion will

appear after the text already typed and will be updated

as the user is typing. To accept a suggestion, a user can

type the Enter or Return keys to automatically complete

the entry using that value.

Pop-Up Menu

A pop-up menu is a field control style that renders the field

as a menu that pops up a list of choices when the user clicks

into the field in Browse mode, as shown in Figure 30-8. The

list of options contained in the menu is provided by a value

list and allows a user to enter a value into a field, replacing

any previously entered value, with a simple click of an item

from the menu. This entry option helps to saves time and

maintains consistency by avoiding mistakes for commonly

used values.

Figure 30-8. Example of a pop-up menu in both a resting state (top) and open

with active focus (bottom), the current field value indicated with a check mark

and a scroll arrow at the bottom indicating the presence of additional values

below.

If the entire list can’t fit on the screen, it will truncate and

display an up or down arrow icon indicating the presence of

additional values out of visual range in one or both

directions.

A user can select a value from the list using any of the

following methods:

Position the cursor onto any item in the list and click.

Begin typing several letters of the desired value to “key

scroll” down. Once the desired value is highlighted, type

the Enter key to choose that value and enter it into the

field.

Use the Up or Down arrow keys to navigate up or down

the list until you reach the desired value. Then type the

Enter key to choose that value.

Once the user selects a value, it becomes the field value.

When the menu is reopened, that value will have a check

mark preceding it in the list, indicating its status as the

current value.

Control Options for Pop-Up Menus

The shaded option area below the Control style menu,

shown in Figure 30-9, will automatically update to reflect

relevant choices based on the Pop-up menu selection.

Figure 30-9. The pop-up menu control options

The following control options are available for a Pop-up

menu:

Values from — This pop-up menu contains every value

list defined in the current database file, with the

selected list providing the values for the field’s menu.

Click the adjacent pencil icon to open the Manage Value

Lists dialog allowing direct access to create, edit, or

select value lists (Chapter 11).

Allow entry of other values — Check this box to

automatically add an extra menu item of “Other” to the

end of the values displayed in the field’s pop-up menu.

When a user chooses Other in the menu, a small dialog

window opens allowing them to type in any text value,

as shown in Figure 30-10.

Figure 30-10. The Other dialog in which a user can type any value into

the field, bypassing the assigned value list

Allow editing of value list — Check this box to

automatically add an extra menu item of “Edit” to the

end of the values displayed in the field’s pop-up menu.

When a user chooses Edit in the menu, a small dialog

window opens, allowing them to edit the actual contents

of the value list, as shown in Figure 30-11. This option is

only enabled when the value list items are generated

using custom values (Chapter 11, “Using Custom

Values”).

Figure 30-11. The Edit Value List dialog in which a user edits the actual

items available in the assigned value list

Override data formatting with value list — This box

performs a rather subtle function that is useful when the

value list assigned to the field is generated from two

fields of differing data types. Without this function, the

two values will be displayed correctly in the menu but,

once placed into the field, will only display one value.

With this option selected, the difference in data types

between the two fields will be remedied, and the field

will display both values properly.

Drop-Down List

A drop-down list is a field control style that renders a field as

a combination of an edit box with an attached menu of

values, as shown in Figure 30-12. This allows a user a choice

of typing a unique value or choosing a preexisting value

from a list.

Figure 30-12. Example of a drop-down list in both a resting state (with and

without optional arrow icon) and open with active focus

The behavior of the drop-down list is like a pop-up menu.

When the list of values exceeds the space available, a scroll

bar appears indicating the presence of additional values. A

user can use the cursor or arrow keys to scroll the list up or

down.

Selecting a value from the list can be achieved using any

of the following methods:

Position the cursor onto any item in the list and click.

Begin typing several letters of the desired value to “key

scroll” down. Once the desired value is highlighted, type

the Enter key to choose that value and enter it into the

field.

Use the Up or Down arrow keys to navigate up or down

the list until you reach the desired value. Then type the

Enter key to choose that value.

Once the user selects a value, it becomes the field value.

When the menu is reopened, that value will be highlighted

in the list, indicating its status as the current value.

Control Options for Drop-Down Lists

The shaded option area below the Control style menu,

shown in Figure 30-13, will automatically update to reflect

relevant choices based on the Drop-down list selection.

Figure 30-13. The drop-down list control options

The following control options are available for a Drop-

down list:

Values from — This pop-up menu contains every value

list defined in the current database file, with the

selected list providing the values for the field’s menu.

Click the adjacent pencil icon to open the Manage Value

Lists dialog allowing direct access to create, edit, or

select value lists (Chapter 11).

Include arrow to show and hide list — By default, with

this box unchecked, when the user enters the field, the

drop-down list immediately appears. They have the

option to ignore it and type or to select an item. By

enabling this check box the field will be rendered on the

layout with a visible icon attached to its right side. A

user can click into the field and type without distraction

and must click the icon to show the list.

Allow editing of value list — Like the Pop-up menu

control style, checking this box adds an “Edit” menu

item to the end of the values displayed in the field’s

drop-down list. When a user chooses “Edit” from the list

of available values, a small dialog window opens

allowing them to edit the actual contents of the value

list. This option is only enabled when the value list items

are generated using custom values (Chapter 11, “Using

Custom Values”).

Auto-complete using value list — Enable this check box

to cause the field to automatically make suggestions as

the user types, based on past entries matching the text

they are typing. The suggestion will appear after the

text the user typed and will keep updating as they

continue typing. To accept a suggestion, a user can type

the Enter or Return keys to automatically complete the

entry using that value.

Checkbox Set

A checkbox set is a field control style that renders the field

as a set of boxes, each with a text label, as shown in Figure

30-14. These allow a user to select or unselect individual

options from the list with a click of the mouse.

Figure 30-14. Example of a checkbox set for the Company Industry field

Unlike a pop-up menu or drop-down list, if given enough

layout space, a checkbox set displays every item in the list

all at once. This makes it much easier for a user to quickly

find and select an item. Instead of scrolling up and down a

lengthy list, users can visually scan the entire list, locate the

item(s) they are looking for, click to select, and enter the

value into the field.

Checkbox sets are specifically intended to facilitate the

entry of multiple items into a single field. As the user checks

boxes, the corresponding values are inserted into the field

as a list of carriage return-delimited values.

Control Options for Checkbox Sets

The shaded option area below the Control style menu,

shown in Figure 30-15, will automatically update to reflect

relevant choices based on the Checkbox set selection.

Figure 30-15. The Checkbox set control options

The following control options are available for a

Checkbox set:

Values from — This pop-up menu contains every value

list defined in the current database file. Select one to

assign as the source of values for the checkbox set.

Clicking the adjacent pencil icon will open the Manage

Value Lists dialog allowing direct access to create, edit,

or select value lists (Chapter 11).

Allow entry of other values — Like the same option for

pop-up menus, enabling this box will automatically add

an “Other” check box at the end of the values displayed

in the field allowing the entry of one or more carriage

return-delimited values through a dialog. From this

dialog, the user can edit the values both those that are

and are not on in the value list. The check boxes

displayed in the field on the layout will automatically be

checked or unchecked based on the actual contents of

the field edited in this dialog. Any values in the field that

are found in the value list will be checked. If any values

are added through the dialogs that are not found in the

value list, the “Other” check box will automatically be

checked indicating the presence of values not visualized

with check boxes.

Icon — This pop-up menu contains two options for the

style of the marking used to fill in a checkbox:

X — This option, which is the default, will mark

selected check boxes by placing the same of an “X”

within the box.

Check — This option will mark selected check boxes

with a check mark.

Radio Button Set

A radio button set is a field control style that renders the

field as a set of circles, each with a text label, as shown in

Figure 30-16. These allow a user to select one option from

the list with a click of the mouse.

Figure 30-16. Example of a radio button set for the Company Industry field

Like checkbox sets, the radio button control style allows

a user to see all the available values at once. However,

unlike check boxes, radio buttons are specifically intended

to facilitate the entry of a single item into a field. As the

user makes one selection, the corresponding value replaces

the previous value in the field. While not obvious to users,

bypassing this restriction is possible and will be discussed

later in this section (“Bypassing Value List Entry

Restrictions”).

Control Options for Radio Button Sets

The shaded option area below the Control style menu,

shown in Figure 30-17, will automatically update to reflect

relevant choices based on the Radio button set selection.

Figure 30-17. The radio button set control options

The following control options are available for a Radio

button set:

Values from — This pop-up menu contains every value

list defined in the current database file. Select one to

assign it to the selected field as the source of available

values. Clicking the adjacent pencil icon will open the

Manage Value Lists dialog allowing direct access to

create, edit, or select value lists (Chapter 11).

Allow entry of other values — Like the same option for

Checkbox set, enabling this option will automatically

add an “Other” radio button at the end of the values

displayed in the field. When the user selects this option,

an Other dialog will appear displaying any current

selection from the field and allows them to add or

replace it with a different value, including one not on the

value list.

Unselecting Values

The Radio button format doesn’t provide an intuitive method

for removing a selection and leaving the field empty. To

clear all selections from a Radio button formatted field use

any of these methods:

To deselect an individual value, click on a selected value

while holding down the Shift key.

If the Other option is enabled, click that and edit the

value(s) in the dialog.

To clear the field completely, click anywhere within its

borders and type the Delete key.

Drop-Down Calendar

A drop-down calendar is a field control style that renders the

field as a combination edit box with an optional graphical

calendar that drops down attached to the bottom of the

field, as shown in Figure 30-18. This allows a user a choice

between typing a date manually into an edit box or

choosing a date using a familiar calendar graphic.

Figure 30-18. Example of a drop-down calendar in both a resting state (with

and without optional icon) and open with active focus

The calendar panel has several controls, shown in Figure

30-19, that assist a user in quickly locating a desired date.

Figure 30-19. The calendar panel with controls highlighted

1. Month & Year — The heading displays the currently

viewed month and year.

2. Step by Year — The small up and down arrows will

step backward or forward one year at a time for the

current month.

3. Step back — The left arrow will step backward to

the previous month.

4. Step forward — The right arrow will step forward to

the next month.

5. Calendar — Within the calendar area, a user can

click on a date to select and enter it into the

corresponding field. Using only the keyboard, the

arrow keys will navigate around the days and the

Enter key will select and enter the current date

selected into the field.

6. Today — This area always displays the current date

and, if clicked, will enter that into the corresponding

field and close the calendar.

Note The Drop-down calendar control style can be used

with non-date fields like a text or timestamp field. When

using it with text fields, the selected value will be entered

as a text string. When used with timestamp fields, the

date selected will be entered with the current time.

Control Options for Drop-Down Calendars

The shaded option area below the Control style menu,

shown in Figure 30-20, will automatically update to reflect

relevant choices based on the Drop-down calendar

selection.

Figure 30-20. The drop-down calendar control options

The following control option is available for a Drop-down

calendar:

Include icon to show and hide calendar — With this box

unchecked, the Drop-down calendar immediately

appears when a user enters the field. They have the

option to use or ignore it. Enabling this option will

render the field with a visible icon attached to the right

side that will open or close the calendar. A user can click

into the field and type without distraction or choose to

click the icon to show the graphical calendar.

Auto-complete using existing values — This check box

becomes enabled when a calendar is used with a text

field only. Checking it causes the field to automatically

make suggestions based on similar past entries updated

as the user is typing like an Edit box. Typing the Enter or

Return keys will automatically complete the entry using

the suggested value.

Concealed Edit Box

A concealed edit box is a field control style that renders the

field as an edit box with each character typed represented

as a bullet to obscure the data, as shown in Figure 30-21.

When the field has focus, it displays one bullet for every

character entered but reverts to displaying eight bullets

once focus shifts to another field or the record is committed.

Figure 30-21. Examples of a concealed edit box, both with focus and without,

each displaying the same entry

Caution Concealed edit boxes are intended to provide

minimal security only. The data in the field is not

encrypted. It is only obscured from view on layouts but

continues to be accessible to scripts and calculations,

which can access and manipulate the data as they would

any other field.

Exploring the Benefits of Pop-Up Menus for

Two-Field Value List

There are some important factors to consider when using a

value list that is generated from field values for drop-down

and pop-up menus (Chapter 11, “Using Values from a

Field”).

To illustrate the issues involved, imagine a value list

named Company List, as shown in Figure 30-22, which

generates a list of every company record. The list would be

assigned to the Contact Company ID field in the Contact

table to allow a user to select which company a contact is

connected.

Figure 30-22. An example of a value list generated from the contents of two

fields

A Contact record must contain the Record ID of a

Company in the Contact Company ID field to form the

relational link between the two. This mandates that the first

field in the value list be the Company::Record ID.

However, with only this field, the value list will display a

list of id numbers and be rather useless for most users. If a

user doesn’t know the id of the company, the list will be no

help to them. If they do know the id of the company the list

isn’t required. So, this alone isn’t adequate when using lists

to aid users in entering a match field value used in a

relationship.

The Also display values from second field option allows

items in a value list to be pulled from the actual values of

two fields to create a list of combined values: in this case,

the id and the name of the Company record. The first value

continues to provide the Record ID and the second value

provides a human-friendly name that corresponds to that id.

By adding the Company Name to the list, the user can

select based on the second field while the first field is what

is entered in the field.

This may seem clear in terms of generating a list.

However, when applied to a drop-down list or pop-up menu

layout object, there are subtle implications here that may

influence your choice of object control type and the use of

the Show values only from second field option in the value

list.

Using Two-Field Value Lists with the Drop-

Down List Control Style

When the dual-field value list is assigned to the Contact

Company ID field as a drop-down list using that

configuration, it will display a list of values containing the

Record ID and Company Name fields, as shown in Figure 30-

23.

Figure 30-23. The value list assigned as a drop-down list to the Contact

Company ID field

When used in this configuration, the user can ignore the

id portion of the values in the list and focus on selecting a

company by name. Once they select a value, the id is

entered in the field and the list will disappear. Since, the

field will contain and display only the id, a second field will

be required on the layout to display the Company Name.

This can be any of the following depending on needs or

preference:

A field object referencing the Company Name field

through a relationship.

A calculation field locally created in the Contact table

that pulls the Company Name field value through a

relationship.

A text field locally created in the Contact table that

auto-enters the Company Name field value through a

relationship.

While this method works fine, some find it a little visually

cluttered to see both the id and the name in the list and

prefer the id be hidden. This can be done by enabling the

Show values only from second field check box on the value

list. However, that results in possible confusions as the user

sees a list of company names but their selection is placed

into the field as an id, as shown in Figure 30-24.

Figure 30-24. The value list with the id hidden shows only company names

while still placing the id in the field

In the past, this led developers to pursue more creative

solutions of overlapping the two fields so that the user only

sees the company name in the list and the field without

realizing that the id was driving the whole process.

However, there is a much more professional and less

contrived method of achieving the same end using the pop-

up menu control style.

Using Two-Field Value Lists with the Pop-

Up Menu Control Style

When using the dual-field value list with the pop-up menu

control style, there is no difference between what a user

sees in the list and what they see in the field in its resting

state, as shown in Figure 30-25. In both cases, the user sees

the actual value they selected. In this case, it is both the id

and the name.

Figure 30-25. A dual-field value list assigned to a field using the pop-up menu

control style displays both fields in its resting state

Since both fields will be displayed in the value list, this

method eliminates the necessity of adding another field to

the layout exclusively to display the second field in the

value list. Further, by enabling the Show values only from

second field check box on the value list, the field will display

only the second field, the company name, both in the open

menu and the field at rest, as shown in Figure 30-26.

Figure 30-26. A dual-field value list showing only the second field in the menu

will continue displaying that value when the field is at rest

Using this method, the field still contains only the id of

the related Company record while displaying only its name.

This completely hides the functional aspect while providing

a polished, user-friendly interface when selecting from the

menu and viewing the field in its resting state.

Bypassing Value List Entry Restrictions

Each of the four control styles that allow entry from a value

list has an interface mechanism that subtly encourages

compliance with at least one of the following two rules, as

shown in Table 18-1:

Values entered must be found in the assigned value list.

Entry is restricted to a single value.

Table 18-1. Showing the default implied restrictions for entry

Control style Single Item Value List Only

Pop-up menu Yes Yes

Drop-down list Yes —

Checkbox set — Yes

Radio button Yes Yes

These rules are not enforced except by implication in the

method of interacting with the field through the control style

interface elements. A pop-up menu and radio buttons both

do not offer any obvious method to select multiple items or

to make an entry not on the list. Similarly, a drop-down list

seems to allow only a single value while a checkbox set

without the setting to allow other values appears to only

permit value list selections and no other values. However,

these rules are easily bypassed if you know how and this

can be either a benefit to allow users a more flexible

environment or a developer’s worst nightmare.

Disabling the Allow entry of other values setting doesn’t

stop someone from entering other values and there are

ways to make multiple selections with each of the four

control styles. It is important to understand that these

restrictions are cosmetic only and you must take explicit

steps to stop users from bypassing them if it’s important.

Bypassing a Value List with Custom Values

Any user with access to edit a field’s contents can enter

custom values and bypass the value list completely using

any of the following methods:

Once the field has focus, a user can insert text from the

clipboard using the Paste command or any of the

functions under the Insert menu.

A user can select text in another field or another

application and use the operating system’s Drag

function to Drop the content into the field.

A script can place any text into the field using many

different script steps such as Set Field, Insert Text,

Replace Field Contents, Import Records, and more.

To forbid these methods, you must explicitly restrict the

ability of a user or script to bypass the value list.

Restricting Value List Bypass

For situations where you want to tighten up data entry to

absolutely forbid a user from bypassing value list items, use

any of these methods :

Restricting field to a member of a value list

Filtering bad values with an Auto-Enter calculation

Using a script trigger to clean the entry

Restricting Field to a Member of a Value List

One method of forbidding an entry of any value not found in

the assigned value list is to use the field validation option.

To do so, enable the Member of value list check box on the

Validation tab of the Options for Field dialog (Chapter 8) and

then select the same value list used on the layout field

object.

Note This is a field definition setting and will apply to

every use of the field on any layout including those where

a value list-driven control style is not used!

Filtering Bad Values with an Auto-Enter Calculation

When defining fields, enter a Calculated value in the Auto-

Enter tab of the Options for Field dialog that compares the

value(s) in the field to the items in the value list. The

formula can automatically filter out any value entered that

is not in the list without a warning as shown here:

Let (

 list.items = ValueListItems (Get (FileName) ; "

<value.list.name>") ;

;

 Case (

 IsEmpty (FilterValues (list.items ; Self)) ; "") ;

 Self

)

)

In the formula, the ValueListItems function puts a list of

all the items available in the value list into a list.items

variable within the Let statement. Then, a Case statement

uses the FilterValues function to remove every item from

list.items except what was entered into the field. If the

result is an empty string, as detected by the IsEmpty

function, we know that the entered value is not present in

list.items and can replace it with an empty string. If the

value is present, it can remain.

Validating multiple values in a field using an auto-enter

calculation would require a recursive custom function

(Chapter 25), which checks the values one by one.

Note This is a field definition setting and will apply to

every use of the field on any layout including those where

a value list-driven control style is not used!

Using a Script Trigger to Clean the Entry

Assigning an OnObjectValidate script trigger to the field

(Chapter 37) to run a script (Chapter 34) that uses a Loop

script step to remove one or more values not found on the

value list or present an informative warning dialog as

needed.

Note This is a layout object setting and will only apply

the field where configured and not necessarily on every

instance of the field on every layout.

Selecting Multiple Items

Checkbox sets are the only value list control style that

intuitively allows the selection of multiple items from a

value list; the user clicks one check box and then another.

Other control styles always replace the existing value when

a new value is selected and gives the appearance of the

restriction of a single selection. However, it is possible to

select more than one item from pop-up menus, drop-down

menus, and radio buttons using any of the following

methods:

Click on multiple options while holding down the Shift

key.

Use the Paste command to enter a carriage return-

delimited list of values into the field.

Select a carriage return-delimited list of values in

another field or another application and use the

operating system’s Drag function to Drop the content

into the field.

When the Allow entry of other values option is enabled,

the Other dialog will allow a user to manually enter

multiple values.

Use an OnObjectEnter script trigger to store the last

value in a global variable and then an OnObjectSave to

save both the current and last values into the field

together.

A script can place multiple values into the field using

many different script steps such as Set Field, Insert Text,

Replace Field Contents, Import Records, and more.

Restricting Entry to a Single Value

To tighten up data entry to absolutely forbid the entry of

more than one value, there are several approaches you

might take, including:

Using Auto-Enter to limit field to a single value

Using a script trigger to limit field to a single value

Using Auto-Enter to Limit Field to a Single Value

One method for ensuring that a field contains a single value

is to enter a Calculated value from the Auto-Enter tab of the

Options for Field dialog. The formula can detect multiple

values and automatically removes all except for one. In this

example, only the last value will be retained:

Case (PatternCount (Self ; "¶") > 0 ; GetValue (Self ;

ValueCount (Self)) ; Self)

Note This is a field definition setting and will apply to

every use of the field on any layout including those where

a value list-driven control style is not used!

Using a Script Trigger to Limit Field to a Single Value

Another method for ensuring that a field contains a single

value is to assign an OnObjectValidate script trigger to the

field (Chapter 37) that runs a script to detect the presence

of multiple values and either automatically removes excess

values or warns the user and halts the validation process

until they correct the problem.

Note This is a layout object setting and will only apply

to the field where configured and not necessarily on every

instance of the field on every layout.

Using Placeholders

A field can be configured with a placeholder text value that

will be displayed in the field whenever it is empty. A

placeholder can be used to display the name of the field in

lieu of an actual field label or it may contain a short prompt

to action meant to augment the field label. This essentially

gives you three options: no placeholder, a placeholder as

field label, or a placeholder as a prompt to action, each of

which is demonstrated in Figure 30-27.

Figure 30-27. An example of three instances of the same Company Name

field: one with no placeholder text, one with the field name as the placeholder,

and one with a prompt message as the placeholder.

This example uses three instances of the same Company

Name field, emphasizing the fact that the placeholder

setting is applied to the field as a layout object and not to

the field definition itself. Therefore, multiple instances of the

same field on the same or different layouts can have a

completely different placeholder value and must be

configured separately.

Note A field that is configured as a Checkbox set or

Radio button can’t have a placeholder text value.

Entering Placeholder Text

Placeholder text can only be entered from within the Field

group on the Data panel of the Inspector. A static value can

be typed directly into the Placeholder text box, shown in

Figure 30-28. Clicking the pencil icon to the right of this box

will open a Specify calculation dialog into which you can

enter a formula that returns a text value for the placeholder

text. This allows a placeholder to be generated by

conditional logic based using field contents, the user’s

context, and more.

Figure 30-28. The controls for placeholder text from the Field group of the

Data panel of the Inspector

Varying a Placeholder by Window Mode

Placeholder text is displayed when the window is in Browse

and optionally in Find mode. To include the placeholder in

Find mode, click the Show placeholder in the Find mode

check box below the entry box.

It is possible to dynamically vary the content of the

placeholder text based on the window mode using a Case

statement and the Get (WindowMode) function to return a

different result for Browse and Find modes. For example:

Case (

 Get (WindowMode) = 0 ; "This is the browse mode

placeholder" ;

 "This is the find mode placeholder"

)

Formatting Placeholder Text

By default, the text formatting of the placeholder is a light

gray color. This helps to emphasize the fact that the value

displayed is not actually the field content but is a piece of

information or a prompt to action. If format settings are

modified for the field’s placeholder state, be sure to

maintain a noticeable difference between the actual

contents of the field and the placeholder text formatting.

Using Placeholder Text Instead of Display Calculation Fields

The Placeholder Text feature can display calculated

information on layouts as an alternative to creating

numerous calculation fields for this purpose. Instead of

creating calculation fields to gather information from fields

or about the context for interface display purposes only,

consider creating a single calculation field that results in an

empty string and uses global storage. When a layout needs

to display a calculated result, such as a header or warning

prompt, put that field in place and enter the specific

information into the Placeholder Text formula. The

formatting of the placeholder can be modified by modifying

the style settings for the field’s Object State (Chapter 32) so

that it appears like a normal field or has formatting

appropriate to its function.

Since the field uses global storage, this single field can

be used anywhere in the database file to greatly reduce the

number of fields required for display purposes.

Caution Since the data displayed in these fields is the

placeholder value and not actually present in the field,

there is no way to use this information for anything other

than display. For example, it can’t be exported and can’t

be referenced in other formulas or used by script steps.

Showing Field Repetitions

Fields that are defined with multiple repetitions (Chapter 8)

can be displayed on a layout with some or all repetitions

running vertically or horizontally, as shown in Figure 30-29.

Figure 30-29. A text field defined with five repetitions displayed on a layout in

both vertical and horizontal arrangement

The Show repetition controls, shown in Figure 30-30, are

accessed from the Field group of the Data tab of the

Inspector. The number of defined repetitions for the field is

displayed in parentheses. The unlabeled Start and End text

areas allow control over which and how many repetitions

are visible on the layout. The Vertical and Horizontal buttons

allow control over the orientation of the repetitions.

Figure 30-30. The Show Repetition controls on the Inspector

Each instance of a repeating field on a layout can be

configured to include any one or group of consecutive

repetitions within the range defined by the field options. For

example, each repetition can be displayed individually as if

they were separate fields or as partial groups of repetitions,

both shown in Figure 30-31.

Figure 30-31. Several examples showing the flexibility of configuring repeating

fields individually or in groups

Note Other field settings for Behavior and Data

Formatting are located on the Data panel of the Inspector

and were discussed in Chapter 29.

Working with Text

Text objects on a layout play an important role identifying

the nature and content of other objects, informing users

about proper data entry procedures, or prompting them to

action.

In addition to field labels, which are discussed earlier in

this chapter, there are four types of text that can be placed

on a layout:

Static text

Dynamic symbols

Merge fields

Merge variables

Static Text

On a layout, static text is an object that contains an

unchanging string of characters. Static text can be created

one of two ways while in Layout mode:

Create a Text Object — Choose the Text tool in the

toolbar and then click and drag to define an area for the

text object. When you release the cursor, the object will

be created and have editing focus allowing you to type.

Convert a Field Label — As mentioned earlier, a field

label will dynamically update its content to match the

name of its corresponding field until it is edited. Once

modified, the dynamic label becomes a static text

object.

Text objects can contain rich formatting and multiple

paragraphs.

Dynamic Placeholder Symbols

A dynamic placeholder symbol is a text string placeholder

that will be automatically replaced with a predetermined

value that varies over time.

Symbols are made up of a keyword enclosed in double

braces, following this pattern:

{{SymbolKeyword}}

For example, instead of typing a date on a layout as a

piece of static text, you can insert the following symbol in a

text object, indicating to FileMaker that it should be

rendered with the current date:

{{CurrentDate}}

There are 100 different symbols available, each

corresponding to a Get function (Chapter 22).

Symbols may be combined with other symbols or static

text in a single object. For example:

Report printed on {{CurrentDate}} at {{CurrentTime}}

by {{AccountName}}

A symbol can be manually typed or added to a layout by

selecting one from the Insert menu. When using the menu,

the symbol will be inserted into an existing text object if

there is one with edit focus currently active, otherwise a

new text object containing the symbol will be created.

Merge Fields

A merge field is a symbolic tagging format that allows a

field’s text content to appear on a layout in a non-editable

text object, optionally combined with static text.

Merge fields are made up of a field name enclosed in left-

shift (<<) and right-shift (>>) symbols, following this

pattern:

<<FieldName>>

<<TableName::FieldName>>

When referencing a field local to the current layout’s

table, only the field name needs to be specified. A field from

a related table must include the relationship name to

indicate which table occurrence to pull through.

For example, a Contact name and Company name might

be placed directly on a layout with the following text:

Contact <<Contact Name First>> <<Contact Name

Last>> at <<Contact | Company::Company Name>>

Merge fields may be combined with other merge fields,

other text and symbols. They can be added to a layout by

selecting the Insert > Merge Field menu. As with symbols,

the merge field tag will be inserted into an existing text

object if there is one with edit focus currently active;

otherwise a new text object containing it will be created.

Merge Variables

A merge variable is a symbolic tagging format that allows a

global variable to be rendered within a text object on a

layout.

Merge variables are made up of a variable name

enclosed in left-shift (<<) and right-shift (>>) symbols,

following this pattern:

<<$$VariableName>>

Merging variables on a layout works exactly like merge

fields and dynamic symbols. They can be used in any

combination with other merge variables, text, symbols, and

merge fields. Use the Insert > Merge Variable menu to add

one into the current text object with edit focus or a new

object.

Working with Button Controls

A button is a layout object that embeds control of a function

into an icon or object. Buttons work in Browse and Find

mode and, depending on the type and configuration, can

run a script, perform a script step, or open a popover

interface element. FileMaker has three native button types

and allows any layout object to be turned into a button:

Button

Popover button

Button bar

Object button

Working with Buttons

A button is a layout object in the form of a traditional

computer interface push button, like that shown in Figure

30-32, which allows a user to perform a script or run an

individual script step with a single click.

Figure 30-32. Examples of several push-style button objects

Buttons are configured using the Button Setup dialog,

which automatically opens when a new button is created.

This dialog can also be opened by any of the following

methods:

Double-click on an existing button.

With a button selected, click the Format > Button Setup

menu item.

Open the button’s context menu and select the Button

Setup menu item.

Exploring the Button Setup Dialog

When a button is first created, the Button Setup dialog

opens with limited default options, shown in Figure 30-33.

Figure 30-33. The default Button Setup dialog for a new button.

The Button Setup dialog is divided into three sections:

1. Button Labeling Options — Choose to have the

button labeled with text, an icon, or both in a

variety of orientations. The default selection is a

text label with no icon. Available options include:

Text only (Default)

Icon only

Icon with text label below

Icon with text label above

Icon with text label on the right

Icon with text label on the left

2. Button Labeling Specification — This area

dynamically updates the available controls

depending on your choice of labeling option above.

The default, as shown, allows entry of the button

label by typing into the visible text area. However,

this area will expand to allow selection of an icon

and specification of its size (see the next section).

Action Menu & Specification — Choose an action

3.

c o e u & Spec ca o C oose a ac o

type and this area will dynamically update available

controls depending on your choice.

Tip You can create dynamic button labels using merge

fields within the name of the field. For example, this

button name will put a Contact record’s first name field

into the button name, creating a personalized button for

each record:

Email <<Contact Name First>>

Configuring a Button with an Icon Label

After selecting a button labeling option that includes an

icon, the labeling specification area will expand to include

icon options, as shown in Figure 30-34.

Figure 30-34. The Button Setup dialog with expanded icon options

The expanded controls are:

1. Icon Selection — Choose from a list of standard

icons.

2. Icon Size Buttons — Use these buttons to add or

remove custom icons to the list.

To add an icon, click the + button and then

choose a PNG or SVG formatted file and click

Insert (macOS) or Open (Windows).

To remove a custom icon from the list of

available icons, select it and click the – button.

Any buttons already using the icon will continue

to do so until you reassign a new icon.

3. Icon Size Slider — Drag the slider left or right to

shrink or enlarge the size of the icon or click either

of the two squares to adjust the size one pixel at a

time.

4. Icon Size Setting — This box displays the current

size of the icon. You can type a new number to

quickly set a new size.

As you adjust the selected icon and size, the button will

update in real time on the layout, giving you a preview of

how it will appear. Once it appears as desired, continue

configuring other options or close the Button Setup dialog.

Note Unlike some measurement settings in the Layout

Inspector, the Icon size will always be displayed in points

regardless of units currently selected for the ruler.

Configuring a Button to Perform a Single Step

To assign a button to run a script step command, change

the Action pop-up menu of the Button Setup dialog from Do

Nothing to Single Step. This will immediately open the

Button Action dialog, shown in Figure 30-35.

Figure 30-35. The Button Action dialog for selecting the script step that the

button will perform

The Button Action dialog looks similar in appearance to a

Script Workspace dialog (Chapter 34). Double-click the step

from the list on the right to add it as the action for the

button. Then click the OK button to save the selection.

Note When choosing this option, only a single

command can be assigned to the button and any

subsequent selection will replace the previous one. If

more than one command is required for a button, choose

Perform Script from the Button Setup dialog instead of

Single Step, or click the Convert to Script button in the

Button Action dialog. This convenient button will create a

new script with a name you specify; add the selected

command and assign the new script to the button all in

one step.

Once a step has been assigned to a button, the Action

Specification area at the bottom of the Button Setup dialog

will display the command selected, as shown in Figure 30-

36.

Figure 30-36. The lower portion of the Button Setup dialog configured to run a

Single Step

The following two new controls will be available:

1. Command Selection — The selected command will

be displayed here as a button. Click to open the

Button Action dialog and assign a different

command.

2. Options — When a button has an action assigned,

the option to Change cursor to hand over button

check box will appear. Check this box to make the

user’s cursor icon change into a hand when placed

over the button to intuitively convey the fact that

they have the option to click on the button.

Configuring a Button to Perform a Script

Changing the button action option to Perform a Script, will

immediately open the Specify Script dialog, shown in Figure

30-37. This dialog is standard throughout the programming

interface when selecting a script.

Figure 30-37. The Specify Script dialog

The following controls are available in the Specify Script

dialog :

1. File — This pop-up menu allows the selection of a

database file in which the desired script exists. The

default selection at the top of the menu is the

current file but the following other options are

available:

Existing Data Source List — Choose any

external data sources defined in the current

database (Chapter 9, “Managing Data

Sources”).

Add FileMaker Data Source — This option opens

a standard Choose File dialog allowing the

selection of a FileMaker Pro database. Once

selected, clicking OK instantly adds the file as a

data source and selects it in the menu.

Add ODBC Data Source — This option opens the

Select ODBC Data Source dialog and allows the

selection of a previously defined ODBC data

source (Chapter 7, “Adding a Table from an

ODBC Data Source”).

Manage Data Sources — This option opens the

Manage Data Sources dialog (Chapter 9,

“Introducing the Manage External Data Sources

Window”).

2. Folder Filter — This pop-up menu contains a list of

every script folder defined in the database and can

filter the list of available scripts down to only those

stored within the selected folder. The default choice

of Show All presents an unfiltered list of every

script.

3. Search Filter — Enter text in this area to filter the

list of available scripts to only those whose name

contains the value entered.

4. Script List — This list displays every script that

meets any filtering criteria above, hierarchically

arranged in folders. Click the disclosure triangle

next to a folder to toggle it open or closed.

5. Script Buttons — These buttons allow convenient

access to the following script functions:

a. Create — Click to create a new script and

p

open it in the Script Workspace.

b. Delete — Click to delete the selected

script(s).

c. Edit — Click to open the selected script in

the Script Workspace.

d. Duplicate — Click to duplicate the selected

script(s).

6. Script Parameter — Use this text area to enter any

parameter information to send to the script or use

the Edit button to open a Specify Formula dialog to

enter a parameter calculation (Chapter 34,

“Exchanging Data Between Scripts”).

Once finished, click OK to save the selection to the

button. The options are at the bottom of the Button Setup

dialog, as shown in Figure 30-38.

Figure 30-38. The options at the bottom of the Button Setup dialog configured

to Perform Script

The following three new controls will be available when

using the Perform Script action :

1. Assigned Script — This button displays the name of

the selected script. Click to open and directly edit

the script in the Script Workspace.

2. Script Selection — Click this button to open the

Specify Script dialog and select a different script.

3. Current Script Handling — This pop-up menu

controls how to handle a running script that is

paused. After the button’s script is run, the

available options are:

a. Halt Current Script — All running scripts can

be halted.

b. Exit Current Script — The paused script will

be exited. If another script called that

script, control will be returned to it and it

will continue running.

c. Resume Current Script — The paused script

will resume running after the button script.

d. Pause Current Script — The paused script

will remain paused .

Configuring a Button Directly from the

Contextual Menu

FileMaker allows fast and direct configuration of a button’s

action from a contextual menu submenu, shown in Figure

30-39.

Figure 30-39. The Button Action submenu of a button’s contextual menu

Each option available under the Button Action submenu

immediately configures the button and/or opens the

relevant dialog while completely bypassing the Button Setup

dialog.

Do Nothing — Quickly removes any assigned action.

Single Step — Directly opens the Button Action dialog.

Perform Script — Directly opens the Specify Script

dialog.

Popover Button

A popover button is a layout object that expands to make

additional interface elements available on a miniature

layout that temporarily overlaps a portion of the current

window. While regular buttons can be configured to perform

a specific action, a popover’s action is predetermined; it

opens an adjacent, fully customizable interface from which a

user can select from many actions or perform various data

entry tasks. Popovers prevent visual clutter by allowing

interface controls to be grouped and compactly stored out

of view while remaining easily accessible with a click when

needed.

The expanded pop-up button interface is a small layout

that can contain any number and variety of interface

elements just like a regular layout. These have many uses

including:

Button menu — Allows an array of buttons to be hidden

until the user clicks to expand open a menu of all

available choices. For example, a menu of print report

options, as shown in Figure 30-40.

Figure 30-40. An example of an expanded popover button containing an

array of buttons for various printing options

Task wizard — An interface that walks a user through a

multi-option process with expanded instructional text

that would otherwise be too much clutter to include on a

main layout.

Detailed entry — A calculated summarization of text

from multiple fields that is displayed on a main layout

that pops open to make accessible and editable each

individual field.

Popovers are created by choosing the Insert > Popover

Button menu or clicking on the Button tool in the toolbar

and choosing Popover Button from the drop-down menu, as

shown in Figure 30-41.

Figure 30-41. The toolbar control used to add a new popover button

Defining the Basic Popover Interface

Once created, a popover button appears on the layout like a

new standard button with a default-sized popover interface

box open, attached to it, as shown in Figure 30-42.

Figure 30-42. A new popover button ready for editing

The following elements make up the popover button

interface:

1. Button — The button portion remains on the layout

when the popover is closed and provides the user

access to the expanded interface with a click. As

with a standard button, this will be a blank icon until

you specify a label and/or icon.

2. Interface — The attached box is the interface

window that pops open when the user clicks the

button. This is where fields and other objects are

placed to build the options that will be available to

the user when the popover is in its open state.

3. Close Button — This button, only visible when

editing the popover in layout mode, will close the

popover interface, collapsing it back to the button

icon.

4. Title — This is the optional title of the popover

interface window.

Tip Double-click the popover window to show a

gradient control bar and resize handles.

Exploring the Popover Button Setup

Options

Popover buttons are configured using the Popover Button

Setup dialog, which automatically opens when a new button

is created. This dialog, shown in Figure 30-43, can also be

opened by any of the following methods:

Double-click on a popover button or the expanded

popover interface.

With a button selected, click the Format > Popover

Button Setup menu item.

Open the button’s contextual menu and select the

Popover Button Setup menu item.

Figure 30-43. A Popover Button Setup dialog

The following elements make up the popover button

interface:

1. Button Labeling Options — Like a standard button,

choose to have the button labeled with text, an

icon, or both in a variety of orientations. The default

selection is a text label with no icon.

2. Button Labeling Specification — Like a standard

button, this area dynamically updates the available

controls depending on your choice of labeling option

above. The default, as shown, allows entry of the

button label by typing into the visible text area. As

with a button, this area will expand to allow

selection of an icon and specification of its size .

3. Preferred Directional Control — These icon buttons

allow control over the preferred direction the

popover interface should open relative to the button

icon with the following choices: Left, Right, Top,

Bottom FileMaker will override this choice to ensure

Bottom. FileMaker will override this choice to ensure

that the popover interface does not get drawn off-

screen. For example, if the button is placed against

the right side of a layout and the Right directional

option is selected, the popover may open to the left

instead to avoid the interface extending beyond the

window’s boundary.

4. Title — This editable text area contains the title of

the popover interface. Click the adjacent pencil icon

to open a Specify Calculation dialog to enter a

formula that dynamically calculations the title.

5. Show title bar check box — This check box controls

if the title is displayed in the interface or not.

6. Script Triggers — This button offers a convenient

way to open the Set Script Trigger dialog for the

popover object.

Once configured, the interface of the popover can be

customized like a regular layout.

Button Bar

A button bar is a layout object that defines a group of

interconnected button segments, as shown in Figure 30-44.

Button bars can run horizontally or vertically, and each

segment can be configured as either a regular push-style

button or as a popover button. This allows the placement of

different controls together into a single, uniform layout

element.

Figure 30-44. An example of a button bar with one popover button (open)

followed by two regular push-style buttons

Exploring the Button Bar Setup Options

Button bars are configured using the Button Bar Setup

dialog, which automatically opens when a new bar is

created. This dialog, shown in Figure 30-45, can also be

opened by any of the following methods:

Double-click on a button bar button or the expanded

popover interface of a button bar segment.

With a bar segment selected, click the Format > Button

Bar Setup menu item.

Open the button’s contextual menu and select the

Button Bar Setup menu item.

Figure 30-45. The Button Bar Setup dialog

This dialog combines the options of the Button Setup and

Popover Button Setup dialogs with controls specific to the

button bar.

The top portion of the dialog contains controls pertaining

to the overall object. These include:

1. Bar Orientation Control — These two icon buttons

control the direction of the bar segments allowing a

choice of Horizontal or Vertical.

2. Button Labeling Options — Like a standard button,

the button can be labeled with text, an icon, or both

in a variety of orientations. The default selection is

a text label with no icon.

Active Segment — This pop-up menu specifies

3.

g p p p p

which segment will be formatted as “active” by

default in Browse and Find modes, with a default

selection of None. The menu includes a list of all the

defined segments in the bar, listed by segment

number or by button label, if a label has been

assigned. It includes a Specify option that opens a

Specify Calculation dialog allowing entry of a

formula to determine the active segment by

returning the Object Name of the desired segment

(from “Position Settings of the Inspector,” Chapter

29).

4. Segment Controls — Button bars are created with a

default of three segments. These buttons allow you

to add or remove segments as follows:

The + button will add a new segment after the

currently selected segment.

The – button will delete the currently selected

segment.

5. Current Segment Navigation — These buttons allow

you to move back and forth between the segments

to select one for editing.

The bottom portion of the setup dialog contains controls

that vary contextually based on the currently selected

segment. These include:

6. Button Labeling Specification — Like a standard

button, this area dynamically updates the available

controls depending on your choice of labeling option

above. By default, it allows for the entry of the

button text in the visible field but will expand to

allow selection of an icon and specification of its

size. The values displayed apply only to the

selected segment.

7. Segment Type — This pop-up menu allows

specification of the type of button for the current

segment, offering a choice of Button or Popover

Button.

8. Action Menu & Specification — This area

dynamically updates the available controls

depending on the type of segment, displaying

Button or Popover Button interface controls

accordingly.

Converting an Object into a Button

In addition to the native button objects available for layouts,

FileMaker allows any object on a layout to be converted into

a push-style button. Select the object and click the Format >

Button Setup menu or the contextual menu option of the

same name to open a Button Setup dialog, as shown in

Figure 30-46.

Figure 30-46. The Button Setup dialog for a non-button layout object, in this

case as text object

The dialog only allows configuration of the button action

with the same options as a regular button:

Do Nothing

Perform Script

Single Step

Working with Panel Controls

A panel control is a layout object that contains multiple

groups of layout objects, organized in separate panels,

which can be alternatively displayed within a single framed

region of a layout. Panels save space by allowing a single

delimited area of a layout to be used for multiple purposes,

one at a time as required by a user.

FileMaker has two object types that manage multiple

panels:

Tabs control

Slide controls

Tab Control

A tab control is a layout object that makes multiple interface

panels accessible one at a time by means of file folder tabs,

like the example shown in Figure 30-47. The object can be

configured with any number of separate panels, each

represented by a labeled tab. When the user clicks on one

of the available tabs, the corresponding panel activates and

its layout elements are displayed in the rectangular area

below while all other panels are simultaneously obscured

from view. Each panel is like a mini-layout and can contain

any number and type of layout objects arranged as they can

on a regular layout. A tab panel can even contain another

tab object, creating a hierarchical tab structure.

Figure 30-47. An example of a tab control with four tabs, actively displaying

the second tab

Creating a New Tab Control

A new tab control can be added to a layout by:

Selecting the Insert > Tab Control menu item will insert

a new tab control at a default location and size.

Selecting the Tab Control tool in the toolbar, shown in

Figure 30-48, and then clicking and dragging the cursor

to define the position and size of the new tab object.

Figure 30-48. The Tab Control tool in the toolbar

Exploring the Tab Control Setup Dialog

Tab controls are configured using the Tab Control Setup

dialog, which automatically opens when a new tab control is

created. This dialog, shown in Figure 30-49, can also be

opened by any of the following methods in Layout mode:

Double-click anywhere on the background of a tab

control.

With a tab control selected, click the Format > Tab

Control Setup menu item.

Open the tab control’s contextual menu and the Tab

Control Setup menu item.

Figure 30-49. The Tab Control Setup dialog

The following controls are available on the Tab Control

Setup dialog:

1. Tabs — This area lists the name of every tab panel

currently defined for the control. Click and drag

these up or down in the list to rearrange the order.

2. Tab Name — This text area is used to type a tab

name when creating a new panel and to edit the

name of the selected tab. Click the adjacent Specify

button to open a Specify Calculation dialog into

which a formula can dynamically calculate the tab

name.

3. Create — This button will create a new tab with the

name entered above. Tab names do not need to be

unique.

4. Rename — This button will rename the selected tab

with the name entered above.

5. Delete — This button will delete the selected tab(s)

without warning, although the change doesn’t take

place on the layout until you click the OK button

and clicking Cancel will reverse any changes.

6. Default Front Tab — This pop-up menu lists every

defined tab name. The selected tab will be the

default active tab when navigating to a record or

creating a new record.

7. Tab Justification — This pop-up menu allows control

over the justification of the tab labels on the control

from the available choices:

Left

Center

Right

Full

8. Tab Width — This pop-up menu contains the

following options for control over the width of the

tabs:

Label Width — Set the width of each tab

individually based on the width of the label

individually based on the width of the label

name.

Label Width + a Margin of — Set the width of

each tab individually based on the width of the

label name with a specifiable margin.

Width of Widest Label — Set the width of each

tab uniformly to the width of the longest label

name.

Minimum of — Set the width of each tab

individually based on the width of the label

name while staying above a specifiable

minimum measurement.

Fixed Width of — Set the width of each tab

uniformly to a specifiable fixed width.

9. Tabs share single style — Check this box to

automatically apply any appearance style settings

made to one tab panel to every other tab panel,

maintaining a uniform design.

Slide Control

A slide control is a layout object that makes multiple

interface panels accessible one at a time by means of

swiping left or right on an iOS device with FileMaker Go or

by clicking a corresponding navigation dot, like the example

shown in Figure 30-50.

Figure 30-50. An example of a slide control

Exploring the Slide Control Setup Dialog

Tab controls are configured using the Slide Control Setup

dialog, which automatically opens when a new slide control

is created. This dialog, shown in Figure 30-51, can also be

opened by any of the following methods in Layout mode:

Double-click anywhere on the background of a slide

control.

With a slide control selected, click the Format > Slide

Control Setup menu item.

Open the slide control’s contextual menu and select the

Slide Control Setup menu item.

Figure 30-51. The Slide Control Setup dialog

The following controls are available on this dialog:

1. Panel Controls — Slide controls are created with a

default of three panels. These buttons allow you to

add or remove panels as follows:

The + button will add a new panel after the

currently selected panel.

The – button will delete the currently selected

panel.

2. Current Panel Navigation— These buttons allow you

to move back and forth between the panels to

select one for editing.

3. Options — These check boxes control whether the

slide control will react to swipe gestures on an iOS

device and whether the navigation dots are visible

or not.

4. Navigation Dot Size — Modify the size of the

navigation dots by typing in a new point size or

clicking the up or down arrows to adjust the size

one point at a time.

Working with Portals

A portal is a layout object that displays a list of related

records from another table occurrence as a vertical stack of

rows with an optional scroll bar. Each portal row represents

one related record and can be designed to include related

fields with any combination of other layout objects. For

example, a Company layout might include a portal that lists

employees from a Contact table, like the example shown in

Figure 30-52. Users can then view, edit, or click a button to

navigate to a specific contact record.

Figure 30-52. An example of a portal listing every Contact record related to

the current Company record

Illustrating How Portals Work

A portal is essentially a layout manifestation of a

relationship between two table occurrences. Relationships

integrate two tables, allowing data exchange between fields

on either side. Portals essentially provide the layout

equivalent of this type of functionality, allowing a user to

view records and perform data entry tasks on records

through a relationship.

When designing a layout for one table, any other table

occurrence that is related to that table can be used as the

record source for a portal. In the example illustrated in

Figure 30-53, a database contains two table definitions,

Company and Contacts. A second table occurrence of the

Contacts table called Company | Contacts is created and

then related to the Company table so that, from a company

record the relationship will provide a list of employees for

the current company. This table occurrence is used as the

data source for a Contacts portal placed on the Company

Form layout. As a user navigates through the list of

companies, the portal will update to show only those

contacts related to the current company record.

Figure 30-53. An illustration of a portal showing related contacts placed on a

company layout

In this example, we can think of Company as the parent

table and Contact as the child table because we are viewing

a company record on a company layout and seeing one or

more linked contacts through the relationship.

Exploring the Portal Setup Dialog

Portals are configured using the Portal Setup dialog, which

automatically opens when a new portal is created. This

dialog, shown in Figure 30-54, can also be opened by any of

the following methods in Layout mode:

Double-click anywhere on the background of a portal.

With a portal selected, click the Format > Portal Setup

menu item.

Open the portal’s contextual menu and select the Portal

Setup menu item.

Figure 30-54. The Portal Setup dialog is used to configure the settings for a

portal

The following options are available on the Portal Setup

dialog:

1. Show related records from — This pop-up menu

contains a list of every table occurrence defined in

the database organized by their relationship status

to the current layout’s tables. Any related table can

be selected and will become the data source for the

portal.

2. The following check box options control the

information displayed and properties of the portal:

Sort portal records — Opens a Sort Records

dialog allowing the selection of fields that

control how portal rows will be sorted and will

override any sort order defined by the selected

relationship.

Filter portal records — Opens a Specify

Calculation dialog for a formula that can specify

criteria used to determine which related records

will be included (discussed later in this chapter).

Allow deletion of portal records — Check this

option to allow a user to type the Delete key to

delete a selected portal row and the related

record it represents. If left unchecked, users will

only be able to delete related records if a button

and/or script is set up to explicitly do so.

Allow vertical scrolling — Check this option to

allow the portal to become scrollable when the

number of related records exceeds the number

of rows visible.

Show scroll bar — This menu allows control over

when the scroll bar will be visible, either always

or only when a user is actively scrolling.

Reset scroll bar when exiting record — Check

this option to automatically scroll back to the

first row when the record is committed.

3. The following row formatting options are available:

Initial row — This number indicates where in the

range of related records to begin displaying in

the portal with any prior records excluded.

Number of rows — This number controls how

many rows should be included in the portal at

its minimum size. All related records after the

Initial row will always be included in the portal,

but some may be out of the scroll range, not

initially visible and only accessible if scrolling is

enabled. If the portal is configured for auto-

sizing (Chapter 29) then the number of rows will

increase as the window height is increased.

Use alternate row state — Check this option to

format portal rows with an alternating fill color

to help delineate them and improve a user’s

visual clarity when glancing along the objects

included within.

Use active row state — Check this option to

apply special formatting to help visually

indicate which row is currently active.

Adding Objects to Portal Rows

In Layout mode, a portal’s first row will appear different than

the other rows. This indicates that the first row is the

template area where you can add fields, buttons, and other

objects; and the remaining rows will be rendered with the

same objects, one for each related record.

The first row is like a mini-layout where you can add any

object except other portals. Simply drag the item in,

position, size, and place it as you would anywhere else on a

layout. Just make sure that the items stay within the

boundary of the row or they will either disappear completely

or appear floating over the portal instead of repeated down

the rows when rendered in Browse mode.

Creating Records in a Portal

When viewed in Browse mode, each record in the related

table occurrence with the appropriate match field values will

appear in the portal as a row. Adding new rows to the portal

requires the creation of new records in that related table,

which can be accomplished by one of two methods:

Configuring the portal to allow direct record creation.

Creating a related record linked to the parent record.

Once configured, each of these methods can be

employed by both users and scripts.

Configuring the Portal to Allow Direct

Record Creation

To allow the creation of records directly within a portal,

enable the Allow creation of records in this table via this

relationship check box in the Edit Relationship dialog

(Chapter 9) on the side of the relationship representing the

table occurrence that provides records for the portal. This

will cause the portal to always display a blank row, as shown

in Figure 30-55.

Figure 30-55. The check box in the Edit Relationship dialog enables a blank

portal row that auto-creates new records

To create a new record, a user or script must enter a field

within the blank row, begin typing, and then move to

another field or commit the record. This will instantly cause

the following events to occur:

A new record will be created in the remote table with

the field value(s) entered by the user.

The new record will automatically populate each match

field with the appropriate value to cause it to be related

to the currently viewed parent record.

The new record will appear in the portal.

Another blank row will appear for the creation of

additional new records.

The blank row is only an interface feature, implying the

option for creating a new record. However, it does not

actually exist in the related table until data is entered. This

means that it will be programmatically ignored and will not

affect functions that summarize related records such as

Count, List, Max, Min, Sum, etc.

Caution Using this feature may be confusing for some

users since the empty new record row will appear to them

like a related record with empty fields. This may cause

them to either attempt to delete the empty row thinking it

is leftover data; or not attempt to delete an actual

leftover record thinking it is the new record row. For this

reason, many professional developers do not enable this

feature in their solutions and prefer to write a script to

create a related record.

Creating a Related Record Linked to the

Parent Record

The other method for creating a new portal row can be

achieved by:

1. Navigating to a layout for the table occurrence that

provides records for the portal.

2. Creating a new record.

3. Entering the appropriate value(s) in the match

field(s) to establish the link to the parent record.

4. Returning to the original layout displaying the

portal.

Once these steps are completed the record will appear in

the portal on the parent record.

Although these steps can be performed manually by a

user, due to the number of steps and complexity involved,

this process should be encoded into a script. In addition to

the burden of time, performing the task manually increases

the chance a user may forget to fill in an essential match

field or enter the wrong value. In either case, this would

result in the new record being linked to the wrong record

and lost somewhere in the data.

A script linked to a button near the portal is a far better

option. At the click of the button, the script would quickly

load the match field value(s) from the parent into variables,

navigate to the appropriate layout for the related table

occurrence, create the new record, enter the match field

value(s), return to the portal layout, select the new portal

row and then return control to the user allowing them to

begin typing into the new row that was created.

Note An example of each of the scripts described in

this section appear in Chapter 35, “Scripting Portal

Functions.”

Deleting Portal Rows

Deleting a portal row is accomplished by deleting the

related record displayed in the row. Like adding rows to a

portal, there are two options available for giving a user this

ability.

Configuring the portal to allow direct record deletion.

Deleting a related record directly from the remote table.

Configuring the Portal to Allow Direct

Record Deletion

The Portal Setup dialog contains a setting to Allow deletion

of portal records. When this feature is enabled, a user can

select a portal row (without clicking into a field) and type

the Delete key to delete the related record and remove it

from the portal display. FileMaker will present a confirmation

dialog asking if the user wants to continue with the deletion,

as shown in Figure 30-56. If they click Delete, the portal row

and the related record it represents will be immediately

deleted.

Figure 30-56. The dialog confirming the deletion of a portal row

Caution The default message in the dialog is vague

and has the potential to be confusing to the users.

Configuring the portal to Use active row state may help

since the selected row will be highlighted. However, the

non-specific message is still far from ideal. To create a

more professional interaction, turn off the direct delete

option and put a Delete button or icon into the portal row

that will handle the process with a more detailed dialog

message.

Deleting a Related Record Directly within

the Remote Table

The other method for deleting a portal row can be achieved

by:

1. Navigating to a layout for the table occurrence that

provides records for the portal.

2. Finding the record to be deleted.

3. Deleting the record.

4. Returning to the original layout displaying the

portal.

Once these steps are completed the record will be

deleted and remoted from the portal on the parent record.

This process can be performed manually, however, as

mentioned when adding a record to a portal, it is far better

to create a script and link it to a Delete button that can be

placed within the portal row, as shown in Figure 30-57.

Figure 30-57. A portal with a Delete button added to the right side to allow a

user to click to run a script that will delete a specific record

The button can be linked to the Delete Portal Row script

step, but that is essentially the same function as them

typing Delete and will have the same vague dialog

message. Instead, write a script that loads the Record ID

field of the selected row into a variable; navigates to a

layout for the table occurrence providing records for the

portal; performs a search for the record; presents a warning

dialog; and, if the user confirms their intent, deletes the

record before returning to the original layout. Since you are

creating this script yourself, you can control the dialog

message, providing a much clearer warning to the user like

the one shown in Figure 30-58.

Figure 30-58. An example of a robust confirmation dialog for a script when

deleting a portal row

Filtering Portal Records

Portal filtering allows a formula to determine which of the

available related records are actually displayed in the portal.

It can be driven by field values or other contextual

conditions. The popular filtering setup described in this

section involves a search field into which users can type

some criteria that specifies a desired subset of related

records.

A Search Filter field would be added to the layout near

the portal, like the one shown in Figure 30-59. When the

user types into the field and commits the record, the list of

rows would be trimmed down to only those with matching

values.

Figure 30-59. An example of a basic portal filtering field placed near a portal

to filter records based on the user’s entry

Caution Filtering applies only to related records

displayed in a portal and does not affect the actual

relationship. Therefore, any field or script calculations

that access records through the relationship will continue

to see all records even when the layout displays a filtered

set.

Setting Up Portal Filtering

Setting up portal filtering is a relatively quick process. For

example, creating a simple filter by the Contact Address

State field can be accomplished by following these steps :

1. Create a text field in the parent table, represented

by the layout upon which the portal will be

displayed. In our ongoing example, this would be

the Company table. For this example, the field

name will be Company Contact Portal Filter.

2. Place the field on the layout just above the portal

with a label that makes clear its function as shown

with a label that makes clear its function, as shown

in the example in Figure 30-59.

3. In the Portal Setup dialog, click the Specify button

adjacent to the Filter portal records option to open a

Specify Formula dialog.

4. The formula must indicate when a related record in

the Contacts table should appear in the portal

based on what the user has typed into the filter

field.

5. Then save the formula and close the Portal Setup

dialog.

Tip To have the filter field apply to all records in the

parent table and to avoid the record locking (showing

busy for other users) use global storage on that field.

Once the user enters filtering criteria, it will apply for any

record during the session until they change the criteria.

Writing a Basic Portal Filter Formula

A portal filter formula is made up of one or more conditional

statements that evaluate to a true or false result. Every

related record is evaluated individually; if it yields a true

result, it appears in the portal, if false, it is hidden.

The filter formula constrains the list of related records

and already assumes the record matching criteria of the

relationship itself. As a result, the filter formula :

does not need to re-specify that criteria, which is a

given

cannot extend beyond the relationship’s criteria to

include additional records

If you don’t want to require filtering criteria, the formula

must include an option for situations when no criteria are

entered in the filter field. In this case, the portal should

continue to display all related records. This can be

accomplished by starting the formula with the following

code, indicating that related records should be included

when:

Company::Company Contact Portal Filter = ""

After this, an or operator followed by a second condition

can begin adding filtering criteria. Using the PatternCount

function, we can specify a partial or full match between the

Contact Address State field and the text the user has

entered in the filter field, expanding the formula to the

following:

Company::Company Contact Portal Filter = "" or

PatternCount (

 Company | Contact::Contact Address State ;

 Company::Company Contact Portal Filter

) > 0

Save the formula and the Portal Setup, then test the

function. When a state abbreviation is typed into the filter

field, the portal rows should only include those records

matching the text you enter.

Note For the portal to update after typing into the filter

field, the record must be committed. To dynamically

update the results, use the ObjectModify script trigger

(Chapter 37) to run a script that commits the record and

re-enters the filter field after each keystroke.

Expanding the Filter Formula to Include

Multiple Match Fields

The filter formula can be expanded to include additional

criteria with the appropriate operator. This includes filtering

based on any combination of the following:

Multiple fields in the parent table in addition to or

instead of a search filter field.

Multiple fields in the child table based on a single search

filter field in the parent or multiple fields.

Multiple criteria using combinations of fields using an

and operator .

In the Contact Portal example, the formula can be

expanded to find matches in multiple Contact fields based

on the text in the single filter field like this:

Company::Company Contact Portal Filter = "" or

PatternCount (

 Company | Contact::Contact Name First ;

 Company::Company Contact Portal Filter

) > 0 or

PatternCount (

 Company | Contact::Contact Name Last ;

 Company::Company Contact Portal Filter

) > 0 or

PatternCount (

 Company | Contact::Contact Address City ;

 Company::Company Contact Portal Filter

) > 0 or

PatternCount (

 Company | Contact::Contact Address State ;

 Company::Company Contact Portal Filter

) > 0

Now, in the example shown in Figure 30-60, typing “SC”

in the filter field will result in a match of two records: one

based on the state and another based on a partial match in

the city.

Figure 30-60. The portal filtered by multiple fields in the related table

Enhancing the Search Field

Once configured, consider improving the search field

interface to more closely mirror what is seen throughout the

operating system. The example shown in Figure 30-61

includes the following design improvements over the

previous examples:

The label has been replaced with Placeholder text of

“Search by,” which is embedded within the field.

The corners of the field are rounded.

A button icon is added on the right that, when clicked,

uses the Clear function to delete the search criteria.

Figure 30-61. An improved search field interface design

Working with Web Viewers

A web viewer is a layout object that use the operating

system’s web browser technology to display a web page

directly on a database layout. Viewers can be configured to

display a static page or to allow user interactions. When a

layout is loaded, the viewer can display a page generated

by:

A choice of a handful of standard web address formula

such as Google web search, Google maps, FedEx, or

Wikipedia.

A web address pulled from a database field.

A hard-coded web address pointing to any website.

Custom HTML code created by a FileMaker calculation

formula that may include hard-code elements, field

data, and even images stored in fields.

Scripts can modify the address or data of the page

displayed in a web viewer.

Web viewers will display fine when a window is displaying

a Form view or List view; Table view will only display a web

viewer placed in the header or footer. They can’t be placed

in portals and shouldn’t be placed behind other objects.

Note Custom web addresses must begin with the

correct scheme such as http://, https://, ftp://, or file://.

Exploring the Web Viewer Setup Dialog

To add a web page to a layout, select the Insert > Web

Viewer menu item or the Web Viewer tool from the toolbar

and click and drag on the layout to define the area for the

new object. The Web Viewer Setup dialog, shown in Figure

30-62, will appear.

Figure 30-62. The Web Viewer Setup dialog

The following controls are available in the Web Viewer

Setup dialog:

1. Choose a Website — This list displays all the

available options for generating a web address.

Choose from the list of templates for standard data-

driven websites or select Custom Web Address to

write your own URL or HTML calculation formula.

2. Web Address — This text area displays the address

or formula for generating an address that will be

displayed in the web viewer. The predefined options

will insert a ready-made calculation with links to

contextual website parameter fields on the top right

of the dialog. Custom addresses or formulas can be

g

entered directly into the text area or into a Specify

Calculation dialog by clicking the adjacent Specify

button.

3. Web Viewer Options — This set of check boxes

control the following features of the viewer:

Allow interaction with web viewer content —

Check this box to allow the user to interact with

the displayed web page like they would in any

standard web browser.

Display content in Find mode — Check this box

to cause the web viewer to continue displaying

content when the window is placed into Find

mode.

Display progress bar — Check this box to

include a progress bar in the footer showing the

percentage of completion for loading the page.

Display status messages — Check this box to

have the viewer include a text footer that

displays the loading status of the page.

Automatically encode URL — Check this box to

allow FileMaker to automatically percent-encode

any special characters contained in the address

specified. For example, a space will be

converted to %20 automatically if this box is

checked.

4. Website Parameters — This set of input controls will

display a set of input options for the predefined

websites, which will be automatically inserted into

the URL when the web page is rendered in the

viewer. You can type a value directly into a field or

click the adjacent button and choose from one of

two options:

two options:

Specify Field Name — Choosing this option will

open a Specify Field dialog and allow you to

select a field that will provide the required input

value.

Specify Calculation — Choosing this option will

open a Specify Calculation dialog and allow you

to enter a custom formula to determine the

required input value.

Interacting with Web Viewer Content

When the Allow interaction with web viewer content option

is enabled, a user can interact with a web page as they

would in any other browser. They can click links to navigate

to other pages and should be able to view content such as

PDF documents and movies. However, it is important to

remember that the viewer isn’t really intended to act as a

full-featured web browser and there may be some

limitations.

When enabled, several contextual menus will allow

interaction with content as well as the page itself. While

holding down the Control key, click on a:

Page — to gain access a menu with two options: Reload

the web page or go Back to the previously displayed

page.

Text — accesses a menu of standard operating system

text functions. The macOS version includes the options

to Look up the word or phrase in the dictionary, perform

a Google search with the text, Copy, a submenu of

Share options, a submenu of Speech options, and

access to any available text System Services.

Image — accesses a menu of image functions like what

you would see in a web browser. The macOS version

includes an option to open the image in a new window,

Download the image, Copy the image, and include a

submenu of Share options.

Link — accesses a menu of options including open the

link, open the link in a new window, download linked file,

copy link, a submenu of Share options, and any

available text System Services.

Note Choosing to open an image or link into a new

window will leave FileMaker and open in your computer’s

default web browser application.

Building a Web Page Using Data from

Fields

In addition to providing a web address, a web viewer

formula can return HTML code to dynamically build a

custom page. FileMaker uses the data universal resource

identifier (URI) scheme , which is a standard method of

including data within the code of a web page as if it were

external resources. In FileMaker, the html code for the page

itself is an instance of the data scheme as are any images

embedded within it.

The data URI is expressed with the following formula

(with square brackets indicating optional elements):

data:[<media type>][;base64],<data>

This formula contains the following elements:

data: — This indicates the scheme being used.

<media type> — The optional media type indicates the

type of material contained in the data. A web page

would use text/html while an image would use

image/<type>, for example, image/png. If no media

type is specified, the data will be assumed to be

text/plain although it appears that FileMaker still

interprets the data as html.

;base64— The optional base64 extension, delimited

from the media type with a semicolon, is used to

indicate that the data content is binary data, which is

encoded in ASCII format using the Base64 binary-to-text

encoding scheme.

<data> — The sequence of characters, separated from

the preceding values by a comma, that make up the

content being described, HTML code or Base64 image

data. This text can contain ASCII characters for the

lowercase and uppercase letters of the alphabet but

they must be percent-encoded.

Note The GetAsURLEncoded function will percent-

encode text (Chapter 13).

Creating a Hello World Web Page

To get started creating a formula to generate a custom web

page, start with this simple Hello World example:

"data:text/html,

<html>

<head>

</head>

<body>

<h1>Hello World</h1>

</body>"

The page code can include a <style> tag to control text

formatting with cascading style sheets (CSS). This simple

example modifies the color of the h1 style:

"data:text/html,

<html>

<head>

<style>

h1 {

color: green;

}

</style>

</head>

<body>

<h1>Hello World</h1>

</body>"

The page code can include a <script> tag to include

JavaScript functions. This simple example will open an alert

dialog when the page loads:

"data:text/html,

<html>

<head>

</head>

<body>

<script>

alert('Hello World!')

</script>

<h1>Hello World</h1>

</body>"

Tip Remember when writing html code for a web viewer

that you are doing so within a FileMaker calculation

formula. All text must be enclosed in quotation marks,

and any quotes within that text must be escaped with a

preceding backslash. To avoid this, the entire HTML code

can be stored in and loaded from a field.

Including Text Fields in a Web Page

Since the code for the web page is written in a Specify

Calculation dialog using a formula that returns text inserting

fields is done the same as in any formula (Chapter 12).

Place a field reference into the formula outside of the

quoted text:

"data:text/html,

<html>

<head>

</head>

<body>

<h1>" & Company::Company Name & "</h1>

</body>"

Including a Container Field Image in a

Web Page

Images that exist on the Web can be included by inserting

the URL in an <image> tag. However, to include an image

from a field, use the Base64Decode function (Chapter 18) to

convert the image in a container field. This can be inserted

into the code as follows:

"data:text/html,

<html>

<head>

</head>

<body>

<h1>" & Company::Company Name & "</h1>

<img src='data:image/imagemac;base64," &

Base64Encode (Company::Company Logo) & "'>

</body>"

Working with Charts

A chart is a layout object that draws a graphical

representation of data in one of several popular charting

formats, shown in Figure 30-63.

Figure 30-63. The available chart types in FileMaker

Charts are configured within a complex Chart Setup

dialog, shown in Figure 30-64, which opens whenever a new

chart object is inserted onto a layout. This dialog can be

reopened for an existing chart object by any of the following

methods:

Double-click on the chart object.

Open the chart object’s contextual menu and select the

Chart Setup option.

Select the chart object and choose the Format > Chart

Setup menu item.

Figure 30-64. The Chart Setup dialog

The Chart Setup dialog is broken up into the following

two sections:

1. Preview — This area will show a preview of the

chart based on the configured settings and the

current window’s context (table, found set, sort

order, etc.).

2. Controls — This area contains all the controls used

to define and style the chart. It contains three

toggle sections that display tools and settings

contextually based on the chart type selected and

other options:

Chart — Set the chart title, type, axis data

information (field reference or calculation

results), legends and more.

Styles — Set the chart style, color scheme,

background, gridlines, legend positions,

borders, and more.

Data Source — Offers a choice for the source of

the axis data from Current Found Set, Current

Record (delimited data), or Related Records.

The charting features and interface controls are too

numerous to cover in complete detail so we will explore

simple examples using two chart types. With an

understanding of general charting methodology and

features from other popular applications such as Microsoft

Excel, it should be relatively easy to explore the interface

and figure out how to create additional charts.

Creating Charts

Charts can be created using data from the found set of

records, a group of related records, or from calculated data.

Creating a Chart Using Calculated Data

Using calculated data to generate a chart will draw

information from either hard-coded calculated values or

fields from the current record. Let’s work through an

example of creating a pie chart using hard-coded values.

To get started, insert a chart onto a layout, and then

configure the settings as shown in Figure 30-65.

Figure 30-65. The configuration for a pie chart based on calculated data

The following settings are required for this example:

1. Type — Select Pie as the type. This will adjust the

available settings to allow Category Labels and

Slice Data values.

2. Category Labels — This area must result in a

carriage return-delimited list of values that define

the categories for the chart. Type directly into the

text area or click the adjacent button to get a menu

with two options:

Specify Field Name — opens a Specify Field

dialog to allow a selection of the field containing

the desired values.

Specify Calculation— opens a Specify

Calculation dialog into which you can enter a

formula that will return the desired values.

3 Slice Data This area must result in a carriage

3. Slice Data — This area must result in a carriage

return-delimited list of numeric values that define

the slices of the pie chart that correspond to each of

the Category Labels defined above. Type directly

into the text area or click the adjacent button to get

the same two options for Category Labels.

4. Options — These are optional settings to include

labels on the chart showing the actual value and/or

percentage of the whole.

5. Chart Data — From the Data Source section of the

controls, select Current Record (delimited data) to

instruct the chart engine to use data from the

context of the current record only.

This example will generate a pie chart with three

sections, as shown in Figure 30-66.

Figure 30-66. The chart generated by the example data

The Category Labels formula for this example is:

Category A¶Category B¶Category C

The Slice Data formula for this example is:

1000¶250¶650

Creating a Chart Using the Found Set

Charts can be created more dynamically using the records

in the found set as the data source. Let’s work through an

example of creating a bar chart, displaying the number of

Contact records by state.

To get started, insert a chart onto a layout, and then

configure the settings as shown in Figure 30-67.

Figure 30-67. The configuration for a column chart summarized from the

found set

Tip Creating charts from found sets can be a little

confusing. It is like creating a report with a sub-summary

part in that only records in the found set will be included

and the sort order controls how a summary field counts

records into subgroups.

The following settings are required for this example:

1. Type — Select Column as the type. This will adjust

the available settings to allow X-Axis and Y-Axis

values.

2. X-Axis Data — This area refers to a field containing

text that will act as the labels for the bars. To avoid

duplicate values, FileMaker will automatically

summarize these values if the found set is sorted by

the field specified. In our example, we point to the

Contact Address State field, which is the field by

which the found set is sorted.

3. Y-Axis Data — This area refers to a summary field

containing the numeric values for the bar height. In

our example, a new Contact State Count Summary

field is used, which performs a Count of the Record

ID field.

4. Chart Data — On the Data Source section of the

controls, select Current Found Set to instruct the

chart engine to summarize data from across all the

records.

The resulting chart will appear as shown in Figure 30-68.

Figure 30-68. An example of a column chart displaying the number of contact

records for each state

Remember, for this chart to summarize correctly, the

records must be sorted by the x-axis (State) and the y-axis

must be a summary field, counting the number of records

by using a field such as the Record ID.

Creating a Quick Chart from a Table View

When viewing a found set of records in Table view, the field

heading menu includes an option that allows any user to

generate a quick chart based on the field whose heading

menu was selected or by the first sort field. The Chart Setup

dialog will be instantly configured with all the necessary

default values and field references. The user can then

modify settings and have a choice to Print Chart or, if their

access settings allow, Save as Layout.

Summary

In this chapter, we discussed details about the objects that

can be placed on layouts to allow a user to view and

interact with the data structure and script functions of the

database.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_31

31. Manipulating Objects

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Once objects are placed on a layout, there are various ways

to manipulate them. In this chapter, we will focus on

manipulating objects , covering:

Selecting

Resizing

Moving

Arranging & aligning

Hiding

Conditional formatting

Understanding tab order

Naming objects

Selecting Objects

To select an object, click on it with the cursor or click on the

layout near the object and drag the cursor toward it. The

object will become highlighted with an outline that includes

eight sizing handles, which are small dots located at the

four corners and midway along each side, as shown in

Figure 31-1.

Figure 31-1. An object at rest vs. a selected object which is highlighted and

has eight sizing handles

To select more than one object at a time, either:

Click on them one by one while holding down the Shift

key

Click on the background and drag the cursor so that the

focal rectangle touches all the desired objects. Holding

the Command (macOS) or Windows (Windows) key while

dragging will require that an item be completely within

the boundaries of the box before it will be selected.

When multiple objects are selected, they share one set of

sizing handles among them, outlining the overall space of

the group. See Figure 31-2.

Figure 31-2. Objects selected together will have collective sizing handles

Objects can be de-selected by clicking on the background

of the layout or by selecting another object. To de-select one

of a group of selected objects, click on the object while

holding the Shift key.

Resizing Objects

Objects can be resized using the following methods:

Click on one of the eight sizing handles and drag the

cursor away or toward the center of the object(s).

Use the Position settings of the Position panel of the

Inspector. Type a new measurement for the Width or

Height settings followed by the Tab or Enter key and the

object will instantly adjust the object’s size.

Use the Resize To feature described later in this chapter.

Moving Objects

Once one or more objects are selected, they can be moved

to a new location by clicking and dragging.

Caution Shape objects with no fill color are a little

tricky to move by dragging. Clicking in the center of an

object will click through the object onto objects behind it

or the background of the layout. Instead, carefully click on

the edge of the shape to grab and drag it.

In addition to dragging, selected objects can be moved

using three other methods:

Use the Up, Down, Left, or Right arrow keys to push the

selection one pixel at a time in one direction.

Use the Position settings of the Position panel of the

Inspector (Chapter 29). Type a new measurement for

the Left, Right, Top, or Bottom positions followed by the

Tab or Enter key and the object will instantly shift to that

new position.

Use the Arrange and Align features described later in

this chapter.

Layout Positioning Helpers

There are four features that can be helpful when positioning

objects manually. These can be used individually or in

unison to guide an object to a new location.

Ruler

The ruler is a horizontal and vertical strip running along the

entire left and top of a window’s content area that displays

incremental markings based on a chosen unit of

measurement: inch, centimeter, or point. The ruler, as

shown in Figure 31-3, is only visible in Layout mode when

the View > Rulers menu is active.

Figure 31-3. The Ruler helps you to drag an object into a precise position on

the layout

The ruler has the following features:

1. At the corner where the horizontal and vertical

rulers intersect is a button that cycles through the

available units for the ruler.

2. The cursor’s current position is marked in each ruler

with a dotted line.

3. When dragging an object, the rulers both denote

the boundaries of object with a white highlight.

Tip The unit of measurement can also be changed from

the ruler’s contextual menu.

When editing text directly on a layout, the top ruler

transforms into a gray bar with a text ruler overlay that

spans the width of text object, as shown in Figure 31-4. This

ruler controls indentation, margins, and tabs within the text

object in a similar manner to the text ruler accessible in

Browse mode when editing a field.

Figure 31-4. The top ruler transforms into a text ruler sized to the object being

edited

Grid

The layout grid is a sequence of evenly spaced horizontal

and vertical lines overlaid on a layout background that

forms a regular grid of minor and major areas. These lines,

resembling graph paper, are only visible in Layout mode

when the View > Grid > Show Grid menu item is active or

the corresponding check box in the Inspector is enabled

(Chapter 29, “Grid”).

When visible, the lines can visually assist in uniform

alignment of objects. Activating the View > Grid > Snap to

Grid feature in the menu or the Inspector will cause an

object being dragged to be subtly attached to the next grid

line in the direction of travel.

Guides

A layout guide is a movable blue line used to align objects

and define regions of a layout. Multiple guides can be

placed horizontally or vertically on the layout, as shown in

Figure 31-5. Guides don’t print and are only visible in Layout

mode when the View > Guides > Show Guides menu is

active. They are identical in form and function to the guides

in desktop publishing and page layout applications.

Figure 31-5. A layout with several guides outlining different regions

When visible, guides can visually assist in uniform

alignment of objects. Activating the View > Guides > Snap

to Guides feature in the menu will cause an object being

dragged to be subtly attached to the next available guide

line in the direction of travel.

Note Guides are layout specific so they must be

configured for each layout.

With ruler must be visible, click on a ruler and then drag

right or down respectively and release the new guide at the

desired position on the content area. Guides can be

repositioned by clicking, holding, and dragging to a new

position or removed completely by dragging them back to

the ruler.

Dynamic Guides

As an object is moved around a layout, blue lines called

dynamic guides automatically appear and disappear on or

around nearby objects showing alignment and spacing

patterns that would result if the object were dropped in its

current location. By showing multiple spatial relationships of

groups of nearby objects relative to the position of the

moving object, dynamic guides help to encourage

consistency and order when manually moving an object.

Like the grid and manually placed guide lines, objects will

be subtly attracted to dynamic guides.

Activating the View > Dynamic Guides menu item will

cause dynamic guides to appear on any layout when an

object is being dragged with the cursor.

When moving an object, no guides will appear when the

current position does not align to any other objects on the

layout, as shown in Figure 31-6.

Figure 31-6. A dragged object that does not align with any other objects will

show no dynamic guides

As the object is dragged further and begins to align with

other objects, dynamic guides will appear, like the one

shown in Figure 31-7. Alignments are shown for left, right,

horizontal center, top, bottom, and vertical center,

connecting to one or more other objects.

Figure 31-7. As the object moves into alignment with one or more objects, a

guide will appear

When the object is dragged into a position that creates a

consistent spacing pattern, those are highlighted as well,

like that shown in Figure 31-8. These appear for horizontal

and vertical arrangements and are displayed simultaneously

with alignment guides.

Figure 31-8. Multiple guides can appear showing both alignment and uniform

spacing between objects

Note Many examples in this chapter are shown with

square shapes for illustrative purposes only. Dynamic

guides and other features described will work the same

with any combination of different layout object types,

non-uniform arrangements, and varying sizes.

Arranging & Aligning Objects

When working on complex layouts with dozens or hundreds

of items, moving, sizing, and spacing groups of objects can

be tediously repetitive to perform manually. Also, it is

possible to rotate an object on a layout and to lock objects

to avoid accidentally disrupting a meticulously designed

layout.

FileMaker has functions to assist in the task of aligning,

distributing, resizing, rotating, grouping, and locking

objects, accessible from three places when in Layout mode :

The Arrange menu in the menu bar.

The Arrange sub-menu in the contextual menu.

The arrange & align group of tools on the Position panel

of the Inspector.

With the exception of Rotate, these functions all work

with any combination of object type.

Note These functions work in FileMaker like those found

in countless other page layout and desktop publishing

applications.

Align

The Align group of functions include commands to

automatically align groups of selected objects horizontally

(Left Edges, Center, Right Edges) or vertically (Top Edges,

Middle, Bottom Edges).

For example, with several misaligned objects selected,

choose the Arrange > Align > Left menu item to instantly

align them along their left border, as shown in Figure 31-9.

Figure 31-9. The transition from misalignment to Left alignment is

instantenous using the Align > Left function

Resize To

The Resize To group of functions include commands to

automatically resize groups of selected objects to Smallest

Width, Smallest Height, Smallest Width & Height, Largest

Width, Largest Height or Largest Width & Height.

For example, with several non-uniformly sized objects

selected, choose the Arrange > Resize To > Smallest Width

and Height menu item to instantly resize every object to a

uniform size and height based on the object with the

smallest of each, as shown in Figure 31-10.

Figure 31-10. The transition from non-uniform size (Left) to uniform size

(Right) is instantenous using the Resize To functions

Distribute or Space

Objects can be distributed or uniformly spaced using the

Distribute submenu in the Arrange menu or contextual

menu as well as the Space buttons on the Arrange & Align

section of the Position panel of the Inspector. The functions

will reposition the objects so that they are uniformly spaced

horizontally or vertically using the outside measurements of

the group along the respective axis.

For example, with several non-uniformly spaced objects

selected, choose the Arrange > Distribute > Vertical menu

to instantly reposition every object with uniform space

between them, as shown in Figure 31-11.

Figure 31-11. The transition from non-uniform spacing (Left) to evenly

distributed vertical spacing (Right) using the Distribute function

Rotate

Many objects can be rotated in a clockwise direction 90

degrees at a time by selecting the Arrange > Rotate menu

item, as shown in Figure 31-12.

Figure 31-12. A text object before and after two rotations

Note The following object can’t be rotated: button bars,

charts, popovers, portals, slide controls, tab controls, and

web viewers.

Group

Grouping objects makes it possible to select and manipulate

multiple objects as if they were a single object. Once

grouped, they can be resized, moved, formatted as a

button, and more.

The objects within the group are “frozen” in place in size

and in position relative to one another and can only be

edited as a group. However, most objects such as buttons,

button bars, charts, fields, web viewers, and more can be

edited functionally while included in a group by double-

clicking directly on the object. In some cases, an object will

need to be ungrouped for editing.

A set of selected objects can be grouped by selecting the

Arrange > Group menu item. It is even possible to group

groups into a grouping hierarchy. To ungroup formerly

grouped objects, select the Arrange > Ungroup menu item.

Lock

Locking an object causes it to be uneditable and is a great

way to avoid accidental modifications or deletions of

carefully arranged layout items. A locked object can’t be

moved, resized, reassigned, reconfigured, or changed in any

way unless and until it is unlocked. When selected, locked

objects displays an “x” icon in place of each sizing handle,

as shown in Figure 31-13.

Figure 31-13. A locked object is indicated by a restriction icon in place of

sizing handles

An object can be locked by selecting the Arrange > Lock

menu item. Once locked, the item will not respond to any

edit commands. Occasionally, when attempting to change a

setting in the Inspector, a dialog will appear stating that the

change couldn’t be made because of the object’s locked

status. However, in many cases, the command will just be

ignored. For example, selecting a locked object and typing

Delete will result in no action and no error dialog. If the

locked object is selected with other unlocked objects,

deleting will successfully delete everything except for the

locked object.

An object can be unlocked by selecting the Arrange >

Unlock menu item.

Object Stacking

Objects on a layout are stacked in an order relative to other

objects based on when they were created. When two objects

are moved together, the one created after the other will

appear on top of the first, obscuring it from view. This is

called the stacking order .

There are four commands that affect an object’s position

within the stack, as illustrated in Figure 31-14.

Figure 31-14. An illustration of all four commands that affect an object’s stack

position

The four stacking commands are:

Bring to Front — Brings the selected object(s) to the

front of the stack.

Bring Forward — Brings the selected object(s) one step

forward in the stack.

Send Backward — Sends the selected object(s) one step

backward in the stack.

Send to Back — Sends the selected object(s) to the back

of the stack.

Hiding Objects

The Hide objects when setting is a formula that controls

whether an object will be visible on the layout. The feature

makes possible conditional interface elements that appear

or disappear based on the values in fields, conditions of the

window context, or details about the user’s environment,

such as:

Hide buttons until the appropriate value(s) are entered

to make their function applicable or vary buttons

depending on conditions, such as the open or

committed status of a record.

Hide fields based on the status or type of a record.

Hide objects based on the window’s mode.

Hide a chart until enough information has been entered

to make it useful.

Have two overlapping portals or tab controls toggle

depending on the type of record.

Make layout objects only accessible for certain access

privilege sets. This can be used to hide restricted fields

and avoid users seeing fields stating “no access.”

The hide formula is entered in the Behavior section of the

Data panel of the Inspector. When it evaluates to a true

result, the object will be hidden. When it returns a false

value, the object will be visible to the user. Objects always

remain visible in Layout mode.

Tip Using the Hide objects when feature with a formula

that always returns a true result, short developer notes

can be embedded directly within the content area, next to

interface elements to which they refer. For example, when

objects are layered on top of one another, a short piece of

red text near them stating “Layered objects” is a helpful

reminder when in Layout mode but could be hidden in

Browse mode.

Conditional Formatting

Conditional formatting is a layout feature that defines

format combinations that will be applied to an object when

certain conditions are met. Each condition is defined as a

custom formula or by selecting one of twenty

predetermined content value conditions.

Caution Don’t confuse conditional formatting with text

formatting functions. The former affect the appearance of

a object on a layout while the latter affects the actual text

content of a field or formula-driven object text.

The rules for conditionally formatting an object are set in

the Conditional Formatting dialog, shown in Figure 31-15.

The dialog can be open when one or more objects is

selected and then either:

Choosing the Format > Conditional menu item .

Open the object’s contextual menu and select the

Conditional Formatting option.

Figure 31-15. The Conditional Formatting dialog

The Conditional Formatting dialog options include:

Condition List — a list of every condition defined for the

selection object(s). An enabled check box indicates an

active condition. Use the Add and Delete buttons to

create or remove conditions from the list. Conditions are

evaluated from top to bottom. If more than one

evaluates as true and creates formatting conflicts, lower

conditions in the list will override previous ones above.

To ensure that conditions are applied as expected, you

may need to drag them up or down in the list

accordingly.

Condition — defines the formula for the selected

condition. When the result of the condition is true, the

formatting will be applied to the object.

Format — the formatting options that will be appliced to

the object(s) when the condition is met.

Condition Formula Options

A condition formula defines the contextual circumstances

under which the format settings will be applied to the

object(s). This can be one of two types: Value is and Formula

is.

Value-Driven Conditions

The Value is condition compares the text content of the

object to one or more static values depending on the choice

of twenty different operators, as shown in Figure 31-16.

Once an operator is selected, one or more fields appear into

which static values can be inserted to complete the implied

formula.

Figure 31-16. The options for a value-driven condition

This provides an ease-of-use option for simple conditions,

comparing the contents of the object to the static values

based on the selected operator. For example, if the value of

a Status field is equal to “Urgent” or if a Total Price field is

less than zero, the text can be colored red and made bold.

Formula-Driven Conditions

The Formula is condition accepts a totally custom formula

that is used to evaluate the condition as Boolean and then

apply the formatting or not.

Once selected, a text area and Specify button appears,

as shown in Figure 31-17.

Figure 31-17. The options for a formula-driven condition

Being completely custom, the formula entered can use

any contextual information in its evaluation. This includes

the value of any accessible fields (local or related), global

variables, built-in functions, custom functions, etc.

Conditional Format Settings

The format settings defined will be applied to the object

when the formula evaluates to a true result. These settings

can include one or more of the following:

Text font, size, color, and style

Fill color

Icon color

Conditionally Formatting an Invoice Status

Field

This example conditional formatting uses a Status field in an

Invoice table, like the one shown in Figure 31-18.

Figure 31-18. An Invoice list view with conditionally formatted Status field

In this example, the field allows four values; Open,

Current, Past Due, and Closed and has the following

conditions:

An Open invoice will display the status without any

additional formatting applied. This option will not require

a condition since the default field format will be used.

A Current invoice will apply a fill color of green to the

status, highlighting the fact that the money is due but

not yet overdue.

A Past Due invoice will apply a fill color of red to the

status, highlighting the fact that the money is overdue.

A Closed invoice will color the status text a slightly

muted gray, making it less prominent and emphasizing

the fact that the invoice has been paid and is now

inactive.

To configure the last three conditions, select the field on

a layout, open the Conditional Formatting dialog, and

configure it as shown in Figure 31-19.

Figure 31-19. The Conditional Formatting dialog configured to apply three

different text colors to the Invoice Status field

To set up the condition for a Current status:

1. Click the Add button to create a new condition.

2. Leave the Condition type to Value is and choose the

equal to operator, then enter “Current” into the

adjacent field.

3. Check the Fill Color box and choose a light green

color.

To set up the condition for a Past Due status:

1. Click the Add button to create a new condition.

2. Leave the Condition type to Value is and choose the

equal to operator, then enter “Past Due” into the

adjacent field.

3. Check the Fill Color box and choose a light red color.
To set up the condition for a Closed status:

4. Click the Add button to create a new condition.

5. Leave the Condition type to Value is and choose the

equal to operator, then enter “Closed” into the

adjacent field.

6. Check the Text Color box and choose a medium

gray color.

Understanding Tab Order

A layout’s tab order is the sequence in which objects will

receive focus, as the user steps through them by typing the

Tab key. The default tab order is from left to right and top to

bottom through every object that can accept focus.

However, if objects are moved around on a layout, the tab

order may need to be reset. It can also be fully customized

so that objects are excluded or flow in a custom order.

Note Depending on a field’s Go to next object using

settings, typing Return or Enter may perform the same

object stepping action as the Tab key (Chapter 29,

“Behavior”).

Changing the Tab Order

To edit the tab order, select the Layout > Set Tab Order

menu item wil in Layout mode. This will place the layout of

the current window into a tab-editing mode, shown in Figure

31-20.

Figure 31-20. A window in Set Tab Order mode

While in tab-editing mode, each object capable of

receiving focus will have a small arrow icon superimposed

attached to one side. These contain the object’s current

number in the tab order and are editable fields. The

following actions can be performed in these arrow fields:

Delete the number to remove the object completely

from the tab order. That object will be bypassed when a

user is tabbing in Browse mode.

Click into a blank arrow field to automatically assign the

next available number in the tab order.

Edit the number by typing over it. FileMaker will enforce

a unique number sequence by automatically changing

the number existing in one arrow if that same number is

typed into another arrow.

Using Functions of the Set Tab Order

Dialog

Tab order is modified using the Set Tab Order dialog, shown

in Figure 31-21, which opens automatically when a layout is

placed into tab-editing mode.

Figure 31-21. The Set Tab Order dialog from which tab order can be modified

in several different ways for the entire layout

The following batch functions are available on the Set Tab

Order dialog and can make specific changes across groups

of objects on the current layout:

1. Add Remaining — This combination pop-up menu

and button makes available several functions to add

excluded objects into the tab order. Select from the

following options in the menu and click the Add

button:

Objects — This option will add to the tab order

all qualifying objects not yet assigned.

Fields only — This option will add to the tab

order any fields not yet assigned.

Buttons only — This option will add to the tab

order any buttons not yet assigned.

2. Remove — This combination pop-up menu and

button makes available two functions to remove

objects from the tab order. Select from the following

options in the menu and click the Remove button:

All fields — This option will remove all fields

from the tab order.

All buttons — This option will remove all buttons

from the tab order.

3. Clear All — This button will automatically delete the

tab order from every object on the layout, providing

a clean slate from which you can begin adding

items manually or with the Add Remaining function.

4. Cancel — This button will close the Set Tab Order

dialog and return the window to standard Layout

mode without saving any unsaved changes made to

the tab order.

5. OK — This button will save changes to the tab

order, close the Set Tab Order dialog, and return the

window to standard Layout mode.

Naming Objects

The name property is a unique static text identifier manually

assigned to a layout object or group of objects. Names are

optional but become necessary to allow certain functions

and script steps to refer to non-field objects such as portals,

tab control, slide control, and web viewers. For example, the

GetLayoutObjectAttribute and Get (

ActiveLayoutObjectName) functions can only refer to an

object by name. Similarly, the Go To Object, Refresh Portal,

and Set Web Viewer script steps require an object name.

An object name should not be confused with a field name

as they are two separate things. An object name is a

property unique to a single object instance on one layout for

any type of object. A field name is a universal definition of a

specific data container common to the field on any layout it

is placed. An instance of a field can be assigned an object

name different from its defined name, and each instance of

the same field on any layout can have a different object

name.

To assign an object name, follow these steps:

In Layout mode, select an object or a set of grouped

objects. Multiple objects not grouped can’t be assigned

a name.

In the Position group of the Position tab of the Layout

Inspector, click into the Name text area.

Type a name for the object.

Note Object names are not case sensitive and must be

unique within the context of a layout. FileMaker displays a

warning dialog if you attempt to enter a name already

used by another object on the same layout.

Summary

In this chapter, we discussed various options for

manipulating objects on a layout.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_32

32. Using Themes and Styles

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Text formatting and paragraph settings can be applied to

any object directly by selecting the object and then using

options in the Format menu or the Appearance panel of the

Inspector. This approach is fine, especially for beginners

working on small database projects with only a handful of

layouts. However, as a project grows, you will want to look

for methods to streamline future design changes and

improve interface performance. This can be accomplished

by using themes and styles.

In this chapter, we will introduce and define theme and

style basics, including the following:

Introducing themes and styles

Using themes

Using styles

Introducing Themes and Styles

FileMaker automatically assigns a theme to every new

layout and a Default style to every object added to a layout.

As a developer, you can select from the following choices:

Use the default theme or choose from available built-in

themes, using the styles it contains without

modification.

Use the default theme or choose from available built-in

themes, customizing the styles it contains.

Create your own theme and styles, either completely

custom or based on a default theme as a starting point.

Ignore themes and styles and apply formatting changes

as needed directly to objects without updating the

theme.

Defining Styles

A style is a named collection of various appearance settings

for one layout object type.

The functionality of styles can be compared to styles

found in word processing, desktop publishing applications,

and cascading style sheets (CSS) with some differences in

their accessibility. Styles are similar in that they can quickly

apply consistent formatting to new objects and update the

formatting of existing objects by modifying the settings of a

style they share.

However, styles in FileMaker are different in a couple of

ways. Since they are a layout design mechanism used by

developers to facilitate efficient layout design, they are not

available for user activity when editing the text contents of

a field in Browse mode like they are in word processing and

desktop publishing. Also, unlike CSS and desktop publishing,

styles in FileMaker are discrete and cannot inherit attributes

from other styles.

Styles can be saved for the following object types :

Layout background

Layout part

Shape

Edit box

Drop-down list

Pop-up menu

Checkbox set

Radio button set

Drop-down calendar

Container

Text

Button bar

Button

Popover

Slide control

Each of these objects can be assigned any one style

defined in the layout’s theme for that object type. For

example, depending on the complexity of the layout and a

designers preferences, there may be a single style for all

field labels or one or more separate styles for labels on a

form view, list view, and in portals. When the formatting

requirements are different, a new style should be created.

Styles contain format settings based on the type of

object and the applicable properties , such as:

Fill and border settings

Corner radius

Text font, size, and style

Text alignment and paragraph borders

Indents and line height

Tab settings

Exploring the Hierarchy of a Style

It is important to understand that a style does not contain a

single group of format settings. Instead, it comprises

multiple format settings grouped into a rather complex

hierarchy , as illustrated in Figure 32-1.

Figure 32-1. An illustration of the hierarchy defining the groups of multiple

format settings that make up a style

Once an object is assigned a style, the interface options

reflect choices for two levels of hierarchy above the format

settings: object states and type groups.

Defining Object States

An object state is the status of an object based on the

current type of interaction by a user. Each state stores one

entire set of format settings allowing the appearance of the

object to change based on the user’s action.

For example, most objects have the following appearance

states that are all stored under a single style:

Normal — The style settings when the object is visible

on a layout but not actively engaged.

Hover — The style settings when the user moves the

cursor over the top of it.

Pressed — The style settings when the user clicks the

cursor and holds it down.

Active — The style settings when the object has active

focus.

In addition to these, some objects have additional states

available based on their properties. For example, fields have

a Placeholder Text state and a button bar’s segment has an

Inactive state.

Defining Object Part Types

An object part type is one aspect of a complex layout object

that is technically made up of multiple elements. The object

itself is always represented as the primary type with

additional types specified where applicable. Some examples

include:

A button is made up of two part types:

Button

Button: Icon

A button bar is made up of four part types

Button Bar

Button Bar: Divider

Button Bar: Segment

Button Bar: Icon

A portal is made up of two part types:

Portal

Portal: Row

The reason for these secondary elements is to allow any

format setting applied to one part of an object to be

configured differently to another part of an object. For

example, a button bar might have one size, style, and color

of border while the divider might have different border

settings, both for the same object state. By subdividing the

object into more granular components, a single state of a

single style can contain two or more different details for the

same format setting.

Each part type for an object contains its own complete

set of object states. So, an entire button bar can change

border color when the cursor hovers over it and the

individual segment with focus can change to a different

border color at the same time.

Illustrating the Exponential Nature of Format Settings for

Complex Objects

With an understanding of the style hierarchy, we see that an

object can have one or more part types, each comprised of

multiple object states, each containing a full set of format

settings, as illustrated in Figure 32-2 for a button.

Figure 32-2. An example of the number of groups of format settings mandated

for a button object

This illustration helps visualize the exponential number of

format settings that can be defined for an object. A button

will have eight different groups of format settings since it

has two part types, each with four states.

Updating Styles

When an object’s format settings are modified, they are not

automatically saved back to the assigned style but are held

as unsaved object changes. Any change(s) made to an

object must be explicitly saved back to the style where they

will be automatically applied to other objects on the same

layout that are assigned the same style, as shown in Figure

32-3.

Figure 32-3. Format changes only apply to the object affected until those

changes are saved to the style

This update step only affects object styles on the same

layout. To make changes globally, the style must be saved

back to the theme.

Defining Themes

A layout theme is a single, named collection of styles for

various object types used to coordinate styles uniformly

within a layout and across multiple layouts in a single

database file. Databases are created with a group of built-in

themes that can be used without modification, with

customized, or not at all by using a custom theme.

Professional developers may want to create a robust custom

theme with dozens of different styles for every object type

to help them build visually pleasing and consistently

formatted interfaces.

Every layout in a database must have a theme assigned.

While they can vary from one layout to the next, to achieve

the maximum benefit, a single theme shared by all layouts

is recommended.

FileMaker ships with fifty-two built-in themes. Some are

rather sophisticated and can provide practical examples of

advanced layout features like the background image slice

feature.

Updating Themes

When formatting changes are saved back to a style, they

are not automatically saved back to the assigned theme but

are held as unsaved style changes. Any change(s) made to

a theme’s styles must be explicitly saved back to the theme

where they will be automatically applied to other objects on

any other layout that is assigned the same theme, as shown

in Figure 32-4.

Figure 32-4. Style changes are only saved on the layout upon which they take

place until they are saved to the theme

Remember, this step only updates layouts that are

assigned the same theme. So, if every layout in a database

is assigned a single theme, a change to one object type on

one layout can be saved back to the style and then back to

the theme to update every single similar object type

assigned that style in the entire database!

Caution Since style and theme updates must be

explicitly saved, get into the habit of doing so

immediately after any change to an object to avoid a

situation where many different unsaved changes are

pending for multiple objects sharing a style.

Using Themes

As new layouts are created, FileMaker will automatically

assign the theme it determines best suited for the new

layout type. The somewhat awkward result roughly follow

these rules :

The default layout of a new database will always be

assigned the Enlightened theme.

New Computer layouts will always be assigned the same

theme as the layout one is viewing when beginning the

New Layout process.

New Touch Device layouts will be assigned the

Enlightened Touch theme unless the built-in theme of

the layout one is viewing when beginning the New

Layout process has a built-in touch variant. For example,

if viewing a layout assigned the Luminous theme, the

new touch layout will be assigned the Luminous Touch

theme. However, if viewing a layout assigned the

Cosmos theme, the new touch layout will be assigned

the Enlightened Touch theme.

New Printer layouts will be assigned the Enlightened

Print theme.

Once the new layout is created, you can choose another

theme for the layout.

Caution You can create custom themes and name

them the same as a built-in or custom themes with a

suffix of Touch and Print. However, these will not change

the logic of automatic theme assignments listed above

and must be manually assigned to new layouts. FileMaker

does not look at custom theme names when determining

the best default assignment for a new layout. All custom

themes must be manually assigned to a layout.

Choosing a Layout’s Theme

At any time after a layout is created, the theme assignment

can be changed using the Change Theme dialog, shown in

Figure 32-5. This dialog can be opened while in Layout mode

using one of two methods:

Click the icon next to the Theme name listed in the

second row of the toolbar.

Open the contextual menu on the layout’s background

and select Change Theme.

Choose the Layout > Change Theme menu item.

Figure 32-5. The Change Theme dialog window in which a theme can be

selected and assigned to the current layout

The list of available themes is organized in a categorized

list with the theme assigned to the current layout selected.

If the database has custom themes defined, they will be

listed in a Custom Themes category at the top of the list.

To change the layout’s theme, select any theme in the

list and click OK. The selected theme will appear in the

second row of the toolbar and at the top of the Appearance

tab of the Inspector.

When the theme assignment has changed, every object

on the layout will be affected in some way depending on the

styles available in new theme compared to those in the old.

Some things to consider:

Objects will retain their assigned style if the new theme

has a style with the same name, changing the format

settings as needed. Style names are not case sensitive.

Any object assigned a style name that is not found in

the new theme will be assigned the Default style for the

object’s type from the new theme.

Most unsaved formatting changes, those applied directly

to objects and not saved back to the style and theme,

will be lost during the theme transition.

However, some unsaved text formatting changes, such

as text size, will be retained when the theme is

modified. Other settings like font color and font family

will always change to reflect the corresponding style in

the new theme, regardless of their saved status on the

old theme.

To assist in retaining and reapplying unsaved formatting

changes, FileMaker has a rather clever two-stage undo

process for theme changes. Immediately after making a

theme change, using the Undo command the first time will

retain the new theme assignment but restore any object

attributes that were lost due to being unsaved in the old

theme. Using the Undo command a second time will fully

restore the layout to the previous theme with the previously

unsaved modifications still in place. This allows you to

assign a new theme on a trial basis, go back a half step, and

then save the previously unsaved changes to the new

theme if needed.

Tip For the best experience, don’t change themes

unless necessary. Choose a theme, duplicate it with a new

name, and use it consistently throughout your database,

constantly updating any changes made to an object. This

will help you avoid manually cleaning up a formatting

mess after a theme change.

The list of themes in the Choose Theme dialog is not

editable and built-in themes can't be deleted from FileMaker.

However, you can duplicate built-in themes and create fully

custom themes from the Manage Themes dialog.

Managing Themes

Themes are managed from the Manage Themes dialog,

shown in Figure 32-6, which can be opened by selecting the

File > Manage > Themes menu item. As you assign themes

to layouts, they are added to this dialog.

Figure 32-6. The Manage Themes dialog

The following controls are available on the Manage

Themes dialog:

1. Themes — This area contains an alphabetical list of

every theme that has been used on a layout within

the database file, even if it is no longer in use. They

remain here until you explicitly delete them. The

first column contains the name of the theme, and

the second column displays the number of layouts

to which the theme is currently assigned. Built-in

themes will always be contained within square

brackets.

2. Import — This button begins the process of

importing custom themes from another database

po g cus o e es o a o e da abase

file.

3. Rename — This button opens a dialog allowing you

to rename a custom theme. Built-in themes in the

list can't be renamed; however, a built-in theme can

be duplicated and renamed to create a custom

theme.

4. Duplicate — This button allows you to duplicate the

selected theme. The new theme will have the same

name as the selection with the word “Copy” added

as a suffix. It can then be renamed if desired.

5. Delete — This button allows you to delete themes

listed above that are no longer assigned to any

layouts. If you attempt to delete a theme that is

currently in use, an error dialog will be presented

informing you of this fact.

6. Cancel — Click this button to close the dialog

without saving any changes to the theme list.

7. OK — Click this button to save changes and close

the dialog.

Using Styles

As an object is added to a layout, Filemaker automatically

assigns it the Default style based on the type of object from

the layout’s theme. This style assignment can be changed

to a different existing style or saved as a new style. As

styles are created, deleted, and modified, these changes

must be saved back to the Theme to update other layouts

using the same theme.

Changing an Object’s Style Assignment

To change the style assigned to an object, perform one of

these actions, shown in Figure 32-7:

Select the object and then choose a style from the list

on the Styles panel of the Inspector.

Open the object’s contextual menu and select a style

from the Object Style submenu.

Figure 32-7. The two methods by which to assign a new style to a selected

object

Once the change is made, all the appearance and format

settings for every state of every part of the object will be

updated to reflect the settings defined by the style.

Editing a Style’s Settings

To modify an object’s style, select the object and then open

the Appearance panel of the Inspector and follow the

actions, as shown in Figure 32-8.

Figure 32-8. The process for modifying an object’s style

To change the style of the selected object, follow these

steps:

1. Choose the object part type to indicate if you are

editing settings for the object itself or a sub-part.

The default selection will always be the object itself.

2. Choose the object state to indicate for which state

you are editing settings. The default selection will

always be Normal.

3. Edit settings for the object. After any changes are

made, the menu icon adjacent to the Style in the

Inspector will turn red indicating the presence of

unsaved changes.

4. Choose one of the following style actions from the

menu:

Revert Changes to Style — this option will

eliminate all the unsaved formatting changes

made to any state for any part of the object,

restoring it to the previously saved settings.

Save as New Style — this option will leave the

current style unchanged and save all the

object’s current format settings as a new style,

which you name as part of the process.

Save Changes to Current Style — this option will

update the current style with all the format

settings for the selected object. This, in turn,

will update the format settings of all objects on

the layout that share the same style and the

menu icon next to the Theme in the Inspector

will turn red indicating the presence of unsaved

changes.

5. Choose one of the following theme actions from the

menu:

Revert Changes to Theme —this option will

eliminate all the unsaved changes made to any

style on the current layout, restoring every

object’s format settings to those last saved to

the theme.

Save as New Theme — this option will leave the

current theme unchanged and save a copy of all

its styles into a new theme, which you name as

part of the process.

Save Changes to Theme — this option will

update the current theme with all the saved

styles. This, in turn will update the format

settings of all objects on every layout that

shares the same theme.

Summary

In this chapter, we discussed the basics of using themes and

styles to improve the efficiency of the interface design

process and the performance of layout rendering.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-4842-

2863-0_33

33. Customizing Menus

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

One of the most powerful capabilities of the FileMaker Pro

Advanced application is the ability for developers to customize

the menu bar and gain total control over the application

experience.

In this chapter, we explore this powerful capability, covering

the following topics:

Exploring the capabilities of custom menus

Getting started with custom menu basics

Exploring the manage custom menus dialog

Creating a custom menu set

Customizing menu items

Installing a menu set

Exploring the link between commands and menus

Creating status-based custom menu

Exploring the Capabilities of

Customize Menus

Customizing the menu bar allows a host of new capabilities

over the standard application experience. These include:

Adding New Menus — Add new menus with items that

execute custom scripts.

Modifying Key Commands — Add, remove, or change key

commands for existing menus items.

Customizing Standard Menu Names — Rename existing

menus and menu items to better reflect the user’s current

context within the database or to reflect familiar

terminology. Custom names can be hard-coded or

generated dynamically with a formula. For example, the

New Record menu item can include the current layout’s

table name for clarity (New Contact Record) or user-

specific jargon (Initiate Client Partnership).

Customizing Standard Menu Functionality — Reroute a

standard menu function to a custom script. For example,

the Delete Record menu item can be routed to a custom

script that includes a more robust warning dialog that

informs the user of exactly which record will be deleted

from what table.

Conditionally Hiding Menus — Control when custom menus

are visible based on the current table, window mode,

operating system, or any other criteria. For example,

removing the Delete All Records menu item is a good

safety measure for users who don’t require the function.

The menu customization feature allows you to define

multiple sets of menus so that, in an extreme example, every

layout could have a completely unique set of menus for each

user group if necessary.

Getting Started with Custom Menus

Basics

Before delving into menu customization, take a moment to

review the objects and terminology applicable when working

with custom menus, as shown in Figure 33-1.

Figure 33-1. The terminology for various menu components

The menu bar is the horizontal strip running along the top of

the screen (macOS) or the top of a database window

(Windows) that displays the currently active menu set.

A menu set is a named collection of menus that can be

installed into the menu bar, becoming the active menu set.

Every database starts with one non-deleteable and non-

modifiable default menu set called [Standard FileMaker

Menus], but developers can create custom menu sets to be

installed in place of the standard set all the time or depending

on the layout, user or other conditions. The various resources

that make up a menu set can be illustrated in a hierarchical

structure, as show in Figure 33-2.

Figure 33-2. The hierarchical structure of menu components

A menu is a list of menu items grouped together under a

single title, which appears in the menu bar.

A menu item is an item contained in a menu with properties

defined by the assignment of one of three available types :

A command is a menu item that triggers specific

functionality: either a standard command or a custom

script. These may be assigned a key command to provide a

shortcut for triggering the associated function directly from

the keyboard. Key commands can be configured using any

single alpha-numeric key and a combination of the Shift,

Option/Alt, and/or Command/Windows key(s) to form a

unique keystroke for triggering a menu item, but only if

that combination isn’t reserved by the operating system or

some other menu item.

A submenu is a menu item with an arrow icon that, when

selected, reveals a secondary menu of options subsumed

under it. Submenus are useful in helping to delimit menu

commands into categorized groups and avoid

overwhelming the user with too many options in a single

list. They can be nested so that a submenu can include

item(s) that open another submenu that includes item(s)

that open another, etc.

A separator is a horizontal line used to separate groups of

menu items to create a more visually productive

organization of items.

Menu items that perform a command can be enabled or

disabled based on a user’s access settings. They can also be

installed or not based on a formula.

Standard menu items are either selection based, where a

click temporarily highlights the item and performs a function,

or they can be status based, where a click toggles a check

mark next to the item name to indicate it is “on” or “off.”

Custom menus can only be selection based. However, a menu

can use a calculated name that can toggle between two (or

more) status modes, which can simulate a status-based menu

item (see example at the end of this chapter).

Exploring Custom Menu Set Options

A custom menu set can be constructed using the following

types of menus:

A totally custom menu, created from scratch.

Any of three non-customizable standard FileMaker menus

with all their standard menu items: Format, Scripts, and

Window.

Any of eight standard FileMaker menus that can be copied

and customized as needed (with a few exceptions):

FileMaker Pro, File, Edit, View, Insert, Records, Request, and

Help.

A choice of about two dozen submenus found in standard

menus, which can be attached to the menu set as a stand-

alone menu with its standard non-editable menu. These

include submenus such as Open Recent, Import Records,

Go to Layout, Manage, Sharing, Show Window, and more.

There are many different approaches available to design a

custom menu set depending on a database’s requirements. A

custom set may begin as a duplicate of the entire standard

FileMaker menu set, which is then customized, a totally empty

set that is built from scratch, or some combination of these

two.

Understanding Customization Exceptions

There are four standard menus that can’t be completely

removed from the application. Even a completely empty

custom menu set, when installed, will continue to display these

menus, as shown in Figure 33-3.

Figure 33-3. The absolute minimum menu bar when a custom menu set is

installed with no menus defined

The following menus will always be visible, even for a

completely empty custom menu set:

Apple (macOS only) — This menu contains standard

operating system functions and is completely unaffected

by the custom menu set and can’t be modified in any way.

FileMaker Pro — The application menu will always be

present in the menu bar regardless of it being present in a

custom menu set. However, the exact configuration of this

menu will vary as follows:

The top portion of the menu — the About FileMaker Pro

item and first divider line — are only present if a copy

of the menu is added to the custom menu set and left

unmodified.

The remaining portion of the menu is always present in

the menu bar regardless of a copy of the menu being

present in the set or not. Also, these items are not

shown when editing a copy of the menu in a custom

menu set and, therefore, they can’t be removed or

customized in any way.

Tools — This menu is exclusive to FileMaker Pro Advanced,

is always included in the menu bar, and can’t be added to

a custom menu set or modified in any way.

Help — The application menu will always be included in the

menu bar regardless of its being present in a custom menu

set. However, the exact configuration of this menu will vary

as follows:

The top portion of the menu — the Search field — is

always included in the menu bar regardless of a copy

of the menu being present in the custom menu set or

not.

The remaining items in the menu are only present if a

copy of the menu is added to the custom menu set and

they are left unmodified.

Exploring the Manage Custom Menus

Dialog

Custom menus are created and configured in the Manage

Custom Menus dialog, as shown in Figure 33-4. This dialog can

be opened by any user with full access privileges using the

following methods:

Select the File > Manage > Custom Menus menu item.

Select the Tools > Custom Menus > Manage Custom Menus

menu item.

Choose Manage Custom Menus from the Menu Set pop-up

menu in the General tab of the Layout Setup dialog.

Figure 33-4. The common elements of both tabs of the Manage Custom Menus

dialog

Both tabs of the Manage Custom Menus dialog contain the

following controls:

1. Tabs — The dialog is divided into the following two

tabs, each containing a list of one type of menu-

related entity that can be managed with the other

common elements:

Custom Menu Sets

Custom Menus

2. Item List — The central area on each tab contains a list

of all the items defined. These can be sorted by

clicking on column headings or using the View by

menu.

3. List Buttons — Four buttons provide control over the

list of items:

Create — Click to begin the process of adding a

new item to the list.

Edit Click to open the selected item in an Edit

Edit — Click to open the selected item in an Edit

dialog.

Duplicate — Click to duplicate the item(s) selected

in the list.

Delete — Click to delete the item(s) selected in the

list.

4. Sort menu — The View by pop-up menu contains the

available options for sorting the list of items.

5. Default menu set — The Default menu set for this file

pop-up menu contains a list of all menu sets defined.

The selection will become the default for the file at

startup and for any layout configured to use the [File

Default] menu set.

6. Dialog Buttons — Three buttons provide control over

the dialog:

Update — Click to add any missing menus to the

database when the database is upgraded from a

very old version of FileMaker, which may be

missing some newer items.

Cancel — Click to close the dialog without saving

changes to the menu definitions.

OK — Click to save changes to the menu

definitions and close the dialog.

Caution All the functions of the Custom Menus tab can

also be accessed through subsequent dialogs opened from

the Custom Menu Sets tab. This redundancy provides more

direct access to individual custom menus but be confusing at

first.

Creating a Custom Menu Set

Since the most common use of custom menus is to customize

the standard FileMaker menu set, our examples in the

remainder of this chapter will follow that approach. However,

as mentioned earlier, it is possible to completely abandon the

default menu set and start completely from scratch.

To begin, create a new custom menu set following these

steps:

1. Open the Manage Custom Menus dialog.

2. Click on the Custom Menu Sets tab.
3. Click the Create button to open a new empty custom

menu set in an Edit Custom Menu Set dialog, shown in

Figure 33-5.

Figure 33-5. The Edit Custom Menu Set dialog

4. Enter a name into the Menu Set Name text area, for

example, Learn FileMaker Menus, as shown.

5. The Comment area is used to enter developer-only

notes about the menu set being defined. For example,

this can contain information about the purpose of the

menu set or the conditions for when it will be used.

Adding Copies of Standard FileMaker Menus

Next add a copy of each standard FileMaker menu into the

Learn FileMaker Menus set. To get started, click the Add button

to open the Select Menu dialog, shown in Figure 33-6.

Figure 33-6. The Select Menu dialog lists all available standard and custom menus

Caution The process of adding standard menu items to a

custom menu set is done two different ways and can be a

little confusing. Three standard menus can be added directly

from the default selection of menus on the Select Menu

dialog. The remaining eight must be first copied into that list

of available menus and then added to the set. This

additional step is explained in the process to follow.

The Select Menu dialog contains a list of every standard menu,

standard submenu, and custom menu defined within the

database file. For a new database without any custom menus

yet defined, the list will contain only the three standard menus

that can be added without customization as well as the other

submenus that can be added as a menu.

To continue, hold down the Command key to allow for

multiple selections, then click on the three standard menus in

the list: [Format], [Scripts], and [Window]. Once selected, click

the Select button to add the three selected menus to the

custom set.

Next, to add the remaining standard FileMaker menus to the

custom set, we need to create a copy of the menu by once

again clicking the Add button on the Edit Custom Menu Set

dialog and then clicking the + button on the Select Menu

dialog. This will open the Create Custom Menu dialog, shown in

Figure 33-7.

Figure 33-7. The Create Custom Menu dialog is used to create a new menu

The Create Custom Menu dialog allows the choice of two

options for the new menu we are adding to the list of available

menus:

Start with an empty menu — Creates a new unnamed

menu with no menu items.

Start with a standard FileMaker menu — Creates a copy of

a selected standard FileMaker menu, which can be further

customized as needed.

Add each of the eight standard menus listed, one by one, by

selecting them and clicking OK. For each, the new menu will be

created and opened in the Edit Custom Menu dialog. For now,

just click OK in that dialog to save the new menu copy. Once

finished, the Select Menu dialog should contain a list of all

eight copies of the standard menus, shown in Figure 33-8.

Figure 33-8. The Select Menu dialog after creating a copy of every standard

FileMaker menu

Tip FileMaker will automatically name each copy of a

customizable standard menu with a suffix of “Copy” as

shown in Figure 33-8. If you don’t rename them as you

create them, be sure to do so later. It’s always a good idea to

add a common prefix to the beginning of each custom menu

just to help differentiate them apart from the other non-

customizable submenus in the list and to integrate them

together into a group.

Holding the Command (macOS) or Windows (Windows) key,

select all eight of the standard menu copies and click the

Select button. This will return to the Edit Custom Menu Set

dialog, showing a list of all eleven standard menu items, shown

in Figure 33-9.

Figure 33-9. All the standard FileMaker menu items added to the custom menu set

Depending on the order in which the menus were selected

and added to the custom set, they may not be in the correct

order, as shown in Figure 33-9. Menus can be dragged and

dropped within the list to reorder them with the following two

exceptions:

The FileMaker Pro menu will remain locked as the first in

the list.

The Help menu will remain locked as the last menu in the

list.

Once the menus are in the desired order, click OK to save

the changes and close the Edit Custom Menu Set dialog. Then

click OK to close the Manage Custom Menus dialog. Now you

can manually install the custom menu set by selecting it from

the Tools > Custom Menu menu, shown in Figure 33-10.

Figure 33-10. Select the custom menu set to install it as the current menu

When the custom menu set has a check mark next to its

name in this menu, it is installed. If everything worked

correctly, you should notice no differences between the current

menus compared to the standard FileMaker menus. Now you

are ready to begin customizing the new menu set.

Customizing Menu Items

Whether editing standard menu items or configuring new

empty menu items, the process of customizing a menu is

essentially the same.

Exploring the Edit Custom Menu Dialog

Configuring menus and the items they contain is done from the

Edit Custom Menu dialog, shown in Figure 33-11. This dialog

can be opened from the Manage Custom Menus dialog one of

two ways:

From the Custom Menus tab, select a menu, and click the

Edit button or double-click directly on the menu.

From the Custom Menu Sets tab, select a menu set and

click the Edit button or double-click directly on the menu

set. Then select a menu and click Edit button or double-

click directly on the menu.

Figure 33-11. The Edit Custom Menu dialog

The Edit Custom Menu dialog contains the following

controls:

1. Custom Menu Name — This text area contains the

editable name of the custom menu, up to 100

characters. This name is only visible within the

programming interface and is not the title that will

appear in the menu bar. If the menu is based on a

standard menu, the default name will be the menu

plus a suffix of “Copy.”

2. Comment — This text area is used to store a comment

describing the menu, up to 30,000 characters.

Comments are only visible from dialogs within the

programming interface and will not appear in the

menu bar.

3. Menu Title — This set of controls allows specification of

the menu title that will be visible in the menu bar. If

the menu is a copy of a standard FileMaker menu, a

Default option will be available to use the standard

name To override this or to enter a name for a custom

name. To override this or to enter a name for a custom

menu, the Override Title area contains a text area to

type in a name and an Specify button to open a dialog

in which you can enter a formula to dynamically

calculate a name. Custom menu names can be up to

30,000 characters in length; however, due to the

practical limitation of the width of a screen (macOS) or

a database window (Windows), as well as the nature of

human perception, it is best to limit each menu name

to a single word.

4. Install Settings — This area controls when a menu is

installed in the menu bar using one of two sets of

controls that work in concert:

Install when — this text area can contain a static

Boolean value of 1 or 0 to control if the menu will

be installed. The adjacent Specify button will open

a Specify Calculation dialog into which a formula

can determine the Boolean.

Include in mode — these check boxes allow a quick

selection of which mode(s) the menu will appear.

5. Menu Items — This area contains a list of every item

that makes up the menu. Reorder items by dragging

them up and down within the list. Select an item to

edit it in the adjacent Menu Item Settings area.

6. Menu Item Buttons — These buttons are used to

manage menu items in the list:

Create — Click to insert a new menu item below

the current selection.

Duplicate — Click to duplicate the selected menu

item(s) in the list.

Delete — Click to immediately delete the selected

menu item(s) in the list.

7. Menu Item Settings — This area contains all the

settings relevant to the selected menu item based on

the Menu Item Type selected in the pop-up menu at

the top of the area. These will be explored in the next

section.

8. Menu Buttons — These buttons control whether

changes to the menu are saved when closing the

dialog. Click Cancel to close the dialog without saving

changes. Click OK to save changes and close the

dialog.

Exploring the Menu Item Settings

The Menu Item Settings area of the Edit Custom Menu dialog

will vary depending on the type of menu item selected.

All three menu types — commands, submenus, and

separators — have one common setting, an Install when text

area and adjacent Specify button. This works exactly like the

similarly named feature of the menu at the top of the dialog,

allowing a Boolean to control if the menu item will appear

within the menu.

Note The Install when option is the only option available

for Separators.

Defining Settings for Commands

The settings available for a Command menu item are shown in

Figure 33-12.

Figure 33-12. The Menu Item Settings for a Command menu item

The following settings are unique to Command menu items:

1. Based on existing command — Enable this box if the

menu item will be based on an existing FileMaker

command. A Specify FileMaker Command dialog listing

all available commands will open the first time the

check box is enabled. This dialog can be opened later

using the Specify button. A menu item can be based

on an existing command, run a custom action script or

both. For information about the benefits of basing an

item on a command even when the menu item will

perform a custom script, see “Exploring the Link

Between Commands and Menus” section later in this

chapter .

2. Item Name — Enable this box to override the default

command name or to enter a name for a custom menu

item not based on an existing command. Then, either

type a name into the adjacent text area or click

Specify to enter a formula that determines the menu

item name. Menu item names should be short but

clear in describing the function to be performed and

the object affected or generated. For example, “Print

Sales Report” and “Send Proposal Request” are

examples of good names while “Send to Accounting”

doesn’t make clear what it being sent and “Get

Approval” doesn’t make clear the action being taken.

3. Keyboard shortcut — Enable this box to override a

default keyboard shortcut for a standard menu item or

to enter one for a custom item. A Specify Shortcut

dialog, as shown in Figure 33-13 will appear the first

time this box is checked and can be reopened again

using the adjacent Specify button. While this dialog is

open, typing any key while holding down any key

combination will assign that combination as the

shortcut for the menu item. Click OK to save the

shortcut, Clear to clear the currently assigned

shortcut, or Cancel to close the dialog without saving

changes.

Figure 33-13. The Specify Shortcut dialog in which a typed shortcut is

captured for storage on the menu item profile

4. Action — Enable this box to assign a script or script

step to the menu item. If the menu item is based on an

existing command, the selected script or step will

override that command’s functionality. To reassign a

different action, click the Specify button.

Defining Settings for Submenus

The settings available for menu items that display a Submenu

are shown in Figure 33-14.

Figure 33-14. The Menu Item Settings for a Submenu item

The following settings are unique to Submenu items:

1. Specify Submenu — Click the Specify button to open a

Select Menu dialog.

2. Item Name — The default name for a submenu will be

the name of the menu you select. Enable this box to

override that with a custom name.

Modifying Standard Menu Items

Let’s work through a few examples of the most common type

of menu customization that one might perform:

Renaming a menu item

Overriding a menu item function

Removing a menu item conditionally

Renaming a Menu Item

One popular use of custom menus is the ability to rename

menu items , making them more specific to the user’s context.

FileMaker’s default menus are named generically and are not

contextually sensitive. So, if a user is viewing several different

layouts for different tables in separate windows at once, and

they choose the Records > New Record menu item without

paying attention, they might accidentally create a record in a

different table than the one they intended. The easy solution to

this is to modify the New Record menu’s name to include the

name of the table for the layout in the current window. This will

assist a user in identifying more precisely what action they are

about to undertake by reminding them of the window that is

active.

To rename a menu item:

1. Open the Manage Custom Menus dialog and click on

the Custom Menus tab.

2. Double-click on the Records Copy menu to open the

Edit Custom Menu dialog.

3. Select the New Record menu item in the list.

4. Enable the Item Name check box to override the

default name.

5. Click the adjacent Specify button to open the Specify

Calculation dialog if it didn’t automatically open.

6. Enter a formula to enhance the naming of the menu

item. The exact formula you use may vary depending

on how you name your tables. If they are named clearly

like the examples we have used previously — Contact,

Company, Project, etc. — then the following formula

should produce the conditional menu items shown in

Figure 33-15:

Figure 33-15. Examples of a conditionally named New Record menu

"New " & Get (LayoutTableName) & " Record"

Many other menu items, especially those in the Records

menu can benefit from a conditional name that includes the

name of the table, making clear which records will be affected

by the command.

Overriding a Menu Item Function

Another common use of custom menus is the ability to override

standard commands with a custom script, allowing additional

steps to be inserted into a standard process or to enhance a

dialog’s verbiage. For example, the Delete Record and Delete

All Record functions both have dialogs with a rather vague

prompt, the former asking simply Permanently delete this

ENTIRE record? As with the last example, imagine a situation

where a user juggling multiple windows and not paying close

attention might click to continue with the deletion process

before realizing they were not actively viewing the window

they thought they were.

To remedy this, a script using a Show Custom Dialog step

(Chapter 35) can present any number of more specific

confirmation prompts, including:

Permanently delete this entire CONTACT record?

Permanently delete the CONTACT record for John Smith?

Permanently delete the CONTACT record for John Smith?

This will also delete all email correspondence and call logs.

Any of these prompts would help to avoid the hypothetical

scenario described above.

Once you have established the desired message formula,

create a script that performs the steps to ask the user,

evaluate their response, and take the appropriate action or not.

For example:

Show Custom Dialog ["Confirm Deletion Request" ; "

<message formula>"]

Set Variable [$Button ; Get (LastMessageChoice)]

If [$Button = 1] // Cancel Button

 Exit Script

End If

Delete Record/Request [with dialog:Off]

This script presents a detailed dialog message asking the

user to confirm the record deletion request. The index of the

button they click is placed into the $Button variable and the

script is either exited if they clicked Cancel or the Delete

Record/Request is performed if they clicked Delete.

Once written and tested, override the Delete Record menu

item’s Action to point to your script.

Removing a Menu Item Conditionally

Another use of custom menus is to allow you to conditionally

hide a menu item from certain users or under certain

conditions. The Delete All Records menu item is a great

example of a command that is useful for developers but might

be dangerous for certain other groups of users. Experienced

developers will understand the real possibility of a user

thinking they are deleting one contact record and inadvertently

deleting every record in the table.

To enter a formula controlling when a menu is installed, click

the Specify button next to the Install when setting for the

menu item. Then enter a formula that evaluates to 1 (true) for

any users, privilege sets, or extended privilege who will be

allowed to continue to use the function and 0 (false) for

everyone else. For example, the following formula will install

the menu item only for users with full access to the file:

Case (

 Get (AcccountPrivilegeSet) = "[Full Access]" ; 1 ;

 0

)

Adding a Custom Menu

Adding a totally new custom menu to a database may be

necessary when:

Numerous scripts need to be easily accessible to users.

They aren’t conceptually commensurate with existing

menus or would create unnecessary clutter there.

They are distracting when placed directly on a layout or

need to be accessible across multiple layouts.

The standard Scripts menu can be used for this function;

however, sometimes it is beneficial or desirable to create one

or more custom menus to provide a more professional solution.

For example, a database with dozens of predefined search

scripts that find groups of records in different tables by status

or other criteria could be placed under the Records. Similarly,

report scripts for invoices and other tables could be placed

under the File menu near the Print item. However, in both

cases, the custom menu items would be somewhat at a

disadvantage. They would add clutter to already crowded

menus and would require a user to know all the various

locations in which to access these custom scripts.

Adding new menus solves these problems. The exact

arrangement will vary depending on the number and variety of

functions requiring a presence in the menu. Using the previous

example, with a large quantity of search and report scripts, a

developer may add two menus: Searches and Reports.

However, if the number of items in each is sparse or these are

two among dozens of potential new menus, one might consider

adding a single menu called Actions and having each category

be a submenu within.

Creating an Actions Menu

To create a new custom Actions menu, follow these steps:

1. Open the Manage Custom Menus dialog, click on the

Custom Menus tab, and then click the Create button.

2. Select Start with an empty menu in the Create

Custom Menu dialog, then click OK.

3. In the Edit Custom Menu dialog, perform the

following:

Enter Custom Menu Name, for example, Actions.

Enter an Override Title, for example, “Actions.”

Specify the Include in mode settings. For this

example, the Find check box will be disabled so a

user can only see the Actions menu in Browse

and Preview modes.

4. Click OK to close the Edit Custom Menu dialog.

5. Click the Custom Menu Sets tab of the Manage

Custom Menus dialog.

6. Select the Learn FileMaker Menus set and click Edit.

7. In the Edit Custom Menu Set dialog that opens, click

on the Add button .

8. In the Select Menu dialog that opens, scroll to the

bottom and select the Actions menu, then click the

Select button.

9. In the Edit Custom Menu Set dialog, drag the Actions

menu to the desired location within the list of menus

for the Learn FileMaker Menu set.

10. Click OK to close the Edit Custom Menu Set dialog

and then OK to close the Manage Custom Menus

dialog.

Now, the menu bar should have a new Actions menu, as

shown in Figure 33-16.

Figure 33-16. The new empty Actions menu added to the menu bar

Adding Items to the Actions Menu

With the new Actions menu added to the menu set, you can

add menu items as needed to provide access to scripts.

Adding a Command Menu Item

To add a command menu item, return to the Custom Menus tab

of the Manage Custom Menus dialog and open the custom

Actions menu. Then click the Create button to add a new menu

item.

As a simple Hello World style example, let’s create an About

This Menu item that displays a dialog explaining the purpose of

the menu for users by following these steps:

1. Enable the Item Name check box and enter a name of

About This Menu into the adjacent text area .

2. Enable the Action check box.

3. In the Specify Script Step dialog, select the Show

Custom Dialog step and configure it to display a

message describing the menu’s purpose and function.

4. Click OK back out through all the dialogs to save

changes.

Now the Actions menu should have a single menu item that,

when selected, displays a dialog describing its function, as

shown in Figure 33-17.

Figure 33-17. The About This Menu item of the Actions menu

Adding a Submenu Item

When adding a lot of items to a menu, if they can be separated

into subcategories, consider organizing them into one or more

submenus. For example, a submenu of Searches could list all

the available search functions while a submenu of Reports

could list all the reports.

Tip Since human perception begins to reach capacity for

efficient processing of information at about 5-9 objects, use

the “rule of about seven” to determine when to divide menu

items into groups using separators or submenus. Try to

integrate small groups of similar items together and

differentiate them from other groups by either method of

division.

To create a submenu, first create a custom menu containing

the items that will be available in the submenu. This menu will

not be added to the menu bar directly, but will be added to a

menu as a submenu item.

For example, create new custom menu called Reports

Submenu and add one menu item for each report script. Then,

open the Actions menu and create a new item named

“Reports…” and configure it as a submenu pointing to the

Reports Submenu, as shown in Figure 33-18.

Figure 33-18. A Reports submenu added to the Actions menu

After stepping back out of the dialogs saving as you go, the

Actions menu should now display a Reports submenu, like that

shown in Figure 33-19.

Figure 33-19. An example of a Reports submenu in a custom Actions menu

Installing a Menu Set

If you create a single custom menu, making it the default will

cause it to appear for every layout configured to use [File

Default] (Chapter 28, “Exploring the Layout Setup Dialog”).

However, when a solution become more complex, requiring

multiple menu sets that need to change based on layout or

other contextual conditions, the issue of installing menus

dynamically will become important.

A custom menu set can be installed using the following

methods:

A custom menu set can be defined as the file’s default set

in the Manage Custom Menus dialog.

Each layout can be assigned a Menu Set in the Layout

Setup dialog, which will be installed whenever the layout

becomes the current layout. The default choice is [File

Default] that can be changed to any menu set defined in

the file.

Running a script that includes the Install Menu Set step can

install any set defined in the database file and optionally

make that set the default for the file.

Users accessing the database with FileMaker Pro Advanced

and with sufficient access privileges can manually select

from any set defined in the file from the Tools > Custom

Menus submenu.

Exploring the Link Between

Commands and Menus

When using custom menus, it is important to undertsand the

implications of the connection between standard FileMaker

interface elements and the application command they make

accessible. A command’s representation in the menu bar

influences its appearance in a contextual menu, the toolbar,

and occasionally other buttons, and these are all linked to a

standard command.

For example, the standard New Record command is

accessible through the following elements, three of which are

shown in Figure 33-20:

The Record > New Record menu item.

The New Record item of the layout background’s

contextual menu.

The New Record toolbar button icon.

The + button at the bottom of the list of records on a

window viewed in Table mode.

Figure 33-20. Three instances of the New Record command in the standard

FileMaker interface

Ultimately, each of the interface elements points to the

command that is performed when they are clicked. This

connection provides the name and tooltip for the elements and

runs through the security settings to determine the

accessibility of the command for the current user. The visibility

or enabled state of the interface elements is controlled by two

factors. The interface element will be visible or enabled only if

both conditions are true:

The command is present in the current menu bar.

Access to the command is permitted through the user’s

security settings.

The interconnection of these interface elements must be

taken into consideration when using custom menus and can be

illustrated abstractly as shown in Figure 33-21.

Figure 33-21. An illustration of the interconnection between a command, menu,

and other standard interface elements

The elements across the top of this illustration are the visual

interface manifestations of the command at the bottom. Notice

how they each pull various properties from either the

command, the intervening user permissions, and from either a

default or a custom menu set. Each element will be affected as

follows:

Menu Item — will get its name from either the default or

custom menu set; its enabled status from a combination of

its menu settings and the privilege set defining the user’s

permissions to the command it represents.

Contextual Menu Item — will be visible in the interface only

if the command is represented and enabled in the active

menu bar; gets its name from the menu item, which comes

from from either the default or custom menu set.

Toolbar Icon — will be enabled only if the command is

represented and enabled in the active menu; gets its name

and tooltip from the menu item, which comes from either

the default or custom menu.

When customizing the standard New Record menu item,

assigning it a new name and configuring it to perform a custom

script, that menu item will remain linked to the command.

Therefore, the menu item will continue to enable or disable

based on the current user account permissions. It will also

update the custom name in the menu, the contextual menu,

and toolbar, and each of these will now perform the custom

script. For example, if the New Record menu is renamed New

Sheet and a custom script is assigned, both the toolbar button

and contextual menu will change to display this name, as

shown in Figure 33-22, and perform the custom script rather

than the default New Record function.

Figure 33-22. The result of renaming the New Record command in a custom menu

However, if the New Record menu item is deleted from the

custom menu set and new blank menu item is added to handle

new record creation, it will not automatically be linked to the

command, Therefore, the new menu item will not automatically

enable and disable based on permissions and its presence in

the menu will not pass properties to the toolbar button or

contextual menu, resulting in these becoming disabled or

invisible. This is true even if the new menu item is assigned the

standard name of New Record.

For a new menu item to act as the hub of interface elements

described above, it must be explicitly assigned to the

command using the Based on existing command settings in the

Edit Custom Menu dialog, as shown in Figure 33-23.

Figure 33-23. A custom menu must be explicitly linked to a command to react to

permissions and enable and name other interface elements

A command menu item’s relationship to a standard

command can take one of three ways:

Standard Command Only — When linked to a standard

command without a name or script override, the menu will

appear and perform the normal functionality associated

with the command and influence other interface elements

normally.

Script Only — When not linked to a standard command and

assigned a custom name and a script, the menu will

perform the script as its function and any other command-

related interface elements will be disabled or invisible.

Both Standard and Script — When linked to a standard

command with a name or script override, the menu will

appear and perform a script based on the custom settings

and will be linked back the standard command for

permission and influence other interface elements

similarly.

It is vitally important to understand this method of

integration to provide users with access to the full range of

built-in tools and convenience when customizing naming or

behavior.

Creating a Status -Based Custom

Menu

As mentioned earlier, some standard menus are status based,

meaning they indicate the on-off status of some mode of

operation. The View menu has several examples, as shown in

Figure 33-24.

Figure 33-24. The View menu has several status-based menus, denoted with a

check mark when active

Some status-based menu items can allow multiple choice

status menus, where there are more than two options. For

example, one of the four available modes at the top of the

View menu will always have a check mark next to it indicating

it as the active window mode. Similarly, one of the three View

as options will be marked indicating the window view type

selected for the active window.

Other status-based menus are a single menu indicating a

setting as being on or off. For example, the Status Toolbar

menu item displays a check mark when the toolbar is visible

and no check mark when it is not visible. The single menu item

can be selected to toggle this choice back and forth.

When using custom menus there is no a built-in option to

make one or a set of menu items status based, and there is no

way to include a check mark in the proper position to simulate

such a state. However, there is a technique available to

approximate a status-based menu where the name of the

menu changes to indicate the status. Since a menu item’s

name can be the result of a calculation, it is possible to have

the name change to indicate the current state and create a

toggle effect each time a user selects the item.

A menu item might alternate between two names: Enable

<Mode> and Disable <Mode>. This can be accomplished using

a global variable to store the current state. The menu item’s

name calculation looks to the global variable to alternate the

name while other resources or scripts looks at the global to

determine whether the mode is active or inactive. The script

assigned as the menus action toggles the global variable,

which changes the state and the menu item’s name.

Working through an example, let’s create a menu item that

allows users to control whether tooltips on layout objects will

be displayed or suppressed. This is a practical example since

new users will tend to need tooltips to guide them but more

experienced users might find them annoying. So, imagine a

single menu item that will toggle between Enable Tooltips or

Disable Tooltips implemented by following these steps:

A global variable named $$Mode_Tooltips will be initialized

to a value of 0 by an OnFirstWindowOpen script trigger.

This will indicate that the tooltips feature is “off” by default

when the database file opens.

Every layout object that has a tooltip will check this

variable to determine if it should or should not display a

tooltip, using this formula:

Case ($$Mode_Tooltips = 1 ; "<tooltip text>" ; "")

A custom menu item, perhaps under the File menu or

elsewhere, will use a Name formula that determines a

name based on the opposite of the current state. If the

global variable has a value of 0 indicating tooltips are off,

its name will be Enable Tooltips; if the global variable has a

value of 1 indicating tooltips are on, its name will be

Disable Tooltips, using this formula:

Case ($$Mode_Tooltips = 1 ; "Disable Tooltips" ; "Enable

Tooltips")

The custom menu item will run a script that toggles the

value of the $$Mode_Tooltips variable, using this formula:

Case ($$Mode_Tooltips = 1 ; 0 ; 1)

Now, when the user selects Enable Tooltips, the global

variable is assigned a value of 1, and tooltips begin appearing

whenever they hover the cursor over objects and the custom

menu item’s name changes to Disable Tooltips.

Summary

In this chapter, we introduced the menu customization options

available with FileMaker Pro Advanced to take full control of the

application experience.

Part V

Automating Tasks with Scripts

Automating Tasks with Scripts

Scripts can be used to automate data manipulation and

interface navigation to improve efficiency and provide a

convenience for users. These chapters explore scripts, script

triggers, and plugins.

34. Introduction to Scripting — Introduces the basics

of how to create and manage scripts.

35. Common Scripting Tasks — Provides many

examples of popular scripts.

36. Debugging Scripts— Explores how to use the

debugger to test and troubleshoot scripts.

37. Using Script Triggers — Introduces script triggers

to create responsive interfaces.

38. Extending Features with Plugins — Introduces how

to install and use plugins to expand script

capabilities.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_34

34. Introduction to Scripting

Mark Munro1

Lewisburg, Pennsylvania, USA

FileMaker has extensive scripting capabilities, making

possible a richly interactive interface with automation-

assisted functionality. Tables store information; layouts

display information; and scripts navigate, analyze,

manipulate, repurpose, and share information.

A script, sometimes called a macro, is a developer

named and assembled sequence of customizable action

steps that are stored for later execution. Scripts can perform

simple tasks like navigating, searching, sorting, and

inserting. They can perform complex tasks that manipulate

or compile information from numerous fields across founds

sets of records from multiple tables. They can even be

integrated across multiple database files. Any repetitive,

non-creative, logically definable task that a person can

perform manually within a database, a script can perform

automatically.

In this chapter, we will introduce scripting, covering the

following topics:

Identifying the benefits of scripting

Exploring script basics

Exploring the script editor interface

Writing scripts

Note The number of scripts in a file is limited by disk

space. The number of scripts that can be displayed in the

Scripts menu is 512 on Windows and 32,767 on macOS.

Identifying the Benefits of Scripting

There are many benefits of using scripts to automate

database functions. These include:

Saving Time — Any functionality that can be encoded

into a script can be run quickly, saving a user time and

reducing effort.

Improve Consistency — Once a script is configured and

tested, it will perform exactly the same each time it is

run without deviation. This ensures that repetitive and

complex processes are reproduced exactly each time

they are performed.

Reduce Errors and Omissions — Unlike humans, scripts

never become distracted or forgetful. They will perform

the tasks put to them without error or omission, over

and over, as often as required.

Refocus on Quality — By freeing users from onerous

procedural details that can be encoded into a script and

reproduced automatically, users are free to focus more

effort on improving the quality of their work.

Improved Performance — Scripts run without any

hesitation so they can perform complex tasks much

faster than a person. For added benefit, when a

database is hosted on a FileMaker Server, scripts that

don’t require user input and don’t care about the current

context can be run on the server, thereby offloading the

task away from the user’s computer, freeing their

workspace for manual work.

Scheduled Automation — When used with a FileMaker

Server, scripts can be scheduled to run automatically on

a schedule. This means that maintenance functions can

be automatically triggered at night or on weekends,

without any intervention from users.

Exploring Scripting Basics

Scripts can be run by any of the following methods :

A user clicking a button on a layout.

A user clicking a custom menu.

An interface event occurs that is assigned a Script

Trigger.

Another FileMaker script running it as a sub-script.

An external operating system scripting language: Apple

Events (macOS) or ActiveX (Windows).

A FileMaker URL, internally or externally.

A schedule on a FileMaker Server.

When any of these objects or events triggers a script, it

executes the sequence of steps that make it up and

optionally returns a result, as shown in Figure 34-1.

Figure 34-1. The script flow : an object or event runs the script, which,

performs actions and optionally returns a result

Calling Other Scripts

Using the Perform Script step, a script can run other scripts.

After adding the step to a script, it will appear with an

unknown script specification. Clicking on the parameter

opens a Specify Script dialog where you select a script and

enter a parameter, as shown in Figure 34-2.

Figure 34-2. The Perform Script step and Specify Script dialog are used to

instruct a script to run another script

Note The Specify Script dialog was explored in detail in

Chapter 30, “Configuring a Button to Perform a Script.”

Script calls can be compounded and nested in several ways:

One script can call one or more scripts directly.

One script can call another that calls another, forming a

“stack.”

Some combination of the two, as shown in Figure 34-3.

Figure 34-3. An illustration of a script calling other scripts, both directly

and in a stack

The ability of a script to run other scripts and exchange

data back and forth, allows scripts to be more delimited and

less monolithic. Instead of building one massive script that

performs dozens or hundreds of steps, the process can be

broken into separate scripts, each focused on a certain task.

This allows scripts to be designed like subroutines or

functions in object-oriented programming languages. It

makes it possible to setup a hierarchy where some scripts

perform open-ended, fundamental tasks that can be shared

by many other scripts regardless of context, some

managing the top-level process for a specific layout, and

others somewhere in between.

Exchanging Data between Scripts

Each interaction between two scripts includes the option to

send a parameter to the sub-script and/or to receive a

result, as shown in Figure 34-4. This allows for robust

interaction between a set of delimited script functions.

Figure 34-4. An illustration of a script pushing a parameter to a sub-script and

then receiving a result

Defining Script Parameters

A script parameter is a text string provided to the script by

the triggering object or event that is used to communicate

variable information or instructions. The script may use the

information for a variety of different reasons. For example,

parameters can vary one or more functions of a script or

provide raw material for processing. Instead of hard-coding

field references or other values within the script, requiring it

to reach out and pull in information, a script parameter

allows the triggering object to push in information so that it

can vary from one run request to the next. Using

parameters allows scripts to be written in a flexible, open-

ended way with some or all the functionality being

controlled or fed information from the triggering object or

event.

A simple example to illustrate the use of parameters is a

script that displays a dialog. The information can be hard-

coded into the script’s Show Custom Dialog step or it can be

pushed in as a parameter, allowing each calling object to

provide a unique message, as illustrated in Figure 34-5. In

this example, clicking either button would display a different

message even though they are running the same script.

Figure 34-5. An illustration of a simple script parameter changing the message

the script will display in a dialog

Admittedly, this example is far too simplistic to

adequately demonstrate the full power and benefit of using

parameters. The data transmitted as a script parameter can

vary in complexity as needed, including any of the following:

A single word.

A sentence.

A field reference.

A list of paragraphs carriage return-delimited values

containing a mixture of raw information or instructional

commands.

A JSON object containing an array of key/value pairs

containing structured information.

The script receiving parameters must be explicitly

programmed to access the input using the Get (

ScriptParameter) function. If multiple values are received, it

must parse the data into the appropriate variables.

Parsing a Script Parameter

A parameter is sent to a script as a text string that can be

accessed and placed into a variable:

Set Variable [$Parameter ; Get (ScriptParameter)]

Although there is only one script parameter, it can take

the form of a carriage return-delimited list to accommodate

multiple values. When using this technique, it will be

necessary for the receiving script to parse the values into

separate variables. They can be parsed any number of ways

depending on the circumstances.

If there are a fixed number of values, a Let statement can

use a sequence of GetValue functions to parse out each

value and place it into a variable. If the number of values

varies, a Loop statement might be necessary to extract

them one by one. For more complex situations, consider a

structured format such as the JSON object, which can be

easily parsed and manipulated (Chapter 14).

Caution Other methods of exchanging data between

scripts includes the use of global variables or global

fields. For a single exchange of information between two

scripts, script parameters are the best recommendation.

Global variables can be used and are often justified, but

these should be limited to situations where the data is

needed on a global scale. Using global fields for this

purpose is dated, having become obsolete with the

introduction of global variables and parameter passing.

Exploring Script Results

A script run by another script can send back a result value

using the Exit Script step. The step has a single parameter:

a calculation formula that results in text that will be sent

back to the parent script.

The result can be as simple or complex as an incoming

script parameter, ranging from a single word indicating

success or failure of the process to a complex multi-value

JSON object providing a detailed report or data ready to be

passed on to another script for further processing. This

example shows a simple result of the word “Success”

indicating to the parent script that the sub-script reached

the end of its steps without failure:

Exit Script [Text Result: "Success"]

An Exit Script step can be placed in multiple positions

within the script workflow, each returning a different value.

For example, after performing a find, a conditional If

statement can exit the script if no records are found. In that

case, the resulting string can vary to indicate what functions

were or were not performed, as shown in this example:

Perform Find []

If [Get (FoundCount) = 0]

 Exit Script [Text Result: "No records found"]

End If

Loop

 <steps to process records>

End Loop

Exit Script [Text Result: "Success"]

Perform Script on Server

When a database is hosted on a FileMaker Server, there is

an option to run a script locally, on the current user’s

computer using the Perform Script step, or to offload it onto

the server by choosing Perform Script on Server instead.

Running a script on the server tends to be much faster since

the client and server don’t need to exchange as much

information across the network. In instances where the local

script doesn’t require a response, the task can be fully

handed off to the server, instantly freeing the user’s

computer to perform other script functions or manual work.

Before using this feature, it is important to consider a

couple of important points.

The context of the local computer’s database window will

not be known or accessible to the server. Therefore, any

information about the current table, layout, record, found

set, sort order, or window required by the script being called

must be sent to the script as a script parameter so the

server can replicate the context or process using the

information provided about the context. New scripts can be

designed specifically to address this issue. When converting

an existing script to run on the server, it may be necessary

to split it into two: one script that loads the context

information into a script parameter and another that will

receive that information and can safely run on the server.

If the script is critical to the database functioning

normally at launch, it is a good idea to include an If

statement to allow the script to be run on the server during

normal operations but locally when the database is not

hosted. For example, if you take the databases offline and

open them in a copy of the client software for

troubleshooting, maintenance, or migration to a newer

version, you don’t want to be struggling with a file that

won’t open properly because of scripting errors. This

example demonstrates an If statement choosing between

running the script locally or on the server with the help of a

built-in function:

If [LeftWords (Get (HostApplicationVersion) ; 1) =

"Server"]

 Perform Script On Server [<script name>]

Else

 Perform Script [<script name>]

End If

Caution The Perform Script on Server step should not

be confused with running a scheduled script on the

server. The former is used by a script running locally on a

client to request a script be run on the server; the latter is

triggered by a scheduling mechanism on the server

software and does not invovle a client.

Understanding the Importance of Context

Like when writing calculations, understanding FileMaker’s

reliance on context is critically important when writing

scripts. A context indicates the table occurrence of the

active layout in the current window when a script step is

executed. It can also mean the active field and the current

record in that window. As a user or script navigates to

different records, layouts, or windows, the context changes .

The necessity of considering context varies from one

script step to the next. Some steps assume and rely on

context, some will change the context, and others aren’t

context sensitive at all. For example, steps will:

Use the context of the window’s current layout when

creating records.

Use the context of the window’s current record when

deleting or duplicating records.

Use the context of the window’s current layout and the

current record when interacting with fields.

Change the layout context when navigating to another

layout or creating a new window.

Change the record context when navigating to other

records or performing searches.

Ignore the window context completely when performing

application functions or other control functions.

When writing scripts, especially complex situations where

layouts are changing, multiple windows are juggled, finds

are being performed, and sub-scripts are run, you must

maintain an understanding of how and what context applies

with each step being performed.

Exploring the Script Workspace

Scripts are viewed, written, and managed within the Script

Workspace dialog, shown in Figure 34-6. This dialog can be

opened using any of the following methods:

Figure 34-6. The Script Workspace dialog in which scripts are created and

managed

Select the File > Manage > Scripts menu item.

Select the Scripts > Script Workspace menu.

Running a script containing the Open Script Workspace

step.

Once open, the workspace window has standard

operating system controls for minimizing and closing.

The dialog is divided into the following four sections:

1. Workspace toolbar
2. Scripts pane

3. Script editor

4. Script steps pane

Workspace Toolbar

The script workspace toolbar of the Script Workspace dialog,

as shown in Figure 34-7, is a static toolbar containing a

handful of buttons used to create, edit, debug, and run

scripts.

Figure 34-7. The Script Workspace dialog toolbar contains several static

function buttons

The following function buttons are available in the

toolbar:

1. Create New Script — creates a new empty script in

the scripts pane below.

2. Run Script — runs the selected script directly from

the Script Workspace using the active window’s

context.

3. Script Debugger — opens the Script Debugger

window and runs the currently selected script with

debugging by using the active window’s context.

4. Compatible Steps by Platform — reveals a hidden

menu of device and software platforms used to

determine hich script steps are compatible ith a

determine which script steps are compatible with a

selected platform. Any script steps incompatible

with the selection will be formatted in gray text.

5. Toggle Scripts Pane — toggles the visibility of the

Script pane on the left side of the Script Workspace

dialog.

6. Toggle Script Steps Pane — toggles the visibility of

the Step pane on the right side of the Script

Workspace dialog.

Script Pane

The scripts pane of the Script Workspace dialog, shown in

Figure 34-8, displays a list of every script defined in the

database file. Here scripts can be renamed, rearranged, and

organized into a folder hierarchy.

Figure 34-8. The Scripts Pane of the Script Workspace dialog

The following function buttons are available in the Scripts

Pane:

1. Search Filter — filter the list of visible scripts to

include only those whose name contains the value

entered in this text area.

2. Scripts Menu Management — select which scripts,

folders, and separator lines will be visible to the

user under the Scripts menu.

3. Toggle Menu Management — toggle the visibility of

the Scripts Menu Management check boxes to the

left of the list of scripts The icon is color coded to

left of the list of scripts. The icon is color coded to

indicate its current state. When the check boxes are

visible, the icon is blue; when hidden, the icon is

gray.

4. Create Folder — insert a new folder into the list just

below the current selection. Scripts and folders can

be rearranged and grouped by dragging them into

folders.

5. Create Separator — insert a new separator line into

the script list just below the current selection.

Separators can be placed within the list to provide

divisions between groups of scripts and, if the Script

Menu Management check box is selected, in the

Scripts menu.

6. Script Folder — a script folder is represented in the

list with a small folder icon and name. They can

contain any number of scripts, folders, and

separators. A single-click will allow editing of the

assigned name. The folder can be opened or closed

with a single-click on the disclosure triangle or

double-clicking anywhere on its name.

7. Scripts — a script is represented in the list by a

small script icon and name. There are several ways

to interact with a script:

A click will select the script and temporarily

display its contents within the editing pane.

A second single-click will allow editing of the

script name.

A double-click will lock the script in editing

mode within the editing pane even though no

changes have been made.

The script’s contextual menu contains a subset

of functions from the Scripts menu.

8. Separator Line —a separator line is used to divide

groups of scripts. These can be dragged up or down

the list to help visually divide groups of scripts or

folders.

9. Unsaved Change Indicator — scripts open with

unsaved changes display this asterisk icon.

Script-Editing Pane

The central script-editing pane of the Script Workspace

dialog, shown in Figure 34-9, displays the selected script

and is used to view or edit the steps that make it up. Scripts

are automatically opened into tabs making it easy to jump

back and forth between multiple scripts; however, they can

be moved into separate windows.

Figure 34-9. The Scripts Editing Pane of the Script Workspace dialog

The following function buttons are available in the Scripts

Pane:

1. Script Tab Bar — each open script is represented in

the tab bar. Click on a tab to bring that script

forward. A small close tab icon will appear on the

left when the cursor is placed over a tab, which can

be clicked to close the script and remove it from the

tab bar. The tab’s contextual menu contains the

following functions:

Move Tab to New Window — opens the tab’s

script in a new dedicated window to allow side-

by-side viewing and editing of scripts.

Select in Scripts Pane — selects the tab’s script

in the Scripts pane, which can be helpful in

locating a script in the list when viewing or

editing multiple scripts.

Rename Script — makes the script name

editable within the tab. You can also double-

click on the tab to edit the name.

Check for Problems — highlight in red any script

steps within the script that have a detectable

problem. The feature can’t be turned off

manually but will reset when a tab is closed.

Close Tab — close the tab after a warning to

save any changes.

2. Script Steps — each line of a script represents one

script step and is displayed in a scrollable area with

automatic numbering.

3. Unsaved Change Indicator — asterisk icon appears

next to a script with unsaved changes.

4. Preview Mode Indicator — icon will appear when a

script is open in a “quick view” state and no

changes have been made. In this case, the open

script is displayed temporarily and selecting

another script will replace it. Three actions will

cause a script to be retained until explicitly closed:

Open the script and click the Preview Mode

Indicator

Double-click on the script in the list

Editing the script

Tip Starting in FileMaker Pro 16, script tabs can be

reordered by dragging them around in the tab bar. Also,

when using the Perform Script step, clicking on the

selected script name in the statement while holding the

Command (macOS) or Windows (Windows) key will

automatically open the script into a new tab!

Script Step Pane

The script step pane of the Script Workspace dialog, shown

in Figure 34-10, provides an organized list of every script

step available for insertion into a script, including built-in

steps and those installed by plug-ins. The pane’s visibility

can be toggled by clicking the toolbar button. The list can

be displayed hierarchically by category or alphabetically

and provides search filtering and integrated help guide and

hints.

Figure 34-10. The Scripts Steps Pane of the Script Workspace dialog provides

access to every available script step

The following function buttons are available in the Scripts

Step Pane:

1. Search Filter — enter text in this area to filter the

list of script steps to include only those whose name

contains the value entered.

2. Category — when viewed in hierarchical order,

every script step is grouped under a category,

which can be opened and closed by clicking the

disclosure triangle on the left.

3. Script Steps — lists all the available steps,

displayed alphabetically or hierarchically, optionally

filtered to only those that match the search criteria

entered. The step’s contextual menu contains the

following functions:

Insert Into Script — insert the script step into

the script. This can also be accomplished by

double-clicking on the step.

Add/Remove Favorites — toggle between

adding and removing the step to favorites.

Lookup In Documentation — open the FileMaker

help guide for the script step.

4. Help Guide Hint — displays a brief description of the

selected script’s function. Open the full help guide

by clicking the help icon on the right.

5. Favorites Toggle — adds or removes the selected

script step from the favorites category, which is

displayed at the top when viewing steps

hierarchically. The icon will be gray when a selected

step is not listed in favorites and blue when it has

been assigned.

6. View Toggle — toggles the list of script steps

between the hierarchical and the alphabetical view.

Script Workspace Menu Changes

When working within the Script Workspace, many

inapplicable menus are removed and the following menus

are completely transformed for dedicated to script work:

Edit

View

Scripts

Edit Menu

The Edit menu, when working in the Script Workspace,

contains a modified unique set of functions, as shown in

Figure 34-11.

Figure 34-11. The Edit menu when working in the Script Workspace

In addition to standard Edit menu functions such as Cut,

Copy, and Paste, the following new functions are available

when working with scripts:

Undo <last task> — reverses the last change to a script

step within the current script window. The menu

updates to indicate the type of change that will be

reversed. For example, it might say Undo Reorder, Undo

Create, or Undo Delete.

Duplicate Step — create a duplicate of the selected

script step(s).

Disable — toggle the enabled/disabled status of the

selected script step(s).

View Menu

The View menu, when working in the Script Workspace,

contains a completely unique set of functions, as shown in

Figure 34-12.

Figure 34-12. The View menu when working in the Script Workspace

The functions available in the View menu are also

accessible through buttons and contextual menus within the

dialog:

Show/Hide Scripts Pane — toggle the visibility of the

Scripts Pane on the left side of the dialog.

Show/Hide Steps Pane — toggle the visibility of the

Steps Pane on the right side of the dialog.

Show/Hide Step Description Pane — toggle the visibility

of the Step Description Pane at the bottom right of the

dialog.

Show/Hide Scripts Menu Management — toggle the

visibility of the row of check boxes to the left of the

scripts name in the Scripts Pane.

Close Tab — close the current script tab after a save

warning, if required.

Close All Tabs — close every open script tab after a

unified save warning, if required.

Close Workspace — close the Script Workspace dialog

after a unified save warning, if required for any open

scripts. Any scripts that are left open when closing the

workspace will remain in place the next time the

workspace is opened.

Select Next Tab — select the tab to the right of the

current selection.

Select Previous Tab — select the tab to the left of the

current selection.

Move Tab to New Window — open the current tab's

script in a new dedicated window to allow side-by-

simultaneous-side editing of scripts.

Compatibility — opens a submenu with a list of device

and software platforms. To see which script steps are

compatible with a specific platform, select it from the

menu. Any incompatible script step will be formatted in

gray text.

Script Workspace Preferences — opens a small dialog

that contains preferences specific to the Script

Workspace dialog. From here you can control whether

new scripts are automatically visible in the Scripts menu

and control the syntax coloring of steps within the script

workflow.

Scripts Menu

The Scripts menu when working in the Script Workspace

contains a completely unique set of functions, as shown in

Figure 34-13.

Figure 34-13. The Scripts menu when working in the Script Workspace

The functions available in the Scripts menu are, with a

few exceptions, also accessible through buttons and

contextual menus within the dialog:

New Script — create a new script.

New Folder — create a new folder in the Scripts pane.

New Separator — create a new separator line in the

Scripts pane.

Import — open a dialog to begin the process of

importing scripts from another FileMaker database file.

Open Script in New Tab — open the selected script in a

new tab.

Open Script in New Window — open the selected script

in a new window.

Rename Script — allow editing of the script name

directly from the Scripts pane.

Duplicate Script — create a duplicate of the selected

script.

Delete Script — delete the selected script after a

warning dialog.

Include/Exclude in Scripts Menu — toggle the check box

that controls if the selected script appears in the Scripts

menu.

Grant/Revoke Full Access Privileges — toggle the setting

for the selected script that allows it to run with full

access privileges even when the current user does not

have full access. This allows you to maintain stricter

limitations on what a user can do manually within the

interface while still allowing scripts to function without

restrictions. When a script has been granted full access,

a small icon of a person appears next to its name in the

Scripts pane.

Run Script — execute the current script.

Debug Script — execute the current script to execute

with the Script Debugger automatically turned on.

Save Script — save changes to the current script.

Save All Scripts — save changes to all scripts with

unsaved changes.

Revert Script — revert the current script to its last saved

state.

Writing Scripts

The first time you open the Script Workspace in a new

database file, the dialog will be completely blank except for

a Create Script button, as shown in Figure 34-14 .

Figure 34-14. The empty Script Workspace dialog

To get started creating a script, follow these steps, as

illustrated in Figure 34-15:

1. Click the Create Script button to create a new script

and make all the controls on the dialog visible.

2. The new script will appear in the Scripts pane and

be selected as the only tab, with editing focus,

awaiting entry of a custom name. Type the name

“Hello World” for the script. Then type the Enter key

or click away from the tab to commit this change.

Figure 34-15. The empty Script Workspace dialog after a script has been

created

Script Step Basics

A script step is a single function that can be inserted into a

script workflow that instructs FileMaker to perform a specific

action at a certain point within the overall sequence of

events that make up the script. Steps are displayed in the

script workflow as text-based code, appearing like a

command-line programming language. However, while

steps can be inserted into the flow by typing, once entered

they become object-based entities that are no longer text

and cannot be edited by typing. They can be selected,

reordered by dragging, duplicated, copied, pasted, or

deleted, but they can’t be retyped to point to a different

function. Those steps that have configurable options can be

modified by clicking on one of a variety of different interface

element types, which vary from one step to the next by the

nature of the choice(s) available.

Inserting Script Steps

There are three methods available for adding steps into a

script:

Using auto-complete

Choosing from the steps pane

Copy/paste

It is also possible to select a script and use the Duplicate

menu item.

Using Auto-Complete

Each new script will start with one blank row showing a text

prompt indicating that you can either type a step or choose

from the list in the Steps pane on the right.

If you begin typing a step name into this space, you will

see an auto-complete suggestion interface appear that

continuously filters based on what you have typed, as

shown in Figure 34-16. You can ignore this list or use it to

quickly enter the desired step.

Figure 34-16. The list of suggested script steps appears as you type, offering

to auto-complete the top selection.

To get focus onto the desired step, use any of these

methods:

Scroll and click directly on a desired step.

Navigate through the list using the Up and Down arrow

keys.

Continue typing enough text until the desired item is at

the top of the list.

As the selected step changes, the shaded area at the

bottom of the list will update to display a brief description

that will help you identify the selection. Once the desired

step is selected, insert it into the script by either typing

Enter or double-clicking on it in the list.

Tip For the fastest entry method using auto-complete,

skip the cursor and arrow keys. Type enough of the step’s

name until it appears at the top of the list and then type

Enter.

Once inserted, the script step is no longer text based and

can’t be edited as text. Instead, they become selectable

objects, some with clickable interface elements used for

configuration of optional behavior.

Choosing from the Steps Pane

The other way to insert a step into a script is using the

Steps pane on the right side of the workspace window.

To begin, locate a step in the pane using any of the

following methods:

Scrolling — use the cursor to scroll up or down the list.

Arrow Keys — use the Up or Down arrow keys to move

the selection from one step to the next.

Key Scroll — click into the pane area and begin typing

the first few characters of the desired step. The

selection will jump down to the next step whose name

starts with the text you type. Although this works when

the steps are organized hierarchically by category, it

works better when viewing them alphabetically.

Script Filter — type into the search text area at the top

of the Steps pane to filter the list of visible steps, as

shown in Figure 34-17.

Figure 34-17. The Steps pane filtered with search criteria

Once a desired step is selected, insert it into the script

workflow by any of the following methods:

Type the Return or Enter key.

Double-click on it with the cursor.

Open the step’s contextual menu and select Insert into

Script.

Copy/Paste

One or more steps can be inserted into a script workflow by

using the copy and paste functions. The steps can be copied

from the within the same script or from another script in the

same or a different database file.

To select multiple steps at once, use any of the following

methods:

To select a single step, click on it.

To select a sequence of consecutive steps, click on the

first step in the desired range and then click on the last

while holding down the Shift key.

To select a sequence of non-consecutive steps, click on

the steps one at a time while holding the Command

(macOS) or Windows (Windows) key.

Copy the steps with the Edit > Copy menu item. Then

click anywhere into a script and paste using the Edit > Paste

menu item.

Configuring Script Steps

There are two fundamental types of script steps: those

without configurable options and those with one or more

options.

Steps without Options

A script step without configurable options will perform its

predetermined function without any variability. These will

appear in the script workflow as a text object that simply

states the function to be performed when the script is

executed. Some examples include:

New Record/Request

Go to Next Field

Select All

Beep

Loop

End Loop

There is no configuration possible for these types of

steps beyond including them at a particular position within

the workflow.

Steps with Configurable Options

A script step with configurable options will appear with

square brackets after the command name. When first

inserted, they may or may not contain default settings or

information between the brackets. Once configured, they

will include all or some of the available settings. Some

examples include:

Allow User Abort [Off]

Enter Browse Mode [Pause: Off]

Set Variable []

Perform Script [<unknown>]

The way a step’s settings are modified will vary greatly

from one step to another. These can be roughly divided into

two groups:

Configuring settings directly inline

Configuring settings with an options dialog

While each of these is described here discreetly, many

script steps combine them depending on the option type.

Configuring Settings Directly Inline

A script step with inline direct editing of options has one or

more interface components that are accessible and editable

directly between the bracketed area of the step statement

without opening a separate panel or window. There are

three different types of inline editing control you will

encounter: formula text, toggle buttons, and menus.

Inline Editing with Formula Text

Many script steps allow the entry of a formula, some of

which have the option of inline formula editing. The most

notable examples are If, Exit Loop If, and Exit Script.

A step allowing inline formula editing is identified by a

red box between the square brackets. When the cursor

hovers over this, the box deepens in color and gains a red

outline. Clicking on this box will reveal a text area into which

a formula can be typed directly. These three states are

shown in Figure 34-18.

Figure 34-18. The if function step, showing the formula text editing control in

three stages: at rest, with cursor hover, and with active focus

Note Inline formula editing is intended as a

convenience for quickly entering a short formula but may

be impractical for longer formulas. Therefore, this input

style is always accompanied with an fx icon to the right of

the active area. Clicking the icon will open a full-sized

Specify Calculation dialog window into which complex

formulas can be entered.

The text area is a fully featured editor like that found in the

Specify Calculation dialog. It includes auto-complete

suggestions and allows for multi-line formula entry and

editing, both shown in Figure 34-19.

Figure 34-19. An example of a multi-line formula entered directly with the

auto-complete suggestion menu visible

After typing compile and save by clicking outside of the

formula area or by typing either the Return or Enter key. If a

syntax error is detected, the Specify Calculation dialog will

automatically open with an error notification dialog, forcing

you to correct the error or finish the formula before saving.

Tip To insert a carriage return in the formula, type

Return while holding down the Option key in macOS.

Inline Editing with Toggle Button

An inline editable toggle button allows a choice between

two possible options and is identified by a labeled value

between the square brackets that can logically only possess

two states (On/Off) and the appearance of a blue border

outlining the current value when the cursor hovers over it.

Each of these states is shown in Figure 34-20.

Figure 34-20. The Enter Browse Mode step, shown in stages: at rest, with

cursor hover, and after a click

To change the value from its current state to the

opposite, click on it or press the space bar. Also the left and

right arrow keys can highlight these buttons.

Tip When this editing method is available in

combination with other methods, such as a dialog or

popover, the setting controlled by the toggle button is

generally only accessible inline and not from the

corresponding dialog.

Inline Editing with Pop-Up Menu

A step that provides an inline pop-up menu to quickly

choose between several possible options is identified by a

value between the square brackets that isn’t inherently

limited to two logical states and a blue border outlining the

value when the cursor hovers over it. Clicking on the value

will reveal a pop-up menu of containing all available options.

Each of these states is shown in Figure 34-21.

Figure 34-21. The Go to Record/Request/Page step, shown in three stages: at

rest, with cursor hover, and with active focus

Configuring Steps with an Options Dialog

When a step’s options are numerous or just not conducive

to inline editing, a dialog window or popover will present the

available options. Both can vary greatly depending on the

step, including:

Some dialogs are unique to their script step while others

are standards seen throughout the programming

interface, such as the Specify Field and Specify

Calculation dialogs.

Some present a few simple options while others

summarize options with buttons that open other dialogs,

to manage complexity and allow for less redundancy

within the programming interface.

Some open as independent dialog windows, while others

open as a popover dialog, connected to the script step

like an expanded floating menu.

The method of opening a dialog will vary from one step

to the next. All popovers and most dialogs can be opened by

clicking a gear icon that appears to the right of the

statement when the cursor hovers over it. Others open a

dialog when clicking directly on a parameter or double-

clicking anywhere on the statement. Sometimes clicking will

provide a shortcut to one standard dialog, which is also

accessible with other controls on a dialog open through the

gear menu. Many of these interface methods are combined

with each other and/or conjoined with inline editing.

Open by Clicking Icon

A script step that has a dialog for the configuration of

options will display a gear icon to the right of the statement

when the cursor hovers over it. Clicking this icon will open

some type of options dialog, as shown in Figure 34-22.

Figure 34-22. An example of an options dialog opened by clicking on the icon

that appears when the cursor hovers over the statement

Options dialogs will vary greatly and contain a variety of

different controls. They may contain one or more buttons

that open additional dialogs. They may include one or more

formula fields with adjacent Specify buttons that open a

Specify Formula dialog. Once configured, clicking either the

Cancel or Save button will close the dialog either discarding

or saving changes respectively.

When the options are too complex to be placed inline but

not numerous enough to justify a full dialog, a script step

may open a small popover dialog when clicking on the gear

icon or pressing the space bar, as shown in Figure 34-23.

Figure 34-23. An example of an options popover dialog opened by clicking on

the icon that appears when the cursor hovers over the statement

Option popovers are almost exactly like dialogs and can

contain a variety of different controls. However, unlike

dialogs, any changes made to the settings they contain will

be saved immediately.

A popover dialog can be closed by clicking on the script

workspace outside of the dialog boundaries or typing either

Enter or Return.

Open by Clicking Directly

Certain script steps will open a settings dialog when clicking

directly on a parameter or double-clicking on the entire

script step. Usually these actions are reserved as a shortcut

for quick access to one option from the full dialog. Some

examples include:

Clicking directly on a parameter that defines a field or

script reference will instantly open the Specify Field or

Specify Script dialog.

Double-clicking anywhere on a step will either open the

full dialog of options the same as the gear icon or

provide a shortcut to the dialog’s primary setting.

The Perform Script step has no gear icon and will open

the Specify Script dialog if you click on the parameter or

double-click anywhere on the step’s statement.

Clicking on a field definition parameter of a Go to Field

step or double-clicking anywhere on the step will open

the Specify Field dialog while clicking on the gear icon

will open a popover dialog with a handful of options,

including a Specify field button, as shown in Figure 34-

24.

Figure 34-24. The Go to Field script step popover contains a handful of

options while a direct-click or double-click provides a shortcut for the

Specify Field dialog

The Insert Text step, which displays several items on a

popover, as shown in Figure 34-25, will open a dialog to

specify the text to be inserted into the field when

double-clicking anywhere on the step. In this case, the

Specify Field dialog can be accessed only through the

popover dialog.

Figure 34-25. The Insert Text script step popover contains a handful of

options while a direct-click or double-click provides a shortcut for the

Specify text dialog

For more examples of the specifics of entering options for

various steps, see Chapter 35.

Script Comments

A script comment is a nonfunctioning step that stores and

displays developer-entered text in a script. Comments will

appear as a line of text, colored green by default with a

pound or hash symbol preceding it, for example:

This is a comment

Multi-line comment can be created by typing Return

while holding down the Option key in macOS.

Comments are generally used to provide developer

documentation by describing the functions of an entire

script or of a group of steps within a script. When combined

with empty comments, they separate section of a script into

a visually pleasing delimitation of the steps, making

reading, evaluating and editing a script a much easier

prospect, as shown in Figure 34-26.

Figure 34-26. A script with several comments that document the overall

function at the start and then separate and describe groups of steps

Tip One creative use for script comments is as an

outline mechanism. When planning a new script, create a

sequence of comments that describe each step or group

of steps, using the comments as “pseudo-code.” Then, as

you insert and configure actual script steps, revise the

comment into a group description or delete them.

Summary

In this chapter, we introduced scripting basics, working in

script workspace and various methods of configuring step

options.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_35

35. Common Scripting Tasks

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

The possibilities for scripting in FileMaker are numerous.

There are over 160 script steps that are used to create

scripts to perform just about any database task you can

imagine. There is no way to exhaustively cover these all in a

single chapter or even an entire book. Most steps have a

corresponding menu function and should therefore be

intuitively accessible with a relative minimum of

experimentation.

In this chapter, we will work through a handful of basic

real-world examples to provide a foundation upon which to

base your own exploration of the remaining script steps.

Allowing User Abort

By default, a running script can be aborted at any time by

the user typing Esc or a Period while holding the Command

key (macOS). This isn’t much of a concern for short, simple

scripts that perform one or two quick steps faster than a

user can notice. However, with more complex scripts, it

introduces a dangerous situation that can lead to a partially

completed process, the user stranded on a layout not

designed as an interface or leave temporary windows open.

The Allow User Abort script step controls a user’s ability

to abort, with a choice of two values:

On — every script step that follows can be aborted by

the user.

Off — every script step that follows will run without

allowing interruption from the user.

Once the abort setting is configured, all subsequent

script steps in the current script and any sub-scripts will

inherit that setting until it is reset. This applies up and down

the script stack when scripts call other scripts. So, if a

parent script disallows user abort, all subsequent sub-scripts

will inherent that setting unless they explicitly change it.

Similarly, if a sub-script changes the abort setting, the

parent script will inherit that setting when regaining control.

Any formula can check the status of the abort state using

the Get (AllowAbortState) function, which returns 0 if abort

is disallowed and 1 if it is allowed. These examples

demonstrate turning the abort state Off and then On while

checking it after each change.

Allow User Abort [Off]

Get (AllowAbortState) // result = 0

Allow User Abort [On]

Get (AllowAbortState) // result = 1

Setting Variables

Variables store information for later access in the database.

They can contain any supported data type, can have

multiple repetitions, and be local to a script or global to the

database file. Local variables allow a script to store a value

at one position for use later, which is useful when the

interface context changes and fields from a starting context

are no longer accessible.

Caution Local variables are not inherited up and down

the script stack. So, when a script sets a variable and

then runs another script, that sub-script will not have

access to the local variable set in the parent script and

vice versa.

Variables do not need to be initialized. If a formula attempts

to access a variable that has not yet been initialized, the

result will be a null string. The Set Variable script step can

set the value of a local or global variable. To do this, insert

the Set Variable script step into a script, then open the Set

Variable Options dialog, shown in Figure 35-1, by either

double-clicking on the step or clicking the gear icon next to

it.

Figure 35-1. The Set Variable Options dialog

To configure a variable, follow these steps:

1. Name — contains the name of the variable with a

single dollar sign prefix to denote a local variable

and a double dollar sign prefix to denote a global

variable. If no prefix is entered, a single sign will be

added automatically, defaulting the variable to be

local.

2. Value — contains the actual value stored in the

variable: either enter a static value or click the

adjacent Specify button to enter a formula in a

Specify Calculation dialog.

3. Repetition — a number specifying which repetition

of the named variable should receive the specified

value. The default will always be 1 for a single

repetition variable.

Note When using the script step to set variables, each

repetition must be set in its own step.

This example uses the Set Variable step to store name of

the current company record and a count of the number of

contacts associated with it for use later in a dialog. These

values are then compiled into a delete warning dialog

message that is presented using the Show Custom Dialog

step. Finally, the button the user clicks is placed into a

$button.clicked variable that the subsequent script steps

can use to determine the proper course of action.

-- Load values from fields

Set Variable [$name ; Value: Company::Company Name]

Set Variable [$count ; Value: Count (Company |

Contact::Record ID)]

-- Construct the message and present it in a dialog

Set Variable [$message ; Value:

 "Are you sure you want to delete the company

record for " &

 Quote ($name) &

 "? There are " & $count & " contact record(s)

associated with it!"]

Show Custom Dialog ["Confirm Delete Company" ;

$message]

Set Variable [$button.clicked ; Value: Get (

LastMessageChoice)]

Creating Navigation Scripts

Scripts are frequently used to change a window’s context by

navigating to a different layout or record. There are three

script steps used to achieve these actions:

Go to Layout

Go to Record/Request/Page

Go to Related Record

Go to Layout

The Go to Layout script step, shown in Figure 35-2, is used

to change the current layout of the current window.

Figure 35-2. The Go to Layout script step with exploeded configuration options

To configure the Go to Layout script step, follow these

steps:

1. Click on the first embedded parameter to reveal a

pop-up menu of the following layout options:

Original Layout — this default value instructs

the script to navigate back to the layout that

was active when the script was imitated, which

is used when a script may be triggered from

multiple locations in a database and needs to

conditionally return the user back to their

original location rather than a predetermined

location.

Layout — opens a Specify Layout dialog in

which you can select a specific layout to which

the script should navigate.

Layout Name by calculation — opens a Specify

Calculation dialog into which a formula can be

entered that results in the name of the desired

layout.

Layout Number by Calculation — opens a

Specify Calculation dialog into which a formula

can be entered, which results in the number of

the desired layout.

2. If the database is used in FileMaker Go, click on the

Animation option to reveal a menu of choices for

how the layout switch should be rendered. This

setting will be ignored when running the script on

other platforms.

Go to Record/Request/Page

The Go to Record/Request/Page script step, shown in Figure

35-3, is used to change the content of the current window,

depending on the mode as follows:

In Browse mode, it will navigate to the specified record.

In Find mode, it will navigate to the specified find

request.

In Preview mode, it will navigate to the specified page.

Figure 35-3. The Go to Record script step

To configure the Go to Record/Request/Page script step,

follow these steps:

1. Click on the first embedded parameter to reveal a

pop-up menu containing the following options:

First — go to the first record in the found set of

records in the current window.

Last — go to the last record in the found set of

records in the current window.

Previous — go backward one record from the

current record in the found set of records in the

current window.

Next — go forward one record from the current

record in the found set of records in the current

window.

By Calculation — opens a Specify Calculation

dialog for a formula that results in a number

indicating which record in the found set should

become the current record.

2. When selecting Previous or Next, an additional Exit

after last option appears, which can be set to On or

Off. If the script step is placed within a Loop

function in the script and this parameter is set to

On, the script will automatically exit the Loop after

reaching the last available record in the direction

indicated by the first parameter:

Previous will exit after reaching the first record

in the found set.

Next will exit after reaching the last record in

the found set.

The following example shows a hypothetical universal

script that can be used for four different navigation buttons

on every layout in a database. The script reacts to a user

clicking on a button indicating a desire to go the first, last,

next, or previous record. The buttons identify themselves

and the desired navigation with a parameter that the script

uses to conditionally select the clause of an If statement to

take the appropriate action:

Set Variable [$input ; Value: Get (ScriptParameter)]

If [$input = "first"]

 Go to Record/Request/Page [First]

Else if = [$input = "last"]

 Go to Record/Request/Page [Last]

Else if = [$input = "previous"]

 Go to Record/Request/Page [Previous ; Exit after

last ; Off]

Else if = [$input = "next"]

 Go to Record/Request/Page [Next ; Exit after last ;

Off]

End if

Go to Related Record

The Go to Related Record step performs the following three

functions as a single step:

Navigating to another layout.

Performing a find for one or more records related to the

current record or to every record in the current found

set.

Optionally creating a new window in which to display

the results.

To illustrate the functionality, imagine a user is viewing a

Contact record and wants to view the record for that

contact’s parent Company. Instead of manually changing

layouts and performing a find, a button can be added to the

layout that performs the Go to Related Record script step or

runs a script that includes that step with other actions. With

a click of that button, the window changes layouts and

displays the Company record assigned to the contact they

were previously viewing.

In this example, Contact is called the source table and

Company is considered the target table, each being on one

side of the relationship between two records from the

perspective of the starting layout’s table. The same

relationship used to display a related company name on a

contact layout is the conduit through which the script step

will navigate. By traveling “through” the relationship, the

match fields used to form the relationship act like the search

criteria for the record(s) that will be displayed in the target

table.

Once the step is added to the script or assigned to a

button, the Go to Related Record Options dialog, shown in

Figure 35-4, is used to configure the action.

Figure 35-4. The Go to Related Record step

To configure the Go to Related Record step, follow these

steps:

1. Double-click on the step or click on the gear icon to

open the Go to Related Record Options dialog.

2. The Get related record from pop-up menu will list

every relationship in the current database file.

Select a relationship that connects the current

layout’s table to the target table that should be

used as the conduit for the navigation find. To

continue our earlier example in the Learn FileMaker

database, choose the Contact | Company

relationship to cause the step to travel from a

Contact record to its related Company.

3. The Show record using layout button identifies

which target table layout will be used to display the

target record(s). It opens a menu with the following

options:

<Current Layout> — leave the user on the

starting layout (when the navigation process is

using a self-join relationship).

Layout — opens a Specify Layout dialog in

which you can pick the desired layout from a list

of layouts that are automatically filtered based

on the target table.

Layout Name by calculation — opens a Specify

Calculation dialog in which a calculation can be

entered that results in the name of the desired

layout.

Layout Number by calculation — opens a

Specify Calculation dialog in which a calculation

can be entered that results in the number of the

desired layout.

4. By default, the Specify Layout dialog in Step 3 will

display a list any layouts for the target table from

the current database file, even if the other side of

the relationship is a table from an external database

file. If the target table is from an external data

source, the Use external table’s layouts check box

will be enabled. When enabled, the Specify Layout

dialog will instead show a list of layouts for the

target table from the external database file, and the

script step will display the results in that file.

5. The Show in new window check box and adjacent

Specify button allow the step to display the results

in a new window instead of the starting window.

These settings are identical to the New Window

script step described later in this chapter.

6 The Sho onl related records option allo s control

6. The Show only related records option allows control

over the context of records that will be displayed on

the target layout. There are three options available

for this setting:

When the check box is disabled, the related

record from the target table will be displayed in

one of two ways depending on whether it is

contained in the current found set on the target

layout. Essentially, the step attempts to

preserve the current found set in the target

layout if possible. If the target record is present

in that found set, the record will be displayed

without changing the found set. If the target

record is not present in that found set, the

record will be displayed in a found set of every

record in the database.

When the checkbox is enabled and the Match

current record only radio button is selected, the

target record will be displayed in a new found

set of only those records matching the criteria

to establish a relationship to the starting record.

This is the equivalent of a one-to-many search,

where the current record is used to find

matching records in the target table.

When the checkbox is enabled and the Match

all records in the current found set radio button

is selected, the target record will be displayed

in a new found set of every record in the target

table that has a match to any record in the

found set in which the starting record resides in

the starting layout. This is the equivalent of a

many-to-many search, where the current found

set of records is used to find matching records

in the target table

in the target table.

Interacting with Fields

There are several script steps that allow different

interactions with fields, including:

Go to Field

Set Field

Inserting Contents

Select Field Contents

Set Field’s Next Serial Number

Go to Field

There are three script steps that allow navigation to a field

on the current layout:

Go to Next Field

Go to Previous Field

Go to Field

The first two of these have no parameter options. They

will simply move active focus to the next or previous field on

the current layout based on the field tab order. If the current

record is not open and no field has focus, these steps will

open the record and place focus respectively in the first or

last field in the tab order.

The Go to Field step, shown in Figure 35-5, moves focus

to a specific field.

Figure 35-5. The Go to Field step

Click the gear icon to open the panel and configure the

following options:

Select/perform — enable this check box to select all field

contents and/or to automatically open interface

elements such as drop-down lists or calendars when

entering the field.

Go to target field — click the Specify button to open a

Specify Field dialog to select the desired field that

should receive focus.

Caution The selected field must be present on the

current layout and the user must have access to enter it

in the current mode. If no target field is selected or if that

field is not present or not accessible, the step will exit

every field and commit the record.

Set Field

The Set Field step, shown in Figure 35-6, will change the

value of a specified field for the current record. The field

being set does not need to be in focus or even present on

the current layout. The value of any field local to the

layout’s table or in a related table accessible from the

current layout’s context can be set using this step.

Figure 35-6. The Set Field step

After inserting the script step into a script or selecting it

as a button’s action, click on the gear icon to open the panel

and configure the following options:

Specify target field — click the Specify button to open a

Specify Field dialog to select the desired field that

should receive the calculated result.

Calculated result — click the Specify button to open a

Specify Calculation dialog to enter a calculation that

results in a value that will be placed into the field.

Caution If you don’t specify a target field and the

record is open, the calculated result will be placed into

the current field with focus.

Set Field by Name

The Set Field by Name step, shown in Figure 35-7, will

change the value of a field specified by name for the current

record displayed in the window. Unlike the Set Field step

where a field reference must be hard-coded, this step

provides a more flexible function by allowing the field to be

specified by name in a calculation so it can vary from one

instance to the next.

Figure 35-7. The Set Field by Name step

Click on the gear icon to open the panel and configure

the following options:

Specify target field — click the Specify button to open a

Specify Calculation dialog to enter a formula that results

in a text-based reference to the field whose value

should be set. This must include the name of the table

occurrence to provide the necessary context of locating

the field.

Calculated result — click the Specify button to open a

Specify Calculation dialog to enter a calculation that

results in a value that will be placed into the field.

For example, to set the Contact Address State field for a

Contact record:

Set Field By Name ["Contact::Contact Address State" ;

"NY"]

Since the field reference is text determined by a formula,

it can include conditional variations or be constructed more

dynamically. This example dynamically builds a reference to

a standard Record Notes field for the table of the current

layout, which would work in any table containing a field of

that name:

Set Field By Name [Get (LayoutTableName) & "::Record

Notes" ; "Hello World"]

Set Selection

The Set Selection step, shown in Figure 35-8, will select a

portion of text within a specific field.

Figure 35-8. The Set Selection step

Click on the gear icon to open the panel and configure

the following options:

Go to target field — click the Specify button to open a

Specify Field dialog to select which field will receive

focus and have text selected. If the check box is left

disabled, the content of the field with current focus will

be selected.

Specify selection — click the Specify button to open a

Specify Set Selection dialog. This dialog has two text

areas that can each receive a numeric value or a

formula: Start Position and End Position.

When the step is executed, the selected field will become

active and the specified characters of the text will be

selected, as shown in Figure 35-9.

Figure 35-9. An example of a selection of characters 10 thru 25

Tip To select the entire contents of the current field,

use the Select All step.

Set Next Serial Value

The Set Next Serial Value step, shown in Figure 35-10, will

update a field’s Auto Enter > Serial Number > Next Value.

Since the auto-enter settings automatically increment the

Next Value setting each time a new record is created, this

step is used infrequently. However, when importing records

as part of a data migration or when resetting a new version

of a database for live use after extensive testing serial

number fields may need an update to ensure that the next

value assigned is uniquely one above the highest value

assigned to date.

Figure 35-10. The Set Next Serial Value step

The change is made to the field definition directly, so the

specified field does not have to be visible on the current

layout. In many cases, it doesn’t need to be part of the

current layout’s table.

Click on the gear icon to open the panel and configure

the following options:

Specify target field — click the Specify button to open a

Specify Field dialog to select which serial number field

should be updated.

Calculated result — click the Specify button to open a

Specify Calculation dialog and enter a formula that

returns the next serial value that should be assigned to

the field.

A migration import script might include the following

function for each table in which data is imported or updated:

Go to Layout [Contact List]

Import Records []

Show All Records

Unsort Records

Go to Record [Last]

Set Next Serial Value [Record ID ; Contact::Record ID + 1

]

The example shows the pattern for a script that:

Navigates to the Contact List layout.

Imports records (detail not shown).

Sets the found set to show every record stored in the

table.

Unsorts those records into creation order.

Navigates to the last record (with the highest serial

number).

Sets the next serial value of the Contact::Record ID field

to that last record’s serial number value plus one.

Under certain conditions, this pattern may require some

changes.

For example, if the serial numbers aren’t sequential when

the records are sorted in creation order, the Unsort Records

step might be replaced with a Sort Records step that sorts

them by the Record ID field to ensure that the last record

has the highest serial number.

Also, if the Record ID field is a text field with leading

zeros making the values uniform in length, the formula to

determine the next value would need to be changed. Adding

one to a “number” as text with leading zeros will result in a

numeric value without leading zeros, and the resulting value

must be reformatted as text with the appropriate number of

zeros to maintain the uniform format. For example, if the

serial number is six digits with leading zeros, the following

formula can be used to determine the next value. In this

example, the formula standardizes the number of leading

zeros on a serial number regardless of its length by adding

six zeros to the left of the value and then extracting six

digits from the right, so that any starting value of one to six

digits will still produce a result of six digits:

Right ("000000" & (Contact::Record ID + 1) ; 6)

// result = 000015

Get Directory

The Get Directory step, shown in Figure 35-11, presents the

user with a Choose Folder dialog prompting them to choose

a folder location for use later in the script. This allows user-

specified locations for importing, exporting, and saving

various resources.

Figure 35-11. The Get Directory step

Click on the gear icon to open the panel and configure

the following options:

Allow Folder Creation — when enabled, this allows the

user to create new folders from within the Choose Folder

dialog.

Variable — click the adjacent Specify button to open a

Set Variable Options dialog to determine the name of

the variable into which the selected folder path should

be placed.

Dialog title — click the adjacent Specify button to open

a Specify Calculation dialog in which you can enter a

formula for the text prompt instructing the user what to

select in the Choose Folder dialog.

Default location — click the adjacent Specify button to

open a Specify Calculation dialog in which you can enter

a formula that determines the folder location that will be

displayed in the Choose Folder dialog by default.

The dialog shown in Figure 35-12 shows how the various

settings affect the resulting dialog. Once the dialog is open,

the user can navigate anywhere on their own computer

directory and any network servers that they can access.

Once they select a folder and click Select, the path to that

folder will be placed into the variable specified.

Figure 35-12. A hypothetical Get Directory configuration and the resulting

dialog

Caution The exact appearance of the Choose Folder

dialog will depend on the operating system and the user

configuration choices made by the user. For example, the

current version of macOS (Sierra) doesn’t display the

dialog title prompt, which may confuse users by not

making clear why they are selecting a folder.

Working with Records

There are many script steps that allow a variety of different

interactions with records.

The New Record/Request step will create a new record in

the current window while the Duplicate Record/Request step

will create a new duplicate of the current record. These have

no configurable options.

The Delete Record/Request step will automatically delete

the current record in the front window after presenting an

optional warning and confirmation dialog. Similarly, the

Delete All Records step will delete every record in the found

set after presenting an optional dialog.

There are steps available to perform many of the actions

users can perform through the interface. Scripts can open,

commit, copy, and revert records. There are steps for Save

Records as Excel, Save Records as PDF, and Save Records as

Snapshot Link.

The Truncate Table step deletes all records in a specified

table, regardless of the current found set or the current

layout context.

Also, the following two steps are used to move records in

and out of a table:

Import Records

Export Records

Import Records

The Import Record step, shown in Figure 35-13, is used to

import records into a table with or without human

interaction, depending on the configuration settings.

Figure 35-13. The Import Records step

Click on the gear icon to open the panel and configure

the following options:

With dialog — toggle this embedded parameter setting

to instruct FileMaker to turn import dialogs On or Off

when the step is performed. If a data source or import

order is not defined in the other parameters, this setting

will be ignored and the dialogs will appear, requesting

the missing information.

Verify SSL Certificates — enable this check box when

importing XML data from a server specified with a HTTP

request.

Specify data source — specify the data source for the

import. You can choose between File, Folder, XML Data,

and ODBC Data. The subsequent options dialog will vary

depending on your choice.

Specify import order — opens an Import Field Mapping

dialog in which to instruct the step about how data in

the source should flow into the database.

Note To see examples of the Import and Export dialogs

encountered when configuring script steps and a list of

supported file types, see Chapter 5.

Export Records

The Export Record step, shown in Figure 35-14, allows a

script to automatically export records with or without human

interaction, depending on the configuration settings.

Figure 35-14. The Export Records step

After inserting the script step into a script or select it as a

button’s action, click on the gear icon to open the panel and

configure the following options:

With dialog — toggle this setting to instruct FileMaker to

turn export dialogs On or Off when the step is

performed. If the export output file and field order are

not defined in the other parameters, this setting will be

ignored and the dialogs will appear requesting the

missing information.

Specify output file — opens a Specify Output File dialog,

choosing the file path into which the data should be

saved.

Specify export order — opens a Specify Field Order for

Export dialog to instruct the step about how data in the

source should flow into the database.

Using Show Custom Dialog

The Show Custom Dialog step is used to generate a dialog

consistent with the user computer’s operating system. A

script may need to display a custom dialog for a variety of

different reasons including:

Presenting an informative notification or warning.

Confirming a pending course of action with the option to

cancel.

Offering a choice of different courses of action.

Requesting text input for find criteria or other functions.

Presenting an instructional prompt for the user to enter

input directly into a field through the dialog.

The gear icon opens a Show Custom Dialog Options

dialog, with two tabs:

General — Used to configure a standard dialog.

Input Fields — Used to configure field input directly from

the dialog.

Configuring a Dialog

The General tab of the Show Custom Dialog Options dialog,

shown in Figure 35-15, is used to configure a custom dialog.

Figure 35-15. The General tab of the Show Custom Dialog Options dialog

showing how settings manifest in the dialog being generated

To configure the Show Custom Dialog Options dialog,

follow these steps:

1. Enter an optional Title for the dialog.

2. Enter a Message for the body of the dialog.

3. Enter up to three button names for the dialog.

These will appear in the dialog from right to left

with the Default Button being highlighted and

responsive to the user typing the Enter key. If the

current record has uncommitted changes at the

time the dialog is presented, each enabled Commit

Data check box will cause the adjacent button to

commit the current record when a user clicks it.

Each of the above components can be entered by either:

Typing directly into the appropriate text area.

Clicking the adjacent Specify button to open a Specify

Calculation dialog and then entering a formula that

results in text.

Caution Custom dialogs do not automatically resize

based on the amount of text entered, so a lengthy

Message may be cut off. The user can resize the dialog to

read additional information; however, since it is not

visually apparent that more text is available or that the

dialog can be resized, it is a good idea to try to keep

dialog messages concise when using the Show Custom

Dialog step.

Configuring a Dialog for Field Input

A custom dialog can include up to three editable fields,

which will be connected to the current record at the time

the script step is executed. When the dialog is first

presented, any value in the fields will be displayed in the

corresponding dialog fields. As the user types into the fields

through the dialog, the values entered or edited will not be

committed until they click a dialog button that is configured

to commit. If they click a button not configured to commit,

as one might set up a Cancel button, the text they type will

be lost.

The Input Fields tab of the Show Custom Dialog Options

dialog, shown in Figure 35-16, is used to add up to three

editable fields directly into a dialog.

Figure 35-16. The Input Fields tab of the Show Custom Dialog Options dialog

The dialog repeats the controls for up to three fields.

Each section, like the one shown in Figure 35-17, can be

activated and configured to include one field.

Figure 35-17. One set of field controls showing how field settings appear in a

dialog

To configure each field, follow these steps:

1. Check the Show input field box. This will open a

Specify Field dialog allowing the selection of a

desired field. To reassign the field later, click the

adjacent Specify button to reopen the dialog.

2. If the field is used to enter a password or other

confidential information, the Use password

character check box can be enabled to cause the

data entered to appear as bullets in the dialog. This

is only a display of data and does not alter or

encrypt the text entered into the field, which will

still be visible on layouts unless it is also configured

to display as bullets.

3. By default, the field will be present on the dialog

without a label. To add a label, type into the Label

text area or click the adjacent Specify button to

enter a formula that results in the text for the label.

Tip When a dialog requires more than three button

choices or needs to contain more than text, use the New

Window script step to generate a fully custom dialog as a

stand-alone window or attached to the current window

using the new Card option.

Capturing the Button Click

Once a dialog is dismissed by the user, the script can access

the index of the button the user clicked using the Get (

LastMessageChoice) function. This value can be stored in a

variable and used later in a script to route the workflow to

the appropriate course of action. This example shows a

Show Custom Dialog step followed by a Set Variable step

that places the clicked button index into a variable named

$function:

Show Custom Dialog ["Choose" ; "Please choose an

function"]

Set Variable [$function ; Get (LastMessageChoice)

In the above example, if there are three buttons — OK,

Cancel, and Help — and the user clicks Cancel, the

$function variable will be set to a value of 2.

Convert the button index back into a name with the Set

Variable function using a Let and Case statement, as shown

in the following formula:

Let (

 number = Get (LastMessageChoice)

;

 Case (

 number = 1 ; "OK" ;

 number = 2 ; "Cancel" ;

 "Help")

)

Conditionally Branching with If

Statements

An If statement is a set of control steps used to enclose

other steps that will only be performed if some conditional

criteria are met. There are four different steps available to

construct an If statement:

If — begins a new conditional statement and set of

conditional steps. Contains a formula returning a

Boolean that determines if the steps will be performed.

Else If — begins a new set of conditional steps within a

conditional statement. Contains a formula returning a

Boolean that determines if the subsequent steps will be

performed.

Else — begins a set of conditional steps that are

performed as a last resort if all preceding conditions

were false.

End If — terminates the last set of conditional steps and

closes out the overall If statement.

Building Simple If Statements

The most basic type of If statement includes the

establishing If step and terminating End If step surrounding

one or more conditional steps, as shown in this pattern

formula:

If [<criteria>]

 <conditional steps>

End If

For example, this statement will display the specified

dialog if the current user account is assigned a privilege set

that allows full access to the database:

If [Get (AccountPrivilegeSetName) = "[Full Access]"]

 Show Custom Dialog ["Hello Developer"]

End If

In the above example, if the user does not have the

access specified, no action is taken and the script continues

performing other steps not contained within the statement

(not shown). However, to add an alternative set of steps

that are executed if the initial criteria returns a false value,

use an Else step, as shown in this pattern formula:

If [<criteria>]

 <conditional steps 1>

Else

 <conditional steps 2>

End If

In the following example, a dialog will be displayed with a

different message depending on the user’s privilege set. If

the user has full access, they receive a dialog identifying

and greeting them as a developer. If the user has any other

access level, they receive the greeting in the second dialog

step.

If [Get (AccountPrivilegeSetName) = "[Full Access]"]

 Show Custom Dialog ["Hello Developer"]

Else

 Show Custom Dialog ["Hello Regular User"]

End If

Building Compound If Statement

Unlike a simple If statement that contains one set of criteria

and two possible outcomes (true or false), a compound

statement uses the Else If step to create any number of

possible conditions as demonstrated in this pattern formula:

If [<criteria 1>]

 <conditional steps 1>

Else If [<criteria 2>]

 <conditional steps 2>

Else If [<criteria 3>]

 <conditional steps 3>

Else

 <conditional steps 4>

End If

The statement begins with an If step that contains the

first combination of criteria and conditional steps. Each

subsequent set of criteria steps is initiated by an Else If

step, until finally the statement is terminated with an End If

after an optional Else that allows for a final set of steps

conditionally run if all the above are false.

The script will work from the top down, evaluating each

criteria until one results in a true value. Once it encounters

a true result, it will run the enclosed conditional steps and

then skip all other criteria and conditions.

In this example, a different hypothetical email script is

performed depending on the Status field of an Invoice

record:

If [Invoice::Status = "Paid"]

 Perform Script ["Email Invoice Paid"]

Else If [Invoice::Status = "Past Due"]

 Perform Script ["Email Invoice Past Due"]

Else If [Invoice::Status = "Due"]

 Perform Script ["Email Invoice Due"]

End If

Building Nested If Statement

Multiple sets of If statements can be nested hierarchically so

that each top-level criteria triggers a compound If

statement, as shown in this formula:

If [<Level 1 Criteria 1>]

 If [<Level 2 criteria 1>]

 <conditional steps 1>

 Else If [<Level 2 criteria 2>]

 <conditional steps 2>

 End If

Else If [<Level 1 Criteria 2>]

 If [<Level 2 criteria 3>]

 <conditional steps 3>

 Else If [<Level 2 criteria 4>]

 <conditional steps 4>

 End If

End If

Performing Searches

There are several different steps that perform searches.

These can be used separately or combined with steps that

perform navigation, sorts, compilations, and batch

processes.

The following two steps are used to perform searches:

Perform Quick Find — This step is configured with a

formula whose result will be used to search within any

field on the current layout that has Quick Find enabled

(Chapter 4, “Searching with Quick Find”).

Perform Find — This step is configured with a Specify

Find Request dialog in which complex find criteria can

be entered (Chapter 4, “Managing Saved Finds”).

The Enter Find Mode step, shown in Figure 35-18, is used

to initiate a find request, optionally providing some starting

criteria.

Figure 35-18. The Enter Find Mode step

The Enter Find Mode step will switch the current window

into Find mode and has the following two configuration

options:

Pause — When this setting is On, the script will enter

Find mode and pause to allow a user to enter find

criteria or perform other actions. The user will have to

press the Enter key or click the Continue or Cancel

button in the second level of the status toolbar to

continue the script.

Specify find requests — This setting opens a Specify

Find Request dialog in which complex find criteria can

be entered that will be automatically set up after

entering Find mode.

Since the step does not perform a find itself, it allows for

situations where the user or other script steps add

additional criteria. Subsequent Set Field steps can be added

to set up additional, dynamically calculated criteria beyond

the entries made by the user or the Specify find requests

setting.

A Perform Find step must be added at some point to

perform the find.

A find script can take many forms. It may perform a find

based on static unchanging criteria, build the find based on

variables, solicit user criteria, or some combination of these.

This example script uses one hard-coded criterion and one

user entered. It sets up an invoice search for invoices with a

Status of “Paid” and then presents a dialog allowing the user

to enter a date range into an Invoice Date field. Once the

user enters a date range and presses the Enter key, the

resulting search will find all paid invoices that have a date

that falls within the range entered by the user. The script

includes a conditional dialog that appears if no records are

found.

Go to Layout ["Invoice List"]

Enter Find Mode [Pause: Off]

Set Field [Invoice::Invoice Status ; "Paid"]

Show Custom Dialog [

 "Search Paid Invoices" ;

 "Enter a date range (m/d/yyyy...m/d/yyyy):" ;

 Invoice::Invoice Date]

Perform Find

If [Get (FoundCount) = 0]

 Show Custom Dialog [

 "No Records Found" ;

 "No paid invoices were found within the date

range you entered."]

End If

Working with Found Sets

There are many steps that manipulate found sets of records.

Most have a configuration dialog and functionality that are

identical to the same functions in the menu bar.

Constrain Found Set — used in lieu of the Perform Find

script step to narrow the current found set of records

based on criteria entered in a Specify Find Requests

dialog.

Extended Found Set — used in lieu of the Perform Find

script step to broaden the current found set of records

based on criteria entered in a Specify Find Requests

dialog.

Find Matching Records — provides an optional Specify

Field dialog and will search for records with a matching

value in either the specified field or the field with

current focus.

Modify Last Find — enters Find mode with the last

criteria in place.

Omit Record — omits the current record from the found

set.

Omit Multiple Records — omits one or more records from

the found set starting with the current record based on

user input in an optional dialog or a number either hard-

coded or determined by a calculation formula in an Omit

Multiple Records Options dialog on the step.

Show All Records — replaces the found set with all

records in the table for the current window while

remaining on the current record.

Show Omitted Only — replaces the found set with all

records currently omitted.

Sort Records — sorts the records based on user input or

sort criteria hard-coded into an optional Sort Records.

Sort Records by Field — provides the ability to quickly

sort based on a single field: either the field with current

focus or a field selected in the optional Specify Field

dialog. There is a choice of sorting methods including

Ascending, Descending, and by Associated Value List.

Unsort Records — sorts the found set of records by their

creation order.

The Loop step, discussed in the next section, can

traverse a found set and compile data or preform actions on

records one by one.

Iterating with a Loop Statemen t

A Loop statement is a set of control steps used to enclose

other steps that are repeatedly executed until a certain

condition is met. There are three different steps available to

construct a Loop statement:

Loop — begins a new conditional statement that will

repeat the subsequent steps placed between it and an

End Loop step.

Exit Loop If — contains a calculation formula that will

exit the loop if the result is true. When exiting the loop,

the script will skip any steps from the position of this

step down to the next End Loop step before continuing

to execute any remaining steps below it.

End Loop — delimits the bottom of the Loop statement,

but does not exit the loop. When this is reached during

execution, the script will return to the preceding Loop

step and repeat the interim steps until a step is

executed that explicitly exits.

There are several other script steps that will cause a

script to exit a Loop statement. These include Exit Script,

Halt Script, and using the Exit after last option of the Go to

Record/Request/Page > Next and Go to Portal Row > Next

steps.

Looping Through a Found Set of Records

A frequent use of a Loop statement is to have a script work

through a found set, performing one or more tasks for each

record. The structure of such a statement begins by

navigating to the first record in a found set and then

starting a loop. After any task steps are performed, the

script moves to the next record until it reaches the last

record in the found set .

This example shows the pattern:

Go to Record/Request/Page [First]

Loop

 <insert task steps>

 Go to Record/Request/Page [Next ; Exit after last:

On]

End Loop

Caution If the Exit after last parameter is turned Off

and no other steps exit the loop, the script will be caught

in an endless loop. The user can only escape an endless

loop by typing Esc or a Period while holding the Command

key (macOS) key if the Allow User Abort setting is On;

otherwise, the application must be force quit.

Building a List of Record Information with

a Loop Statement

The task steps you use in a Loop statement will vary from

one script to the next and can perform any task imaginable.

For example, after a script finds and sorts a list of open

invoices, it might include the following code to compile a

text summary of those records in a $Body variable, as

shown in this example:

Go to Record/Request/Page [First]

Loop

 # Add body row

 Set Variable [$Body ; $Body &

 Invoice::Record ID & " " &

 Invoice::Invoice Date & " " &

 Invoice::Invoice Company Name & " " &

 Invoice::Invoice Amount & " " &

 Invoice::Invoice Status & "¶"]

 Go to Record/Request/Page [Next ; Exit after last:

On]

End Loop

For each record in the found set, the Set Variable step

adds a new paragraph to the $Body variable containing the

values stored in five fields. After this script finishes, the

$Body variable will contain a text list of open invoices that

might look something like this:

1001 04/15/2017 Fantastic Client $1,000 Over 60 Days

1001 04/15/2017 Fantastic Client $1,000 Over 60 Days

1002 05/19/2017 Creative Company $3,000 Over 30

Days

1003 06/1/2017 Fantastic Client $4,500 Open

1003 06/15/2017 Fantastic Client $958 Open

Grouping a List of Record Information with

a Loop Statement

With a more sophisticated Loop statement, the previous

script example can create a summarized list of a found set

of sorted records. For example, if the found set of open

invoices are sorted by Invoice Status, the script can be

modified to return a list of invoices organized into groups

based on their status, as shown here:

Open

1003 06/1/2017 Fantastic Client $4,500

1003 06/15/2017 Fantastic Client $958

Over 30 Days

1002 05/19/2017 Creative Company $3,000

Over 60 Days

1001 04/15/2017 Fantastic Client $1,000

1001 04/15/2017 Fantastic Client $1,000

To achieve this result, the following modifications are

needed to detect and insert a heading every time a status

change is detected and then store that status to avoid

heading duplication:

A variable named $Last.Status will be initialized at the

start with an empty string and then used to store the

last status heading that has been encountered and

added into the results.

At the beginning of the Loop statement, the Invoice

Status field value will be placed into a variable named

$Status to shorten it for easier use repeatedly in a new

conditional statement.

An If statement will be added to handle the insertion of

the status heading into the result and tracking this fact.

A new status is detected when $Status is not equal to

$Last.Status.

Within the If statement are two Set Variable steps:

The $Body variable is modified to include a Case

statement that conditionally adds a carriage return

if the body is not currently empty and then the new

$Status value is added followed by another carriage

return.

The $Last.Status variable is modified to contain the

new $Status so that another heading isn’t added

until a different status value is encountered.

Taking all this into consideration, the new script should

appear as follows:

Set Variable [$Last.Status ; ""]

Go to Record/Request/Page [First]

Loop

 Set Variable [$Status ; Invoice::Invoice Status

]

 If [$Status ≠ $Last.Status]

 # Add header row

 Set Variable [$Body ; $ Body &

 Case ($Body ≠ "" ; "¶") & $Status &

"¶"]

 Set Variable [$Last.Status ; $Status]

 End If

 # Add body row

 Set Variable [$Body ; $ Body &

 Invoice::Record ID & " " &

 Invoice::Invoice Date & " " &

 Invoice::Invoice Company Name & " " &

 Invoice::Invoice Amount & " " &

 Invoice::Invoice Status & "¶"]

 Go to Record/Request/Page [Next ; Exit after last:

On]

End Loop

Looping Through Lists of Data

A Loop statement can be used to work through a carriage

return-delimited list of values one by one. This involves

setting up a couple of control variables to store the count of

values and keep track of which among them is the current

value. For example, assume a script contains a list of

several state abbreviations, placed them into a variable

named $States and needs to use them as the criteria for a

multi-value search of contacts residing in one of the

included states. If the entire list of states is entered into a

single find request, there will be no resulting matches since

that would instruct FileMaker to look for a record with all the

states in the field. To get a result, multiple find requests

need to be created, one for each state in the list.

The following script enters Find mode and then loops

through the list of states, creating one find request for each

state listed. Once they are all set up, the find is performed.

Set Variable [$Count ; ValueCount ($ States)]

Set Variable [$Current ; 1]

Enter Find Mode [Pause : Off]

Loop

 Set Field [Contact::Contact Address State ;

GetValue ($States ; $Current)]

 Set Variable [$Current ; $Current + 1]

 Exit Loop If [$Current > $Count]

 New Record/Request

End Loop

Perform Find []

By dynamically counting the number of state values in

the list and exiting when the next $Current value exceeds

that count, the script will work for any number of states

listed in the variable. It continues to repeat on to the next

value until it reaches the end of the list and the Exit Loop If

condition is true.

Confirming a Dialog Field Value

Another use of a Loop statement is to confirm that a user

has entered a value into a field in a dialog and circling back

with a warning prompt if they fail to do so. For example, a

script that searches invoices based on status, would require

that the user enter a value into the Invoice Status field. To

avoid errors or confused results, a Loop statement can

postpone performing the find until the user complies with

that requirement.

The script will begin as shown below by entering Find

mode and asking the user to enter an Invoice Status in a

dialog, as shown in Figure 35-19. If they click the Cancel

button, the script returns to Browse mode and exits the

script. The following code will perform these steps:

Figure 35-19. A dialog prompting the user to enter an invoice status that will

be used to perform a search

Enter Find Mode [Pause: Off]

Show Custom Dialog ["Search" ; "Enter a status:" ;

Invoice::Invoice Status]

If [Get (LastMessageChoice) = 2]

 Enter Browse Mode

 Exit Script

End if

If the script continues executing beyond this point, we

know that the user has clicked the Search button. In the

next section, a Loop statement is used to confirm that a

value was typed into the field. This is accomplished by

performing the following functions:

The first step within the Loop statement uses an Exit

Loop If step to immediately exit the statement if the

user followed the instructions and did, in fact, enter a

value. If they did not enter a value, the expression

returns a false value and the script stays within the

statement.

The Beep step causes the computer to sound an audio

alert.

A dialog identical to the original but with a slightly

enhanced message is opened, explicitly stating that a

status is required.

When the user clicks a button on the dialog, one of

three actions occur:

If they click the Cancel button, the script will return

to Browse mode and exit.

If they click the Search button without enter a value,

the Loop statement repeats, presenting another

dialog.

If they click the Search button with a value entered,

the Loop statement starts to repeat but exits with

the Exit Loop If step immediately at the top.

The preceding steps are expressed in the following script

steps:

Loop

 Exit Loop If [Invoice::Invoice Status ≠ ""]

 Beep

 Show Custom Dialog ["Search" ; "A status is

required:" ; Invoice::Invoice Status]

 If [Get (LastMessageChoice) = 2]

 Enter Browse Mode

 Exit Script

 End if

End Loop

Once the loop is exited, the script can continue,

performing the find and taking whatever additional steps

are necessary to complete its task.

Enhancing the Confirmation Process

The formula in the Exit Loop If step could be enhanced to

validate the text enter, confirming that it is the appropriate

data type or is within a certain range of values. In this

example, the loop will only exit if the value entered is one of

seven hard-coded options:

Exit Loop If [

 Invoice::Invoice Status ≠ "Paid" and

 Invoice::Invoice Status ≠ "Open" and

 Invoice::Invoice Status ≠ "Past Due" and

 Invoice::Invoice Status ≠ "Over 30 Days" and

 Invoice::Invoice Status ≠ "Over 60 Days" and

 Invoice::Invoice Status ≠ "Over 90 Days" and

 Invoice::Invoice Status ≠ "Over 120 Days"

]

To avoid hard-coded values, the formula could instead

get a list of acceptable values from the same value list

associated with the status field being searched. This

example assumes the existence of a value list named

Invoice Status that contains all the available options for the

field and uses that to confirm that the value entered in the

dialog is appropriate:

Let (

 Values = ValueListItems (Get (FileName) ; "Invoice

Status") ;

 Not IsEmpty (FilterValues (Values ; Invoice::Invoice

Status))

)

Tip An even more sophisticated option is to generate a

fully custom dialog using the New Window step described

later in this chapter. This would allow the inclusion of a

pop-up menu of choices to relieve users of the need to

remember and type valid values and instead simply

select a value from the list.

Scripting Portal Functions

Previously, we discussed how to create and configure

portals on a layout and mentioned some examples of basic

functionality for including buttons attached to hypothetical

scripts (Chapter 30). In this section, we explore some

examples of scripts used to enhance a portal by providing

basic navigation and record management functionality.

Navigating to a Portal Row’s Record

Portals are like miniature list layouts, where every row

displayed is a related record that exists in the table serving

as the portal’s data source. To be used as a navigation

conduit, they require a button connected to a script step or

a script that will navigate the user to the related record on

the appropriate layout.

The Go to Related Record script step can be attached

directly to a portal row button to serve this purpose.

However, that function will be limited to the options:

isolating a set of records in the target table, switching

layouts, and even opening a new window with specified

properties. That may be sufficient in most cases, but

consider the following limitations:

There is no integrated option to sort records so that the

records displayed in the destination layout sort in the

same order as they were displayed in the portal. This

can be disorienting to users, especially when they move

to view the next or previous record.

The step allows opening a new window with specified

dimensions and a new name. However, if you prefer to

maintain a single window environment, there is no

option to change the size, position, or name of the

current window after the layout change.

There is a way to address these limitations and run

additional functions after switching layouts. You can set up

an OnRecordLoad script trigger on the destination layout to

run a script that performs additional steps like sorting and

resizing or renaming the window. However, those functions

will run every time a user encounters a record there and not

just the first instance of navigating from a portal. Also, this

creates a fragmented technical design that can become

confusing in a complex database.

Therefore, the better option is usually to have the portal

navigation button perform a script that contains all the

steps required, including going to the related record(s),

window setup, sorting, and any other necessary tasks.

The following example demonstrates the basic setup of

such a script and navigates from a Company record to a

Contact record through a portal:

Go to Related Record [

 From table: "Company | Contact" ;

 Using layout: "Contact Form" (Contact)

]

Sort Records [Restore ; With dialog: Off]

<Insert Other Steps>

Remember that a script attached to a button in a portal

row will operate based the context of the row the user clicks

on. Therefore, be sure to perform context-sensitive steps

within the script before performing steps like committing a

record or changing layouts.

When running a script by clicking a button on a Contact

portal row in a portal on a Company layout, any references

to any field in the related Contact table will be pulled from

the row clicked until an action is taken that commits the

current record. Once the record is committed, any

references to related fields will be pulled from the first row.

Similarly, once the script has performed the Go to Related

Record step, the context will change to the destination table

occurrence so the fields selected in the Sort Records step

must be from that context and not the original context.

Adding a Portal Row

When allowing direct creation of related records (Chapter

30, “Creating Records in a Portal”) isn’t desirable or

adequate, a button can be added above or below the portal

and attached to a script that performs the following

functions:

1. Initialize variables with the values of all the match

fields used to establish the relationship between the

current layout’s table (starting) to the table acting

as the portal’s data source (target).

2. Freeze the window to avoid user distraction and

performance drag (Freeze Window command is

described in the next section).

3. Switch to a layout that displays records from the

target table.

4. Create a new record in the target table.

5. Enter the match field values from the starting

record into the match fields from the target table to

establish a relational connection between the new

record in the target table and the parent record in

the starting table.

6. Commit the new record.

7. Switch back to the original layout.
This example demonstrates a script that will create a

new Contact record attached to the current Company

record:

Set Variable [$Company.ID ; Company::Record ID]

Freeze Window

Go To Layout ["Contact – Form" (Contact) ; Animation:

None]

New Record/Request

Set Field [Contact::Record Parent ID ; $Company.ID]

Commit Records/Requests [With dialog: Off]

Go to Layout [original layout ; Animation: None]

When this script runs, from the user’s perspective,

nothing will have changed except for the appearance of a

new row in the portal.

Managing Windows

There are numerous script steps that allow for the

manipulation and management of windows, including:

Adjust Window — adjust the visibility or size of a window

based on the following options:

Resize to Fit — adjust the dimensions of the window

to the minimum size possible while continuing to

display the entire content area.

Maximize — resize the window to the full size of the

computer screen on which is it currently displayed.

Minimize — shrink the window down to an icon

stored in the Dock (macOS) or taskbar (Windows).

Restore — returns the window to the size and

position as it was at the beginning of the script.

Hide — hide the window from view, placing it into

the Window > Show Window menu from where it

can be reopened.

Arrange all Windows — arranges all the open windows

by the selected method:

Tile Horizontally

Tile Vertically

Cascade

Bring All To Front

Select Window — bring a specified window to the front

of every other window.

Move / Resize Window — adjust the Height, Width,

Distance from Top, and Distance from Left for a specified

window.

Close Window — close a specified window.

Freeze Window — lock the active window from

refreshing during the remainder of a script. This helps to

speed up a scripted process and hides layout and record

changes from being a distraction to the user.

Refresh Window — update the active window’s record

content.

Scroll Window — scrolls the window view by the selected

method:

Home

End

Page Up

Page Down

To Selection

Set Window Title — change the title of a specified

window.

Creating a New Window

The New Window step, shown in Figure 35-20 will create a

new window based on the current window’s type, layout,

size, positions, and other properties unless these are

specifically modified in the options dialog.

Figure 35-20. The New Window step

To configure the New Windows Options dialog, follow

these steps:

1. Select a Window Style from the following choices:

Document — A standard non-modal FileMaker

window.

Floating Document — A non-modal window that

will remain in front of other FileMaker windows.

Dialog — A window that is modal to the

application.

Card — A window that is modal to the parent

window.

Note A window is considered modal when it

forces the user to interact with and/or dismiss it

before they can resume work in the application or

window.

2. Optionally, enter a Window Name into the text area

or click the fx button to enter a formula to

dynamically calculate a name. If no name is

specified, the new window will be named the same

as the current window with a numeric suffix.

3. Optionally, select a Layout that should be displayed

in the new window.

4. Optionally, enter a Height and Width to control the

Size of the new window by typing directly into the

text areas or clicking the fx button to enter a

formula to dynamically calculate them.

5. Optionally, enter a From Top and From Left value to

control the Position of the new window by typing

directly into the text areas or clicking the fx button

to enter a formula to dynamically calculate them.

Tip Developers often create “staging”

windows that have a large negative value for the

From Left and From Top properties to keep them

hidden offscreen. These are ideal when a script

performs several preparatory steps before

presenting a window to the user or when

performing a complex sequence of automated

steps that would be a distraction to a user if in

full view.

6. Select from the list of available Window Options to

control the following properties of the new window:

Close enables a standard close indo

Close — enables a standard close window

control.

Minimize — enables a standard minimize

window control.

Maximize — enables a standard maximize

window control.

Resize — allows the user to manually resize the

window after it is created.

Menubars — controls if the menubar is visible at

the top of the window (Windows only).

Toolbars — controls if the status toolbar is

visible.

Dim Parent Window — Dims the parent window

(Card only).

Caution If you present a modal window without access

to the close function and without providing a button that

closes the window, the user will be stuck and must force

quit the application to continue.

Creating a Delete Confirmation Dialog

The New Window step can create a fully custom dialog

window based on a layout specifically designed to serve

that purpose, with a more robust interface than is possible

using the built-in Show Custom Dialog step. A custom dialog

can exceed the limit of three buttons and input fields, and

can include any other interface elements such as pop-up

menus, radio buttons, check boxes, calendars, charts, etc.

To illustrate this with a simple example, create a custom

deletion script that presents a dialog that includes the name

of the table for which the record belongs and requires the

user to type the word “Delete” into a text box before it will

allow the record to be deleted. This script could be attached

to buttons or as a replacement function for the Delete

Record menu if using custom menus.

Creating a Table for the Dialog’s Resources

Begin by creating a new table with fields for the dialog.

Since this dialog will be used when deleting any record in

any table, it makes sense to have a dedicated table rather

than add the required fields into an existing table. So, create

a new table named Dialog and then add the following global

text fields without any options:

Dialog Body — This field will be used to store text that

will be displayed as the body of the dialog, allowing it to

change depending on the type of record being deleted.

Dialog Confirmation Entry — This field will be used as a

confirmation that the user is paying attention to the task

they are about to undertake to avoid mistakes. They

must type the word “Delete” into it before the Delete

button will become enabled.

Dialog Confirmation Prompt — This field will be used to

inform the user to enter the word “Delete” into the

confirmation field.

Dialog Button 1 — This field will be used to store the

name of the first dialog button.

Dialog Button 2 — This field will be used to store the

name of the second dialog button.

Tip Notice that we have named these fields generically

and included two fields that the script will use to specify

the name of the button. This will allow the table and fields

to be expanded in the future and be used to generate any

number of additional dialog types.

Creating a Layout for the Dialog

Now create a new form layout called Dialog, assigned to the

newly created Dialog table. The layout should have all the

fields assigned to the table, arranged and formatted like

they are shown in Figure 35-21.

Figure 35-21. An example of a Dialog layout

Since this dialog will pull field values as the button

names and since a field object can be converted into a

button, either of the following two options can create the

buttons:

Create buttons and use a merge field for the name

property: <<fieldname>>.

Create the fields on the layout along with a temporary

button. Then use the Format Painter tool to copy and

paste the style settings from the actual button to the

text fields. The resulting fields will appear to be buttons,

as shown.

Enter Browse mode and create a new empty record in the

Dialog table.

Creating a Script for the Dialog

Now create a new script named Delete Record {function}.

This script will have a parameter so that it can handle new

dialog requests as well as cancellation requests from the

dialog itself. See Figure 35-22.

Figure 35-22. The complete Delete Record script

The script starts with some declarations in lines 2-4:

Placing any script parameter into a $function variable.

Turning off Allow User Abort so that the user can’t exit

the script using a method other than the buttons

provided in the dialog.

Using the Freeze Window command to lock the interface

until it needs to be refreshed to avoid unnecessary

distractions.

Then, an If statement encloses lines 8-9 so that they only

run if the script parameter contains “Cancel” indicating that

the user is already interacting with a dialog generated from

a previous execution of the script and has clicked the Cancel

button:

Using the Close Window step, the dialog is closed,

returning the user to the window they started in.

The Halt Script step is used to stop the script, returning

the interface to normal use.

If the script parameter did not indicate a cancellation

process, the script assumes we are generating a new dialog

and continues to lines 13-16. Here it initalizes variables that

will be used to populate fields in the dialog. The $Body

variable is the only one of these that contains dynamic text

and must be initialized before the window changes layouts

since it includes the name of the table in which the user is

attempting to delete a record. Using the Get (

LayoutTableName) to generate the dialog body message

assumes that the layout table is named as a singular

descriptive version of the type of records in that table. For

example, a table named Contact or Company will make

sense using the formula shown, but a table named in the

plural (Invoices) or named abbreviated (Invo Recs) will not

make sense when placed into sentence form.

The window is created in line 19 by the New Window step

configured as shown in Figure 35-23.

Figure 35-23. The New Window step configured to display a Dialog

The New Window step is configured as follows:

Window Style is set to Dialog to generate a modal

window that will lock up the application functions until

the user dismisses it by making a choice.

The Window Name is set to a static text value of “Really

Delete Record?”

The Layout menu and subsequent dialog is used to

select the Dialog layout as the desired layout for the

new window.

The Size Height is set to 175 and the Size Width is set to

451, based on the dimensions of the layout’s content

area plus room for the window title bar.

The Position From Top contains the following formula

that will center the new window vertically: (Get (

WindowDesktopHeight) / 2) - (175 / 2).

The Position From Left contains the following formula

that will center the new window horizontally: (Get (

WindowDesktopWidth) / 2) - (451 / 2).

Finally, all the Window Options are unselected to keep

the new window looking like a dialog and forcing the

user to interact with the buttons provided rather than

the standard close button.

Once the New Window step is run, the dialog will be the

front window displaying the one record. Lines 20-24 fill in

the field values for the message, button names, and

confirmation prompt. Line 25 puts focus into the Dialog

Confirmation Entry field, and line 26 pauses the script and

waits for the user’s choice. When the user clicks the Delete

button, the script resumes, closes the dialog, and deletes

the record from the original window.

Finishing the Layout Configuration

Now that the script is configured, the following final

configuration steps must be performed on the Dialog layout

to connect buttons to the script and to confirm objects

display properly on the layout.

Select the Dialog Button 1 field and perform these two

steps:

Select the Format > Button Setup menu item and set

the Action to perform a Single Step of Resume Script

and check the Change cursor to hand over button

option, as shown in Figure 35-24.

Figure 35-24. The configuration of the Dialog Button 1 field on the Dialog

layout

In the Data > Behavior section of the Inspector, enter

the following formula into the Hide object when text

area so that the Delete button is inaccessible until the

user enters the word “Delete” into the confirmation

field.

Dialog::Dialog Confirmation Entry ≠ "Delete"

Select the Dialog Button 2 field and configure it to run

the Delete Record {function} script by following these

steps:

Select the Format > Button Setup menu item and set

the Action to perform a Perform Script.

In the Specify Script dialog, select the Delete Record

{Function} script.

Enter “Cancel” into the Optional script parameter text

area.

Click OK to close the Specify Script dialog.

Select Halt Current Script in the Options area of the

Button Setup dialog.

Also, check the Change cursor to hand over button

option. See Figure 35-25.

Figure 35-25. The configuration of the Dialog Button 2 field on the Dialog

layout

In the Data > Behavior section of the Inspector, confirm

that all the fields on the layout except Dialog Confirmation

Entry have no Field Entry options selected.

Finally, select the Layouts > Set Tab Order and click Clear

All in the Set Tab Order dialog. Then click the arrow pointing

to the Dialog Confirmation Entry field and then on the arrow

pointing to the right side of the Dialog Button 1 field/button,

as shown in Figure 35-26. This will allow the user to type

into the confirmation field and then tab to jump to the

Delete button. Click OK to save the new tab order.

Figure 35-26. The tab order to allow tabbing between the confirmation text

field and the first dialog field/button

Testing the Script

Once configured, it is time to test the script. Navigate back

to a layout for a non-dialog table such as Contact Form.

Eventually, this script should be connected to the Delete

Record custom menu. However, for testing purposes, make

it visible in the Scripts menu or add a button to the layout

and attach it as the action. When run, you should see a

dialog open like the one shown in Figure 35-27.

Figure 35-27. The delete dialog when the script is run from a layout for the

Contact table

Type the word “Delete” into the confirmation box and hit

the Tab key. That should make the Delete button visible, as

shown in Figure 35-28.

Figure 35-28. The delete dialog after the user types into the confirmation field

Tip This dialog and script can be evolved to include

various enhancement. For example, the message could

include a value from a standard Record Name field and

could be expanded to handle a Delete All Records

request.

Introducing the Card Window

A card is a modal window overlay displaying a second layout

within the current window on top of its content, as shown in

Figure 35-29. The parent window’s content becomes

inactive and inaccessible while the card is open although,

depending on the size of the card, that content can still be

seen in the background of the window in an optionally

diminished light. Unlike a dialog window, which is modal to

the entire FileMaker application, a card only locks up one

window leaving the user free to work in other windows at

the same time it is displayed.

Figure 35-29. An example of a card superimposing a graphic layout on top of

the Sandbox Form layout

Cards are similar in appearance and behavior to modal

windows found in other environments. For example, a

macOS dialog can open as a “sheet,” attached to the top of

a window. Also, various types of objects are often displayed

atop the content of a web page, including advertisements

and images, which are sometimes loosely referred to as a

“Lightbox” effect.

Cards are great for presenting navigation menus custom

toolbars, dialogs, and more. Since the card layout has its

own context that can be based on a table occurrence other

than that of the parent window’s layout, a card can provide

universal services regardless of the parent window’s

context.

Tip When configuring a Card in the New Window

Options dialog, leave the Size and Position values empty

to have the layout centered in the parent window

displaying its content at full size.

Converting the Delete Confirmation Dialog

to a Card

With the following adjustments to the New Window script

step, the delete dialog window from the previous example

can be converted into a card that appears to be attached to

the top of the parent window like an macOS window dialog:

Change the Window Style to Card.

Change the Position > From Top to 0.

Change the Position > From Left to a null (empty) value.

Select the Dim parent window check box option.

Once saved, when the script is run, the dialog should

appear attached to the top of the window, as shown in

Figure 35-30.

Figure 35-30. The dialog presented as a Card, attached to the top of the

window

Caution When the Close Window option is disabled, the

card will not include a Close button in the upper-left

corner. You must include at least one button on the layout

that allows the user to close the card or it may become

necessary to force quit the application to release the

window, especially if the script that opened the window is

paused and has Allow User Abort turned Off.

Managing Errors

When an error occurs, a dialog may appear informing the

user of the problem and temporarily pause the running

script. The message in this dialog may or may not make

sense to a user depending on the error that occurs or their

knowledge of the script functions and of FileMaker

development.

A common scripting error that presents a dialog is an

attempt to use the Set Field step to set a value for a field

from the wrong context. For example, if browsing a

Company record, setting a field in the Contact table directly

(not through a relationship) will result in the error message

stating, “This operation could not be completed because the

target is not part of the related table.” Since this is a

programming error, a user would have absolutely no idea

what this means or what to do to reach a resolution.

To suppress error displays, use the Set Error Capture step

with a parameter of On. This will cause the script to ignore

any errors it encounters and continue processing. The Get (

LastError) function can be used at various points in the

script to determine if an error has occurred. The function will

return a numeric value indicating either no error (0) or the

number representing the error. An If statement can take

conditional action in the event an error is detected.

As an illustration of this technique, the example below

shows a script attempting to set a the Contact::Name Last

field and displaying a dialog. If this script is run from a

different table, say a Project table, the Set Field step will

generate a 103 error and display the dialog specified.

Set Error Capture [On]

Set Field ["Contact::Name Last; "Smith"]

If [Get (LastError) = 103]

 Show Custom Dialog ["Error 103: Set Field context

error"]

End If

Generally, it isn’t necessary to put an error check and

dialog on a granular level as shown in the preceding

example, which is intended to illustrate the pattern of how

errors can be captured, detected, and reported.

For a complete list of errors, search for “FileMaker Pro

error code reference guide” on FileMaker.com.

Summary

In this chapter, we explored many examples of scripting

tasks that can be used to automate activity within a

database.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_36

36. Debugging Scripts

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Troubleshooting an issue occurring within a simple script

doesn’t pose much of a challenge. As a database grows in

complexity, several factors can adversely impact how easily

a developer identifies and locates the cause of a scripting

problem. A script can call a sub-script, which can call

another in a branching hierarchy. Scripts are triggered from

numerous interface elements such as buttons, layouts,

menus, records, and more. Scripts can jump from one layout

context to another, which can be difficult to keep track of

during complex processes that are woven into a mesh of

interconnected scripts. To ease the burden of figuring out

what is going wrong and where, modern development

environments have a feature called a script debugger.

A script debugger is an interactive tool used by

developers to troubleshoot complex scripted processes,

often those involving functions that range across multiple

scripts. FileMaker Pro Advanced has a built-in script

debugger that makes it easy to monitor variables, step

through scripts and sub-scripts, set and clear custom

breakpoints, pause on errors, and temporarily disable all

script triggers to help locate and correct scripting problems.

In this chapter, we will introduce basic debugging,

covering the following topics:

How script debugging works

Exploring the debugging interface

Using the debugger

Using custom breakpoints

How Script Debugging Works

The FileMaker script debugger is a powerful feature that can

replace primitive troubleshooting techniques . For example,

without a debugger, developers used to insert temporary

dialogs and pauses to help identify which step had been

reached prior to the point of error, what information is in

variables or fields at that time, and what the current context

is within the interface. These are incredibly crude methods

of troubleshooting and require a lot of experimentation to

locate and diagnose a problem. Also, when finished, they

must be cleaned up. A formal debugger replaces all of this

with powerful features that can be activated or deactivated

as needed without modifying a single script.

Once debugging is enabled, the script being performed

will be loaded into the Script Debugger window and pause

at the first step it is about to perform. You can then choose

how the script and any nested subscripts will be performed

by choosing from a set of debugging functions that control

where and when the process will be paused next.

Essentially, debugging allows you to slow down the action of

a script, breaking it into a sequence of pause-delimited

functions, providing an opportunity to analyze the interface

context and variable content at different points within a

script or the sub-script stack.

Uses for the Script Debugger

The debugger has a variety of uses including:

Discovering previously unknown scripting errors that are

suppressed by uses of the Set Error Capture script step

but may be adversely affecting database functionality

(using the debugger’s Pause on error feature).

Locating the exact position of a programming error

within a script.

Moving slowly through the hierarchy of subscripts for

troubleshooting or structural analysis of a complex

database.

Visualizing the interface context and variable content at

various points within a script.

Disabling script triggers temporarily to provide an

opportunity to work around catastrophic issues that

occur immediately when a file is opened.

Defining Basic Debugging Concepts

Before delving into debugging features, take a moment to

become acquainted with the following terminology:

Breakpoint — This is position within a script at which the

debugger will pause and await instructions about how to

continue. FileMaker will automatically pause at the

beginning of a direct script launch and on an error step,

if the option to do so is selected. But you can manually

insert custom breakpoints anywhere within a script to

fine-tune the troubleshooting experience.

Step — This is one of a set of functions that define the

distance to the next automatic breakpoint. When a

script pauses at the start of the debug process, you

have the option to take steps through it rather than

allowing it to run quickly to the end. FileMaker offers the

following step options:

Step Over — This function will execute the next step

of the current script before pausing but will not

enter and pause in sub-scripts. The sub-scripts will

be performed but not debugged.

Step Into — This function will execute the next step

of the current script before pausing and will enter

sub-scripts and pauses them in the debugger.

Step Out — When the current script is a sub-script,

this function will execute the remaining steps and

then return to the parent script and pause on the

line after the Perform Script step that called the sub-

script.

Set Next Step — This function allows you to skip

ahead from the last executed step to the selected

step without performing the interim steps.

Continue — When paused, this option will continue the

script to the next breakpoint, error, or the end of the

script.

Halt — This option will abruptly abort the script.

Activating the Debugger

Script debugging is active whenever the Script Debugger

window is open. This can be achieved in one of three ways:

Open the Script Debugger window by selecting the Tools

> Script Debugger menu item. While open, any script

that runs will automatically be displayed in the window

and run through the debugger. The first script to run will

pause and allow you to control subsequent functions,

including whether to step through subscripts.

Turn on Pause on error by selecting the check box at the

bottom of the Script Debugger window or menu item

under the Tools > Script Debugger. Once activated,

close the debugger window and work normally. Anytime

an error is encountered the Script Debugger window will

open and will pause at the script step that is generating

the error. This includes any errors that are automatically

captured and suppressed with the Set Error Capture

script step, allowing you to identify errors that you may

not be aware are occurring .

Click the Script Debugger button in toolbar of the Script

Workspace window (Chapter 34) while viewing a script.

This will open the Script Debugger window and

immediately run the selected script through the

debugging process.

Exploring the Debugging Interface

The debugging interface includes three items:

The Tools > Debugging Controls submenu.

The Script Debugger window.

The Data Viewer window.

Debugging Options Under the Tools Menu

FileMaker’s debugging features are accessed at the top of

the Tools menu, as shown in Figure 36-1.

Figure 36-1. The Script Debugger menu items and Debugging Controls

submenu

The following controls are available at the top of the Tools

menu:

Script Debugger — This menu item will toggle the

visibility of the Script Debugger window, with a check

mark indicating that it is currently open.

Debugging Controls — This submenu provides key

command access to various debugging functions

(described later in this chapter) and displays the status

of the Disable Script Triggers and Pause on error

functions.

Data Viewer — This menu item will toggle the visibility

of the Data Viewer window, with a check mark indicating

that it is currently open.

Exploring the Script Debugger Window

The Script Debugger window, shown in Figure 36-2, allows

monitoring and interacting with the script execution

progress.

Figure 36-2. The Script Debugger window

The main portion of the debugger window contains the

following interface elements:

1. Script Name — This area displays the name of the

current script being displayed.

2. Script Step — This area displays the script steps

that make up the current script. If the debugger is

paused on a highlighted step, that indicates it has

encountered a natural breakpoint, custom

breakpoint, or error and is waiting for you to choose

to stop, continue, or take some other action.

3. Pause on error — When this check box is enabled

the Script Debugger will pause any time an error

occurs, opening the dialog if necessary.

Call Stack This area contains the “stack” of script

4.
Call Stack — This area contains the stack of script

calls based on the script paused in the view. If

viewing a sub-script that was called by other

scripts, the disclosure triangle can be clicked to

expand the hierarchy above the current script,

tracing back the path to the first script in the stack.

Status Toolbar Items (Debugger Window)

The non-customizable status toolbar for the Script Debugger

window is shown in Figure 36-3.

Figure 36-3. The Script Debugger window toolbar

The toolbar contains the following buttons, each

connected to a debugging function that is also available

under the Tools > Debugging Controls submenu:

1. Edit Script — Opens the current script in the Script

Workspace window.

2. Continue — Continues running the script currently

paused in the window.

3. Halt Script — Stops the script and any other scripts

in the call stack.

4. Step Over — Continues running the script without

debugging sub-scripts.

5. Step Into — Continues running the script with

debugging sub-scripts.

6. Step Out — Continues the current sub-script without

debugging until control is returned to the parent

script.

7. Set Next Step — Jump ahead to the script step that

is selected in the window, skipping the interim

steps.

8. Disable Script Triggers — This button will toggle the

setting to disable script triggers throughout the

database file.

9. Open Data Viewer — This button will open the Data

Viewer dialog.

Exploring the Data Viewer Window

The data viewer is a dialog that displays a list of variables

and their current value, as shown in Figure 36-4. The dialog

can be used at any time to review global variables. When

used in conjunction with the debugging feature, it allows

you to see the current value of both global variables and

any current local variables defined when the script was

paused.

Figure 36-4. The Data Viewer dialog is a diagnostic tool that is used to monitor

the value of global and local variables when a script is paused

The dialog is divided into the following two tabs:

Current — This tab contains a list of every variable

currently defined. Global variables will show up all the

time while local variables, being transitory, will only be

present when a script is paused. Double-click on a

variable to open a Current Value dialog to view the

contents of lengthy values. Select a variable and click

Add to Watch to add that variable to the Watch tab’s list

of monitored expressions. When the Current Value

dialog is open, you can modify the value in the variable

while a script is paused.

Watch — This tab is used to monitor any number of

factors. A set of buttons allows you to add, duplicate,

edit, and delete the list of expressions. Use this to test

formulas before integrating them into a database

formula or custom function.

Using Custom Breakpoints

Custom breakpoints are developer specified pauses within a

single script that help pinpoint the location of an error.

To add a breakpoint to a script, open the script in the

workspace then click on the step number, which is running

in a column to the left of the steps. A breakpoint is indicated

when the number is illuminated in a blue arrow, as shown in

Figure 36-5.

Figure 36-5. A script with two breakpoints added

Once in place, a script run through the debugger will

pause at the beginning and then at each of the two

breakpoints.

Breakpoints can be removed by any of the following

methods:

Within a script by clicking on each blue arrow.

When a script is paused in the debugger, all breakpoints

can be removed by selecting the Tools > Debugger

Controls > Remove Breakpoints menu item.

Summary

In this chapter, we explored the benefits and features of the

script debugger, which is a valuable tool to assist in

troubleshooting databases with complex scripting.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_37

37. Using Script Triggers

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

A script connected to a button or one made visible in the

Scripts menu will run in response to a user’s click. While this

gives users easy access to a time-saving and error-avoiding

sequence of predefined functions, it has one glaring

limitation. The click-to-run approach to scripting requires the

user to consciously intend to perform the script function,

knowing when and how to invoke it. So, while the script will

automatically perform the steps defined within, it must be

manually triggered. As a developer, you may not want to

always rely on a user to remember to take the right action

at the appropriate time. Script triggers solve this problem.

A script trigger is a mechanism that connects a specific

interface event to a script so that any time a user or other

script performs the event, the script runs automatically. This

feature is like most application development environments,

triggering a function in reaction to an interface event.

FileMaker has over two-dozen triggers for a variety of file,

layout, and object events. For example, a script can be

configured to run after the database file opens or before the

database file closes. Similarly, a script can run when a

layout is entered or exited; when a field is entered, edited or

exited; when a window changing modes; and more.

Every trigger runs in response to an event. However,

events trigger a script either before or after the user’s

intended action is completed. For example, when modifying

a field or navigating to a layout, the script is triggered after

that event is completed. However, some scripts are

triggered before the event is completed. In those cases, if

the script returns a false value of 0, the script triggering

action is not completed.

Scripts executed by a trigger are the same as any other

script in FileMaker. In fact, events can trigger scripts that are

connected to a button or available in the Scripts menu.

Different events or the same event from different objects

can each have their own script, or they can share a script

depending on each developer’s preference or the

practicality of doing so within a specific context.

In this chapter, we will introduce script triggers, covering

the following topics:

Script trigger reference

Working with script triggers

Script Trigger Reference

Script Triggers are available in the following three areas:

File option triggers

Layout triggers

Layout object triggers

File Option Triggers

A file option trigger will run a script in response to a file

level event. These triggers are available in the Script

Triggers tab of the File Options dialog, shown in Figure 37-1,

which can be accessed by selecting the File > File Options

menu.

Figure 37-1. The Script Triggers tab for the File Options dialog

The dialog contains the following controls:

1. Events — The area contains a list of all events that

can be configured to trigger a script. The check box

indicates that the event is active and will trigger the

script displayed on the right.

2. Event — The selected event name will be displayed

here with a brief description.

3. Script — If a script is assigned to the selected

i ill b di l d h li k h l

event, it will be displayed here. Click the Select

button to specify which script should be assigned to

the event.

The following file triggers are available:

OnFirstWindowOpen

OnLastWindowClose

OnWindowOpen

OnWindowClose

OnFileAVPLayerChange

OnFirstWindowOpen

The OnFirstWindowOpen event occurs when the first window

is created after a database is explicitly opened by a user or

Open File script step in another file. It provides an

opportunity to perform any configuration or setup routines

for the file itself at startup. For example, this event might

trigger a script that initializes global variables, automatically

opens other windows, or performs default finds and sorts,

etc.

Caution The OnFirstWindowOpen event does not occur

if the file opens as a hidden window due to being

automatically opened by a relationship to it from another

database file.

The event will trigger a script after the event has been

processed and the window has been opened.

OnLastWindowClose

The OnLastWindowClose event occurs when the last layout

window for the file is closed by a user or a Close Window

script step. It provides an opportunity for a script to perform

any last-minute validation functions or maintenance

routines.

Note This event is based on the last non-developer

window being closed and will not consider other windows

such as the Script Workspace.

The event will trigger a script before the event has been

processed. If the script returns a false value of 0, the Close

process will be halted and the window will remain open.

OnWindowOpen

The OnWindowOpen event occurs after any new window is

created in response to:

A user selects the Window > New Window menu item.

A script runs that uses the New Window step.

A window for a hidden file is brought into focus by a

user or script step for the first time.

This event provides an opportunity to perform any

configuration or setup routines for the window. For example,

this event might trigger a script that performs a default find

and sort.

The event will trigger a script after the event has been

processed.

OnWindowClose

The OnWindowClose event occurs before any window is

closed.

This event provides an opportunity for a script to perform

any last-minute validation functions or maintenance

routines to the record(s) viewed within the window.

The event will trigger a script in non-Layout modes

before the event has been processed. If the script returns a

false value of 0, the process will be halted and the window

will remain open.

OnFileAVPlayerChange

The OnFileAVPlayerChange event occurs whenever a user or

script changes the playback state of a media file playing in

a field or URL. For example, the event will trigger the script

when a user pauses, plays, or stops the media or when the

media stops upon reaching the end.

The event will trigger a script in Browse and Find modes

after the event has been processed.

Caution This event is only supported in FileMaker Go.

Layout Triggers

A layout trigger will run a script in response to an event

while a user is accessing records on a particular layout.

These triggers are available in the Script Triggers tab of the

Layout Setup dialog, shown in Figure 37-2, which can be

accessed by selecting the Layout Setup from the layout’s

contextual menu or by clicking the pencil icon to the right of

the Layout menu in the lower row of the window toolbar.

Figure 37-2. The Script Triggers tab for the Layout Setup dialog

The dialog controls are the same as those on the File

Options dialog with one addition:

Enable in — These check boxes allow the selected script

trigger to be enabled or disabled for both Browse or Find

window modes.

The following layout triggers are available:

OnRecordLoad

OnRecordCommit

OnRecordRevert

OnLayoutKeystroke

OnLayoutEnter

OnLayoutExit

OnLayoutSizeChange

OnModeEnter

OnModeExit

OnViewChange

OnGestureTap

OnExternalCommandReceived

OnRecordLoad

The OnRecordLoad event will occur after a record becomes

current, providing an opportunity for a script to perform

actions just prior to a user or script viewing or modifying a

record.

The event will trigger a script after a user or script

performs any of the following record-loading events:

Navigating to a new record within a found set

Navigating to a different layout

Creating a new record

Deleting a record in a found set of more than one record

Creating a new window

Displaying the results of a Find operation

This event will occur anytime a window displays a record

that wasn’t currently displayed in the moment before on a

layout that has a script assigned to this trigger.

OnRecordCommit

The OnRecordCommit event will occur when an attempt is

made to commit a modified record by a user or a script

performing any of the following actions:

Navigating to a different record

Typing the Enter key

Clicking anywhere on the layout outside of the fields of

the active record

Changing records; navigating, deleting, creating,

duplicating, etc.

Performing a script containing the Commit

Records/Requests step

Opening the Manage Database dialog window

Closing the file

This event allows a script to perform validation steps or

other actions prior to saving changes made to the record.

The event will trigger a script before the event has been

processed. If the script returns a false value of 0, the

Commit process will be halted and the uncommitted

changes will remain in place on the record, which will still be

in focus.

OnRecordRevert

The OnRecordRevert event will occur when an attempt is

made to revert a modified record to its previously

committed state by a user selecting the Records > Revert

Record menu or a script is run with the Revert

Record/Request step.

This event allows a script to provide a custom dialog

message warning the user to perform any necessary actions

prior to removing recent changes and restoring the record

to its last saved state.

The event will trigger a script before the event has been

processed. If the script returns a false value of 0, the Revert

process will be halted, and the uncommitted changes will

remain in place on the record, which will still be in focus.

OnLayoutKeystroke

The OnLayoutKeystroke event will occur when any character

is typed on the keyboard except those handled by the

Operating System or FileMaker. For example, the event does

occur when typing navigational keys such as Tab and arrows

but is not sent when typing a command by holding down the

macOS Command key or the Windows Alt and Control keys,

or function keys like volume buttons.

The script triggered by this event can use various

functions to determine the keystroke that triggered it and

what, if any, field has focus and is being typed into. Some

useful functions here include:

Get (TriggerModifierKeys)

Code

Char

Get (ActiveFieldName)

The event will trigger a script before the event has been

processed. If the script returns a false value of 0, the

keystroke will not be processed.

Note See OnObjectKeystroke later in this chapter.

OnLayoutEnter

The OnLayoutEnter event will occur after a layout has

loaded. It will trigger a script after the event has been

processed.

OnLayoutExit

The OnLayoutExit event will occur when a user or script

attempts to navigate away from the current layout or to

close a window. It will trigger a script before the event has

been processed. If the script returns a false value of 0, the

layout change will be halted, and the window will continue

to display the previously displayed layout.

OnLayoutSizeChange

The OnLayoutSizeChange event will occur when the window

has changed size due to a user or script performing any of

the following actions:

Manually resizing the window by dragging

Running a script that contains a Resize Window step

Hiding or showing the window toolbar or formatting bar

Opening a window

Rotating the iOS device (FileMaker go only)

The event will trigger a script after the event has been

processed.

OnModeEnter

The OnModeEnter event will occur after the window mode is

changed by a user or a script step. It will trigger a script

after the event has been processed.

OnModeExit

The OnModeExit event will occur when a user or script

attempts to change the window mode. It will trigger a script

before the event has been processed. If the script returns a

false value of 0, the mode change will be halted, and the

window will remain in whatever mode it was previously

displaying.

OnViewChange

The OnViewChange event will occur when a user or script

changes the window view between Form, List, or Table. It

will trigger a script after the event has been processed.

OnGestureTap

The OnGestureTap event will occur when a tap gesture is

received on a layout under the following conditions:

FileMaker go and windows only (except Windows 7)

Browse and find modes only

Tap is not made in active web viewers or active edit

boxes

Single tap is one, two, or three fingers (iOS)

Double tap with one finger (iOS), which will trigger the

event twice

Tap is with two fingers (Windows)

The triggered script can use the Get (TriggerGestureInfo

) function to determine details about the gesture event.

The event will trigger a script before the event has been

processed. If the script returns a false value of 0, the

gesture will not be processed.

Caution This event is only supported in FileMaker Go

and Windows.

OnExternalCommandReceived

The OnExternalCommandReceived event will occur when a

user presses a button to control playback functions (play,

pause, stop, next, previous, etc.) on an iOS device lock

screen or on an external device. The triggered script can

use the Get (TriggerGestureInfo) function to gain

information about the external event.

The event will trigger a script before the event has been

processed.

Caution This event is only supported in FileMaker Go.

Layout Object Triggers

A layout object trigger will run a script in response to an

event performed to or within a specific layout object. These

triggers are available in the dialog shown in Figure 37-3,

which can be accessed by selecting a layout object and then

clicking on the Format > Set Script Triggers menu or from

the object’s contextual menu. The dialog controls are the

same as those on the Layout Setup dialog.

Figure 37-3. The Set Script Triggers dialog for a selected layout object

The following layout triggers are available through this

dialog:

OnObjectEnter

OnObjectKeystroke

OnObjectModify

OnObjectValidate

OnObjectSave

OnObjectExit

OnPanelSwitch

OnObjectAVPlayerChange

OnObjectEnter

The OnObjectEnter event will occur when a layout object

becomes entered and receives active focus. This can occur

when a user clicks on the object, tabs into the object, or

when a script is run that contains a step causing an object

to be entered: for example, the Go to Object or Go to Next

Field steps.

The event will trigger a script after the event has been

processed.

OnObjectKeystroke

The OnObjectKeystroke event will occur when any character

is typed on the keyboard into an object with focus except

those handled by the operating system or FileMaker.

The event will trigger a script before the event has been

processed. If the script returns a false value of 0, the

keystroke will not be registered and the character will not

appear in the object.

Note See OnLayoutKeystroke earlier in this chapter.

OnObjectModify

The OnObjectModify event will occur when the value of an

object has changed because of any edit events including:

Typing keystrokes into the object

Selecting a new value in a value list formatted field

(check box, radio button, etc.)

Using Cut, Paste, or Clear functions

Changing the value of the object with a script step such

as Insert Text

The selection of a new tab on a panel control

The event only occurs in response to interface-related

actions. It does not occur when a window updates values

that are populated from an external data source, when a

field is updated by an auto-enter formula, or when the Set

Field script step is used to update the value of a field.

The event will trigger a script after the event has been

processed.

OnObjectValidate

The OnObjectValidate event will occur when a field value

has changed and is about to be validated prior to being

saved. This occurs when a user tabs to a new field or

commits a record after making changes to the field with

active focus.

The event will trigger a script before the event has been

processed. If the script returns a false value of 0, the

validation and exit events will be halted and the current

object will retain focus.

OnObjectSave

The OnObjectSave event will occur after a modified field is

in the process of being exited when focus is moving to a

new field or a record is being committed.

The event will trigger a script after the event has been

processed. If the script returns a false value of 0, the exit

object event will be halted and the current object will retain

focus; however, the changes will have already been saved.

OnObjectExit

The OnObjectExit event will occur when an object is about

to lose active focus:

Move from one object with focus to another

Moving to another portal row

Moving to another repetition in a repeating field

Any action that causes the record to be committed

Opening a dialog that causes a field to be exited

The event will trigger a script before the exit event has

been processed. If the script returns a false value of 0, the

event will be halted and focus will remain active on the

current object.

OnPanelSwitch

The OnPanelSwitch event will occur when the current tab of

a panel control is about to change due to a user selecting a

different tab or a script step selecting an object on a

different tab.

Use the Get (TriggerCurrentPanel) and Get (

TriggerTargetPanel) functions to determine which individual

panel of the control is being exited from and which has been

selected to receive active focus.

The event will trigger a script before the event has been

processed. If the script returns a false value of 0, it will

cause the panel change to be halted.

OnObjectAVPlayerChange

The OnObjectAVPlayerChange event will occur when the

media in a layout object changes state. For example, the

event will trigger a script when a user pauses, plays, or

stops a video in a field or when the video stops upon

reaching the end.

The event will trigger a script after the event has been

processed.

Caution This event is only supported in FileMaker Go.

Working with Script Triggers

There are a few topics to consider that will help to improve

the efficiency of working with triggers and ensure that the

results match your expectations:

Finding script triggered objects

Remembering event precedence

Using caution with script parameters

Exceptions to event triggers

Finding Script-Triggered Objects

When the View > Show > Script Triggers menu setting is

active, objects with script triggers assigned will display a

small script icon badge when viewed in layout mode, as

shown in Figure 37-4.

Figure 37-4. The object badge visible on a field with one or more script

triggers assigned

Note Object Badges are helpful in identifying various

features used by a layout object. They are discussed

further in Chapter 15.

Remembering Event Precedence

When a single interface event triggers multiple events,

FileMaker will execute the script triggers in an order of

precedence. To help can clarify the options for precisely

triggering the script you want at a specific time and

avoiding duplicate executions, here are a few examples of

the order of precedence for different actions.

When opening a database file , the following sequence of

events will be triggered in this order:

OnFirstWindowOpen

OnWindowOpen

OnLayoutEnter

OnModeEnter

OnRecordLoad

When committing a record with unsaved changes, the

following sequence of events will be triggered in this order:

OnObjectValidate

OnObjectSave

OnObjectExit

OnRecordCommit

OnRecordLoad

OnObjectEnter

When opening a new window, the following sequence of

events will be triggered in this order:

OnWindowOpen

OnLayoutEnter

OnModeEnter

OnRecordLoad

OnLayoutSizeChange

When changing layouts, the following sequence of events

will be triggered in this order:

OnLayoutExit

OnLayoutEnter

OnRecordLoad

Caution If the layout change is initiated from a window

that has unsaved changes, the sequence listed here will

be preceded by the entire record commit sequence listed

previously.

Using Caution with Script Parameters

When assigning a script to an event trigger, the standard

Specify Script dialog allows for the inclusion of a script

parameter. Like with buttons and the Perform Script step,

using parameters as part of an event trigger can help keep

the target scripts flexible and open ended by pushing in

specific information rather than encoding it within the script.

However, with script triggers it is a good idea to use

parameters cautiously.

Many events trigger a script before the event is

completed. This means that the action the user is taking has

not yet been realized on the interface. When the script runs,

the interface will reflect the starting point of the event

rather than the intended state that will be in place after the

action is fully processed. In these cases, the entire time the

script is running, it will be as if the user has taken no action

at all because that action has not yet been processed by

FileMaker. Due to this, it is important to maintain an

awareness of exactly when an event will perform the

assigned script and what is and is not safe to push in a

script parameter.

The OnObjectKeystroke event provides a great example.

When the user types a character into a field, the event will

trigger the assigned script before the character is entered in

a field. If the call to the script includes a script parameter

with the contents of the field, it will not include the newly

typed character.

Some triggers performed before an event is processed

have special functions that allow you to extrapolate the

intended action or target. In the example above, the Get (

TriggerKeystroke) function will return the character typed

but not yet entered into the field. The following trigger

functions can only be used within a script that is triggered

by an event and should not be used as script parameters:

Get (TriggerCurrentPanel)

Get (TriggerExternalEvent)

Get (TriggerGestureInfo)

Get (TriggerKeystroke)

Get (TriggerModifierKeys)

Get (TriggerTargetPanel)

Since triggers often occur in succession, if one event

doesn’t accommodate your needs, another may be used

instead. For example, OnObjectExit doesn’t offer a way to

know which layout a user is requesting. In this case, use

OnObjectEnter instead, which is triggered after the layout

change occurs.

Script parameters should never be completely excluded

from use with event triggers. However, take care when

using them and be certain to have a clear understanding of

what can be pushed in a parameter and when.

Exceptions to Event Triggers

Under some circumstances, events will not always trigger

scripts so be careful when relying on script triggers to

perform critical functions.

For example, most Spelling and Find/Replace functions,

especially when performed across found sets, will not

trigger various events such as OnObjectModify,

OnObjectValidate, and OnObjecSave. Also, many functions

Import Records, Replace, and Relookup modify table data

directly and won’t trigger events even though these must

operate from a specific layout context. Similarly, script steps

like Set Field, Set Field by Name, and Set Web Viewer will

not active many script triggers.

Be sure to consider all possible actions available to a

user or scripts and, where necessary, lock down functions or

use alternative script steps to ensure that critical

functionality is triggered. For example, the Insert Text or

Insert Calculated Result script steps will trigger script steps

when Set Field will not. When non-triggering steps can’t be

avoided, add steps to programmatically trigger other scripts

or to explicitly perform the desired functionality.

Summary

In this chapter, we continued our discussion of scripting,

specifically triggering scripts in reaction to interface events.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_38

38. Extending Features with

Plugins

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

A plug-in is a software package developed with the C or

C++ programming language that extends the capabilities of

FileMaker Pro by adding new functions accessible through

the Specify Calculation dialog and new script steps.

This chapter covers basic plug-in concepts including:

Purchasing plug-ins

Installing plug-ins

Accessing plug-ins

Purchasing Plug-Ins

Many companies sell plug-ins for FileMaker Pro. A few

prominent examples are included here for your

convenience.

360 Works

360 Works sells about two dozen different FileMaker plug-

ins, including:

360Works Email — This plug-in allows you to send and

receive email messages directly from within a database,

supporting SMTP, POP, and IMAP protocols.

360Works Plastic — This plug-in allows credit card

processing directly from within a database supporting

both Authorize.net and Verisign/PayPal Payflow.

360Works Web Services Manager — This plug-in

publishes FileMaker scripts as XML Web Services that

can be accessed by SOAP (Simple Object Access

Protocol)-compatible software and can be used to power

public Web Services.

For more information visit the 360 Works website:

360works.com.

Productive Computing

Productive Computing sells several useful FileMaker plug-

ins, including:

Address Book Manipulator — This plug-in allows

bidirectional data exchange between a database and

the macOS Contacts application.

iCal Manipulator — This plug-in allows bidirectional data

exchange between a database and the macOS Calendar

application.

File Manipulator — This plug-in allows a database to

copy, rename, move, delete, compress, and encrypt

files or folders in local or networked directories.

Biometric Fingerprint Reader — This plug-in adds the

ability to incorporate fingerprint security and script

control options to a database.

For more information visit the Productive Computing

website: productivecomputing.com.

Trio Automatisering

Troi Automatisering sells many different FileMaker plug-ins,

including:

Troi Dialog — This plug-in allows a database to display

dynamic dialogs with an icon, a progress bar, up to four

buttons, up to fifteen input fields, and more.

Troi File — This plug-in allows files stored anywhere in

local or networked directories to be accessed from

within a database. Create files, get data from fields,

manipulate files, and more.

For more information visit the Troi Automatisering

website: troi.com.

Finding Other Plug-ins

There are a several sites that provide index listings of

available FileMaker plug-ins. These include:

FileMaker’s Website — solutions.filemaker.com/made-

for-filemaker

FileMaker Plug-ins — filemaker-plugins.com

FileMaker World —

filemakerworld.com/pages/plugins1.html

Locating Installed Plug-Ins

FileMaker Pro plug-ins are installed in different folder

locations depending on the operating system and product,

as shown in Table 38-1.

Table 38-1. The FileMaker plug-in folder

Product OS Plug-In Folder

FileMaker

Pro

macOS Macintosh HD/Users/<user>/Library/Application

Support/FileMaker/FileMaker Pro/16.0/Extensions

Product OS Plug-In Folder

 Windows C:\users\<user>\AppData\Local\FileMaker\FileMaker

Pro\16.0\Extensions\

FileMaker

Pro

Advanced

macOS Macintosh HD/Users/<user>/Library/Application

Support/FileMaker/FileMaker Pro

Advanced/16.0/Extensions

 Windows C:\users\<user>\AppData\Local\FileMaker\FileMaker Pro

Advanced\16.0\Extensions\

Installing Plug-Ins

Every computer that will access a database that uses plug-

in functions must have the plug-in installed locally. Plug-ins

installation resources can be embedded in and installed

from a database file, either a separate installer database or

directly within a database solution. When purchased from a

professional developer, the plug-in will most likely be

delivered to you in an installer database that you can run to

install it.

To prepare a database to install a plug-in, create a

container field(s) for the plug-in file(s). Plug-ins can only be

installed if they are the correct architecture for the

operating system and version of FileMaker, so a mixed

environment will require one field for each version of the

plug-in. Next, create a script that uses the Install Plug-in File

script step with references to the appropriate container

field. For example:

If [Get (ApplicationArchitecture) = "i386"]

 Install Plug-in File [Resources::Plugin 32bit]

Else if [Get (ApplicationArchitecture) = "x86_64"]

 Install Plug-in File [Resources::Plugin 64bit]

End

Note In Windows, plug-ins will have an extension of

either .fmx (32-bit version of FileMaker) or .fmx64 (64-bit

version of FileMaker). In macOS, all plug-ins will have an

extension of .fmplugin.

The script should check for errors to ensure that the

installation process was successful. For example, the Allow

Solutions to Install Files application preference must be

enabled for the script to work (Chapter 2, “Application

Preferences”) and will return an error if it is disabled. Also, it

is a good idea to use the Get (InstalledFMPlugins) function

to confirm that the correct version of the plug-in is installed

and enabled.

Accessing Plug-In Functions

Once a plug-in is successfully installed on a computer, it will

be available from within the Functions pane of any Specify

Calculation dialog under the External Functions category, as

shown in Figure 38-1. They are used in the same manner as

built-in functions (Chapters 13- 24).

Figure 38-1. Plug-in functions are accessible under the External functions

category of the Functions pane in the Specify Calculation dialog

Starting in FileMaker 16, plug-ins can add new script

steps that are accessible through the Script Workspace.

Summary

In this chapter, we discussed the basic process for finding,

installing, and accessing plug-ins.

Part VI

Sharing and Networking

Sharing and Networking

Sharing databases on networks increases their usefulness

but also introduces a need for security. These chapters

cover the basics of network sharing , security, and some

advanced analysis tools, and how to connect with the author

and find more help online.

39. Introducing Network Sharing — Covers how to host

a database on a network for sharing in a multi-user

environment.

40. Securing Database Access — Discusses the

options for configuring security settings to control

who has access to which features.

41. Advanced Sharing and Analysis Tools — Explores

the options for analyzing a database’s structure

with the Database Design Report and the utilities

available for manipulating files and creating

runtime solutions.

42. Getting Connected — A compilation of URLs from

throughout the book, various FileMaker-related

resources, and the official sites for the author and

book.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_39

39. Introducing Network Sharing

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

FileMaker databases are not only great tools for individuals,

they can be shared across a network. Network sharing

allows multiple users to gain simultaneous access to one or

more databases. Each user can view records, perform data

entry tasks, and even perform development tasks

simultaneously. Networking databases opens a new

dimension for how teams collaborate and communicate.

In this chapter, we explore network sharing and discuss

topics such as:

How network sharing works

Setting up peer-to-peer database sharing

Using a FileMaker server

Accessing databases from outside filemaker

How Network Sharing Works

Sharing a FileMaker database on a network is not the same

as sharing a document file. Certainly, a database file can be

placed in a shared directory on a file server where multiple

people can see and access it. However, not only is this not

what is meant by database network sharing, it is not

recommended.

A database file sitting in a server directory can be

opened by more than one user at the same time, as

illustrated in Figure 39-1. Each copy of FileMaker that opens

the database will perform read and write operations to the

file continuously as the users perform data entry tasks,

which will cause corruption and data loss. If this happens,

the file must be run through the Recovery process and may

be damaged beyond repair (Chapter 6, “Understanding File

Damage”).

Figure 39-1. A database file sitting in a shared server directory, accessed by

multiple people simultaneously will result in corruption and data loss

The correct way to share a database is to have it open

and hosted by a version of FileMaker software that allows

sharing. This can be done using peer-to-peer sharing with

either FileMaker Pro or FileMaker Pro Advanced, or the

preferred method of using client-server sharing with

FileMaker Server.

When hosted in this manner, the physical file is installed

somewhere on the host computer in a non-shared folder,

out of site from all users. The application, acting as a

network host, makes the file available to other users across

the network while managing all read/write activity to the

physical file itself, as shown in Figure 39-2.

Figure 39-2. A database file hosted by a copy of FileMaker Pro running on a

computer where the file is installed but visible to the network. Users connect to

the host application instead of directly to the file

When configured correctly, a user accesses a shared

database through the Hosts tab of the Launch Center, as

shown in Figure 39-3, instead of through an Open File dialog

as they would to open a database file stored locally on their

computer.

Figure 39-3. The Launch Center showing databases shared by a peer and a

server

To open a database, select the appropriate host on the

left and the desired file from the list on the right. Then click

Open or double-click on the file icon.

Limitations to Sharing

There are some limitations enforced by FileMaker to avoid

conflicts between multiple users when working in a hosted

file. The following actions are limited to a single user at a

time:

Editing the same record.

Modifying the same layout.

Modifying the same script.

Modifying any database scheme; tables, fields,

relationships.

Modifying any value list.

Modifying any data source.

Modifying any security access privileges.

The first three actions listed above can be undertaken at

the same time if the users are each modifying a different

record, layout, or script. The remaining development actions

are limited to a single user at a given time working on

anything within a specific developer dialog.

Setting Up Peer-to-Peer Database

Sharing

The peer-to-peer database sharing option involves one user

of a database acting as a host and sharing it with another

user across a network. The two are considered peers

because they are both using a version of the client software,

either FileMaker Pro or FileMaker Pro Advanced. One peer is

acting as a host even though their computer is a user

workstation and not running any special server software.

Any computer running a database in the client software

can act as a peer host. The host is limited to 125 databases

(depending on various hardware factors) and a maximum of

five concurrent remote client connections. Since the peer

host is running a client version of the software, both the

host and connected users can perform data entry and

development tasks in the files, depending on their access

privileges.

To configure peer-to-peer sharing, open the FileMaker

Network Settings dialog, as shown in Figure 39-4. This dialog

can be opened using any of these methods:

Select the File > Sharing > Share with FileMaker Clients

menu item.

Click on the Sharing button in the toolbar and choose

the Share with FileMaker Clients option.

Run a script using the Open Sharing script step.

Figure 39-4. The FileMaker Network Settings dialog for configuring peer-to-

peer sharing

The following controls are available on the FileMaker

Network Settings dialog:

1. Network Sharing — These radio buttons are used to

turn the FileMaker application’s peer-to-peer sharing

on or off.

2. Currently open files — This area lists all the files

open with the user’s copy of FileMaker. Select a file

to configure its access settings in the adjacent

panel.

3. Network access to file — This area contains the

following radio buttons that control which, if any,

users can connect to the selected file remotely:

All Users — Choose this option to allow any user

to connect to the file. The user will still be

required to enter a valid username and

password if security is enabled on that

database.

Specify users by privilege set — Choose this

option to select the privilege set(s) to which a

username and password must belong to

connect to the file. When first selected, a dialog

will open with a list of available privilege sets. It

can be reopened later by clicking the adjacent

Specify button.

No users — Choose this option to deny all

access to the selected file, that is, the file will

not be shared.

4. Don't display in Launch Center — Enabling this

check box will cause the selected shared file to not

be publicly displayed in the Launch Center for

remote users. This means that any user will need to

remote users. This means that any user will need to

know the name and address of the file to access it

or can only access it indirectly by opening another

database containing a relationship that causes the

file to open automatically.

5. Send Message — This button opens a dialog

allowing a message to be entered and sent to all

remote users of the selected database. This is

helpful in the event the host needs to close a file

and warn users who are actively connected.

Once the database is configured, click OK to save the

changes. From then on, anytime the user opens the

database on their local computer, it will be available to

remote users across the network.

Using a FileMaker Server

FileMaker Server is a fast, reliable, and scalable server

software package that can securely share database files

across a network. The server provides many powerful

features and benefits including:

Reliable, full-time availability of databases to users of

any of the FileMaker product line running on macOS,

Windows, or iOS.

Multiple, flexible licensing options that can be mixed

and matched to suit the needs of your individual team

members.

Share databases on the Web without web programming

using FileMaker WebDirect or use Custom Web

Publishing to create data-driven websites with PHP or

XML.

Use ODBC (open database connectivity) and JDBC (java

database connectivity) to read from and write to hosted

databases with up to 50 simultaneous remote

connections.

Robust scalability without user limits except those

imposed by the hardware, operating system, or

licensing program.

Monitor and manage the server locally or remotely using

either the Admin Console through the web interface or

the fmsadmin command line.

Automate administration tasks:

Backups can run automatically, even when data is

being accessed by users.

Schedule database scripts and server scripts to

automatically perform routine and repetitive

functionality.

Database scripts can offload tasks from a user’s

computer to the server using the Perform Script On

Server step (Chapter 34) to save processing time and

allow users increased performance and efficiency.

Understanding Client License Options and

Limitations

FileMaker offers three different options for how users

connect to a FileMaker Server. These options may seem

unnecessarily complex at first, however, they are designed

to offer flexibility based on how individual team members

access the server and can help to avoid unnecessary costs

associated with a traditional approach.

The three options, which can be used in any combination,

are:

Legacy license

User connection license

Non-licensed

Legacy License

The legacy license is a traditional, computer-centric option

where a copy of the client application is purchased for each

computer upon which it will be installed. This license type

applies only to copies of FileMaker Pro and FileMaker Pro

Advanced.

Once purchased and installed, the software can be used

to work on databases locally or to connect to databases

hosted on a server. When connecting to a FileMaker Server,

the number of legacy connections is theoretically unlimited,

except for any limitations imposed by hardware

specifications, database design, or the operating system of

the host computer. However, this has only been officially

tested up to 250 connections.

This license type is best suited for users who may work

with databases locally outside of an office network without

access to a server or for those who just prefer the traditional

licensing model. However, using the legacy license, a user

might end up purchasing multiple licenses if they typically

divide the work between an office workstation, a laptop, and

a home computer. Each of these computers would require

an individual license.

For more information about legacy licensing or to make a

purchase, visit the FileMaker store:

http://store.filemaker.com/legacy .

User Connection License

The user connection license is a new, more user-centric

option, in which a FileMaker Server is required and special

licenses are purchased for each concurrent user connection.

FileMaker calls this approach FileMaker Licensing for Teams

http://store.filemaker.com/legacy

and offers it as a simple way for teams of five or more

people to license software.

Using this option, each user requires a user connection

license and can then freely connect to hosted databases

using any software including FileMaker Go, FileMaker

WebDirect, or FileMaker Pro (for User Connections) license.

All this software is “free” and can be installed on all the

users’ devices since it requires a connection license on the

server to access a hosted database or, in the case of the

desktop application, to run locally. The user software can be

installed on more computers than the number of user

connection licenses purchased; however, the number of

concurrent users cannot exceed the number of licenses

purchased.

FileMaker Server includes one user connection license for

testing purposes. FileMaker limits the number of user

connections purchasable on their web store to 100.

However, additional licenses can be purchased by

contacting a sales representative.

Copies of the client desktop applications purchased

under the legacy license can be used in conjunction with

user connections and do not count toward the available user

connections on the server.

For more information about legacy licensing or to make a

purchase, contact a sale representative or visit the

FileMaker store: http://store.filemaker.com/teams .

Note When using more than seven concurrent

WebDirect users, FileMaker recommends a second

machine for web publishing, separate from the FileMaker

Server. Also, the RAM and CPU requirements for the web

server increase with each block of additional users. See

“Recommended Hardware Configurations for FileMaker

WebDirect” available at

http://help.filemaker.com/app/answers/detail/a_id/15663 .

http://store.filemaker.com/teams
http://help.filemaker.com/app/answers/detail/a_id/15663

Non-Licensed Connections

When creating your own client-side connections, there are

no licensing requirements besides the purchase of a

FileMaker Server.

Custom Web Publishing has a theoretical limit of 2000

concurrent connections but has only been officially tested to

200. ODBC/JDBC clients are theoretically unlimited, but have

been tested to 50 concurrent connections and may be

limited by hardware and operating system.

Exploring FileMaker Server Basics

The FileMaker Server software is far too complex to cover

thoroughly. However, since databases are usually shared

using the product, it is worth reviewing some basics, such

as:

Optimizing for server performance

Installing the server software

Defining installed resources

Deploying a server

Accessing the admin console

Exploring the admin console

Uploading files to the server

Opening and closing files

Restarting a FileMaker Server

Using fmsadmin in the command-line interface

Note For more detailed information than the basics

described in this section, consult the FileMaker Server

product support section located at:

https://www.filemaker.com/support/product/documentatio

n.html .

Optimizing for Server Performance

There are several recommendations for the host computer

that may improve the performance of a FileMaker Server

including:

Use the most powerful computer you can afford with a

fast processor and plenty of RAM. Also, a modern, solid

state drive can greatly improve the read/write speeds.

Connect the computer to your network with a wired,

high speed, dedicated connection.

Assign a static IP address to the server computer if

possible.

To allow for the high levels of processor, hard disk, and

network capacity, the software should be installed on a

dedicated server computer used exclusively for hosting

databases. It is strongly recommended that it not be

installed on a user’s primary workstation or any other

type of server including file, email, or Web.

To avoid corruption, the FileMaker Server folder should

not be backed up with operating system or third-party

backup software, including the macOS Time Machine.

Instead, use FileMaker Server’s built-in scheduled

backup feature, ideally to a separate hard drive.

Disable all screen savers and energy-saving hibernation

or sleep features. Instead, turning off or diming the

monitor is fine.

Either turn off indexing services such as the macOS

Spotlight feature or exclude the entire FileMaker Server

folder.

https://www.filemaker.com/support/product/documentation.html

Exclude the entire FileMaker Server folder from anti-

virus scans.

Installing the Software

FileMaker Server is installed in much the same way as a

version of the desktop application. On macOS, this involves

open a standard installer disk image file and running the

installer (Chapter 2, “Installing and Launching FileMaker

Pro”). Before installing, it is recommended that you disable

anti-virus scanning.

The installer has the following three installation options:

Single Machine — use this option for most installations;

all the server components will be installed on one

master computer.

Multiple Machine — use this option to deploy server

components across multiple machines to improve

overall performance in environments where the server

will be used frequently by clients with WebDirect, XML,

or PHP.

Uninstall — Use this option to remove all FileMaker

Server resources. A computer can have only one version

of the server software installed at a given time so you

must uninstall past versions before installing a new one.

This process will remove server resources only and not

any of your databases.

Defining Installed Resources

FileMaker Server isn’t a traditional application and will not

appear in your /Applications folder. Instead, the following

resources will be installed:

Database Server — This software hosts the databases,

shares them with FileMaker Pro and FileMaker Go clients,

and publishes them on the Web.

Web Publishing Engine — This software handles the

Custom Web Publishing and WebDirect services by

managing traffic between the Web Server and the

Database Server.

Web Server — In macOS, the server uses its own copy of

the Apache web server, which is automatically installed

and enabled. In Windows, the Internet Information

Services is enabled during installation and used as the

web server.

PHP Engine — This software is used by Custom Web

Publishing with PHP to route calls for the FileMaker API

to the Web Publishing Engine.

Admin Console — This software runs in a web browser

on the server or any client computer and is used to

configure and administer the server.

Command-Line Interface Executable — The fmsadmin

commands are used to administer the FileMaker Server

through a command-line interface (described later in

this chapter).

User Account — A user account under which FileMaker

Server will run must be specified. The default choice on

macOS is a new fmserver user created by the installer;

on Windows, the Local System. However, you can

specify a custom account to use instead if it provides

adequate access to the computer services.

User Group — A new user group called fmsadmin is

created and must be assigned to databases to allow

them to be hosted by the server.

Deploying a Server

After the installation is complete, you have the option to

open the Deployment Assistant, a seven-step dialog that will

walk you through entering basic information about the

deployment , including:

Entering a user name, password, and PIN for accessing

the admin console.

Entering a server name, description, and owner

information.

Choosing to enable ODBC/JDBC and Web Publishing.

Once finished, the server will be configured and the

Admin Console will be opened.

Accessing the Admin Console

The Admin Console is used to administer the server and is

accessible through a web browser from the server computer

and any other computer with access to it from across the

network.

Note If you opted for it during the install process, a

.webloc file containing a bookmark to the local host will

be found on the server computer’s desktop.

To access the console from the server computer, open a web

browser and enter:

http://localhost:16001/admin-console

To access the console from another computer, open a

web browser and enter either one:

https://<ServerAddress>:16000/admin-console

https://<ServerAddress>/admin-console

For example, if the server is running on a computer with

an address of 10.0.1.20, it can be accessed with one of

these addresses:

https://10.0.1.20:16000/admin-console

https://10.0.1.20/admin-console

In either case, this should open a login page, as shown in

Figure 39-5.

Figure 39-5. The FileMaker Server login page

Enter the administrator name and password you defined

during deployment to log in and access the Admin Console.

Exploring the Admin Console

The Admin Console organizes server administration controls

in seven screens, each accessible in a list on the left side of

the screen:

Status — Contains a summary of the server information,

status, logs, and a control to turn the server on or off.

Activity — Contains two tabs:

Databases — Shows a list of all installed databases

and their status. Click on a database to see the

clients actively connected. Also contains controls to

take actions on a database such as open, close,

pause, resume, etc.

Clients — Shows a list of all active clients. Click on a

client to see a list of databases in use.

Schedules — Contains a list of all schedules and controls

for managing them.

Statistics — Contains information about server usage

and client activity. Includes a graph with your choice of

eleven different data points.

Log Viewer — Contains a detailed log of events with

filter controls.

General Settings — Contains various settings divided

into seven tabs:

Server Information

Email Notifications

Admin Console

Startup

ODBC/JDBC

Administrator Groups

Connections

Database Server — Contains various server settings

divided into seven tabs:

FileMaker Clients

Databases

Security

Folders

Logging

Server Plug-Ins

Directory Services

Uploading Files to the Server

There are two methods available for adding a database to

the server:

Moving the file into the databases folder

Uploading a file from a client computer

Note To avoid a security risk, FileMaker requires that a

database file has an account and password assigned

before uploading to a server.

Moving the File into the Databases Folder

The traditional method of installing files onto a FileMaker

Server is to copy them to the host computer and then move

them into the /Data/Databases/ subfolder of the FileMaker

Server folder. If you chose the default installation location,

this folder will be in one of two locations depending on the

operating system.

On macOS, the folder can be found at:

/Library/FileMaker Server/Data/Databases

On Windows, the folder can be found at:

[drive]:\Program Files\FileMaker\FileMaker

Server\Data\Databases\

To install files, copy them into the folder. You can create

subfolders if desired and place files within them. It is

important that the files be assigned to the fmserver user

and fmsadmin group.

Caution Never open files located in the Databases

folder directly with a client version of the software by

double-clicking them or choosing them in an Open File

dialog, especially when they are being actively hosted on

the network. To be safe, files should first be closed and

then removed from the folder before any direct access

with a client version of FileMaker.

Uploading a File from a Client Computer

An open FileMaker file can be uploaded to a server from

anywhere on the network from within FileMaker Pro or

FileMaker Pro Advanced.

Selecting and Signing into a Server

To begin, open the Upload to FileMaker Server dialog, as

shown in Figure 39-6. This dialog can be opened by either of

the following two methods:

Figure 39-6. The Upload to Filemaker Server dialog is used to copy an open

database to a FileMaker Server

Select the Sharing > Upload to FileMaker Server menu

item.

Click on the Sharing icon in the toolbar of a database

window and choose Upload to FileMaker Server from the

menu.

If you have a database file open, a dialog will inform you

that it will be closed before continuing.

This dialog allows you to select a FileMaker Server and

sign on as an administrator using the following controls:

1. Hosts — This pop-up menu contains the following

three options for selecting a host category:

Local Hosts — Choose this option to

automatically search your local network for

FileMaker Servers.

Favorite Hosts — Choose this option to display a

list of FileMaker Servers that you have entered

and made favorites in the Launch Center

(Chapter 2).

Hosts Listed by LDAP — Choose this option to

display a list of FileMaker Servers from a

lightweight directory access protocol server.

2. List — This area lists all the available FileMaker

Servers from the selected host category.

3. Host Address — This area will display the selected

or manually entered FileMaker Server’s address.

4. Access Settings — Enter the Name and Password for

the selected server’s admin console.

5. Next — Click this button to continue to the next

step.

Selecting Files to Upload

The second panel of the Upload to FileMaker Server dialog,

shown in Figure 39-7, is used to specify the database file(s)

to upload and other options.

Figure 39-7. The second panel of the Upload to FileMaker Server dialog allows

specification of which database file(s) to upload

This dialog contains the following controls:

1. Databases — This area contains a list of databases

to upload. If this process was started from an open

database, it will automatically appear in the list.

The check box indicates the file(s) that will be

uploaded and the status indicates any issues.

2. Browse — This button will open a standard Select

File dialog allowing the selection of one or more

database files to add to the list.

3. Change — This button will open a Change Folder

dialog, shown in Figure 39-8, in which you can

select or create a database subfolder for the

uploaded files.

Figure 39-8. The Change Folder dialog is used to select or create a

database subfolder for the files being uploaded to the server

4. Automatically open databases — Enable this check

box to automatically open and host the databases

on the server after the upload.

5. Upload — Click this button to continue the process

of uploading the selected files into the desired

folder on the server.

Managing Database Files

The Admin Console provides many different tools for

interacting with databases. See Figure 39-9.

Figure 39-9. The Manage Database menu of the Database tab of the Activity

panel of the console

To access these tools, log into the Admin Console and

perform the following actions:

1. Click Activity in the panel on the left side of the

window.

2. Click on the Databases tab.

3. Select one or more databases or folders.

4. Click on the folder icon on the upper right of the

Databases tab to reveal a drop-down menu.

The following commands are available in this menu:

Open — This command will open and begin hosting the

selected database file(s).

Open All — This command will open and begin hosting

all files regardless of the selection.

Close — This command will close and cease hosting the

selected database file(s).

Close All — This command will close and cease hosting

all files regardless of the selection.

Verify — This command will close, verify, and reopen the

selected database file(s).

Verify All — This command will close, verify, and reopen

all files regardless of the selection.

Download Database — This command will download a

copy of the selected closed database file(s) to the local

hard drive. In macOS, this feature will not work if pop-up

windows are blocked by the browser preferences!

Clear the Encryption Passwords — This command will

remove the encryption password from the selected

database file(s).

Clear All Encryption Passwords — This command will

remove encryption passwords from all databases

regardless of the selection.

Removing Files from the Server

Before moving files out of the FileMaker Server folder, it is

important to first close them through the Admin Console to

avoid file corruption. To help avoid errors, FileMaker has a

Remove command. This command is the only option

available in the menu accessed through the trash icon,

shown in Figure 39-10. The menu item is only enabled when

one or more closed database files are selected.

Figure 39-10. The Remove option is used to safely remove files from the list of

available databases and place them into a subfolder of the Databases folder for

moving and copying elsewhere

Once selected, the console will present a dialog

confirming that you want to continue moving the file out of

the server. If you click OK in this dialog, the file(s) will

disappear from the list of available databases. The file(s)

will be placed inside of a new Removed_by_FMS subfolder

within the Databases folder, which will not be visible from

within the Console. It is now safe to move or copy the file(s)

out to another directory on your server or elsewhere on the

network.

Restarting a FileMaker Server

Understanding the proper shutdown procedure is critical to

avoid file corruption. When the server is actively hosting

files, it may be communicating with clients, holding recent

changes in cache, or be in the middle of writing those

changes to disk. Therefore, it is vitally important that the

FileMaker Server is properly shut down prior to any

hardware restart or shutdown.

Unsafe Methods of Shutting Down a Server

The following methods should be avoided since they can

cause major file corruption:

Using the operating system’s Shut Down or Restart

commands.

In macOS, using the Activity Monitor app to Force Quit

the server process (fmserverd).

A forced hardware reboot by any of the following

methods:

On Windows, pressing the power on/off button.

On macOS, pressing and holding the power button.

Running the server without a UPS (uninterruptable

power supply) during a power outage resulting in an

abrupt hardware shutdown.

If any of these actions occur, it will most likely require a

Recover process that may still result in some loss of data. In

a worst-case scenario, the file might be irreparable.

Safe Methods of Shutting Down a Server

In addition to using a UPS device that can power the

computer for an adequate length of time to allow a proper

manual or scripted shutdown during a power outage, the

following methods are considered safe to prepare a server

for restart or shutdown:

Logging into the Admin Console and shutting off the

database server, with or without first closing all

database files.

On macOS, using the Activity Monitor app to Quit the

server process (fmserverd).

On Windows, using the Administrative Tools > Services

app to Restart or Stop the FileMaker Server service.

Note Back in FileMaker Server 5.5, there was a problem

that would corrupt files if you shut down the server

software without first closing all databases. Due to this, as

a precaution, some developers still follow that procedure.

Using fmsadmin in the Command-Line

Interface

FileMaker Server installs the fmsadmin tool for administering

the FileMaker Server through the command-line interface

using the Terminal app (macOS) or the command prompt

(Windows). These commands can be used in scripts or batch

files.

Locating the fmsadmin Executable

When the server is installed in the default location, the

executable fmsadmin is in the following platform-specific

folder:

macOS: /Library/FileMaker Server/Database

Server/bin/fmsadmin

macOS (symbolic link): /usr/bin/fmsadmin

Windows: [drive]:\Program Files\FileMaker\FileMaker

Server\Database Server\fmsadmin.exe

Formatting an fmsadmin Command

The formula for an fmsadmin command is:

fmsadmin <command> <options>

For example, to get a list of all hosted databases:

fmsadmin list files

Certain functions require authentication with the admin

username and password. These prompts will immediately

follow once a command is entered. Optionally, you can

include the administrator name and password as follows:

fmsadmin <command> -u <user> -p <password>

For example, to get a list of all hosted databases in a

single command line, try:

fmsadmin list files –u Admin –p J56TF3

Available fmsadmin Commands

The fmsadmin tool contains the following twenty-three

commands, each with various options available:

autorestart — Get or set the auto-restart feature of the

adminserver:

backup — Back up one database or every database in a

folder.

clearkey — Remove saved database encryption

passwords.

close — Close one or more databases.

certificate — Manage SSL certificates.

disable — Disable schedules or statistics logging.

disconnect — Disconnect one or more clients.

enable — Enable schedules or statistics logging.

help — Get help regarding a specific command or get a

list of available commands.

list — List clients, databases, plug-ins, or schedules.

open — Open one or more databases.

pause — Temporarily stop the database server.

remove — Move databases out of hosted folder or

remove empty folder.

resetpw — Reset the admin user password.

restart — Restart the server, adminserver, FMSE, WPE,

or XDBC process.

resume — End a temporary pause, making databases

available again.

run — Run a schedule.

send — Send a message to connected users.

standby — Manage standby server connections, roles,

and updates.

start — Start the server, adminserver, FMSE, WPE, or

XDBC process.

status — Get the status of clients or databases.

stop — Stop the server, adminserver, FMSE, WPE, or

XDBC process.

verify — Check the consistency of databases.

Getting Detailed fmsadmin Command Help

To get additional information about a specific fmsadmin

command, use the help command followed by the name of

the desired command:

fmsadmin help <commandName>

For example, to explore the close command, type:

fmsadmin help close

The results will include a description of the command and

details about the available options, as shown in Figure 39-

11.

Figure 39-11. The integrated help guide for the Close function

Hosting Databases with FileMaker Cloud

FileMaker Cloud is a new service that provide reliable access

to databases from anywhere in the world. Databases are

managed by the FileMaker Cloud web service hosted

through Amazon Web Services (AWS), which essentially

places a special version of FileMaker Server on a LINUX

server in the cloud.

Some important differences between FileMaker Server

and FileMaker Cloud:

There are no hardware or energy costs associated with

the cloud services. However, you must have an active

AWS account. The FileMaker Cloud service will ask you

for that information during installation.

All interactions with the server must be performed

through the AWS Management Console and the

FileMaker Cloud Admin Console. There is no way to

access the folder structure directly.

Because there is no way to access the folder directory

on the cloud server, the only method available to upload

databases to the server is using the Upload to FileMaker

Server option accessible in the Sharing menu or by

clicking the Sharing tool in the toolbar of a database

window.

To protect your information, all databases must be

encrypted when uploaded to the cloud. During the

upload process, you will be prompted to enter an

encryption password for any files that are not already

encrypted.

When enabled, the FileMaker Cloud service will perform

various maintenance tasks such as daily backups,

software upgrades, automatic restarts during non-

business hours, and other maintenance tasks.

Since AWS manages snapshot backups of your files,

there is no script schedule interface although this has

been promised in a future release.

AWS is responsible for the physical security of the server

hardware.

ODBC and JDBC are both supported and drivers are

provided by the service.

Custom Web Publishing with PHP and XML is not

supported.

Note For help setting up a FileMaker Cloud server,

check out this detailed, step-by-step guide on the

beeswax.net blog: https://goo.gl/8tBKBN .

Connecting to the Cloud Server

Once FileMaker Cloud is installed on your AWS account, you

can connect to the Admin Console or access databases

https://goo.gl/8tBKBN

using the following URL formula:

https://<HostName>.fmi.filemaker-cloud.com

For example, if the host name you assigned the server is

widgetdatabases, then the URL would be:

https://widgetdatabases.fmi.filemaker-cloud.com

Accessing Databases from Outside

FileMaker

There are a few interesting methods available to access

databases from outside of FileMaker. These include:

Sharing bookmarks with snapshot links

Using the FileMaker URL

Using AppleScript to automate FileMaker

Note These methods of access don’t necessarily

require a FileMaker Server to work and can work with

databases open locally on a user’s computer. However, to

share these with other users, the databases must be

shared either peer to peer or hosted on a server.

Sharing Bookmarks with Snapshot Links

A snapshot link is an XML file that stores information about a

record or a found set of records and is used to re-create a

previously existing found set or single record. They act kind

of like a bookmark to a found set of records. Once saved,

double-clicking on the snapshot link file will automatically

open the same database, navigate to the same the layout,

and restore the found set of records, thereby re-creating the

same context a user was viewing at the time they saved it.

Snapshot links are a great way to exchange lists of records

with other users without much effort. They can be emailed

https://widgetdatabases.fmi.filemaker-cloud.com/

to and used by anyone who has access to the database

across the network.

To generate a snapshot link, open a database and

establish the desired found set. Then select the File >

Save/Send Records As > Snapshot Link menu to open the

Save Records As Snapshot Link dialog, as shown in Figure

39-12.

Figure 39-12. The dialog used to specify the location and settings when saving

a snapshot link

The following options are available in the dialog:

1. Save As — Enter the name for the snapshot link file.

The .fmpsl extension will be automatically

appended to the name you select.

2. Where — Select the folder location in which to save

the file, either from the pop-up menu of standard

folders or click to expand the dialog to navigate to

another location.

3. Save — Select a save option of Records being

browsed or Current record.

4. After saving — Enable this check box to

automatically create an email with the snapshot link

file as an attachment.

Using the FileMaker URL

The FileMaker url, an Internet protocol that is registered on

your computer when you install FileMaker Pro, allows you to

open a database and run scripts using a URL .

Caution A user account must have explicit permission

to use this feature. This is granted by the fmurlscript

extended privilege (Chapter 40).

The URL can be used in many ways, including:

Manually typed into a web browser — When typed into

the macOS Safari browsers, the user will be presented a

dialog confirming permission for the browser to open

the database.

Included as an href in a web page — Using the href tag

to create a link with the FMP URL will allow a user to

click to open the database. The web page can be

accessed through a browser or from within FileMaker

using a web viewer.

Used with the Open URL script step — Embed the URL

within a FileMaker script to automate access and allow

dynamic triggering of other scripts without hard-coding

script references.

Used in external applications and scripts —

Programming languages such as AppleScript can open

databases and run scripts using the FMP protocol.

Formatting a Basic FMP URL

At minimum, the URL must include the FMP prefix and the

name of the database, following this formula:

FMP://<databaseName>.fmp12

For example, to open a Contacts database, the address

would be formatted like this:

FMP://Contacts.fmp12

Extensions Are Optional

The file extension can be included but is not required since

FileMaker will only attempt to open databases with an

extension appropriate to its capabilities.

Percent Encoding Required in Most Cases

It is important to remember that that, except when using

the Open URL script step, all URLs must be properly percent

encoded. For example, any spaces must be replaced with

%20, as shown here:

FMP://Learn%20FileMaker.fmp12

Note If %20 doesn’t work, try using a plus sign instead.

Including Optional Components

The FMP formula can be composed with any of the following

optional components:

Server address

Account name and password

Script name, parameter, and variables

Including a Server Address

When the URL includes only a database name, FileMaker will

look for an open database on the local computer to activate.

If the database named isn’t found, it will silently fail.

However, the real intention of the FMP protocol is to allow

systems to dynamically access databases hosted on a

network server. To do so, the address to a FileMaker Server

host computer must be specified. This expands the formula

to include both an address and a database name as shown

here:

FMP://<serverAddress>/<databaseName>

For example, if the Learn FileMaker database were hosted

on a server, the FMP URL might be:

FMP://10.1.0.10/Contacts.fmp12

The address portion of the URL can be an IPv4 address

(as shown above) or it can be an IPv6 address or DNS name

as shown in these example:

FMP://[2001:0db8:0a0b:12f0:0000:0000:0000:0001]/Cont

acts.fmp12

FMP://filemaker.local/Contacts.fmp12

Including Access Credentials

Since most networked databases will require an account

name and password to gain access, unless these are

specified in the URL, FileMaker will present a dialog

requesting this information before opening the file. This may

be fine for some circumstances where humans are

accessing the file using the FMP protocol. However, in some

cases, it might be an unnecessary annoyance. When used

with a fully automated system, it would become

catastrophic.

To completely bypass the login dialog, an account name

and password can be added as colon delimited values

ahead of the address separated by an @ sign, as shown

here:

FMP://<account>:

<password>@<serverAddress>/<databaseName>.fmp12

For example, if the account name is “admin” and the

password is “58Jt-234,” then the following will open the

database without a password prompt:

FMP://admin:58Jt-234@10.1.0.10/Contacts.fmp12

If the account name specified doesn’t exist or the

password is incorrect, FileMaker will still display the login

dialog and wait for accurate credentials to be entered before

proceeding.

Note If a database is already open on the computer,

FileMaker will ignore the credentials specified in the URL

and activate the database.

Including a Script Name

Opening a database isn’t the only function of the URL; it can

trigger a script within the database by adding a script name

after the database name with a question mark between

them:

FMP://<serverAddress>/<databaseName>?

<scriptName>

For example, the following URL will run a script named

Find All Active in a Contacts database on the specified host

computer:

FMP://10.1.0.10/Contacts.fmp12?Find%20All%20Active

Note The script will be executed with the privileges and

limitations of the account used to open the database,

either through the URL or by a user.

Adding a Script Parameter

If the script accepts parameters, you can include an input

value in the URL by adding it after the script name as shown

in this formula:

FMP://<serverAddress>/<databaseName>?

<scriptName>¶m=<scriptParameter>

For example, the following URL will run a script named

Find All in a Contacts database on the specified host

computer and include a qualifying parameter of “Active”:

FMP://10.1.0.10/Contacts.fmp12?

Find%20All¶m=Active

Adding Script Variables

The URL can even initialize local variables within the script

to provide additional values by adding an ampersand, the

name, and value of the variables as shown here:

FMP://<serverAddress>/<database>?<script>¶m=

<Parameter>&<$variable>=<value>

This example shows how to initialize a variable specifying

a state name for the find script:

FMP://10.1.0.10/Contacts.fmp12?

Find%20All¶m=Active&$State=Pennsylvania

Using AppleScript to Automate FileMaker

Caution A user account must have explicit permission

to use this feature. This is granted by the

fmextscriptaccess extended privilege (Chapter 40).

AppleScript is an Open Scripting Architecture compliant

command language that can communicate with and control

Macintosh applications. Back in 1994 when the language

was first introduced as a part of the Macintosh System 7.5,

one of the first scriptable applications was FileMaker Pro.

Since then, support for the language has steadily evovled

and continues to provide a great method for accessing and

manipulating data with scripts from outside of FileMaker.

Defining the Tell FileMaker Statement

AppleScripts are written in the Script Editor application that

is in the /Applications/Utilities/ folder. Commands are sent to

an application by using a Tell statement that names the

application and encloses the object references and

command instructions. For FileMaker, the statement formula

would be:

tell application "FileMaker Pro"

 <commands>

end tell

Opening FileMaker’s Script Dictionary

As with any application, FileMaker’s script dictionary can be

opened by either of the following methods:

Drag and Drop the application onto the Script Editor

application icon

Open the Script Editor and select the File > Open

Dictionary menu item, which opens a dialog listing

every application installed on the computer.

This will open a window displaying the dictionary of

objects and commands available for controlling the

application, as shown in Figure 39-13.

Figure 39-13. The FileMaker Pro Advanced dictionary window contains

definitions of all the objects and commands available for controlling the

application with AppleScript

Caution FileMaker’s script commands use three

different words to describe a database window: database,

document, and window. While somewhat confusing, each

of these can sometimes be used interchangeably but may

have a slightly different effect.

Scripting Basic Tasks

An entire book could be written containing details and

examples of all the various commands that can be sent to

FileMaker with AppleScript. In this section, we cover the

following basic tasks to provide some examples:

Opening a database

Activating an open database

Changing layouts

Performing a find

Counting record

Note For more general information on the AppleScript

language, see my book AppleScript: Developer Reference

(2010, Wiley) or visit the language guide on Apple’s

website at: https://goo.gl/i70lnx .

Opening a Database

There are several methods available to open a database

using AppleScript, including:

From a local directory

From a server host using the FMP protocol

From a Local Directory

Opening a database stored within the ∼/User folder on

macOS can be achieved using the open file command:

set pathToDatabase to "Macintosh

HD:Users:shannonmiller:Learn FileMaker.fmp12"

set textPassword to "58Jt-234"

set textAccount to "Admin"

tell application "FileMaker Pro"

 open file (pathToDatabase) with passwords

textPassword for Accounts textAccount

end tell

From a Server Using the FMP Protocol

To open a database hosted on a FileMaker Server, the

getURL command will accept a FMP URL described earlier in

this section. For example:

https://goo.gl/i70lnx

tell application "FileMaker Pro"

 getURL "fmp://Admin:58Jt-

234@10.0.1.20/Learn%20FileMaker.fmp12”

end tell

Tip The beginning of this tip is trying to open a URL.

Seems like a coding error???

Activating an Open Database

To activate FileMaker and bring an open database to the

front of the document stack, this can be done by checking

to see if the document exists and then using the show

document command:

set nameDatabase to "Learn FileMaker"

tell application "FileMaker Pro"

 if (document nameDatabase exists) = true then

 show document nameDatabase

end tell

Changing Layouts

To change the current layout in the window of an open

database, use the show layout command. This example will

switch to the Contact layout in an open Learn FileMaker

database:

set nameDatabase to "Learn FileMaker"

set nameLayout to "Contact"

tell application "FileMaker Pro"

 tell document nameDatabase to show layout

nameLayout

end tell

Performing a Find

An AppleScript can prompt FileMaker to search for records

based on a variety of criteria.

Finding All Records

To perform the equivalent of FileMaker’s Find All command

with a script, use the show every record command within a

tell database statement, as shown here:

set nameDatabase to "Learn FileMaker"

set nameTable to "Contact"

tell application "FileMaker Pro"

 tell database nameDatabase

 tell table nameTable

 show every record

 end tell

 end tell

end tell

Finding Records Based on a Field Value

To search based on a specific value within one field, add a

whose clause to the show every record command:

set nameDatabase to "Learn FileMaker"

set nameTable to "Contact"

set nameField to "Contact Address State"

set textToFind to "NY"

tell application "FileMaker Pro"

 tell database nameDatabase

 tell table nameTable

 show (every record whose cell nameField

of table nameTable contains textToFind)

 end tell

 end tell

end tell

The whose clause can use various operators for matching

data in the field. These include:

contains

does not contain

is equal to

is not equal to

Further, the clauses can be grouped with others to form

compound search criteria. For example:

show (every record

 whose cell nameField1 of table field1 contains

value1 or

 whose cell nameField1 of table field1 is equal to

value2 and

 whose cell nameField1 of table field3 is not equal to

value3

)

Counting Records

An AppleScript can count the number of records in the found

set or the total record count in a table.

Counting Records in the Found Set

To count the number of records in the found set, use a tell

window statement to count the records:

set nameDatabase to "Learn FileMaker"

set nameTable to "Contact"

tell application "FileMaker Pro"

 tell window nameDatabase to return the number of

every record

end tell

In this case, since we are getting the number of records

contained within the context of a window, we don’t have to

specify the table name.

Counting Every Record in a Table

To count the number of records in the found set, use a tell

database statement to count the records.

set nameDatabase to "Learn FileMaker"

set nameTable to "Contact"

tell application "FileMaker Pro"

 tell database nameDatabase to the number of every

record of table nameTable

end tell

In this case, since we are accessing the count of records

in a table, we must specify the table name and send the

command to the database instead of the window. The code

will access the table directly without regard to context, so

the the current window doesn’t have to be displaying a

layout for that table.

Summary

In this chapter, we discussed the basics of sharing

databases on a network and described a few methods of

accessing shared databases from outside of FileMaker.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-4842-

2863-0_40

40. Securing Database Access

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

FileMaker database files can be secured by defining accounts

that limit who can gain access and the actions they can

perform.

In this chapter, we review the basics of configuring database

security settings, covering:

Exploring the benefits of security

Defining default security

Exploring the manage security dialog

Creating accounts

Exploring privilege sets

Defining extended privileges

Controlling file access

Exploring the Benefits of Security

There are many good reasons to secure your databases. These

include:

Protecting data from access by unauthorized users.

Restricting access to data and functions depending on each

authorized user’s needs based on their job requirements.

Limiting access to developer functions to only trusted users

who possess the skills necessary to make changes to the

data structure, layouts, and script workspace.

Files stored on shared workstations or hosted on a network

should be secured to avoid an unauthorized user from freely

making changes to the file’s data or structure. However, even

files limited to single-user local use should be secured as added

protection against theft or illicit access when the computer is

unattended.

Defining Default Security

Technically, every database must have a minimum of two

security accounts, even if they are not actively used: a guest

account and at least one account configured to allow full

developer access to the file.

To satisfy this requirement, every new database created by

FileMaker automatically has the following two accounts

configured:

[Guest] — Disabled by default, this account can allow a user

to enter the file without entering a user name or password.

This account cannot be deleted but can be left disabled.

Admin — Enabled by default, this account has no password

entered. However, since the Log in using setting of the File

Options dialog (Chapter 6, “Database File Options”) is

default configured to automatically enter this account when

a file is opened, it creates the illusion that new files have no

access settings. In fact, new files are bypassing the login

screen by logging in as a full access user named Admin with

no password.

Caution When a file is configured to auto-enter a Full

Access account or if Full Access accounts don’t require a

password, FileMaker Server will automatically reject and

refuse to host the file due to the vunerability. If a currently

hosted file is modified to auto-enter a Full Access acount, a

warning will appear informing you that the file will not be re-

hosted after the next time it is closed by the server.

Exploring the Security Dialog

To add security settings to a database file, select the File >

Manage > Security menu. When performed for the first time in

a file or when the same situation is subsequently detected, a

dialog will warn that the file has an Full Access account without

a password, which is a major security risk.

Figure 40-1. A dialog warning about the lack of a password on the default full

access account named Admin

Click the Set Password button to divert to the Change

Password dialog to assign a password to the Admin account or

click Ignore to continue to edit security settings without

assigning a password.

Note This dialog will reappear each time you open or close

the security dialog and when you switch modes within the

window.

Exploring the Interface Modes

Security settings are configured within the Manage Security

dialog. This dialog has two optional modes:

Basic setup

Detailed setup

The default for a new file will be the basic option. However,

the chosen mode is “sticky” so each subsequent opening of the

Manage Security dialog for a file will default to whichever mode

was displayed when the dialog was closed.

Exploring the Basic Setup Dialog

The Basic Setup version of the Manage Security dialog , shown

in Figure 40-2, allows the management of accounts with name,

password, and privilege set.

Figure 40-2. The Basic Setup version of the Manage Security dialog

The Basic Setup version of the dialog contains the following

controls:

1. Account List — This area lists all the accounts currently

defined in the file. The check box indicates an active

account. Selecting an account displays editable details

for it in the adjacent area.

2. Account Tools — These three buttons allow the creation,

duplication and deletion of accounts in the list above.

3. Authenticate via — This pop-up menu offers the

following choices for the selected account’s

authentication method:

FileMaker file — This option stores all the account

information within the current database file.

External Server — This option stores only a group

name and privilege set within the database. The

group name refers to an account group created on

the host computer, external to FileMaker. Any user

accounts defined on the host computer that are

members of the group will be able to log into the

database and with the privilege defined in the

assigned set (see “Creating External Accounts”

later in this chapter).

Open Authorization (OAuth) Options — Several

additional options allow files hosted on a FileMaker

Server to be authenticated through a third-party

service over the internet including Amazon, Google,

and Microsoft Azure AD.

4. Local Account Options — For local accounts:

Account Name — The name of the account appears

in the editable text area and can be modified if

desired.

Password — The existence of a password for the

account is indicated here, either as a “no

password” warning or a bullet-obscured password

display. Click the Change button to open the

Change Password dialog.

5. Require password change on next login — If this check

box is enabled, the next time the account is used to

access the file, a dialog will open requiring the user to

access the file, a dialog will open requiring the user to

authenticate with the current password and to enter a

new password.

6. Privilege Set — This pop-up menu lists all the privilege

sets defined in the file. The selected set controls the

functions available to users accessing the database

with the account.

7. Use Detailed Setup — Click this button to toggle the

dialog between basic and detailed mode.

8. Buttons — These buttons will close the dialog:

Cancel — This button will discard all unsaved

changes and close the dialog after a warning

dialog.

OK — This button will save changes and close the

dialog after requiring that the user enter the name

and password of an account that has full access,

proving that they aren’t about to permanently lock

themselves out of the file.

Exploring the Detailed Setup Dialog

The Detailed Setup version of the Manage Security dialog,

shown in Figure 40-3, is the traditional FileMaker security dialog.

This dialog allows the same functions available in basic mode

with the addition of extended privileges and file access settings.

Figure 40-3. The Detailed Setup version of the Manage Security dialog

The dialog is broken down into the following four tabs:

Accounts

Privilege Sets

Extended Privileges

Accounts

Each tab contains the following features:

A list of settings based on the tab.

Buttons to Create, Edit, Duplicate, and Delete items in the

list.

A View by pop-up menu to sort the list by various criteria.

Column heading buttons to click to sort the list.

Double-click an item in the list or select an item and click

Edit to open an Edit Account dialog.

Note The remaining examples in this chapter will be

described using the Detailed Setup mode.

Creating Accounts

FileMaker accounts can be created to authenticate locally or

using an external server.

Creating a New Local Account

To get started creating a new local account for full developer

access, open the Manage Security dialog. Click on the click the

Accounts tab and then on the Create button. This will open a

new empty account in the Edit Account dialog, shown in Figure

40-4.

Figure 40-4. The Edit Account dialog

Follow these steps to set up the new account:

1. Account is authenticated via — Select FileMaker File in

the pop-up menu.

2. Account Name — Enter “Developer” as the account

name.

3.

Password — Click the Change button to open the Set

Password dialog, shown in Figure 40-5. Enter a

password in both the New Password and Confirm New

Password text areas. Click the Set Password button to

save the password and return to the Edit Account

dialog.

Figure 40-5. The Set Password dialog

4. Account Status — The new account should default to an

Active status. If not, change it.

5. Privilege Set — This pop-up menu lists all the privilege

sets defined in the file. Since this will be an account for

developers, choose [Full Access].

When finished, click the OK button to save the changes and

close the Edit Account dialog. You should see the new

Developer account listed in the Manage Security dialog. Click

the OK button there to save the security settings. FileMaker will

ask you to enter a full access user name and password to

confirm that you have not forgotten your password.

Caution Make sure that you write your password down as

there is no process to recover a forgotten password.

Once finished, close the file and then reopen it. You should see

a credentials dialog like the one in Figure 40-6.

Figure 40-6. The credentials dialog requesting an account name and password

when opening a file

Type in the account name and password and click OK to

open the file.

Creating a New External Account

When authenticating using an external server, user accounts

and user groups are created on the host FileMaker Server

computer. In the database, external server accounts are created

with the group name and a privilege set. When configured

properly, this allows any user to log into the database using

their user name and password, gaining access to features

based on their group membership.

Creating an External Server Account

To begin, open the Manage Security dialog. Click on the

Accounts tab and then on the Create button. This will open a

new empty account in the Edit Account dialog. Select External

Server from the pop-up menu, enter a Group Name, and select

Privilege Set as shown in Figure 40-7. Then click OK to save the

account settings.

Figure 40-7. The Edit Account dialog when authenticating via an external server

Configuring FileMaker Server for External

Authentication

The database must be hosted on a FileMaker Server that is

configured to allow authentication from both local and external

accounts. To confirm this, follow these steps:

1. Open and sign into the Admin Console (Chapter 39).

2. Click on Database Server in the sidebar.

3. Click on the Security tab.
4. Under the Client Authentication heading, select

FileMaker and external server accounts from the pop-up

menu

menu.

5. Click the Save button and sign out of the Admin

Console.

Creating Groups and Accounts (macOS)

Next you must create groups and user accounts on the

FileMaker Server host computer’s operating system.

Creating a Group

To create a group in macOS Sierra, follow these steps:

1. Open the System Preferences application.

2. Click on the Users & Groups icon.

3. Click the lock icon to make changes. You will be asked to

authenticate with credentials for a user with

administration privileges for the computer.

4. Click the + icon to open the New Account panel and

then select Group from the pop-up menu at the top. This

will change the options in the panel to those shown in

Figure 40-8.

Figure 40-8. The New Account panel of the Users & Groups section of the

System Preference application once Group is selected from the pop-up

menu

5. Enter the name of the group in the test area and click

the Create Group button.

Caution When entering a group name, it is a good idea to

always use lowercase or at least choose a case and stick with

it. Changing the case or the name of a group later may

require some advanced editing of accounts, especially

depending on your version of the macOS operating system.

Creating a User

To create a user account in macOS (Sierra), follow these steps:

1. Open the System Preferences application.

2. Click on the Users & Groups icon.

3. Click the lock icon to make changes. You will be asked to

authenticate with credentials for a user with

administration privileges for the computer.

4. Click the + icon to open the New Account panel and

then select Sharing Only from the pop-up menu at the

top. This will change the options in the panel to those

shown in Figure 40-9.

Figure 40-9. The New Account panel of the Users & Groups section of the

System Preference application once Sharing Only is selected from the pop-

up menu

Note The Sharing Only option will create an

account for the user on the computer without creating

a user folder and is ideal to grant database access. A

regular user account on the computer can be

assigned to a group if desired.

5. Enter the Full Name, Account Name, and Password and

click the Create User button.

Assigning a User to a Group

Once the group and user account is created, select the group

and enable the user membership into the group, as shown in

Figure 40-10.

Figure 40-10. Once a user is assigned membership to the group, they will be able

to log into the database with their user name and password

Exploring Privilege Sets

A privilege set is a collection of permissions for data access,

design, and other features, which can be assigned to one or

more accounts to define a user’s abilities within a database file.

Files come with default privilege sets, but you can create as

many new sets as are needed to define the various types of

access for your projects.

Default Privilege Sets

Every new database will automatically have the following three

permanent, non-editable privilege sets :

[Full Access] — This set contains full access to every

available feature.

[Data Entry Only] — This set contains limited access to

perform tasks associated with data entry, including:

Can create, edit, and delete records in every table.

Limited to viewing layouts and value lists.

Limited to executing scripts.

Can print, export.

Will be disconnected from the server when idle.

Can change their own account password.

Creating Custom Privilege Sets

To get started creating a new privilege set, open the Manage

Security dialog. Click on the Privilege Sets tab and then on the

Create button. This will open a new empty account in the Edit

Privilege Set dialog, shown in Figure 40-11.

Figure 40-11. The Edit Privilege Set dialog

The default configuration of the new set is essentially no

access. You must assign a unique name to the set and explicitly

assign those permissions you want to allow.

Defining Available Permissions

The dialog organizes permissions into the following categories :

Data access and design privileges

Extended privileges

Other privileges

Assigning Data Access and Design Privilege Settings

The data access and design privileges define what actions

accounts assigned the privilege set can perform regarding

access to records, layouts, value lists, and scripts.

Each of these has several options that are applicable to all

entities within the class. Generally, these are open access,

view/execute only, no access. In addition to these, each has an

option to assign custom privileges on a granular level.

Accessing Records

The records access pop-up menu on the Edit Privilege Set dialog

offers the following four options:

Create, edit, and delete in all tables — Users of the privilege

set will have all available record permissions in every table.

Create and edit in all tables — Users of the privilege set will

be limited to creating and editing records in every table, but

the Delete Record function will be completely disabled.

View only in all tables — Users of the privilege set will be

limited to viewing records only while the Create, Duplicate,

and Delete Record functions will be disabled.

All no access — Users of the privilege set will have no

record permissions and be unable to see records in any

table.

Custom privileges — When none of the other options

provide the level of detail required due to the complexity of

the database or the type of user, choose this option to

assign custom privileges.

Assigning Custom Record Privileges

To assign customized record permissions, choose Custom

Privileges from the Records pop-up menu to open the Custom

Record Privileges dialog , shown in Figure 40-12.

Figure 40-12. The Custom Record Privileges dialog allows fine control of

permissions for record access customized per table

Note Remember, the permissions you set in this dialog

affect records for only the privilege set you are currently

editing. Each set can have completely different settings.

The Custom Record Privileges dialog contains the following

controls:

1. Tables — This area lists every table currently defined in

the database with columns for each type of available

action. The column headings allow you to sort the table

list by the values in that column, toggling between

ascending and descending with each click. Select a

table to edit its Set Privileges menus or choose [Any

New Table] to define the default permission for any

tables added to the database in the future.

2. Select All — Click this button to select every table in

the list at once.

3. View — This menu contains the following options for

viewing records in the selected table(s): yes, no, or

limited. This last option opens a Specify Calculation

dialog to control when a record is viewable with a

custom formula.

4. Edit — This menu contains the following options for

editing records in the selected table(s): yes, no, or

limited. This last option opens a Specify Calculation

dialog to control when a record is editable with a

custom formula.

5. Create — This menu contains the following options for

creating records in the selected table(s): yes or no.

Delete — This menu contains the following options for

6.
Delete — This menu contains the following options for

deleting records in the selected table(s): yes, no, or

limited. This last option opens a Specify Calculation

dialog allowing the entry of a custom formula that will

be used to determine when a record can be deleted.

7. Field Access — This menu contains the following

options for field access in the selected table(s): all,

none, or limited. This last option opens a Custom Field

Privileges dialog, shown in Figure 40-13.

Figure 40-13. The Custom Field Privileges dialog is used to control the

privileges of specific fields for a table

Assigning Custom Field Privileges

The Custom Field Privileges dialog displays a list of every field

in the selected table. Select one or more fields in the list to edit

their Privilege settings, choosing between modifiable, view only,

and no access. The permissions assigned to the [Any New Field]

option will automatically be assigned to all new fields added to

the table in the future.

Accessing Layouts

The layouts access pop-up menu on the Edit Privilege Set dialog

offers the following four options for layout access and design

capabilities:

All modifiable — Users of the privilege set will be able to

view and modify any layout within the database.

All view only — Users of the privilege set will be able to

view any layout in the database but be prohibited from

making design changes.

All no access — Users of the privilege set will not be able to

see any layouts in the database.

Custom privileges — When none of the other options

provides the level of detail required due to the complexity

of the database or the type of user, choose this option to

assign custom privileges.

Caution If a user can’t access a layout, neither can a script

run from their session unless that script is configured to run

with full access.

Assigning Custom Layout Privileges

To assign customized layout permissions, choose Custom

Privileges from the Layouts pop-up menu to open the Custom

Record Privileges dialog, shown in Figure 40-14.

Figure 40-14. The Custom Layout Privileges dialog allows fine control of

permissions for individual layouts

The Custom Layout Privileges dialog contains the following

controls:

1. Allow creation of new layouts — Enable this check box

to allow accounts assigned to the privilege set to create

new layouts.

2. Layouts— This area lists every layout in the database

with columns indicating the current level of access

allowed. The column headings allow you to sort the list

by the values in that column, toggling between

ascending and descending with each click. Select a

layout to edit its settings or choose [Any New Layout]

to define the default permission for any layouts added

to the database in the future.

3. Select All — Click this button to select every layout in

the list at once.

4. Privileges for Layout — These radio buttons offer a

choice of three access levels for the selected layout(s):

modifiable, view only, no access.

5. Privileges for Records via this layout — These radio

buttons offer a choice of three access levels for record

access when viewing the selected layout(s): modifiable,

view only, no access. These settings apply to record

access for only the selected layout(s) and further

refine, but do not override, the record access granted

globally to records.

Accessing Value Lists

The value list access pop-up menu on the Edit Privilege Set

dialog offers the following four options for value list access and

editing capabilities

All modifiable — Users of the privilege set will be able to

see and edit the settings of every value list in the database.

All view only — Users of the privilege set will be able to see

and use every value list assigned to fields but will not be

able to edit their settings unless specifically permitted by

the use on a field using the Edit property of a field’s Control

Style.

All no access — Users of the privilege set will not be able to

see any value lists.

Custom privileges — When none of the other options

provide the level of detail required due to the complexity of

the database or the type of user, choose this option to

assign custom privileges.

Assigning Custom Value List Privileges

To assign customized value list permissions, choose Custom

Privileges from the Value List pop-up menu to open the Custom

Value List Privileges dialog, shown in Figure 40-15.

Figure 40-15. The Custom Value List Privileges dialog allows fine control of

permissions for individual value lists

The Custom Value List Privileges dialog contains the

following controls:

1. Allow creation of new value lists — Enable this check

box to allow accounts assigned to the privilege set to

create new value lists.

2. Value Lists— This area lists every value list in the

database with the current level of access allowed. The

column headings allow you to sort the list by the values

in that column, toggling between ascending and

descending with each click. Select a value list to edit its

settings or choose [Any New Value List] to define the

default permission for any value lists added to the

database in the future.

3.
Select All — Click this button to select every layout in

the list at once.

4. Privileges — These radio buttons offer a choice of three

access levels for the selected value lists(s): modifiable,

view only, no access.

Accessing Scripts

The scripts access pop-up menu on the Edit Privilege Set dialog

offers the following four options for value list access and editing

capabilities:

All modifiable — Users of the privilege set will be able to

execute, open, view, create, and edit all scripts within a

database.

All executable — Users of the privilege set will be limited to

executing scripts without the ability to create, view, or edit

them.

All no access — Users of the privilege set will not be able to

execute any scripts or access them in any way.

Custom privileges — When none of the other options

provide the level of detail required due to the complexity of

the database or the type of user, choose this option to

assign custom privileges.

Assigning Custom Script Privileges

To assign customized script permissions, choose Custom

Privileges from the Scripts pop-up menu to open the Custom

Script Privileges dialog, shown in Figure 40-16.

Figure 40-16. The Custom Script Privileges dialog allows fine control of permissions

for individual scripts.

The Custom Value List Privileges dialog contains the

following controls:

1. Allow creation of new scripts — Enable this check box

to allow accounts assigned to the privilege set to create

new scripts.

2. Scripts— This area lists every script in the database.

The column headings allow you to sort the list by the

values in that column, toggling between ascending and

descending with each click. Select a value list to edit its

settings or choose [Any New Script] to define the

default permission for any scripts added to the

database in the future.

3. Select All — Click this button to select every script in

the list at once.

Privileges — These radio buttons offer a choice of three

4.
Privileges These radio buttons offer a choice of three

access levels for the selected value lists(s): modifiable,

executable only, no access.

Assigning Other Privilege Settings

The other options available on the right-hand side of the Edit

Privilege Set dialog control the following miscellaneous

capabilities :

Allow Printing — When enabled, users can save records as a

PDF file and print records manually using the Print

command.

Allow exporting — When enabled, users can perform a

variety of data output functions including exporting records,

saving records as an Excel file, copying all records in the

found set, saving a copy of records, and various

AppleEvents that access and extract record information.

Manage extended privileges — When enabled, users can

enable and disable extended privileges in the various

sharing dialogs available in the File > Sharing submenu and

edit extended privileges in the Manage Security dialog.

Allow user to override data validation warnings — When

enabled, users can override any field validation warning

dialog that is not explicitly defined to not allow it (Chapter

8, “Validation Control”).

Disconnect user from server when idle — When enabled,

idle users will be automatically disconnected from the file

when it is hosted on a FileMaker Server.

Allow user to modify their own password — When enabled,

users can change their password by selecting File > Change

Password. Two adjacent check boxes allow you to specify:

Users must change their password periodically after a

specified number of days.

A minimum length for the user passwords.

Available menu commands — While a user’s access to

menu items can be influenced by other permissions granted

to the privilege set to which they are assigned, this menu

specifies a category of commands they can access. Choose

from the following options:

All — The user will have access to the entire menu bar.

Editing Only — The user will have access to menu

commands that perform basic editing functions.

Minimum — The user will have access to no menu

commands except for basic functions such as open,

close and create database files, window functions,

perform scripts, preferences, and help.

Assigning Extended Privilege Settings

The extended privileges section of the Edit Privilege Set dialog

allows you to choose from a list of additional privilege options

that extend the functionality of a database. To assign an

extended privilege to the current privilege set, check the box

next to it in the list.

FileMaker defines ten default options and offers the ability to

for developers to create custom extended privileges. These are

described in the next section.

Exploring Extended Privileges

An extended privilege is a keyword-based permission setting

that can be assigned to one or more privilege sets to control

access to a specific type of functionality within a database.

FileMaker includes several extended privileges that are hard-

coded to specific functions, mostly various types of networking

access. However, developers can define custom extended

privileges and use them as a way of controlling access to

features they build.

Extended privileges are listed in and defined from the

Extended Privileges tab of the Manage Security dialog, shown in

Figure 40-17. They are also accessible as check box options in

the Edit Privilege Set dialog.

Figure 40-17. The Extended Privileges tab of the Manage Security dialog

Defining Built-In Extended Privileges

The following extended privileges, mostly controlling types of

network access to a database, are included in every database

by default:

fmwebdirect — Grants the user access to the database from

a web browser using FileMaker WebDirect.

fmxdbc — Grants the user access using the database as an

ODBC/JDBC data source.

fmapp — Grants the user access to the file shared by a peer

or a server using the FileMaker Network protocol from a

copy of FileMaker Pro, FileMaker Advanced, or FileMaker Go.

fmreauthenticate10 — When accessing a file with FileMaker

Pro or FileMaker Go, a user will have to re-authenticate after

a specified number of minutes of sleep or of using a

different application.

fmxml — Grants the user access to databases hosted by

FileMaker Server from a web browser or other application

using XML Web Publishing.

fmphp — Grants the user access to databases hosted by

FileMaker Server from a web browser or other application

using PHP Web Publishing.

fmscriptdisabled — This setting has been deprecated and

will be removed soon .

fmextscriptaccess — Grants the user to access the

database with AppleScript (macOS) and ActiveX (Windows).

fmurlscript — Grants the user access to run a database

script from a URL (Chapter 39, “Using the FileMaker URL”).

fmrest — Grants the user access to a database file from a

Representational State Transfer (RESTful) web service via

the FileMaker Data API when hosted on a FileMaker Server.

Each of these settings is hard-coded to a built-in FileMaker

feature . Some are connected to the FileMaker Network Settings

dialog, accessed from File > Sharing menus, described in

Chapter 39. For example, if a privilege set is allowed fmapp

access in the Edit Privilege Set dialog, then this privilege will be

automatically enabled in the FileMaker Network Settings dialog

and vice versa.

Using Custom Extended Privileges

A custom extended privilege is a keyword-based permission

that is defined by a database developer to dynamically assign

specific features to privilege sets with minimal effort.

This feature allows permission limits to be imposed at a

deeper and more granular level than the custom privilege

menus in the Edit Privilege Set dialog. For example, the default

permission options allow a calculation field to be flagged as

accessible, read only, or not accessible while a custom

extended privilege can control, hide or change the functionality

of a portion of the field’s formula while keeping the field itself

accessible. Similarly, a script can remain executable while some

steps within it can be conditionally skipped based on a custom

extended privilege.

Anywhere in a database that a formula can be entered, one

might include a permission-based limitation. For example:

Calculation field formulas — Changing or excluding some

portion of a formula’s result depending on permissions.

Layout object visibility — Hiding objects depending on

permissions.

Script steps — Altering or excluding groups of script steps

conditionally based on permissions.

Custom menu visibility — Installing menus or menu items

depending on permissions.

While accounts define user permissions and privilege sets

define user group permissions, custom extended privileges can

define feature group permissions.

Defining Feature Groups

A feature group is a collection of resources that pertain to a

custom feature of a database. The resources regarded as a

feature group may not be discreetly contained. Instead, they

may be found in several different tables and may be interwoven

with many other features.

For example, imagine a feature group called InvoiceApproval

that contains only processes that control approving an invoice.

These would be a subset of the overall Invoice table, its layouts

and scripts. They might be present in both an Invoice and/or an

Invoice Line Item table and could be embedded within scripts

that perform other functions unrelated to approving invoices.

There may even be a field in a Contacts table that controls

some aspect of the approval process. These various resources

might need to be hidden or disabled for user accounts that

otherwise have access to all other contact and invoicing

functions.

Once a feature group requiring special permission

restrictions is identified, extended privileges is usually the best

method of securing it while allowing for future flexibility .

Limiting Permissions for a Feature Group

To understand the full benefit of using custom extended

privileges to control conditional access in formulas, let’s

compare the methods of achieving this level of control both

with and without them.

Limiting without Extended Privileges

Limiting access to features can be done by adding a condition

into the formulas of every object in a feature group based on

the current user’s account name and/or privilege set, as

illustrated in Figure 40-18.

Figure 40-18. Without extended privileges, a formula must directly check

account(s) and/or privilege set(s) to confirm permission

Altering the output of a calculation field based on the user’s

account name can be done using a Case statement as shown in

this example:

Case (Get (AccountName) = "Tim Smith" ; "Yes" ; "No")

While this approach might be fine in many circumstances,

there is a major drawback when future personnel changes occur

and Tim Smith is no longer with the company or has moved on

to a new role. The problem becomes compounded with each

additional object involved in the feature group, increasing the

burden and possibility of overlooking something when changing

them all.

The situation can be improved slightly by comparing the

user’s privilege set instead of account name, as shown in this

example:

Case (Get (AccountPrivilegeSetName) = "Finance" ; "Yes" ;

"No")

Now, if members of the privilege set are added or removed,

the formula(s) will not require a change. However, even with

this method, there is still the potential for problems.

Using an account name or privilege set for permission

conditions is not as simple as indicated in these examples.

Often, you will often need to include multiple conditions. For

example, since a Developer account must be a member of the

Full Access privilege set, that may need to be included in the

formula, otherwise the user would be unable to test the feature.

In other situations, you will need to include the privilege sets for

users responsible for using the feature, administrators

responsible for overseeing them, and developers.

Also, any future restructuring of the privilege sets will result

in the same massive editing requirement as using the account

name. For example, if the members of the Finance set need to

be divided between two or more different subsets to

accommodate other privilege requirements or shifts in

responsibility, every formula in the database with conditional

functionality based on the privilege set will need to be modified.

This is where the benefit of using custom extended privileges

become clear.

Limiting with Extended Privileges

Limiting access to features using custom extended privileges is

easy to implement and provides the most flexibility for long-

term changes to your security structure. In this case, the

formulas of objects in the feature group will contain conditions

hard-coded to an extended privilege created to control

permission of the feature, with that assigned to privilege sets

that are assigned to user accounts, as shown in Figure 40-19.

Figure 40-19. With extended privileges, a feature group checks an extended

privilege with future changes to permission easily reconfigurable security settings

In this case, the reconfiguration burden is shifted away from

the potentially numerous formulas of resources in the feature

group and onto the Manage Security dialog where it is much

easier to perform:

1. The formula of the objects in the feature group contains

hard-coded conditions locked to a custom extended

privilege specific to the feature.

2. The feature’s extended privilege can be easily assigned

to one or more privilege sets by enabling a check box

on either the Edit Extended Privilege or Edit Privilege

Set dialogs.

3. User accounts are assigned a privilege set, thereby

inheriting the extended privilege to the feature group.

Using this method, all permission changes are easily

adjusted within security settings.

Creating a Custom Extended Privilege

The first step to creating a custom extended privilege is to

identify a feature group that requires limited permissions. This

might be done during the planning stages or after the resources

are in place. Once identified, you will need to develop a name

for the group. Ideally the name should be made up of two or

more words that identify the table or function group of tables

involved and the feature itself, for example InvoiceApproval,

FinanceReporting, or ClientEmail.

Tip Choose custom extended privilege names carefully

before implementing them to avoid future changes that

would require all the formulas involved to be updated, the

very task we are trying to avoid in the first place.

Open the Manage Security dialog and click on the Extended

Privileges tab. Then click the New button to open a new, empty

extended privilege in an Edit Extended Privilege dialog, shown

in Figure 40-20.

Figure 40-20. The Edit Extended Privilege dialog

The Edit Extended Privileges contains the following controls:

1. Keyword — This text area contains the name of the

extended privilege.

2. Description — This text area can contain an optional

description of the feature group it controls.

3. Privilege Sets — This area lists all the defined privilege

sets in the database. Click the On check box on one or

more to enable their permission to the feature group.

Once configured, click OK to save the new extended

privilege.

Now if you open a privilege set, you will see the new

extended privilege as an option that can be enabled or disabled

as needed. Based on the example above, opening the Finance

privilege set will reveal the new InvoiceApproval extended

privilege enabled, as shown in Figure 40-21.

Figure 40-21. The new InvoiceApproval extended privilege enabled on the Finance

privilege set

Now, any formula that requires conditional permission can

be hard-coded to the new InvoiceApproval extended privilege,

as shown here using a Case statement:

 Case (

 not IsEmpty (

 FilterValues (Get (AccountExtendedPrivileges

) ; "Finance")

) ;

 "Yes" ; "No"

)

Since the Get (AccountExtendedPrivileges) function returns

a list of all the extended privileges that the user account’s

privilege set has enabled, you must use the FilterValues

function to detect a single value within.

Controlling File Access

The final tab of the Manage Security dialog, shown in Figure 40-

22, is named File Access and allows limitation to access of the

database from other FileMaker databases.

Figure 40-22. The File Access tab of the Manage Security dialog

The following controls are available on the File Access tab of

the Manage Security dialog:

1. Require full access privileges to use references to this

file — Enable this check box to deny access to any

FileMaker databases not explicitly listed below.

2.

Files — This area lists all the files that have been

granted explicit access to use this database as an

external data source.

3. Authorize — Click this button to open a Choose File

dialog and select that FileMaker database is authorized

to access the current database. You may be required to

enter credentials for an account with full access to the

selected file.

4.
Deauthorize — Click this button to remove the selected

database from the list of authorized files.

5. Reset All — Click this button to reset the ID of all the

files listed and deauthorize them and require

reauthorization. This is used to ensure unique IDs if a

duplicate or clone of a file will be granted access along

with the original.

Summary

In this chapter, we discussed many of the security options

available to maintain secure databases.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_41

41. Advanced Sharing and

Analysis Tools

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

In addition to script debugging and menu customization

features, the FileMaker Pro Advanced Tools menu contains

developer utilities to assist in analyzing, sharing, and

securing a database.

In this chapter, we review these tools, covering:

Database design report

Developer utilities

Database Design Report

A database design report is a detailed text-based report of

the schema of one or more open database files. At

minimum, the report includes a list of every table in the

database. However, it can optionally include information

about many other resources.

A design report can be saved as a HTML or XML file and

can be used to:

Troubleshoot problems with the database structure,

making it easier to locate missing references, broken

relationships, and other problems.

Locate obsolete elements and establish with certainty

that they are not in use in some obscure part of the

database.

Gather statistical information about the structure of the

database, including the number of various resources

and file option settings.

Provide detailed technical documentation of the

database structure at a certain point in time, which can

be consulted in the event a resource or the entire

database is permanently lost and must be manually re-

created.

As your databases increase in complexity, you will find

the design report an invaluable tool.

Generating a Design Report

To generate a design report , open a database and select

the Tools > Database Design Report menu. This will open

the Database Design Report dialog, shown in Figure 41-1.

Figure 41-1. The Database Design Report dialog

The following controls are available on the Database

Design Report dialog :

1. Available Files — This area lists all the database files

currently open. The check box next to each file will

be enabled by default, but can be disabled to

exclude it from the report.

2. Include fields from tables in select file — This area

lists every table in the selected database. The

check box next to each table will be enabled by

default, but can be disabled to exclude it from the

report.

3. Include in report — This area lists the optional

resources that can be included in the report The

resources that can be included in the report. The

check box next to each will be enabled by default,

but can be disabled to exclude it from the report.

The available options are:

Accounts

Custom Menu Sets

Custom Menus

Data Sources

Extended Privileges

File Access

Functions

Layouts

Privileges

Relationships

Scripts

Value Lists

4. Report format — Select a format for the report,

either HTML or XML.

5. File handling — Enable the check box to have the

report automatically open after it is generated.

6. Buttons — Click the OK button to generate the

report and close the dialog. Click Cancel to close

the dialog without generating a report.

When clicking OK, a Save Report dialog will open asking

for a name for the report and a folder directory in which it

should be saved.

Exploring a Design Report

The design report generated will appear in the folder

specified as a set of files specific to which format option you

chose: HTML or XML.

Opening a HTML Design Report

When a design report is saved as HTML, the folder will

contain several files as shown in Figure 41-2.

Figure 41-2. The Database Design Report folder when saved as HTML

The HTML report folder contains the following items:

Summary.html — This file contains an overview of the

report as a summary of each database included in the

report and should be the starting point for exploring it.

Styles.html — This file contains cascading style sheet

information for how the report is formatted.

Folder(s) — Each database file that was included in the

report will be represented by a folder named

<Database>_ddr. The files in each folder are:

Index.html — This file contains an overview of the

report for the file represented by the folder and can

be opened to directly access it.

<database>_n.html — This file contains navigation

controls that are included in a sidebar frame of the

Index.html page.

<database>.html — This file contains the body of

the database report that is included in a body frame

of the Index.html page.

Styles.html — This file contains cascading style

sheet information for how the report is formatted.

To get started, double-click on the Summary.html file to

open the report summary page, shown in Figure 41-3.

Figure 41-3. The summary page includes an overview of every database

included in the report

The database design report overview page lists each

database included in the report with a count of all the

resources selected for inclusion on the dialog. Each column

represents one type of resource and lists the quantity

included in the report. Click these to open the database

report and navigate down to that resource. Alternatively,

click on the file name to open the report from the top, as

shown in Figure 41-4.

Figure 41-4. The HTML DDR for a file

The database report is a single scrollable page that

begins by listing a summary overview of all the resource

counts and file options, and it is then divided into sections

for every resource that was included. In the sidebar on the

left is a list of links that allow navigation to a specific section

of the report as well as navigating back to the summary

overview.

Opening an XML Design Report

When a design report is saved as XML, the folder will

contain several files as shown in Figure 41-5.

Figure 41-5. The Database Design Report folder when saved as XML

At its root level, the XML report folder contains the

following items:

Summary.xml — This file contains a summary of each

file included in the report.

<database>_fmp12.xml — Each database file that was

included in the report will be represented by a single

XML file. These files contain all the report information in

XML format.

Introducing Professional DDR Tools

Many companies sell professionally developed products that

can import an XML design report and present the material in

a more polished interface. These are a great option for

developers who do a lot of analysis of databases or just

want a better viewing experience for design reports. A few

prominent examples are listed here for your convenience.

BaseElements

BaseElements is a great analysis tool for traversing the

structure of a database. The solution is available as either

standard FileMaker files or a stand-alone runtime application

for either macOS or Windows. Both have full layout access,

and you can link to BaseElements Data Tables from your

database’s relationship graph and access the information in

scripts. The product includes an open source BaseElements

plug-in with many useful functions.

For more information visit: http://www.baseelements.com

.

FMPerception

Geist Interactive sells a product called FMPerception, a

utility for searching, analyzing, and maintaining FileMaker

databases. The product uses a progressive analysis

technique to quickly provide current and accurate

information about a database’s structure. Some features

include:

Provides a high-level overview of a database and

presents a “Database Report Card” that summarizes the

complexity of a database and lists any potential

problems that were detected.

Boasts a fast DDR import process that is nearly

instantaneous.

A graphical “call chain visualization” illustrates the flow

of script calls from buttons to scripts to subscripts,

helping trace the flow of complex functionality.

Identifies layout objects that might slow down

performance.

Performs a security audit to identify vulnerabilities such

as missing passwords or scripts that run with full access

privileges.

For more information visit:

https://www.geistinteractive.com .

http://www.baseelements.com/
https://www.geistinteractive.com/

InspectorPro

Beezwax DataTools, Inc sells a product called InspectorPro.

The product is an advanced diagnostics, analysis, and

visualization tool that is optimized for FileMaker versions 12-

15. The product can help you quickly locate references and

resources, boasts over 115 different areas where it

normalizes analysis information, and can even automatically

detect problems with a database structure.

For more information visit: https://www.beezwax.net .

Developer Utilities

Exclusive to FileMaker Pro Advanced is a set of developer

utilities that can create a customized copy of a database

with structural modifications that allow the following sharing

options and enhancing security:

Create runtime solution application(s)

Remove admin access from files permanently

Enable kiosk mode for non-admin accounts

Databases must have a FileMaker file extension

Create error log for any processing errors

Enable database encryption (or Re-encrypt files)

Remove database encryption

These options, which will be explained later in this

chapter, can be selected separately or in unison, although

some restrictions apply.

Exploring the Developer Utilities Dialog

These tools can be accessed by selecting the Tools >

Developer Utilities menu item. This opens the Developer

Utilities dialog, shown in Figure 41-6.

https://www.beezwax.net/

Figure 41-6. The Developer Utilities dialog

The Developer Utilities dialog contains the following

controls:

1. Add — Click this button to select file(s) to add to the

list of solution files.

2. Solution Files — This area lists all the files selected

using the Add button that will be processed and

saved into new modified copies using the utility

options selected. When processing multiple files,

some utilities require a file to be designated as the

Primary File, indicated with a red arrow and

modifiable by double-clicking on a different file.

3. Rename File — This area is used to specify a name

for the output that is different from the file selected

for the output that is different from the file selected

as primary. This is the recommended method for

renaming database files in a multi-file solution since

it will rename the specified files and update all

external file references to them within other files.

4. Project Folder — Click this Specify button to select a

folder in which to save the output. Enable the check

box to allow FileMaker to automatically replace

existing files in the project folder with the same

name as new files it is saving.

5. Solution Options — Click this Specify button to

select the desired options that will determine the

modifications to the solution files (described later in

this chapter).

6. Load Settings — Click this button to replace the

current dialog settings with those stored in a

selected file.

7. Save Settings — Click this button to save files

containing all the settings configured in the dialog

so that they can be loaded for quick reuse in the

future.

8. Buttons — Click the OK button to begin processing

the files. Click Cancel to close the dialog without

performing any functions.

Specifying Solution Options

Clicking the Specify button for Solution Options on the

Developer Utilities dialog to open a Specify Solution Options

dialog in which you can select and configure the desired

utilities that will be used to modify the selected files.

Create Runtime Solution Application(s)

The Create runtime solution application(s) option will bind

the database files into a stand-alone runtime database

application that does not require FileMaker Pro to be used.

This allows you to freely distribute your solution to as many

users as you want.

Caution The runtime application can’t access

databases across the network so this option is limited to

single-user database systems.

Select the option in the Specify Solution Options dialog, as

shown in Figure 41-7.

Figure 41-7. The Specify Solution Options dialog for creating a runtime

solution

The Specify Solution Options dialog contains the

following controls:

1. Runtime Name — Enter a name for the runtime

application.

2. Bindkey — This information is used to bind the

runtime application to the database files so that

they will only open with the appropriate runtime

application. This is useful in situations where

multiple runtime applications are used on the same

computer. The default data and time entry provides

a unique key that won’t ever conflict.

3. Extension — The extension entered will be used on

database files in place of the standard .fmp12 to

link the files to the runtime app. The default

extension of fmpur can be replaced with a custom

extension if it is unique and doesn’t conflict with

other applications installed on the user’s computer.

4. Splash Screen Options — When the runtime

application is closed, a splash screen will appear,

which can be customized using the controls:

Preview — Click this button to see a preview of

the splash screen that will appear when the

runtime application is closed.

Custom Image — Click the Specify button to

select an image file to use as a custom splash

screen.

Delay — Enter a number within the range of 2-

12 to specify the number of seconds the splash

screen should remain open.

Click OK to close the Specify Solution Options dialog and

return to the Developer Utilities dialog. Then, click OK to run

the utility. A folder will be created in the Project Folder

containing the runtime app, the file(s) selected, and other

resources, as shown in Figure 41-8.

Figure 41-8. An example of a runtime solution folder structure

The folder will contain the runtime application and the

database file(s) selected. Double-click the application to

launch the solution.

Note The application will only run on the same

operating system upon which it was created.

Assigning Files to the Runtime Application in macOS

When the runtime solution is saved on a macOS computer

with the default extension of fmpur, there is an additional

step that must be taken to correctly map the files to always

open with the custom runtime application when double-

clicked on directly. Opening the runtime application will work

fine and automatically open the primary database file.

However, when double-clicking directly on one of the

database files, it should open the runtime application and

then open the file but instead macOS will present a cryptic

error message about a missing primary file “DEBUG,” as

shown in Figure 41-9.

Figure 41-9. The error dialog when double-clicking directly on a database file

that is part of a runtime solution

The problem is that the FileMaker Pro Advanced folder

contains an application called Runtime located in the

following folder:

/FileMaker Pro Advanced/FMI Runtime

Resources/Internal/Runtime Libraries/

By default, any file with an extension of fmpur will

automatically be linked to open with this application and

generate the error message. To change this on macOS,

select all the database files and then open the contextual

menu and open the Always Open With submenu. Select the

custom runtime app, as shown in Figure 41-10.

Figure 41-10. Connecting runtime database files to automatically open with

the custom runtime application instead of FileMaker’s default

Once this process is complete the files will always open

with the custom runtime application. However, this must be

performed on every computer upon which the solution will

be installed.

Tip Using a custom extension will avoid the necessity of

this extra step.

Remove Admin Access from Files

Permanently

The Remove admin access from files permanently option will

completely remove all admin access within the file(s) and

remove visible calculation formulae. This prevents anyone

from opening the file as a developer and making changes to

the structure. While this can be a useful method to secure a

file, it should be used with caution and while retaining a safe

unmodified backup file.

Enable Kiosk Mode for Non-Admin

Accounts

The Enable Kiosk mode for non-admin accounts option will

modify and save the file(s) with full screen mode and no

menu bar enforced for all non-admin access. This is a great

option for creating kiosks where you don’t want to allow

users access to anything except the interface controls you

make accessible on layouts.

Before using this option consider a few requirements:

The database must have at least one non-admin user

account defined, which must be used to open in kiosk

mode.

Once in kiosk mode, the user’s only access to navigate

within the file or to close the file will be through the

controls you provide on layouts. There will be no menu

bar, and even access to operating system functions

such as force quit or toggle applications will be

completely disabled.

When adding a button or method for quitting the

database, be sure to include some sort of authentication

process to exclude non-authorized users from quitting

the solution and accessing the underlying operating

system.

Caution If you don’t provide a button on the layout that

will quit the application or close the database, the only

option will be to perform a hard restart of the computer

that may lead to file damage.

Databases Must Have a FileMaker File

Extension

This feature is deprecated and scheduled to be removed

from the interface in the near future.

Create Error Log for Any Processing Errors

The Create Error log for any processing errors option will

generate a log file in a specified folder containing any errors

that occur while processing other utility functions. This

option can optionally be selected with any other utility

function but is required by the two encryption features.

Once selected the only available option for this feature is

a Specify button that, when clicked, opens a Specify a File

dialog in which you can point to any folder and assign a

name for the log file. The default is a file named LogFile.txt

that will be saved in the specified Project Folder.

Exploring Encryption Features

Encrypting a database file adds a more powerful layer of

protection above that of the standard security features

(Chapter 40). An encrypted database protects a file from

unauthorized access while it is stored on disk. The password

assigned during the encryption process must be entered to

open the file with a copy of FileMaker or to host the file on a

FileMaker Server. Once hosted, only the standard security

account and password need be entered for a user to gain

access. The encryption is a protection against someone

gaining access to an unhosted copy of the file and trying to

open it offline, which will be impossible without the

encryption password.

Caution When encrypting a database, be sure to keep

the password safely stored somewhere. There is no

possibility of recovery so, if you lose the password, you

will be unable to access the file.

The Developer Utilities dialog contains two encryption

options:

Enable database encryption (or Re-encrypt files)

Remove database encryption

Enable Database Encryption (or Re-encrypt Files)

The Enable Database Encryption (or Re-encrypt files) option

will save an encrypted copy of the file(s) encrypted that will

require a decryption password to be entered to open the

files directly or to host them on FileMaker Server.

To encrypt the selected file(s), select the option in the

Specify Solution Options dialog and enter the required

information, shown in Figure 41-11.

Figure 41-11. The process of encrypting a database

The encryption process involves the following steps:

1. Shared ID — This text contains a case-sensitive

string of up to 32 characters and is used to link all

the database files in a multi-file solution. When one

file is opened with the encryption password, that file

can then access any other file that has been saved

with the same Shared ID and encryption password,

without prompting the user for the encryption

password repeatedly.

2. FileMaker Account — You must enter developer

credentials before you can encrypt the file(s). Click

the adjacent Specify button to enter the Account

Name and Password proving that you have [Full

Access] to the file. These credentials should be

common to all the selected Solution Files.

3. Encryption Password — An encryption password

b d h fil () hi h ill b

must be entered to secure the file(s), which will be

used for all future access and hosting. Click the

adjacent Specify button to open the Database

Encryption Password dialog and enter and confirm a

password.

4. Keep Open Storage — Enable this check box to

maintain externally stored container files in an

unencrypted state and allow users access freely

through the folder directory.

Click OK to close the Specify Solution Options dialog and

return to the Developer Utilities dialog. Then, click OK to run

the utility. The encrypted files will appear in the specified

Project Folder.

When opening an encrypted file on the desktop,

FileMaker will present two dialogs: first the Open Encrypted

Database prompt, shown in Figure 41-12; and then the

standard login prompt for Account name and Password.

When opening an encrypted file for hosting on a FileMaker

Server, only the first of these will appear.

Figure 41-12. The Open Encrypted Database dialog

Remove Database Encryption

The Remove Database Encryption option will save a copy of

the file(s) in an unencrypted state, restoring normal

operating behavior and access methods.

To remove encryption from the selected file(s), select the

option in the Specify Solution Options dialog and enter the

required information, shown in Figure 41-13.

Figure 41-13. The process of removing encryption from a database

The process of removing encryption involves the

following steps:

1. Encryption Password — You must enter the

encryption password for the file(s) to prove that you

have access to them.

2. FileMaker Account — You must enter developer

credentials before you can decrypt the file(s). Click

the adjacent Specify button to enter the Account

Name and Password proving that you have [Full

Access] to the file. These credentials should be

common to all the selected Solution Files.

Click OK to close the Specify Solution Options dialog and

return to the Developer Utilities dialog. Then, click OK to run

the utility. The decrypted files will appear in the specified

Project Folder.

Now, when opening the file locally, only the standard

login prompt for Account name and Password will be

presented.

Summary

In this chapter, we discussed the Database Design Report

and various Developer Utilities that are available through

the FileMaker Advanced Tools menu.

(1)

© Mark Conway Munro 2017

Mark Conway Munro, Learn FileMaker Pro 16, https://doi.org/10.1007/978-1-

4842-2863-0_42

42. Getting Connected

Mark Conway Munro1

Lewisburg, Pennsylvania, USA

Reach out to connect with the author, other readers, and

the wider FileMaker community to ask questions, find tips,

and explore other resources.

Connect with Mark Munro

Join Mark’s professional network on LinkedIn:

https://www.linkedin.com/in/mark-conway-munro-

1521595/

For professional help with a database or workflow

automation project, contact Mark through the Write Track

Media website:

http://www.wtmedia.com

Follow Write Track Media on social media:

Facebook https://www.facebook.com/writetrackmedi

a/

Twitter https://twitter.com/WriteTrackMedia

LinkedIn https://www.linkedin.com/company/134933

0

https://www.linkedin.com/in/mark-conway-munro-1521595/
http://www.wtmedia.com/

Learn FileMaker Pro 16 Official Sites

Visit the official Learn FileMaker Pro 16 book website at:

http://www.learn-filemaker.com

To ask questions, chat, or share tips with the author,

readers, users, and other developers, join the Facebook

group:

https://www.facebook.com/groups/LearnFileMaker/

To find the book on the Apress website, visit:

http://www.apress.com/us/book/9781484228623

FileMaker Inc.

Keyboard shortcuts:

macOS https://www.filemaker.com/support/product

/docs/12/fmp/fmp12_keys_mac.pdf

Windows https://www.filemaker.com/support/product

/docs/12/fmp/fmp12_keys_win.pdf

The FileMaker website is a great place to start looking for

help and information.

Home http://www.filemaker.com

Support http://www.filemaker.com/support/

Updaters http://www.filemaker.com/support/downloa

ds/

Community https://community.filemaker.com/welcom

e

Solutions https://solutions.filemaker.com/made-for-

filemaker

Help guides and documentation:

Help https://www.filemaker.com/help/16/fmp/en/

http://www.learn-filemaker.com/
https://www.facebook.com/groups/LearnFileMaker/
http://www.apress.com/us/book/9781484228623

ODBC &

JBDC https://fmhelp.filemaker.com/docs/16/en/fm16_odbc

_jdbc_guide.pdf

SQL

Reference https://fmhelp.filemaker.com/docs/16/en/fm16_s

ql_reference.pdf

Error

Codes http://www.filemaker.com/help/16/fmp/en/index.ht

ml#page/FMP_Help%2Ferror-codes.html

Database Design Report (DDR)

Analysis Tools

The Database Design Report analysis tools mentioned in

Chapter 41:

Base Elements http://www.baseelements.com

FM Perception https://www.geistinteractive.com

Inspector Pro https://www.beezwax.net

Plug-Ins

The manufactures of the plug-ins mentioned in Chapter 38:

Troi Automatisering http://www.troi.com

Productive

Computing http://www.productivecomputing.com

360 Works http://www.360works.com

Communities

Brian Dunning was the Technical Editor of FileMaker Advisor

Magazine from 1997-2016. His website is a great resource

for finding all sorts of resources, custom functions, charts,

and more.

https://www.briandunning.com

FileMaker World is full of information and resources for

developers.

http://www.filemakerworld.com

Join discussions on FileMaker topics at Reddit:

https://www.reddit.com/r/filemaker/

FMForums is a worldwide community with numerous

forums with thousands of posts.

http://fmforums.com

Listen to a FileMaker podcast by Matt Navarre and Matt

Petrowsky:

http://filemakertalk.com

ISO FileMaker Magazine has a lot of video tutorials.

https://www.filemakermagazine.com

Technology Sites

These are the various technology sites mentioned

throughout the book, summarized here for your

convenience.

For a complete list of available Unicode numbers visit:

http://www.ssec.wisc.edu/~tomw/java/unicode.html

The Internet Engineering Task Force (IETF) Request for

Comment (RFC) page:

https://www.ietf.org/rfc.html

For more technical information on JSON, visit:

http://www.json.org

A JSON validation tool to confirm manually typed objects

are formatted properly:

http://www.jsonlint.com

For more information about Base64 visit:

https://www.base64decode.org

https://www.briandunning.com/
http://www.filemakerworld.com/
https://www.reddit.com/r/filemaker/
http://fmforums.com/
http://filemakertalk.com/
https://www.filemakermagazine.com/
http://www.ssec.wisc.edu/~tomw/java/unicode.html
https://www.ietf.org/rfc.html
http://www.json.org/
http://www.jsonlint.com/
https://www.base64decode.org/

Function Background Information

These are the various function information sites mentioned

throughout the book, summarized here for your

convenience.

Learn about standard deviation here:

https://en.wikipedia.org/wiki/Standard_deviation

Learn about variance here:

https://en.wikipedia.org/wiki/Variance

Learn about future value here:

https://en.wikipedia.org/wiki/Future_value

Learn about net present value here:

https://en.wikipedia.org/wiki/Net_present_value

Learn about present value here:

https://en.wikipedia.org/wiki/Present_value

Learn about Coordinated Universal Time (UTC), here:

https://en.wikipedia.org/wiki/Coordinated_Universal_Time

For more information on iBeacons, visit:

https://developer.apple.com/ibeacon/

Learn about Universally Unique Identifiers (UUID), here:

https://en.wikipedia.org/wiki/Universally_unique_identifier

https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Future_value
https://en.wikipedia.org/wiki/Net_present_value
https://en.wikipedia.org/wiki/Present_value
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://developer.apple.com/ibeacon/
https://en.wikipedia.org/wiki/Universally_unique_identifier

Index

A

Abs function

Accounts

credentials dialog

external account

authentication

server dialog

edit dialog

external account

group membership

groups (macOS)

user account

set password dialog

steps

Acos function

Aggregate function reference

average

count

list

Max function

Min function

StDev function

StDevP function

Sum function

Variance function

VarianceP function

Apple

AppleScript

database

dictionary

field value

find records

FMP protocol

found set

layouts

local directory

open database

table

tasks

tell FileMaker statement

Application menu

Application preferences

application

file cache settings

general settings

layout options

layout settings

memory

user interface options

user name

Application programming interface (API)

Asin function

Atan function

Average function

with local fields

with related fields

B

Back-end data system

Base64Decode function

Base64Encode function

Base64EncodeRFC function

BaseElements

Browse mode

container field

database window

record content area

status toolbar

customization

default items

toggle

summary field

view menu

web viewers

Button controls

button

contextual menu

icon label

labeling options

script

setup dialog

single step

button bar

bar orientation control

conversion

segment controls

setup options

popover button

interface

setup options

toolbar control

steps

C

Calendar application

Card window

Case function

Char function

Charts

calculated data

chart types

formats

found set

pie chart

setup dialog

table view

Choose function

Claris Corp.

Code function

Combination function

Communities

Comparative operators

Comparison operators

equal to

greater than or equal to symbol

greater than symbol

less than or equal to symbol

less than sign <

not equal to

Conditional formation

condition formula

dialog options

format settings

formula-driven conditions

invoice status field

menu item

value-driven conditions

Consistency check

Constant-only formula

Constrain Found Set command

Constrain Found Set function

Container fields

Container function

Base64Decode

Base64Encode

Base64EncodeRFC

CryptAuthCode

CryptDecrypt

CryptDecryptBase64

CryptDigest

CryptEncrypt

CryptEncryptBase64

GetContainerAttribute

GetHeight

GetThumbnail

GetWidth

HexDecode

HexEncode

reference

TextDecode

TextEncode

VerifyContainer

Containers

binary data

externalstorage

See External storage

extracting files

insert files

copy and paste

menu option

methods

storage options

actual file

directories

managed directory

reference

Content view

form

list

table

Contextual menus

calculation formulas

categories

defined

fields

record content area

web viewers

window components

Contextual paths

Control styles

checkbox set

concealed edit box

drop-down calendar

drop-down list

edit box

pop-up menu

radio button set

steps

unselecting values

Cos function

Count function

with local fields

with related fields

CryptAuthCode function

CryptDecryptBase64 function

CryptDecrypt function

CryptDigest function

CryptEncryptBase64 function

CryptEncrypt function

Current Date function

Current Time function

Current User Name function

Custom functions

accessing fields

adding parameters

date parameter

day requested parameter

default current date

importance of thorough testing

defining

exploring dialogs

Edit Custom Function dialog

importing

managing

recursive

limitations

local variables across iterations

simple

test code inside a function

simple custom function

D

Database

calendar application

data structure

defined

design report

encryption

host

integrated file architecture

Launch Center

layout

mail application

manage submenu

managing favorite

multitier architecture

opening an existing

presentation tier

process logic tier

relational

script

starter solution

stored data tier

structure

table

user interface

Database Design Report (DDR)

analysis tools

developer utilities

dialog

encryption

error log

FileMaker file extension

macOS

non-admin accounts

remove admin access

runtime solution application(s)

dialog menu

HTML design report

HTML/XML file

professional DDR tools

BaseElements

FMPerception

InspectorPro

report menu

text-based report

XML design report

Database file

creating

icon settings

maintenance functions

advanced recovery options

avoiding design

avoiding risky behavior

consistency check

copy file

development standards

file damage

hardware and software

locate damage

perform maintenance

recovering file

restrain file size

save copy as

training deficiencies

transferring record data

troubleshooting process

using FileMaker server

open settings

options

records

explicit dialogs

forgetting to commit

multiple dialogs

overwriting an existing

require explicit confirmation

restrict access

set limits

user efficiency

vague dialogs

resources

script triggers settings

spelling settings

text settings

DatabaseNames function

Database window

browse mode

content area

content views

find mode

layout mode

preview mode

status toolbar

Data entry

field content modification

Cut, Copy, Paste, Undo, and Redo

drag and drop

Insert functions

typing

field focus

field navigation, tab order

handling

record opening

Data structure

Date functions

built-in function

date object

day

DayName

DayNameJ

DayOfWeek

DayOfYear

month

MonthName

MonthNameJ

WeekOfYear

WeekOfYearFiscal

Year

YearName

Debugging scripts

activation

breakpoints

definition

interface

data viewer window

status toolbar items

tools menu

window

troubleshooting techniques

uses of

Default menu bar

application menu

disabled items

edit menu

file menu

format menu

help menu

insert menu

records menu

scripts menu

tools menu

view menu

window menu

Default windows

Launch Center

hosts tab

solutions tab

started screen

Degrees function

Design functions

DatabaseNames function

FieldBounds function

FieldComment function

FieldIDs function

FieldNames function

FieldRepetitions function

FieldStyle function

FieldType function

GetNextSerialValue function

LayoutIDs function

LayoutNames function

LayoutObjectNames function

RelationInfo function

ScriptIDs function

ScriptNames function

TableIDs function

TableNames function

ValueListIDs function

ValueListItems function

ValueListNames function

WindowNames function

Div function

Dynamic guides

E

Edit layout button

Edit menu

Encryption

database dialog

re-encrypt files option

features

remove option

Evaluate function

EvaluationError function

Exact function

ExecuteSQL function

database schema

FileMaker_Fields

FileMaker_Tables tables

defining

limitations

SQL features

SQL queries

concatenation

GROUP BY clause

JOIN clause

limiting results of query

literal text strings

SELECT statements

UNION clause

WHERE statement

working

Exp function

Extend Found Set command

Extend Found Set function

Extend function

External storage

base directories

creation

delete

edit button

storage tab

Thumbnails tab

field

changes

creation

open storage

options

secure storage

F

Factorial function

FieldBounds function

FieldComment function

FieldIDs function

FieldNames function

Field Picker palette

appearance

advanced graphic group

behavior

data formatting

graphic group

paragraph

tabs

text

theme and style

controls

data field

data formatting

container field

date fields

decimal format

time field

inspector

arrange & align

autosizing

grid

position

sliding & visibility

layout mode

style panel

FieldRepetitions function

Fields

auto-enter options

data entry

dialog

looked-up value

prohibit modification

content types

date format

automatic conversion

calculations

conversion process

short date format

delete option

display

calculation

summary

entry fields

auto-enter options

calculation dialog

calculations

container

data type

date format

furigana option

numeric value

storage options

summarization

tabs

text

timestamp fields

time string

validation options

FileMaker

See FileMaker object model

manage database dialog

adding database

copy and paste

creation

duplication

selection

name modification

naming fields

visibilities

record type

repetitions

standard fields

ideas

super group prefix

universal status

storage options

container

dialog window

global storage

indexing

repeating

summarization

option dialog

overview

types

type modification

validation tab

control option

entry fails

FileMaker option

option dialog

override option

requirements

warning dialog

FieldStyle function

FieldType function

File cache settings

permitted hosts

plug-ins

File damage

cause

understanding

File extensions

FileMaker

application resources

company contact count

components

contact address label

downloading sample data

early

Export Records process

Export Field Contents

finishing export

Specify Field Order for Export

history

Import Records process

automatic recurring import

import field-mapping dialog

performing import

Update existing records in found set option

Update matching records in found set option

library

popularity

product family

relational model

supported file types

user experience

using

versions

FileMaker Go

FileMaker Inc.

FileMaker object model

company table

custom fields

project type

standard fields

FileMaker Pro

default menu bar

feature-rich database

features

installation process

launch application

launch installer

run

product family

run

user interface

version

FileMaker Pro 16

FileMaker Pro Advanced

feature-rich database

features

FileMaker server

access databases

snapshot links

URL

admin console

AppleScript

See AppleScript

basics

client computer (upload)

cloud server

database files

databases folder (move)

deployment

admin console

features and benefits

fmsadmin

command

Help option

location

tools

hosting databases

legacy license

logging

media streaming

non-licensed connections

optimization

remove option

resources

restart

safe methods

unsafe methods

selection and sign

scheduled events

software installation

upload

uploading files

URL

access credentials

file extension

FMP URL

optional components

parameter

percent encoding

script name

server address

variables

user connection license

web direct

FileMaker WebDirect

File menu

manage submenu

provides access

sharing submenu

File paths

building dynamic

exclude file extensions

functions to generate contextual

use variables

wildcard

formatting

full

network

network address

relative

FilerValues function

Filter function

Filtering portal records

formula

multiple match fields

search field

steps

user entry

Financial functions

FV function

NPV function

PMT function

PV function

Find and Replace command

Find Matching functions

Find Matching Records function

Find mode

database window

record content area

view menu

Floor function

FMPerception

fmsadmin

Font smoothing style

Format menu

Formatting bar

Formatting bar button

Formatting paths

prefixes

types

Form layouts

Formulas

calculation dialog window

calculation field

manipulation

non-repeating fields

repetition functions

calculation interface

comments

multi-line comment

single-line comment

components

constant-only formula

constants

context

database

dynamic field reference

field references

functions

calling a function

nesting function calls

optional parameters

parameters

function selection panel

insert components

auto-complete

field selection panel

handling empty fields

intentional errors

operators

comparison

definition

logical operators

mathematical operators

precedence

reserved words

text operators

space

advantage

complex statements

exceed 000 characters

items

storage options

variables

global database variable

Let statement

local function/script variable

types of

working process

Form view

Found set

definition

Find and Replace command

Omit Multiple command

Omit Record command

Replace Field Contents command

Show All Records command

Show Omitted Only command

sorting records in

spell checker

Fragmentation

From Index function

From Last Visited Record function

Front-end interface

Full path

Function buttons

Function information sites

Furigana function

FV function

G

GetAsBoolean function

GetAsCSS function

GetAsDate function

GetAsNumber function

GetAsSVG function

GetAsText function

GetAsTime function

GetAsTimestamp function

GetAsURLEncoded function

GetAVPlayerAttribute function

GetContainerAttribute function

attributeName option

audio

barcode

examples retrieve

general group

groups of

image group

photo

signature group

file metadata

GetField function

GetFieldName function

Get functions

Get (TriggerGestureInfo) function

Get (AccountExtendedPrivileges) function

Get (AccountGroupName) function

Get (AccountName) function

Get (AccountPrivilegeSetName) function

Get (ActiveFieldContents) function

Get (ActiveFieldName) function

Get (ActiveFieldTableName) function

Get (ActiveLayoutObjectName) function

Get (ActiveModifierKeys) function

Get (ActivePortalRowNumber) function

Get (ActiveRepetitionNumber) function

Get (ActiveSelectionSize) function

Get (ActiveSelectionStart) function

Get (AllowAbortState) function

Get (AllowFormattingBarState) function

Get (ApplicationArchitecture) function

Get (ApplicationLanguage) function

Get (ApplicationVersion) function

Get (CalculationRepetitionNumber) function

Get (ConnectionAttributes) function

Get (ConnectionState) function

Get (CurrentDate) function

Get (CurrentExtendedPrivileges) function

Get (CurrentHostTimestamp) function

Get (CurrentPrivilegeSetName) function

Get (CurrentTime) function

Get (CurrentTimestamp) function

Get (CurrentTimeUTCMilliseconds) function

Get (CustomMenuSetName) function

Get (DesktopPath) function

Get (Device) function

Get (DocumentsPath) function

Get (DocumentsPathListing) function

Get (EncryptionState) function

Get (ErrorCaptureState) function

Get (FileMakerPath) function

Get (FileName) function

Get (FilePath) function

Get (FileSize) function

Get (FoundCount) function

Get (HighContrastColor) function

Get (HighContrastState) function

Get (HostApplicationVersion) function

Get (HostIPAddress) function

Get (HostName) function

Get (InstalledFMPlugins) function

Get (LastError) function

Get (LastExternalErrorDetail) function

Get (LastMessageChoice) function

Get (LayoutAccess) function

Get (LayoutCount) function

Get (LayoutName) function

Get (LayoutNumber) function

Get (LayoutTableName) function

Get (LayoutViewState) function

Get (MenubarState) function

Get (ModifiedFields) function

Get (MultiUserState) function

Get (NetworkProtocol) function

Get (NetworkType) function

Get (PageNumber) function

Get (PersistentID) function

Get (PreferencesPath) function

Get (PrinterName) function

Get (QuickFindText) function

Get (RecordAccess) function

Get (RecordID) function

Get (RecordModificationCount) function

Get (RecordNumber) function

Get (RecordOpenCount) function

Get (RecordOpenState) function

Get (RegionMonitorEvents) function

Get (RequestCount) function

Get (RequestOmitState) function

Get (ScreenDepth) function

Get (ScreenHeight) function

Get (ScreenWidth) function

Get (ScriptAnimationState) function

Get (ScriptName) function

Get (ScriptParameter) function

Get (ScriptResult) function

Get (SortState) function

Get (StatusAreaState) function

Get (SystemDrive) function

Get (SystemIPAddress) function

Get (SystemLanguage) function

Get (SystemNICAddress) function

Get (SystemPlatform) function

Get (SystemVersion) function

Get (TemporaryPath) function

Get (TextRulerVisible) function

Get (TotalRecordCount) function

Get (TouchKeyboardState) function

Get (TriggerCurrentPanel) function

Get (TriggerExternalEvent) function

Get (TriggerGestureInfo) function

Get (TriggerKeystroke) function

Get (TriggerModifierKeys) function

Get (TriggerTargetPanel) function

Get (UserCount) function

Get (UserName) function

Get (UseSystemFormatsState) function

Get (UUID) function

Get (WindowContentHeight) function

Get (WindowContentWidth) function

Get (WindowDesktopHeight) function

Get (WindowDesktopWidth) function

Get (WindowHeight) function

Get (WindowLeft) function

Get (WindowMode) function

Get (WindowName) function,442

Get (WindowOrientation) function

Get (WindowStyle) function

Get (WindowTop) function

Get (WindowVisible) function

Get (WindowWidth) function

Get (WindowZoomLevel) function

GetHeight function

GetLayoutObjectAttribute function

GetNextSerialValue function

GetNthRecord function

GetRepetition function

GetSummary function

GetThumbnail function

GetValue function

GetWidth function

Graph

H

Help menu

HexDecode function

HexEncode function

Hiragana function

Host databases

Hour function

HTML design report

I

Icon settings

If function

Inefficient design

Inline editing

direct editing

formula text

multi-line formula

options dialog

pop-up menu

toggle button

Insert Audio/Video function

Insert File function

Insert menu

Insert PDF function

Insert Picture function

InspectorPro

Int function

Integrated file architecture

benefits

overview

IsEmpty function

IsValid function

IsValidExpression function

J

Java Database Connectivity (JDBC)

JavaScript Object Notation (JSON)

array index

data types

definition

JSONDeleteElement

JSONFormatElements

JSONGetElement

JSONListKeys

JSONListValues

JSONSetElement

key elements

object

path

readable multi-line format

text functions

JSONDeleteElement function

JSONFormatElements function

JSONGetElement function

JSONListKeys function

JSONListValues function

JSONSetElement function

K

KanaHankaku function

KanaZenkaku function

KanjiNumeral function

Katakana function

keyOrIndexOrPath method

Kiosk mode

L

Last function

Launch Center

LayoutIDs function

Layout mode

identifying

layout design

menu changes

Arrange menu

Edit menu

Format menu

Insert menu

Layout menu

View menu

status toolbar

customizing

database menu

default

Exit Layout button

field picker toggle button

formatting bar button

inspector toggle button

Layout menu

Layout Objects toggle button

layout settings button

layout tools

menu changes

navigation controls

New Layout / Report button

screen stencil menu

theme selector

LayoutNames function

LayoutObjectNames function

Layout objects

button

See Button controls

charts

configuration

drop-down and pop-up menus

drop-down list

dual-field

pop-up menu

value list

dynamic placeholder symbols

entry restrictions

auto-enter calculation

auto-enter tab

methods

multiple item selection

rules

script trigger

single value

value list

values and bypass

field objects

after adding object

before adding object

blank field object

configuration options

control style

duplication

labels

reference

terminology

insert

merge fields

merge variables

panelcontrols

See Panel controls

placeholders

See Placeholders

portals

contact record

direct record creation

direct record deletion

filtering portal records

illustration

parent record

records creation

remote table creation

rows

setup dialog

static text

types

web viewers

Layout Objects palette

contextual menu

controls

convenient options and shortcuts

edit object name text

Layouts

label layout

contents

dialog creation

envelope layouts

delete

duplicate

envelope view

flow chart

form layout

label layout

contents

envelope layouts

label view

list view

manage layouts dialog

methods

new layout/report dialog

optimization

part management

part definition dialog

delete

edit

part setup dialog

toolbar button

printing tab

fixed page margins

multiple columns

setup dialog

regions and controls

boundary and off-screen developer area

components

horizontally resize

part label definition

vertically resize

visible part

report view

representation

script triggers

setup dialog

general tab

printing tab

tabs

views

standard (non-summary) parts

summary parts

table

add fields dialog

custom text dialog

field definitions

grand totals

header and footer information

invoice report demonstration

modification

report layouts

script

specify fields dialog

sort dialog

subtotals and grand totals

subtotals dialog

view

type categories

creation options

primary functional intent

types

window content views

Left function

LeftValues function

LeftWords function

Length function

Let function

Lg function

List function

with local fields

with related fields

List layouts

List view

Ln function

Location function

LocationValues function

Log function

Logical functions

Case function

Choose function

Evaluate function

EvaluationError function

ExecuteSQL function

GetAsBoolean function

GetAVPlayerAttribute function

GetField function

GetFieldName function

GetLayoutObjectAttribute function

GetNthRecord function

If function

IsEmpty function

IsValid function

IsValidExpression function

Let function

Lookup function

LookupNext function

Self-function

Logical operators

AND

NOT

OR

XOR

Lookup function

LookupNext function

Lower function

M

Macintosh computer

macOS

user name

Mail application

Manage submenu

Mathematical operators

addition

division

multiplication

power of symbol

precedence

subtraction

Max function

with local fields

with related fields

Media streaming

Menu customization

actions menu

add

creation

reports submenu

submenu item

adding menu

capabilities

commands and menus

components

exceptions

hierarchical structure

item menu

commands

edit dialog

menu types

modification

submenus

key command

manage dialog

menu bar

menu set

override standard commands

remove item

rename menu items

separator

set creation

standard FileMaker menu

steps

set options

standard FileMaker menus

current menu

custom menu dialog creation

custom menu set

select menu dialog

status

submenu

terminology

types

Middle function

MiddleValues function

Middleware

MiddleWords function

Min function

with local fields

with related fields

Minute function

Mobile functions

Location function

LocationValues function

RangeBeacons function

Mod function

Modify Last Find command

Multitier database architecture

N

Naming tables

Nashoba Nutshell

Nashoba Systems

Navigation layout

Network path

Network sharing

data loss

FileMaker

See FileMaker server

host application

limitations

peer and server

peer-to-peer database sharing

NPV function

Number functions

Abs

built-in function

combination

Div

Exp

Factorial

Floor

Int

Lg

Ln

Log

Mod

Random

Round

SetPrecision

Sign

Sqrt

Truncate

Numeric constants

NumToJText function

Nutshell

O

Objects manipulation

arrange and alignment

align

distribute/space

group

layout mode

lock

rotate

resize to

stacking order

conditionalformat

See Conditional formation

hide objects

move

dynamic guides

grid layout

guides

methods

ruler

naming objects

resize

selection

tab order

edit dialog

functions

Omit Multiple command

Omit Record command

Open Database Connectivity (ODBC)

API

FileMaker database

data entry limitations

data types

delete

external data source

indexing

information

modification

record locking

relationship graph

schema lock

supplemental fields

updates

host computer

driver configuration

FileMaker

Manager application

JDBC client application

shadow table

three-step process

Open settings, access to minimum version

Overwriting data

P

Panel controls

object types

slide control

layout object

setup dialog

tab control

hierarchical tab structure

new tab control

setup dialog

PatternCount function

Peer-to-peer database sharing

Permitted hosts

Pi function

Placeholders

display calculation fields

formatting text

inspector

prompt messages

repetitions

text

vertical and horizontal arrangement

window mode

Plug-in

concepts

functions

installation

purchases

finding

locations

productive computing

trio automatisering

360 Works

PMT function

Pop-up menu

Position function

Presentation tier

Preview button

Preview mode

Printing

page setup

Preview mode

Print dialog

Privilege sets

built-in FileMaker feature

categories

custom extended privileges

data access and design

definition

field dialog

layouts

records access

scripts

custom record dialog

value lists

default option

edit dialog

extended section

feature groups

InvoiceApproval

limiting access

miscellaneous capabilities

Process Logic Tier

Proper function

PV function

Q

Quick find record search

Quote function

R

Radians function

Random function

RangeBeacons function

Records

closing, by committing changes

closing, by reverting changes

Export Records process

Export Field Contents

finishing export

Specify Field Order for Export

field content formatting

field content modification

field focus

field navigation, tab order

foundset

See Found set

Import Records process

automatic recurring import

import field-mapping dialog

performing import

Update existing records in found set option

Update matching records in found set option

menu

opening

Records management

Find mode

complex finds

Constrain Found Set command

criteria

Extend Found Set command

Find requests

identification

Modify Last Find command

saved finds

search process

status toolbar

new record creation

record duplication

record search

Find Matching functions

quick find

record set deletion

single record deletion

Recursive custom functions

limitations

local variables across iterations

simple

test code inside a function

Relational databases

RelationInfo function

Relationships

manage database dialog

button icon

connection

connection types

many-to-many

one-to-many

one-to-one

data sources

edit dialog

manage external window

pop-up menu

definition

FileMaker relational model

foreign key

graph

hops

hub-and-spoke monolith

integration

layouts

local key / primary key

manipulation

box moves

comparative operators

delete

dynamic creation

edit relationship dialog

end-of-line symbols

options

small selector box

sort

many-to-many

join table

methods

multi-key/complex key

match field

organizational methods

script steps

selector-connector concept

table

See Table occurrences

table occurrence

table occurrence group method

uses of

Relative path

Repeating functions

Extend function

Last function

Replace function

Replace Field Contents command

Request for Comment (RFC)

RGB function

Right function

RightsWords function

RightValues function

RomanHankaku function

RomanZenkaku function

Runtime solution application(s)

S

Sandbox

calculation field

change default table name

data entry fields

functions

layouts

add fields

create list

renaming

summary field

ScriptIDs function

Scripting

benefits of

calling

context changes

debugger

See Debugging scripts

errors

field interactions

Go to Field

set field by name

set field option

set next serial value

set selection

steps

flow

found sets

get directory

If statements

compound

control steps

nested

simple

illustration

interaction

loop statement

confirmation process

dialog field value

found set

lists of data

record information

summarized list

macro

methods

navigation

go to layout

Go to Record/Request/Page

Go to Related Record

parameters

definition

parsing

result value

portal functions

direct creation

row’s record

records

export records

import records

steps

searches

server

show custom dialog

button click

general tab

field input

steps

triggers

See Triggers

user abort

variables

windows

card window

conversion

creation

delete confirmation dialog

delete record

layout configuration

layout dialog

manipulation and management

table creation

testing

workspace

edit menu

method

script-editing pane

script pane

scripts menu

step pane

toolbar

view menu

writingscript

See Writing script

ScriptNames function

Scripts menu

Script triggers settings

Search operator

Search text field

Seconds function

Security of database access

benefits

definition

dialog warning

file access tab

FileMakeraccounts

See Accounts

interface modes

manage security dialog

detailed setup version

privilege

See Privilege sets

Self-function

SerialIncrement function

SetPrecision function

Shadow table

Sharing

See Network sharing

Sharing submenu

Show All Records command

Show Omitted Only command

Sign function

Sin function

SortValues function

Spell checker

Spelling settings

SQL queries

concatenation

GROUP BY clause

HAVING clause

limiting results of query

FETCH FIRST clause

OFFSET and FETCH FIRST clauses, combining

OFFSET clause

literal text strings

SELECT statements

benefits of aliases

formatting requirements

keeping references dynamic

multiple fields

reformatting

SELECT DISTINCT to return unique values

selecting entire table

single field

UNION clause

WHERE statement

JOIN clause

multiple expressions

single expression

Sqrt function

Stacking order

Starter solution

advanced

create database from

simple

Status toolbar

add items

button style

customization panel

edit layout button

formatting bar

formatting bar button

function buttons

layout menu

navigation controls

preview button

rearrange items

remove items

restore default set

search text field

toggle

view button

window ruler

StDev function

with local fields

with related fields

StDevP function

with local fields

with related fields

Stored Data Tier

Structured Query Language (SQL)

Styles

button object

default option

definition

hierarchy definition

modification

object

object states

part types

properties

types

update step

Substitute function

Sum function

with local fields

with related fields

Summary functions

GetSummary function

T

TableIDs function

TableNames function

Table occurrences

arrange

color palette tool

edit selection

page setup tool

button icon

creation

deletion

duplication

graph

specify table dialog

formation

interaction

manipulations

resize tool icon

selection

steps

viewing options

Tables

adding tables

methods

ODBC datasource

See Open Database Connectivity (ODBC)

two-step process

data file-database conversion

data modeling

definition

delete

duplicate button

hypothetical data model

import button

manage database dialog

modification

names

properties

selection

warning dialog

Table view

Tan function

Technical design

Technology sites

TextColor function

TextColorRemove function

TextDecode function

TextEncode function

TextFont function

TextFontRemove function

TextFormatRemove function

Text formatting functions

built-in function

RGB

TextColor

TextColorRemove

TextFont

TextFontRemove

TextFormatRemove

TextSize

TextSizeRemove

TextStyleAdd

TextStyleRemove

Text function

built-in

Char

Code

Exact

Filter

FilterValues

Furigana

GetAsCSS

GetAsDate

GetAsNumber

GetAsSVG

GetAsText

GetAsTime

GetAsTimestamp

GetAsURLEncoded

GetValue

Hiragana

KanaHankaku

KanaZenkaku

KanjiNumeral

Katakana

Left

LeftValues

LeftWords

Length

Lower

Middle

MiddleValues

MiddleWords

NumToJText

PatternCount

Position

Proper

Quote

Replace

Right

RightValues

RightWords

RomanHankaku

RomanZenkaku

SerialIncrement

SortValues

Substitute

Trim

TrimAll

UniqueValues

Upper

ValueCount

WordCount

Text handling functions

Text operators

backslash

concatenate text

paragraph carriage return symbol

quotations mark

reserved name

Text settings

data entry handling

text handling functions

TextSize function

TextSizeRemove function

TextStyleAdd function

TextStyleRemove function

Themes

change dialog window

default option

definition

layout

manage dialog

rules

update

Time functions

built-in

Hour

Minute

Seconds

Time

Timestamp fields

Timestamp functions

Tools menu

Triggers

caution

database file

event

event precedence

file option

OnFileAVPlayerChange

OnFirstWindowOpen

OnLastWindowClose

OnWindowClose

OnWindowOpen

finding objects

layout object

OnObjectAVPlayerChange

OnObjectEnter

OnObjectExit

OnObjectKeystroke

OnObjectModify

OnObjectSave

OnObjectValidate

OnPanelSwitch

selection

layouts

OnExternalCommandReceived

OnGestureTap

OnLayoutEnter

OnLayoutExit

OnLayoutKeystroke

OnLayoutSizeChange

OnModeEnter

OnModeExit

OnRecordCommit

OnRecordLoad

OnRecordRevert

OnViewChange

parameters

Trigonometric functions

Acos function

Asin function

Atan function

Cos function

Degrees function

Pi function

Radians function

Sin function

Tan function

Trim function

TrimAll function

Troubleshooting process

Truncate function

U

UniqueValues function

Universal resource identifier (URI) scheme

Upper function

User experience

User interface

current layout

current record

found set

layout

options

User name

V

ValueCount function

ValueListIDs function

ValueListItems function

ValueListNames function

Value lists

another file

conditional lists

active companies

calculation field

dedicated relationship

drawback

types of

configuration

content creation

context insensitive

control styles

custom values

field

interface

dialog screen

editing value

records

Variance function

with local fields

with related fields

VarianceP function

with local fields

with related fields

VerifyContainer function

View menu

Virtual model

W

Web Direct

Web viewers

container field image

controls

Hello World creation

interaction

page view

setup dialog

text fields

web page

Wildcards

Window

areas

components

menu

minimizing

modes

multiple

close

create

create new

hiding and showing

select from menu

ruler

user name

WindowNames function

Writing script

auto-complete

comments

configurable options

copy/paste

creation

empty dialog screen

inline options

insert

multi-line comment

open by clicking

step basics

steps pane

steps without options

WordCount function

X, Y, Z

XML design report

	Frontmatter
	1. Using FileMaker
	Part Frontmatter
	1. Introducing FileMaker
	2. Exploring the Application
	3. Exploring a Database Window
	4. Working with Records
	5. Transferring Data

	2. Defining Data Structures
	Part Frontmatter
	6. Working with Database Files
	7. Working with Tables
	8. Defining Fields
	9. Connecting Tables with Relationships
	10. Managing Containers
	11. Managing Value Lists

	3. Writing Formulas and Using Functions
	Part Frontmatter
	12. Writing Formulas
	13. Text Functions
	14. Text Functions (JSON)
	15. Text Formatting Functions
	16. Number Functions
	17. Date, Time, and Timestamp Functions
	18. Container Functions
	19. Aggregate, Summary, and Repeating Functions
	20. Financial and Trigonometric Functions
	21. Logical Functions
	22. Get Functions
	23. Design Functions
	24. Mobile Functions
	25. Creating Custom Functions
	26. Introducing ExecuteSQL

	4. Designing Interfaces
	Part Frontmatter
	27. Introducing Layout Mode
	28. Getting Started with Layouts
	29. Exploring Layout Palettes
	30. Creating Layout Objects
	31. Manipulating Objects
	32. Using Themes and Styles
	33. Customizing Menus

	5. Automating Tasks with Scripts
	Part Frontmatter
	34. Introduction to Scripting
	35. Common Scripting Tasks
	36. Debugging Scripts
	37. Using Script Triggers
	38. Extending Features with Plugins

	6. Sharing and Networking
	Part Frontmatter
	39. Introducing Network Sharing
	40. Securing Database Access
	41. Advanced Sharing and Analysis Tools
	42. Getting Connected

	Backmatter

