

Android Studio Flamingo
Essentials

Java Edition
Title

Android Studio Flamingo Essentials – Java Edition

ISBN-13: 978-1-951442-70-5

© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0
Copyright

i

Contents
Table of Contents
1. Introduction ... 1

1.1 Downloading the Code Samples ... 1
1.2 Feedback ... 1
1.3 Errata... 2

2. Setting up an Android Studio Development Environment ... 3
2.1 System requirements ... 3
2.2 Downloading the Android Studio package ... 3
2.3 Installing Android Studio ... 4

2.3.1 Installation on Windows ... 4
2.3.2 Installation on macOS ... 4
2.3.3 Installation on Linux .. 5

2.4 The Android Studio setup wizard ... 5
2.5 Installing additional Android SDK packages .. 6
2.6 Installing the Android SDK Command-line Tools ... 9

2.6.1 Windows 8.1 ... 10
2.6.2 Windows 10 .. 10
2.6.3 Windows 11 .. 11
2.6.4 Linux .. 11
2.6.5 macOS .. 11

2.7 Android Studio memory management .. 11
2.8 Updating Android Studio and the SDK ... 12
2.9 Summary .. 12

3. Creating an Example Android App in Android Studio ... 13
3.1 About the Project .. 13
3.2 Creating a New Android Project ... 13
3.3 Creating an Activity .. 14
3.4 Defining the Project and SDK Settings .. 14
3.5 Modifying the Example Application ... 15
3.6 Modifying the User Interface .. 16
3.7 Reviewing the Layout and Resource Files .. 21
3.8 Adding Interaction .. 24
3.9 Summary .. 25

4. Creating an Android Virtual Device (AVD) in Android Studio ... 27
4.1 About Android Virtual Devices .. 27
4.2 Starting the Emulator .. 29
4.3 Running the Application in the AVD ... 30
4.4 Running on Multiple Devices .. 31
4.5 Stopping a Running Application ... 32
4.6 Supporting Dark Theme ... 32
4.7 Running the Emulator in a Separate Window ... 33
4.8 Enabling the Device Frame .. 35

Contents

ii

Table of Contents

4.9 Summary .. 36
5. Using and Configuring the Android Studio AVD Emulator .. 37

5.1 The Emulator Environment ... 37
5.2 Emulator Toolbar Options ... 37
5.3 Working in Zoom Mode .. 39
5.4 Resizing the Emulator Window... 39
5.5 Extended Control Options ... 39

5.5.1 Location ... 40
5.5.2 Displays .. 40
5.5.3 Cellular .. 40
5.5.4 Battery .. 40
5.5.5 Camera ... 40
5.5.6 Phone ... 40
5.5.7 Directional Pad ... 40
5.5.8 Microphone ... 40
5.5.9 Fingerprint .. 40
5.5.10 Virtual Sensors ... 41
5.5.11 Snapshots ... 41
5.5.12 Record and Playback ... 41
5.5.13 Google Play ... 41
5.5.14 Settings .. 41
5.5.15 Help .. 41

5.6 Working with Snapshots ... 41
5.7 Configuring Fingerprint Emulation ... 42
5.8 The Emulator in Tool Window Mode ... 43
5.9 Creating a Resizable Emulator ... 44
5.10 Summary .. 45

6. A Tour of the Android Studio User Interface .. 47
6.1 The Welcome Screen ... 47
6.2 The Main Window .. 48
6.3 The Tool Windows .. 49
6.4 Android Studio Keyboard Shortcuts .. 52
6.5 Switcher and Recent Files Navigation .. 53
6.6 Changing the Android Studio Theme .. 54
6.7 Summary .. 55

7. Testing Android Studio Apps on a Physical Android Device .. 57
7.1 An Overview of the Android Debug Bridge (ADB) ... 57
7.2 Enabling USB Debugging ADB on Android Devices ... 57

7.2.1 macOS ADB Configuration .. 58
7.2.2 Windows ADB Configuration .. 59
7.2.3 Linux adb Configuration ... 60

7.3 Resolving USB Connection Issues .. 60
7.4 Enabling Wireless Debugging on Android Devices ... 61
7.5 Testing the adb Connection ... 63
7.6 Device Mirroring ... 63
7.7 Summary .. 63

8. The Basics of the Android Studio Code Editor .. 65

iii

Table of Contents

8.1 The Android Studio Editor... 65
8.2 Splitting the Editor Window .. 67
8.3 Code Completion .. 68
8.4 Statement Completion .. 69
8.5 Parameter Information ... 70
8.6 Parameter Name Hints ... 70
8.7 Code Generation ... 70
8.8 Code Folding .. 71
8.9 Quick Documentation Lookup ... 72
8.10 Code Reformatting.. 73
8.11 Finding Sample Code ... 74
8.12 Live Templates ... 74
8.13 Summary .. 75

9. An Overview of the Android Architecture .. 77
9.1 The Android Software Stack .. 77
9.2 The Linux Kernel ... 78
9.3 Android Runtime – ART .. 78
9.4 Android Libraries .. 78

9.4.1 C/C++ Libraries ... 79
9.5 Application Framework .. 79
9.6 Applications ... 80
9.7 Summary .. 80

10. The Anatomy of an Android Application .. 81
10.1 Android Activities ... 81
10.2 Android Fragments ... 81
10.3 Android Intents ... 82
10.4 Broadcast Intents ... 82
10.5 Broadcast Receivers .. 82
10.6 Android Services ... 82
10.7 Content Providers ... 83
10.8 The Application Manifest ... 83
10.9 Application Resources .. 83
10.10 Application Context .. 83
10.11 Summary .. 83

11. An Overview of Android View Binding ... 85
11.1 Find View by Id ... 85
11.2 View Binding .. 85
11.3 Converting the AndroidSample project ... 86
11.4 Enabling View Binding ... 86
11.5 Using View Binding .. 86
11.6 Choosing an Option ... 87
11.7 View Binding in the Book Examples .. 87
11.8 Migrating a Project to View Binding .. 88
11.9 Summary .. 88

12. Understanding Android Application and Activity Lifecycles ... 91
12.1 Android Applications and Resource Management ... 91
12.2 Android Process States ... 91

iv

Table of Contents

12.2.1 Foreground Process ... 92
12.2.2 Visible Process .. 92
12.2.3 Service Process ... 92
12.2.4 Background Process ... 92
12.2.5 Empty Process .. 93

12.3 Inter-Process Dependencies ... 93
12.4 The Activity Lifecycle .. 93
12.5 The Activity Stack .. 93
12.6 Activity States .. 94
12.7 Configuration Changes .. 94
12.8 Handling State Change ... 95
12.9 Summary .. 95

13. Handling Android Activity State Changes... 97
13.1 New vs. Old Lifecycle Techniques ... 97
13.2 The Activity and Fragment Classes ... 97
13.3 Dynamic State vs. Persistent State ... 99
13.4 The Android Lifecycle Methods .. 100
13.5 Lifetimes ... 101
13.6 Foldable Devices and Multi-Resume .. 102
13.7 Disabling Configuration Change Restarts ... 102
13.8 Lifecycle Method Limitations .. 102
13.9 Summary .. 103

14. Android Activity State Changes by Example ... 105
14.1 Creating the State Change Example Project .. 105
14.2 Designing the User Interface ... 106
14.3 Overriding the Activity Lifecycle Methods ... 107
14.4 Filtering the Logcat Panel... 109
14.5 Running the Application .. 110
14.6 Experimenting with the Activity ... 111
14.7 Summary .. 112

15. Saving and Restoring the State of an Android Activity ... 113
15.1 Saving Dynamic State ... 113
15.2 Default Saving of User Interface State .. 113
15.3 The Bundle Class ... 114
15.4 Saving the State .. 115
15.5 Restoring the State .. 116
15.6 Testing the Application ... 116
15.7 Summary .. 116

16. Understanding Android Views, View Groups and Layouts .. 119
16.1 Designing for Different Android Devices .. 119
16.2 Views and View Groups ... 119
16.3 Android Layout Managers ... 119
16.4 The View Hierarchy .. 121
16.5 Creating User Interfaces ... 122
16.6 Summary .. 122

17. A Guide to the Android Studio Layout Editor Tool .. 123

v

Table of Contents

17.1 Basic vs. Empty Views Activity Templates ... 123
17.2 The Android Studio Layout Editor ... 127
17.3 Design Mode .. 127
17.4 The Palette .. 128
17.5 Design Mode and Layout Views.. 129
17.6 Night Mode .. 130
17.7 Code Mode ... 130
17.8 Split Mode .. 131
17.9 Setting Attributes... 131
17.10 Transforms ... 133
17.11 Tools Visibility Toggles ... 134
17.12 Converting Views .. 135
17.13 Displaying Sample Data ... 136
17.14 Creating a Custom Device Definition ... 137
17.15 Changing the Current Device.. 137
17.16 Layout Validation .. 138
17.17 Summary .. 139

18. A Guide to the Android ConstraintLayout .. 141
18.1 How ConstraintLayout Works ... 141

18.1.1 Constraints .. 141
18.1.2 Margins .. 142
18.1.3 Opposing Constraints.. 142
18.1.4 Constraint Bias ... 143
18.1.5 Chains .. 144
18.1.6 Chain Styles ... 144

18.2 Baseline Alignment ... 145
18.3 Configuring Widget Dimensions .. 145
18.4 Guideline Helper ... 146
18.5 Group Helper ... 146
18.6 Barrier Helper .. 146
18.7 Flow Helper .. 148
18.8 Ratios .. 149
18.9 ConstraintLayout Advantages ... 149
18.10 ConstraintLayout Availability.. 150
18.11 Summary .. 150

19. A Guide to Using ConstraintLayout in Android Studio ... 151
19.1 Design and Layout Views ... 151
19.2 Autoconnect Mode ... 152
19.3 Inference Mode .. 153
19.4 Manipulating Constraints Manually ... 153
19.5 Adding Constraints in the Inspector .. 154
19.6 Viewing Constraints in the Attributes Window .. 155
19.7 Deleting Constraints ... 156
19.8 Adjusting Constraint Bias .. 156
19.9 Understanding ConstraintLayout Margins .. 157
19.10 The Importance of Opposing Constraints and Bias ... 158
19.11 Configuring Widget Dimensions .. 160
19.12 Design Time Tools Positioning ... 161

vi

Table of Contents

19.13 Adding Guidelines .. 162
19.14 Adding Barriers ... 164
19.15 Adding a Group ... 165
19.16 Working with the Flow Helper .. 166
19.17 Widget Group Alignment and Distribution .. 167
19.18 Converting other Layouts to ConstraintLayout .. 168
19.19 Summary ... 168

20. Working with ConstraintLayout Chains and Ratios in Android Studio .. 169
20.1 Creating a Chain.. 169
20.2 Changing the Chain Style .. 171
20.3 Spread Inside Chain Style... 171
20.4 Packed Chain Style .. 172
20.5 Packed Chain Style with Bias ... 172
20.6 Weighted Chain ... 172
20.7 Working with Ratios ... 173
20.8 Summary .. 175

21. An Android Studio Layout Editor ConstraintLayout Tutorial ... 177
21.1 An Android Studio Layout Editor Tool Example ... 177
21.2 Preparing the Layout Editor Environment .. 177
21.3 Adding the Widgets to the User Interface.. 178
21.4 Adding the Constraints .. 181
21.5 Testing the Layout ... 182
21.6 Using the Layout Inspector .. 183
21.7 Summary .. 184

22. Manual XML Layout Design in Android Studio ... 185
22.1 Manually Creating an XML Layout .. 185
22.2 Manual XML vs. Visual Layout Design .. 188
22.3 Summary .. 188

23. Managing Constraints using Constraint Sets .. 189
23.1 Java Code vs. XML Layout Files .. 189
23.2 Creating Views ... 189
23.3 View Attributes .. 190
23.4 Constraint Sets ... 190

23.4.1 Establishing Connections.. 190
23.4.2 Applying Constraints to a Layout .. 190
23.4.3 Parent Constraint Connections .. 190
23.4.4 Sizing Constraints .. 191
23.4.5 Constraint Bias ... 191
23.4.6 Alignment Constraints .. 191
23.4.7 Copying and Applying Constraint Sets ... 191
23.4.8 ConstraintLayout Chains .. 191
23.4.9 Guidelines ... 192
23.4.10 Removing Constraints ... 192
23.4.11 Scaling.. 192
23.4.12 Rotation ... 193

23.5 Summary .. 193
24. An Android ConstraintSet Tutorial ... 195

vii

Table of Contents

24.1 Creating the Example Project in Android Studio ... 195
24.2 Adding Views to an Activity .. 195
24.3 Setting View Attributes ... 196
24.4 Creating View IDs ... 197
24.5 Configuring the Constraint Set ... 198
24.6 Adding the EditText View .. 199
24.7 Converting Density Independent Pixels (dp) to Pixels (px) .. 200
24.8 Summary .. 201

25. A Guide to using Apply Changes in Android Studio... 203
25.1 Introducing Apply Changes ... 203
25.2 Understanding Apply Changes Options .. 203
25.3 Using Apply Changes .. 204
25.4 Configuring Apply Changes Fallback Settings .. 205
25.5 An Apply Changes Tutorial.. 205
25.6 Using Apply Code Changes ... 205
25.7 Using Apply Changes and Restart Activity .. 206
25.8 Using Run App .. 206
25.9 Summary .. 206

26. An Overview and Example of Android Event Handling ... 207
26.1 Understanding Android Events... 207
26.2 Using the android:onClick Resource .. 207
26.3 Event Listeners and Callback Methods .. 208
26.4 An Event Handling Example ... 208
26.5 Designing the User Interface ... 209
26.6 The Event Listener and Callback Method .. 209
26.7 Consuming Events .. 211
26.8 Summary .. 212

27. Android Touch and Multi-touch Event Handling ... 213
27.1 Intercepting Touch Events ... 213
27.2 The MotionEvent Object .. 213
27.3 Understanding Touch Actions ... 214
27.4 Handling Multiple Touches ... 214
27.5 An Example Multi-Touch Application ... 214
27.6 Designing the Activity User Interface .. 215
27.7 Implementing the Touch Event Listener .. 215
27.8 Running the Example Application .. 218
27.9 Summary .. 219

28. Detecting Common Gestures Using the Android Gesture Detector Class ... 221
28.1 Implementing Common Gesture Detection .. 221
28.2 Creating an Example Gesture Detection Project .. 222
28.3 Implementing the Listener Class ... 222
28.4 Creating the GestureDetectorCompat Instance .. 224
28.5 Implementing the onTouchEvent() Method .. 225
28.6 Testing the Application ... 225
28.7 Summary .. 226

29. Implementing Custom Gesture and Pinch Recognition on Android ... 227

viii

Table of Contents

29.1 The Android Gesture Builder Application ... 227
29.2 The GestureOverlayView Class ... 227
29.3 Detecting Gestures .. 227
29.4 Identifying Specific Gestures ... 227
29.5 Installing and Running the Gesture Builder Application .. 228
29.6 Creating a Gestures File ... 228
29.7 Creating the Example Project .. 228
29.8 Extracting the Gestures File from the SD Card .. 229
29.9 Adding the Gestures File to the Project ... 229
29.10 Designing the User Interface ... 229
29.11 Loading the Gestures File .. 230
29.12 Registering the Event Listener ... 231
29.13 Implementing the onGesturePerformed Method ... 231
29.14 Testing the Application... 232
29.15 Configuring the GestureOverlayView .. 233
29.16 Intercepting Gestures.. 233
29.17 Detecting Pinch Gestures ... 233
29.18 A Pinch Gesture Example Project ... 234
29.19 Summary .. 236

30. An Introduction to Android Fragments .. 237
30.1 What is a Fragment? ... 237
30.2 Creating a Fragment ... 237
30.3 Adding a Fragment to an Activity using the Layout XML File ... 238
30.4 Adding and Managing Fragments in Code ... 240
30.5 Handling Fragment Events .. 241
30.6 Implementing Fragment Communication... 242
30.7 Summary ... 243

31. Using Fragments in Android Studio - An Example ... 245
31.1 About the Example Fragment Application .. 245
31.2 Creating the Example Project .. 245
31.3 Creating the First Fragment Layout .. 245
31.4 Migrating a Fragment to View Binding ... 247
31.5 Adding the Second Fragment .. 248
31.6 Adding the Fragments to the Activity .. 249
31.7 Making the Toolbar Fragment Talk to the Activity .. 250
31.8 Making the Activity Talk to the Text Fragment .. 253
31.9 Testing the Application ... 254
31.10 Summary .. 255

32. Modern Android App Architecture with Jetpack .. 257
32.1 What is Android Jetpack? .. 257
32.2 The “Old” Architecture ... 257
32.3 Modern Android Architecture .. 257
32.4 The ViewModel Component ... 258
32.5 The LiveData Component .. 258
32.6 ViewModel Saved State... 259
32.7 LiveData and Data Binding .. 260
32.8 Android Lifecycles .. 260
32.9 Repository Modules .. 260

ix

Table of Contents

32.10 Summary .. 261
33. An Android ViewModel Tutorial ... 263

33.1 About the Project .. 263
33.2 Creating the ViewModel Example Project ... 263
33.3 Removing Unwanted Project Elements .. 263
33.4 Designing the Fragment Layout .. 264
33.5 Implementing the View Model .. 265
33.6 Associating the Fragment with the View Model ... 266
33.7 Modifying the Fragment .. 267
33.8 Accessing the ViewModel Data ... 268
33.9 Testing the Project ... 268
33.10 Summary .. 269

34. An Android Jetpack LiveData Tutorial .. 271
34.1 LiveData - A Recap ... 271
34.2 Adding LiveData to the ViewModel ... 271
34.3 Implementing the Observer ... 273
34.4 Summary .. 275

35. An Overview of Android Jetpack Data Binding .. 277
35.1 An Overview of Data Binding ... 277
35.2 The Key Components of Data Binding .. 277

35.2.1 The Project Build Configuration .. 277
35.2.2 The Data Binding Layout File ... 278
35.2.3 The Layout File Data Element .. 279
35.2.4 The Binding Classes ... 280
35.2.5 Data Binding Variable Configuration .. 280
35.2.6 Binding Expressions (One-Way) .. 281
35.2.7 Binding Expressions (Two-Way) .. 282
35.2.8 Event and Listener Bindings ... 282

35.3 Summary .. 283
36. An Android Jetpack Data Binding Tutorial ... 285

36.1 Removing the Redundant Code .. 285
36.2 Enabling Data Binding ... 286
36.3 Adding the Layout Element ... 287
36.4 Adding the Data Element to Layout File .. 288
36.5 Working with the Binding Class ... 289
36.6 Assigning the ViewModel Instance to the Data Binding Variable ... 290
36.7 Adding Binding Expressions ... 290
36.8 Adding the Conversion Method ... 291
36.9 Adding a Listener Binding ... 291
36.10 Testing the App .. 292
36.11 Summary .. 292

37. An Android ViewModel Saved State Tutorial .. 293
37.1 Understanding ViewModel State Saving .. 293
37.2 Implementing ViewModel State Saving ... 293
37.3 Saving and Restoring State ... 295
37.4 Adding Saved State Support to the ViewModelDemo Project .. 295

x

Table of Contents

37.5 Summary .. 297
38. Working with Android Lifecycle-Aware Components .. 299

38.1 Lifecycle Awareness .. 299
38.2 Lifecycle Owners ... 299
38.3 Lifecycle Observers ... 300
38.4 Lifecycle States and Events ... 301
38.5 Summary .. 302

39. An Android Jetpack Lifecycle Awareness Tutorial .. 303
39.1 Creating the Example Lifecycle Project .. 303
39.2 Creating a Lifecycle Observer .. 303
39.3 Adding the Observer .. 305
39.4 Testing the Observer ... 305
39.5 Creating a Lifecycle Owner .. 305
39.6 Testing the Custom Lifecycle Owner .. 307
39.7 Summary .. 308

40. An Overview of the Navigation Architecture Component .. 309
40.1 Understanding Navigation ... 309
40.2 Declaring a Navigation Host .. 310
40.3 The Navigation Graph .. 312
40.4 Accessing the Navigation Controller .. 313
40.5 Triggering a Navigation Action ... 313
40.6 Passing Arguments .. 314
40.7 Summary .. 314

41. An Android Jetpack Navigation Component Tutorial .. 315
41.1 Creating the NavigationDemo Project ... 315
41.2 Adding Navigation to the Build Configuration... 315
41.3 Creating the Navigation Graph Resource File ... 316
41.4 Declaring a Navigation Host .. 317
41.5 Adding Navigation Destinations ... 318
41.6 Designing the Destination Fragment Layouts ... 320
41.7 Adding an Action to the Navigation Graph... 321
41.8 Implement the OnFragmentInteractionListener .. 323
41.9 Adding View Binding Support to the Destination Fragments .. 324
41.10 Triggering the Action ... 324
41.11 Passing Data Using Safeargs .. 325
41.12 Summary .. 328

42. An Introduction to MotionLayout ... 329
42.1 An Overview of MotionLayout ... 329
42.2 MotionLayout .. 329
42.3 MotionScene .. 329
42.4 Configuring ConstraintSets ... 330
42.5 Custom Attributes ... 331
42.6 Triggering an Animation .. 332
42.7 Arc Motion ... 334
42.8 Keyframes ... 334

42.8.1 Attribute Keyframes ... 334

xi

Table of Contents

42.8.2 Position Keyframes .. 335
42.9 Time Linearity ... 338
42.10 KeyTrigger .. 338
42.11 Cycle and Time Cycle Keyframes ... 339
42.12 Starting an Animation from Code .. 339
42.13 Summary .. 340

43. An Android MotionLayout Editor Tutorial ... 341
43.1 Creating the MotionLayoutDemo Project ... 341
43.2 ConstraintLayout to MotionLayout Conversion .. 341
43.3 Configuring Start and End Constraints ... 343
43.4 Previewing the MotionLayout Animation ... 345
43.5 Adding an OnClick Gesture .. 346
43.6 Adding an Attribute Keyframe to the Transition .. 347
43.7 Adding a CustomAttribute to a Transition .. 350
43.8 Adding Position Keyframes ... 351
43.9 Summary .. 354

44. A MotionLayout KeyCycle Tutorial ... 355
44.1 An Overview of Cycle Keyframes ... 355
44.2 Using the Cycle Editor .. 359
44.3 Creating the KeyCycleDemo Project .. 360
44.4 Configuring the Start and End Constraints ... 360
44.5 Creating the Cycles ... 362
44.6 Previewing the Animation ... 364
44.7 Adding the KeyFrameSet to the MotionScene .. 364
44.8 Summary .. 366

45. Working with the Floating Action Button and Snackbar .. 367
45.1 The Material Design .. 367
45.2 The Design Library ... 367
45.3 The Floating Action Button (FAB) ... 367
45.4 The Snackbar .. 368
45.5 Creating the Example Project .. 369
45.6 Reviewing the Project ... 369
45.7 Removing Navigation Features.. 370
45.8 Changing the Floating Action Button .. 371
45.9 Adding an Action to the Snackbar .. 372
45.10 Summary .. 372

46. Creating a Tabbed Interface using the TabLayout Component .. 375
46.1 An Introduction to the ViewPager2 ... 375
46.2 An Overview of the TabLayout Component ... 375
46.3 Creating the TabLayoutDemo Project .. 376
46.4 Creating the First Fragment ... 377
46.5 Duplicating the Fragments... 378
46.6 Adding the TabLayout and ViewPager2 ... 379
46.7 Performing the Initialization Tasks ... 381
46.8 Testing the Application ... 383
46.9 Customizing the TabLayout ... 383
46.10 Summary .. 385

xii

Table of Contents

47. Working with the RecyclerView and CardView Widgets .. 387
47.1 An Overview of the RecyclerView .. 387
47.2 An Overview of the CardView .. 389
47.3 Summary .. 390

48. An Android RecyclerView and CardView Tutorial ... 391
48.1 Creating the CardDemo Project.. 391
48.2 Modifying the Basic Views Activity Project .. 391
48.3 Designing the CardView Layout ... 392
48.4 Adding the RecyclerView ... 393
48.5 Adding the Image Files ... 393
48.6 Creating the RecyclerView Adapter .. 394
48.7 Initializing the RecyclerView Component ... 396
48.8 Testing the Application ... 397
48.9 Responding to Card Selections.. 397
48.10 Summary .. 399

49. A Layout Editor Sample Data Tutorial .. 401
49.1 Adding Sample Data to a Project .. 401
49.2 Using Custom Sample Data ... 405
49.3 Summary .. 408

50. Working with the AppBar and Collapsing Toolbar Layouts ... 409
50.1 The Anatomy of an AppBar ... 409
50.2 The Example Project ... 410
50.3 Coordinating the RecyclerView and Toolbar .. 410
50.4 Introducing the Collapsing Toolbar Layout .. 412
50.5 Changing the Title and Scrim Color .. 415
50.6 Summary .. 416

51. An Android Studio Primary/Detail Flow Tutorial .. 417
51.1 The Primary/Detail Flow .. 417
51.2 Creating a Primary/Detail Flow Activity ... 418
51.3 Adding the Primary/Detail Flow Activity .. 418
51.4 Modifying the Primary/Detail Flow Template .. 419
51.5 Changing the Content Model .. 419
51.6 Changing the Detail Pane .. 421
51.7 Modifying the ItemDetailFragment Class ... 422
51.8 Modifying the ItemListFragment Class .. 423
51.9 Adding Manifest Permissions .. 424
51.10 Running the Application .. 424
51.11 Summary .. 425

52. An Overview of Android Services .. 427
52.1 Intent Service ... 427
52.2 Bound Service .. 427
52.3 The Anatomy of a Service .. 428
52.4 Controlling Destroyed Service Restart Options.. 428
52.5 Declaring a Service in the Manifest File ... 428
52.6 Starting a Service Running on System Startup .. 430
52.7 Summary .. 430

xiii

Table of Contents

53. An Overview of Android Intents ... 431
53.1 An Overview of Intents .. 431
53.2 Explicit Intents ... 431
53.3 Returning Data from an Activity .. 432
53.4 Implicit Intents .. 433
53.5 Using Intent Filters .. 434
53.6 Automatic Link Verification .. 435
53.7 Manually Enabling Links ... 437
53.8 Checking Intent Availability .. 438
53.9 Summary .. 439

54. Android Explicit Intents – A Worked Example ... 441
54.1 Creating the Explicit Intent Example Application .. 441
54.2 Designing the User Interface Layout for MainActivity .. 441
54.3 Creating the Second Activity Class ... 442
54.4 Designing the User Interface Layout for SecondActivity .. 443
54.5 Reviewing the Application Manifest File ... 443
54.6 Creating the Intent .. 444
54.7 Extracting Intent Data .. 445
54.8 Launching SecondActivity as a Sub-Activity ... 446
54.9 Returning Data from a Sub-Activity... 447
54.10 Testing the Application... 447
54.11 Summary .. 447

55. Android Implicit Intents – A Worked Example .. 449
55.1 Creating the Android Studio Implicit Intent Example Project ... 449
55.2 Designing the User Interface ... 449
55.3 Creating the Implicit Intent ... 450
55.4 Adding a Second Matching Activity ... 451
55.5 Adding the Web View to the UI .. 451
55.6 Obtaining the Intent URL .. 452
55.7 Modifying the MyWebView Project Manifest File ... 453
55.8 Installing the MyWebView Package on a Device .. 454
55.9 Testing the Application ... 455
55.10 Manually Enabling the Link .. 455
55.11 Automatic Link Verification .. 457
55.12 Summary .. 459

56. Android Broadcast Intents and Broadcast Receivers .. 461
56.1 An Overview of Broadcast Intents .. 461
56.2 An Overview of Broadcast Receivers ... 462
56.3 Obtaining Results from a Broadcast ... 463
56.4 Sticky Broadcast Intents ... 463
56.5 The Broadcast Intent Example ... 464
56.6 Creating the Example Application .. 464
56.7 Creating and Sending the Broadcast Intent ... 464
56.8 Creating the Broadcast Receiver ... 465
56.9 Registering the Broadcast Receiver ... 466
56.10 Testing the Broadcast Example ... 467
56.11 Listening for System Broadcasts .. 467

xiv

Table of Contents

56.12 Summary .. 468
57. Android Local Bound Services – A Worked Example ... 469

57.1 Understanding Bound Services ... 469
57.2 Bound Service Interaction Options .. 469
57.3 A Local Bound Service Example ... 469
57.4 Adding a Bound Service to the Project .. 470
57.5 Implementing the Binder ... 470
57.6 Binding the Client to the Service .. 473
57.7 Completing the Example .. 474
57.8 Testing the Application ... 475
57.9 Summary .. 475

58. Android Remote Bound Services – A Worked Example ... 477
58.1 Client to Remote Service Communication .. 477
58.2 Creating the Example Application .. 477
58.3 Designing the User Interface ... 477
58.4 Implementing the Remote Bound Service ... 478
58.5 Configuring a Remote Service in the Manifest File .. 479
58.6 Launching and Binding to the Remote Service ... 480
58.7 Sending a Message to the Remote Service ... 481
58.8 Summary .. 482

59. A Basic Overview of Java Threads, Handlers and Executors ... 483
59.1 The Application Main Thread .. 483
59.2 Thread Handlers .. 483
59.3 A Threading Example ... 483
59.4 Building the App ... 484
59.5 Creating a New Thread ... 485
59.6 Implementing a Thread Handler ... 486
59.7 Passing a Message to the Handler ... 488
59.8 Java Executor Concurrency ... 488
59.9 Working with Runnable Tasks ... 489
59.10 Shutting down an Executor Service .. 490
59.11 Working with Callable Tasks and Futures ... 490
59.12 Handling a Future Result ... 492
59.13 Scheduling Tasks ... 493
59.14 Summary .. 494

60. Making Runtime Permission Requests in Android ... 495
60.1 Understanding Normal and Dangerous Permissions ... 495
60.2 Creating the Permissions Example Project .. 497
60.3 Checking for a Permission ... 497
60.4 Requesting Permission at Runtime ... 499
60.5 Providing a Rationale for the Permission Request ... 500
60.6 Testing the Permissions App .. 502
60.7 Summary .. 502

61. An Android Notifications Tutorial .. 503
61.1 An Overview of Notifications .. 503
61.2 Creating the NotifyDemo Project ... 505

xv

Table of Contents

61.3 Designing the User Interface ... 505
61.4 Creating the Second Activity ... 505
61.5 Creating a Notification Channel ... 506
61.6 Requesting Notification Permission ... 507
61.7 Creating and Issuing a Notification .. 510
61.8 Launching an Activity from a Notification .. 512
61.9 Adding Actions to a Notification .. 514
61.10 Bundled Notifications ... 515
61.11 Summary .. 517

62. An Android Direct Reply Notification Tutorial .. 519
62.1 Creating the DirectReply Project .. 519
62.2 Designing the User Interface ... 519
62.3 Requesting Notification Permission ... 520
62.4 Creating the Notification Channel .. 521
62.5 Building the RemoteInput Object ... 522
62.6 Creating the PendingIntent .. 523
62.7 Creating the Reply Action .. 524
62.8 Receiving Direct Reply Input ... 526
62.9 Updating the Notification .. 527
62.10 Summary .. 529

63. Foldable Devices and Multi-Window Support ... 531
63.1 Foldables and Multi-Window Support ... 531
63.2 Using a Foldable Emulator ... 532
63.3 Entering Multi-Window Mode ... 533
63.4 Enabling and using Freeform Support ... 534
63.5 Checking for Freeform Support .. 534
63.6 Enabling Multi-Window Support in an App ... 534
63.7 Specifying Multi-Window Attributes ... 535
63.8 Detecting Multi-Window Mode in an Activity ... 536
63.9 Receiving Multi-Window Notifications ... 536
63.10 Launching an Activity in Multi-Window Mode ... 537
63.11 Configuring Freeform Activity Size and Position ... 537
63.12 Summary .. 538

64. An Overview of Android SQLite Databases .. 539
64.1 Understanding Database Tables .. 539
64.2 Introducing Database Schema .. 539
64.3 Columns and Data Types .. 539
64.4 Database Rows .. 540
64.5 Introducing Primary Keys ... 540
64.6 What is SQLite? ... 540
64.7 Structured Query Language (SQL) ... 540
64.8 Trying SQLite on an Android Virtual Device (AVD) .. 541
64.9 The Android Room Persistence Library ... 543
64.10 Summary .. 543

65. The Android Room Persistence Library .. 545
65.1 Revisiting Modern App Architecture ... 545
65.2 Key Elements of Room Database Persistence .. 545

xvi

Table of Contents

65.2.1 Repository ... 546
65.2.2 Room Database .. 546
65.2.3 Data Access Object (DAO) ... 546
65.2.4 Entities ... 546
65.2.5 SQLite Database ... 546

65.3 Understanding Entities ... 547
65.4 Data Access Objects .. 550
65.5 The Room Database .. 551
65.6 The Repository ... 552
65.7 In-Memory Databases .. 553
65.8 Database Inspector .. 553
65.9 Summary .. 553

66. An Android TableLayout and TableRow Tutorial ... 555
66.1 The TableLayout and TableRow Layout Views .. 555
66.2 Creating the Room Database Project ... 556
66.3 Converting to a LinearLayout.. 556
66.4 Adding the TableLayout to the User Interface... 557
66.5 Configuring the TableRows ... 558
66.6 Adding the Button Bar to the Layout ... 559
66.7 Adding the RecyclerView ... 560
66.8 Adjusting the Layout Margins ... 561
66.9 Summary .. 561

67. An Android Room Database and Repository Tutorial .. 563
67.1 About the RoomDemo Project .. 563
67.2 Modifying the Build Configuration .. 563
67.3 Building the Entity .. 563
67.4 Creating the Data Access Object ... 565
67.5 Adding the Room Database ... 566
67.6 Adding the Repository ... 567
67.7 Adding the ViewModel .. 570
67.8 Creating the Product Item Layout .. 571
67.9 Adding the RecyclerView Adapter .. 571
67.10 Preparing the Main Activity .. 573
67.11 Adding the Button Listeners .. 574
67.12 Adding LiveData Observers .. 575
67.13 Initializing the RecyclerView ... 575
67.14 Testing the RoomDemo App ... 576
67.15 Using the Database Inspector .. 576
67.16 Summary .. 577

68. Accessing Cloud Storage using the Android Storage Access Framework ... 579
68.1 The Storage Access Framework ... 579
68.2 Working with the Storage Access Framework .. 580
68.3 Filtering Picker File Listings .. 580
68.4 Handling Intent Results .. 581
68.5 Reading the Content of a File .. 581
68.6 Writing Content to a File ... 582
68.7 Deleting a File .. 583
68.8 Gaining Persistent Access to a File.. 583

xvii

Table of Contents

68.9 Summary .. 583
69. An Android Storage Access Framework Example ... 585

69.1 About the Storage Access Framework Example .. 585
69.2 Creating the Storage Access Framework Example .. 585
69.3 Designing the User Interface ... 585
69.4 Adding the Activity Launchers .. 586
69.5 Creating a New Storage File ... 588
69.6 Saving to a Storage File ... 588
69.7 Opening and Reading a Storage File .. 590
69.8 Testing the Storage Access Application .. 591
69.9 Summary .. 592

70. Video Playback on Android using the VideoView and MediaController Classes 593
70.1 Introducing the Android VideoView Class ... 593
70.2 Introducing the Android MediaController Class ... 594
70.3 Creating the Video Playback Example ... 594
70.4 Designing the VideoPlayer Layout ... 594
70.5 Downloading the Video File .. 595
70.6 Configuring the VideoView ... 595
70.7 Adding the MediaController to the Video View ... 597
70.8 Setting up the onPreparedListener ... 597
70.9 Summary .. 598

71. Android Picture-in-Picture Mode .. 599
71.1 Picture-in-Picture Features .. 599
71.2 Enabling Picture-in-Picture Mode .. 600
71.3 Configuring Picture-in-Picture Parameters .. 600
71.4 Entering Picture-in-Picture Mode .. 601
71.5 Detecting Picture-in-Picture Mode Changes .. 601
71.6 Adding Picture-in-Picture Actions ... 602
71.7 Summary .. 602

72. An Android Picture-in-Picture Tutorial .. 605
72.1 Adding Picture-in-Picture Support to the Manifest ... 605
72.2 Adding a Picture-in-Picture Button ... 605
72.3 Entering Picture-in-Picture Mode .. 606
72.4 Detecting Picture-in-Picture Mode Changes .. 607
72.5 Adding a Broadcast Receiver ... 608
72.6 Adding the PiP Action .. 609
72.7 Testing the Picture-in-Picture Action .. 612
72.8 Summary .. 612

73. Android Audio Recording and Playback using MediaPlayer and MediaRecorder 613
73.1 Playing Audio .. 613
73.2 Recording Audio and Video using the MediaRecorder Class ... 614
73.3 About the Example Project .. 615
73.4 Creating the AudioApp Project ... 615
73.5 Designing the User Interface ... 615
73.6 Checking for Microphone Availability ... 616
73.7 Initializing the Activity ... 617

xviii

Table of Contents

73.8 Implementing the recordAudio() Method ... 618
73.9 Implementing the stopAudio() Method ... 618
73.10 Implementing the playAudio() method ... 619
73.11 Configuring and Requesting Permissions ... 619
73.12 Testing the Application... 621
73.13 Summary .. 622

74. Working with the Google Maps Android API in Android Studio .. 623
74.1 The Elements of the Google Maps Android API .. 623
74.2 Creating the Google Maps Project .. 624
74.3 Creating a Google Cloud Billing Account ... 624
74.4 Creating a New Google Cloud Project ... 625
74.5 Enabling the Google Maps SDK .. 626
74.6 Generating a Google Maps API Key ... 627
74.7 Adding the API Key to the Android Studio Project ... 628
74.8 Testing the Application ... 629
74.9 Understanding Geocoding and Reverse Geocoding .. 629
74.10 Adding a Map to an Application ... 631
74.11 Requesting Current Location Permission .. 631
74.12 Displaying the User’s Current Location ... 632
74.13 Changing the Map Type ... 634
74.14 Displaying Map Controls to the User ... 635
74.15 Handling Map Gesture Interaction ... 635

74.15.1 Map Zooming Gestures ... 636
74.15.2 Map Scrolling/Panning Gestures ... 636
74.15.3 Map Tilt Gestures ... 636
74.15.4 Map Rotation Gestures .. 636

74.16 Creating Map Markers .. 637
74.17 Controlling the Map Camera .. 637
74.18 Summary .. 639

75. Printing with the Android Printing Framework ... 641
75.1 The Android Printing Architecture .. 641
75.2 The Print Service Plugins ... 641
75.3 Google Cloud Print ... 642
75.4 Printing to Google Drive .. 642
75.5 Save as PDF .. 643
75.6 Printing from Android Devices .. 643
75.7 Options for Building Print Support into Android Apps .. 644

75.7.1 Image Printing .. 644
75.7.2 Creating and Printing HTML Content ... 645
75.7.3 Printing a Web Page ... 646
75.7.4 Printing a Custom Document .. 647

75.8 Summary .. 647
76. An Android HTML and Web Content Printing Example ... 649

76.1 Creating the HTML Printing Example Application ... 649
76.2 Printing Dynamic HTML Content ... 649
76.3 Creating the Web Page Printing Example .. 652
76.4 Removing the Floating Action Button ... 652
76.5 Removing Navigation Features.. 652

xix

Table of Contents

76.6 Designing the User Interface Layout .. 654
76.7 Accessing the WebView from the Main Activity .. 654
76.8 Loading the Web Page into the WebView .. 655
76.9 Adding the Print Menu Option ... 656
76.10 Summary .. 657

77. A Guide to Android Custom Document Printing ... 659
77.1 An Overview of Android Custom Document Printing ... 659

77.1.1 Custom Print Adapters .. 659
77.2 Preparing the Custom Document Printing Project .. 660
77.3 Creating the Custom Print Adapter .. 661
77.4 Implementing the onLayout() Callback Method .. 662
77.5 Implementing the onWrite() Callback Method .. 665
77.6 Checking a Page is in Range .. 667
77.7 Drawing the Content on the Page Canvas ... 668
77.8 Starting the Print Job .. 670
77.9 Testing the Application ... 671
77.10 Summary .. 671

78. An Introduction to Android App Links ... 673
78.1 An Overview of Android App Links .. 673
78.2 App Link Intent Filters ... 673
78.3 Handling App Link Intents .. 674
78.4 Associating the App with a Website.. 674
78.5 Summary .. 675

79. An Android Studio App Links Tutorial ... 677
79.1 About the Example App ... 677
79.2 The Database Schema ... 677
79.3 Loading and Running the Project ... 678
79.4 Adding the URL Mapping .. 679
79.5 Adding the Intent Filter .. 682
79.6 Adding Intent Handling Code ... 682
79.7 Testing the App .. 685
79.8 Creating the Digital Asset Links File .. 685
79.9 Testing the App Link ... 686
79.10 Summary .. 686

80. An Android Biometric Authentication Tutorial.. 687
80.1 An Overview of Biometric Authentication .. 687
80.2 Creating the Biometric Authentication Project .. 687
80.3 Configuring Device Fingerprint Authentication .. 688
80.4 Adding the Biometric Permission to the Manifest File .. 688
80.5 Designing the User Interface ... 689
80.6 Adding a Toast Convenience Method .. 689
80.7 Checking the Security Settings .. 690
80.8 Configuring the Authentication Callbacks .. 691
80.9 Adding the CancellationSignal .. 692
80.10 Starting the Biometric Prompt .. 692
80.11 Testing the Project ... 693
80.12 Summary .. 694

xx

Table of Contents

81. Creating, Testing and Uploading an Android App Bundle ... 695
81.1 The Release Preparation Process ... 695
81.2 Android App Bundles ... 695
81.3 Register for a Google Play Developer Console Account .. 696
81.4 Configuring the App in the Console .. 697
81.5 Enabling Google Play App Signing ... 698
81.6 Creating a Keystore File ... 698
81.7 Creating the Android App Bundle .. 700
81.8 Generating Test APK Files ... 701
81.9 Uploading the App Bundle to the Google Play Developer Console 702
81.10 Exploring the App Bundle ... 703
81.11 Managing Testers .. 704
81.12 Rolling the App Out for Testing .. 704
81.13 Uploading New App Bundle Revisions .. 705
81.14 Analyzing the App Bundle File ... 706
81.15 Summary .. 706

82. An Overview of Android In-App Billing ... 709
82.1 Preparing a Project for In-App Purchasing ... 709
82.2 Creating In-App Products and Subscriptions ... 709
82.3 Billing Client Initialization... 710
82.4 Connecting to the Google Play Billing Library ... 711
82.5 Querying Available Products ... 712
82.6 Starting the Purchase Process .. 712
82.7 Completing the Purchase ... 713
82.8 Querying Previous Purchases .. 714
82.9 Summary .. 715

83. An Android In-App Purchasing Tutorial .. 717
83.1 About the In-App Purchasing Example Project .. 717
83.2 Creating the InAppPurchase Project .. 717
83.3 Adding Libraries to the Project ... 717
83.4 Designing the User Interface ... 718
83.5 Adding the App to the Google Play Store .. 718
83.6 Creating an In-App Product .. 719
83.7 Enabling License Testers .. 719
83.8 Initializing the Billing Client ... 720
83.9 Querying the Product ... 722
83.10 Launching the Purchase Flow ... 723
83.11 Handling Purchase Updates .. 723
83.12 Consuming the Product ... 724
83.13 Restoring a Previous Purchase .. 725
83.14 Testing the App .. 726
83.15 Troubleshooting .. 727
83.16 Summary .. 728

84. An Overview of Android Dynamic Feature Modules .. 729
84.1 An Overview of Dynamic Feature Modules .. 729
84.2 Dynamic Feature Module Architecture ... 729
84.3 Creating a Dynamic Feature Module ... 730

xxi

Table of Contents

84.4 Converting an Existing Module for Dynamic Delivery ... 732
84.5 Working with Dynamic Feature Modules .. 735
84.6 Handling Large Dynamic Feature Modules .. 737
84.7 Summary .. 738

85. An Android Studio Dynamic Feature Tutorial .. 739
85.1 Creating the DynamicFeature Project .. 739
85.2 Adding Dynamic Feature Support to the Project ... 739
85.3 Designing the Base Activity User Interface ... 740
85.4 Adding the Dynamic Feature Module .. 741
85.5 Reviewing the Dynamic Feature Module... 742
85.6 Adding the Dynamic Feature Activity .. 743
85.7 Implementing the launchIntent() Method... 746
85.8 Uploading the App Bundle for Testing ... 747
85.9 Implementing the installFeature() Method ... 748
85.10 Adding the Update Listener ... 750
85.11 Using Deferred Installation ... 753
85.12 Removing a Dynamic Module .. 753
85.13 Summary .. 754

86. Working with Material Design 3 Theming .. 755
86.1 Material Design 2 vs Material Design 3 ... 755
86.2 Understanding Material Design Theming ... 755
86.3 Material Design 3 Theming ... 755
86.4 Building a Custom Theme.. 757
86.5 Summary .. 758

87. A Material Design 3 Theming and Dynamic Color Tutorial ... 759
87.1 Creating the ThemeDemo Project .. 759
87.2 Designing the User Interface ... 759
87.3 Building a New Theme ... 761
87.4 Adding the Theme to the Project .. 762
87.5 Enabling Dynamic Color Support .. 763
87.6 Previewing Dynamic Colors .. 764
87.7 Summary .. 765

88. An Overview of Gradle in Android Studio .. 767
88.1 An Overview of Gradle .. 767
88.2 Gradle and Android Studio ... 767

88.2.1 Sensible Defaults .. 767
88.2.2 Dependencies.. 767
88.2.3 Build Variants ... 768
88.2.4 Manifest Entries ... 768
88.2.5 APK Signing .. 768
88.2.6 ProGuard Support .. 768

88.3 The Property and Settings Gradle Build File ... 768
88.4 The Top-level Gradle Build File ... 769
88.5 Module Level Gradle Build Files ... 770
88.6 Configuring Signing Settings in the Build File .. 772
88.7 Running Gradle Tasks from the Command-line .. 773
88.8 Summary .. 774

xxii

Table of Contents

Index ... 775

1

Chapter 1

1. Introduction
Fully updated for Android Studio Flamingo, this book aims to teach you how to develop Android-based
applications using the Java programming language.

This book begins with the basics and outlines how to set up an Android development and testing environment,
followed by an overview of areas such as tool windows, the code editor, and the Layout Editor tool. An
introduction to the architecture of Android is followed by an in-depth look at the design of Android applications
and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components, including view models, lifecycle
management, Room database access, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the
ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers,
and direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App Links, Dynamic Delivery, Gradle build
configuration, in-app billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some Java programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples
The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/flamingojava/index.php

The steps to load a project from the code samples into Android Studio are as follows:

1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback
We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/retail/flamingojava/index.php
mailto:feedback%40ebookfrenzy.com?subject=

2

Introduction

1.3 Errata
While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/flamingojava.html

If you find an error not listed in the errata, please let us know by emailing our technical support team at feedback@
ebookfrenzy.com. They are there to help you and will work to resolve any problems you may encounter.

https://www.ebookfrenzy.com/errata/flamingojava.html
mailto:feedback%40ebookfrenzy.com?subject=
mailto:feedback%40ebookfrenzy.com?subject=

3

Chapter 2

2. Setting up an Android Studio
Development Environment
Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE) which also includes the Android Software Development Kit (SDK)
and OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements
Android application development may be performed on any of the following system types:

• Windows 8/10/11 64-bit

• macOS 10.14 or later running on Intel or Apple silicon

• Chrome OS device with Intel i5 or higher

• Linux systems with version 2.31 or later of the GNU C Library (glibc)

• Minimum of 8GB of RAM

• Approximately 8GB of available disk space

• 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package
Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Flamingo 2022.2.1
using the Android API 33 SDK (Tiramisu) which, at the time of writing, are the latest versions.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that
there may be some minor differences between this book and the software. A web search for “Android Studio
Flamingo” should provide the option to download the older version if these differences become a problem.
Alternatively, visit the following web page to find Android Studio Flamingo 2022.2.1 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

4

Setting up an Android Studio Development Environment

2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11 this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS
Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1
To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

5

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:
unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Assuming,
therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:
./studio.sh

When running on a 64-bit Linux system, it may be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:
sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386 lib32z1 libbz2-
1.0:i386

On Red Hat and Fedora-based 64-bit systems, use the following command:
sudo yum install zlib.i686 ncurses-libs.i686 bzip2-libs.i686

2.4 The Android Studio setup wizard
If you have previously installed an earlier version of Android Studio, the first time this new version is launched,
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have
settings from a previous version and would like to import them into the latest installation, select the appropriate
option and location. Alternatively, indicate that you do not need to import any previous settings and click on
the OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2
If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select
the Standard installation option before clicking Next.

6

Setting up an Android Studio Development Environment

Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click on the
Finish button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen using your chosen UI theme:

Figure 2-4

2.5 Installing additional Android SDK packages
The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

7

Setting up an Android Studio Development Environment

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Preferences
dialog will appear as shown in Figure 2-5:

Figure 2-5
Immediately after installing Android Studio for the first time it is likely that only the latest released version of
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button. The rest of this book assumes that the Android
Tiramisu (API Level 33) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo). This
is to ensure that the apps run on a wide range of Android devices. Within the list of SDK versions, enable the
checkbox next to Android 8.0 (Oreo) and click on the Apply button. In the resulting confirmation dialog click
on the OK button to install the SDK. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

Figure 2-6
The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To

8

Setting up an Android Studio Development Environment

view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7
Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

• Android SDK Build-tools

• Android Emulator

• Android SDK Platform-tools

• Google Play Services

• Intel x86 Emulator Accelerator (HAXM installer)*

• Google USB Driver (Windows only)

• Layout Inspector image server for API 31 and T
*Note the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based Macs.

If any of the above packages are listed as Not Installed or requiring an update, simply select the checkboxes
next to those packages and click on the Apply button to initiate the installation process. If the HAXM emulator
settings dialog appears, select the recommended memory allocation:

Figure 2-8
Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the

9

Setting up an Android Studio Development Environment

Apply button again.

2.6 Installing the Android SDK Command-line Tools
Android Studio includes a set of tools that allow some tasks to be performed from your operating system
command line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab and
enable the Show Package Details option in the bottom left-hand corner of the window. Next, scroll down the
list of packages and, when the Android SDK Command-line Tools (latest) package comes into view, enable it as
shown in Figure 2-9:

Figure 2-9

After you have selected the command-line tools package, click on Apply followed by OK to complete the
installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add
them to the system’s PATH environment variable.

Regardless of your operating system, you will need to configure the PATH environment variable to include the
following paths (where <path_to_android_sdk_installation> represents the file system location into which you
installed the Android SDK):
<path_to_android_sdk_installation>/sdk/cmdline-tools/latest/bin

<path_to_android_sdk_installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:

10

Setting up an Android Studio Development Environment

Figure 2-10
Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1
1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from

the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on the Edit… button. Using the New button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the following
entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click on OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering cmd into the Run
dialog. Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.

Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

11

Setting up an Android Studio Development Environment

2.6.3 Windows 11
Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click on the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux
On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:
export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS
Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management
Android Studio is a large and complex software application that consists of many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-11
To view and modify the current memory configuration, select the File -> Settings... (Android Studio ->

12

Setting up an Android Studio Development Environment

Preferences... on macOS) menu option and, in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure
2-12 below:

Figure 2-12
When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the currently
loaded project. On the other hand, when a project is built and run from within Android Studio, a number of
background processes (referred to as daemons) perform the task of compiling and running the app.
When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an
open project, select the Tools -> SDK Manager... menu option.

2.8 Updating Android Studio and the SDK
From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

2.9 Summary
Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS, and Linux.

13

Chapter 3

3. Creating an Example Android App
in Android Studio
The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
the development of Android applications using the Android Studio IDE. Before moving on to slightly more
advanced topics, now is a good time to validate that all of the required development packages are installed and
functioning correctly. The best way to achieve this goal is to create an Android application and compile and run
it. This chapter will cover the creation of an Android application project using Android Studio. Once the project
has been created, a later chapter will explore the use of the Android emulator environment to perform a test run
of the application.

3.1 About the Project
The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also make use of one of the most basic of Android Studio project templates. This simplicity allows us to introduce
some of the key aspects of Android app development without overwhelming the beginner by trying to introduce
too many concepts, such as the recommended app architecture and Android architecture components, at once.
When following the tutorial in this chapter, rest assured that all of the techniques and code used in this initial
example project will be covered in much greater detail in later chapters.

3.2 Creating a New Android Project
The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1
Once this window appears, Android Studio is ready for a new project to be created. To create the new project,

14

Creating an Example Android App in Android Studio

simply click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity
The first step is to define the type of initial activity that is to be created for the application. Options are available
to create projects for Phone and Tablet, Wear OS, TV, Android Audio or Android Things. A range of different
activity types is available when developing Android applications, many of which will be covered extensively in
later chapters. For the purposes of this example, however, simply select the Phone and Tablet option from the
Templates panel followed by the option to create an Empty Views Activity. The Empty Views Activity option
creates a template user interface consisting of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings
In the project configuration window (), set the Name field to AndroidSample. The application name is the name
by which the application will be referenced and identified within Android Studio and is also the name that
would be used if the completed application were to go on sale in the Google Play store.

The Package name is used to uniquely identify the application within the Android application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the name of the application. For example, if your domain is www.
mycompany.com, and the application has been named AndroidSample, then the package name might be specified
as follows:
com.mycompany.androidsample

If you do not have a domain name you can enter any other string into the Company Domain field, or you may
use example.com for the purposes of testing, though this will need to be changed before an application can be
published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in

15

Creating an Example Android App in Android Studio

most of the projects created in this book unless a necessary feature is only available in a more recent version. The
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK
setting will outline the percentage of Android devices currently in use on which the app will run. Click on the
Help me choose button (highlighted in Figure 3-3) to see a full breakdown of the various Android versions still
in use:

Figure 3-3
Finally, change the Language menu to Java and click on Finish to initiate the project creation process.

3.5 Modifying the Example Application
At this point, Android Studio has created a minimal example application project and opened the main window.

Figure 3-4
The newly created project and references to associated files are listed in the Project tool window located on
the left-hand side of the main project window. The Project tool window has a number of modes in which
information can be displayed. By default, this panel should be in Android mode. This setting is controlled by the
menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the
menu to switch mode:

16

Creating an Example Android App in Android Studio

Figure 3-5

3.6 Modifying the User Interface
The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the project file hierarchy. Once located in the Project tool window, double-click on
the file to load it into the user interface Layout Editor tool which will appear in the center panel of the Android
Studio main window:

Figure 3-6
In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other
device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down
menu immediately to the left of the device selection menu showing the icon. Use the night mode button (

) to turn Night mode on and off.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user interface
components that may be used to construct a user interface, such as buttons, labels and text fields. It should be
noted, however, that not all user interface components are obviously visible to the user. One such category

17

Creating an Example Android App in Android Studio

consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-7:

Figure 3-7
As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, also check that the Layout Editor’s Autoconnect mode is enabled. This means that as
components are added to the layout, the Layout Editor will automatically add constraints to make sure the
components are correctly positioned for different screen sizes and device orientations (a topic that will be
covered in much greater detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar
and is represented by a magnet icon. When disabled the magnet appears with a diagonal line through it (Figure
3-8). If necessary, re-enable Autoconnect mode by clicking on this button.

Figure 3-8
The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-9, for example, the Button view is currently selected within the Buttons category:

Figure 3-9
Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

18

Creating an Example Android App in Android Studio

Figure 3-10
The next step is to change the text that is currently displayed by the Button component. The panel located to
the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently
selected component in the layout. Within this panel, locate the text property in the Common Attributes section
and change the current value from “Button” to “Convert” as shown in Figure 3-11:

Figure 3-11
The second text property with a wrench next to it allows a text property to be set which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component
and the layout will behave with different settings without having to run the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer constraints
button (Figure 3-12) to add any missing constraints to the layout:

Figure 3-12

19

Creating an Example Android App in Android Studio

At this point it is important to explain the warning button located in the top right-hand corner of the Layout
Editor tool as indicated in Figure 3-13. Obviously, this is indicating potential problems with the layout. For
details on any problems, click on the button:

Figure 3-13
When clicked, the Problems tool window (Figure 3-14) will appear, describing the nature of the problems:

Figure 3-14
This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected
within the layout file. In our example, only the following problem is listed:
button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:
Hardcoded string "Convert", should use @string resource

The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This I18N message is informing us that a potential issue exists with regard to the future internationalization of
the project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an
“N” and has 18 letters in between). The warning is reminding us that when developing Android applications,
attributes and values such as text strings should be stored in the form of resources wherever possible. Doing so
enables changes to the appearance of the application to be made by modifying resource files instead of changing
the application source code. This can be especially valuable when translating a user interface to a different
spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can
be given to a translator who will then perform the translation work and return the translated file for inclusion in
the application. This enables multiple languages to be targeted without the necessity for any source code changes
to be made. In this instance, we are going to create a new resource named convert_string and assign to it the
string “Convert”.

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-15:

20

Creating an Example Android App in Android Studio

Figure 3-15
After this option has been selected, the Extract Resource panel (Figure 3-16) will appear. Within this panel,
change the resource name field to convert_string and leave the resource value set to Convert before clicking on
the OK button.

Figure 3-16
The next widget to be added is an EditText widget into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars”. Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout as shown in Figure 3-17:

Figure 3-17
Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

21

Creating an Example Android App in Android Studio

Figure 3-18
Repeat the steps to set the id of the TextView widget to textView.

Add any missing layout constraints by clicking on the Infer constraints button. At this point the layout should
resemble that shown in Figure 3-19:

Figure 3-19

3.7 Reviewing the Layout and Resource Files
Before moving on to the next step, we are going to look at some of the internal aspects of user interface design
and resource handling. In the previous section, we made some changes to the user interface by modifying the
activity_main.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a
user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot
modify the XML directly to make user interface changes and, in some instances, this may actually be quicker
than using the Layout Editor tool. In the top right-hand corner of the Layout Editor panel are three buttons as
highlighted in Figure 3-20 below:

22

Creating an Example Android App in Android Studio

Figure 3-20
By default, the editor will be in Design mode whereby just the visual representation of the layout is displayed.
The left-most button will switch to Code mode to display the XML for the layout, while the middle button enters
Split mode where both the layout and XML are displayed, as shown in Figure 3-21:

Figure 3-21
As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although varying in complexity and content, all
user interface layouts are structured in this hierarchical, XML based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 android:background="#ff2438" >
.

.

</androidx.constraintlayout.widget.ConstraintLayout>

23

Creating an Example Android App in Android Studio

Note that the color of the layout changes in real-time to match the new setting in the XML file. Note also that a
small red square appears in the left-hand margin (also referred to as the gutter) of the XML editor next to the line
containing the color setting. This is a visual cue to the fact that the color red has been set on a property. Clicking
on the red square will display a color chooser allowing a different color to be selected:

Figure 3-22
Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently the XML should read as follows:
<resources>

 <string name="app_name">AndroidSample</string>

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the convert_string
resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file
in the editor panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool
in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights and then press
Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and
take you to the line in that file where this resource is declared. Use this opportunity to revert the string resource
back to the original “Convert” text and to add the following additional entry for a string resource that will be
referenced later in the app code:
<resources>

.

.

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

 <string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor by clicking on the Open editor
link in the top right-hand corner of the editor window. This will display the Translation Editor in the main panel
of the Android Studio window:

24

Creating an Example Android App in Android Studio

Figure 3-23
This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.8 Adding Interaction
The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can be
implemented in a number of different ways and is covered in detail in a later chapter entitled “An Overview and
Example of Android Event Handling”. Return the layout editor to Design mode, select the Button widget in the
layout editor, refer to the Attributes tool window and specify a method named convertCurrency as shown below:

Figure 3-24
Next, double-click on the MainActivity.java file in the Project tool window (app -> java -> <package name> ->
MainActivity) to load it into the code editor and add the code for the convertCurrency method to the class file so
that it reads as follows, noting that it is also necessary to import some additional Android packages:
package com.ebookfrenzy.androidsample;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;
import android.widget.EditText;
import android.widget.TextView;
.

.

25

Creating an Example Android App in Android Studio

import java.util.Locale;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void convertCurrency(View view) {

 EditText dollarText = findViewById(R.id.dollarText);
 TextView textView = findViewById(R.id.textView);

 if (!dollarText.getText().toString().equals("")) {

 float dollarValue = Float.parseFloat(dollarText.getText().toString());
 float euroValue = dollarValue * 0.85F;
 textView.setText(String.format(Locale.ENGLISH,"%.2f", euroValue));
 } else {
 textView.setText(R.string.no_value_string);
 }
 }
}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewById, passing through the id assigned within the layout file. A check is then made to ensure that
the user has entered a dollar value, and if so, that value is extracted, converted from a String to a floating point
value, and converted to euros. Finally, the result is displayed on the TextView widget.

If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters. In
particular, the topic of accessing widgets from within code using findByViewId and an introduction to an
alternative technique referred to as view binding will be covered in the chapter entitled “An Overview of Android
View Binding”.

3.9 Summary
While not excessively complex, a number of steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to make sure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly in the case of string values, and briefly touched on the topic of layouts.
Next we looked at the underlying XML that is used to store the user interface designs of Android applications.

Finally, an onClick event was added to a Button connected to a method that was implemented to extract the user
input from the EditText component, convert from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in

26

Creating an Example Android App in Android Studio

detail in the next chapter.

27

Chapter 4

4. Creating an Android Virtual
Device (AVD) in Android Studio
Although the Android Studio Preview panel allows us to see the layout we are designing and test basic
functionality using interactive mode, it be will necessary to compile and run an entire app to fully test that it
works. An Android application may be tested by installing and running it either on a physical device or in an
Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created and
configured to match the specifications of a particular device model. In this chapter, we will work through the
creation of such a virtual device using the Pixel 4 phone as a reference example.

4.1 About Android Virtual Devices
AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the
application on a physical Android-based device. An AVD may be configured to emulate a variety of hardware
features including options such as screen size, memory capacity, and the presence or otherwise of features such
as a camera, GPS navigation support, or an accelerometer. As part of the standard Android Studio installation,
several emulator templates are installed allowing AVDs to be configured for a range of different devices. Custom
configurations may be created to match any physical Android device by specifying properties such as processor
type, memory capacity, and the size and pixel density of the screen.

An AVD session can appear either as a separate window or embedded within the Android Studio window.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in
command-line mode or with a more user-friendly graphical user interface. To create a new AVD, the first step
is to launch the AVD Manager. This can be achieved from within the Android Studio environment by selecting
the Tools -> Device Manager menu option from within the main window.

Once launched, the manager will appear as a tool window as shown in Figure 4-1:

Figure 4-1
If you installed Android Studio for the first time on a computer (as opposed to upgrading an existing Android

28

Creating an Android Virtual Device (AVD) in Android Studio

Studio installation), the installer might have created an initial AVD instance ready for use, as shown in Figure
4-2:

Figure 4-2
If this AVD is present on your system, you can use it to test apps. If no AVD was created, or you would like to
create AVDs for different device types, follow the steps in the rest of this chapter.

To add a new AVD, begin by making sure that the Virtual tab is selected before clicking on the Create device
button to open the Virtual Device Configuration dialog:

Figure 4-3
Within the dialog, perform the following steps to create a Pixel 4 compatible emulator:

1. From the Category panel, select the Phone option to display the list of available Android phone AVD
templates.

2. Select the Pixel 4 device option and click Next.

3. On the System Image screen, select the latest version of Android. Note that if the system image has not yet
been installed a Download link will be provided next to the Release Name. Click this link to download and
install the system image before selecting it. If the image you need is not listed, click on the x86 Images (or
ARM images if you are running a Mac with Apple Silicon) and Other images tabs to view alternative lists.

29

Creating an Android Virtual Device (AVD) in Android Studio

4. Click Next to proceed and enter a descriptive name (for example Pixel 4 API 33) into the name field or
simply accept the default name.

5. Click Finish to create the AVD.

6. With the AVD created, the Device Manager may now be closed. If future modifications to the AVD are
necessary, simply re-open the Device Manager, select the AVD from the list, and click on the pencil icon in
the Actions column to edit the settings.

4.2 Starting the Emulator
To perform a test run of the newly created AVD emulator, simply select the emulator from the Device Manager
and click on the launch button (the triangle in the Actions column). The emulator will appear embedded into
the main Android Studio window and begin the startup process. The amount of time it takes for the emulator to
start will depend on the configuration of both the AVD and the system on which it is running:

Figure 4-4
To hide and show the emulator tool window, click on the Running Devices tool window button (marked A
above). Click on the “x” close button next to the tab (B) to exit the emulator. The emulator tool window can
accommodate multiple emulator sessions, with each session represented by a tab. Figure 4-5, for example, shows
a tool window with two emulator sessions:

Figure 4-5
To switch between sessions, simply click on the corresponding tab.

30

Creating an Android Virtual Device (AVD) in Android Studio

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options
can be changed. Within the Device Manager, select the new Pixel 4 entry and click on the pencil icon in the
Actions column of the device row. In the configuration screen, locate the Startup orientation section and change
the orientation setting. Exit and restart the emulator session to see this change take effect. More details on the
emulator are covered in the next chapter “Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

4.3 Running the Application in the AVD
With an AVD emulator configured, the example AndroidSample application created in the earlier chapter now
can be compiled and run. With the AndroidSample project loaded into Android Studio, make sure that the
newly created Pixel 4 AVD is displayed in the device menu (marked A in Figure 4-6 below), then either click on
the run button represented by a green triangle (B), select the Run -> Run ‘app’ menu option or use the Ctrl-R
keyboard shortcut:

Figure 4-6
The device menu (A) may be used to select a different AVD instance or physical device as the run target, and
also to run the app on multiple devices. The menu also provides access to the Device Manager as well as device
connection configuration and troubleshooting options:

Figure 4-7
Once the application is installed and running, the user interface for the first fragment will appear within the
emulator (a fragment is a reusable section of an Android project typically consisting of a user interface layout and
some code, a topic which will be covered later in the chapter entitled “An Introduction to Android Fragments”):

31

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-8
If the activity does not automatically launch, check to see if the launch icon has appeared among the apps on the
emulator. If it has, simply click on it to launch the application. Once the run process begins, the Run tool window
will become available. The Run tool window will display diagnostic information as the application package is
installed and launched. Figure 4-9 shows the Run tool window output from a typical successful application
launch:

Figure 4-9
If problems are encountered during the launch process, the Run tool window will provide information that will
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the
Android development environment is correctly installed and configured. With the app now running, try
performing a currency conversion to verify that the app works as intended.

4.4 Running on Multiple Devices
The run menu shown in Figure 4-7 above includes an option to run the app on multiple emulators and devices
in parallel. When selected, this option displays the dialog shown in Figure 4-10 providing a list of both the AVDs
configured on the system and any attached physical devices. Enable the checkboxes next to the emulators or
devices to be targeted before clicking on the Run button:

32

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-10
After the Run button is clicked, Android Studio will launch the app on the selected emulators and devices.

4.5 Stopping a Running Application
To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure
4-11:

Figure 4-11
An app may also be terminated using the Run tool window. Begin by displaying the Run tool window using the
window bar button that becomes available when the app is running. Once the Run tool window appears, click
the stop button highlighted in Figure 4-12 below:

Figure 4-12

4.6 Supporting Dark Theme
Android 10 introduced the much-awaited dark theme, support for which is enabled by default in Android
Studio app projects. To test dark theme in the AVD emulator, open the Settings app within the running Android
instance in the emulator. Within the Settings app, choose the Display category and enable the Dark theme option
as shown in Figure 4-13 so that the screen background turns black:

33

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-13
With dark theme enabled, run the AndroidSample app and note that it appears using a dark theme including a
black background and a purple background color on the button as shown in Figure 4-14:

Figure 4-14
Return to the Settings app and turn off Dark theme mode before continuing.

4.7 Running the Emulator in a Separate Window
So far in this chapter, we have only used the emulator as a tool window embedded within the main Android
Studio window. To run the emulator in a separate window, select the File -> Settings... menu option (Android
Studio -> Preferences... on macOS), navigate to Tools -> Emulator in the left-hand navigation panel of the
preferences dialog, and disable the Launch in a tool window option:

34

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-15
With the option disabled, click the Apply button followed by OK to commit the change, then exit the current
emulator session by clicking on the close button on the tab marked B in Figure 4-4 above.

Run the sample app once again, at which point the emulator will appear as a separate window as shown below:

Figure 4-16
The choice of standalone or tool window mode is a matter of personal preference. If you prefer the emulator
running in a tool window, return to the settings screen and re-enable the Launch in a tool window option. Before
committing to standalone mode, however, keep in mind that the emulator tool window may also be detached
from the main Android Studio window by clicking on the settings button (represented by the gear icon) in the
tool emulator toolbar and selecting the View Mode -> Float menu option:

35

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-17

4.8 Enabling the Device Frame
The emulator can be configured to appear with (Figure 4-18) or without the device frame (Figure 4-16).

Figure 4-18
To change the setting, open the Device Manager, select the AVD from the list, and click on the pencil icon in the
Actions column to edit the settings. In the settings screen, locate and change the Enable Device Frame option:

36

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-19

4.9 Summary
A typical application development process follows a cycle of coding, compiling, and running in a test
environment. Android applications may be tested on either a physical Android device or using an Android
Virtual Device (AVD) emulator. AVDs are created and managed using the Android Studio Device Manager tool
which may be used either as a command-line tool or via a graphical user interface. When creating an AVD to
simulate a specific Android device model, the virtual device should be configured with a hardware specification
matching that of the physical device.

The AVD emulator session may be displayed as a standalone window or embedded into the main Android
Studio user interface.

37

Chapter 5

5. Using and Configuring the
Android Studio AVD Emulator
Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features that are
available to customize the environment in both standalone and tool window modes.

5.1 The Emulator Environment
When launched in standalone mode, the emulator displays an initial splash screen during the loading process.
Once loaded, the main emulator window appears containing a representation of the chosen device type (in the
case of Figure 5-1 this is a Pixel 4 device):

Figure 5-1
Positioned along the right-hand edge of the window is the toolbar providing quick access to the emulator
controls and configuration options.

5.2 Emulator Toolbar Options
The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

38

Using and Configuring the Android Studio AVD Emulator

Figure 5-2
Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

• Exit / Minimize – The uppermost ‘x’ button in the toolbar exits the emulator session when selected while the
‘-’ option minimizes the entire window.

• Power – The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power off ” request sequence.

• Volume Up / Down – Two buttons that control the audio volume of playback within the simulator environment.

• Rotate Left/Right – Rotates the emulated device between portrait and landscape orientations.

• Take Screenshot – Takes a screenshot of the content currently displayed on the device screen. The captured
image is stored at the location specified in the Settings screen of the extended controls panel as outlined later
in this chapter.

• Zoom Mode – This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

• Back – Performs the standard Android “Back” navigation to return to a previous screen.

• Home – Displays the device home screen.

• Overview – Simulates selection of the standard Android “Overview” navigation which displays the currently
running apps on the device.

39

Using and Configuring the Android Studio AVD Emulator

• Fold Device – Simulates the folding and unfolding of a foldable device. This option is only available if the
emulator is running a foldable device system image.

• Extended Controls – Displays the extended controls panel, allowing for the configuration of options
such as simulated location and telephony activity, battery strength, cellular network type, and fingerprint
identification.

5.3 Working in Zoom Mode
The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active
the toolbar button is depressed and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button off reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode the visible area of the screen may be panned using the horizontal and vertical scrollbars
located within the emulator window.

5.4 Resizing the Emulator Window
The size of the emulator window (and the corresponding representation of the device) can be changed at any
time by clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options
The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 5-3

40

Using and Configuring the Android Studio AVD Emulator

5.5.1 Location
The location controls allow simulated location information to be sent to the emulator in the form of decimal or
sexigesimal coordinates. Location information can take the form of a single location, or a sequence of points
representing movement of the device, the latter being provided via a file in either GPS Exchange (GPX) or
Keyhole Markup Language (KML) format. Alternatively, the integrated Google Maps panel may be used to
visually select single points or travel routes.

5.5.2 Displays
In addition to the main display shown within the emulator screen, the Displays option allows additional displays
to be added running within the same Android instance. This can be useful for testing apps for dual-screen
devices such as the Microsoft Surface Duo. These additional screens can be configured to be any required size
and appear within the same emulator window as the main screen.

5.5.3 Cellular
The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA, etc) in addition to a range of voice and data
scenarios such as roaming and denied access.

5.5.4 Battery
A variety of battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health, and whether the AC charger is currently connected.

5.5.5 Camera
The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.6 Phone
The phone extended controls provide two very simple but useful simulations within the emulator. The first
option allows for the simulation of an incoming call from a designated phone number. This can be of particular
use when testing how an app handles high-level interrupts of this nature.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.7 Directional Pad
A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.8 Microphone
The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.9 Fingerprint
Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on how to configure fingerprint testing within the emulator will be covered in detail
later in this chapter.

41

Using and Configuring the Android Studio AVD Emulator

5.5.10 Virtual Sensors
The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device such as rotation, movement, and tilting through yaw, pitch and roll settings.

5.5.11 Snapshots
Snapshots contain the state of the currently running AVD session to be saved and rapidly restored making it easy
to return the emulator to an exact state. Snapshots are covered in later in this chapter.

5.5.12 Record and Playback
Allows the emulator screen and audio to be recorded and saved in either WebM or animated GIF format.

5.5.13 Google Play
If the emulator is running a version of Android with Google Play Services installed, this option displays the
current Google Play version and provides the option to update the emulator to the latest version.

5.5.14 Settings
The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and configure the emulator window to appear on top of other windows on
the desktop.

5.5.15 Help
The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

5.6 Working with Snapshots
When an emulator starts for the very first time it performs a cold boot much like a physical Android device when
it is powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can be used to store additional snapshots at any point
during the execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be
restored to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken
using the Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list
(B) and click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the
snapshot name and description and to delete (E) the currently selected snapshot:

42

Using and Configuring the Android Studio AVD Emulator

Figure 5-4
To force an emulator session to perform a cold boot instead of using a previous quick-boot snapshot, enable the
checkbox marked F in the above figure.

You can also choose whether to start an emulator using either a cold boot, the most recent quick-boot snapshot,
or a previous snapshot by making a selection from the run target menu in the main toolbar, as illustrated in
Figure 5-5:

Figure 5-5

5.7 Configuring Fingerprint Emulation
The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication
within Android apps. To configure simulated fingerprints begin by launching the emulator, opening the Settings
app, and selecting the Security & Location option.

Within the Security settings screen, select the Use fingerprint option. On the resulting information screen click
on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a

43

Using and Configuring the Android Studio AVD Emulator

backup screen unlocking method (such as a PIN) must be configured. Click on the Fingerprint + PIN button
and, when prompted, choose not to require the PIN on device startup. Enter and confirm a suitable PIN and
complete the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point
display the extended controls dialog, select the Fingerprint category in the left-hand panel and make sure that
Finger 1 is selected in the main settings panel:

Figure 5-6
Click on the Touch Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will report
the successful addition of the fingerprint:

Figure 5-7
To add additional fingerprints click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch Sensor button once again.

5.8 The Emulator in Tool Window Mode
As outlined in the previous chapter (“Creating an Android Virtual Device (AVD) in Android Studio”), Android
Studio can be configured to launch the emulator as an embedded tool window so that it does not appear in a

44

Using and Configuring the Android Studio AVD Emulator

separate window. When running in this mode, the same controls available in standalone mode are provided in
the toolbar as shown in Figure 5-8:

Figure 5-8
From left to right, these buttons perform the following tasks (details of which match those for standalone mode):

• Power

• Volume Up

• Volume Down

• Rotate Left

• Rotate Right

• Back

• Home

• Overview

• Screenshot

• Snapshots

• Extended Controls

5.9 Creating a Resizable Emulator
In addition to emulators configured to match specific Android device models, Android Studio also provides a
resizable AVD that allows you to switch between phone, tablet and foldable device sizes. To create a resizable
emulator, open the Device Manager and click the Create device button. Next, select the Resizable device definition
illustrated in Figure 5-9, and follow the usual steps to create a new AVD:

Figure 5-9
When you run an app on the new emulator within a tool window, the Display mode option will appear in the
toolbar, allowing you to switch between emulator configurations as shown in Figure 5-10:

45

Using and Configuring the Android Studio AVD Emulator

Figure 5-10
If the emulator is running in standalone mode, the Display mode option can be found in the side toolbar as
shown below:

Figure 5-11

5.10 Summary
Android Studio contains an Android Virtual Device emulator environment designed to make it easier to test
applications without the need to run on a physical Android device. This chapter has provided a brief tour of the
emulator and highlighted key features that are available to configure and customize the environment to simulate
different testing conditions.

47

Chapter 6

6. A Tour of the Android Studio User
Interface
While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature-rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

6.1 The Welcome Screen
The welcome screen (Figure 6-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will bypass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 6-1
In addition to a list of recent projects, the welcome screen provides options for performing tasks such as opening
and creating projects along with access to projects currently under version control. In addition, the Customize
screen provides options to change the theme and font settings used by both the IDE and the editor. Android
Studio plugins may be viewed, installed, and managed using the Plugins option.

48

A Tour of the Android Studio User Interface

Additional options are available by clicking on the menu button as shown in Figure 6-2:

Figure 6-2

6.2 The Main Window
When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 6-3.

Figure 6-3
The various elements of the main window can be summarized as follows:

A – Menu Bar – Contains a range of menus for performing tasks within the Android Studio environment.

B – Toolbar – A selection of shortcuts to frequently performed actions. The toolbar buttons provide quick access
to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and selecting
the Customize Menus and Toolbars… menu option. If the toolbar is not visible, it can be displayed using the View
-> Appearance -> Toolbar menu option.

C – Navigation Bar – The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the sub-folders
and files at that location ready for selection. Similarly, clicking on a class name displays a menu listing methods
contained within that class. Select a method from the list to be taken to the corresponding location within the
code editor. Hide and display this bar using the View -> Appearance -> Navigation Bar menu option.

D – Editor Window – The editor window displays the content of the file on which the developer is currently

49

A Tour of the Android Studio User Interface

working. When multiple files are open, each file is represented by a tab located along the top edge of the editor
as shown in Figure 6-4:

Figure 6-4
E – Status Bar – The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will display a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F – Project Tool Window – The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project in
several different ways. The default setting is the Android view which is the mode primarily used in the remainder
of this book.

The project tool window is just one of many tool windows available within the Android Studio environment.

6.3 The Tool Windows
In addition to the project view tool window, Android Studio also includes many other windows which, when
enabled, are displayed along the bottom and sides of the main window. The tool window quick access menu can
be displayed by hovering the mouse pointer over the button located in the far left-hand corner of the status bar
(Figure 6-5) without clicking the mouse button.

Figure 6-5
Selecting an item from the quick access menu will cause the corresponding tool window to appear within the

50

A Tour of the Android Studio User Interface

main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status
bar. These bars appear along the left, right, and bottom edges of the main window (as indicated by the arrows in
Figure 6-6) and contain buttons for showing and hiding each of the tool windows. When the tool window bars
are displayed, a second click on the button in the status bar will hide them.

Figure 6-6
Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window toolbars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 6-7 shows the settings menu for the Project tool window. Options
are available, for example, to undock a window and to allow it to float outside of the boundaries of the Android
Studio main window, and to move and resize the tool panel.

51

A Tour of the Android Studio User Interface

Figure 6-7
All of the windows also include a far-right button on the toolbar providing an additional way to hide the tool
window from view. A search of the items within a tool window can be performed simply by giving that window
focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s toolbar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

• App Inspection - Provides access to the Database and Background Task inspectors. The Database Inspector
allows you to inspect, query, and modify your app’s databases while the app is running. The Background Task
Inspector allows background worker tasks created using WorkManager to be monitored and managed.

• Build - The build tool window displays information about the build process while a project is being compiled
and packaged and displays details of any errors encountered.

• Build Variants – The build variants tool window provides a quick way to configure different build targets
for the current application project (for example different builds for debugging and release versions of the
application, or multiple builds to target different device categories).

• Device File Explorer – Available via the View -> Tool Windows -> Device File Explorer menu, this tool window
provides direct access to the filesystem of the currently connected Android device or emulator allowing the
filesystem to be browsed and files copied to the local filesystem.

• Device Manager - Provides access to the Device Manager tool window where physical Android device
connections and emulators may be added, removed, and managed.

• Emulator - Contains the AVD emulator if the option has been enabled to run the emulator in a tool window
as outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

• Bookmarks – The Bookmarks tool window provides quick access to bookmarked files and code lines. For
example, right-clicking on a file in the project view allows access to an Add to Bookmarks menu option.
Similarly, you can bookmark a line of code in a source file by moving the cursor to that line and pressing the
F11 key (F3 on macOS). All bookmarked items can be accessed through this tool window.

• Gradle – The Gradle tool window provides a view of the Gradle tasks that make up the project build
configuration. The window lists the tasks that are involved in compiling the various elements of the project
into an executable application. Right-click on a top-level Gradle task and select the Open Gradle Config menu
option to load the Gradle build file for the current project into the editor. Gradle will be covered in greater
detail later in this book.

52

A Tour of the Android Studio User Interface

• Layout Inspector - Provides a visual 3D rendering of the hierarchy of components that make up a user
interface layout.

• Logcat – The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

• Problems - A central location in which to view all of the current errors or warnings within the project.
Double-clicking on an item in the problem list will take you to the problem file and location.

• Profiler – The Android Profiler tool window provides real-time monitoring and analysis tools for identifying
performance issues within running apps, including CPU, memory and network usage. This option becomes
available when an app is currently running.

• Project – The project view provides an overview of the file structure that makes up the project allowing for
quick navigation between files. Generally, double-clicking on a file in the project view will cause that file to be
loaded into the appropriate editing tool.

• Resource Manager - A tool for adding and managing resources and assets such as images, colors, and layout
files contained with the project.

• Run – The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing
to install and run on a device or emulator, this window will typically provide diagnostic information relating
to the problem.

• Structure – The structure tool provides a high-level view of the structure of the source file currently displayed
in the editor. This information includes a list of items such as classes, methods, and variables in the file.
Selecting an item from the structure list will take you to that location in the source file in the editor window.

• Terminal – Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems, this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

• TODO – As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look
for comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting
the File -> Settings… menu option (Android Studio -> Preferences… on macOS) and navigating to the TODO
page listed under Editor.

• Version Control - This tool window is used when the project files are under source code version control,
allowing access to Git repositories and code change history.

6.4 Android Studio Keyboard Shortcuts
Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keymap Reference menu option. You may also list and modify the
keyboard shortcuts by selecting the File -> Settings... menu option (Android Studio -> Preferences... on macOS)
and clicking on the Keymap entry as shown in Figure 6-8 below:

53

A Tour of the Android Studio User Interface

Figure 6-8

6.5 Switcher and Recent Files Navigation
Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 6-9).

Figure 6-9
Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping
the Tab key while holding down the Ctrl key will cycle through the various selection options while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure
6-10). This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the
mouse pointer can be used to select an option or the keyboard arrow keys used to scroll through the file name

54

A Tour of the Android Studio User Interface

and tool window options. Pressing the Enter key will select the currently highlighted item.

Figure 6-10

6.6 Changing the Android Studio Theme
The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Configure -> Settings option or via the File -> Settings… menu option (Android Studio -> Preferences… on
macOS) of the main window.

Once the settings dialog is displayed, select the Appearance & Behavior option followed by Appearance in the
left-hand panel and then change the setting of the Theme menu before clicking on the Apply button. The themes
available will depend on the platform but usually include options such as Light, IntelliJ, Windows, High Contrast,
and Darcula. Figure 6-11 shows an example of the main window with the Darcula theme selected:

Figure 6-11
To synchronize the Android Studio theme with the operating system light and dark mode setting, enable the
Sync with OS option and use the drop-down menu to control which theme to use for each mode:

55

A Tour of the Android Studio User Interface

Figure 6-12

6.7 Summary
The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar, and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar or via the
optional tool window bars.

There are very few actions within Android Studio that cannot be triggered via a keyboard shortcut. A keymap of
default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

57

Chapter 7

7. Testing Android Studio Apps on a
Physical Android Device
While much can be achieved by testing applications using an Android Virtual Device (AVD), there is no substitute
for performing real-world application testing on a physical Android device and there are some Android features
that are only available on physical Android devices.

Communication with both AVD instances and connected Android devices is handled by the Android Debug
Bridge (ADB). In this chapter, we explain how to configure the adb environment to enable application testing on
an Android device with macOS, Windows, and Linux-based systems.

7.1 An Overview of the Android Debug Bridge (ADB)
The primary purpose of the ADB is to facilitate interaction between a development system, in this case, Android
Studio, and both AVD emulators and Android devices to run and debug applications. ADB allows you to connect
to devices either over a WiFi network or directly using a USB cable.

The ADB consists of a client, a server process running in the background on the development system, and a
daemon background process running in either AVDs or real Android devices such as phones and tablets.

The ADB client can take a variety of forms. For example, a client is provided in the form of a command-line
tool named adb located in the Android SDK platform-tools sub-directory. Similarly, Android Studio also has a
built-in client.

A variety of tasks may be performed using the adb command-line tool. For example, a listing of currently active
virtual or physical devices may be obtained using the devices command-line argument. The following command
output indicates the presence of an AVD on the system but no physical devices:
$ adb devices

List of devices attached

emulator-5554 device

7.2 Enabling USB Debugging ADB on Android Devices
Before ADB can connect to an Android device, that device must first be configured to allow the connection. On
phone and tablet devices running Android 6.0 or later, the steps to achieve this are as follows:

1. Open the Settings app on the device and select the About tablet or About phone option (on some versions of
Android this can be found on the System page of the Settings app).

2. On the About screen, scroll down to the Build number field (Figure 7-1) and tap on it seven times until a
message appears indicating that developer mode has been enabled. If the Build number is not listed on the
About screen it may be available via the Software information option. Alternatively, unfold the Advanced
section of the list if available.

58

Testing Android Studio Apps on a Physical Android Device

Figure 7-1
3. Return to the main Settings screen and note the appearance of a new option titled Developer options (on

newer versions of Android this option is listed on the System settings screen). Select this option and on the
resulting screen, locate the USB debugging option as illustrated in Figure 7-2:

Figure 7-2
4. Enable the USB debugging option and tap the Allow button when confirmation is requested.

At this point, the device is now configured to accept debugging connections from adb on the development
system over a USB connection. All that remains is to configure the development system to detect the device
when it is attached. While this is a relatively straightforward process, the steps involved differ depending on
whether the development system is running Windows, macOS, or Linux. Note that the following steps assume
that the Android SDK platform-tools directory is included in the operating system PATH environment variable
as described in the chapter entitled “Setting up an Android Studio Development Environment”.

7.2.1 macOS ADB Configuration
To configure the ADB environment on a macOS system, connect the device to the computer system using a USB
cable, open a terminal window and execute the following command to restart the adb server:
$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following command to verify that the device has been
detected:
$ adb devices

List of devices attached

74CE000600000001 offline

If the device is listed as offline, go to the Android device and check for the presence of the dialog shown in Figure
7-3 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer, before clicking on OK.

59

Testing Android Studio Apps on a Physical Android Device

Figure 7-3
Repeating the adb devices command should now list the device as being available:
List of devices attached

015d41d4454bf80c device

If the device is not listed, try logging out and then back into the macOS desktop and, if the problem persists,
rebooting the system.

7.2.2 Windows ADB Configuration
The first step in configuring a Windows-based development system to connect to an Android device using ADB
is to install the appropriate USB drivers on the system. The USB drivers to install will depend on the model of
the Android Device. If you have a Google device such as a Pixel phone, then it will be necessary to install and
configure the Google USB Driver package on your Windows system. Detailed steps to achieve this are outlined
on the following web page:

https://developer.android.com/sdk/win-usb.html

For Android devices not supported by the Google USB driver, it will be necessary to download the drivers
provided by the device manufacturer. A listing of drivers together with download and installation information
can be obtained online at:

https://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as the correct device type, open a Command
Prompt window and execute the following command:
adb devices

This command should output information about the connected device similar to the following:
List of devices attached

HT4CTJT01906 offline

If the device is listed as offline or unauthorized, go to the device display and check for the dialog shown in Figure
7-3 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer, before clicking on OK. Repeating the adb devices command should now list the device as
being ready:
List of devices attached

HT4CTJT01906 device

If the device is not listed, execute the following commands to restart the ADB server:
adb kill-server

adb start-server

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html

60

Testing Android Studio Apps on a Physical Android Device

If the device is still not listed, try executing the following command:
android update adb

Note that it may also be necessary to reboot the system.

7.2.3 Linux adb Configuration
For this chapter, we will once again use Ubuntu Linux as a reference example in terms of configuring adb on
Linux to connect to a physical Android device for application testing.

Physical device testing on Ubuntu Linux requires the installation of a package named android-tools-adb which,
in turn, requires that the Android Studio user be a member of the plugdev group. This is the default for user
accounts on most Ubuntu versions and can be verified by running the id command. If the plugdev group is not
listed, run the following command to add your account to the group:
sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-adb package can be installed by
executing the following command:
sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once the system has restarted, open a
Terminal window, start the adb server and check the list of attached devices:
$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454bf80c offline

If the device is listed as offline or unauthorized, go to the Android device and check for the dialog shown in
Figure 7-3 seeking permission to Allow USB debugging.

7.3 Resolving USB Connection Issues
If you are unable to successfully connect to the device using the above steps, display the run target menu (Figure
7-4) and select the Troubleshoot Device Connections option:

Figure 7-4
The connection assistant will scan for devices and report problems and possible solutions.

61

Testing Android Studio Apps on a Physical Android Device

7.4 Enabling Wireless Debugging on Android Devices
Follow steps 1 through 3 from section 7.2 above, this time enabling the Wireless Debugging option as shown in
Figure 7-5:

Figure 7-5
Next, tap the above Wireless debugging entry to display the screen shown in Figure 7-6:

Figure 7-6
If the device you are using has a camera, select Pair device with QR code, otherwise select the Pair device with
pairing code option. Depending on your selection, the Settings app will either start a camera session or display a
pairing code as shown in Figure 7-7:

Figure 7-7
With an option selected, return to Android Studio and select the Pair Devices Using WiFi option from the run
target menu as illustrated in Figure 7-8:

62

Testing Android Studio Apps on a Physical Android Device

Figure 7-8
In the pairing dialog, select either Pair using QR code or Pair using pairing code depending on your previous
selection in the Settings app on the device:

Figure 7-9
Either scan the QR code using the Android device or enter the pairing code displayed on the device screen into
the Android Studio dialog (Figure 7-10) to complete the pairing process:

Figure 7-10
If the pairing process fails, try rebooting both the development system and Android device and try again.

63

Testing Android Studio Apps on a Physical Android Device

7.5 Testing the adb Connection
Assuming that the adb configuration has been successful on your chosen development platform, the next step is
to try running the test application created in the chapter entitled “Creating an Example Android App in Android
Studio” on the device. Launch Android Studio, open the AndroidSample project, and verify that the device
appears in the device selection menu as highlighted in Figure 7-11:

Figure 7-11
Select the device from the list and click on the run button (the green arrow button located immediately to the
right of the device menu) to install and run the app.

7.6 Device Mirroring
Device mirroring allows you to run an app on a physical device while viewing the device display within Android
Studio’s Running Devices tool window. In other words, although your app is running on a physical device, it
appears within Android Studio in the same way as an AVD instance.

With a device connected to Android Studio, display the Running Devices tool window (View -> Tool Windows ->
Running Devices). Android Studio will mirror the display of the physical device in the tool window.

7.7 Summary
While the Android Virtual Device emulator provides an excellent testing environment, it is important to keep
in mind that there is no real substitute for making sure an application functions correctly on a physical Android
device. This, after all, is where the application will be used in the real world.

By default, however, the Android Studio environment is not configured to detect Android devices as a target
testing device. It is necessary, therefore, to perform some steps to be able to load applications directly onto an
Android device from within the Android Studio development environment either via a USB cable or over a WiFi
network. The exact steps to achieve this goal differ depending on the development platform being used. In this
chapter, we have covered those steps for Linux, macOS, and Windows-based platforms.

65

Chapter 8

8. The Basics of the Android Studio
Code Editor
Developing applications for Android involves a considerable amount of programming work which, by definition,
involves typing, reviewing and modifying lines of code. It should come as no surprise that the majority of a
developer’s time spent using Android Studio will typically involve editing code within the editor window.

The modern code editor needs to go far beyond the original basics of typing, deleting, cutting and pasting.
Today the usefulness of a code editor is generally gauged by factors such as the amount by which it reduces the
typing required by the programmer, ease of navigation through large source code files and the editor’s ability to
detect and highlight programming errors in real-time as the code is being written. As will become evident in this
chapter, these are just a few of the areas in which the Android Studio editor excels.

While not an exhaustive overview of the features of the Android Studio editor, this chapter aims to provide a
guide to the key features of the tool. Experienced programmers will find that some of these features are common
to most code editors available today, while a number are unique to this particular editing environment.

8.1 The Android Studio Editor
The Android Studio editor appears in the center of the main window when a Java, Kotlin, XML or other text
based file is selected for editing. Figure 8-1, for example, shows a typical editor session with a Java source code
file loaded:

Figure 8-1
The elements that comprise the editor window can be summarized as follows:

A – Document Tabs – Android Studio is capable of holding multiple files open for editing at any one time. As
each file is opened, it is assigned a document tab displaying the file name in the tab bar located along the top

66

The Basics of the Android Studio Code Editor

edge of the editor window. A small drop-down menu will appear in the far right-hand corner of the tab bar when
there is insufficient room to display all of the tabs. Clicking on this menu will drop down a list of additional open
files. A wavy red line underneath a file name in a tab indicates that the code in the file contains one or more
errors that need to be addressed before the project can be compiled and run.

Switching between files is simply a matter of clicking on the corresponding tab or using the Alt-Left and Alt-
Right keyboard shortcuts. Navigation between files may also be performed using the Switcher mechanism
(accessible via the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it appears in a separate window, click
on the tab and drag it to an area on the desktop outside of the main window. To return the editor to the main
window, click on the file tab in the separated editor window and drag and drop it onto the original editor tab
bar in the main window.

B – The Editor Gutter Area - The gutter area is used by the editor to display informational icons and controls.
Some typical items, among others, which appear in this gutter area are debugging breakpoint markers, controls
to fold and unfold blocks of code, bookmarks, change markers and line numbers. Line numbers are switched
on by default but may be disabled by right-clicking in the gutter and selecting the Show Line Numbers menu
option.

C – Code Structure Location - This bar at the top of the editor displays the current position of the cursor as
it relates to the overall structure of the code. In the following figure, for example, the bar indicates that the
convertCurrency method is currently being edited, and that this method is contained within the MainActivity
class.

Figure 8-2
Double-clicking an element within the bar will move the cursor to the corresponding location within the
code file. For example, double-clicking on the convertCurrency entry will move the cursor to the top of the
convertCurrency method within the source code. Similarly clicking on the MainActivity entry will drop down a
list of available code navigation points for selection:

Figure 8-3
D – The Editor Area – This is the main area where the code is displayed, entered and edited by the user. Later
sections of this chapter will cover the key features of the editing area in detail.

E – The Validation and Marker Sidebar – Android Studio incorporates a feature referred to as “on-the-fly code
analysis”. What this essentially means is that as you are typing code, the editor is analyzing the code to check for
warnings and syntax errors. The indicators at the top of the validation sidebar will update in real-time to indicate
the number of errors and warnings found as code is added. Clicking on this indicator will display a popup
containing a summary of the issues found with the code in the editor as illustrated in Figure 8-4:

67

The Basics of the Android Studio Code Editor

Figure 8-4
The up and down arrows may be used to move between the error locations within the code. A green check mark
indicates that no warnings or errors have been detected.

The sidebar also displays markers at the locations where issues have been detected using the same color coding.
Hovering the mouse pointer over a marker when the line of code is visible in the editor area will display a popup
containing a description of the issue:

Figure 8-5
Hovering the mouse pointer over a marker for a line of code which is currently scrolled out of the viewing area
of the editor will display a “lens” overlay containing the block of code where the problem is located (Figure 8-6)
allowing it to be viewed without the necessity to scroll to that location in the editor:

Figure 8-6
It is also worth noting that the lens overlay is not limited to warnings and errors in the sidebar. Hovering over
any part of the sidebar will result in a lens appearing containing the code present at that location within the
source file.

F – The Status Bar – Though the status bar is actually part of the main window, as opposed to the editor, it does
contain some information about the currently active editing session. This information includes the current
position of the cursor in terms of lines and characters and the encoding format of the file (UTF-8, ASCII etc.).
Clicking on these values in the status bar allows the corresponding setting to be changed. Clicking on the line
number, for example, displays the Go to Line:Column dialog. Use the View -> Appearance -> Status Bar Widgets
menu option to add and remove widgets. For example, the Memory Indicator is a helpful widget if you are
experiencing performance problems with Android Studio.

Having provided an overview of the elements that comprise the Android Studio editor, the remainder of this
chapter will explore the key features of the editing environment in more detail.

8.2 Splitting the Editor Window
By default, the editor will display a single panel showing the content of the currently selected file. A particularly
useful feature when working simultaneously with multiple source code files is the ability to split the editor into

68

The Basics of the Android Studio Code Editor

multiple panes. To split the editor, right-click on a file tab within the editor window and select either the Split
Right or Split Down menu option. Figure 8-7, for example, shows the splitter in action with the editor split into
three panels:

Figure 8-7
The orientation of a split panel may be changed at any time by right-clicking on the corresponding tab and
selecting the Change Splitter Orientation menu option. Repeat these steps to unsplit a single panel, this time
selecting the Unsplit option from the menu. All of the split panels may be removed by right-clicking on any tab
and selecting the Unsplit All menu option.

Window splitting may be used to display different files, or to provide multiple windows onto the same file,
allowing different areas of the same file to be viewed and edited concurrently.

8.3 Code Completion
The Android Studio editor has a considerable amount of built-in knowledge of Java programming syntax and
the classes and methods that make up the Android SDK, as well as knowledge of your own code base. As code is
typed, the editor scans what is being typed and, where appropriate, makes suggestions with regard to what might
be needed to complete a statement or reference. When a completion suggestion is detected by the editor, a panel
will appear containing a list of suggestions. In Figure 8-8, for example, the editor is suggesting possibilities for
the beginning of a String declaration:

Figure 8-8
If none of the auto completion suggestions are correct, simply keep typing and the editor will continue to refine
the suggestions where appropriate. To accept the top most suggestion, simply press the Enter or Tab key on the

69

The Basics of the Android Studio Code Editor

keyboard. To select a different suggestion, use the arrow keys to move up and down the list, once again using the
Enter or Tab key to select the highlighted item.

Completion suggestions can be manually invoked using the Ctrl-Space keyboard sequence. This can be useful
when changing a word or declaration in the editor. When the cursor is positioned over a word in the editor, that
word will automatically highlight. Pressing Ctrl-Space will display a list of alternate suggestions. To replace the
current word with the currently highlighted item in the suggestion list, simply press the Tab key.

In addition to the real-time auto completion feature, the Android Studio editor also offers a system referred to
as Smart Completion. Smart completion is invoked using the Shift-Ctrl-Space keyboard sequence and, when
selected, will provide more detailed suggestions based on the current context of the code. Pressing the Shift-
Ctrl-Space shortcut sequence a second time will provide more suggestions from a wider range of possibilities.

Code completion can be a matter of personal preference for many programmers. In recognition of this fact,
Android Studio provides a high level of control over the auto completion settings. These can be viewed and
modified by selecting the File -> Settings… menu option (or Android Studio -> Preferences… on macOS) and
choosing Editor -> General -> Code Completion from the settings panel as shown in Figure 8-9:

Figure 8-9

8.4 Statement Completion
Another form of auto completion provided by the Android Studio editor is statement completion. This can
be used to automatically fill out the parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-Enter on macOS) keyboard sequence.
Consider for example the following code:
myMethod()

Having typed this code into the editor, triggering statement completion will cause the editor to automatically
add the braces to the method:
myMethod() {

}

70

The Basics of the Android Studio Code Editor

8.5 Parameter Information
It is also possible to ask the editor to provide information about the argument parameters accepted by a method.
With the cursor positioned between the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard
sequence will display the parameters known to be accepted by that method, with the most likely suggestion
highlighted in bold:

Figure 8-10

8.6 Parameter Name Hints
The code editor may be configured to display parameter name hints within method calls. Figure 8-11, for
example, highlights the parameter name hints within the calls to the make() and setAction() methods of the
Snackbar class:

Figure 8-11
The settings for this mode may be configured by selecting the File -> Settings menu (Android Studio -> Preferences
on macOS) option followed by Editor -> Inlay Hints -> Java in the left-hand panel. On the resulting screen, select
the Parameter Hints item from the list and enable or disable the Show parameter hints option. To adjust the hint
settings, click on the Exclude list... link and make any necessary adjustments.

8.7 Code Generation
In addition to completing code as it is typed the editor can, under certain conditions, also generate code for you.
The list of available code generation options shown in Figure 8-12 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file where the code is to be generated.

Figure 8-12
For the purposes of an example, consider a situation where we want to be notified when an Activity in our
project is about to be destroyed by the operating system. As will be outlined in a later chapter of this book, this
can be achieved by overriding the onStop() lifecycle method of the Activity superclass. To have Android Studio
generate a stub method for this, simply select the Override Methods… option from the code generation list and

71

The Basics of the Android Studio Code Editor

select the onStop() method from the resulting list of available methods:

Figure 8-13
Having selected the method to override, clicking on OK will generate the stub method at the current cursor
location in the Java source file as follows:
@Override

protected void onStop() {

 super.onStop();

}

8.8 Code Folding
Once a source code file reaches a certain size, even the most carefully formatted and well organized code can
become overwhelming and difficult to navigate. Android Studio takes the view that it is not always necessary to
have the content of every code block visible at all times. Code navigation can be made easier through the use of
the code folding feature of the Android Studio editor. Code folding is controlled using markers appearing in the
editor gutter at the beginning and end of each block of code in a source file. Figure 8-14, for example, highlights
the start and end markers for a method declaration which is not currently folded:

Figure 8-14
Clicking on either of these markers will fold the statement such that only the signature line is visible as shown

72

The Basics of the Android Studio Code Editor

in Figure 8-15:

Figure 8-15
To unfold a collapsed section of code, simply click on the ‘+’ marker in the editor gutter. To see the hidden code
without unfolding it, hover the mouse pointer over the “{…}” indicator as shown in Figure 8-16. The editor will
then display the lens overlay containing the folded code block:

Figure 8-16
All of the code blocks in a file may be folded or unfolded using the Ctrl-Shift-Plus and Ctrl-Shift-Minus keyboard
sequences.

By default, the Android Studio editor will automatically fold some code when a source file is opened. To configure
the conditions under which this happens, select File -> Settings… (Android Studio -> Preferences… on macOS)
and choose the Editor -> General -> Code Folding entry in the resulting settings panel (Figure 8-17):

Figure 8-17

8.9 Quick Documentation Lookup
Context sensitive Java and Android documentation can be accessed by placing the cursor over the declaration
for which documentation is required and pressing the Ctrl-Q keyboard shortcut (Ctrl-J on macOS). This will

73

The Basics of the Android Studio Code Editor

display a popup containing the relevant reference documentation for the item. Figure 8-18, for example, shows
the documentation for the Android FloatingActionButton class.

Figure 8-18

8.10 Code Reformatting
In general, the Android Studio editor will automatically format code in terms of indenting, spacing and nesting
of statements and code blocks as they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code from a website), the editor provides a
source code reformatting feature which, when selected, will automatically reformat code to match the prevailing
code style.

To reformat source code, press the Ctrl-Alt-L (Cmd-Opt-L on macOS) keyboard shortcut sequence. To display
the Reformat Code dialog (Figure 8-19) use the Ctrl-Alt-Shift-L (Cmd-Opt-Shift-L on macOS). This dialog
provides the option to reformat only the currently selected code, the entire source file currently active in the
editor or only code that has changed as the result of a source code control update.

Figure 8-19
The full range of code style preferences can be changed from within the project settings dialog. Select the File
-> Settings menu option (Android Studio -> Preferences… on macOS) and choose Code Style in the left-hand
panel to access a list of supported programming and markup languages. Selecting a language will provide access
to a vast array of formatting style options, all of which may be modified from the Android Studio default to
match your preferred code style. To configure the settings for the Rearrange code option in the above dialog,
for example, unfold the Code Style section, select Java and, from the Java settings, select the Arrangement tab.

74

The Basics of the Android Studio Code Editor

8.11 Finding Sample Code
The Android Studio editor provides a way to access sample code relating to the currently highlighted entry
within the code listing. This feature can be useful for learning how a particular Android class or method is used.
To find sample code, highlight a method or class name in the editor, right-click on it and select the Find Sample
Code menu option. The Find Sample Code panel (Figure 8-20) will appear beneath the editor with a list of
matching samples. Selecting a sample from the list will load the corresponding code into the right-hand panel:

Figure 8-20

8.12 Live Templates
As you write Android code you will find that there are common constructs that are used frequently. For example,
a common requirement is to display a popup message to the user using the Android Toast class. Live templates
are a collection of common code constructs that can be entered into the editor by typing the initial characters
followed by a special key (set to the Tab key by default) to insert template code. To experience this in action, type
toast in the code editor followed by the Tab key and Android Studio will insert the following code at the cursor
position ready for editing:
Toast.makeText(, "", Toast.LENGTH_SHORT).show();

To list and edit existing templates, change the special key, or add your own templates, open the Preferences
dialog and select Live Templates from the Editor section of the left-hand navigation panel:

Figure 8-21
Add, remove, duplicate or reset templates using the buttons marked A in Figure 8-21 above. To modify a
template, select it from the list (B) and change the settings in the panel marked C.

75

The Basics of the Android Studio Code Editor

8.13 Summary
The Android Studio editor goes to great length to reduce the amount of typing needed to write code and to
make that code easier to read and navigate. In this chapter we have covered a number of the key editor features
including code completion, code generation, editor window splitting, code folding, reformatting, documentation
lookup and live templates.

77

Chapter 9

9. An Overview of the Android
Architecture
So far in this book, steps have been taken to set up an environment suitable for the development of Android
applications using Android Studio. An initial step has also been taken into the process of application development
through the creation of an Android Studio application project.

Before delving further into the practical matters of Android application development, however, it is important
to gain an understanding of some of the more abstract concepts of both the Android SDK and Android
development in general. Gaining a clear understanding of these concepts now will provide a sound foundation
on which to build further knowledge.

Starting with an overview of the Android architecture in this chapter, and continuing in the next few chapters of
this book, the goal is to provide a detailed overview of the fundamentals of Android development.

9.1 The Android Software Stack
Android is structured in the form of a software stack comprising applications, an operating system, run-time
environment, middle-ware, services and libraries. This architecture can, perhaps, best be represented visually
as outlined in Figure 9-1. Each layer of the stack, and the corresponding elements within each layer, are tightly
integrated and carefully tuned to provide the optimal application development and execution environment
for mobile devices. The remainder of this chapter will work through the different layers of the Android stack,
starting at the bottom with the Linux Kernel.

Figure 9-1

78

An Overview of the Android Architecture

9.2 The Linux Kernel
Positioned at the bottom of the Android software stack, the Linux Kernel provides a level of abstraction between
the device hardware and the upper layers of the Android software stack. Based on Linux version 2.6, the
kernel provides preemptive multitasking, low-level core system services such as memory, process and power
management in addition to providing a network stack and device drivers for hardware such as the device display,
WiFi and audio.

The original Linux kernel was developed in 1991 by Linus Torvalds and was combined with a set of tools, utilities
and compilers developed by Richard Stallman at the Free Software Foundation to create a full operating system
referred to as GNU/Linux. Various Linux distributions have been derived from these basic underpinnings such
as Ubuntu and Red Hat Enterprise Linux.

It is important to note, however, that Android uses only the Linux kernel. That said, it is worth noting that the
Linux kernel was originally developed for use in traditional computers in the form of desktops and servers. In
fact, Linux is now most widely deployed in mission critical enterprise server environments. It is a testament to
both the power of today’s mobile devices and the efficiency and performance of the Linux kernel that we find
this software at the heart of the Android software stack.

9.3 Android Runtime – ART
When an Android app is built within Android Studio it is compiled into an intermediate bytecode format
(referred to as DEX format). When the application is subsequently loaded onto the device, the Android Runtime
(ART) uses a process referred to as Ahead-of-Time (AOT) compilation to translate the bytecode down to the
native instructions required by the device processor. This format is known as Executable and Linkable Format
(ELF).

Each time the application is subsequently launched, the ELF executable version is run, resulting in faster
application performance and improved battery life.

This contrasts with the Just-in-Time (JIT) compilation approach used in older Android implementations
whereby the bytecode was translated within a virtual machine (VM) each time the application was launched.

9.4 Android Libraries
In addition to a set of standard Java development libraries (providing support for such general purpose tasks as
string handling, networking and file manipulation), the Android development environment also includes the
Android Libraries. These are a set of Java-based libraries that are specific to Android development. Examples
of libraries in this category include the application framework libraries in addition to those that facilitate user
interface building, graphics drawing and database access.

A summary of some key core Android libraries available to the Android developer is as follows:

• android.app – Provides access to the application model and is the cornerstone of all Android applications.

• android.content – Facilitates content access, publishing and messaging between applications and application
components.

• android.database – Used to access data published by content providers and includes SQLite database
management classes.

• android.graphics – A low-level 2D graphics drawing API including colors, points, filters, rectangles and
canvases.

• android.hardware – Presents an API providing access to hardware such as the accelerometer and light sensor.

79

An Overview of the Android Architecture

• android.opengl – A Java interface to the OpenGL ES 3D graphics rendering API.

• android.os – Provides applications with access to standard operating system services including messages,
system services and inter-process communication.

• android.media – Provides classes to enable playback of audio and video.

• android.net – A set of APIs providing access to the network stack. Includes android.net.wifi, which provides
access to the device’s wireless stack.

• android.print – Includes a set of classes that enable content to be sent to configured printers from within
Android applications.

• android.provider – A set of convenience classes that provide access to standard Android content provider
databases such as those maintained by the calendar and contact applications.

• android.text – Used to render and manipulate text on a device display.

• android.util – A set of utility classes for performing tasks such as string and number conversion, XML
handling and date and time manipulation.

• android.view – The fundamental building blocks of application user interfaces.

• android.widget - A rich collection of pre-built user interface components such as buttons, labels, list views,
layout managers, radio buttons etc.

• android.webkit – A set of classes intended to allow web-browsing capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now time to turn our attention to the C/
C++ based libraries contained in this layer of the Android software stack.

9.4.1 C/C++ Libraries
The Android runtime core libraries outlined in the preceding section are Java-based and provide the primary
APIs for developers writing Android applications. It is important to note, however, that the core libraries do
not perform much of the actual work and are, in fact, essentially Java “wrappers” around a set of C/C++ based
libraries. When making calls, for example, to the android.opengl library to draw 3D graphics on the device
display, the library actually ultimately makes calls to the OpenGL ES C++ library which, in turn, works with the
underlying Linux kernel to perform the drawing tasks.

C/C++ libraries are included to fulfill a wide and diverse range of functions including 2D and 3D graphics
drawing, Secure Sockets Layer (SSL) communication, SQLite database management, audio and video playback,
bitmap and vector font rendering, display subsystem and graphic layer management and an implementation of
the standard C system library (libc).

In practice, the typical Android application developer will access these libraries solely through the Java based
Android core library APIs. If direct access to these libraries is needed, this can be achieved using the Android
Native Development Kit (NDK), the purpose of which is to call the native methods of non-Java or Kotlin
programming languages (such as C and C++) from within Java code using the Java Native Interface (JNI).

9.5 Application Framework
The Application Framework is a set of services that collectively form the environment in which Android
applications run and are managed. This framework implements the concept that Android applications are
constructed from reusable, interchangeable and replaceable components. This concept is taken a step further in
that an application is also able to publish its capabilities along with any corresponding data so that they can be

80

An Overview of the Android Architecture

found and reused by other applications.

The Android framework includes the following key services:

• Activity Manager – Controls all aspects of the application lifecycle and activity stack.

• Content Providers – Allows applications to publish and share data with other applications.

• Resource Manager – Provides access to non-code embedded resources such as strings, color settings and user
interface layouts.

• Notifications Manager – Allows applications to display alerts and notifications to the user.

• View System – An extensible set of views used to create application user interfaces.

• Package Manager – The system by which applications are able to find out information about other applications
currently installed on the device.

• Telephony Manager – Provides information to the application about the telephony services available on the
device such as status and subscriber information.

• Location Manager – Provides access to the location services allowing an application to receive updates about
location changes.

9.6 Applications
Located at the top of the Android software stack are the applications. These comprise both the native applications
provided with the particular Android implementation (for example web browser and email applications) and
the third party applications installed by the user after purchasing the device.

9.7 Summary
A good Android development knowledge foundation requires an understanding of the overall architecture of
Android. Android is implemented in the form of a software stack architecture consisting of a Linux kernel,
a runtime environment and corresponding libraries, an application framework and a set of applications.
Applications are predominantly written in Java or Kotlin and compiled down to bytecode format within the
Android Studio build environment. When the application is subsequently installed on a device, this bytecode
is compiled down by the Android Runtime (ART) to the native format used by the CPU. The key goals of the
Android architecture are performance and efficiency, both in application execution and in the implementation
of reuse in application design.

81

Chapter 10

10. The Anatomy of an Android
Application
Regardless of your prior programming experiences, be it Windows, macOS, Linux or even iOS based, the
chances are good that Android development is quite unlike anything you have encountered before.

The objective of this chapter, therefore, is to provide an understanding of the high-level concepts behind the
architecture of Android applications. In doing so, we will explore in detail both the various components that can
be used to construct an application and the mechanisms that allow these to work together to create a cohesive
application.

10.1 Android Activities
Those familiar with object-oriented programming languages such as Java, Kotlin, C++ or C# will be familiar
with the concept of encapsulating elements of application functionality into classes that are then instantiated as
objects and manipulated to create an application. Since Android applications are written in Java and Kotlin, this
is still very much the case. Android, however, also takes the concept of re-usable components to a higher level.

Android applications are created by bringing together one or more components known as Activities. An activity
is a single, standalone module of application functionality that usually correlates directly to a single user interface
screen and its corresponding functionality. An appointments application might, for example, have an activity
screen that displays appointments set up for the current day. The application might also utilize a second activity
consisting of a screen where new appointments may be entered by the user.

Activities are intended as fully reusable and interchangeable building blocks that can be shared amongst different
applications. An existing email application, for example, might contain an activity specifically for composing
and sending an email message. A developer might be writing an application that also has a requirement to send
an email message. Rather than develop an email composition activity specifically for the new application, the
developer can simply use the activity from the existing email application.

Activities are created as subclasses of the Android Activity class and must be implemented so as to be entirely
independent of other activities in the application. In other words, a shared activity cannot rely on being called at
a known point in a program flow (since other applications may make use of the activity in unanticipated ways)
and one activity cannot directly call methods or access instance data of another activity. This, instead, is achieved
using Intents and Content Providers.

By default, an activity cannot return results to the activity from which it was invoked. If this functionality is
required, the activity must be specifically started as a sub-activity of the originating activity.

10.2 Android Fragments
An activity, as described above, typically represents a single user interface screen within an app. One option is
to construct the activity using a single user interface layout and one corresponding activity class file. A better
alternative, however, is to break the activity into different sections. Each of these sections is referred to as a
fragment, each of which consists of part of the user interface layout and a matching class file (declared as a
subclass of the Android Fragment class). In this scenario, an activity simply becomes a container into which one
or more fragments are embedded.

82

The Anatomy of an Android Application

In fact, fragments provide an efficient alternative to having each user interface screen represented by a
separate activity. Instead, an app can consist of a single activity that switches between different fragments, each
representing a different app screen.

10.3 Android Intents
Intents are the mechanism by which one activity is able to launch another and implement the flow through the
activities that make up an application. Intents consist of a description of the operation to be performed and,
optionally, the data on which it is to be performed.

Intents can be explicit, in that they request the launch of a specific activity by referencing the activity by class
name, or implicit by stating either the type of action to be performed or providing data of a specific type on
which the action is to be performed. In the case of implicit intents, the Android runtime will select the activity
to launch that most closely matches the criteria specified by the Intent using a process referred to as Intent
Resolution.

10.4 Broadcast Intents
Another type of Intent, the Broadcast Intent, is a system wide intent that is sent out to all applications that have
registered an “interested” Broadcast Receiver. The Android system, for example, will typically send out Broadcast
Intents to indicate changes in device status such as the completion of system start up, connection of an external
power source to the device or the screen being turned on or off.

A Broadcast Intent can be normal (asynchronous) in that it is sent to all interested Broadcast Receivers at more
or less the same time, or ordered in that it is sent to one receiver at a time where it can be processed and then
either aborted or allowed to be passed to the next Broadcast Receiver.

10.5 Broadcast Receivers
Broadcast Receivers are the mechanism by which applications are able to respond to Broadcast Intents. A
Broadcast Receiver must be registered by an application and configured with an Intent Filter to indicate the
types of broadcast in which it is interested. When a matching intent is broadcast, the receiver will be invoked
by the Android runtime regardless of whether the application that registered the receiver is currently running.
The receiver then has 5 seconds in which to complete any tasks required of it (such as launching a Service,
making data updates or issuing a notification to the user) before returning. Broadcast Receivers operate in the
background and do not have a user interface.

10.6 Android Services
Android Services are processes that run in the background and do not have a user interface. They can be started
and subsequently managed from activities, Broadcast Receivers or other Services. Android Services are ideal
for situations where an application needs to continue performing tasks but does not necessarily need a user
interface to be visible to the user. Although Services lack a user interface, they can still notify the user of events
using notifications and toasts (small notification messages that appear on the screen without interrupting the
currently visible activity) and are also able to issue Intents.

Services are given a higher priority by the Android runtime than many other processes and will only be
terminated as a last resort by the system to free up resources. If the runtime does need to kill a Service, however,
it will be automatically restarted as soon as adequate resources once again become available. A Service can
reduce the risk of termination by declaring itself as needing to run in the foreground. This is achieved by making
a call to startForeground(). This is only recommended for situations where termination would be detrimental to
the user experience (for example, if the user is listening to audio being streamed by the Service).

Example situations where a Service might be a practical solution include, as previously mentioned, the streaming
of audio that should continue when the application is no longer active, or a stock market tracking application

83

The Anatomy of an Android Application

that needs to notify the user when a share hits a specified price.

10.7 Content Providers
Content Providers implement a mechanism for the sharing of data between applications. Any application can
provide other applications with access to its underlying data through the implementation of a Content Provider
including the ability to add, remove and query the data (subject to permissions). Access to the data is provided
via a Universal Resource Identifier (URI) defined by the Content Provider. Data can be shared in the form of a
file or an entire SQLite database.

The native Android applications include a number of standard Content Providers allowing applications to access
data such as contacts and media files. The Content Providers currently available on an Android system may be
located using a Content Resolver.

10.8 The Application Manifest
The glue that pulls together the various elements that comprise an application is the Application Manifest file.
It is within this XML based file that the application outlines the activities, services, broadcast receivers, data
providers and permissions that make up the complete application.

10.9 Application Resources
In addition to the manifest file and the Dex files that contain the byte code, an Android application package will
also typically contain a collection of resource files. These files contain resources such as the strings, images, fonts
and colors that appear in the user interface together with the XML representation of the user interface layouts.
By default, these files are stored in the /res sub-directory of the application project’s hierarchy.

10.10 Application Context
When an application is compiled, a class named R is created that contains references to the application resources.
The application manifest file and these resources combine to create what is known as the Application Context.
This context, represented by the Android Context class, may be used in the application code to gain access to the
application resources at runtime. In addition, a wide range of methods may be called on an application’s context
to gather information and make changes to the application’s environment at runtime.

10.11 Summary
A number of different elements can be brought together to create an Android application. In this chapter, we
have provided a high-level overview of Activities, Fragments, Services, Intents and Broadcast Receivers together
with an overview of the manifest file and application resources.

Maximum reuse and interoperability are promoted through the creation of individual, standalone modules of
functionality in the form of activities and intents, while data sharing between applications is achieved by the
implementation of content providers.

While activities are focused on areas where the user interacts with the application (an activity essentially
equating to a single user interface screen and often made up of one or more fragments), background processing
is typically handled by Services and Broadcast Receivers.

The components that make up the application are outlined for the Android runtime system in a manifest file
which, combined with the application’s resources, represents the application’s context.

Much has been covered in this chapter that is most likely new to the average developer. Rest assured, however,
that extensive exploration and practical use of these concepts will be made in subsequent chapters to ensure a
solid knowledge foundation on which to build your own applications.

85

Chapter 11

11. An Overview of Android View
Binding
An important part of developing Android apps involves the interaction between the code and the views that
make up the user interface layouts. This chapter will look at the options available for gaining access to layout
views in code with a particular emphasis on an option known as view binding. Once the basics of view bindings
have been covered, the chapter will outline how to convert the AndroidSample project to use this approach.

11.1 Find View by Id
As outlined in the chapter entitled “The Anatomy of an Android Application”, all of the resources that make up
an application are compiled into a class named R. Amongst those resources are those that define layouts. Within
the R class is a subclass named layout, which contains the layout resources, including the views that make up
the user interface. Most apps will need to implement interaction between the code and these views, for example
when reading the value entered into the EditText view or changing the content displayed on a TextView.

Before the introduction of Android Studio 3.6, the most common option for gaining access to a view from within
the app code involved writing code to manually find a view based on its id via a method named findViewById().
For example:
TextView exampleView: = findViewById(R.id.exampleView);

With the reference obtained, the properties of the view can then be accessed. For example:
exampleView.setText("Hello");

While finding views by id is still a viable option, it has some limitations, the biggest disadvantage of findViewById()
being that it is possible to obtain a reference to a view that has not yet been created within the layout, leading to
a null pointer exception when an attempt is made to access the view’s properties.

Since Android Studio 3.6, an alternative way of accessing views from the app code has been available in the form
of view binding.

11.2 View Binding
When view binding is enabled in an app module, Android Studio automatically generates a binding class for
each layout file within the module. Using this binding class, the layout views can be accessed from within the
code without the need to use findViewById().

The name of the binding class generated by Android Studio is based on the layout file name converted to so-
called “camel case” with the word “Binding” appended to the end. In the case of the activity_main.xml file, for
example, the binding class will be named ActivityMainBinding.

Android Studio Flamingo is inconsistent in using view bindings within project templates. The Empty Views
Activity template used when we created the AndroidSample project, for example, does not use view bindings.
The Basic Views Activity template, on the other hand, is implemented using view binding. If you use a template
that does not use view binding, it is important to know how to add it to your project.

86

An Overview of Android View Binding

11.3 Converting the AndroidSample project
The remainder of this chapter we will practice migrating to view bindings by converting the AndroidSample
project to use view binding instead of using findViewById().

Begin by launching Android Studio and opening the AndroidSample project created in the chapter entitled
“Creating an Example Android App in Android Studio”.

11.4 Enabling View Binding
To use view binding, some changes must first be made to the build.gradle file for each module in which view
binding is needed. In the case of the AndroidSample project, this will require a small change to the Gradle Scripts
-> build.gradle (Module: app) file. Load this file into the editor, locate the android section and add an entry to
enable the viewBinding property as follows:
plugins {

 id 'com.android.application'

.

.

android {

 buildFeatures {
 viewBinding true
 }
.

.

Once this change has been made, click on the Sync Now link at the top of the editor panel, then use the Build
menu to clean and then rebuild the project to make sure the binding class is generated. The next step is to use
the binding class within the code.

11.5 Using View Binding
The first step in this process is to “inflate” the view binding class so that we can access the root view within the
layout. This root view will then be used as the content view for the layout.

The logical place to perform these tasks is within the onCreate() method of the activity associated with the
layout. A typical onCreate() method will read as follows:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

}

To switch to using view binding, the view binding class will need to be imported and the class modified as follows.
Note that since the layout file is named activity_main.xml, we can surmise that the binding class generated by
Android Studio will be named ActivityMainBinding. Note that if you used a domain other than com.example
when creating the project, the import statement below will need to be changed to reflect this:
.

.

import android.widget.EditText;

import android.widget.TextView;

87

An Overview of Android View Binding

.

.
import com.example.androidsample.databinding.ActivityMainBinding;
.

.

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;
.

.

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 binding = ActivityMainBinding.inflate(getLayoutInflater());
 View view = binding.getRoot();
 setContentView(view);
}

Now that we have a reference to the binding we can access the views by name as follows:
public void convertCurrency(View view) {

 EditText dollarText = findViewById(R.id.dollarText);

 TextView textView = findViewById(R.id.textView);

 if (!binding.dollarText.getText().toString().equals("")) {

 Float dollarValue = Float.valueOf(

 binding.dollarText.getText().toString());
 Float euroValue = dollarValue * 0.85F;

 binding.textView.setText(String.format(Locale.ENGLISH,"%.2f",
 euroValue));

 } else {

 binding.textView.setText(R.string.no_value_string);
 }

}

Compile and run the app and verify that the currency conversion process still works as before.

11.6 Choosing an Option
Their failure to adopt view bindings in the Empty Views Activity project template not withstanding, Google
strongly recommends the use of view binding wherever possible. When developing your own projects, therefore,
view binding should probably be used.

11.7 View Binding in the Book Examples
Any chapters in this book that rely on a project template that does not implement view binding will first be
migrated. Instead of replicating the steps every time a migration needs to be performed, however, these chapters

88

An Overview of Android View Binding

will refer you back here to refresh your memory (don’t worry, after a few chapters the necessary changes will
become second nature). To help with the process, the following section summarizes the migration steps more
concisely.

11.8 Migrating a Project to View Binding
The process for converting a project module to use view binding involves the following steps:

1. Edit the module level Gradle build script file listed in the Project tool window as Gradle Scripts -> build.
gradle (Module :app) where <project name> is the name of the project (for example AndroidSample).

2. Locate the android section of the file and add an entry to enable the viewBinding property as follows:
android {

 buildFeatures {
 viewBinding true
 }
.

.

3. Click on the Sync Now link at the top of the editor to resynchronize the project with these new build settings.

4. Edit the MainActivity.java file and modify it to read as follows (where <reverse domain> represents
the domain name used when the project was created and <project name> is replaced by the lowercase
name of the project, for example androidsample) and <binding name> is the name of the binding for the
corresponding layout resource file (for example the binding for activity_main.xml is ActivityMainBinding).

.

.

import android.view.View;

import com.<reverse domain>.<project name>.databinding.<binding name>;

public class MainActivity extends AppCompatActivity {

 private <binding name> binding;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 binding = <binding name>.inflate(getLayoutInflater());
 View view = binding.getRoot();
 setContentView(view);
 }

5. Access views by name as properties of the binding object.

11.9 Summary
Before the introduction of Android Studio 3.6, access to layout views from within the code of an app involved the
use of the findViewById() method. An alternative is now available in the form of view bindings. View bindings

89

An Overview of Android View Binding

consist of classes which are automatically generated by Android Studio for each XML layout file. These classes
contain bindings to each of the views in the corresponding layout, providing a safer option to that offered by the
findViewById() method. As of Android Studio Flamingo, however, view bindings are not enabled by default in
some project templates and additional steps are required to manually enable and configure support within each
project module.

91

Chapter 12

12. Understanding Android
Application and Activity Lifecycles
In earlier chapters we have learned that Android applications run within processes and that they are comprised
of multiple components in the form of activities, services and broadcast receivers. The goal of this chapter is to
expand on this knowledge by looking at the lifecycle of applications and activities within the Android runtime
system.

Regardless of the fanfare about how much memory and computing power resides in the mobile devices of
today compared to the desktop systems of yesterday, it is important to keep in mind that these devices are
still considered to be “resource constrained” by the standards of modern desktop and laptop based systems,
particularly in terms of memory. As such, a key responsibility of the Android system is to ensure that these
limited resources are managed effectively and that both the operating system and the applications running on
it remain responsive to the user at all times. To achieve this, Android is given full control over the lifecycle and
state of both the processes in which the applications run, and the individual components that comprise those
applications.

An important factor in developing Android applications, therefore, is to gain an understanding of both the
application and activity lifecycle management models of Android, and the ways in which an application can
react to the state changes that are likely to be imposed upon it during its execution lifetime.

12.1 Android Applications and Resource Management
Each running Android application is viewed by the operating system as a separate process. If the system identifies
that resources on the device are reaching capacity it will take steps to terminate processes to free up memory.

When making a determination as to which process to terminate to free up memory, the system takes into
consideration both the priority and state of all currently running processes, combining these factors to create
what is referred to by Google as an importance hierarchy. Processes are then terminated starting with the lowest
priority and working up the hierarchy until sufficient resources have been liberated for the system to function.

12.2 Android Process States
Processes host applications and applications are made up of components. Within an Android system, the current
state of a process is defined by the highest-ranking active component within the application that it hosts. As
outlined in Figure 12-1, a process can be in one of the following five states at any given time:

92

Understanding Android Application and Activity Lifecycles

Figure 12-1
12.2.1 Foreground Process
These processes are assigned the highest level of priority. At any one time, there are unlikely to be more than one
or two foreground processes active and these are usually the last to be terminated by the system. A process must
meet one or more of the following criteria to qualify for foreground status:

• Hosts an activity with which the user is currently interacting.

• Hosts a Service connected to the activity with which the user is interacting.

• Hosts a Service that has indicated, via a call to startForeground(), that termination would be disruptive to the
user experience.

• Hosts a Service executing either its onCreate(), onResume() or onStart() callbacks.

• Hosts a Broadcast Receiver that is currently executing its onReceive() method.

12.2.2 Visible Process
A process containing an activity that is visible to the user but is not the activity with which the user is interacting
is classified as a “visible process”. This is typically the case when an activity in the process is visible to the user,
but another activity, such as a partial screen or dialog, is in the foreground. A process is also eligible for visible
status if it hosts a Service that is, itself, bound to a visible or foreground activity.

12.2.3 Service Process
Processes that contain a Service that has already been started and is currently executing.

12.2.4 Background Process
A process that contains one or more activities that are not currently visible to the user, and does not host a
Service that qualifies for Service Process status. Processes that fall into this category are at high risk of termination
if additional memory needs to be freed for higher priority processes. Android maintains a dynamic list of
background processes, terminating processes in chronological order such that processes that were the least
recently in the foreground are killed first.

93

Understanding Android Application and Activity Lifecycles

12.2.5 Empty Process
Empty processes no longer contain any active applications and are held in memory ready to serve as hosts for
newly launched applications. This is somewhat analogous to keeping the doors open and the engine running on
a bus in anticipation of passengers arriving. Such processes are, obviously, considered the lowest priority and are
the first to be killed to free up resources.

12.3 Inter-Process Dependencies
The situation with regard to determining the highest priority process is slightly more complex than outlined in
the preceding section for the simple reason that processes can often be inter-dependent. As such, when making
a determination as to the priority of a process, the Android system will also take into consideration whether the
process is in some way serving another process of higher priority (for example, a service process acting as the
content provider for a foreground process). As a basic rule, the Android documentation states that a process can
never be ranked lower than another process that it is currently serving.

12.4 The Activity Lifecycle
As we have previously determined, the state of an Android process is determined largely by the status of the
activities and components that make up the application that it hosts. It is important to understand, therefore,
that these activities also transition through different states during the execution lifetime of an application. The
current state of an activity is determined, in part, by its position in something called the Activity Stack.

12.5 The Activity Stack
For each application that is running on an Android device, the runtime system maintains an Activity Stack.
When an application is launched, the first of the application’s activities to be started is placed onto the stack.
When a second activity is started, it is placed on the top of the stack and the previous activity is pushed down.
The activity at the top of the stack is referred to as the active (or running) activity. When the active activity exits,
it is popped off the stack by the runtime and the activity located immediately beneath it in the stack becomes
the current active activity. The activity at the top of the stack might, for example, simply exit because the task
for which it is responsible has been completed. Alternatively, the user may have selected a “Back” button on the
screen to return to the previous activity, causing the current activity to be popped off the stack by the runtime
system and therefore destroyed. A visual representation of the Android Activity Stack is illustrated in Figure
12-2.

As shown in the diagram, new activities are pushed on to the top of the stack when they are started. The current
active activity is located at the top of the stack until it is either pushed down the stack by a new activity, or
popped off the stack when it exits or the user navigates to the previous activity. If resources become constrained,
the runtime will kill activities, starting with those at the bottom of the stack.

The Activity Stack is what is referred to in programming terminology as a Last-In-First-Out (LIFO) stack in that
the last item to be pushed onto the stack is the first to be popped off.

94

Understanding Android Application and Activity Lifecycles

Figure 12-2

12.6 Activity States
An activity can be in one of a number of different states during the course of its execution within an application:

· Active / Running – The activity is at the top of the Activity Stack, is the foreground task visible on the
device screen, has focus and is currently interacting with the user. This is the least likely activity to be
terminated in the event of a resource shortage.

· Paused – The activity is visible to the user but does not currently have focus (typically because this activity
is partially obscured by the current active activity). Paused activities are held in memory, remain attached
to the window manager, retain all state information and can quickly be restored to active status when
moved to the top of the Activity Stack.

· Stopped – The activity is currently not visible to the user (in other words it is totally obscured on the
device display by other activities). As with paused activities, it retains all state and member information,
but is at higher risk of termination in low memory situations.

· Killed – The activity has been terminated by the runtime system in order to free up memory and is no
longer present on the Activity Stack. Such activities must be restarted if required by the application.

12.7 Configuration Changes
So far in this chapter, we have looked at two of the causes for the change in state of an Android activity, namely the
movement of an activity between the foreground and background, and termination of an activity by the runtime
system to free up memory. In fact, there is a third scenario in which the state of an activity can dramatically
change and this involves a change to the device configuration.

95

Understanding Android Application and Activity Lifecycles

By default, any configuration change that impacts the appearance of an activity (such as rotating the orientation
of the device between portrait and landscape, or changing a system font setting) will cause the activity to be
destroyed and recreated. The reasoning behind this is that such changes affect resources such as the layout of
the user interface and simply destroying and recreating impacted activities is the quickest way for an activity to
respond to the configuration change. It is, however, possible to configure an activity so that it is not restarted by
the system in response to specific configuration changes.

12.8 Handling State Change
If nothing else, it should be clear from this chapter that an application and, by definition, the components
contained therein will transition through many states during the course of its lifespan. Of particular importance
is the fact that these state changes (up to and including complete termination) are imposed upon the application
by the Android runtime subject to the actions of the user and the availability of resources on the device.

In practice, however, these state changes are not imposed entirely without notice and an application will, in most
circumstances, be notified by the runtime system of the changes and given the opportunity to react accordingly.
This will typically involve saving or restoring both internal data structures and user interface state, thereby
allowing the user to switch seamlessly between applications and providing at least the appearance of multiple,
concurrently running applications.

Android provides two ways to handle the changes to the lifecycle states of the objects within in app. One
approach involves responding to state change method calls from the operating system and is covered in detail in
the next chapter entitled “Handling Android Activity State Changes”.

A new approach, and one that is recommended by Google, involves the lifecycle classes included with the
Jetpack Android Architecture components, introduced in “Modern Android App Architecture with Jetpack” and
explained in more detail in the chapter entitled “Working with Android Lifecycle-Aware Components”.

12.9 Summary
Mobile devices are typically considered to be resource constrained, particularly in terms of on-board memory
capacity. Consequently, a prime responsibility of the Android operating system is to ensure that applications,
and the operating system in general, remain responsive to the user.

Applications are hosted on Android within processes. Each application, in turn, is made up of components in
the form of activities and Services.

The Android runtime system has the power to terminate both processes and individual activities to free up
memory. Process state is taken into consideration by the runtime system when deciding whether a process is a
suitable candidate for termination. The state of a process is largely dependent upon the status of the activities
hosted by that process.

The key message of this chapter is that an application moves through a variety of states during its execution
lifespan and has very little control over its destiny within the Android runtime environment. Those processes and
activities that are not directly interacting with the user run a higher risk of termination by the runtime system.
An essential element of Android application development, therefore, involves the ability of an application to
respond to state change notifications from the operating system.

97

Chapter 13

13. Handling Android Activity State
Changes
Based on the information outlined in the chapter entitled “Understanding Android Application and Activity
Lifecycles” it is now evident that the activities and fragments that make up an application pass through a variety
of different states during the course of the application’s lifespan. The change from one state to the other is
imposed by the Android runtime system and is, therefore, largely beyond the control of the activity itself. That
does not, however, mean that the app cannot react to those changes and take appropriate actions.

The primary objective of this chapter is to provide a high-level overview of the ways in which an activity may
be notified of a state change and to outline the areas where it is advisable to save or restore state information.
Having covered this information, the chapter will then touch briefly on the subject of activity lifetimes.

13.1 New vs. Old Lifecycle Techniques
Up until recently, there was a standard way to build lifecycle awareness into an app. This is the approach covered
in this chapter and involves implementing a set of methods (one for each lifecycle state) within an activity or
fragment instance that get called by the operating system when the lifecycle status of that object changes. This
approach has remained unchanged since the early years of the Android operating system and, while still a viable
option today, it does have some limitations which will be explained later in this chapter.

With the introduction of the lifecycle classes with the Jetpack Android Architecture Components, a better
approach to lifecycle handling is now available. This modern approach to lifecycle management (together
with the Jetpack components and architecture guidelines) will be covered in detail in later chapters. It is still
important, however, to understand the traditional lifecycle methods for a couple of reasons. First, as an Android
developer you will not be completely insulated from the traditional lifecycle methods and will still make use
of some of them. More importantly, understanding the older way of handling lifecycles will provide a good
knowledge foundation on which to begin learning the new approach later in the book.

13.2 The Activity and Fragment Classes
With few exceptions, activities and fragments in an application are created as subclasses of the Android
AppCompatActivity class and Fragment classes respectively.

Consider, for example, the AndroidSample project created in “Creating an Example Android App in Android
Studio” and subsequently converted to use view binding. Load this project into the Android Studio environment
and locate the MainActivity.java file (located in app -> java -> <your domain> -> androidsample). Having
located the file, double-click on it to load it into the editor where it should read as follows:
package com.example.androidsample;

import androidx.appcompat.app.AppCompatActivity;

import android.view.View;

import android.os.Bundle;

import java.util.Locale;

98

Handling Android Activity State Changes

import com.example.androidsample.databinding.ActivityMainBinding;

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 }

 public void convertCurrency(View view) {

 if (!binding.dollarText.getText().toString().equals("")) {

 float dollarValue = Float.parseFloat(

 binding.dollarText.getText().toString());

 float euroValue = dollarValue * 0.85F;

 binding.textView.setText(

 String.format(Locale.ENGLISH,"%f", euroValue));

 } else {

 binding.textView.setText(R.string.no_value_string);

 }

 }

}

When the project was created, we instructed Android Studio also to create an initial activity named
MainActivity.java As is evident from the above code, the MainActivity class is a subclass of the AppCompatActivity
class.

A review of the reference documentation for the AppCompatActivity class would reveal that it is itself a subclass
of the Activity class. This can be verified within the Android Studio editor using the Hierarchy tool window.
With the MainActivity.java file loaded into the editor, click on AppCompatActivity in the class declaration line
and press the Ctrl-H keyboard shortcut. The hierarchy tool window will subsequently appear displaying the class
hierarchy for the selected class. As illustrated in Figure 13-1, AppCompatActivity is clearly subclassed from the
FragmentActivity class which is itself ultimately a subclass of the Activity class:

99

Handling Android Activity State Changes

Figure 13-1
The Activity and Fragment classes contain a range of methods that are intended to be called by the Android
runtime to notify the object when its state is changing. For the purposes of this chapter, we will refer to these as
the lifecycle methods. An activity or fragment class simply needs to override these methods and implement the
necessary functionality within them to react accordingly to state changes.

One such method is named onCreate() and, turning once again to the above code fragment, we can see that this
method has already been overridden and implemented for us in the MainActivity class. In a later section we will
explore in detail both onCreate() and the other relevant lifecycle methods of the Activity and Fragment classes.

13.3 Dynamic State vs. Persistent State
A key objective of lifecycle management is ensuring that the state of the activity is saved and restored at
appropriate times. When talking about state in this context we mean the data that is currently being held within
the activity and the appearance of the user interface. The activity might, for example, maintain a data model in
memory that needs to be saved to a database, content provider or file. Such state information, because it persists
from one invocation of the application to another, is referred to as the persistent state.

The appearance of the user interface (such as text entered into a text field but not yet committed to the
application’s internal data model) is referred to as the dynamic state, since it is typically only retained during a
single invocation of the application (and also referred to as user interface state or instance state).

Understanding the differences between these two states is important because both the ways they are saved, and
the reasons for doing so, differ.

The purpose of saving the persistent state is to avoid the loss of data that may result from an activity being killed
by the runtime system while in the background. The dynamic state, on the other hand, is saved and restored for
reasons that are slightly more complex.

Consider, for example, that an application contains an activity (which we will refer to as Activity A) containing
a text field and some radio buttons. During the course of using the application, the user enters some text into
the text field and makes a selection from the radio buttons. Before performing an action to save these changes,
however, the user then switches to another activity causing Activity A to be pushed down the Activity Stack
and placed into the background. After some time, the runtime system ascertains that memory is low and
consequently kills Activity A to free up resources. As far as the user is concerned, however, Activity A was simply
placed into the background and is ready to be moved to the foreground at any time. On returning Activity A to
the foreground the user would, quite reasonably, expect the entered text and radio button selections to have been
retained. In this scenario, however, a new instance of Activity A will have been created and, if the dynamic state
was not saved and restored, the previous user input lost.

The main purpose of saving dynamic state, therefore, is to give the perception of seamless switching between
foreground and background activities, regardless of the fact that activities may actually have been killed and
restarted without the user’s knowledge.

100

Handling Android Activity State Changes

The mechanisms for saving persistent and dynamic state will become clearer in the following sections of this
chapter.

13.4 The Android Lifecycle Methods
As previously explained, the Activity and Fragment classes contain a number of lifecycle methods which act as
event handlers when the state of an instance changes. The primary methods supported by the Android Activity
and Fragment class are as follows:

• onCreate(Bundle savedInstanceState) – The method that is called when the activity is first created and the
ideal location for most initialization tasks to be performed. The method is passed an argument in the form of a
Bundle object that may contain dynamic state information (typically relating to the state of the user interface)
from a prior invocation of the activity.

• onRestart() – Called when the activity is about to restart after having previously been stopped by the runtime
system.

• onStart() – Always called immediately after the call to the onCreate() or onRestart() methods, this method
indicates to the activity that it is about to become visible to the user. This call will be followed by a call to
onResume() if the activity moves to the top of the activity stack, or onStop() in the event that it is pushed down
the stack by another activity.

• onResume() – Indicates that the activity is now at the top of the activity stack and is the activity with which
the user is currently interacting.

• onPause() – Indicates that a previous activity is about to become the foreground activity. This call will be
followed by a call to either the onResume() or onStop() method depending on whether the activity moves back
to the foreground or becomes invisible to the user. Steps may be taken within this method to store persistent
state information not yet saved by the app. To avoid delays in switching between activities, time consuming
operations such as storing data to a database or performing network operations should be avoided within this
method. This method should also ensure that any CPU intensive tasks such as animation are stopped.

• onStop() – The activity is now no longer visible to the user. The two possible scenarios that may follow this
call are a call to onRestart() in the event that the activity moves to the foreground again, or onDestroy() if the
activity is being terminated.

• onDestroy() – The activity is about to be destroyed, either voluntarily because the activity has completed its
tasks and has called the finish() method or because the runtime is terminating it either to release memory or
due to a configuration change (such as the orientation of the device changing). It is important to note that a
call will not always be made to onDestroy() when an activity is terminated.

• onConfigurationChanged() – Called when a configuration change occurs for which the activity has indicated
it is not to be restarted. The method is passed a Configuration object outlining the new device configuration
and it is then the responsibility of the activity to react to the change.

The following lifecycle methods only apply to the Fragment class:

• onAttach() - Called when the fragment is assigned to an activity.

• onCreateView() - Called to create and return the fragment’s user interface layout view hierarchy.

• onViewCreated() - Called after onCreateView() returns.

• onViewStatusRestored() - The fragment’s saved view hierarchy has been restored.

In addition to the lifecycle methods outlined above, there are two methods intended specifically for saving and

101

Handling Android Activity State Changes

restoring the dynamic state of an activity:

• onRestoreInstanceState(Bundle savedInstanceState) – This method is called immediately after a call to
the onStart() method in the event that the activity is restarting from a previous invocation in which state
was saved. As with onCreate(), this method is passed a Bundle object containing the previous state data.
This method is typically used in situations where it makes more sense to restore a previous state after the
initialization of the activity has been performed in onCreate() and onStart().

• onSaveInstanceState(Bundle outState) – Called before an activity is destroyed so that the current dynamic
state (usually relating to the user interface) can be saved. The method is passed the Bundle object into which the
state should be saved and which is subsequently passed through to the onCreate() and onRestoreInstanceState()
methods when the activity is restarted. Note that this method is only called in situations where the runtime
ascertains that dynamic state needs to be saved.

When overriding the above methods, it is important to remember that, with the exception of
onRestoreInstanceState() and onSaveInstanceState(), the method implementation must include a call to the
corresponding method in the super class. For example, the following method overrides the onRestart() method
but also includes a call to the super class instance of the method:
protected void onRestart() {

 super.onRestart();

 Log.i(TAG, "onRestart");

}

Failure to make this super class call in method overrides will result in the runtime throwing an exception during
execution. While calls to the super class in the onRestoreInstanceState() and onSaveInstanceState() methods are
optional (they can, for example, be omitted when implementing custom save and restoration behavior) there are
considerable benefits to using them, a subject that will be covered in the chapter entitled “Saving and Restoring
the State of an Android Activity”.

13.5 Lifetimes
The final topic to be covered involves an outline of the entire, visible and foreground lifetimes through which an
activity or fragment will transition during execution:

• Entire Lifetime –The term “entire lifetime” is used to describe everything that takes place between the initial
call to the onCreate() method and the call to onDestroy() prior to the object terminating.

• Visible Lifetime – Covers the periods of execution between the call to onStart() and onStop(). During this
period the activity or fragment is visible to the user though may not be the object with which the user is
currently interacting.

• Foreground Lifetime – Refers to the periods of execution between calls to the onResume() and onPause()
methods.

It is important to note that an activity or fragment may pass through the foreground and visible lifetimes multiple
times during the course of the entire lifetime.

The concepts of lifetimes and lifecycle methods are illustrated in Figure 13-2:

102

Handling Android Activity State Changes

Figure 13-2

13.6 Foldable Devices and Multi-Resume
As discussed previously, an activity is considered to be in the resumed state when it has moved to the foreground
and is the activity with which the user is currently interacting. On standard devices an app can have one activity
in the resumed state at any one time and all other activities are likely to be in the paused or stopped state.

For some time now, Android has included multi-window support, allowing multiple activities to appear
simultaneously in either split-screen or freeform configurations. Although originally used primarily on large
screen tablet devices, this feature is likely to become more popular with the introduction of foldable devices.

On devices running Android 10 and on which multi-window support is enabled (as will be the case for most
foldables), it will be possible for multiple app activities to be in the resumed state at the same time (a concept
referred to as multi-resume) allowing those visible activities to continue functioning (for example streaming
content or updating visual data) even when another activity currently has focus. Although multiple activities
can be in the resumed state, only one of these activities will be considered the topmost resumed activity (in other
words, the activity with which the user most recently interacted).

An activity can receive notification that it has gained or lost the topmost resumed status by implementing the
onTopResumedActivityChanged() callback method.

13.7 Disabling Configuration Change Restarts
As previously outlined, an activity may indicate that it is not to be restarted in the event of certain configuration
changes. This is achieved by adding an android:configChanges directive to the activity element within the project
manifest file. The following manifest file excerpt, for example, indicates that the activity should not be restarted
in the event of configuration changes relating to orientation or device-wide font size:
<activity android:name=".MainActivity"

 android:configChanges="orientation|fontScale"
 android:label="@string/app_name">

13.8 Lifecycle Method Limitations
As discussed at the start of this chapter, lifecycle methods have been in use for many years and, until recently,
were the only mechanism available for handling lifecycle state changes for activities and fragments. There are,
however, shortcomings to this approach.

103

Handling Android Activity State Changes

One issue with the lifecycle methods is that they do not provide an easy way for an activity or fragment to find
out its current lifecycle state at any given point during app execution. Instead the object would need to track the
state internally, or wait for the next lifecycle method call.

Also, the methods do not provide a simple way for one object to observe the lifecycle state changes of other
objects within an app. This is a serious consideration since many other objects within an app can potentially be
impacted by a lifecycle state change in a given activity or fragment.

The lifecycle methods are also only available on subclasses of the Fragment and Activity classes. It is not possible,
therefore, to build custom classes that are truly lifecycle aware.

Finally, the lifecycle methods result in most of the lifecycle handling code being written within the activity
or fragment which can lead to complex and error prone code. Ideally, much of this code should reside in the
other classes that are impacted by the state change. An app that streams video, for example, might include a
class designed specifically to manage the incoming stream. If the app needs to pause the stream when the main
activity is stopped, the code to do so should reside in the streaming class, not the main activity.

All of these problems and more are resolved by using lifecycle-aware components, a topic which will be covered
starting with the chapter entitled “Modern Android App Architecture with Jetpack”.

13.9 Summary
All activities are derived from the Android Activity class which, in turn, contains a number of lifecycle methods
that are designed to be called by the runtime system when the state of an activity changes. Similarly, the Fragment
class contains a number of comparable methods. By overriding these methods, activities and fragments can
respond to state changes and, where necessary, take steps to save and restore the current state of both the activity
and the application. Lifecycle state can be thought of as taking two forms. The persistent state refers to data that
needs to be stored between application invocations (for example to a file or database). Dynamic state, on the
other hand, relates instead to the current appearance of the user interface.

Although lifecycle methods have a number of limitations that can be avoided by making use of lifecycle-aware
components, an understanding of these methods is important to fully understand the new approaches to lifecycle
management covered later in this book.

In this chapter, we have highlighted the lifecycle methods available to activities and covered the concept of
activity lifetimes. In the next chapter, entitled “Android Activity State Changes by Example”, we will implement
an example application that puts much of this theory into practice.

105

Chapter 14

14. Android Activity State Changes by
Example
The previous chapters have discussed in some detail the different states and lifecycles of the activities that
comprise an Android application. In this chapter, we will put the theory of handling activity state changes into
practice through the creation of an example application. The purpose of this example application is to provide
a real world demonstration of an activity as it passes through a variety of different states within the Android
runtime. In the next chapter, entitled “Saving and Restoring the State of an Android Activity”, the example project
constructed in this chapter will be extended to demonstrate the saving and restoration of dynamic activity state.

14.1 Creating the State Change Example Project
The first step in this exercise is to create the new project. Begin by launching Android Studio and, if necessary,
closing any currently open projects using the File -> Close Project menu option so that the Welcome screen
appears.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter StateChange into the Name field and specify com.ebookfrenzy.statechange as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java. Upon completion of the project creation process, the StateChange project should be
listed in the Project tool window located along the left-hand edge of the Android Studio main window. Use the
steps outlined in section 11.8 Migrating a Project to View Binding to convert the project to use view binding.

The next action to take involves the design of the user interface for the activity. This is stored in a file named
activity_main.xml which should already be loaded into the Layout Editor tool. If it is not, navigate to it in the
project tool window where it can be found in the app -> res -> layout folder. Once located, double-clicking on
the file will load it into the Android Studio Layout Editor tool.

Figure 14-1

106

Android Activity State Changes by Example

14.2 Designing the User Interface
With the user interface layout loaded into the Layout Editor tool, it is now time to design the user interface for
the example application. Instead of the “Hello World!” TextView currently present in the user interface design,
the activity actually requires an EditText view. Select the TextView object in the Layout Editor canvas and press
the Delete key on the keyboard to remove it from the design.

From the Palette located on the left side of the Layout Editor, select the Text category and, from the list of text
components, click and drag a Plain Text component over to the visual representation of the device screen. Move
the component to the center of the display so that the center guidelines appear and drop it into place so that the
layout resembles that of Figure 14-2.

Figure 14-2
When using the EditText widget it is necessary to specify an input type for the view. This simply defines the type
of text or data that will be entered by the user. For example, if the input type is set to Phone, the user will be
restricted to entering numerical digits into the view. Alternatively, if the input type is set to TextCapCharacters,
the input will default to upper case characters. Input type settings may also be combined.

For this example, we will use the default input type to support general text input. To choose a different setting
in the future, select the EditText widget in the layout and locate the inputType entry within the Attributes tool
window. Next, click the flag icon to the left of the current setting to open the list of options, as shown in Figure
14-3 below. The Type menu provides options to restrict the input to text, numbers, dates and times, and phone
numbers. The Variations menu provides additional options for the currently selected input type. For example, a
variation is available for the text input type for email addresses as input.

Once a type and variation have been chosen, the input type may be customized further using the list of flag
checkboxes:

107

Android Activity State Changes by Example

Figure 14-3

Remaining in the Attributes tool window, change the id of the view to editText and click on the Refactor button
in the resulting dialog.

By default the EditText is displaying text which reads “Name”. Remaining within the Attributes panel, delete this
from the text property field so that the view is blank within the layout.

Before continuing, click on the Infer Constraints button in the layout editor toolbar to add any missing constraints.

14.3 Overriding the Activity Lifecycle Methods
At this point, the project contains a single activity named MainActivity, which is derived from the Android
AppCompatActivity class. The source code for this activity is contained within the MainActivity.java file which
should already be open in an editor session and represented by a tab in the editor tab bar. If the file is no
longer open, navigate to it in the Project tool window panel (app -> java -> com.ebookfrenzy.statechange ->
MainActivity) and double-click on it to load the file into the editor.

So far the only lifecycle method overridden by the activity is the onCreate() method which has been implemented
to call the super class instance of the method before setting up the user interface for the activity. We will now
modify this method so that it outputs a diagnostic message in the Android Studio Logcat panel each time it
executes. For this, we will use the Log class, which requires that we import android.util.Log and declare a tag that
will enable us to filter these messages in the log output:
package com.ebookfrenzy.statechange;

.

.

import android.util.Log;
import androidx.annotation.NonNull;
import android.view.View;

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 private static final String TAG = "StateChange";

108

Android Activity State Changes by Example

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 Log.i(TAG, "onCreate");
 }

}

The next task is to override some more methods, with each one containing a corresponding log call. These
override methods may be added manually or generated using the Alt-Insert keyboard shortcut as outlined in the
chapter entitled “The Basics of the Android Studio Code Editor”. Note that the Log calls will still need to be added
manually if the methods are being auto-generated:
@Override

protected void onStart() {

 super.onStart();

 Log.i(TAG, "onStart");

}

@Override

protected void onResume() {

 super.onResume();

 Log.i(TAG, "onResume");

}

@Override

protected void onPause() {

 super.onPause();

 Log.i(TAG, "onPause");

}

@Override

protected void onStop() {

 super.onStop();

 Log.i(TAG, "onStop");

}

@Override

protected void onRestart() {

 super.onRestart();

 Log.i(TAG, "onRestart");

}

109

Android Activity State Changes by Example

@Override

protected void onDestroy() {

 super.onDestroy();

 Log.i(TAG, "onDestroy");

}

@Override

protected void onSaveInstanceState(@NonNull Bundle outState) {

 super.onSaveInstanceState(outState);

 Log.i(TAG, "onSaveInstanceState");

}

@Override

protected void onRestoreInstanceState(@NonNull Bundle savedInstanceState) {

 super.onRestoreInstanceState(savedInstanceState);

 Log.i(TAG, "onRestoreInstanceState");

}

14.4 Filtering the Logcat Panel
The purpose of the code added to the overridden methods in MainActivity.java is to output logging information
to the Logcat tool window. This output can be configured to display all events relating to the device or emulator
session, or restricted to those events that relate to the currently selected app. The output can also be further
restricted to only those log events that match a specified filter.

When displayed while the current app is running, the Logcat tool window will appear as shown in Figure 14-4
below:

Figure 14-4
The menu marked A in the above figure allows you to select the device or emulator for which log output is to be
displayed. This output appears in the output panel marked C. The log output can be filtered by entering options
into the field marked B. By default key setting, package:mine, restricts the output to log messages generated
by the current app package (in this case com.ebookfrenzy.statechange). Leaving this field black will allow log
output from the selected device or emulator to be displayed, including diagnostic messages generated by the
operating system. Keys may also be combined to further filter the output. For example, we can configure the
Logcat panel to display only messages associated with our StateChange tag as follows:
package:mine tag:StateChange

We can also exclude output by prefixing the key with a minus (-) sign. In addition to the StateChange tag, we
might also have diagnostic messages that use a different tag named “OtherTag”. To filter the log so that output
from this second tag is excluded we could enter the following key options:
package:mine tag:StateChange -tag:OtherTag

110

Android Activity State Changes by Example

In addition to your own tag values, it is also possible to select from a range of predefined diagnostic tags built
into Android. Logcat will display a list of matching tags as you type into the filter field as shown in Figure 14-5:

Figure 14-5
The level key may be used to control which messages are displayed based on severity. To filter out all messages
except error messages, the following key would be used:
level:error

In addition to error, the Logcat panel also supports verbose, info, warn and assert level settings.

Logcat also supports multiple log panels, each with its own filter settings. To add another panel, click on the +
button marked D in Figure 14-4 above. Switch between different panels using the corresponding tabs, or display
them side-by-side by right-clicking on the currently displayed panel and selecting either the Split-Right or Split-
Down menu option to arrange the panels horizontally or vertically. To rename a panel, right-click on the tab
and select the Rename Tab option. Before proceeding close all but one Logcat panel and configure the filter as
follows:
package:mine tag:StateChange

14.5 Running the Application
For optimal results, the application should be run on a physical Android device or emulator. With the device
configured and connected to the development computer, click on the run button represented by a green triangle
located in the Android Studio toolbar as shown in Figure 14-6 below, select the Run -> Run… menu option or
use the Shift+F10 keyboard shortcut:

Figure 14-6
Select the physical Android device or emulator from the Choose Device dialog if it appears (assuming that
you have not already configured it to be the default target). After Android Studio has built the application and
installed it on the device it should start up and be running in the foreground.

A review of the Logcat panel should indicate which methods have so far been triggered:

111

Android Activity State Changes by Example

Figure 14-7

14.6 Experimenting with the Activity
With the diagnostics working, it is now time to exercise the application with a view to gaining an understanding
of the activity lifecycle state changes. To begin with, consider the initial sequence of log events in the Logcat
panel:
onCreate

onStart

onResume

Clearly, the initial state changes are exactly as outlined in “Understanding Android Application and Activity
Lifecycles”. Note, however, that a call was not made to onRestoreInstanceState() since the Android runtime
detected that there was no state to restore in this situation.

Tap on the Home icon in the bottom status bar on the device display and note the sequence of method calls
reported in the log as follows:
onPause

onStop

onSaveInstanceState

In this case, the runtime has noticed that the activity is no longer in the foreground, is not visible to the user
and has stopped the activity, but not without providing an opportunity for the activity to save the dynamic state.
Depending on whether the runtime ultimately destroyed the activity or simply restarted it, the activity will
either be notified it has been restarted via a call to onRestart() or will go through the creation sequence again
when the user returns to the activity.

As outlined in “Understanding Android Application and Activity Lifecycles”, the destruction and recreation of
an activity can be triggered by making a configuration change to the device, such as rotating from portrait to
landscape. To see this in action, simply rotate the device while the StateChange application is in the foreground.
When using the emulator, device rotation may be simulated using the rotation button located in the emulator
toolbar. To complete the rotation, it may also be necessary to tap on the rotation button. This appears at the
bottom of the device or emulator screen as shown in Figure 14-8:

Figure 14-8
The resulting sequence of method calls in the log should read as follows:
onPause

onStop

onSaveInstanceState

112

Android Activity State Changes by Example

onDestroy

onCreate

onStart

onRestoreInstanceState

onResume

Clearly, the runtime system has given the activity an opportunity to save state before being destroyed and
restarted.

14.7 Summary
The old adage that a picture is worth a thousand words holds just as true for examples when learning a new
programming paradigm. In this chapter, we have created an example Android application for the purpose of
demonstrating the different lifecycle states through which an activity is likely to pass. In the course of developing
the project in this chapter, we also looked at a mechanism for generating diagnostic logging information from
within an activity.

In the next chapter, we will extend the StateChange example project to demonstrate how to save and restore an
activity’s dynamic state.

113

Chapter 15

15. Saving and Restoring the State of
an Android Activity
If the previous few chapters have achieved their objective, it should now be a little clearer as to the importance
of saving and restoring the state of a user interface at particular points in the lifetime of an activity.

In this chapter, we will extend the example application created in “Android Activity State Changes by Example”
to demonstrate the steps involved in saving and restoring state when an activity is destroyed and recreated by
the runtime system.

A key component of saving and restoring dynamic state involves the use of the Android SDK Bundle class, a
topic that will also be covered in this chapter.

15.1 Saving Dynamic State
An activity, as we have already learned, is given the opportunity to save dynamic state information via a call from
the runtime system to the activity’s implementation of the onSaveInstanceState() method. Passed through as an
argument to the method is a reference to a Bundle object into which the method will need to store any dynamic
data that needs to be saved. The Bundle object is then stored by the runtime system on behalf of the activity and
subsequently passed through as an argument to the activity’s onCreate() and onRestoreInstanceState() methods
if and when they are called. The data can then be retrieved from the Bundle object within these methods and
used to restore the state of the activity.

15.2 Default Saving of User Interface State
In the previous chapter, the diagnostic output from the StateChange example application showed that an activity
goes through a number of state changes when the device on which it is running is rotated sufficiently to trigger
an orientation change.

Launch the StateChange application once again and enter some text into the EditText field before performing
the device rotation (on devices or emulators running Android 9 or later, it may be necessary to tap the rotation
button in the status bar to complete the rotation). Having rotated the device, the following state change sequence
should appear in the Logcat window:
onPause

onStop

onSaveInstanceState

onDestroy

onCreate

onStart

onRestoreInstanceState

onResume

Clearly this has resulted in the activity being destroyed and re-created. A review of the user interface of the
running application, however, should show that the text entered into the EditText field has been preserved.
Given that the activity was destroyed and recreated, and that we did not add any specific code to make sure the
text was saved and restored, this behavior requires some explanation.

114

Saving and Restoring the State of an Android Activity

In fact, most of the view widgets included with the Android SDK already implement the behavior necessary to
automatically save and restore state when an activity is restarted. The only requirement to enable this behavior
is for the onSaveInstanceState() and onRestoreInstanceState() override methods in the activity to include calls to
the equivalent methods of the super class:
@Override

protected void onSaveInstanceState(@NonNull Bundle outState) {

 super.onSaveInstanceState(outState);
}

@Override

protected void onRestoreInstanceState(@NonNull Bundle savedInstanceState) {

 super.onRestoreInstanceState(savedInstanceState);
}

The automatic saving of state for a user interface view can be disabled in the XML layout file by setting the
android:saveEnabled property to false. For the purposes of an example, we will disable the automatic state saving
mechanism for the EditText view in the user interface layout and then add code to the application to manually
save and restore the state of the view.

To configure the EditText view such that state will not be saved and restored if the activity is restarted, edit the
activity_main.xml file so that the entry for the view reads as follows (note that the XML can be edited directly by
clicking on the Text tab on the bottom edge of the Layout Editor panel):
<EditText

 android:id="@+id/editText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:ems="10"

 android:inputType="text"

 android:saveEnabled="false"
 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

After making the change, run the application, enter text and rotate the device to verify that the text is no longer
saved and restored.

15.3 The Bundle Class
For situations where state needs to be saved beyond the default functionality provided by the user interface view
components, the Bundle class provides a container for storing data using a key-value pair mechanism. The keys
take the form of string values, while the values associated with those keys can be in the form of a primitive value
or any object that implements the Android Parcelable interface. A wide range of classes already implements the
Parcelable interface. Custom classes may be made “parcelable” by implementing the set of methods defined in
the Parcelable interface, details of which can be found in the Android documentation at:

https://developer.android.com/reference/android/os/Parcelable.html

The Bundle class also contains a set of methods that can be used to get and set key-value pairs for a variety of
data types including both primitive types (including Boolean, char, double and float values) and objects (such

http://developer.android.com/reference/android/os/Parcelable.html

115

Saving and Restoring the State of an Android Activity

as Strings and CharSequences).

For the purposes of this example, and having disabled the automatic saving of text for the EditText view, we
need to make sure that the text entered into the EditText field by the user is saved into the Bundle object and
subsequently restored. This will serve as a demonstration of how to manually save and restore state within an
Android application and will be achieved using the putCharSequence() and getCharSequence() methods of the
Bundle class respectively.

15.4 Saving the State
The first step in extending the StateChange application is to make sure that the text entered by the user is
extracted from the EditText component within the onSaveInstanceState() method of the MainActivity activity,
and then saved as a key-value pair into the Bundle object.

To extract the text from the EditText object we first need to identify that object in the user interface. Clearly, this
involves bridging the gap between the Java code for the activity (contained in the MainActivity.java source code
file) and the XML representation of the user interface (contained within the activity_main.xml resource file). To
extract the text entered into the EditText component we need to gain access to that user interface object.

Each component within a user interface has associated with it a unique identifier. By default, the Layout Editor
tool constructs the id for a newly added component from the object type. If more than one view of the same
type is contained in the layout the type name is followed by a sequential number (though this can, and should,
be changed to something more meaningful by the developer). As can be seen by checking the Component Tree
panel within the Android Studio main window when the activity_main.xml file is selected and the Layout Editor
tool displayed, the EditText component has been assigned the id editText:

Figure 15-1
We can now obtain the text that the editText view contains via the object’s getText() method, which, in turn,
returns the current text:
CharSequence userText = binding.editText.getText();

Finally, we can save the text using the Bundle object’s putCharSequence() method, passing through the key
(this can be any string value but in this instance, we will declare it as “savedText”) and the userText object as
arguments:
outState.putCharSequence("savedText", userText);

Bringing this all together gives us a modified onSaveInstanceState() method in the MainActivity.java file that
reads as follows:
package com.ebookfrenzy.statechange;

.

.

public class MainActivity extends AppCompatActivity {

.

.

.

116

Saving and Restoring the State of an Android Activity

 protected void onSaveInstanceState(@NonNull Bundle outState) {

 super.onSaveInstanceState(outState);

 Log.i(TAG, "onSaveInstanceState");

 CharSequence userText = binding.editText.getText();
 outState.putCharSequence("savedText", userText);
 }

.

.

Now that steps have been taken to save the state, the next phase is to ensure that it is restored when needed.

15.5 Restoring the State
The saved dynamic state can be restored in those lifecycle methods that are passed the Bundle object as an
argument. This leaves the developer with the choice of using either onCreate() or onRestoreInstanceState(). The
method to use will depend on the nature of the activity. In instances where state is best restored after the activity’s
initialization tasks have been performed, the onRestoreInstanceState() method is generally more suitable. For the
purposes of this example we will add code to the onRestoreInstanceState() method to extract the saved state from
the Bundle using the “savedText” key. We can then display the text on the editText component using the object’s
setText() method:
@Override

protected void onRestoreInstanceState(@NonNull Bundle savedInstanceState) {

 super.onRestoreInstanceState(savedInstanceState);

 Log.i(TAG, "onRestoreInstanceState");

 CharSequence userText =
 savedInstanceState.getCharSequence("savedText");

 binding.editText.setText(userText);
}

15.6 Testing the Application
All that remains is once again to build and run the StateChange application. Once running and in the foreground,
touch the EditText component and enter some text before rotating the device to another orientation. Whereas
the text changes were previously lost, the new text is retained within the editText component thanks to the code
we have added to the activity in this chapter.

Having verified that the code performs as expected, comment out the super.onSaveInstanceState() and super.
onRestoreInstanceState() calls from the two methods, re-launch the app and note that the text is still preserved
after a device rotation. The default save and restoration system has essentially been replaced by a custom
implementation, thereby providing a way to dynamically and selectively save and restore state within an activity.

15.7 Summary
The saving and restoration of dynamic state in an Android application is simply a matter of implementing the
appropriate code in the appropriate lifecycle methods. For most user interface views, this is handled automatically
by the Activity super class. In other instances, this typically consists of extracting values and settings within the
onSaveInstanceState() method and saving the data as key-value pairs within the Bundle object passed through
to the activity by the runtime system.

117

Saving and Restoring the State of an Android Activity

State can be restored in either the onCreate() or the onRestoreInstanceState() methods of the activity by extracting
values from the Bundle object and updating the activity based on the stored values.

In this chapter, we have used these techniques to update the StateChange project so that the Activity retains
changes through the destruction and subsequent recreation of an activity.

119

Chapter 16

16. Understanding Android Views,
View Groups and Layouts
With the possible exception of listening to streaming audio, a user’s interaction with an Android device is primarily
visual and tactile in nature. All of this interaction takes place through the user interfaces of the applications
installed on the device, including both the built-in applications and any third party applications installed by the
user. It should come as no surprise, therefore, that a key element of developing Android applications involves the
design and creation of user interfaces.

Within this chapter, the topic of Android user interface structure will be covered, together with an overview of
the different elements that can be brought together to make up a user interface; namely Views, View Groups
and Layouts.

16.1 Designing for Different Android Devices
The term “Android device” covers a vast array of tablet and smartphone products with different screen sizes and
resolutions. As a result, application user interfaces must now be carefully designed to ensure correct presentation
on as wide a range of display sizes as possible. A key part of this is ensuring that the user interface layouts resize
correctly when run on different devices. This can largely be achieved through careful planning and the use of the
layout managers outlined in this chapter.

It is also important to keep in mind that the majority of Android based smartphones and tablets can be held
by the user in both portrait and landscape orientations. A well-designed user interface should be able to adapt
to such changes and make sensible layout adjustments to utilize the available screen space in each orientation.

16.2 Views and View Groups
Every item in a user interface is a subclass of the Android View class (to be precise android.view.View). The
Android SDK provides a set of pre-built views that can be used to construct a user interface. Typical examples
include standard items such as the Button, CheckBox, ProgressBar and TextView classes. Such views are also
referred to as widgets or components. For requirements that are not met by the widgets supplied with the SDK,
new views may be created either by subclassing and extending an existing class, or creating an entirely new
component by building directly on top of the View class.

A view can also be comprised of multiple other views (otherwise known as a composite view). Such views are
subclassed from the Android ViewGroup class (android.view.ViewGroup) which is itself a subclass of View. An
example of such a view is the RadioGroup, which is intended to contain multiple RadioButton objects such that
only one can be in the “on” position at any one time. In terms of structure, composite views consist of a single
parent view (derived from the ViewGroup class and otherwise known as a container view or root element) that is
capable of containing other views (known as child views).

Another category of ViewGroup based container view is that of the layout manager.

16.3 Android Layout Managers
In addition to the widget style views discussed in the previous section, the SDK also includes a set of views
referred to as layouts. Layouts are container views (and, therefore, subclassed from ViewGroup) designed for the

120

Understanding Android Views, View Groups and Layouts

sole purpose of controlling how child views are positioned on the screen.

The Android SDK includes the following layout views that may be used within an Android user interface design:

• ConstraintLayout – Introduced in Android 7, use of this layout manager is recommended for most layout
requirements. ConstraintLayout allows the positioning and behavior of the views in a layout to be defined
by simple constraint settings assigned to each child view. The flexibility of this layout allows complex layouts
to be quickly and easily created without the necessity to nest other layout types inside each other, resulting
in improved layout performance. ConstraintLayout is also tightly integrated into the Android Studio Layout
Editor tool. Unless otherwise stated, this is the layout of choice for the majority of examples in this book.

• LinearLayout – Positions child views in a single row or column depending on the orientation selected. A
weight value can be set on each child to specify how much of the layout space that child should occupy relative
to other children.

• TableLayout – Arranges child views into a grid format of rows and columns. Each row within a table is
represented by a TableRow object child, which, in turn, contains a view object for each cell.

• FrameLayout – The purpose of the FrameLayout is to allocate an area of screen, typically for the purposes of
displaying a single view. If multiple child views are added they will, by default, appear on top of each other
positioned in the top left-hand corner of the layout area. Alternate positioning of individual child views can be
achieved by setting gravity values on each child. For example, setting a center_vertical gravity value on a child
will cause it to be positioned in the vertical center of the containing FrameLayout view.

• RelativeLayout – The RelativeLayout allows child views to be positioned relative both to each other and the
containing layout view through the specification of alignments and margins on child views. For example,
child View A may be configured to be positioned in the vertical and horizontal center of the containing
RelativeLayout view. View B, on the other hand, might also be configured to be centered horizontally within
the layout view, but positioned 30 pixels above the top edge of View A, thereby making the vertical position
relative to that of View A. The RelativeLayout manager can be of particular use when designing a user interface
that must work on a variety of screen sizes and orientations.

• AbsoluteLayout – Allows child views to be positioned at specific X and Y coordinates within the containing
layout view. Use of this layout is discouraged since it lacks the flexibility to respond to changes in screen size
and orientation.

• GridLayout – A GridLayout instance is divided by invisible lines that form a grid containing rows and
columns of cells. Child views are then placed in cells and may be configured to cover multiple cells both
horizontally and vertically allowing a wide range of layout options to be quickly and easily implemented. Gaps
between components in a GridLayout may be implemented by placing a special type of view called a Space
view into adjacent cells, or by setting margin parameters.

• CoordinatorLayout – Introduced as part of the Android Design Support Library with Android 5.0, the
CoordinatorLayout is designed specifically for coordinating the appearance and behavior of the app bar
across the top of an application screen with other view elements. When creating a new activity using the Basic
Views Activity template, the parent view in the main layout will be implemented using a CoordinatorLayout
instance. This layout manager will be covered in greater detail starting with the chapter entitled “Working with
the Floating Action Button and Snackbar”.

When considering the use of layouts in the user interface for an Android application it is worth keeping in mind
that, as will be outlined in the next section, these can be nested within each other to create a user interface design
of just about any necessary level of complexity.

121

Understanding Android Views, View Groups and Layouts

16.4 The View Hierarchy
Each view in a user interface represents a rectangular area of the display. A view is responsible for what is drawn
in that rectangle and for responding to events that occur within that part of the screen (such as a touch event).

A user interface screen is comprised of a view hierarchy with a root view positioned at the top of the tree and
child views positioned on branches below. The child of a container view appears on top of its parent view and
is constrained to appear within the bounds of the parent view’s display area. Consider, for example, the user
interface illustrated in Figure 16-1:

Figure 16-1
In addition to the visible button and checkbox views, the user interface actually includes a number of layout views
that control how the visible views are positioned. Figure 16-2 shows an alternative view of the user interface, this
time highlighting the presence of the layout views in relation to the child views:

Figure 16-2

122

Understanding Android Views, View Groups and Layouts

As was previously discussed, user interfaces are constructed in the form of a view hierarchy with a root view at
the top. This being the case, we can also visualize the above user interface example in the form of the view tree
illustrated in Figure 16-3:

Figure 16-3
The view hierarchy diagram gives probably the clearest overview of the relationship between the various views
that make up the user interface shown in Figure 16-1. When a user interface is displayed to the user, the Android
runtime walks the view hierarchy, starting at the root view and working down the tree as it renders each view.

16.5 Creating User Interfaces
With a clearer understanding of the concepts of views, layouts and the view hierarchy, the following few chapters
will focus on the steps involved in creating user interfaces for Android activities. In fact, there are three different
approaches to user interface design: using the Android Studio Layout Editor tool, handwriting XML layout
resource files or writing Java code, each of which will be covered.

16.6 Summary
Each element within a user interface screen of an Android application is a view that is ultimately subclassed from
the android.view.View class. Each view represents a rectangular area of the device display and is responsible both
for what appears in that rectangle and for handling events that take place within the view’s bounds. Multiple
views may be combined to create a single composite view. The views within a composite view are children of a
container view which is generally a subclass of android.view.ViewGroup (which is itself a subclass of android.
view.View). A user interface is comprised of views constructed in the form of a view hierarchy.

The Android SDK includes a range of pre-built views that can be used to create a user interface. These include
basic components such as text fields and buttons, in addition to a range of layout managers that can be used
to control the positioning of child views. If the supplied views do not meet a specific requirement, custom
views may be created, either by extending or combining existing views, or by subclassing android.view.View and
creating an entirely new class of view.

User interfaces may be created using the Android Studio Layout Editor tool, handwriting XML layout resource
files or by writing Java code. Each of these approaches will be covered in the chapters that follow.

123

Chapter 17

17. A Guide to the Android Studio
Layout Editor Tool
It is difficult to think of an Android application concept that does not require some form of user interface. Most
Android devices come equipped with a touch screen and keyboard (either virtual or physical) and taps and
swipes are the primary form of interaction between the user and application. Invariably these interactions take
place through the application’s user interface.

A well designed and implemented user interface, an important factor in creating a successful and popular
Android application, can vary from simple to extremely complex, depending on the design requirements of the
individual application. Regardless of the level of complexity, the Android Studio Layout Editor tool significantly
simplifies the task of designing and implementing Android user interfaces.

17.1 Basic vs. Empty Views Activity Templates
As outlined in the chapter entitled “The Anatomy of an Android Application”, Android applications are made up
of one or more activities. An activity is a standalone module of application functionality that usually correlates
directly to a single user interface screen. As such, when working with the Android Studio Layout Editor we are
invariably working on the layout for an activity.

When creating a new Android Studio project, a number of different templates are available to be used as the
starting point for the user interface of the main activity. The most basic of these templates are the Basic Views
Activity and Empty Views Activity templates. Although these seem similar at first glance, there are actually
considerable differences between the two options. To see these differences within the layout editor, use the View
Options menu to enable Show System UI as shown in Figure 17-1 below:

Figure 17-1
The Empty Views Activity template creates a single layout file consisting of a ConstraintLayout manager instance
containing a TextView object as shown in Figure 17-2:

124

A Guide to the Android Studio Layout Editor Tool

Figure 17-2
The Basic Views Activity, on the other hand, consists of multiple layout files. The top level layout file has a
CoordinatorLayout as the root view, a configurable app bar (which contains a tool bar) that appears across the
top of the device screen (marked A in Figure 17-3) and a floating action button (the email button marked B).
In addition to these items, the activity_main.xml layout file contains a reference to a second file named content_
main.xml containing the content layout (marked C):

Figure 17-3
The Basic Views Activity contains layouts for two screens, both containing a button and a text view. The purpose
of this template is to demonstrate how to implement navigation between multiple screens within an app. If an
unmodified app using the Basic Views Activity template were to be run, the first of these two screens would
appear (marked A in Figure 17-4). Pressing the Next button, would navigate to the second screen (B) which, in
turn, contains a button to return to the first screen:

125

A Guide to the Android Studio Layout Editor Tool

Figure 17-4
This app behavior makes use of two Android features referred to as fragments and navigation, both of which will
be covered starting with the chapters entitled “An Introduction to Android Fragments” and “An Overview of the
Navigation Architecture Component” respectively.

The content_main.xml file contains a special fragment known as a Navigation Host Fragment which allows
different content to be switched in and out of view depending on the settings configured in the res -> layout
-> nav_graph.xml file. In the case of the Basic Views Activity template, the nav_graph.xml file is configured to
switch between the user interface layouts defined in the fragment_first.xml and fragment_second.xml files based
on the Next and Previous button selections made by the user.

Clearly the Empty Views Activity template is useful if you need neither a floating action button nor a menu in
your activity and do not need the special app bar behavior provided by the CoordinatorLayout such as options
to make the app bar and toolbar collapse from view during certain scrolling operations (a topic covered in the
chapter entitled “Working with the AppBar and Collapsing Toolbar Layouts”). The Basic Views Activity is useful,
however, in that it provides these elements by default. In fact, it is often quicker to create a new activity using the
Basic Views Activity template and delete the elements you do not require than to use the Empty Views Activity
template and manually implement behavior such as collapsing toolbars, a menu or floating action button.

Since not all of the examples in this book require the features of the Basic Views Activity template, however,
most of the examples in this chapter will use the Empty Views Activity template unless the example requires one
or other of the features provided by the Basic Views Activity template.

For future reference, if you need a menu but not a floating action button, use the Basic Views Activity and follow
these steps to delete the floating action button:

1. Double-click on the main activity_main.xml layout file located in the Project tool window under app ->
res -> layout to load it into the Layout Editor. With the layout loaded into the Layout Editor tool, select the
floating action button and tap the keyboard Delete key to remove the object from the layout.

2. Locate and edit the Java code for the activity (located under app -> java -> <package name> -> <activity
class name> and remove the floating action button code from the onCreate method as follows:

@Override

126

A Guide to the Android Studio Layout Editor Tool

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 setSupportActionBar(binding.toolbar);

 NavController navController = Navigation.findNavController(this, R.id.nav_
host_fragment_content_main);

 appBarConfiguration = new AppBarConfiguration.Builder(navController.
getGraph()).build();

 NavigationUI.setupActionBarWithNavController(this, navController,
appBarConfiguration);

 binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_
LONG)

 .setAction("Action", null).show();

 }

 });

}

If you need a floating action button but no menu, use the Basic Views Activity template and follow these steps:

1. Edit the main activity class file and delete the onCreateOptionsMenu and onOptionsItemSelected methods.

2. Select the res -> menu item in the Project tool window and tap the keyboard Delete key to remove the folder
and corresponding menu resource files from the project.

If you need to use the Basic Views Activity template but need neither the navigation features nor the second
content fragment, follow these steps:

1. Within the Project tool window, navigate to and double-click on the app -> res -> navigation -> nav_graph.
xml file to load it into the navigation editor.

2. Within the editor, select the SecondFragment entry in the graph panel and tap the keyboard delete key to
remove it from the graph.

3. Locate and delete the SecondFragment.java (app -> java -> <package name> -> SecondFragment) and
fragment_second.xml (app -> res -> layout -> fragment_second.xml) files.

4. The final task is to remove some code from the FirstFragment class so that the Button view no longer
navigates to the now non-existent second fragment when clicked. Locate the FirstFragment.java file, double
click on it to load it into the editor and remove the code from the onViewCreated() method so that it reads
as follows:

public void onViewCreated(@NonNull View view, Bundle savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

127

A Guide to the Android Studio Layout Editor Tool

 binding.buttonFirst.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 NavHostFragment.findNavController(FirstFragment.this)

 .navigate(R.id.action_FirstFragment_to_SecondFragment);

 }

 });

}

17.2 The Android Studio Layout Editor
As has been demonstrated in previous chapters, the Layout Editor tool provides a “what you see is what you
get” (WYSIWYG) environment in which views can be selected from a palette and then placed onto a canvas
representing the display of an Android device. Once a view has been placed on the canvas, it can be moved,
deleted and resized (subject to the constraints of the parent view). Further, a wide variety of properties relating
to the selected view may be modified using the Attributes tool window.

Under the surface, the Layout Editor tool actually constructs an XML resource file containing the definition
of the user interface that is being designed. As such, the Layout Editor tool operates in three distinct modes
referred to as Design, Code and Split modes.

17.3 Design Mode
In design mode, the user interface can be visually manipulated by directly working with the view palette and the
graphical representation of the layout. Figure 17-5 highlights the key areas of the Android Studio Layout Editor
tool in design mode:

Figure 17-5

128

A Guide to the Android Studio Layout Editor Tool

A – Palette – The palette provides access to the range of view components provided by the Android SDK. These
are grouped into categories for easy navigation. Items may be added to the layout by dragging a view component
from the palette and dropping it at the desired position on the layout.

B – Device Screen – The device screen provides a visual “what you see is what you get” representation of the
user interface layout as it is being designed. This layout allows for direct manipulation of the design in terms of
allowing views to be selected, deleted, moved and resized. The device model represented by the layout can be
changed at any time using a menu located in the toolbar.

C – Component Tree – As outlined in the previous chapter (“Understanding Android Views, View Groups and
Layouts”) user interfaces are constructed using a hierarchical structure. The component tree provides a visual
overview of the hierarchy of the user interface design. Selecting an element from the component tree will cause
the corresponding view in the layout to be selected. Similarly, selecting a view from the device screen layout will
select that view in the component tree hierarchy.

D – Attributes – All of the component views listed in the palette have associated with them a set of attributes
that can be used to adjust the behavior and appearance of that view. The Layout Editor’s attributes panel provides
access to the attributes of the currently selected view in the layout allowing changes to be made.

E – Toolbar – The Layout Editor toolbar provides quick access to a wide range of options including, amongst
other options, the ability to zoom in and out of the device screen layout, change the device model currently
displayed, rotate the layout between portrait and landscape and switch to a different Android SDK API level.
The toolbar also has a set of context sensitive buttons which will appear when relevant view types are selected
in the device screen layout.

F – Mode Switching Controls – These three buttons provide a way to switch back and forth between the Layout
Editor tool’s Design, Code and Split modes.

G - Zoom and Pan Controls - This control panel allows you to zoom in and out of the design canvas and to grab
the canvas and pan around to find areas that are obscured when zoomed in.

17.4 The Palette
The Layout Editor palette is organized into two panels designed to make it easy to locate and preview view
components for addition to a layout design. The category panel (marked A in Figure 17-6) lists the different
categories of view components supported by the Android SDK. When a category is selected from the list, the
second panel (B) updates to display a list of the components that fall into that category:

Figure 17-6

129

A Guide to the Android Studio Layout Editor Tool

To add a component from the palette onto the layout canvas, simply select the item either from the component
list or the preview panel, drag it to the desired location on the canvas and drop it into place.

A search for a specific component within the currently selected category may be initiated by clicking on the
search button (marked C in Figure 17-6 above) in the palette toolbar and typing in the component name. As
characters are typed, matching results will appear in real-time within the component list panel. If you are unsure
of the category in which the component resides, simply select the All Results category either before or during
the search operation.

17.5 Design Mode and Layout Views
By default, the layout editor will appear in Design mode as is the case in Figure 17-5 above. This mode provides a
visual representation of the user interface. Design mode can be selected at any time by clicking on the rightmost
mode switching control has shown in Figure 17-7:

Figure 17-7
When the Layout Editor tool is in Design mode, the layout can be viewed in two different ways. The view shown
in Figure 17-5 above is the Design view and shows the layout and widgets as they will appear in the running
app. A second mode, referred to as the Blueprint view can be shown either instead of, or concurrently with the
Design view. The toolbar menu shown in Figure 17-8 provides options to display the Design, Blueprint, or both
views. Settings are also available to adjust for color blindness. A fifth option, Force Refresh Layout, causes the
layout to rebuild and redraw. This can be useful when the layout enters an unexpected state or is not accurately
reflecting the current design settings:

Figure 17-8
Whether to display the layout view, design view or both is a matter of personal preference. A good approach is
to begin with both displayed as shown in Figure 17-9:

130

A Guide to the Android Studio Layout Editor Tool

Figure 17-9

17.6 Night Mode
To view the layout in night mode during the design work, select the menu shown in Figure 17-10 below and
change the setting to Night:

Figure 17-10
The mode menu also includes options for testing dynamic colors, a topic covered in the chapter “A Material
Design 3 Theming and Dynamic Color Tutorial”.

17.7 Code Mode
It is important to keep in mind when using the Android Studio Layout Editor tool that all it is really doing is
providing a user friendly approach to creating XML layout resource files. At any time during the design process,
the underlying XML can be viewed and directly edited simply by clicking on the Code button located in the top
right-hand corner of the Layout Editor tool panel as shown in Figure 17-11:

Figure 17-11
Figure 17-12 shows the Android Studio Layout Editor tool in Code mode, allowing changes to be made to the
user interface declaration by making changes to the XML:

131

A Guide to the Android Studio Layout Editor Tool

Figure 17-12

17.8 Split Mode
In Split mode, the editor shows the Design and Code views side-by-side allowing the user interface to be
modified both visually using the design canvas and by making changes directly to the XML declarations. To
enter Split mode, click on the middle button shown in Figure 17-13 below:

Figure 17-13
Any changes to the XML are automatically reflected in the design canvas and vice versa. Figure 17-14 shows the
editor in Split mode:

Figure 17-14

17.9 Setting Attributes
The Attributes panel provides access to all of the available settings for the currently selected component. Figure
17-15, for example, shows some of the attributes for the TextView widget:

132

A Guide to the Android Studio Layout Editor Tool

Figure 17-15
The Attributes tool window is divided into the following different sections.

• id - Contains the id property which defines the name by which the currently selected object will be referenced
in the source code of the app.

• Declared Attributes - Contains all of the properties which have already been assigned a value.

• Layout - The settings that define how the currently selected view object is positioned and sized in relation to
the screen and other objects in the layout.

• Transforms - Contains controls allowing the currently selected object to be rotated, scaled and offset.

• Common Attributes - A list of attributes that commonly need to be changed for the class of view object
currently selected.

• All Attributes - A complete list of all of the attributes available for the currently selected object.

A search for a specific attribute may also be performed by selecting the search button in the toolbar of the
attributes tool window and typing in the attribute name.

Some attributes contain a narrow button to the right of the value field. This indicates that the Resources dialog
is available to assist in selecting a suitable property value. To display the dialog, simply click on the button. The
appearance of this button changes to reflect whether or not the corresponding property value is stored in a
resource file or hard-coded. If the value is stored in a resource file, the button to the right of the text property
field will be filled in to indicate that the value is not hard coded as highlighted in Figure 17-16 below:

133

A Guide to the Android Studio Layout Editor Tool

Figure 17-16
Attributes for which a finite number of valid options are available will present a drop down menu (Figure 17-17)
from which a selection may be made.

Figure 17-17
A dropper icon (as shown in the backgroundTint field in Figure 17-16 above) can be clicked to display the color
selection palette. Similarly, when a flag icon appears in this position it can clicked to display a list of options
available for the attribute, while an image icon opens the resource manager panel allowing images and other
resource types to be selected for the attribute.

17.10 Transforms
The transforms panel within the Attributes tool window (Figure 17-18) provides a set of controls and properties
which control visual aspects of the currently selected object in terms of rotation, alpha (used to fade a view in
and out), scale (size), and translation (offset from current position):

Figure 17-18
The panel contains a visual representation of the view which updates as properties are changed. These changes
are also reflected on the view within layout canvas.

134

A Guide to the Android Studio Layout Editor Tool

17.11 Tools Visibility Toggles
When reviewing the content of an Android Studio XML layout file in Code mode you will notice that many
of the attributes that define how a view is to appear and behave begin with the android: prefix. This indicates
that the attributes are set within the android namespace and will take effect when the app is run. The following
excerpt from a layout file, for example, sets a variety of attributes on a Button view:
<Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button"

.

.

In addition to the android namespace, Android Studio also provides a tools namespace. When attributes are
set within this namespace, they only take effect within the layout editor preview. While designing a layout you
might, for example, find it helpful for an EditText view to display some text, but require the view to be blank
when the app runs. To achieve this you would set the text property of the view using the tools namespace as
follows:
<EditText

 android:id="@+id/editTextTextPersonName"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:ems="10"

 android:inputType="textPersonName"

 tools:text="Sample Text"
.

.

A tool attribute of this type is set in the Attributes tool window by entering the value into the property fields
marked by the wrench icon as shown in Figure 17-19:

Figure 17-19
Tools attributes are particularly useful for changing the visibility of a view during the design process. A layout
may contain a view which is programmatically displayed and hidden when the app is running depending on
user actions. To simulate the hiding of the view the following tools attribute could be added to the view XML
declaration:
tools:visibility="invisible"

When using the invisible setting, although the view will no longer be visible, it is still present in the layout and
occupies the same space it did when it was visible. To make the layout behave as though the view no longer
exists, the visibility attribute should be set to gone as follows:
tools:visibility="gone"

In both examples above, the visibility settings only apply within the layout editor and will have no effect in the

135

A Guide to the Android Studio Layout Editor Tool

running app. To control visibility in both the layout editor and running app, the same attribute would be set
using the android namespace:

android:visibility="gone"

While these visibility tools attributes are useful, having to manually edit the XML layout file is a cumbersome
process. To make it easier to change these settings, Android Studio provides a set of toggles within the layout
editor Component Tree panel. To access these controls, click in the margin to the right of the corresponding
view in the panel. Figure 17-20, for example, shows the tools visibility toggle controls for a Button view named
myButton:

Figure 17-20
These toggles control the visibility of the corresponding view for both the android and tools namespaces and
provide not set, visible, invisible and gone options. When conflicting attributes are set (for example an android
namespace toggle is set to visible while the tools value set to invisible) the tools namespace takes precedence
within the layout preview. When a toggle selection is made, Android Studio automatically adds the appropriate
attribute to the XML view element in the layout file.

In addition to the visibility toggles in the Component Tree panel, the layout editor also includes the tools visibility
and position toggle button shown highlighted in Figure 17-21 below:

Figure 17-21
This button toggles the current tools visibility settings. If the Button view shown above currently has the tools
visibility attribute set to gone, for example, toggling this button will make it visible. This makes it easy to quickly
check the layout behavior as the view is added to and removed from the layout. This toggle is also useful for
checking that the views in the layout are correctly constrained, a topic which will be covered in the chapter
entitled “A Guide to Using ConstraintLayout in Android Studio”.

17.12 Converting Views
Changing a view in a layout from one type to another (such as converting a TextView to an EditText) can be
performed easily within the Android Studio layout editor simply by right-clicking on the view either within the

136

A Guide to the Android Studio Layout Editor Tool

screen layout or Component tree window and selecting the Convert view... menu option (Figure 17-22):

Figure 17-22
Once selected, a dialog will appear containing a list of compatible view types to which the selected object is
eligible for conversion. Figure 17-23, for example shows the types to which an existing TextView view may be
converted:

Figure 17-23
This technique is also useful for converting layouts from one type to another (for example converting a
ConstraintLayout to a LinearLayout).

17.13 Displaying Sample Data
When designing layouts in Android Studio situations will arise where the content to be displayed within the user
interface will not be available until the app is completed and running. This can sometimes make it difficult to
assess from within the layout editor how the layout will appear at app runtime. To address this issue, the layout
editor allows sample data to be specified that will populate views within the layout editor with sample images
and data. This sample data only appears within the layout editor and is not displayed when the app runs. Sample
data may be configured either by directly editing the XML for the layout, or visually using the design-time
helper by right-clicking on the widget in the design area and selecting the Set Sample Data menu option. The
design-time helper panel will display a range of preconfigured options for sample data to be displayed on the
selected view item including combinations of text and images in a variety of configurations. Figure 17-24, for
example, shows the sample data options displayed when selecting sample data to appear in a RecyclerView list:

137

A Guide to the Android Studio Layout Editor Tool

Figure 17-24
Alternatively, custom text and images may be provided for display during the layout design process. An example
of using sample data within the layout editor is included in a later chapter entitled “A Layout Editor Sample Data
Tutorial”. Since sample data is implemented as a tools attribute, the visibility of the data within the preview can
be controlled using the toggle button highlighted in Figure 17-21 above.

17.14 Creating a Custom Device Definition
The device menu in the Layout Editor toolbar (Figure 17-25) provides a list of pre-configured device types
which, when selected, will appear as the device screen canvas. In addition to the pre-configured device types,
any AVD instances that have previously been configured within the Android Studio environment will also be
listed within the menu. To add additional device configurations, display the device menu, select the Add Device
Definition option and follow the steps outlined in the chapter entitled “Creating an Android Virtual Device
(AVD) in Android Studio”.

Figure 17-25

17.15 Changing the Current Device
As an alternative to the device selection menu, the current device format may be changed by selecting the
Custom option from the device menu, clicking on the resize handle located next to the bottom right-hand corner
of the device screen (Figure 17-26) and dragging to select an alternate device display format. As the screen
resizes, markers will appear indicating the various size options and orientations available for selection:

138

A Guide to the Android Studio Layout Editor Tool

Figure 17-26

17.16 Layout Validation
The layout validation option allows the user interface layout to be previewed simultaneously on a range of Pixel-
sized screens. To access the layout validation tool window, either click on the tab on the right-hand edge of the
Android Studio main window or use the Tool Window menu in the bottom left-hand corner of the window.
Once loaded, the panel will appear as shown in Figure 17-27, with the layout rendered on multiple device screen
configurations:

Figure 17-27

139

A Guide to the Android Studio Layout Editor Tool

17.17 Summary
A key part of developing Android applications involves the creation of the user interface. Within the Android
Studio environment, this is performed using the Layout Editor tool which operates in three modes. In Design
mode, view components are selected from a palette and positioned on a layout representing an Android device
screen and configured using a list of attributes. In Code mode, the underlying XML that represents the user
interface layout can be directly edited. Split mode, on the other hand allows the layout to be created and
modified both visually and via direct XML editing. These modes combine to provide an extensive and intuitive
user interface design environment.

The layout validation panel allows user interface layouts to be quickly previewed on a range of different device
screen sizes.

141

Chapter 18

18. A Guide to the Android
ConstraintLayout
As discussed in the chapter entitled “Understanding Android Views, View Groups and Layouts”, Android provides
a number of layout managers for the purpose of designing user interfaces. With Android 7, Google introduced a
new layout that is intended to address many of the shortcomings of the older layout managers. This new layout,
called ConstraintLayout, combines a simple, expressive and flexible layout system with powerful features built
into the Android Studio Layout Editor tool to ease the creation of responsive user interface layouts that adapt
automatically to different screen sizes and changes in device orientation.

This chapter will outline the basic concepts of ConstraintLayout while the next chapter will provide a detailed
overview of how constraint-based layouts can be created using ConstraintLayout within the Android Studio
Layout Editor tool.

18.1 How ConstraintLayout Works
In common with all other layouts, ConstraintLayout is responsible for managing the positioning and sizing
behavior of the visual components (also referred to as widgets) it contains. It does this based on the constraint
connections that are set on each child widget.

To fully understand and use ConstraintLayout, it is important to gain an appreciation of the following key
concepts:

• Constraints

• Margins

• Opposing Constraints

• Constraint Bias

• Chains

• Chain Styles

• Guidelines

• Groups

• Barriers

• Flow

18.1.1 Constraints
Constraints are sets of rules that dictate how a widget is aligned and distanced relative to other widgets, the sides
of the containing ConstraintLayout, and special elements called guidelines. Constraints also dictate how the
user interface layout of an activity will respond to changes in device orientation or when displayed on devices
of differing screen sizes. To be adequately configured, a widget must have sufficient constraint connections

142

A Guide to the Android ConstraintLayout

such that its position can be resolved by the ConstraintLayout layout engine in both the horizontal and vertical
planes.

18.1.2 Margins
A margin is a form of constraint that specifies a fixed distance. Consider a Button object that needs to be
positioned near the top right-hand corner of the device screen. This might be achieved by implementing margin
constraints from the top and right-hand edges of the Button connected to the corresponding sides of the parent
ConstraintLayout as illustrated in Figure 18-1:

Figure 18-1
As indicated in the above diagram, each of these constraint connections has associated with it a margin value
dictating the fixed distances of the widget from two sides of the parent layout. Under this configuration,
regardless of screen size or the device orientation, the Button object will always be positioned 20 and 15 device-
independent pixels (dp) from the top and right-hand edges of the parent ConstraintLayout respectively as
specified by the two constraint connections.

While the above configuration will be acceptable for some situations, it does not provide any flexibility in terms
of allowing the ConstraintLayout layout engine to adapt the position of the widget to respond to device rotation
and to support screens of different sizes. To add this responsiveness to the layout it is necessary to implement
opposing constraints.

18.1.3 Opposing Constraints
Two constraints operating along the same axis on a single widget are referred to as opposing constraints. In other
words, a widget with constraints on both its left and right-hand sides is considered to have horizontally opposing
constraints. Figure 18-2, for example, illustrates the addition of both horizontally and vertically opposing
constraints to the previous layout:

Figure 18-2

143

A Guide to the Android ConstraintLayout

The key point to understand here is that once opposing constraints are implemented on a particular axis, the
positioning of the widget becomes percentage rather than coordinate based. Instead of being fixed at 20dp
from the top of the layout, for example, the widget is now positioned at a point 30% from the top of the layout.
In different orientations and when running on larger or smaller screens, the Button will always be in the same
location relative to the dimensions of the parent layout.

It is now important to understand that the layout outlined in Figure 18-2 has been implemented using not only
opposing constraints, but also by applying constraint bias.

18.1.4 Constraint Bias
It has now been established that a widget in a ConstraintLayout can potentially be subject to opposing
constraint connections. By default, opposing constraints are equal, resulting in the corresponding widget being
centered along the axis of opposition. Figure 18-3, for example, shows a widget centered within the containing
ConstraintLayout using opposing horizontal and vertical constraints:

Figure 18-3
To allow for the adjustment of widget position in the case of opposing constraints, the ConstraintLayout
implements a feature known as constraint bias. Constraint bias allows the positioning of a widget along the axis
of opposition to be biased by a specified percentage in favor of one constraint. Figure 18-4, for example, shows
the previous constraint layout with a 75% horizontal bias and 10% vertical bias:

Figure 18-4
The next chapter, entitled “A Guide to Using ConstraintLayout in Android Studio”, will cover these concepts in
greater detail and explain how these features have been integrated into the Android Studio Layout Editor tool.

144

A Guide to the Android ConstraintLayout

In the meantime, however, a few more areas of the ConstraintLayout class need to be covered.

18.1.5 Chains
ConstraintLayout chains provide a way for the layout behavior of two or more widgets to be defined as a group.
Chains can be declared in either the vertical or horizontal axis and configured to define how the widgets in the
chain are spaced and sized.

Widgets are chained when connected together by bi-directional constraints. Figure 18-5, for example, illustrates
three widgets chained in this way:

Figure 18-5
The first element in the chain is the chain head which translates to the top widget in a vertical chain or, in the
case of a horizontal chain, the left-most widget. The layout behavior of the entire chain is primarily configured
by setting attributes on the chain head widget.

18.1.6 Chain Styles
The layout behavior of a ConstraintLayout chain is dictated by the chain style setting applied to the chain head
widget. The ConstraintLayout class currently supports the following chain layout styles:

• Spread Chain – The widgets contained within the chain are distributed evenly across the available space. This
is the default behavior for chains.

Figure 18-6
• Spread Inside Chain – The widgets contained within the chain are spread evenly between the chain head and

the last widget in the chain. The head and last widgets are not included in the distribution of spacing.

Figure 18-7
• Weighted Chain – Allows the space taken up by each widget in the chain to be defined via weighting properties.

145

A Guide to the Android ConstraintLayout

Figure 18-8
• Packed Chain – The widgets that make up the chain are packed together without any spacing. A bias may be

applied to control the horizontal or vertical positioning of the chain in relation to the parent container.

Figure 18-9

18.2 Baseline Alignment
So far, this chapter has only referred to constraints that dictate alignment relative to the sides of a widget (typically
referred to as side constraints). A common requirement, however, is for a widget to be aligned relative to the
content that it displays rather than the boundaries of the widget itself. To address this need, ConstraintLayout
provides baseline alignment support.

As an example, assume that the previous theoretical layout from Figure 18-1 requires a TextView widget to be
positioned 40dp to the left of the Button. In this case, the TextView needs to be baseline aligned with the Button
view. This means that the text within the Button needs to be vertically aligned with the text within the TextView.
The additional constraints for this layout would need to be connected as illustrated in Figure 18-10:

Figure 18-10
The TextView is now aligned vertically along the baseline of the Button and positioned 40dp horizontally from
the Button object’s left-hand edge.

18.3 Configuring Widget Dimensions
Controlling the dimensions of a widget is a key element of the user interface design process. The ConstraintLayout
provides three options which can be set on individual widgets to manage sizing behavior. These settings are
configured individually for height and width dimensions:

• Fixed – The widget is fixed to specified dimensions.

• Match Constraint –Allows the widget to be resized by the layout engine to satisfy the prevailing constraints.

146

A Guide to the Android ConstraintLayout

Also referred to as the AnySize or MATCH_CONSTRAINT option.

• Wrap Content – The size of the widget is dictated by the content it contains (i.e. text or graphics).

18.4 Guideline Helper
Guidelines are special elements available within the ConstraintLayout that provide an additional target to
which constraints may be connected. Multiple guidelines may be added to a ConstraintLayout instance which
may, in turn, be configured in horizontal or vertical orientations. Once added, constraint connections may be
established from widgets in the layout to the guidelines. This is particularly useful when multiple widgets need to
be aligned along an axis. In Figure 18-11, for example, three Button objects contained within a ConstraintLayout
are constrained along a vertical guideline:

Figure 18-11

18.5 Group Helper
This feature of ConstraintLayout allows widgets to be placed into logical groups and the visibility of those
widgets controlled as a single entity. A Group is essentially a list of references to other widgets in a layout. Once
defined, changing the visibility attribute (visible, invisible or gone) of the group instance will apply the change
to all group members. This makes it easy to hide and show multiple widgets with a single attribute change. A
single layout may contain multiple groups and a widget can belong to more than one group. If a conflict occurs
between groups the last group to be declared in the XML file takes priority.

18.6 Barrier Helper
Rather like guidelines, barriers are virtual views that can be used to constrain views within a layout. As with
guidelines, a barrier can be vertical or horizontal and one or more views may be constrained to it (to avoid
confusion, these will be referred to as constrained views). Unlike guidelines where the guideline remains at a
fixed position within the layout, however, the position of a barrier is defined by a set of so called reference views.
Barriers were introduced to address an issue that occurs with some frequency involving overlapping views.
Consider, for example, the layout illustrated in Figure 18-12 below:

147

A Guide to the Android ConstraintLayout

Figure 18-12
The key points to note about the above layout is that the width of View 3 is set to match constraint mode, and the
left-hand edge of the view is connected to the right hand edge of View 1. As currently implemented, an increase
in width of View 1 will have the desired effect of reducing the width of View 3:

Figure 18-13
A problem arises, however, if View 2 increases in width instead of View 1:

Figure 18-14
Clearly because View 3 is only constrained by View 1, it does not resize to accommodate the increase in width

148

A Guide to the Android ConstraintLayout

of View 2 causing the views to overlap.

A solution to this problem is to add a vertical barrier and assign Views 1 and 2 as the barrier’s reference views so
that they control the barrier position. The left-hand edge of View 3 will then be constrained in relation to the
barrier, making it a constrained view.

Now when either View 1 or View 2 increase in width, the barrier will move to accommodate the widest of the
two views, causing the width of View 3 change in relation to the new barrier position:

Figure 18-15
When working with barriers there is no limit to the number of reference views and constrained views that can
be associated with a single barrier.

18.7 Flow Helper
The ConstraintLayout Flow helper allows groups of views to be displayed in a flowing grid style layout. As
with the Group helper, Flow contains references to the views it is responsible for positioning and provides a
variety of configuration options including vertical and horizontal orientations, wrapping behavior (including
the maximum number of widgets before wrapping), spacing and alignment properties. Chain behavior may also
be applied to a Flow layout including spread, spread inside and packed options.

Figure 18-16 represents the layout of five uniformly sized buttons positioned using a Flow helper instance in
horizontal mode with no wrap settings:

Figure 18-16
Figure 18-17 shows the same buttons in a horizontal flow configuration with wrapping set to occur after every
third widget:

149

A Guide to the Android ConstraintLayout

Figure 18-17
Figure 18-18, on the other hand, shows the buttons with wrapping set to chain mode using spread inside (the
effects of which are only visible on the second row since the first row is full). The configuration also has the gap
attribute set to add spacing between buttons:

Figure 18-18
As a final demonstration of the flexibility of the Flow helper, Figure 18-19 shows five buttons of varying sizes
configured in horizontal, packed chain mode with wrapping after each third widget. In addition, the grid content
has been right-aligned by setting a horizontal-bias value of 1.0 (a value of 0.0 would cause left-alignment while
0.5 would center align the grid content):

Figure 18-19

18.8 Ratios
The dimensions of a widget may be defined using ratio settings. A widget could, for example, be constrained
using a ratio setting such that, regardless of any resizing behavior, the width is always twice the height dimension.

18.9 ConstraintLayout Advantages
ConstraintLayout provides a level of flexibility that allows many of the features of older layouts to be achieved
with a single layout instance where it would previously have been necessary to nest multiple layouts. This
has the benefit of avoiding the problems inherent in layout nesting by allowing so called “flat” or “shallow”
layout hierarchies to be designed leading both to less complex layouts and improved user interface rendering
performance at runtime.

150

A Guide to the Android ConstraintLayout

ConstraintLayout was also implemented with a view to addressing the wide range of Android device screen
sizes available on the market today. The flexibility of ConstraintLayout makes it easier for user interfaces to be
designed that respond and adapt to the device on which the app is running.

Finally, as will be demonstrated in the chapter entitled “A Guide to Using ConstraintLayout in Android Studio”,
the Android Studio Layout Editor tool has been enhanced specifically for ConstraintLayout-based user interface
design.

18.10 ConstraintLayout Availability
Although introduced with Android 7, ConstraintLayout is provided as a separate support library from the main
Android SDK and is compatible with older Android versions as far back as API Level 9 (Gingerbread). This
allows apps that make use of this new layout to run on devices running much older versions of Android.

18.11 Summary
ConstraintLayout is a layout manager introduced with Android 7. It is designed to ease the creation of flexible
layouts that adapt to the size and orientation of the many Android devices now on the market. ConstraintLayout
uses constraints to control the alignment and positioning of widgets in relation to the parent ConstraintLayout
instance, guidelines, barriers and the other widgets in the layout. ConstraintLayout is the default layout for
newly created Android Studio projects and is the recommended choice when designing user interface layouts.
With this simple yet flexible approach to layout management, complex and responsive user interfaces can be
implemented with surprising ease.

151

Chapter 19

19. A Guide to Using
ConstraintLayout in Android Studio
As mentioned more than once in previous chapters, Google has made significant changes to the Android
Studio Layout Editor tool, many of which were made solely to support user interface layout design using
ConstraintLayout. Now that the basic concepts of ConstraintLayout have been outlined in the previous chapter,
this chapter will explore these concepts in more detail while also outlining the ways in which the Layout Editor
tool allows ConstraintLayout-based user interfaces to be designed and implemented.

19.1 Design and Layout Views
The chapter entitled “A Guide to the Android Studio Layout Editor Tool” explained that the Android Studio
Layout Editor tool provides two ways to view the user interface layout of an activity in the form of Design and
Layout (also known as blueprint) views. These views of the layout may be displayed individually or, as in Figure
19-1, side-by-side:

Figure 19-1
The Design view (positioned on the left in the above figure) presents a “what you see is what you get”
representation of the layout, wherein the layout appears as it will within the running app. The Layout view,
on the other hand, displays a blueprint style of view where the widgets are represented by shaded outlines. As
can be seen in Figure 19-1 above, Layout view also displays the constraint connections (in this case opposing
constraints used to center a button within the layout). These constraints are also overlaid onto the Design view
when a specific widget in the layout is selected or when the mouse pointer hovers over the design area as
illustrated in Figure 19-2:

152

A Guide to Using ConstraintLayout in Android Studio

Figure 19-2
The appearance of constraint connections in both views can be changed using the View Options menu shown
in Figure 19-3:

Figure 19-3
In addition to the two modes of displaying the user interface layout, the Layout Editor tool also provides three
different ways of establishing the constraints required for a specific layout design.

19.2 Autoconnect Mode
Autoconnect, as the name suggests, automatically establishes constraint connections as items are added to the
layout. Autoconnect mode may be enabled and disabled using the toolbar button indicated in Figure 19-4:

Figure 19-4

153

A Guide to Using ConstraintLayout in Android Studio

Autoconnect mode uses algorithms to decide the best constraints to establish based on the position of the
widget and the widget’s proximity to both the sides of the parent layout and other elements in the layout. If any
of the automatic constraint connections fail to provide the desired behavior, these may be changed manually as
outlined later in this chapter.

19.3 Inference Mode
Inference mode uses a heuristic approach involving algorithms and probabilities to automatically implement
constraint connections after widgets have already been added to the layout. This mode is usually used when
the Autoconnect feature has been turned off and objects have been added to the layout without any constraint
connections. This allows the layout to be designed simply by dragging and dropping objects from the palette
onto the layout canvas and making size and positioning changes until the layout appears as required. In essence
this involves “painting” the layout without worrying about constraints. Inference mode may also be used at any
time during the design process to fill in missing constraints within a layout.

Constraints are automatically added to a layout when the Infer constraints button (Figure 19-5) is clicked:

Figure 19-5
As with Autoconnect mode, there is always the possibility that the Layout Editor tool will infer incorrect
constraints, though these may be modified and corrected manually.

19.4 Manipulating Constraints Manually
The third option for implementing constraint connections is to do so manually. When doing so, it will be helpful
to understand the various handles that appear around a widget within the Layout Editor tool. Consider, for
example, the widget shown in Figure 19-6:

Figure 19-6
Clearly the spring-like lines (A) represent established constraint connections leading from the sides of the widget

154

A Guide to Using ConstraintLayout in Android Studio

to the targets. The small square markers (B) in each corner of the object are resize handles which, when clicked
and dragged, serve to resize the widget. The small circle handles (C) located on each side of the widget are the
side constraint anchors. To create a constraint connection, click on the handle and drag the resulting line to the
element to which the constraint is to be connected (such as a guideline or the side of either the parent layout or
another widget) as outlined in Figure 19-7. When connecting to the side of another widget, simply drag the line
to the side constraint handle of that widget and release the line when the widget and handle highlight.

Figure 19-7
If the constraint line is dragged to a widget and released, but not attached to a constraint handle, the layout
editor will display a menu containing a list of the sides to which the constraint may be attached. In Figure 19-8,
for example, the constraint can be attached to the top or bottom edge of the destination button widget:

Figure 19-8
An additional marker indicates the anchor point for baseline constraints whereby the content within the widget
(as opposed to outside edges) is used as the alignment point. To display this marker, simply right-click on the
widget and select the Show Baseline menu option. To establish a constraint connection from a baseline constraint
handle, simply hover the mouse pointer over the handle until it highlights before clicking and dragging to the
target (such as the baseline anchor of another widget as shown in Figure 19-9).

Figure 19-9
To hide the baseline anchors, right click on the widget a second time and select the Hide Baseline menu option.

19.5 Adding Constraints in the Inspector
Constraints may also be added to a view within the Android Studio Layout Editor tool using the Inspector panel
located in the Attributes tool window as shown in Figure 19-10. The square in the center represents the currently
selected view and the areas around the square the constraints, if any, applied to the corresponding sides of the
view:

155

A Guide to Using ConstraintLayout in Android Studio

Figure 19-10
The absence of a constraint on a side of the view is represented by a dotted line leading to a blue circle containing
a plus sign (as is the case with the bottom edge of the view in the above figure). To add a constraint, simply
click on this blue circle and the layout editor will add a constraint connected to what it considers to be the most
appropriate target within the layout.

19.6 Viewing Constraints in the Attributes Window
A list of constraints configured on the currently select widget can be viewed by displaying the Constraints
section of the Attributes tool window as shown in Figure 19-11 below:

Figure 19-11
Clicking on a constraint in the list will select that constraint within the design layout.

156

A Guide to Using ConstraintLayout in Android Studio

19.7 Deleting Constraints
To delete an individual constraint, simply select the constraint either within the design layout or the Attributes
tool window so that it highlights (in Figure 19-12, for example, the right-most constraint has been selected) and
tap the keyboard delete key. The constraint will then be removed from the layout.

Figure 19-12
Another option is to hover the mouse pointer over the constraint anchor while holding down the Ctrl (Cmd on
macOS) key and clicking on the anchor after it turns red:

Figure 19-13
Alternatively, remove all of the constraints on a widget by right-clicking on it selecting the Clear Constraints of
Selection menu option.

To remove all of the constraints from every widget in a layout, use the toolbar button highlighted in Figure 19-
14:

Figure 19-14

19.8 Adjusting Constraint Bias
In the previous chapter, the concept of using bias settings to favor one opposing constraint over another was
outlined. Bias within the Android Studio Layout Editor tool is adjusted using the Inspector located in the
Attributes tool window and shown in Figure 19-15. The two sliders indicated by the arrows in the figure are
used to control the bias of the vertical and horizontal opposing constraints of the currently selected widget.

Figure 19-15

157

A Guide to Using ConstraintLayout in Android Studio

19.9 Understanding ConstraintLayout Margins
Constraints can be used in conjunction with margins to implement fixed gaps between a widget and another
element (such as another widget, a guideline or the side of the parent layout). Consider, for example, the
horizontal constraints applied to the Button object in Figure 19-16:

Figure 19-16
As currently configured, horizontal constraints run to the left and right edges of the parent ConstraintLayout.
As such, the widget has opposing horizontal constraints indicating that the ConstraintLayout layout engine
has some discretion in terms of the actual positioning of the widget at runtime. This allows the layout some
flexibility to accommodate different screen sizes and device orientation. The horizontal bias setting is also able to
control the position of the widget right up to the right-hand side of the layout. Figure 19-17, for example, shows
the same button with 100% horizontal bias applied:

Figure 19-17
ConstraintLayout margins can appear at the end of constraint connections and represent a fixed gap into which
the widget cannot be moved even when adjusting bias or in response to layout changes elsewhere in the activity.
In Figure 19-18, the right-hand constraint now includes a 50dp margin into which the widget cannot be moved
even though the bias is still set at 100%.

Figure 19-18
Existing margin values on a widget can be modified from within the Inspector. As can be seen in Figure 19-19,
a drop-down menu is being used to change the right-hand margin on the currently selected widget to 16dp.
Alternatively, clicking on the current value also allows a number to be typed into the field.

158

A Guide to Using ConstraintLayout in Android Studio

Figure 19-19
The default margin for new constraints can be changed at any time using the option in the toolbar highlighted
in Figure 19-20:

Figure 19-20

19.10 The Importance of Opposing Constraints and Bias
As discussed in the previous chapter, opposing constraints, margins and bias form the cornerstone of responsive
layout design in Android when using the ConstraintLayout. When a widget is constrained without opposing
constraint connections, those constraints are essentially margin constraints. This is indicated visually within
the Layout Editor tool by solid straight lines accompanied by margin measurements as shown in Figure 19-21.

Figure 19-21

159

A Guide to Using ConstraintLayout in Android Studio

The above constraints essentially fix the widget at that position. The result of this is that if the device is rotated
to landscape orientation, the widget will no longer be visible since the vertical constraint pushes it beyond the
top edge of the device screen (as is the case in Figure 19-22). A similar problem will arise if the app is run on a
device with a smaller screen than that used during the design process.

Figure 19-22
When opposing constraints are implemented, the constraint connection is represented by the spring-like jagged
line (the spring metaphor is intended to indicate that the position of the widget is not fixed to absolute X and Y
coordinates):

Figure 19-23
In the above layout, vertical and horizontal bias settings have been configured such that the widget will always
be positioned 90% of the distance from the bottom and 35% from the left-hand edge of the parent layout. When

160

A Guide to Using ConstraintLayout in Android Studio

rotated, therefore, the widget is still visible and positioned in the same location relative to the dimensions of the
screen:

Figure 19-24
When designing a responsive and adaptable user interface layout, it is important to take into consideration
both bias and opposing constraints when manually designing a user interface layout and making corrections to
automatically created constraints.

19.11 Configuring Widget Dimensions
The inner dimensions of a widget within a ConstraintLayout can also be configured using the Inspector. As
outlined in the previous chapter, widget dimensions can be set to wrap content, fixed or match constraint
modes. The prevailing settings for each dimension on the currently selected widget are shown within the square
representing the widget in the Inspector as illustrated in Figure 19-25:

Figure 19-25
In the above figure, both the horizontal and vertical dimensions are set to wrap content mode (indicated by the
inward pointing chevrons). The inspector uses the following visual indicators to represent the three dimension
modes:

Fixed Size

Match Constraint

161

A Guide to Using ConstraintLayout in Android Studio

Wrap Content

Table 19-1
To change the current setting, simply click on the indicator to cycle through the three different settings. When
the dimension of a view within the layout editor is set to match constraint mode, the corresponding sides of the
view are drawn with the spring-like line instead of the usual straight lines. In Figure 19-26, for example, only the
width of the view has been set to match constraint:

Figure 19-26
In addition, the size of a widget can be expanded either horizontally or vertically to the maximum amount allowed
by the constraints and other widgets in the layout using the Expand horizontally and Expand vertically options.
These are accessible by right clicking on a widget within the layout and selecting the Organize option from the
resulting menu (Figure 19-27). When used, the currently selected widget will increase in size horizontally or
vertically to fill the available space around it.

Figure 19-27

19.12 Design Time Tools Positioning
The chapter entitled “A Guide to the Android Studio Layout Editor Tool” introduced the concept of the tools
namespace and explained how it can be used to set visibility attributes which only take effect within the layout
editor. Behind the scenes, Android Studio also uses tools attributes to hold widgets in position when they are
placed on the layout without constraints. Imagine, for example, a Button placed onto the layout while autoconnect
mode is disabled. While the widget will appear to be in the correct position within the preview canvas, when the
app is run it will appear in the top left-hand corner of the screen. This is because the widget has no constraints
to tell the ConstraintLayout parent where to position it.

The reason that the widget appears to be in the correct location in the layout editor is because Android Studio
has set absolute X and Y positioning tools attributes to keep it in the correct location until constraints can be
added. Within the XML layout file, this might read as follows:

162

A Guide to Using ConstraintLayout in Android Studio

<Button

 android:id="@+id/button4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button"

 tools:layout_editor_absoluteX="111dp"
 tools:layout_editor_absoluteY="88dp" />

Once adequate constraints have been added to the widget, these tools attributes will be removed by the layout
editor. A useful technique to quickly identify which widgets lack constraints without waiting until the app runs
is to click on the button highlighted in Figure 19-28 to toggle tools position visibility. Any widgets that jump to
the top left-hand corner are not fully constrained and are being held in place by temporary tools absolute X and
Y positioning attributes.

Figure 19-28

19.13 Adding Guidelines
Guidelines provide additional elements to which constraints may be anchored. Guidelines are added by right-
clicking on the layout and selecting either the Vertical Guideline or Horizontal Guideline menu option or using
the toolbar menu options as shown in Figure 19-29:

Figure 19-29
Alternatively, horizontal and vertical Guidelines may be dragged from the Helpers section of the Palette and
dropped either onto the layout canvas or Component Tree panel as indicated by the arrows in Figure 19-30:

163

A Guide to Using ConstraintLayout in Android Studio

Figure 19-30
Once added, a guideline will appear as a dashed line in the layout and may be moved simply by clicking and
dragging the line. To establish a constraint connection to a guideline, click in the constraint handler of a widget
and drag to the guideline before releasing. In Figure 19-31, the left sides of two Buttons are connected by
constraints to a vertical guideline.

The position of a vertical guideline can be specified as an absolute distance from either the left or the right of
the parent layout (or the top or bottom for a horizontal guideline). The vertical guideline in the above figure, for
example, is positioned 96dp from the left-hand edge of the parent.

Figure 19-31
Alternatively, the guideline may be positioned as a percentage of the overall width or height of the parent layout.
To switch between these three modes, select the guideline and click on the circle at the top or start of the
guideline (depending on whether the guideline is vertical or horizontal). Figure 19-32, for example, shows a
guideline positioned based on percentage:

164

A Guide to Using ConstraintLayout in Android Studio

Figure 19-32

19.14 Adding Barriers
Barriers are added by right-clicking on the layout and selecting either the Vertical Barrier or Horizontal Barrier
option from the Add helpers menu, or using the toolbar menu options as shown previously in Figure 19-29.
Alternatively, locate the Barrier types in the Helpers section of the Palette and drag and drop them either onto
the layout canvas or Component Tree panel.

Once a barrier has been added to the layout, it will appear as an entry in the Component Tree panel:

Figure 19-33
To add views as reference views (in other words, the views that control the position of the barrier), simply drag
the widgets from within the Component Tree onto the barrier entry. In Figure 19-34, for example, widgets
named textView1 and textView2 have been assigned as the reference widgets for barrier1:

Figure 19-34
After the reference views have been added, the barrier needs to be configured to specify the direction of the
barrier in relation those views. This is the barrier direction setting and is defined within the Attributes tool
window when the barrier is selected in the Component Tree panel:

165

A Guide to Using ConstraintLayout in Android Studio

Figure 19-35
The following figure shows a layout containing a barrier declared with textView1 and textView2 acting as the
reference views and textview3 as the constrained view. Since the barrier is pushing from the end of the reference
views towards the constrained view, the barrier direction has been set to end:

Figure 19-36

19.15 Adding a Group
To add a Group to a layout, right-click on the layout and select the Group option from the Add helpers menu,
or use the toolbar menu options as shown previously in Figure 19-29. Alternatively, locate the Group item in
the Helpers section of the Palette and drag and drop it either onto the layout canvas or Component Tree panel.

To add widgets to the group, select them in the Component Tree and drag and drop them onto the Group entry.
Figure 19-37 for example, shows three selected widgets being added to a group:

Figure 19-37
Any widgets referenced by the group will appear italicized beneath the group entry in the Component Tree as

166

A Guide to Using ConstraintLayout in Android Studio

shown in Figure 19-38. To remove a widget from the group, simply select it and tap the keyboard delete key:

Figure 19-38
Once widgets have been assigned to the group, use the Constraints section of the Attributes tool window to
modify the visibility setting:

Figure 19-39

19.16 Working with the Flow Helper
Flow helpers may be added using either the menu or Palette as outlined previously for the other helpers. As with
the Group helper (Figure 19-37), widgets are added to a Flow instance by dragging them within the Component
Tree onto the Flow entry. Having added a Flow helper and assigned widgets to it, select it in the Component
Tree and use the Common Attributes section of the Attribute tool window to configure the flow layout behavior:

Figure 19-40

167

A Guide to Using ConstraintLayout in Android Studio

19.17 Widget Group Alignment and Distribution
The Android Studio Layout Editor tool provides a range of alignment and distribution actions that can be
performed when two or more widgets are selected in the layout. Simply shift-click on each of the widgets to be
included in the action, right-click on the layout and make a selection from the many options displayed in the
Align menu:

Figure 19-41
As shown in Figure 19-42 below, these options are also accessible via the Align button located in the Layout
Editor toolbar:

Figure 19-42
Similarly, the Pack menu (Figure 19-43) can be used to collectively reposition the selected widgets so that they
are packed tightly together either vertically or horizontally. It achieves this by changing the absolute x and y
coordinates of the widgets but does not apply any constraints. The two distribution options in the Pack menu,
on the other hand, move the selected widgets so that they are spaced evenly apart in either vertical or horizontal
axis and applies constraints between the views to maintain this spacing.

168

A Guide to Using ConstraintLayout in Android Studio

Figure 19-43

19.18 Converting other Layouts to ConstraintLayout
For existing user interface layouts that make use of one or more of the other Android layout classes (such as
RelativeLayout or LinearLayout), the Layout Editor tool provides an option to convert the user interface to use
the ConstraintLayout.

When the Layout Editor tool is open and in Design mode, the Component Tree panel is displayed beneath the
Palette. To convert a layout to ConstraintLayout, locate it within the Component Tree, right-click on it and select
the Convert <current layout> to Constraint Layout menu option:

Figure 19-44
When this menu option is selected, Android Studio will convert the selected layout to a ConstraintLayout and
use inference to establish constraints designed to match the layout behavior of the original layout type.

19.19 Summary
A redesigned Layout Editor tool combined with ConstraintLayout makes designing complex user interface
layouts with Android Studio a relatively fast and intuitive process. This chapter has covered the concepts of
constraints, margins and bias in more detail while also exploring the ways in which ConstraintLayout-based
design has been integrated into the Layout Editor tool.

169

Chapter 20

20. Working with ConstraintLayout
Chains and Ratios in Android Studio
The previous chapters have introduced the key features of the ConstraintLayout class and outlined the best
practices for ConstraintLayout-based user interface design within the Android Studio Layout Editor. Although
the concepts of ConstraintLayout chains and ratios were outlined in the chapter entitled “A Guide to the Android
ConstraintLayout”, we have not yet addressed how to make use of these features within the Layout Editor. The
focus of this chapter, therefore, is to provide practical steps on how to create and manage chains and ratios when
using the ConstraintLayout class.

20.1 Creating a Chain
Chains may be implemented either by adding a few lines to the XML layout resource file of an activity or by
using some chain specific features of the Layout Editor.

Consider a layout consisting of three Button widgets constrained so as to be positioned in the top-left, top-
center and top-right of the ConstraintLayout parent as illustrated in Figure 20-1:

Figure 20-1
To represent such a layout, the XML resource layout file might contain the following entries for the button
widgets:
<Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

<Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

170

Working with ConstraintLayout Chains and Ratios in Android Studio

 android:layout_marginStart="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintEnd_toStartOf="@+id/button3"

 app:layout_constraintStart_toEndOf="@+id/button1"

 app:layout_constraintTop_toTopOf="parent" />

<Button

 android:id="@+id/button3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

As currently configured, there are no bi-directional constraints to group these widgets into a chain. To address
this, additional constraints need to be added from the right-hand side of button1 to the left side of button2, and
from the left side of button3 to the right side of button2 as follows:
<Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintEnd_toStartOf="@+id/button2" />

<Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

 android:layout_marginStart="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintEnd_toStartOf="@+id/button3"

 app:layout_constraintStart_toEndOf="@+id/button1"

 app:layout_constraintTop_toTopOf="parent" />

171

Working with ConstraintLayout Chains and Ratios in Android Studio

<Button

 android:id="@+id/button3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintStart_toEndOf="@+id/button2" />

With these changes, the widgets now have bi-directional horizontal constraints configured. This essentially
constitutes a ConstraintLayout chain which is represented visually within the Layout Editor by chain connections
as shown in Figure 20-2 below. Note that in this configuration the chain has defaulted to the spread chain style.

Figure 20-2
A chain may also be created by right-clicking on one of the views and selecting the Chains -> Create Horizontal
Chain or Chains -> Create Vertical Chain menu options.

20.2 Changing the Chain Style
If no chain style is configured, the ConstraintLayout will default to the spread chain style. The chain style can be
altered by right-clicking any of the widgets in the chain and selecting the Cycle Chain Mode menu option. Each
time the menu option is clicked the style will switch to another setting in the order of spread, spread inside and
packed.

Alternatively, the style may be specified in the Attributes tool window unfolding the layout_constraints property
and changing either the horizontal_chainStyle or vertical_chainStyle property depending on the orientation of
the chain:

Figure 20-3

20.3 Spread Inside Chain Style
Figure 20-4 illustrates the effect of changing the chain style to the spread inside chain style using the above
techniques:

172

Working with ConstraintLayout Chains and Ratios in Android Studio

Figure 20-4

20.4 Packed Chain Style
Using the same technique, changing the chain style property to packed causes the layout to change as shown in
Figure 20-5:

Figure 20-5

20.5 Packed Chain Style with Bias
The positioning of the packed chain may be influenced by applying a bias value. The bias can be any value
between 0.0 and 1.0, with 0.5 representing the center of the parent. Bias is controlled by selecting the chain head
widget and assigning a value to the layout_constraintHorizontal_bias or layout_constraintVertical_bias attribute
in the Attributes panel. Figure 20-6 shows a packed chain with a horizontal bias setting of 0.2:

Figure 20-6

20.6 Weighted Chain
The final area of chains to explore involves weighting of the individual widgets to control how much space each
widget in the chain occupies within the available space. A weighted chain may only be implemented using the
spread chain style and any widget within the chain that is to respond to the weight property must have the
corresponding dimension property (height for a vertical chain and width for a horizontal chain) configured
for match constraint mode. Match constraint mode for a widget dimension may be configured by selecting the
widget, displaying the Attributes panel and changing the dimension to match_constraint (equivalent to 0dp).
In Figure 20-7, for example, the layout_width constraint for a button has been set to match_constraint (0dp) to
indicate that the width of the widget is to be determined based on the prevailing constraint settings:

173

Working with ConstraintLayout Chains and Ratios in Android Studio

Figure 20-7
Assuming that the spread chain style has been selected, and all three buttons have been configured such that the
width dimension is set to match the constraints, the widgets in the chain will expand equally to fill the available
space:

Figure 20-8
The amount of space occupied by each widget relative to the other widgets in the chain can be controlled by
adding weight properties to the widgets. Figure 20-9 shows the effect of setting the layout_constraintHorizontal_
weight property to 4 on button1, and to 2 on both button2 and button3:

Figure 20-9
As a result of these weighting values, button1 occupies half of the space (4/8), while button2 and button3 each
occupy one quarter (2/8) of the space.

20.7 Working with Ratios
ConstraintLayout ratios allow one dimension of a widget to be sized relative to the widget’s other dimension
(otherwise known as aspect ratio). An aspect ratio setting could, for example, be applied to an ImageView to
ensure that its width is always twice its height.

174

Working with ConstraintLayout Chains and Ratios in Android Studio

A dimension ratio constraint is configured by setting the constrained dimension to match constraint mode and
configuring the layout_constraintDimensionRatio attribute on that widget to the required ratio. This ratio value
may be specified either as a float value or a width:height ratio setting. The following XML excerpt, for example,
configures a ratio of 2:1 on an ImageView widget:
<ImageView

 android:layout_width="0dp"

 android:layout_height="100dp"

 android:id="@+id/imageView"

 app:layout_constraintDimensionRatio="2:1" />

The above example demonstrates how to configure a ratio when only one dimension is set to match constraint. A
ratio may also be applied when both dimensions are set to match constraint mode. This involves specifying the
ratio preceded with either an H or a W to indicate which of the dimensions is constrained relative to the other.

Consider, for example, the following XML excerpt for an ImageView object:
<ImageView

 android:layout_width="0dp"

 android:layout_height="0dp"

 android:id="@+id/imageView"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintDimensionRatio="W,1:3" />

In the above example the height will be defined subject to the constraints applied to it. In this case constraints
have been configured such that it is attached to the top and bottom of the parent view, essentially stretching the
widget to fill the entire height of the parent. The width dimension, on the other hand, has been constrained to
be one third of the ImageView’s height dimension. Consequently, whatever size screen or orientation the layout
appears on, the ImageView will always be the same height as the parent and the width one third of that height.

The same results may also be achieved without the need to manually edit the XML resource file. Whenever a
widget dimension is set to match constraint mode, a ratio control toggle appears in the Inspector area of the
property panel. Figure 20-10, for example, shows the layout width and height attributes of a button widget set
to match constraint mode and 100dp respectively, and highlights the ratio control toggle in the widget sizing
preview:

Figure 20-10
By default the ratio sizing control is toggled off. Clicking on the control enables the ratio constraint and displays

175

Working with ConstraintLayout Chains and Ratios in Android Studio

an additional field where the ratio may be changed:

Figure 20-11

20.8 Summary
Both chains and ratios are powerful features of the ConstraintLayout class intended to provide additional
options for designing flexible and responsive user interface layouts within Android applications. As outlined in
this chapter, the Android Studio Layout Editor has been enhanced to make it easier to use these features during
the user interface design process.

177

Chapter 21

21. An Android Studio Layout Editor
ConstraintLayout Tutorial
By far the easiest and most productive way to design a user interface for an Android application is to make
use of the Android Studio Layout Editor tool. This chapter will provide an overview of how to create a
ConstraintLayout-based user interface using this approach. The exercise included in this chapter will also be
used as an opportunity to outline the creation of an activity starting with a “bare-bones” Android Studio project.

Having covered the use of the Android Studio Layout Editor, the chapter will also introduce the Layout Inspector
tool.

21.1 An Android Studio Layout Editor Tool Example
The first step in this phase of the example is to create a new Android Studio project. Start by launching Android
Studio and closing any previously opened projects by selecting the File -> Close Project menu option.

Select the New Project option from the welcome screen, select the Empty Views Activity template, and click
Next. Enter LayoutSample into the Name field and specify com.ebookfrenzy.layoutsample as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and
the Language menu to Java.

21.2 Preparing the Layout Editor Environment
Locate and double-click on the activity_main.xml layout file located in the app -> res -> layout folder to load it
into the Layout Editor tool. Since the purpose of this tutorial is to gain experience with the use of constraints,
turn off the Autoconnect feature using the button located in the Layout Editor toolbar. Once disabled, the button
will appear with a line through it as is the case in Figure 21-1:

Figure 21-1
If the default margin value to the right of the Autoconnect button is not set to 8dp, click on it and select 8dp
from the resulting panel.

The user interface design will also make use of the ImageView object to display an image. Before proceeding, this
image should be added to the project ready for use later in the chapter. This file is named galaxys6.png and can
be found in the project_icons folder of the sample code download available from the following URL:

https://www.ebookfrenzy.com/retail/flamingojava/index.php

Within Android Studio, display the Resource Manager tool window (View -> Tool Windows -> Resource
Manager). Locate the galaxy6s.png image in the file system navigator for your operating system and drag and

https://www.ebookfrenzy.com/retail/flamingojava/index.php

178

An Android Studio Layout Editor ConstraintLayout Tutorial

drop the image onto the Resource Manager tool window. In the resulting dialog, click Next followed by the
Import button to add the image to project. The image should now appear in the Resource Manager as shown in
Figure 21-2 below:

Figure 21-2
The image will also appear in the res -> drawables section of the Project tool window:

Figure 21-3

21.3 Adding the Widgets to the User Interface
From within the Common palette category, drag an ImageView object into the center of the display view. Note
that horizontal and vertical dashed lines appear indicating the center axes of the display. When centered, release
the mouse button to drop the view into position. Once placed within the layout, the Resources dialog will
appear seeking the image to be displayed within the view. In the search bar located at the top of the dialog, enter
“galaxy” to locate the galaxys6.png resource as illustrated in Figure 21-4.

Figure 21-4

179

An Android Studio Layout Editor ConstraintLayout Tutorial

Select the image and click on OK to assign it to the ImageView object. If necessary, adjust the size of the
ImageView using the resize handles and reposition it in the center of the layout. At this point the layout should
match Figure 21-5:

Figure 21-5
Click and drag a TextView object from the Common section of the palette and position it so that it appears above
the ImageView as illustrated in Figure 21-6.

Using the Attributes panel, unfold the textAppearance attribute entry in the Common Attributes section, change
the textSize property to 24sp, the textAlignment setting to center and the text to “Samsung Galaxy S6”.

Figure 21-6

180

An Android Studio Layout Editor ConstraintLayout Tutorial

Next, add three Button widgets along the bottom of the layout and set the text attributes of these views to “Buy
Now”, “Pricing” and “Details”. The completed layout should now match Figure 21-7:

Figure 21-7
At this point, the widgets are not sufficiently constrained for the layout engine to be able to position and size the
widgets at runtime. Were the app to run now, all of the widgets would be positioned in the top left-hand corner
of the display.

With the widgets added to the layout, use the device rotation button located in the Layout Editor toolbar
(indicated by the arrow in Figure 21-8) to view the user interface in landscape orientation:

Figure 21-8
The absence of constraints results in a layout that fails to adapt to the change in device orientation, leaving the
content off center and with part of the image and all three buttons positioned beyond the viewable area of the
screen. Clearly some work still needs to be done to make this into a responsive user interface.

181

An Android Studio Layout Editor ConstraintLayout Tutorial

21.4 Adding the Constraints
Constraints are the key to creating layouts that can adapt to device orientation changes and different screen
sizes. Begin by rotating the layout back to portrait orientation and selecting the TextView widget located above
the ImageView. With the widget selected, establish constraints from the left, right and top sides of the TextView
to the corresponding sides of the parent ConstraintLayout as shown in Figure 21-9. Set the spacing on the top
constraint to 16:

Figure 21-9
With the TextView widget constrained, select the ImageView instance and establish opposing constraints on the
left and right-hand sides with each connected to the corresponding sides of the parent layout. Next, establish a
constraint connection from the top of the ImageView to the bottom of the TextView and from the bottom of the
ImageView to the top of the center Button widget. If necessary, click and drag the ImageView so that it is still
positioned in the vertical center of the layout.

With the ImageView still selected, use the Inspector in the attributes panel to change the top and bottom margins
on the ImageView to 24 and 8 respectively and to change both the widget height and width dimension properties
to match_constraint so that the widget will resize to match the constraints. These settings will allow the layout
engine to enlarge and reduce the size of the ImageView when necessary to accommodate layout changes:

Figure 21-10
Figure 21-11, shows the currently implemented constraints for the ImageView in relation to the other elements
in the layout:

182

An Android Studio Layout Editor ConstraintLayout Tutorial

Figure 21-11
The final task is to add constraints to the three Button widgets. For this example, the buttons will be placed in a
chain. Begin by turning on Autoconnect within the Layout Editor by clicking the toolbar button highlighted in
Figure 21-1.

Next, click on the Buy Now button and then shift-click on the other two buttons so that all three are selected.
Right-click on the Buy Now button and select the Chains -> Create Horizontal Chain menu option from the
resulting menu. By default, the chain will be displayed using the spread style which is the correct behavior for
this example.

Finally, establish a constraint between the bottom of the Buy Now button and the bottom of the layout with a
margin of 8. Repeat this step for the remaining buttons.

On completion of these steps the buttons should be constrained as outlined in Figure 21-12:

Figure 21-12

21.5 Testing the Layout
With the constraints added to the layout, rotate the screen into landscape orientation and verify that the layout
adapts to accommodate the new screen dimensions.

While the Layout Editor tool provides a useful visual environment in which to design user interface layouts,
when it comes to testing there is no substitute for testing the running app. Launch the app on a physical Android
device or emulator session and verify that the user interface reflects the layout created in the Layout Editor.

183

An Android Studio Layout Editor ConstraintLayout Tutorial

Figure 21-13, for example, shows the running app in landscape orientation:

Figure 21-13
The user interface design is now complete. Designing a more complex user interface layout is a continuation of
the steps outlined above. Simply drag and drop views onto the display, position, constrain and set properties as
needed.

21.6 Using the Layout Inspector
The hierarchy of components that make up a user interface layout may be viewed at any time using the Layout
Inspector tool. To access this information the app must be running on a device or emulator running Android
API 29 or later. Once the app is running, select the Tools -> Layout Inspector menu option followed by the
process to be inspected using the menu marked A in Figure 21-14 below).

Once the inspector loads, the left most panel (B) shows the hierarchy of components that make up the user
interface layout. The center panel (C) shows a visual representation of the layout design. Clicking on a widget
in the visual layout will cause that item to highlight in the hierarchy list making it easy to find where a visual
component is situated relative to the overall layout hierarchy.

Finally, the right-most panel (marked D in Figure 21-14) contains all of the property settings for the currently
selected component, allowing for in-depth analysis of the component’s internal configuration. Where appropriate,
the value cell will contain a link to the location of the property setting within the project source code.

Figure 21-14
To view the layout in 3D, click on the button labeled E. This displays an “exploded” representation of the
hierarchy so that it can be rotated and inspected. This can be useful for tasks such as identifying obscured views:

184

An Android Studio Layout Editor ConstraintLayout Tutorial

Figure 21-15
Click and drag the rendering to rotate it in three dimensions, using the slider indicated by the arrow in the above
figure to increase the spacing between the layers. Click the button marked E again to return to the 2D view.

21.7 Summary
The Layout Editor tool in Android Studio has been tightly integrated with the ConstraintLayout class. This
chapter has worked through the creation of an example user interface intended to outline the ways in which
a ConstraintLayout-based user interface can be implemented using the Layout Editor tool in terms of adding
widgets and setting constraints. This chapter also introduced the Live Layout Inspector tool which is useful for
analyzing the structural composition of a user interface layout.

185

Chapter 22

22. Manual XML Layout Design in
Android Studio
While the design of layouts using the Android Studio Layout Editor tool greatly improves productivity, it is still
possible to create XML layouts by manually editing the underlying XML. This chapter will introduce the basics
of the Android XML layout file format.

22.1 Manually Creating an XML Layout
The structure of an XML layout file is actually quite straightforward and follows the hierarchical approach of
the view tree. The first line of an XML resource file should ideally include the following standard declaration:
<?xml version="1.0" encoding="utf-8"?>

This declaration should be followed by the root element of the layout, typically a container view such as a layout
manager. This is represented by both opening and closing tags and any properties that need to be set on the view.
The following XML, for example, declares a ConstraintLayout view as the root element, and sets match_parent
attributes such that it fills all the available space of the device display:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingLeft="16dp"

 android:paddingRight="16dp"

 android:paddingTop="16dp"

 android:paddingBottom="16dp"

 tools:context=".MainActivity">

</androidx.constraintlayout.widget.ConstraintLayout>

Note that in the above example the layout element is also configured with padding on each side of 16dp (density
independent pixels). Any specification of spacing in an Android layout must be specified using one of the
following units of measurement:

• in – Inches.

• mm – Millimeters.

• pt – Points (1/72 of an inch).

• dp – Density-independent pixels. An abstract unit of measurement based on the physical density of the device
display relative to a 160dpi display baseline.

• sp – Scale-independent pixels. Similar to dp but scaled based on the user’s font preference.

186

Manual XML Layout Design in Android Studio

• px – Actual screen pixels. Use is not recommended since different displays will have different pixels per inch.
Use dp in preference to this unit.

Any children that need to be added to the ConstraintLayout parent must be nested within the opening and
closing tags. In the following example a Button widget has been added as a child of the ConstraintLayout:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <Button
 android:text="My Button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/button" />

</androidx.constraintlayout.widget.ConstraintLayout>

As currently implemented, the button has no constraint connections. At runtime, therefore, the button will
appear in the top left-hand corner of the screen (though indented 16dp by the padding assigned to the parent
layout). If opposing constraints are added to the sides of the button, however, it will appear centered within the
layout:
<Button

 android:text="My Button"
 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/button"

 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

To add a second widget to the layout, simply embed it within the body of the ConstraintLayout element. The
following modification, for example, adds a TextView widget to the layout:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingLeft="16dp"

 android:paddingTop="16dp"

187

Manual XML Layout Design in Android Studio

 android:paddingRight="16dp"

 android:paddingBottom="16dp"

 tools:context=".MainActivity">

 <Button

 android:text="@string/button_string"
 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/button"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:text="My Text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/textView" />

</androidx.constraintlayout.widget.ConstraintLayout>

Once again, the absence of constraints on the newly added TextView will cause it to appear in the top left-hand
corner of the layout at runtime. The following modifications add opposing constraints connected to the parent
layout to center the widget horizontally, together with a constraint connecting the bottom of the TextView to
the top of the button:
<TextView

 android:text="My Text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/textView"

 android:layout_marginTop="8dp"
 android:layout_marginBottom="8dp"
 app:layout_constraintBottom_toTopOf="@+id/button"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

Also, note that the Button and TextView views have several attributes declared. Both views have been assigned
IDs and configured to display text strings represented by string resources named button_string and text_string
respectively. Additionally, the wrap_content height and width properties have been declared on both objects so
that they are sized to accommodate the content (in this case the text referenced by the string resource value).

Viewed from within the Preview panel of the Layout Editor in Design mode, the above layout will be rendered
as shown in Figure 22-1:

188

Manual XML Layout Design in Android Studio

Figure 22-1

22.2 Manual XML vs. Visual Layout Design
When to write XML manually as opposed to using the Layout Editor tool in design mode is a matter of personal
preference. There are, however, advantages to using design mode.

First, design mode will generally be quicker given that it avoids the necessity to type lines of XML. Additionally,
design mode avoids the need to learn the intricacies of the various property values of the Android SDK view
classes. Rather than continually refer to the Android documentation to find the correct keywords and values,
most properties can be located by referring to the Attributes panel.

All the advantages of design mode aside, it is important to keep in mind that the two approaches to user interface
design are in no way mutually exclusive. As an application developer, it is quite likely that you will end up
creating user interfaces within design mode while performing fine-tuning and layout tweaks of the design by
directly editing the generated XML resources. Both views of the interface design are, after all, displayed side-
by-side within the Android Studio environment making it easy to work seamlessly on both the XML and the
visual layout.

22.3 Summary
The Android Studio Layout Editor tool provides a visually intuitive method for designing user interfaces. Using
a drag and drop paradigm combined with a set of property editors, the tool provides considerable productivity
benefits to the application developer.

User interface designs may also be implemented by manually writing the XML layout resource files, the format
of which is well structured and easily understood.

The fact that the Layout Editor tool generates XML resource files means that these two approaches to interface
design can be combined to provide a “best of both worlds” approach to user interface development.

189

Chapter 23

23. Managing Constraints using
Constraint Sets
Up until this point in the book, all user interface design tasks have been performed using the Android Studio
Layout Editor tool, either in text or design mode. An alternative to writing XML resource files or using the
Android Studio Layout Editor is to write Java code to directly create, configure and manipulate the view objects
that comprise the user interface of an Android activity. Within the context of this chapter, we will explore some
of the advantages and disadvantages of writing Java code to create a user interface before describing some of the
key concepts such as view properties and the creation and management of layout constraints.

In the next chapter, an example project will be created and used to demonstrate some of the typical steps involved
in this approach to Android user interface creation.

23.1 Java Code vs. XML Layout Files
There are a number of key advantages to using XML resource files to design a user interface as opposed to
writing Java code. In fact, Google goes to considerable lengths in the Android documentation to extol the virtues
of XML resources over Java code. As discussed in the previous chapter, one key advantage to the XML approach
includes the ability to use the Android Studio Layout Editor tool, which, itself, generates XML resources. A
second advantage is that once an application has been created, changes to user interface screens can be made
by simply modifying the XML file, thereby avoiding the necessity to recompile the application. Also, even when
hand writing XML layouts, it is possible to get instant feedback on the appearance of the user interface using the
preview feature of the Android Studio Layout Editor tool. To test the appearance of a Java created user interface
the developer will, inevitably, repeatedly cycle through a loop of writing code, compiling and testing to complete
the design work.

In terms of the strengths of the Java coding approach to layout creation, perhaps the most significant advantage
that Java has over XML resource files comes into play when dealing with dynamic user interfaces. XML resource
files are inherently most useful when defining static layouts, in other words layouts that are unlikely to change
significantly from one invocation of an activity to the next. Java code, on the other hand, is ideal for creating user
interfaces dynamically at run-time. This is particularly useful in situations where the user interface may appear
differently each time the activity executes subject to external factors.

A knowledge of working with user interface components in Java code can also be useful when dynamic changes
to a static XML resource based layout need to be performed in real-time as the activity is running.

Finally, some developers simply prefer to write Java code than to use layout tools and XML, regardless of the
advantages offered by the latter approaches.

23.2 Creating Views
As previously established, the Android SDK includes a toolbox of view classes designed to meet most of the
basic user interface design needs. The creation of a view in Java is simply a matter of creating instances of these
classes, passing through as an argument a reference to the activity with which that view is to be associated.

The first view (typically a container view to which additional child views can be added) is displayed to the user
via a call to the setContentView() method of the activity. Additional views may be added to the root view via calls

190

Managing Constraints using Constraint Sets

to the object’s addView() method.

When working with Java code to manipulate views contained in XML layout resource files, it is necessary to
obtain the ID of the view. The same rule holds true for views created in Java. As such, it is necessary to assign an
ID to any view for which certain types of access will be required in subsequent Java code. This is achieved via a
call to the setId() method of the view object in question. In later code, the ID for a view may be obtained via the
object’s getId() method.

23.3 View Attributes
Each view class has associated with it a range of attributes. These property settings are set directly on the view
instances and generally define how the view object will appear or behave. Examples of attributes are the text
that appears on a Button object, or the background color of a ConstraintLayout view. Each view class within
the Android SDK has a pre-defined set of methods that allow the user to set and get these property values. The
Button class, for example, has a setText() method which can be called from within Java code to set the text
displayed on the button to a specific string value. The background color of a ConstraintLayout object, on the
other hand, can be set with a call to the object’s setBackgroundColor() method.

23.4 Constraint Sets
While property settings are internal to view objects and dictate how a view appears and behaves, constraint sets
are used to control how a view appears relative to its parent view and other sibling views. Every ConstraintLayout
instance has associated with it a set of constraints that define how its child views are positioned and constrained.

The key to working with constraint sets in Java code is the ConstraintSet class. This class contains a range of
methods that allow tasks such as creating, configuring and applying constraints to a ConstraintLayout instance.
In addition, the current constraints for a ConstraintLayout instance may be copied into a ConstraintSet object
and used to apply the same constraints to other layouts (with or without modifications).

A ConstraintSet instance is created just like any other Java object:
ConstraintSet set = new ConstraintSet();

Once a constraint set has been created, methods can be called on the instance to perform a wide range of tasks.

23.4.1 Establishing Connections
The connect() method of the ConstraintSet class is used to establish constraint connections between views. The
following code configures a constraint set in which the left-hand side of a Button view is connected to the right-
hand side of an EditText view with a margin of 70dp:
set.connect(button1.getId(), ConstraintSet.LEFT,

 editText1.getId(), ConstraintSet.RIGHT, 70);

23.4.2 Applying Constraints to a Layout
Once the constraint set is configured, it must be applied to a ConstraintLayout instance before it will take effect.
A constraint set is applied via a call to the applyTo() method, passing through a reference to the layout object to
which the settings are to be applied:
set.applyTo(myLayout);

23.4.3 Parent Constraint Connections
Connections may also be established between a child view and its parent ConstraintLayout by referencing the
ConstraintSet.PARENT_ID constant. In the following example, the constraint set is configured to connect the
top edge of a Button view to the top of the parent layout with a margin of 100dp:
set.connect(button1.getId(), ConstraintSet.TOP,

191

Managing Constraints using Constraint Sets

 ConstraintSet.PARENT_ID, ConstraintSet.TOP, 100);

23.4.4 Sizing Constraints
A number of methods are available for controlling the sizing behavior of views. The following code, for example,
sets the horizontal size of a Button view to wrap_content and the vertical size of an ImageView instance to a
maximum of 250dp:
set.constrainWidth(button1.getId(), ConstraintSet.WRAP_CONTENT);

set.constrainMaxHeight(imageView1.getId(), 250);

23.4.5 Constraint Bias
As outlined in the chapter entitled “A Guide to Using ConstraintLayout in Android Studio”, when a view has
opposing constraints it is centered along the axis of the constraints (i.e. horizontally or vertically). This centering
can be adjusted by applying a bias along the particular axis of constraint. When using the Android Studio Layout
Editor, this is achieved using the controls in the Attributes tool window. When working with a constraint set,
however, bias can be added using the setHorizontalBias() and setVerticalBias() methods, referencing the view ID
and the bias as a floating point value between 0 and 1.

The following code, for example, constrains the left and right-hand sides of a Button to the corresponding sides
of the parent layout before applying a 25% horizontal bias:
set.connect(button1.getId(), ConstraintSet.LEFT,

 ConstraintSet.PARENT_ID, ConstraintSet.LEFT, 0);

set.connect(button1.getId(), ConstraintSet.RIGHT,

 ConstraintSet.PARENT_ID, ConstraintSet.RIGHT, 0);

set.setHorizontalBias(button1.getId(), 0.25f);

23.4.6 Alignment Constraints
Alignments may also be applied using a constraint set. The full set of alignment options available with the
Android Studio Layout Editor may also be configured using a constraint set via the centerVertically() and
centerHorizontally() methods, both of which take a variety of arguments depending on the alignment being
configured. In addition, the center() method may be used to center a view between two other views.

In the code below, button2 is positioned so that it is aligned horizontally with button1:
set.centerHorizontally(button2.getId(), button1.getId());

23.4.7 Copying and Applying Constraint Sets
The current constraint set for a ConstraintLayout instance may be copied into a constraint set object using the
clone() method. The following line of code, for example, copies the constraint settings from a ConstraintLayout
instance named myLayout into a constraint set object:
set.clone(myLayout);

Once copied, the constraint set may be applied directly to another layout or, as in the following example,
modified before being applied to the second layout:
ConstraintSet set = new ConstraintSet();

set.clone(myLayout);

set.constrainWidth(button1.getId(), ConstraintSet.WRAP_CONTENT);

set.applyTo(mySecondLayout);

23.4.8 ConstraintLayout Chains
Vertical and horizontal chains may also be created within a constraint set using the createHorizontalChain() and
createVerticalChain() methods. The syntax for using these methods is as follows:

192

Managing Constraints using Constraint Sets

createHorizontalChain(int leftId, int leftSide, int rightId,

 int rightSide, int[] chainIds, float[] weights, int style);

Based on the above syntax, the following example creates a horizontal spread chain that starts with button1 and
ends with button4. In between these views are button2 and button3 with weighting set to zero for both:
int[] chainViews = {button2.getId(), button3.getId()};

float[] chainWeights = {0, 0};

set.createHorizontalChain(button1.getId(), ConstraintSet.LEFT,

 button4.getId(), ConstraintSet.RIGHT,

 chainViews, chainWeights,

 ConstraintSet.CHAIN_SPREAD);

A view can be removed from a chain by passing the ID of the view to be removed through to either the
removeFromHorizontalChain() or removeFromVerticalChain() methods. A view may be added to an existing
chain using either the addToHorizontalChain() or addToVerticalChain() methods. In both cases the methods
take as arguments the IDs of the views between which the new view is to be inserted as follows:
set.addToHorizontalChain(newViewId, leftViewId, rightViewId);

23.4.9 Guidelines
Guidelines are added to a constraint set using the create() method and then positioned using the
setGuidelineBegin(), setGuidelineEnd() or setGuidelinePercent() methods. In the following code, a vertical
guideline is created and positioned 50% across the width of the parent layout. The left side of a button view is
then connected to the guideline with no margin:
set.create(R.id.myGuideline, ConstraintSet.VERTICAL_GUIDELINE);

set.setGuidelinePercent(R.id.myGuideline, 0.5f);

set.connect(button.getId(), ConstraintSet.LEFT,

 R.id.myGuideline, ConstraintSet.RIGHT, 0);

set.applyTo(layout);

23.4.10 Removing Constraints
A constraint may be removed from a view in a constraint set using the clear() method, passing through as
arguments the view ID and the anchor point for which the constraint is to be removed:
set.clear(button.getId(), ConstraintSet.LEFT);

Similarly, all of the constraints on a view may be removed in a single step by referencing only the view in the
clear() method call:
set.clear(button.getId());

23.4.11 Scaling
The scale of a view within a layout may be adjusted using the ConstraintSet setScaleX() and setScaleY() methods
which take as arguments the view on which the operation is to be performed together with a float value indicating
the scale. In the following code, a button object is scaled to twice its original width and half the height:
set.setScaleX(myButton.getId(), 2f);

set.setScaleY(myButton.getId(), 0.5f);

193

Managing Constraints using Constraint Sets

23.4.12 Rotation
A view may be rotated on either the X or Y axis using the setRotationX() and setRotationY() methods respectively
both of which must be passed the ID of the view to be rotated and a float value representing the degree of
rotation to be performed. The pivot point on which the rotation is to take place may be defined via a call to
the setTransformPivot(), setTransformPivotX() and setTransformPivotY() methods. The following code rotates a
button view 30 degrees on the Y axis using a pivot point located at point 500, 500:
set.setTransformPivot(button.getId(), 500, 500);

set.setRotationY(button.getId(), 30);

set.applyTo(layout);

Having covered the theory of constraint sets and user interface creation from within Java code, the next chapter
will work through the creation of an example application with the objective of putting this theory into practice.
For more details on the ConstraintSet class, refer to the reference guide at the following URL:

https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintSet

23.5 Summary
As an alternative to writing XML layout resource files or using the Android Studio Layout Editor tool, Android
user interfaces may also be dynamically created in Java code.

Creating layouts in Java code consists of creating instances of view classes and setting attributes on those objects
to define required appearance and behavior.

How a view is positioned and sized relative to its ConstraintLayout parent view and any sibling views is defined
through the use of constraint sets. A constraint set is represented by an instance of the ConstraintSet class
which, once created, can be configured using a wide range of method calls to perform tasks such as establishing
constraint connections, controlling view sizing behavior and creating chains.

With the basics of the ConstraintSet class covered in this chapter, the next chapter will work through a tutorial
that puts these features to practical use.

https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintSet

195

Chapter 24

24. An Android ConstraintSet
Tutorial
The previous chapter introduced the basic concepts of creating and modifying user interface layouts in Java code
using the ConstraintLayout and ConstraintSet classes. This chapter will take these concepts and put them into
practice through the creation of an example layout created entirely in Java code and without using the Android
Studio Layout Editor tool.

24.1 Creating the Example Project in Android Studio
Launch Android Studio and select the New Project option from the welcome screen and, within the resulting
new project dialog, choose the Empty Views Activity template before clicking on the Next button.

Enter JavaLayout into the Name field and specify com.ebookfrenzy.javalayout as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

Once the project has been created, the MainActivity.java file should automatically load into the editing panel. As
we have come to expect, Android Studio has created a template activity and overridden the onCreate() method,
providing an ideal location for Java code to be added to create a user interface.

24.2 Adding Views to an Activity
The onCreate() method is currently designed to use a resource layout file for the user interface. Begin, therefore,
by deleting this line from the method:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

}

The next modification is to add a ConstraintLayout object with a single Button view child to the activity. This
involves the creation of new instances of the ConstraintLayout and Button classes. The Button view then needs
to be added as a child to the ConstraintLayout view which, in turn, is displayed via a call to the setContentView()
method of the activity instance:
package com.ebookfrenzy.javalayout;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import androidx.constraintlayout.widget.ConstraintLayout;
import android.widget.Button;
import android.widget.EditText;

196

An Android ConstraintSet Tutorial

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 configureLayout();
 }

 private void configureLayout() {
 Button myButton = new Button(this);
 ConstraintLayout myLayout = new ConstraintLayout(this);
 myLayout.addView(myButton);
 setContentView(myLayout);
 }
}

When new instances of user interface objects are created in this way, the constructor methods must be passed
the context within which the object is being created which, in this case, is the current activity. Since the above
code resides within the activity class, the context is simply referenced by the standard this keyword:
Button myButton = new Button(this);

Once the above additions have been made, compile and run the application (either on a physical device or an
emulator). Once launched, the visible result will be a button containing no text appearing in the top left-hand
corner of the ConstraintLayout view as shown in Figure 24-1:

Figure 24-1

24.3 Setting View Attributes
For the purposes of this exercise, we need the background of the ConstraintLayout view to be blue and the
Button view to display text that reads “Press Me” on a yellow background. Both of these tasks can be achieved
by setting attributes on the views in the Java code as outlined in the following code fragment. To allow the text
on the button to be easily translated to other languages it will be added as a String resource. Within the Project
tool window, locate the app -> res -> values -> strings.xml file and modify it to add a resource value for the “Press
Me” string:
<resources>

 <string name="app_name">JavaLayout</string>

 <string name="press_me">Press Me</string>
</resources>

197

An Android ConstraintSet Tutorial

Although this is the recommended way to handle strings that are directly referenced in code, to avoid repetition
of this step throughout the remainder of the book, many subsequent code samples will directly enter strings
into the code.

Once the string is stored as a resource it can be accessed from within code as follows:
getString(R.string.press_me);

With the string resource created, add code to the configureLayout() method to set the button text and color
attributes:
.

.

import android.graphics.Color;

public class MainActivity extends AppCompatActivity {

 private void configureLayout() {

 Button myButton = new Button(this);

 myButton.setText(getString(R.string.press_me));
 myButton.setBackgroundColor(Color.YELLOW);

 ConstraintLayout myLayout = new ConstraintLayout(this);

 myLayout.setBackgroundColor(Color.BLUE);

 myLayout.addView(myButton);

 setContentView(myLayout);

}

When the application is now compiled and run, the layout will reflect the property settings such that the layout
will appear with a blue background and the button will display the assigned text on a yellow background.

24.4 Creating View IDs
When the layout is complete it will consist of a Button and an EditText view. Before these views can be referenced
within the methods of the ConstraintSet class, they must be assigned unique view IDs. The first step in this
process is to create a new resource file containing these ID values.

Right click on the app -> res -> values folder, select the New -> Values Resource File menu option and name the
new resource file id.xml. With the resource file created, edit it so that it reads as follows:
<?xml version="1.0" encoding="utf-8"?>

<resources>

 <item name="myButton" type="id" />
 <item name="myEditText" type="id" />
</resources>

At this point in the tutorial, only the Button has been created, so edit the configureLayout() method to assign the
corresponding ID to the object:
private void configureLayout() {

 Button myButton = new Button(this);

 myButton.setText(getString(R.string.press_me));

 myButton.setBackgroundColor(Color.YELLOW);

198

An Android ConstraintSet Tutorial

 myButton.setId(R.id.myButton);
.

.

24.5 Configuring the Constraint Set
In the absence of any constraints, the ConstraintLayout view has placed the Button view in the top left corner
of the display. To instruct the layout view to place the button in a different location, in this case centered both
horizontally and vertically, it will be necessary to create a ConstraintSet instance, initialize it with the appropriate
settings and apply it to the parent layout.

For this example, the button needs to be configured so that the width and height are constrained to the size of
the text it is displaying and the view centered within the parent layout. Edit the configureLayout() method once
more to make these changes:
.

.

import androidx.constraintlayout.widget.ConstraintSet;
.

.

private void configureLayout() {

 Button myButton = new Button(this);

 myButton.setText(getString(R.string.press_me));

 myButton.setBackgroundColor(Color.YELLOW);

 myButton.setId(R.id.myButton);

 ConstraintLayout myLayout = new ConstraintLayout(this);

 myLayout.setBackgroundColor(Color.BLUE);

 myLayout.addView(myButton);

 setContentView(myLayout);

 ConstraintSet set = new ConstraintSet();

 set.constrainHeight(myButton.getId(),
 ConstraintSet.WRAP_CONTENT);
 set.constrainWidth(myButton.getId(),
 ConstraintSet.WRAP_CONTENT);

 set.connect(myButton.getId(), ConstraintSet.START,
 ConstraintSet.PARENT_ID, ConstraintSet.START, 0);
 set.connect(myButton.getId(), ConstraintSet.END,
 ConstraintSet.PARENT_ID, ConstraintSet.END, 0);
 set.connect(myButton.getId(), ConstraintSet.TOP,
 ConstraintSet.PARENT_ID, ConstraintSet.TOP, 0);
 set.connect(myButton.getId(), ConstraintSet.BOTTOM,
 ConstraintSet.PARENT_ID, ConstraintSet.BOTTOM, 0);

199

An Android ConstraintSet Tutorial

 set.applyTo(myLayout);
}

With the initial constraints configured, compile and run the application and verify that the Button view now
appears in the center of the layout:

Figure 24-2

24.6 Adding the EditText View
The next item to be added to the layout is the EditText view. The first step is to create the EditText object, assign
it the ID as declared in the id.xml resource file and add it to the layout. The code changes to achieve these steps
now need to be made to the configureLayout() method as follows:
private void configureLayout() {

 Button myButton = new Button(this);

 myButton.setText(getString(R.string.press_me));

 myButton.setBackgroundColor(Color.YELLOW);

 myButton.setId(R.id.myButton);

 EditText myEditText = new EditText(this);
 myEditText.setId(R.id.myEditText);

 ConstraintLayout myLayout = new ConstraintLayout(this);

 myLayout.setBackgroundColor(Color.BLUE);

 myLayout.addView(myButton);

 myLayout.addView(myEditText);

 setContentView(myLayout);

.

.

}

The EditText widget is intended to be sized subject to the content it is displaying, centered horizontally within
the layout and positioned 70dp above the existing Button view. Add code to the configureLayout() method so

200

An Android ConstraintSet Tutorial

that it reads as follows:
.

.

set.connect(myButton.getId(), ConstraintSet.START,

 ConstraintSet.PARENT_ID, ConstraintSet.START, 0);

set.connect(myButton.getId(), ConstraintSet.END,

 ConstraintSet.PARENT_ID, ConstraintSet.END, 0);

set.connect(myButton.getId(), ConstraintSet.TOP,

 ConstraintSet.PARENT_ID, ConstraintSet.TOP, 0);

set.connect(myButton.getId(), ConstraintSet.BOTTOM,

 ConstraintSet.PARENT_ID, ConstraintSet.BOTTOM, 0);

set.constrainHeight(myEditText.getId(),
 ConstraintSet.WRAP_CONTENT);
set.constrainWidth(myEditText.getId(),
 ConstraintSet.WRAP_CONTENT);

set.connect(myEditText.getId(), ConstraintSet.START,
 ConstraintSet.PARENT_ID, ConstraintSet.START, 0);
set.connect(myEditText.getId(), ConstraintSet.END,
 ConstraintSet.PARENT_ID, ConstraintSet.END, 0);
set.connect(myEditText.getId(), ConstraintSet.BOTTOM,
 myButton.getId(), ConstraintSet.TOP, 70);

set.applyTo(myLayout);

A test run of the application should show the EditText field centered above the button with a margin of 70dp.

24.7 Converting Density Independent Pixels (dp) to Pixels (px)
The next task in this exercise is to set the width of the EditText view to 200dp. As outlined in the chapter entitled
“An Android Studio Layout Editor ConstraintLayout Tutorial” when setting sizes and positions in user interface
layouts it is better to use density independent pixels (dp) rather than pixels (px). To set a position using dp it
is necessary to convert a dp value to a px value at runtime, taking into consideration the density of the device
display. In order, therefore, to set the width of the EditText view to 200dp, the following code needs to be added
to the class:
package com.ebookfrenzy.javalayout;

.

.

import android.content.res.Resources;
import android.util.TypedValue;

public class MainActivity extends AppCompatActivity {

 private int convertToPx(int value) {
 Resources r = getResources();
 return (int) TypedValue.applyDimension(

201

An Android ConstraintSet Tutorial

 TypedValue.COMPLEX_UNIT_DIP, value,
 r.getDisplayMetrics());
 }

 private void configureLayout() {

 Button myButton = new Button(this);

 myButton.setText(getString(R.string.press_me));

 myButton.setBackgroundColor(Color.YELLOW);

 myButton.setId(R.id.myButton);

 EditText myEditText = new EditText(this);

 myEditText.setId(R.id.myEditText);

 int px = convertToPx(200);
 myEditText.setWidth(px);
.

.

}

Compile and run the application one more time and note that the width of the EditText view has changed as
illustrated in Figure 24-3:

Figure 24-3

24.8 Summary
The example activity created in this chapter has, of course, created a similar user interface (the change in
background color and view type notwithstanding) as that created in the earlier “Manual XML Layout Design in
Android Studio” chapter. If nothing else, this chapter should have provided an appreciation of the level to which
the Android Studio Layout Editor tool and XML resources shield the developer from many of the complexities
of creating Android user interface layouts.

202

An Android ConstraintSet Tutorial

There are, however, instances where it makes sense to create a user interface in Java. This approach is most
useful, for example, when creating dynamic user interface layouts.

203

Chapter 25

25. A Guide to using Apply Changes
in Android Studio
Now that some of the basic concepts of Android development using Android Studio have been covered, this is
a good time to introduce the Android Studio Apply Changes feature. As all experienced developers know, every
second spent waiting for an app to compile and run is time better spent writing and refining code.

25.1 Introducing Apply Changes
In early versions of Android Studio, each time a change to a project needed to be tested Android Studio would
recompile the code, convert it to Dex format, generate the APK package file and install it on the device or
emulator. Having performed these steps the app would finally be launched ready for testing. Even on a fast
development system this is a process that takes a considerable amount of time to complete. It is not uncommon
for it to take a minute or more for this process to complete for a large application.

Apply Changes, in contrast, allows many code and resource changes within a project to be reflected nearly
instantaneously within the app while it is already running on a device or emulator session.

Consider, for the purposes of an example, an app being developed in Android Studio which has already been
launched on a device or emulator. If changes are made to resource settings or the code within a method, Apply
Changes will push the updated code and resources to the running app and dynamically “swap” the changes. The
changes are then reflected in the running app without the need to build, deploy and relaunch the entire app. In
many cases, this allows changes to be tested in a fraction of the time it would take without Apply Changes.

25.2 Understanding Apply Changes Options
Android Studio provides three options in terms of applying changes to a running app in the form of Run App,
Apply Changes and Restart Activity and Apply Code Changes. These options can be summarized as follows:

• Run App - Stops the currently running app and restarts it. If no changes have been made to the project since
it was last launched, this option will simply restart the app. If, on the other hand, changes have been made to
the project, Android Studio will rebuild and reinstall the app onto the device or emulator before launching it.

• Apply Code Changes - This option can be used when the only changes made to a project involve modifications
to the body of existing methods or when a new class or method has been added. When selected, the changes
will be applied to the running app without the need to restart either the app or the currently running activity.
This mode cannot, however, be used when changes have been made to any project resources such as a layout
file. Other restrictions include the removal of methods, changes to a method signature, renaming of classes
and other structural code changes. It is also not possible to use this option when changes have been made to
the project manifest.

• Apply Changes and Restart Activity - When selected, this mode will dynamically apply any code or resource
changes made within the project and restart the activity without reinstalling or restarting the app. Unlike the
Apply Code changes option, this can be used when changes have been made to the code and resources of the
project, though the same restrictions involving some structural code changes and manifest modifications
apply.

204

A Guide to using Apply Changes in Android Studio

25.3 Using Apply Changes
When a project has been loaded into Android Studio, but is not yet running on a device or emulator, it can be
launched as usual using either the run (marked A in Figure 25-1) or debug (B) button located in the toolbar:

Figure 25-1
After the app has launched and is running, the icon on the run button will change to indicate that the app
is running and the Apply Changes and Restart Activity and Apply Code Changes buttons will be enabled as
indicated in Figure 25-2 below:

Figure 25-2
If the changes are unable to be applied when one of the Apply Changes buttons is selected, Android Studio
will display a message indicating the failure together with an explanation. Figure 25-3, for example, shows the
message displayed by Android Studio when the Apply Code Changes option is selected after a change has been
made to a resource file:

Figure 25-3
In this situation, the solution is to use the Apply Changes and Restart Activity option (for which a link is provided).
Similarly, the following message will appear when an attempt to apply changes that involve the addition or
removal of a method is made:

Figure 25-4

205

A Guide to using Apply Changes in Android Studio

In this case, the only option is to click on the Run App button to reinstall and restart the app. As an alternative
to manually selecting the correct option in these situations, Android Studio may be configured to automatically
fall back to performing a Run App operation.

25.4 Configuring Apply Changes Fallback Settings
The Apply Changes fallback settings are located in the Android Studio Preferences window which is displayed
by selecting the File -> Settings menu option (Android Studio -> Preferences on macOS). Within the Preferences
dialog, select the Build, Execution, Deployment entry in the left-hand panel followed by Deployment as shown
in Figure 25-5:

Figure 25-5
Once the required options have been enabled, click on Apply followed by the OK button to commit the changes
and dismiss the dialog. After these defaults have been enabled, Android Studio will automatically reinstall and
restart the app when necessary.

25.5 An Apply Changes Tutorial
Launch Android Studio, select the New Project option from the welcome screen and, within the resulting new
project dialog, choose the Basic Views Activity template before clicking on the Next button.

Enter ApplyChanges into the Name field and specify com.ebookfrenzy.applychanges as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

25.6 Using Apply Code Changes
Begin by clicking on the run button and selecting an emulator or physical device as the run target. After clicking
the run button, track the amount of time before the example app appears on the device or emulator.

Once running, click on the action button (the button displaying an envelope icon located in the lower right-
hand corner of the screen). Note that a Snackbar instance appears displaying text which reads “Replace with
your own action” as shown in Figure 25-6:

Figure 25-6

206

A Guide to using Apply Changes in Android Studio

Once the app is running, the Apply Changes buttons should have been enabled indicating that certain project
changes can be applied without having to reinstall and restart the app. To see this in action, edit the MainActivity.
java file, locate the onCreate method and modify the action code so that a different message is displayed when
the action button is selected:
binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Apply Changes is Amazing!", Snackbar.LENGTH_LONG)
 .setAction("Action", null).show();

 }

});

With the code change implemented, click on the Apply Code Changes button and note that a message appears
within a few seconds indicating the app has been updated. Tap the action button and note that the new message
is now displayed in the Snackbar.

25.7 Using Apply Changes and Restart Activity
Any resource change will require use of the Apply Changes and Restart Activity option. Within Android Studio
select the app -> res -> layout -> fragment_first.xml layout file. With the Layout Editor tool in Design mode,
select the default TextView component and change the text property in the attributes tool window to “Hello
Android”.

Make sure that the fallback options outlined in “Configuring Apply Changes Fallback Settings” above are turned
off before clicking on the Apply Code Changes button. Note that the request fails because this change involves
project resources. Click on the Apply Changes and Restart Activity button and verify that the activity restarts and
displays the new text on the TextView widget.

25.8 Using Run App
As previously described, the removal of a method requires the complete re-installation and restart of the running
app. To experience this, edit the MainActivity.java file and add a new method after the onCreate method as
follows:
public void demoMethod() {

}

Use the Apply Code Changes button and confirm that the changes are applied without the need to reinstall the
app.

Next, delete the new method and verify that clicking on either of the two Apply Changes buttons will result in
the request failing. The only way to run the app after such a change is to click on the Run App button.

25.9 Summary
Apply Changes is a feature of Android Studio designed to significantly accelerate the code, build and run
cycle performed when developing an app. The Apply Changes feature is able to push updates to the running
application, in many cases without the need to re-install or even restart the app. Apply Changes provides a
number of different levels of support depending on the nature of the modification being applied to the project.

207

Chapter 26

26. An Overview and Example of
Android Event Handling
Much has been covered in the previous chapters relating to the design of user interfaces for Android applications.
An area that has yet to be covered, however, involves the way in which a user’s interaction with the user interface
triggers the underlying activity to perform a task. In other words, we know from the previous chapters how to
create a user interface containing a button view, but not how to make something happen within the application
when it is touched by the user.

The primary objective of this chapter, therefore, is to provide an overview of event handling in Android
applications together with an Android Studio based example project.

26.1 Understanding Android Events
Events in Android can take a variety of different forms, but are usually generated in response to an external
action. The most common form of events, particularly for devices such as tablets and smartphones, involve some
form of interaction with the touch screen. Such events fall into the category of input events.

The Android framework maintains an event queue into which events are placed as they occur. Events are then
removed from the queue on a first-in, first-out (FIFO) basis. In the case of an input event such as a touch on the
screen, the event is passed to the view positioned at the location on the screen where the touch took place. In
addition to the event notification, the view is also passed a range of information (depending on the event type)
about the nature of the event such as the coordinates of the point of contact between the user’s fingertip and the
screen.

To be able to handle the event that it has been passed, the view must have in place an event listener. The Android
View class, from which all user interface components are derived, contains a range of event listener interfaces,
each of which contains an abstract declaration for a callback method. To be able to respond to an event of a
particular type, a view must register the appropriate event listener and implement the corresponding callback.
For example, if a button is to respond to a click event (the equivalent to the user touching and releasing the
button view as though clicking on a physical button) it must both register the View.onClickListener event listener
(via a call to the target view’s setOnClickListener() method) and implement the corresponding onClick() callback
method. If a “click” event is detected on the screen at the location of the button view, the Android framework will
call the onClick() method of that view when that event is removed from the event queue. It is, of course, within
the implementation of the onClick() callback method that any tasks should be performed or other methods
called in response to the button click.

26.2 Using the android:onClick Resource
Before exploring event listeners in more detail it is worth noting that a shortcut is available when all that is
required is for a callback method to be called when a user “clicks” on a button view in the user interface. Consider
a user interface layout containing a button view named button1 with the requirement that when the user touches
the button, a method called buttonClick() declared in the activity class is called. All that is required to implement
this behavior is to write the buttonClick() method (which takes as an argument a reference to the view that
triggered the click event) and add a single line to the declaration of the button view in the XML file. For example:
<Button

208

An Overview and Example of Android Event Handling

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="buttonClick"
 android:text="Click me" />

This provides a simple way to capture click events. It does not, however, provide the range of options offered by
event handlers, which are the topic of the rest of this chapter. As will be outlined in later chapters, the onClick
property also has limitations in layouts involving fragments. When working within Android Studio Layout
Editor, the onClick property can be found and configured in the Attributes panel when a suitable view type is
selected in the device screen layout.

26.3 Event Listeners and Callback Methods
In the example activity outlined later in this chapter the steps involved in registering an event listener and
implementing the callback method will be covered in detail. Before doing so, however, it is worth taking some
time to outline the event listeners that are available in the Android framework and the callback methods
associated with each one.

• onClickListener – Used to detect click style events whereby the user touches and then releases an area of the
device display occupied by a view. Corresponds to the onClick() callback method which is passed a reference
to the view that received the event as an argument.

• onLongClickListener – Used to detect when the user maintains the touch over a view for an extended period.
Corresponds to the onLongClick() callback method which is passed as an argument the view that received the
event.

• onTouchListener – Used to detect any form of contact with the touch screen including individual or multiple
touches and gesture motions. Corresponding with the onTouch() callback, this topic will be covered in greater
detail in the chapter entitled “Android Touch and Multi-touch Event Handling”. The callback method is passed
as arguments the view that received the event and a MotionEvent object.

• onCreateContextMenuListener – Listens for the creation of a context menu as the result of a long click.
Corresponds to the onCreateContextMenu() callback method. The callback is passed the menu, the view that
received the event and a menu context object.

• onFocusChangeListener – Detects when focus moves away from the current view as the result of interaction
with a track-ball or navigation key. Corresponds to the onFocusChange() callback method which is passed the
view that received the event and a Boolean value to indicate whether focus was gained or lost.

• onKeyListener – Used to detect when a key on a device is pressed while a view has focus. Corresponds to
the onKey() callback method. Passed as arguments are the view that received the event, the KeyCode of the
physical key that was pressed and a KeyEvent object.

26.4 An Event Handling Example
In the remainder of this chapter, we will work through the creation of an Android Studio project designed to
demonstrate the implementation of an event listener and corresponding callback method to detect when the
user has clicked on a button. The code within the callback method will update a text view to indicate that the
event has been processed.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter EventExample into the Name field and specify com.ebookfrenzy.eventexample as the package name. Before

209

An Overview and Example of Android Event Handling

clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java. Using the steps outlined in section 11.8 Migrating a Project to View Binding, convert the
project to use view binding.

26.5 Designing the User Interface
The user interface layout for the MainActivity class in this example is to consist of a ConstraintLayout, a Button
and a TextView as illustrated in Figure 26-1.

Figure 26-1
Locate and select the activity_main.xml file created by Android Studio (located in the Project tool window under
app -> res -> layouts) and double-click on it to load it into the Layout Editor tool.

Make sure that Autoconnect is enabled, then drag a Button widget from the palette and move it so that it is
positioned in the horizontal center of the layout and beneath the existing TextView widget. When correctly
positioned, drop the widget into place so that appropriate constraints are added by the autoconnect system.

Select the “Hello World!” TextView widget and use the Attributes panel to set the ID to statusText. Repeat this
step to change the ID of the Button widget to myButton.

Add any missing constraints by clicking on the Infer Constraints button in the layout editor toolbar.

With the Button widget selected, use the Attributes panel to set the text property to Press Me. Extract the text
string on the button to a resource named press_me.

With the user interface layout now completed, the next step is to register the event listener and callback method.

26.6 The Event Listener and Callback Method
For the purposes of this example, an onClickListener needs to be registered for the myButton view. This is achieved
by making a call to the setOnClickListener() method of the button view, passing through a new onClickListener
object as an argument and implementing the onClick() callback method. Since this is a task that only needs to
be performed when the activity is created, a good location is the onCreate() method of the MainActivity class.

210

An Overview and Example of Android Event Handling

If the MainActivity.java file is already open within an editor session, select it by clicking on the tab in the editor
panel. Alternatively locate it within the Project tool window by navigating to (app -> java -> com.ebookfrenzy.
eventexample -> MainActivity) and double-click on it to load it into the code editor. Once loaded, locate the
template onCreate() method and modify it to obtain a reference to the button view, register the event listener
and implement the onClick() callback method:
package com.ebookfrenzy.eventexample;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 binding.myButton.setOnClickListener(
 new Button.OnClickListener() {
 public void onClick(View v) {

 }
 }
);
 }

.

.

}

The above code has now registered the event listener on the button and implemented the onClick() method.
If the application were to be run at this point, however, there would be no indication that the event listener
installed on the button was working since there is, as yet, no code implemented within the body of the onClick()
callback method. The goal for the example is to have a message appear on the TextView when the button is
clicked, so some further code changes need to be made:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

211

An Overview and Example of Android Event Handling

 binding.myButton.setOnClickListener(

 new Button.OnClickListener() {

 public void onClick(View v) {

 binding.statusText.setText("Button clicked");
 }

 }

);

}

Complete this phase of the tutorial by compiling and running the application on either an AVD emulator or
physical Android device. On touching and releasing the button view (otherwise known as “clicking”) the text
view should change to display the “Button clicked” text.

26.7 Consuming Events
The detection of standard clicks (as opposed to long clicks) on views is a very simple case of event handling. The
example will now be extended to include the detection of long click events which occur when the user clicks and
holds a view on the screen and, in doing so, cover the topic of event consumption.

Consider the code for the onClick() method in the above section of this chapter. The callback is declared as void
and, as such, does not return a value to the Android framework after it has finished executing.

The code assigned to the onLongClickListener, on the other hand, is required to return a Boolean value to the
Android framework. The purpose of this return value is to indicate to the Android runtime whether or not the
callback has consumed the event. If the callback returns a true value, the event is discarded by the framework.
If, on the other hand, the callback returns a false value the Android framework will consider the event still to be
active and will consequently pass it along to the next matching event listener that is registered on the same view.

As with many programming concepts this is, perhaps, best demonstrated with an example. The first step is to
add an event listener and callback method for long clicks to the button view in the example activity:
@Override

protected void onCreate(Bundle savedInstanceState) {

.

.

 binding.myButton.setOnLongClickListener(
 new Button.OnLongClickListener() {
 public boolean onLongClick(View v) {
 binding.statusText.setText("Long button click");
 return true;
 }
 }
);
 }

}

Clearly, when a long click is detected, the onLongClick() callback method will display “Long button click” on the
text view. Note, however, that the callback method also returns a value of true to indicate that it has consumed
the event. Run the application and press and hold the Button view until the “Long button click” text appears in
the text view. On releasing the button, the text view continues to display the “Long button click” text indicating
that the onClick listener code was not called.

212

An Overview and Example of Android Event Handling

Next, modify the code so that the onLongClick listener now returns a false value:
button.setOnLongClickListener(

 new Button.OnLongClickListener() {

 public boolean onLongClick(View v) {

 TextView myTextView = findViewById(R.id.myTextView);

 myTextView.setText("Long button click");

 return false;
 }

 }

);

Once again, compile and run the application and perform a long click on the button until the long click message
appears. Upon releasing the button this time, however, note that the onClick listener is also triggered and the text
changes to “Button clicked”. This is because the false value returned by the onLongClick listener code indicated to
the Android framework that the event was not consumed by the method and was eligible to be passed on to the
next registered listener on the view. In this case, the runtime ascertained that the onClickListener on the button
was also interested in events of this type and subsequently called the onClick listener code.

26.8 Summary
A user interface is of little practical use if the views it contains do not do anything in response to user interaction.
Android bridges the gap between the user interface and the back end code of the application through the
concepts of event listeners and callback methods. The Android View class defines a set of event listeners, which
can be registered on view objects. Each event listener also has associated with it a callback method.

When an event takes place on a view in a user interface, that event is placed into an event queue and handled
on a first in, first out basis by the Android runtime. If the view on which the event took place has registered a
listener that matches the type of event, the corresponding callback method is called. This code then performs
any tasks required by the activity before returning. Some callback methods are required to return a Boolean
value to indicate whether the event needs to be passed on to any other event listeners registered on the view or
discarded by the system.

Having covered the basics of event handling, the next chapter will explore in some depth the topic of touch
events with a particular emphasis on handling multiple touches.

213

Chapter 27

27. Android Touch and Multi-touch
Event Handling
Most Android based devices use a touch screen as the primary interface between user and device. The previous
chapter introduced the mechanism by which a touch on the screen translates into an action within a running
Android application. There is, however, much more to touch event handling than responding to a single finger
tap on a view object. Most Android devices can, for example, detect more than one touch at a time. Nor are
touches limited to a single point on the device display. Touches can, of course, be dynamic as the user slides one
or more points of contact across the surface of the screen.

Touches can also be interpreted by an application as a gesture. Consider, for example, that a horizontal swipe
is typically used to turn the page of an eBook, or how a pinching motion can be used to zoom in and out of an
image displayed on the screen.

This chapter will explain the handling of touches that involve motion and explore the concept of intercepting
multiple concurrent touches. The topic of identifying distinct gestures will be covered in the next chapter.

27.1 Intercepting Touch Events
Touch events can be intercepted by a view object through the registration of an onTouchListener event listener
and the implementation of the corresponding onTouch() callback method. The following code, for example,
ensures that any touches on a ConstraintLayout view instance named myLayout result in a call to the onTouch()
method:
binding.myLayout.setOnTouchListener(

 new ConstraintLayout.OnTouchListener() {

 public boolean onTouch(View v, MotionEvent m) {

 // Perform tasks here

 return true;

 }

 }

);

As indicated in the code example, the onTouch() callback is required to return a Boolean value indicating to the
Android runtime system whether or not the event should be passed on to other event listeners registered on the
same view or discarded. The method is passed both a reference to the view on which the event was triggered and
an object of type MotionEvent.

27.2 The MotionEvent Object
The MotionEvent object passed through to the onTouch() callback method is the key to obtaining information
about the event. Information contained within the object includes the location of the touch within the view and
the type of action performed. The MotionEvent object is also the key to handling multiple touches.

214

Android Touch and Multi-touch Event Handling

27.3 Understanding Touch Actions
An important aspect of touch event handling involves being able to identify the type of action performed by
the user. The type of action associated with an event can be obtained by making a call to the getActionMasked()
method of the MotionEvent object which was passed through to the onTouch() callback method. When the first
touch on a view occurs, the MotionEvent object will contain an action type of ACTION_DOWN together with
the coordinates of the touch. When that touch is lifted from the screen, an ACTION_UP event is generated. Any
motion of the touch between the ACTION_DOWN and ACTION_UP events will be represented by ACTION_
MOVE events.

When more than one touch is performed simultaneously on a view, the touches are referred to as pointers.
In a multi-touch scenario, pointers begin and end with event actions of type ACTION_POINTER_DOWN
and ACTION_POINTER_UP respectively. To identify the index of the pointer that triggered the event, the
getActionIndex() callback method of the MotionEvent object must be called.

27.4 Handling Multiple Touches
The chapter entitled “An Overview and Example of Android Event Handling” began exploring event handling
within the narrow context of a single touch event. In practice, most Android devices possess the ability to
respond to multiple consecutive touches (though it is important to note that the number of simultaneous
touches that can be detected varies depending on the device).

As previously discussed, each touch in a multi-touch situation is considered by the Android framework to be
a pointer. Each pointer, in turn, is referenced by an index value and assigned an ID. The current number of
pointers can be obtained via a call to the getPointerCount() method of the current MotionEvent object. The ID
for a pointer at a particular index in the list of current pointers may be obtained via a call to the MotionEvent
getPointerId() method. For example, the following code excerpt obtains a count of pointers and the ID of the
pointer at index 0:
public boolean onTouch(View v, MotionEvent m) {

 int pointerCount = m.getPointerCount();

 int pointerId = m.getPointerId(0);

 return true;

}

Note that the pointer count will always be greater than or equal to 1 when the onTouch listener is triggered (since
at least one touch must have occurred for the callback to be triggered).

A touch on a view, particularly one involving motion across the screen, will generate a stream of events before
the point of contact with the screen is lifted. As such, it is likely that an application will need to track individual
touches over multiple touch events. While the ID of a specific touch gesture will not change from one event to
the next, it is important to keep in mind that the index value will change as other touch events come and go.
When working with a touch gesture over multiple events, therefore, it is essential that the ID value be used as
the touch reference to make sure the same touch is being tracked. When calling methods that require an index
value, this should be obtained by converting the ID for a touch to the corresponding index value via a call to the
findPointerIndex() method of the MotionEvent object.

27.5 An Example Multi-Touch Application
The example application created in the remainder of this chapter will track up to two touch gestures as they
move across a layout view. As the events for each touch are triggered, the coordinates, index and ID for each
touch will be displayed on the screen.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the

215

Android Touch and Multi-touch Event Handling

Empty Views Activity template before clicking on the Next button.

Enter MotionEvent into the Name field and specify com.ebookfrenzy.motionevent as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

Adapt the project to use view binding as outlined in section 11.8 Migrating a Project to View Binding.

27.6 Designing the Activity User Interface
The user interface for the application’s sole activity is to consist of a ConstraintLayout view containing two
TextView objects. Within the Project tool window, navigate to app -> res -> layout and double-click on the
activity_main.xml layout resource file to load it into the Android Studio Layout Editor tool.

Select and delete the default “Hello World!” TextView widget and then, with autoconnect enabled, drag and
drop a new TextView widget so that it is centered horizontally and positioned at the 16dp margin line on the
top edge of the layout:

Figure 27-1
Drag a second TextView widget and position and constrain it so that it is distanced by a 32dp margin from the
bottom of the first widget:

Figure 27-2
Using the Attributes tool window, change the IDs for the TextView widgets to textView1 and textView2
respectively. Change the text displayed on the widgets to read “Touch One Status” and “Touch Two Status” and
extract the strings to resources using the warning button in the top right-hand corner of the Layout Editor.

27.7 Implementing the Touch Event Listener
To receive touch event notifications it will be necessary to register a touch listener on the layout view within the
onCreate() method of the MainActivity activity class. Select the MainActivity.java tab from the Android Studio
editor panel to display the source code. Within the onCreate() method, add code to register the touch listener
and implement code which, in this case, is going to call a second method named handleTouch() to which is
passed the MotionEvent object:
package com.ebookfrenzy.motionevent;

import androidx.appcompat.app.AppCompatActivity;

import androidx.constraintlayout.widget.ConstraintLayout;

import android.os.Bundle;

import android.view.MotionEvent;
import android.view.View;

216

Android Touch and Multi-touch Event Handling

import com.ebookfrenzy.motionevent.databinding.ActivityMainBinding;

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 binding.activityMain.setOnTouchListener(
 new ConstraintLayout.OnTouchListener() {
 public boolean onTouch(View v, MotionEvent m) {
 handleTouch(m);
 return true;
 }
 }
);
 }

When we designed the user interface, the parent ConstraintLayout was not assigned an ID that would allow us
to access it via the view binding mechanism. Since this layout component is the top-most component in the UI
layout hierarchy, we have been able to reference it using the root binding property in the code above.

The final task before testing the application is to implement the handleTouch() method called by the listener. The
code for this method reads as follows:
void handleTouch(MotionEvent m) {

 int pointerCount = m.getPointerCount();

 for (int i = 0; i < pointerCount; i++)

 {

 int x = (int) m.getX(i);

 int y = (int) m.getY(i);

 int id = m.getPointerId(i);

 int action = m.getActionMasked();

 int actionIndex = m.getActionIndex();

 String actionString;

 switch (action)

 {

 case MotionEvent.ACTION_DOWN:

 actionString = "DOWN";

 break;

217

Android Touch and Multi-touch Event Handling

 case MotionEvent.ACTION_UP:

 actionString = "UP";

 break;

 case MotionEvent.ACTION_POINTER_DOWN:

 actionString = "PNTR DOWN";

 break;

 case MotionEvent.ACTION_POINTER_UP:

 actionString = "PNTR UP";

 break;

 case MotionEvent.ACTION_MOVE:

 actionString = "MOVE";

 break;

 default:

 actionString = "";

 }

 String touchStatus = "Action: " + actionString + " Index: " + actionIndex
+ " ID: " + id + " X: " + x + " Y: " + y;

 if (id == 0)

 binding.textView1.setText(touchStatus);

 else

 binding.textView2.setText(touchStatus);

 }

}

Before compiling and running the application, it is worth taking the time to walk through this code systematically
to highlight the tasks that are being performed.

The code begins by obtaining references to the two TextView objects in the user interface and identifying how
many pointers are currently active on the view:
TextView textView1 = findViewById(R.id.textView1);

TextView textView2 = findViewById(R.id.textView2);

int pointerCount = m.getPointerCount();

Next, the pointerCount variable is used to initiate a for loop which performs a set of tasks for each active pointer.
The first few lines of the loop obtain the X and Y coordinates of the touch together with the corresponding event
ID, action type and action index. Lastly, a string variable is declared:
for (int i = 0; i < pointerCount; i++)

{

 int x = (int) m.getX(i);

 int y = (int) m.getY(i);

 int id = m.getPointerId(i);

 int action = m.getActionMasked();

 int actionIndex = m.getActionIndex();

 String actionString;

218

Android Touch and Multi-touch Event Handling

Since action types equate to integer values, a switch statement is used to convert the action type to a more
meaningful string value, which is stored in the previously declared actionString variable:
switch (action)

{

 case MotionEvent.ACTION_DOWN:

 actionString = "DOWN";

 break;

 case MotionEvent.ACTION_UP:

 actionString = "UP";

 break;

 case MotionEvent.ACTION_POINTER_DOWN:

 actionString = "PNTR DOWN";

 break;

 case MotionEvent.ACTION_POINTER_UP:

 actionString = "PNTR UP";

 break;

 case MotionEvent.ACTION_MOVE:

 actionString = "MOVE";

 break;

 default:

 actionString = "";

}

Finally, the string message is constructed using the actionString value, the action index, touch ID and X and Y
coordinates. The ID value is then used to decide whether the string should be displayed on the first or second
TextView object:
String touchStatus = "Action: " + actionString + " Index: "

 + actionIndex + " ID: " + id + " X: " + x + " Y: " + y;

if (id == 0)

 binding.textView1.setText(touchStatus);

else

 binding.textView2.setText(touchStatus);

27.8 Running the Example Application
Compile and run the application and, once launched, experiment with single and multiple touches on the screen
and note that the text views update to reflect the events as illustrated in Figure 27-3. When running on an
emulator, multiple touches may be simulated by holding down the Ctrl (Cmd on macOS) key while clicking the
mouse button (note that simulating multiple touches may not work if the emulator is running in a tool window):

219

Android Touch and Multi-touch Event Handling

Figure 27-3

27.9 Summary
Activities receive notifications of touch events by registering an onTouchListener event listener and implementing
the onTouch() callback method which, in turn, is passed a MotionEvent object when called by the Android
runtime. This object contains information about the touch such as the type of touch event, the coordinates of
the touch and a count of the number of touches currently in contact with the view.

When multiple touches are involved, each point of contact is referred to as a pointer with each assigned an index
and an ID. While the index of a touch can change from one event to another, the ID will remain unchanged until
the touch ends.

This chapter has worked through the creation of an example Android application designed to display the
coordinates and action type of up to two simultaneous touches on a device display.

Having covered touches in general, the next chapter (entitled “Detecting Common Gestures Using the Android
Gesture Detector Class”) will look further at touch screen event handling through the implementation of gesture
recognition.

221

Chapter 28

28. Detecting Common Gestures
Using the Android Gesture Detector
Class
The term “gesture” is used to define a contiguous sequence of interactions between the touch screen and the
user. A typical gesture begins at the point that the screen is first touched and ends when the last finger or
pointing device leaves the display surface. When correctly harnessed, gestures can be implemented as a form
of communication between user and application. Swiping motions to turn the pages of an eBook, or a pinching
movement involving two touches to zoom in or out of an image are prime examples of the ways in which
gestures can be used to interact with an application.

The Android SDK provides mechanisms for the detection of both common and custom gestures within an
application. Common gestures involve interactions such as a tap, double tap, long press or a swiping motion in
either a horizontal or a vertical direction (referred to in Android nomenclature as a fling).

The goal of this chapter is to explore the use of the Android GestureDetector class to detect common gestures
performed on the display of an Android device. The next chapter, entitled “Implementing Custom Gesture and
Pinch Recognition on Android”, will cover the detection of more complex, custom gestures such as circular
motions and pinches.

28.1 Implementing Common Gesture Detection
When a user interacts with the display of an Android device, the onTouchEvent() method of the currently active
application is called by the system and passed MotionEvent objects containing data about the user’s contact
with the screen. This data can be interpreted to identify if the motion on the screen matches a common gesture
such as a tap or a swipe. This can be achieved with very little programming effort by making use of the Android
GestureDetectorCompat class. This class is designed specifically to receive motion event information from the
application and to trigger method calls based on the type of common gesture, if any, detected.

The basic steps in detecting common gestures are as follows:

1. Declaration of a class which implements the GestureDetector.OnGestureListener interface including the
required onFling(), onDown(), onScroll(), onShowPress(), onSingleTapUp() and onLongPress() callback
methods. Note that this can be either an entirely new class, or the enclosing activity class. In the event
that double tap gesture detection is required, the class must also implement the GestureDetector.
OnDoubleTapListener interface and include the corresponding onDoubleTap() method.

2. Creation of an instance of the Android GestureDetectorCompat class, passing through an instance of the
class created in step 1 as an argument.

3. An optional call to the setOnDoubleTapListener() method of the GestureDetectorCompat instance to enable
double tap detection if required.

4. Implementation of the onTouchEvent() callback method on the enclosing activity which, in turn, must call
the onTouchEvent() method of the GestureDetectorCompat instance, passing through the current motion

222

Detecting Common Gestures Using the Android Gesture Detector Class

event object as an argument to the method.

Once implemented, the result is a set of methods within the application code that will be called when a gesture
of a particular type is detected. The code within these methods can then be implemented to perform any tasks
that need to be performed in response to the corresponding gesture.

In the remainder of this chapter, we will work through the creation of an example project intended to put the
above steps into practice.

28.2 Creating an Example Gesture Detection Project
The goal of this project is to detect the full range of common gestures currently supported by the
GestureDetectorCompat class and to display status information to the user indicating the type of gesture that
has been detected.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter CommonGestures into the Name field and specify com.ebookfrenzy.commongestures as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and
the Language menu to Java.

Adapt the project to use view binding as outlined in section 11.8 Migrating a Project to View Binding.

Once the new project has been created, navigate to the app -> res -> layout -> activity_main.xml file in the
Project tool window and double-click on it to load it into the Layout Editor tool.

Within the Layout Editor tool, select the “Hello, World!” TextView component and, in the Attributes tool
window, enter gestureStatusText as the ID.

28.3 Implementing the Listener Class
As previously outlined, it is necessary to create a class that implements the GestureDetector.OnGestureListener
interface and, if double tap detection is required, the GestureDetector.OnDoubleTapListener interface. While
this can be an entirely new class, it is also perfectly valid to implement this within the current activity class.
For the purposes of this example, therefore, we will modify the MainActivity class to implement these listener
interfaces. Edit the MainActivity.java file so that it reads as follows:
package com.ebookfrenzy.commongestures;

import android.view.GestureDetector;
.

.

public class MainActivity extends AppCompatActivity

 implements GestureDetector.OnGestureListener,
 GestureDetector.OnDoubleTapListener
{

.

.

}

Declaring that the class implements the listener interfaces mandates that the corresponding methods also be
implemented in the class:
package com.ebookfrenzy.commongestures;

223

Detecting Common Gestures Using the Android Gesture Detector Class

.

.
import android.view.MotionEvent;

public class MainActivity extends AppCompatActivity

 implements GestureDetector.OnGestureListener,

 GestureDetector.OnDoubleTapListener {

.

.

 @Override
 public boolean onDown(MotionEvent event) {
 binding.gestureStatusText.setText ("onDown");
 return true;
 }

 @Override
 public boolean onFling(MotionEvent event1, MotionEvent event2,
 float velocityX, float velocityY) {
 binding.gestureStatusText.setText("onFling");
 return true;
 }

 @Override
 public void onLongPress(MotionEvent event) {
 binding.gestureStatusText.setText("onLongPress");
 }

 @Override
 public boolean onScroll(MotionEvent e1, MotionEvent e2,
 float distanceX, float distanceY) {
 binding.gestureStatusText.setText("onScroll");
 return true;
 }

 @Override
 public void onShowPress(MotionEvent event) {
 binding.gestureStatusText.setText("onShowPress");
 }

 @Override
 public boolean onSingleTapUp(MotionEvent event) {
 binding.gestureStatusText.setText("onSingleTapUp");
 return true;
 }

224

Detecting Common Gestures Using the Android Gesture Detector Class

 @Override
 public boolean onDoubleTap(MotionEvent event) {
 binding.gestureStatusText.setText("onDoubleTap");
 return true;
 }

 @Override
 public boolean onDoubleTapEvent(MotionEvent event) {
 binding.gestureStatusText.setText("onDoubleTapEvent");
 return true;
 }

 @Override
 public boolean onSingleTapConfirmed(MotionEvent event) {
 binding.gestureStatusText.setText("onSingleTapConfirmed");
 return true;
 }
.

.

.

}

Note that many of these methods return true. This indicates to the Android Framework that the event has been
consumed by the method and does not need to be passed to the next event handler in the stack.

28.4 Creating the GestureDetectorCompat Instance
With the activity class now updated to implement the listener interfaces, the next step is to create an instance
of the GestureDetectorCompat class. Since this only needs to be performed once at the point that the activity
is created, the best place for this code is in the onCreate() method. Since we also want to detect double taps, the
code also needs to call the setOnDoubleTapListener() method of the GestureDetectorCompat instance:
package com.ebookfrenzy.commongestures;

.

.

import androidx.core.view.GestureDetectorCompat;

public class MainActivity extends AppCompatActivity

 implements GestureDetector.OnGestureListener,

 GestureDetector.OnDoubleTapListener {

 private ActivityMainBinding binding;

 private GestureDetectorCompat gDetector;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

225

Detecting Common Gestures Using the Android Gesture Detector Class

 View view = binding.getRoot();

 setContentView(view);

 this.gDetector = new GestureDetectorCompat(this,this);
 gDetector.setOnDoubleTapListener(this);
 }

.

.

}

28.5 Implementing the onTouchEvent() Method
If the application were to be compiled and run at this point, nothing would happen if gestures were performed on
the device display. This is because no code has been added to intercept touch events and to pass them through to the
GestureDetectorCompat instance. To achieve this, it is necessary to override the onTouchEvent() method within
the activity class and implement it such that it calls the onTouchEvent() method of the GestureDetectorCompat
instance. Remaining in the MainActivity.java file, therefore, implement this method so that it reads as follows:
@Override

public boolean onTouchEvent(MotionEvent event) {

 this.gDetector.onTouchEvent(event);

 // Be sure to call the superclass implementation

 return super.onTouchEvent(event);

}

28.6 Testing the Application
Compile and run the application on either a physical Android device or an AVD emulator. Once launched,
experiment with swipes, presses, scrolling motions and double and single taps. Note that the text view updates
to reflect the events as illustrated in Figure 28-1:

Figure 28-1

226

Detecting Common Gestures Using the Android Gesture Detector Class

28.7 Summary
Any physical contact between the user and the touch screen display of a device can be considered a “gesture”.
Lacking the physical keyboard and mouse pointer of a traditional computer system, gestures are widely used
as a method of interaction between user and application. While a gesture can be comprised of just about any
sequence of motions, there is a widely used set of gestures with which users of touch screen devices have become
familiar. A number of these so-called “common gestures” can be easily detected within an application by making
use of the Android Gesture Detector classes. In this chapter, the use of this technique has been outlined both in
theory and through the implementation of an example project.

Having covered common gestures in this chapter, the next chapter will look at detecting a wider range of gesture
types including the ability to both design and detect your own gestures.

227

Chapter 29

29. Implementing Custom Gesture
and Pinch Recognition on Android
The previous chapter covered the detection of what are referred to as “common gestures” from within an Android
application. In practice, however, a gesture can conceivably involve just about any sequence of touch motions
on the display of an Android device. In recognition of this fact, the Android SDK allows custom gestures of just
about any nature to be defined by the application developer and used to trigger events when performed by the
user. This is a multistage process, the details of which are the topic of this chapter.

29.1 The Android Gesture Builder Application
The Android SDK allows developers to design custom gestures which are then stored in a gesture file bundled
with an Android application package. These custom gesture files are most easily created using the Gesture Builder
application which is bundled with the samples package supplied as part of the Android SDK. The creation of
a gestures file involves launching the Gesture Builder application, either on a physical device or emulator, and
“drawing” the gestures that will need to be detected by the application. Once the gestures have been designed,
the file containing the gesture data can be pulled off the SD card of the device or emulator and added to the
application project. Within the application code, the file is then loaded into an instance of the GestureLibrary
class where it can be used to search for matches to any gestures performed by the user on the device display.

29.2 The GestureOverlayView Class
To facilitate the detection of gestures within an application, the Android SDK provides the GestureOverlayView
class. This is a transparent view that can be placed over other views in the user interface for the sole purpose of
detecting gestures.

29.3 Detecting Gestures
Gestures are detected by loading the gestures file created using the Gesture Builder app and then registering
a GesturePerformedListener event listener on an instance of the GestureOverlayView class. The enclosing
class is then declared to implement both the OnGesturePerformedListener interface and the corresponding
onGesturePerformed callback method required by that interface. If a gesture is detected by the listener, a call to
the onGesturePerformed callback method is triggered by the Android runtime system.

29.4 Identifying Specific Gestures
When a gesture is detected, the onGesturePerformed callback method is called and passed as arguments a
reference to the GestureOverlayView object on which the gesture was detected, together with a Gesture object
containing information about the gesture.

With access to the Gesture object, the GestureLibrary can then be used to compare the detected gesture to those
contained in the gestures file previously loaded into the application. The GestureLibrary reports the probability
that the gesture performed by the user matches an entry in the gestures file by calculating a prediction score for
each gesture. A prediction score of 1.0 or greater is generally accepted to be a good match between a gesture
stored in the file and that performed by the user on the device display.

228

Implementing Custom Gesture and Pinch Recognition on Android

29.5 Installing and Running the Gesture Builder Application
The easiest way to create a gestures file is to use an app that will allow gesture motions to be captured and saved.
Although Google originally provided an app for this purpose, it has not been maintained adequately for use on
more recent versions of Android. Fortunately, an alternative is available in the form of the Gesture Builder Tool
app which is available from the Google Play Store at the following URL:

https://play.google.com/store/apps/details?id=migueldp.runeforge

29.6 Creating a Gestures File
Once the Gesture Builder Tool has loaded, click on the Create New Gesture button located at the bottom of the
device screen and, “draw” a gesture using a circular motion on the gray canvas as illustrated in Figure 29-1.
Assuming that the gesture appears as required (represented by the yellow line on the device screen), click on the
save button to add the gesture to the gestures file, entering “Circle Gesture” when prompted for a name:

Figure 29-1
After the gesture has been saved, the Gesture Builder Tool will display a list of currently defined gestures which,
at this point, will consist solely of the new Circle Gesture.

29.7 Creating the Example Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter CustomGestures into the Name field and specify com.ebookfrenzy.customgestures as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and
the Language menu to Java. Adapt the project to use view binding as outlined in section 11.8 Migrating a Project
to View Binding.

https://play.google.com/store/apps/details?id=migueldp.runeforge

229

Implementing Custom Gesture and Pinch Recognition on Android

29.8 Extracting the Gestures File from the SD Card
As each gesture was created within the Gesture Builder application, it was added to a file named gesture.txt
located in the storage of the emulator or device on which the app was running. Before this file can be added
to an Android Studio project, however, it must first be copied off the device storage and saved to the local file
system. This is most easily achieved by using the Android Studio Device File Explorer tool window. Display this
tool using the View -> Tool Windows -> Device File Explorer menu option. Once displayed, select the device or
emulator on which the gesture file was created from the drop-down menu, then navigate through the filesystem
to the following folder:
/storage/emulated/0/Android/data/migueldp.runeforge/files/gestures.txt

Locate the gesture.txt file in this folder, right-click on it, select the Save As… menu option and save the file to a
temporary location as a file named gestures.

Figure 29-2
Once the gestures file has been created and pulled from the device storage, it is ready to be added to an Android
Studio project as a resource file.

29.9 Adding the Gestures File to the Project
Within the Android Studio Project tool window, locate and right-click on the res folder (located under app) and
select New -> Directory from the resulting menu. In the New Directory dialog, enter raw as the folder name and
tap the keyboard enter key. Using the appropriate file explorer utility for your operating system type, locate the
gestures file previously pulled from the device storage and copy and paste it into the new raw folder in the Project
tool window.

29.10 Designing the User Interface
This example application calls for a user interface consisting of a ConstraintLayout view with a GestureOverlayView
layered on top of it to intercept any gestures performed by the user. Locate the app -> res -> layout -> activity_
main.xml file, double-click on it to load it into the Layout Editor tool and select and delete the default TextView
widget.

230

Implementing Custom Gesture and Pinch Recognition on Android

Switch the layout editor Code mode and modify the XML so that it reads as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity" >

 <android.gesture.GestureOverlayView
 android:id="@+id/gOverlay"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

29.11 Loading the Gestures File
Now that the gestures file has been added to the project, the next step is to write some code so that the file is
loaded when the activity starts up. For the purposes of this project, the code to achieve this will be added to the
MainActivity class located in the MainActivity.java source file as follows:
package com.ebookfrenzy.customgestures;

.

.

import android.gesture.GestureLibraries;
import android.gesture.GestureLibrary;
import android.gesture.GestureOverlayView;
import android.gesture.GestureOverlayView.OnGesturePerformedListener;

public class MainActivity extends AppCompatActivity

 implements OnGesturePerformedListener {

 private ActivityMainBinding binding;

 private GestureLibrary gLibrary;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

231

Implementing Custom Gesture and Pinch Recognition on Android

 gestureSetup();
 }

 private void gestureSetup() {
 gLibrary =
 GestureLibraries.fromRawResource(this,
 R.raw.gestures);
 if (!gLibrary.load()) {
 finish();
 }
 }
.

.

}

In addition to some necessary import directives, the above code also creates a GestureLibrary instance named
gLibrary and then loads into it the contents of the gesture file located in the raw resources folder. The activity
class has also been modified to implement the OnGesturePerformedListener interface, which requires the
implementation of the onGesturePerformed callback method (which will be created in a later section of this
chapter).

29.12 Registering the Event Listener
In order for the activity to receive notification that the user has performed a gesture on the screen, it is necessary
to register the OnGesturePerformedListener event listener on the gLayout view, a reference to which can be
obtained using the findViewById method as outlined in the following code fragment:
private void gestureSetup() {

 gLibrary =

 GestureLibraries.fromRawResource(this,

 R.raw.gestures);

 if (!gLibrary.load()) {

 finish();

 }

 GestureOverlayView gOverlay = findViewById(R.id.gOverlay);
 gOverlay.addOnGesturePerformedListener(this);
}

29.13 Implementing the onGesturePerformed Method
All that remains before an initial test run of the application can be performed is to implement the
OnGesturePerformed callback method. This is the method which will be called when a gesture is performed on
the GestureOverlayView instance:
package com.ebookfrenzy.customgestures;

.

.

import android.gesture.Prediction;
import android.widget.Toast;

232

Implementing Custom Gesture and Pinch Recognition on Android

import android.gesture.Gesture;
import java.util.ArrayList;

public class MainActivity extends AppCompatActivity implements
OnGesturePerformedListener {

 private GestureLibrary gLibrary;

.

.
 public void onGesturePerformed(GestureOverlayView overlay, Gesture
 gesture) {
 ArrayList<Prediction> predictions =
 gLibrary.recognize(gesture);

 if (predictions.size() > 0 && predictions.get(0).score > 1.0)
 {

 String action = predictions.get(0).name;

 Toast.makeText(this, action, Toast.LENGTH_SHORT).show();
 }
 }
.

.

.

}

When a gesture on the gesture overlay view object is detected by the Android runtime, the onGesturePerformed
method is called. Passed through as arguments are a reference to the GestureOverlayView object on which
the gesture was detected together with an object of type Gesture. The Gesture class is designed to hold the
information that defines a specific gesture (essentially a sequence of timed points on the screen depicting the
path of the strokes that comprise a gesture).

The Gesture object is passed through to the recognize() method of our gLibrary instance, the purpose of which
is to compare the current gesture with each gesture loaded from the gesture file. Once this task is complete, the
recognize() method returns an ArrayList object containing a Prediction object for each comparison performed.
The list is ranked in order from the best match (at position 0 in the array) to the worst. Contained within each
prediction object is the name of the corresponding gesture from the gesture file and a prediction score indicating
how closely it matches the current gesture.

The code in the above method, therefore, takes the prediction at position 0 (the closest match) makes sure it has
a score of greater than 1.0 and then displays a Toast message (an Android class designed to display notification
pop ups to the user) displaying the name of the matching gesture.

29.14 Testing the Application
Build and run the application on either an emulator or a physical Android device and perform the circle gesture
on the display. When performed, the toast notification should appear containing the name of the detected
gesture. Note that when a gesture is recognized, it is outlined on the display with a bright yellow line while
gestures about which the overlay is uncertain appear as a faded yellow line. While useful during development,

233

Implementing Custom Gesture and Pinch Recognition on Android

this is probably not ideal for a real world application. Clearly, therefore, there is still some more configuration
work to do.

29.15 Configuring the GestureOverlayView
By default, the GestureOverlayView is configured to display yellow lines during gestures. The color
used to draw recognized and unrecognized gestures can be defined via the android:gestureColor and
android:uncertainGestureColor attributes. For example, to hide the gesture lines, modify the activity_main.xml
file in the example project as follows:
<android.gesture.GestureOverlayView

 android:id="@+id/gOverlay"

 android:layout_width="0dp"

 android:layout_height="0dp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 android:gestureColor="#00000000"
 android:uncertainGestureColor="#00000000" />

On re-running the application, gestures should now be invisible (since they are drawn in white on the white
background of the ConstraintLayout view).

29.16 Intercepting Gestures
The GestureOverlayView is, as previously described, a transparent overlay that may be positioned over the
top of other views. This leads to the question as to whether events intercepted by the gesture overlay should
then be passed on to the underlying views when a gesture has been recognized. This is controlled via the
android:eventsInterceptionEnabled property of the GestureOverlayView instance. When set to true, the gesture
events are not passed to the underlying views when a gesture is recognized. This can be a particularly useful
setting when gestures are being performed over a view that might be configured to scroll in response to certain
gestures. Setting this property to true will avoid gestures also being interpreted as instructions to the underlying
view to scroll in a particular direction.

29.17 Detecting Pinch Gestures
Before moving on from touch handling in general and gesture recognition in particular, the last topic of this
chapter is that of handling pinch gestures. While it is possible to create and detect a wide range of gestures using
the steps outlined in the previous sections of this chapter it is, in fact, not possible to detect a pinching gesture
(where two fingers are used in a stretching and pinching motion, typically to zoom in and out of a view or image)
using the techniques discussed so far.

The simplest method for detecting pinch gestures is to use the Android ScaleGestureDetector class. In general
terms, detecting pinch gestures involves the following three steps:

1. Declaration of a new class which implements the SimpleOnScaleGestureListener interface including the
required onScale(), onScaleBegin() and onScaleEnd() callback methods.

2. Creation of an instance of the ScaleGestureDetector class, passing through an instance of the class created
in step 1 as an argument.

3. Implementing the onTouchEvent() callback method on the enclosing activity which, in turn, calls the
onTouchEvent() method of the ScaleGestureDetector class.

234

Implementing Custom Gesture and Pinch Recognition on Android

In the remainder of this chapter, we will create an example designed to demonstrate the implementation of
pinch gesture recognition.

29.18 A Pinch Gesture Example Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter PinchExample into the Name field and specify com.ebookfrenzy.pinchexample as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java. Convert the project to use view binding by following the steps in 11.8 Migrating a
Project to View Binding.

Within the activity_main.xml file, select the default TextView object and use the Attributes tool window to set
the ID to myTextView.

Locate and load the MainActivity.java file into the Android Studio editor and modify the file as follows:
package com.ebookfrenzy.pinchexample;

.

.
import android.view.MotionEvent;
import android.view.ScaleGestureDetector;
import android.view.ScaleGestureDetector.SimpleOnScaleGestureListener;

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;
 ScaleGestureDetector scaleGestureDetector;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 scaleGestureDetector =
 new ScaleGestureDetector(this,
 new MyOnScaleGestureListener());
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 scaleGestureDetector.onTouchEvent(event);
 return true;
 }

 public class MyOnScaleGestureListener extends

235

Implementing Custom Gesture and Pinch Recognition on Android

 SimpleOnScaleGestureListener {

 @Override
 public boolean onScale(ScaleGestureDetector detector) {

 float scaleFactor = detector.getScaleFactor();

 if (scaleFactor > 1) {
 binding.myTextView.setText("Zooming In");
 } else {
 binding.myTextView.setText("Zooming Out");
 }
 return true;
 }

 @Override
 public boolean onScaleBegin(ScaleGestureDetector detector) {
 return true;
 }

 @Override
 public void onScaleEnd(ScaleGestureDetector detector) {

 }
 }
.

.

.

}

The code declares a new class named MyOnScaleGestureListener which extends the Android
SimpleOnScaleGestureListener class. This interface requires that three methods (onScale(), onScaleBegin() and
onScaleEnd()) be implemented. In this instance the onScale() method identifies the scale factor and displays a
message on the text view indicating the type of pinch gesture detected.

Within the onCreate() method a new ScaleGestureDetector instance is created, passing through a reference
to the enclosing activity and an instance of our new MyOnScaleGestureListener class as arguments. Finally,
an onTouchEvent() callback method is implemented for the activity, which simply calls the corresponding
onTouchEvent() method of the ScaleGestureDetector object, passing through the MotionEvent object as an
argument.

Compile and run the application on an emulator or physical Android device and perform pinching gestures on
the screen, noting that the text view displays either the zoom in or zoom out message depending on the pinching
motion. Pinching gestures may be simulated within the emulator in stand-alone mode by holding down the Ctrl
(or macOS Cmd) key and clicking and dragging the mouse pointer as shown in Figure 29-3:

236

Implementing Custom Gesture and Pinch Recognition on Android

Figure 29-3

29.19 Summary
A gesture is essentially the motion of points of contact on a touch screen involving one or more strokes and can
be used as a method of communication between user and application. Android allows gestures to be designed
using the Gesture Builder application. Once created, gestures can be saved to a gestures file and loaded into an
activity at application runtime using the GestureLibrary.

Gestures can be detected on areas of the display by overlaying existing views with instances of the transparent
GestureOverlayView class and implementing an OnGesturePerformedListener event listener. Using the
GestureLibrary, a ranked list of matches between a gesture performed by the user and the gestures stored in
a gestures file may be generated, using a prediction score to decide whether a gesture is a close enough match.

Pinch gestures may be detected through the implementation of the ScaleGestureDetector class, an example of
which was also provided in this chapter.

237

Chapter 30

30. An Introduction to Android
Fragments
As you progress through the chapters of this book it will become increasingly evident that many of the design
concepts behind the Android system were conceived with the goal of promoting reuse of, and interaction
between, the different elements that make up an application. One such area that will be explored in this chapter
involves the use of Fragments.

This chapter will provide an overview of the basics of fragments in terms of what they are and how they can be
created and used within applications. The next chapter will work through a tutorial designed to show fragments
in action when developing applications in Android Studio, including the implementation of communication
between fragments.

30.1 What is a Fragment?
A fragment is a self-contained, modular section of an application’s user interface and corresponding behavior
that can be embedded within an activity. Fragments can be assembled to create an activity during the application
design phase, and added to or removed from an activity during application runtime to create a dynamically
changing user interface.

Fragments may only be used as part of an activity and cannot be instantiated as standalone application elements.
That being said, however, a fragment can be thought of as a functional “sub-activity” with its own lifecycle
similar to that of a full activity.

Fragments are stored in the form of XML layout files and may be added to an activity either by placing
appropriate <fragment> elements in the activity’s layout file, or directly through code within the activity’s class
implementation.

30.2 Creating a Fragment
The two components that make up a fragment are an XML layout file and a corresponding Java class. The XML
layout file for a fragment takes the same format as a layout for any other activity layout and can contain any
combination and complexity of layout managers and views. The following XML layout, for example, is for a
fragment consisting of a ConstraintLayout with a red background containing a single TextView with a white
foreground:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/constraintLayout"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="@android:color/holo_red_dark"

 tools:context=".FragmentOne">

238

An Introduction to Android Fragments

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="My First Fragment"

 android:textAppearance="@style/TextAppearance.AppCompat.Large"

 android:textColor="@color/white"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

The corresponding class to go with the layout must be a subclass of the Android Fragment class. This class
should, at a minimum, override the onCreateView() method which is responsible for loading the fragment
layout. For example:
package com.example.myfragmentdemo;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import androidx.fragment.app.Fragment;

public class FragmentOne extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater,

 ViewGroup container,

 Bundle savedInstanceState) {

 // Inflate the layout for this fragment

 binding = FragmentTextBinding.inflate(inflater, container, false);

 return binding.getRoot();

 }

}

In addition to the onCreateView() method, the class may also override the standard lifecycle methods.

Once the fragment layout and class have been created, the fragment is ready to be used within application
activities.

30.3 Adding a Fragment to an Activity using the Layout XML File
Fragments may be incorporated into an activity either by writing Java code or by embedding the fragment
into the activity’s XML layout file. Regardless of the approach used, a key point to be aware of is that when the
support library is being used for compatibility with older Android releases, any activities using fragments must
be implemented as a subclass of FragmentActivity instead of the AppCompatActivity class:
package com.example.myfragmentdemo;

239

An Introduction to Android Fragments

import android.os.Bundle;

import androidx.fragment.app.FragmentActivity;
import android.view.Menu;

public class MainActivity extends FragmentActivity {
.

.

Fragments are embedded into activity layout files using the FragmentContainerView class. The following
example layout embeds the fragment created in the previous section of this chapter into an activity layout:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <androidx.fragment.app.FragmentContainerView
 android:id="@+id/fragment2"
 android:name="com.ebookfrenzy.myfragmentdemo.FragmentOne"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="32dp"
 android:layout_marginEnd="32dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:layout="@layout/fragment_one" />
</androidx.constraintlayout.widget.ConstraintLayout>

The key properties within the <fragment> element are android:name, which must reference the class associated
with the fragment, and tools:layout, which must reference the XML resource file containing the layout of the
fragment.

Once added to the layout of an activity, fragments may be viewed and manipulated within the Android Studio
Layout Editor tool. Figure 30-1, for example, shows the above layout with the embedded fragment within the
Android Studio Layout Editor:

240

An Introduction to Android Fragments

Figure 30-1

30.4 Adding and Managing Fragments in Code
The ease of adding a fragment to an activity via the activity’s XML layout file comes at the cost of the activity not
being able to remove the fragment at runtime. To achieve full dynamic control of fragments during runtime,
those activities must be added via code. This has the advantage that the fragments can be added, removed and
even made to replace one another dynamically while the application is running.

When using code to manage fragments, the fragment itself will still consist of an XML layout file and a
corresponding class. The difference comes when working with the fragment within the hosting activity. There is
a standard sequence of steps when adding a fragment to an activity using code:

1. Create an instance of the fragment’s class.

2. Pass any additional intent arguments through to the class instance.

3. Obtain a reference to the fragment manager instance.

4. Call the beginTransaction() method on the fragment manager instance. This returns a fragment transaction
instance.

5. Call the add() method of the fragment transaction instance, passing through as arguments the resource ID
of the view that is to contain the fragment and the fragment class instance.

6. Call the commit() method of the fragment transaction.

The following code, for example, adds a fragment defined by the FragmentOne class so that it appears in the
container view with an ID of LinearLayout1:
FragmentOne firstFragment = new FragmentOne();

firstFragment.setArguments(getIntent().getExtras());

FragmentManager fragManager = getSupportFragmentManager();

FragmentTransaction transaction = fragManager.beginTransaction();

241

An Introduction to Android Fragments

transaction.add(R.id.LinearLayout1, firstFragment);

transaction.commit();

The above code breaks down each step into a separate statement for the purposes of clarity. The last four lines
can, however, be abbreviated into a single line of code as follows:
getSupportFragmentManager().beginTransaction()

 .add(R.id.LinearLayout1, firstFragment).commit();

Once added to a container, a fragment may subsequently be removed via a call to the remove() method of the
fragment transaction instance, passing through a reference to the fragment instance that is to be removed:
transaction.remove(firstFragment);

Similarly, one fragment may be replaced with another by a call to the replace() method of the fragment
transaction instance. This takes as arguments the ID of the view containing the fragment and an instance of the
new fragment. The replaced fragment may also be placed on what is referred to as the back stack so that it can
be quickly restored if the user navigates back to it. This is achieved by making a call to the addToBackStack()
method of the fragment transaction object before making the commit() method call:
FragmentTwo secondFragment = new FragmentTwo();

transaction.replace(R.id.LinearLayout1, secondFragment);

transaction.addToBackStack(null);

transaction.commit();

30.5 Handling Fragment Events
As previously discussed, a fragment is very much like a sub-activity with its own layout, class and lifecycle. The
view components (such as buttons and text views) within a fragment are able to generate events just like those
in a regular activity. This raises the question as to which class receives an event from a view in a fragment; the
fragment itself, or the activity in which the fragment is embedded. The answer to this question depends on how
the event handler is declared.

In the chapter entitled “An Overview and Example of Android Event Handling”, two approaches to event handling
were discussed. The first method involved configuring an event listener and callback method within the code of
the activity. For example:
binding.button.setOnClickListener(

 new Button.OnClickListener() {

 public void onClick(View v) {

 // Code to be performed when
 // the button is clicked

 }

 }

);

In the case of intercepting click events, the second approach involved setting the android:onClick property
within the XML layout file:
<Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="onClick"

 android:text="Click me" />

242

An Introduction to Android Fragments

The general rule for events generated by a view in a fragment is that if the event listener was declared in the
fragment class using the event listener and callback method approach, then the event will be handled first by
the fragment. If the android:onClick resource is used, however, the event will be passed directly to the activity
containing the fragment.

30.6 Implementing Fragment Communication
Once one or more fragments are embedded within an activity, the chances are good that some form of
communication will need to take place both between the fragments and the activity, and between one fragment
and another. In fact, good practice dictates that fragments do not communicate directly with one another. All
communication should take place via the encapsulating activity.

In order for an activity to communicate with a fragment, the activity must identify the fragment object via the
ID assigned to it. Once this reference has been obtained, the activity can simply call the public methods of the
fragment object.

Communicating in the other direction (from fragment to activity) is a little more complicated. In the first instance,
the fragment must define a listener interface, which is then implemented within the activity class. For example,
the following code declares an interface named ToolbarListener on a fragment class named ToolbarFragment.
The code also declares a variable in which a reference to the activity will later be stored:
public class ToolbarFragment extends Fragment {

 ToolbarListener activityCallback;

 public interface ToolbarListener {
 public void onButtonClick(int position, String text);
 }
.

.

}

The above code dictates that any class that implements the ToolbarListener interface must also implement a
callback method named onButtonClick which, in turn, accepts an integer and a String as arguments.

Next, the onAttach() method of the fragment class needs to be overridden and implemented. This method is
called automatically by the Android system when the fragment has been initialized and associated with an
activity. The method is passed a reference to the activity in which the fragment is contained. The method must
store a local reference to this activity and verify that it implements the ToolbarListener interface:
@Override

public void onAttach(Context context) {

 super.onAttach(context);

 try {

 activityCallback = (ToolbarListener) activity;

 } catch (ClassCastException e) {

 throw new ClassCastException(activity.toString()

 + " must implement ToolbarListener");

 }

}

243

An Introduction to Android Fragments

Upon execution of this example, a reference to the activity will be stored in the local activityCallback variable,
and an exception will be thrown if that activity does not implement the ToolbarListener interface.

The next step is to call the callback method of the activity from within the fragment. When and how this happens
is entirely dependent on the circumstances under which the activity needs to be contacted by the fragment. The
following code, for example, calls the callback method on the activity when a button is clicked:
public void buttonClicked (View view) {

 activityCallback.onButtonClick(arg1, arg2);

}

All that remains is to modify the activity class so that it implements the ToolbarListener interface. For example:
public class MainActivity extends FragmentActivity

 implements ToolbarFragment.ToolbarListener {

 public void onButtonClick(String arg1, int arg2) {
 // Implement code for callback method
 }
.
.
}

As we can see from the above code, the activity declares that it implements the ToolbarListener interface of the
ToolbarFragment class and then proceeds to implement the onButtonClick() method as required by the interface.

30.7 Summary
Fragments provide a powerful mechanism for creating re-usable modules of user interface layout and application
behavior, which, once created, can be embedded in activities. A fragment consists of a user interface layout file
and a class. Fragments may be utilized in an activity either by adding the fragment to the activity’s layout file, or
by writing code to manage the fragments at runtime. Fragments added to an activity in code can be removed and
replaced dynamically at runtime. All communication between fragments should be performed via the activity
within which the fragments are embedded.

Having covered the basics of fragments in this chapter, the next chapter will work through a tutorial designed to
reinforce the techniques outlined in this chapter.

245

Chapter 31

31. Using Fragments in Android
Studio - An Example
As outlined in the previous chapter, fragments provide a convenient mechanism for creating reusable modules
of application functionality consisting of both sections of a user interface and the corresponding behavior. Once
created, fragments can be embedded within activities.

Having explored the overall theory of fragments in the previous chapter, the objective of this chapter is to create
an example Android application using Android Studio designed to demonstrate the actual steps involved in
both creating and using fragments, and also implementing communication between one fragment and another
within an activity.

31.1 About the Example Fragment Application
The application created in this chapter will consist of a single activity and two fragments. The user interface
for the first fragment will contain a toolbar of sorts consisting of an EditText view, a SeekBar and a Button, all
contained within a ConstraintLayout view. The second fragment will consist solely of a TextView object, also
contained within a ConstraintLayout view.

The two fragments will be embedded within the main activity of the application and communication
implemented such that when the button in the first fragment is pressed, the text entered into the EditText view
will appear on the TextView of the second fragment using a font size dictated by the position of the SeekBar in
the first fragment.

Since this application is intended to work on earlier versions of Android, it will also be necessary to make use of
the appropriate Android support library.

31.2 Creating the Example Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter FragmentExample into the Name field and specify com.ebookfrenzy.fragmentexample as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and
the Language menu to Java. Using the steps outlined in section 11.8 Migrating a Project to View Binding, modify
the project to use view binding.

Return to the Gradle Scripts -> build.gradle (Module :app) file and add the following directive to the dependencies
section (keeping in mind that a more recent version of the library may now be available):
implementation 'androidx.navigation:navigation-fragment:2.5.2'

31.3 Creating the First Fragment Layout
The next step is to create the user interface for the first fragment that will be used within our activity.

This user interface will consist of an XML layout file and a fragment class. While these could be added manually,
it is quicker to ask Android Studio to create them for us. Within the project tool window, locate the app -> java
-> com.ebookfrenzy.fragmentexample entry and right click on it. From the resulting menu, select the New ->

246

Using Fragments in Android Studio - An Example

Fragment -> Gallery... option to display the dialog shown in Figure 31-1 below:

Figure 31-1
Select the Fragment (Blank) template before clicking the Next button. On the subsequent screen, name the
fragment ToolbarFragment with a layout file named fragment_toolbar:

Figure 31-2
Load the fragment_toolbar.xml file into the layout editor using Design mode. Next, right-click on the FrameLayout
entry in the Component Tree panel and select the Convert FrameLayout to ConstraintLayout menu option,
accepting the default settings in the confirmation dialog. Change the id from to constraintLayout. Ensure that
Autoconnect mode is enabled, then select and delete the default TextView and add Plain Text, Seekbar, and
Button widgets to the layout so that their positions match those shown in Figure 31-3. Finally, change the view
ids to editText1, seekBar1, and button1 respectively.

Change the text on the button to read “Change Text”, extract the text to a string resource named change_text
and remove the Name text from the EditText view. Finally, set the layout_width property of the Seekbar to
match_constraint with margins set to 16dp on the left and right edges.

Use the Infer constraints toolbar button to add any missing constraints, at which point the layout should match
that shown in Figure 31-3 below:

247

Using Fragments in Android Studio - An Example

Figure 31-3

31.4 Migrating a Fragment to View Binding
As with the Empty Views Activity template, Android Studio does not enable view binding support when new
fragments are added to a project. Before moving to the next step of this tutorial, therefore, we will need to
perform this migration. Begin by editing the ToolbarFragment.java file and importing the binding for the
fragment as follows:
import com.ebookfrenzy.fragmentexample.databinding.FragmentToolbarBinding;

Next, locate the onCreateView() method and make the following declarations and changes (which also include
adding the onDestroyView() method to ensure that the binding reference is removed when the fragment is
destroyed):
.
.
private FragmentToolbarBinding binding;

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 // Inflate the layout for this fragment

 return inflater.inflate(R.layout.fragment_toolbar, container, false);

 binding = FragmentToolbarBinding.inflate(inflater, container, false);
 return binding.getRoot();
}

@Override
public void onDestroyView() {
 super.onDestroyView();
 binding = null;
}

Once these changes are complete, the fragment is ready to use view binding.

248

Using Fragments in Android Studio - An Example

31.5 Adding the Second Fragment
Repeating the steps used to create the toolbar fragment, add another empty fragment named TextFragment
with a layout file named fragment_text. Once again, convert the FrameLayout container to a ConstraintLayout
(changing the id to constraintLayout2) and remove the default TextView.

Drag a drop a TextView widget from the palette and position it in the center of the layout, using the Infer
constraints button to add any missing constraints. Change the id of the TextView to textView2, the text to read
“Fragment Two” and modify the textAppearance attribute to Large.

On completion, the layout should match that shown in Figure 31-4:

Figure 31-4
Repeat the steps performed in the previous section to migrate the TextFragment class to use view binding as
follows:
.

.

import com.ebookfrenzy.fragmentexample.databinding.FragmentTextBinding;
.

.
private FragmentTextBinding binding;

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 // Inflate the layout for this fragment

 return inflater.inflate(R.layout.fragment_text, container, false);

 binding = FragmentTextBinding.inflate(inflater, container, false);
 return binding.getRoot();
}

@Override
public void onDestroyView() {

249

Using Fragments in Android Studio - An Example

 super.onDestroyView();
 binding = null;
}

31.6 Adding the Fragments to the Activity
The main activity for the application has associated with it an XML layout file named activity_main.xml. For the
purposes of this example, the fragments will be added to the activity using the <fragment> element within this
file. Using the Project tool window, navigate to the app -> res -> layout section of the FragmentExample project
and double-click on the activity_main.xml file to load it into the Android Studio Layout Editor tool.

With the Layout Editor tool in Design mode, select and delete the default TextView object from the layout and
select the Common category in the palette. Drag the FragmentContainerView component from the list of views
and drop it onto the layout so that it is centered horizontally and positioned such that the dashed line appears
indicating the top layout margin:

Figure 31-5
On dropping the fragment onto the layout, a dialog will appear displaying a list of Fragments available within
the current project as illustrated in Figure 31-6:

Figure 31-6
Select the ToolbarFragment entry from the list and click on the OK button to dismiss the Fragments dialog. Once
added, click the red warning button in the top right-hand corner of the layout editor to display the Problems
tool window. An unknown fragments message will indicate that the Layout Editor tool needs to know which
fragment to display during the preview session. Select the Unknown fragment item, then click on the Pick
Layout... link in the right-hand panel as shown in Figure 31-7:

Figure 31-7
In the resulting dialog (Figure 31-8) select the fragment_toolbar entry and then click the OK button:

250

Using Fragments in Android Studio - An Example

Figure 31-8
With the fragment selected, change the layout_width property to match_constraint so that it occupies the full
width of the screen. Click and drag another FragmentContainerView entry from the palette and position it so
that it is centered horizontally and located beneath the bottom edge of the first fragment. When prompted,
select the TextFragment entry from the fragment dialog before clicking on the OK button. Display the Problems
tool window and repeat the previous steps, this time selecting the fragment_text layout. Use the Infer constraints
button to establish any missing layout constraints.

Note that the fragments are now visible in the layout as demonstrated in Figure 31-9:

Figure 31-9
Before proceeding to the next step, select the TextFragment instance in the layout and, within the Attributes tool
window, change the ID of the fragment to text_fragment.

31.7 Making the Toolbar Fragment Talk to the Activity
When the user touches the button in the toolbar fragment, the fragment class is going to need to get the text
from the EditText view and the current value of the SeekBar and send them to the text fragment. As outlined in
“An Introduction to Android Fragments”, fragments should not communicate with each other directly, instead
using the activity in which they are embedded as an intermediary.

251

Using Fragments in Android Studio - An Example

The first step in this process is to make sure that the toolbar fragment responds to the button being clicked.
We also need to implement some code to keep track of the value of the SeekBar view. For the purposes of this
example, we will implement these listeners within the ToolbarFragment class. Select the ToolbarFragment.java
file and modify it so that it reads as shown in the following listing:
package com.ebookfrenzy.fragmentexample;

.

.
import androidx.annotation.NonNull;
import androidx.annotation.Nullable;
import android.content.Context;
import android.widget.SeekBar;

public class ToolbarFragment extends Fragment implements
 SeekBar.OnSeekBarChangeListener {

 private static int seekvalue = 10;
.

.

@Override
 public void onViewCreated(@NonNull View view,
 @Nullable Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 binding.seekBar1.setOnSeekBarChangeListener(this);
 binding.button1.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 buttonClicked(v);
 }
 });
 }

 public void buttonClicked (View view) {

 }

 @Override
 public void onProgressChanged(SeekBar seekBar, int progress,
 boolean fromUser) {
 seekvalue = progress;
 }

 @Override
 public void onStartTrackingTouch(SeekBar arg0) {

 }

252

Using Fragments in Android Studio - An Example

 @Override
 public void onStopTrackingTouch(SeekBar arg0) {

 }
}

Before moving on, we need to take some time to explain the above code changes. First, the class is declared
as implementing the OnSeekBarChangeListener interface. This is because the user interface contains a
SeekBar instance and the fragment needs to receive notifications when the user slides the bar to change the
font size. Implementation of the OnSeekBarChangeListener interface requires that the onProgressChanged(),
onStartTrackingTouch() and onStopTrackingTouch() methods be implemented. These methods have been
implemented but only the onProgressChanged() method is actually required to perform a task, in this case storing
the new value in a variable named seekvalue which has been declared at the start of the class. Also declared is a
variable in which to store a reference to the EditText object.

The onViewCreated() method has been added to set up an onClickListener on the button which is configured
to call a method named buttonClicked() when a click event is detected. This method is also then implemented,
though at this point it does not do anything.

The next phase of this process is to set up the listener that will allow the fragment to call the activity when the
button is clicked. This follows the mechanism outlined in the previous chapter:
public class ToolbarFragment extends Fragment

 implements SeekBar.OnSeekBarChangeListener {

 private static int seekvalue = 10;

 private FragmentToolbarBinding binding;

 ToolbarListener activityCallback;

 public interface ToolbarListener {
 public void onButtonClick(int position, String text);
 }

 @Override
 public void onAttach(Context context) {
 super.onAttach(context);
 try {
 activityCallback = (ToolbarListener) context;
 } catch (ClassCastException e) {
 throw new ClassCastException(context.toString()
 + " must implement ToolbarListener");
 }
 }
.
.
 public void buttonClicked (View view) {

 activityCallback.onButtonClick(seekvalue,
 binding.editText1.getText().toString());

253

Using Fragments in Android Studio - An Example

 }

.

.

.

}

The above implementation will result in a method named onButtonClick() belonging to the activity class being
called when the button is clicked by the user. All that remains, therefore, is to declare that the activity class
implements the newly created ToolbarListener interface and to implement the onButtonClick() method.

Since the Android Support Library is being used for fragment support in earlier Android versions, the activity
also needs to be changed to subclass from FragmentActivity instead of AppCompatActivity. Bringing these
requirements together results in the following modified MainActivity.java file:
package com.ebookfrenzy.fragmentexample;

import androidx.appcompat.app.AppCompatActivity;

import androidx.fragment.app.FragmentActivity;
import android.os.Bundle;

public class MainActivity extends FragmentActivity implements ToolbarFragment.
ToolbarListener {
.

.

 public void onButtonClick(int fontsize, String text) {

 }
}

With the code changes as they currently stand, the toolbar fragment will detect when the button is clicked by the
user and call a method on the activity passing through the content of the EditText field and the current setting
of the SeekBar view. It is now the job of the activity to communicate with the Text Fragment and to pass along
these values so that the fragment can update the TextView object accordingly.

31.8 Making the Activity Talk to the Text Fragment
As outlined in “An Introduction to Android Fragments”, an activity can communicate with a fragment by
obtaining a reference to the fragment class instance and then calling public methods on the object. As such,
within the TextFragment class we will now implement a public method named changeTextProperties() which
takes as arguments an integer for the font size and a string for the new text to be displayed. The method will then
use these values to modify the TextView object. Within the Android Studio editing panel, locate and modify the
TextFragment.java file to add this new method:
package com.ebookfrenzy.fragmentexample;

.

.

public class TextFragment extends Fragment {

.

.

 public void changeTextProperties(int fontsize, String text)

254

Using Fragments in Android Studio - An Example

 {
 binding.textView2.setTextSize(fontsize);
 binding.textView2.setText(text);
 }
}

When the TextFragment fragment was placed in the layout of the activity, it was given an ID of text_fragment.
Using this ID, it is now possible for the activity to obtain a reference to the fragment instance and call the
changeTextProperties() method on the object. Edit the MainActivity.java file and modify the onButtonClick()
method as follows:
public void onButtonClick(int fontsize, String text) {

 TextFragment textFragment =
 (TextFragment)
 getSupportFragmentManager().findFragmentById(R.id.text_fragment);

 textFragment.changeTextProperties(fontsize, text);
}

31.9 Testing the Application
With the coding for this project now complete, the last remaining task is to run the application. When the
application is launched, the main activity will start and will, in turn, create and display the two fragments.
When the user touches the button in the toolbar fragment, the onButtonClick() method of the activity will be
called by the toolbar fragment and passed the text from the EditText view and the current value of the SeekBar.
The activity will then call the changeTextProperties() method of the second fragment, which will modify the
TextView to reflect the new text and font size:

Figure 31-10

255

Using Fragments in Android Studio - An Example

31.10 Summary
The goal of this chapter was to work through the creation of an example project intended specifically to
demonstrate the steps involved in using fragments within an Android application. Topics covered included
the use of the Android Support Library for compatibility with Android versions predating the introduction
of fragments, the inclusion of fragments within an activity layout and the implementation of inter-fragment
communication.

257

Chapter 32

32. Modern Android App
Architecture with Jetpack
For may years, Google did not recommend a specific approach to building Android apps other than to provide
tools and development kits while letting developers decide what worked best for a particular project or individual
programming style. That changed in 2017 with the introduction of the Android Architecture Components
which, in turn, became part of Android Jetpack when it was released in 2018.

The purpose of this chapter is to provide an overview of the concepts of Jetpack, Android app architecture
recommendations and some of the key architecture components. Once the basics have been covered, these
topics will be covered in more detail and demonstrated through practical examples in later chapters.

32.1 What is Android Jetpack?
Android Jetpack consists of Android Studio, the Android Architecture Components and Android Support
Library together with a set of guidelines that recommend how an Android App should be structured. The
Android Architecture Components are designed to make it quicker and easier both to perform common tasks
when developing Android apps while also conforming to the key principle of the architectural guidelines.

While all of the Android Architecture Components will be covered in this book, the objective of this chapter
is to introduce the key architectural guidelines together with the ViewModel, LiveData, Lifecycle components
while also introducing Data Binding and the use of Repositories.

Before moving on, it is important to understand the Jetpack approach to app development is not mandatory.
While highlighting some of the shortcoming of other techniques that have gained popularity of the years, Google
stopped short of completely condemning those approaches to app development. Google appears to be taking the
position that while there is no right or wrong way to develop an app, there is a recommended way.

32.2 The “Old” Architecture
In the chapter entitled “Creating an Example Android App in Android Studio”, an Android project was created
consisting of a single activity which contained all of the code for presenting and managing the user interface
together with the back-end logic of the app. Up until the introduction of Jetpack, the most common architecture
followed this paradigm with apps consisting of multiple activities (one for each screen within the app) with each
activity class to some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

32.3 Modern Android Architecture
At the most basic level, Google now advocates single activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept referred to as “separation of concerns”). One of the keys to this approach

258

Modern Android App Architecture with Jetpack

is the ViewModel component.

32.4 The ViewModel Component
The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the code
responsible for actually displaying and managing the user interface and interacting with the operating system.
When designed in this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data needed by those controllers.

In effect, the ViewModel only knows about the data model and corresponding logic. It knows nothing about
the user interface and makes no attempt to directly access or respond to events relating to views within the user
interface. When a UI controller needs data to display, it simply asks the ViewModel to provide it. Similarly,
when the user enters data into a view within the user interface, the UI controller passes it to the ViewModel for
handling.

This separation of responsibility addresses the issues relating to the lifecycle of UI controllers. Regardless of
how many times a UI controller is recreated during the lifecycle of an app, the ViewModel instances remain in
memory thereby maintaining data consistency. A ViewModel used by an activity, for example, will remain in
memory until the activity completely finishes which, in the single activity app, is not until the app exits.

Figure 32-1

32.5 The LiveData Component
Consider an app that displays real-time data such as the current price of a financial stock. The app would probably
use some form of stock price web service to continuously update the data model within the ViewModel with
the latest information. Obviously, this real-time data is of little use unless it is displayed to the user in a timely
manner. There are only two ways that the UI controller can ensure that the latest data is displayed in the user
interface. One option is for the controller to continuously check with the ViewModel to find out if the data has
changed since it was last displayed. The problem with this approach, however, is that it is inefficient. To maintain
the real-time nature of the data feed, the UI controller would have to run on a loop, continuously checking for
the data to change.

A better solution would be for the UI controller to receive a notification when a specific data item within a
ViewModel changes. This is made possible by using the LiveData component. LiveData is a data holder that
allows a value to become observable . In basic terms, an observable object has the ability to notify other objects
when changes to its data occur thereby solving the problem of making sure that the user interface always matches
the data within the ViewModel

259

Modern Android App Architecture with Jetpack

This means, for example, that a UI controller that is interested a ViewModel value can set up an observer which
will, in turn, be notified when that value changes. In our hypothetical application, for example, the stock price
would be wrapped in a LiveData object within the ViewModel and the UI controller would assign an observer
to the value, declaring a method to be called when the value changes. This method will, when triggered by data
change, read the updated value from the ViewModel and use it to update the user interface.

Figure 32-2
A LiveData instance may also be declared as being mutable, allowing the observing entity to update the
underlying value held within the LiveData object. The user might, for example, enter a value in the user interface
that needs to overwrite the value stored in the ViewModel.

Another of the key advantages of using LiveData is that it is aware of the lifecycle state of its observers. If,
for example, an activity contains a LiveData observer, the corresponding LiveData object will know when the
activity’s lifecycle state changes and respond accordingly. If the activity is paused (perhaps the app is put into
the background), the LiveData object will stop sending events to the observer. If the activity has just started or
resumes after being paused, the LiveData object will send a LiveData event to the observer so that the activity
has the most up to date value. Similarly, the LiveData instance will know when the activity is destroyed and
remove the observer to free up resources.

So far, we’ve only talked about UI controllers using observers. In practice, however, an observer can be used
within any object that conforms to the Jetpack approach to lifecycle management.

32.6 ViewModel Saved State
Android allows the user to place an active app into the background and return to it later after performing other
tasks on the device (including running other apps). When a device runs low on resources, the operating system
will rectify this by terminating background app processes, starting with the least recently used app. When the
user returns to the terminated background app, however, it should appear in the same state as when it was placed
in the background, regardless of whether it was terminated. In terms of the data associated with a ViewModel,
this can be implemented by making use of the ViewModel Saved State module. This module allows values to be
stored in the app’s saved state and restored in the event of a system initiated process termination, a topic which
will be covered later in the chapter entitled “An Android ViewModel Saved State Tutorial”.

260

Modern Android App Architecture with Jetpack

32.7 LiveData and Data Binding
Android Jetpack includes the Data Binding Library which allows data in a ViewModel to be mapped directly to
specific views within the XML user interface layout file. In the AndroidSample project created earlier, code had
to be written both to obtain references to the EditText and TextView views and to set and get the text properties
to reflect data changes. Data binding allows the LiveData value stored in the ViewModel to be referenced directly
within the XML layout file avoiding the need to write code to keep the layout views updated.

Figure 32-3
Data binding will be covered in greater detail starting with the chapter entitled “An Overview of Android Jetpack
Data Binding”.

32.8 Android Lifecycles
The duration from when an Android component is created to the point that it is destroyed is referred to as
the lifecycle. During this lifecycle, the component will change between different lifecycle states, usually under
the control of the operating system and in response to user actions. An activity, for example, will begin in the
initialized state before transitioning to the created state. Once the activity is running it will switch to the started
state from which it will cycle through various states including created, started, resumed and destroyed.

Many Android Framework classes and components allow other objects to access their current state. Lifecycle
observers may also be used so that an object receives notification when the lifecycle state of another object
changes. This is the technique used behind the scenes by the ViewModel component to identify when an
observer has restarted or been destroyed. This functionality is not limited to Android framework and architecture
components and may also be built into any other classes using a set lifecycle components included with the
architecture components.

Objects that are able to detect and react to lifecycle state changes in other objects are said to be lifecycle-aware,
while objects that provide access to their lifecycle state are called lifecycle-owners. Lifecycles will be covered in
greater detail in the chapter entitled “Working with Android Lifecycle-Aware Components”.

32.9 Repository Modules
If a ViewModel obtains data from one or more external sources (such as databases or web services) it is important
to separate the code involved in handling those data sources from the ViewModel class. Failure to do this would,
after all, violate the separation of concerns guidelines. To avoid mixing this functionality in with the ViewModel,

261

Modern Android App Architecture with Jetpack

Google’s architecture guidelines recommend placing this code in a separate Repository module.

A repository is not an Android architecture component, but rather a Java class created by the app developer
that is responsible for interfacing with the various data sources. The class then provides an interface to the
ViewModel allowing that data to be stored in the model.

Figure 32-4

32.10 Summary
Until recently, Google has tended not to recommend any particular approach to structuring an Android app. That
has now changed with the introduction of Android Jetpack which consists of a set of tools, components, libraries
and architecture guidelines. Google now recommends that an app project be divided into separate modules,
each being responsible for a particular area of functionality otherwise known as “separation of concerns”.

In particular, the guidelines recommend separating the view data model of an app from the code responsible
for handling the user interface. In addition, the code responsible for gathering data from data sources such as
web services or databases should be built into a separate repository module instead of being bundled with the
view model.

Android Jetpack includes the Android Architecture Components which have been designed specifically to
make it easier to develop apps that conform to the recommended guidelines. This chapter has introduced the
ViewModel, LiveData and Lifecycle components. These will be covered in more detail starting with the next
chapter. Other architecture components not mentioned in this chapter will be covered later in the book.

263

Chapter 33

33. An Android ViewModel Tutorial
The previous chapter introduced the fundamental concepts of Android Jetpack and outlined the basics of
modern Android app architecture. Jetpack defines a set of recommendations describing how an Android app
project should be structured while providing a set of libraries and components that make it easier to conform to
these guidelines with the goal of developing reliable apps with less coding and fewer errors.

To help reinforce and clarify the information provided in the previous chapter, this chapter will step through the
creation of an example app project that uses the ViewModel component. This example will be further enhanced
in the next chapter by including LiveData and data binding support.

33.1 About the Project
In the chapter entitled “Creating an Example Android App in Android Studio”, a project named AndroidSample
was created in which all of the code for the app was bundled into the main Activity class file. In the chapter that
followed, an AVD emulator was created and used to run the app. While the app was running, we experienced
first-hand the kind of problems that occur when developing apps in this way when the data displayed on a
TextView widget was lost during a device rotation.

This chapter will implement the same currency converter app, this time using the ViewModel component and
following the Google app architecture guidelines to avoid Activity lifecycle complications.

33.2 Creating the ViewModel Example Project
When the AndroidSample project was created, the Empty Views Activity template was chosen as the basis for
the project. For this project, however, the Basic Views Template template will be used.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Basic Views Activity template before clicking on the Next button.

Enter ViewModelDemo into the Name field and specify com.ebookfrenzy.viewmodeldemo as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and
the Language menu to Java.

33.3 Removing Unwanted Project Elements
As outlined in the “A Guide to the Android Studio Layout Editor Tool”, the Basic Views Activity template includes
features that will not be needed by all projects. Before adding the ViewModel to the project, we first need to
remove the navigation features, the second content fragment, and floating action button as follows:

1. Double-click on the activity_main.xml layout file in the Project tool window, select the floating action
button and tap the keyboard delete key to remove the object from the layout.

2. Edit the MainActivity.java file and remove the floating action button code from the onCreate method as
follows:

@Override

protected void onCreate(Bundle savedInstanceState) {

.

.

264

An Android ViewModel Tutorial

 binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_
LONG)

 .setAnchorView(R.id.fab)

 .setAction("Action", null).show();

 }

 });

}

3. Within the Project tool window, navigate to and double-click on the app -> res -> navigation -> nav_graph.
xml file to load it into the navigation editor.

4. Within the editor, select the SecondFragment entry in the graph panel and tap the keyboard delete key to
remove it from the graph.

5. Locate and delete the SecondFragment.java and fragment_second.xml files.

6. The final task is to remove some code from the FirstFragment class so that the Button view no longer
navigates to the now non-existent second fragment when clicked. Edit the FirstFragment.java file and
remove the code from the onViewCreated() method so that it reads as follows:

public void onViewCreated(@NonNull View view, Bundle savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

 binding.buttonFirst.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 NavHostFragment.findNavController(FirstFragment.this)

 .navigate(R.id.action_FirstFragment_to_SecondFragment);

 }

 });

}

33.4 Designing the Fragment Layout
The next step is to design the layout of the fragment. First, locate the fragment_first.xml file in the Project tool
window and double click on it to load it into the layout editor. Once the layout has loaded, select and delete
the existing Button, TextView, and ConstraintLayout components. Next, right-click on the NestedScrollView
instance in the Component Tree panel and select the Convert NestedScrollView to ConstraintLayout menu option
as shown in Figure 33-1, and accept the default settings in the resulting dialog:

265

An Android ViewModel Tutorial

Figure 33-1
Select the converted ConstraintLayout component and use the Attributes tool window to change the id to
constraintLayout.

Add a new TextView, position it in the center of the layout and change the id to resultText. Next, drag a Number
(Decimal) view from the palette and position it above the existing TextView. With the view selected in the layout
refer to the Attributes tool window and change the id to dollarText.

Drag a Button widget onto the layout so that it is positioned below the TextView, and change the text attribute to
read “Convert”. With the button still selected, change the id property to convertButton. At this point, the layout
should resemble that illustrated in Figure 33-2 (note that the three views have been constrained using a vertical
chain):

Figure 33-2
Finally, click on the warning icon in the top right-hand corner of the layout editor and convert the hard-coded
strings to resources.

33.5 Implementing the View Model
With the user interface layout completed, the data model for the app needs to be created within the view model.
Begin by locating the com.ebookfrenzy.viewmodeldemo entry in the Project tool window, right-clicking on it and
selecting the New -> Java Class menu option. Name the new class MainViewModel and press the keyboard enter
key. Edit the new class file so that it reads as follows:

266

An Android ViewModel Tutorial

package com.ebookfrenzy.viewmodeldemo.ui.main;

import androidx.lifecycle.ViewModel;

public class MainViewModel extends ViewModel {

 private static final Float rate = 0.74F;
 private String dollarText = "";
 private Float result = 0F;

 public void setAmount(String value) {
 this.dollarText = value;
 result = Float.parseFloat(dollarText)*rate;
 }

 public Float getResult()
 {
 return result;
 }
}

The class declares variables to store the current dollar string value and the converted amount together with
getter and setter methods to provide access to those data values. When called, the setAmount() method takes as
an argument the current dollar amount and stores it in the local dollarText variable. The dollar string value is
converted to a floating point number, multiplied by a fictitious exchange rate and the resulting euro value stored
in the result variable. The getResult() method, on the other hand, simply returns the current value assigned to
the result variable.

33.6 Associating the Fragment with the View Model
Clearly, there needs to be some way for the fragment to obtain a reference to the ViewModel to be able to access
the model and observe data changes. A Fragment or Activity maintains references to the ViewModels on which
it relies for data using an instance of the ViewModelProvider class.

A ViewModelProvider instance is created using the ViewModelProvider class from within the Fragment.
When called, the class initializer is passed a reference to the current Fragment or Activity and returns a
ViewModelProvider instance as follows:
ViewModelProvider viewModelProvider = new ViewModelProvider(this);

Once the ViewModelProvider instance has been created, an index value can used to request a specific ViewModel
class. The provider will then either create a new instance of that ViewModel class, or return an existing instance,
for example:
ViewModel viewModel = viewModelProvider.get(MainViewModel.class);

Edit the FirstFragment.java file and override the onCreate() method to set up the ViewModelProvider:
.

.

import androidx.lifecycle.ViewModelProvider;
import androidx.annotation.Nullable;
.

267

An Android ViewModel Tutorial

.

public class FirstFragment extends Fragment {

 private MainViewModel viewModel;
.

.

 @Override
 public void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 viewModel = new ViewModelProvider(this).get(MainViewModel.class);
 }
.

.

With access to the model view, code can now be added to the Fragment to begin working with the data model.

33.7 Modifying the Fragment
The fragment class now needs to be updated to react to button clicks and to interact with the data values stored
in the ViewModel. The class will also need references to the three views in the user interface layout to react to
button clicks, extract the current dollar value and to display the converted currency amount.

In the chapter entitled “Creating an Example Android App in Android Studio”, the onClick property of the Button
widget was used to designate the method to be called when the button is clicked by the user. Unfortunately, this
property is only able to call methods on an Activity and cannot be used to call a method in a Fragment. To get
around this limitation, we will need to add some code to the Fragment class to set up an onClick listener on the
button. This can be achieved in the onViewCreated() lifecycle method in the FirstFragment.java file as outlined
below:
.

.

public class MainFragment extends Fragment {

 private MainViewModel viewModel;

.

.

 @Override

 public void onViewCreated(@NonNull View view, @Nullable Bundle
savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

 binding.convertButton.setOnClickListener(v -> {

 });
 }

.

.

}

With the listener added, any code placed within the onClick() method will be called whenever the button is

268

An Android ViewModel Tutorial

clicked by the user.

33.8 Accessing the ViewModel Data
When the button is clicked, the onClick() method needs to read the current value from the EditText view, confirm
that the field is not empty and then call the setAmount() method of the ViewModel instance. The method will
then need to call the ViewModel’s getResult() method and display the converted value on the TextView widget.

Since LiveData is not yet being used in the project, it will also be necessary to get the latest result value from the
ViewModel each time the Fragment is created.

Remaining in the FirstFragment.java file, implement these requirements as follows in the onViewCreated()
method:
.

.

import java.util.Locale;
.

.

@Override

public void onViewCreated(@NonNull View view, @Nullable Bundle
savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

 binding.resultText.setText(String.format(Locale.ENGLISH,"%.2f",
 viewModel.getResult()));

 binding.convertButton.setOnClickListener(v -> {

 if (!binding.dollarText.getText().toString().equals("")) {
 viewModel.setAmount(String.format(Locale.ENGLISH,"%s",
 binding.dollarText.getText()));
 binding.resultText.setText(String.format(Locale.ENGLISH,"%.2f",
 viewModel.getResult()));
 } else {
 binding.resultText.setText("No Value");
 }
 });

}

33.9 Testing the Project
With this phase of the project development completed, build and run the app on the simulator or a physical
device, enter a dollar value and click on the Convert button. The converted amount should appear on the
TextView indicating that the UI controller and ViewModel re-structuring appears to be working as expected.

When the original AndroidSample app was run, rotating the device caused the value displayed on the resultText
TextView widget to be lost. Repeat this test now with the ViewModelDemo app and note that the current euro
value is retained after the rotation. This is because the ViewModel remained in memory as the Fragment was
destroyed and recreated and code was added to the onViewCreated() method to update the TextView with the
result data value from the ViewModel each time the Fragment re-started.

While this is an improvement on the original AndroidSample app, there is much more that can be achieved

269

An Android ViewModel Tutorial

to simplify the project by making use of LiveData and data binding, both of which are the topics of the next
chapters.

33.10 Summary
In this chapter we revisited the AndroidSample project created earlier in the book and created a new version of
the project structured to comply with the Android Jetpack architectural guidelines. The example project also
demonstrated the use of ViewModels to separate data handling from user interface related code. Finally, the
chapter showed how the ViewModel approach avoids some of the problems of handling Fragment and Activity
lifecycles.

271

Chapter 34

34. An Android Jetpack LiveData
Tutorial
The previous chapter began the process of designing an app to conform to the recommended Jetpack architecture
guidelines. These initial steps involved the implementation of the data model for the app user interface within
a ViewModel instance.

This chapter will further enhance the app design by making use of the LiveData architecture component. Once
LiveData support has been added to the project in this chapter, the next chapters (starting with “An Overview of
Android Jetpack Data Binding”) will make use of the Jetpack Data Binding library to eliminate even more code
from the project.

34.1 LiveData - A Recap
LiveData was introduced previously in the chapter entitled “Modern Android App Architecture with Jetpack”. As
described earlier, the LiveData component can be used as a wrapper around data values within a view model.
Once contained in a LiveData instance, those variables become observable to other objects within the app,
typically UI controllers such as Activities and Fragments. This allows the UI controller to receive a notification
whenever the underlying LiveData value changes. An observer is set up by creating an instance of the Observer
class and defining an onChange() method to be called when the LiveData value changes. Once the Observer
instance has been created, it is attached to the LiveData object via a call to the LiveData object’s observe() method.

LiveData instances can be declared as being mutable using the MutableLiveData class, allowing both the
ViewModel and UI controller to make changes to the underlying data value.

34.2 Adding LiveData to the ViewModel
Launch Android Studio, open the ViewModelDemo project created in the previous chapter and open the
MainViewModel.java file which should currently read as follows:
package com.ebookfrenzy.viewmodeldemo;

import androidx.lifecycle.ViewModel;

public class MainViewModel extends ViewModel {

 private static final Float rate = 0.74F;

 private String dollarText = "";

 private Float result = 0F;

 public void setAmount(String value) {

 this.dollarText = value;

 result = Float.parseFloat(dollarText)*rate;

 }

272

An Android Jetpack LiveData Tutorial

 public Float getResult()

 {

 return result;

 }

}

The objective of this stage in the chapter is to wrap the result variable in a MutableLiveData instance (the object
will need to be mutable so that the value can be changed each time the user requests a currency conversion).
Begin by modifying the class so that it now reads as follows noting that an additional package needs to be
imported when making use of LiveData:
package com.ebookfrenzy.viewmodeldemo;

import androidx.lifecycle.MutableLiveData;
import androidx.lifecycle.ViewModel;

public class MainViewModel extends ViewModel {

 private static final Float rate = 0.74F;

 private String dollarText = "";

 private Float result = 0F;

 final private MutableLiveData<Float> result = new MutableLiveData<>();

 public void setAmount(String value) {

 this.dollarText = value;

 result = Float.parseFloat(dollarText)*rate;

 }

 public Float getResult()

 {

 return result;

 }

}

Now that the result variable is contained in a mutable LiveData instance, both the setAmount() and getResult()
methods need to be modified. In the case of the setAmount() method, a value can no longer be assigned to
the result variable using the assignment (=) operator. Instead, the LiveData setValue() method must be called,
passing through the new value as an argument. As currently implemented, the getResult() method is declared
as returning a Float value and now needs to be changed to return a MutableLiveData object. Making these
remaining changes results in the following class file:
package com.ebookfrenzy.viewmodeldemo;

import androidx.lifecycle.MutableLiveData;

import androidx.lifecycle.ViewModel;

public class MainViewModel extends ViewModel {

 private static final Float rate = 0.74F;

273

An Android Jetpack LiveData Tutorial

 private String dollarText = "";

 final private MutableLiveData<Float> result = new MutableLiveData<>();

 public void setAmount(String value) {

 this.dollarText = value;

 result = Float.parseFloat(dollarText)*rate;

 result.setValue(Float.parseFloat(dollarText)*rate);
 }

 public Float getResult()

 public MutableLiveData<Float> getResult()
 {

 return result;

 }

}

34.3 Implementing the Observer
Now that the conversion result is contained within a LiveData instance, the next step is to configure an observer
within the UI controller which, in this example, is the FirstFragment class. Locate the FirstFragment.java class
(app -> java -> <package name> -> FirstFragment), double-click on it to load it into the editor and modify the
onViewCreated() method to create a new Observer instance named resultObserver:
package com.ebookfrenzy.viewmodeldemo;

import androidx.lifecycle.Observer;
.

.

@Override

public void onViewCreated(@NonNull View view, @Nullable Bundle
savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

 binding.resultText.setText(String.format(Locale.ENGLISH,"%.2f",

 viewModel.getResult()));

 final Observer<Float> resultObserver = new Observer<Float>() {
 @Override
 public void onChanged(@Nullable final Float result) {
 binding.resultText.setText(String.format(Locale.ENGLISH,
 "%.2f", result));
 }
 };
.

.

}

The resultObserver instance declares the onChanged() method which, when called, is passed the current result
value which it then converts to a string and displays on the resultText TextView object. The next step is to add the

274

An Android Jetpack LiveData Tutorial

observer to the result LiveData object, a reference to which can be obtained via a call to the getResult() method of
the ViewModel object. Since updating the result TextView is now the responsibility of the onChanged() callback
method, the existing lines of code to perform this task can now be deleted:
@Override

public void onViewCreated(@NonNull View view, @Nullable Bundle
savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

 binding.resultText.setText(String.format(Locale.ENGLISH,"%.2f",

 viewModel.getResult()));

 final Observer<Float> resultObserver = new Observer<Float>() {

 @Override

 public void onChanged(@Nullable final Float result) {

 binding.resultText.setText(String.format(Locale.ENGLISH,

 "%.2f", result));

 }

 };

 viewModel.getResult().observe(getViewLifecycleOwner(), resultObserver);

 binding.convertButton.setOnClickListener(v -> {

 if (!binding.dollarText.getText().toString().equals("")) {

 viewModel.setAmount(String.format(Locale.ENGLISH,"%s",

 binding.dollarText.getText()));

 binding.resultText.setText(String.format(Locale.ENGLISH,"%.2f",

 viewModel.getResult()));

 } else {

 binding.resultText.setText("No Value");

 }

 });

}

Compile and run the app, enter a value into the dollar field, click on the Convert button and verify that the
converted euro amount appears on the TextView. This confirms that the observer received notification that the
result value had changed and called the onChanged() method to display the latest data.

Note in the above implementation of the onViewCreated() method that the line of code responsible for displaying
the current result value each time the method was called was removed. This was originally put in place to ensure
that the displayed value was not lost if the Fragment was recreated for any reason. Because LiveData monitors
the lifecycle status of its observers, this step is no longer necessary. When LiveData detects that the UI controller
was recreated, it automatically triggers any associated observers and provides the latest data. Verify this by
rotating the device while a euro value is displayed on the TextView object and confirming that the value is not
lost.

Before moving on to the next chapter close the project, copy the ViewModelDemo project folder and save it as
ViewModelDemo_LiveData so that it can be used later when looking at saving ViewModel state.

275

An Android Jetpack LiveData Tutorial

34.4 Summary
This chapter demonstrated the use of the Android LiveData component to make sure that the data displayed to
the user always matches that stored in the ViewModel. This relatively simple process consisted of wrapping a
ViewModel data value within a LiveData object and setting up an observer within the UI controller subscribed
to the LiveData value. Each time the LiveData value changes, the observer is notified and the onChanged()
method called and passed the updated value.

Adding LiveData support to the project has gone some way towards simplifying the design of the project.
Additional and significant improvements are also possible by making use of the Data Binding Library, details of
which will be covered in the next chapter.

277

Chapter 35

35. An Overview of Android Jetpack
Data Binding
In the chapter entitled “Modern Android App Architecture with Jetpack”, we introduced the concept of Android
Data Binding and briefly explained how it is used to directly connect the views in a user interface layout to
the methods and data located in other objects within an app without the need to write code. This chapter will
provide more details on data binding with an emphasis on explaining how data binding is implemented within
an Android Studio project. The tutorial in the next chapter (“An Android Jetpack Data Binding Tutorial”) will
provide a practical example of data binding in action.

35.1 An Overview of Data Binding
Data binding support is provided by the Android Jetpack Data Binding Library, the primary purpose of which
is to provide a simple way to connect the views in a user interface layout to the data that is stored within the
code of the app (typically within ViewModel instances). Data binding also provides a convenient way to map
user interface controls such as Button widgets to event and listener methods within other objects such as UI
controllers and ViewModel instances.

Data binding becomes particularly powerful when used in conjunction with the LiveData component. Consider,
for example, an EditText view bound to a LiveData variable within a ViewModel using data binding. When
connected in this way, any changes to the data value in the ViewModel will automatically appear within the
EditText view and, when using two-way binding, any data typed into the EditText will automatically be used to
update the LiveData value. Perhaps most impressive is the fact that this can be achieved with no code beyond
that necessary to initially set up the binding.

Connecting an interactive view such as a Button widget to a method within a UI controller traditionally required
that the developer write code to implement a listener method to be called when the button is clicked. Data
binding makes this as simple as referencing the method to be called within the Button element in the layout
XML file.

35.2 The Key Components of Data Binding
By default, an Android Studio project is not configured for data binding support. In fact, a number of different
elements need to be combined before an app can begin making use of data binding. These involve the project
build configuration, the layout XML file, data binding classes and use of the data binding expression language.
While this may appear to be a little overwhelming at first, when taken separately these are actually quite simple
steps which, once completed, are more than worthwhile in terms of saved coding effort. In the remainder of this
chapter, each of these elements will be covered in detail. Once these basics have been covered, the next chapter
will work through a detailed tutorial demonstrating these steps in practical terms.

35.2.1 The Project Build Configuration
Before a project can make use of data binding it must first be configured to make use of the Android Data
Binding Library and to enable support for data binding classes and the binding expression syntax. Fortunately
this can be achieved with just a few lines added to the module level build.gradle file (the one listed as build.gradle
(Module: app) under Gradle Scripts in the Project tool window). The following lists a partial build file with data
binding enabled:

278

An Overview of Android Jetpack Data Binding

.

.

android {

 buildFeatures {
 dataBinding = true
 }
.

.

35.2.2 The Data Binding Layout File
As we have seen in previous chapters, the user interfaces for an app are typically contained within an XML layout
file. Before the views contained within one of these layout files can take advantage of data binding, the layout file
must first be converted to a data binding layout file.

As outlined earlier in the book, XML layout files define the hierarchy of components in the layout starting with a
top-level or root view. Invariably, this root view takes the form of a layout container such as a ConstraintLayout,
FrameLayout or LinearLayout instance, as is the case in the fragment_main.xml file for the ViewModelDemo
project:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

</androidx.constraintlayout.widget.ConstraintLayout>

To be able to use data binding, the layout hierarchy must have a layout component as the root view which, in
turn, becomes the parent of the current root view.

In the case of the above example, this would require that the following changes be made to the existing layout
file:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/main"

279

An Overview of Android Jetpack Data Binding

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

 </androidx.constraintlayout.widget.ConstraintLayout>

</layout>

35.2.3 The Layout File Data Element
The data binding layout file needs some way to declare the classes within the project to which the views in the
layout are to be bound (for example a ViewModel or UI controller). Having declared these classes, the layout file
will also need a variable name by which to reference those instances within binding expressions.

This is achieved using the data element, an example of which is shown below:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <data>
 <variable
 name="myViewModel"
 type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />
 </data>

 <androidx.constraintlayout.widget.ConstraintLayout

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

</layout>

The above data element declares a new variable named myViewModel of type MainViewModel (note that it is
necessary to declare the full package name of the MyViewModel class when declaring the variable).

The data element can also import other classes that may then be referenced within binding expressions elsewhere
in the layout file. For example, if you have a class containing a method that needs to be called on a value before
it is displayed to the user, the class could be imported as follows:
<data>

 <import type="com.ebookfrenzy.MyFormattingTools" />

 <variable

 name="viewModel"

 type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />

 </data>

280

An Overview of Android Jetpack Data Binding

35.2.4 The Binding Classes
For each class referenced in the data element within the binding layout file, Android Studio will automatically
generate a corresponding binding class. This is a subclass of the Android ViewDataBinding class and will be
named based on the layout filename using word capitalization and the Binding suffix. The binding class for a
layout file named fragment_main.xml file, therefore, will be named FragmentMainBinding. The binding class
contains the bindings specified within the layout file and maps them to the variables and methods within the
bound objects.

Although the binding class is generated automatically, code still needs to be written to create an instance of the
class based on the corresponding data binding layout file. Fortunately, this can be achieved by making use of the
DataBindingUtil class.

The initialization code for an Activity or Fragment will typically set the content view or “inflate” the user interface
layout file. This simply means that the code opens the layout file, parses the XML and creates and configures all
of the view objects in memory. In the case of an existing Activity class, the code to achieve this can be found in
the onCreate() method and will read as follows:
setContentView(R.layout.activity_main);

In the case of a Fragment, this takes place in the onCreateView() method:
return inflater.inflate(R.layout.fragment_main, container, false);

All that is needed to create the binding class instances within an Activity class is to modify this initialization
code as follows:
ActivityMainBinding binding;

binding = DataBindingUtil.setContentView(this, R.layout.activity_main, false);

In the case of a Fragment, the code would read as follows:
FragmentMainBinding binding;

binding = DataBindingUtil.inflate(

 inflater, R.layout.fragment_main, container, false);

binding.setLifecycleOwner(this);

View view = binding.getRoot();

return view;

35.2.5 Data Binding Variable Configuration
As outlined above, the data binding layout file contains the data element which contains variable elements
consisting of variable names and the class types to which the bindings are to be established. For example:
<data>

 <variable

 name="viewModel"

 type="com.ebookfrenzy.viewmodeldemo.ui.main.MainViewModel" />

 <variable

 name="uiController"

 type="com.ebookfrenzy.viewmodeldemo_databinding.ui.main.MainFragment"
/>

</data>

281

An Overview of Android Jetpack Data Binding

In the above example, the first variable knows that it will be binding to an instance of a ViewModel class of type
MainViewModel but has not yet been connected to an actual MainViewModel object instance. This requires the
additional step of assigning the MainViewModel instance used within the app to the variable declared in the
layout file. This is performed via a call to the setVariable() method of the data binding instance, a reference to
which was obtained in the previous chapter:
MainViewModel mViewModel = new ViewModelProvider(this).get(MainViewModel.class);

binding.setVariable(viewModel, mViewModel);

The second variable in the above data element references a UI controller class in the form of a Fragment named
MainFragment. In this situation the code within a UI controller (be it a Activity or Fragment) would simply
need to assign itself to the variable as follows:
binding.setVariable(uiController, this);

35.2.6 Binding Expressions (One-Way)
Binding expressions define how a particular view interacts with bound objects. A binding expression on a
Button, for example, might declare which method on an object is called in response to a click. Alternatively, a
binding expression might define which data value stored in a ViewModel is to appear within a TextView and
how it is to be presented and formatted.

Binding expressions use a declarative language that allows logic and access to other classes and methods to
be used in deciding how bound data is used. Expressions can, for example, include mathematical expressions,
method calls, string concatenations, access to array elements and comparison operations. In addition, all of the
standard Java language libraries are imported by default so many things that can be achieved in Java can also be
performed in a binding expression. As already discussed, the data element may also be used to import custom
classes to add yet more capability to expressions.

A binding expression begins with an @ symbol followed by the expression enclosed in curly braces ({}).

Consider, for example, a ViewModel instance containing a variable named result. Assume that this class has been
assigned to a variable named viewModel within the data binding layout file and needs to be bound to a TextView
object so that the view always displays the latest result value. If this value was stored as a String object, this would
be declared within the layout file as follows:
<TextView

 android:id="@+id/resultText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@{viewModel.result}"
 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

In the above XML the text property is being set to the value stored in the result LiveData property of the
viewModel object.

Consider, however, that the result is stored within the model as a Float value instead of a String. That being the
case, the above expression would cause a compilation error. Clearly the Float value will need to be converted to
a string before the TextView can display it. To resolve issues such as this, the binding expression can include the
necessary steps to complete the conversion using the standard Java language classes:
android:text="@{String.valueOf(viewModel.result)}"

282

An Overview of Android Jetpack Data Binding

When running the app after making this change it is important to be aware that the following warning may
appear in the Android Studio console:
warning: myViewModel.result.getValue() is a boxed field but needs to be un-boxed
to execute String.valueOf(viewModel.result.getValue()).

Values in Java can take the form of primitive values such as the boolean type (referred to as being unboxed) or
wrapped in an Java object such as the Boolean type and accessed via reference to that object (i.e. boxed). The
process of unboxing involves the unwrapping of the primitive value from the object.

To avoid this message, wrap the offending operation in a safeUnbox() call as follows:
android:text="@{String.valueOf(safeUnbox(myViewModel.result))}"

String concatenation may also be used. For example, to includes the word “dollars” after the result string value
the following expression would be used:
android:text='@{String.valueOf(safeUnbox(myViewModel.result)) + " dollars"}'

Note that since the appended result string is wrapped in double quotes, the expression is now encapsulated with
single quotes to avoid syntax errors.

The expression syntax also allows ternary statements to be declared. In the following expression the view will
display different text depending on whether or not the result value is greater than 10.
@{myViewModel.result > 10 ? "Out of range" : "In range"}

Expressions may also be constructed to access specific elements in a data array:
@{myViewModel.resultsArray[3]}

35.2.7 Binding Expressions (Two-Way)
The type of expressions covered so far are referred to as a one-way binding. In other words, the layout is constantly
updated as the corresponding value changes, but changes to the value from within the layout do not update the
stored value.

A two-way binding on the other hand allows the data model to be updated in response to changes in the layout.
An EditText view, for example, could be configured with a two-way binding so that when the user enters a
different value, that value is used to update the corresponding data model value. When declaring a two-way
expression, the syntax is similar to a one-way expression with the exception that it begins with @=. For example:
android:text="@={myViewModel.result}"

35.2.8 Event and Listener Bindings
Binding expressions may also be used to trigger method calls in response to events on a view. A Button view, for
example, can be configured to call a method when clicked. Back in the chapter entitled “Creating an Example
Android App in Android Studio”, for example, the onClick property of a button was configured to call a method
within the app’s main activity named convertCurrency(). Within the XML file this was represented as follows:
android:onClick="convertCurrency"

The convertCurrency() method was declared along the following lines:
public void convertCurrency(View view) {

.

.

}

Note that this type of method call is always passed a reference to the view on which the event occurred. The same
effect can be achieved in data binding using the following expression (assuming the layout has been bound to a

283

An Overview of Android Jetpack Data Binding

class with a variable name of uiController):
android:onClick="@{uiController::convertCurrency}"

Another option, and one which provides the ability to pass parameters to the method, is referred to as a listener
binding. The following expression uses this approach to call a method on the same viewModel instance with no
parameters:
android:onClick='@{() -> myViewModel.methodOne()}'

The following expression calls a method that expects three parameters:
android:onClick='@{() -> myViewModel.methodTwo(viewModel.result, 10, "A
String")}'

Binding expressions provide a rich and flexible language in which to bind user interface views to data and
methods in other objects and this chapter has only covered the most common use cases. To learn more about
binding expressions, review the Android documentation online at:
https://developer.android.com/topic/libraries/data-binding/expressions

35.3 Summary
Android data bindings provide a system for creating connections between the views in a user interface layout
and the data and methods of other objects within the app architecture without having to write code. Once some
initial configuration steps have been performed, data binding simply involves the use of binding expressions
within the view elements of the layout file. These binding expressions can be either one-way or two-way and may
also be used to bind methods to be called in response to events such as button clicks within the user interface.

285

Chapter 36

36. An Android Jetpack Data Binding
Tutorial
So far in this book we have covered the basic concepts of modern Android app architecture and looked in more
detail at the ViewModel and LiveData components. The concept of data binding was also covered in the previous
chapter and will now be used in this chapter to further modify the ViewModelDemo app.

36.1 Removing the Redundant Code
If you have not already done so, copy the ViewModelDemo project folder and save it as ViewModelDemo_
LiveData so that it can be used again in the next chapter. Once copied, open the original ViewModelDemo
project ready to implement data binding.

Before implementing data binding within the ViewModelDemo app, the power of data binding will be
demonstrated by deleting all of the code within the project that will no longer be needed by the end of this
chapter.

Launch Android Studio, open the ViewModelDemo project, edit the FirstFragment.java file and modify the
code as follows:
package com.ebookfrenzy.viewmodeldemo;

.

.

import android.arch.lifecycle.Observer;

.

.

public class MainFragment extends Fragment {

 private MainViewModel viewModel;

.

.

 @Override

 public void onViewCreated(@NonNull View view,

 @Nullable Bundle savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

 final Observer<Float> resultObserver = new Observer<Float>() {

 @Override

 public void onChanged(@Nullable final Float result) {

 binding.resultText.setText(String.format(Locale.ENGLISH,

 "%.2f", result));

 }

 };

286

An Android Jetpack Data Binding Tutorial

 viewModel.getResult().observe(getViewLifecycleOwner(), resultObserver);

 binding.convertButton.setOnClickListener(v -> {

 if (!binding.dollarText.getText().toString().equals("")) {

 viewModel.setAmount(String.format(Locale.ENGLISH,"%s",

 binding.dollarText.getText()));

 } else {

 binding.resultText.setText("No Value");

 }

 });

 }

.

.

Next, edit the MainViewModel.java file and continue deleting code as follows (note also the conversion of the
dollarText variable to LiveData):
package com.ebookfrenzy.viewmodeldemo;

import android.arch.lifecycle.MutableLiveData;

import android.arch.lifecycle.ViewModel;

public class MainViewModel extends ViewModel {

 private static final Float rate = 0.74F;

 final public MutableLiveData<String> dollarValue = new MutableLiveData<>();
 private String dollarText = "";

 final private public MutableLiveData<Float> result = new MutableLiveData<>();

 public void setAmount(String value) {

 this.dollarText = value;

 result.setValue(Float.valueOf(dollarText)*rate);

 }

 public MutableLiveData<Float> getResult()

 {

 return result;

 }

}

Though we‘ll be adding a few additional lines of code in the course of implementing data binding, clearly data
binding has significantly reduced the amount of code that needed to be written.

36.2 Enabling Data Binding
The first step in using data binding is to enable it within the Android Studio project. This involves adding a new
property to the Gradle Scripts -> build.gradle (Module :app) file.

287

An Android Jetpack Data Binding Tutorial

Within the build.gradle file, add the element shown below to enable data binding within the project:
plugins {

 id 'com.android.application'

}

android {

.

.

 buildFeatures {

 viewBinding true

 dataBinding true
 }

.

.

}

Once the entry has been added, a bar will appear across the top of the editor screen containing a Sync Now link.
Click this to resynchronize the project with the new build configuration settings.

36.3 Adding the Layout Element
As described in “An Overview of Android Jetpack Data Binding”, to be able to use data binding, the layout
hierarchy must have a layout component as the root view. This requires that the following changes be made to
the fragment_first.xml layout file (app -> res -> layout -> fragment_first.xml). Open this file in the layout editor
tool, switch to Code mode and make these changes:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".FirstFragment">

.

.

 </androidx.constraintlayout.widget.ConstraintLayout>

</layout>

Once these changes have been made, switch back to Design mode and note that the new root view, though
invisible in the layout canvas, is now listed in the component tree as shown in Figure 36-1:

288

An Android Jetpack Data Binding Tutorial

Figure 36-1

Build and run the app to verify that the addition of the layout element has not changed the user interface
appearance in any way. When building the project, you may encounter an error that reads in part:
org.gradle.api.GradleException: 'compileDebugJavaWithJavac' task (current target
is 1.8) and 'kaptGenerateStubsDebugKotlin' task (current target is 17)

This is caused by a bug in the Android Studio build tools and can be resolved by making the following changes
to the build.gradle (Module: app) file:
compileOptions {

 sourceCompatibility JavaVersion.VERSION_17
 targetCompatibility JavaVersion.VERSION_17
}

kotlinOptions {

 jvmTarget = '17'
}

36.4 Adding the Data Element to Layout File
The next step in converting the layout file to a data binding layout file is to add the data element. For this
example, the layout will be bound to MainViewModel so edit the fragment_first.xml file to add the data element
as follows:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <data>
 <variable
 name="myViewModel"
 type="com.ebookfrenzy.viewmodeldemo.MainViewModel" />
 </data>

 <androidx.constraintlayout.widget.ConstraintLayout

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".FirstFragment">

.

289

An Android Jetpack Data Binding Tutorial

.

</layout>

Build and run the app once again to make sure that these changes take effect.

36.5 Working with the Binding Class
The next step is to modify the code within the FirstFragment.java file to inflate the data binding. This is best
achieved by rewriting the onCreateView() method:
.

.

import androidx.databinding.DataBindingUtil;

import com.ebookfrenzy.viewmodeldemo.R;
.
.

public class MainFragment extends Fragment {

.

.

 public View onCreateView(@NonNull LayoutInflater inflater, @Nullable ViewGroup
container,

 @Nullable Bundle savedInstanceState) {

 binding = FragmentMainBinding.inflate(inflater, container, false);

 binding = DataBindingUtil.inflate(
 inflater, R.layout.fragment_first, container, false);
 binding.setLifecycleOwner(this);
 return binding.getRoot();

 }

.

.

}

The old code simply inflated the fragment_first.xml layout file (in other words created the layout containing all
of the view objects) and returned a reference to the root view (the top level layout container). The Data Binding
Library contains a utility class which provides a special inflation method which, in addition to constructing the
UI, also initializes and returns an instance of the layout‘s data binding class. The new code calls this method and
stores a reference to the binding class instance in a variable:
binding = DataBindingUtil.inflate(

 inflater, R.layout.fragment_first, container, false);

The binding object will only need to remain in memory for as long as the fragment is present. To ensure that the
instance is destroyed when the fragment goes away, the current fragment is declared as the lifecycle owner for
the binding object.
binding.lifecycleOwner = this;

return binding.getRoot;

290

An Android Jetpack Data Binding Tutorial

36.6 Assigning the ViewModel Instance to the Data Binding Variable
At this point, the data binding knows that it will be binding to an instance of a class of type MainViewModel but
has not yet been connected to an actual MainViewModel object. This requires the additional step of assigning
the MainViewModel instance used within the app to the viewModel variable declared in the layout file. Add this
code to the onViewCreated() method in the FirstFragment.java file as follows:
.

.

import static com.ebookfrenzy.viewmodeldemo.BR.myViewModel;
.

.

@Override

public void onViewCreated(@NonNull View view, @Nullable Bundle
savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

 binding.setVariable(myViewModel, viewModel);
}

If Android Studio reports myViewModel as undefined, rebuild the project using the Build -> Make Project menu
option to force the class to be generated. With these changes made, the next step is to begin inserting some
binding expressions into the view elements of the data binding layout file.

36.7 Adding Binding Expressions
The first binding expression will bind the resultText TextView to the result value within the model view. Edit
the fragment_first.xml file, locate the resultText element and modify the text property so that the element reads
as follows:
<TextView

 android:id="@+id/resultText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="TextView"

 android:text='@{safeUnbox(myViewModel.result) == 0.0 ? "Enter value" :
String.valueOf(safeUnbox(myViewModel.result)) + " euros"}'
 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

The expression begins by checking if the result value is currently zero and, if it is, displays a message instructing
the user to enter a value. If the result is not zero, however, the value is converted to a string and concatenated
with the word “euros” before being displayed to the user.

The result value only requires a one-way binding in that the layout does not ever need to update the value stored
in the ViewModel. The dollarValue EditText view, on the other hand, needs to use two-way binding so that
the data model can be updated with the latest value entered by the user, and to allow the current value to be
redisplayed in the view in the event of a lifecycle event such as that triggered by a device rotation. The dollarText
element should now be declared as follows:
<EditText

 android:id="@+id/dollarText"

291

An Android Jetpack Data Binding Tutorial

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="96dp"

 android:ems="10"

 android:importantForAutofill="no"

 android:inputType="numberDecimal"

 android:text="@={myViewModel.dollarValue}"
 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.502"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

Now that these initial binding expressions have been added a method now needs to be written to perform the
conversion when the user clicks on the Button widget.

36.8 Adding the Conversion Method
When the Convert button is clicked, it is going to call a method on the ViewModel to perform the conversion
calculation and place the euro value in the result LiveData variable. Add this method now within the
MainViewModel.java file:
.

.

public class MainViewModel extends ViewModel {

 private static final Float usd_to_eu_rate = 0.74F;

 final public MutableLiveData<String> dollarValue = new MutableLiveData<>();

 final public MutableLiveData<Float> result = new MutableLiveData<>();

 public void convertValue() {
 if ((dollarValue.getValue() != null) &&
 (!dollarValue.getValue().equals(""))) {
 result.setValue(Float.parseFloat(dollarValue.getValue())
 * rate);
 } else {
 result.setValue(0F);
 }
 }
}

Note that in the absence of a valid dollar value, a zero value is assigned to the result LiveData variable. This
ensures that the binding expression assigned to the resultText TextView displays the “Enter value” message if no
value has been entered by the user.

36.9 Adding a Listener Binding
The final step before testing the project is to add a listener binding expression to the Button element within the
layout file to call the convertValue() method when the button is clicked. Edit the fragment_first.xml file in Code
mode once again, locate the convertButton element and add an onClick entry as follows:
<Button

292

An Android Jetpack Data Binding Tutorial

 android:id="@+id/convertButton"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="@{() -> myViewModel.convertValue()}"
 android:text="@string/convert_text"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/resultText" />

36.10 Testing the App
Compile and run the app and test that entering a value into the dollar field and clicking on the Convert button
displays the correct result on the TextView (together with the “euros” suffix) and that the “Enter value” prompt
appears if a conversion is attempted while the dollar field is empty. Also, verify that information displayed in the
user interface is retained through a device rotation.

36.11 Summary
The primary goal of this chapter has been to work through the steps involved in setting up a project to use data
binding and to demonstrate the use of one-way, two-way and listener binding expressions. The chapter also
provided a practical example of how much code writing is saved by using data binding in conjunction with
LiveData to connect the user interface views with the back-end data and logic of the app.

293

Chapter 37

37. An Android ViewModel Saved
State Tutorial
The preservation and restoration of app state is all about presenting the user with continuity in terms of
appearance and behavior after an app is placed into the background. Users have come to expect to be able to
switch from one app to another and, on returning to the original app, to find it in the exact state it was in before
the switch took place.

As outlined in the chapter entitled “Understanding Android Application and Activity Lifecycles”, when the user
places an app into the background that app becomes eligible for termination by the operating system if resources
become constrained. When the user attempts to return the terminated app to the foreground, Android simply
relaunches the app in a new process. Since this is all invisible to the user, it is the responsibility of the app
to restore itself to the same state it was in when the app was originally placed in the background instead of
presenting itself in its “initial launch” state. In the case of ViewModel-based apps, much of this behavior can be
achieved using the ViewModel Saved State module.

37.1 Understanding ViewModel State Saving
As outlined in the previous chapters, the ViewModel brings many benefits to app development, including UI
state restoration in the event of configuration changes such as a device rotation. To see this in action, run the
ViewModelDemo app (or if you have not yet created the project, load into Android Studio the ViewModelDemo_
LiveData project from the sample code download that accompanies the book).

Once running, enter a dollar value and convert it to euros. With both the dollar and euro values displayed, rotate
the device or emulator and note that, once the app has responded to the orientation change, both values are still
visible.

Unfortunately, this behavior does not extend to the termination of a background app process. With the app still
running, tap the device home button to place the ViewModelDemo app into the background, then terminate
it by opening a terminal or command-prompt window and running the following command (where <package
name> is the name you used when the project was created, for example, com.ebookfrenzy.viewmodeldemo):
adb shell am kill <package name>

If the adb command is not found, refer to the chapter titled “Setting up an Android Studio Development
Environment” for steps on setting up your Android Studio environment.

Once the app has been terminated, return to the device or emulator and select the app from the launcher (do not
simply re-run the app from within Android Studio). Once the app appears, it will do so as if it was just launched,
with the previous dollar and euro values lost. From the perspective of the user, however, the app was simply
restored from the background and should still have contained the original data. In this case, the app has failed
to provide the continuity that users have come to expect from Android apps.

37.2 Implementing ViewModel State Saving
Basic ViewModel state saving is made possible through the introduction of the ViewModel Saved State library.
This library essentially extends the ViewModel class to include support for maintaining state through the
termination and subsequent relaunch of a background process.

294

An Android ViewModel Saved State Tutorial

The key to saving state is the SavedStateHandle class which is used to save and restore the state of a view model
instance. A SavedStateHandle object contains a key-value map that allows data values to be saved and restored
by referencing corresponding keys.

To support saved state, a different kind of ViewModel subclass needs to be declared, in this case one containing
a constructor which can receive a SavedStateHandle instance. Once declared, ViewModel instances of this type
can be created by including a SavedStateViewModelFactory object at creation time. Consider the following code
excerpt from a standard ViewModel declaration:
package com.ebookfrenzy.viewmodeldemo.ui.main;

import androidx.lifecycle.ViewModel;

import androidx.lifecycle.MutableLiveData;

public class MainViewModel extends ViewModel {

.

.

}

The code to create an instance of this class would likely resemble the following:
private MainViewModel mViewModel;

mViewModel = new ViewModelProvider(this).get(MainViewModel.class);

A ViewModel subclass designed to support saved state, on the other hand, would need to be declared as follows:
package com.ebookfrenzy.viewmodeldemo.ui.main;

import android.util.Log;

import androidx.lifecycle.ViewModel;

import androidx.lifecycle.MutableLiveData;

import androidx.lifecycle.SavedStateHandle;

public class MainViewModel extends ViewModel {

 private SavedStateHandle savedStateHandle;

 public MainViewModel(SavedStateHandle savedStateHandle) {
 this.savedStateHandle = savedStateHandle;
 }
.

.

}

When instances of the above ViewModel are created, the ViewModelProvider class initializer must be passed a
SavedStateViewModelFactory instance as follows:
SavedStateViewModelFactory factory =
 new SavedStateViewModelFactory(getActivity().getApplication(),this);

295

An Android ViewModel Saved State Tutorial

mViewModel = new ViewModelProvider(this).get(MainViewModel.class);

37.3 Saving and Restoring State
An object or value can be saved from within the ViewModel by passing it through to the set() method of the
SavedStateHandle instance, providing the key string by which it is to be referenced when performing a retrieval:
private static final String NAME_KEY = "Customer Name";

savedStateHandle.set(NAME_KEY, customerName);

When used with LiveData objects, a previously saved value may be restored using the getLiveData() method of
the SavedStateHandle instance, once again referencing the corresponding key as follows:
MutableLiveData<String> restoredName = savedStateHandle.getLiveData(NAME_KEY);

To restore a normal (non-LiveData) object, simply use the SavedStateHandle get() method:
String restoredName = savedStateHandle.get(NAME_KEY);

Other useful SavedStateHandle methods include the following:

• contains(String key) - Returns a boolean value indicating whether the saved state contains a value for the
specified key.

• remove(String key) - Removes the value and key from the saved state. Returns the value that was removed.

• keys() - Returns a String set of all the keys contained within the saved state.

37.4 Adding Saved State Support to the ViewModelDemo Project
With the basics of ViewModel Saved State covered, the ViewModelDemo app can be extended to include this
support. Begin by loading the ViewModelDemo_LiveData project created in “An Android Jetpack LiveData
Tutorial” into Android Studio (a copy of the project is also available in the sample code download), opening
the build.gradle (Module :app) file and adding the Saved State library dependencies (checking, as always, if more
recent library versions are available):
.

.

dependencies {

.

.

 implementation 'androidx.savedstate:savedstate:1.2.1'
 implementation 'androidx.lifecycle:lifecycle-viewmodel-savedstate:2.6.1'
.

.

}

Next, modify the MainViewModel.java file so that the constructor accepts and stores a SavedStateHandle
instance. Also import androidx.lifecycle.SavedStateHandle, declare a key string constant and modify the result
LiveData variable so that the value is now obtained from the saved state in the constructor:
package com.ebookfrenzy.viewmodeldemo.ui.main;

import androidx.lifecycle.ViewModel;

import androidx.lifecycle.MutableLiveData;

import androidx.lifecycle.SavedStateHandle;

296

An Android ViewModel Saved State Tutorial

public class MainViewModel extends ViewModel {

 private static final String RESULT_KEY = "Euro Value";
 private static final Float rate = 0.74F;

 private String dollarText = "";

 final private SavedStateHandle savedStateHandle;
 final private MutableLiveData<Float> result = new MutableLiveData<>();

 public MainViewModel(SavedStateHandle savedStateHandle) {
 this.savedStateHandle = savedStateHandle;
 result = savedStateHandle.getLiveData(RESULT_KEY);
 }
.

.

}

Remaining within the MainViewModel.java file, modify the setAmount() method to include code to save the
result value each time a new euro amount is calculated:
public void setAmount(String value) {

 this.dollarText = value;

 result.setValue(Float.valueOf(dollarText)* rate);

 Float convertedValue = Float.parseFloat(dollarText)* rate;
 result.setValue(convertedValue);
 savedStateHandle.set(RESULT_KEY, convertedValue);
}

With the changes to the ViewModel complete, open the FirstFragment.java file and make the following alterations
to include a Saved State factory instance during the ViewModel creation process:
.

.

import androidx.lifecycle.SavedStateViewModelFactory;
.

.

@Override

public void onCreate(@Nullable Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 SavedStateViewModelFactory factory =
 new SavedStateViewModelFactory(
 getActivity().getApplication(),this);

 mViewModel = new ViewModelProvider(this, factory).get(MainViewModel.class);
 // TODO: Use the ViewModel

}

Note that the change to the ViewModelProvider call in the above code may cause Android Studio to generate

297

An Android ViewModel Saved State Tutorial

the following syntax error:
Cannot resolve constructor 'ViewModelProvider(FirstFragment,
SavedStateViewModelFactory)'

This syntax error is incorrect and can be ignored. The app will still compile and run successfully.

After completing the changes, build and run the app and perform a currency conversion. Note that the build
may fail with the following error:
Duplicate class kotlin.collections.jdk8.CollectionsJDK8Kt found in modules
jetified-kotlin-stdlib-1.8.0

To correct this error, edit the build.gradle (Module: app) file, add the following dependency, and sync and rebuilt
the project:
dependencies {

.

.

 implementation(platform('org.jetbrains.kotlin:kotlin-bom:1.8.0'))
.

.

With the screen UI populated with both the dollar and euro values, place the app into the background, terminate
it using the adb tool and then relaunch it from the device or emulator screen. After restarting, the previous
currency amounts should still be visible in the TextView and EditText components confirming that the state was
successfully saved and restored.

37.5 Summary
A well designed app should always present the user with the same state when brought forward from the
background, regardless of whether the process containing the app was terminated by the operating system in
the interim. When working with ViewModels this can be achieved by taking advantage of the ViewModel Saved
State module. This involves modifying the ViewModel constructor to accept a SavedStateHandle instance which,
in turn, can be used to save and restore data values via a range of method calls. When the ViewModel instance
is created, it must be passed a SavedStateViewModelFactory instance. Once these steps have been implemented,
the app will automatically save and restore state during a background termination.

299

Chapter 38

38. Working with Android Lifecycle-
Aware Components
The earlier chapter entitled “Understanding Android Application and Activity Lifecycles” described the use of
lifecycle methods to track lifecycle state changes within a UI controller such as an activity or fragment. One
of the main problems with these methods is that they place the burden of handling lifecycle changes onto the
UI controller. On the surface this might seem like the logical approach since the UI controller is, after all, the
object going through the state change. The fact is, however, that the code that is typically impacted by the state
change invariably resides in other classes within the app. This led to complex code appearing in the UI controller
that needed to manage and manipulate other objects in response to changes in lifecycle state. Clearly this is a
scenario best avoided when following the Android architectural guidelines.

A much cleaner and logical approach would be for the objects within an app to be able to observe the lifecycle
state of other objects and to be responsible for taking any necessary actions in response to the changes. The class
responsible for tracking a user’s location, for example, could observe the lifecycle state of a UI controller and
suspend location updates when the controller enters a paused state. Tracking would then be restarted when the
controller enters the resumed state. This is made possible by the classes and interfaces provided by the Lifecycle
package bundled with the Android architecture components.

This chapter will introduce the terminology and key components that enable lifecycle awareness to be built into
Android apps.

38.1 Lifecycle Awareness
An object is said to be lifecycle-aware if it is able to detect and respond to changes in the lifecycle state of other
objects within an app. Some Android components, LiveData being a prime example, are already lifecycle-aware.
It is also possible to configure any class to be lifecycle-aware by implementing the LifecycleObserver interface
within the class.

38.2 Lifecycle Owners
Lifecycle-aware components can only observe the status of objects that are lifecycle owners. Lifecycle owners
implement the LifecycleOwner interface and are assigned a companion Lifecycle object which is responsible
for storing the current state of the component and providing state information to lifecycle observers. Most
standard Android Framework components (such as activity and fragment classes) are lifecycle owners. Custom
classes may also be configured as lifecycle owners by using the LifecycleRegistry class and implementing the
LifecycleObserver interface. For example:
public class SampleOwner implements LifecycleOwner {

 private LifecycleRegistry lifecycleRegistry;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

300

Working with Android Lifecycle-Aware Components

 lifecycleRegistry = new LifecycleRegistry(this);

 }

 @NonNull

 @Override

 public Lifecycle getLifecycle() {

 return lifecycleRegistry;

 }

}

Unless the lifecycle owner is a subclass of another lifecycle-aware component, the class will need to trigger
lifecycle state changes itself via calls to methods of the LifecycleRegistry class. The markState() method can be
used to trigger a lifecycle state change passing through the new state value:
public void resuming() {

 lifecycleRegistry.markState(Lifecycle.State.RESUMED);

}

The above call will also result in a call to the corresponding event handler. Alternatively, the LifecycleRegistry
handleLifecycleEvent() method may be called and passed the lifecycle event to be triggered (which will also result
in the lifecycle state changing). For example:
lifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_START);

38.3 Lifecycle Observers
In order for a lifecycle-aware component to observe the state of a lifecycle owner it must implement the
DefaultLifecycleObserver interface and override methods for any lifecycle change events it needs to observe.
public class SampleObserver implements DefaultLifecycleObserver {

 // Lifecycle event methods overrides go here

}

An instance of this observer class is then created and added to the list of observers maintained by the Lifecycle
object.
getLifecycle().addObserver(new SampleObserver());

An observer may also be removed from the Lifecycle object at any time if it no longer needs to track the lifecycle
state.

Figure 38-1 illustrates the relationship between the key elements that provide lifecycle awareness:

Figure 38-1

301

Working with Android Lifecycle-Aware Components

38.4 Lifecycle States and Events
When the status of a lifecycle owner changes, the assigned Lifecycle object will be updated with the new state.
At any given time, a lifecycle owner will be in one of the following five states:

• Lifecycle.State.INITIALIZED

• Lifecycle.State.CREATED

• Lifecycle.State.STARTED

• Lifecycle.State.RESUMED

• Lifecycle.State.DESTROYED

As the component transitions through the different states, the Lifecycle object will trigger events on any
observers that have been added to the list. The following event methods are available to be overridden within
the lifecycle observer:

• onCreate()

• onResume()

• onPause()

• onStop()

• onStart()

• onDestroy()

The following code, for example, overrides the DefaultLifecycleObserver onResume() method:
@Override

public void onResume(@NonNull LifecycleOwner owner) {

 // Perform tasks in response to Resume status event

}

The flowchart in Figure 38-2 illustrates the sequence of state changes for a lifecycle owner and the lifecycle
events that will be triggered on observers between each state transition:

Figure 38-2

302

Working with Android Lifecycle-Aware Components

38.5 Summary
This chapter has introduced the basics of lifecycle awareness and the classes and interfaces of the Android
Lifecycle package included with Android Jetpack. The package contains a number of classes and interfaces that
are used to create lifecycle owners, lifecycle observers and lifecycle-aware components. A lifecycle owner has
assigned to it a Lifecycle object that maintains a record of the owners state and a list of subscribed observers.
When the owner’s state changes, the observer is notified via lifecycle event methods so that it can respond to
the change.

The next chapter will create an Android Studio project that demonstrates how to work with and create lifecycle-
aware components including the creation of both lifecycle observers and owners, and the handling of lifecycle
state changes and events.

303

Chapter 39

39. An Android Jetpack Lifecycle
Awareness Tutorial
The previous chapter provided an overview of lifecycle awareness and outlined the key classes and interfaces that
make this possible within an Android app project. This chapter will build on this knowledge base by building an
Android Studio project designed to highlight lifecycle awareness in action.

39.1 Creating the Example Lifecycle Project
Select the New Project quick start option from the welcome screen and, within the resulting new project dialog,
choose the Empty Views Activity template before clicking on the Next button.

Enter LifecycleDemo into the Name field and specify com.ebookfrenzy.lifecycledemo as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

39.2 Creating a Lifecycle Observer
As previously discussed, activities and fragments already implement the LifecycleOwner interface and are ready
to be observed by other objects. To see this in practice, the next step in this tutorial is to add a new class to the
project that will be able to observe the MainActivity instance.

To add the new class, right-click on app -> java -> com.ebookfrenzy.lifecycledemo in the Project tool window and
select New -> Java Class... from the resulting menu. In the New Class dialog, name the class DemoObserver and
press the keyboard Return key to create the DemoObserver.java file. The new file should automatically open in
the editor where it will read as follows:
package com.ebookfrenzy.lifecycledemo;

public class DemoObserver {

}

Remaining in the editor, modify the class file to declare that it will be implementing the DefaultLifecycleObserver
interface:
package com.ebookfrenzy.lifecycledemo;

import androidx.lifecycle.DefaultLifecycleObserver;

public class DemoObserver implements DefaultLifecycleObserver {

}

The next step is to override the lifecycle methods of the DefaultLifecycleObserver class. For the purposes of this
example, all of the events will be handled, each outputting a message to the Logcat panel displaying the event
type. Update the observer class as outlined in the following listing:
package com.ebookfrenzy.lifecycledemo;

304

An Android Jetpack Lifecycle Awareness Tutorial

import android.util.Log;

import androidx.annotation.NonNull;
import androidx.lifecycle.LifecycleOwner;

.

.

public class DemoObserver implements DefaultLifecycleObserver {

 private String LOG_TAG = "DemoObserver";

 @Override
 public void onCreate(@NonNull LifecycleOwner owner) {
 Log.i(LOG_TAG, "onCreate");
 }

 @Override
 public void onResume(@NonNull LifecycleOwner owner) {
 Log.i(LOG_TAG, "onResume");
 }

 @Override
 public void onPause(@NonNull LifecycleOwner owner) {
 Log.i(LOG_TAG, "onPause");
 }

 @Override
 public void onStart(@NonNull LifecycleOwner owner) {
 Log.i(LOG_TAG, "onStart");
 }

 @Override
 public void onStop(@NonNull LifecycleOwner owner) {
 Log.i(LOG_TAG, "onStop");
 }

 @Override
 public void onDestroy(@NonNull LifecycleOwner owner) {
 Log.i(LOG_TAG, "onDestroy");
 }
}

With the DemoObserver class completed, the next step is to add it as an observer on the MainActivity class.

305

An Android Jetpack Lifecycle Awareness Tutorial

39.3 Adding the Observer
Observers are added to lifecycle owners via calls to the addObserver() method of the owner’s Lifecycle object, a
reference to which is obtained via a call to the getLifecycle() method. Edit the MainActivity.java class file and edit
the onCreate() method to add an observer:
.

.

import com.ebookfrenzy.lifecycledemo.DemoObserver;
.

.

@Override
public void onViewCreated(@NonNull View view, @Nullable Bundle
savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 getLifecycle().addObserver(new DemoObserver());
}

With the observer class created and added to the lifecycle owner’s Lifecycle object, the app is ready to be tested.

39.4 Testing the Observer
Since the DemoObserver class outputs diagnostic information to the Logcat console, it will be easier to see the
output if a filter is configured to display only the DemoObserver messages. Using the steps outlined previously
in “Android Activity State Changes by Example”, display the Logcat panel and enter the following keys into the
filter field:
package:mine tag:DemoObserver

On successful launch of the app, the Logcat output should indicate the following lifecycle state changes and
events:
onCreate

onStart

onResume

With the app still running, perform a device rotation to trigger the destruction and recreation of the activity,
generating the following additional output:
onPause

onStop

onDestroy

onCreate

onStart

onResume

Before moving to the next section in this chapter, take some time to compare the output from the app with the
flow chart in Figure 38-2 of the previous chapter.

39.5 Creating a Lifecycle Owner
The final task in this chapter is to create a custom lifecycle owner class and demonstrate how to trigger events
and modify the lifecycle state from within that class.

Add a new class by right-clicking on the app -> java -> com.ebookfrenzy.lifecycledemo entry in the Project tool

306

An Android Jetpack Lifecycle Awareness Tutorial

window and selecting the New -> Java Class... menu option. Name the class DemoOwner in the Create Class
dialog before tapping the keyboard Return key. With the new DemoOwner.java file loaded into the code editor,
modify it as follows:
package com.ebookfrenzy.lifecycledemo;

import androidx.lifecycle.Lifecycle;
import androidx.lifecycle.LifecycleOwner;
import androidx.lifecycle.LifecycleRegistry;

import androidx.annotation.NonNull;

public class DemoOwner implements LifecycleOwner {
}

The class is going to need a LifecycleRegistry instance initialized with a reference to itself, and a getLifecycle()
method configured to return the LifecycleRegistry instance. Declare a variable to store the LifecycleRegistry
reference, a constructor to initialize the LifecycleRegistry instance and add the getLifecycle() method:
public class DemoOwner implements LifecycleOwner {

 private final LifecycleRegistry lifecycleRegistry;

 public DemoOwner() {
 lifecycleRegistry = new LifecycleRegistry(this);
 }

 @NonNull
 @Override
 public Lifecycle getLifecycle() {
 return lifecycleRegistry;
 }
}

Next, the class will need to notify the registry of lifecycle state changes. This can be achieved either by marking
the state with the markState() method of the LifecycleRegistry object, or by triggering lifecycle events using
the handleLifecycleEvent() method. What constitutes a state change within a custom class will depend on the
purpose of the class. For this example, we will add some methods that simply trigger lifecycle events when called:
.

.

private final LifecycleRegistry lifecycleRegistry;

.

.

 public void startOwner() {
 lifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_START);
 }

 public void stopOwner() {
 lifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_STOP);

307

An Android Jetpack Lifecycle Awareness Tutorial

 }

 @NonNull

 @Override

 public Lifecycle getLifecycle() {

 return lifecycleRegistry;

 }

.

.

The final change within the DemoOwner class is to add the DemoObserver class as the observer. This call will
be made by adding the following constructor to the class:
public DemoOwner() {

 lifecycleRegistry = new LifecycleRegistry(this);

 getLifecycle().addObserver(new DemoObserver());
}

Load the MainActivity.java file into the code editor, locate the onCreate() method and add code to create an
instance of the DemoOwner class and to call the startOwner() and stopOwner() methods. Note also that the
call to add the DemoObserver as an observer has been removed. Although a single observer can be used with
multiple owners, it is removed in this case to avoid duplicated and confusing output within the Logcat tool
window:
.

.

import com.ebookfrenzy.lifecycledemo.DemoOwner;
.

.

private DemoOwner demoOwner;
.

.

@Override

public void onViewCreated(@NonNull View view, @Nullable Bundle
savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

 demoOwner = new DemoOwner();
 demoOwner.startOwner();
 demoOwner.stopOwner();
 getLifecycle().addObserver(new DemoObserver());

}

39.6 Testing the Custom Lifecycle Owner
Build and run the app one final time, refer to the Logcat tool window and confirm that the observer detected the
create, start and stop lifecycle events in the following order:
onCreate

onStart

onStop

308

An Android Jetpack Lifecycle Awareness Tutorial

Note that the “created” state changes were triggered even though code was not added to the DemoOwner class
to do this manually. In fact, these were triggered automatically both when the owner instance was first created
and subsequently when the ON_STOP event was handled.

39.7 Summary
This chapter has provided a practical demonstration of the steps involved in implementing lifecycle awareness
within an Android app. This included the creation of a lifecycle observer and the design and implementation of
a basic lifecycle owner class.

309

Chapter 40

40. An Overview of the Navigation
Architecture Component
Very few Android apps today consist of just a single screen. In reality, most apps comprise multiple screens through
which the user navigates using screen gestures, button clicks and menu selections. Before the introduction of
Android Jetpack, the implementation of navigation within an app was largely a manual coding process with no
easy way to view and organize potentially complex navigation paths. This situation has improved considerably,
however, with the introduction of the Android Navigation Architecture Component combined with support for
navigation graphs in Android Studio.

40.1 Understanding Navigation
Every app has a home screen that appears after the app has launched and after any splash screen has appeared
(a splash screen being the app branding screen that appears temporarily while the app loads). From this home
screen, the user will typically perform tasks that will result in other screens appearing. These screens will usually
take the form of other activities and fragments within the app. A messaging app, for example, might have a home
screen listing current messages from which the user can navigate to either another screen to access a contact
list or to a settings screen. The contacts list screen, in turn, might allow the user to navigate to other screens
where new users can be added or existing contacts updated. Graphically, the app’s navigation graph might be
represented as shown in Figure 40-1:

Figure 40-1
Each screen that makes up an app, including the home screen, is referred to as a destination and is usually a
fragment or activity. The Android navigation architecture uses a navigation stack to track the user’s path through
the destinations within the app. When the app first launches, the home screen is the first destination placed
onto the stack and becomes the current destination. When the user navigates to another destination, that screen

310

An Overview of the Navigation Architecture Component

becomes the current destination and is pushed onto the stack above the home destination. As the user navigates
to other screens, they are also pushed onto the stack. Figure 40-2, for example, shows the current state of the
navigation stack for the hypothetical messaging app after the user has launched the app and is navigating to the
“Add Contact” screen:

Figure 40-2
As the user navigates back through the screens using the system back button, each destination is popped off the
stack until the home screen is once again the only destination on the stack. In Figure 40-3, the user has navigated
back from the Add Contact screen, popping it off the stack and making the Contacts List screen the current
destination:

Figure 40-3
All of the work involved in navigating between destinations and managing the navigation stack is handled by a
navigation controller which is represented by the NavController class.

Adding navigation to an Android project using the Navigation Architecture Component is a straightforward
process involving a navigation host, navigation graph, navigation actions and a minimal amount of code writing
to obtain a reference to, and interact with, the navigation controller instance.

40.2 Declaring a Navigation Host
A navigation host is simply a special fragment (NavHostFragment) that is embedded into the user interface
layout of an activity and serves as a placeholder for the destinations through which the user will navigate. Figure
40-4, for example, shows a typical activity screen and highlights the area represented by the navigation host

311

An Overview of the Navigation Architecture Component

fragment:

Figure 40-4
A NavHostFragment can be placed into an activity layout within the Android Studio layout editor either by
dragging and dropping an instance from the Containers section of the palette, or by manually editing the XML
as follows:
<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/container"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity" >

 <androidx.fragment.app.FragmentContainerView
 android:id="@+id/demo_nav_host_fragment"
 android:name="androidx.navigation.fragment.NavHostFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:defaultNavHost="true"
 app:navGraph="@navigation/navigation_graph" />
</FrameLayout>

The points of note in the above navigation host fragment element are the reference to the NavHostFragment in
the name property, the setting of defaultNavHost to true and the assignment of the file containing the navigation
graph to the navGraph property.

When the activity launches, this navigation host fragment is replaced by the home destination designated in
the navigation graph. As the user navigates through the app screens, the host fragment will be replaced by the
appropriate fragment for the destination.

312

An Overview of the Navigation Architecture Component

40.3 The Navigation Graph
A navigation graph is an XML file which contains the destinations that will be included in the app navigation.
In addition to these destinations, the file also contains navigation actions that define navigation between
destinations, and optional arguments for passing data from one destination to another. Android Studio includes
a navigation graph editor that can be used to design graphs and implement actions either visually or by manually
editing the XML.

Figure 40-5, shows the Android Studio navigation graph editor in Design mode:

Figure 40-5
The destinations list (A) provides a list of all of the destinations currently contained within the graph. Selecting
a destination from the list will locate and select the corresponding destination in the graph (particularly useful
for locating specific destinations in a large graph). The navigation graph panel (B) contains a dialog for each
destination showing a representation of the user interface layout. In this example, this graph contains two
destinations named mainFragment and secondFragment. Arrows between destinations (C) represent navigation
action connections. Actions are added by hovering the mouse pointer over the edge of the origin until a circle
appears, then clicking and dragging from the circle to the destination. The Attributes panel (D) allows the
properties of the currently selected destination or action connection to be viewed and modified. In the above
figure, the attributes for the action are displayed. New destinations are added by clicking on the button marked E
and selecting options from a menu. Options are available to add existing fragments or activities as destinations,
or to create new blank fragment destinations. The Component Tree panel (F) provides a hierarchical overview
of the navigation graph.

The underlying XML for the navigation graph can be viewed and modified by switching the editor into Code
mode. The following XML listing represents the navigation graph for the destinations and action connection
shown in Figure 40-5 above:
<?xml version="1.0" encoding="utf-8"?>

<navigation xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/navigation_graph"

 app:startDestination="@id/mainFragment">

 <fragment

 android:id="@+id/mainFragment"

 android:name="com.ebookfrenzy.navigationdemo.ui.main.MainFragment"

313

An Overview of the Navigation Architecture Component

 android:label="fragment_main"

 tools:layout="@layout/fragment_main" >

 <action

 android:id="@+id/mainToSecond"

 app:destination="@id/secondFragment" />

 </fragment>

 <fragment

 android:id="@+id/secondFragment"

 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"

 android:label="fragment_second"

 tools:layout="@layout/fragment_second" >

 </fragment>

</navigation>

If necessary, navigation graphs can also be split over multiple files to improve organization and promote reuse.
When structured in this way, nested graphs are embedded into root graphs. To create a nested graph, simply shift-
click on the destinations to be nested, right-click over the first destination and select the Move to Nested Graph
-> New Graph menu option. The nested graph will then appear as a new node in the graph. To access the nested
graph, simply double-click on the nested graph node to load the graph file into the editor.

40.4 Accessing the Navigation Controller
Navigating from one destination to another will usually take place in response to an event of some kind within
an app such as a button click or menu selection. Before a navigation action can be triggered, the code must first
obtain a reference to the navigation controller instance. This requires a call to the findNavController() method
of the Navigation or NavHostFragment classes. The following code, for example, can be used to access the
navigation controller of an activity. Note that for the code to work, the activity must contain a navigation host
fragment:
NavController controller =

 Navigation.findNavController(activity, R.id.demo_nav_host_fragment);

In this case, the method call is passed a reference to the activity and the id of the NavHostFragment embedded
in the activity’s layout.

Alternatively, the navigation controller associated with any view may be identified simply by passing that view
to the method:
NavController controller = Navigation.findNavController(binding.button);

The final option finds the navigation controller for a fragment by calling the findNavController() method of the
NavHostFragment class, passing through a reference to the fragment:
NavController controller = NavHostFragment.findNavController(fragment);

40.5 Triggering a Navigation Action
Once the navigation controller has been found, a navigation action is triggered by calling the controller’s
navigate() method and passing through the resource id of the action to be performed. For example:
controller.navigate(R.id.goToContactsList);

The id of the action is defined within the Attributes panel of the navigation graph editor when an action
connection is selected.

314

An Overview of the Navigation Architecture Component

40.6 Passing Arguments
Data may be passed from one destination to another during a navigation action by making use of arguments
which are declared within the navigation graph file. An argument consists of a name, type and an optional
default value and may be added manually within the XML or using the Attributes panel when an action arrow or
destination is selected within the graph. In Figure 40-6, for example, an integer argument named contactsCount
has been declared with a default value of 0:

Figure 40-6
Once added, arguments are placed within the XML element of the receiving destination, for example:
<fragment

 android:id="@+id/secondFragment"

 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"

 android:label="fragment_second"

 tools:layout="@layout/fragment_second" >

 <argument

 android:name="contactsCount"

 android:defaultValue=0

 app:type="integer" />

</fragment>

The Navigation Architecture Component provides two techniques for passing data between destinations. One
approach involves placing the data into a Bundle object that is passed to the destination during an action where
it is then unbundled and the arguments extracted.

The main drawback to this particular approach is that it is not “type safe”. In other words, if the receiving
destination treats an argument as being a different type than it was declared (for example treating a string as an
integer) this error will not be caught by the compiler and will likely cause problems at runtime.

A better option, and the one used in this book is to make use of safeargs. Safeargs is a plugin for the Android
Studio Gradle build system which automatically generates special classes that allow arguments to be passed
in a type safe way. The safeargs approach to argument passing will be described and demonstrated in the next
chapter (“An Android Jetpack Navigation Component Tutorial”).

40.7 Summary
The term Navigation within the context of an Android app user interface refers to the ability of a user to move
back and forth between different screens. Once time consuming to implement and difficult to organize, Android
Studio and the Navigation Architecture Component now make it easier to implement and manage navigation
within Android app projects.

The different screens within an app are referred to as destinations and are usually represented by fragments or
activities. All apps have a home destination which includes the screen displayed when the app first loads. The
content area of this layout is replaced by a navigation host fragment which is swapped out for other destination
fragments as the user navigates the app. The navigation path is defined by the navigation graph file consisting of
destinations and the actions that connect them together with any arguments to be passed between destinations.
Navigation is handled by navigation controllers which, in addition to managing the navigation stack, provide
methods to initiate navigation actions from within app code.

315

Chapter 41

41. An Android Jetpack Navigation
Component Tutorial
The previous chapter described the Android Jetpack Navigation Component and how it integrates with the
navigation graphing features of Android Studio to provide an easy way to implement navigation between
the screens of an Android app. In this chapter, a new Android Studio project will be created that uses these
navigation features to implement an example app containing multiple screens. In addition to demonstrating the
use of the Android Studio navigation graph editor, the example project will also implement the passing of data
between origin and destination screens using type-safe arguments.

41.1 Creating the NavigationDemo Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter NavigationDemo into the Name field and specify com.ebookfrenzy.navigationdemo as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and
the Language menu to Java.

41.2 Adding Navigation to the Build Configuration
A new Empty Views Activity project does not, by default, include the Navigation component libraries in the
build configuration files. Before performing any other tasks, therefore, the first step is to modify the app level
build.gradle file. Locate this file in the project tool window (Gradle Scripts -> build.gradle (Module :app)), double-
click on it to load it into the code editor and modify the dependencies section to add the navigation libraries.
Also take this opportunity to enable view binding for this module:
android {

 buildFeatures {
 viewBinding true
 }
.

.

dependencies {

 implementation 'androidx.navigation:navigation-fragment:2.5.3'
 implementation 'androidx.navigation:navigation-ui:2.5.3'
.

.

}

Note that newer versions of these libraries may have been released since this book was published. After adding
the navigation dependencies to the file, click on the Sync Now link to resynchronize the build configuration for
the project.

316

An Android Jetpack Navigation Component Tutorial

41.3 Creating the Navigation Graph Resource File
With the navigation libraries added to the build configuration the navigation graph resource file can now be
added to the project. As outlined in “An Overview of the Navigation Architecture Component”, this is an XML
file that contains the fragments and activities through which the user will be able to navigate, together with the
actions to perform the transitions and any data to be passed between destinations.

Within the Project tool window, locate the res folder (app -> res), right-click on it and select the New ->Android
Resource File menu option:

Figure 41-1
After the menu item has been selected, the New Resource File dialog will appear. In this dialog, name the file
navigation_graph and change the Resource type menu to Navigation as outlined in Figure 41-2 before clicking
on the OK button to create the file.

Figure 41-2
After the navigation graph resource file has been added to the project it will appear in the main panel ready for
new destinations to be added. Switch the editor to Code mode and review the XML for the graph before any
destinations are added:
<?xml version="1.0" encoding="utf-8"?>

<navigation xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 android:id="@+id/navigation_graph">

</navigation>

Switch back to Design mode within the editor and note that the Host section of the Destinations panel indicates
that no navigation host fragments have been detected within the project:

317

An Android Jetpack Navigation Component Tutorial

Figure 41-3

Before adding any destinations to the navigation graph, the next step is to add a navigation host fragment to the
project.

41.4 Declaring a Navigation Host
For this project, the navigation host fragment will be contained within the user interface layout of the main
activity. First, locate the main activity layout file in the Project tool window (app -> res -> layout -> activity_
main.xml), load it into the layout editor tool and delete the default TextView component..

With the layout editor in Design mode, drag a NavHostFragment element from the Containers section of the
Palette and drop it onto the container area of the activity layout as indicated by the arrow in Figure 41-4:

Figure 41-4
From the resulting Navigation Graphs dialog, select the navigation_graph.xml file created in the previous section
and click on the OK button.

With the newly added NavHostFragment instance selected in the layout, use the Attributes tool window to
change the ID of the element to demo_nav_host_fragment before clicking on the Infer constraints button.

Switch the layout editor to Code mode and review the XML file. Note that the editor has correctly configured
the navigation graph property to reference the navigation_graph.xml file and that the defaultNavHost property
has been set to true:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

318

An Android Jetpack Navigation Component Tutorial

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <androidx.fragment.app.FragmentContainerView

 android:id="@+id/demo_nav_host_fragment"

 android:name="androidx.navigation.fragment.NavHostFragment"

 android:layout_width="409dp"

 android:layout_height="729dp"

 app:defaultNavHost="true"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:navGraph="@navigation/navigation_graph" />

</androidx.constraintlayout.widget.ConstraintLayout>

Return to the navigation_graph.xml file and confirm that the NavHostFragment instance has been detected (it
may be necessary to close and reopen the file before the change appears):

Figure 41-5

41.5 Adding Navigation Destinations
Remaining in the navigation graph it is now time to add the first destination. Click on the new destination
button as shown in Figure 41-6 to select or create a destination:

Figure 41-6
Next, select the Create new destination option from the menu. In the resulting dialog, select the Fragment
(Blank) template, name the new fragment FirstFragment and the layout fragment_first before clicking on the
Finish button. After a short delay while the project rebuilds, the new fragment will appear as a destination within

319

An Android Jetpack Navigation Component Tutorial

the graph as shown in Figure 41-7:

Figure 41-7
The home icon positioned above the destination node indicates that this is the start destination. This means
that the destination will be the first displayed when the activity containing the NavHostFragment is created. To
change the start destination to another destination, select that node in the graph and click on the home button
located in the toolbar.

Review the XML content of the navigation graph by switching the editor to Code mode:
<?xml version="1.0" encoding="utf-8"?>

<navigation xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/navigation_graph"

 app:startDestination="@id/firstFragment">

 <fragment

 android:id="@+id/firstFragment"

 android:name="com.ebookfrenzy.navigationdemo.FirstFragment"

 android:label="fragment_first"

 tools:layout="@layout/fragment_first" />

</navigation>

Before any navigation can be performed, the graph needs at least one more destination. Repeat the above steps
to add a fragment named SecondFragment with the layout file named fragment_second. The new fragment will
appear as another destination within the graph as shown in Figure 41-8:

320

An Android Jetpack Navigation Component Tutorial

Figure 41-8

41.6 Designing the Destination Fragment Layouts
Before adding actions to navigate between destinations now is a good time to add some user interface components
to the two destination fragments in the graph. Begin by double-clicking on the firstFragment destination so that
the fragment_first.xml file loads into the layout editor, then select and delete the default TextView instance. Within
the Component Tree panel, right-click on the FrameLayout entry and select the Convert from FrameLayout to
ConstraintLayout menu option, accepting the default settings in the resulting conversion dialog:

Figure 41-9
Using the Attributes tool window, change the ID of the ConstraintLayout to constraintLayout, then drag and
drop Button and Plain Text EditText widgets onto the layout so that it resembles that shown in Figure 41-10
below:

321

An Android Jetpack Navigation Component Tutorial

Figure 41-10
Once the views are correctly positioned, click on the Infer constraints button in the toolbar to add any missing
constraints to the layout. Select the EditText view and use the Attributes tool window to delete the default
“Name” text and to change the ID of the widget to userText.

Return to the navigation_graph.xml file and double-click on the secondFragment destination to load the
fragment_second.xml file into the layout editor. Select and delete the default TextView instance and repeat the
above steps to convert the FrameLayout to a ConstraintLayout, this time changing the id to constraintLayout2.
Next, drag and drop a new TextView widget so that it is positioned in the center of the layout and click on the
Infer constraints button to add any missing constraints. With the new TextView selected, use the Attributes panel
to change the ID to argText.

41.7 Adding an Action to the Navigation Graph
Now that the two destinations have been added to the graph and the corresponding user interface layouts
designed, the project now needs a way for the user to navigate from the first fragment to the second fragment.
This will be achieved by adding an action to the graph which can then be referenced from within the app code.

To establish an action connection with the first fragment as the origin and second fragment as the destination,
open the navigation graph and hover the mouse pointer over the vertical center of the right-hand edge of the
firstFragment destination so that a circle appears as highlighted in Figure 41-11:

322

An Android Jetpack Navigation Component Tutorial

Figure 41-11
Click within the circle and drag the resulting line to the secondFragment destination:

Figure 41-12
Release the line to establish the action connection between the origin and destination at which point the line will
change into an arrow as shown in Figure 41-13:

Figure 41-13
An action connection may be deleted at any time by selecting it and pressing the keyboard Delete key. With
the arrow selected, review the properties available within the Attributes tool window and change the ID to
mainToSecond. This is the ID by which the action will be referenced within the code. Switch the editor to Code
mode and note that the action is now included within the XML:
<?xml version="1.0" encoding="utf-8"?>

<navigation xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/navigation_graph"

 app:startDestination="@id/firstFragment">

 <fragment

 android:id="@+id/firstFragment"

 android:name="com.ebookfrenzy.navigationdemo.FirstFragment"

 android:label="fragment_first"

323

An Android Jetpack Navigation Component Tutorial

 tools:layout="@layout/fragment_first" >

 <action

 android:id="@+id/mainToSecond"

 app:destination="@id/secondFragment" />

 </fragment>

 <fragment

 android:id="@+id/secondFragment"

 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"

 android:label="fragment_second"

 tools:layout="@layout/fragment_second" />

</navigation>

41.8 Implement the OnFragmentInteractionListener
Before adding code to trigger the action, the MainActivity class will need to be modified to implement the
OnFragmentInteractionListener interface. This is an interface that was generated within the Fragment classes
when the blank fragments were created within the navigation graph editor. To conform to the interface,
the activity needs to implement a single method named onFragmentInteraction() and is used to implement
communication between the fragment and the activity.

Edit the MainActivity.java file and modify it so that it reads as follows:
.

.

import android.net.Uri;
.

.

public class MainActivity extends AppCompatActivity implements SecondFragment.
OnFragmentInteractionListener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 @Override
 public void onFragmentInteraction(Uri uri) {
 }
}

If Android Studio reports that OnFragmentInteractionListener is undefined (some versions of Android Studio
add it automatically, while others do not), edit the SecondFragment.java file and add the following:
.
.
import android.net.Uri;
.
.
 public interface OnFragmentInteractionListener {

324

An Android Jetpack Navigation Component Tutorial

 // TODO: Update argument type and name
 void onFragmentInteraction(Uri uri);
 }
.
.

41.9 Adding View Binding Support to the Destination Fragments
Since we will be accessing some of the views in the fragment layouts we will need to modify the current code
to enable view binding support. Begin by editing the FirstFragment.java file and making the following changes:
.

.

import com.ebookfrenzy.navigationdemo.databinding.FragmentFirstBinding;
.

.

public class FirstFragment extends Fragment {

 private FragmentFirstBinding binding;
.

.

 @Nullable

 @Override

 public View onCreateView(@NonNull LayoutInflater inflater, @Nullable ViewGroup
container,

 @Nullable Bundle savedInstanceState) {

 return inflater.inflate(R.layout.fragment_first, container, false);

 binding = FragmentFirstBinding.inflate(inflater, container, false);
 return binding.getRoot();
 }

 @Override
 public void onDestroyView() {
 super.onDestroyView();
 binding = null;
 }
.
.

Repeat the above steps for the SecondFragment.java file, this time referencing FragmentSecondBinding.

41.10 Triggering the Action
Now that the action has been added to the navigation graph, the next step is to add some code within the first
fragment to trigger the action when the Button widget is clicked. Locate the FirstFragment.java file, load it into
the code editor and override the onViewCreated() method to obtain a reference to the button instance and to
configure an onClickListener instance to be called when the user clicks the button:
.

.

325

An Android Jetpack Navigation Component Tutorial

import androidx.annotation.NonNull;
import androidx.annotation.Nullable;
import android.widget.Button;
import androidx.navigation.Navigation;
.

.

public class FirstFragment extends Fragment {

.

.

 @Override
 public void onViewCreated(@NonNull View view,
 @Nullable Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 binding.button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Navigation.findNavController(view).navigate(
 R.id.mainToSecond);
 }
 });
 }
}

The above code obtains a reference to the navigation controller and calls the navigate() method on that instance,
passing through the resource ID of the navigation action as an argument.

Compile and run the app and verify that clicking the button in the first fragment transitions to the second
fragment.

As an alternative to this approach to setting up a listener, the Navigation class also includes a method named
createNavigateOnClickListener() which provides a more efficient way of setting up a listener and navigating to
a destination. The same result can be achieved, therefore, using the following single line of code to initiate the
transition:
binding.button.setOnClickListener(Navigation.createNavigateOnClickListener(

 R.id.mainToSecond, null));

41.11 Passing Data Using Safeargs
The next objective is to pass the text entered into the EditText view in the first fragment to the second fragment
where it will be displayed on the TextView widget. As outlined in the previous chapter, the Android Navigation
component supports two approaches to passing data. This chapter will make use of type safe argument passing.

The first step in using safeargs is to add the safeargs plugin to the Gradle build configuration. Using the
Project tool window, locate and edit the project level build.gradle file (Gradle Scripts -> build.gradle (Project:
NavigationDemo)) to add the plugin dependency as follows (once again keeping in mind that a more recent
version may now be available):
// Top-level build file where you can add configuration options common to all sub-
projects/modules.

buildscript {

326

An Android Jetpack Navigation Component Tutorial

 dependencies {
 classpath("androidx.navigation:navigation-safe-args-gradle-plugin:2.5.3")
 }
}

plugins {

.

.

Next, edit the module level build.gradle file (Gradle Scripts -> build.gradle (Module :app)) to apply the plugin as
follows and resync the project:
plugins {

 id 'com.android.application'

 id 'androidx.navigation.safeargs'
.

.

android {

.

.

The next step is to define any arguments that will be received by the destination which, in this case, is the second
fragment. Edit the navigation graph, select the secondFragment destination and locate the Arguments section
within the Attributes tool window. Click on the + button (highlighted in Figure 41-14) to add a new argument
to the destination:

Figure 41-14
After the + button has been clicked, a dialog will appear into which the argument name, type and default value
need to be entered. Name the argument message, set the type to String, enter No Message into the default value
field, and click the Add button:

327

An Android Jetpack Navigation Component Tutorial

Figure 41-15
The newly configured argument will appear in the secondFragment element of the navigation_graph.xml file as
follows:
<fragment

 android:id="@+id/secondFragment"

 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"

 android:label="fragment_second"

 tools:layout="@layout/fragment_second" >

 <argument

 android:name="message"

 app:argType="string"

 android:defaultValue="No Message" />

</fragment>

The next step is to add code to the FirstFragment.java file to extract the text from the EditText view and pass it
to the second fragment during the navigation action. This will involve using some special navigation classes that
have been generated automatically by the safeargs plugin. Currently the navigation involves the FirstFragment
class, the SecondFragment class, a navigation action named mainToSecond and an argument named message.

When the project is built, the safeargs plugin will generate the following additional classes that can be used to
pass and receive arguments during navigation.

• FirstFragmentDirections - This class represents the origin for the navigation action (named using the class
name of the navigation origin with “Directions” appended to the end) and provides access to the action object.

• ActionMainToSecond - The class that represents the action used to perform the transition (named based
on the ID assigned to the action within the navigation graph file prefixed with “Action”). This class contains
a setter method for each of the arguments configured on the destination. For example, since the second
fragment destination contains an argument named message, the class includes a method named setMessage().
Once configured, an instance of this class is then passed to the navigate() method of the navigation controller
to navigate to the destination.

• SecondFragmentArgs - The class used in the destination fragment to access the arguments passed from the
origin (named using the class name of the navigation destination with “Args” appended to the end). This class
includes a getter method for each of the arguments passed to the destination (i.e. getMessage())

Using these classes, the onClickListener code within the onViewCreated() method of the FirstFragment.java file

328

An Android Jetpack Navigation Component Tutorial

can be modified as follows to extract the current text from the EditText widget, apply it to the action and initiate
the transition to the second fragment:
.

.

binding.button.setOnClickListener(view1 -> {

 FirstFragmentDirections.MainToSecond action =
 FirstFragmentDirections.mainToSecond();

 action.setMessage(binding.userText.getText().toString());
 Navigation.findNavController(view1).navigate(action);
});

The above code obtains a reference to the action object, sets the message argument string using the setMessage()
method and then calls the navigate() method of the navigation controller, passing through the action object.
If Android Studio reports FirstFragmentDirections as being undefined, rebuild the project using the Build ->
Make Project menu option to generate the class.

All that remains is to modify the SecondFragment.java class file to receive the argument after the navigation has
been performed and display it on the TextView widget. For this example, the code to achieve these tasks will
be added using an onStart() lifecycle method. Edit the SecondFragment.java file and add this method so that it
reads as follows:
.

.

@Override
public void onStart() {
 super.onStart();

 SecondFragmentArgs args = SecondFragmentArgs.fromBundle(getArguments());
 String message = args.getMessage();
 binding.argText.setText(message);
}

The code in the above method begins by obtaining a reference to the TextView widget. Next, the fromBundle()
method of the SecondFragmentArgs class is called to extract the SecondFragmentArgs object received from
the origin. Since the argument in this example was named message in the navigation_graph.xml file, the
corresponding getMessage() method is called on the args object to obtain the string value. This string is then
displayed on the TextView widget.

Compile and run the app and enter some text before clicking on the Button widget. When the second fragment
destination appears, the TextView should now display the text entered in the first fragment indicating that the
data was successfully passed between navigation destinations.

41.12 Summary
This chapter has provided a practical example of how to implement Android app navigation using the Navigation
Architecture Component together with the Android Studio navigation graph editor. Topics covered included
the creation of a navigation graph containing both existing and new destination fragments, the embedding of a
navigation host fragment within an activity layout, writing code to trigger navigation events and the passing of
arguments between destinations using the Gradle safeargs plugin.

329

Chapter 42

42. An Introduction to MotionLayout
The MotionLayout class provides an easy way to add animation effects to the views of a user interface layout.
This chapter will begin by providing an overview of MotionLayout and introduce the concepts of MotionScenes,
Transitions and Keyframes. Once these basics have been covered, the next two chapters (entitled “An Android
MotionLayout Editor Tutorial” and “A MotionLayout KeyCycle Tutorial”) will provide additional detail and
examples of MotionLayout animation in action through the creation of example projects.

42.1 An Overview of MotionLayout
MotionLayout is a layout container, the primary purpose of which is to animate the transition of views within
a layout from one state to another. MotionLayout could, for example, animate the motion of an ImageView
instance from the top left-hand corner of the screen to the bottom right-hand corner over a specified period of
time. In addition to the position of a view, other attribute changes may also be animated, such as the color, size
or rotation angle. These state changes can also be interpolated (such that a view moves, rotates and changes size
throughout the animation).

The motion of a view using MotionLayout may be performed in a straight line between two points, or
implemented to follow a path comprising intermediate points located at different positions between the start
and end points. MotionLayout also supports the use of touches and swipes to initiate and control animation.

MotionLayout animations are declared entirely in XML and do not typically require that any code be written.
These XML declarations may be implemented manually in the Android Studio code editor, visually using the
MotionLayout editor, or using a combination of both approaches.

42.2 MotionLayout
When implementing animation, the ConstraintLayout container typically used in a user interface must first be
converted to a MotionLayout instance (a task which can be achieved by right-clicking on the ConstraintLayout
in the layout editor and selecting the Convert to MotionLayout menu option). MotionLayout also requires at
least version 2.0.0 of the ConstraintLayout library.

Unsurprisingly since it is a subclass of ConstraintLayout, MotionLayout supports all of the layout features of
the ConstraintLayout. A user interface layout can, therefore, be designed in exactly the same way when using
MotionLayout for any views that do not require animation.

For views that are to be animated, two ConstraintSets are declared defining the appearance and location of the
view at the start and end of the animation. A transition declaration defines key frames to apply additional effects
to the target view between these start and end states, together with click and swipe handlers used to start and
control the animation.

Both the start and end ConstraintSets and the transitions are declared within a MotionScene XML file.

42.3 MotionScene
As we have seen in earlier chapters, an XML layout file contains the information necessary to configure the
appearance and layout behavior of the static views presented to the user, and this is still the case when using
MotionLayout. For non-static views (in other words the views that will be animated) those views are still
declared within the layout file, but the start, end and transition declarations related to those views are stored
in a separate XML file referred to as the MotionScene file (so called because all of the declarations are defined

330

An Introduction to MotionLayout

within a MotionScene element). This file is imported into the layout XML file and contains the start and end
ConstraintSets and Transition declarations (a single file can contain multiple ConstraintSet pairs and Transition
declarations allowing different animations to be targeted to specific views within the user interface layout).

The following listing shows a template for a MotionScene file:
<?xml version="1.0" encoding="utf-8"?>

<MotionScene

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:motion="http://schemas.android.com/apk/res-auto">

 <Transition

 motion:constraintSetEnd="@+id/end"

 motion:constraintSetStart="@id/start"

 motion:duration="1000">

 <KeyFrameSet>

 </KeyFrameSet>

 </Transition>

 <ConstraintSet android:id="@+id/start">

 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">

 </ConstraintSet>

</MotionScene>

In the above XML, ConstraintSets named start and end (though any name can be used) have been declared
which, at this point, are yet to contain any constraint elements. The Transition element defines that these
ConstraintSets represent the animation start and end points and contains an empty KeyFrameSet element ready
to be populated with additional animation key frame entries. The Transition element also includes a millisecond
duration property to control the running time of the animation.

ConstraintSets do not have to imply motion of a view. It is possible, for example, to have the start and end sets
declare the same location on the screen, and then use the transition to animate other property changes such as
scale and rotation angle.

42.4 Configuring ConstraintSets
The ConstraintSets in the MotionScene file allow the full set of ConstraintLayout settings to be applied to a view
in terms of positioning, sizing and relation to the parent and other views. In addition, the following attributes
may also be included within the ConstraintSet declarations:

• alpha

• visibility

• elevation

• rotation

• rotationX

• rotationY

331

An Introduction to MotionLayout

• translationX

• translationY

• translationZ

• scaleX

• scaleY

For example, to rotate the view by 180° during the animation the following could be declared within the start
and end constraints:
<ConstraintSet android:id="@+id/start">

 <Constraint

.

.

 motion:layout_constraintStart_toStartOf="parent"

 android:rotation="0">
 </Constraint>

</ConstraintSet>

<ConstraintSet android:id="@+id/end">

 <Constraint

.

.

 motion:layout_constraintBottom_toBottomOf="parent"

 android:rotation="180">
 </Constraint>

</ConstraintSet>

The above changes tell MotionLayout that the view is to start at 0° and then, during the animation, rotate a full
180° before coming to rest upside-down.

42.5 Custom Attributes
In addition to the standard attributes listed above, it is also possible to specify a range of custom attributes
(declared using CustomAttribute). In fact, just about any property available on the view type can be specified
as a custom attribute for inclusion in an animation. To identify the name of the attribute, find the getter/setter
name from the documentation for the target view class, remove the get/set prefix and lower the case of the first
remaining character. For example, to change the background color of a Button view in code, we might call the
setBackgroundColor() setter method as follows:
myButton.setBackgroundColor(Color.RED)

When setting this attribute in a constraint set or key frame, the attribute name will be backgroundColor. In
addition to the attribute name, the value must also be declared using the appropriate type from the following
list of options:

• motion:customBoolean - Boolean attribute values.

• motion:customColorValue - Color attribute values.

• motion:customDimension - Dimension attribute values.

332

An Introduction to MotionLayout

• motion:customFloatValue - Floating point attribute values.

• motion:customIntegerValue - Integer attribute values.

• motion:customStringValue - String attribute values

For example, a color setting will need to be assigned using the customColorValue type:
<CustomAttribute

 motion:attributeName="backgroundColor"

 motion:customColorValue="#43CC76" />

The following excerpt from a MotionScene file, for example, declares start and end constraints for a view in
addition to changing the background color from green to red:
.

.

 <ConstraintSet android:id="@+id/start">

 <Constraint
 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 motion:layout_editor_absoluteX="21dp"

 android:id="@+id/button"

 motion:layout_constraintTop_toTopOf="parent"

 motion:layout_constraintStart_toStartOf="parent" >

 <CustomAttribute
 motion:attributeName="backgroundColor"
 motion:customColorValue="#33CC33" />
 </Constraint>
 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">

 <Constraint

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 motion:layout_editor_absoluteY="21dp"

 android:id="@+id/button"

 motion:layout_constraintEnd_toEndOf="parent"

 motion:layout_constraintBottom_toBottomOf="parent" >

 <CustomAttribute
 motion:attributeName="backgroundColor"
 motion:customColorValue="#F80A1F" />
 </Constraint>
 </ConstraintSet>

.

.

42.6 Triggering an Animation
Without some form of event to tell MotionLayout to start the animation, none of the settings in the MotionScene
file will have any effect on the layout (with the exception that the view will be positioned based on the setting in

333

An Introduction to MotionLayout

the start ConstraintSet).

The animation can be configured to start in response to either screen tap (OnClick) or swipe motion (OnSwipe)
gesture. The OnClick handler causes the animation to start and run until completion while OnSwipe will
synchronize the animation to move back and forth along the timeline to match the touch motion. The OnSwipe
handler will also respond to “flinging” motions on the screen. The OnSwipe handler also provides options
to configure how the animation reacts to dragging in different directions and the side of the target view to
which the swipe is to be anchored. This allows, for example, left-ward dragging motions to move a view in the
corresponding direction while preventing an upward motion from causing a view to move sideways (unless, of
course, that is the required behavior).

The OnSwipe and OnClick declarations are contained within the Transition element of a MotionScene file.
In both cases the view id must be specified. For example, to implement an OnSwipe handler responding to
downward drag motions anchored to the bottom edge of a view named button, the following XML would be
placed in the Transition element:
.

.

<Transition

 motion:constraintSetEnd="@+id/end"

 motion:constraintSetStart="@id/start"

 motion:duration="1000">

 <KeyFrameSet>

 </KeyFrameSet>

 <OnSwipe
 motion:touchAnchorId="@+id/button"
 motion:dragDirection="dragDown"
 motion:touchAnchorSide="bottom" />
</Transition>

.

.

Alternatively, to add an OnClick handler to the same button:
<OnClick motion:targetId="@id/button"

 motion:clickAction="toggle" />

In the above example the action has been set to toggle mode. This mode, and the other available options can be
summarized as follows:

• toggle - Animates to the opposite state. For example, if the view is currently at the transition start point it will
transition to the end point, and vice versa.

• jumpToStart - Changes immediately to the start state without animation.

• jumpToEnd - Changes immediately to the end state without animation.

• transitionToStart - Transitions with animation to the start state.

• transitionToEnd - Transitions with animation to the end state.

334

An Introduction to MotionLayout

42.7 Arc Motion
By default, a movement of view position will travel in a straight-line between the start and end points. To
change the motion to an arc path, simply use the pathMotionArc attribute as follows within the start constraint,
configured with either a startHorizontal or startVertical setting to define whether arc is to be concave or convex:
<ConstraintSet android:id="@+id/start">

 <Constraint

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 motion:layout_editor_absoluteX="21dp"

 android:id="@+id/button"

 motion:layout_constraintTop_toTopOf="parent"

 motion:layout_constraintStart_toStartOf="parent"

 motion:pathMotionArc="startVertical" >

Figure 42-1 illustrates startVertical and startHorizontal arcs in comparison to the default straight line motion:

Figure 42-1

42.8 Keyframes
All of the ConstraintSet attributes outlined so far only apply to the start and end points of the animation. In
other words if the rotation property were set to 180° on the end point, the rotation will begin when animation
starts and complete when the end point is reached. It is not, therefore, possible to configure the rotation to reach
the full 180° at a point 50% of the way through the animation and then rotate back to the original orientation by
the end of the animation. Fortunately, this type of effect is available using Keyframes.

Keyframes are used to define intermediate points during the animation at which state changes are to occur.
Keyframes could, for example, be declared such that the background color of a view is to have transitioned to
blue at a point 50% of the way through the animation, green at the 75% point and then back to the original color
by the end of the animation. Keyframes are implemented within the Transition element of the MotionScene file
embedded into the KeyFrameSet element.

MotionLayout supports several types of Keyframe which can be summarized as follows:

42.8.1 Attribute Keyframes
Attribute Keyframes (declared using KeyAttribute) allow view attributes to be changed at intermediate points
in the animation timeline. KeyAttribute supports the same set of attributes listed above for ConstraintSets
combined with the ability to specify where in the animation timeline the change is to take effect. For example,

335

An Introduction to MotionLayout

the following Keyframe declaration will cause the button view to double in size gradually both horizontally
(scaleX) and vertically (scaleY), reaching full size at a point 50% through the timeline. For the remainder of the
timeline, the view will decrease in size to its original dimensions:
<Transition

 motion:constraintSetEnd="@+id/end"

 motion:constraintSetStart="@id/start"

 motion:duration="1000">

 <KeyFrameSet>

 <KeyAttribute
 motion:motionTarget="@+id/button"
 motion:framePosition="50"
 android:scaleX="2.0" />
 <KeyAttribute
 motion:motionTarget="@+id/button"
 motion:framePosition="50"
 android:scaleY="2.0" />
 </KeyFrameSet>

42.8.2 Position Keyframes
Position keyframes (KeyPosition) are used to modify the path followed by a view as it moves between the start
and end locations. By placing key positions at different points on the timeline, a path of just about any level of
complexity can be applied to an animation. Positions are declared using x and y coordinates combined with the
corresponding points in the transition timeline. These coordinates must be declared in relation to one of the
following coordinate systems:

• parentRelative - The x and y coordinates are relative to the parent container where the coordinates are
specified as a percentage (represented as a value between 0.0 and 1.0):

Figure 42-2
• deltaRelative - Instead of being relative to the parent, the x and y coordinates are relative to the start and end

336

An Introduction to MotionLayout

positions. For example, the start point is (0, 0) the end point (1, 1). Keep in mind that the x and y coordinates
can be negative values):

Figure 42-3
• pathRelative - The x and y coordinates are relative to the path, where the straight line between start and end

points serves as the X-axis of the graph. Once again, coordinates are represented as a percentage (0.0 to 1.0).
This is similar to the deltaRelative coordinate space but takes into consideration the angle of the path. Once
again coordinates may be negative:

Figure 42-4
As an example, the following ConstraintSets declare start and end points on either side of a device screen. By

337

An Introduction to MotionLayout

default, a view transition using these points would move in a straight line across the screen as illustrated in
Figure 42-5:

Figure 42-5
Suppose, however, that the view is required to follow a path similar to that shown in Figure 42-6 below:

Figure 42-6
To achieve this, key frame position points could be declared within the transition as follows:
<KeyPosition

 motion:motionTarget="@+id/button"

 motion:framePosition="25"

 motion:keyPositionType="pathRelative"

 motion:percentY="0.3"

 motion:percentX="0.25"/>

<KeyPosition

 motion:motionTarget="@+id/button"

 motion:framePosition="75"

 motion:keyPositionType="pathRelative"

 motion:percentY="-0.3"

 motion:percentX="0.75"/>

The above elements create key frame position points 25% and 75% through the path using the pathRelative
coordinate system. The first position is placed at coordinates (0.25, 0.3) and the second at (0.75, -0.3). These
position key frames can be visualized as illustrated in Figure 42-7 below:

338

An Introduction to MotionLayout

Figure 42-7

42.9 Time Linearity
In the absence of any additional settings, the animations outlined above will be performed at a constant speed.
To vary the speed of an animation (for example so that it accelerates and then decelerates) the transition easing
attribute (transitionEasing) can be used either within a ConstraintSet or Keyframe.

For complex easing requirements, the linearity can be defined by plotting points on a cubic Bézier curve, for
example:
.

.

 motion:layout_constraintBottom_toBottomOf="parent"

 motion:transitionEasing="cubic(0.2, 0.7, 0.3, 1)"
 android:rotation="360">

.

.

If you are unfamiliar with Bézier curves, consider using the curve generator online at the following URL:

https://cubic-bezier.com/

For most requirements, however, easing can be specified using the built-in standard, accelerate and decelerate
values:
.

.

 motion:layout_constraintBottom_toBottomOf="parent"

 motion:transitionEasing="decelerate"
 android:rotation="360">

.

.

42.10 KeyTrigger
The trigger keyframe (KeyTrigger) allows a method on a view to be called when the animation reaches a
specified frame position within the animation timeline. This also takes into consideration the direction of the

https://cubic-bezier.com/

339

An Introduction to MotionLayout

animations. For example, different methods can be called depending on whether the animation is running
forward or backward. Consider a button that is to be made visible when the animation moves beyond 20% of the
timeline. The KeyTrigger would be implemented within the KeyFrameSet of the Transition element as follows
using the onPositiveCross property:
.

.

 <KeyFrameSet>

 <KeyTrigger
 motion:framePosition="20"
 motion:onPositiveCross="show"
 motion:motionTarget="@id/button"/>
.

.

Similarly, if the same button is to be hidden when the animation is reversed and drops below 10%, a second key
trigger could be added using the onNegativeCross property:
<KeyTrigger

 motion:framePosition="10"

 motion:onNegativeCross="show"
 motion:motionTarget="@id/button2"/>

If the animation is using toggle action, simply use the onCross property:
<KeyTrigger

 motion:framePosition="10"

 motion:onCross="show"

 motion:motionTarget="@id/button2"/>

42.11 Cycle and Time Cycle Keyframes
While position keyframes can be used to add intermediate state changes into the animation this would quickly
become cumbersome if large numbers of repetitive positions and changes needed to be implemented. For
situations where state changes need to be performed repetitively with predictable changes, MotionLayout
includes the Cycle and Time Cycle keyframes, a topic which will be covered in detail in the chapter entitled “A
MotionLayout KeyCycle Tutorial”.

42.12 Starting an Animation from Code
So far in this chapter we have only looked at controlling an animation using the OnSwipe and OnClick handlers.
It is also possible to start an animation from within code by calling methods on the MotionLayout instance. The
following code, for example, runs the transition from start to end with a duration of 2000ms for a layout named
motionLayout:
motionLayout.setTransitionDuration(2000);

motionLayout.transitionToEnd();

In the absence of additional settings, the start and end states used for the animation will be those declared in
the Transition declaration of the MotionScene file. To use specific start and end constraint sets, simply reference
them by id in a call to the setTransition() method of the MotionLayout instance:
motionLayout.setTransition(R.id.myStart, R.id.myEnd);

motionLayout.transitionToEnd();

To monitor the state of an animation while it is running, add a transition listener to the MotionLayout instance

340

An Introduction to MotionLayout

as follows:
motionLayout.setTransitionListener(transitionListener);

MotionLayout.TransitionListener transitionListener =

 new MotionLayout.TransitionListener() {

 @Override

 public void onTransitionStarted(MotionLayout motionLayout,

 int startId, int endId) {

 // Called when the transition starts

 }

 @Override

 public void onTransitionChange(MotionLayout motionLayout, int startId,

 int endId, float progress) {

 // Called each time a property changes. Track progress value to find

 // current position

 }

 @Override

 public void onTransitionCompleted(MotionLayout motionLayout, int currentId) {

 // Called when the transition is complete

 }

 @Override

 public void onTransitionTrigger(MotionLayout motionLayout, int triggerId,

 boolean positive, float progress) {

 // Called when a trigger keyframe threshold is crossed

 }

};

42.13 Summary
MotionLayout is a subclass of ConstraintLayout designed specifically to add animation effects to the views in
user interface layouts. MotionLayout works by animating the transition of a view between two states defined by
start and end constraint sets. Additional animation effects may be added between these start and end points by
making use of keyframes.

Animations may be triggered either via OnClick or OnSwipe handlers or programmatically via method calls on
the MotionLayout instance.

341

Chapter 43

43. An Android MotionLayout Editor
Tutorial
Now that the basics of MotionLayout have been covered, this chapter will provide an opportunity to try out
MotionLayout in an example project. In addition to continuing to explore the main features of MotionLayout,
this chapter will also introduce the MotionLayout editor and explore how it can be used to visually construct
and modify MotionLayout animations.

The project created in this chapter will make use of start and end ConstraintSets, gesture handlers and Attribute
and Position Keyframes.

43.1 Creating the MotionLayoutDemo Project
Click on the New Project button in welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter MotionLayoutDemo into the Name field and specify com.ebookfrenzy.motionlayoutdemo as the package
name. Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0
(Oreo) and the Language menu to Java.

43.2 ConstraintLayout to MotionLayout Conversion
As usual, Android Studio will have placed a ConstraintLayout container as the parent view within the activity_
main.xml layout file. The next step is to convert this container to a MotionLayout instance. Within the Component
Tree, right-click on the ConstraintLayout entry and select the Convert to MotionLayout menu option:

Figure 43-1

After making the selection, click on the Convert button in the confirmation dialog. Once conversion is complete,
the MotionLayout editor will appear within the main Android Studio window as illustrated in Figure 43-2:

342

An Android MotionLayout Editor Tutorial

Figure 43-2

As part of the conversion process, Android Studio will also have created a new folder named res -> xml and
placed within it a MotionLayout scene file named activity_main_scene.xml:

Figure 43-3

This file consists of a top level MotionScene element containing the ConstraintSet and Transition entries that will
define the animations to be performed within the main layout. By default, the file will contain empty elements
for the start and end constraint sets and an initial transition:
<?xml version="1.0" encoding="utf-8"?>

<MotionScene

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:motion="http://schemas.android.com/apk/res-auto">

 <Transition

 motion:constraintSetEnd="@+id/end"

 motion:constraintSetStart="@id/start"

 motion:duration="1000">

 <KeyFrameSet>

 </KeyFrameSet>

 </Transition>

 <ConstraintSet android:id="@+id/start">

 </ConstraintSet>

343

An Android MotionLayout Editor Tutorial

 <ConstraintSet android:id="@+id/end">

 </ConstraintSet>

</MotionScene>

Any changes made within the MotionLayout editor will be stored within this file. Similarly, this file may be
edited directly to implement and modify animation settings outside of the MotionLayout editor. In this tutorial,
the animations will be implemented primarily using the MotionLayout editor interface. At each stage, however,
we will take time to review how these changes are reflected in the underlying MotionScene file. As we progress
through the chapter it will become clear that the MotionScene XML syntax is actually quite simple and easy to
learn.

The first phase of this tutorial will demonstrate the use of MotionLayout to animate a Button object, including
motion (including following a path), rotation and size scaling.

43.3 Configuring Start and End Constraints
With the activity_main.xml file loaded into the MotionLayout editor, make sure that the Motion Layout box
(marked E in Figure 43-5 below) is selected, then delete the default TextView before dragging and dropping a
Button view from the palette to the top left-hand corner of the layout canvas as shown in Figure 43-4:

Figure 43-4

With the button selected, use the Attributes tool window to change the id to myButton.

As outlined in the previous chapter, MotionLayout animation is primarily a case of specifying how a view
transitions between two states. The first step in implementing animation, therefore, is to specify the constraints
that define these states. For this example, the start point will be the top center of the layout view. To configure
these constraints, select the start constraint set entry in the editor window (marked A in Figure 43-5):

Figure 43-5

344

An Android MotionLayout Editor Tutorial

When the start box is selected, all constraint and layout changes will be made to the start point constraint set.
To return to the standard constraints and properties for the entire layout, click on the Motion Layout box (E).

Next, select the myButton entry within the ConstraintSet list (B). Note that the Source column shows that the
button positioned based on constraints within the layout file. Instead, we want the button to be positioned based
on the start constraint set. With the myButton entry still selected, click on the Edit button (C) and select Create
Constraint from the menu, after which the button entry will indicate that the view is to be positioned based on
the start constraint set:

Figure 43-6

The start constraint set will need to position the button at the top of the layout with an 8dp offset and centered
horizontally. With myButton still selected, use the Attributes tool window to set constraints on the top, left and
right sides of the view as follows:

Figure 43-7

Select the end constraint set entry (marked D in Figure 43-5 above) and repeat the steps to create a new
constraint, this time placing the button in the horizontal center of the layout but with an 8p offset from the
bottom edge of the layout:

Figure 43-8

345

An Android MotionLayout Editor Tutorial

With the start and end constraints configured, open the activity_main_scene.xml file and note that the constraints
have been added to the file:
<?xml version="1.0" encoding="utf-8"?>

<MotionScene

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:motion="http://schemas.android.com/apk/res-auto">

.

.

 <ConstraintSet android:id="@+id/start">

 <Constraint

 android:id="@+id/myButton"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 motion:layout_constraintTop_toTopOf="parent"

 android:layout_marginTop="8dp"

 motion:layout_constraintStart_toStartOf="parent"

 motion:layout_constraintEnd_toEndOf="parent" />

 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">

 <Constraint

 android:id="@+id/myButton"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 motion:layout_editor_absoluteY="6dp"

 motion:layout_constraintStart_toStartOf="parent"

 motion:layout_constraintEnd_toEndOf="parent"

 motion:layout_constraintBottom_toBottomOf="parent"

 android:layout_marginBottom="8dp" />

 </ConstraintSet>

</MotionScene>

Note also that the Transition element has already been preconfigured to animate the transition between the
start and end points over a period of 1000 milliseconds. Although we have yet to add an action to initiate the
transition it is still possible to preview the animation from within the MotionLayout editor.

43.4 Previewing the MotionLayout Animation
To preview the animation without having to build and run the app, select the transition arrow within the
MotionLayout editor marked A in Figure 43-9 below. This will display the animation timeline panel (marked B):

346

An Android MotionLayout Editor Tutorial

Figure 43-9

To test the animation, click on the slider (C) and drag it along the timeline. As the slider moves the button in the
layout canvas will move along the dotted path line (D). Use the toolbar button (E) to perform a full animation, to
repeat the animation continuously at different speeds (either forwards, backwards, or toggling back and forth).

43.5 Adding an OnClick Gesture
Although a simple MotionLayout animation transition has been created, we still need a way to start the animation
from within the running app. This can be achieved by assigning either a click or swipe handler. For this example,
we will configure the animation to start when the button is clicked by the user. Within the MotionLayout editor,
begin by pausing the timeline animation if it is currently running on a loop setting. Next, select the Transition
arrow (marked A in Figure 43-9 above), locate the OnClick attribute section in the Attributes tool window and
click on the + button indicated by the arrow in Figure 43-10 below:

Figure 43-10

An empty row will appear in the OnClick panel for the first property. For the property name, enter targetId and
for the value field enter the id of the button (@id/myButton). Click the + button a second time, this time entering
app:clickAction into the property name field. In the value field, click the down arrow to display a menu of valid
options:

347

An Android MotionLayout Editor Tutorial

Figure 43-11

For this example, select the toggle action. This will cause the view to animate to the opposite position when it is
clicked. Once these settings have been entered, they should match those shown in Figure 43-12:

Figure 43-12

Once again, open the activity_main_scene.xml file and review the OnClick property defined within the Transition
entry:
.

.

 <Transition

 motion:constraintSetEnd="@+id/end"

 motion:constraintSetStart="@id/start"

 motion:duration="1000">

 <KeyFrameSet>

 </KeyFrameSet>

 <OnClick motion:targetId="@id/myButton"

 motion:clickAction="toggle" />

 </Transition>

.

.

Compile and run the app on a device or emulator and confirm that clicking on the button causes it to transition
back and forth between the start and end points as defined in the MotionScene file.

43.6 Adding an Attribute Keyframe to the Transition
So far the example project is only animating the motion of the button view from one location on the screen
to another. Attribute keyframes (KeyAttribute) provide a way to specify points within the transition timeline
at which other attribute changes are to have taken effect. A KeyAttribute could, for example, be defined such
that the view must have increased in size by 50% by the time the view has moved 30% of the way through the
timeline. For this example, we will add a rotation effect positioned at the mid-point of the animation.

Begin by opening the activity_main.xml file in the MotionLayout Editor, selecting the transition connector
arrow to display the timeline, then click on the button highlighted in Figure 43-13:

348

An Android MotionLayout Editor Tutorial

Figure 43-13

From the menu, select the KeyAttribute option:

Figure 43-14

Once selected, the dialog shown in Figure 43-15 will appear. Within the dialog, make sure the ID option is
selected and that myButton is referenced. In the position field, enter 50 (this is specified as a percentage where 0
is the start point and 100 the end). Finally select the rotation entry from the Attribute drop-down menu before
clicking on the Add button:

Figure 43-15

Once the KeyAttribute has been added, a row will appear within the timeline for the attribute. Click on the row
to highlight it, then click on the disclosure arrow in the far left edge of the row to unfold the attribute transition
graph. Note that a small diamond marker appears in the timeline (as indicated in Figure 43-16 below) indicating
the location of the key. The graph indicates the linearity of the effect. In this case, the button will rotate steadily
up to the specified number of degrees, reaching maximum rotation at the location of the keyframe. The button
will then rotate back to 0 degrees by the time it reaches the end point:

349

An Android MotionLayout Editor Tutorial

Figure 43-16

To change the properties of a KeyAttribute, select it in the timeline and then refer to the Attributes tool window.
Within the KeyAttribute panel, change the rotation property to 360 degrees:

Figure 43-17

Check that the attribute works by moving the slider back and forth and watching the button rotate as it traverses
the animation path in the layout canvas. Refer to the activity_main_scene.xml file which should now as follows:
.

.

 <Transition

 motion:constraintSetEnd="@+id/end"

 motion:constraintSetStart="@id/start"

 motion:duration="1000">

 <KeyFrameSet>

 <KeyAttribute

 motion:motionTarget="@+id/myButton"

 motion:framePosition="50"

 android:rotation="360" />

 </KeyFrameSet>

 <OnClick motion:targetId="@id/myButton"

 motion:clickAction="toggle" />

 </Transition>

.

.

Test the animation, either using the transition slider, or by compiling and running the app and verify that the
button now rotates during the animation.

350

An Android MotionLayout Editor Tutorial

43.7 Adding a CustomAttribute to a Transition
The KeyAttribute property is limited to built-in effects such as resizing and rotation. Additional changes are
also possible by declaring CustomAttributes. Unlike KeyAttributes, which are stored in the Transition element,
CustomAttributes are located in the start and end constraint sets. As such, these attributes can only be declared
to take effect at start and end points (in other words you cannot specify an attribute keyframe at a position
partway through a transition timeline).

For this example, we will configure the button to gradually change color from red to green. Begin by selecting
the start box marked A in Figure 43-18 followed by the myButton view constraint set (B):

Figure 43-18

Referring to the Attributes tool window, click on the + button in the CustomAttributes section as highlighted
below:

Figure 43-19

In the resulting dialog (Figure 43-20) change the type of the attribute to Color and enter backgroundColor into
the Attribute Name field. Finally, set the value to #F80A1F:

Figure 43-20

351

An Android MotionLayout Editor Tutorial

Click on OK to commit the changes, then select the end constraint set (marked C in Figure 43-18 above) and
repeat the steps to add a custom attribute, this time specifying #33CC33 as the RGB value for the color.

Using either the timeline slider, or by running the app, make sure that the button changes color during the
animation.

The addition of these CustomAttributes will be reflected in the activity_main_scene.xml file as follows:
.

.

 <ConstraintSet android:id="@+id/start">

 <Constraint

.

.

 <CustomAttribute

 motion:attributeName="backgroundColor"

 motion:customColorValue="#F80A1F" />

 </Constraint>

 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">

 <Constraint

.

.

 <CustomAttribute

 motion:attributeName="backgroundColor"

 motion:customColorValue="#33CC33" />

 </Constraint>

 </ConstraintSet>

.

.

43.8 Adding Position Keyframes
The final task for this tutorial is to add two position keyframes (KeyPosition) to the animation path to introduce
some lateral movement into the animation. With the transition timeline visible in the MotionLayout editor, click
on the button to create a keyframe as highlighted in Figure 43-13 above and select the KeyPosition option from
the menu as shown in Figure 43-21 below:

Figure 43-21

In the resulting dialog, set the properties as illustrated in Figure 43-22:

352

An Android MotionLayout Editor Tutorial

Figure 43-22

Click on the Add button to commit the change, then repeat the above steps to add a second position keyframe
configured as follows:

• Position: 75

• Type: parentRelative

• PercentX: 0.85

• PercentY: 0.75

On completion of these changes, the following keyframe entries will have been added to the transition element
in the activity_main_scene.xml file:
<KeyFrameSet>

.

.

 <KeyPosition

 motion:motionTarget="@+id/myButton"

 motion:framePosition="25"

 motion:keyPositionType="parentRelative"

 motion:percentX="0.15"

 motion:percentY="0.25" />

 <KeyPosition

 motion:motionTarget="@+id/myButton"

 motion:framePosition="75"

 motion:keyPositionType="parentRelative"

 motion:percentX="0.85"

 motion:percentY="0.75" />

</KeyFrameSet>

.

353

An Android MotionLayout Editor Tutorial

.

Test the app one last time and verify that the button now follows the path shown below while still rotating and
changing color:

Figure 43-23

Position keyframes are represented by diamond shaped markers on the dotted line representing the motion path
within the preview canvas as indicated in Figure 43-24 (if the markers are not visible make sure that the Button
view is selected in the preview):

Figure 43-24

To visually adjust the position of a keyframe, simply click on the marker and drag it to a new position. As the
marker moves, the Motion Layout editor will display a grid together with the current x and y coordinates:

354

An Android MotionLayout Editor Tutorial

Figure 43-25

43.9 Summary
This chapter has introduced the MotionLayout editor built into Android Studio and explored how it can be used to add
animation to the user interface of an Android app without having to manually write XML declarations. Examples covered
in this chapter included the conversion of a ConstraintLayout container to MotionLayout, the creation of start and end
constraint sets and transitions in the MotionScene file and the addition of an OnClick handler. The use of the animation
previewer, custom attributes and postion key frames were also covered.

355

Chapter 44

44. A MotionLayout KeyCycle
Tutorial
The previous chapters introduced and demonstrated the concepts of integrating animation into Android app user
interfaces using the MotionLayout container combined with the features of the Android Studio MotionLayout
editor. The chapter entitled “An Introduction to MotionLayout” briefly mentioned the cycle (KeyCycle) and time
cycle (KeyTimeCycle) key frames and explained how these can be used to implement animations involving large
numbers of repetitive state changes.

This chapter will cover cycle key frames in more detail before demonstrating how to make use of them in an
example project using Android Studio and the Cycle Editor.

44.1 An Overview of Cycle Keyframes
Clearly, position keyframes can be used to add intermediate state changes into the animation timeline. While
this works well for small numbers of state changes, it would be cumbersome to implement in larger quantities.
To make a button shake 50 times when tapped to indicate that an error occurred, for example, would involve the
manual creation of 100 position keyframes to perform small clockwise and anti-clockwise rotations. Similarly,
to implement a bouncing effect on a view as it moves across the screen would be an equally time consuming task.

For situations where state changes need to be performed repetitively, MotionLayout includes the Cycle and Time
Cycle keyframes. Both perform the same tasks, with the exception that KeyCycle frames are based on frame
positions within an animation path, while KeyTimeCycles are time-based in cycles per second (Hz).

Using these KeyCycle frames, the animation timeline is essentially divided up into subsections (referred to as
cycles), each containing one or more waves that define how a property of a view is to be modified throughout the
timeline. To create a KeyCycle cycle, the following information is required:

• target view - The id of the view on which the changes are to be made.

• frame position - The position in the timeline at which the cycle is to start.

• wave period - The number of waves to be included in the cycle.

• attribute - The property of the view that is to be modified by the waves.

• wave offset - Offsets the cycle by the specified amount from the keyframe baseline.

• wave shape - The shape of the wave (sin, cos, sawtooth, square, triangle, bounce or reverse sawtooth)

Consider the following cycle key frame set:
<KeyFrameSet>

 <KeyCycle

 motion:framePosition="0"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="1"

 motion:waveOffset="0dp"

356

A MotionLayout KeyCycle Tutorial

 motion:waveShape="sin"

 android:translationY="50dp"/>

 <KeyCycle

 motion:framePosition="25"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="1"

 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="50dp"/>

 <KeyCycle

 motion:framePosition="50"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="1"

 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="50dp"/>

 <KeyCycle

 motion:framePosition="75"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="1"

 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="50dp"/>

 <KeyCycle

 motion:framePosition="100"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="1"

 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="50dp"/>

</KeyFrameSet>

The above key frame set divides the timeline into four equal cycles. Each cycle is configured to contain a sin wave
shape which adjusts the translationY property of a button 50dp. When executed, this animation will cause the
button to oscillate vertically multiple times within the specified range. This key frame set can be visualized as
shown in Figure 44-1 where the five dots represent the key frame positions:

357

A MotionLayout KeyCycle Tutorial

Figure 44-1
As currently implemented, each cycle contains a single wave. Suppose that instead of these evenly distributed
waves, we need four waves within the last cycle. This can easily be achieved by increasing the wavePeriod
property for the last KeyCycle element as follows:
.

.

 <KeyCycle

 motion:framePosition="75"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="4"
 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="50dp"/>

.

.

After making this change, the frame set can be rendered in wave form as follows:

Figure 44-2
So far the examples in this chapter have been using sin waves. In fact, a number of different wave shapes are
available when working with cycle key frames in MotionLayout. Figure 44-3, for example, illustrates the effect of
changing the waveShape property for all the cycle key frames to the sawtooth wave shape:

358

A MotionLayout KeyCycle Tutorial

Figure 44-3
In addition to sin and sawtooth, MotionLayout also supports triangle, square, bounce and reverseSawtooth wave
shapes.

In the above examples, each cycle moves the button within the same range along the Y-axis. Suppose, however,
that we need the second cycle to move the button a greater distance along the positive Y-axis. This involves
making an adjustment to the waveOffset property of the second cycle as follows:
<KeyCycle

 motion:framePosition="25"

 motion:target="@+id/button"

 motion:wavePeriod="1"

 motion:waveOffset="100dp"
 motion:waveShape="sin"

 android:translationY="50dp"/>

By making this change, we end up with a timeline that resembles Figure 44-4:

Figure 44-4
The movement of the button during the second cycle will now range between approximately 0 and 150dp on the
Y-axis. If we still need the lower end of the range to match the other waves we can, of course, add 100dp to the
translationY value:
<KeyCycle

 motion:framePosition="25"

 motion:target="@+id/button"

 motion:wavePeriod="1"

 motion:waveOffset="100dp"

 motion:waveShape="sin"

 android:translationY="150dp"/>

This change now gives us the following wave form:

359

A MotionLayout KeyCycle Tutorial

Figure 44-5

44.2 Using the Cycle Editor
Although not particularly complicated, it can take some time to get the exact cycle configuration you need by
directly editing XML KeyCycle entries in the MotionScene file. In recognition of this fact, the Android engineers
at Google have developed the Cycle Editor. This is a separate Java-based utility that is not yet part of Android
Studio. The Cycle Editor allows you to visually design and test cycle key frame sets.

The Cycle Editor tool is provided in the form of a Java archive (jar) file which will require that the Java runtime
be installed on your development system. Steps to install Java will vary depending on your operating system.

Once you have Java installed, the CycleEditor.jar file can be downloaded from the following URL:

https://github.com/googlesamples/android-ConstraintLayoutExamples/releases/download/1.0/CycleEditor.jar

Once downloaded, open a command-prompt or terminal window, change directory to the location of the jar file
and run the following command:
java -jar CycleEditor.jar

Once the tool has loaded the screen shown in Figure 44-6 will appear:

Figure 44-6

https://github.com/googlesamples/android-ConstraintLayoutExamples/releases/download/1.0/CycleEditor.

360

A MotionLayout KeyCycle Tutorial

The panel marked A in the above figure displays the XML for the keyframe set and can be edited either directly
or using the controls in panel B. Panel C displays the rendering of the cycles in wave form. Unfortunately, this
is not redrawn in real-time as changes are made. Instead, it must be refreshed by selecting the File -> parse xml
menu option. The panel marked D will show a live rendering of the cycle animations when the play button in
panel B is clicked. The Examples menu provides access to a collection of example key frame sets which can be
used both for learning purposes and as the basis for your own animations.

To demonstrate the use of both the Cycle Keyframe and the Cycle Editor, the remainder of this chapter will
create a sample project which implements a KeyCycle-based animation effect.

44.3 Creating the KeyCycleDemo Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter KeyCycleDemo into the Name field and specify com.ebookfrenzy.keycycledemo as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

With the layout editor in Design mode and the activity_main.xml file open, right-click on the ConstraintLayout
entry and select the Convert to MotionLayout menu option:

Figure 44-7

After making the selection, click on the Convert button in the confirmation dialog.

44.4 Configuring the Start and End Constraints
The objective of this tutorial is to animate the movement of a button from one side of the device screen to the
other including KeyCycle effects that cause the view to also move up and down along the Y-axis. The first step is
to configure the start and end constraints.

With the activity_main.xml file loaded into the MotionLayout editor, select and delete the default TextView
widget. Make sure the Motion Layout box (marked E in Figure 44-9 below) is selected before dragging and
dropping a Button view from the palette so that it is centered vertically and positioned along the left-hand edge
of the layout canvas:

361

A MotionLayout KeyCycle Tutorial

Figure 44-8

To configure the constraints for the start point, select the start constraint set entry in the editor window (marked
A in Figure 44-9):

Figure 44-9

Next, select the button entry within the ConstraintSet list (B). With the button entry still selected, click on the
edit button (C) and select Create Constraint from the menu.

With the button still selected, use the Attributes tool window to set constraints on the top, left and bottom sides
of the view as follows:

Figure 44-10

362

A MotionLayout KeyCycle Tutorial

Select the end constraint set entry (marked D in Figure 44-9 above) and repeat the steps to create a new constraint,
this time with constraints on the top, bottom and right-hand edges of the button:

Figure 44-11

44.5 Creating the Cycles
The next step is to use the Cycle Editor to generate the cycle key frames for the animation. With the Cycle Editor
running, refer to the control panel shown in Figure 44-12 below:

Figure 44-12

Using the menu marked A, change the property to be modified from rotation to translationY.

Next, use the KeyCycle control (B) to select cycle 0 so that changes made elsewhere in the panel will be applied
to the first cycle. Move the Period slider to 1 and the translationY slider to 60 as shown in Figure 44-13 (refer to
the XML panel to see the precise setting for the translationY value as you move the slider):

Figure 44-13

To see the changes so far in the graph, select the File -> Parse XML menu option. Using the values listed in Table
44-1, configure the settings for KeyFrames 1 through 4 (keeping in mind that you have already configured the
settings in the KeyCycle 0 column):

363

A MotionLayout KeyCycle Tutorial

KeyCycle 0 KeyCycle 1 KeyCycle 2 KeyCycle 3 KeyCycle 4
Position 0 25 50 75 100
Period 1 2 3 2 1
translationY 60 60 150 60 60

Table 44-1
On completion of these changes, the key frame set XML should read as follows:
<KeyFrameSet>

 <KeyCycle

 motion:framePosition="0"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="1"

 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="60dp"/>

 <KeyCycle

 motion:framePosition="25"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="2"

 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="60dp"/>

 <KeyCycle

 motion:framePosition="50"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="3"

 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="150dp"/>

 <KeyCycle

 motion:framePosition="75"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="2"

 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="60dp"/>

 <KeyCycle

 motion:framePosition="100"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="1"

364

A MotionLayout KeyCycle Tutorial

 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="60dp"/>

</KeyFrameSet>

To view the graph with the new cycles, select the File -> parse xml menu option to refresh the wave pattern which
should now appear as illustrated in Figure 44-14:

Figure 44-14

44.6 Previewing the Animation
The cycle-based animation may now be previewed from within the Cycle Editor tool. Start the animation
running by clicking on the play button (marked A in Figure 44-15). To combine the cycles with horizontal
movement, change the second menu (B) from Stationary to West to East. Also, take some time to experiment
with the time and linearity settings (C and D).

Figure 44-15

44.7 Adding the KeyFrameSet to the MotionScene
Within the Cycle Editor, highlight and copy only the KeyCycle elements from the XML panel and paste them
into the Transition section of the res -> xml -> activity_main_scene.xml file within Android Studio so that they
are placed between the existing KeyFrameSet markers. Note also the increased duration setting and the addition
of an OnClick handler to initiate the animation:
<Transition

 motion:constraintSetEnd="@+id/end"

 motion:constraintSetStart="@id/start"

 motion:duration="7000">
 <KeyFrameSet>

 <KeyCycle
 motion:framePosition="0"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="1"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="60dp"/>

365

A MotionLayout KeyCycle Tutorial

 <KeyCycle
 motion:framePosition="25"
.
.
 </KeyFrameSet>

 <OnClick motion:targetId="@id/button"
 motion:clickAction="toggle" />
.

.

Before proceeding check that each target property is correctly declared. At the time of writing, the Cycle Editor
was using the outdated motion:target tag. For example:
motion:target="@+id/button"

This will need to be changed for each of the five KeyCycle entires to read as follows:
motion:motionTarget="@+id/button"

Once these changes have been made, compile and run the app on a device or emulator and click on the button
to start and view the animation.

Note that the KeyCycle wave formation can also be viewed within the Android Studio MotionLayout editor as
shown in Figure 44-16 below:

Figure 44-16
KeyCycle frame sets are not limited to one per animation. For example, add the following KeyFrameSet to the
Transition section of the activity_main_scene.xml file to add some rotation effects to the button as it moves:
<KeyFrameSet>

 <KeyCycle

 motion:framePosition="0"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="1"

 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="60dp"

 android:rotation="45"/>

 <KeyCycle

 motion:framePosition="25"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="2"

 motion:waveOffset="0dp"

366

A MotionLayout KeyCycle Tutorial

 motion:waveShape="sin"

 android:translationY="60dp"

 android:rotation="80"/>

 <KeyCycle

 motion:framePosition="50"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="3"

 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="150dp"

 android:rotation="45"/>

 <KeyCycle

 motion:framePosition="75"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="2"

 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="60dp"

 android:rotation="80"/>

 <KeyCycle

 motion:framePosition="100"

 motion:motionTarget="@+id/button"

 motion:wavePeriod="1"

 motion:waveOffset="0dp"

 motion:waveShape="sin"

 android:translationY="60dp"

 android:rotation="45"/>
</KeyFrameSet>

44.8 Summary
Cycle key frames provide a useful way to build frame animations that involve potentially large numbers of state
changes that match wave patterns. As outlined in this chapter, the process of generating these cycle key frames
can be eased significantly by making use of the Cycle Editor application.

367

Chapter 45

45. Working with the Floating Action
Button and Snackbar
One of the objectives of this chapter is to provide an overview of the concepts of material design. Originally
introduced as part of Android 5.0, material design is a set of design guidelines that dictate how the Android user
interface, and that of the apps running on Android, appear and behave.

As part of the implementation of the material design concepts, Google also introduced the Android Design
Support Library. This library contains a number of different components that allow many of the key features of
material design to be built into Android applications. Two of these components, the floating action button and
Snackbar, will also be covered in this chapter before introducing many of the other components in subsequent
chapters.

45.1 The Material Design
The overall appearance of the Android environment is defined by the principles of material design. Material
design was created by the Android team at Google and dictates that the elements that make up the user interface
of Android and the apps that run on it appear and behave in a certain way in terms of behavior, shadowing,
animation and style. One of the tenets of the material design is that the elements of a user interface appear to
have physical depth and a sense that items are constructed in layers of physical material. A button, for example,
appears to be raised above the surface of the layout in which it resides through the use of shadowing effects.
Pressing the button causes the button to flex and lift as though made of a thin material that ripples when released.

Material design also dictates the layout and behavior of many standard user interface elements. A key example
is the way in which the app bar located at the top of the screen should appear and the way in which it should
behave in relation to scrolling activities taking place within the main content of the activity.

In fact, material design covers a wide range of areas from recommended color styles to the way in which objects
are animated. A full description of the material design concepts and guidelines can be found online at the
following link and is recommended reading for all Android developers:

https://material.io/design/introduction

45.2 The Design Library
Many of the building blocks needed to implement Android applications that adopt the principles of material
design are contained within the Android Design Support Library. This library contains a collection of user
interface components that can be included in Android applications to implement much of the look, feel and
behavior of material design. Two of the components from this library, the floating action button and Snackbar,
will be covered in this chapter, while others will be introduced in later chapters.

45.3 The Floating Action Button (FAB)
The floating action button is a button which appears to float above the surface of the user interface of an app and
is generally used to promote the most common action within a user interface screen. A floating action button
might, for example, be placed on a screen to allow the user to add an entry to a list of contacts or to send an email
from within the app. Figure 45-1, for example, highlights the floating action button that allows the user to add a

https://material.io/design/introduction

368

Working with the Floating Action Button and Snackbar

new contact within the standard Android Contacts app:

Figure 45-1
To conform with the material design guidelines, there are a number of rules that should be followed when using
floating action buttons. Floating action buttons must be circular and can be either 56 x 56dp (Default) or 40 x
40dp (Mini) in size. The button should be positioned a minimum of 16dp from the edge of the screen on phones
and 24dp on desktops and tablet devices. Regardless of the size, the button must contain an interior icon that
is 24x24dp in size and it is recommended that each user interface screen have only one floating action button.

Floating action buttons can be animated or designed to morph into other items when touched. A floating action
button could, for example, rotate when tapped or morph into another element such as a toolbar or panel listing
related actions.

45.4 The Snackbar
The Snackbar component provides a way to present the user with information in the form of a panel that appears
at the bottom of the screen as shown in Figure 45-2. Snackbar instances contain a brief text message and an
optional action button which will perform a task when tapped by the user. Once displayed, a Snackbar will either
timeout automatically or can be removed manually by the user via a swiping action. During the appearance of
the Snackbar the app will continue to function and respond to user interactions in the normal manner.

Figure 45-2

369

Working with the Floating Action Button and Snackbar

In the remainder of this chapter an example application will be created that makes use of the basic features of the
floating action button and Snackbar to add entries to a list of items.

45.5 Creating the Example Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Basic Views Activity template before clicking on the Next button.

Enter FabExample into the Name field and specify com.ebookfrenzy.fabexample as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

45.6 Reviewing the Project
Since the Basic Views Activity template was selected, the activity contains four layout files. The activity_main.
xml file consists of a CoordinatorLayout manager containing entries for an app bar, a Material toolbar and a
floating action button.

The content_main.xml file represents the layout of the content area of the activity and contains a NavHostFragment
instance. This file is embedded into the activity_main.xml file via the following include directive:
<include layout="@layout/content_main" />

The floating action button element within the activity_main.xml file reads as follows:
<com.google.android.material.floatingactionbutton.FloatingActionButton

 android:id="@+id/fab"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="bottom|end"

 android:layout_marginEnd="@dimen/fab_margin"

 android:layout_marginBottom="16dp"

 app:srcCompat="@android:drawable/ic_dialog_email" />

This declares that the button is to appear in the bottom right-hand corner of the screen with margins represented
by the fab_margin identifier in the values/dimens.xml file (which in this case is set to 16dp). The XML further
declares that the interior icon for the button is to take the form of the standard drawable built-in email icon.

The blank template has also configured the floating action button to display a Snackbar instance when tapped
by the user. The code to implement this can be found in the onCreate() method of the MainActivity.java file and
reads as follows:
binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)

 .setAction("Action", null).show();

 }

});

The code accesses the floating action button via the view binding and adds to it an onClickListener handler to be
called when the button is tapped. This method simply displays a Snackbar instance configured with a message
but no actions.

When the project is compiled and run the floating action button will appear at the bottom of the screen as shown

370

Working with the Floating Action Button and Snackbar

in Figure 45-3:

Figure 45-3
Tapping the floating action button will trigger the onClickListener handler method causing the Snackbar to
appear at the bottom of the screen:

Figure 45-4

45.7 Removing Navigation Features
As outlined in “A Guide to the Android Studio Layout Editor Tool”, the Basic Views Activity template contains
multiple fragments and buttons to navigate from one fragment to the other. For the purposes of this tutorial,
these features are unnecessary and will cause problems later if not removed. Before moving ahead with the
tutorial, modify the project as follows:

1. Within the Project tool window, navigate to and double-click on the app -> res -> navigation -> nav_graph.
xml file to load it into the navigation editor.

2. Within the editor, select the SecondFragment entry in the Component Tree panel and tap the keyboard
delete key to remove it from the graph.

3. Locate and delete the SecondFragment.java (app -> java -> <package name> -> SecondFragment) and
fragment_second.xml (app -> res -> layout -> fragment_second.xml) files.

4. Locate the FirstFragment.java file, double click on it to load it into the editor and remove the code from the
onViewCreated() method so that it reads as follows:

binding.buttonFirst.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 NavHostFragment.findNavController(FirstFragment.this)

 .navigate(R.id.action_FirstFragment_to_SecondFragment);

 }

});

371

Working with the Floating Action Button and Snackbar

45.8 Changing the Floating Action Button
Since the objective of this example is to configure the floating action button to add entries to a list, the email
icon currently displayed on the button needs to be changed to something more indicative of the action being
performed. The icon that will be used for the button is named ic_add_entry.png and can be found in the project_
icons folder of the sample code download available from the following URL:

https://www.ebookfrenzy.com/retail/flamingojava/index.php

Locate this image in the file system navigator for your operating system and copy the image file. Right-click on
the app -> res -> drawable entry in the Project tool window and select Paste from the menu to add the file to the
folder:

Figure 45-5
Next, edit the activity_main.xml file and change the image source for the icon from @android:drawable/ic_
dialog_email to @drawable/ic_add_entry as follows:
<com.google.android.material.floatingactionbutton.FloatingActionButton

 android:id="@+id/fab"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="bottom|end"

 android:layout_margin="@dimen/fab_margin"

 android:layout_marginBottom="16dp"

 app:srcCompat="@drawable/ic_add_entry" />

Within the layout preview, the interior icon for the button will have changed to a plus sign.

We can also make the floating action button do just about anything when it is clicked simply by adding code
to the OnClickListener. The following changes to the MainActivity.java file, for example, calls a method named
displayMessage() to display a toast message each time the button is clicked:
.
.
import android.widget.Toast;
.
.
binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 displayMessage("Fab clicked");
 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)

 .setAction("Action", null).show();

 }

https://www.ebookfrenzy.com/retail/flamingojava/index.php

372

Working with the Floating Action Button and Snackbar

});

.

.

public void displayMessage(String message) {
 Toast.makeText(this,message,Toast.LENGTH_SHORT).show();
}

45.9 Adding an Action to the Snackbar
An action may also be added to the Snackbar which performs a task when tapped by the user. Edit the
MainActivity.java file and modify the Snackbar creation code to add an action titled “My Action” configured
with an onClickListener named actionOnClickListener which, in turn, displays a toast message:
binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)

 .setAction("My Action", actionOnClickListener).show();
 }

});

Within the MainActivity.java file add the listener handler:
View.OnClickListener actionOnClickListener = new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 displayMessage("Action clicked");

 Snackbar.make(view, "Action Complete", Snackbar.LENGTH_LONG)

 .setAction("Action", null).show();

 }

};

Run the app and tap the floating action button, at which point both the toast message and Snackbar should
appear. While the Snackbar is visible, tap the My Action button in the Snackbar and verify that the text on the
Snackbar changes to “Action Complete”:

Figure 45-6

45.10 Summary
This chapter has provided a general overview of material design, the floating action button and Snackbar before
working through an example project that makes use of these features.

373

Working with the Floating Action Button and Snackbar

Both the floating action button and the Snackbar are part of the material design approach to user interface
implementation in Android. The floating action button provides a way to promote the most common action
within a particular screen of an Android application. The Snackbar provides a way for an application to both
present information to the user and also allow the user to take action upon it.

375

Chapter 46

46. Creating a Tabbed Interface using
the TabLayout Component
The previous chapter outlined the concept of material design in Android and introduced two of the components
provided by the design support library in the form of the floating action button and the Snackbar. This chapter
will demonstrate how to use another of the design library components, the TabLayout, which can be combined
with the ViewPager class to create a tab based interface within an Android activity.

46.1 An Introduction to the ViewPager2
Although not part of the design support library, the ViewPager2 is a useful companion class when used in
conjunction with the TabLayout component to implement a tabbed user interface. The primary role of the
ViewPager2 is to allow the user to flip through different pages of information where each page is most typically
represented by a layout fragment. The fragments that are associated with the ViewPager2 are managed by an
instance of the FragmentStateAdapter class.

At a minimum the pager adapter assigned to a ViewPager2 must implement two methods. The first, named
getItemCount(), must return the total number of page fragments available to be displayed to the user. The second
method, createFragment(), is passed a page number and must return the corresponding fragment object ready
to be presented to the user.

46.2 An Overview of the TabLayout Component
As previously discussed, TabLayout is one of the components introduced as part of material design and is
included in the design support library. The purpose of the TabLayout is to present the user with a row of tabs
which can be selected to display different pages to the user. The tabs can be fixed or scrollable, whereby the user
can swipe left or right to view more tabs than will currently fit on the display. The information displayed on a tab
can be text-based, an image or a combination of text and images. Figure 46-1, for example, shows the tab bar for
an app consisting of four tabs displaying images:

Figure 46-1
Figure 46-2, on the other hand, shows a TabLayout configuration consisting of four tabs displaying text in a
scrollable configuration:

Figure 46-2
The remainder of this chapter will work through the creation of an example project that demonstrates the use of
the TabLayout component together with a ViewPager2 and four fragments.

376

Creating a Tabbed Interface using the TabLayout Component

46.3 Creating the TabLayoutDemo Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Basic Views Activity template before clicking on the Next button.

Enter TabLayoutDemo into the Name field and specify com.ebookfrenzy.tablayoutdemo as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and
the Language menu to Java.

Once the project has been created, load the content_main.xml file into the Layout Editor tool, select the
NavHostFragment object, and then delete it. Since we will not be using the navigation features of the Basic Views
Activity template, edit the MainActivity.java file and modify the onCreate() method to remove the navigation
code:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 setSupportActionBar(binding.toolbar);

 NavController navController =

 Navigation.findNavController(this, R.id.nav_host_fragment_content_main);

 appBarConfiguration =

 new AppBarConfiguration.Builder(navController.getGraph()).build();

 NavigationUI.setupActionBarWithNavController(this, navController,
appBarConfiguration);

 binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_
LONG)

 .setAction("Action", null).show();

 }

 });

}

Finally, delete the onSupportNavigateUp() method:
@Override

public boolean onSupportNavigateUp() {

 NavController navController = Navigation.findNavController(this, R.id.nav_
host_fragment_content_main);

 return NavigationUI.navigateUp(navController, appBarConfiguration)

 || super.onSupportNavigateUp();

}

377

Creating a Tabbed Interface using the TabLayout Component

46.4 Creating the First Fragment
Each of the tabs on the TabLayout will display a different fragment when selected. Create the first of these
fragments by right-clicking on the app -> java -> com.ebookfrenzy.tablayoutdemo entry in the Project tool window
and selecting the New -> Fragment -> Fragment (Blank) option. In the resulting dialog, enter Tab1Fragment into
the Fragment Name: field and fragment_tab1 into the Fragment Layout Name: field. Click on the Finish button
to create the new fragment:

Figure 46-3
Edit the Tab1Fragment.java file and, if Android Studio has not added one automatically, add an
OnFragmentInteractionListener interface declaration as follows:
.

.

import android.net.Uri;
.

.

 public interface OnFragmentInteractionListener {
 // TODO: Update argument type and name
 void onFragmentInteraction(Uri uri);
 }
.

.

Load the newly created fragment_tab1.xml file (located under app -> res -> layout) into the Layout Editor tool,
right-click on the FrameLayout entry in the Component Tree panel and select the Convert FrameLayout to
ConstraintLayout menu option. In the resulting dialog, verify that all conversion options are selected before
clicking on OK. Change the ID of the layout to constraintLayout.

Once the layout has been converted to a ConstraintLayout, delete the TextView from the layout. From the Palette,
locate the TextView widget and drag and drop it so that it is positioned in the center of the layout. Edit the text
property on the object so that it reads “Tab 1 Fragment”, extract the string to a resource named tab_1_fragment,
and click the Infer Constraints toolbar button. At this point the layout should match that of Figure 46-4:

378

Creating a Tabbed Interface using the TabLayout Component

Figure 46-4

46.5 Duplicating the Fragments
So far, the project contains one of the four required fragments. Instead of creating the remaining three fragments
using the previous steps it would be quicker to duplicate the first fragment. Each fragment consists of a layout
XML file and a Java class file, each of which needs to be duplicated.

Right-click on the fragment_tab1.xml file in the Project tool window and select the Copy option from the
resulting menu. Right-click on the layout entry, this time selecting the Paste option. In the resulting dialog,
name the new layout file fragment_tab2.xml before clicking the OK button. Edit the new fragment_tab2.xml file
and change the text on the Text View to “Tab 2 Fragment”, following the usual steps to extract the string to a
resource named tab_2_fragment.

To duplicate the Tab1Fragment class file, right-click on the class listed under app -> java -> com.ebookfrenzy.
tablayoutdemo and select Copy. Right-click on the com.ebookfrenzy.tablayoutdemo entry and select Paste. In the
Copy Class dialog, enter Tab2Fragment into the New name: field and click on OK.

Edit the new Tab2Fragment.java file and modify the onCreateView() method to inflate the fragment_tab2 layout
file:
@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 // Inflate the layout for this fragment

 return inflater.inflate(R.layout.fragment_tab2, container, false);
}

Perform the above duplication steps twice more to create the fragment layout and class files for the remaining
two fragments. On completion of these steps the project structure should match that of Figure 46-5:

379

Creating a Tabbed Interface using the TabLayout Component

Figure 46-5

46.6 Adding the TabLayout and ViewPager2
With the fragment creation process now complete, the next step is to add the TabLayout and ViewPager2 to the
main activity layout file. Edit the activity_main.xml file and add these elements as outlined in the following XML
listing. Note that the TabLayout component is embedded into the AppBarLayout element while the ViewPager2
is placed after the AppBarLayout:
<?xml version="1.0" encoding="utf-8"?>

<androidx.coordinatorlayout.widget.CoordinatorLayout xmlns:android="http://
schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <com.google.android.material.appbar.AppBarLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:theme="@style/Theme.TabLayoutDemo.AppBarOverlay">

 <androidx.appcompat.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

380

Creating a Tabbed Interface using the TabLayout Component

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 app:popupTheme="@style/Theme.TabLayoutDemo.PopupOverlay" />

 <com.google.android.material.tabs.TabLayout
 android:id="@+id/tabLayout"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:tabMode="fixed"
 app:tabGravity="fill"/>

 </com.google.android.material.appbar.AppBarLayout>

 <androidx.viewpager2.widget.ViewPager2
 android:id="@+id/view_pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_behavior="@string/appbar_scrolling_view_behavior" />

 <include layout="@layout/content_main" />

 <com.google.android.material.floatingactionbutton.FloatingActionButton

 android:id="@+id/fab"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="bottom|end"

 android:layout_marginEnd="@dimen/fab_margin"

 android:layout_marginBottom="16dp"

 app:srcCompat="@android:drawable/ic_dialog_email" />

</androidx.coordinatorlayout.widget.CoordinatorLayout>

Creating the Pager Adapter
This example will use the ViewPager2 approach to handling the fragments assigned to the TabLayout tabs. With
the ViewPager2 added to the layout resource file, a new class which subclasses FragmentStateAdapter needs to
be added to the project to manage the fragments that will be displayed when the tab items are selected by the
user.

Add a new class to the project by right-clicking on the com.ebookfrenzy.tablayoutdemo entry in the Project tool
window and selecting the New -> Java Class menu option. In the new class dialog, enter TabPagerAdapter into
the Name: field, select the Class item in the list and press the keyboard Return key.

Edit the TabPagerAdapter.java file so that it reads as follows:
package com.ebookfrenzy.tablayoutdemo;

import androidx.annotation.NonNull;
import androidx.fragment.app.*;

381

Creating a Tabbed Interface using the TabLayout Component

import androidx.viewpager2.adapter.FragmentStateAdapter;

public class TabPagerAdapter extends FragmentStateAdapter {

 int tabCount;

 public TabPagerAdapter(@NonNull FragmentActivity fragmentActivity, int
numberOfTabs) {
 super(fragmentActivity);
 this.tabCount = numberOfTabs;
 }

 @NonNull
 @Override
 public Fragment createFragment(int position) {
 switch (position) {
 case 0:
 return new Tab1Fragment();
 case 1:
 return new Tab2Fragment();
 case 2:
 return new Tab3Fragment();
 case 3:
 return new Tab4Fragment();
 default:
 return null;
 }
 }

 @Override
 public int getItemCount() {
 return tabCount;
 }
}

The class is declared as extending the FragmentStateAdapter class and a constructor is implemented allowing
the number of pages required to be passed to the class when an instance is created. The createFragment() method
will be called when a specific page is required. A switch statement is used to identify the page number being
requested and to return a corresponding fragment instance. Finally, the getItemCount() method simply returns
the count value passed through when the object instance was created.

46.7 Performing the Initialization Tasks
The remaining tasks involve initializing the TabLayout, ViewPager2 and TabPagerAdapter instances and declaring
the main activity class as implementing fragment interaction listeners for each of the four tab fragments. Edit the
MainActivity.java file so that it reads as follows:
package com.ebookfrenzy.tablayoutdemo;

.

382

Creating a Tabbed Interface using the TabLayout Component

.

import android.net.Uri;
import com.google.android.material.tabs.TabLayoutMediator;
.

.

public class MainActivity extends AppCompatActivity implements
 Tab1Fragment.OnFragmentInteractionListener,
 Tab2Fragment.OnFragmentInteractionListener,
 Tab3Fragment.OnFragmentInteractionListener,
 Tab4Fragment.OnFragmentInteractionListener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

.

.

 configureTabLayout();
 }

 protected void configureTabLayout() {

 for (int i = 0; i < 4; i++) {
 binding.tabLayout.addTab(binding.tabLayout.newTab());
 }

 final TabPagerAdapter adapter = new TabPagerAdapter
 (this, binding.tabLayout.getTabCount());
 binding.viewPager.setAdapter(adapter);

 new TabLayoutMediator(binding.tabLayout, binding.viewPager,
 (tab, position) -> tab.setText("Tab " + (position + 1) +
 " Item")).attach();
 }

 @Override
 public void onFragmentInteraction(Uri uri) {
 }
.

.

}

The code begins by creating four tabs and adding them to the TabLayout instance as follows:
for (int i = 0; i < 4; i++) {

 binding.tabLayout.addTab(binding.tabLayout.newTab());

}

Next, an instance of the TabPagerAdapter class is created. Note that the code to create the TabPagerAdapter
instance passes through the number of tabs that have been assigned to the TabLayout component. The

383

Creating a Tabbed Interface using the TabLayout Component

TabPagerAdapter instance is then assigned as the adapter for the ViewPager2 instance:
final TabPagerAdapter adapter = new TabPagerAdapter

 (this, binding.tabLayout.getTabCount());

binding.viewPager.setAdapter(adapter);

Finally, an instance of the TabLayoutMediator class is used to connect the TabLayout with the ViewPager2
object:
new TabLayoutMediator(binding.tabLayout, binding.viewPager,

 (tab, position) -> tab.setText("Tab " + (position + 1) + " Item")).
attach();

This class ensures that the TabLayout tabs remain synchronized with the currently selected fragment. Part of this
process involves making sure that the correct text is displayed on each tab. In this case, the text is configured to
read “Tab <n> Item” where <n> is replaced by the number of the currently selected tab.

46.8 Testing the Application
Compile and run the app on a device or emulator and make sure that selecting a tab causes the corresponding
fragment to appear in the content area of the screen:

Figure 46-6

46.9 Customizing the TabLayout
The TabLayout in this example project is configured using fixed mode. This mode works well for a limited
number of tabs with short titles. A greater number of tabs or longer titles can quickly become a problem when
using fixed mode as illustrated by Figure 46-7:

384

Creating a Tabbed Interface using the TabLayout Component

Figure 46-7
In an effort to fit the tabs into the available display width the TabLayout has used multiple lines of text. Even so,
the second line is clearly truncated making it impossible to see the full title. The best solution to this problem
is to switch the TabLayout to scrollable mode. In this mode the titles appear in full length, single line format
allowing the user to swipe to scroll horizontally through the available items as demonstrated in Figure 46-8:

Figure 46-8
To switch a TabLayout to scrollable mode, simply change the app:tabMode property in the activity_main.xml
layout resource file from “fixed” to “scrollable”:
<android.support.design.widget.TabLayout

 android:id="@+id/tabLayout"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 app:tabMode="scrollable"
 app:tabGravity="fill"/>

</android.support.design.widget.AppBarLayout>

When in fixed mode, the TabLayout may be configured to control how the tab items are displayed to take up the
available space on the screen. This is controlled via the app:tabGravity property, the results of which are more
noticeable on wider displays such as tablets in landscape orientation. When set to “fill”, for example, the items
will be distributed evenly across the width of the TabLayout as shown in Figure 46-9:

385

Creating a Tabbed Interface using the TabLayout Component

Figure 46-9
Changing the property value to “center” will cause the items to be positioned relative to the center of the tab bar:

Figure 46-10

46.10 Summary
TabLayout is one of the components introduced as part of the Android material design implementation. The
purpose of the TabLayout component is to present a series of tab items which, when selected, display different
content to the user. The tab items can display text, images or a combination of both. When combined with
the ViewPager2 class and fragments, tab layouts can be created with relative ease, with each tab item selection
displaying a different fragment.

387

Chapter 47

47. Working with the RecyclerView
and CardView Widgets
The RecyclerView and CardView widgets work together to provide scrollable lists of information to the user in
which the information is presented in the form of individual cards. Details of both classes will be covered in this
chapter before working through the design and implementation of an example project.

47.1 An Overview of the RecyclerView
Much like the ListView class outlined in the chapter entitled “Working with the Floating Action Button and
Snackbar”, the purpose of the RecyclerView is to allow information to be presented to the user in the form of
a scrollable list. The RecyclerView, however, provides a number of advantages over the ListView. In particular,
the RecyclerView is significantly more efficient in the way it manages the views that make up a list, essentially
reusing existing views that make up list items as they scroll off the screen instead if creating new ones (hence the
name “recycler”). This both increases the performance and reduces the resources used by a list, a feature that is
of particular benefit when presenting large amounts of data to the user.

Unlike the ListView, the RecyclerView also provides a choice of three built-in layout managers to control the way
in which the list items are presented to the user:

• LinearLayoutManager – The list items are presented as either a horizontal or vertical scrolling list.

Figure 47-1
• GridLayoutManager – The list items are presented in grid format. This manager is best used when the list

items are of uniform size.

Figure 47-2
• StaggeredGridLayoutManager - The list items are presented in a staggered grid format. This manager is best

388

Working with the RecyclerView and CardView Widgets

used when the list items are not of uniform size.

Figure 47-3
For situations where none of the three built-in managers provide the necessary layout, custom layout managers
may be implemented by subclassing the RecyclerView.LayoutManager class.

Each list item displayed in a RecyclerView is created as an instance of the ViewHolder class. The ViewHolder
instance contains everything necessary for the RecyclerView to display the list item, including the information
to be displayed and the view layout used to display the item.

As with the ListView, the RecyclerView depends on an adapter to act as the intermediary between the
RecyclerView instance and the data that is to be displayed to the user. The adapter is created as a subclass of the
RecyclerView.Adapter class and must, at a minimum, implement the following methods, which will be called at
various points by the RecyclerView object to which the adapter is assigned:

• getItemCount() – This method must return a count of the number of items that are to be displayed in the list.

• onCreateViewHolder() – This method creates and returns a ViewHolder object initialized with the view that
is to be used to display the data. This view is typically created by inflating the XML layout file.

• onBindViewHolder() – This method is passed the ViewHolder object created by the onCreateViewHolder()
method together with an integer value indicating the list item that is about to be displayed. Contained within
the ViewHolder object is the layout assigned by the onCreateViewHolder() method. It is the responsibility of
the onBindViewHolder() method to populate the views in the layout with the text and graphics corresponding
to the specified item and to return the object to the RecyclerView where it will be presented to the user.

Adding a RecyclerView to a layout is simply a matter of adding the appropriate element to the XML content
layout file of the activity in which it is to appear. For example:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior="@string/appbar_scrolling_view_behavior"

 tools:context=".MainActivity"

 tools:showIn="@layout/activity_card_demo">

 <androidx.recyclerview.widget.RecyclerView
 android:id="@+id/recycler_view"

389

Working with the RecyclerView and CardView Widgets

 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:listItem="@layout/card_layout" />

</androidx.constraintlayout.widget.ConstraintLayout>

.

.

In the above example the RecyclerView has been embedded into the CoordinatorLayout of a main activity
layout file along with the AppBar and Toolbar. This provides some additional features, such as configuring the
Toolbar and AppBar to scroll off the screen when the user scrolls up within the RecyclerView (a topic covered in
more detail in the chapter entitled “Working with the AppBar and Collapsing Toolbar Layouts”).

47.2 An Overview of the CardView
The CardView class is a user interface view that allows information to be presented in groups using a card
metaphor. Cards are usually presented in lists using a RecyclerView instance and may be configured to appear
with shadow effects and rounded corners. Figure 47-4, for example, shows three CardView instances configured
to display a layout consisting of an ImageView and two TextViews:

Figure 47-4
The user interface layout to be presented with a CardView instance is defined within an XML layout resource file
and loaded into the CardView at runtime. The CardView layout can contain a layout of any complexity using the
standard layout managers such as RelativeLayout and LinearLayout. The following XML layout file represents a
card view layout consisting of a RelativeLayout and a single ImageView. The card is configured to be elevated to
create shadowing effect and to appear with rounded corners:
<?xml version="1.0" encoding="utf-8"?>

 <androidx.cardview.widget.CardView

 xmlns:card_view="http://schemas.android.com/apk/res-auto"

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/card_view"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_margin="5dp"

390

Working with the RecyclerView and CardView Widgets

 card_view:cardCornerRadius="12dp"

 card_view:cardElevation="3dp"

 card_view:contentPadding="4dp">

 <RelativeLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:padding="16dp" >

 <ImageView

 android:layout_width="100dp"

 android:layout_height="100dp"

 android:id="@+id/item_image"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginRight="16dp" />

 </RelativeLayout>

</androidx.cardview.widget.CardView>

When combined with the RecyclerView to create a scrollable list of cards, the onCreateViewHolder() method of
the recycler view inflates the layout resource file for the card, assigns it to the ViewHolder instance and returns
it to the RecyclerView instance.

47.3 Summary
This chapter has introduced the Android RecyclerView and CardView components. The RecyclerView provides
a resource efficient way to display scrollable lists of views within an Android app. The CardView is useful when
presenting groups of data (such as a list of names and addresses) in the form of cards. As previously outlined,
and demonstrated in the tutorial contained in the next chapter, the RecyclerView and CardView are particularly
useful when combined.

391

Chapter 48

48. An Android RecyclerView and
CardView Tutorial
In this chapter an example project will be created that makes use of both the CardView and RecyclerView
components to create a scrollable list of cards. The completed app will display a list of cards containing images
and text. In addition to displaying the list of cards, the project will be implemented such that selecting a card
causes messages to be displayed to the user indicating which card was tapped.

48.1 Creating the CardDemo Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Basic Views Activity template before clicking on the Next button.

Enter CardDemo into the Name field and specify com.ebookfrenzy.carddemo as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

48.2 Modifying the Basic Views Activity Project
Since the Basic Views Activity was selected, the layout includes a floating action button which is not required for
this project. Load the activity_main.xml layout file into the Layout Editor tool, select the floating action button
and tap the keyboard delete key to remove the object from the layout. Edit the MainActivity.java file and remove
the floating action button and navigation controller code from the onCreate method as follows:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 setSupportActionBar(binding.toolbar);

 NavController navController =

 Navigation.findNavController(this, R.id.nav_host_fragment_content_main);

 appBarConfiguration =

 new AppBarConfiguration.Builder(navController.getGraph()).build();

 NavigationUI.setupActionBarWithNavController(this, navController,

 appBarConfiguration);

 binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_

392

An Android RecyclerView and CardView Tutorial

LONG)

 .setAction("Action", null).show();

 }

 });

}

Also, remove the onSupportNavigateUp() method, then open the content_main.xml file and delete the nav_host_
fragment_content_main object from the layout so that only the ConstraintLayout parent remains.

48.3 Designing the CardView Layout
The layout of the views contained within the cards will be defined within a separate XML layout file. Within
the Project tool window right-click on the app -> res -> layout entry and select the New -> Layout Resource File
menu option. In the New Resource Dialog enter card_layout into the File name: field and androidx.cardview.
widget.CardView into the root element field before clicking on the OK button.

Load the card_layout.xml file into the Layout Editor tool, switch to Code mode and modify the layout so that it
reads as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.cardview.widget.CardView

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"

 android:layout_height="wrap_content"
 android:id="@+id/card_view"
 android:layout_margin="5dp"
 app:cardBackgroundColor="#81C784"
 app:cardCornerRadius="12dp"
 app:cardElevation="3dp"
 app:contentPadding="4dp" >

 <androidx.constraintlayout.widget.ConstraintLayout
 android:id="@+id/relativeLayout"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:padding="16dp">

 <ImageView
 android:id="@+id/itemImage"
 android:layout_width="100dp"
 android:layout_height="100dp"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/itemTitle"
 android:layout_width="236dp"

393

An Android RecyclerView and CardView Tutorial

 android:layout_height="39dp"
 android:layout_marginStart="16dp"
 android:textSize="30sp"
 app:layout_constraintLeft_toRightOf="@+id/itemImage"
 app:layout_constraintStart_toEndOf="@+id/itemImage"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/itemDetail"
 android:layout_width="236dp"
 android:layout_height="16dp"
 android:layout_marginStart="16dp"
 android:layout_marginTop="8dp"
 app:layout_constraintLeft_toRightOf="@+id/itemImage"
 app:layout_constraintStart_toEndOf="@+id/itemImage"
 app:layout_constraintTop_toBottomOf="@+id/itemTitle" />
 </androidx.constraintlayout.widget.ConstraintLayout>
</androidx.cardview.widget.CardView>

48.4 Adding the RecyclerView
Select the content_main.xml layout file and drag a RecyclerView object from the Containers section of the palette
onto the layout so that it is positioned in the center of the screen where it should automatically resize to fill the
entire screen. Use the Infer constraints toolbar button to add any missing layout constraints to the view. Using
the Attributes tool window, change the ID of the RecyclerView instance to recyclerView and the layout_width
and layout_height properties to match_constraint.

48.5 Adding the Image Files
In addition to the two TextViews, the card layout also contains an ImageView on which the Recycler adapter has
been configured to display images. Before the project can be tested these images must be added. The images that
will be used for the project are named android_image_<n>.jpg and can be found in the project_icons folder of
the sample code download available from the following URL:

https://www.ebookfrenzy.com/retail/flamingojava/index.php

Locate these images in the file system navigator for your operating system and select and copy the eight images.
Right click on the app -> res -> drawable entry in the Project tool window and select Paste to add the files to the
folder:

Figure 48-1

https://www.ebookfrenzy.com/retail/flamingojava/index.php

394

An Android RecyclerView and CardView Tutorial

48.6 Creating the RecyclerView Adapter
As outlined in the previous chapter, the RecyclerView needs to have an adapter to handle the creation of the
list items. Add this new class to the project by right-clicking on the app -> java -> com.ebookfrenzy.carddemo
entry in the Project tool window and selecting the New -> Java Class menu option. In the new class dialog, enter
RecyclerAdapter into the Name field and select Class from the list before tapping the Return keyboard key to
create the new Java class file.

Edit the new RecyclerAdapter.java file to add some import directives and to declare that the class now extends
RecyclerView.Adapter. Rather than create a separate class to provide the data to be displayed, some basic arrays
will also be added to the adapter to act as the data for the app:
package com.ebookfrenzy.carddemo;

import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;
import android.widget.TextView;

import androidx.annotation.NonNull;
import androidx.recyclerview.widget.RecyclerView;

public class RecyclerAdapter extends RecyclerView.Adapter<RecyclerAdapter.
ViewHolder> {

 final private String[] titles = {"Chapter One",
 "Chapter Two",
 "Chapter Three",
 "Chapter Four",
 "Chapter Five",
 "Chapter Six",
 "Chapter Seven",
 "Chapter Eight"};

 final private String[] details = {"Item one details",
 "Item two details", "Item three details",
 "Item four details", "Item five details",
 "Item six details", "Item seven details",
 "Item eight details"};

 final private int[] images = { R.drawable.android_image_1,
 R.drawable.android_image_2,
 R.drawable.android_image_3,
 R.drawable.android_image_4,
 R.drawable.android_image_5,
 R.drawable.android_image_6,
 R.drawable.android_image_7,

395

An Android RecyclerView and CardView Tutorial

 R.drawable.android_image_8 };
}

Within the RecyclerAdapter class we now need our own implementation of the ViewHolder class configured
to reference the view elements in the card_layout.xml file. Remaining within the RecyclerAdapter.java file
implement this class as follows:
public class RecyclerAdapter extends RecyclerView.Adapter<RecyclerAdapter.
ViewHolder> {

.

.

 static class ViewHolder extends RecyclerView.ViewHolder {

 ImageView itemImage;
 TextView itemTitle;
 TextView itemDetail;

 ViewHolder(View itemView) {
 super(itemView);
 itemImage = itemView.findViewById(R.id.itemImage);
 itemTitle = itemView.findViewById(R.id.itemTitle);
 itemDetail = itemView.findViewById(R.id.itemDetail);
 }
 }

}

The ViewHolder class contains an ImageView and two TextView variables together with a constructor method
that initializes those variables with references to the three view items in the card_layout.xml file.

The next item to be added to the RecyclerAdapter.java file is the implementation of the onCreateViewHolder()
method:
@NonNull

@Override

public ViewHolder onCreateViewHolder(ViewGroup viewGroup, int i) {

 View v = LayoutInflater.from(viewGroup.getContext())

 .inflate(R.layout.card_layout, viewGroup, false);

 return new ViewHolder(v);

}

This method will be called by the RecyclerView to obtain a ViewHolder object. It inflates the view hierarchy
card_layout.xml file and creates an instance of our ViewHolder class initialized with the view hierarchy before
returning it to the RecyclerView.

The purpose of the onBindViewHolder() method is to populate the view hierarchy within the ViewHolder object
with the data to be displayed. It is passed the ViewHolder object and an integer value indicating the list item that
is to be displayed. This method should now be added, using the item number as an index into the data arrays.
This data is then displayed on the layout views using the references created in the constructor method of the
ViewHolder class:
@Override

public void onBindViewHolder(ViewHolder viewHolder, int i) {

396

An Android RecyclerView and CardView Tutorial

 viewHolder.itemTitle.setText(titles[i]);

 viewHolder.itemDetail.setText(details[i]);

 viewHolder.itemImage.setImageResource(images[i]);

}

The final requirement for the adapter class is an implementation of the getItem() method which, in this case,
simply returns the number of items in the titles array:
@Override

public int getItemCount() {

 return titles.length;

}

48.7 Initializing the RecyclerView Component
At this point the project consists of a RecyclerView instance, an XML layout file for the CardView instances and
an adapter for the RecyclerView. The last step before testing the progress so far is to initialize the RecyclerView
with a layout manager, create an instance of the adapter and assign that instance to the RecyclerView object.
For the purposes of this example, the RecyclerView will be configured to use the LinearLayoutManager layout
option.

There is a slight complication here because we need to be able to use view binding to access the recyclerView
component from within the MainActivity class. The problem is that recyclerView is contained within the
content_main.xml layout file which is, in turn, included in the activity_main.xml file. To be able to reach down
into the content_main.xml file, we need to assign it an id at the point that it is included. To do this, edit the
activity_main.xml file and modify the include element so that it reads as follows:
.

.

 <include

 android:id="@+id/contentMain"
 layout="@layout/content_main" />

.

.

With an id assigned to the included file, the recyclerView component can be accessed using the following
binding:
binding.contentMain.recyclerView

Now edit the MainActivity.java file and modify the onCreate() method to implement the initialization code:
package com.ebookfrenzy.carddemo;

.

.

import androidx.recyclerview.widget.LinearLayoutManager;
import androidx.recyclerview.widget.RecyclerView;
.

.
public class MainActivity extends AppCompatActivity {

 private RecyclerView recyclerView;
 private RecyclerView.LayoutManager layoutManager;

397

An Android RecyclerView and CardView Tutorial

 private RecyclerView.Adapter adapter;
.
.
 @Override

 protected void onCreate(Bundle savedInstanceState) {

.

.

 setSupportActionBar(toolbar);

 layoutManager = new LinearLayoutManager(this);
 binding.contentMain.recyclerView.setLayoutManager(layoutManager);

 adapter = new RecyclerAdapter();
 binding.contentMain.recyclerView.setAdapter(adapter);
 }
.

.

}

48.8 Testing the Application
Compile and run the app on a physical device or emulator session and scroll through the different card items
in the list:

Figure 48-2

48.9 Responding to Card Selections
The last phase of this project is to make the cards in the list selectable so that clicking on a card triggers an event
within the app. For this example, the cards will be configured to present a message on the display when tapped
by the user. To respond to clicks, the ViewHolder class needs to be modified to assign an onClickListener on
each item view. Edit the RecyclerAdapter.java file and modify the ViewHolder class declaration so that it reads

398

An Android RecyclerView and CardView Tutorial

as follows:
.
.
import com.google.android.material.snackbar.Snackbar;
.

.

class ViewHolder extends RecyclerView.ViewHolder{

 ImageView itemImage;

 TextView itemTitle;

 TextView itemDetail;

 ViewHolder(View itemView) {

 super(itemView);

 itemImage = itemView.findViewById(R.id.item_image);

 itemTitle = itemView.findViewById(R.id.item_title);

 itemDetail = itemView.findViewById(R.id.item_detail);

 itemView.setOnClickListener(new View.OnClickListener() {
 @Override public void onClick(View v) {

 }
 });
 }

}

Within the body of the onClick handler, code can now be added to display a message indicating that the card
has been clicked. Given that the actions performed as a result of a click will likely depend on which card was
tapped it is also important to identify the selected card. This information can be obtained via a call to the
getAdapterPosition() method of the RecyclerView.ViewHolder class. Remaining within the RecyclerAdapter.java
file, add code to the onClick handler so it reads as follows:
@override

public void onClick(View v) {

 int position = getAdapterPosition();

 Snackbar.make(v, "Click detected on item " + (position + 1),
 Snackbar.LENGTH_LONG)
 .setAction("Action", null).show();
 }

});

The last task is to enable the material design ripple effect that appears when items are tapped within Android
applications. This simply involves the addition of some properties to the declaration of the CardView instance
in the card_layout.xml file as follows:
<?xml version="1.0" encoding="utf-8"?>

399

An Android RecyclerView and CardView Tutorial

<androidx.cardview.widget.CardView

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:card_view="http://schemas.android.com/apk/res-auto"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:id="@+id/card_view"

 android:layout_margin="5dp"

 app:cardBackgroundColor="#81C784"

 app:cardCornerRadius="12dp"

 app:cardElevation="3dp"

 app:contentPadding="4dp"

 android:foreground="?selectableItemBackground"
 android:clickable="true" >

Run the app once again and verify that tapping a card in the list triggers both the standard ripple effect at the
point of contact and the appearance of a Snackbar reporting the number of the selected item.

48.10 Summary
This chapter has worked through the steps involved in combining the CardView and RecyclerView components
to display a scrollable list of card based items. The example also covered the detection of clicks on list items,
including the identification of the selected item and the enabling of the ripple effect visual feedback on the
tapped CardView instance.

401

Chapter 49

49. A Layout Editor Sample Data
Tutorial
The CardDemo project created in the previous chapter has provided a good example of how it can be difficult
to assess from within the layout editor exactly how a user interface is going to appear until the completed app
is tested. This is a problem that frequently occurs when the content to be displayed in a user interface is only
generated or acquired once the user has the app installed and running.

For some time now, the Android Studio layout editor has provided the ability to specify simple attributes that
are active only when the layout is being designed. A design-time only string resource could, for example, be
assigned to a TextView within the layout editor that would not appear when the app runs. This capability has
been extended significantly with the introduction of sample data support within the Android Studio layout
editor and will be used in this chapter to improve the layout editor experience in the CardDemo project.

49.1 Adding Sample Data to a Project
During the design phase of the user interface layout, the RecyclerView instance (Figure 49-1) bears little
resemblance to the running app tested at the end of the previous chapter:

Figure 49-1
In the “Modern Android App Architecture with Jetpack” chapter earlier in the book the concept of sample data
was introduced. To demonstrate sample data in use, the project will now be modified so that the fully populated
cards appear within the RecyclerView from within the layout editor. Before doing that, however, it is worth
noting that the layout editor has a collection of preconfigured sample data templates that can be used when
designing user interfaces. To see some of these in action, load the content_main.xml layout file into the layout
editor and select the RecyclerView instance. Right-click on the RecyclerView and select the Set Sample Data
menu option to display the Design-time View Attributes panel:

402

A Layout Editor Sample Data Tutorial

Figure 49-2
Change the template to the Email Client option and the item count to 12 and note that the RecyclerView changes
to display data from the template:

Figure 49-3
These templates can be useful for displaying sample data without any additional work and will often provide
enough to complete the layout design. For this example, however, sample data is going to be used to display the
cards within the RecyclerView as they are intended to appear in the running app. With the content_main.xml
file still loaded in the layout editor, switch to Code mode and locate the RecyclerView element which should
read as follows:
<androidx.recyclerview.widget.RecyclerView

 android:id="@+id/recyclerView"

 android:layout_width="0dp"

 android:layout_height="0dp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 tools:itemCount="12"

 tools:listitem="@layout/recycler_view_item" />

.

403

A Layout Editor Sample Data Tutorial

.

Note the two special tools properties currently configured to display 12 items in the list, each using a layout
contained within a file named recycler_view_item.xml. The layout editor provides a range of tools options that
may be configured within a layout file. Though coverage of all of these settings is beyond the scope of this book,
a full description of each can be found at the following URL:

https://developer.android.com/studio/write/tool-attributes#toolssample_resources

The recycler_view_item.xml file referenced above was generated automatically by the layout editor when the
sample data template was selected and can be found in the project tool window.

Switch back to Design mode and, with the RecyclerView selected, use the Design-time View Attributes panel to
switch the template back to the default settings. The recycler_view_item.xml file will be removed from the project
along with the two tools property lines within the content_main.xml XML file (if Android Studio fails to remove
the lines they may be deleted manually from within the Code view).

To switch to using the card layout for the sample data display, add a listitem property to reference the card_
layout.xml file. With the RecyclerView selected in the layout, search for the listitem property in the Attributes
tool window and enter @layout/card_layout into the property field as illustrated in Figure 49-4:

Figure 49-4
Note the card layout is now appearing for each list item, though without any images and using sample text data:

Figure 49-5
The next step is to display some images and different text on the views within the card layout. This can either

404

A Layout Editor Sample Data Tutorial

take the form of template sample data provided by the layout editor, or custom sample data added specifically for
this project. Load the card_layout.xml file into the layout editor, select the ImageView and display the Design-
time View Attributes panel as outlined earlier in the chapter. From the srcCompat menu, select the built-in
backgrounds/scenic image set as illustrated in Figure 49-6 below:

Figure 49-6
Next, right-click on the itemTitle TextView object, select the Set Sample Data menu option and, in the Design-
time attributes panel, select the cities text option. Repeat this step for the itemDetail view, this time selecting the
full_names option as shown in Figure 49-7:

Figure 49-7
Open the content_main.xml file in Design mode and note that the RecyclerView is now using the built-in images
and sample text data:

405

A Layout Editor Sample Data Tutorial

Figure 49-8

49.2 Using Custom Sample Data
The final step in this chapter is to demonstrate the use of custom sample data and images within the layout
editor. This requires the creation of a sample data directory and the addition of some text and image files. Within
the Project tool window, right-click on the app entry and select the New -> Sample Data Directory menu option,
at which point a new directory named sampledata will appear within the Project tool window. If the new folder is
not visible, switch the Project tool window from Android to Project mode and find the folder under CardDemo
-> app as shown in Figure 49-9:

Figure 49-9
Right-click on the sampledata directory, create a subdirectory named images and copy and paste the Android
images into the new folder using the same steps outlined in the previous chapter. In the card_layout.xml file,
display the Design-time View Attributes panel for the ImageView once again, this time clicking the Browse link
and selecting the newly added Android images in the Resources dialog (if the images folder does not appear try
rebuilding the project):

406

A Layout Editor Sample Data Tutorial

Figure 49-10
Right-click once again on the sampledata directory, select the New -> File option, name the file chapters, and
enter the following content:
Chapter One

Chapter Two

Chapter Three

Chapter Four

Chapter Five

Chapter Six

Chapter Seven

Chapter Eight

Next, create a second text file named items with the following content:
Item one details

Item two details

Item three details

Item four details

Item five details

Item six details

Item seven details

Item eight details

With the sample data text files created, all that remains is to reference them in the view elements of the card_
layout.xml file as follows:
<TextView

 android:id="@+id/itemTitle"

 android:layout_width="236dp"

 android:layout_height="39dp"

 android:layout_marginStart="16dp"

 android:textSize="30sp"

 app:layout_constraintLeft_toRightOf="@+id/itemImage"

407

A Layout Editor Sample Data Tutorial

 app:layout_constraintStart_toEndOf="@+id/itemImage"

 app:layout_constraintTop_toTopOf="parent"

 tools:text="@sample/chapters" />

<TextView

 android:id="@+id/itemDetail"

 android:layout_width="236dp"

 android:layout_height="16dp"

 android:layout_marginStart="16dp"

 android:layout_marginTop="8dp"

 app:layout_constraintLeft_toRightOf="@+id/itemImage"

 app:layout_constraintStart_toEndOf="@+id/itemImage"

 app:layout_constraintTop_toBottomOf="@+id/itemTitle"

 tools:text="@sample/items" />

Rebuild the app and return to the layout design in the content_main.xml file where the custom sample data and
images should now be displayed within the RecyclerView list:

Figure 49-11
Instead of having two separate text files and a reference to the image set, another option is to declare the sample
data within a JSON file. For example:
{

 "mydata": [

 {

 "chapter" : "Chapter One",

 "details": "Item one details",

 "image": "@sample/images"

 },

 {

408

A Layout Editor Sample Data Tutorial

 "chapter" : "Chapter Two",

 "details": "Item two details",

 "image": "@sample/images"

 },

.

.

}

Assuming the above was contained within a file named chapterdata.json, the sample data would then be
referenced within the view XML elements as follows:
.

.

<ImageView

.

.

 tools:src="@sample/chapterdata.json/mydata/image" />
<TextView

.

.

 tools:text="@sample/chapterdata.json/mydata/chapter" />

<TextView

.

.

 tools:text="@sample/chapterdata.json/mydata/details" />
.

.

49.3 Summary
This chapter has demonstrated the use of sample data within the layout editor to provide a more realistic
representation of how the user interface will appear at runtime. The steps covered in this tutorial included the
use of both pre-existing sample data templates and the integration of custom sample data.

409

Chapter 50

50. Working with the AppBar and
Collapsing Toolbar Layouts
In this chapter we will be exploring the ways in which the app bar within an activity layout can be customized
and made to react to the scrolling events taking place within other views on the screen. By making use of the
CoordinatorLayout in conjunction with the AppBarLayout and CollapsingToolbarLayout containers, the app
bar can be configured to display an image and to animate in and out of view. An upward scrolling motion on a
list, for example, can be configured so that the app bar recedes from view and then reappears when a downward
scrolling motion is performed.

Beginning with an overview of the elements that can comprise an app bar, this chapter will then work through
a variety of examples of app bar configuration.

50.1 The Anatomy of an AppBar
The app bar is the area that appears at the top of the display when an app is running and can be configured to
contain a variety of different items including the status bar, toolbar, tab bar and a flexible space area. Figure 50-1,
for example, shows an app bar containing a status bar, toolbar and tab bar:

Figure 50-1
The flexible space area can be filled by a blank background color, or as shown in Figure 50-2, an image displayed
on an ImageView object:

Figure 50-2
As will be demonstrated in the remainder of this chapter, if the main content area of the activity user interface
layout contains scrollable content, the elements of the app bar can be configured to expand and contract as the
content on the screen is scrolled.

410

Working with the AppBar and Collapsing Toolbar Layouts

50.2 The Example Project
For the purposes of this example, changes will be made to the CardDemo project created in the earlier chapter
entitled “An Android RecyclerView and CardView Tutorial”. Begin by launching Android Studio and loading this
project.

Once the project has loaded, run the app and note when scrolling the list upwards that the toolbar remains
visible as shown in Figure 50-3:

Figure 50-3
The first step is to make some configuration changes so that the toolbar contracts during an upward scrolling
motion, and then expands on a downward scroll.

50.3 Coordinating the RecyclerView and Toolbar
Load the activity_main.xml file into the Layout Editor tool, switch to Code mode and review the XML layout
design, the hierarchy of which is represented by the diagram in Figure 50-4:

Figure 50-4
At the top level of the hierarchy is the CoordinatorLayout which, as the name suggests, coordinates the
interactions between the various child view elements it contains. As highlighted in “Working with the Floating

411

Working with the AppBar and Collapsing Toolbar Layouts

Action Button and Snackbar” for example, the CoordinatorLayout automatically slides the floating action button
upwards to accommodate the appearance of a Snackbar when it appears, then moves the button back down after
the bar is dismissed.

The CoordinatorLayout can similarly be used to cause elements of the app bar to slide in and out of view
based on the scrolling action of certain views within the view hierarchy. One such element within the layout
hierarchy shown in Figure 50-4 is the ConstraintLayout. To achieve this coordinated behavior, it is necessary to
set properties on both the element on which scrolling takes place and the elements with which the scrolling is
to be coordinated.

On the scrolling element (in this case the RecyclerView) the android:layout_behavior property must be set
to appbar_scrolling_view_behavior. Within the content_main.xml file, locate the top level ConstraintLayout
element and note that this property has been set by default:
<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior="@string/appbar_scrolling_view_behavior" >

Next, open the activity_main.xml file in the layout editor, switch to Code mode and locate the AppBarLayout
element. Note that the only child of AppBarLayout in the view hierarchy is the Toolbar. To make the toolbar
react to the scroll events taking place in the RecyclerView the app:layout_scrollFlags property must be set on
this element. The value assigned to this property will depend on the nature of the interaction required and must
consist of one or more of the following:

• scroll – Indicates that the view is to be scrolled off the screen. If this is not set the view will remain pinned at
the top of the screen during scrolling events.

• enterAlways – When used in conjunction with the scroll option, an upward scrolling motion will cause the
view to retract. Any downward scrolling motion in this mode will cause the view to re-appear.

• enterAlwaysCollapsed – When set on a view, that view will not expand from the collapsed state until the
downward scrolling motion reaches the limit of the list. If the minHeight property is set, the view will appear
during the initial scrolling motion but only until the minimum height is reached. It will then remain at that
height and will not expand fully until the top of the list is reached. Note this option only works when used in
conjunction with both the enterAlways and scroll options. For example:

app:layout_scrollFlags="scroll|enterAlways|enterAlwaysCollapsed"

android:minHeight="20dp"

• exitUntilCollapsed – When set, the view will collapse during an upward scrolling motion until the minHeight
threshold is met, at which point it will remain at that height until the scroll direction changes.

For the purposes of this example, the scroll and enterAlways options will be set on the Toolbar as follows:
<androidx.appcompat.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 app:popupTheme="@style/Theme.CardDemo.PopupOverlay"

412

Working with the AppBar and Collapsing Toolbar Layouts

 app:layout_scrollFlags="scroll|enterAlways" />

With the appropriate properties set, run the app once again and make an upward scrolling motion in the
RecyclerView list. This should cause the toolbar to collapse out of view (Figure 50-5). A downward scrolling
motion should cause the toolbar to re-appear.

Figure 50-5

50.4 Introducing the Collapsing Toolbar Layout
The CollapsingToolbarLayout container enhances the standard toolbar by providing a greater range of options
and level of control over the collapsing of the app bar and its children in response to coordinated scrolling
actions. The CollapsingToolbarLayout class is intended to be added as a child of the AppBarLayout and provides
features such as automatically adjusting the font size of the toolbar title as the toolbar collapses and expands. A
parallax mode allows designated content in the app bar to fade from view as it collapses while a pin mode allows
elements of the app bar to remain in fixed position during the contraction.

A scrim option is also available to designate the color to which the toolbar should transition during the collapse
sequence.

To see these features in action, the app bar contained in the activity_main.xml file will be modified to use the
CollapsingToolbarLayout class together with the addition of an ImageView to better demonstrate the effect of
parallax mode. The new view hierarchy that makes use of the CollapsingToolbarLayout is represented by the
diagram in Figure 50-6:

Figure 50-6

413

Working with the AppBar and Collapsing Toolbar Layouts

Load the activity_main.xml file into the Layout Editor tool in Code mode and modify the layout so that it reads
as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.coordinatorlayout.widget.CoordinatorLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <com.google.android.material.appbar.AppBarLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:theme="@style/Theme.CardDemo.AppBarOverlay">

 <com.google.android.material.appbar.CollapsingToolbarLayout
 android:id="@+id/collapsing_toolbar"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_scrollFlags="scroll|enterAlways"
 android:fitsSystemWindows="true"
 app:expandedTitleMarginBottom="30dp"
 app:expandedTitleMarginStart="15dp"
 app:expandedTitleMarginEnd="64dp">

 <ImageView
 android:id="@+id/backdrop"
 android:layout_width="match_parent"
 android:layout_height="200dp"
 android:scaleType="centerCrop"
 android:fitsSystemWindows="true"
 app:layout_collapseMode="parallax"
 android:src="@drawable/appbar_image" />

 <androidx.appcompat.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 app:popupTheme="@style/Theme.CardDemo.PopupOverlay"

 app:layout_collapseMode="pin" />
 </com.google.android.material.appbar.CollapsingToolbarLayout>

 </com.google.android.material.appbar.AppBarLayout>

414

Working with the AppBar and Collapsing Toolbar Layouts

 <include

 android:id="@+id/contentMain"

 layout="@layout/content_main" />

</androidx.coordinatorlayout.widget.CoordinatorLayout>

In addition to adding the new elements to the layout above, the background color property setting has been
removed. This change has the advantage of providing a transparent toolbar allowing more of the image to be
visible in the app bar.

Using the file system navigator for your operating system, locate the appbar_image.jpg image file in the project_
icons folder of the code sample download for the book and copy it. Right-click on the app -> res -> drawable
entry in the Project tool window and select Paste from the resulting menu.

When run, the app bar should appear as illustrated in Figure 50-7:

Figure 50-7
Scrolling the list upwards will cause the app bar to gradually collapse. During the contraction, the image will
fade to the color defined by the scrim property while the title text font size reduces at a corresponding rate until
only the toolbar is visible:

Figure 50-8
The toolbar has remained visible during the initial stages of the scrolling motion (the toolbar will also recede
from view if the upward scrolling motion continues) as the flexible area collapses because the toolbar element in

415

Working with the AppBar and Collapsing Toolbar Layouts

the activity_main.xml file was configured to use pin mode:
app:layout_collapseMode="pin"

Had the collapse mode been set to parallax the toolbar would have retracted along with the image view.

Continuing the upward scrolling motion will cause the toolbar to also collapse leaving only the status bar visible:

Figure 50-9
Since the scroll flags property for the CollapsingToolbarLayout element includes the enterAlways option, a
downward scrolling motion will cause the app bar to expand once again.

To fix the toolbar in place so that it no longer recedes from view during the upward scrolling motion, replace
enterAlways with exitUntilCollapsed in the layout_scrollFlags property of the CollapsingToolbarLayout element
in the activity_main.xml file as follows:
<com.google.android.material.appbar.CollapsingToolbarLayout

 android:id="@+id/collapsing_toolbar"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_scrollFlags="scroll|exitUntilCollapsed"
 android:fitsSystemWindows="true"

 app:expandedTitleMarginBottom="30dp"

 app:expandedTitleMarginStart="15dp"

 app:expandedTitleMarginEnd="64dp">

50.5 Changing the Title and Scrim Color
As a final task, edit the MainActivity.java file and add some code to the onCreate() method to change the title
text on the collapsing layout manager instance and to set a different scrim color (note that the scrim color may
also be set within the layout resource file):
package com.ebookfrenzy.carddemo;

.

.

import com.google.android.material.appbar.CollapsingToolbarLayout;
import android.graphics.Color;
.

.

.

 @Override

 protected void onCreate(Bundle savedInstanceState) {

416

Working with the AppBar and Collapsing Toolbar Layouts

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 setSupportActionBar(binding.toolbar);

 binding.collapsingToolbar.setTitle("My Toolbar Title");
 binding.collapsingToolbar.setContentScrimColor(Color.GREEN);

 layoutManager = new LinearLayoutManager(this);

 binding.contentMain.recyclerView.setLayoutManager(layoutManager);

 adapter = new RecyclerAdapter();

 binding.contentMain.recyclerView.setAdapter(adapter);

 }

.

.

Run the app one last time and note that the new title appears in the app bar and that scrolling now causes the
toolbar to transition to green as it retracts from view.

50.6 Summary
The app bar that appears at the top of most Android apps can consist of a number of different elements including
a toolbar, tab layout and even an image view. When embedded in a CoordinatorLayout parent, a number of
different options are available to control the way in which the app bar behaves in response to scrolling events in
the main content of the activity. For greater control over this behavior, the CollapsingToolbarLayout manager
provides a range of additional levels of control over the way the app bar content expands and contracts in
relation to scrolling activity.

417

Chapter 51

51. An Android Studio Primary/
Detail Flow Tutorial
This chapter will explain the concept of the Primary/Detail user interface design before exploring, in detail, the
elements that make up the Primary/Detail Flow template included with Android Studio. An example application
will then be created that demonstrates the steps involved in modifying the template to meet the specific needs
of the application developer.

51.1 The Primary/Detail Flow
A primary/detail flow is an interface design concept whereby a list of items (referred to as the primary list) is
displayed to the user. On selecting an item from the list, additional information relating to that item is then
presented to the user within a detail pane. An email application might, for example, consist of a primary list of
received messages consisting of the address of the sender and the subject of the message. Upon selection of a
message from the primary list, the body of the email message would appear within the detail pane.

On tablet sized Android device displays in landscape orientation, the primary list appears in a narrow vertical
panel along the left-hand edge of the screen. The remainder of the display is devoted to the detail pane in
an arrangement referred to as two-pane mode. Figure 51-1, for example, shows the primary/detail, two-pane
arrangement with primary items listed and the content of item one displayed in the detail pane:

Figure 51-1
On smaller, phone sized Android devices, the primary list takes up the entire screen and the detail pane appears
on a separate screen which appears when a selection is made from the primary list. In this mode, the detail
screen includes an action bar entry to return to the primary list. Figure 51-2 for example, illustrates both the
primary and detail screens for the same item list on a 4” phone screen:

418

An Android Studio Primary/Detail Flow Tutorial

Figure 51-2

51.2 Creating a Primary/Detail Flow Activity
In the next section of this chapter, the different elements that comprise the Primary/Detail Flow template will be
covered in some detail. This is best achieved by creating a project using the Primary/Detail Views Flow template
to use while working through the information. This project will subsequently be used as the basis for the tutorial
at the end of the chapter.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
No Activity template before clicking on the Next button.

Enter PrimaryDetailFlow into the Name field and specify com.ebookfrenzy.primarydetailflow as the package
name. Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0
(Oreo) and the Language menu to Java.

51.3 Adding the Primary/Detail Flow Activity
In the Project tool window, right-click on the app -> java -> com.ebookfrenzy.primarydetailflow entry and select
the New -> Activity -> Primary/Detail Views Flow menu option. In the new activity dialog (Figure 51-3), make
sure the Launcher Activity checkbox is enabled before clicking the Finish button:

419

An Android Studio Primary/Detail Flow Tutorial

Figure 51-3

51.4 Modifying the Primary/Detail Flow Template
While the structure of the Primary/Detail Flow template can appear confusing at first, as will become
evident, much of the functionality provided by the template can remain unchanged for many primary/detail
implementation requirements.

In the rest of this chapter, the PrimaryDetailFlow project will be modified such that the primary list displays a
list of website names and the detail pane altered to contain a WebView object instead of the current TextView.
When a website is selected by the user, the corresponding web page will subsequently load and display in the
detail pane.

51.5 Changing the Content Model
The content for the example as it currently stands is defined by the PlaceholderContent class file. Begin, therefore,
by selecting the PlaceholderContent.java file (located in the Project tool window in the app -> java -> com.
ebookfrenzy.primarydetailflow -> placeholder folder) and reviewing the code. At the bottom of the file is a
declaration for a class named PlaceholderItem which is currently able to store three String objects representing
content and details strings and an ID. The updated project, on the other hand, will need each item object to
contain an ID string, a string for the website name, and a string for the corresponding URL of the website. To
add these features, modify the PlaceholderItem class so that it reads as follows:
public static class PlaceholderItem {

 public String id;
 public String website_name;
 public String website_url;

 public PlaceholderItem(String id, String website_name,
 String website_url)
 {
 this.id = id;

420

An Android Studio Primary/Detail Flow Tutorial

 this.website_name = website_name;
 this.website_url = website_url;
 }

 @Override
 public String toString() {
 return website_name;
 }
}

Note that the encapsulating PlaceholderContent class currently contains a for loop that adds 25 items by making
multiple calls to methods named createPlaceholderItem() and makeDetails(). Much of this code will no longer be
required and should be deleted from the class as follows:
public static final Map<String, PlaceholderItem> ITEM_MAP = new HashMap<String,
PlaceholderItem>();

private static final int COUNT = 25;

static {

 // Add some sample items.

 for (int i = 1; i <= COUNT; i++) {

 addItem(createPlaceholderItem(i));

 }

}

private static void addItem(PlaceholderItem item) {

 ITEMS.add(item);

 ITEM_MAP.put(item.id, item);

}

private static PlaceholderItem createPlaceholderItem(int position) {

 return new PlaceholderItem(String.valueOf(position), "Item " + position,
makeDetails(position));

}

private static String makeDetails(int position) {

 StringBuilder builder = new StringBuilder();

 builder.append("Details about Item: ").append(position);

 for (int i = 0; i < position; i++) {

 builder.append("\nMore details information here.");

 }

 return builder.toString();

}

This code needs to be modified to initialize the data model with the required website data:
public static final Map<String, PlaceholderItem> ITEM_MAP =

 new HashMap<String, PlaceholderItem>();

421

An Android Studio Primary/Detail Flow Tutorial

static {
 // Add 3 sample items.
 addItem(new PlaceholderItem("1", "eBookFrenzy",
 "https://www.ebookfrenzy.com"));
 addItem(new PlaceholderItem("2", "Amazon",
 "https://www.amazon.com"));
 addItem(new PlaceholderItem("3", "New York Times",
 "https://www.nytimes.com"));
}

The code now takes advantage of the modified PlaceholderItem class to store an ID, website name and URL for
each item.

51.6 Changing the Detail Pane
The layout for the detail pane (the screen that is displayed when the user selects an item from the primary list)
is contained within the activity_item_detail.xml file which, in turn, contains a FrameContainerView instance
which is used to display the actual detail pane content. If the app is displaying in single-pane mode, the frame
container will display the layout contained in the fragment_item_detail.xml file, while multi-pane mode will
display the fragment_item_detail.xml (sw600dp) layout.

The template layout provided by Android Studio for the fragment_item_detail.xml comprises a Coordinator
layout containing an app bar, toolbar, floating action button, and a text view. For this example, all we need
to display is a WebView, so open this file and delete all of the views from the layout with the exception of the
item_detail_container view. The easiest way to do this is to select all of the unwanted views in the Component
Tree as shown in below before tapping the keyboard delete key:

Figure 51-4
Drag a WebView object from the Widgets section of the Palette and drop it onto the center of the layout canvas
and change the id to website_detail.

Next, edit the fragment_item_detail.xml (sw600dp) file and delete the default TextView instance before dragging
and dropping a WebView onto the layout, once again changing the id to website_detail. The layout for both files
should now resemble Figure 51-5:

422

An Android Studio Primary/Detail Flow Tutorial

Figure 51-5

51.7 Modifying the ItemDetailFragment Class
At this point the user interface detail pane has been modified but the corresponding Java class is still designed
for working with a TextView object instead of a WebView. Load the source code for this class by double-clicking
on the ItemDetailFragment.java file in the Project tool window.

To load the web page URL corresponding to the currently selected item only a few lines of code need to be
changed. Once this change has been made, the code should read as follows:
.

.

import android.webkit.WebResourceRequest;
import android.webkit.WebView;
import android.webkit.WebViewClient;
.
.
public class ItemDetailFragment extends Fragment {

.

.

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 binding = FragmentItemDetailBinding.inflate(inflater, container, false);

 View rootView = binding.getRoot();

 mToolbarLayout = rootView.findViewById(R.id.toolbar_layout);

 mTextView = binding.ItemDetail;

 updateContent();

 rootView.setOnDragListener(dragListener);

 return rootView;

 }

.

423

An Android Studio Primary/Detail Flow Tutorial

.

 private void updateContent() {

 if (mItem != null) {

 binding.websiteDetail.setWebViewClient(new WebViewClient(){
 @Override
 public boolean shouldOverrideUrlLoading(
 WebView view, WebResourceRequest request) {
 return super.shouldOverrideUrlLoading(
 view, request);
 }
 });
 binding.websiteDetail.loadUrl(mItem.website_url);
 }

 }

.

.

}

In the above code, changes are made to delete references to the toolbar layout and item detail text elements
which were previously removed from the fragment_item_detail.xml file.

Next, updateContent() is modified to access the website_detail view (this was formally the TextView but is now
a WebView) and extract the URL of the website from the selected item. An instance of the WebViewClient class
is created and assigned the shouldOverrideUrlLoading() callback method. This method is implemented so as to
force the system to use the WebView instance to load the page instead of the Chrome browser.

51.8 Modifying the ItemListFragment Class
A minor change also needs to be made to the ItemListFragment.java file to make sure that the website names
appear in the primary list. Edit this file, locate the onBindViewHolder() method and modify the setText() method
call to reference the website name as follows:
@Override

public void onBindViewHolder(final ViewHolder holder, int position) {

 holder.mIdView.setText(mValues.get(position).id);

 holder.mContentView.setText(mValues.get(position).website_name);
.

.

 // identify the id of the content

 ClipData.Item clipItem = new ClipData.Item(mValues.get(position).id);

 ClipData dragData = new ClipData(

 ((PlaceholderContent.PlaceholderItem) v.getTag()).website_name,
 new String[]{ClipDescription.MIMETYPE_TEXT_PLAIN},

 clipItem

);

.

.

424

An Android Studio Primary/Detail Flow Tutorial

51.9 Adding Manifest Permissions
The final step is to add internet permission to the application via the manifest file. This will enable the WebView
object to access the internet and download web pages. Navigate to, and load the AndroidManifest.xml file in the
Project tool window (app -> manifests), and double-click on it to load it into the editor. Once loaded, add the
appropriate permission line to the file:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.PrimaryDetailflow" >

 <uses-permission android:name="android.permission.INTERNET" />

 <application

 android:allowBackup="true"

.

.

51.10 Running the Application
Compile and run the application on a suitably configured emulator or an attached Android device. Depending
on the size of the display, the application will appear either in small screen or two-pane mode. Regardless, the
primary list should appear primed with the names of the three websites defined in the content model. Selecting
an item should cause the corresponding website to appear in the detail pane as illustrated in two-pane mode in
Figure 51-6:

Figure 51-6
Note that the build may fail with the following error:
Duplicate class kotlin.collections.jdk8.CollectionsJDK8Kt found in modules
jetified-kotlin-stdlib-1.8.0

To correct this error, edit the build.gradle (Module: app) file, add the following dependency, and sync and rebuilt
the project:
dependencies {

.

.

 implementation(platform('org.jetbrains.kotlin:kotlin-bom:1.8.0'))

425

An Android Studio Primary/Detail Flow Tutorial

.

.

51.11 Summary
A primary/detail user interface consists of a primary list of items which, when selected, displays additional
information about that selection within a detail pane. The Primary/Detail Flow is a template provided with
Android Studio that allows a primary/detail arrangement to be created quickly and with relative ease. As
demonstrated in this chapter, with minor modifications to the default template files, a wide range of primary/
detail based functionality can be implemented with minimal coding and design effort.

427

Chapter 52

52. An Overview of Android Services
The Android Service class is designed specifically to allow applications to initiate and perform background tasks.
Unlike broadcast receivers, which are intended to perform a task quickly and then exit, services are designed
to perform tasks that take a long time to complete (such as downloading a file over an internet connection or
streaming music to the user) but do not require a user interface.

In this chapter, an overview of the different types of services available will be covered, including bound services
and intent services. Once these basics have been covered, subsequent chapters will work through some examples
of services in action.

52.1 Intent Service
As previously outlined, services run by default within the same main thread as the component from which
they are launched. As such, any CPU intensive tasks that need to be performed by the service should take place
within a new thread, thereby avoiding impacting the performance of the calling application.

The JobIntentService class is a convenience class (subclassed from the Service class) that sets up a worker thread
for handling background tasks and handles each request in an asynchronous manner. Once the service has
handled all queued requests, it simply exits. All that is required when using the JobIntentService class is that the
onHandleWork() method be implemented containing the code to be executed for each request.

For services that do not require synchronous processing of requests, JobIntentService is the recommended
option. Services requiring synchronous handling of requests will, however, need to subclass from the Service
class and manually implement and manage threading to handle any CPU intensive tasks efficiently.

52.2 Bound Service
A bound service allows a launching component to interact with, and receive results from, the service. Through
the implementation of interprocess communication (IPC), this interaction can also take place across process
boundaries. An activity might, for example, start a service to handle audio playback. The activity will, in all
probability, include a user interface providing controls to the user for the purpose of pausing playback or
skipping to the next track. Similarly, the service will quite likely need to communicate information to the calling
activity to indicate that the current audio track has completed and to provide details of the next track that is
about to start playing.

A component (also referred to in this context as a client) starts and binds to a bound service via a call to the
bindService() method. Also, multiple components may bind to a service simultaneously. When the service binding
is no longer required by a client, a call should be made to the unbindService() method. When the last bound
client unbinds from a service, the service will be terminated by the Android runtime system. It is important
to keep in mind that a bound service may also be started via a call to startService(). Once started, components
may then bind to it via bindService() calls. When a bound service is launched via a call to startService() it will
continue to run even after the last client unbinds from it.

A bound service must include an implementation of the onBind() method which is called both when the service
is initially created and when other clients subsequently bind to the running service. The purpose of this method
is to return to binding clients an object of type IBinder containing the information needed by the client to
communicate with the service.

428

An Overview of Android Services

In terms of implementing the communication between a client and a bound service, the recommended
technique depends on whether the client and service reside in the same or different processes and whether or
not the service is private to the client. Local communication can be achieved by extending the Binder class and
returning an instance from the onBind() method. Interprocess communication, on the other hand, requires
Messenger and Handler implementation. Details of both of these approaches will be covered in later chapters.

52.3 The Anatomy of a Service
A service must, as has already been mentioned, be created as a subclass of the Android Service class (more
specifically android.app.Service) or a sub-class thereof (such as android.app.IntentService). As part of the
subclassing procedure, one or more of the following superclass callback methods must be overridden, depending
on the exact nature of the service being created:

• onStartCommand() – This is the method that is called when the service is started by another component via
a call to the startService() method. This method does not need to be implemented for bound services.

• onBind() – Called when a component binds to the service via a call to the bindService() method. When
implementing a bound service, this method must return an IBinder object facilitating communication with
the client.

• onCreate() – Intended as a location to perform initialization tasks, this method is called immediately before
the call to either onStartCommand() or the first call to the onBind() method.

• onDestroy() – Called when the service is being destroyed.

• onHandleWork() – Applies only to JobIntentService subclasses. This method is called to handle the processing
for the service. It is executed in a separate thread from the main application.

Note that the IntentService class includes its own implementations of the onStartCommand() and onBind()
callback methods so these do not need to be implemented in subclasses.

52.4 Controlling Destroyed Service Restart Options
The onStartCommand() callback method is required to return an integer value to define what should happen
with regard to the service if it is destroyed by the Android runtime system. Possible return values for these
methods are as follows:

• START_NOT_STICKY – Indicates to the system that the service should not be restarted in the event that it
is destroyed unless there are pending intents awaiting delivery.

• START_STICKY – Indicates that the service should be restarted as soon as possible after it has been destroyed
if the destruction occurred after the onStartCommand() method returned. In the event that no pending intents
are waiting to be delivered, the onStartCommand() callback method is called with a NULL intent value. The
intent being processed at the time that the service was destroyed is discarded.

• START_REDELIVER_INTENT – Indicates that, if the service was destroyed after returning from the
onStartCommand() callback method, the service should be restarted with the current intent redelivered to the
onStartCommand() method followed by any pending intents.

52.5 Declaring a Service in the Manifest File
In order for a service to be usable, it must first be declared within a manifest file. This involves embedding an
appropriately configured <service> element into an existing <application> entry. At a minimum, the <service>
element must contain a property declaring the class name of the service as illustrated in the following XML
fragment:

429

An Overview of Android Services

.

.

 <application

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:label="@string/app_name"

 android:name=".MainActivity" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <service android:name=".MyService>
 </service>
 </application>

</manifest>

By default, services are declared as public, in that they can be accessed by components outside of the application
package in which they reside. To make a service private, the android:exported property must be declared as false
within the <service> element of the manifest file. For example:
<service android:name="MyService"

 android:exported="false">
</service>

When working with JobIntentService, the manifest Service declaration must also request the BIND_JOB_
SERVICE permission as follows:
<service

 android:name=".MyJobIntentService"

 android:permission="android.permission.BIND_JOB_SERVICE" />

As previously discussed, services run within the same process as the calling component by default. To force a
service to run within its own process, add an android:process property to the <service> element, declaring a
name for the process prefixed with a colon (:):
<service android:name=".MyService"

android:exported="false"

android:process=":myprocess">
</service>

The colon prefix indicates that the new process is private to the local application. If the process name begins
with a lower case letter instead of a colon, however, the process will be global and available for use by other
components.

Finally, using the same intent filter mechanisms outlined for activities, a service may also advertise capabilities
to other applications running on the device. For more details on intent filters, refer to the chapter entitled “An
Overview of Android Intents”.

430

An Overview of Android Services

52.6 Starting a Service Running on System Startup
Given the background nature of services, it is not uncommon for a service to need to be started when an Android-
based system first boots up. This can be achieved by creating a broadcast receiver with an intent filter configured
to listen for the system android.intent.action.BOOT_COMPLETED intent. When such an intent is detected,
the broadcast receiver would simply invoke the necessary service and then return. Note that, to function, such
a broadcast receiver will need to request the android.permission.RECEIVE_BOOT_COMPLETED permission.

52.7 Summary
Android services are a powerful mechanism that allows applications to perform tasks in the background. A
service, once launched, will continue to run regardless of whether the calling application is the foreground task
or not, and even if the component that initiated the service is destroyed.

Services are subclassed from the Android Service class. Bound services, provide a communication interface to
other client components and generally run until the last client unbinds from the service.

By default, services run locally within the same process and main thread as the calling application. A new
thread should, therefore, be created within the service for the purpose of handling CPU intensive tasks. Remote
services may be started within a separate process by making a minor configuration change to the corresponding
<service> entry in the application manifest file.

The IntentService class (itself a subclass of the Android Service class) provides a convenient mechanism for
handling asynchronous service requests within a separate worker thread.

431

Chapter 53

53. An Overview of Android Intents
By this stage of the book, it should be clear that Android applications are comprised, among other things, of one
or more activities. An area that has yet to be covered in extensive detail, however, is the mechanism by which
one activity can trigger the launch of another activity. As outlined briefly in the chapter entitled “The Anatomy
of an Android Application”, this is achieved primarily by using Intents.

Before working through some Android Studio-based example implementations of intents in the following
chapters, the goal of this chapter is to provide an overview of intents in the form of explicit intents and implicit
intents together with an introduction to intent filters.

53.1 An Overview of Intents
Intents (android.content.Intent) are the messaging system by which one activity can launch another activity. An
activity can, for example, issue an intent to request the launch of another activity contained within the same
application. Intents also, however, go beyond this concept by allowing an activity to request the services of
any other appropriately registered activity on the device for which permissions are configured. Consider, for
example, an activity contained within an application that requires a web page to be loaded and displayed to the
user. Rather than the application having to contain a second activity to perform this task, the code can simply
send an intent to the Android runtime requesting the services of any activity that has registered the ability to
display a web page. The runtime system will match the request to available activities on the device and either
launch the activity that matches or, in the event of multiple matches, allow the user to decide which activity to
use.

Intents also allow for the transfer of data from the sending activity to the receiving activity. In the previously
outlined scenario, for example, the sending activity would need to send the URL of the web page to be displayed
to the second activity. Similarly, the receiving activity may also be configured to return data to the sending
activity when the required tasks are completed.

Though not covered until later chapters, it is also worth highlighting the fact that, in addition to launching
activities, intents are also used to launch and communicate with services and broadcast receivers.

Intents are categorized as either explicit or implicit.

53.2 Explicit Intents
An explicit intent requests the launch of a specific activity by referencing the component name (which is actually
the class name) of the target activity. This approach is most common when launching an activity residing in the
same application as the sending activity (since the class name is known to the application developer).

An explicit intent is issued by creating an instance of the Intent class, passing through the activity context and
the component name of the activity to be launched. A call is then made to the startActivity() method, passing
the intent object as an argument. For example, the following code fragment issues an intent for the activity with
the class name ActivityB to be launched:
Intent i = new Intent(this, ActivityB.class);

startActivity(i);

Data may be transmitted to the receiving activity by adding it to the intent object before it is started via calls to
the putExtra() method of the intent object. Data must be added in the form of key-value pairs. The following

432

An Overview of Android Intents

code extends the previous example to add String and integer values with the keys “myString” and “myInt”
respectively to the intent:
Intent i = new Intent(this, ActivityB.class);

i.putExtra("myString", "This is a message for ActivityB");

i.putExtra("myInt", 100);

startActivity(i);

The data is received by the target activity as part of a Bundle object which can be obtained via a call to getIntent().
getExtras(). The getIntent() method of the Activity class returns the intent that started the activity, while the
getExtras() method (of the Intent class) returns a Bundle object containing the data. For example, to extract the
data values passed to ActivityB:
Bundle extras = getIntent().getExtras();

if (extras != null) {

 String myString = extras.getString("myString");

 int myInt = extras.getInt("myInt");

}

When using intents to launch other activities within the same application, it is essential that those activities be
listed in the application manifest file. The following AndroidManifest.xml contents are correctly configured for
an application containing activities named ActivityA and ActivityB:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.intent1.intent1" >

 <application

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:label="@string/app_name"

 android:name="com.ebookfrenzy.intent1.intent1.ActivityA" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity

 android:name="ActivityB"

 android:label="ActivityB" >

 </activity>

 </application>

</manifest>

53.3 Returning Data from an Activity
As the example in the previous section stands, while data is transferred to ActivityB, there is no way for data to be
returned to the first activity (which we will call ActivityA). This can, however, be achieved by launching ActivityB
as a sub-activity of ActivityA. An activity is started as a sub-activity by creating an ActivityResultLauncher

433

An Overview of Android Intents

instance. An ActivityResultLauncher instance is created by a call to the registerForActivityResult() method and is
passed a callback handler in the form of a lambda. This handler will be called and passed return data when the
sub-activity returns. Once an ActivityResultLauncher instance has been created, it can be called with an intent
parameter to launch the sub-activity. The code to create an ActivityResultLauncher instance typically reads as
follows:
ActivityResultLauncher<Intent> startForResult = registerForActivityResult(

 new ActivityResultContracts.StartActivityForResult(),

 new ActivityResultCallback<ActivityResult>() {

 @Override

 public void onActivityResult(ActivityResult result) {

 if (result.getResultCode() == Activity.RESULT_OK) {

 Intent data = result.getData();

 // Code to handle returned data

 }

 }

 });

Once the launcher is ready, it can be called and passed the intent to be launched as follows:
Intent i = new Intent(this, ActivityB.class);

.

.

startForResult.launch(i);

To return data to the parent activity, the sub-activity must implement the finish() method, the purpose of which
is to create a new intent object containing the data to be returned, and then call the setResult() method of the
enclosing activity, passing through a result code and the intent containing the return data. The result code is
typically RESULT_OK, or RESULT_CANCELED, but may also be a custom value subject to the requirements
of the developer. If a sub-activity crashes, the parent activity will receive a RESULT_CANCELED result code.

The following code, for example, illustrates the code for a typical sub-activity finish() method:
public void finish() {

 Intent data = new Intent();

 data.putExtra("returnString1", "Message to parent activity");

 setResult(RESULT_OK, data);

 super.finish();

}

53.4 Implicit Intents
Unlike explicit intents, which reference the class name of the activity to be launched, implicit intents identify
the activity to be launched by specifying the action to be performed and the type of data to be handled by the
receiving activity. For example, an action type of ACTION_VIEW accompanied by the URL of a web page in
the form of a URI object will instruct the Android system to search for and subsequently, launch a web browser-
capable activity. The following implicit intent will, when executed on an Android device, result in the designated
web page appearing in a web browser activity:
Intent intent = new Intent(Intent.ACTION_VIEW,

 Uri.parse("https://www.ebookfrenzy.com"));

434

An Overview of Android Intents

startActivity(intent);

When the above implicit intent is issued by an activity, the Android system will search for activities on the device
that have registered the ability to handle ACTION_VIEW requests on http scheme data using a process referred
to as intent resolution. Before the system will launch an activity using an implicit intent, that activity must either
have been verified or enabled by the user. If neither of these conditions has been met, the activity will not be
launched by the intent. Before exploring these two options we first need to talk about intent filters.

53.5 Using Intent Filters
Intent filters are the mechanism by which activities “advertise” supported actions and data handling capabilities
to the Android intent resolution process. These declarations also include settings that are required to perform
the link verification process. The following AndroidManifest.xml file illustrates a configuration for an activity
named WebActivity within an app named MyWebView with an appropriately configured intent filter:
<?xml version="1.0" encoding="utf-8"?>

.

.

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/Theme.MyWebView">

 <activity

 android:name="WebActivity"

 android:exported="true">

 <intent-filter android:autoVerify="true">
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.BROWSABLE" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="https" />
 <data android:host="www.ebookfrenzy.com"/>
 </intent-filter>
 </activity>

 </application>

</manifest>

This manifest file configures the WebActivity activity to be launched in response to an implicit intent from
another activity when intent contains the https://www.ebookfrenzy.com URL. The following code, for example,
would launch the WebActivity activity (assuming that the MyWebView app has been verified or enabled by the
user as a support link):
Intent intent = new Intent(Intent.ACTION_VIEW,

 Uri.parse("https://www.ebookfrenzy.com"));

startActivity(intent);

435

An Overview of Android Intents

53.6 Automatic Link Verification
Using a web link to launch an activity on an Android device is considered to be a potential security hazard. To
minimize this risk, the link used to launch an intent must either be automatically verified or manually added as a
supported link on the device by the user. To enable automatic verification, the corresponding intent declaration
in the target activity must set autoVerify to true as follows:
<intent-filter android:autoVerify="true">
.

.

</intent-filter>

Next, the link URL needs to be associated with the website on which the app link is based. This is achieved by
creating a Digital Assets Link file named assetlinks.json and installing it within the website’s .well-known folder.

A digital asset link file comprises a relation statement granting permission for a target app to be launched
using the website’s link URLs and a target statement declaring the companion app package name and SHA-256
certificate fingerprint for that project. A typical asset link file might, for example, read as follows:
[{

 "relation": ["delegate_permission/common.handle_all_urls"],

 "target": {

 "namespace": "android_app",

 "package_name": "com.ebookfrenzy.mywebview",

 "sha256_cert_fingerprints":

 ["<your certificate fingerprint here>"]

 }

}]

Note that you can either create this file manually or generate it using the online tool available at the following
URL:

https://developers.google.com/digital-asset-links/tools/generator

When working with Android, the namespace value is always set to “android_app”, while the package name
corresponds to the app package to be launched by the intent. Finally, the certificate fingerprint is the hash code
used to build the app. When you are testing an app, this will be the debug certificate contained within the debug.
keystore file. On Windows systems, Android Studio stores this file at the following location:
\Users\<your user name>\.android\debug.keystore

On macOS and Linux systems, the file can be found at:
$HOME/.android/debug.keystore

Once you have located the file, the SHA 256 fingerprint can be obtained by running the following command in
a terminal or command prompt window:
keytool -list -v -keystore <path to debug.keystore file here>

When prompted for a password, enter “android” after which output will appear including the SHA 256 fingerprint:
Certificate fingerprints:

 SHA1: 11:E8:66:11:B6:94:3D:AA:7E:50:63:99:77:B8:6A:90:FF:B6:9C:6D

 SHA256: 7F:EE:E3:C8:38:41:C3:EA:11:56:83:94:2A:4C:D2:EA:A0:69:F8:96:D1:17
:77:02:46:EC:AD:6E:3C:64:A9:29

https://developers.google.com/digital-asset-links/tools/generator

436

An Overview of Android Intents

When you are ready to build a release version of your app, you will need to make sure you add the release SHA
256 fingerprint to the asset file. Details on generating release keystore files are covered in the chapter entitled
“Creating, Testing and Uploading an Android App Bundle”. Once you have a release keystore file, run the above
keytool command on it to access the fingerprint.

Once you have placed the digital asset file in the correct location on the website, install the app on a device or
emulator and wait 30 seconds for the link to be verified. To check the verification status, run the following at a
command or terminal prompt:
adb shell pm get-app-links --user cur com.example.mywebview

The resulting output should include confirmation that the link has been verified:
com.example.mywebview:

 ID: 0e399bca-bf58-4cfc-8c7b-d1a6c3b065ec

 Signatures: [7F:EE:E3:C8:38:41:C3:EA:11:56:83:94:2A:4C:D2:EA:A0:69:F8:96:D1:1
7:77:02:46:EC:AD:6E:3C:64:A9:29]

 Domain verification state:
 www.ebookfrenzy.com: verified
 User 0:

 Verification link handling allowed: true

 Selection state:

 Disabled:

 www.ebookfrenzy.com

You can also check the status from within the Settings app on the device or emulator using the following steps:

1. Launch the Settings app.

2. Select Apps from the main list.

3. Locate and select your app from the list of installed apps.

4. On the settings page for your app, choose the Open by Default option.

Once displayed, the page should indicate that a link has been verified as shown in Figure 53-1:

Figure 53-1

437

An Overview of Android Intents

To review which links have been verified, tap on the info button indicated by the arrow in the above figure to
display the following panel:

Figure 53-2
The assetlinks.json file can contain multiple digital asset links, potentially allowing a single website to be
associated with more than one app. If you are unable to use auto link verification, you will need to add code to
your app to prompt the user to manually enable the link.

53.7 Manually Enabling Links
In situations where it is not possible to auto verify links using the steps outlined above, the only option is to
request that the user manually enable app links. This involves launching the Open by Default screen of the
Settings app for the target app where the user can enable the link. Since the sudden appearance of the Open by
Default screen may be confusing to the average user, it is recommended that an explanatory dialog be displayed
before launching the Settings app.

To provide the user with the option to manually enable a link, the following code needs to be executed before
attempting to launch the intent:
.

.

// Code here to display a dialog explaining that the link needs to be enabled

.

.

Intent intent = new Intent(

 Settings.ACTION_APP_OPEN_BY_DEFAULT_SETTINGS,

 Uri.parse("package:com.ebookfrenzy.mywebview"));

startActivity(intent);

The above example code will display the Open by Default settings screen for our target MyWebView app where
the user can click on the Add Link button:

438

An Overview of Android Intents

Figure 53-3
Once clicked, a dialog will appear initialized with the link passed in the intent. This can be enabled by setting
the checkbox as shown in Figure 53-4:

Figure 53-4

53.8 Checking Intent Availability
It is generally unwise to assume that an activity will be available for a particular intent, especially since the
absence of a matching action will typically result in the application crashing. Fortunately, it is possible to identify
the availability of an activity for a specific intent before it is sent to the runtime system. The following method
can be used to identify the availability of an activity for a specified intent action type:
public static boolean isIntentAvailable(Context context, String action) {

 final PackageManager packageManager = context.getPackageManager();

 final Intent intent = new Intent(action);

 List<ResolveInfo> list =

439

An Overview of Android Intents

 packageManager.queryIntentActivities(intent,

 PackageManager.MATCH_DEFAULT_ONLY);

 return list.size() > 0;

}

53.9 Summary
Intents are the messaging mechanism by which one Android activity can launch another. An explicit intent
references a specific activity to be launched by referencing the receiving activity by class name. Explicit intents
are typically, though not exclusively, used when launching activities contained within the same application.
An implicit intent specifies the action to be performed and the type of data to be handled and lets the Android
runtime find a matching activity to launch. Implicit intents are generally used when launching activities that
reside in different applications.

When working with implicit intents, security restrictions require that the app containing the intent activity
target either be automatically verified or manually enabled by the user before launching the intent. Automatic
verification involves the placement of a Digital Assets Link file on the website corresponding to the link URL.

An activity can send data to the receiving activity by bundling data into the intent object in the form of key-value
pairs. Data can only be returned from an activity if it is started as a sub-activity of the sending activity.

Activities advertise capabilities to the Android intent resolution process through the specification of intent-filters
in the application manifest file. Both sending and receiving activities must also request appropriate permissions
to perform tasks such as accessing the device contact database or the internet.

Having covered the theory of intents, the next few chapters will work through the creation of some examples in
Android Studio that put both explicit and implicit intents into action.

441

Chapter 54

54. Android Explicit Intents – A
Worked Example
The chapter entitled “An Overview of Android Intents” covered the theory of using intents to launch activities.
This chapter will put that theory into practice through the creation of an example application.

The example Android Studio application project created in this chapter will demonstrate the use of an explicit
intent to launch an activity, including the transfer of data between sending and receiving activities. The next
chapter (“Android Implicit Intents – A Worked Example”) will demonstrate the use of implicit intents.

54.1 Creating the Explicit Intent Example Application
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter ExplicitIntent into the Name field and specify com.ebookfrenzy.explicitintent as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java. Using the steps outlined in section 11.8 Migrating a Project to View Binding, convert the
project to use view binding.

54.2 Designing the User Interface Layout for MainActivity
The user interface for MainActivity will consist of a ConstraintLayout view containing EditText (Plain Text),
TextView and Button views named editText1, textView1 and button1 respectively. Using the Project tool window,
locate the activity_main.xml resource file for MainActivity (located under app -> res -> layout) and double-click
on it to load it into the Android Studio Layout Editor tool. Select the default “Hello World!” TextView and use
the Attributes tool window to assign an ID of textView1.

Drag a Button object from the palette and position it so that it is centered horizontally and located beneath the
bottom edge of the TextView. Change the text property so that it reads “Send Text” and configure the onClick
property to call a method named sendText.

Next, add a Plain Text object so that it is centered horizontally and positioned above the top edge of the TextView.
Using the Attributes tool window, remove the “Name” string assigned to the text property and set the ID to
editText1. With the layout completed, click on the toolbar Infer constraints button to add appropriate constraints:

Figure 54-1
Finally, click on the red warning button in the top right-hand corner of the Layout Editor window and use the
resulting panel to extract the “Send Text” string to a resource named send_text. Once the layout is complete, the
user interface should resemble that illustrated in Figure 54-2:

442

Android Explicit Intents – A Worked Example

Figure 54-2

54.3 Creating the Second Activity Class
When the “Send Text” button is touched by the user, an intent will be issued requesting that a second activity
be launched into which a response can be entered by the user. The next step, therefore, is to create the second
activity. Within the Project tool window, right-click on the com.ebookfrenzy.explicitintent package name located
in app -> java and select the New -> Activity -> Empty Views Activity menu option to display the New Android
Activity dialog as shown in Figure 54-3:

Figure 54-3
Enter SecondActivity into the Activity Name and Title fields and name the layout file activity_second and change
the Language menu to Java. Since this activity will not be started when the application is launched (it will instead

443

Android Explicit Intents – A Worked Example

be launched via an intent by MainActivity when the button is pressed), it is important to make sure that the
Launcher Activity option is disabled before clicking on the Finish button.

54.4 Designing the User Interface Layout for SecondActivity
The elements that are required for the user interface of the second activity are a Plain Text EditText, TextView
and Button view. With these requirements in mind, load the activity_second.xml layout into the Layout Editor
tool, and add the views.

During the design process, note that the onClick property on the button view has been configured to call a
method named returnText, and the TextView and EditText views have been assigned IDs textView2 and editText2
respectively. Once completed, the layout should resemble that illustrated in Figure 54-4. Note that the text on the
button (which reads “Return Text”) has been extracted to a string resource named return_text.

With the layout complete, click on the Infer constraints toolbar button to add the necessary constraints to the
layout:

Figure 54-4

54.5 Reviewing the Application Manifest File
For MainActivity to be able to launch SecondActivity using an intent, an entry for SecondActivity needs to
be present in the AndroidManifest.xml file. Locate this file within the Project tool window (app -> manifests),
double-click on it to load it into the editor and verify that Android Studio has automatically added an entry for
the activity:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <application

444

Android Explicit Intents – A Worked Example

 android:allowBackup="true"

 android:dataExtractionRules="@xml/data_extraction_rules"

 android:fullBackupContent="@xml/backup_rules"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/Theme.ExplicitIntent"

 tools:targetApi="31">

 <activity
 android:name=".SecondActivity"
 android:exported="false" />
 <activity

 android:name=".MainActivity"

 android:exported="true">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

With the second activity created and listed in the manifest file, it is now time to write some code in the
MainActivity class to issue the intent.

54.6 Creating the Intent
The objective for MainActivity is to create and start an intent when the user touches the “Send Text” button. As
part of the intent creation process, the question string entered by the user into the EditText view will be added
to the intent object as a key-value pair. When the user interface layout was created for MainActivity, the button
object was configured to call a method named sendText() when “clicked” by the user. This method now needs to
be added to the MainActivity class MainActivity.java source file as follows:
package com.ebookfrenzy.explicitintent;

.

.
import android.content.Intent;
.
.
public class MainActivity extends AppCompatActivity {

.

.

 public void sendText(View view) {

 Intent i = new Intent(this, SecondActivity.class);

445

Android Explicit Intents – A Worked Example

 String myString = binding.editText1.getText().toString();
 i.putExtra("qString", myString);
 startActivity(i);
 }
}

The code for the sendText() method follows the techniques outlined in “An Overview of Android Intents”. First,
a new Intent instance is created, passing through the current activity and the class name of SecondActivity as
arguments. Next, the text entered into the EditText object is added to the intent object as a key-value pair and
the intent started via a call to startActivity(), passing through the intent object as an argument.

Compile and run the application and touch the “Send Text” button to launch SecondActivity. Return to the
MainActivity screen using either the back button (located in the toolbar along the bottom of the display) or by
swiping right from the edge of the screen on newer Android versions.

54.7 Extracting Intent Data
Now that SecondActivity is being launched from MainActivity, the next step is to extract the String data value
included in the intent and assign it to the TextView object in the SecondActivity user interface. This involves
adding some code to the onCreate() method of SecondActivity in the SecondActivity.java source file in addition
to adapting the activity to use view binding:
package com.ebookfrenzy.explicitintent;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.content.Intent;
import android.view.View;

import com.ebookfrenzy.explicitintent.databinding.ActivitySecondBinding;

public class SecondActivity extends AppCompatActivity {

 private ActivitySecondBinding binding;

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.SecondActivity);

 binding = ActivitySecondBinding.inflate(getLayoutInflater());
 View view = binding.getRoot();
 setContentView(view);

 Bundle extras = getIntent().getExtras();
 if (extras == null) {
 return;
 }

446

Android Explicit Intents – A Worked Example

 String qString = extras.getString("qString");
 binding.textView2.setText(qString);
 }

}

Compile and run the application either within an emulator or on a physical Android device. Enter some text
into the text box in MainActivity before touching the “Send Text” button. The message should now appear on
the TextView component in the SecondActivity user interface.

54.8 Launching SecondActivity as a Sub-Activity
In order for SecondActivity to be able to return data to MainActivity, SecondActivity must be started as a
sub-activity of MainActivity. This means that we need to call registerForActivityResult() and declare a callback
handler to be called when SecondActivity returns. This callback will extract the data returned by SecondActivty
and display it on textView1.

The call to registerForActivityResult() returns an ActivtyResultLauncher instance which can be called from
within sendText() to launch the intent. Edit the MainActivity.java file so that it reads as follows:
.

.

import android.app.Activity;
import androidx.activity.result.ActivityResult;
import androidx.activity.result.ActivityResultCallback;
import androidx.activity.result.ActivityResultLauncher;
import androidx.activity.result.contract.ActivityResultContracts;
.

.

public class MainActivity extends AppCompatActivity {

.

.

 ActivityResultLauncher<Intent> startForResult = registerForActivityResult(
 new ActivityResultContracts.StartActivityForResult(),
 new ActivityResultCallback<ActivityResult>() {
 @Override
 public void onActivityResult(ActivityResult result) {
 if (result.getResultCode() == Activity.RESULT_OK) {
 Intent data = result.getData();
 String returnString =
 data.getExtras().getString("returnData");
 binding.textView1.setText(returnString);
 }
 }
 });

 public void sendText(View view) {

 Intent i = new Intent(this, SecondActivity.class);

447

Android Explicit Intents – A Worked Example

 String myString = binding.editText1.getText().toString();

 i.putExtra("qString", myString);

 startActivity(i);

 startForResult.launch(i);
 }

.

.

54.9 Returning Data from a Sub-Activity
SecondActivity is now launched as a sub-activity of MainActivity, which has, in turn, been modified to handle
data returned from SecondActivity. All that remains is to modify SecondActivity.java to implement the finish()
method and to add a method named returnText(). The finish() method is triggered when an activity exits (for
example, when the user selects the back button on the device):
public void returnText(View view) {

 finish();

}

@Override

public void finish() {

 Intent data = new Intent();

 String returnString = binding.editText2.getText().toString();

 data.putExtra("returnData", returnString);

 setResult(RESULT_OK, data);

 super.finish();

}

The finish() method creates a new intent, adds the return data as a key-value pair and then calls the setResult()
method, passing through a result code and the intent object. The returnText() method simply calls the finish()
method.

Open the activity_second.xml file, select the button widget, and configure the onClick attribute to call the
returnText() method.

54.10 Testing the Application
Compile and run the application, enter a question into the text field on MainActivity and touch the “Send Text”
button. When SecondActivity appears, enter the text to the EditText view and use either the back button or the
“Return Text” button to return to MainActivity where the response should appear in the text view object.

54.11 Summary
Having covered the basics of intents in the previous chapter, the goal of this chapter was to work through the
creation of an application project in Android Studio designed to demonstrate the use of explicit intents together
with the concepts of data transfer between a parent activity and sub-activity.

The next chapter will work through an example designed to demonstrate implicit intents in action.

449

Chapter 55

55. Android Implicit Intents – A
Worked Example
In this chapter, an example application will be created in Android Studio designed to demonstrate a practical
implementation of implicit intents. The goal will be to create and send an intent requesting that the content of a
particular web page be loaded and displayed to the user. Since the example application itself will not contain an
activity capable of performing this task, an implicit intent will be issued so that the Android intent resolution
algorithm can be engaged to identify and launch a suitable activity from another application. This is most likely
to be an activity from the Chrome web browser bundled with the Android operating system.

Having successfully launched the built-in browser, a new project will be created that also contains an activity
capable of displaying web pages. This will be installed onto the device or emulator and used to demonstrate the
use of implicit intents and link verification.

55.1 Creating the Android Studio Implicit Intent Example Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter ImplicitIntent into the Name field and specify com.ebookfrenzy.implicitintent as the package name. Since
this example will use features only available in recent Android versions, change the Minimum API level setting
to API 31: Android 12.0 (S) and the Language menu to Java before clicking on the Finish button.

55.2 Designing the User Interface
The user interface for the MainActivity class is very simple, consisting solely of a ConstraintLayout and two
Button objects. Within the Project tool window, locate the app -> res -> layout -> activity_main.xml file and
double-click on it to load it into the Layout Editor tool.

Delete the default TextView and, with Autoconnect mode enabled, position Button widgets within the layout so
that it appears as shown below:

Figure 55-1

450

Android Implicit Intents – A Worked Example

Set the text on the buttons to Show Web Page and Enable Links respectively and extract the text to string
resources.

Select each Button in turn and use the Attributes tool window to configure the onClick property to call methods
named showWebPage and enableLink respectively.

55.3 Creating the Implicit Intent
As outlined above, the implicit intent will be created and issued from within a method named showWebPage()
which, in turn, needs to be implemented in the MainActivity class, the code for which resides in the MainActivity.
java source file. Locate this file in the Project tool window and double-click on it to load it into an editing
pane. Once loaded, modify the code to add the showWebPage() and enableLink() methods together with a few
requisite imports:
package com.ebookfrenzy.implicitintent;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.net.Uri;
import android.content.Intent;
import android.view.View;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_implicit_intent);

 }

 public void showWebPage(View view) {
 Intent intent = new Intent(Intent.ACTION_VIEW,
 Uri.parse("https://www.ebookfrenzy.com"));

 startActivity(intent);
 }

 public void enableLink(View view) {

 }
}

The tasks performed by the showWebPage() method are actually very simple. First, a new intent object is created.
Instead of specifying the class name of the intent, however, the code simply indicates the nature of the intent
(to display something to the user) using the ACTION_VIEW option. The intent object also includes a URI
containing the URL to be displayed. This indicates to the Android intent resolution system that the activity is
requesting that a web page be displayed. The intent is then issued via a call to the startActivity() method.

Compile and run the application on either an emulator or a physical Android device and, once running, touch
the Show Web Page button. When touched, a web browser view should appear and load the web page designated

451

Android Implicit Intents – A Worked Example

by the URL. A successful implicit intent has now been executed.

55.4 Adding a Second Matching Activity
The remainder of this chapter will be used to demonstrate the effect of the presence of more than one activity
installed on the device matching the requirements for an implicit intent. To achieve this, a second application
will be created and installed on the device or emulator. Begin by creating a new project within Android Studio
with the application name set to MyWebView, using the same SDK configuration options used when creating the
ImplicitIntent project earlier in this chapter and once again selecting an Empty Views Activity.

If you have a website on which to host a Digital Asset Links file and would like to try out auto verification, use
your website URL when specifying the package name. For example, if your website is hosted at www.mycompany.
com the package name needs to be set as follows:
com.mycompany.mywebview

If you do not have a website or do not plan on using auto verification, use the following package name:
com.ebookfrenzy.mywebview

Click Finish to create the project, then convert the project to use view bindings as outlined in section 11.8
Migrating a Project to View Binding.

55.5 Adding the Web View to the UI
The user interface for the sole activity contained within the new MyWebView project is going to consist of an
instance of the Android WebView widget. Within the Project tool window, locate the activity_main.xml file,
which contains the user interface description for the activity, and double-click on it to load it into the Layout
Editor tool.

With the Layout Editor tool in Design mode, select the default TextView widget and remove it from the layout
by using the keyboard delete key.

Drag and drop a WebView object from the Widgets section of the palette onto the existing ConstraintLayout
view as illustrated in Figure 55-2:

Figure 55-2

452

Android Implicit Intents – A Worked Example

Before continuing, change the ID of the WebView instance to webView1 and use the Infer constraints button to
add any missing constraints.

55.6 Obtaining the Intent URL
When the implicit intent object is created to display a web browser window, the URL of the web page to be
displayed will be bundled into the intent object within a Uri object. The task of the onCreate() method within
the MainActivity class is to extract this Uri from the intent object, convert it into a URL string and assign it to the
WebView object. To implement this functionality, modify the MainActivity.java file so that it reads as follows:
package com.ebookfrenzy.mywebview;

.

.

import java.net.URL;
import android.net.Uri;
import android.content.Intent;
import android.webkit.WebView;

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

.

.

 handleIntent();
 }

 private void handleIntent() {
 Intent intent = getIntent();

 Uri data = intent.getData();
 URL url = null;

 try {
 url = new URL(data.getScheme(),
 data.getHost(),
 data.getPath());
 } catch (Exception e) {
 e.printStackTrace();
 }

 binding.webView1.loadUrl(url.toString());
 }
}

The new code added to the onCreate() method performs the following tasks:

453

Android Implicit Intents – A Worked Example

• Obtains a reference to the intent which caused this activity to be launched

• Extracts the Uri data from the intent object

• Converts the Uri data to a URL object

• Loads the URL into the web view, converting the URL to a String in the process

The coding part of the MyWebView project is now complete. All that remains is to modify the manifest file.

55.7 Modifying the MyWebView Project Manifest File
There are a number of changes that must be made to the MyWebView manifest file before it can be tested. In the
first instance, the activity will need to seek permission to access the internet (since it will be required to load a
web page). This is achieved by adding the appropriate permission line to the manifest file:
<uses-permission android:name="android.permission.INTERNET" />

Further, a review of the contents of the intent filter section of the AndroidManifest.xml file for the MyWebView
project will reveal the following settings:
<intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

In the above XML, the android.intent.action.MAIN entry indicates that this activity is the point of entry for the
application when it is launched without any data input. The android.intent.category.LAUNCHER directive, on
the other hand, indicates that the activity should be listed within the application launcher screen of the device.

Since the activity is not required to be launched as the entry point to an application, cannot be run without data
input (in this case a URL), and is not required to appear in the launcher, neither the MAIN nor LAUNCHER
directives are required in the manifest file for this activity.

The intent filter for the MainActivity activity does, however, need to be modified to indicate that it is capable of
handling ACTION_VIEW intent actions for http data schemes.

Android also requires that any activities capable of handling implicit intents that do not include MAIN and
LAUNCHER entries, also include the so-called browsable and default categories in the intent filter. The modified
intent filter section should therefore read as follows where <website url> is replaced either by your website
address or www.ebookfrenzy.com, depending on the package name you used when the MyWebView project was
created:
<intent-filter android:autoVerify="true">

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.BROWSABLE" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:scheme="https" />

 <data android:host="<website url>"/>

</intent-filter>

Bringing these requirements together results in the following complete AndroidManifest.xml file:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.mywebview">

454

Android Implicit Intents – A Worked Example

 <uses-permission android:name="android.permission.INTERNET" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/Theme.MyWebView">

 <activity

 android:name=".MainActivity"

 android:exported="true">

 <intent-filter android:autoVerify="true">
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.BROWSABLE" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="https" />
 <data android:host="<website url>"/>
 </intent-filter>
 </activity>

 </application>

</manifest>

Load the AndroidManifest.xml file into the manifest editor by double-clicking on the file name in the Project tool
window. Once loaded, modify the XML to match the above changes, remembering to enter the correct website
URL.

Having made the appropriate modifications to the manifest file, the new activity is ready to be installed on the
device.

55.8 Installing the MyWebView Package on a Device
Before the MyWebView main activity can be used as the recipient of an implicit intent, it must first be installed
onto the device. This is achieved by running the application in the normal manner. Because the manifest file
contains neither the android.intent.action.MAIN nor the android.intent.category.LAUNCHER settings, Android
Studio needs to be instructed to install, but not launch, the app. To configure this behavior, select the app -> Edit
configurations… menu from the toolbar as illustrated in Figure 55-3:

Figure 55-3
Within the Run/Debug Configurations dialog, change the Launch option located in the Launch Options section

455

Android Implicit Intents – A Worked Example

of the panel to Nothing and click on Apply followed by OK:

Figure 55-4
With this setting configured run the app as usual. Note that the app is installed on the device, but has not yet
launched.

55.9 Testing the Application
With the MyWebView app installed, run ImplicitIntent again and click on the Show Web Page button. Note that
the web page is still loaded into the Chrome browser instead of the main activity of the MyWebView app. This
is because the MyWebView activity has not been verified or enabled to open the link contained in the launch
intent. To manually enable the link, some code needs to be added to the enableLink() method.

55.10 Manually Enabling the Link
Within the enableLink() method we now need to create and launch an intent to display the Open by Default
settings screen for the MyWebView app. Load the MainActivity.java file into the code editor and modify the
enableLink() method so that it reads as follows, making sure to replace <reverse domain> with either com.
ebookfrenzy or your own reverse domain depending on the package name you chose when creating the
MyWebView project:
.

.

import android.provider.Settings;
.

.

public void enableLink(View view) {

 Intent intent = new Intent(
 Settings.ACTION_APP_OPEN_BY_DEFAULT_SETTINGS,
 Uri.parse("package:<reverse domain>.mywebview"));

 startActivity(intent);
}

.

.

Run the ImpicitIntent app again and click on the Enable Link button to display the Open by Default settings
screen for the MyWebView app:

456

Android Implicit Intents – A Worked Example

Figure 55-5
Click on the Add Link button (marked A above), enable the checkbox next to your URL, and click the Add
button:

Figure 55-6
Confirm that the link is now listed as being supported before clicking on the back arrow (marked B in Figure
55-5 above) to return to the ImplicitIntent app. Clicking the Open Web Page should now load the page into the
MyWebView app instead of the Chrome browser:

457

Android Implicit Intents – A Worked Example

Figure 55-7

55.11 Automatic Link Verification
If you chose to use your own website URL for the MyWebView package name you can now take the additional
step of using automatic link verification. Begin by uninstalling the MyWebView app from the device or emulator
on which you have been testing so far. After the Digital Asset Links file has been placed on the website we will
re-install the app to trigger the verification process.

Using the steps outlined in the chapter entitled “An Overview of Android Intents”, locate your debug.keystore file
and obtain your SHA-256 certificate fingerprint using the keytool utility as follows:
keytool -list -v -keystore <path to debug.keystore file here>

Next, open the following page in a web browser:

https://developers.google.com/digital-asset-links/tools/generator

Once the page has loaded, enter your website URL into the Hosting site domain field, com.<domain here>.
mywebview as the App package name, and your SHA-256 fingerprint into the App package fingerprint (SHA256)
field:

https://developers.google.com/digital-asset-links/tools/generator

458

Android Implicit Intents – A Worked Example

Figure 55-8
Click the Generate statement button to display the generated statement and place it in a file named assetlinks.json
located in a folder named .well-known on your web server. Return to the generator page and click on the Test
statement button to verify that the file is valid and in the correct location.

Assuming a successful test, we are now ready to try out the app link, reinstall the MyWebView app on your
device or emulator and use the Settings app to navigate to the Open by Default page for MyWebView. The page
should indicate that a link has been verified:

Figure 55-9
Run the ImplicitIntent app once more, click on the Open Web Page button and verify that the page content
appears in the MyWebView app instead of the Chrome browser.

459

Android Implicit Intents – A Worked Example

55.12 Summary
Implicit intents provide a mechanism by which one activity can request the service of another, simply by
specifying an action type and, optionally, the data on which that action is to be performed. To be eligible as a
target candidate for an implicit intent, however, an activity must be configured to extract the appropriate data
from the inbound intent object and be included in a correctly configured manifest file, including appropriate
permissions and intent filters. The app containing the target activity must also be either verified using a Digital
Asset Links file or enabled manually by the user.

Within this chapter, an example was created to demonstrate both the issuing of an implicit intent, the creation
of an example activity capable of handling such an intent, and the link verification process.

461

Chapter 56

56. Android Broadcast Intents and
Broadcast Receivers
In addition to providing a mechanism for launching application activities, intents are also used as a way to
broadcast system wide messages to other components on the system. This involves the implementation of
Broadcast Intents and Broadcast Receivers, both of which are the topic of this chapter.

56.1 An Overview of Broadcast Intents
Broadcast intents are Intent objects that are broadcast via a call to the sendBroadcast(), sendStickyBroadcast() or
sendOrderedBroadcast() methods of the Activity class (the latter being used when results are required from the
broadcast). In addition to providing a messaging and event system between application components, broadcast
intents are also used by the Android system to notify interested applications about key system events (such as
the external power supply or headphones being connected or disconnected).

When a broadcast intent is created, it must include an action string in addition to optional data and a category
string. As with standard intents, data is added to a broadcast intent using key-value pairs in conjunction with
the putExtra() method of the intent object. The optional category string may be assigned to a broadcast intent
via a call to the addCategory() method.

The action string, which identifies the broadcast event, must be unique and typically uses the application’s
package name syntax. For example, the following code fragment creates and sends a broadcast intent including
a unique action string and data:
Intent intent = new Intent();

intent.setAction("com.example.Broadcast");

intent.putExtra("MyData", 1000);

sendBroadcast(intent);

The above code would successfully launch the corresponding broadcast receiver on a device running an Android
version earlier than 3.0. On more recent versions of Android, however, the intent would not be received by the
broadcast receiver. This is because Android 3.0 introduced a launch control security measure that prevents
components of stopped applications from being launched via an intent. An application is considered to be in
a stopped state if the application has either just been installed and not previously launched, or been manually
stopped by the user using the application manager on the device. To get around this, however, a flag can be
added to the intent before it is sent to indicate that the intent is to be allowed to start a component of a stopped
application. This flag is FLAG_INCLUDE_STOPPED_PACKAGES and would be used as outlined in the
following adaptation of the previous code fragment:
Intent intent = new Intent();

intent.addFlags(Intent.FLAG_INCLUDE_STOPPED_PACKAGES);
intent.setAction("com.example.Broadcast");

intent.putExtra("MyData", 1000);

sendBroadcast(intent);

462

Android Broadcast Intents and Broadcast Receivers

56.2 An Overview of Broadcast Receivers
An application listens for specific broadcast intents by registering a broadcast receiver. Broadcast receivers
are implemented by extending the Android BroadcastReceiver class and overriding the onReceive() method.
The broadcast receiver may then be registered, either within code (for example within an activity), or within a
manifest file. Part of the registration implementation involves the creation of intent filters to indicate the specific
broadcast intents the receiver is required to listen for. This is achieved by referencing the action string of the
broadcast intent. When a matching broadcast is detected, the onReceive() method of the broadcast receiver is
called, at which point the method has 5 seconds within which to perform any necessary tasks before returning.
It is important to note that a broadcast receiver does not need to be running all the time. If a matching intent
is detected, the Android runtime system will automatically start up the broadcast receiver before calling the
onReceive() method.

The following code outlines a template Broadcast Receiver subclass:
package com.example.broadcastdetector;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

public class MyReceiver extends BroadcastReceiver {

 public MyReceiver() {

 }

 @Override

 public void onReceive(Context context, Intent intent) {

 // Implement code here to be performed when

 // broadcast is detected

 }

}

When registering a broadcast receiver within a manifest file, a <receiver> entry must be added for the receiver.

The following example manifest file registers the above example broadcast receiver:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.broadcastdetector.broadcastdetector"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="17" />

 <application

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name" >

 <receiver android:name="MyReceiver" >
 </receiver>

463

Android Broadcast Intents and Broadcast Receivers

 </application>

</manifest>

When running on versions of Android older than Android 8.0, the intent filters associated with a receiver can
be placed within the receiver element of the manifest file as follows:
<receiver android:name="MyReceiver" >
 <intent-filter>
 <action android:name="com.example.Broadcast" >
 </action>
 </intent-filter>
</receiver>

On Android 8.0 or later, the receiver must be registered in code using the registerReceiver() method of the
Activity class together with an appropriately configured IntentFilter object:
IntentFilter filter = new IntentFilter("com.example.Broadcast");

MyReceiver receiver = new MyReceiver();

registerReceiver(receiver, filter);

When a broadcast receiver registered in code is no longer required, it may be unregistered via a call to the
unregisterReceiver() method of the activity class, passing through a reference to the receiver object as an
argument. For example, the following code will unregister the above broadcast receiver:
unregisterReceiver(receiver);

It is important to keep in mind that some system broadcast intents can only be detected by a broadcast receiver
if it is registered in code rather than in the manifest file. Check the Android Intent class documentation for a
detailed overview of the system broadcast intents and corresponding requirements online at:

https://developer.android.com/reference/android/content/Intent

56.3 Obtaining Results from a Broadcast
When a broadcast intent is sent using the sendBroadcast() method, there is no way for the initiating activity
to receive results from any broadcast receivers that pick up the broadcast. If return results are required, it is
necessary to use the sendOrderedBroadcast() method instead. When a broadcast intent is sent using this method,
it is delivered in sequential order to each broadcast receiver with a registered interest.

The sendOrderedBroadcast() method is called with a number of arguments including a reference to another
broadcast receiver (known as the result receiver) which is to be notified when all other broadcast receivers have
handled the intent, together with a set of data references into which those receivers can place result data. When
all broadcast receivers have been given the opportunity to handle the broadcast, the onReceive() method of the
result receiver is called and passed the result data.

56.4 Sticky Broadcast Intents
By default, broadcast intents disappear once they have been sent and handled by any interested broadcast
receivers. A broadcast intent can, however, be defined as being “sticky”. A sticky intent, and the data contained
therein, remains present in the system after it has completed. The data stored within a sticky broadcast intent can
be obtained via the return value of a call to the registerReceiver() method, using the usual arguments (references
to the broadcast receiver and intent filter object). Many of the Android system broadcasts are sticky, a prime
example being those broadcasts relating to battery level status.

A sticky broadcast may be removed at any time via a call to the removeStickyBroadcast() method, passing through

https://developer.android.com/reference/android/content/Intent

464

Android Broadcast Intents and Broadcast Receivers

as an argument a reference to the broadcast intent to be removed.

56.5 The Broadcast Intent Example
The remainder of this chapter will work through the creation of an Android Studio based example of broadcast
intents in action. In the first instance, a simple application will be created for the purpose of issuing a custom
broadcast intent. A corresponding broadcast receiver will then be created that will display a message on the
display of the Android device when the broadcast is detected. Finally, the broadcast receiver will be modified to
detect notification by the system that external power has been disconnected from the device.

56.6 Creating the Example Application
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter SendBroadcast into the Name field and specify com.ebookfrenzy.sendbroadcast as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

Once the new project has been created, locate and load the activity_main.xml layout file located in the Project
tool window under app -> res -> layout and, with the Layout Editor tool in Design mode, replace the TextView
object with a Button view and set the text property so that it reads “Send Broadcast”. Once the text value has been
set, follow the usual steps to extract the string to a resource named send_broadcast.

With the button still selected in the layout, locate the onClick property in the Attributes panel and configure it
to call a method named broadcastIntent.

56.7 Creating and Sending the Broadcast Intent
Having created the framework for the SendBroadcast application, it is now time to implement the code to send
the broadcast intent. This involves implementing the broadcastIntent() method specified previously as the
onClick target of the Button view in the user interface. Locate and double-click on the MainActivity.java file and
modify it to add the code to create and send the broadcast intent. Once modified, the source code for this class
should read as follows:
package com.ebookfrenzy.sendbroadcast;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.content.Intent;
import android.view.View;

public class MainActivity extends AppCompatActivity {

.

.

 public void broadcastIntent(View view)
 {
 Intent intent = new Intent();
 intent.setAction("com.ebookfrenzy.sendbroadcast");
 intent.addFlags(Intent.FLAG_INCLUDE_STOPPED_PACKAGES);
 sendBroadcast(intent);
 }
}

465

Android Broadcast Intents and Broadcast Receivers

Note that in this instance the action string for the intent is com.ebookfrenzy.sendbroadcast. When the broadcast
receiver class is created in later sections of this chapter, it is essential that the intent filter declaration match this
action string.

This concludes the creation of the application to send the broadcast intent. All that remains is to build a matching
broadcast receiver.

56.8 Creating the Broadcast Receiver
To create the broadcast receiver, a new class needs to be created which subclasses the BroadcastReceiver
superclass. Within the Project tool window, navigate to app -> java and right-click on the package name. From
the resulting menu, select the New -> Other -> Broadcast Receiver menu option, name the class MyReceiver and
make sure the Exported and Enabled options are selected. These settings allow the Android system to launch the
receiver when needed and ensure that the class can receive messages sent by other applications on the device.
With the class configured, click on Finish.

Once created, Android Studio will automatically load the new MyReceiver.java class file into the editor where it
should read as follows:
package com.ebookfrenzy.sendbroadcast;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

public class MyReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 // TODO: This method is called when the BroadcastReceiver is receiving

 // an Intent broadcast.

 throw new UnsupportedOperationException("Not yet implemented");

 }

}

As can be seen in the code, Android Studio has generated a template for the new class and generated a stub
for the onReceive() method. A number of changes now need to be made to the class to implement the required
behavior. Remaining in the MyReceiver.java file, therefore, modify the code so that it reads as follows:
package com.ebookfrenzy.sendbroadcast;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

public class MyReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 // TODO: This method is called when the BroadcastReceiver is receiving

466

Android Broadcast Intents and Broadcast Receivers

 // an Intent broadcast.

 throw new UnsupportedOperationException("Not yet implemented");

 Toast.makeText(context, "Broadcast Intent Detected.",
 Toast.LENGTH_LONG).show();
 }

}

The code for the broadcast receiver is now complete.

56.9 Registering the Broadcast Receiver
The project needs to publicize the presence of the broadcast receiver and must include an intent filter to specify
the broadcast intents in which the receiver is interested. When the BroadcastReceiver class was created in the
previous section, Android Studio automatically added a <receiver> element to the manifest file. All that remains,
therefore, is to add code within the MainActivity.java file to create an intent filter and to register the receiver:
package com.ebookfrenzy.sendbroadcast;

.

.

import android.content.BroadcastReceiver;
import android.content.IntentFilter;
.

.

public class MainActivity extends AppCompatActivity {

 BroadcastReceiver receiver;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 configureReceiver();
 }

 private void configureReceiver() {
 IntentFilter filter = new IntentFilter();
 filter.addAction("com.ebookfrenzy.sendbroadcast");
 receiver = new MyReceiver();
 registerReceiver(receiver, filter);
 }
.

.

}

It is also important to unregister the broadcast receiver when it is no longer needed:
@Override
protected void onDestroy() {

467

Android Broadcast Intents and Broadcast Receivers

 super.onDestroy();
 unregisterReceiver(receiver);
}

56.10 Testing the Broadcast Example
To test the broadcast sender and receiver, run the SendBroadcast app on a device or AVD and wait for it to
appear on the display. Once running, touch the button, at which point the toast message reading “Broadcast
Intent Detected.” should pop up for a few seconds before fading away.

56.11 Listening for System Broadcasts
The final stage of this example is to modify the intent filter for the broadcast receiver to listen also for the system
intent that is broadcast when external power is disconnected from the device. That action is android.intent.
action.ACTION_POWER_DISCONNECTED. Modify the configureReceiver() method in the MainActivity.java
file to add this additional filter:
private void configureReceiver() {

 IntentFilter filter = new IntentFilter();

 filter.addAction("com.ebookfrenzy.sendbroadcast");

 filter.addAction(
 "android.intent.action.ACTION_POWER_DISCONNECTED");

 receiver = new MyReceiver();

 registerReceiver(receiver, filter);

}

Since the onReceive() method in the MyReceiver.java file is now going to be listening for two types of broadcast
intent, it is worthwhile to modify the code so that the action string of the current intent is also displayed in the
toast message. This string can be obtained via a call to the getAction() method of the intent object passed as an
argument to the onReceive() method:
public void onReceive(Context context, Intent intent) {

 String message = "Broadcast intent detected "
 + intent.getAction();

 Toast.makeText(context, message,
 Toast.LENGTH_LONG).show();

}

Test the receiver by re-installing the modified SendBroadcast package. Touching the button in the SendBroadcast
application should now result in a new message containing the custom action string:
Broadcast intent detected com.ebookfrenzy.sendbroadcast

Next, remove the USB connector that is currently supplying power to the Android device, at which point the
receiver should report the following in the toast message (the message may be truncated on devices in portrait
orientation). If the app is running on an emulator, display the extended controls, select the Battery option and
change the Charger connection setting to None.
Broadcast intent detected android.intent.action.ACTION_POWER_DISCONNECTED

To avoid this message appearing every time the device is disconnected from a power supply launch the Settings
app on the device and select the Apps option. Select the SendBroadcast app from the resulting list and tap the
Uninstall button.

468

Android Broadcast Intents and Broadcast Receivers

56.12 Summary
Broadcast intents are a mechanism by which an intent can be issued for consumption by multiple components
on an Android system. Broadcasts are detected by registering a Broadcast Receiver which, in turn, is configured
to listen for intents that match particular action strings. In general, broadcast receivers remain dormant until
woken up by the system when a matching intent is detected. Broadcast intents are also used by the Android
system to issue notifications of events such as a low battery warning or the connection or disconnection of
external power to the device.

In addition to providing an overview of Broadcast intents and receivers, this chapter has also worked through an
example of sending broadcast intents and the implementation of a broadcast receiver to listen for both custom
and system broadcast intents.

469

Chapter 57

57. Android Local Bound Services –
A Worked Example
As outlined in the previous chapter, Bound services provide a mechanism for implementing communication
between an Android service and one or more client components. The objective of this chapter is to build on
the overview of bound services provided in “An Overview of Android Services” before embarking on an example
implementation of a local bound service in action.

57.1 Understanding Bound Services
Bound services are provided to allow applications to perform tasks in the background. Multiple client components
may bind to a bound service and, once bound, interact with that service using a variety of different mechanisms.

Bound services are created as sub-classes of the Android Service class and must, at a minimum, implement
the onBind() method. Client components bind to a service via a call to the bindService() method. The first bind
request to a bound service will result in a call to that service’s onBind() method (subsequent bind requests do not
trigger an onBind() call). Clients wishing to bind to a service must also implement a ServiceConnection subclass
containing onServiceConnected() and onServiceDisconnected() methods which will be called once the client-
server connection has been established or disconnected, respectively. In the case of the onServiceConnected()
method, this will be passed an IBinder object containing the information needed by the client to interact with
the service.

57.2 Bound Service Interaction Options
There are two recommended mechanisms for implementing interaction between client components and a bound
service. If the bound service is local and private to the same application as the client component (in other words
it runs within the same process and is not available to components in other applications), the recommended
method is to create a subclass of the Binder class and extend it to provide an interface to the service. An instance
of this Binder object is then returned by the onBind() method and subsequently used by the client component
to directly access methods and data held within the service.

In situations where the bound service is not local to the application (in other words, it is running in a different
process from the client component), interaction is best achieved using a Messenger/Handler implementation.

In the remainder of this chapter, an example will be created with the aim of demonstrating the steps involved in
creating, starting and interacting with a local, private bound service.

57.3 A Local Bound Service Example
The example application created in the remainder of this chapter will consist of a single activity and a bound
service. The purpose of the bound service is to obtain the current time from the system and return that
information to the activity where it will be displayed to the user. The bound service will be local and private to
the same application as the activity.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter LocalBound into the Name field and specify com.ebookfrenzy.localbound as the package name. Before

470

Android Local Bound Services – A Worked Example

clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java. Use the steps in section 11.8 Migrating a Project to View Binding to migrate the project
to view binding.

Once the project has been created, the next step is to add a new class to act as the bound service.

57.4 Adding a Bound Service to the Project
To add a new class to the project, right-click on the package name (located under app -> java -> com.ebookfrenzy.
localbound) within the Project tool window and select the New -> Service -> Service menu option. Specify
BoundService as the class name and make sure that both the Exported and Enabled options are selected before
clicking on Finish to create the class. Android Studio will load the BoundService.java file into the editor where
it will read as follows:
package com.ebookfrenzy.localbound;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

public class BoundService extends Service {

 public BoundService() {

 }

 @Override

 public IBinder onBind(Intent intent) {

 // TODO: Return the communication channel to the service.

 throw new UnsupportedOperationException("Not yet implemented");

 }

}

57.5 Implementing the Binder
As previously outlined, local bound services can communicate with bound clients by passing an appropriately
configured Binder object to the client. This is achieved by creating a Binder subclass within the bound service
class and extending it by adding one or more new methods that can be called by the client. In most cases, this
simply involves implementing a method that returns a reference to the bound service instance. With a reference
to this instance, the client can then access data and call methods within the bound service directly.

For the purposes of this example, therefore, some changes are needed to the template BoundService class created
in the preceding section. In the first instance, a Binder subclass needs to be declared. This class will contain a
single method named getService() which will simply return a reference to the current service object instance
(represented by the this keyword). With these requirements in mind, edit the BoundService.java file and modify
it as follows:
package com.ebookfrenzy.localbound;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.os.Binder;

471

Android Local Bound Services – A Worked Example

public class BoundService extends Service {

 private final IBinder myBinder = new MyLocalBinder();

 public BoundService() {

 }

 @Override

 public IBinder onBind(Intent intent) {

 // TODO: Return the communication channel to the service.

 throw new UnsupportedOperationException("Not yet implemented");

 }

 public class MyLocalBinder extends Binder {
 BoundService getService() {
 return BoundService.this;
 }
 }
}

Having made the changes to the class, it is worth taking a moment to recap the steps performed here. First, a new
subclass of Binder (named MyLocalBinder) is declared. This class contains a single method for the sole purpose
of returning a reference to the current instance of the BoundService class. A new instance of the MyLocalBinder
class is created and assigned to the myBinder IBinder reference (since Binder is a subclass of IBinder there is no
type mismatch in this assignment).

Next, the onBind() method needs to be modified to return a reference to the myBinder object and a new public
method implemented to return the current time when called by any clients that bind to the service:
package com.ebookfrenzy.localbound;

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.os.Binder;

public class BoundService extends Service {

 private final IBinder myBinder = new MyLocalBinder();

 public BoundService() {

 }

 @Override

472

Android Local Bound Services – A Worked Example

 public IBinder onBind(Intent intent) {

 return myBinder;
 }

 public String getCurrentTime() {
 SimpleDateFormat dateformat =
 new SimpleDateFormat("HH:mm:ss MM/dd/yyyy",
 Locale.US);
 return (dateformat.format(new Date()));
 }

 public class MyLocalBinder extends Binder {

 BoundService getService() {

 return BoundService.this;

 }

 }

}

At this point, the bound service is complete and is ready to be added to the project manifest file. Locate and
double-click on the AndroidManifest.xml file for the LocalBound project in the Project tool window and, once
loaded into the Manifest Editor, verify that Android Studio has already added a <service> entry for the service
as follows:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.localbound.localbound" >

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme" >

 <service
 android:name=".BoundService"
 android:enabled="true"
 android:exported="true" >
 </service>
 <activity

 android:name=".MainActivity" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

473

Android Local Bound Services – A Worked Example

</manifest>

The next phase is to implement the necessary code within the activity to bind to the service and call the
getCurrentTime() method.

57.6 Binding the Client to the Service
For the purposes of this tutorial, the client is the MainActivity instance of the running application. As previously
noted, to successfully bind to a service and receive the IBinder object returned by the service’s onBind()
method, it is necessary to create a ServiceConnection subclass and implement onServiceConnected() and
onServiceDisconnected() callback methods. Edit the MainActivity.java file and modify it as follows:
package com.ebookfrenzy.localbound;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.os.IBinder;
import android.content.Context;
import android.content.Intent;
import android.content.ComponentName;
import android.content.ServiceConnection;
import com.ebookfrenzy.localbound.BoundService.MyLocalBinder;

public class MainActivity extends AppCompatActivity {

 BoundService myService;
 boolean isBound = false;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 final private ServiceConnection myConnection = new ServiceConnection()
 {
 @Override
 public void onServiceConnected(ComponentName className,
 IBinder service) {
 MyLocalBinder binder = (MyLocalBinder) service;
 myService = binder.getService();
 isBound = true;
 }

 @Override
 public void onServiceDisconnected(ComponentName name) {
 isBound = false;
 }

474

Android Local Bound Services – A Worked Example

 };
}

The onServiceConnected() method will be called when the client binds successfully to the service. The method is
passed as an argument the IBinder object returned by the onBind() method of the service. This argument is cast
to an object of type MyLocalBinder and then the getService() method of the binder object is called to obtain a
reference to the service instance, which, in turn, is assigned to myService. A Boolean flag is used to indicate that
the connection has been successfully established.

The onServiceDisconnected() method is called when the connection ends and simply sets the Boolean flag to
false.

Having established the connection, the next step is to modify the activity to bind to the service. This involves the
creation of an intent and a call to the bindService() method, which can be performed in the onCreate() method
of the activity:
@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Intent intent = new Intent(this, BoundService.class);
 bindService(intent, myConnection, Context.BIND_AUTO_CREATE);
}

57.7 Completing the Example
All that remains is to implement a mechanism for calling the getCurrentTime() method and displaying the result
to the user. As is now customary, Android Studio will have created a template activity_main.xml file for the
activity containing only a TextView. Load this file into the Layout Editor tool and, using Design mode, select
the TextView component and change the ID to myTextView. Add a Button view beneath the TextView and
change the text on the button to read “Show Time”, extracting the text to a string resource named show_time.
On completion of these changes, the layout should resemble that illustrated in Figure 57-1. If any constraints are
missing, click on the Infer Constraints button in the Layout Editor toolbar.

Figure 57-1

475

Android Local Bound Services – A Worked Example

Complete the user interface design by selecting the Button and configuring the onClick property to call a method
named showTime.

Finally, edit the code in the MainActivity.java file to implement the showTime() method. This method simply
calls the getCurrentTime() method of the service (which, thanks to the onServiceConnected() method, is now
available from within the activity via the myService reference) and assigns the resulting string to the TextView:
package com.ebookfrenzy.localbound;

.

.

import android.widget.TextView;

import com.ebookfrenzy.localbound.BoundService.MyLocalBinder;

public class MainActivity extends AppCompatActivity {

 BoundService myService;

 boolean isBound = false;

 public void showTime(View view)
 {
 String currentTime = myService.getCurrentTime();
 TextView myTextView = findViewById(R.id.myTextView);
 myTextView.setText(currentTime);
 }
.
.

}

57.8 Testing the Application
With the code changes complete, perform a test run of the application. Once visible, touch the button and note
that the text view changes to display the current date and time. The example has successfully started and bound
to a service and then called a method of that service to cause a task to be performed and results returned to the
activity.

57.9 Summary
When a bound service is local and private to an application, components within that application can interact
with the service without the need to resort to inter-process communication (IPC). In general terms, the service’s
onBind() method returns an IBinder object containing a reference to the instance of the running service. The
client component implements a ServiceConnection subclass containing callback methods that are called when
the service is connected and disconnected. The former method is passed the IBinder object returned by the
onBind() method allowing public methods within the service to be called.

Having covered the implementation of local bound services, the next chapter will focus on using IPC to interact
with remote bound services.

477

Chapter 58

58. Android Remote Bound Services
– A Worked Example
In this, the final chapter dedicated to Android services, an example application will be developed to demonstrate
the use of a messenger and handler configuration to facilitate interaction between a client and remote bound
service.

58.1 Client to Remote Service Communication
As outlined in the previous chapter, interaction between a client and a local service can be implemented by
returning to the client an IBinder object containing a reference to the service object. In the case of remote
services, however, this approach does not work because the remote service is running in a different process and,
as such, cannot be reached directly from the client.

In the case of remote services, a Messenger and Handler configuration must be created which allows messages
to be passed across process boundaries between client and service.

Specifically, the service creates a Handler instance that will be called when a message is received from the client.
In terms of initialization, it is the job of the Handler to create a Messenger object which, in turn, creates an
IBinder object to be returned to the client in the onBind() method. This IBinder object is used by the client to
create an instance of the Messenger object and, subsequently, to send messages to the service handler. Each time
a message is sent by the client, the handleMessage() method of the handler is called, passing through the message
object.

The example created in this chapter will consist of an activity and a bound service running in separate processes.
The Messenger/Handler mechanism will be used to send a string to the service, which will then display that
string in the Logcat output.

58.2 Creating the Example Application
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter RemoteBound into the Name field and specify com.ebookfrenzy.remotebound as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

58.3 Designing the User Interface
Locate the activity_main.xml file in the Project tool window and double-click on it to load it into the Layout
Editor tool. With the Layout Editor tool in Design mode, right-click on the default TextView instance, choose
the Convert view... menu option and select the Button view from the resulting dialog and click Apply. Change the
text property of the button to read “Send Message” and extract the string to a new resource named send_message.

Finally, configure the onClick property to call a method named sendMessage.

478

Android Remote Bound Services – A Worked Example

58.4 Implementing the Remote Bound Service
To implement the remote bound service for this example, add a new class to the project by right-clicking on
the package name (located under app -> java) within the Project tool window and select the New -> Service ->
Service menu option. Specify RemoteService as the class name and make sure that both the Exported and Enabled
options are selected before clicking on Finish to create the class.

The next step is to implement the handler class for the new service. This is achieved by extending the Handler
class and implementing the handleMessage() method. This method will be called when a message is received
from the client. It will be passed a Message object as an argument containing any data that the client needs to
pass to the service. In this instance, this will be a Bundle object containing a string to be displayed to the user.
The modified class in the RemoteService.java file should read as follows once this has been implemented:
package com.ebookfrenzy.remotebound;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.os.Bundle;
import android.os.Handler;
import android.os.Looper;
import android.os.Message;
import android.os.Messenger;
import android.util.Log;

public class RemoteService extends Service {

 public RemoteService() {

 }

 static class IncomingHandler extends Handler {

 String TAG = "RemoteService";

 public IncomingHandler() {
 super(Looper.getMainLooper());
 }

 @Override
 public void handleMessage(Message msg) {
 Bundle data = msg.getData();
 String dataString = data.getString("MyString");
 Log.i(TAG, "Message = " + dataString);
 }
 }

 @Override

 public IBinder onBind(Intent intent) {

479

Android Remote Bound Services – A Worked Example

 // TODO: Return the communication channel to the service.

 throw new UnsupportedOperationException("Not yet implemented");

 }

}

With the handler implemented, the only remaining task in terms of the service code is to modify the onBind()
method such that it returns an IBinder object containing a Messenger object which, in turn, contains a reference
to the handler:
.

.

final Messenger myMessenger = new Messenger(new IncomingHandler());

@Override

public IBinder onBind(Intent intent) {

 return myMessenger.getBinder();
}

The first line of the above code fragment creates a new instance of our handler class and passes it through to the
constructor of a new Messenger object. Within the onBind() method, the getBinder() method of the messenger
object is called to return the messenger’s IBinder object.

58.5 Configuring a Remote Service in the Manifest File
To portray the communication between a client and remote service accurately, it will be necessary to configure the
service to run in a separate process from the rest of the application. This is achieved by adding an android:process
property within the <service> tag for the service in the manifest file. To launch a remote service it is also
necessary to provide an intent filter for the service. To implement this change, modify the AndroidManifest.xml
file to add the required entry:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.remotebound" >

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme" >

 <service

 android:name=".RemoteService"

 android:enabled="true"

 android:exported="true"

 android:process=":my_process" >
 </service>

 <activity

 android:name=".MainActivity" >

 <intent-filter>

480

Android Remote Bound Services – A Worked Example

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

58.6 Launching and Binding to the Remote Service
As with a local bound service, the client component needs to implement an instance of the ServiceConnection
class with onServiceConnected() and onServiceDisconnected() methods. Also, in common with local services,
the onServiceConnected() method will be passed the IBinder object returned by the onBind() method of the
remote service which will be used to send messages to the server handler. In the case of this example, the
client is MainActivity, the code for which is located in MainActivity.java. Load this file and modify it to add the
ServiceConnection class and a variable to store a reference to the received Messenger object together with a
Boolean flag to indicate whether or not the connection is established:
package com.ebookfrenzy.remotebound;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.os.IBinder;
import android.os.Message;
import android.os.Messenger;
import android.os.RemoteException;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.view.View;

public class MainActivity extends AppCompatActivity {

 Messenger myService = null;
 boolean isBound;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 final private ServiceConnection myConnection =
 new ServiceConnection() {
 public void onServiceConnected(
 ComponentName className,

481

Android Remote Bound Services – A Worked Example

 IBinder service) {
 myService = new Messenger(service);
 isBound = true;
 }

 public void onServiceDisconnected(
 ComponentName className) {
 myService = null;
 isBound = false;
 }
 };
}

Next, some code needs to be added to bind to the remote service. This involves creating an intent that matches
the intent filter for the service as declared in the manifest file and then making a call to the bindService() method,
providing the intent and a reference to the ServiceConnection instance as arguments. For the purposes of this
example, this code will be implemented in the activity’s onCreate() method:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Intent intent = new Intent(getApplicationContext(),
 RemoteService.class);

 bindService(intent, myConnection, Context.BIND_AUTO_CREATE);
}

58.7 Sending a Message to the Remote Service
All that remains before testing the application is to implement the sendMessage() method in the MainActivity
class which is configured to be called when the button in the user interface is touched by the user. This method
needs to check that the service is connected, create a bundle object containing the string to be displayed by the
server, add it to a Message object and send it to the server:
public void sendMessage(View view)

{

 if (!isBound) return;

 Message msg = Message.obtain();

 Bundle bundle = new Bundle();

 bundle.putString("MyString", "Message Received");

 msg.setData(bundle);

 try {

 myService.send(msg);

 } catch (RemoteException e) {

482

Android Remote Bound Services – A Worked Example

 e.printStackTrace();

 }

}

With the code changes complete, compile and run the application. Once loaded, open the Logcat tool window
and enter the following into the filter field:
package:mine tag:RemoteServer

With the Logcat tool window still visible, tap the button in the user interface, at which point the log message
should appear as follows:
Message = Message Received

58.8 Summary
To implement interaction between a client and remote bound service it is necessary to implement a handler/
message communication framework. The basic concepts behind this technique have been covered in this chapter
together with the implementation of an example application designed to demonstrate communication between
a client and a bound service, each running in a separate process.

483

Chapter 59

59. A Basic Overview of Java Threads,
Handlers and Executors
Threads are the cornerstone of any multitasking operating system and can be thought of as mini-processes
running within a main process, the purpose of which is to enable at least the appearance of parallel execution
paths within applications. In this chapter we will explore the importance of using threads in Android app
development and demonstrate how they are created and managed.

59.1 The Application Main Thread
When an Android application is first started, the runtime system creates a single thread in which all application
components will run by default. This thread is generally referred to as the main thread. The primary role of the
main thread is to handle the user interface in terms of event handling and interaction with views in the user
interface. Any additional components that are started within the application will, by default, also run on the
main thread.

Any component within an application that performs a time consuming task using the main thread will cause
the entire application to appear to lock up until the task is completed. This will typically result in the operating
system displaying an “Application is not responding” warning to the user. Clearly, this is far from the desired
behavior for any application. This can be avoided simply by launching the task to be performed in a separate
thread, allowing the main thread to continue unhindered with other tasks.

59.2 Thread Handlers
Clearly, one of the key rules of Android development is to never perform time-consuming operations on the
main thread of an application. The second, equally important, rule is that the code within a separate thread must
never, under any circumstances, directly update any aspect of the user interface.

Any changes to the user interface must always be performed from within the main thread. The reason for this is
that the Android UI toolkit is not thread-safe. Attempts to work with non-thread-safe code from within multiple
threads will typically result in intermittent problems and unpredictable application behavior.

If the code executing in a thread needs to interact with the user interface, it must do so by synchronizing with
the main UI thread. This is achieved by creating a handler within the main thread, which, in turn, receives
messages from another thread and updates the user interface accordingly.

59.3 A Threading Example
The remainder of this chapter will work through some simple examples intended to provide a basic introduction
to threads. The first step will be to highlight the importance of performing time-consuming tasks in a separate
thread from the main thread.

Launch Android Studio, select the New Project option from the welcome screen and, within the resulting new
project dialog, choose the Empty Activity template before clicking on the Next button.

Enter ThreadExample into the Name field and specify com.ebookfrenzy.threadexample as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo)
and the Language menu to Java. Convert the project to use view binding by following the steps in section 11.8

484

A Basic Overview of Java Threads, Handlers and Executors

Migrating a Project to View Binding.

59.4 Building the App
Load the activity_main.xml file for the project into the Layout Editor tool. Select the default TextView component
and change the ID for the view to myTextView in the Properties tool window.

Add a Button view to the user interface positioned directly beneath the existing TextView object as illustrated
in Figure 59-1. Once the button has been added, click on the Infer Constraints button in the toolbar to add the
missing constraints.

Change the text to “Press Me” and extract the string to a resource named press_me. With the button view still
selected in the layout, locate the onClick property and enter buttonClick as the method name.

Figure 59-1
Next, load the MainActivity.java file into an editing panel and add code for the buttonClick() method which
will be called when the Button view is tapped by the user. Since the goal here is to demonstrate the problem
of performing lengthy tasks on the main thread, the code will simply pause for 20 seconds before displaying
different text on the TextView object:
.

.

public void buttonClick(View view) {

 long endTime = System.currentTimeMillis() + 20 * 1000;

 while (System.currentTimeMillis() < endTime) {

485

A Basic Overview of Java Threads, Handlers and Executors

 synchronized (this) {

 try {

 wait(endTime - System.currentTimeMillis());

 } catch (Exception e) {

 }

 }

 }

 binding.myTextView.setText("Button Pressed");

}

.

.

With the code changes complete, run the application on either a physical device or an emulator. Once the
application is running, tap the button, at which point the application will appear to freeze. It will, for example,
not be possible to touch the button a second time and in some situations the operating system will report the
application as being unresponsive as shown in Figure 59-2.

Figure 59-2
Clearly, anything that is going to take time to complete within the buttonClick() method needs to be performed
within a separate thread.

59.5 Creating a New Thread
To create a new thread, the code to be executed in that thread needs to be placed within the run() method of a
Runnable instance. A new Thread object then needs to be created, passing through a reference to the Runnable
instance to the constructor. Finally, the start() method of the thread object needs to be called to start the thread
running. To perform the task within the buttonClick() method, therefore, the following changes need to be
made:
public void buttonClick(View view) {

 Runnable runnable = new Runnable() {
 public void run() {
 long endTime = System.currentTimeMillis() + 20 * 1000;

 while (System.currentTimeMillis() < endTime) {

 synchronized (this) {

 try {

 wait(endTime - System.currentTimeMillis());

 } catch (Exception e) {

 }

 }

 }

486

A Basic Overview of Java Threads, Handlers and Executors

 }
 binding.myTextView.setText("Button Pressed");
 };
 Thread myThread = new Thread(runnable);
 myThread.start();
}

In fact, the runnable declaration can be simplified if desired by making use of a Java lambda expression. Making
this change would result in the following declaration:
.

.

 Runnable runnable = () -> {

 long endTime = System.currentTimeMillis() + 20 * 1000;

 while (System.currentTimeMillis() < endTime) {

 synchronized (this) {

 try {

 wait(endTime - System.currentTimeMillis());

 } catch (Exception e) {

 }

 }

 }

 };

 Thread myThread = new Thread(runnable);

 myThread.start();

.

.

When the application is now run, touching the button causes the delay to be performed in a new thread leaving
the main thread to continue handling the user interface, including responding to additional button presses. In
fact, each time the button is touched, a new thread will be created, allowing the task to be performed multiple
times concurrently.

A close inspection of the updated code for the buttonClick() method will reveal that the code to update the
TextView has been removed. As previously stated, updating a user interface element from within a thread other
than the main thread violates a key rule of Android development. To update the user interface, therefore, it will
be necessary to implement a Handler for the thread.

59.6 Implementing a Thread Handler
Thread handlers are implemented in the main thread of an application and are primarily used to make updates
to the user interface in response to messages sent by other threads running within the application’s process.

Handlers are subclassed from the Android Handler class and can be used either by specifying a Runnable to
be executed when required by the thread, or by overriding the handleMessage() callback method within the
Handler subclass which will be called when messages are sent to the handler by a thread.

For the purposes of this example, a handler will be implemented to update the user interface from within the
previously created thread. Load the MainActivity.java file into the Android Studio editor and modify the code to
add a Handler instance to the activity:
.

487

A Basic Overview of Java Threads, Handlers and Executors

.

import android.os.Handler;
import android.os.Message;
import android.os.Looper;

public class MainActivity extends AppCompatActivity {

.

.

 Handler handler = new Handler(Looper.getMainLooper()) {
 @Override public void handleMessage(Message msg) {
 binding.myTextView.setText("Message Received");
 }
 };
.

.

The above code changes have declared a handler and implemented within that handler the handleMessage()
callback which will be called when the thread sends the handler a message. In this instance, the code simply
displays a string on the TextView object in the user interface.

All that now remains is to modify the thread created in the buttonClick() method to send a message to the
handler when the delay has completed:
public void buttonClick(View view) {

 Runnable runnable = () -> {
 long endTime = System.currentTimeMillis() + 20 * 1000;

 while (System.currentTimeMillis() < endTime) {

 synchronized (this) {

 try {

 wait(endTime - System.currentTimeMillis());

 } catch (Exception e) {

 }

 }

 }

 handler.sendEmptyMessage(0);
 }

 };

 Thread myThread = new Thread(runnable);

 myThread.start();

}

Note that the only change that has been made is to make a call to the sendEmptyMessage() method of the
handler. Since the handler does not currently do anything with the content of any messages it receives it is sent
an empty message object.

Compile and run the application and, once executing, touch the button. After a 20 second delay, the new text will
appear in the TextView object in the user interface.

488

A Basic Overview of Java Threads, Handlers and Executors

59.7 Passing a Message to the Handler
While the previous example triggered a call to the handleMessage() handler callback, it did not take advantage of
the message object to send data to the handler. In this phase of the tutorial, the example will be further modified
to pass data between the thread and the handler. First, the updated thread in the buttonClick() method will
obtain the date and time from the system in string format and store that information in a Bundle object. A call
will then be made to the obtainMessage() method of the handler object to get a message object from the message
pool. Finally, the bundle will be added to the message object before being sent via a call to the sendMessage()
method of the handler object:
public void buttonClick(View view) {

 Runnable runnable = () -> {
 long endTime = System.currentTimeMillis() + 20 * 1000;

 while (System.currentTimeMillis() < endTime) {

 synchronized (this) {

 try {

 wait(endTime - System.currentTimeMillis());

 } catch (Exception e) {

 }

 }

 }

 Message msg = handler.obtainMessage();
 Bundle bundle = new Bundle();
 bundle.putString("myKey", "Thread Completed");
 msg.setData(bundle);
 handler.sendMessage(msg);
 };

 Thread myThread = new Thread(runnable);

 myThread.start();

}

Next, update the handleMessage() method of the handler to extract the date and time string from the bundle
object in the message and display it on the TextView object:
Handler handler = new Handler(Looper.getMainLooper()) {

 @Override

 public void handleMessage(Message msg) {

 Bundle bundle = msg.getData();
 String string = bundle.getString("myKey");
 binding.myTextView.setText(string);
 }

};

Finally, compile and run the application and test that touching the button now causes the “Thread Complete”
message to appear on the TextView object after the thread finishes.

59.8 Java Executor Concurrency
So far in this chapter we have looked exclusively at directly creating and managing Java threads. While acceptable
for simple multi-threading tasks, this can prove to be inadequate when working with complex situations

489

A Basic Overview of Java Threads, Handlers and Executors

involving large number of threads. There is, for example, a system overhead involved in starting and stopping
threads. An app that creates and destroys large number of threads is, therefore, at risk of exhibiting degraded
performance. The basic threading API also does not provide pre-built options for scheduling or repeating task
execution, or for returning results from a task.

The shortcomings of working directly with threads can be overcome by making use of the Executor classes of
the Java Concurrent framework (part of the java.util.concurrent package). This framework allows for a pool of
active threads to be created and manages how tasks are assigned to those threads. This allows existing threads to
be reused for other tasks without the need to constantly create new threads.

This framework also provides additional functionality including the ability to return a result on completion of a
task (referred to as a Callable task), check the status of a thread and to schedule tasks to run either after a timeout
or at repeated time intervals.

59.9 Working with Runnable Tasks
The first step in exploring this framework is to modify the buttonClicked() method to use a concurrency
framework Executor to run the task in a separate thread:
.

.

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
.

.

 public void buttonClick(View view) {

 ExecutorService executor = Executors.newSingleThreadExecutor();

 executor.submit(new Runnable() {
 public void run() {
 long endTime = System.currentTimeMillis() + 10 * 1000;
 while (System.currentTimeMillis() < endTime) {

 synchronized (this) {

 try {

 wait(endTime - System.currentTimeMillis());

 } catch (Exception e) {

 }

 }

 }

 Message msg = handler.obtainMessage();

 Bundle bundle = new Bundle();

 bundle.putString("myKey", "Button Pressed");

 msg.setData(bundle);

 handler.sendMessage(msg);

 }
 });
 executor.shutdown();
 }

490

A Basic Overview of Java Threads, Handlers and Executors

.

.

When the above code is executed, the timeout will be performed on a separate thread as before. The changes
made to the method, however, require some explanation. First, a reference to an ExecutorService instance is
obtained from the system Executors instance:
ExecutorService executor = Executors.newSingleThreadExecutor();

In this case, a pool containing only one thread is requested. A pool with a specified number of threads could
have been requested as follows:
ExecutorService executor = Executors.newFixedThreadPool(10);

Next, a Runnable task is started on the thread via a call to the submit() method of the executor service instance:
executor.submit(new Runnable(){

 public void run(){

 long endTime = System.currentTimeMillis() + 20 * 1000;

.

.

Note that the above declaration can be simplified by converting it to a lambda as follows:
executor.submit(() -> {

 long endTime = System.currentTimeMillis() + 20 * 1000;

.

.

From this point on, the task will run until completion. Once completed however, the executor service will
continue to run. If you have no further use for the service, it should be shutdown.

59.10 Shutting down an Executor Service
ExecutorService provides a few techniques for initiating a shutdown. To notify the service that it should
shutdown automatically after the currently running tasks have reached completion, a call to the shutdown()
method should be made as follows:
executor.shutdown();

A call to the shutdownNow() method, on the other hand, stops all tasks running on the service and, cancels the
processing of pending tasks:
executor.shutdownNow();

59.11 Working with Callable Tasks and Futures
As previously mentioned, the ExecutorService supports so called “Callable” tasks which are able to return a
result after the task is completed. Tasks running on separate thread are typically expected to take some time to
complete (otherwise they probably would not need to run on a separate thread in the first place). This raises
the question of how the result is returned to the code in the thread from which the task was launched. This is
achieved using the Future value type which represents a value which will be provided at some point in the future.

When a callable task is executed it returns a Future instance which may then be used by the app to obtain
the result when the task completes. To see this in action, begin by editing the activity_main.xml file to add an
additional button labeled “Status” with the onClick property configured to call method named statusClick:

491

A Basic Overview of Java Threads, Handlers and Executors

Figure 59-3
Next, modify the buttonClick() method to execute a Callable task configured to return a String value via a Future
variable:
.

.

import java.util.concurrent.Callable;
import java.util.concurrent.Future;
.

.

public class MainActivity extends AppCompatActivity {

 Future<String> future;
.

.

 public void buttonClick(View view) {

 ExecutorService executor = Executors.newSingleThreadExecutor();

 future = executor.submit(new Callable<String>() {
 public String call() {
 long endTime = System.currentTimeMillis() + 10 * 1000;

 while (System.currentTimeMillis() < endTime) {

 synchronized (this) {

 try {

 wait(endTime - System.currentTimeMillis());

 } catch (Exception e) {

 }

492

A Basic Overview of Java Threads, Handlers and Executors

 }

 }

 return("Task Completed");
 }

 });

 executor.shutdown();

 }

.

.

Note that in addition to importing the java.util.concurrent.Future package and declaring a Future variable for
storing a string value, some changes have also been made to the way in which the task is launched:
future = executor.submit(new Callable<String>() {

 public String call() {

The key points here are that instead of submitting a Runnable task to the executor service, we are now passing
through a Callable task (declared to return a String value). Note also that the result of the task is assigned to
the Future variable. In addition, call() is used instead of the run() method used previously when submitting a
Runnable task. Finally, a return statement has been added to return a string value:

return("Task Completed")

59.12 Handling a Future Result
The buttonClick() method is now configured to launch a Callable task with the return value assigned to the
Future variable. The app now needs to know when the task is complete and the result available. One option is to
call the get() method of the Future variable. Since this method is able to throw exceptions if the execution fails
or is interrupted, this must be performed in a try/catch statement as follows:
String result = null;

try {

 result = future.get();

} catch (ExecutionException | InterruptedException e) {

 e.printStackTrace();

}

Unfortunately, the get() method will block the current thread until the task running in the thread completes,
thereby defeating the purpose of running the task in a separate thread in the first place. Another option is
to provide the get() method call with a timeout after which it will return control to the current thread. The
following code, for example, will cause the get() call to timeout after 3 seconds:
result = future.get(3, TimeUnit.SECONDS);

A better alternative, however, is to call the isDone() method of the Future instance to check the status of the
thread and only call the get() method once the task is complete. To implement this behavior, add the statusClick()
method to the MainActivity.java file as follows:
.

.

import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

493

A Basic Overview of Java Threads, Handlers and Executors

.

.

public void statusClick(View view) {

 if ((future != null && future.isDone()) {

 String result = null;

 try {

 result = future.get(3, TimeUnit.SECONDS);

 } catch (ExecutionException | InterruptedException

 | TimeoutException e) {

 e.printStackTrace();

 }

 binding.myTextView.setText(result);

 } else {

 binding.myTextView.setText("Waiting");

 }

}

With the changes made, run the app and click on the “Press Me” button. While the task is running, click on the
Status button. As long as the task is still running, the “Waiting” message will be displayed in the TextView. Once
the task completes, however, the isDone() method will return a true value, the get() method will be called and
the string returned by the task (“Task Complete”) displayed on the TextView.

59.13 Scheduling Tasks
The final area to be covered involves the use of ExecutorService to schedule task execution. This involves use
of a ScheduledExecutorService instance on which the schedule() method needs to be called passing through
the Runnable task to be executed together with a time delay. The schedule() call will return a ScheduledFuture
instance which may be used to identify the remaining time before the task is due to start.

The following code, for example, schedules a task to run after a 30 second delay and accesses the remaining delay
time:
ScheduledExecutorService executor = Executors.newScheduledThreadPool(1);

Runnable task = () -> {

 // Code to perform task here

};

ScheduledFuture<?> future = executor.schedule(task, 30, TimeUnit.SECONDS);

long delayRemaining = future.getDelay(TimeUnit.SECONDS);

Similarly, the ScheduledExecutorService may be used to execute a task repeatedly at regular intervals starting
after an optional initial delay. The following code, for example, causes a task to be performed every 10 seconds
after an initial 30 second delay:
executor.scheduleAtFixedRate(task, 30, 10, TimeUnit.SECONDS);

The scheduleAtFixedRate() method will launch the next instance of the task regardless of whether or not the
previously scheduled task has completed. To specify a fixed period of time between the end of a task execution
and the start of the next execution, use the scheduleWithFixedDelay() method. In the following example, the
first task is scheduled after a 0 second delay, with each subsequent execution taking place 10 seconds after

494

A Basic Overview of Java Threads, Handlers and Executors

completion of the proceeding task:
executor.scheduleWithFixedDelay(task, 0, 10, TimeUnit.SECONDS);

59.14 Summary
The goal of this chapter was to provide an overview of threading within Android applications. When an
application is first launched in a process, the runtime system creates a main thread in which all subsequently
launched application components run by default. The primary role of the main thread is to handle the user
interface, so any time consuming tasks performed in that thread will give the appearance that the application
has locked up. It is essential, therefore, that tasks likely to take time to complete be started in a separate thread.

Because the Android user interface toolkit is not thread-safe, changes to the user interface should not be made
in any thread other than the main thread. User interface changes can be implemented by creating a handler in
the main thread to which messages may be sent from within other, non-main threads.

Threads can be created either directly, or using the executor services of the Java Concurrent framework. For more
complex threading requirements, this framework provides automatic management of thread pools, returning of
results from tasks and execution scheduling.

495

Chapter 60

60. Making Runtime Permission
Requests in Android
In a number of the example projects created in preceding chapters, changes have been made to the
AndroidManifest.xml file to request permission for the app to perform a specific task. In a couple of instances,
for example, internet access permission has been requested to allow the app to download and display web pages.
In each case up until this point, the addition of the request to the manifest was all that was required for the app
to obtain permission from the user to perform the designated task.

There are, however, a number of permissions for which additional steps are required in order for the app to
function when running on Android 6.0 or later. The first of these so-called “dangerous” permissions will be
encountered in the next chapter. Before reaching that point, however, this chapter will outline the steps involved
in requesting such permissions when running on the latest generations of Android.

60.1 Understanding Normal and Dangerous Permissions
Android enforces security by requiring the user to grant permission for an app to perform certain tasks. Before
the introduction of Android 6, permission was always sought at the point that the app was installed on the
device. Figure 60-1, for example, shows a typical screen seeking a variety of permissions during the installation
of an app via Google Play.

Figure 60-1
For many types of permissions this scenario still applies for apps on Android 6.0 or later. These permissions are
referred to as normal permissions and are still required to be accepted by the user at the point of installation. A
second type of permission, referred to as dangerous permissions must also be declared within the manifest file
in the same way as a normal permission, but must also be requested from the user when the application is first
launched. When such a request is made, it appears in the form of a dialog box as illustrated in Figure 60-2:

496

Making Runtime Permission Requests in Android

Figure 60-2
The full list of permissions that fall into the dangerous category is contained in Table 60-1:

Permission Group Permission
Calendar READ_CALENDAR

WRITE_CALENDAR
Camera CAMERA
Contacts READ_CONTACTS

WRITE_CONTACTS

GET_ACCOUNTS
Location ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION
Microphone RECORD_AUDIO
Notifications POST_NOTIFICATIONS
Phone READ_PHONE_STATE

CALL_PHONE

READ_CALL_LOG

WRITE_CALL_LOG

ADD_VOICEMAIL

USE_SIP

PROCESS_OUTGOING_CALLS
Sensors BODY_SENSORS
SMS SEND_SMS

RECEIVE_SMS

READ_SMS

RECEIVE_WAP_PUSH

RECEIVE_MMS

497

Making Runtime Permission Requests in Android

Storage MANAGE_EXTERNAL_STORAGE

READ_EXTERNAL_STORAGE

WRITE_EXTERNAL_STORAGE

Table 60-1
The MANAGE_EXTERNAL_STORAGE permission gives the app access to all files located on the external
storage of the device, including those belonging to other apps. Consequently, permission will only be enabled for
your app once Google has verified during the review process that this level of access is needed. To test your app
in advance of submitting it to the Google Play store, the following adb command can be executed to temporarily
enable access for the app on the testing device:
adb shell appops set --uid <package name> MANAGE_EXTERNAL_STORAGE allow

This mode can be disabled as follows:
adb shell appops set --uid <package name> MANAGE_EXTERNAL_STORAGE default

60.2 Creating the Permissions Example Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter PermissionDemo into the Name field and specify com.ebookfrenzy.permissiondemo as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and
the Language menu to Java.

60.3 Checking for a Permission
The Android Support Library contains a number of methods that can be used to seek and manage dangerous
permissions within the code of an Android app. These API calls can be made safely regardless of the version of
Android on which the app is running, but will only perform meaningful tasks when executed on Android 6.0
or later.

Before an app attempts to make use of a feature that requires approval of a dangerous permission, and regardless
of whether or not permission was previously granted, the code must check that the permission has been granted.
This can be achieved via a call to the checkSelfPermission() method of the ContextCompat class, passing through
as arguments a reference to the current activity and the permission being requested. The method will check
whether the permission has been previously granted and return an integer value matching PackageManager.
PERMISSION_GRANTED or PackageManager.PERMISSION_DENIED.

Within the MainActivity.java file of the example project, modify the code to check whether permission has been
granted for the app to record audio:
package com.ebookfrenzy.permissiondemoactivity;

import androidx.appcompat.app.AppCompatActivity;

import androidx.core.content.ContextCompat;
import androidx.annotation.NonNull;

import android.os.Bundle;

import android.Manifest;
import android.content.pm.PackageManager;
import android.util.Log;

498

Making Runtime Permission Requests in Android

public class MainActivity extends AppCompatActivity {

 private static final String TAG = "PermissionDemo";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_permission_demo);

 setupPermissions();
 }

 private void setupPermissions() {
 int permission = ContextCompat.checkSelfPermission(this,
 Manifest.permission.RECORD_AUDIO);

 if (permission != PackageManager.PERMISSION_GRANTED) {
 Log.i(TAG, "Permission to record denied");
 }
 }

}Edit the AndroidManifest.xml file (located in the Project tool window under app -> manifests) and add a line
to request recording permission as follows:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.permissiondemoactivity" >

 <uses-permission android:name="android.permission.RECORD_AUDIO" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@sxtring/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme" >

 <activity android:name=".MainActivity" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

499

Making Runtime Permission Requests in Android

Run the app on a device or emulator and open the Logcat tool window. Note that even though the permission
has been added to the manifest file, the permission denied message appears. This is because Android requires
that in addition to adding the request to the manifest file, the app must also request dangerous permissions at
runtime.

60.4 Requesting Permission at Runtime
A permission request is made via a call to the requestPermissions() method of the ActivityCompat class.
When this method is called, the permission request is handled asynchronously and a method named
onRequestPermissionsResult() is called when the task is completed.

The requestPermissions() method takes as arguments a reference to the current activity, together with the
identifier of the permission being requested and a request code. The request code can be any integer value and
will be used to identify which request has triggered the call to the onRequestPermissionsResult() method. Modify
the MainActivity.java file to declare a request code and request recording permission if the permission check
failed:
.

.

import androidx.core.app.ActivityCompat;
.

.

public class MainActivity extends AppCompatActivity {

 private static final String TAG = "PermissionDemo";

 private static final int RECORD_REQUEST_CODE = 101;
.

.

 @Override

 private void setupPermissions() {

 int permission = ContextCompat.checkSelfPermission(this,

 Manifest.permission.RECORD_AUDIO);

 if (permission != PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission to record denied");

 makeRequest();
 }

 }

 protected void makeRequest() {
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.RECORD_AUDIO},
 RECORD_REQUEST_CODE);
 }
}

Next, implement the onRequestPermissionsResult() method so that it reads as follows:
@Override

500

Making Runtime Permission Requests in Android

public void onRequestPermissionsResult(int requestCode,

 @NonNull String[] permissions, @NonNull int[] grantResults) {

 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 if (requestCode == RECORD_REQUEST_CODE) {

 if (grantResults.length == 0

 || grantResults[0] !=

 PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission has been denied by user");

 } else {

 Log.i(TAG, "Permission has been granted by user");

 }

 }

}

Compile and run the app on an emulator or device and note that a dialog seeking permission to record audio
appears as shown in Figure 60-3:

Figure 60-3
Tap the While using the app button and check that the “Permission has been granted by user” message appears
in the Logcat panel.

Once the user has granted the requested permission, the checkSelfPermission() method call will return a
PERMISSION_GRANTED result on future app invocations until the user uninstalls and re-installs the app or
changes the permissions for the app in Settings.

60.5 Providing a Rationale for the Permission Request
As is evident from Figure 60-3, the user has the option to deny the requested permission. In this case, the app
will continue to request the permission each time that it is launched by the user unless the user selected the
“Never ask again” option before clicking on the Deny button. Repeated denials by the user may indicate that the
user doesn’t understand why the permission is required by the app. The user might, therefore, be more likely to
grant permission if the reason for the requirements is explained when the request is made. Unfortunately, it is
not possible to change the content of the request dialog to include such an explanation.

501

Making Runtime Permission Requests in Android

An explanation is best included in a separate dialog which can be displayed before the request dialog is presented
to the user. This raises the question as to when to display this explanation dialog. The Android documentation
recommends that an explanation dialog only be shown if the user has previously denied the permission and
provides a method to identify when this is the case.

A call to the shouldShowRequestPermissionRationale() method of the ActivityCompat class will return a true
result if the user has previously denied a request for the specified permission, and a false result if the request has
not previously been made. In the case of a true result, the app should display a dialog containing a rationale for
needing the permission and, once the dialog has been read and dismissed by the user, the permission request
should be repeated.

To add this functionality to the example app, modify the onCreate() method so that it reads as follows:
.

.

import android.app.AlertDialog;
.

.

private void setupPermissions() {

 int permission = ContextCompat.checkSelfPermission(this,

 Manifest.permission.RECORD_AUDIO);

 if (permission != PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission to record denied");

 if (ActivityCompat.shouldShowRequestPermissionRationale(this,
 Manifest.permission.RECORD_AUDIO)) {
 AlertDialog.Builder builder =
 new AlertDialog.Builder(this);
 builder.setMessage("Permission to access the microphone is required
for this app to record audio.")
 .setTitle("Permission required");

 builder.setPositiveButton("OK",
 (dialog, id) -> makeRequest());

 AlertDialog dialog = builder.create();
 dialog.show();
 } else {
 makeRequest();
 }
 }

}

The method still checks whether or not the permission has been granted, but now also identifies whether a
rationale needs to be displayed. If the user has previously denied the request, a dialog is displayed containing
an explanation and an OK button on which a listener is configured to call the makeRequest() method when the
button is tapped. If the permission request has not previously been made, the code moves directly to seeking

502

Making Runtime Permission Requests in Android

permission.

60.6 Testing the Permissions App
On the device or emulator session on which testing is being performed, launch the Settings app, select the Apps
option and scroll to and select the PermissionDemo app. On the app settings screen, tap the uninstall button to
remove the app from the device.

Run the app once again and, when the permission request dialog appears, click on the Don’t allow button. Stop
and restart the app and verify that the rationale dialog appears. Tap the OK button and, when the permission
request dialog appears, tap the While using the app button.

Return to the Settings app, select the Apps option and select the PermissionDemo app once again from the list.
Once the settings for the app are listed, verify that the Permissions section lists the Microphone permission:

Figure 60-4

60.7 Summary
Before the introduction of Android 6.0 the only step necessary for an app to request permission to access certain
functionality was to add an appropriate line to the application’s manifest file. The user would then be prompted
to approve the permission at the point that the app was installed. This is still the case for most permissions, with
the exception of a set of permissions that are considered dangerous. Permissions that are considered dangerous
usually have the potential to allow an app to violate the user’s privacy such as allowing access to the microphone,
contacts list or external storage.

As outlined in this chapter, apps based on Android 6 or later must now request dangerous permission approval
from the user when the app launches in addition to including the permission request in the manifest file.

503

Chapter 61

61. An Android Notifications Tutorial
Notifications provide a way for an app to convey a message to the user when the app is either not running or is
currently in the background. A messaging app might, for example, issue a notification to let the user know that a
new message has arrived from a contact. Notifications can be categorized as being either local or remote. A local
notification is triggered by the app itself on the device on which it is running. Remote notifications, on the other
hand, are initiated by a remote server and delivered to the device for presentation to the user.

Notifications appear in the notification drawer that is pulled down from the status bar of the screen and each
notification can include actions such as a button to open the app that sent the notification. Android also supports
Direct Reply notifications, a feature that allows the user to type in and submit a response to a notification from
within the notification panel.

The goal of this chapter is to outline and demonstrate the implementation of local notifications within an
Android app. The next chapter (“An Android Direct Reply Notification Tutorial”) will cover the implementation
of direct reply notifications.

61.1 An Overview of Notifications
When a notification is initiated on an Android device, it appears as an icon in the status bar. Figure 61-1, for
example, shows a status bar with several notification icons:

Figure 61-1
To view the notifications, the user makes a downward swiping motion starting at the status bar to pull down the
notification drawer as shown in Figure 61-2:

Figure 61-2
In devices running Android 8 or newer, performing a long press on an app launcher icon will display any

504

An Android Notifications Tutorial

pending notifications associated with that app as shown in Figure 61-3:

Figure 61-3
Android 8 and later also supports notification dots that appear on app launcher icons when a notification is
waiting to be seen by the user.

A typical notification will simply display a message and, when tapped, launch the app responsible for issuing the
notification. Notifications may also contain action buttons which perform a task specific to the corresponding
app when tapped. Figure 61-4, for example, shows a notification containing two action buttons allowing the user
to either delete or save an incoming message.

Figure 61-4
It is also possible for the user to enter an in-line text reply into the notification and send it to the app, as is
the case in Figure 61-5 below. This allows the user to respond to a notification without having to launch the
corresponding app into the foreground.

Figure 61-5
The remainder of this chapter will work through the steps involved in creating and issuing a simple notification
containing actions. The topic of direct reply support will then be covered in the next chapter entitled “An Android
Direct Reply Notification Tutorial”.

505

An Android Notifications Tutorial

61.2 Creating the NotifyDemo Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter NotifyDemo into the Name field and specify com.ebookfrenzy.notifydemo as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 33: Android 13 (Tiramisu) and the
Language menu to Java.

61.3 Designing the User Interface
The main activity will contain a single button, the purpose of which is to create and issue an intent. Locate and
load the activity_main.xml file into the Layout Editor tool and delete the default TextView widget.

With Autoconnect enabled, drag and drop a Button object from the panel onto the center of the layout canvas
as illustrated in Figure 61-6.

With the Button widget selected in the layout, use the Attributes panel to configure the onClick property to call
a method named sendNotification.

Figure 61-6
Select the Button widget, change the text property in the Attributes tool window to “Notify” and extract the
property value to a string resource.

61.4 Creating the Second Activity
For the purposes of this example, the app will contain a second activity which will be launched by the user from
within the notification. Add this new activity to the project by right-clicking on the com.ebookfrenzy.notifydemo
package name located in app -> java and select the New -> Activity -> Empty Views Activity menu option to
display the New Android Activity dialog.

Enter ResultActivity into the Activity Name field and name the layout file activity_result. Since this activity
will not be started when the application is launched (it will instead be launched via an intent from within the
notification), it is important to make sure that the Launcher Activity option is disabled before clicking on the
Finish button.

Open the layout for the second activity (app -> res -> layout -> activity_result.xml) and drag and drop a TextView

506

An Android Notifications Tutorial

widget so that it is positioned in the center of the layout. Edit the text of the TextView so that it reads “Result
Activity” and extract the property value to a string resource.

61.5 Creating a Notification Channel
Before an app can send a notification, it must first create a notification channel. A notification channel consists
of an ID that uniquely identifies the channel within the app, a channel name and a channel description (only the
latter two of which will be seen by the user). Channels are created by configuring a NotificationChannel instance
and then passing that object through to the createNotificationChannel() method of the NotificationManager
class. For this example, the app will contain a single notification channel named “NotifyDemo News”. Edit the
MainActivity.java file and implement code to create the channel when the app starts:
.

.

import android.app.NotificationManager;
import android.app.NotificationChannel;
import android.content.Context;
import android.graphics.Color;

public class MainActivity extends AppCompatActivity {

 NotificationManager notificationManager;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 notificationManager =
 (NotificationManager)
 getSystemService(Context.NOTIFICATION_SERVICE);

 createNotificationChannel(
 "com.ebookfrenzy.notifydemo.news",
 "NotifyDemo News",
 "Example News Channel");
 }

 protected void createNotificationChannel(String id, String name,
 String description) {

 int importance = NotificationManager.IMPORTANCE_LOW;
 NotificationChannel channel =
 new NotificationChannel(id, name, importance);

 channel.setDescription(description);
 channel.enableLights(true);
 channel.setLightColor(Color.RED);

507

An Android Notifications Tutorial

 channel.enableVibration(true);
 channel.setVibrationPattern(
 new long[]{100, 200, 300, 400, 500, 400, 300, 200, 400});
 notificationManager.createNotificationChannel(channel);
 }
.

.

}

The code declares and initializes a NotificationManager instance and then creates the new channel with a
low importance level (other options are high, max, min and none) with the name and description properties
configured. A range of optional settings are also added to the channel to customize the way in which the user
is alerted to the arrival of a notification. These settings apply to all notifications sent to this channel. Finally, the
channel is created by passing the notification channel object through to the createNotificationChannel() method
of the notification manager instance.

61.6 Requesting Notification Permission
Before testing the application, it is essential that the appropriate permissions be requested within the manifest
file for the application. Specifically, the application will require permission to post notifications to the user.
Within the Project tool window, locate and double-click on the AndroidManifest.xml file to load it into the editor
and modify the XML to add the permission:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.audioapp" >

 <uses-permission android:name="android.permission.POST_NOTIFICATIONS" />
.

.

The above step will be adequate to ensure that the user enables notification permission when the app is installed
on devices running versions of Android predating Android 6.0. Notification access is categorized in Android
as being dangerous permissions because it gives the app the potential to compromise the user’s privacy. For the
example app to function on Android 6 or later devices, therefore, code needs to be added to specifically request
permission at app runtime.

Edit the MainActivity.java file and begin by adding some additional import directives and a constants to act as
request identification codes for the permission being requested:
.

.

import androidx.core.app.ActivityCompat;
import androidx.core.content.ContextCompat;
import androidx.annotation.NonNull;
import android.widget.Toast;
import android.Manifest;
import android.content.pm.PackageManager;
.

.

public class MainActivity extends AppCompatActivity {

.

508

An Android Notifications Tutorial

 private static final int NOTICATION_REQUEST_CODE = 101;
.

.

Next, a method needs to be added to the class, the purpose of which is to take as arguments the permission to
be requested and the corresponding request identification code. Remaining with the MainActivity.java class file,
implement this method as follows:
protected void requestPermission(String permissionType, int requestCode) {

 int permission = ContextCompat.checkSelfPermission(this,

 permissionType);

 if (permission != PackageManager.PERMISSION_GRANTED) {

 ActivityCompat.requestPermissions(this,

 new String[]{permissionType}, requestCode

);

 }

}

Using the steps outlined in the “Making Runtime Permission Requests in Android” chapter of this book, the above
method verifies that the specified permission has not already been granted before making the request, passing
through the identification code as an argument.

When the request has been handled, the onRequestPermissionsResult() method will be called on the activity,
passing through the identification code and the results of the request. The next step, therefore, is to implement
this method within the MainActivity.java file as follows:
@Override

public void onRequestPermissionsResult(int requestCode,

 @NonNull String[] permissions, @NonNull int[] grantResults) {

 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 if (requestCode == NOTIFICATION_REQUEST_CODE) {

 if (grantResults.length == 0

 || grantResults[0] !=

 PackageManager.PERMISSION_GRANTED) {

 Toast.makeText(this,

 "Notification permission required",

 Toast.LENGTH_LONG).show();

 }

 }

}

The above code checks the request identifier code to identify which permission request has returned before
checking whether or not the corresponding permission was granted. If permission was denied, a message is
displayed to the user indicating the app will not function and the record button is disabled.

All that remains before testing the app is to call the newly added requestPermission() method when the app
launches. Remaining in the MainActivity.java file, modify the onCreate() method as follows:

509

An Android Notifications Tutorial

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 requestPermission(Manifest.permission.POST_NOTIFICATIONS,
 NOTIFICATION_REQUEST_CODE);

With the code changes complete, compile and run the app on a device or emulator running Android 13 or later.
When the dialog shown Figure 61-7 appears, click on the Allow button to enable notifications:

Figure 61-7
After the app has launched, place it into the background and open the Settings app. Within the Settings app,
select the Apps option, select the NotifyDemo project and, on the subsequent screen, tap the Notifications entry.
The notification screen should list the NotifyDemo News category as being active for the user:

Figure 61-8

510

An Android Notifications Tutorial

Before proceeding, ensure that notification dots are enabled for the app.

Although not a requirement for this example, it is worth noting that a channel can be deleted from within the
app via a call to the deleteNotificationChannel() method of the notification manager, passing through the ID of
the channel to be deleted:
String channelID = "com.ebookfrenzy.notifydemo.news";

notificationManager.deleteNotificationChannel(channelID);

61.7 Creating and Issuing a Notification
Notifications are created using the Notification.Builder class and must contain an icon, title and content. Open
the MainActivity.java file and implement the sendNotification() method as follows to build a basic notification:
.

.

import android.app.Notification;
import android.view.View;
.

.

public void sendNotification(View view) {

 String channelID = "com.ebookfrenzy.notifydemo.news";

 Notification notification =
 new Notification.Builder(MainActivity.this,
 channelID)
 .setContentTitle("Example Notification")
 .setContentText("This is an example notification.")
 .setSmallIcon(android.R.drawable.ic_dialog_info)
 .setChannelId(channelID)
 .build();
}

Once a notification has been built, it needs to be issued using the notify() method of the NotificationManager
instance. The code to access the NotificationManager and issue the notification needs to be added to the
sendNotification() method as follows:
protected void sendNotification(View view) {

 int notificationID = 101;

 String channelID = "com.ebookfrenzy.notifydemo.news";

 Notification notification =

 new Notification.Builder(MainActivity.this,

 channelID)

 .setContentTitle("New Message")

 .setContentText("You've received new messages.")

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setChannelId(channelID)

511

An Android Notifications Tutorial

 .build();

 notificationManager.notify(notificationID, notification);
}

Note that when the notification is issued, it is assigned a notification ID. This can be any integer and may be used
later when updating the notification.

Compile and run the app and tap the button on the main activity. When the notification icon appears in the
status bar, touch and drag down from the status bar to view the full notification:

Figure 61-9
Click and hold on the notification to view additional information:

Figure 61-10
Next, place the app in the background, navigate to the home screen displaying the launcher icons for all of the
apps and note that a notification dot has appeared on the NotifyDemo launcher icon as indicated by the arrow
in Figure 61-11:

Figure 61-11

512

An Android Notifications Tutorial

If the dot is not present, check the notification options for NotifyDemo in the Settings app to confirm that
notification dots are enabled as outlined earlier in the chapter. If the dot still does not appear, touch and hold
over a blank area of the device home screen, select the Home Settings option from the resulting menu and enable
the Notification dots option.

Performing a long press over the launcher icon will display a popup containing the notification:

Figure 61-12
If more than one notification is pending for an app, the long press menu popup will contain a count of the
number of notifications (highlighted in the above figure). This number may be configured from within the app
by making a call to the setNumber() method when building the notification:
Notification notification = new Notification.Builder(MainActivity.this, CHANNEL_ID)

 .setContentTitle("Example Notification")

 .setContentText("This is an example notification.")

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setChannelId(CHANNEL_ID)

 .setNumber(10)
 .build();

As currently implemented, tapping on the notification has no effect regardless of where it is accessed. The next
step is to configure the notification to launch an activity when tapped.

61.8 Launching an Activity from a Notification
A notification should ideally allow the user to perform some form of action, such as launching the corresponding
app, or taking some other form of action in response to the notification. A common requirement is to simply
launch an activity belonging to the app when the user taps the notification.

This approach requires an activity to be launched and an Intent configured to launch that activity. Assuming an
app that contains an activity named ResultActivity, the intent would be created as follows:
Intent resultIntent = new Intent(this, ResultActivity.class);

This intent needs to then be wrapped in a PendingIntent instance. PendingIntent objects are designed to allow

513

An Android Notifications Tutorial

an intent to be passed to other applications, essentially granting those applications permission to perform the
intent at some point in the future. In this case, the PendingIntent object is being used to provide the Notification
system with a way to launch the ResultActivity activity when the user taps the notification panel:
PendingIntent pendingIntent =

 PendingIntent.getActivity(

 this,

 0,

 resultIntent,

 PendingIntent.FLAG_IMMUTABLE

);

All that remains is to assign the PendingIntent object during the notification build process using the
setContentIntent() method.

Bringing these changes together results in a modified sendNotification() method which reads as follows:
.

.

import android.app.PendingIntent;
import android.content.Intent;
import android.graphics.drawable.Icon;
.

.

protected void sendNotification(View view) {

 int notificationId = 101;

 Intent resultIntent = new Intent(this, ResultActivity.class);

 PendingIntent pendingIntent =
 PendingIntent.getActivity(
 this,
 0,
 resultIntent,
 PendingIntent.FLAG_IMMUTABLE
);

 String CHANNEL_ID = "com.ebookfrenzy.notifydemo.news";

 Notification notification = new Notification.Builder(MainActivity.this,

 CHANNEL_ID)

 .setContentTitle("Example Notification")

 .setContentText("This is an example notification.")

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setChannelId(channelID)

 .setContentIntent(pendingIntent)
 .build();

514

An Android Notifications Tutorial

 notificationManager.notify(notificationId, notification);

}

Compile and run the app once again, tap the button and display the notification drawer. This time, however,
tapping the notification will cause the ResultActivity to launch.

61.9 Adding Actions to a Notification
Another way to add interactivity to a notification is to create actions. These appear as buttons beneath the
notification message and are programmed to trigger specific intents when tapped by the user. The following
code, if added to the sendNotification() method, will add an action button labeled “Open” which launches the
referenced pending intent when selected:
final Icon icon = Icon.createWithResource(MainActivity.this,
 android.R.drawable.ic_dialog_info);

Notification.Action action =
 new Notification.Action.Builder(icon, "Open", pendingIntent)
 .build();

Notification notification = new Notification.Builder(MainActivity.this, CHANNEL_ID)

 .setContentTitle("Example Notification")

 .setContentText("This is an example notification.")

 .setSmallIcon(R.drawable.ic_info_24dp)

 .setChannelId(channelID)

 .setContentIntent(pendingIntent)

 .setActions(action)
 .build();

notificationManager.notify(notificationId, notification);

Add the above code to the method and run the app. Issue the notification and note the appearance of the Open
action within the notification (depending on the Android version it may be necessary to pull down on the
notification panel to reveal the Open action):

Figure 61-13

515

An Android Notifications Tutorial

Tapping the action will trigger the pending intend and launch the ResultActivity.

61.10 Bundled Notifications
If an app has a tendency to regularly issue notifications there is a danger that those notifications will rapidly
clutter both the status bar and the notification drawer providing a less than optimal experience for the user. This
can be particularly true of news or messaging apps that send a notification every time there is either a breaking
news story or a new message arrives from a contact. Consider, for example, the notifications in Figure 61-14:

Figure 61-14
Now imagine if ten or even twenty new messages had arrived. To avoid this kind of problem Android allows
notifications to be bundled together into groups.

To bundle notifications, each notification must be designated as belonging to the same group via the setGroup()
method, and an additional notification must be issued and configured as being the summary notification. The
following code, for example, creates and issues the three notifications shown in Figure 61-14 above, but bundles
them into the same group. The code also issues a notification to act as the summary:
final String GROUP_KEY_NOTIFY = "group_key_notify";

Notification.Builder builderSummary =

 new Notification.Builder(this, channelID)

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setContentTitle("A Bundle Example")

 .setContentText("You have 3 new messages")

 .setGroup(GROUP_KEY_NOTIFY)
 .setGroupSummary(true);

Notification.Builder builder1 =

 new Notification.Builder(this, channelID)

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setContentTitle("New Message")

 .setContentText("You have a new message from Kassidy")

 .setGroup(GROUP_KEY_NOTIFY);

Notification.Builder builder2 =

 new Notification.Builder(this, channelID)

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setContentTitle("New Message")

516

An Android Notifications Tutorial

 .setContentText("You have a new message from Caitlyn")

 .setGroup(GROUP_KEY_NOTIFY);

Notification.Builder builder3 =

 new Notification.Builder(this, channelID)

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setContentTitle("New Message")

 .setContentText("You have a new message from Jason")

 .setGroup(GROUP_KEY_NOTIFY);

int notificationId0 = 100;

int notificationId1 = 101;

int notificationId2 = 102;

int notificationId3 = 103;

notificationManager.notify(notificationId1, builder1.build());

notificationManager.notify(notificationId2, builder2.build());

notificationManager.notify(notificationId3, builder3.build());

notificationManager.notify(notificationId0, builderSummary.build());

When the code is executed, a single notification icon will appear in the status bar even though four notifications
have actually been issued by the app. Within the notification drawer, a single summary notification is displayed
listing the information in each of the bundled notifications:

Figure 61-15
Pulling further downward on the notification entry expands the panel to show the details of each of the bundled
notifications:

Figure 61-16

517

An Android Notifications Tutorial

61.11 Summary
Notifications provide a way for an app to deliver a message to the user when the app is not running, or is
currently in the background. Notifications appear in the status bar and notification drawer. Local notifications
are triggered on the device by the running app while remote notifications are initiated by a remote server and
delivered to the device. Local notifications are created using the NotificationCompat.Builder class and issued
using the NotificationManager service.

As demonstrated in this chapter, notifications can be configured to provide the user with options (such
as launching an activity or saving a message) by making use of actions, intents and the PendingIntent class.
Notification bundling provides a mechanism for grouping together notifications to provide an improved
experience for apps that issue a greater number of notifications.

519

Chapter 62

62. An Android Direct Reply
Notification Tutorial
Direct reply is a feature introduced in Android 7 that allows the user to enter text into a notification and send it
to the app associated with that notification. This allows the user to reply to a message in the notification without
the need to launch an activity within the app. This chapter will build on the knowledge gained in the previous
chapter to create an example app that makes use of this notification feature.

62.1 Creating the DirectReply Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter DirectReply into the Name field and specify com.ebookfrenzy.directreply as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 33: Android 13 and the Language
menu to Java. Modify the project to support view binding using the steps outlined in section 11.8 Migrating a
Project to View Binding.

62.2 Designing the User Interface
Load the activity_main.xml layout file into the layout tool. With Autoconnect enabled, add a Button object
beneath the existing “Hello World!” label as shown in Figure 62-1. With the Button widget selected in the layout,
use the Attributes tool window to set the onClick property to call a method named sendNotification. If necessary,
use the Infer Constraints button to add any missing constraints to the layout. Before continuing, select the “Hello
World!” TextView and change the id attribute to textView and modify the text on the button to read “Notify”.

Figure 62-1

520

An Android Direct Reply Notification Tutorial

62.3 Requesting Notification Permission
Within the Project tool window, locate and double-click on the AndroidManifest.xml file to load it into the editor
and modify the XML to add the permission element:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.audioapp" >

 <uses-permission android:name="android.permission.POST_NOTIFICATIONS" />
.

.

Edit the MainActivity.java file and begin by adding some additional import directives and a constants to act as
request identification codes for the permission being requested:
.

.

import androidx.annotation.NonNull;
import androidx.core.app.ActivityCompat;
import androidx.core.content.ContextCompat;
import android.widget.Toast;
import android.Manifest;
import android.content.pm.PackageManager;
.

.

public class MainActivity extends AppCompatActivity {

 private static final int NOTIFICATION_REQUEST_CODE = 101;
.

.

Next, a method needs to be added to the class, the purpose of which is to take as arguments the permission to
be requested and the corresponding request identification code. Remaining with the MainActivity.java class file,
implement this method as follows:
protected void requestPermission(String permissionType, int requestCode) {

 int permission = ContextCompat.checkSelfPermission(this,

 permissionType);

 if (permission != PackageManager.PERMISSION_GRANTED) {

 ActivityCompat.requestPermissions(this,

 new String[]{permissionType}, requestCode

);

 }

}

When the request has been handled, the onRequestPermissionsResult() method will be called on the activity,
passing through the identification code and the results of the request. The next step, therefore, is to implement
this method within the MainActivity.java file as follows:
@Override

521

An Android Direct Reply Notification Tutorial

public void onRequestPermissionsResult(int requestCode,

 @NonNull String[] permissions, @NonNull int[] grantResults) {

 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 if (requestCode == NOTIFICATION_REQUEST_CODE) {

 if (grantResults.length == 0

 || grantResults[0] !=

 PackageManager.PERMISSION_GRANTED) {

 Toast.makeText(this,

 "Notification permission required",

 Toast.LENGTH_LONG).show();

 }

 }

}

All that remains before testing the app is to call the newly added requestPermission() method when the app
launches. Remaining in the MainActivity.java file, modify the onCreate() method as follows:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 requestPermission(Manifest.permission.POST_NOTIFICATIONS,
 NOTIFICATION_REQUEST_CODE);
}

62.4 Creating the Notification Channel
As with the example in the previous chapter, a channel must be created before a notification can be sent. Edit the
MainActivity.java file and add code to create a new channel as follows:
.
.
import android.app.NotificationChannel;
import android.app.NotificationManager;
import android.content.Context;
import android.graphics.Color;
.

.

public class MainActivity extends AppCompatActivity {

.

.

 private NotificationManager notificationManager;
 private final String channelID = "com.ebookfrenzy.directreply.news";

522

An Android Direct Reply Notification Tutorial

 @Override

 protected void onCreate(Bundle savedInstanceState) {

.

.

 notificationManager =
 (NotificationManager)
 getSystemService(Context.NOTIFICATION_SERVICE);

 createNotificationChannel(channelID,
 "DirectReply News", "Example News Channel");
 }

 protected void createNotificationChannel(String id,
 String name, String description) {

 int importance = NotificationManager.IMPORTANCE_HIGH;
 NotificationChannel channel =
 new NotificationChannel(id, name, importance);

 channel.setDescription(description);
 channel.enableLights(true);
 channel.setLightColor(Color.RED);
 channel.enableVibration(true);
 channel.setVibrationPattern(new long[]{100, 200, 300, 400,
 500, 400, 300, 200, 400});

 notificationManager.createNotificationChannel(channel);
 }
.

.

}

62.5 Building the RemoteInput Object
The key element that makes direct reply in-line text possible within a notification is the RemoteInput class. The
previous chapters introduced the PendingIntent class and explained the way in which it allows one application
to create an intent and then grant other applications or services the ability to launch that intent from outside
the original app. In that chapter, entitled “An Android Notifications Tutorial”, a pending intent was created that
allowed an activity in the original app to be launched from within a notification. The RemoteInput class allows a
request for user input to be included in the PendingIntent object along with the intent. When the intent within
the PendingIntent object is triggered, for example launching an activity, that activity is also passed any input
provided by the user.

The first step in implementing direct reply within a notification is to create the RemoteInput object. This is
achieved using the RemoteInput.Builder() method. To build a RemoteInput object, a key string is required
that will be used to extract the input from the resulting intent. The object also needs a label string that will
appear within the text input field of the notification. Edit the MainActivity.java file and begin implementing the

523

An Android Direct Reply Notification Tutorial

sendNotification() method. Note also the addition of some import directives and variables that will be used later
as the chapter progresses:
package com.ebookfrenzy.directreply;

.

.
import android.app.PendingIntent;
import android.app.RemoteInput;
import android.content.Intent;
.
.

public class MainActivity extends AppCompatActivity {

 private static final int notificationId = 101;
 private static final String KEY_TEXT_REPLY = "key_text_reply";
 private NotificationManager notificationManager;
 private static final String channelID =
 "com.ebookfrenzy.directreply.news";

.

.

.

 public void sendNotification(View view) {

 String replyLabel = "Enter your reply here";
 RemoteInput remoteInput =
 new RemoteInput.Builder(KEY_TEXT_REPLY)
 .setLabel(replyLabel)
 .build();
 }
.

.

}

Now that the RemoteInput object has been created and initialized with a key and a label string it will need to
be placed inside a notification action object. Before that step can be performed, however, the PendingIntent
instance needs to be created.

62.6 Creating the PendingIntent
The steps to creating the PendingIntent are the same as those outlined in the “An Android Notifications Tutorial”
chapter, with the exception that the intent will be configured to launch MainActivity. Remaining within the
MainActivity.java file, add the code to create the PendingIntent as follows:
public void sendNotification(View view) {

 String replyLabel = "Enter your reply here";

 RemoteInput remoteInput =

 new RemoteInput.Builder(KEY_TEXT_REPLY)

 .setLabel(replyLabel)

524

An Android Direct Reply Notification Tutorial

 .build();

 Intent resultIntent = new Intent(this, MainActivity.class);

 PendingIntent resultPendingIntent =
 PendingIntent.getActivity(
 this,
 0,
 resultIntent,
 PendingIntent.FLAG_MUTABLE
);
 }
}

62.7 Creating the Reply Action
The in-line reply will be accessible within the notification via an action button. This action now needs to
be created and configured with an icon, a label to appear on the button, the PendingIntent object and the
RemoteInput object. Modify the sendNotification() method to add the code to create this action:
.

.

import android.graphics.drawable.Icon;
import android.app.Notification;
.

.

public void sendNotification(View view) {

 String replyLabel = "Enter your reply here";

 RemoteInput remoteInput =

 new RemoteInput.Builder(KEY_TEXT_REPLY)

 .setLabel(replyLabel)

 .build();

 Intent resultIntent = new Intent(this, MainActivity.class);

 PendingIntent resultPendingIntent =

 PendingIntent.getActivity(

 this,

 0,

 resultIntent,

 PendingIntent.FLAG_MUTABLE

);

 final Icon icon =
 Icon.createWithResource(MainActivity.this,
 android.R.drawable.ic_dialog_info);

525

An Android Direct Reply Notification Tutorial

 Notification.Action replyAction =
 new Notification.Action.Builder(
 icon,
 "Reply", resultPendingIntent)
 .addRemoteInput(remoteInput)
 .build();
 }
.

.

At this stage in the tutorial we have the RemoteInput, PendingIntent and Notification Action objects built and
ready to be used. The next stage is to build the notification and issue it:
public void sendNotification(View view) {

 String replyLabel = "Enter your reply here";

 RemoteInput remoteInput =

 new RemoteInput.Builder(KEY_TEXT_REPLY)

 .setLabel(replyLabel)

 .build();

 Intent resultIntent = new Intent(this, MainActivity.class);

 PendingIntent resultPendingIntent =

 PendingIntent.getActivity(

 this,

 0,

 resultIntent,

 PendingIntent.FLAG_IMMUTABLE

);

 final Icon icon =

 Icon.createWithResource(MainActivity.this,

 android.R.drawable.ic_dialog_info);

 Notification.Action replyAction =

 new Notification.Action.Builder(

 icon,

 "Reply", resultPendingIntent)

 .addRemoteInput(remoteInput)

 .build();

 Notification newMessageNotification =
 new Notification.Builder(this, channelID)
 .setColor(ContextCompat.getColor(this,
 android.R.color.holo_blue_dark))
 .setSmallIcon(

526

An Android Direct Reply Notification Tutorial

 android.R.drawable.ic_dialog_info)
 .setContentTitle("My Notification")
 .setContentText("This is a test message")
 .addAction(replyAction).build();

 NotificationManager notificationManager =
 (NotificationManager)
 getSystemService(Context.NOTIFICATION_SERVICE);

 notificationManager.notify(notificationId,
 newMessageNotification);
}

With the changes made, compile and run the app, allow notifications, and test that tapping the button successfully
issues the notification. When viewing the notification drawer, the notification should appear as shown in Figure
62-2:

Figure 62-2
Tap the Reply action button so that the text input field appears displaying the reply label that was embedded into
the RemoteInput object when it was created.

Figure 62-3
Enter some text and tap the send arrow button located at the end of the input field.

62.8 Receiving Direct Reply Input
Now that the notification is successfully seeking input from the user, the app needs to do something with that
input. The goal of this particular tutorial is to have the text entered by the user into the notification appear on
the TextView widget in the activity user interface.

When the user enters text and taps the send button the MainActivity is launched via the intent contained in the

527

An Android Direct Reply Notification Tutorial

PendingIntent object. Embedded in this intent is the text entered by the user via the notification. Within the
onCreate() method of the activity, a call to the getIntent() method will return a copy of the intent that launched
the activity. Passing this through to the RemoteInput.getResultsFromIntent() method will, in turn, return a
Bundle object containing the reply text which can be extracted and assigned to the TextView widget. This results
in a modified onCreate() method within the MainActivity.java file which reads as follows:
.

.

@Override

protected void onCreate(Bundle savedInstanceState) {

.

.

 createNotificationChannel(channelID, "DirectReply News",

 Example News Channel");

 handleIntent();
}

private void handleIntent() {

 Intent intent = this.getIntent();

 Bundle remoteInput = RemoteInput.getResultsFromIntent(intent);

 if (remoteInput != null) {

 String inputString = remoteInput.getCharSequence(
 KEY_TEXT_REPLY).toString();

 binding.textView.setText(inputString);
 }
}
.

.

After making these code changes build and run the app once again. Click the button to issue the notification and
enter and send some text from within the notification panel. Note that the TextView widget in the MainActivity
is updated to display the in-line text that was entered.

62.9 Updating the Notification
After sending the reply within the notification you may have noticed that the progress indicator continues to
spin within the notification panel as highlighted in Figure 62-4:

528

An Android Direct Reply Notification Tutorial

Figure 62-4
The notification is showing this indicator because it is waiting for a response from the activity confirming receipt
of the sent text. The recommended approach to performing this task is to update the notification with a new
message indicating that the reply has been received and handled. Since the original notification was assigned
an ID when it was issued, this can be used once again to perform an update. Add the following code to the
handleIntent() method to perform this task:
private void handleIntent() {

 Intent intent = this.getIntent();

 Bundle remoteInput = RemoteInput.getResultsFromIntent(intent);

 if (remoteInput != null) {

 String inputString = remoteInput.getCharSequence(

 KEY_TEXT_REPLY).toString();

 binding.myTextView.setText(inputString);

 Notification repliedNotification =
 new Notification.Builder(this, channelID)
 .setSmallIcon(
 android.R.drawable.ic_dialog_info)
 .setContentText("Reply received")
 .build();

 notificationManager.notify(notificationId,
 repliedNotification);
 }

}

Test the app one last time and verify that the progress indicator goes away after the in-line reply text has been
sent and that a new panel appears indicating that the reply has been received:

529

An Android Direct Reply Notification Tutorial

Figure 62-5

62.10 Summary
The direct reply notification feature allows text to be entered by the user within a notification and passed via an
intent to an activity of the corresponding application. Direct reply is made possible by the RemoteInput class,
an instance of which can be embedded within an action and bundled with the notification. When working with
direct reply notifications, it is important to let the NotificationManager service know that the reply has been
received and processed. The best way to achieve this is to simply update the notification message using the
notification ID provided when the notification was first issued.

531

Chapter 63

63. Foldable Devices and Multi-
Window Support
Foldable devices are coming whether we are ready for them or not (or, in the case of the first Samsung Galaxy
Fold, perhaps even before the devices themselves are ready). In preparation for this new category of device, it is
important to be aware of some additional steps that should be taken to ensure that your app performs correctly
when running on a foldable device.

Fortunately, much of the behavior for supporting foldable devices already exists on Android in the form of
Multi-Window support.

63.1 Foldables and Multi-Window Support
When an app is running on a foldable device there is the potential that it will end up sharing the screen with
other apps and encountering significant configuration changes (such as the size of the screen changing as the
user folds or unfolds the display). If your app is already designed to handle device orientation changes, it will
most likely also be able to handle changes caused by screen folding, though thorough testing is recommended.

Multi-window support was originally introduced with Android 7. Unlike previous versions of Android, multi-
window support in Android 7 allowed more than one activity to be displayed on the device screen at one time.

Multi-window support in Android provides three different forms of window support. Split-screen mode,
available on most phone, foldable and tablet devices, provides a split screen environment where two activities
appear either side-by-side or one above the other. A movable divider is provided which, when dragged by the
user, adjusts the percentage of the screen assigned to each of the adjacent activities:

Figure 63-1
Freeform mode provides a windowing environment on devices with larger screens and is currently enabled at
the discretion of the device manufacturer. Freeform differs from split-screen mode in that it allows each activity
to appear in a separate, resizable window and is not limited to two activities being displayed concurrently. Figure
63-2, for example, shows a device in freeform mode with the Calculator and a second app displayed in separate
windows:

532

 Foldable Devices and Multi-Window Support

Figure 63-2
Picture-in-picture support, as the name suggests, allows video playback to continue in a smaller window while
the user performs other tasks, a topic that will be covered beginning with the chapter entitled “Android Picture-
in-Picture Mode”.

63.2 Using a Foldable Emulator
Although at time of writing there are no foldable devices on the market with which to perform app testing,
foldable emulators are included with the Android SDK. To create a foldable emulator, select the Android Studio
Tools -> AVD Manager menu option, click on the Create Virtual Device button and, from the hardware selection
screen, choose one of the Foldable options as highlighted in Figure 63-3 below:

Figure 63-3
After making a foldable selection, continue through the creation process, selecting Android 10 API 29 or newer
as the system image.

Once the emulator is up and running, an additional button will appear in the toolbar allowing the emulator to
be switched between folded and unfolded configurations:

533

 Foldable Devices and Multi-Window Support

Figure 63-4

63.3 Entering Multi-Window Mode
Split-screen mode can be entered by displaying the Overview screen, pressing and holding the app icon in the
toolbar of a listed app and selecting the Split screen menu option as indicated in Figure 63-5:

Figure 63-5
Once in split-screen mode, the Overview button will change to display two rectangles (marked A in Figure 63-
6), the current activity will fill part of the screen (B) and the Overview screen will appear in the adjacent part of
the screen allowing the second activity to be selected for display (C):

Figure 63-6
Once the second app has been selected, the screen will be split evenly as illustrated previously in Figure 63-1

534

 Foldable Devices and Multi-Window Support

above.

To exit split-screen mode, simply drag the divider separating the two activities to a far edge so that only one
activity fills the screen, or press and hold the Overview button until it reverts to a single square.

63.4 Enabling and using Freeform Support
Although not officially supported on all devices, it is possible to enable freeform multi-window mode on large
screen devices and emulators. To enable this mode, run the following adb command while the emulator is
running, or the device is connected:
adb shell settings put global enable_freeform_support 1

After making this change, it may be necessary to reboot the device before the setting takes effect.

Once enabled, an additional option will appear within the Overview screen when performing a long press on
the app icon as shown in Figure 63-7:

Figure 63-7

63.5 Checking for Freeform Support
As outlined earlier in the chapter, Google is leaving the choice of whether to enable freeform multi-window
mode to the individual Android device manufacturers. Since it only makes sense to use freeform on larger
devices, there is no guarantee that freeform will be available on every device on which an app is likely to run.
Fortunately all of the freeform specific methods and attributes are ignored by the system if freeform mode is not
available on a device, so using these will not cause the app to crash on a non-freeform device. Situations might
arise, however, where it may be useful to be able to detect if a device supports freeform multi-window mode.
Fortunately, this can be achieved by checking for the freeform window management feature in the package
manager. The following code example checks for freeform multi-window support and returns a Boolean value
based on the result of the test:
public Boolean checkFreeform() {

 return getPackageManager().hasSystemFeature(

 PackageManager.FEATURE_FREEFORM_WINDOW_MANAGEMENT);

}

63.6 Enabling Multi-Window Support in an App
The android:resizableActivity manifest file setting controls whether multi-window behavior is supported by an
app. This setting can be made at either the application or individual activity levels. The following fragment, for
example, configures the activity named MainActivity to support both split-screen and freeform multi-window
modes:

535

 Foldable Devices and Multi-Window Support

<activity

 android:name=".MainActivity"

 android:resizeableActivity="true"
 android:label="@string/app_name"

 android:theme="@style/AppTheme.NoActionBar">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

Setting the property to false will prevent the activity from appearing in split-screen or freeform mode and
the corresponding buttons will not appear in the Overview menu for the app. Selecting an activity for which
multi-window support is disabled as the second activity in a split-screen configuration will result in a message
appearing indicating that the app may not support multi-window mode.

63.7 Specifying Multi-Window Attributes
A number of attributes are available as part of the <layout> element for specifying the size and placement of an
activity when it is launched into a multi-window mode. The initial height, width and position of an activity when
launched in freeform mode may be specified using the following attributes:

• android:defaultWidth – Specifies the default width of the activity.

• android:defaultHeight – Specifies the default height of the activity.

• android:gravity – Specifies the initial position of the activity (start, end, left, right, top etc.).

Note that the above attributes apply to the activity only when it is displayed in freeform mode. The following
example configures an activity to appear with a specific height and width at the top of the starting edge of the
screen:
<activity android:name=".MainActivity ">

 <layout android:defaultHeight="350dp"

 android:defaultWidth="450dp"

 android:gravity="start|end" />

</activity>

The following <layout> attributes may be used to specify the minimum width and height to which an activity
may be reduced in either split-view or freeform modes:

• android:minimalHeight – Specifies the minimum height to which the activity may be reduced while in split-
screen or freeform mode.

• android:minimalWidth - Specifies the minimum width to which the activity may be reduced while in split-
screen or freeform mode.

When the user slides the split-screen divider beyond the minimal height or width boundaries, the system will
stop resizing the layout of the shrinking activity and simply clip the user interface to make room for the adjacent
activity.

The following manifest file fragment implements the minimal width and height attributes for an activity:
<activity android:name=".MainActivity ">

536

 Foldable Devices and Multi-Window Support

 <layout android:minimalHeight="400dp"

 android:minimalWidth="290dp" />

</activity>

63.8 Detecting Multi-Window Mode in an Activity
Situations may arise where an activity needs to detect whether it is currently being displayed to the user in
multi-window mode. The current status can be obtained via a call to the isInMultiWindowMode() method of the
Activity class. When called, this method returns a true or false value depending on whether or not the activity
is currently full screen:
if (this.isInMultiWindowMode()) {

 // Activity is running in Multi-Window mode

} else {

 // Activity is not in Multi-Window mode

}

63.9 Receiving Multi-Window Notifications
An activity will receive notification that it is entering or exiting multi-window mode if it overrides the
onMultiWindowModeChanged() callback method. The first argument passed to this method is true on entering
multi-window mode, and false when the activity exits the mode. The new configuration settings are contained
within the Configuration object passed as the second argument:
@Override

public void onMultiWindowModeChanged(boolean isInMultiWindowMode,

 Configuration newConfig) {

 super.onMultiWindowModeChanged(isInMultiWindowMode, newConfig);

 if (isInMultiWindowMode) {

 // Activity has entered multi-window mode

 } else {

 // Activity has exited multi-window mode

 }

}

As outlined in the chapter entitled “Handling Android Activity State Changes”, Android 10 and later allow
multiple activities to be in the resumed state simultaneously (otherwise known as multi-resume). The activity
with which the user most recently interacted is referred to as the topmost resumed activity. To track an activity
as it gains and loses topmost resumed status, the onTopResumedActivityChanged() callback method may be
implemented within the activity, for example:
@Override

public void onTopResumedActivityChanged(boolean isTopResumedActivity) {

 super.onTopResumedActivityChanged(isTopResumedActivity);

 if (isTopResumedActivity) {

 // Activity is now topmost resumed activity

 } else {

 // Activity is no longer topmost resumed activity

 }

}

537

 Foldable Devices and Multi-Window Support

It may also be possible to take advantage of multi-resume in an app on some devices running Android 9 by
enabling the following property in the app manifest file:
<meta-data

android:name="android.allow_multiple_resumed_activities" android:value="true" />

63.10 Launching an Activity in Multi-Window Mode
In the “Android Explicit Intents – A Worked Example” chapter of this book, an example app was created in which
an activity uses an intent to launch a second activity. By default, activities launched via an intent are considered
to reside in the same task stack as the originating activity. An activity can, however, be launched into a new task
stack by passing through the appropriate flags with the intent.

When an activity in multi-window mode launches another activity within the same task stack, the new activity
replaces the originating activity within the split-screen or freeform window (the user returns to the original
activity via the back button).

When launched into a new task stack in split-screen mode, however, the second activity will appear in the
window adjacent to the original activity, allowing both activities to be viewed simultaneously. In the case of
freeform mode, the launched activity will appear in a separate window from the original activity.

To launch an activity into a new task stack, the following flags must be set on the intent before it is started:

• Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT

• Intent.FLAG_ACTIVITY_MULTIPLE_TASK

• Intent.FLAG_ACTIVITY_NEW_TASK

The following code, for example, configures and launches a second activity designed to appear in a separate
window:
Intent i = new Intent(this, SecondActivity.class);

i.addFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT|

 Intent.FLAG_ACTIVITY_MULTIPLE_TASK|

 Intent.FLAG_ACTIVITY_NEW_TASK);

startActivity(i);

63.11 Configuring Freeform Activity Size and Position
By default, an activity launched into a different task stack while in freeform mode will be positioned in the center
of the screen at a size dictated by the system. The location and dimensions of this window can be controlled
by passing launch bounds settings to the intent via the ActivityOptions class. The first step in this process is to
create a Rect object configured with the left (X), top (Y), right (X) and bottom (Y) coordinates of the rectangle
representing the activity window. The following code, for example, creates a Rect object in which the top-left
corner is positioned at coordinate (0, 0) and the bottom-right at (100, 100):
Rect rect = new Rect(100, 800, 900, 700);

The next step is to create a basic instance of the ActivityOptions class and initialize it with the Rect settings via
the setLaunchBounds() method:
ActivityOptions options = ActivityOptions.makeBasic();

ActivityOptions bounds = options.setLaunchBounds(rect);

538

 Foldable Devices and Multi-Window Support

Finally, the ActivityOptions instance is converted to a Bundle object and passed to the startActivity() method
along with the Intent object:
startActivity(i, bounds.toBundle());

Combining these steps results in a code sequence that reads as follows:
Intent i = new Intent(this, SecondActivity.class);

i.addFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT|

 Intent.FLAG_ACTIVITY_MULTIPLE_TASK|

 Intent.FLAG_ACTIVITY_NEW_TASK);

Rect rect = new Rect(100, 800, 900, 700);

ActivityOptions options = ActivityOptions.makeBasic();

ActivityOptions bounds = options.setLaunchBounds(rect);

startActivity(i, bounds.toBundle());

When the second activity is launched by the intent while the originating activity is in freeform mode, the new
activity window will appear with the location and dimensions defined in the Rect object.

63.12 Summary
Android 7 introduced multi-window support, a system whereby more than one activity is displayed on the
screen at any one time. This feature now forms the foundation of providing support for foldable devices. The
three modes provided by multi-window support are split-screen, freeform and picture-in-picture. In split-
screen mode, the screen is split either horizontally or vertically into two panes with an activity displayed in each
pane. Freeform mode, which is only supported on certain Android devices, allows each activity to appear in a
separate, movable and resizable window. As outlined in this chapter, a number of methods and property settings
are available within the Android SDK to detect, respond to and control multi-window behavior within an app.

539

Chapter 64

64. An Overview of Android SQLite
Databases
Mobile applications that do not need to store at least some amount of persistent data are few and far between.
The use of databases is an essential aspect of most applications, ranging from applications that are almost entirely
data driven, to those that simply need to store small amounts of data such as the prevailing score of a game.

The importance of persistent data storage becomes even more evident when taking into consideration the
somewhat transient lifecycle of the typical Android application. With the ever-present risk that the Android
runtime system will terminate an application component to free up resources, a comprehensive data storage
strategy to avoid data loss is a key factor in the design and implementation of any application development
strategy.

This chapter will provide an overview of the SQLite database management system bundled with the Android
operating system, together with an outline of the Android SDK classes that are provided to facilitate persistent
SQLite based database storage from within an Android application. Before delving into the specifics of SQLite in
the context of Android development, however, a brief overview of databases and SQL will be covered.

64.1 Understanding Database Tables
Database Tables provide the most basic level of data structure in a database. Each database can contain multiple
tables and each table is designed to hold information of a specific type. For example, a database may contain a
customer table that contains the name, address and telephone number for each of the customers of a particular
business. The same database may also include a products table used to store the product descriptions with
associated product codes for the items sold by the business.

Each table in a database is assigned a name that must be unique within that particular database. A table name,
once assigned to a table in one database, may not be used for another table except within the context of another
database.

64.2 Introducing Database Schema
Database Schemas define the characteristics of the data stored in a database table. For example, the table schema
for a customer database table might define that the customer name is a string of no more than 20 characters in
length, and that the customer phone number is a numerical data field of a certain format.

Schemas are also used to define the structure of entire databases and the relationship between the various tables
contained in each database.

64.3 Columns and Data Types
It is helpful at this stage to begin to view a database table as being similar to a spreadsheet where data is stored
in rows and columns.

Each column represents a data field in the corresponding table. For example, the name, address and telephone
data fields of a table are all columns.

Each column, in turn, is defined to contain a certain type of data. A column designed to store numbers would,

540

An Overview of Android SQLite Databases

therefore, be defined as containing numerical data.

64.4 Database Rows
Each new record that is saved to a table is stored in a row. Each row, in turn, consists of the columns of data
associated with the saved record.

Once again, consider the spreadsheet analogy described earlier in this chapter. Each entry in a customer table
is equivalent to a row in a spreadsheet and each column contains the data for each customer (name, address,
telephone etc). When a new customer is added to the table, a new row is created and the data for that customer
stored in the corresponding columns of the new row.

Rows are also sometimes referred to as records or entries and these terms can generally be used interchangeably.

64.5 Introducing Primary Keys
Each database table should contain one or more columns that can be used to identify each row in the table
uniquely. This is known in database terminology as the Primary Key. For example, a table may use a bank
account number column as the primary key. Alternatively, a customer table may use the customer’s social
security number as the primary key.

Primary keys allow the database management system to identify a specific row in a table uniquely. Without
a primary key it would not be possible to retrieve or delete a specific row in a table because there can be no
certainty that the correct row has been selected. For example, suppose a table existed where the customer’s
last name had been defined as the primary key. Imagine then the problem that might arise if more than one
customer named “Smith” were recorded in the database. Without some guaranteed way to identify a specific row
uniquely, it would be impossible to ensure the correct data was being accessed at any given time.

Primary keys can comprise a single column or multiple columns in a table. To qualify as a single column primary
key, no two rows can contain matching primary key values. When using multiple columns to construct a primary
key, individual column values do not need to be unique, but all the columns’ values combined together must be
unique.

64.6 What is SQLite?
SQLite is an embedded, relational database management system (RDBMS). Most relational databases (Oracle,
SQL Server and MySQL being prime examples) are standalone server processes that run independently, and
in cooperation with, applications that require database access. SQLite is referred to as embedded because it is
provided in the form of a library that is linked into applications. As such, there is no standalone database server
running in the background. All database operations are handled internally within the application through calls
to functions contained in the SQLite library.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

SQLite is written in the C programming language and as such, the Android SDK provides a Java based “wrapper”
around the underlying database interface. This essentially consists of a set of classes that may be utilized within
the Java or Kotlin code of an application to create and manage SQLite based databases.

For additional information about SQLite refer to https://www.sqlite.org.

64.7 Structured Query Language (SQL)
Data is accessed in SQLite databases using a high-level language known as Structured Query Language. This is
usually abbreviated to SQL and pronounced sequel. SQL is a standard language used by most relational database
management systems. SQLite conforms mostly to the SQL-92 standard.

http://www.sqlite.org

541

An Overview of Android SQLite Databases

SQL is essentially a very simple and easy to use language designed specifically to enable the reading and writing
of database data. Because SQL contains a small set of keywords, it can be learned quickly. In addition, SQL
syntax is more or less identical between most DBMS implementations, so having learned SQL for one system, it
is likely that your skills will transfer to other database management systems.

While some basic SQL statements will be used within this chapter, a detailed overview of SQL is beyond the
scope of this book. There are, however, many other resources that provide a far better overview of SQL than we
could ever hope to provide in a single chapter here.

64.8 Trying SQLite on an Android Virtual Device (AVD)
For readers unfamiliar with databases in general and SQLite in particular, diving right into creating an Android
application that uses SQLite may seem a little intimidating. Fortunately, Android is shipped with SQLite pre-
installed, including an interactive environment for issuing SQL commands from within an adb shell session
connected to a running Android AVD emulator instance. This is both a useful way to learn about SQLite and
SQL, and also an invaluable tool for identifying problems with databases created by applications running in an
emulator.

To launch an interactive SQLite session, begin by running an AVD session. This can be achieved from within
Android Studio by launching the Android Virtual Device Manager (Tools -> AVD Manager), selecting a
previously configured AVD and clicking on the start button.

Once the AVD is up and running, open a Terminal or Command-Prompt window and connect to the emulator
using the adb command-line tool as follows (note that the –e flag directs the tool to look for an emulator with
which to connect, rather than a physical device):
adb –e shell

Once connected, the shell environment will provide a command prompt at which commands may be entered.
Begin by obtaining super user privileges using the su command:
Generic_x86:/ su

root@android:/ #

If a message appears indicating that super user privileges are not allowed, it is likely that the AVD instance
includes Google Play support. To resolve this create a new AVD and, on the “Choose a device definition” screen,
select a device that does not have a marker in the “Play Store” column.

Data stored in SQLite databases are actually stored in database files on the file system of the Android device on
which the application is running. By default, the file system path for these database files is as follows:
/data/data/<package name>/databases/<database filename>.db

For example, if an application with the package name com.example.MyDBApp creates a database named
mydatabase.db, the path to the file on the device would read as follows:
/data/data/com.example.MyDBApp/databases/mydatabase.db

For the purposes of this exercise, therefore, change directory to /data/data within the adb shell and create a sub-
directory hierarchy suitable for some SQLite experimentation:
cd /data/data

mkdir com.example.dbexample

cd com.example.dbexample

mkdir databases

cd databases

With a suitable location created for the database file, launch the interactive SQLite tool as follows:

542

An Overview of Android SQLite Databases

root@android:/data/data/databases # sqlite3 ./mydatabase.db

sqlite3 ./mydatabase.db

SQLite version 3.8.10.2 2015-05-20 18:17:19

Enter ".help" for usage hints.

sqlite>

At the sqlite> prompt, commands may be entered to perform tasks such as creating tables and inserting and
retrieving data. For example, to create a new table in our database with fields to hold ID, name, address and
phone number fields the following statement is required:
create table contacts (_id integer primary key autoincrement, name text, address
text, phone text);

Note that each row in a table should have a primary key that is unique to that row. In the above example, we have
designated the ID field as the primary key, declared it as being of type integer and asked SQLite to increment
the number automatically each time a row is added. This is a common way to make sure that each row has a
unique primary key. On most other platforms, the choice of name for the primary key is arbitrary. In the case of
Android, however, it is essential that the key be named _id in order for the database to be fully accessible using
all of the Android database related classes. The remaining fields are each declared as being of type text.

To list the tables in the currently selected database, use the .tables statement:
sqlite> .tables

contacts

To insert records into the table:
sqlite> insert into contacts (name, address, phone) values ("Bill Smith", "123
Main Street, California", "123-555-2323");

sqlite> insert into contacts (name, address, phone) values ("Mike Parks", "10
Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:
sqlite> select * from contacts;

1|Bill Smith|123 Main Street, California|123-555-2323

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:
sqlite> select * from contacts where name="Mike Parks";

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:
sqlite> .exit

When running an Android application in the emulator environment, any database files will be created on the
file system of the emulator using the previously discussed path convention. This has the advantage that you can
connect with adb, navigate to the location of the database file, load it into the sqlite3 interactive tool and perform
tasks on the data to identify possible problems occurring in the application code.

It is also important to note that, while it is possible to connect with an adb shell to a physical Android device,
the shell is not granted sufficient privileges by default to create and manage SQLite databases. Debugging of
database problems is, therefore, best performed using an AVD session.

543

An Overview of Android SQLite Databases

64.9 The Android Room Persistence Library
SQLite is, as previously mentioned, written in the C programming language while Android applications are
primarily developed using Java or Kotlin. To bridge this “language gap” in the past, the Android SDK included
a set of classes that provide a layer on top of the SQLite database management system. Although still available
in the SDK, use of these classes still involved writing a considerable amount of code and did not take advantage
of the new architecture guidelines and features such as LiveData and lifecycle management. To address these
shortcomings, the Android Jetpack Architecture Components include the Room persistent library. This library
provides a high level interface on top of the SQLite database system that make it easy to store data locally on
Android devices with minimal coding while also conforming to the recommendations for modern application
architecture.

The next few chapters will provide an overview and tutorial of SQLite database management using the Room
persistence library.

64.10 Summary
SQLite is a lightweight, embedded relational database management system that is included as part of the
Android framework and provides a mechanism for implementing organized persistent data storage for Android
applications. When combined with the Room persistence library, Android provides a modern way to implement
data storage from within an Android app.

The goal of this chapter was to provide an overview of databases in general and SQLite in particular within
the context of Android application development. The next chapters will provide an overview of the Room
persistence library, after which we will work through the creation of an example application.

545

Chapter 65

65. The Android Room Persistence
Library
Included with the Android Architecture Components, the Room persistence library is designed specifically to
make it easier to add database storage support to Android apps in a way that is consistent with the Android
architecture guidelines. With the basics of SQLite databases covered in the previous chapter, this chapter will
explore the basic concepts behind Room-based database management, the key elements that work together to
implement Room support within an Android app and how these are implemented in terms of architecture and
coding. Having covered these topics, the next two chapters will put this theory into practice in the form of an
example Room database project.

65.1 Revisiting Modern App Architecture
The chapter entitled “Modern Android App Architecture with Jetpack” introduced the concept of modern app
architecture and stressed the importance of separating different areas of responsibility within an app. The
diagram illustrated in Figure 65-1 outlines the recommended architecture for a typical Android app:

Figure 65-1
With the top three levels of this architecture covered in some detail in earlier chapters of this book, it is now time
to begin exploration of the repository and database architecture levels in the context of the Room persistence
library.

65.2 Key Elements of Room Database Persistence
Before going into greater detail later in the chapter, it is first worth summarizing the key elements involved in
working with SQLite databases using the Room persistence library:

546

The Android Room Persistence Library

65.2.1 Repository
As previously discussed, the repository module contains all of the code necessary for directly handling all data
sources used by the app. This avoids the need for the UI controller and ViewModel to contain code that directly
accesses sources such as databases or web services.

65.2.2 Room Database
The room database object provides the interface to the underlying SQLite database. It also provides the repository
with access to the Data Access Object (DAO). An app should only have one room database instance which may
then be used to access multiple database tables.

65.2.3 Data Access Object (DAO)
The DAO contains the SQL statements required by the repository to insert, retrieve and delete data within
the SQLite database. These SQL statements are mapped to methods which are then called from within the
repository to execute the corresponding query.

65.2.4 Entities
An entity is a class that defines the schema for a table within the database and defines the table name, column
names and data types, and identifies which column is to be the primary key. In addition to declaring the table
schema, entity classes also contain getter and setter methods that provide access to these data fields. The data
returned to the repository by the DAO in response to the SQL query method calls will take the form of instances
of these entity classes. The getter methods will then be called to extract the data from the entity object. Similarly,
when the repository needs to write new records to the database, it will create an entity instance, configure values
on the object via setter calls, then call insert methods declared in the DAO, passing through entity instances to
be saved.

65.2.5 SQLite Database
The actual SQLite database responsible for storing and providing access to the data. The app code, including the
repository, should never make direct access to this underlying database. All database operations are performed
using a combination of the room database, DAOs and entities.

The architecture diagram in Figure 65-2 illustrates the way in which these different elements interact to provide
Room-based database storage within an Android app:

Figure 65-2

547

The Android Room Persistence Library

The numbered connections in the above architecture diagram can be summarized as follows:

1. The repository interacts with the Room Database to get a database instance which, in turn, is used to obtain
references to DAO instances.

2. The repository creates entity instances and configures them with data before passing them to the DAO for
use in search and insertion operations.

3. The repository calls methods on the DAO passing through entities to be inserted into the database and
receives entity instances back in response to search queries.

4. When a DAO has results to return to the repository it packages those results into entity objects.

5. The DAO interacts with the Room Database to initiate database operations and handle results.

6. The Room Database handles all of the low level interactions with the underlying SQLite database, submitting
queries and receiving results.

With a basic outline of the key elements of database access using the Room persistent library covered, it is now
time to explore entities, DAOs, room databases and repositories in more detail.

65.3 Understanding Entities
Each database table will have associated with it an entity class. This class defines the schema for the table and
takes the form of a standard Java class interspersed with some special Room annotations. An example Java class
declaring the data to be stored within a database table might read as follows:
public class Customer {

 private int id;

 private String name;

 private string address;

 public Customer(String name, String address) {

 this.id = id;

 this.name = name;

 this.address = address;

 }

 public int getId() {

 return this.id;

 }

 public String getName() {

 return this.name;

 }

 public int getAddress() {

 return this.address;

 }

 public void setId(int id) {

548

The Android Room Persistence Library

 this.id = id;

 }

 public void setName(String name) {

 this.name = name;

 }

 public void setAddress(int quantity) {

 this.address = address;

 }

}

As currently implemented, the above code declares a basic Java class containing a number of variables representing
database table fields and a collection of getter and setter methods. This class, however, is not yet an entity. To
make this class into an entity and to make it accessible within SQL statements, some Room annotations need to
be added as follows:
@Entity(tableName = "customers")
public class Customer {

 @PrimaryKey(autoGenerate = true)
 @NonNull
 @ColumnInfo(name = "customerId")
 private int id;

 @ColumnInfo(name = "customerName")
 private String name;

 private String address;

 public Customer(String name, String address) {

 this.id = id;

 this.name = name;

 this.address = address;

 }

 public int getId() {

 return this.id;

 }

 public String getName() {

 return this.name;

 }

 public String getAddress() {

 return this.address;

 }

549

The Android Room Persistence Library

 public void setId(@NonNull int id) {
 this.id = id;

 }

 public void setName(String name) {

 this.name = name;

 }

 public void setAddress(int quantity) {

 this.address = address;

 }

}

The above annotations begin by declaring that the class represents an entity and assigns a table name of
“customers”. This is the name by which the table will be referenced in the DAO SQL statements:
@Entity(tableName = "customers")

Every database table needs a column to act as the primary key. In this case, the customer id is declared as the
primary key. Annotations have also been added to assign a column name to be referenced in SQL queries and to
indicate that the field cannot be used to store null values. Finally, the id value is configured to be auto-generated.
This means that the id assigned to new records will be automatically generated by the system to avoid duplicate
keys.
@PrimaryKey(autoGenerate = true)

@NonNull

@ColumnInfo(name = "customerId")

private int id;

A column name is also assigned to the customer name field. Note, however, that no column name was assigned
to the address field. This means that the address data will still be stored within the database, but that it is not
required to be referenced in SQL statements. If a field within an entity is not required to be stored within a
database, simply use the @Ignore annotation:
@Ignore

private String myString;

Finally, the setter method for the id variable is modified to prevent attempts to assign a null value:
public void setId(@NonNull int id) {
 this.id = id;

}

Annotations may also be included within an entity class to establish relationships with other entities using a
relational database concept referred to as foreign keys. Foreign keys allow a table to reference the primary key
in another table. For example, a relationship could be established between an entity named Purchase and our
existing Customer entity as follows:
@Entity(foreignKeys = {@ForeignKey(entity = Customer.class,

 parentColumns = "customerId",

 childColumns = "buyerId",

 onDelete = ForeignKey.CASCADE,

 onUpdate = ForeignKey.RESTRICT})

550

The Android Room Persistence Library

public class Purchase {

 @PrimaryKey(autoGenerate = true)

 @ColumnInfo(name = "purchaseId")

 private int purchaseId;

 @ColumnInfo(name = "buyerId")

 private int buyerId;

}

Note that the foreign key declaration also specifies the action to be taken when a parent record is deleted or
updated. Available options are CASCADE, NO_ACTION, RESTRICT, SET_DEFAULT and SET_NULL.

65.4 Data Access Objects
A Data Access Object provides a way to access the data stored within a SQLite database. A DAO is declared as
a standard Java interface with some additional annotations that map specific SQL statements to methods that
may then be called by the repository.

The first step is to create the interface and declare it as a DAO using the @Dao annotation:
@Dao

public interface CustomerDao {

}

Next, entries are added consisting of SQL statements and corresponding method names. The following
declaration, for example, allows all of the rows in the customers table to be retrieved via a call to a method
named getAllCustomers():
@Dao

public interface CustomerDao {

 @Query("SELECT * FROM customers")
 LiveData<List<Customer>> getAllCustomers();
}

Note that the getAllCustomers() method returns a List object containing a Customer entity object for each record
retrieved from the database table. The DAO is also making use of LiveData so that the repository is able to
observe changes to the database.

Arguments may also be passed into the methods and referenced within the corresponding SQL statements.
Consider the following DAO declaration which searches for database records matching a customer’s name (note
that the column name referenced in the WHERE condition is the name assigned to the column in the entity
class):
@Query("SELECT * FROM customers WHERE name = :customerName")

List<Customer> findCustomer(String customerName);

In this example, the method is passed a string value which is, in turn, included within an SQL statement by
prefixing the variable name with a colon (:).

A basic insertion operation can be declared as follows using the @Insert convenience annotation:
@Insert

void addCustomer(Customer customer);

551

The Android Room Persistence Library

This is referred to as a convenience annotation because the Room persistence library can infer that the Customer
entity passed to the addCustomer() method is to be inserted into the database without the need for the SQL
insert statement to be provided. Multiple database records may also be inserted in a single transaction as follows:
@Insert

public void insertCustomers(Customer... customers);

The following DAO declaration deletes all records matching the provided customer name:
@Query("DELETE FROM customers WHERE name = :name")

void deleteCustomer(String name);

As an alternative to using the @Query annotation to perform deletions, the @Delete convenience annotation
may also be used. In the following example, all of the Customer records that match the set of entities passed to
the deleteCustomers() method will be deleted from the database:
@Delete

public void deleteCustomers(Customer... customers);

The @Update convenience annotation provides similar behavior when updating records:
@Update

public void updateCustomers(Customer... customers);

The DAO methods for these types of database operations may also be declared to return an int value indicating
the number of rows affected by the transaction, for example:
@Delete

public int deleteCustomers(Customer... customers);

65.5 The Room Database
The Room database class is created by extending the RoomDatabase class and acts as a layer on top of the
actual SQLite database embedded into the Android operating system. The class is responsible for creating and
returning a new room database instance and for providing access to the DAO instances associated with the
database.

The Room persistence library provides a database builder for creating database instances. Each Android app
should only have one room database instance, so it is best to implement defensive code within the class to
prevent more than one instance being created.

An example Room Database implementation for use with the example customer table is outlined in the following
code listing:
import android.content.Context;

import android.arch.persistence.room.Database;

import android.arch.persistence.room.Room;

import android.arch.persistence.room.RoomDatabase;

@Database(entities = {Customer.class}, version = 1)

public class CustomerRoomDatabase extends RoomDatabase {

 public abstract CustomerDao customerDao();

 private static CustomerRoomDatabase INSTANCE;

552

The Android Room Persistence Library

 static CustomerRoomDatabase getDatabase(final Context context) {

 if (INSTANCE == null) {

 synchronized (CustomerRoomDatabase.class) {

 if (INSTANCE == null) {

 INSTANCE = Room.databaseBuilder(

 context.getApplicationContext(),

 CustomerRoomDatabase.class, "customer_database")

 .build();

 }

 }

 }

 return INSTANCE;

 }

}

Important areas to note in the above example are the annotation above the class declaration declaring the entities
with which the database is to work, the code to check that an instance of the class has not already been created
and assignment of the name “customer_database” to the instance.

65.6 The Repository
The repository is responsible for getting a Room Database instance, using that instance to access associated
DAOs and then making calls to DAO methods to perform database operations. A typical constructor for a
repository designed to work with a Room Database might read as follows:
public class CustomerRepository {

 private CustomerDao customerDao;

 private CustomerRoomDatabase db;

 public CustomerRepository(Application application) {

 db = CustomerRoomDatabase.getDatabase(application);

 customerDao = db.customerDao();

 }

.

.

}

Once the repository has access to the DAO, it can make calls to the data access methods. The following code, for
example, calls the getAllCustomers() DAO method:
private LiveData<List<Customer>> allCustomers;

allCustomers = customerDao.getAllCustomers();

When calling DAO methods, it is important to note that unless the method returns a LiveData instance (which
automatically runs queries on a separate thread), the operation cannot be performed on the app’s main thread.
In fact, attempting to do so will cause the app to crash with the following diagnostic output:
Cannot access database on the main thread since it may potentially lock the UI
for a long period of time

Since some database transactions may take a longer time to complete, running the operations on a separate
thread avoids the app appearing to lock up. As will be demonstrated in the chapter entitled “An Android Room

553

The Android Room Persistence Library

Database and Repository Tutorial”, this problem can be easily resolved by making use of Java threads (for more
information or a reminder of how to use threads, refer back to the chapter entitled “A Basic Overview of Java
Threads, Handlers and Executors”).

65.7 In-Memory Databases
The examples outlined in this chapter involved the use of a SQLite database that exists as a database file on
the persistent storage of an Android device. This ensures that the data persists even after the app process is
terminated.

The Room database persistence library also supports in-memory databases. These databases reside entirely
in memory and are lost when the app terminates. The only change necessary to work with an in-memory
database is to call the Room.inMemoryDatabaseBuilder() method of the Room Database class instead of Room.
databaseBuilder(). The following code shows the difference between the method calls (note that the in-memory
database does not require a database name):
// Create a file storage based database

INSTANCE = Room.databaseBuilder(context.getApplicationContext(),

 CustomerRoomDatabase.class, "customer_database")

 .build();

// Create an in-memory database

INSTANCE = Room.inMemoryDatabaseBuilder(context.getApplicationContext(),

 CustomerRoomDatabase.class)

 .build();

65.8 Database Inspector
Android Studio includes a Database Inspector tool window which allows the Room databases associated with
running apps to be viewed, searched and modified as shown in Figure 65-3:

Figure 65-3
Use of the Database Inspector will be covered in the chapter entitled “An Android Room Database and Repository
Tutorial”.

65.9 Summary
The Android Room persistence library is bundled with the Android Architecture Components and acts as an
abstract layer above the lower level SQLite database. The library is designed to make it easier to work with
databases while conforming to the Android architecture guidelines. This chapter has introduced the different
elements that interact to build Room-based database storage into Android app projects including entities,
repositories, data access objects, annotations and Room Database instances.

With the basics of SQLite and the Room architecture component covered, the next step is to create an example
app that puts this theory into practice. Since the user interface for the example application will require a forms

554

The Android Room Persistence Library

based layout, the next chapter, entitled “An Android TableLayout and TableRow Tutorial”, will detour slightly
from the core topic by introducing the basics of the TableLayout and TableRow views.

555

Chapter 66

66. An Android TableLayout and
TableRow Tutorial
When the work began on the next chapter of this book (“An Android Room Database and Repository Tutorial”) it
was originally intended that it would include the steps to design the user interface layout for the Room database
example application. It quickly became evident, however, that the best way to implement the user interface was
to make use of the Android TableLayout and TableRow views and that this topic area deserved a self-contained
chapter. As a result, this chapter will focus solely on the user interface design of the database application to be
completed in the next chapter, and in doing so, take some time to introduce the basic concepts of table layouts
in Android Studio.

66.1 The TableLayout and TableRow Layout Views
The purpose of the TableLayout container view is to allow user interface elements to be organized on the screen
in a table format consisting of rows and columns. Each row within a TableLayout is occupied by a TableRow
instance which, in turn, is divided into cells, with each cell containing a single child view (which may itself be a
container with multiple view children).

The number of columns in a table is dictated by the row with the most columns and, by default, the width of each
column is defined by the widest cell in that column. Columns may be configured to be shrinkable or stretchable
(or both) such that they change in size relative to the parent TableLayout. In addition, a single cell may be
configured to span multiple columns.

Consider the user interface layout shown in Figure 66-1:

Figure 66-1

556

An Android TableLayout and TableRow Tutorial

From the visual appearance of the layout, it is difficult to identify the TableLayout structure used to design
the interface. The hierarchical tree illustrated in Figure 66-2, however, makes the structure a little easier to
understand:

Figure 66-2
Clearly, the layout consists of a parent LinearLayout view with TableLayout, LinearLayout and RecyclerView
children. The TableLayout contains three TableRow children representing three rows in the table. The TableRows
contain two child views, with each child representing the contents of a table column cell. The LinearLayout child
view contains three Button children.

The layout shown in Figure 66-2 is the exact layout that is required for the database example that will be
completed in the next chapter. The remainder of this chapter, therefore, will be used to work step by step through
the design of this user interface using the Android Studio Layout Editor tool.

66.2 Creating the Room Database Project
Select the New Project menu option from the welcome screen and, within the resulting new project dialog,
choose the Empty Views Activity template before clicking on the Next button.

Enter RoomDemo into the Name field and specify com.ebookfrenzy.roomdemo as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

Migrate the project to view binding using the steps outlined in section 11.8 Migrating a Project to View Binding.

66.3 Converting to a LinearLayout
Locate the activity_main.xml file in the Project tool window (app -> res -> layout) and double-click on it to load
it into the Layout Editor tool. By default, Android Studio has used a ConstraintLayout as the root layout element
in the user interface. This needs to be converted to a vertically oriented LinearLayout. With the Layout Editor
tool in Design mode, locate the ConstraintLayout component in the Component Tree panel, right-click on it to
display the menu shown in Figure 66-3, and select the Convert view... option:

557

An Android TableLayout and TableRow Tutorial

Figure 66-3
In the resulting dialog (Figure 66-4) select the option to convert to a LinearLayout before clicking on the Apply
button:

Figure 66-4

By default, the layout editor will have converted the ConstraintLayout to a horizontal LinearLayout so select
the layout component in the Component Tree window, refer to the Attributes tool window and change the
orientation property to vertical:

Figure 66-5
With the conversion complete, select and delete the default TextView widget from the layout.

66.4 Adding the TableLayout to the User Interface
Remaining in the activity_main.xml file and referring to the Layouts category of the Palette, drag and drop a
TableLayout view so that it is positioned at the top of the LinearLayout canvas area.

Once these initial steps are complete, the Component Tree for the layout should resemble that shown in Figure
66-6.

558

An Android TableLayout and TableRow Tutorial

Figure 66-6
Clearly, Android Studio has automatically added four TableRow instances to the TableLayout. Since only three
rows are required for this example, select and delete the fourth TableRow instance. Additional rows may be
added to the TableLayout at any time by dragging the TableRow object from the palette and dropping it onto the
TableLayout entry in the Component Tree tool window.

With the TableLayout selected, use the Attributes tool window to change the layout_height property to wrap_
content and layout_width to match_parent.

66.5 Configuring the TableRows
From within the Text section of the palette, drag two TextView objects onto the uppermost TableRow entry in
the Component Tree (Figure 66-7):

Figure 66-7
Select the left-most TextView within the screen layout and, in the Attributes tool window, change the text
property to “Product ID”. Repeat this step for the right most TextView, this time changing the text to “Not
assigned” and specifying an ID value of productID.

Drag and drop another TextView widget onto the second TableRow entry in the Component Tree and change
the text on the view to read “Product Name”. Locate the Plain Text object in the palette and drag and drop it so
that it is positioned beneath the Product Name TextView within the Component Tree as outlined in Figure 66-8.
Next, delete the “Name” string from the text property and set the ID to productName.

559

An Android TableLayout and TableRow Tutorial

Figure 66-8
Drag and drop another TextView and a Number (Decimal) Text Field onto the third TableRow so that the
TextView is positioned above the EditText in the hierarchy. Change the text on the TextView to Product Quantity
and the ID of the EditText object to productQuantity.

Shift-click to select all of the widgets in the layout as shown in Figure 66-9 below, and use the Attributes tool
window to set the textSize property on all of the objects to 18sp:

Figure 66-9

66.6 Adding the Button Bar to the Layout
The next step is to add a LinearLayout (Horizontal) view to the parent LinearLayout view, positioned immediately
below the TableLayout view. Begin by clicking on the small disclosure arrow to the left of the TableLayout entry
in the Component Tree so that the TableRows are folded away from view. Drag a LinearLayout (horizontal)
instance from the Layouts section of the Layout Editor palette, drop it immediately beneath the TableLayout
entry in the Component Tree panel and change the layout_height property to wrap_content:

Figure 66-10
Drag three Button objects onto the new LinearLayout and assign string resources for each button that read
“Add”, “Find” and “Delete” respectively. Buttons in this type of button bar arrangement should generally be
displayed with a borderless style. For each button, use the Attributes tool window to change the style setting to
Widget.AppCompat.Button.Borderless and the textColor attribute to ?attr/colorPrimary. Change the IDs for the
buttons to addButton, findButton and deleteButton and respectively.

560

An Android TableLayout and TableRow Tutorial

Figure 66-11
With the new horizontal LinearLayout view selected in the Component Tree change the gravity property to
center_horizontal so that the buttons are centered horizontally within the display. Before proceeding, be sure to
extract all of the text properties added in the above steps to string resources.

66.7 Adding the RecyclerView
In the Component Tree, click on the disclosure arrow to the left of the newly added horizontal LinearLayout
entry to fold all of the children from view.

From the Containers section of the Palette, drag a RecyclerView instance and drop it onto the Component
Tree so that it positioned beneath the button bar LinearLayout as shown in Figure 66-12. Take care to ensure
the RecyclerView is added as a direct child of the parent vertical LinearLayout view and not as a child of the
horizontal button bar LinearLayout.

Figure 66-12
With the RecyclerView selected in the layout, change the ID of the view to product_recycler and set the layout_
height property to match_parent. Before proceeding, check that the hierarchy of the layout in the Component
Tree panel matches that shown in the following figure:

Figure 66-13

561

An Android TableLayout and TableRow Tutorial

66.8 Adjusting the Layout Margins
All that remains is to adjust some of the layout settings. Begin by clicking on the first TableRow entry in the
Component Tree panel so that it is selected. Hold down the Cmd/Ctrl-key on the keyboard and click on the
second and third TableRows, the horizontal LinearLayout and the RecyclerView so that all five items are selected.
In the Attributes panel, locate the layout_margin attributes category and, once located, change the value to 10dp
as shown in Figure 66-14:

Figure 66-14
With margins set, the user interface should appear as illustrated in Figure 66-1.

66.9 Summary
The Android TableLayout container view provides a way to arrange view components in a row and column
configuration. While the TableLayout view provides the overall container, each row and the cells contained
therein are implemented via instances of the TableRow view. In this chapter, a user interface has been designed
in Android Studio using the TableLayout and TableRow containers. The next chapter will add the functionality
behind this user interface to implement the SQLite database capabilities using a repository and the Room
persistence library.

563

Chapter 67

67. An Android Room Database and
Repository Tutorial
This chapter will combine the knowledge gained in the chapter entitled “The Android Room Persistence Library”
with the initial project created in the previous chapter to provide a detailed tutorial demonstrating how to
implement SQLite-based database storage using the Room persistence library. In keeping with the Android
architectural guidelines, the project will make use of a view model and repository. The tutorial will make use of
all of the elements covered in “The Android Room Persistence Library” including entities, a Data Access Object,
a Room Database and asynchronous database queries.

67.1 About the RoomDemo Project
The user interface layout created in the previous chapter was the first step in creating a rudimentary inventory
app designed to store the names and quantities of products. When completed, the app will provide the ability to
add, delete and search for database entries while also displaying a scrollable list of all products currently stored
in the database. This product list will update automatically as database entries are added or deleted.

67.2 Modifying the Build Configuration
Begin by launching Android Studio and opening the RoomDemo project started in the previous chapter. Before
adding any new classes to the project, the first step is to add some additional libraries to the build configuration,
including the Room persistence library. Locate and edit the module level build.gradle file (app -> Gradle Scripts
-> build.gradle (Module :app)) and modify it as follows:
dependencies {

.

.

 implementation 'androidx.recyclerview:recyclerview:1.3.0'
 implementation 'androidx.room:room-runtime:2.5.1'
 annotationProcessor 'androidx.room:room-compiler:2.5.1'
.

.

}

67.3 Building the Entity
This project will begin by creating the entity which defines the schema for the database table. The entity will
consist of an integer for the product id, a string column to hold the product name and another integer value to
store the quantity. The product id column will serve as the primary key and will be auto-generated. Table 67-1
summarizes the structure of the entity:

Column Data Type

productid Integer / Primary Key / Auto Increment

564

An Android Room Database and Repository Tutorial

productname String

productquantity Integer

Table 67-1
Add a class file for the entity by right clicking on the app -> java -> com.ebookfrenzy.roomdemo entry in the
Project tool window and selecting the New -> Java Class menu option. In the new class dialog, name the class
Product, select the Class entry in the list and press the keyboard return key to generate the file.

When the Product.java file opens in the editor, modify it so that it reads as follows:
package com.ebookfrenzy.roomdemo;

public class Product {

 private int id;
 private String name;
 private int quantity;

 public Product(String name, int quantity) {
 this.name = name;
 this.quantity = quantity;
 }

 public int getId() {
 return this.id;
 }
 public String getName() {
 return this.name;
 }

 public int getQuantity() {
 return this.quantity;
 }

 public void setId(int id) {
 this.id = id;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void setQuantity(int quantity) {
 this.quantity = quantity;
 }

565

An Android Room Database and Repository Tutorial

}

The class now has variables for the database table columns and matching getter and setter methods. Of course
this class does not become an entity until it has been annotated. With the class file still open in the editor, add
annotations and corresponding import statements:
package com.ebookfrenzy.roomdemo;

import androidx.room.ColumnInfo;
import androidx.room.Entity;
import androidx.room.PrimaryKey;

@Entity(tableName = "products")
public class Product {

 @PrimaryKey(autoGenerate = true)
 @ColumnInfo(name = "productId")
 private int id;

 @ColumnInfo(name = "productName")
 private String name;

 private int quantity;

.

.

}

These annotations declare this as the entity for a table named products and assigns column names for both the
id and name variables. The id column is also configured to be the primary key and auto-generated. Since it will
not be necessary to reference the quantity column in SQL queries, a column name has not been assigned to the
quantity variable.

67.4 Creating the Data Access Object
With the product entity defined, the next step is to create the DAO interface. Referring once again to the Project
tool window, right-click on the app -> java -> com.ebookfrenzy.roomdemo entry and select the New -> Java Class
menu option. In the new class dialog, enter ProductDao into the Name field and select Interface from the list as
highlighted in Figure 67-1:

Figure 67-1

Press the Return key to generate the new interface and, with the ProductDao.java file loaded into the code editor,
make the following changes:
package com.ebookfrenzy.roomdemo;

566

An Android Room Database and Repository Tutorial

import androidx.lifecycle.LiveData;
import androidx.room.Dao;
import androidx.room.Insert;
import androidx.room.Query;

import java.util.List;

@Dao
public interface ProductDao {

 @Insert
 void insertProduct(Product product);

 @Query("SELECT * FROM products WHERE productName = :name")
 List<Product> findProduct(String name);

 @Query("DELETE FROM products WHERE productName = :name")
 void deleteProduct(String name);

 @Query("SELECT * FROM products")
 LiveData<List<Product>> getAllProducts();
}

The DAO implements methods to insert, find and delete records from the products database. The insertion
method is passed a Product entity object containing the data to be stored while the methods to find and
delete records are passed a string containing the name of the product on which to perform the operation. The
getAllProducts() method returns a LiveData object containing all of the records within the database. This method
will be used to keep the RecyclerView product list in the user interface layout synchronized with the database.

67.5 Adding the Room Database
The last task before adding the repository to the project is to implement the Room Database instance. Add a new
class to the project named ProductRoomDatabase, this time with the Class option selected.

Once the file has been generated, modify it as follows using the steps outlined in the “The Android Room
Persistence Library” chapter:
package com.ebookfrenzy.roomdemo;

import android.content.Context;

import androidx.room.Database;
import androidx.room.Room;
import androidx.room.RoomDatabase;

@Database(entities = {Product.class}, version = 1)
public abstract class ProductRoomDatabase extends RoomDatabase {

 public abstract ProductDao productDao();

567

An Android Room Database and Repository Tutorial

 private static ProductRoomDatabase INSTANCE;

 static ProductRoomDatabase getDatabase(final Context context) {
 if (INSTANCE == null) {
 synchronized (ProductRoomDatabase.class) {
 INSTANCE =
 Room.databaseBuilder(context.getApplicationContext(),
 ProductRoomDatabase.class,
 "product_database").build();
 }
 }
 return INSTANCE;
 }
}

67.6 Adding the Repository
Add a new class named ProductRepository to the project, with the Class option selected.

The repository class will be responsible for interacting with the Room database on behalf of the ViewModel and
will need to provide methods that use the DAO to insert, delete and query product records. With the exception
of the getAllProducts() DAO method (which returns a LiveData object) these database operations will need to
be performed on separate threads from the main thread.

Remaining within the ProductRepository.java file, add the code for a handler to return the search results to the
repository thread:
package com.ebookfrenzy.roomdemo;

import android.os.Handler;
import android.os.Looper;
import android.os.Message;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import androidx.lifecycle.MutableLiveData;
import java.util.List;

public class ProductRepository {

 private final MutableLiveData<List<Product>> searchResults =
 new MutableLiveData<>();
 private List<Product> results;

 Handler handler = new Handler(Looper.getMainLooper()) {
 @Override public void handleMessage(Message msg) {
 searchResults.setValue(results);
 }

568

An Android Room Database and Repository Tutorial

 };
}

The above declares a MutableLiveData variable named searchResults into which the results of a search operation
are stored whenever an asynchronous search task completes (later in the tutorial, an observer within the
ViewModel will monitor this live data object).

The repository class now needs to provide some methods that can be called by the ViewModel to initiate
these operations. To be able to do this, however, the repository needs to obtain the DAO reference via a
ProductRoomDatabase instance. Add a constructor method to the ProductRepository class to perform these
tasks:
.

.

import android.app.Application;
.

.

public class ProductRepository {

 private final MutableLiveData<List<Product>> searchResults =

 new MutableLiveData<>();

 private List<Product> results;
 private final ProductDao productDao;

 public ProductRepository(Application application) {
 ProductRoomDatabase db;
 db = ProductRoomDatabase.getDatabase(application);
 productDao = db.productDao();
 }
.

.

With a reference to DAO stored, the methods are ready to be added to the ProductRepository class file as follows:
public void insertProduct(Product newproduct) {

 ExecutorService executor = Executors.newSingleThreadExecutor();

 executor.submit(() -> productDao.insertProduct(newproduct));

 executor.shutdown();

}

public void deleteProduct(String name) {

 ExecutorService executor = Executors.newSingleThreadExecutor();

 executor.submit(() -> productDao.deleteProduct(name));

 executor.shutdown();

}

public void findProduct(String name) {

 ExecutorService executor = Executors.newSingleThreadExecutor();

 executor.submit(() -> {

569

An Android Room Database and Repository Tutorial

 results = productDao.findProduct(name);

 handler.sendEmptyMessage(0);

 });

 executor.shutdown();

}

In the cases of the insertion and deletion methods, the appropriate new threads are created and used to perform
the corresponding database operation. In the case of the findProduct() method, a message is sent to the handler
indicating that new results are available.

One final task remains to complete the repository class. The RecyclerView in the user interface layout will need
to be able to keep up to date the current list of products stored in the database. The ProductDao class already
includes a method named getAllProducts() which uses a SQL query to select all of the database records and return
them wrapped in a LiveData object. The repository needs to call this method once on initialization and store the
result within a LiveData object that can be observed by the ViewModel and, in turn, by the UI controller. Once
this has been set up, each time a change occurs to the database table the UI controller observer will be notified
and the RecyclerView can be updated with the latest product list. Remaining within the ProductRepository.java
file, add a LiveData variable and call to the DAO getAllProducts() method within the constructor:
.

.

import androidx.lifecycle.LiveData;
.

.

public class ProductRepository {

 private final MutableLiveData<List<Product>> searchResults =

 new MutableLiveData<>();

 private List<Product> results;

 private final LiveData<List<Product>> allProducts;
 private final ProductDao productDao;

 public ProductRepository(Application application) {

 ProductRoomDatabase db;

 db = ProductRoomDatabase.getDatabase(application);

 productDao = db.productDao();

 allProducts = productDao.getAllProducts();
 }

.

.

}

To complete the repository, add methods that the ViewModel can call to obtain references to the allProducts and
searchResults live data objects:
public LiveData<List<Product>> getAllProducts() {

 return allProducts;

}

public MutableLiveData<List<Product>> getSearchResults() {

570

An Android Room Database and Repository Tutorial

 return searchResults;

}

67.7 Adding the ViewModel
The ViewModel is responsible for creating an instance of the repository and providing methods and LiveData
objects that the UI controller can utilize to keep the user interface synchronized with the underlying database.
As implemented in ProductRepository.java, the repository constructor requires access to the application context
to get a Room Database instance. To make the application context accessible within the ViewModel so it can be
passed to the repository, the ViewModel needs to subclass AndroidViewModel instead of ViewModel.

Begin by locating the com.ebookfrenzy.viewmodeldemo entry in the Project tool window, right-clicking it, and
selecting the New -> Java Class menu option. Next, name the new class MainViewModel and press the keyboard
enter key. Finally, edit the new class file to change the class to extend AndroidViewModel and implement the
default constructor:
package com.ebookfrenzy.roomdemo.ui.main;

import android.app.Application;
import androidx.lifecycle.AndroidViewModel;
import androidx.lifecycle.LiveData;
import androidx.lifecycle.MutableLiveData;
import com.ebookfrenzy.roomdemo.Product;
import com.ebookfrenzy.roomdemo.ProductRepository;
import java.util.List;

public class MainViewModel extends AndroidViewModel {
 final private ProductRepository repository;
 final private LiveData<List<Product>> allProducts;
 final private MutableLiveData<List<Product>> searchResults;

 public MainViewModel (Application application) {
 super(application);
 repository = new ProductRepository(application);
 allProducts = repository.getAllProducts();
 searchResults = repository.getSearchResults();
 }
}

The constructor essentially creates a repository instance and then uses it to get references to the results and live
data objects so that they can be observed by the UI controller. All that now remains within the ViewModel is to
implement the methods that will be called from within the UI controller in response to button clicks and when
setting up observers on the LiveData objects:
MutableLiveData<List<Product>> getSearchResults() {

 return searchResults;

}

LiveData<List<Product>> getAllProducts() {

 return allProducts;

571

An Android Room Database and Repository Tutorial

}

public void insertProduct(Product product) {

 repository.insertProduct(product);

}

public void findProduct(String name) {

 repository.findProduct(name);

}

public void deleteProduct(String name) {

 repository.deleteProduct(name);

}

67.8 Creating the Product Item Layout
The name of each product in the database will appear within the RecyclerView list in the main user interface.
This will require a layout resource file containing a TextView to be used for each row in the list. Add this file
now by right-clicking on the app -> res -> layout entry in the Project tool window and selecting the New ->
Layout Resource File menu option. Name the file product_list_item and change the root element to a vertical
LinearLayout before clicking on OK to create the file and load it into the layout editor. With the layout editor in
Design mode, drag a TextView object from the palette onto the layout where it will appear by default at the top
of the layout:

Figure 67-2
With the TextView selected in the layout, use the Attributes tool window to set the ID of the view to product_
row and the layout_height to 30dp. Select the LinearLayout entry in the Component Tree window and set the
layout_height attribute to wrap_content.

67.9 Adding the RecyclerView Adapter
As outlined in detail in the chapter entitled “Working with the RecyclerView and CardView Widgets”, a
RecyclerView instance requires an adapter class to provide the data to be displayed. Add this class now by
right clicking on the app -> java -> com.ebookfrenzy.roomdemo entry in the Project tool window and selecting
the New -> Java Class menu. In the dialog, name the class ProductListAdapter and choose Class from the list
before pressing the keyboard Return key. With the resulting ProductListAdapter.java class loaded into the editor,
implement the class as follows:
package com.ebookfrenzy.roomdemo.ui.main;

import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.TextView;
import com.ebookfrenzy.roomdemo.R;
import androidx.annotation.NonNull;

572

An Android Room Database and Repository Tutorial

import androidx.recyclerview.widget.RecyclerView;
import com.ebookfrenzy.roomdemo.Product;

import java.util.List;

public class ProductListAdapter

 extends RecyclerView.Adapter<ProductListAdapter.ViewHolder> {

 private final int productItemLayout;
 private List<Product> productList;

 public ProductListAdapter(int layoutId) {
 productItemLayout = layoutId;
 }

 public void setProductList(List<Product> products) {
 productList = products;
 notifyDataSetChanged();
 }

 @Override
 public int getItemCount() {
 return productList == null ? 0 : productList.size();
 }

 @NonNull
 @Override
 public ViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 View view = LayoutInflater.from(
 parent.getContext()).inflate(productItemLayout, parent, false);
 return new ViewHolder(view);
 }

 @Override
 public void onBindViewHolder(final ViewHolder holder, final int listPosition) {
 TextView item = holder.item;
 item.setText(productList.get(listPosition).getName());
 }

 static class ViewHolder extends RecyclerView.ViewHolder {
 TextView item;
 ViewHolder(View iteview) {
 super(iteview);
 item = iteview.findViewById(R.id.product_row);
 }

573

An Android Room Database and Repository Tutorial

 }
}

67.10 Preparing the Main Activity
The last remaining component to modify is the MainActivity class which needs to configure listeners on the
Button views and observers on the live data objects located in the ViewModel class. Before adding this code,
some preparation work needs to be performed to add some imports and variables. Edit the MainActivity.java
file and modify it as follows:
.

.

import androidx.lifecycle.ViewModelProvider;
.

.

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 private MainViewModel viewModel;
 private ProductListAdapter adapter;

 @Override

 protected void onCreate(Bundle savedInstance State) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 viewModel = new ViewModelProvider(this).get(MainViewModel.class);

 listenerSetup();
 observerSetup();
 recyclerSetup();
 }

.

.

At various stages in the code, the app will need to clear the product information displayed in the user interface.
To avoid code repetition, add the following clearFields() convenience function:
private void clearFields() {

 binding.productID.setText("");

 binding.productName.setText("");

 binding.productQuantity.setText("");

}

Before the app can be built and tested, the three setup methods called from the onCreate() method above need
to be added to the class.

574

An Android Room Database and Repository Tutorial

67.11 Adding the Button Listeners
The user interface layout for the main fragment contains three buttons each of which needs to perform a specific
task when clicked by user. Edit the MainActivity.java file and add the listenerSetup() method:
.

.

import com.ebookfrenzy.roomdemo.Product;
.

.

 private void listenerSetup() {

 binding.addButton.setOnClickListener(view -> {

 String name = binding.productName.getText().toString();
 String quantity = binding.productQuantity.getText().toString();

 if (!name.equals("") && !quantity.equals("")) {
 Product product = new Product(name,
 Integer.parseInt(quantity));
 viewModel.insertProduct(product);
 clearFields();
 } else {
 binding.productID.setText("Incomplete information");
 }
 });

 binding.findButton.setOnClickListener(view ->
 viewModel.findProduct(binding.productName.getText().toString()
)
);

 binding.deleteButton.setOnClickListener(view -> {
 viewModel.deleteProduct(binding.productName.getText().toString());
 clearFields();
 });
 }
.

.

}

The addButton listener performs some basic validation to ensure that the user has entered both a product name
and quantity and uses this data to create a new Product entity object (note that the quantity string is converted
to an integer to match the entity data type). The ViewModel insertProduct() method is then called and passed
the Product object before the fields are cleared.

The findButton and deleteButton listeners pass the product name to either the ViewModel findProduct() or
deleteProduct() method.

575

An Android Room Database and Repository Tutorial

67.12 Adding LiveData Observers
The user interface now needs to add observers to remain synchronized with the searchResults and allProducts
live data objects within the ViewModel. Remaining in the MainActivity.java file, implement the observer setup
method as follows:
.

.

import java.util.Locale;
.

.

 private void observerSetup() {

 viewModel.getAllProducts().observe(this,
 products -> adapter.setProductList(products));

 viewModel.getSearchResults().observe(this,
 products -> {
 if (products.size() > 0) {
 binding.productID.setText(String.format(Locale.US, "%d",
 products.get(0).getId()));
 binding.productName.setText(products.get(0).getName());
 binding.productQuantity.setText(
 String.format(Locale.US, "%d",
 products.get(0).getQuantity()));
 } else {
 binding.productID.setText("No Match");
 }
 });
 }
.

.

}

The “all products” observer simply passes the current list of products to the setProductList() method of the
RecyclerAdapter where the displayed list will be updated.

The “search results” observer checks that at least one matching result has been located in the database, extracts
the first matching Product entity object from the list, gets the data from the object, converts it where necessary
and assigns it to the TextView and EditText views in the layout. If the product search failed, the user is notified
via a message displayed on the product ID TextView.

67.13 Initializing the RecyclerView
Add the final setup method to initialize and configure the RecyclerView and adapter as follows:
.

.

import androidx.recyclerview.widget.LinearLayoutManager;
.

576

An Android Room Database and Repository Tutorial

.

 private void recyclerSetup() {
 adapter = new ProductListAdapter(R.layout.product_list_item);
 binding.productRecycler.setLayoutManager(
 new LinearLayoutManager(getContext()));
 binding.productRecycler.setAdapter(adapter);
 }
.

.

}

67.14 Testing the RoomDemo App
Compile and run the app on a device or emulator, add some products and make sure that they appear
automatically in the RecyclerView. Perform a search for an existing product and verify that the product ID and
quantity fields update accordingly. Finally, enter the name for an existing product, delete it from the database
and confirm that it is removed from the RecyclerView product list.

When building the project, you may encounter an error that reads in part:
org.gradle.api.GradleException: 'compileDebugJavaWithJavac' task (current target
is 1.8) and 'kaptGenerateStubsDebugKotlin' task (current target is 17)

This is caused by a bug in the Android Studio build tools and can be resolved by making the following changes
to the build.gradle (Module: app) file:
compileOptions {

 sourceCompatibility JavaVersion.VERSION_17
 targetCompatibility JavaVersion.VERSION_17
}

kotlinOptions {

 jvmTarget = '17'
}

67.15 Using the Database Inspector
As previously outlined in “The Android Room Persistence Library”, the Database Inspector tool may be used to
inspect the content of Room databases associated with a running app and to perform minor data changes. After
adding some database records using the RoomDemo app, display the Database Inspector tool using the View ->
Tool Windows -> App Inspection menu option:

From within the inspector window, select the running app from the menu marked A in Figure 67-3 below:

Figure 67-3
From the Databases panel (B) double-click on the products table to view the table rows currently stored in the

577

An Android Room Database and Repository Tutorial

database. Enable the Live updates option (C) and then use the running app to add more records to the database.
Note that the Database Inspector updates the table data (D) in real-time to reflect the changes.

Turn off Live updates so that the table is no longer read only, double-click on the quantity cell for a table row and
change the value before pressing the keyboard Enter key. Return to the running app and search for the product
to confirm the change made to the quantity in the inspector was saved to the database table.

Finally, click on the table query button (indicated by the arrow in Figure 67-4 below) to display a new query tab
(A), make sure that product_database is selected (B) and enter a SQL statement into the query text field (C) and
click the Run button(D):

Figure 67-4
The list of rows should update to reflect the results of the SQL query (E).

67.16 Summary
This chapter has demonstrated the use of the Room persistence library to store data in a SQLite database.
The finished project made use of a repository to separate the ViewModel from all database operations and
demonstrated the creation of entities, a DAO and a room database instance, including the use of asynchronous
tasks when performing some database operations.

579

Chapter 68

68. Accessing Cloud Storage using the
Android Storage Access Framework
Recent years have seen the wide adoption of remote storage services (otherwise known as “cloud storage”) to
store user files and data. Driving this growth are two key factors. One is that most mobile devices now provide
continuous, high speed internet connectivity, thereby making the transfer of data fast and affordable. The second
factor is that, relative to traditional computer systems (such as desktops and laptops) these mobile devices are
constrained in terms of internal storage resources. A high specification Android tablet today, for example,
typically comes with 128Gb of storage capacity. When compared with a mid-range laptop system with a 750Gb
disk drive, the need for the seamless remote storage of files is a key requirement for many mobile applications
today.

In recognition of this fact, Google introduced the Storage Access Framework as part of the Android 4.4 SDK.
This chapter will provide a high level overview of the storage access framework in preparation for the more
detail oriented tutorial contained in the next chapter, entitled “An Android Storage Access Framework Example”.

68.1 The Storage Access Framework
From the perspective of the user, the Storage Access Framework provides an intuitive user interface that
allows the user to browse, select, delete and create files hosted by storage services (also referred to as document
providers) from within Android applications. Using this browsing interface (also referred to as the picker), users
can, for example, browse through the files (such as documents, audio, images and videos) hosted by their chosen
document providers. Figure 68-1, for example, shows the picker user interface displaying a collection of files
hosted by a document provider service:

Figure 68-1

580

Accessing Cloud Storage using the Android Storage Access Framework

Document providers can range from cloud-based services to local document providers running on the same
device as the client application. At the time of writing, the most prominent document providers compatible
with the Storage Access Framework are Box and, unsurprisingly, Google Drive. It is highly likely that other
cloud storage providers and application developers will soon also provide services that conform to the Android
Storage Access Framework.

In addition to cloud based document providers the picker also provides access to internal storage on the device,
providing a range of file storage options to the application user.

Through a set of Intents, Android application developers can incorporate these storage capabilities into
applications with just a few lines of code. A particularly compelling aspect of the Storage Access Framework from
the point of view of the developer is that the underlying document provider selected by the user is completely
transparent to the application. Once the storage functionality has been implemented using the framework
within an application, it will work with all document providers without any code modifications.

68.2 Working with the Storage Access Framework
Android includes a set of Intents designed to integrate the features of the Storage Access Framework into
Android applications. These intents display the Storage Access Framework picker user interface to the user and
return the results of the interaction to the application via a call to the onActivityResult() method of the activity
that launched the intent. When the onActivityResult() method is called, it is passed the Uri of the selected file
together with a value indicating the success or otherwise of the operation.

The Storage Access Framework intents can be summarized as follows:

• ACTION_OPEN_DOCUMENT – Provides the user with access to the picker user interface so that files
may be selected from the document providers configured on the device. Selected files are passed back to the
application in the form of Uri objects.

• ACTION_CREATE_DOCUMENT – Allows the user to select a document provider, a location on that
provider’s storage and a file name for a new file. Once selected, the file is created by the Storage Access
Framework and the Uri of that file returned to the application for further processing.

68.3 Filtering Picker File Listings
The files listed within the picker user interface when an intent is started may be filtered using a variety of options.
Consider, for example, the following code to configure an ACTION_OPEN_DOCUMENT intent:
Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT);

When launched, the above intent will cause the picker user interface to be displayed, allowing the user to browse
and select any files hosted by available document providers. Once a file has been selected by the user, a reference
to that file will be provided to the application in the form of a Uri object. The application can then open the
file using the openFileDescriptor(Uri, String) method. There is some risk, however, that not all files listed by a
document provider can be opened in this way. The exclusion of such files within the picker can be achieved by
modifying the intent using the CATEGORY_OPENABLE option. For example:
Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT);

intent.addCategory(Intent.CATEGORY_OPENABLE);

When the intent is now displayed, files which cannot be opened using the openFileDescriptor() method will be
listed but not selectable by the user.

Another useful approach to filtering allows the files available for selection to be restricted by file type. This
involves specifying the types of the files the application is able to handle. An image editing application might,
for example, only want to provide the user with the option of selecting image files from the document providers.

581

Accessing Cloud Storage using the Android Storage Access Framework

This is achieved by configuring the intent object with the MIME types of the files that are to be selectable by
the user. The following code, for example, specifies that only image files are suitable for selection in the picker:
intent.addCategory(Intent.CATEGORY_OPENABLE);

intent.setType("image/*");

This could be further refined to limit selection to JPEG images:
intent.setType("image/jpeg");

Alternatively, an audio player app might only be able to handle audio files:
intent.setType("audio/*");

The audio app might be limited even further in only supporting the playback of MP4 based audio files:
intent.setType("audio/mp4");

A wide range of MIME type settings are available for use when working with the Storage Access Framework, the
more common of which can be found listed online at:

https://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types

68.4 Handling Intent Results
Since we are launching intents which will return a result, the registerForActivityResult() method (covered in the
chapter entitled “Android Explicit Intents – A Worked Example”) needs to be used to create a launcher and declare
a lambda to handle the returned data, for example:
ActivityResultLauncher<Intent> startOpenForResult = registerForActivityResult(

 new ActivityResultContracts.StartActivityForResult(),

 new ActivityResultCallback<ActivityResult>() {

 @Override

 public void onActivityResult(ActivityResult result) {

 if (result.getResultCode() == Activity.RESULT_OK) {

 Intent data = result.getData();

 // Read file content from Uri here

 }

 }

 });

Once declared, the intent can be configured and launched as follows:
Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT);

intent.addCategory(Intent.CATEGORY_OPENABLE);

intent.setType("text/plain");

startOpenForResult.launch(intent);

68.5 Reading the Content of a File
The exact steps required to read the content of a file hosted by a document provider will depend to a large extent
on the type of the file. The steps to read lines from a text file, for example, differ from those for image or audio
files.

An image file can be assigned to a Bitmap object by extracting the file descriptor from the Uri object and then
decoding the image into a BitmapFactory instance. For example:
ParcelFileDescriptor pFileDescriptor =

 getContentResolver().openFileDescriptor(uri, "r");

582

Accessing Cloud Storage using the Android Storage Access Framework

FileDescriptor fileDescriptor =

 pFileDescriptor.getFileDescriptor();

Bitmap image = BitmapFactory.decodeFileDescriptor(fileDescriptor);

pFileDescriptor.close();

myImageView.setImageBitmap(image);

Note that the file descriptor is opened in “r” mode. This indicates that the file is to be opened for reading. Other
options are “w” for write access and “rwt” for read and write access, where existing content in the file is truncated
by the new content.

Reading the content of a text file requires slightly more work and the use of an InputStream object. The following
code, for example, reads the lines from a text file:
InputStream inputStream = getContentResolver().openInputStream(uri);

BufferedReader reader = new BufferedReader(new InputStreamReader(

 inputStream));

String readline;

while ((readline = reader.readLine()) != null) {

 // Do something with each line in the file

}

inputStream.close();

68.6 Writing Content to a File
Writing to an open file hosted by a document provider is similar to reading with the exception that an output
stream is used instead of an input stream. The following code, for example, writes text to the output stream of
the storage based file referenced by the specified Uri:
try{

 ParcelFileDescriptor pFileDescriptor = this.getContentResolver().

 openFileDescriptor(uri, "w");

 FileOutputStream fileOutputStream =

 new FileOutputStream(pFileDescriptor.getFileDescriptor());

 String textContent = "Some sample text";

 fileOutputStream.write(textContent.getBytes());

 fileOutputStream.close();

 pFileDescriptor.close();

} catch (FileNotFoundException e) {

 e.printStackTrace();

} catch (IOException e) {

 e.printStackTrace();

}

583

Accessing Cloud Storage using the Android Storage Access Framework

First, the file descriptor is extracted from the Uri, this time requesting write permission to the target file. The
file descriptor is subsequently used to obtain a reference to the file’s output stream. The content (in this example,
some text) is then written to the output stream before the file descriptor and output stream are closed.

68.7 Deleting a File
Whether a file can be deleted from storage depends on whether or not the file’s document provider supports
deletion of the file. Assuming deletion is permitted, it may be performed on a designated Uri as follows:
if (DocumentsContract.deleteDocument(getContentResolver(), uri))

 // Deletion was successful

else

 // Deletion failed

68.8 Gaining Persistent Access to a File
When an application gains access to a file via the Storage Access Framework, the access will remain valid until
the Android device on which the application is running is restarted. Persistent access to a specific file can be
obtained by “taking” the necessary permissions for the Uri. The following code, for example, persists read and
write permissions for the file referenced by the fileUri Uri instance:
final int takeFlags = intent.getFlags()

 & (Intent.FLAG_GRANT_READ_URI_PERMISSION

 | Intent.FLAG_GRANT_WRITE_URI_PERMISSION);

getContentResolver().takePersistableUriPermission(fileUri, takeFlags);

Once the permissions for the file have been taken by the application, and assuming the Uri has been saved by the
application, the user should be able to continue accessing the file after a device restart without the user having
to reselect the file from the picker interface.

If, at any time, the persistent permissions are no longer required, they can be released via a call to the
releasePersistableUriPermission() method of the content resolver:
final int releaseFlags = intent.getFlags()

 & (Intent.FLAG_GRANT_READ_URI_PERMISSION

 | Intent.FLAG_GRANT_WRITE_URI_PERMISSION);

getContentResolver().releasePersistableUriPermission(fileUri,

 releaseFlags);

68.9 Summary
It is interesting to consider how perceptions of storage have changed in recent years. Once synonymous with
high capacity internal hard disk drives, the term “storage” is now just as likely to refer to storage space hosted
remotely in the cloud and accessed over an internet connection. This is increasingly the case with the wide
adoption of resource constrained, “always-connected” mobile devices with minimal internal storage capacity.

The Android Storage Access Framework provides a simple mechanism for both users and application developers
to seamlessly gain access to files stored in the cloud. Through the use of a set of intents and a built-in user
interface for selecting document providers and files, comprehensive cloud based storage can now be integrated
into Android applications with a minimal amount of coding.

585

Chapter 69

69. An Android Storage Access
Framework Example
As previously discussed, the Storage Access Framework considerably eases the process of integrating cloud based
storage access into Android applications. Consisting of a picker user interface and a set of new intents, access to
files stored on document providers such as Google Drive and Box can now be built into Android applications
with relative ease. With the basics of the Android Storage Access Framework covered in the preceding chapter,
this chapter will work through the creation of an example application which uses the Storage Access Framework
to store and manage files.

69.1 About the Storage Access Framework Example
The Android application created in this chapter will take the form of a rudimentary text editor designed to create
and store text files remotely onto a cloud based storage service. In practice, the example will work with any cloud
based document storage provider that is compatible with the Storage Access Framework, though for the purpose
of this example the use of Google Drive is assumed.

In functional terms, the application will present the user with a multi-line text view into which text may be
entered and edited, together with a set of buttons allowing storage based text files to be created, opened and
saved.

69.2 Creating the Storage Access Framework Example
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Activity template before clicking on the Next button.

Enter StorageDemo into the Name field and specify com.ebookfrenzy.storagedemo as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java. Follow the usual steps in section 11.8 Migrating a Project to View Binding to add view
binding support to the project.

69.3 Designing the User Interface
The user interface will need to be comprised of three Button views and a single EditText view. Within the Project
tool window, navigate to the activity_main.xml layout file located in app -> res -> layout and double-click on it
to load it into the Layout Editor tool. With the tool in Design mode, select and delete the Hello World! TextView
object.

Drag and position a Button widget in the top left-hand corner of the layout so that both the left and top dotted
margin guidelines appear before dropping the widget in place. Position a second Button such that the center
and top margin guidelines appear. The third Button widget should then be placed so that the top and right-hand
margin guidelines appear.

Change the text attributes on the three buttons to “New”, “Open” and “Save” respectively. Next, position a Plain
Text widget so that it is centered horizontally and positioned beneath the center Button so that the user interface
layout matches that shown in Figure 69-1. Use the Infer Constraints button in the Layout Editor toolbar to add
any missing constraints.

586

An Android Storage Access Framework Example

Select the Plain Text widget in the layout, delete the current text property setting, so the field is initially blank,
and set the ID to fileText. Next, extract the string attributes to resource values named string, open_string, and
save_string, respectively.

Figure 69-1
Using the Attributes tool window, configure the onClick property on the Button widgets to call methods named
newFile, openFile and saveFile respectively.

69.4 Adding the Activity Launchers
Following the steps outlined in the chapter entitled “Android Explicit Intents – A Worked Example”, we need to
begin by registering activity launchers to handle the creation, opening and saving of file content. Within the
MainActivity.java file, add a launcher for each of the three actions as follows:
.

.

import androidx.activity.result.ActivityResult;
import androidx.activity.result.ActivityResultCallback;
import androidx.activity.result.ActivityResultLauncher;
import androidx.activity.result.contract.ActivityResultContracts;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

import java.io.IOException;
.

.

 ActivityResultLauncher<Intent> startOpenForResult =
 registerForActivityResult(
 new ActivityResultContracts.StartActivityForResult(),
 new ActivityResultCallback<ActivityResult>() {
 @Override
 public void onActivityResult(ActivityResult result) {
 if (result.getResultCode() == Activity.RESULT_OK) {
 Intent data = result.getData();
 if (data != null) {
 Uri currentUri = data.getData();

587

An Android Storage Access Framework Example

 try {
 String content =
 readFileContent(currentUri);
 binding.fileText.setText(content);
 } catch (IOException e) {
 // Handle error here
 }
 }
 }
 }
 });

 ActivityResultLauncher<Intent> startSaveForResult =
 registerForActivityResult(
 new ActivityResultContracts.StartActivityForResult(),
 result -> {
 if (result.getResultCode() == Activity.RESULT_OK) {
 Intent data = result.getData();
 if (data != null) {
 Uri currentUri = data.getData();
 try {
 writeFileContent(currentUri);
 } catch (IOException e) {
 // Handle error here
 }
 }
 }
 });

 ActivityResultLauncher<Intent> startCreateForResult =
 registerForActivityResult(
 new ActivityResultContracts.StartActivityForResult(),
 new ActivityResultCallback<ActivityResult>() {
 @Override
 public void onActivityResult(ActivityResult result) {
 if (result.getResultCode() == Activity.RESULT_OK) {
 Intent data = result.getData();
 if (data != null) {
 binding.fileText.setText("");
 }
 }
 }
 });

588

An Android Storage Access Framework Example

69.5 Creating a New Storage File
When the New button is selected, the application will need to trigger an ACTION_CREATE_DOCUMENT
intent configured to create a file with a plain-text MIME type. When the user interface was designed, the New
button was configured to call a method named newFile(). It is within this method that the appropriate intent
needs to be launched.

Remaining in the MainActivity.java file, implement this method as follows:
package com.ebookfrenzy.storagedemo;

public class MainActivity extends AppCompatActivity {

.

.

 public void newFile(View view)
 {
 Intent intent = new Intent(Intent.ACTION_CREATE_DOCUMENT);

 intent.addCategory(Intent.CATEGORY_OPENABLE);
 intent.setType("text/plain");
 intent.putExtra(Intent.EXTRA_TITLE, "newfile.txt");

 startCreateForResult.launch(intent);
 }
.

.

}

This code creates a new ACTION_CREATE_INTENT Intent object. This intent is then configured so that only
files that can be opened with a file descriptor are returned (via the Intent.CATEGORY_OPENABLE category
setting).

Next the code specifies that the file to be opened is to have a plain text MIME type and a placeholder filename is
provided (which can be changed by the user in the picker interface).

When this method is executed and the intent has completed the assigned task, a call will be made to the
startCreateForResult() lambda and passed the Uri of the newly created document.

69.6 Saving to a Storage File
Now that the application is able to create new storage based files, the next step is to add the ability to save any
text entered by the user to a file. The user interface is configured to call the saveFile() method when the Save
button is selected by the user. This method will be responsible for starting a new intent of type ACTION_OPEN_
DOCUMENT which will result in the picker user interface appearing so that the user can choose the file to
which the text is to be stored. Since we are only working with plain text files, the intent needs to be configured
to restrict the user’s selection options to existing files that match the text/plain MIME type. Having identified
the actions to be performed by the saveFile() method, this can now be added to the MainActivity.java class file
as follows:
public void saveFile(View view)

{

589

An Android Storage Access Framework Example

 Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT);

 intent.addCategory(Intent.CATEGORY_OPENABLE);

 intent.setType("text/plain");

 startSaveForResult.launch(intent);

}

The lambda assigned to startSaveForResult() calls a method named writeFileContent(), passing through the Uri
of the file to which the text is to be written. Remaining in the MainActivity.java file, implement this method now
so that it reads as follows:
package com.ebookfrenzy.storagedemo;

import java.io.FileOutputStream;
import android.os.ParcelFileDescriptor;

public class MainActivity extends AppCompatActivity {

.

.

 private void writeFileContent(Uri uri) throws IOException
 {
 try{
 ParcelFileDescriptor pfd =
 this.getContentResolver().
 openFileDescriptor(uri, "w");

 FileOutputStream fileOutputStream =
 new FileOutputStream(
 pfd.getFileDescriptor());

 String textContent =
 binding.fileText.getText().toString();

 fileOutputStream.write(textContent.getBytes());

 fileOutputStream.close();
 pfd.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
.

.

}

The method begins by obtaining and opening the file descriptor from the Uri of the file selected by the user.
Since the code will need to write to the file, the descriptor is opened in write mode (“w”). The file descriptor is
then used as the basis for creating an output stream that will enable the application to write to the file.

590

An Android Storage Access Framework Example

The text entered by the user is extracted from the edit text object and written to the output stream before both
the file descriptor and stream are closed. Code is also added to handle any IO exceptions encountered during
the file writing process.

69.7 Opening and Reading a Storage File
Having written the code to create and save text files, the final task is to add some functionality to open and read
a file from the storage. This will involve writing the openFile() onClick event handler method and implementing
it so that it starts an ACTION_OPEN_DOCUMENT intent:
public void openFile(View view)

{

 Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT);

 intent.addCategory(Intent.CATEGORY_OPENABLE);

 intent.setType("text/plain");

 startOpenForResult.launch(intent);

}

The next task is to implement the readFileContent() method called by the startOpenForResult() lambda:
package com.ebookfrenzy.storagedemo;

.

.

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
.

.

public class MainActivity extends AppCompatActivity {

.

.

 private String readFileContent(Uri uri) throws IOException {

 InputStream inputStream =
 getContentResolver().openInputStream(uri);
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(
 inputStream));
 StringBuilder stringBuilder = new StringBuilder();
 String currentline;
 while ((currentline = reader.readLine()) != null) {
 stringBuilder.append(currentline).append("\n");
 }
 inputStream.close();
 return stringBuilder.toString();
 }
.

.

}

591

An Android Storage Access Framework Example

This method begins by extracting the file descriptor for the selected text file and opening it for reading. The input
stream associated with the Uri is then opened and used as the input source for a BufferedReader instance. Each
line within the file is then read and stored in a StringBuilder object. Once all the lines have been read, the input
stream and file descriptor are both closed, and the file content is returned as a String object.

69.8 Testing the Storage Access Application
With the coding phase complete the app is ready to be tested. Compile and run the application and select
the New button. The Storage Access Framework should subsequently display the Downloads user interface as
illustrated in Figure 69-2:

Figure 69-2
Click the menu button highlighted above and select the Drive option followed by My Drive and navigate to a
suitable location on your Google Drive storage into which to save the file. In the text field at the bottom of the
picker interface, change the name from “newfile.txt” to a suitable name (but keeping the .txt extension) before
selecting the Save option.

592

An Android Storage Access Framework Example

Figure 69-3
Once the new file has been created, the app should return to the main activity and a notification may appear
within the notifications panel which reads “1 file uploaded”.

Figure 69-4
At this point, it should be possible to log into your Google Drive account in a browser window and find the
newly created file in the requested location. If the file is missing, make sure that the Android device on which
the application is running has an active internet connection. Access to Google Drive on the device may also be
verified by running the Google Drive app, which is installed by default on many Android devices, and available
for download from the Google Play store.

Now that we have created a file, enter some text into the text area before clicking the “Save” button. Select the
previously created text file from the picker to save the content to the file. On returning to the application, delete
the text and select the “Open” button, once again choosing your saved file. When control is returned to the
application, the text view should have been populated with the content of the text file.

It is important to note that the Storage Access Framework will cache storage files locally if the Android device
lacks an active internet connection. Once connectivity is re-established, however, any cached data will be
synchronized with the remote storage service. As a final test of the application, therefore, log into your Google
Drive account in a browser window, navigate to the saved file and click on it to view the content which should,
all being well, contain the text saved by the application.

69.9 Summary
This chapter has worked through the creation of an example Android Studio application in the form of a very
rudimentary text editor designed to use cloud based storage to create, save and open files using the Android
Storage Access Framework.

593

Chapter 70

70. Video Playback on Android using
the VideoView and MediaController
Classes
One of the primary uses for smartphones and tablets is to provide access to online content. One key form of
content widely used, especially in the case of tablet devices, is video.

The Android SDK includes two classes that make the implementation of video playback on Android devices
extremely easy to implement when developing applications. This chapter will provide an overview of these two
classes, VideoView and MediaController, before working through the creation of a video playback application.

70.1 Introducing the Android VideoView Class
By far the simplest way to display video within an Android application is to use the VideoView class. This is a
visual component which, when added to the layout of an activity, provides a surface onto which a video may be
played. Android currently supports the following video formats:

• H.263

• H.264 AVC

• H.265 HEVC

• MPEG-4 SP

• VP8

• VP9

The VideoView class has a wide range of methods that may be called to manage the playback of video. Some of
the more commonly used methods are as follows:

• setVideoPath(String path) – Specifies the path (as a string) of the video media to be played. This can be either
the URL of a remote video file or a video file local to the device.

• setVideoUri(Uri uri) – Performs the same task as the setVideoPath() method but takes a Uri object as an
argument instead of a string.

• start() – Starts video playback.

• stopPlayback() – Stops the video playback.

• pause() – Pauses video playback.

• isPlaying() – Returns a Boolean value indicating whether a video is currently playing.

• setOnPreparedListener(MediaPlayer.OnPreparedListener) – Allows a callback method to be called when
the video is ready to play.

594

Video Playback on Android using the VideoView and MediaController Classes

• setOnErrorListener(MediaPlayer.OnErrorListener) - Allows a callback method to be called when an error
occurs during the video playback.

• setOnCompletionListener(MediaPlayer.OnCompletionListener) - Allows a callback method to be called
when the end of the video is reached.

• getDuration() – Returns the duration of the video. Will typically return -1 unless called from within the
OnPreparedListener() callback method.

• getCurrentPosition() – Returns an integer value indicating the current position of playback.

• setMediaController(MediaController) – Designates a MediaController instance allowing playback controls
to be displayed to the user.

70.2 Introducing the Android MediaController Class
If a video is simply played using the VideoView class, the user will not be given any control over the playback,
which will run until the end of the video is reached. This issue can be addressed by attaching an instance of
the MediaController class to the VideoView instance. The MediaController will then provide a set of controls
allowing the user to manage the playback (such as pausing and seeking backwards/forwards in the video time-
line).

The position of the controls is designated by anchoring the controller instance to a specific view in the user
interface layout. Once attached and anchored, the controls will appear briefly when playback starts and may
subsequently be restored at any point by the user tapping on the view to which the instance is anchored.

Some of the key methods of this class are as follows:

• setAnchorView(View view) – Designates the view to which the controller is to be anchored. This designates
the location of the controls on the screen.

• show() – Displays the controls.

• show(int timeout) – Controls are displayed for the designated duration (in milliseconds).

• hide() – Hides the controller from the user.

• isShowing() – Returns a Boolean value indicating whether the controls are currently visible to the user.

70.3 Creating the Video Playback Example
The remainder of this chapter will create an example application intended to use the VideoView and
MediaController classes to play an MPEG-4 video file.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter VideoPlayer into the Name field and specify com.ebookfrenzy.videoplayer as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java. Use the steps in section 11.8 Migrating a Project to View Binding to enable view binding
for the project.

70.4 Designing the VideoPlayer Layout
The user interface for the main activity will consist solely of an instance of the VideoView class. Use the Project
tool window to locate the app -> res -> layout -> activity_main.xml file, double-click on it, switch the Layout
Editor tool to Design mode and delete the default TextView widget.

595

Video Playback on Android using the VideoView and MediaController Classes

From the Widgets category of the Palette panel, drag and drop a VideoView instance onto the layout so that
it fills the available canvas area as shown in Figure 70-1. Using the Attributes panel, change the layout_width
and layout_height attributes to match_constraint and wrap_content respectively. Also, remove the constraint
connecting the bottom of the VideoView to the bottom of the parent ConstraintLayout. Finally, change the ID
of the component to videoView1.

Figure 70-1

70.5 Downloading the Video File
The video that will be played by the VideoPlayer app is a short animated movie clip encoded in MPEG-4 format.
Using a web browser, navigate to the following URL to play the video:

https://www.ebookfrenzy.com/android_book/movie.mp4

Staying within the browser window, right-click on the video playback and select the option to save or download
the video to a local file and choose a suitable temporary filesystem location, naming the file movie.mp4.

Within Android Studio, locate the res folder in the Project tool window, right-click on it and select the New ->
Directory menu option and enter raw into the name field before pressing the Return key. Using the filesystem
navigator for your operating system, locate the movie.mp4 file downloaded above and copy it. Returning to
Android Studio, right-click on the newly created raw directory and select the Paste option to copy the video file
into the project. Once added, the raw folder should match Figure 70-2 within the Project tool window:

Figure 70-2

70.6 Configuring the VideoView
The next step is to configure the VideoView with the path of the video to be played and then start the playback.
This will be performed when the main activity has initialized, so load the MainActivity.java file into the editor
and modify it as outlined in the following listing:
package com.ebookfrenzy.videoplayer;

https://www.ebookfrenzy.com/android_book/movie.mp4

596

Video Playback on Android using the VideoView and MediaController Classes

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.net.Uri;
.

.

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 configureVideoView();
 }

 private void configureVideoView() {

 binding.videoView1.setVideoURI(Uri.parse("android.resource://"
 + getPackageName() + "/" + R.raw.movie));

 binding.videoView1.start();
 }
}

All that this code does is obtain a reference to the VideoView instance in the layout, assigns to it a URI object
referencing the movie file located in the raw resource directory and then starts the video playing.

Test the application by running it on an emulator or physical Android device. After the application launches
there may be a short delay while video content is buffered before the playback begins (Figure 70-3).

Figure 70-3
This provides an indication of how easy it can be to integrate video playback into an Android application.
Everything so far in this example has been achieved using a VideoView instance and three lines of code.

597

Video Playback on Android using the VideoView and MediaController Classes

70.7 Adding the MediaController to the Video View
As the VideoPlayer application currently stands, there is no way for the user to control playback. As previously
outlined, this can be achieved using the MediaController class. To add a controller to the VideoView, modify the
configureVideoView() method once again:
package com.ebookfrenzy.videoplayer;

.

.

import android.widget.MediaController;

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 private MediaController mediaController;
.

.

 private void configureVideoView() {

 binding.videoView1.setVideoURI(Uri.parse("android.resource://"

 + getPackageName() + "/" + R.raw.movie));

 mediaController = new MediaController(this);
 mediaController.setAnchorView(binding.videoView1);
 binding.videoView1.setMediaController(mediaController);

 binding.videoView.start();

 }

}

When the application is launched with these changes implemented, tapping the VideoView canvas will cause
the media controls to appear over the video playback. These controls should include a seekbar together with fast
forward, rewind and play/pause buttons. After the controls recede from view, they can be restored at any time
by tapping on the VideoView canvas once again. With just three more lines of code, our video player application
now has media controls as shown in Figure 70-4:

Figure 70-4

70.8 Setting up the onPreparedListener
As a final example of working with video based media, the activity will now be extended further to demonstrate
the mechanism for configuring a listener. In this case, a listener will be implemented that is intended to output
the duration of the video as a message in the Android Studio Logcat panel. The listener will also configure video
playback to loop continuously:

598

Video Playback on Android using the VideoView and MediaController Classes

package com.ebookfrenzy.videoplayer;

.

.

import android.util.Log;

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 private MediaController mediaController;

 String TAG = "VideoPlayer";

 private void configureVideoView() {

 binding.videoView1.setVideoURI(Uri.parse("android.resource://"

 + getPackageName() + "/" + R.raw.movie));

 MediaController mediaController = new

 MediaController(this);

 mediaController.setAnchorView(binding.videoView1);

 binding.videoView1.setMediaController(mediaController);

 binding.videoView1.setOnPreparedListener(mp -> {
 mp.setLooping(true);
 Log.i(TAG, "Duration = " +
 binding.videoView1.getDuration());
 });
 binding.videoView.start();

 }

}

Now just before the video playback begins, a message will appear in the Android Studio Logcat panel that reads
along the lines of the following and the video will restart after playback ends:
2023-05-04 16:41:42.867 5723-5723 VideoPlayer com.ebookfrenzy.videoview
I Duration = 13504

70.9 Summary
Android devices make excellent platforms for the delivery of content to users, particularly in the form of
video media. As outlined in this chapter, the Android SDK provides two classes, namely VideoView and
MediaController, which combine to make the integration of video playback into Android applications quick
and easy, often involving just a few lines of Java code.

599

Chapter 71

71. Android Picture-in-Picture Mode
When multi-tasking in Android was covered in earlier chapters, Picture-in-picture (PiP) mode was mentioned
briefly but not covered in any detail. Intended primarily for video playback, PiP mode allows an activity screen
to be reduced in size and positioned at any location on the screen. While in this state, the activity continues to
run and the window remains visible regardless of any other activities running on the device. This allows the user
to, for example, continue watching video playback while performing tasks such as checking email or working
on a spreadsheet.

This chapter will provide an overview of Picture-in-Picture mode before Picture-in-Picture support is added to
the VideoPlayer project in the next chapter.

71.1 Picture-in-Picture Features
As will be explained later in the chapter, and demonstrated in the next chapter, an activity is placed into PiP
mode via an API call from within the running app. When placed into PiP mode, configuration options may be
specified that control the aspect ratio of the PiP window and also to define the area of the activity screen that is
to be included in the window. Figure 71-1, for example, shows a video playback activity in PiP mode:

Figure 71-1
Figure 71-2 shows a PiP mode window after it has been tapped by the user. When in this mode, the window
appears larger and includes a full screen action in the center which, when tapped, restores the window to full
screen mode and an exit button in the top right-hand corner to close the window and place the app in the
background. Any custom actions added to the PiP window will also appear on the screen when it is displayed in
this mode. In the case of Figure 71-2, the PiP window includes custom play and pause action buttons:

600

Android Picture-in-Picture Mode

Figure 71-2
The remainder of this chapter will outline how PiP mode is enabled and managed from within an Android app.

71.2 Enabling Picture-in-Picture Mode
PiP mode is currently only supported on devices running API 26: Android 8.0 (Oreo) or newer. The first step in
implementing PiP mode is to enable it within the project’s manifest file. PiP mode is configured on a per activity
basis by adding the following lines to each activity element for which PiP support is required:
<activity android:name=".MyActivity"

 android:supportsPictureInPicture="true"
 android:configChanges=
 "screenSize|smallestScreenSize|screenLayout|orientation"
 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

The android:supportsPictureInPicture entry enables PiP for the activity while the android:configChanges property
notifies Android that the activity is able to handle layout configuration changes. Without this setting, each time
the activity moves in and out of PiP mode the activity will be restarted resulting in playback restarting from the
beginning of the video during the transition.

71.3 Configuring Picture-in-Picture Parameters
PiP behavior is defined through the use of the PictureInPictureParams class, instances of which can be created
using the Builder class as follows:
PictureInPictureParams params =

 new PictureInPictureParams.Builder().build();

The above code creates a default PictureInPictureParams instance with special parameters defined. The following
optional method calls may also be used to customize the parameters:

• setActions() – Used to define actions that can be performed from within the PiP window while the activity is
in PiP mode. Actions will be covered in more detail later in this chapter.

• setAspectRatio() – Declares the preferred aspect ratio for appearance of the PiP window. This method takes
as an argument a Rational object containing the height width / height ratio.

601

Android Picture-in-Picture Mode

• setSourceRectHint() – Takes as an argument a Rect object defining the area of the activity screen to be
displayed within the PiP window.

The following code, for example, configures aspect ratio and action parameters within a PictureInPictureParams
object. In the case of the aspect ratio, this is defined using the width and height dimensions of a VideoView
instance:
Rational rational = new Rational(videoView.getWidth(),

 videoView.getHeight());

PictureInPictureParams params =

 new PictureInPictureParams.Builder()

 .setAspectRatio(rational)

 .setActions(actions)

 .build();

Once defined, PiP parameters may be set at any time using the setPictureInPictureParams() method as follows:
setPictureInPictureParams(params);

Parameters may also be specified when entering PiP mode.

71.4 Entering Picture-in-Picture Mode
An activity is placed into Picture-in-Picture mode via a call to the enterPictureInPictureMode() method, passing
through a PictureInPictureParams object:
enterPictureInPictureMode(params);

If no parameters are required, simply create a default PictureInPictureParams object as outlined in the previous
section. If parameters have previously been set using the setPictureInPictureParams() method, these parameters
are combined with those specified during the enterPictureInPictureMode() method call.

71.5 Detecting Picture-in-Picture Mode Changes
When an activity enters PiP mode, it is important to hide any unnecessary views so that only the video playback
is visible within the PiP window. When the activity re-enters full screen mode, any hidden user interface
components need to be reinstated. These and any other app specific tasks can be performed by overriding the
onPictureInPictureModeChanged() method. When added to the activity, this method is called each time the
activity transitions between PiP and full screen modes and is passed a Boolean value indicating whether the
activity is currently in PiP mode:
@Override

public void onPictureInPictureModeChanged(

 boolean isInPictureInPictureMode) {

 super.onPictureInPictureModeChanged(isInPictureInPictureMode);

 if (isInPictureInPictureMode) {

 // Acitivity entered Picture-in-Picture mode

 } else {

 // Activity entered full screen mode

 }

}

602

Android Picture-in-Picture Mode

71.6 Adding Picture-in-Picture Actions
Picture-in-Picture actions appear as icons within the PiP window when it is tapped by the user. Implementation
of PiP actions is a multi-step process that begins with implementing a way for the PiP window to notify the
activity that an action has been selected. This is achieved by setting up a broadcast receiver within the activity,
and then creating a pending intent within the PiP action which, in turn, is configured to broadcast an intent for
which the broadcast receiver is listening. When the broadcast receiver is triggered by the intent, the data stored
in the intent can be used to identify the action performed and to take the necessary action within the activity.

PiP actions are declared using the RemoteAction instances which are initialized with an icon, a title, a description
and the PendingIntent object. Once one or more actions have been created, they are added to an ArrayList and
passed through to the setActions() method while building a PictureInPictureParams object.

The following code fragment demonstrates the creation of the Intent, PendingIntent and RemoteAction objects
together with a PictureInPictureParams instance which is then applied to the activity’s PiP settings:
final ArrayList<RemoteAction> actions = new ArrayList<>();

Intent actionIntent = new Intent("MY_PIP_ACTION");

final PendingIntent pendingIntent =

 PendingIntent.getBroadcast(MyActivity.this,

 REQUEST_CODE, actionIntent, FLAG_IMMUTABLE);

final Icon icon = Icon.createWithResource(MyActivity.this,

 R.drawable.action_icon);

RemoteAction remoteAction = new RemoteAction(icon,

 "My Action Title",

 "My Action Description",

 pendingIntent);

actions.add(remoteAction);

PictureInPictureParams params =

 new PictureInPictureParams.Builder()

 .setActions(actions)

 .build();

setPictureInPictureParams(params);

71.7 Summary
Picture-in-Picture mode is a multitasking feature introduced with Android 8.0 designed specifically to allow
video playback to continue in a small window while the user performs tasks in other apps and activities. Before
PiP mode can be used, it must first be enabled within the manifest file for those activities that require PiP
support.

PiP mode behavior is configured using instances of the PictureInPictureParams class and initiated via a call to the
enterPictureInPictureMode() method from within the activity. When in PiP mode, only the video playback should
be visible, requiring that any other user interface elements be hidden until full screen mode is selected. These

603

Android Picture-in-Picture Mode

and other mode transition related tasks can be performed by overriding the onPictureInPictureModeChanged()
method.

PiP actions appear as icons overlaid onto the PiP window when it is tapped by the user. When selected, these
actions trigger behavior within the activity. The activity is notified of an action by the PiP window using
broadcast receivers and pending intents.

605

Chapter 72

72. An Android Picture-in-Picture
Tutorial
Following on from the previous chapters, this chapter will take the existing VideoPlayer project and enhance
it to add Picture-in-Picture support, including detecting PiP mode changes and the addition of a PiP action
designed to display information about the currently running video.

72.1 Adding Picture-in-Picture Support to the Manifest
The first step in adding PiP support to an Android app project is to enable it within the project Manifest file.
Open the manifests -> AndroidManifest.xml file and modify the activity element to enable PiP support:
.

.

<activity android:name=".MainActivity"

 android:supportsPictureInPicture="true"
 android:configChanges="screenSize|smallestScreenSize|screenLayout|orientation"
 android:exported="true">
 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

.

.

72.2 Adding a Picture-in-Picture Button
As currently designed, the layout for the VideoPlayer activity consists solely of a VideoView instance. A button
will now be added to the layout for the purpose of switching into PiP mode. Load the activity_main.xml file into
the layout editor and drag a Button object from the palette onto the layout so that it is positioned as shown in
Figure 72-1:

Figure 72-1
Change the text on the button so that it reads “Enter PiP Mode” and extract the string to a resource named
enter_pip_mode. Before moving on to the next step, change the ID of the button to pipButton and configure the
onClick attribute to call a method named enterPipMode.

606

An Android Picture-in-Picture Tutorial

72.3 Entering Picture-in-Picture Mode
The enterPipMode onClick callback method now needs to be added to the MainActivity.java class file. Locate this
file, open it in the code editor and add this method as follows:
.

.

import android.app.PictureInPictureParams;
import android.util.Rational;
.

.

public void enterPipMode(View view) {

 Rational rational = new Rational(binding.videoView1.getWidth(),
 binding.videoView1.getHeight());

 PictureInPictureParams params =
 new PictureInPictureParams.Builder()
 .setAspectRatio(rational)
 .build();

 binding.pipButton.setVisibility(View.INVISIBLE);
 binding.videoView1.setMediaController(null);
 enterPictureInPictureMode(params);
}

The method begins by obtaining a reference to the Button view, then creates a Rational object containing
the width and height of the VideoView. A set of Picture-in-Picture parameters is then created using the
PictureInPictureParams Builder, passing through the Rational object as the aspect ratio for the video playback.
Since the button does not need to be visible while the video is in PiP mode it is made invisible. The video
playback controls are also hidden from view so that the video view will be unobstructed while in PiP mode.

Compile and run the app on a device or emulator running Android version 8 or newer and wait for video
playback to begin before clicking on the PiP mode button. The video playback should minimize and appear in
the PiP window as shown in Figure 72-2:

Figure 72-2
Although the video is now playing in the PiP window, much of the view is obscured by the standard Android
action bar. To remove this requires a change to the application theme style of the activity. Within Android
Studio, locate and edit the app -> res -> values -> themes -> themes.xml file and modify the AppTheme element
to use the NoActionBar theme:

607

An Android Picture-in-Picture Tutorial

<resources xmlns:tools="http://schemas.android.com/tools">

 <!-- Base application theme. -->

 <style name="Theme.VideoPlayer" parent="Theme.MaterialComponents.DayNight.
NoActionBar">
 <!-- Primary brand color. -->

 <item name="colorPrimary">@color/purple_500</item>

 <item name="colorPrimaryVariant">@color/purple_700</item>

.

.

Repeat this step for the themes.xml (night) resource file. Compile and run the app, place the video playback into
PiP mode and note that the action bar no longer appears in the window:

Figure 72-3
Click in the PiP window, then click within the full screen mode markers that appear in the center of the window.
Although the activity returns to full screen mode, note the button and media playback controls remain hidden.

Clearly some code needs to be added to the project to detect when PiP mode changes take place within the
activity.

72.4 Detecting Picture-in-Picture Mode Changes
As discussed in the previous chapter, PiP mode changes are detected by overriding the
onPictureInPictureModeChanged() method within the affected activity. In this case, the method needs to be
written such that it can detect whether the activity is entering or exiting PiP mode and to take appropriate action
to re-activate the PiP button and the playback controls. Remaining within the MainActivity.java file, add this
method now:
@Override

public void onPictureInPictureModeChanged(boolean isInPictureInPictureMode) {

 super.onPictureInPictureModeChanged(isInPictureInPictureMode);

 if (isInPictureInPictureMode) {

 } else {

 binding.pipButton.setVisibility(View.VISIBLE);

 binding.videoView1.setMediaController(mediaController);

 }

}

608

An Android Picture-in-Picture Tutorial

When the method is called, it is passed a Boolean value indicating whether the activity is now in PiP mode. The
code in the above method simply checks this value to decide whether to show the PiP button and to re-activate
the playback controls.

72.5 Adding a Broadcast Receiver
The final step in the project is to add an action to the PiP window. The purpose of this action is to display a Toast
message containing the name of the currently playing video. This will require some communication between
the PiP window and the activity. One of the simplest ways to achieve this is to implement a broadcast receiver
within the activity, and the use of a pending intent to broadcast a message from the PiP window to the activity.
These steps will need to be performed each time the activity enters PiP mode so code will need to be added to the
onPictureInPictureModeChanged() method. Locate this method now and begin by adding some code to create
an intent filter and initialize the broadcast receiver:
.

.

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.widget.Toast;
.

.

public class MainActivity extends AppCompatActivity {

 private BroadcastReceiver receiver;
.

.

@Override

 public void onPictureInPictureModeChanged(

 boolean isInPictureInPictureMode) {

 super.onPictureInPictureModeChanged(isInPictureInPictureMode);

 if (isInPictureInPictureMode) {

 IntentFilter filter = new IntentFilter();
 filter.addAction(
 "com.ebookfrenzy.videoplayer.VIDEO_INFO");

 receiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context,
 Intent intent) {
 Toast.makeText(context,
 "Favorite Home Movie Clips",
 Toast.LENGTH_LONG).show();
 }
 };

609

An Android Picture-in-Picture Tutorial

 registerReceiver(receiver, filter);

 } else {

 binding.pipButton.setVisibility(View.VISIBLE);

 binding.videoView1.setMediaController(mediaController);

 if (receiver != null) {
 unregisterReceiver(receiver);
 }
 }

 }

.

.

}

72.6 Adding the PiP Action
With the broadcast receiver implemented, the next step is to create a RemoteAction object configured with an
image to represent the action within the PiP window. For the purposes of this example, an image icon file named
ic_info_24dp.xml will be used. This file can be found in the project_icons folder of the source code download
archive available from the following URL:

https://www.ebookfrenzy.com/retail/flamingojava/index.php

Locate this icon file and copy and paste it into the app -> res -> drawables folder within the Project tool window:

Figure 72-4
The next step is to create an Intent that will be sent to the broadcast receiver. This intent then needs to be
wrapped up within a PendingIntent object, allowing the intent to be triggered later when the user taps the action
button in the PiP window.

Edit the MainActivity.java file to add a method to create the Intent and PendingIntent objects as follows:
.

.

import android.app.PendingIntent;
import static android.app.PendingIntent.FLAG_IMMUTABLE;
.

.

public class MainActivity extends AppCompatActivity {

https://www.ebookfrenzy.com/retail/flamingojava/index.php

610

An Android Picture-in-Picture Tutorial

 private static final int REQUEST_CODE = 101;
.

.

 private void createPipAction() {
 Intent actionIntent =
 new Intent("com.ebookfrenzy.videoplayer.VIDEO_INFO");

 final PendingIntent pendingIntent =
 PendingIntent.getBroadcast(MainActivity.this,
 REQUEST_CODE, actionIntent, FLAG_IMMUTABLE);
 }
.

.

}

Now that both the Intent object, and the PendingIntent instance in which it is contained have been created, a
RemoteAction object needs to be created containing the icon to appear in the PiP window, and the PendingIn-
tent object. Remaining within the createPipAction() method, add this code as follows:
.

.

import android.app.RemoteAction;
import android.graphics.drawable.Icon;

import java.util.ArrayList;
.

.

private void createPipAction() {

 final ArrayList<RemoteAction> actions = new ArrayList<>();

 Intent actionIntent =

 new Intent("com.ebookfrenzy.videoplayer.VIDEO_INFO");

 final PendingIntent pendingIntent = PendingIntent.getBroadcast(

 MainActivity.this,

 REQUEST_CODE, actionIntent, FLAG_IMMUTABLE);

 final Icon icon =
 Icon.createWithResource(MainActivity.this,
 R.drawable.ic_info_24dp);
 RemoteAction remoteAction = new RemoteAction(icon, "Info",
 "Video Info", pendingIntent);

 actions.add(remoteAction);
}

Now a PictureInPictureParams object containing the action needs to be created and the parameters applied so

611

An Android Picture-in-Picture Tutorial

that the action appears within the PiP window:
private void createPipAction() {

 final ArrayList<RemoteAction> actions = new ArrayList<>();

 Intent actionIntent =

 new Intent("com.ebookfrenzy.videoplayer.VIDEO_INFO");

 final PendingIntent pendingIntent =

 PendingIntent.getBroadcast(MainActivity.this,

 REQUEST_CODE, actionIntent, FLAG_IMMUTABLE);

 final Icon icon =

 Icon.createWithResource(MainActivity.this,

 R.drawable.ic_info_24dp);

 RemoteAction remoteAction = new RemoteAction(icon, "Info",

 "Video Info", pendingIntent);

 actions.add(remoteAction);

 PictureInPictureParams params =
 new PictureInPictureParams.Builder()
 .setActions(actions)
 .build();

 setPictureInPictureParams(params);
}

The final task before testing the action is to make a call to the createPipAction() method when the activity enters
PiP mode:
@Override

public void onPictureInPictureModeChanged(boolean isInPictureInPictureMode) {

 super.onPictureInPictureModeChanged(isInPictureInPictureMode);

.

.

 registerReceiver(receiver, filter);

 createPipAction();
 } else {

 binding.pipButton.setVisibility(View.VISIBLE);

 binding.videoView1.setMediaController(mediaController);

.

.

}

612

An Android Picture-in-Picture Tutorial

72.7 Testing the Picture-in-Picture Action
Build and run the app once again and place the activity into PiP mode. Tap on the PiP window so that the new
action button appears as shown in Figure 72-5:

Figure 72-5
Click on the action button and wait for the Toast message to appear displaying the name of the video:

Figure 72-6

72.8 Summary
This chapter has demonstrated addition of Picture-in-Picture support to an Android Studio app project including
enabling and entering PiP mode and the implementation of a PiP action. This included the use of a broadcast
receiver and pending intents to implement communication between the PiP window and the activity.

613

Chapter 73

73. Android Audio Recording and
Playback using MediaPlayer and
MediaRecorder
This chapter will provide an overview of the MediaRecorder class and explain the basics of how this class can be
used to record audio or video. The use of the MediaPlayer class to play back audio will also be covered. Having
covered the basics, an example application will be created to demonstrate these techniques in action. In addition
to looking at audio and video handling, this chapter will also touch on the subject of saving files to the SD card.

73.1 Playing Audio
In terms of audio playback, most implementations of Android support AAC LC/LTP, HE-AACv1 (AAC+), HE-
AACv2 (enhanced AAC+), AMR-NB, AMR-WB, MP3, MIDI, Ogg Vorbis, and PCM/WAVE formats.

Audio playback can be performed using either the MediaPlayer or the AudioTrack classes. AudioTrack is a more
advanced option that uses streaming audio buffers and provides greater control over the audio. The MediaPlayer
class, on the other hand, provides an easier programming interface for implementing audio playback and will
meet the needs of most audio requirements.

The MediaPlayer class has associated with it a range of methods that can be called by an application to perform
certain tasks. A subset of some of the key methods of this class is as follows:

• create() – Called to create a new instance of the class, passing through the Uri of the audio to be played.

• setDataSource() – Sets the source from which the audio is to play.

• prepare() – Instructs the player to prepare to begin playback.

• start() – Starts the playback.

• pause() – Pauses the playback. Playback may be resumed via a call to the resume() method.

• stop() – Stops playback.

• setVolume() – Takes two floating-point arguments specifying the playback volume for the left and right
channels.

• resume() – Resumes a previously paused playback session.

• reset() – Resets the state of the media player instance. Essentially sets the instance back to the uninitialized
state. At a minimum, a reset player will need to have the data source set again and the prepare() method called.

• release() – To be called when the player instance is no longer needed. This method ensures that any resources
held by the player are released.

In a typical implementation, an application will instantiate an instance of the MediaPlayer class, set the source
of the audio to be played and then call prepare() followed by start(). For example:

614

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

MediaPlayer mediaPlayer = new MediaPlayer();

mediaPlayer.setDataSource("https://www.yourcompany.com/myaudio.mp3");

mediaPlayer.prepare();

mediaPlayer.start();

73.2 Recording Audio and Video using the MediaRecorder Class
As with audio playback, recording can be performed using a number of different techniques. One option is to
use the MediaRecorder class, which, as with the MediaPlayer class, provides a number of methods that are used
to record audio:

• setAudioSource() – Specifies the source of the audio to be recorded (typically this will be MediaRecorder.
AudioSource.MIC for the device microphone).

• setVideoSource() – Specifies the source of the video to be recorded (for example MediaRecorder.VideoSource.
CAMERA).

• setOutputFormat() – Specifies the format into which the recorded audio or video is to be stored (for example
MediaRecorder.OutputFormat.AAC_ADTS).

• setAudioEncoder() – Specifies the audio encoder to be used for the recorded audio (for example
MediaRecorder.AudioEncoder.AAC).

• setOutputFile() – Configures the path to the file into which the recorded audio or video is to be stored.

• prepare() – Prepares the MediaRecorder instance to begin recording.

• start() - Begins the recording process.

• stop() – Stops the recording process. Once a recorder has been stopped, it will need to be completely
reconfigured and prepared before being restarted.

• reset() – Resets the recorder. The instance will need to be completely reconfigured and prepared before being
restarted.

• release() – Should be called when the recorder instance is no longer needed. This method ensures all resources
held by the instance are released.

A typical implementation using this class will set the source, output and encoding format and output file. Calls
will then be made to the prepare() and start() methods. The stop() method will then be called when recording is
to end, followed by the reset() method. When the application no longer needs the recorder instance, a call to the
release() method is recommended:
MediaRecorder mediaRecorder = new MediaRecorder();

mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);

mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.AAC_ADTS);

mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AAC);

mediaRecorder.setOutputFile(audioFilePath);

mediaRecorder.prepare();

mediaRecorder.start();

.

615

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

.

mediaRecorder.stop();

mediaRecorder.reset();

mediaRecorder.release();

To record audio, the manifest file for the application must include the android.permission.RECORD_AUDIO
permission:
<uses-permission android:name="android.permission.RECORD_AUDIO" />

As outlined in the chapter entitled “Making Runtime Permission Requests in Android”, access to the microphone
falls into the category of dangerous permissions. To support Android 6, therefore, a specific request for
microphone access must also be made when the application launches, the steps for which will be covered later
in this chapter.

73.3 About the Example Project
The remainder of this chapter will work through the creation of an example application intended to demonstrate
the use of the MediaPlayer and MediaRecorder classes to implement the recording and playback of audio on an
Android device.

When developing applications that make use of specific hardware features, the microphone being a case in point,
it is important to check the availability of the feature before attempting to access it in the application code. The
application created in this chapter will, therefore, also include code to detect the presence of a microphone on
the device.

Once completed, this application will provide a very simple interface intended to allow the user to record and
playback audio. The recorded audio will need to be stored within an audio file on the device. That being the case,
this tutorial will also briefly explore the mechanism for using SD Card storage.

73.4 Creating the AudioApp Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter AudioApp into the Name field and specify com.ebookfrenzy.audioapp as the package name. Before clicking
on the Finish button, change the Minimum API level setting to API 31: Android 12.0 and the Language menu
to Java. Add view binding support to the project using the steps outlined in section 11.8 Migrating a Project to
View Binding.

73.5 Designing the User Interface
Once the new project has been created, select the activity_main.xml file from the Project tool window and with
the Layout Editor tool in Design mode, select the “Hello World!” TextView and delete it from the layout.

Drag and drop three Button views onto the layout. The positioning of the buttons is not of paramount importance
to this example, though Figure 73-1 shows a suggested layout using a vertical chain.

Configure the buttons to display string resources that read Play, Record and Stop and give them view IDs of
playButton, recordButton, and stopButton respectively.

Select the Play button and, within the Attributes panel, configure the onClick property to call a method named
playAudio when selected by the user. Repeat these steps to configure the remaining buttons to call methods
named recordAudio and stopAudio respectively.

616

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

Figure 73-1

73.6 Checking for Microphone Availability
Attempting to record audio on a device without a microphone will cause the Android system to throw an
exception. It is vital, therefore, that the code check for the presence of a microphone before making such an
attempt. There are a number of ways of doing this, including checking for the physical presence of the device.
An easier approach, and one that is more likely to work on different Android devices, is to ask the Android
system if it has a package installed for a particular feature. This involves creating an instance of the Android
PackageManager class and then making a call to the object’s hasSystemFeature() method. PackageManager.
FEATURE_MICROPHONE is the feature of interest in this case.

For the purposes of this example, we will create a method named hasMicrophone() that may be called upon
to check for the presence of a microphone. Within the Project tool window, locate and double-click on the
MainActivity.java file and modify it to add this method:
package com.ebookfrenzy.audioapp;

.

.

import android.content.pm.PackageManager;
.

.

public class MainActivity extends AppCompatActivity {

.

.

 protected boolean hasMicrophone() {
 PackageManager pmanager = this.getPackageManager();
 return pmanager.hasSystemFeature(
 PackageManager.FEATURE_MICROPHONE);
 }
}

617

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

73.7 Initializing the Activity
The next step is to modify the activity to perform a number of initialization tasks. Remaining within the
MainActivity.java file, modify the code as follows:
package com.ebookfrenzy.audioapp;

import java.io.File;
import java.io.IOException;

import androidx.annotation.NonNull;
import android.media.MediaRecorder;
import android.os.Environment;
import android.media.MediaPlayer;
.

.

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 private static MediaRecorder mediaRecorder;
 private static MediaPlayer mediaPlayer;

 private static String audioFilePath;
 private boolean isRecording = false;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 audioSetup();
 }

 private void audioSetup()
 {
 if (!hasMicrophone())
 {
 binding.stopButton.setEnabled(false);
 binding.playButton.setEnabled(false);
 binding.recordButton.setEnabled(false);
 } else {
 binding.playButton.setEnabled(false);
 binding.stopButton.setEnabled(false);
 }

 File audioFile = new File(this.getFilesDir(), "myaudio.3gp");

618

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

 audioFilePath = audioFile.getAbsolutePath();
 }
.

.

}

The added code calls hasMicrophone() method to ascertain whether the device includes a microphone. If it does
not, all the buttons are disabled, otherwise only the Stop and Play buttons are disabled.

The next line of code needs a little more explanation:
File audioFile = new File(this.getFilesDir(), "myaudio.3gp");

audioFilePath = audioFile.getAbsolutePath();

This code creates a new file named myaudio.3gp within the app’s internal storage to store the audio recording.

73.8 Implementing the recordAudio() Method
When the user touches the Record button, the recordAudio() method will be called. This method will need to
enable and disable the appropriate buttons and configure the MediaRecorder instance with information about
the source of the audio, the output format and encoding, and the location of the file into which the audio is to be
stored. Finally, the prepare() and start() methods of the MediaRecorder object will need to be called. Combined,
these requirements result in the following method implementation in the MainActivity.java file:
public void recordAudio (View view)

{

 isRecording = true;

 binding.stopButton.setEnabled(true);

 binding.playButton.setEnabled(false);

 binding.recordButton.setEnabled(false);

 try {

 mediaRecorder = new MediaRecorder(this);

 mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);

 mediaRecorder.setOutputFormat(

 MediaRecorder.OutputFormat.THREE_GPP);

 mediaRecorder.setOutputFile(audioFilePath);

 mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);

 mediaRecorder.prepare();

 } catch (Exception e) {

 e.printStackTrace();

 }

 mediaRecorder.start();

}

73.9 Implementing the stopAudio() Method
The stopAudio() method is responsible for enabling the Play button, disabling the Stop button and then stopping
and resetting the MediaRecorder instance. The code to achieve this reads as outlined in the following listing and
should be added to the MainActivity.java file:
public void stopAudio (View view)

{

619

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

 binding.stopButton.setEnabled(false);

 binding.playButton.setEnabled(true);

 if (isRecording)

 {

 binding.recordButton.setEnabled(false);

 mediaRecorder.stop();

 mediaRecorder.release();

 mediaRecorder = null;

 isRecording = false;

 } else {

 mediaPlayer.release();

 mediaPlayer = null;

 binding.recordButton.setEnabled(true);

 }

}

73.10 Implementing the playAudio() method
The playAudio() method will simply create a new MediaPlayer instance, assign the audio file located on the SD
card as the data source and then prepare and start the playback:
public void playAudio (View view) throws IOException

{

 binding.playButton.setEnabled(false);

 binding.recordButton.setEnabled(false);

 binding.stopButton.setEnabled(true);

 mediaPlayer = new MediaPlayer();

 mediaPlayer.setDataSource(audioFilePath);

 mediaPlayer.prepare();

 mediaPlayer.start();

}

73.11 Configuring and Requesting Permissions
Before testing the application, it is essential that the appropriate permissions be requested within the manifest
file for the application. Specifically, the application will require permission to access the microphone. Within
the Project tool window, locate and double-click on the AndroidManifest.xml file to load it into the editor and
modify the XML to add the permission tags:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <uses-permission android:name="android.permission.RECORD_AUDIO" />

 <application

.

.

620

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

The above steps will be adequate to ensure that the user enables microphone access permission when the app is
installed on devices running versions of Android predating Android 6.0. Microphone access is categorized in
Android as being dangerous permissions because it gives the app the potential to compromise the user’s privacy.
For the example app to function on Android 6 or later devices, therefore, code needs to be added to specifically
request permission at app runtime.

Edit the MainActivity.java file and begin by adding some additional import directives and a constants to act as
request identification codes for the permissions being requested:
.

.

import androidx.core.app.ActivityCompat;
import androidx.core.content.ContextCompat;
import android.widget.Toast;
import android.Manifest;
.

.

public class MainActivity extends AppCompatActivity {

 private static final int RECORD_REQUEST_CODE = 101;
.

.

Next, a method needs to be added to the class, the purpose of which is to take as arguments the permission to
be requested and the corresponding request identification code. Remaining with the MainActivity.java class file,
implement this method as follows:
protected void requestPermission(String permissionType, int requestCode) {

 int permission = ContextCompat.checkSelfPermission(this,

 permissionType);

 if (permission != PackageManager.PERMISSION_GRANTED) {

 ActivityCompat.requestPermissions(this,

 new String[]{permissionType}, requestCode

);

 }

}

Using the steps outlined in the “Making Runtime Permission Requests in Android” chapter of this book, the above
method verifies that the specified permission has not already been granted before making the request, passing
through the identification code as an argument.

When the request has been handled, the onRequestPermissionsResult() method will be called on the activity,
passing through the identification code and the results of the request. The next step, therefore, is to implement
this method within the MainActivity.java file as follows:
@Override

public void onRequestPermissionsResult(int requestCode,

 @NonNull String[] permissions, @NonNull int[] grantResults) {

 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

621

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

 if (requestCode == RECORD_REQUEST_CODE) {

 if (grantResults.length == 0

 || grantResults[0] !=

 PackageManager.PERMISSION_GRANTED) {

 binding.recordButton.setEnabled(false);

 Toast.makeText(this,

 "Record permission required",

 Toast.LENGTH_LONG).show();

 }

 }

}

The above code checks the request identifier code to identify which permission request has returned before
checking whether or not the corresponding permission was granted. If permission was denied, a message is
displayed to the user indicating the app will not function and the record button is disabled.

All that remains before testing the app is to call the newly added requestPermission() method for microphone
access when the app launches. Remaining in the MainActivity.java file, modify the audioSetup() method as
follows:
private void audioSetup(){

 binding.recordButton = findViewById(R.id.recordButton);

 binding.playButton = findViewById(R.id.playButton);

 binding.stopButton = findViewById(R.id.stopButton);

 if (!hasMicrophone())

 {

 stopButton.setEnabled(false);

 playButton.setEnabled(false);

 recordButton.setEnabled(false);

 } else {

 playButton.setEnabled(false);

 stopButton.setEnabled(false);

 }

 File audioFile = new File(this.getFilesDir(), "myaudio.3gp");

 audioFilePath = audioFile.getAbsolutePath();

 requestPermission(Manifest.permission.RECORD_AUDIO,
 RECORD_REQUEST_CODE);
}

73.12 Testing the Application
Compile and run the application on an Android device containing a microphone, allow microphone access and
tap the Record button. After recording, touch Stop followed by Play, at which point the recorded audio should
play back through the device speakers.

622

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

73.13 Summary
The Android SDK provides a number of mechanisms for the implementation of audio recording and playback.
This chapter has looked at two of these, in the form of the MediaPlayer and MediaRecorder classes. Having
covered the theory of using these techniques, this chapter worked through the creation of an example application
designed to record and then play back audio. In the course of working with audio in Android, this chapter also
looked at the steps involved in ensuring that the device on which the application is running has a microphone
before attempting to record audio.

623

Chapter 74

74. Working with the Google Maps
Android API in Android Studio
When Google decided to introduce a map service many years ago, it is hard to say whether or not they ever
anticipated having a version available for integration into mobile applications. When the first web based version
of what would eventually be called Google Maps was introduced in 2005, the iPhone had yet to ignite the
smartphone revolution and the company that was developing the Android operating system would not be
acquired by Google for another six months. Whatever aspirations Google had for the future of Google Maps,
it is remarkable to consider that all of the power of Google Maps can now be accessed directly via Android
applications using the Google Maps Android API.

This chapter is intended to provide an overview of the Google Maps system and Google Maps Android API. The
chapter will provide an overview of the different elements that make up the API, detail the steps necessary to
configure a development environment to work with Google Maps and then work through some code examples
demonstrating some of the basics of Google Maps Android integration.

74.1 The Elements of the Google Maps Android API
The Google Maps Android API consists of a core set of classes that combine to provide mapping capabilities in
Android applications. The key elements of a map are as follows:

• GoogleMap – The main class of the Google Maps Android API. This class is responsible for downloading and
displaying map tiles and for displaying and responding to map controls. The GoogleMap object is not created
directly by the application but is instead created when MapView or MapFragment instances are created. A
reference to the GoogleMap object can be obtained within application code via a call to the getMap() method
of a MapView, MapFragment or SupportMapFragment instance.

• MapView - A subclass of the View class, this class provides the view canvas onto which the map is drawn by
the GoogleMap object, allowing a map to be placed in the user interface layout of an activity.

• SupportMapFragment – A subclass of the Fragment class, this class allows a map to be placed within a
Fragment in an Android layout.

• Marker – The purpose of the Marker class is to allow locations to be marked on a map. Markers are added to
a map by obtaining a reference to the GoogleMap object associated with a map and then making a call to the
addMarker() method of that object instance. The position of a marker is defined via Longitude and Latitude.
Markers can be configured in a number of ways, including specifying a title, text and an icon. Markers may
also be made to be “draggable”, allowing the user to move the marker to different positions on a map.

• Shapes – The drawing of lines and shapes on a map is achieved through the use of the Polyline, Polygon and
Circle classes.

• UiSettings – The UiSettings class provides a level of control from within an application of which user interface
controls appear on a map. Using this class, for example, the application can control whether or not the zoom,
current location and compass controls appear on a map. This class can also be used to configure which touch
screen gestures are recognized by the map.

624

Working with the Google Maps Android API in Android Studio

• My Location Layer – When enabled, the My Location Layer displays a button on the map which, when
selected by the user, centers the map on the user’s current geographical location. If the user is stationary, this
location is represented on the map by a blue marker. If the user is in motion the location is represented by a
chevron indicating the user’s direction of travel.

The best way to gain familiarity with the Google Maps Android API is to work through an example. The
remainder of this chapter will create a Google Maps based application while highlighting the key areas of the
API.

74.2 Creating the Google Maps Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
No Activity template before clicking on the Next button.

Enter MapDemo into the Name field and specify com.ebookfrenzy.mapdemo as the package name. Before clicking
on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the Language
menu to Java.

Next, right-click on the app -> java -> com.ebookfrenzy.mapdemo entry in the Project tool window and select
the New -> Google -> Google Maps Views Activity menu option. Finally, enable the Launcher Activity checkbox
in the New Android Activity dialog before clicking the Finish button:

Figure 74-1

74.3 Creating a Google Cloud Billing Account
Before you can use the Google Map APIs you must first create Google Cloud billing account (unless you already
have one, in which case you can skip to the next section). To do this, open a browser and use the following link
to navigate to the Google Cloud Console:

https://console.cloud.google.com/

Next, click on the menu button in the top left-hand corner of the console page and select the Billing entry as
illustrated in Figure 74-2 below:

https://console.cloud.google.com/

625

Working with the Google Maps Android API in Android Studio

Figure 74-2
On the Billing page, select the option to add a new billing account and then follow the steps to start a free trial.
You will need to provide a credit card to open the account, but Google won’t charge you when the free trial ends
without your consent.

74.4 Creating a New Google Cloud Project
The next step is to create a Google Cloud project to be associated with the MapDemo app. To do this, return to
the Google Cloud Console dashboard by using the following URL:

https://console.cloud.google.com/home/dashboard

Within the dashboard, click the Select a project button located in the top toolbar:

Figure 74-3
When the project selection dialog appears, click on the New Project button (highlighted in Figure 74-4):

626

Working with the Google Maps Android API in Android Studio

Figure 74-4
When the new project screen appears, provide a name for the project. The console will display a default id for the
project beneath the project name field. If you don’t like the default id, click the Edit button to change it:

Figure 74-5
Click the Create button, and after a brief pause, you will be returned to the dashboard where your new project
will be listed.

74.5 Enabling the Google Maps SDK
Now that we have created a new Google Cloud project, the next step is to allow the project to use the Google
Maps SDK. To enable Google Maps support, select your project in the Google Cloud Console, click the menu
button in the top left-hand corner and select the Google Maps Platform entry. Then, from the resulting menu,
select the APIs option as shown in Figure 74-6:

627

Working with the Google Maps Android API in Android Studio

Figure 74-6
On the APIs screen, click on the Maps SDK for Android option and, on the resulting screen, click the Enable
button:

Figure 74-7
Repeat the above steps to enable the Geocoding API credential, which will be needed later in the chapter to
allow our app to display the user’s current location.

Once you have enabled the credentials for your project, click the back arrow to return to the product details page
in preparation for the next step.

74.6 Generating a Google Maps API Key
Before an application can use the Google Maps Android SDK, it must first be configured with an API key that
will associate it with a Maps-enabled Google Cloud project. To generate an API key, select the Credentials menu

628

Working with the Google Maps Android API in Android Studio

option (marked A in Figure 74-8) followed by Create Credentials button (B):

Figure 74-8
After the credential has been created, a dialog will appear displaying the API key. Copy the key before closing
the API dialog:

Figure 74-9

74.7 Adding the API Key to the Android Studio Project
Now that we have generated an API key that will allow our app to use the Google Maps SDK, we need to add it
to our project. Return to Android Studio, edit the manifests -> AndroidManifest.xml file, and locate the API key
entry, which will read as follows:
<meta-data

 android:name="com.google.android.geo.API_KEY"

 android:value="YOUR_API_KEY" />

Delete the text that reads “YOUR_API_KEY” and replace it with the API key created in the Google Play Console.

Next, edit the Gradle Scripts -> local.properties file and add a new line that reads as follows (where the API key
for your project replaces YOUR_API_KEY):
MAPS_API_KEY=YOUR_API_KEY

629

Working with the Google Maps Android API in Android Studio

74.8 Testing the Application
Perform a test run of the application to verify that the API key is correctly configured. Assuming the configuration
is correct, the application will run and display a map on the screen.

If a map is not displayed, check the following areas:

• If the application is running on an emulator, make sure that the emulator is running a version of Android
that includes the Google APIs. The current operating system can be changed for an AVD configuration by
selecting the Tools -> Android -> AVD Manager menu option, clicking on the pencil icon in the Actions
column of the AVD followed by the Change… button next to the current Android version. Within the system
image dialog, select a target that includes the Google APIs.

• Check the Logcat output for any areas relating to authentication problems with regard to the Google Maps API.
This usually means the API key was entered incorrectly. Ensure that the API key in both the AndroidManifest.
xml and local.properties files matches the key generated in the Google Cloud console.

• Verify within the Google API Console that Maps SDK for Android has been enabled in the Credentials panel.

74.9 Understanding Geocoding and Reverse Geocoding
It is impossible to talk about maps and geographical locations without first covering the subject of Geocoding.
Geocoding can best be described as the process of converting a textual-based geographical location (such as a
street address) into geographical coordinates expressed in terms of longitude and latitude.

Geocoding can be achieved using the Android Geocoder class. An instance of the Geocoder class can, for
example, be passed a string representing a location such as a city name, street address or airport code. The
Geocoder will attempt to find a match for the location and return a list of Address objects that potentially match
the location string, ranked in order with the closest match at position 0 in the list. A variety of information can
then be extracted from the Address objects, including the longitude and latitude of the potential matches.

The following code, for example, requests the location of the National Air and Space Museum in Washington,
D.C.:
import java.io.IOException;

import java.util.List;

import android.location.Address;

import android.location.Geocoder;

.

.

double latitude;

double longitude;

List<Address> geocodeMatches = null;

try {

 geocodeMatches =

 new Geocoder(this).getFromLocationName(

 "600 Independence Ave SW, Washington, DC 20560", 1);

 } catch (IOException e) {

 // TODO Auto-generated catch block

630

Working with the Google Maps Android API in Android Studio

 e.printStackTrace();

}

if (!geocodeMatches.isEmpty())

{

 latitude = geocodeMatches.get(0).getLatitude();

 longitude = geocodeMatches.get(0).getLongitude();

}

Note that the value of 1 is passed through as the second argument to the getFromLocationName() method. This
simply tells the Geocoder to return only one result in the array. Given the specific nature of the address provided,
there should only be one potential match. For more vague location names, however, it may be necessary to
request more potential matches and allow the user to choose the correct one.

The above code is an example of forward-geocoding in that coordinates are calculated based on a text location
description. Reverse-geocoding, as the name suggests, involves the translation of geographical coordinates into a
human readable address string. Consider, for example, the following code:
import java.io.IOException;

import java.util.List;

import android.location.Address;

import android.location.Geocoder;

.

.

List<Address> geocodeMatches = null;

String Address1;

String Address2;

String State;

String Zipcode;

String Country;

try {

 geocodeMatches =

 new Geocoder(this).getFromLocation(38.8874245, -77.0200729, 1);

} catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

}

if (!geocodeMatches.isEmpty())

{

 Address1 = geocodeMatches.get(0).getAddressLine(0);

 Address2 = geocodeMatches.get(0).getAddressLine(1);

 State = geocodeMatches.get(0).getAdminArea();

 Zipcode = geocodeMatches.get(0).getPostalCode();

 Country = geocodeMatches.get(0).getCountryName();

}

631

Working with the Google Maps Android API in Android Studio

In this case the Geocoder object is initialized with latitude and longitude values via the getFromLocation()
method. Once again, only a single matching result is requested. The text based address information is then
extracted from the resulting Address object.

It should be noted that the geocoding is not actually performed on the Android device, but rather on a server
to which the device connects when a translation is required and the results subsequently returned when the
translation is complete. As such, geocoding can only take place when the device has an active internet connection.

74.10 Adding a Map to an Application
The simplest way to add a map to an application is to specify it in the user interface layout XML file for an
activity. The following example layout file shows the SupportMapFragment instance added to the activity_maps.
xml file created by Android Studio:
<fragment xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:id="@+id/map"

 tools:context=".MapsActivity"

 android:name="com.google.android.gms.maps.SupportMapFragment"/>

74.11 Requesting Current Location Permission
As outlined in the chapter entitled “Making Runtime Permission Requests in Android”, certain permissions are
considered dangerous and require special handling for Android 6.0 or later. One set of permissions allows
applications to identify the user’s current location. Edit the AndroidManifest.xml file located under app ->
manifests in the Project tool window and add the following permission lines:
<uses-permission

 android:name="android.permission.ACCESS_FINE_LOCATION" />

<uses-permission

 android:name="android.permission.ACCESS_COARSE_LOCATION" />

These settings will ensure that the app can provide permission for the app to obtain location information when
installed on older versions of Android. To support Android 6.0 or later, however, we need to add some code to
the MapsActivity.java file to request this permission at runtime.

Begin by adding some import directives and a constant to act as the permission request code:
package com.ebookfrenzy.mapdemo;

.

.

import androidx.annotation.NonNull;
import androidx.core.content.ContextCompat;
import androidx.core.app.ActivityCompat;
import android.Manifest;
import android.widget.Toast;
import android.content.pm.PackageManager;
.

.

public class MapsActivity extends FragmentActivity implements OnMapReadyCallback

632

Working with the Google Maps Android API in Android Studio

{

 private static final int LOCATION_REQUEST_CODE = 101;
 private GoogleMap mMap;

.

.

}

Next, a method needs to be added to the class to request a specified permission from the user. Remaining within
the MapsActivity.java class file, implement this method as follows:
protected void requestPermission(String permissionType,

 int requestCode) {

 ActivityCompat.requestPermissions(this,

 new String[]{permissionType}, requestCode

);

}

When the user has responded to the permission request, the onRequestPermissionsResult() method will be called
on the activity. Remaining in the MapsActivity.java file, implement this method now so that it reads as follows:
@Override

public void onRequestPermissionsResult(int requestCode,

 @NonNull String[] permissions, @NonNull int[] grantResults) {

 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 if (requestCode == LOCATION_REQUEST_CODE) {

 if (grantResults.length == 0

 || grantResults[0] !=

 PackageManager.PERMISSION_GRANTED) {

 Toast.makeText(this,

 "Unable to show location - permission required",

 Toast.LENGTH_LONG).show();

 } else {

 SupportMapFragment mapFragment =

 (SupportMapFragment) getSupportFragmentManager()

 .findFragmentById(R.id.map);

 mapFragment.getMapAsync(this);

 }

 }

}

If permission has not been granted by the user, the app displays a message indicating that the current location
cannot be displayed. If, on the other hand, permission was granted, the map is refreshed to provide an opportunity
for the location marker to be displayed.

74.12 Displaying the User’s Current Location
Once the appropriate permission has been granted, the user’s current location may be displayed on the
map by obtaining a reference to the GoogleMap object associated with the displayed map and calling the

633

Working with the Google Maps Android API in Android Studio

setMyLocationEnabled() method of that instance, passing through a value of true.

When the map is ready to display, the onMapReady() method of the activity is called. This method will also be
called when the map is refreshed within the onRequestPermissionsResult() method above. By default, Android
Studio has implemented this method and added some code to orient the map over Australia with a marker
positioned over the city of Sidney. Locate and edit the onMapReady() method in the MapsActivity.java file to
remove this template code and to add code to check the location permission has been granted before enabling
display of the user’s current location. If permission has not been granted, a request is made to the user via a call
to the previously added requestPermission() method:
@Override

public void onMapReady(GoogleMap googleMap) {

 mMap = googleMap;

 // Add a marker in Sydney and move the camera

 LatLng sydney = new LatLng(-34, 151);

 mMap.addMarker(new MarkerOptions().position(sydney).title("Marker in
Sydney"));

 mMap.moveCamera(CameraUpdateFactory.newLatLng(sydney));

 if (mMap != null) {
 int permission = ContextCompat.checkSelfPermission(this,
 Manifest.permission.ACCESS_FINE_LOCATION);

 if (permission == PackageManager.PERMISSION_GRANTED) {
 mMap.setMyLocationEnabled(true);
 } else {
 requestPermission(
 Manifest.permission.ACCESS_FINE_LOCATION,
 LOCATION_REQUEST_CODE);
 }
 }
}

When the app is now run, the dialog shown in Figure 74-10 will appear requesting location permission. If
permission is granted, a blue dot will appear on the map indicating the current location of the device.

634

Working with the Google Maps Android API in Android Studio

Figure 74-10

74.13 Changing the Map Type
The type of map displayed can be modified dynamically by making a call to the setMapType() method of the
corresponding GoogleMap object, passing through one of the following values:

· GoogleMap.MAP_TYPE_NONE – An empty grid with no mapping tiles displayed.

· GoogleMap.MAP_TYPE_NORMAL – The standard view consisting of the classic road map.

· GoogleMap.MAP_TYPE_SATELLITE – Displays the satellite imagery of the map region.

· GoogleMap.MAP_TYPE_HYBRID – Displays satellite imagery with the road map superimposed.

· GoogleMap.MAP_TYPE_TERRAIN – Displays topographical information such as contour lines and colors.

The following code change to the onMapReady() method, for example, switches a map to Satellite mode:
.

.

if (mMap != null) {

 int permission = ContextCompat.checkSelfPermission(

 this, Manifest.permission.ACCESS_FINE_LOCATION);

 if (permission == PackageManager.PERMISSION_GRANTED) {

 mMap.setMyLocationEnabled(true);

 } else {

 requestPermission(Manifest.permission.ACCESS_FINE_LOCATION,

 LOCATION_REQUEST_CODE);

 }

635

Working with the Google Maps Android API in Android Studio

 mMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);
}

.

.

Alternatively, the map type may be specified in the XML layout file in which the map is embedded using the
map:mapType property together with a value of none, normal, hybrid, satellite or terrain. For example:
<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:map="http://schemas.android.com/apk/res-auto"

 android:id="@+id/map"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 map:mapType="hybrid"
 android:name="com.google.android.gms.maps.SupportMapFragment"/>

74.14 Displaying Map Controls to the User
The Google Maps Android API provides a number of controls that may be optionally displayed to the user
consisting of zoom in and out buttons, a “my location” button and a compass.

Whether or not the zoom and compass controls are displayed may be controlled either programmatically or
within the map element in XML layout resources. To configure the controls programmatically, a reference to the
UiSettings object associated with the GoogleMap object must be obtained:
import com.google.android.gms.maps.UiSettings;

.

.

UiSettings mapSettings;

mapSettings = mMap.getUiSettings();

The zoom controls are enabled and disabled via the calls to the setZoomControlsEnabled() method of the
UiSettings object. For example:
mapSettings.setZoomControlsEnabled(true);

Alternatively, the map:uiZoomControls property may be set within the map element of the XML resource file:
map:uiZoomControls="false"

The compass may be displayed either via a call to the setCompassEnabled() method of the UiSettings instance, or
through XML resources using the map:uiCompass property. Note the compass icon only appears when the map
camera is tilted or rotated away from the default orientation.

The “My Location” button will only appear when My Location mode is enabled as outlined earlier in this chapter. The
button may be prevented from appearing even when in this mode via a call to the setMyLocationButtonEnabled()
method of the UiSettings instance.

74.15 Handling Map Gesture Interaction
The Google Maps Android API is capable of responding to a number of different user interactions. These
interactions can be used to change the area of the map displayed, the zoom level and even the angle of view
(such that a 3D representation of the map area is displayed for certain cities).

636

Working with the Google Maps Android API in Android Studio

74.15.1 Map Zooming Gestures
Support for gestures relating to zooming in and out of a map may be enabled or disabled using the
setZoomGesturesEnabled() method of the UiSettings object associated with the GoogleMap instance. For
example, the following code disables zoom gestures for our example map:
UiSettings mapSettings;

mapSettings = map.getUiSettings();

mapSettings.setZoomGesturesEnabled(false);

The same result can be achieved within an XML resource file by setting the map:uiZoomGestures property to
true or false.

When enabled, zooming will occur when the user makes pinching gestures on the screen. Similarly, a double
tap will zoom in while a two finger tap will zoom out. One finger zooming gestures, on the other hand, are
performed by tapping twice but not releasing the second tap and then sliding the finger up and down on the
screen to zoom in and out respectively.

74.15.2 Map Scrolling/Panning Gestures
A scrolling, or panning gesture allows the user to move around the map by dragging the map around the screen with
a single finger motion. Scrolling gestures may be enabled within code via a call to the setScrollGesturesEnabled()
method of the UiSettings instance:
UiSettings mapSettings;

mapSettings = mMap.getUiSettings();

mapSettings.setScrollGesturesEnabled(true);

Alternatively, scrolling on a map instance may be enabled in an XML resource layout file using the
map:uiScrollGestures property.

74.15.3 Map Tilt Gestures
Tilt gestures allow the user to tilt the angle of projection of the map by placing two fingers on the screen and
moving them up and down to adjust the tilt angle. Tilt gestures may be enabled or disabled via a call to the
setTiltGesturesEnabled() method of the UiSettings instance, for example:
UiSettings mapSettings;

mapSettings = mMap.getUiSettings();

mapSettings.setTiltGesturesEnabled(true);

Tilt gestures may also be enabled and disabled using the map:uiTiltGestures property in an XML layout resource
file.

74.15.4 Map Rotation Gestures
By placing two fingers on the screen and rotating them in a circular motion, the user may rotate the orientation
of a map when map rotation gestures are enabled. This gesture support is enabled and disabled in code via a call
to the setRotateGesturesEnabled() method of the UiSettings instance, for example:
UiSettings mapSettings;

mapSettings = mMap.getUiSettings();

mapSettings.setRotateGesturesEnabled(true);

Rotation gestures may also be enabled or disabled using the map:uiRotateGestures property in an XML layout
resource file.

637

Working with the Google Maps Android API in Android Studio

74.16 Creating Map Markers
Markers are used to notify the user of locations on a map and take the form of either a standard or custom icon.
Markers may also include a title and optional text (referred to as a snippet) and may be configured such that
they can be dragged to different locations on the map by the user. When tapped by the user an info window will
appear displaying additional information about the marker location.

Markers are represented by instances of the Marker class and are added to a map via a call to the addMarker()
method of the corresponding GoogleMap object. Passed through as an argument to this method is a
MarkerOptions class instance containing the various options required for the marker such as the title and
snippet text. The location of a marker is defined by specifying latitude and longitude values, also included as
part of the MarkerOptions instance. For example, the following code adds a marker including a title, snippet and
a position to a specific location on the map:
import com.google.android.gms.maps.model.Marker;

import com.google.android.gms.maps.model.LatLng;

import com.google.android.gms.maps.model.MarkerOptions;

.

.

.

LatLng position = new LatLng(38.8874245, -77.0200729);

Marker museum = mMap.addMarker(new MarkerOptions()

 .position(position)

 .title("Museum")

 .snippet("National Air and Space Museum"));

When executed, the above code will mark the location specified which, when tapped, will display an info window
containing the title and snippet as shown in Figure 74-11:

Figure 74-11

74.17 Controlling the Map Camera
Because Android device screens are flat and the world is a sphere, the Google Maps Android API uses the
Mercator projection to represent the earth on a flat surface. The default view of the map is presented to the user
as though through a camera suspended above the map and pointing directly down at the map. The Google Maps
Android API allows the target, zoom, bearing and tilt of this camera to be changed in real-time from within the
application:

• Target – The location of the center of the map within the device display specified in terms of longitude and

638

Working with the Google Maps Android API in Android Studio

latitude.

• Zoom – The zoom level of the camera specified in levels. Increasing the zoom level by 1.0 doubles the width
of the amount of the map displayed.

• Tilt – The viewing angle of the camera specified as a position on an arc spanning directly over the center of
the viewable map area measured in degrees from the top of the arc (this being the nadir of the arc where the
camera points directly down to the map).

• Bearing – The orientation of the map in degrees measured in a clockwise direction from North.

Camera changes are made by creating an instance of the CameraUpdate class with the appropriate settings.
CameraUpdate instances are created by making method calls to the CameraUpdateFactory class. Once a
CameraUpdate instance has been created, it is applied to the map via a call to the moveCamera() method of the
GoogleMap instance. To obtain a smooth animated effect as the camera changes, the animateCamera() method
may be called instead of moveCamera().

A summary of CameraUpdateFactory methods is as follows:

• CameraUpdateFactory.zoomIn() – Provides a CameraUpdate instance zoomed in by one level.

• CameraUpdateFactory.zoomOut() - Provides a CameraUpdate instance zoomed out by one level.

• CameraUpdateFactory.zoomTo(float) - Generates a CameraUpdate instance that changes the zoom level to
the specified value.

• CameraUpdateFactory.zoomBy(float) – Provides a CameraUpdate instance with a zoom level increased or
decreased by the specified amount.

• CameraUpdateFactory.zoomBy(float, Point) - Creates a CameraUpdate instance that increases or decreases
the zoom level by the specified value.

• CameraUpdateFactory.newLatLng(LatLng) - Creates a CameraUpdate instance that changes the camera’s
target latitude and longitude.

• CameraUpdateFactory.newLatLngZoom(LatLng, float) - Generates a CameraUpdate instance that changes
the camera’s latitude, longitude and zoom.

• CameraUpdateFactory.newCameraPosition(CameraPosition) - Returns a CameraUpdate instance that
moves the camera to the specified position. A CameraPosition instance can be obtained using CameraPosition.
Builder().

The following code, for example, zooms in the camera by one level using animation:
mMap.animateCamera(CameraUpdateFactory.zoomIn());

The following code, on the other hand, moves the camera to a new location and adjusts the zoom level to 10
without animation:
private static final LatLng position =

 new LatLng(38.8874245, -77.0200729);

mMap.moveCamera(CameraUpdateFactory.newLatLngZoom(position, 10));

Finally, the next code example uses CameraPosition.Builder() to create a CameraPosition object with changes to
the target, zoom, bearing and tilt. This change is then applied to the camera using animation:
import com.google.android.gms.maps.model.CameraPosition;

639

Working with the Google Maps Android API in Android Studio

import com.google.android.gms.maps.CameraUpdateFactory;

.

.

CameraPosition cameraPosition = new CameraPosition.Builder()

 .target(position)

 .zoom(50)

 .bearing(70)

 .tilt(25)

 .build();

mMap.animateCamera(CameraUpdateFactory.newCameraPosition(

 cameraPosition));

74.18 Summary
This chapter has provided an overview of the key classes and methods that make up the Google Maps Android
API and outlined the steps involved in preparing both the development environment and an application project
to make use of the API.

641

Chapter 75

75. Printing with the Android
Printing Framework
With the introduction of the Android 4.4 KitKat release, it became possible to print content from within Android
applications. While subsequent chapters will explore in more detail the options for adding printing support to
your own applications, this chapter will focus on the various printing options now available in Android and the
steps involved in enabling those options. Having covered these initial topics, the chapter will then provide an
overview of the various printing features that are available to Android developers in terms of building printing
support into applications.

75.1 The Android Printing Architecture
Printing in Android is provided by the Printing framework. In basic terms, this framework consists of a Print
Manager and a number of print service plugins. It is the responsibility of the Print Manager to handle the print
requests from applications on the device and to interact with the print service plugins that are installed on the
device, thereby ensuring that print requests are fulfilled. By default, many Android devices have print service
plugins installed to enable printing using the Google Cloud Print and Google Drive services. Print Services
Plugins for other printer types, if not already installed, may also be obtained from the Google Play store. Print
Service Plugins are currently available for HP, Epson, Samsung and Canon printers and plugins from other
printer manufactures will most likely be released in the future though the Google Cloud Print service plugin can
also be used to print from an Android device to just about any printer type and model. For the purposes of this
book, we will use the HP Print Services Plugin as a reference example.

75.2 The Print Service Plugins
The purpose of the Print Service plugins is to enable applications to print to compatible printers that are visible
to the Android device via a local area wireless network or Bluetooth.

The presence of the Print Service Plugin on an Android device can be verified by loading the Google Play app
and performing a search for “Print Service Plugin”. Once the plugin is listed in the Play Store, and if the plugin
is not already installed, it can be installed by selecting the Install button. Figure 75-1, for example, shows the HP
Print Service plugin within Google Play.

The Print Services plugins will automatically detect compatible printers on the network to which the Android
device is currently connected and list them as options when printing from an application.

642

Printing with the Android Printing Framework

Figure 75-1

75.3 Google Cloud Print
Google Cloud Print is a service provided by Google that enables you to print content onto your own printer
over the web from anywhere with internet connectivity. Google Cloud Print supports a wide range of devices
and printer models in the form of both Cloud Ready and Classic printers. A Cloud Ready printer has technology
built-in that enables printing via the web. Manufacturers that provide cloud ready printers include Brother,
Canon, Dell, Epson, HP, Kodak and Samsung. To identify if your printer is both cloud ready and supported by
Google Cloud Print, review the list of printers at the following URL:

https://www.google.com/cloudprint/learn/printers.html

In the case of classic, non-Cloud Ready printers, Google Cloud Print provides support for cloud printing through
the installation of software on the computer system to which the classic printer is connected (either directly or
over a home or office network).

To set up Google Cloud Print, visit the following web page and login using the same Google account ID that you
use when logging in to your Android devices:

https://www.google.com/cloudprint/learn/index.html

Once printers have been added to your Google Cloud Print account, they will be listed as printer destination
options when you print from within Android applications on your devices.

75.4 Printing to Google Drive
In addition to supporting physical printers, it is also possible to save printed output to your Google Drive
account. When printing from a device, select the Save to Google Drive option in the printing panel. The content
to be printed will then be converted to a PDF file and saved to the Google Drive cloud-based storage associated
with the currently active Google Account ID on the device.

https://www.google.com/cloudprint/learn/printers.html
https://www.google.com/cloudprint/learn/index.html

643

Printing with the Android Printing Framework

75.5 Save as PDF
The final printing option provided by Android allows the printed content to be saved locally as a PDF file on the
Android device. Once selected, this option will request a name for the PDF file and a location on the device into
which the document is to be saved.

Both the Save as PDF and Google Drive options can be invaluable in terms of saving paper when testing the
printing functionality of your own Android applications.

75.6 Printing from Android Devices
Google recommends that applications which provide the ability to print content do so by placing the print
option in the Overflow menu. A number of applications bundled with Android now include “Print…” menu
options. Figure 75-2, for example, shows the Print option accessed by selecting the “Share…” option in the
Overflow menu of the Chrome browser application:

Figure 75-2
Once the print option has been selected from within an application, the standard Android print screen will
appear showing a preview of the content to be printed as illustrated in Figure 75-3:

Figure 75-3
Tapping the panel along the top of the screen will display the full range of printing options:

644

Printing with the Android Printing Framework

Figure 75-4
The Android print panel provides the usual printing options such as paper size, color, orientation and number
of copies. Other print destination options may be accessed by tapping on the current printer or PDF output
selection.

75.7 Options for Building Print Support into Android Apps
The Printing framework provides a number of options for incorporating print support into Android applications.
These options can be categorized as follows:

75.7.1 Image Printing
As the name suggests, this option allows image printing to be incorporated into Android applications. When
adding this feature to an application, the first step is to create a new instance of the PrintHelper class:
PrintHelper imagePrinter = new PrintHelper(context);

Next, the scale mode for the printed image may be specified via a call to the setScaleMode() method of the
PrintHelper instance. Options are as follows:

• SCALE_MODE_FIT – The image will be scaled to fit within the paper size without any cropping or changes
to aspect ratio. This will typically result in white space appearing in one dimension.

• SCALE_MODE_FILL – The image will be scaled to fill the paper size with cropping performed where
necessary to avoid the appearance of white space in the printed output.

In the absence of a scale mode setting, the system will default to SCALE_MODE_FILL. The following code, for
example, sets scale to fit mode on the previously declared PrintHelper instance:
imagePrinter.setScaleMode(PrintHelper.SCALE_MODE_FIT);

Similarly, the color mode may also be configured to indicate whether the print output is to be in color or black
and white. This is achieved by passing one of the following options through to the setColorMode() method of
the PrintHelper instance:

• COLOR_MODE_COLOR – Indicates that the image is to be printed in color.

• COLOR_MODE_MONOCHROME – Indicates that the image is to be printed in black and white.

The printing framework will default to color printing unless the monochrome option is specified as follows:

645

Printing with the Android Printing Framework

imagePrinter.setColorMode(PrintHelper.COLOR_MODE_MONOCHROME);

All that is required to complete the printing operation is an image to be printed and a call to the printBitmap()
method of the PrintHelper instance, passing through a string representing the name to be assigned to the print
job and a reference to the image (in the form of either a Bitmap object or a Uri reference to the image):
Bitmap bitmap = BitmapFactory.decodeResource(getResources(),

 R.drawable.oceanscene);

imagePrinter.printBitmap("My Test Print Job", bitmap);

Once the print job has been started, the Printing framework will display the print dialog and handle both the
subsequent interaction with the user and the printing of the image on the user-selected print destination.

75.7.2 Creating and Printing HTML Content
The Android Printing framework also provides an easy way to print HTML based content from within an
application. This content can either be in the form of HTML content referenced by the URL of a page hosted on
a website, or HTML content that is dynamically created within the application.

To enable HTML printing, the WebView class has been extended to include support for printing with minimal
coding requirements.

When dynamically creating HTML content (as opposed to loading and printing an existing web page) the
process involves the creation of a WebView object and associating with it a WebViewClient instance. The web
view client is then configured to start a print job when the HTML has finished being loaded into the WebView.
With the web view client configured, the HTML is then loaded into the WebView, at which point the print
process is triggered.

Consider, for example, the following code:
public void printContent()

{

 WebView webView = new WebView(this);

 webView.setWebViewClient(new WebViewClient() {

 public boolean shouldOverrideUrlLoading(WebView view,

 String url)

 {

 return false;

 }

 @Override

 public void onPageFinished(WebView view, String url) {

 createWebPrintJob(view);

 myWebView = null;

 }

 });

 String htmlDocument =

 "<html><body><h1>Android Print Test</h1><p>"

 + "This is some sample content.</p></body></html>";

646

Printing with the Android Printing Framework

 webView.loadDataWithBaseURL(null, htmlDocument,

 "text/HTML", "UTF-8", null);

 myWebView = webView;

}

The code in this method begins by declaring a variable named myWebView in which will be stored a reference
to the WebView instance created in the method. Within the printContent() method, an instance of the WebView
class is created to which a WebViewClient instance is then assigned.

The WebViewClient assigned to the web view object is configured to indicate that loading of the HTML content
is to be handled by the WebView instance (by returning false from the shouldOverrideUrlLoading()) method.
More importantly, an onPageFinished() handler method is declared and implemented to call a method named
createWebPrintJob(). The onPageFinished() callback method will be called automatically when all of the HTML
content has been loaded into the web view. This ensures that the print job is not started until the content is ready,
thereby ensuring that all of the content is printed.

Next, a string is created containing some HTML to serve as the content. This is then loaded into the web view.
Once the HTML is loaded, the onPageFinished() method will trigger. Finally, the method stores a reference to
the web view object. Without this vital step, there is a significant risk that the Java runtime system will assume
that the application no longer needs the web view object and will discard it to free up memory (a concept
referred to in Java terminology as garbage collection) resulting in the print job terminating before completion.

All that remains in this example is to implement the createWebPrintJob() method as follows:
private void createWebPrintJob(WebView webView) {

 PrintManager printManager = (PrintManager) this

 .getSystemService(Context.PRINT_SERVICE);

 PrintDocumentAdapter printAdapter =

 webView.createPrintDocumentAdapter("MyDocument");

 String jobName = getString(R.string.app_name) + " Document";

 PrintJob printJob = printManager.print(jobName, printAdapter,

 new PrintAttributes.Builder().build());

}

This method simply obtains a reference to the PrintManager service and instructs the web view instance to
create a print adapter. A new string is created to store the name of the print job (which in this case is based on
the name of the application and the word “Document”).

Finally, the print job is started by calling the print() method of the print manager, passing through the job name,
print adapter and a set of default print attributes. If required, the print attributes could be customized to specify
resolution (dots per inch), margin and color options.

75.7.3 Printing a Web Page
The steps involved in printing a web page are similar to those outlined above, with the exception that the web
view is passed the URL of the web page to be printed in place of the dynamically created HTML, for example:
myWebView.loadUrl("https://developer.android.com/google/index.html");

647

Printing with the Android Printing Framework

It is also important to note that the WebViewClient configuration is only necessary if a web page is to automatically
print as soon as it has loaded. If the printing is to be initiated by the user selecting a menu option after the page
has loaded, only the code in the createWebPrintJob() method outlined above need be included in the application
code. The next chapter, entitled “An Android HTML and Web Content Printing Example”, will demonstrate just
such a scenario.

75.7.4 Printing a Custom Document
While the HTML and web printing features introduced by the Printing framework provide an easy path to
printing content from within an Android application, it is clear that these options will be overly simplistic for
more advanced printing requirements. For more complex printing tasks, the Printing framework also provides
custom document printing support. This allows content in the form of text and graphics to be drawn onto a
canvas and then printed.

Unlike HTML and image printing, which can be implemented with relative ease, custom document printing
is a more complex, multi-stage process which will be outlined in the “A Guide to Android Custom Document
Printing” chapter of this book. These steps can be summarized as follows:

• Connect to the Android Print Manager

• Create a Custom Print Adapter sub-classed from the PrintDocumentAdapter class

• Create a PdfDocument instance to represent the document pages

• Obtain a reference to the pages of the PdfDocument instance, each of which has associated with it a Canvas
instance

• Draw the content on the page canvases

• Notify the print framework that the document is ready to print

The custom print adapter outlined in the above steps needs to implement a number of methods which will be
called upon by the Android system to perform specific tasks during the printing process. The most important of
these are the onLayout() method which is responsible for re-arranging the document layout in response to the
user changing settings such as paper size or page orientation, and the onWrite() method which is responsible for
rendering the pages to be printed. This topic will be covered in detail in the chapter entitled “A Guide to Android
Custom Document Printing”.

75.8 Summary
The Android SDK includes the ability to print content from within a running app. Print output can be directed
to suitably configured printers, a local PDF file or to the cloud via Google Drive. From the perspective of the
Android application developer, these capabilities are available for use in applications by making use of the
Printing framework. By far the easiest printing options to implement are those involving content in the form
of images and HTML. More advanced printing may, however, be implemented using the custom document
printing features of the framework.

649

Chapter 76

76. An Android HTML and Web
Content Printing Example
As outlined in the previous chapter, entitled “Printing with the Android Printing Framework”, the Android
Printing framework can be used to print both web pages and dynamically created HTML content. While there
is much similarity in these two approaches to printing, there are also some subtle differences that need to be
taken into consideration. This chapter will work through the creation of two example applications to bring some
clarity to these two printing options.

76.1 Creating the HTML Printing Example Application
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter HTMLPrint into the Name field and specify com.ebookfrenzy.htmlprint as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

76.2 Printing Dynamic HTML Content
The first stage of this tutorial is to add code to the project to create some HTML content and send it to the
Printing framework in the form of a print job.

Begin by locating the MainActivity.java file (located in the Project tool window under app -> java -> com
.ebookfrenzy.htmlprint) and loading it into the editing panel. Once loaded, modify the code so that it reads as
outlined in the following listing:
package com.ebookfrenzy.htmlprint;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.webkit.WebView;
import android.webkit.WebViewClient;
import android.webkit.WebResourceRequest;
import android.print.PrintAttributes;
import android.print.PrintDocumentAdapter;
import android.print.PrintManager;
import android.content.Context;

public class MainActivity extends AppCompatActivity {

 private WebView myWebView;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

650

An Android HTML and Web Content Printing Example

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_htmlprint);

 printWebView();
 }

 private void printWebView() {

 WebView webView = new WebView(this);
 webView.setWebViewClient(new WebViewClient() {
 public boolean shouldOverrideUrlLoading(WebView view,
 WebResourceRequest request)
 {
 return false;
 }

 @Override
 public void onPageFinished(WebView view, String url)
 {
 createWebPrintJob(view);
 myWebView = null;
 }
 });
 String htmlDocument =
 "<html><body><h1>Android Print Test</h1><p>"
 + "This is some sample content.</p></body></html>";

 webView.loadDataWithBaseURL(null, htmlDocument,
 "text/HTML", "UTF-8", null);
 myWebView = webView;
 }
}

The code changes begin by declaring a variable named myWebView in which will be stored a reference to the
WebView instance used for the printing operation. Within the printWebView() method, an instance of the
WebView class is created to which a WebViewClient instance is then assigned.

The WebViewClient assigned to the web view object is configured to indicate that loading of the HTML content
is to be handled by the WebView instance (by returning false from the shouldOverrideUrlLoading() method).
More importantly, an onPageFinished() handler method is declared and implemented to call a method named
createWebPrintJob(). The onPageFinished() method will be called automatically when all of the HTML content
has been loaded into the web view. As outlined in the previous chapter, this step is necessary when printing
dynamically created HTML content to ensure that the print job is not started until the content has fully loaded
into the WebView.

Next, a String object is created containing some HTML to serve as the content and subsequently loaded into
the web view. Once the HTML is loaded, the onPageFinished() callback method will trigger. Finally, the method
stores a reference to the web view object in the previously declared myWebView variable. Without this vital step,

651

An Android HTML and Web Content Printing Example

there is a significant risk that the Java runtime system will assume that the application no longer needs the web
view object and will discard it to free up memory resulting in the print job terminating before completion.

All that remains in this example is to implement the createWebPrintJob() method which is currently configured
to be called by the onPageFinished() callback method. Remaining within the MainActivity.java file, therefore,
implement this method so that it reads as follows:
private void createWebPrintJob(WebView webView) {

 PrintManager printManager = (PrintManager) this

 .getSystemService(Context.PRINT_SERVICE);

 PrintDocumentAdapter printAdapter =

 webView.createPrintDocumentAdapter("MyDocument");

 String jobName = getString(R.string.app_name) + " Print Test";

 printManager.print(jobName, printAdapter,

 new PrintAttributes.Builder().build());

}

This method obtains a reference to the PrintManager service and instructs the web view instance to create a
print adapter. A new string is created to store the name of the print job (in this case based on the name of the
application and the word “Print Test”).

Finally, the print job is started by calling the print() method of the print manager, passing through the job name,
print adapter and a set of default print attributes.

Compile and run the application on a device or emulator running Android 5.0 or later. Once launched, the
standard Android printing page should appear as illustrated in Figure 76-1.

Figure 76-1
Print to a physical printer if you have one configured, save to Google Drive or, alternatively, select the option to

652

An Android HTML and Web Content Printing Example

save to a PDF file. Once the print job has been initiated, check the generated output on your chosen destination.
Note that when using the Save to PDF option, the system will request a name and location for the PDF file. The
Downloads folder makes a good option, the contents of which can be viewed by selecting the Downloads icon
(renamed Files on Android 8) located amongst the other app icons on the device.

76.3 Creating the Web Page Printing Example
The second example application to be created in this chapter will provide the user with an Overflow menu
option to print the web page currently displayed within a WebView instance.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Basic Views Activity template before clicking on the Next button.

Enter WebPrint into the Name field and specify com.ebookfrenzy.webprint as the package name. Before clicking
on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the Language
menu to Java.

76.4 Removing the Floating Action Button
Selecting the Basic Views Activity template provided a context menu and a floating action button. Since the
floating action button is not required by the app it can be removed before proceeding. Load the activity_main.
xml layout file into the Layout Editor, select the floating action button and tap the keyboard Delete key to remove
the object from the layout. Edit the MainActivity.java file and remove the floating action button code from the
onCreate method as follows:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 setSupportActionBar(binding.toolbar);

.

.

 binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own action",

 Snackbar.LENGTH_LONG)

 .setAction("Action", null).show();

 }

 });

}

76.5 Removing Navigation Features
As outlined in “A Guide to the Android Studio Layout Editor Tool”, the Basic Views Activity template contains
multiple fragments and buttons to navigate from one fragment to the other. For the purposes of this tutorial,
these features are unnecessary and will cause problems later if not removed. Before moving ahead with the
tutorial, modify the project as follows:

1. Within the Project tool window, navigate to and double-click on the app -> res -> navigation -> nav_graph.

653

An Android HTML and Web Content Printing Example

xml file to load it into the navigation editor.

2. Within the editor, select the SecondFragment entry in the graph panel and tap the keyboard delete key to
remove it from the graph.

3. Locate and delete the SecondFragment.java (app -> java -> <package name> -> SecondFragment) and
fragment_second.xml (app -> res -> layout -> fragment_second.xml) files.

4. Locate the FirstFragment.java file, double click on it to load it into the editor and remove the code from the
onViewCreated() method so that it reads as follows:

public void onViewCreated(@NonNull View view, Bundle savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

 binding.buttonFirst.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 NavHostFragment.findNavController(FirstFragment.this)

 .navigate(R.id.action_FirstFragment_to_SecondFragment);

 }

 });

}

5. Edit the MainActivity.java file and remove the following navigation code:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 setSupportActionBar(binding.toolbar);

 NavController navController =

 Navigation.findNavController(this, R.id.nav_host_fragment_content_main);

 appBarConfiguration = new AppBarConfiguration.Builder(

 navController.getGraph()).build();

 NavigationUI.setupActionBarWithNavController(this, navController,

 appBarConfiguration);

}

.

.

@Override

public boolean onSupportNavigateUp() {

 NavController navController = Navigation.findNavController(this,

 R.id.nav_host_fragment_content_main);

 return NavigationUI.navigateUp(navController, appBarConfiguration)

 || super.onSupportNavigateUp();

654

An Android HTML and Web Content Printing Example

}

76.6 Designing the User Interface Layout
Load the content_main.xml layout resource file into the Layout Editor tool if it has not already been loaded and,
in Design mode, select and delete the nav_host_fragment_content_main object. From the Widgets section of the
palette, drag and drop a WebView object onto the center of the device screen layout. Click the Infer constraints
toolbar button and, using the Attributes tool window, change the layout_width and layout_height properties of
the WebView to match constraint so that it fills the entire layout canvas as outlined in below.

Select the newly added WebView instance and change the ID of the view to myWebView.

Before proceeding to the next step of this tutorial, an additional permission needs to be added to the project to
enable the WebView object to access the Internet and download a web page for printing. Add this permission
by locating the AndroidManifest.xml file in the Project tool window and double-clicking on it to load it into
the editing panel. Once loaded, edit the XML content to add the appropriate permission line as shown in the
following listing:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.webprint" >

 <uses-permission android:name="android.permission.INTERNET" />

 <application

 android:allowBackup="true"

.

.

</manifest>

Figure 76-2

76.7 Accessing the WebView from the Main Activity
As with the project in the chapter entitled “An Android RecyclerView and CardView Tutorial” we need to be able
to use view binding to access a component (in this case myWebView) contained in the content_main.xml file
from within the MainActivity class. To be able to access views within the content_main.xml file, we once again
need to assign it an id at the point that it is included. Edit the activity_main.xml file and modify the include
element so that it reads as follows:

655

An Android HTML and Web Content Printing Example

.

.

 <include

 android:id="@+id/contentMain"
 layout="@layout/content_main" />

.

.

76.8 Loading the Web Page into the WebView
Before the web page can be printed, it needs to be loaded into the WebView instance. For the purposes of this
tutorial, this will be performed by a call to the loadUrl() method of the WebView instance, which will be placed
in a method named configureWebView() and called from within the onStart() method of the MainActivity class.
Edit the MainActivity.java file, therefore, and modify it as follows:
package com.ebookfrenzy.webprint;

.

.

import android.view.Menu;
import android.view.MenuItem;
import android.webkit.WebView;
import android.webkit.WebViewClient;
import android.webkit.WebResourceRequest;

public class MainActivity extends AppCompatActivity {

 private WebView myWebView;
.

.

 @Override
 protected void onStart() {
 super.onStart();
 configureWebView();
 }

 private void configureWebView() {

 myWebView = findViewById(R.id.myWebView);
 myWebView.setWebViewClient(new WebViewClient(){
 @Override
 public boolean shouldOverrideUrlLoading(
 WebView view, WebResourceRequest request) {
 return super.shouldOverrideUrlLoading(
 view, request);
 }
 });
 myWebView.loadUrl(
 "https://www.answertopia.com");

656

An Android HTML and Web Content Printing Example

 }
.

.

}

76.9 Adding the Print Menu Option
The option to print the web page will now be added to the Overflow menu using the techniques outlined in the
chapter entitled “Creating and Managing Overflow Menus on Android”. The first requirement is a string resource
with which to label the menu option. Within the Project tool window, locate the app -> res -> values -> strings.
xml file, double-click on it to load it into the editor and modify it to add a new string resource:
<resources>

 <string name="app_name">WebPrint</string>

 <string name="action_settings">Settings</string>

 <string name="print_string">Print</string>
.

.

</resources>

Next, load the app -> res -> menu -> menu_main.xml file into the menu editor, switch to Code mode and replace
the Settings menu option with the print option:
<menu xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 tools:context="com.ebookfrenzy.webprint.MainActivity" >

 <item android:id="@+id/action_settings"

 android:title="@string/action_settings"

 android:orderInCategory="100"

 app:showAsAction="never" />

 <item
 android:id="@+id/action_print"
 android:orderInCategory="100"
 app:showAsAction="never"
 android:title="@string/print_string"/>
</menu>

All that remains in terms of configuring the menu option is to modify the onOptionsItemSelected() handler
method within the MainActivity.java file:
@Override

public boolean onOptionsItemSelected(MenuItem item) {

 int id = item.getItemId();

 if (id == R.id.action_print) {
 createWebPrintJob(myWebView);
 return true;

 }

 return super.onOptionsItemSelected(item);

}

With the onOptionsItemSelected() method implemented, the activity will call a method named createWebPrintJob()

657

An Android HTML and Web Content Printing Example

when the print menu option is selected from the overflow menu. The implementation of this method is identical
to that used in the previous HTMLPrint project and may now be added to the MainActivity.java file such that
it reads as follows:
package com.ebookfrenzy.webprint;

.

.

.

import android.print.PrintAttributes;
import android.print.PrintDocumentAdapter;
import android.print.PrintManager;
import android.content.Context;

public class MainActivity extends AppCompatActivity {

 private WebView myWebView;

.

.

 private void createWebPrintJob(WebView webView) {

 PrintManager printManager = (PrintManager) this
 .getSystemService(Context.PRINT_SERVICE);

 PrintDocumentAdapter printAdapter =
 webView.createPrintDocumentAdapter("MyDocument");

 String jobName = getString(R.string.app_name) +
 " Print Test";

 printManager.print(jobName, printAdapter,
 new PrintAttributes.Builder().build());
 }
.

.

}

With the code changes complete, run the application on a physical Android device or emulator running Android
version 5.0 or later. Once successfully launched, the WebView should be visible with the designated web page
loaded. Once the page has loaded, select the Print option from the Overflow menu and use the resulting print
panel to print the web page to a suitable destination.

76.10 Summary
The Android Printing framework includes extensions to the WebView class that make it possible to print
HTML based content from within an Android application. This content can be in the form of HTML created
dynamically within the application at runtime, or a pre-existing web page loaded into a WebView instance. In
the case of dynamically created HTML, it is important to use a WebViewClient instance to ensure that printing
does not start until the HTML has been fully loaded into the WebView.

659

Chapter 77

77. A Guide to Android Custom
Document Printing
As we have seen in the preceding chapters, the Android Printing framework makes it relatively easy to build
printing support into applications as long as the content is in the form of an image or HTML markup. More
advanced printing requirements can be met by making use of the custom document printing feature of the
Printing framework.

77.1 An Overview of Android Custom Document Printing
In simplistic terms, custom document printing uses canvases to represent the pages of the document to be
printed. The application draws the content to be printed onto these canvases in the form of shapes, colors,
text and images. In actual fact, the canvases are represented by instances of the Android Canvas class, thereby
providing access to a rich selection of drawing options. Once all the pages have been drawn, the document is
then printed.

While this sounds simple enough, there are actually a number of steps that need to be performed to make this
happen, which can be summarized as follows:

• Implement a custom print adapter sub-classed from the PrintDocumentAdapter class

• Obtain a reference to the Print Manager Service

• Create an instance of the PdfDocument class in which to store the document pages

• Add pages to the PdfDocument in the form of PdfDocument.Page instances

• Obtain references to the Canvas objects associated with the document pages

• Draw content onto the canvases

• Write the PDF document to a destination output stream provided by the Printing framework

• Notify the Printing framework that the document is ready to print

In this chapter, an overview of these steps will be provided, followed by a detailed tutorial designed to demonstrate
the implementation of custom document printing within Android applications.

77.1.1 Custom Print Adapters
The role of the print adapter is to provide the Printing framework with the content to be printed, and to ensure
that it is formatted correctly for the user’s chosen preferences (taking into consideration factors such as paper
size and page orientation).

When printing HTML and images, much of this work is performed by the print adapters provided as part of
the Android Printing framework and designed for these specific printing tasks. When printing a web page, for
example, a print adapter is created for us when a call is made to the createPrintDocumentAdapter() method of
an instance of the WebView class.

660

A Guide to Android Custom Document Printing

In the case of custom document printing, however, it is the responsibility of the application developer to design
the print adapter and implement the code to draw and format the content in preparation for printing.

Custom print adapters are created by sub-classing the PrintDocumentAdapter class and overriding a set of
callback methods within that class which will be called by the Printing framework at various stages in the print
process. These callback methods can be summarized as follows:

· onStart() – This method is called when the printing process begins and is provided so that the application code
has an opportunity to perform any necessary tasks in preparation for creating the print job. Implementation
of this method within the PrintDocumentAdapter sub-class is optional.

· onLayout() – This callback method is called after the call to the onStart() method and then again each time
the user makes changes to the print settings (such as changing the orientation, paper size or color settings).
This method should adapt the content and layout where necessary to accommodate these changes. Once
these changes are completed, the method must return the number of pages to be printed. Implementation
of the onLayout() method within the PrintDocumentAdapter sub-class is mandatory.

· onWrite() – This method is called after each call to onLayout() and is responsible for rendering the content on
the canvases of the pages to be printed. Amongst other arguments, this method is passed a file descriptor to
which the resulting PDF document must be written once rendering is complete. A call is then made to the
onWriteFinished() callback method passing through an argument containing information about the page
ranges to be printed. Implementation of the onWrite() method within the PrintDocumentAdapter sub-class
is mandatory.

· onFinish() – An optional method which, if implemented, is called once by the Printing framework when the
printing process is completed, thereby providing the application the opportunity to perform any clean-up
operations that may be necessary.

77.2 Preparing the Custom Document Printing Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter CustomPrint into the Name field and specify com.ebookfrenzy.customprint as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

Load the activity_main.xml layout file into the Layout Editor tool and, in Design mode, select and delete the
“Hello World!” TextView object. Drag and drop a Button view from the Form Widgets section of the palette and
position it in the center of the layout view. With the Button view selected, change the text property to “Print
Document” and extract the string to a new resource. On completion, the user interface layout should match that
shown in Figure 77-1:

661

A Guide to Android Custom Document Printing

Figure 77-1
When the button is selected within the application it will be required to call a method to initiate the document
printing process. Remaining within the Attributes tool window, set the onClick property to call a method named
printDocument.

77.3 Creating the Custom Print Adapter
Most of the work involved in printing a custom document from within an Android application involves the
implementation of the custom print adapter. This example will require a print adapter with the onLayout() and
onWrite() callback methods implemented. Within the MainActivity.java file, add the template for this new class
so that it reads as follows:
package com.ebookfrenzy.customprint;

.

.
import android.os.CancellationSignal;
import android.os.ParcelFileDescriptor;
import android.print.PageRange;
import android.print.PrintAttributes;
import android.print.PrintDocumentAdapter;
import android.content.Context;

public class MainActivity extends AppCompatActivity {

 public static class MyPrintDocumentAdapter extends PrintDocumentAdapter
 {
 Context context;

 MyPrintDocumentAdapter(Context context)
 {

662

A Guide to Android Custom Document Printing

 this.context = context;
 }

 @Override
 public void onLayout(PrintAttributes oldAttributes,
 PrintAttributes newAttributes,
 CancellationSignal cancellationSignal,
 LayoutResultCallback callback,
 Bundle metadata) {
 }

 @Override
 public void onWrite(final PageRange[] pageRanges,
 final ParcelFileDescriptor destination,
 final CancellationSignal
 cancellationSignal,
 final WriteResultCallback callback) {
 }
 }
.

.

}

As the new class currently stands, it contains a constructor method which will be called when a new instance of
the class is created. The constructor takes as an argument the context of the calling activity which is then stored
so that it can be referenced later in the two callback methods.

With the outline of the class established, the next step is to begin implementing the two callback methods,
beginning with onLayout().

77.4 Implementing the onLayout() Callback Method
Remaining within the MainActivity.java file, begin by adding some import directives that will be required by the
code in the onLayout() method:
package com.ebookfrenzy.customprint;

.

.
import android.print.PrintDocumentInfo;
import android.print.pdf.PrintedPdfDocument;
import android.graphics.pdf.PdfDocument;

public class MainActivity extends AppCompatActivity {

.

.

}

Next, modify the MyPrintDocumentAdapter class to declare variables to be used within the onLayout() method:
public static class MyPrintDocumentAdapter extends PrintDocumentAdapter

663

A Guide to Android Custom Document Printing

{

 Context context;

 int pageHeight;
 int pageWidth;
 PdfDocument myPdfDocument;
 int totalpages = 4;
.

.

}

Note that for the purposes of this example, a four page document is going to be printed. In more complex
situations, the application will most likely need to dynamically calculate the number of pages to be printed based
on the quantity and layout of the content in relation to the user’s paper size and page orientation selections.

With the variables declared, implement the onLayout() method as outlined in the following code listing:
@Override

public void onLayout(PrintAttributes oldAttributes,

 PrintAttributes newAttributes,

 CancellationSignal cancellationSignal,

 LayoutResultCallback callback,

 Bundle metadata) {

 myPdfDocument = new PrintedPdfDocument(context, newAttributes);

 pageHeight =
 newAttributes.getMediaSize().getHeightMils()/1000 * 72;
 pageWidth =
 newAttributes.getMediaSize().getWidthMils()/1000 * 72;

 if (cancellationSignal.isCanceled()) {
 callback.onLayoutCancelled();
 return;
 }

 if (totalpages > 0) {
 PrintDocumentInfo.Builder builder = new PrintDocumentInfo
 .Builder("print_output.pdf").setContentType(
 PrintDocumentInfo.CONTENT_TYPE_DOCUMENT)
 .setPageCount(totalpages);

 PrintDocumentInfo info = builder.build();
 callback.onLayoutFinished(info, true);
 } else {
 callback.onLayoutFailed("Page count is zero.");
 }
}

664

A Guide to Android Custom Document Printing

Clearly this method is performing quite a few tasks, each of which requires some detailed explanation.

To begin with, a new PDF document is created in the form of a PdfDocument class instance. One of the
arguments passed into the onLayout() method when it is called by the Printing framework is an object of type
PrintAttributes containing details about the paper size, resolution and color settings selected by the user for the
print output. These settings are used when creating the PDF document, along with the context of the activity
previously stored for us by our constructor method:
myPdfDocument = new PrintedPdfDocument(context, newAttributes);

The method then uses the PrintAttributes object to extract the height and width values for the document pages.
These dimensions are stored in the object in the form of thousandths of an inch. Since the methods that will use
these values later in this example work in units of 1/72 of an inch these numbers are converted before they are
stored:
pageHeight = newAttributes.getMediaSize().getHeightMils()/1000 * 72;

pageWidth = newAttributes.getMediaSize().getWidthMils()/1000 * 72;

Although this example does not make use of the user’s color selection, this property can be obtained via a call to
the getColorMode() method of the PrintAttributes object which will return a value of either COLOR_MODE_
COLOR or COLOR_MODE_MONOCHROME.

When the onLayout() method is called, it is passed an object of type LayoutResultCallback. This object provides
a way for the method to communicate status information back to the Printing framework via a set of methods.
The onLayout() method, for example, will be called if the user cancels the print process. The fact that the process
has been canceled is indicated via a setting within the CancellationSignal argument. If a cancellation is detected,
the onLayout() method must call the onLayoutCancelled() method of the LayoutResultCallback object to notify
the Print framework that the cancellation request was received and that the layout task has been canceled:
if (cancellationSignal.isCanceled()) {

 callback.onLayoutCancelled();

 return;

}

When the layout work is complete, the method is required to call the onLayoutFinished() method of the
LayoutResultCallback object, passing through two arguments. The first argument takes the form of a
PrintDocumentInfo object containing information about the document to be printed. This information consists
of the name to be used for the PDF document, the type of content (in this case a document rather than an image)
and the page count. The second argument is a Boolean value indicating whether or not the layout has changed
since the last call made to the onLayout() method:
if (totalpages > 0) {

 PrintDocumentInfo.Builder builder = new PrintDocumentInfo

 .Builder("print_output.pdf")

 .setContentType(

 PrintDocumentInfo.CONTENT_TYPE_DOCUMENT)

 .setPageCount(totalpages);

 PrintDocumentInfo info = builder.build();

 callback.onLayoutFinished(info, true);

} else {

 callback.onLayoutFailed("Page count is zero.");

665

A Guide to Android Custom Document Printing

}

If the page count is zero, the code reports this failure to the Printing framework via a call to the onLayoutFailed()
method of the LayoutResultCallback object.

The call to the onLayoutFinished() method notifies the Printing framework that the layout work is complete,
thereby triggering a call to the onWrite() method.

77.5 Implementing the onWrite() Callback Method
The onWrite() callback method is responsible for rendering the pages of the document and then notifying the
Printing framework that the document is ready to be printed. When completed, the onWrite() method reads as
follows:
package com.ebookfrenzy.customprint;

import java.io.FileOutputStream;
import java.io.IOException;
.

.

import android.graphics.pdf.PdfDocument.PageInfo;
.

.

@Override

public void onWrite(final PageRange[] pageRanges,

 final ParcelFileDescriptor destination,

 final CancellationSignal cancellationSignal,

 final WriteResultCallback callback) {

 for (int i = 0; i < totalpages; i++) {
 if (pageInRange(pageRanges, i))
 {
 PageInfo newPage = new PageInfo.Builder(pageWidth,
 pageHeight, i).create();

 PdfDocument.Page page =
 myPdfDocument.startPage(newPage);

 if (cancellationSignal.isCanceled()) {
 callback.onWriteCancelled();
 myPdfDocument.close();
 myPdfDocument = null;
 return;
 }
 drawPage(page, i);
 myPdfDocument.finishPage(page);
 }
 }

666

A Guide to Android Custom Document Printing

 try {
 myPdfDocument.writeTo(new FileOutputStream(
 destination.getFileDescriptor()));
 } catch (IOException e) {
 callback.onWriteFailed(e.toString());
 return;
 } finally {
 myPdfDocument.close();
 myPdfDocument = null;
 }

 callback.onWriteFinished(pageRanges);
}

The onWrite() method starts by looping through each of the pages in the document. It is important to take into
consideration, however, that the user may not have requested that all of the pages that make up the document be
printed. In actual fact, the Printing framework user interface panel provides the option to specify that specific
pages, or ranges of pages be printed. Figure 77-2, for example, shows the print panel configured to print pages
1-4, page 9, and pages 11-13 of a document.

Figure 77-2
When writing the pages to the PDF document, the onWrite() method must take steps to ensure that only those
pages specified by the user are printed. To make this possible, the Printing framework passes through as an
argument an array of PageRange objects indicating the ranges of pages to be printed. In the above onWrite()
implementation, a method named pageInRange() is called for each page to verify that the page is within the
specified ranges. The code for the pageInRange() method will be implemented later in this chapter.
for (int i = 0; i < totalpages; i++) {

 if (pageInRange(pageRanges, i))

 {

For each page that is within any specified ranges, a new PdfDocument.Page object is created. When creating
a new page, the height and width values previously stored by the onLayout() method are passed through as
arguments so that the page size matches the print options selected by the user:
PageInfo newPage = new PageInfo.Builder(pageWidth, pageHeight, i).create();

PdfDocument.Page page = myPdfDocument.startPage(newPage);

667

A Guide to Android Custom Document Printing

As with the onLayout() method, the onWrite() method is required to respond to cancellation requests. In this
case, the code notifies the Printing framework that the cancellation has been performed, before closing and de-
referencing the myPdfDocument variable:
if (cancellationSignal.isCanceled()) {

 callback.onWriteCancelled();

 myPdfDocument.close();

 myPdfDocument = null;

 return;

}

As long as the print process has not been canceled, the method then calls a method to draw the content on the
current page before calling the finishedPage() method on the myPdfDocument object.
drawPage(page, i);

myPdfDocument.finishPage(page);

The drawPage() method is responsible for drawing the content onto the page and will be implemented once the
onWrite() method is complete.

When the required number of pages have been added to the PDF document, the document is then written to the
destination stream using the file descriptor which was passed through as an argument to the onWrite() method.
If, for any reason, the write operation fails, the method notifies the framework by calling the onWriteFailed()
method of the WriteResultCallback object (also passed as an argument to the onWrite() method).
try {

 myPdfDocument.writeTo(new FileOutputStream(

 destination.getFileDescriptor()));

} catch (IOException e) {

 callback.onWriteFailed(e.toString());

 return;

} finally {

 myPdfDocument.close();

 myPdfDocument = null;

}

Finally, the onWriteFinish() method of the WriteResultsCallback object is called to notify the Printing framework
that the document is ready to be printed.

77.6 Checking a Page is in Range
As previously outlined, when the onWrite() method is called it is passed an array of PageRange objects indicating
the ranges of pages within the document that are to be printed. The PageRange class is designed to store the
start and end pages of a page range which, in turn, may be accessed via the getStart() and getEnd() methods of
the class.

When the onWrite() method was implemented in the previous section, a call was made to a method named
pageInRange(), which takes as arguments an array of PageRange objects and a page number. The role of the
pageInRange() method is to identify whether the specified page number is within the ranges specified and may
be implemented within the MyPrintDocumentAdapter class in the MainActivity.java class as follows:
public class MyPrintDocumentAdapter extends PrintDocumentAdapter {

.

.

668

A Guide to Android Custom Document Printing

 private boolean pageInRange(PageRange[] pageRanges, int page)
 {
 for (PageRange pageRange : pageRanges) {
 if ((page >= pageRange.getStart()) &&
 (page <= pageRange.getEnd()))
 return true;
 }
 return false;
 }
.

.

}

77.7 Drawing the Content on the Page Canvas
We have now reached the point where some code needs to be written to draw the content on the pages so that
they are ready for printing. The content that gets drawn is completely application specific and limited only by
what can be achieved using the Android Canvas class. For the purposes of this example, however, some simple
text and graphics will be drawn on the canvas.

The onWrite() method has been designed to call a method named drawPage() which takes as arguments the
PdfDocument.Page object representing the current page and an integer representing the page number. Within
the MainActivity.java file this method should now be implemented as follows:
package com.ebookfrenzy.customprint;

.

.

import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;

public class MainActivity extends AppCompatActivity {

.

.

 public static class MyPrintDocumentAdapter extends

 PrintDocumentAdapter

 {

.

.

 private void drawPage(PdfDocument.Page page,
 int pagenumber) {
 Canvas canvas = page.getCanvas();

 pagenumber++; // Make sure page numbers start at 1

 int titleBaseLine = 72;
 int leftMargin = 54;

669

A Guide to Android Custom Document Printing

 Paint paint = new Paint();
 paint.setColor(Color.BLACK);
 paint.setTextSize(40);
 canvas.drawText(
 "Test Print Document Page " + pagenumber,
 leftMargin,
 titleBaseLine,
 paint);

 paint.setTextSize(14);
 canvas.drawText("This is some test content to verify that
custom document printing works", leftMargin, titleBaseLine + 35, paint);

 if (pagenumber % 2 == 0)
 paint.setColor(Color.RED);
 else
 paint.setColor(Color.GREEN);

 PageInfo pageInfo = page.getInfo();

 canvas.drawCircle(pageInfo.getPageWidth()/2f,
 pageInfo.getPageHeight()/2f,
 150,
 paint);
 }
.

.

}

Page numbering within the code starts at 0. Since documents traditionally start at page 1, the method begins by
incrementing the stored page number. A reference to the Canvas object associated with the page is then obtained
and some margin and baseline values declared:
Canvas canvas = page.getCanvas();

pagenumber++;

int titleBaseLine = 72;

int leftMargin = 54;

Next, the code creates Paint and Color objects to be used for drawing, sets a text size and draws the page title
text, including the current page number:
Paint paint = new Paint();

paint.setColor(Color.BLACK);

paint.setTextSize(40);

670

A Guide to Android Custom Document Printing

canvas.drawText("Test Print Document Page " + pagenumber,

 leftMargin,

 titleBaseLine,

 paint);

The text size is then reduced and some body text drawn beneath the title:
paint.setTextSize(14);

canvas.drawText("This is some test content to verify that custom document
printing works", leftMargin, titleBaseLine + 35, paint);

The last task performed by this method involves drawing a circle (red on even numbered pages and green on
odd). Having ascertained whether the page is odd or even, the method obtains the height and width of the page
before using this information to position the circle in the center of the page:
if (pagenumber % 2 == 0)

 paint.setColor(Color.RED);

else

 paint.setColor(Color.GREEN);

PageInfo pageInfo = page.getInfo();

canvas.drawCircle(pageInfo.getPageWidth()/2,

 pageInfo.getPageHeight()/2,

 150, paint);

Having drawn on the canvas, the method returns control to the onWrite() method.

With the completion of the drawPage() method, the MyPrintDocumentAdapter class is now finished.

77.8 Starting the Print Job
When the “Print Document” button is touched by the user, the printDocument() onClick event handler method
will be called. All that now remains before testing can commence, therefore, is to add this method to the
MainActivity.java file, taking particular care to ensure that it is placed outside of the MyPrintDocumentAdapter
class:
package com.ebookfrenzy.customprint;

.

.

import android.print.PrintManager;
import android.view.View;

public class MainActivity extends AppCompatActivity {

 public void printDocument(View view)
 {
 PrintManager printManager = (PrintManager) this
 .getSystemService(Context.PRINT_SERVICE);

 String jobName = this.getString(R.string.app_name) +
 " Document";

671

A Guide to Android Custom Document Printing

 printManager.print(jobName, new
 MyPrintDocumentAdapter(this),
 null);
 }
.

.

}

This method obtains a reference to the Print Manager service running on the device before creating a new String
object to serve as the job name for the print task. Finally the print() method of the Print Manager is called to
start the print job, passing through the job name and an instance of our custom print document adapter class.

77.9 Testing the Application
Compile and run the application on an Android device or emulator that is running Android 4.4 or later. When
the application has loaded, touch the “Print Document” button to initiate the print job and select a suitable
target for the output (the Save to PDF option is a useful option for avoiding wasting paper and printer ink).

Check the printed output which should consist of 4 pages including text and graphics. Figure 77-3, for example,
shows the four pages of the document viewed as a PDF file ready to be saved on the device.

Experiment with other print configuration options such as changing the paper size, orientation and pages
settings within the print panel. Each setting change should be reflected in the printed output, indicating that the
custom print document adapter is functioning correctly.

Figure 77-3

77.10 Summary
Although more complex to implement than the Android Printing framework HTML and image printing
options, custom document printing provides considerable flexibility in terms of printing complex content from
within an Android application. The majority of the work involved in implementing custom document printing
involves the creation of a custom Print Adapter class such that it not only draws the content on the document
pages, but also responds correctly as changes are made by the user to print settings such as the page size and
range of pages to be printed.

673

Chapter 78

78. An Introduction to Android App
Links
As technology evolves, the traditional distinction between web and mobile content is beginning to blur. One
area where this is particularly true is the growing popularity of progressive web apps, where web apps look and
behave much like traditional mobile apps.

Another trend involves making the content within mobile apps discoverable within web search and via URL
links. In the context of Android app development, the App Links feature is designed specifically to make it easier
for users to both discover and access content that is stored within an Android app even if the user does not have
the app installed.

78.1 An Overview of Android App Links
An app link is a standard HTTP URL intended to serve as an easy way to link directly to a particular place in
your app from an external source such as a website or app. App links (also referred to as deep links) are used
primarily to encourage users to engage with an app and to allow users to share app content.

App link implementation is a multi-step process that involves the addition of intent filters to the project manifest,
the implementation of link handling code within the associated app activities and the use of digital asset links
files to associate app and web-based content.

These steps can either be performed manually by making changes within the project, or automatically using the
Android Studio App Links Assistant.

The remainder of this chapter will outline app links implementation in terms of the changes that need to be
made to a project. The next chapter (“An Android Studio App Links Tutorial”) will demonstrate the use of the App
Links Assistant to achieve the same results.

78.2 App Link Intent Filters
An app link URL needs to be mapped to a specific activity within an app project. This is achieved by adding
intent filters to the project’s AndroidManifest.xml file designed to launch an activity in response to an android.
intent.action.VIEW action. The intent filters are declared within the element for the activity to be launched and
must contain the data outlining the scheme, host and path of the app link URL. The following manifest fragment,
for example, declares an intent filter to launch an activity named MyActivity when an app link matching http://
www.example.com/welcome is detected:
<activity android:name="com.ebookfrenzy.myapp.MyActivity">

 <intent-filter android:autoVerify="true">

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.BROWSABLE" />

 <data

674

An Introduction to Android App Links

 android:scheme="http"

 android:host="www.example.com"

 android:pathPrefix="/welcome" />

 </intent-filter>

</activity>

The order in which ambiguous intent filters are handled can be specified using the order property of the intent
filter tag as follows:
<application>

 <activity android:name=" com.ebookfrenzy.myapp.MyActivity">

 <intent-filter android:autoVerify="true" android:order="1">
.
.

The intent filter will cause the app link to launch the correct activity, but code still needs to be implemented
within the target activity to handle the intent appropriately.

78.3 Handling App Link Intents
In most cases, the launched activity will need to gain access to the app link URL and to take specific action based
on the way in which the URL is structured. Continuing from the above example, the activity will most likely
display different content when launched via a URL containing a path of /welcome/newuser than one with the
path set to /welcome/existinguser.

When the activity is launched by the link, it is passed an intent object containing data about the action which
launched the activity including a Uri object containing the app link URL. Within the initialization stages of the
activity, code can be added to extract this data as follows:
Intent appLinkIntent = getIntent();

String appLinkAction = appLinkIntent.getAction();

Uri appLinkData = appLinkIntent.getData();

Having obtained the Uri for the app link, the various components that make up the URL path can be used to
make decisions about the actions to be performed within the activity. In the following code example, the last
component of the URL is used to identify whether content should be displayed for a new or existing user:
String userType = appLinkData.getLastPathSegment();

if (userType.equals("newuser")) {

 // display new user content

} else {

 // display existing user content

}

78.4 Associating the App with a Website
Before an app link will work, an app link URL needs to be associated with the website on which the app link is
based. This is achieved by creating a Digital Asset Links file named assetlinks.json and installing it within the
website’s .well-known folder. Note that digital asset linking is only possible for websites that are https based.

A digital asset links file comprises a relation statement granting permission for a target app to be launched
using the website’s link URLs and a target statement declaring the companion app package name and SHA-256
certificate fingerprint for that project. A typical asset link file might, for example, read as follows:

675

An Introduction to Android App Links

[{

 "relation": ["delegate_permission/common.handle_all_urls"],

 "target" : { "namespace": "android_app",

 "package_name": "<app package name here>",

 "sha256_cert_fingerprints": ["<app certificate here>"] }

}]

The assetlinks.json file can contain multiple digital asset links, potentially allowing a single website to be
associated with more than one companion app.

78.5 Summary
Android App Links allow app activities to be launched via URL links both from external websites and other
apps. App links are implemented using a combination of intent filters within the project manifest file and intent
handling code within the launched activity. It is also possible, through the use of a Digital Asset Links file, to
associate the domain name used in an app link with the corresponding website. Once the association has been
established, Android no longer needs to ask the user to select the target app when an app link is used.

677

Chapter 79

79. An Android Studio App Links
Tutorial
The goal of this chapter is to provide a practical demonstration of both Android app links and the Android
Studio App Link Assistant.

This chapter will add app linking support to an existing Android app, allowing an activity to be launched via an
app link URL. In addition to launching the activity, the content displayed will be specified within the path of
the URL.

79.1 About the Example App
The project used in this chapter is named AppLinking and is a basic app designed to allow users to find out
information about landmarks in London. The app uses a SQLite database accessed through a standard Android
content provider class. The app is provided with an existing database containing a set of records for some
popular tourist attractions in London. In addition to the existing database entries, the app also lets the user add
and delete landmark descriptions.

In its current form, the app allows the existing records to be searched and new records to be added and deleted.

The project consists of two activities named AppLinkingActivity and LandmarkActivity. AppLinkingActivity
is the main activity launched at app startup. This activity allows the user to enter search criteria and to add
additional records to the database. When a search locates a matching record, LandmarkActivity launches and
displays the information for the related landmark.

The goal of this chapter is to enhance the app to add support for app linking so that URLs can be used to display
specific landmark records within the app.

79.2 The Database Schema
The data for the example app is contained within a file named landmarks.db located in the app -> assets –>
databases folder of the project hierarchy. The database contains a single table named locations, the structure of
which is outlined in Table 79-1:

Column Type Description
_id String The primary index, this column contains string values that uniquely identify

the landmarks in the database.
title String The name of the landmark (e.g. London Bridge).
description String A description of the landmark.
personal Boolean Indicates whether the record is personal or public. This value is set to true for

all records added by the user. Existing records provided with the database are
set to false.

Table 79-1

678

An Android Studio App Links Tutorial

79.3 Loading and Running the Project
The project is contained within the AppLinking folder of the sample source code download archive located at
the following URL:

https://www.ebookfrenzy.com/retail/flamingojava/index.php

Having located the folder, open it within Android Studio and run the app on a device or emulator. Once the app
is launched, the screen illustrated in Figure 79-1 below will appear:

Figure 79-1
As currently implemented, landmarks are located using the ID for the location. The default database
configuration currently contains two records referenced by the IDs “londonbridge” and “toweroflondon”. Test
the search feature by entering londonbridge into the ID field and clicking the Find button. When a matching
record is found, the second activity (LandmarkActivity) is launched and passed information about the record to
be displayed. This information takes the form of extra data added to the Intent object. This information is used
by LandmarkActivity to extract the record from the database and display it to the user using the screen shown
in Figure 79-2.

https://www.ebookfrenzy.com/retail/flamingojava/index.php

679

An Android Studio App Links Tutorial

Figure 79-2

79.4 Adding the URL Mapping
Now that the app has been loaded into Android Studio and tested, the project is ready for the addition of app
link support. The objective is for the LandmarkActivity screen to launch and display information in response to
an app link click. This is achieved by mapping a URL to LandmarkActivity. For this example, the format of the
URL will be as follows:
http://<website domain>/landmarks/<landmarkId>

When all of the steps have been completed, the following URL should, for example, cause the app to display
information for the Tower of London:
http://www.yourdomain.com/landmarks/toweroflondon

To add a URL mapping to the project, begin by opening the App Links Assistant using the Tools -> App Links
Assistant menu option. Once open, the assistant should appear as shown in Figure 79-3:

680

An Android Studio App Links Tutorial

Figure 79-3
Click on the Open URL Mapping Editor button to begin mapping a URL to an activity. Within the mapping
screen, click on the ‘+’ button (highlighted in Figure 79-4) to add a new URL:

Figure 79-4
In the Host field of the Add URL Mapping dialog, enter either the URL for your own website. If you do not have

681

An Android Studio App Links Tutorial

your own website to use for this tutorial you can still follow most of this chapter using http://www.example.com,
though it will not be possible to test features that require the presence of a Digital Asset Links file.

The Path field (marked B in Figure 79-5 below) is where the path component of the URL is declared. The path
must be prefixed with / so enter /landmarks into this field.

The Path menu (B) provides the following three path matching options:

• path – The URL must match the path component of the URL exactly in order to launch the activity. If the path
is set to /landmarks, for example, http://www.example.com/landmarks will be considered a match. A URL of
http://www.example.com/landmarks/londonbridge, however, will not be considered a match.

• pathPrefix – The specified path is only considered as the prefix. Additional path components may be included
after the /landmarks component (for example http://www.example.com/landmarks/londonbridge will still be
considered a match).

• pathPattern – Allows the path to be specified using pattern matching in the form of basic regular expressions
and wildcards, for example landmarks/*/[l-L]ondon/*

Since the path in this example is a prefix to the landmark ID component, select the pathPrefix menu option.

Finally, use the Activity menu (C) to select LandmarkActivity as the activity to be launched in response to the
app link:

Figure 79-5
After completing the settings in the dialog, click on the OK button to commit the changes. Check that the URL
is correctly formatted and assigned to the appropriate activity by entering the following URL into the Check
URL Mapping field of the mapping screen (where <your domain> is set to the domain specified in the Host field
above) :
http://<your domain>/landmarks/toweroflondon

If the mapping is configured correctly, LandmarkActivity will be listed as the mapped activity:

Figure 79-6
The latest version of Android requires that App Links be declared for both HTTP and HTTPS protocols, even if

682

An Android Studio App Links Tutorial

only one is being used. Before proceeding to the next step, therefore, repeat the above steps to add the HTTPS
version of the URL to the list.

The next step will also be performed in the URL mapping screen of the App Links Assistant, so leave the screen
selected.

79.5 Adding the Intent Filter
As explained in the previous chapter, an intent filter is needed to allow the target activity to be launched in
response to an app link click. In fact, when the URL mapping was added, the intent filter was automatically
added to the project manifest file. With the URL mapping selected in the App Links Assistant URL mapping list,
scroll down the screen until the intent filter Preview section comes into view. The preview should contain the
modified AndroidManifest.xml file with the newly added intent filters included:

Figure 79-7
Although App Links Assistant has added intent filters for us it may not have included the autoVerify setting that
is needed when working with app links. Open the manifests -> AndroidManifest.xml file and add this setting to
the two intent filters as follows:
<intent-filter android:autoVerify="true">
.

.

 <data

 android:scheme="http"

 android:host="www.ebookfrenzy.com"

 android:pathPrefix="/landmarks" />

</intent-filter>

<intent-filter android:autoVerify="true">
.

.

 <data

 android:scheme="https"

 android:host="www.ebookfrenzy.com"

 android:pathPrefix="/landmarks" />

</intent-filter>

79.6 Adding Intent Handling Code
The steps taken so far ensure that the correct activity is launched in response to an appropriately formatted app
link URL. The next step is to handle the intent within the LandmarkActivity class so that the correct record
is extracted from the database and displayed to the user. Before making any changes to the code within the
LandmarkActivity.java file, it is worthwhile reviewing some areas of the existing code. Open the LandmarkActivity.
java file in the code editor and locate the onCreate() and handleIntent() methods which should currently read

683

An Android Studio App Links Tutorial

as follows:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityLandmarkBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 handleIntent(getIntent());

}

private void handleIntent(Intent intent) {

 String landmarkId =

 intent.getStringExtra(AppLinkingActivity.LANDMARK_ID);

 displayLandmark(landmarkId);

}

In its current form, the code is expecting to find the landmark ID within the extra data of the Intent bundle.
Since the activity can now also be launched by an app link, this code needs to be changed to handle both
scenarios. Begin by deleting the call to handleIntent() in the onCreate() method:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityLandmarkBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 handleIntent(getIntent());

}

To add the initial app link intent handling code, return to the App Links Assistant panel and click on the Select
Activity button listed under step 2. Within the activity selection dialog, select the LandmarkActivity entry before
clicking on the Insert Code button:

Figure 79-8

684

An Android Studio App Links Tutorial

Return to the LandmarkActivity.java file and note that the following code has been inserted into the onCreate()
method (note that you can manually add this code if Android Studio is unable to complete the request):
// ATTENTION: This was auto-generated to handle app links.

Intent appLinkIntent = getIntent();

String appLinkAction = appLinkIntent.getAction();

Uri appLinkData = appLinkIntent.getData();This code accesses the Intent object and extracts both
the Action string and Uri. If the activity launch is the result of an app link, the action string will be set to an-
droid.intent.action.VIEW which matches the action declared in the intent filter added to the manifest file. If, on
the other hand, the activity was launched by the standard intent launching code in the findLandmark() method
of the main activity, the action string will be null. By checking the value assigned to the action string, code can
be written to identify the way in which the activity was launched and take appropriate action:
.

.

import android.net.Uri;
.

.

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

.

.

 // ATTENTION: This was auto-generated to handle app links.

 Intent appLinkIntent = getIntent();

 String appLinkAction = appLinkIntent.getAction();

 Uri appLinkData = appLinkIntent.getData();

 String landmarkId = appLinkData.getLastPathSegment();

 if (landmarkId != null) {
 displayLandmark(landmarkId);
 }
}

All that remains is to add some additional code to the method to identify the last component in the app link URL
path, and to use that as the landmark ID when querying the database:
@Override

protected void onCreate(Bundle savedInstanceState) {

.

.

 // ATTENTION: This was auto-generated to handle app links.

 Intent appLinkIntent = getIntent();

 String appLinkAction = appLinkIntent.getAction();

 Uri appLinkData = appLinkIntent.getData();

 if (appLinkAction != null) {

685

An Android Studio App Links Tutorial

 if (appLinkAction.equals("android.intent.action.VIEW")) {
 String landmarkId = appLinkData.getLastPathSegment();

 if (landmarkId != null) {

 displayLandmark(landmarkId);

 }

 }
 } else {
 handleIntent(appLinkIntent);
 }
}

If the action string is not null, a check is made to verify that it is set to android.intent.action.VIEW before
extracting the last component of the Uri path. This component is then used as the landmark ID when making
the database query. If, on the other hand, the action string is null, the existing handleIntent() method is called
to extract the ID from the intent data.

79.7 Testing the App
Run the app on a device or emulator and make sure that it is still possible to search for the example landmarks.
We have now successfully added app link support to the app. If you specified your own website URL for the app
links we can now take the example one step further by creating and installing a Digital Asset Links file.

79.8 Creating the Digital Asset Links File
As outlined in the chapter entitled “An Overview of Android Intents”, to fully support app links we need to install
a Digital Asset Links file on the website referenced in the app link. Begin by following the steps outlined in “An
Overview of Android Intents” to locate your debug.keystore file and identify your SHA256 fingerprint.

Next open the following page in a web browser:

https://developers.google.com/digital-asset-links/tools/generator

Once the page has loaded, enter your website URL into the Hosting site domain field, com.ebookfrenzy.applinking
as the App package name, and your SHA256 fingerprint into the App package fingerprint (SHA256) field:

Figure 79-9
Click the Generate statement button to display the generated statement and place it in a file named assetlinks.

https://developers.google.com/digital-asset-links/tools/generator

686

An Android Studio App Links Tutorial

json located in a folder named .well-known on your web server. Return to the generator page and click on the
Test statement button to verify that the file is in the correct location. On a successful test, output similar to the
following will appear:

Figure 79-10
Assuming a successful test, we are now ready to try out the app link.

79.9 Testing the App Link
Test that the intent handling works by returning to the App Links Assistant panel and clicking on the Test App
Links button. When prompted for a URL to test, enter the URL (using the domain referenced in the app link
mapping) for the londonbridge landmark ID before clicking on the Run Test button:

Figure 79-11
Once the button has been clicked, the Landmark activity should launch on the device or emulator and display
information about London Bridge.

79.10 Summary
This chapter has demonstrated the steps involved in implementing App Link support within an Android app
project. Areas covered in this chapter include the use of the App Link Assistant in Android Studio, App Link
URL mapping, intent filters, handling website association using Digital Asset Links file entries and App Link
testing.

687

Chapter 80

80. An Android Biometric
Authentication Tutorial
Touch sensors are now built into many Android devices to identify the user and provide access to both the
device and application functionality such as in-app payment options using fingerprint recognition. Fingerprint
recognition is, of course, just one of a number of different authentication methods including passwords, PIN
numbers and, more recently, facial recognition.

Although only a few Android devices currently on the market provide facial recognition, it is likely that this will
become more common in the near future. In recognition of this, Google has begun to transition away from what
was a fingerprint-centric approach to adding authentication to apps to a less specific approach that is referred
to as biometric authentication. In the initial release of Android 8, these biometric features only cover fingerprint
authentication but this will change in future releases and updates of the Android operating system and SDK.

This chapter provides both an overview of biometric authentication and a detailed, step by step tutorial that
demonstrates a practical approach to implementing biometric authentication within an Android app project.

80.1 An Overview of Biometric Authentication
The key biometric authentication component is the BiometricPrompt class. This class performs much of the
work that previously had to be performed by writing code in earlier Android versions, including displaying
a standard dialog to guide the user through the authentication process, performing the authentication and
reporting the results to the app. The class also handles excessive failed authentication attempts and enforces a
timeout before the user can try again.

The BiometricPrompt class includes a companion Builder class that can be used to configure and create
BiometricPrompt instances, including defining the text that is to appear within the biometric authentication
dialog and the customization of the cancel button (also referred to as the negative button) that appears in the
dialog.

The BiometricPrompt instance is also assigned a set of authentication callbacks that will be called to provide the
app with the results of an authentication operation. A CancellationSignal instance is also used to allow the app
to cancel the authentication while it is in process.

With these basics covered, the remainder of this chapter will implement fingerprint-based biometric
authentication within an example project.

80.2 Creating the Biometric Authentication Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter BiometricDemo into the Name field and specify com.ebookfrenzy.biometricdemo as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 29: Android (Q) and the
Language menu to Java.

688

An Android Biometric Authentication Tutorial

80.3 Configuring Device Fingerprint Authentication
Fingerprint authentication is only available on devices containing a touch sensor and on which the appropriate
configuration steps have been taken to secure the device and enroll at least one fingerprint. For steps on
configuring an emulator session to test fingerprint authentication, refer to the chapter entitled “Using and
Configuring the Android Studio AVD Emulator”.

To configure fingerprint authentication on a physical device begin by opening the Settings app and selecting the
Security option. Within the Security settings screen, select the Fingerprint option. On the resulting information
screen click on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be
enabled a backup screen unlocking method (such as a PIN number) must be configured. If the lock screen is not
already secured, follow the steps to configure either PIN, pattern or password security.

With the lock screen secured, proceed to the fingerprint detection screen and touch the sensor when prompted
to do so (Figure 80-1), repeating the process to add additional fingerprints if required.

Figure 80-1

80.4 Adding the Biometric Permission to the Manifest File
Biometric authentication requires that the app request the USE_BIOMETRIC permission within the project
manifest file. Within the Android Studio Project tool window locate and edit the app -> manifests ->
AndroidManifest.xml file to add the permission request as follows:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.biometricdemo">

 <uses-permission
 android:name="android.permission.USE_BIOMETRIC" />
.

.

689

An Android Biometric Authentication Tutorial

80.5 Designing the User Interface
In the interests of keeping the example as simple as possible, the only visual element within the user interface
will be a Button view. Locate and select the activity_main.xml layout resource file to load it into the Layout
Editor tool.

Delete the sample TextView object, drag and drop a Button object from the Common category of the palette and
position it in the center of the layout canvas. Using the Attributes tool window, change the text property on the
button to “Authenticate” and extract the string to a resource. Finally, configure the onClick property to call a
method named authenticateUser.

On completion of the above steps the layout should match that shown in Figure 80-2:

Figure 80-2

80.6 Adding a Toast Convenience Method
At various points throughout the code in this example the app will be designed to display information to the
user via Toast messages. Rather than repeat the same Toast code multiple times, a convenience method named
notifyUser() will be added to the main activity. This method will accept a single String value and display it to the
user in the form of a Toast message. Edit the MainActivity.java file now and add this method as follows:
.

.

import android.widget.Toast;
.

.

 private void notifyUser(String message) {
 Toast.makeText(this,
 message,
 Toast.LENGTH_LONG).show();
 }

690

An Android Biometric Authentication Tutorial

.

.

80.7 Checking the Security Settings
Earlier in this chapter steps were taken to configure the lock screen and register fingerprints on the device
or emulator on which the app is going to be tested. It is important, however, to include defensive code in the
app to make sure that these requirements have been met before attempting to seek fingerprint authentication.
These steps will be performed within the onCreate method residing in the MainActivity.java file, making use
of the Keyguard and PackageManager manager services. Note that code has also been added to verify that the
USE_BIOMETRIC permission has been configured for the app:
package com.ebookfrenzy.biometricdemo;

import androidx.appcompat.app.AppCompatActivity;

import androidx.core.app.ActivityCompat;

import android.widget.Toast;

import android.Manifest;
import android.content.pm.PackageManager;

import android.app.KeyguardManager;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_biometric_demo);

 checkBiometricSupport();
 }

 private void checkBiometricSupport() {

 KeyguardManager keyguardManager =
 (KeyguardManager) getSystemService(KEYGUARD_SERVICE);

 if (!keyguardManager.isKeyguardSecure()) {
 notifyUser("Lock screen security not enabled in Settings");
 }

 if (ActivityCompat.checkSelfPermission(this,
 Manifest.permission.USE_BIOMETRIC) !=
 PackageManager.PERMISSION_GRANTED) {

 notifyUser("Fingerprint authentication permission not enabled");
 }
 }

691

An Android Biometric Authentication Tutorial

.

.

}

The above code changes begin by using the Keyguard manager to verify that a backup screen unlocking method
has been configured (in other words a PIN or other authentication method can be used as an alternative to
fingerprint authentication to unlock the screen). If the lock screen is not secured the code reports the problem
to the user and returns from the method.

The method then checks that the user has biometric authentication permission enabled for the app before using
the package manager to verify that fingerprint authentication is available on the device.

80.8 Configuring the Authentication Callbacks
When the biometric prompt dialog is configured, it will need to be assigned a set of authentication callback
methods that can be called to notify the app of the success or failure of the authentication process. These
methods need to be wrapped in a BiometricPrompt.AuthenticationCallback class instance. Remaining in the
MainActivity.java file, add a method to create and return an instance of this class with the appropriate methods
implemented:
.

.

import android.hardware.biometrics.BiometricPrompt;
.

.

 private BiometricPrompt.AuthenticationCallback getAuthenticationCallback() {

 return new BiometricPrompt.AuthenticationCallback() {
 @Override
 public void onAuthenticationError(int errorCode,
 CharSequence errString) {
 notifyUser("Authentication error: " + errString);
 super.onAuthenticationError(errorCode, errString);
 }

 @Override
 public void onAuthenticationHelp(int helpCode,
 CharSequence helpString) {
 super.onAuthenticationHelp(helpCode, helpString);
 }

 @Override
 public void onAuthenticationFailed() {
 super.onAuthenticationFailed();
 }

 @Override
 public void onAuthenticationSucceeded(
 BiometricPrompt.AuthenticationResult result) {

692

An Android Biometric Authentication Tutorial

 notifyUser("Authentication Succeeded");
 super.onAuthenticationSucceeded(result);
 }
 };
 }
.

.

}

80.9 Adding the CancellationSignal
Once initiated, the biometric authentication process is performed independently of the app. To provide the
app with a way to cancel the operation, an instance of the CancellationSignal class is created and passed to
the biometric authentication process. This CancellationSignal instance can then be used to cancel the process
if necessary. The cancellation signal instance may be configured with a listener which will be called when the
cancellation is completed. Add a new method to the activity class to configure and return a CancellationSignal
object as follows:
.

.

import android.os.CancellationSignal;
.

.

 private CancellationSignal cancellationSignal;
.

.

 private CancellationSignal getCancellationSignal() {

 cancellationSignal = new CancellationSignal();
 cancellationSignal.setOnCancelListener(() ->
 notifyUser("Cancelled via signal"));
 return cancellationSignal;
 }
.
.

80.10 Starting the Biometric Prompt
All that remains is to add code to the authenticateUser() method to create and configure a BiometricPrompt
instance and initiate the authentication. Add the authenticateUser() method as follows:
.

.

import android.view.View;
.
.
public void authenticateUser(View view) {
 BiometricPrompt biometricPrompt = new BiometricPrompt.Builder(this)
 .setTitle("Biometric Demo")
 .setSubtitle("Authentication is required to continue")

693

An Android Biometric Authentication Tutorial

 .setDescription(
 "This app uses biometric authentication to protect your data.")
 .setNegativeButton("Cancel", this.getMainExecutor(),
 (dialogInterface, i) ->
 notifyUser("Authentication cancelled"))
 .build();

 biometricPrompt.authenticate(getCancellationSignal(), getMainExecutor(),
 getAuthenticationCallback());
}

The BiometricPrompt.Builder class is used to create a new BiometricPrompt instance configured with title,
subtitle and description text to appear in the prompt dialog. The negative button is configured to display
text which reads “Cancel” and a listener configured to display a message when this button is clicked. Finally,
the authenticate() method of the BiometricPrompt instance is called and passed the AuthenticationCallback
and CancellationSignal instances. The Biometric prompt also needs to know which thread to perform the
authentication on. This is defined by passing through an Executor object configured for the required thread. In
this case, the getMainExecutor() method is used to pass a main Executor object to the BiometricPrompt instance
so that the authentication process takes place on the app’s main thread.

80.11 Testing the Project
With the project now complete, run the app on a physical Android device or emulator session and click on the
Authenticate button to display the BiometricPrompt dialog as shown in Figure 80-3:

Figure 80-3
Once running, either touch the fingerprint sensor or use the extended controls panel within the emulator to
simulate a fingerprint touch as outlined in the chapter entitled “Using and Configuring the Android Studio AVD
Emulator”. Assuming a registered fingerprint is detected the prompt dialog will return to the main activity
where the toast message from the successful authentication callback method will appear.

Click the Authenticate button once again, this time using an unregistered fingerprint to attempt the authentication.
This time the biometric prompt dialog will indicate that the fingerprint was not recognized:

694

An Android Biometric Authentication Tutorial

Figure 80-4
Verify that the error handling callback is working by clicking on the activity outside of the biometric prompt
dialog. The prompt dialog will disappear and the toast message will appear with the following message:
Authentication error: Fingerprint operation cancelled by user.

Check that canceling the prompt dialog using the Cancel button triggers the “Authentication Canceled” toast
message. Finally, attempt to authenticate multiple times using an unregistered fingerprint and note that after a
number of attempts the prompt dialog indicates that too many failures have occurred and that future attempts
cannot be made until later.

80.12 Summary
This chapter has outlined how to integrate biometric authentication into an Android app project. This involves
the use of the BiometricPrompt class which, once configured with appropriate message text and callbacks,
automatically handles most of the authentication process.

695

Chapter 81

81. Creating, Testing and Uploading
an Android App Bundle
Once the development work on an Android application is complete and it has been tested on a wide range of
Android devices, the next step is to prepare the application for submission to Google Play. Before submission
can take place, however, the application must be packaged for release and signed with a private key. This chapter
will work through the steps involved in obtaining a private key, preparing the Android App Bundle for the
project and uploading it to Google Play.

81.1 The Release Preparation Process
Up until this point in the book, we have been building application projects in a mode suitable for testing and
debugging. Building an application package for release to customers via Google Play, on the other hand, requires
that some additional steps be taken. The first requirement is that the application be compiled in release mode
instead of debug mode. Secondly, the application must be signed with a private key that uniquely identifies you
as the application’s developer. Finally, the application must be packaged into an Android App Bundle.

While each of these tasks can be performed outside of the Android Studio environment, the procedures can
more easily be performed using the Android Studio build mechanism as outlined in the remainder of this
chapter. First, however, it is important to understand a little more about Android App Bundles.

81.2 Android App Bundles
When a user installs an app from Google Play, the app is downloaded in the form of an APK file. This file
contains everything needed to install and run the app on the user’s device. Before the introduction of Android
Studio 3.2, the developer would generate one or more APK files using Android Studio and upload them to
Google Play. To support multiple device types, screen sizes and locales this would require either the creation and
upload of multiple APK files customized for each target device and locale, or the generation of a large universal
APK containing all of the different configuration resources and platform binaries within a single package.

Creating multiple APK files involved a significant amount of work that had to be repeated each time the app
needed to be updated imposing a considerable time overhead to the app release process.

The universal APK option, while less of a burden to the developer, caused an entirely unexpected problem. By
analyzing app installation metrics, Google discovered that the larger an installation APK file becomes (resulting
in longer download times and increased storage use on the device), the less conversions the app receives. The
conversion rate is calculated as a percentage of the users who completed the installation of an app after viewing
that app on Google Play. In fact, Google estimates that the conversion rate for an app drops by 1% for each 6MB
increase in APK file size.

Android App Bundles solve both of these problems by providing a way for the developer to create a single
package from within Android Studio and have custom APK files automatically generated by Google Play for
each individual supported configuration (a concept referred to as Dynamic Delivery).

An Android App Bundle is essentially a ZIP file containing all of the files necessary to build APK files for
the devices and locales for which support has been provided within the app project. The project might, for
example, include resources and images for different screen sizes. When a user installs the app, Google Play

696

Creating, Testing and Uploading an Android App Bundle

receives information about the user’s device including the display, processor architecture and locale. Using this
information, the appropriate pre-generated APK files are transferred onto the user’s device.

An additional benefit of Dynamic Delivery is the ability to split an app into multiple modules, referred to as
dynamic feature modules, where each module contains the code and resources for a particular area of functionality
within the app. Each dynamic feature module is contained within a separate APK file from the base module and
is downloaded to the device only when that feature is required by the user. Dynamic Delivery and app bundles
also allow for the creation of instant dynamic feature modules which can be run instantly on a device without the
need to install an entire app. These topics will be covered in greater detail starting with the chapter entitled “An
Overview of Android Dynamic Feature Modules”.

Although it is still possible to generate APK files from Android Studio, app bundles are now the recommended
way to upload apps to Google Play.

81.3 Register for a Google Play Developer Console Account
The first step in the application submission process is to create a Google Play Developer Console account.
To do so, navigate to https://play.google.com/apps/publish/signup/ and follow the instructions to complete the
registration process. Note that there is a one-time $25 fee to register. Once an application goes on sale, Google
will keep 30% of all revenues associated with the application. After the account has been created, the developer
console can be accessed at https://play.google.com/console.

The next step is to gather together information about the application. To bring your application to market, the
following information will be required:

• Title – The title of the application.

• Short Description - Up to 80 words describing the application.

• Full Description – Up to 4000 words describing the application.

• Screenshots – Up to 8 screenshots of your application running (a minimum of two is required). Google
recommends submitting screenshots of the application running on a 7” or 10” tablet.

• Language – The language of the application (the default is US English).

• Promotional Text – The text that will be used when your application appears in special promotional features
within the Google Play environment.

• Application Type – Whether your application is considered to be a game or an application.

• Category – The category that best describes your application (for example finance, health and fitness,
education, sports, etc.).

• Locations – The geographical locations into which you wish your application to be made available for
purchase.

• Contact Details – Methods by which users may contact you for support relating to the application. Options
include web, email, and phone.

• Pricing & Distribution – Information about the price of the application and the geographical locations where
it is to be marketed and sold.

Having collected the above information, click on the Create app button within the Google Play Console to begin
the creation process.

https://play.google.com/apps/publish/signup/
https://play.google.com/console

697

Creating, Testing and Uploading an Android App Bundle

81.4 Configuring the App in the Console
When the Create app button is first clicked, the app details and declarations screen will appear as shown in
Figure 81-1 below:

Figure 81-1
Once the app entry has been fully configured, click on the Create app button (highlighted in the above figure) to
add the app and display the dashboard screen. Within the dashboard, locate the Initial setup section and unfold
the list of steps to configure the app store listing:

Figure 81-2
Work through the list of links and provide the requested information for your app, making sure to save the
changes at each step.

698

Creating, Testing and Uploading an Android App Bundle

81.5 Enabling Google Play App Signing
Up until recently, Google Play uploads were signed with a release app signing key from within Android Studio
and then uploaded to the Google Play console. While this option is still available, the recommended way to
upload files is to now use a process referred to as Google Play App Signing. For a newly created app, this involves
opting in to Google Play App Signing and then generating an upload key that is used to sign the app bundle file
within Android Studio. When the app bundle file generated by Android Studio is uploaded, the Google Play
console removes the upload key and then signs the file with an app signing key that is stored securely within the
Google Play servers. For existing apps, some additional steps are required to enable Google Play Signing and will
be covered at the end of this chapter.

Within the Google Play console, select the newly added app entry from the All Apps screen (accessed via the
option located at the top of the left-hand navigation panel), unfold the Setup section (Marked A in Figure 81-3)
and select the App Signing option (B).

Figure 81-3
Opt into Google Play app signing by clicking on the Create release button (C). The console is now ready to create
the first release of your app for testing. Before doing so, however, the next step is to generate the upload key from
within Android Studio. This is performed as part of the process of generating a signed app bundle. Leave the
current Google Play Console screen loaded into the browser as we will be returning to this later in the chapter.

81.6 Creating a Keystore File
To create a keystore file, select the Android Studio Build -> Generate Signed Bundle / APK… menu option to
display the Generate Signed Bundle or APK Wizard dialog as shown in Figure 81-4:

Figure 81-4
Verify that the Android App Bundle option is selected before clicking on the Next button.

If you have an existing release keystore file, click on the Choose existing… button on the next screen and navigate
to and select the file. If you have yet to create a keystore file, click on the Create new… button to display the

699

Creating, Testing and Uploading an Android App Bundle

New Key Store dialog (Figure 81-5). Click on the button to the right of the Key store path field and navigate to
a suitable location on your file system, enter a name for the keystore file (for example, release.keystore.jks) and
click on the OK button.

The New Key Store dialog is divided into two sections. The top section relates to the keystore file. In this section,
enter a strong password with which to protect the keystore file into both the Password and Confirm fields. The
lower section of the dialog relates to the upload key that will be stored in the key store file.

Figure 81-5
Within the Key section of the New Key Store dialog, enter the following details:

• An alias by which the key will be referenced. This can be any sequence of characters, though only the first 8
are used by the system.

• A suitably strong password to protect the key.

• The number of years for which the key is to be valid (Google recommends a duration in excess of 25 years).

In addition, information must be provided for at least one of the remaining fields (for example, your first and
last name, or organization name).

Figure 81-6

700

Creating, Testing and Uploading an Android App Bundle

Once the information has been entered, click on the OK button to proceed with the bundle creation.

81.7 Creating the Android App Bundle
The next step is to instruct Android Studio to build the application app bundle file in release mode and then
sign it with the newly created private key. At this point the Generate Signed Bundle or APK dialog should still be
displayed with the keystore path, passwords and key alias fields populated with information:

Figure 81-7
Make sure that the Export Encrypted Key option is enabled and, assuming that the other settings are correct,
click on the Next button to proceed to the app bundle generation screen (Figure 81-8). Within this screen,
review the Destination Folder: setting to verify that the location into which the app bundle file will be generated
is acceptable. If another location is preferred, click on the button to the right of the text field and navigate to the
desired file system location.

Figure 81-8
Click on the Finish button and wait for the Gradle system to build the app bundle. Once the build is complete, a
dialog will appear providing the option to open the folder containing the app bundle file in an explorer window,
or to load the file into the APK Analyzer:

701

Creating, Testing and Uploading an Android App Bundle

Figure 81-9
At this point the application is ready to be submitted to Google Play. Click on the locate link to open a filesystem
browser window. The file should be named bundle.aab and be located in the app/release sub-directory of the
project folder unless another location was specified.

The private key generated as part of this process should be used when signing and releasing future applications
and, as such, should be kept in a safe place and securely backed up.

81.8 Generating Test APK Files
An optional step at this stage is to generate APK files from the app bundle and install and run them on devices or
emulator sessions. Google provides a command-line tool called bundletool designed specifically for this purpose
which can be downloaded from the following URL:

https://github.com/google/bundletool/releases

At time of writing, bundletool is provided as a .jar file which can be executed from the command line as follows
(noting that the version number may have changed since this book was published):
java -jar bundletool-all-0.9.0.jar

Running the above command will list all of the options available within the tool. To generate the APK files
from the app bundle, the build-apks option is used. To generate APK files that can be installed onto a device or
emulator the files will also need to be signed. To achieve this include the --ks option specifying the path of the
keystore file created earlier in the chapter, together with the --ks-key-alias option specifying the alias provided
when the key was generated.

Finally, the --output flag must be used to specify the path of the file (referred to as the APK Set) into which the
APK files will be generated. This file must not already exist and is required to have a .apks filename extension.
Bringing these requirements together results in the following command-line (allowing for differences in your
operating system path structure):
java -jar bundletool-all-0.9.0.jar build-apks --bundle=/tmp/MyApps/app/release/
bundle.aab --output=/tmp/MyApks.apks --ks=/MyKeys/release.keystore.jks --ks-key-
alias=MyReleaseKey

When this command is executed, a prompt will appear requesting the keystore password before the APK files
are generated into the specified APK Set file. The APK Set file is simply a ZIP file containing all of the APK files
generated from the app bundle.

To install the appropriate APK files onto a connected device or emulator, use a command similar to the following:
java -jar bundletool-all-0.9.0.jar install-apks --apks=/tmp/MyApks.apks

This command will instruct the tool to identify the appropriate APK files for the connected device and install
them so that the app can be launched and tested.

It is also possible to extract the APK files from the APK Set for the connected device without installing them.
The first step in this process is to obtain the specification of the connected device as follows:
java -jar bundletool-all-0.9.0.jar get-device-spec --output=/tmp/device.json

https://github.com/google/bundletool/releases

702

Creating, Testing and Uploading an Android App Bundle

The above command will generate a JSON file similar to the following:
{

 "supportedAbis": ["x86"],

 "supportedLocales": ["en-US"],

 "screenDensity": 420,

 "sdkVersion": 27

}

Next, this specification file is used to extract the matching APK files from the APK Set:
java -jar bundletool-all-0.9.0.jar extract-apks --apks=/tmp/MyApks.apks --output-
dir=/tmp/nexus5_apks --device-spec=/tmp/device.json

When executed, the directory specified via the --output-dir flag will contain correct APK files for the specified
device configuration.

The next step in bringing an Android application to market involves submitting it to the Google Play Developer
Console so that it can be made available for testing.

81.9 Uploading the App Bundle to the Google Play Developer Console
Return to the Google Play Console and select the Internal testing option (marked A in Figure 81-10) located in
the Testing section of the navigation panel before clicking on the Create new release button (B):

Figure 81-10
On the resulting screen, click on the Continue button (marked A below) to confirm the use of Google Play app
signing, then drag and drop the bundle file generated by Android Studio onto the upload drop point (B):

Figure 81-11

703

Creating, Testing and Uploading an Android App Bundle

When the upload is complete, scroll down the screen and enter the release name and optional release notes. The
release name can be any information you need to help you recognize the release and it is not visible to users.

After the app bundle file has uploaded, Google Play will generate all of the necessary APK files ready for testing.
Once the APK files have been generated, scroll down to the bottom of the screen and click on the Save button.
Once the settings have been saved, click on the Review release button.

81.10 Exploring the App Bundle
On the review screen, click on the arrow to the right of the uploaded bundle as indicated in Figure 81-12:

Figure 81-12
In the resulting panel, click on the Explore bundle link to load the app bundle explorer. This provides summary
information relating to the API levels, screen layouts and platforms supported by the app bundle:

Figure 81-13

Clicking on the Go to device catalog link will display the devices that are supported by the APK file:

704

Creating, Testing and Uploading an Android App Bundle

Figure 81-14

At this point, the app is ready for testing but cannot be rolled out until some testers have been set up within the
console.

81.11 Managing Testers
If the app is still in the Internal, Alpha or Beta testing phase, a list of authorized testers may be specified by
selecting the app from within the Google Play console, clicking on Internal testing in the navigation panel, and
selecting the Testers tab as shown in Figure 81-15:

Figure 81-15
To add testers, click on the Create email list button, name the list and specify the email addresses for the test users
either manually or by uploading a CSV file.

The “Join on the web” URL may now be copied from the screen and provided to the test users so that they accept
the testing invitation and download the app.

81.12 Rolling the App Out for Testing
Now that an internal release has been created and a list of testers added, the app is ready to be rolled out for
testing. Remaining within the Internal testing screen, select the Releases tab before clicking on the Edit button
for the recently created release:

705

Creating, Testing and Uploading an Android App Bundle

Figure 81-16
On the review screen, scroll to the bottom and click on the Start rollout to Internal testing button. After a short
delay while the release is processed, the app will be ready to be downloaded and tested by the designated users.

81.13 Uploading New App Bundle Revisions
The first app bundle file uploaded for your application will invariably have a version code of 1. If an attempt is
made to upload another bundle file with the same version code number, the console will reject the file with the
following error:
You need to use a different version code for your APK because you already have one
with version code 1.

To resolve this problem, the version code embedded into the bundle file needs to be increased. This is performed
in the module level build.gradle file of the project, shown highlighted in Figure 81-17:

Figure 81-17
By default, this file will typically read as follows:
plugins {

 id 'com.android.application'

}

android {

 namespace 'com.ebookfrenzy.androidsample'

 compileSdk 33

 defaultConfig {

 applicationId "com.ebookfrenzy.androidsample"

706

Creating, Testing and Uploading an Android App Bundle

 minSdk 29

 targetSdk 33

 versionCode 1

 versionName "1.0"

.

.

}

To change the version code, simply change the number declared next to versionCode. To also change the version
number displayed to users of your application, change the versionName string. For example:
versionCode 2

versionName "2.0"

Having made these changes, rebuild the APK file and perform the upload again.

81.14 Analyzing the App Bundle File
Android Studio provides the ability to analyze the content of an app bundle file. To analyze a bundle file, select
the Android Studio Build -> Analyze APK… menu option and navigate to and choose the bundle file to be
reviewed. Once loaded into the tool, information will be displayed about the raw and download size of the
package together with a listing of the file structure of the package as illustrated in Figure 81-18:

Figure 81-18
Selecting the classes.dex file will display the class structure of the file in the lower panel. Within this panel, details
of the individual classes may be explored down to the level of the methods within a class:

Figure 81-19
Similarly, selecting a resource or image file within the file list will display the file content within the lower panel.
The size differences between two bundle files may be reviewed by clicking on the Compare with previous APK…
button and selecting a second bundle file.

81.15 Summary
Once an app project is either complete, or ready for user testing, it can be uploaded to the Google Play console
and published for production, internal, alpha or beta testing. Before the app can be uploaded, an app entry must

707

Creating, Testing and Uploading an Android App Bundle

be created within the console including information about the app together with screenshots to be used within
the Play Store. A release Android App Bundle file is then generated and signed with an upload key from within
Android Studio. After the bundle file has been uploaded, Google Play removes the upload key and replaces it
with the securely stored app signing key and the app is ready to be published.

The content of a bundle file can be reviewed at any time by loading it into the Android Studio APK Analyzer
tool.

709

Chapter 82

82. An Overview of Android In-App
Billing
In the early days of mobile applications for operating systems such as Android and iOS, the most common
method for earning revenue was to charge an upfront fee to download and install the application. Another
revenue opportunity was soon introduced in the form of embedding advertising within applications. Perhaps the
most common and lucrative option is now to charge the user for purchasing items from within the application
after it has been installed. This typically takes the form of access to a higher level in a game, acquiring virtual
goods or currency, or subscribing to premium content in the digital edition of a magazine or newspaper.

Google provides support for the integration of in-app purchasing through the Google Play In-App Billing API
and the Play Console. This chapter will provide an overview of in-app billing and outline how to integrate in-app
billing into your Android projects. Once these topics have been explored, the next chapter will walk you through
creating an example app that includes in-app purchasing features.

82.1 Preparing a Project for In-App Purchasing
Building in-app purchasing into an app will require a Google Play Developer Console account, details of which
were covered previously in the “Creating, Testing and Uploading an Android App Bundle” chapter. You will also
need to register a Google merchant account and configure your payment settings. These settings can be found
by navigating to Setup -> Payments profile in the Play Console. Note that merchant registration is not available
in all countries. For details, refer to the following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app will then need to be uploaded to the console and enabled for in-app purchasing. The console will not
activate in-app purchasing support for an app, however, unless the Google Play Billing Library has been added
to the module-level build.gradle file:
dependencies {

.

.

 implementation 'com.android.billingclient:billing:<latest version>'
.

.

}

Once the build file has been modified and the app bundle uploaded to the console, the next step is to add in-app
products or subscriptions for the user to purchase.

82.2 Creating In-App Products and Subscriptions
Products and subscriptions are created and managed using the options listed beneath the Monetize section of
the Play Console navigation panel as highlighted in Figure 82-1 below:

https://support.google.com/googleplay/android-developer/answer/9306917

710

An Overview of Android In-App Billing

Figure 82-1
Each product or subscription needs an ID, title, description, and pricing information. Purchases fall into
the categories of consumable (the item must be purchased each time it is required by the user such as virtual
currency in a game), non-consumable (only needs to be purchased once by the user such as content access), and
subscription-based. Consumable and non-consumable products are collectively referred to as managed products.

Subscriptions are useful for selling an item that needs to be renewed on a regular schedule such as access to news
content or the premium features of an app. When creating a subscription, a base plan is defined specifying the
price, renewal period (monthly, annually, etc.), and whether the subscription auto-renews. Users can also be
provided with discount offers and given the option of pre-purchasing a subscription.

82.3 Billing Client Initialization
Communication between your app and the Google Play Billing Library is handled by a BillingClient instance.
In addition, BillingClient includes a set of methods that can be called to perform both synchronous and
asynchronous billing-related activities. When the billing client is initialized, it will need to be provided with a
reference to a PurchasesUpdatedListener callback handler. The client will call this handler to notify your app
of the results of any purchasing activity. To avoid duplicate notifications, it is recommended to have only one
BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() method, passing through the current activity or
fragment context. The purchase update handler is then assigned to the client via the setListener() method:
private final PurchasesUpdatedListener purchasesUpdatedListener =

 new PurchasesUpdatedListener() {

 @Override

 public void onPurchasesUpdated(BillingResult billingResult,

 List<Purchase> purchases) {

 if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.OK

 && purchases != null) {

 // Purchase(s) successful

 for (Purchase purchase : purchases) {

 // Process purchases

711

An Overview of Android In-App Billing

 }

 } else if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.USER_CANCELED) {

 // User cancelled purchase

 } else {

 // handle errors here

 }

 }

};

private BillingClient billingClient = BillingClient.newBuilder(context)

 .setListener(purchasesUpdatedListener)

 .enablePendingPurchases()

 .build();

82.4 Connecting to the Google Play Billing Library
After the successful creation of the Billing Client, the next step is to initialize a connection to the Google Play
Billing Library. To establish this connection, a call needs to be made to the startConnection() method of the
billing client instance. Since the connection is performed asynchronously, a BillingClientStateListener handler
needs to be implemented to receive a callback indicating whether the connection was successful. Code should
also be added to override the onBillingServiceDisconnected() method. This is called if the connection to the
Billing Library is lost and can be used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the BillingClient instance will make a call to the
onBillingSetupFinished() method which can be used to check that the client is ready:
billingClient.startConnection(new BillingClientStateListener() {

 @Override

 public void onBillingSetupFinished(

 @NonNull BillingResult billingResult) {

 if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.OK) {

 // Connection successful

 } else {

 // Connection failed

 }

 }

 @Override

 public void onBillingServiceDisconnected() {

 // Existing connection lost

 }

});

712

An Overview of Android In-App Billing

82.5 Querying Available Products
Once the billing environment is initialized and ready to go, the next step is to request the details of the products or
subscriptions that are available for purchase. This is achieved by making a call to the queryProductDetailsAsync()
method of the BillingClient and passing through an appropriately configured QueryProductDetailsParams
instance containing the product ID and type (ProductType.SUBS for a subscription or ProductType.INAPP for
a managed product):
QueryProductDetailsParams queryProductDetailsParams =

 QueryProductDetailsParams.newBuilder()

 .setProductList(

 ImmutableList.of(

 QueryProductDetailsParams.Product.newBuilder()

 .setProductId("one_button_click")

 .setProductType(BillingClient.ProductType.INAPP)

 .build()))

 .build();

billingClient.queryProductDetailsAsync(queryProductDetailsParams,

 new ProductDetailsResponseListener() {

 public void onProductDetailsResponse(

 @NonNull BillingResult billingResult,

 @NonNull List<ProductDetails> productDetailsList) {

 if (!productDetailsList.isEmpty()) {

 // Process list of matching products

 } else {

 // No product matches found

 }

 }

 }

);

The queryProductDetailsAsync() method is passed a ProductDetailsResponseListener handler which, in turn,
is called and passed a list of ProductDetail objects containing information about the matching products. For
example, we can call methods on these objects to get information such as the product name, title, description,
price, and offer details.

82.6 Starting the Purchase Process
Once a product or subscription has been queried and selected for purchase by the user, the purchase process is
ready to be launched. We do this by calling the launchBillingFlow() method of the BillingClient, passing through
as arguments the current activity and a BillingFlowParams instance configured with the ProductDetail object
for the item being purchased.
BillingFlowParams billingFlowParams =

 BillingFlowParams.newBuilder()

 .setProductDetailsParamsList(

 ImmutableList.of(

 BillingFlowParams.ProductDetailsParams.newBuilder()

713

An Overview of Android In-App Billing

 .setProductDetails(productDetails)

 .build()

)

)

 .build();

billingClient.launchBillingFlow(this, billingFlowParams);

The success or otherwise of the purchase operation will be reported via a call to the PurchasesUpdatedListener
callback handler outlined earlier in the chapter.

82.7 Completing the Purchase
When purchases are successful, the PurchasesUpdatedListener handler will be passed a list containing a Purchase
object for each item. You can verify that the item has been purchased by calling the getPurchaseState() method
of the Purchase instance as follows:
if (purchase.getPurchaseState() == Purchase.PurchaseState.PURCHASED) {

 // Purchase completed.

} else if (purchase.getPurchaseState() == Purchase.PurchaseState.PENDING) {

 // Payment is still pending

}

Note that your app will only support pending purchases if a call is made to the enablePendingPurchases() method
during initialization. A pending purchase will remain so until the user completes the payment process.

When the purchase of a non-consumable item is complete, it will need to be acknowledged to prevent a refund
from being issued to the user. This requires the purchase token for the item which is obtained via a call to the
getPurchaseToken() method of the Purchase object. This token is used to create an AcknowledgePurchaseParams
instance together with an AcknowledgePurchaseResponseListener handler. Managed product purchases and
subscriptions are acknowledged by calling the BillingClient’s acknowledgePurchase() method as follows:
AcknowledgePurchaseParams acknowledgePurchaseParams =

 AcknowledgePurchaseParams.newBuilder()

 .setPurchaseToken(purchase.getPurchaseToken())

 .build();

AcknowledgePurchaseResponseListener acknowledgePurchaseResponseListener =

 new AcknowledgePurchaseResponseListener() {

 @Override

 public void onAcknowledgePurchaseResponse(

 @NonNull BillingResult billingResult) {

 billingClient.acknowledgePurchase(

 acknowledgePurchaseParams,

 acknowledgePurchaseResponseListener);

 }

};

For consumable purchases, you will need to notify Google Play when the item has been consumed so that it
is available to be repurchased by the user. This requires a configured ConsumeParams instance containing a
purchase token, a ConsumeResponseListener, and a call to the billing client’s consumeAsync() method:

714

An Overview of Android In-App Billing

ConsumeParams consumeParams =

 ConsumeParams.newBuilder()

 .setPurchaseToken(purchase.getPurchaseToken())

 .build();

ConsumeResponseListener listener = new ConsumeResponseListener() {

 @Override

 public void onConsumeResponse(BillingResult billingResult,

 @NonNull String purchaseToken) {

 if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.OK) {

 // Purchase consumed successfully

 }

 }

};

billingClient.consumeAsync(consumeParams, listener);

82.8 Querying Previous Purchases
When working with in-app billing it is a common requirement to check whether a user has already purchased a
product or subscription. A list of all the user’s previous purchases of a specific type can be generated by calling
the queryPurchasesAsync() method of the BillingClient instance and implementing a PurchaseResponseListener.
The following code, for example, obtains a list of all previously purchased items that have not yet been consumed:
QueryPurchasesParams queryPurchasesParams =

 QueryPurchasesParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build();

billingClient.queryPurchasesAsync(queryPurchasesParams,

 new PurchasesResponseListener() {

 @Override

 public void onQueryPurchasesResponse(@NonNull BillingResult billingResult,

 @NonNull List<Purchase> list) {

 // Process list of purchases

 }

});

To obtain a list of active subscriptions, change the ProductType value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for each product, make a call to the BillingClient
queryPurchaseHistoryAsync() method:
QueryPurchaseHistoryParams queryPurchaseHistoryParams =

 QueryPurchaseHistoryParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build();

billingClient.queryPurchaseHistoryAsync(queryPurchaseHistoryParams,

715

An Overview of Android In-App Billing

 new PurchaseHistoryResponseListener() {

 @Override

 public void onPurchaseHistoryResponse(@NonNull BillingResult billingResult,

 @NonNull List<PurchaseHistoryRecord> list) {

 // Process purchase history

 }

});

82.9 Summary
In-app purchases provide a way to generate revenue from within Android apps by selling virtual products and
subscriptions to users. In this chapter, we have explored managed products and subscriptions and explained
the difference between consumable and non-consumable products. In-app purchasing support is added to
an app using the Google Play In-app Billing Library and involves creating and initializing a billing client on
which methods are called to perform tasks such as making purchases, listing available products, and consuming
existing purchases. The next chapter contains a tutorial demonstrating the addition of in-app purchases to an
Android Studio project.

717

Chapter 83

83. An Android In-App Purchasing
Tutorial
In the previous chapter, we explored how to integrate in-app purchasing into an Android project and also looked
at some code samples that can be used when working on your own projects. This chapter will put this theory
into practice by creating an example project that demonstrates how to add a consumable in-app product to an
Android app. The tutorial will also show how in-app products are added and managed within the Google Play
Console and explain how to enable test payments so that purchases can be made during testing without having
to spend real money.

83.1 About the In-App Purchasing Example Project
The simple concept behind this project is an app in which an in-app product must be purchased before a button
can be clicked. This in-app product is consumed each time the button is clicked, requiring the user to re-purchase
the product each time they want to be able to click the button. On initialization, the app will connect to the app
store, obtain details of the product, and display the product name. Once the app has established that the product
is available, a purchase button will be enabled which, when clicked, will step through the purchase process. On
completion of the purchase, a second button will be enabled so that the user can click on it and consume the
purchase.

83.2 Creating the InAppPurchase Project
The first step in this exercise is to create a new project. Begin by launching Android Studio and selecting the New
Project option from the welcome screen. In the new project dialog, choose the Empty Views Activity template
before clicking on the Next button.

Enter InAppPurchase into the Name field and specify a package name that will uniquely identify your app
within the Google Play ecosystem (for example com.<your company>.InAppPurchase). Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the Language menu to
Java. Once the project has been created, use the steps outlined in section 11.8 Migrating a Project to View Binding
to convert the project to use view binding.

83.3 Adding Libraries to the Project
Before we start writing code, some libraries need to be added to the project build configuration, including the
standard Android billing client library. Later in the project, we will also need to use the ImmutableList class
which is part of Google’s Guava Core Java libraries. Add these libraries now by modifying the Gradle Scripts ->
build.gradle (Module: InAppPurchase.app) file with the following changes:
.

.

dependencies {

.

.

 implementation 'com.android.billingclient:billing:5.2.0'
 implementation 'com.google.guava:guava:24.1-jre'

718

An Android In-App Purchasing Tutorial

 implementation 'com.google.guava:guava:27.0.1-android'
.

.

Click on the Sync Now link at the top of the editor panel to commit these changes.

83.4 Designing the User Interface
The user interface will consist of the existing TextView and two Buttons. With the activity_main.xml file loaded
into the editor, drag and drop two Button views onto the layout so that one is above and the other below the
TextView. Select the TextView and change the id attribute to statusText.

Click on the Clear all Constraints button in the toolbar and shift-click to select all three views. Right-click on
the top-most Button view and select the Center -> Horizontally in Parent menu option. Repeat this step once
more, this time selecting Chains -> Create Vertical Chain. Change the text attribute of the top button so that it
reads “Consume Purchase” and the id to consumeButton. Also, configure the onClick property to call a method
named consumePurchase.

Select the bottom-most button and repeat the above steps, this time setting the text to “Buy Product”, the id to
buyButton, and the onClick callback to makePurchase. Once completed, the layout should match that shown in
Figure 83-1:

Figure 83-1

83.5 Adding the App to the Google Play Store
Using the steps outlined in the chapter entitled “Creating, Testing and Uploading an Android App Bundle”, sign
into the Play Console, create a new app, and set up a new internal testing track including the email addresses of
designated testers. Return to Android Studio and generate a signed release app bundle for the project. Once the
bundle file has been generated, upload it to the internal testing track and roll it out for testing.

Now that the app has a presence in the Google Play Store, we are ready to create an in-app product for the
project.

719

An Android In-App Purchasing Tutorial

83.6 Creating an In-App Product
With the app selected in the Play Console, scroll down the list of options in the left-hand panel until the Monetize
section comes into view. Within this section, select the In-app products option listed under Products as shown
in Figure 83-2:

Figure 83-2
On the In-app products page, click on the Create product button:

Figure 83-3
On the new product screen, enter the following information before saving the new product:

• Product ID: one_button_click

• Name: A Button Click

• Description: This is a test in-app product that allows a button to be clicked once.

• Default price: Set to the lowest possible price in your preferred currency.

83.7 Enabling License Testers
When testing in-app billing it is useful to be able to make test purchases without spending any money. This can
be achieved by enabling license testing for the internal track testers. License testers can use a test payment card
when making purchases so that they are not charged.

Within the Play Console, return to the main home screen and select the Setup -> License testing option:

720

An Android In-App Purchasing Tutorial

Figure 83-4
Within the license testing screen, add the testers that were added for the internal testing track, change the
License response setting to RESPOND_NORMALLY, and save the changes:

Figure 83-5
Now that both the app and the in-app product have been set up in the Play Console, we can start adding code
to the project.

83.8 Initializing the Billing Client
Edit the MainActivity.java file and make the following changes to begin implementing the in-app purchase
functionality:
.

.

import androidx.annotation.NonNull;

import android.util.Log;
import com.android.billingclient.api.*;
.

.

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 private BillingClient billingClient;
 private ProductDetails productDetails;

721

An Android In-App Purchasing Tutorial

 private Purchase purchase;

 static final String TAG = "InAppPurchaseTag";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 billingSetup();
 }

 private void billingSetup() {

 billingClient = BillingClient.newBuilder(this)
 .setListener(purchasesUpdatedListener)
 .enablePendingPurchases()
 .build();

 billingClient.startConnection(new BillingClientStateListener() {

 @Override
 public void onBillingSetupFinished(
 @NonNull BillingResult billingResult) {

 if (billingResult.getResponseCode() ==
 BillingClient.BillingResponseCode.OK) {
 Log.i(TAG, "OnBillingSetupFinish connected");
 queryProduct();
 } else {
 Log.i(TAG, "OnBillingSetupFinish failed");
 }
 }

 @Override
 public void onBillingServiceDisconnected() {
 Log.i(TAG, "OnBillingSetupFinish connection lost");
 }
 });
 }
.

.

When the app starts, the onCreate() method will now call billingSetup() which will, in turn, create a new billing
client instance and attempt to connect to the Google Play Billing Library. The onBillingSetupFinished() listener

722

An Android In-App Purchasing Tutorial

will be called when the connection attempt completes and output Logcat messages indicating the success or
otherwise of the connection attempt. Finally, we have also implemented the onBillingServiceDisconnected()
callback which will be called if the Google Play Billing Library connection is lost.

If the connection is successful a method named queryProduct() is called. Both this method and the
purchasesUpdatedListener assigned to the billing client now need to be added.

83.9 Querying the Product
To make sure the product is available for purchase, we need to create a QueryProductDetailsParams instance
configured with the product ID that was specified in the Play Console, and pass it to the queryProductDetailsAsync()
method of the billing client. This will require that we also add the onProductDetailsResponse() callback method
where we will check that the product exists, extract the product name, and display it on the status TextView. Now
that we have obtained the product details, we can also safely enable the buy button. Within the MainActivity. file,
add the queryProduct() method so that it reads as follows:
.

.

import com.google.common.collect.ImmutableList;

import java.util.List;

.

.

private void queryProduct() {

 QueryProductDetailsParams queryProductDetailsParams =

 QueryProductDetailsParams.newBuilder()

 .setProductList(

 ImmutableList.of(

 QueryProductDetailsParams.Product.newBuilder()

 .setProductId("one_button_click")

 .setProductType(

 BillingClient.ProductType.INAPP)

 .build()))

 .build();

 billingClient.queryProductDetailsAsync(

 queryProductDetailsParams,

 new ProductDetailsResponseListener() {

 public void onProductDetailsResponse(

 @NonNull BillingResult billingResult,

 @NonNull List<ProductDetails> productDetailsList) {

 if (!productDetailsList.isEmpty()) {

 productDetails = productDetailsList.get(0);

 runOnUiThread(() -> {

 binding.buyButton.setEnabled(true);

 binding.statusText.setText(productDetails.getName());

723

An Android In-App Purchasing Tutorial

 });

 } else {

 Log.i(TAG, "onProductDetailsResponse: No products");

 }

 }

 }

);

}

Much of the code used here should be familiar from the previous chapter. The listener code checks that at least
one product was found that matches the query criteria. The ProductDetails object is then extracted from the
first matching product, stored in the productDetails variable, and the product name property is displayed on the
TextView.

One point of note is that when we display the product name on the status TextView we do so by calling
runOnUiThread(). This is necessary because the listener is not running on the main thread so cannot safely
make direct changes to the user interface. The runOnUiThread() method provides a quick and convenient way
to execute code on the main thread without having to use coroutines.

83.10 Launching the Purchase Flow
When the user clicks the buy button, a method named makePurchase() will be called to start the purchase
process. We can now add this method as follows:
public void makePurchase(View view) {

 BillingFlowParams billingFlowParams =

 BillingFlowParams.newBuilder()

 .setProductDetailsParamsList(

 ImmutableList.of(

 BillingFlowParams.ProductDetailsParams.newBuilder()

 .setProductDetails(productDetails)

 .build()

)

)

 .build();

 billingClient.launchBillingFlow(this, billingFlowParams);

}

83.11 Handling Purchase Updates
The results of the purchase process will be reported to the app via the PurchaseUpdatedListener that was assigned
to the billing client during the initialization phase. Add this handler now as follows:
private final PurchasesUpdatedListener purchasesUpdatedListener = new
PurchasesUpdatedListener() {

 @Override

 public void onPurchasesUpdated(BillingResult billingResult,

 List<Purchase> purchases) {

 if (billingResult.getResponseCode() ==

724

An Android In-App Purchasing Tutorial

 BillingClient.BillingResponseCode.OK

 && purchases != null) {

 for (Purchase purchase : purchases) {

 completePurchase(purchase);

 }

 } else if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.USER_CANCELED) {

 Log.i(TAG, "onPurchasesUpdated: Purchase Canceled");

 } else {

 Log.i(TAG, "onPurchasesUpdated: Error");

 }

 }

};

The handler will output log messages if the user cancels the purchase or another error occurs. A successful
purchase, however, results in a call to a method named completePurchase() which is passed the current Purchase
object. Add this method as outlined below:
private void completePurchase(Purchase item) {

 purchase = item;

 if (purchase.getPurchaseState() == Purchase.PurchaseState.PURCHASED)

 runOnUiThread(() -> {

 binding.consumeButton.setEnabled(true);

 binding.statusText.setText("Purchase Complete");

 });

}

This method stores the purchase before verifying that the product has indeed been purchased and that payment is
not still pending. The “consume” button is then enabled and the user is notified that the purchase was successful.

83.12 Consuming the Product
With the user now able to click on the “consume” button, the next step is to make sure the product is consumed
so that only one click can be performed before another button click is purchased. This requires that we now write
the consumePurchase() method:
public void consumePurchase(View view) {

 ConsumeParams consumeParams =

 ConsumeParams.newBuilder()

 .setPurchaseToken(purchase.getPurchaseToken())

 .build();

 ConsumeResponseListener listener = new ConsumeResponseListener() {

 @Override

 public void onConsumeResponse(BillingResult billingResult,

 @NonNull String purchaseToken) {

 if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.OK) {

725

An Android In-App Purchasing Tutorial

 runOnUiThread(() -> {

 binding.consumeButton.setEnabled(false);

 binding.statusText.setText("Purchase consumed");

 });

 }

 }

 };

 billingClient.consumeAsync(consumeParams, listener);

}

This method creates a ConsumeParams instance and configures it with the purchase token for the current
purchase (obtained from the Purchase object previously saved in the completePurchase() method). This is passed
to the consumePurchase() method which is launched within a coroutine using the IO dispatcher. If the product
is successfully consumed, code is executed in the main thread to disable the consume button and to update the
status text.

83.13 Restoring a Previous Purchase
With the code added so far, we can purchase a product and consume it within a single session. If we were to
make a purchase and then exit the app before consuming it the purchase would currently be lost when the
app restarts. We can solve this problem by configuring a QueryPurchasesParams instance to search for the
unconsumed In-App product and passing it to the queryPurchasesAsync() method of the billing client together
with a reference to a listener that will be called with the results. Add a new function and the listener to the
MainActivity.java file as follows:
private void reloadPurchase() {

 QueryPurchasesParams queryPurchasesParams = QueryPurchasesParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build();

 billingClient.queryPurchasesAsync(

 queryPurchasesParams,

 purchasesListener

);

}

private final PurchasesResponseListener purchasesListener = new
PurchasesResponseListener() {

 @Override

 public void onQueryPurchasesResponse(@NonNull BillingResult billingResult,

 @NonNull List<Purchase> list) {

 if (!list.isEmpty()) {

 purchase = list.get(0);

 binding.consumeButton.setEnabled(true);

 } else {

 binding.consumeButton.setEnabled(false);

 }

 }

726

An Android In-App Purchasing Tutorial

};

If the list of purchases passed to the listener is not empty, the first purchase in the list is assigned to the purchase
variable, and the consume button enabled (in a more complete implementation code should be added to check
this is the correct product by comparing the product id and to handle the return of multiple purchases). If no
purchases are found, the consume button is disabled until another purchase is made. All that remains is to call
our new reloadPurchase() method during the billing setup process as follows:
private void billingSetup() {

.

.

 if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.OK) {

 Log.i(TAG, "OnBillingSetupFinish connected");

 queryProduct();

 reloadPurchase();
 } else {

 Log.i(TAG, "OnBillingSetupFinish failed");

 }

.

.

}

83.14 Testing the App
Before we can test the app we need to upload this latest version to the Play Console. As we already have version
1 uploaded, we first need to increase the version number in the build.gradle (Module: InAppPurchase.app) file:
.

.

defaultConfig {

 applicationId "com.ebookfrenzy.inapppurchase"

 minSdk 26

 targetSdk 32

 versionCode 2
 versionName "2.0"
.

.

Sync the build configuration, then follow the steps in the “Creating, Testing and Uploading an Android App
Bundle” chapter to generate a new app bundle, upload it to the internal test track and roll it out to the testers.
Next, using the internal testing link, install the app on a device or emulator where one of the test accounts is
signed in. To locate the testing link, select the app in the Google Play Console and choose the Internal testing
option from the navigation panel followed by the Testers tab, as shown in Figure 83-6:

727

An Android In-App Purchasing Tutorial

Figure 83-6
Scroll to the “How testers join your test” section of the screen and click on Copy link:

Figure 83-7
Open the Chrome browser on the testing device or emulator, enter the testing link, and follow the instructions
to install the app from the Play Store. After the app starts it should, after a short delay, display the product name
on the TextView. Clicking the buy button will begin the purchase flow as shown in Figure 83-8:

Figure 83-8
Tap the buy button to complete the purchase using the test card and wait for the Consume Purchase button to
be enabled. Before tapping this button, attempt to purchase the product again and verify that it is not possible to
do so because you already own the product.

Tap the Consume Purchase button and wait for the “Purchase consumed” message to appear on the TextView.
With the product consumed, it should now be possible to purchase it again. Make another purchase, then
terminate and restart the app. The app should locate the previous unconsumed purchase and enable the consume
button.

83.15 Troubleshooting
If you encounter problems with the purchase, make sure the device is attached to Android Studio, either via a USB
cable or WiFi, and select it from within the Logcat panel. Enter InAppPurchaseTag into the Logcat search bar
and check the diagnostic output, adding additional Log calls in the code if necessary. For additional information
about failures, a useful trick is to access the debug message from BillingResult instances, for example:

728

An Android In-App Purchasing Tutorial

.

.

} else if (billingResult.getResponseCode()

 == BillingClient.BillingResponseCode.USER_CANCELED) {

 Log.i(TAG, "onPurchasesUpdated: Purchase Canceled");

} else {

 Log.i(TAG, billingResult.getDebugMessage());
}

Note that as long as you leave the app version number unchanged in the module-level build.gradle file, you
should now be able to run modified versions of the app directly on the device or emulator without having to
re-bundle and upload it to the console.

If the test payment card is not listed, make sure the user account on the device has been added to the license
testers list. If the app is running on a physical device, try running it on an emulator. If all else fails, you can enter
a valid payment method to make test purchases, and then refund yourself using the Order management screen
accessible from the Play Console home page.

83.16 Summary
In this chapter, we created a project that demonstrated how to add an in-app product to an Android app. This
included the creation of the product within the Google Play Console and the writing of code to initialize and
connect to the billing client, querying of available products, and, finally, the purchase and consumption of the
product. We also explained how to add license testers using the Play Console so that purchases can be made
during testing without spending money.

729

Chapter 84

84. An Overview of Android
Dynamic Feature Modules
As outlined in the preceding chapter, the introduction of app bundles and dynamic delivery considerably
reduced the size of the application package files that need to be downloaded when a user installs an app on
an Android device. Although initially intended as a way to automatically generate separate package files for
each possible device configuration, another key advantage of dynamic delivery is the ability to split an app into
multiple dynamic feature modules that can be installed on-demand.

In this chapter, we will begin to explore the basic concepts of dynamic feature modules in preparation for
working through a detailed practical example in the next chapter.

84.1 An Overview of Dynamic Feature Modules
The primary goals of dynamic delivery are to reduce the amount of time and bandwidth it takes to install an app
from the app store, while also ensuring that only the minimum storage space is occupied by the app once it is
installed.

Dynamic feature modules (also referred to as on-demand modules) allow the different features that comprise an
Android app to be packaged into separate modules that are only downloaded and installed onto the device when
they are required by the user. An app might, for example, include news and discussion features. In this scenario
the app might only install the news feature by default and separate the discussion feature into a dynamic feature
module. When a user attempts to access the discussion feature, the app will download the feature module from
the Google Play store and launch it. If the user never accesses the feature, the module will never be installed,
thereby ensuring that only the absolute minimum amount of storage is used by the app.

An app that utilizes dynamic feature modules has full control over how and when modules are installed. In fact,
the app could also monitor the frequency with which particular features are accessed by a user and temporarily
remove any that are infrequently used.

A dynamic feature may also be designated as being an “instant” module. This replaces the Instant App concept of
earlier Android releases and allows a dynamic feature module to be run on a device without having to install the
app. This allows the app to appear with a “Try Now” button within the Google Play App Store, or to be instantly
launched on a device by clicking on a web URL.

84.2 Dynamic Feature Module Architecture
From the outset Android was designed with modularity in mind, particularly in terms of the concepts of Intents
and Activities. Dynamic features bring this philosophy to a logical conclusion by allowing an app to install only
what the user needs, when the user needs it. Given the flexibility and power of this capability, the implementation
of dynamic feature modules is relatively simple.

In basic terms, dynamic feature modules are built using split APK files which allow multiple APK files to be
brought together to form a single app.

As we learned in “Creating, Testing and Uploading an Android App Bundle”, dynamic delivery and app bundles
work by generating a custom APK file that contains only the bytecode and resources necessary to run the app on

730

An Overview of Android Dynamic Feature Modules

a specific device configuration. In this case, the app is still installed via a single APK file, albeit one customized
for the user’s device.

In contrast, dynamic feature modules work by splitting an app into multiple APK files referred to as split APK
files.

When an app uses split APK files, only the base module is installed when the app is first downloaded. The base
module acts as the entry point into the app via a launchable activity, and contains the bytecode and resources
for the base functionality of the app together with configuration and build resources that are required by the rest
of the app. The base module manifest file, for example, contains a merger of the manifest files for any dynamic
feature modules bundled with the app. Also, the version number for all of the dynamic feature modules are
dictated by the version code setting in the build configuration file of the base module.

The base module also includes a list of the dynamic feature modules included in the app bundle and all dynamic
feature modules must list the base module as a dependency in their build configurations.

Each dynamic feature takes the from of a module containing the bytecode, manifest, resources and build
configuration together with any other assets such as images or data files for that specific feature.

When a user requests the installation of an app from the app store, the store will generate the Base APK file for
the module containing all of the bytecode and resources common to all device configurations in addition to a set
of Configuration APK files configured specifically for the user’s device. Similarly, a request to install a dynamic
feature module will generate a Dynamic Feature APK file in addition to the corresponding Configuration APK
files as illustrated in Figure 84-1 below:

Figure 84-1

84.3 Creating a Dynamic Feature Module
A dynamic feature can be added to a project either by adding an entirely new module, or by migrating an existing
module. To add a new module, simply select the Android Studio File -> New -> New Module... menu option.
From the resulting dialog, select either the Dynamic Feature Module or Instant Dynamic Feature Module option
in the left-hand panel, depending on the type of dynamic feature you are creating:

731

An Overview of Android Dynamic Feature Modules

Figure 84-2
With the appropriate dynamic feature option selected, name the module and change the minimum API setting
so that it matches the API level chosen for the base module (the project will fail to build if these versions do not
match).

Click the Next button once more to configure the On-Demand options:

Figure 84-3
When the Fusing option is enabled, the module will be downloaded with the base APK on devices running
older versions of Android (Android 4.4 API 20 or older) that predate the introduction of dynamic delivery. The
Module Title string can be up to 50 characters in length and will be used by Google Play when describing the
feature to users in messages and notifications.

The Install-time inclusion menu provides options to control the conditions under which the module will be

732

An Overview of Android Dynamic Feature Modules

installed on-demand as opposed to being included in the initial installation of the app on the user’s device. The
menu provides the following options:

• Do not include module at install time (on-demand only) - Regardless of device configuration and user
country, the module will not be installed until it is requested by the app.

• Include module at install time - Disables on-demand dynamic installation for all devices and user countries.
The module will be installed at the same time that the app is installed on the device.

• Only include module at install-time for devices with specified features - The module will be included at
install time for device configurations and user countries that meet the specified criteria. All other countries
and device configurations will use dynamic on-demand installation. When this option is selected, extra
options will appear allowing device features to be entered. In Figure 84-4, for example, the module will be
included at install time on devices with a microphone and fingerprint reader. On all other devices the module
will be installed dynamically on-demand:

Figure 84-4
Other criteria such as countries and API level must be declared within the project manifest (AndroidManifest.
xml) file. The following entries, for example, would disable dynamic on-demand feature installation for users in
France and devices running Android versions older than API 21:
<dist:conditions>

 <dist:user-countries dist:exclude="true">

 <dist:country dist:code="FR"/>

 </dist:user-countries>

 <dist:min-sdk dist:value="21"/>

</dist:conditions>

84.4 Converting an Existing Module for Dynamic Delivery
If an app contains an existing feature that is a good candidate for dynamic delivery it can be converted to a
dynamic feature with a few basic steps. Consider, for example, the following project structure:

733

An Overview of Android Dynamic Feature Modules

Figure 84-5
In this project, the app module will serve as the base module while the secondfeature module is an ideal candidate
for conversion to a dynamic feature module.

To convert an existing module within your app to a dynamic feature module, begin by editing the module level
build.gradle file (Gradle Scripts -> build.gradle (Module: secondfeature) in the above example) and modifying
it to use the com.android.dynamic-feature instead of the com.android.application plugin, and changing the
dependencies so that the module only depends on the base (app) module. For example:
apply plugin: 'com.android.application'

apply plugin: 'com.android.dynamic-feature'
.

.

dependencies {

 implementation fileTree(dir: 'libs', include: ['*.jar'])

 api 'androidx.appcompat:appcompat:1.6.0'

 api 'androidx.constraintlayout:constraintlayout:2.1.4'

 testImplementation 'junit:junit:4.13.2'

 androidTestImplementation 'androidx.test.ext:junit:1.1.5'

 androidTestImplementation 'androidx.test.espresso:espresso-core:3.5.1'

 implementation project(':app')
}

Next, edit the AndroidManifest.xml file for the module and modify it as follows (note in this example, that this
is an on-demand module as opposed to an instant module):
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:dist="http://schemas.android.com/apk/distribution"
 package="com.ebookfrenzy.mymodule">

 <dist:module
 dist:instant="false"

734

An Overview of Android Dynamic Feature Modules

 dist:onDemand="true"
 dist:title="@string/title_my_dynamic_feature">
 <dist:fusing dist:include="true" />
 </dist:module>

 <application

 android:allowBackup="true"

.

.

Note the title property references a string resource which will also need to be declared in the strings.xml file. The
use of a string resource as opposed to a hard coded string is mandatory for this property

Next, the build.gradle file for the base module (build.gradle (Module: app)) needs to be modified to reference the
dynamic feature module and to add the Play Core Library as a dependency:
apply plugin: 'com.android.application'

android {

 compileSdkVersion 29

.

.

 }

 dynamicFeatures = [":secondfeature"]
}

dependencies {

.

.

 api 'com.google.android.play:core:1.10.3'
.

.

}

Finally, edit the AndroidManifest.xml file for the base module to declare the module as sub-classing
SplitCompatApplication:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.mydemoapp">

 <application

 android:name=

 "com.google.android.play.core.splitcompat.SplitCompatApplication"
 android:allowBackup="true"
.
.

735

An Overview of Android Dynamic Feature Modules

84.5 Working with Dynamic Feature Modules
Once an app project has one or more dynamic feature modules added, code will need to be written to install
and manage those modules. This will involve performing tasks such as checking whether a module is already
installed, installing the module, tracking installation progress and deleting an installed module that is no longer
required. All of these tasks are performed using the API provided by the Play Core Library and most of these
API calls involve the use of a SplitInstallManager instance which can be created as follows:
private SplitInstallManager manager;

manager = SplitInstallManagerFactory.create(this);

Usually, the first step before allowing the user to launch a dynamic feature is to check that the corresponding
module has already been installed. The following code, for example, obtains a list of installed modules and
checks if a specific module is installed:
if (manager.getInstalledModules().contains("my_dynamic_feature")) {

 // Module is installed

}

One or more modules may be installed by building a SplitInstallRequest object and passing it through to the
startInstall() method of the SplitInstallManager instance:
.

.

private int mySessionID = 0;

.

.

SplitInstallRequest request =

 SplitInstallRequest

 .newBuilder()

 .addModule("my_dynamic_feature")

 .addModule("my_dynamic_feature2")

 .build();

manager.startInstall(request)

 .addOnSuccessListener(new OnSuccessListener<Integer>() {

 @Override

 public void onSuccess(Integer sessionId) {

 mySessionID = sessionId

 }

 })

 .addOnFailureListener(new OnFailureListener() {

 @Override

 public void onFailure(Exception exception) {

 }

 });

When the above code is executed, the module installation will begin immediately. Alternatively, deferred
installations may be performed by passing an array of feature module names to the deferredInstall() method as
follows:
manager.deferredInstall(Arrays.asList("my_dynamic_feature",

736

An Overview of Android Dynamic Feature Modules

 "my_dynamic_feature2"));

Deferred downloads are performed in the background at the discretion of the operating system.

While it is not possible to track the status of deferred installations, non-deferred installations can be tracked by
adding a listener to the manager:
SplitInstallStateUpdatedListener listener =

 new SplitInstallStateUpdatedListener() {

 @Override

 public void onStateUpdate(SplitInstallSessionState state) {

 if (state.sessionId() == mySessionID) {

 switch (state.status()) {

 case SplitInstallSessionStatus.REQUIRES_USER_CONFIRMATION:

 // Large module requires user permission

 break;

 case SplitInstallSessionStatus.DOWNLOADING:

 // The module is being downloaded

 break;

 case SplitInstallSessionStatus.INSTALLING:

 // The downloaded module is being installed

 break;

 case SplitInstallSessionStatus.DOWNLOADED:

 // The module download is complete

 break;

 case SplitInstallSessionStatus.INSTALLED:

 // The module has been installed successfully

 break;

 case SplitInstallSessionStatus.CANCELED:

 // The user cancelled the download

 break;

 case SplitInstallSessionStatus.PENDING:

 // The installation is deferred

 break;

 case SplitInstallSessionStatus.FAILED:

 // The installation failed

 }

 }

 }

737

An Overview of Android Dynamic Feature Modules

};

Once the listener has been implemented, it will need to be registered with the SplitInstallManager instance and
then unregistered when no longer required.
manager.registerListener(listener);

.

.

manager.unregisterListener(listener);

84.6 Handling Large Dynamic Feature Modules
The Android dynamic delivery system will not permit the download of a dynamic feature module greater than
10MB in size without first requesting permission from the user. When a request is made to download a large
feature module, the listener will be called and passed a REQUIRES_USER_CONFIRMATION status. It is then
the responsibility of the app to display the confirmation dialog and, optionally, implement an onActivityResult()
handler method to identify whether the user approved or declined the download.
private static final int REQUEST_CODE = 101;
.

.

SplitInstallStateUpdatedListener listener =

 new SplitInstallStateUpdatedListener() {

 @Override

 public void onStateUpdate(SplitInstallSessionState state) {

 if (state.sessionId() == mySessionID) {

 switch (state.status()) {

 case SplitInstallSessionStatus.REQUIRES_USER_CONFIRMATION:
 try {
 manager.startConfirmationDialogForResult(state,
 MainActivity.this, REQUEST_CODE);
 } catch (IntentSender.SendIntentException ex) {
 // Request failed
 }
 break;
.

.

The above code launches an intent which, in turn, displays the built-in confirmation dialog. This intent will
return a result code to the onActivityResult() method which may be implemented as follows:
@Override

public void onActivityResult(int requestCode, int resultCode, Intent data) {

 if (requestCode == REQUEST_CODE) {

 if (resultCode == RESULT_OK) {

 // User approved installation

 } else {

 // User declined installation

 }

738

An Overview of Android Dynamic Feature Modules

 }

}

If the user approves the request, the dynamic feature module will be downloaded and installed automatically.

84.7 Summary
Dynamic feature modules allow an Android app to be divided into separate features which are downloaded on-
demand when the feature is needed by the user. Dynamic feature modules can also be configured to be instant
features. Instant features can be run without installing the app on the device and can be accessed by users either
via a Try Now button on the app store page, or via a web URL.

Dynamic feature implementation involves splitting an app into a base module and one or more dynamic feature
modules. New dynamic feature modules can be created within Android Studio, and existing modules converted
to dynamic feature modules by making a few project configuration changes.

Once dynamic feature modules have been added to an app, the download and management of those modules is
handled by the app via the SplitInstall classes of the Play Core Library.

739

Chapter 85

85. An Android Studio Dynamic
Feature Tutorial
With the basic concepts of Android Dynamic Delivery and Dynamic Features covered in the previous chapter,
this chapter will put this theory into practice in the form of an example project. The app created in this chapter
will consist of two activities, the first of which will serve as the base module for the app while the second will be
designated as a dynamic feature to be downloaded on demand from within the running app. This tutorial will
include steps to create a dynamic module from within Android Studio, upload the app bundle to the Google Play
Store for testing, and use the Play Core Library to download and manage dynamic features. The chapter will also
explore the use of deferred dynamic feature installation.

85.1 Creating the DynamicFeature Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter DynamicFeature into the Name field and specify a package name that will uniquely identify your app
within the Google Play ecosystem (for example com.<your company>.dynamicfeature) as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and
the Language menu to Java.

85.2 Adding Dynamic Feature Support to the Project
Before embarking on the implementation of the app, two changes need to be made to the project to add support
for dynamic features. Since the project will be making extensive use of the Play Core Library, a directive needs
to be added to the build configuration to include this library. Within Android Studio, open the app level build.
gradle file (Gradle Scripts -> build.gradle (Module: DynamicFeature.app)), locate the dependencies section and
add the Play Core Library as follows (keeping in mind, as always, that a newer version of the library may now
be available):
.

.

dependencies {

.

.

 implementation 'com.google.android.play:core:1.10.3'
.

.

}

Once a dynamic feature module has been downloaded, it is most likely that immediate access to code and
resource assets that comprise the feature will be required by the user. By default, however, newly installed feature
modules are not available to the rest of the app until the app is restarted. Fortunately, this shortcoming can
be avoided by enabling the SplitCompat Library within the project. By far the easiest way to achieve this is
to declare the application as subclassing SplitCompatApplication in the main AndroidManifest.xml file (also
referred to as the base module manifest) as follows:

740

An Android Studio Dynamic Feature Tutorial

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.dynamicfeature">

<application

 android:name=
 "com.google.android.play.core.splitcompat.SplitCompatApplication"
 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

.

.

85.3 Designing the Base Activity User Interface
At this point, the project consists of a single activity which will serve as the entry point for the base module of the
app. This base module will be responsible for requesting, installing and managing the dynamic feature module.

To demonstrate the use of dynamic features, the base activity will consist of a series of buttons which will
allow the dynamic feature module to be installed, launched and removed. The user interface will also include a
TextView object to display status information relating to the dynamic feature module. With these requirements
in mind, load the activity_main.xml layout file into the layout editor, delete the default TextView object, and
implement the design so that it resembles Figure 85-1 below.

Figure 85-1
Once the objects have been positioned, select the TextView widget and use the Attributes tool window to set
the id property to status_text. Begin applying layout constraints by selecting all of the objects within the layout,
right-clicking the TextView object and choosing the Center -> Horizontally option from the menu, thereby
constraining all four objects to the horizontal center of the screen.

With all the objects still selected, right-click on the TextView once again, this time selecting the Chains ->
Vertical Chain menu option. Before continuing, extract all the button text strings to resources and configure the
three buttons to call methods named launchFeature, installFeature and deleteFeature respectively.

741

An Android Studio Dynamic Feature Tutorial

85.4 Adding the Dynamic Feature Module
To add a dynamic feature module to the project, select the File -> New -> New Module... menu option and, in
the resulting dialog, choose the Dynamic Feature from the left-hand panel. In the main panel, name the module
my_dynamic_feature and change the minimum API setting to API 26: Android 8.0 (Oreo) so that it matches the
API level chosen for the base module as shown in Figure 85-2:

Figure 85-2
Click the Next button once more to configure the On-Demand options, making sure that the Fusing option is
enabled. In the Module Title field, enter text which reads “My Example Dynamic Feature”:

Figure 85-3
For the purposes of this example, set the Install-time inclusion menu to Do not include module at install time (on-
demand only) before clicking on the Finish button to commit the changes and add the dynamic feature module
to the project.

742

An Android Studio Dynamic Feature Tutorial

85.5 Reviewing the Dynamic Feature Module
Before proceeding to the next step, it is worth taking some time to review the changes that have been made to
the project by Android Studio. Understanding these changes can be useful both when resolving problems and
when converting existing app features to dynamic features.

Begin by referring to the Project tool window, where a new entry will have appeared representing the folder
containing the new dynamic feature module:

Figure 85-4
Note that the feature has its own sub-structure including a manifest file, a package into which code and resources
can be added and a res folder. Open and review the AndroidManifest.xml file which should contain the property
settings that were selected during the feature creation process including the on-demand, fusing and feature title
values:
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:dist="http://schemas.android.com/apk/distribution"

 package="com.ebookfrenzy.my_dynamic_feature">

 <dist:module

 dist:instant="false"

 dist:title="@string/title_my_dynamic_feature">

 <dist:delivery>

 <dist:on-demand />

 </dist:delivery>

 <dist:fusing dist:include="true" />

 </dist:module>

</manifest>

A point of particular interest is that the module title string has been stored as a string resource instead of being
directly entered in the manifest file. This is a prerequisite for the title string and the resource can be found and,
if necessary, modified in the strings.xml file (app -> res -> values -> strings.xml) of the base module.

The build configuration for the dynamic feature module can be found in the Gradle Scripts -> build.gradle
(Module: DynamicFeature.my_dynamic_feature) file and should read as follows:
plugins {

 id 'com.android.dynamic-feature'

.

743

An Android Studio Dynamic Feature Tutorial

.

}

android {

 compileSdkVersion 33

.

.

dependencies {

 implementation project(":app")

.

.

}

The key entries in this file are the application of the com.android.dynamic-feature plugin which ensures that this
module is treated as a dynamic feature, and the implementation line indicating that this feature is dependent
upon the base (app) module.

The build.gradle file for the base module (Gradle Scripts -> build.gradle (Module: DynamicFeature.app)) also
contains a new entry listing the dynamic feature module. While reviewing the file, add the directive to enable
view binding support:
plugins {

 id 'com.android.application'

.

.

android {

 buildFeatures {
 viewBinding true
 }
.

.

 dynamicFeatures = [':my_dynamic_feature']

}

.

.

Any additional dynamic features added to the project will also need to be referenced here, for example:
dynamicFeatures = [":my_dynamic_feature", ":my_second_feature", ...]

85.6 Adding the Dynamic Feature Activity
From the Project tool window illustrated in Figure 85-4 above, it is clear that the dynamic feature module
contains little more than a manifest file at this point. The next step is to add an activity to the module so that the
feature actually does something when launched from within the base module. Within the Project tool window,
right-click on the package name located under my_dynamic_feature -> java and select the New -> Activity ->
Empty Views Activity menu option. Name the activity MyFeatureActivity and enable the Generate Layout File
option but leave the Launcher Activity option disabled before clicking on the Finish button.

744

An Android Studio Dynamic Feature Tutorial

Once the activity has been added to the module, edit the AndroidManifest.xml file and modify it to add an intent
filter that will allow the activity to be launched by the base module (where <com.yourcompany> is replaced by
the package name you chose to make your app unique on Google Play):
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:dist="http://schemas.android.com/apk/distribution"

 package="com.ebookfrenzy.my_dynamic_feature">

 <dist:module

 dist:instant="false"

 dist:title="@string/title_my_dynamic_feature">

 <dist:delivery>

 <dist:on-demand />

 </dist:delivery>

 <dist:fusing dist:include="true" />

 </dist:module>

 <application>

 <activity android:name=".MyFeatureActivity"

 android:exported="true">

 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name=
 "<com.yourcompany>.my_dynamic_feature.MyFeatureActivity" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

 </application>

745

An Android Studio Dynamic Feature Tutorial

</manifest>

Next, edit the dependencies section of the build.gradle (Module: DynamicFeature.my_dynamic_feature) file to
include the Google Play library:
dependencies {

.

.

implementation 'com.google.android.play:core:1.10.1'
.

.

To be able to access resources from within the dynamic module, a call to the SplitCompat.install() method needs
to be made from within MyFeatureActivity. Edit the MainActivity.java file and modify the onCreate() method as
follows, including changes to add view binding support:
.

.

import android.view.View;

import com.google.android.play.core.splitcompat.SplitCompat;

import <com.yourcompany>.dynamicfeature.databinding.ActivityMainBinding;

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_my_feature);

 SplitCompat.install(this);
 binding = ActivityMainBinding.inflate(getLayoutInflater());
 View view = binding.getRoot();
 setContentView(view);
 }

Failure to perform this step typically causes the app to crash when the dynamic feature is started with an error
similar to the following:
AndroidRuntime: java.lang.RuntimeException: Unable to start activity
ComponentInfo{com.ebookfrenzy.dynamicfeature/com.ebookfrenzy.my_dynamic_feature.
MyFeatureActivity}: android.content.res.Resources$NotFoundException: Resource ID
#0x80020000

Complete the feature by loading the activity_my_feature.xml file into the layout editor tool and adding a
TextView object displaying text which reads “My Dynamic Feature Module”:

746

An Android Studio Dynamic Feature Tutorial

Figure 85-5

85.7 Implementing the launchIntent() Method
With the project structure and user interface designs completed it is time to use the Play Core Library to begin
working with the dynamic feature module. The first step is to implement the launchFeature() method, the
purpose of which is to use an intent to launch the dynamic feature activity. Attempting to start an activity in a
dynamic feature module that has yet to be installed, however, will cause the app to crash. The launchFeature()
method, therefore, needs to include some defensive code to ensure that the dynamic feature has been installed.
To achieve this, we need to create an instance of the SplitInstallManager class and call the getInstalledModules()
method of that object to check whether the my_dynamic_feature module is already installed. If it is installed, the
activity contained in the module can be safely launched, otherwise a message needs to be displayed to the user
on the status TextView. Within the MainActivity.java file, make the following changes to the class:
.

.

import android.content.Intent;
.

.

import com.google.android.play.core.splitinstall.SplitInstallManager;
import com.google.android.play.core.splitinstall.SplitInstallManagerFactory;
.

.

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 private SplitInstallManager manager;

747

An Android Studio Dynamic Feature Tutorial

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 SplitCompat.install(this);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 manager = SplitInstallManagerFactory.create(this);
 }

 public void launchFeature(View view) {
 if (manager.getInstalledModules().contains("my_dynamic_feature")) {
 Intent i = new Intent(
 "<com.yourcompany>.my_dynamic_feature.MyFeatureActivity");
 startActivity(i);
 } else {
 binding.statusText.setText("Feature not yet installed");
 }
 }
.

.

}

85.8 Uploading the App Bundle for Testing
The project is now ready for the first phase of testing. This involves generating a release app bundle and uploading
it to the Google Play Console. The steps to achieve this were outlined in the chapter entitled “Creating, Testing
and Uploading an Android App Bundle” but can be summarized as follows:

1. Log into the Google Play Console and create a new application.

2. Work through the steps to configure the app in terms of title, descriptions, categorization and image assets
(sample image assets can be found in the image_assets folder of the sample code download that accompanies
this book) and save the draft settings. Also be sure to enable Google Play app signing for the bundle.

3. Use the Android Studio Build -> Generate Signed App Bundle / APK... menu to generate a signed release
app bundle.

4. In the Google Play Console, select the Testing -> Internal testing option from the left hand navigation panel.

5. On the Internal test screen, click on the Create Release button and click Continue to accept the option to let
Google manage key signing tasks. Drag and drop the app bundle file generated above onto the upload box
and click Save.

6. Switch to the Testers tab within the internal testing screen and add the email addresses of accounts that will
be used to test the app on one or more physical devices.

7. Return to the Releases tab and click on the Edit button. Scroll to the bottom of the resulting page and click
on the Review release button.

8. On the confirmation screen, click on the Start rollout to Internal testing button. The app will be listed as
Pending publication.

748

An Android Studio Dynamic Feature Tutorial

Once the release has been rolled out for testing, notifications will be sent out to all users on the internal testing
track asking them to opt in to the test track for the app. Alternatively, copy the URL listed on the Testers screen
and send it to the test users. Once the users have opted in, a link will be provided which, when opened on a
device, will launch the Play Store app and open the download page for the DynamicFeature app as shown in
Figure 85-6:

Figure 85-6
Click on the button to install the app, then open it and tap the Launch Feature button. The fact that the dynamic
feature has yet to be installed should be reflected in the status text.

85.9 Implementing the installFeature() Method
The installFeature() method will create a SplitInstallRequest object for the my_dynamic_feature module, then
use the SplitInstallManager instance to initiate the installation process. Listeners will also be implemented to
display Toast messages indicating the status of the install request. Remaining in the MainActivity.java file, add
the installFeature() method as follows:
.

.

import android.widget.Toast;
.

.

import com.google.android.play.core.splitinstall.SplitInstallRequest;
import com.google.android.play.core.tasks.OnFailureListener;
import com.google.android.play.core.tasks.OnSuccessListener;
.

.

 public void installFeature(View view) {

 SplitInstallRequest request =
 SplitInstallRequest
 .newBuilder()
 .addModule("my_dynamic_feature")
 .build();

 manager.startInstall(request)
 .addOnSuccessListener(new OnSuccessListener<Integer>() {
 @Override
 public void onSuccess(Integer sessionId) {

749

An Android Studio Dynamic Feature Tutorial

 Toast.makeText(MainActivity.this,
 "Module installation started",
 Toast.LENGTH_SHORT).show();
 }
 })
 .addOnFailureListener(new OnFailureListener() {
 @Override
 public void onFailure(Exception exception) {
 Toast.makeText(MainActivity.this,
 "Module installation failed" + exception.toString(),
 Toast.LENGTH_SHORT).show();
 }
 });
 }
.

.

}

Edit the Gradle Scripts -> build.gradle (Module: DynamicFeature.app) file and increment the versionCode and
versionName values so that the new version of the app bundle can be uploaded for testing:
android {

.

.

 versionCode 2
 versionName "2.0"

Repeat this step to declare a matching version number within the Gradle Scripts -> build.gradle (Module:
DynamicFeature.my_dynamic_feature) file.

Generate a new app bundle containing the changes, then return to the Testing -> Internal testing page for the app
in the Google Play Console, and Create new release button as highlighted in Figure 85-7 below:

Figure 85-7
Follow the steps to upload the new app bundle and roll it out for internal testing. On the testing device, open
the Google Play Store app and make sure the Install button has changed to an Update button (if it has not, close
the App Store app and try again after waiting a few minutes) and update to the new release. Once the update
is complete, run the app, tap the Install Feature button and check the Toast messages to ensure the installation
started successfully. A download icon should briefly appear in the status bar at the top of the screen as the feature
is downloaded. Once the download is complete, tap the Launch Feature button to display the second activity.

If the installation fails, or the app crashes, the cause can usually be identified from the LogCat output. To view

750

An Android Studio Dynamic Feature Tutorial

this output, connect the device to your development computer, open a terminal or command prompt window
and execute the following command:
adb logcat

This adb command will display LogCat output in real time, including any exception or diagnostic errors
generated when the app encounters a problem or crashes.

85.10 Adding the Update Listener
For more detailed tracking of the installation progress of a dynamic feature module, an instance of
SplitInstallStateUpdatedListener can be added to the app. Since it is possible to install multiple feature modules
simultaneously, some code needs to be added to keep track of the session IDs assigned to the installation
processes. Begin by adding some imports, declaring a variable in the MainActivity.java file to contain the
current session ID and modifying the installFeature() method to store the session ID each time an installation is
successfully started and to register the listener:
.

.

import com.google.android.play.core.splitinstall.SplitInstallSessionState;
import
 com.google.android.play.core.splitinstall.SplitInstallStateUpdatedListener;
import com.google.android.play.core.splitinstall.model.SplitInstallSessionStatus;
.

.

import java.util.Locale;
.

.

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 private SplitInstallManager manager;

 private int mySessionId = 0;
.

.

 public void installFeature(View view) {

.

.

 manager.registerListener(listener);

 manager.startInstall(request)

 .addOnSuccessListener(new OnSuccessListener<Integer>() {

 @Override

 public void onSuccess(Integer sessionId) {

 mySessionId = sessionId;
 Toast.makeText(MainActivity.this,

 "Module installation started",

 Toast.LENGTH_SHORT).show();

 }

751

An Android Studio Dynamic Feature Tutorial

 })

.

.

Next, implement the listener code so that it reads as follows:
SplitInstallStateUpdatedListener listener =

 new SplitInstallStateUpdatedListener() {

 @Override

 public void onStateUpdate(SplitInstallSessionState state) {

 if (state.sessionId() == mySessionId) {

 switch (state.status()) {

 case SplitInstallSessionStatus.DOWNLOADING:

 long size = state.totalBytesToDownload();

 long downloaded = state.bytesDownloaded();

 binding.statusText.setText(String.format(Locale.getDefault(),

 "%d of %d bytes downloaded.", downloaded, size));

 break;

 case SplitInstallSessionStatus.INSTALLING:

 binding.statusText.setText("Installing feature");

 break;

 case SplitInstallSessionStatus.DOWNLOADED:

 binding.statusText.setText("Download Complete");

 break;

 case SplitInstallSessionStatus.INSTALLED:

 binding.statusText.setText("Installed - Feature is ready");

 break;

 case SplitInstallSessionStatus.CANCELED:

 binding.statusText.setText("Installation cancelled");

 break;

 case SplitInstallSessionStatus.PENDING:

 binding.statusText.setText("Installation pending");

 break;

 case SplitInstallSessionStatus.FAILED:

752

An Android Studio Dynamic Feature Tutorial

 binding.statusText.setText(

 "Installation Failed. Error code: " +

 state.errorCode());

 case SplitInstallSessionStatus.CANCELING:

 binding.statusText.setText("Installation canceling");

 break;

 case SplitInstallSessionStatus.REQUIRES_USER_CONFIRMATION:

 binding.statusText.setText("User Confirmation Required");

 break;

 case SplitInstallSessionStatus.UNKNOWN:

 binding.statusText.setText("Unknown Status");

 break;

 }

 }

 }

};

The listener catches many of the common installation states and updates the status text accordingly, including
providing information about the size of the download and a running total of the number of bytes downloaded so
far. Before proceeding, add onPause() and onResume() lifecycle methods to ensure that the listener is unregistered
when the app is not active:
@Override

public void onResume() {

 manager.registerListener(listener);

 super.onResume();

}

@Override

public void onPause() {

 manager.unregisterListener(listener);

 super.onPause();

}

Test that the listener code works by incrementing the version number information in the two module level build.
gradle files, generating and uploading a new release app bundle and rolling it out for testing. If a dynamic feature
module is already installed on a device, attempts to download the module again will be ignored by the Play Core
Library classes. To fully test the listener, therefore, the app must be uninstalled from within the Play Store app
before installing the updated release. Of course, with the app removed there will be no Update button to let us
know that the new release is ready to be installed. To find out which release the Play Store app will install, scroll
down the app page to the About this app button, select it and check the Version field in the App Info section as
highlighted in Figure 85-8 below:

753

An Android Studio Dynamic Feature Tutorial

Figure 85-8
If the previous version is still listed, exit the Play app and wait a few minutes before checking again. Once the
new version is listed, complete the installation, open the app and check that the status text updates appropriately
when the dynamic feature module is downloaded.

85.11 Using Deferred Installation
Deferred installation causes dynamic feature modules to be downloaded in the background and will be
completed at the discretion of the operating system. When a deferred installation is initiated, the listener will be
called with a pending status, but it is not otherwise possible to track the progress of the installation aside from
checking whether or not the module has been installed.

To try deferred installation, modify the installFeature() method so that it reads as follows:
public void installFeature(View view) {

 manager.deferredInstall(Arrays.asList("my_dynamic_feature"));
}

Note that the deferredInstall() method is passed an array, allowing the installation of multiple modules to be
deferred.

85.12 Removing a Dynamic Module
The final task in this project is to implement the deleteFeature() method as follows in the MainActivity.java file:
.

.

import java.util.Collections;
.

.

public void deleteFeature(View view) {
 manager.deferredUninstall(Collections.singletonList("my_dynamic_feature"));
}

The removal of the feature will be performed in the background by the operating system when additional storage
space is needed. As with the deferredInstall() method, multiple features may be scheduled for removal in a single

754

An Android Studio Dynamic Feature Tutorial

call.

85.13 Summary
This chapter has worked through the creation of an example app designed to demonstrate the use of dynamic
feature modules within an Android app. Topics covered included the creation of a dynamic feature module and
the use of the classes and methods of the Play Core Library to install and manage a dynamic feature module.

755

Chapter 86

86. Working with Material Design 3
Theming
The appearance of an Android app is intended to conform to a set of guidelines defined by Material Design.
Material Design was developed by Google to provide a level of design consistency between different apps, while
also allowing app developers to include their own branding in terms of color, typography, and shape choices (a
concept referred to as Material theming). In addition to design guidelines, Material Design also includes a set of
UI components for use when designing user interface layouts, many of which we have been using throughout
this book.

In this chapter, we will provide an overview of how theming works within an Android Studio project and
explore how the default design configurations provided for newly created projects can be modified to meet your
branding requirements.

86.1 Material Design 2 vs Material Design 3
Before beginning, it is important to note that Google is transitioning from Material Design 2 to Material Design
3 and that Android Studio Flamingo is the first to default to Material Design 3. Material Design 3 provides the
basis for Material You, a feature introduced in Android 12 that allows an app to automatically adjust theme
elements to complement preferences configured by the user on the device. For example, dynamic color support
provided by Material Design 3 allows the colors used in apps to adapt automatically to match the user’s wallpaper
selection.

86.2 Understanding Material Design Theming
We know, of course, that Android app user interfaces are created by assembling components such as layouts, text
fields, and buttons. All of these components appear using default colors unless we specifically override a color
attribute either in the XML layout resource file or by writing code. These default colors are defined by the project’s
theme. The theme consists of a set of color slots (declared in themes.xml files) to which are assigned color values
(declared in the colors.xml file). Each UI component is programmed internally to use theme color slots as the
default color for specific attributes (such as the foreground and background colors of the Text widget). It follows,
therefore, that we can change the application-wide theme of an app simply by changing the colors assigned to
specific theme slots. When the app runs, the new default colors will be used as the defaults for all of the widgets
when the user interface is rendered.

86.3 Material Design 3 Theming
Before exploring Material Design 3, we first need to look at how it is used in an Android Studio project. The theme
used by an application project is declared as a property of the application element within the AndroidManifest.
xml file, for example:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <application

756

Working with Material Design 3 Theming

.

.

 android:supportsRtl="true"

 android:theme="@style/Theme.MyDemoApp"
 tools:targetApi="31">

 <activity

.

.

As previously discussed, all of the files associated with the project theme are contained within the colors.xml and
themes.xml files located in the res -> values folder as shown in Figure 86-1:

Figure 86-1
The theme itself is declared in the two themes.xml files located in the themes folder. These resource files declare
different color palettes containing Material Theme color slots for use when the device is in light or dark (night)
mode. Note that the style name property in each file must match that referenced in the AndroidManifest.xml file,
for example:
<resources xmlns:tools="http://schemas.android.com/tools">

 <!-- Base application theme. -->

 <style name="Base.Theme.MyDemoApp" parent="Theme.Material3.DayNight.
NoActionBar">

 <!-- Customize your light theme here. -->

 <!-- <item name="colorPrimary">@color/my_light_primary</item> -->

 </style>

 <style name="Theme.MyDemoApp" parent="Base.Theme.MyDemoApp" />
</resources>

These color slots (also referred to as color attributes) are used by the Material components to set colors when
they are rendered on the screen. For example, the colorPrimary color slot is used as the background color for the
Material Button component.

757

Working with Material Design 3 Theming

Color slots in MD3 are grouped as Primary, Secondary, Tertiary, Error, Background, and Surface. These slots
are further divided into pairs consisting of a base color and an “on” base color. This generally translates to the
background and foreground colors of a Material component.

The particular group used for coloring will differ between widgets. A Material Button widget, for example, will
use the colorPrimary base color for the background color and colorOnPrimary for its content (i.e. the text or
icon it displays). The FloatingActionButton component, on the other hand, uses colorPrimaryContainer as the
background color and colorOnPrimaryContainer for the foreground. The correct group for a specific widget type
can usually be identified quickly by changing color settings in the theme files and reviewing the rendering in
the layout editor.

Suppose that we need to change colorPrimary to red. We achieve this by adding a new entry to the colors.xml file
for the red color and then assigning it to the colorPrimary slot in the themes.xml file. The colorPrimary slot in an
MD3 theme night, therefore, read as follows:
<resources xmlns:tools="http://schemas.android.com/tools">

 <!-- Base application theme. -->

 <style name="Base.Theme.MyDemoApp" parent="Theme.Material3.DayNight.
NoActionBar">

 <item name="colorPrimary">@color/my_bright_primary</item>
 </style>

 <style name="Theme.MyDemoApp" parent="Base.Theme.MyDemoApp" />

</resources>

This color is then declared in the colors.xml file:
<?xml version="1.0" encoding="utf-8"?>

<resources>

.

.

 <color name="my_bright_primary">#FC0505</color>
</resources>

86.4 Building a Custom Theme
As we have seen so far, the coding work in implementing a theme is relatively simple. The difficult part, however,
is often choosing a set of complementary colors to make up the theme. Fortunately, Google has developed a tool
that makes it easy to design custom color themes for your apps. This tool is called the Material Theme Builder
and is available at:

https://m3.material.io/theme-builder#/custom

On the custom screen (Figure 86-2), make a color selection for the primary color key (A) by clicking on the
color circle to display the color selection dialog. Once a color has been selected, the preview (B) will change to
reflect the recommended colors for all of the MD3 color slots, together with example app interfaces and widgets.
In addition, you can override the generated colors for the Secondary, Tertiary, and Neutral slots by clicking on
the corresponding color circles to display the color selection dialog.

The area marked B displays example app interfaces, light and dark color scheme charts, and widgets that update
to preview your color selections. Since the panel is longer than the typical browser window, you must scroll
down to see all the information.

To incorporate the theme into your design, click on the Export button (C) and select the Android View (XML)

https://m3.material.io/theme-builder#/dynamic

758

Working with Material Design 3 Theming

option. Once downloaded, the colors.xml and themes.xml files can be used to replace the existing files in your
project. Note that the theme name in the two exported themes.xml files will need to be changed to match your
project.

Figure 86-2

86.5 Summary
Material Design provides guidelines and components defining how Android apps appear. Individual branding
can be applied to an app by designing themes that specify the colors, fonts, and shapes used when displaying
the app. Google recently introduced Material Design 3, which replaces Material Design 2 and supports the
new features of Material You, including dynamic colors. Google also provides the Material Theme Builder for
designing your own themes, which eases the task of choosing complementary theme colors. Once this tool has
been used to design a theme, the corresponding files can be exported and used within an Android Studio project.

759

Chapter 87

87. A Material Design 3 Theming and
Dynamic Color Tutorial
This chapter will show you how to create a new Material Design 3 theme using the Material Theme Builder tool
and integrate it into an Android Studio project. The tutorial will also demonstrate how to add support for and
test dynamic theme colors to an app.

87.1 Creating the ThemeDemo Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter ThemeDemo into the Name field and specify com.ebookfrenzy.themedemo as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

87.2 Designing the User Interface
The main activity will consist of a simple layout containing some of the user interface components that will enable
us to see the effects of the theming work performed later in the chapter. For information on MD3 components,
refer to the following web page:

https://material.io/blog/migrating-material-3

The layout will be designed within the activity_main.xml file which currently contains a single Text view. Open
this file in the layout editor, delete the Text view, disable Autoconnect mode (marked A in Figure 87-1), and click
on the button to clear all constraints from the layout (B).

Figure 87-1
From the Buttons section of the Palette, drag and drop Chip, CheckBox, Switch, and Button views onto the
layout canvas. Next, drag a FloatingActionButton onto the layout canvas so that it is positioned beneath the
Button component. When prompted to choose an icon to appear on the FloatingActionButton, select the ic_
lock_power_off icon from within the resource tool window as illustrated in Figure 87-2:

https://material.io/blog/migrating-material-3

760

A Material Design 3 Theming and Dynamic Color Tutorial

Figure 87-2
Change the text attribute for the Chip widget to “This is my chip” and set the chipIcon attribute to @
android:drawable/ic_btn_speak_now so that the layout resembles that shown to the left in Figure 87-3:

Figure 87-3

761

A Material Design 3 Theming and Dynamic Color Tutorial

To set up the constraints shown in the blueprint view in the figure above, select all of the components, right-click
on the Chip view, and select Chains -> Create Vertical Chain from the resulting menu. Repeat this step, this time
selecting the Center -> Horizontally in Parent menu option.

Compile and run the app on a device or emulator and verify that the user interface matches that shown in Figure
87-3 above. The next step is to create a custom theme and apply it to the project.

87.3 Building a New Theme
Begin by opening a browser window and navigating to the following URL to access the builder tool:

https://m3.material.io/theme-builder#/custom

Once you have loaded the builder, select a wallpaper followed by the Custom button at the top of the screen and
then click on the Primary color circle in the Core Colors section to display the color selector. From the color
selector, choose any color as the basis for your theme:

Figure 87-4
Review the color scheme in the Your Theme panel and make any necessary color adjustments using the Core
colors settings until you are happy with the color slots. Once the theme is ready, click on the Export button in
the top right-hand corner and select the Android Views (XML) option. When prompted, save the file to a suitable
location on your computer filesystem. The theme will be saved as a compressed file named material-theme.zip.

Using the appropriate tool for your operating system, unpack the theme file which should contain the following
folders and files in a folder named material-theme:

• values/colors.xml - The color definitions.

• values/themes.xml - The theme for the light mode.

• values-night/themes.xml - The theme for dark mode.

https://m3.material.io/theme-builder#/custom

762

A Material Design 3 Theming and Dynamic Color Tutorial

Now that the theme files have been generated, they need to be integrated into the Android Studio project.

87.4 Adding the Theme to the Project
Before we can add the new theme to the project we first need to remove the old theme files. This is easier to do
if the Project tool window is in Project Files mode. To switch mode, use the menu at the top of the tool Project
tool window as shown below and select the Project Files option:

Figure 87-5
With Project Files mode selected, navigate to the app -> src -> main -> res -> values folder and select and delete
the colors.xml and themes.xml files. Also, delete the themes.xml file located in the values-night folder.

Open the filesystem navigation tool for your operating system, locate the colors.xml and themes.xml files in the
values folder of the new material theme and copy and paste them into the values folder within the Project tool
window. Repeat this step to copy the themes.xml file located in the values-night folder, this time pasting into the
values-night folder.

Switch the Project tool window back to Android mode, at which point the value resource files section should
match Figure 87-6:

Figure 87-6
Next, modify the light themes.xml file to match the current project as follows:
<resources>

 <style name="Base.Theme.ThemeDemo" parent="Theme.Material3.Light.
NoActionBar">

 <item name="colorPrimary">@color/md_theme_light_primary</item>

 <item name="colorOnPrimary">@color/md_theme_light_onPrimary</item>

763

A Material Design 3 Theming and Dynamic Color Tutorial

.

.

 </style>

 <style name="Theme.ThemeDemo" parent="Base.Theme.ThemeDemo" />

</resources>

Repeat these steps to make the same modifications to the themes.xml (night) file.

Return to the activity_main.xml file or run the app once again to confirm that the user interface is now rendered
using the custom theme colors.

87.5 Enabling Dynamic Color Support
To test dynamic colors the app will need to be run on a device or emulator running Android 12 or later with
the correct Wallpaper settings. On the device or emulator, launch the Settings app and select Wallpaper & style
from the list of options. On the wallpaper settings screen click the option to change the wallpaper (marked A
in Figure 87-7) and select a wallpaper image containing colors that differ significantly from the colors in your
theme. Once selected, assign the wallpaper to the Home screen.

Return to the Wallpaper & styles screen and make sure that the Wallpaper colors option is selected (B) before
choosing an option from the color scheme buttons (C). As each option is clicked the wallpaper example will
change to reflect the selection:

Figure 87-7
To enable dynamic colors, we need to make a call to the applyToActivitiesIfAvailable() method of the
DynamicColors class. To enable dynamic color support for the entire app, this needs to be called from within
the onCreate() method of a custom Application instance. Begin by adding a new Java class file to the project
under app -> java -> com.ebookfrenzy.themedemo named ThemeDemoApplication.java and modifying it so that
it reads as follows:

764

A Material Design 3 Theming and Dynamic Color Tutorial

package com.ebookfrenzy.themedemo;

import android.app.Application;
import com.google.android.material.color.DynamicColors;

public class ThemeDemoApplication extends Application {
 @Override
 public void onCreate() {
 super.onCreate();
 DynamicColors.applyToActivitiesIfAvailable(this);
 }
}

With the custom Application class created, we now need to configure the project to use this class instead of the
default Application instance. To do this, edit the AndroidManifest.xml file and add an android:name element
referencing the new class:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.themedemo">

 <application

 android:name=".ThemeDemoApplication"
 android:allowBackup="true"

.

.

Build and run the app and note that the layout is now using a theme that matches the wallpaper color. Place the
ThemeDemo app into the background, return to the Wallpaper & styles settings screen and choose a different
wallpaper. Bring the ThemeDemo app to the foreground again at which point it will have dynamically adapted
to match the new wallpaper.

87.6 Previewing Dynamic Colors
Dynamic color behavior can also be previewed within the Android Studio layout editor. To try this, open the
activity_main.xml file, click on the theme menu, and select the More Themes option as shown in Figure 87-8:

Figure 87-8

765

A Material Design 3 Theming and Dynamic Color Tutorial

Next, use the search field in the theme selection dialog to list dynamic themes:

Figure 87-9
Select the Material3.DynamicColors.DayNight theme before clicking on the OK button. On returning to the
layout editor, select the System UI Mode menu and choose one of the wallpaper options as highlighted in Figure
87-10:

Figure 87-10
Once a wallpaper has been selected, the colors of the components in the layout will change accordingly.

87.7 Summary
In this chapter, we have made use of the Material Theme Builder to design a new theme and explained the steps
to integrate the generated theme files into an Android Studio project. Finally, the chapter demonstrated how to
implement and use the Material You dynamic colors feature.

767

Chapter 88

88. An Overview of Gradle in
Android Studio
Up until this point it has, for the most part, been taken for granted that Android Studio will take the necessary
steps to compile and run the application projects that have been created. Android Studio has been achieving this
in the background using a system known as Gradle.

It is now time to look at how Gradle is used to compile and package together the various elements of an
application project and to begin exploring how to configure this system when more advanced requirements are
needed in terms of building projects in Android Studio.

88.1 An Overview of Gradle
Gradle is an automated build toolkit that allows the way in which projects are built to be configured and managed
through a set of build configuration files. This includes defining how a project is to be built, what dependencies
need to be fulfilled for the project to build successfully and what the end result (or results) of the build process
should be.

The strength of Gradle lies in the flexibility that it provides to the developer. The Gradle system is a self-contained,
command-line based environment that can be integrated into other environments through the use of plugins.
In the case of Android Studio, Gradle integration is provided through the appropriately named Android Studio
Plugin.

Although the Android Studio Plug-in allows Gradle tasks to be initiated and managed from within Android
Studio, the Gradle command-line wrapper can still be used to build Android Studio based projects, including
on systems on which Android Studio is not installed.

The configuration rules to build a project are declared in Gradle build files and scripts based on the Groovy
programming language.

88.2 Gradle and Android Studio
Gradle brings a number of powerful features to building Android application projects. Some of the key features
are as follows:

88.2.1 Sensible Defaults
Gradle implements a concept referred to as convention over configuration. This simply means that Gradle has a
predefined set of sensible default configuration settings that will be used unless they are overridden by settings
in the build files. This means that builds can be performed with the minimum of configuration required by the
developer. Changes to the build files are only needed when the default configuration does not meet your build
needs.

88.2.2 Dependencies
Another key area of Gradle functionality is that of dependencies. Consider, for example, a module within an
Android Studio project which triggers an intent to load another module in the project. The first module has, in
effect, a dependency on the second module since the application will fail to build if the second module cannot be
located and launched at runtime. This dependency can be declared in the Gradle build file for the first module so

768

An Overview of Gradle in Android Studio

that the second module is included in the application build, or an error flagged in the event the second module
cannot be found or built. Other examples of dependencies are libraries and JAR files on which the project
depends to compile and run.

Gradle dependencies can be categorized as local or remote. A local dependency references an item that is present
on the local file system of the computer system on which the build is being performed. A remote dependency
refers to an item that is present on a remote server (typically referred to as a repository).

Remote dependencies are handled for Android Studio projects using another project management tool named
Maven. If a remote dependency is declared in a Gradle build file using Maven syntax then the dependency will
be downloaded automatically from the designated repository and included in the build process. The following
dependency declaration, for example, causes the AppCompat library to be added to the project from the Google
repository:
implementation 'androidx.appcompat:appcompat:1.6.0'

88.2.3 Build Variants
In addition to dependencies, Gradle also provides build variant support for Android Studio projects. This allows
multiple variations of an application to be built from a single project. Android runs on many different devices
encompassing a range of processor types and screen sizes. To target as wide a range of device types and sizes as
possible it will often be necessary to build a number of different variants of an application (for example, one with
a user interface for phones and another for tablet sized screens). Through the use of Gradle, this is now possible
in Android Studio.

88.2.4 Manifest Entries
Each Android Studio project has associated with it an AndroidManifest.xml file containing configuration details
about the application. A number of manifest entries can be specified in Gradle build files which are then auto-
generated into the manifest file when the project is built. This capability is complementary to the build variants
feature, allowing elements such as the application version number, application ID and SDK version information
to be configured differently for each build variant.

88.2.5 APK Signing
The chapter entitled “Creating, Testing and Uploading an Android App Bundle” covered the creation of a signed
release APK file using the Android Studio environment. It is also possible to include the signing information
entered through the Android Studio user interface within a Gradle build file so that signed APK files can be
generated from the command-line.

88.2.6 ProGuard Support
ProGuard is a tool included with Android Studio that optimizes, shrinks and obfuscates Java byte code to make it
more efficient and harder to reverse engineer (the method by which the logic of an application can be identified
by others through analysis of the compiled Java byte code). The Gradle build files provide the ability to control
whether or not ProGuard is run on your application when it is built.

88.3 The Property and Settings Gradle Build File
The gradle build configuration consists of a set of a configuration, property and settings files. The gradle.
properties file, for example, contains mostly esoteric settings relating to the command-line flags used by the Java
Virtual Machine (JVM), whether or not the project uses the AndroidX libraries, and Kotlin coding style support.
As a typical user, it is unlikely that you will need to change any of these settings in this file.

The settings.gradle file, on the other hand, defines which online repositories are to be searched when the build
system needs to download and install any additional libraries and plugins required to build the project, as well
as the project name. A typical settings.gradle file will read as follows:

769

An Overview of Gradle in Android Studio

pluginManagement {

 repositories {

 gradlePluginPortal()

 google()

 mavenCentral()

 }

}

dependencyResolutionManagement {

 repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)

 repositories {

 google()

 mavenCentral()

 }

}

rootProject.name = "AndroidSample"

include ':app'

As with the gradle.properties file, it is unlikely that changes will need to made to this file.

88.4 The Top-level Gradle Build File
A completed Android Studio project contains everything needed to build an Android application and consists
of modules, libraries, manifest files and Gradle build files.

Each project contains one top-level Gradle build file. This file is listed as build.gradle (Project: <project name>)
and can be found in the project tool window as highlighted in Figure 88-1:

Figure 88-1
By default, the contents of the top level Gradle build file reads as follows:
// Top-level build file where you can add configuration options common to all sub-
projects/modules.

plugins {

 id 'com.android.application' version '7.3.0' apply false

 id 'com.android.library' version '7.3.0' apply false

}

770

An Overview of Gradle in Android Studio

task clean(type: Delete) {

 delete rootProject.buildDir

}

As it stands all the file does is declare that remote libraries are to be obtained using the jcenter repository and
that builds are dependent on the Android plugin for Gradle. In most situations it is not necessary to make any
changes to this build file.

88.5 Module Level Gradle Build Files
An Android Studio application project is made up of one or more modules. Take, for example, a hypothetical
application project named GradleDemo which contains two modules named Module1 and Module2 respectively.
In this scenario, each of the modules will require its own Gradle build file. In terms of the project structure, these
would be located as follows:

• Module1/build.gradle

• Module2/build.gradle

By default, the Module1 build.gradle file would resemble that of the following listing:
plugins {

 id 'com.android.application'

}

android {

 buildFeatures {

 viewBinding true

 }

 namespace 'com.ebookfrenzy.fragmentexample'

 compileSdk 33

 defaultConfig {

 applicationId "com.ebookfrenzy.fragmentexample"

 minSdk 26

 targetSdk 33

 versionCode 1

 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"

 }

 buildTypes {

 release {

 minifyEnabled false

 proguardFiles getDefaultProguardFile('proguard-android-optimize.
txt'), 'proguard-rules.pro'

771

An Overview of Gradle in Android Studio

 }

 }

 compileOptions {

 sourceCompatibility JavaVersion.VERSION_1_8

 targetCompatibility JavaVersion.VERSION_1_8

 }

dependencies {

 implementation 'androidx.appcompat:appcompat:1.6.0'

 implementation 'com.google.android.material:material:1.7.0'

 implementation 'androidx.constraintlayout:constraintlayout:2.1.4'

 testImplementation 'junit:junit:4.13.2'

 androidTestImplementation 'androidx.test.ext:junit:1.1.3'

 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'

}

As is evident from the file content, the build file begins by declaring the use of the Gradle Android application
plug-in:
plugins {

 id 'com.android.application'

The android section of the file then states the version of the SDK to be used when building Module1.
android {

 compileSdk 33

The items declared in the defaultConfig section define elements that are to be generated into the module’s
AndroidManifest.xml file during the build. These settings, which may be modified in the build file, are taken
from the settings entered within Android Studio when the module was first created:
defaultConfig {

 applicationId "com.ebookfrenzy.fragmentexample"

 minSdk 26

 targetSdk 33

 versionCode 1

 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"

}

The buildTypes section contains instructions on whether and how to run ProGuard on the APK file when a
release version of the application is built:
buildTypes {

 release {

 minifyEnabled false

 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'),
'proguard-rules.pro'

 }

}

772

An Overview of Gradle in Android Studio

As currently configured, ProGuard will not be run when Module1 is built. To enable ProGuard, the minifyEnabled
entry needs to be changed from false to true. The proguard-rules.pro file can be found in the module directory
of the project. Changes made to this file override the default settings in the proguard-android.txt file which is
located on the Android SDK installation directory under sdk/tools/proguard.

Since no debug buildType is declared in this file, the defaults will be used (built without ProGuard, signed with
a debug key and with debug symbols enabled).

An additional section, entitled productFlavors may also be included in the module build file to enable multiple
build variants to be created.

Next, directives are included to specify the version of the Java compiler to be used when building the project:
compileOptions {

 sourceCompatibility JavaVersion.VERSION_1_8

 targetCompatibility JavaVersion.VERSION_1_8

}

Finally, the dependencies section lists any local and remote dependencies on which the module is dependent.
The dependency lines in the above example file designate the Android libraries that need to be included from
the Android Repository:
.

.

implementation 'androidx.appcompat:appcompat:1.6.0'

.

.

Note that the dependency declarations include version numbers to indicate which version of the library should
be included.

88.6 Configuring Signing Settings in the Build File
The “Creating, Testing and Uploading an Android App Bundle” chapter of this book covered the steps involved in
setting up keys and generating a signed release APK file using the Android Studio user interface. These settings
may also be declared within a signingConfigs section of the build.gradle file. For example:
.

.

 defaultConfig {

.

.

 }

 signingConfigs {
 release {
 storeFile file("keystore.release")
 storePassword "your keystore password here"
 keyAlias "your key alias here"
 keyPassword "your key password here"
 }
 }
 buildTypes {

.

773

An Overview of Gradle in Android Studio

.

.

}

The above example embeds the key password information directly into the build file. An alternative to this
approach is to extract these values from system environment variables:
signingConfigs {

 release {

 storeFile file("keystore.release")

 storePassword System.getenv("KEYSTOREPASSWD")
 keyAlias "your key alias here"
 keyPassword System.getenv("KEYPASSWD")
 }

}

Yet another approach is to configure the build file so that Gradle prompts for the passwords to be entered during
the build process:
signingConfigs {

 release {

 storeFile file("keystore.release")

 storePassword System.console().readLine
 ("\nEnter Keystore password: ")
 keyAlias "your key alias here"
 keyPassword System.console().readLIne("\nEnter Key password: ")
 }
}

88.7 Running Gradle Tasks from the Command-line
Each Android Studio project contains a Gradle wrapper tool for the purpose of allowing Gradle tasks to be
invoked from the command line. This tool is located in the root directory of each project folder. While this
wrapper is executable on Windows systems, it may need to have execute permission enabled on Linux and
macOS before it can be used. To enable execute permission, open a terminal window, change directory to the
project folder for which the wrapper is needed and execute the following command:
chmod +x gradlew

Once the file has execute permissions, the location of the file will either need to be added to your $PATH
environment variable, or the name prefixed by ./ to run. For example:
./gradlew tasks

Gradle views project building in terms of a number of different tasks. A full listing of tasks that are available
for the current project can be obtained by running the following command from within the project directory
(remembering to prefix the command with a ./ if running on macOS or Linux):
gradlew tasks

To build a debug release of the project suitable for device or emulator testing, use the assembleDebug option:
gradlew assembleDebug

Alternatively, to build a release version of the application:
gradlew assembleRelease

774

An Overview of Gradle in Android Studio

88.8 Summary
For the most part, Android Studio performs application builds in the background without any intervention
from the developer. This build process is handled using the Gradle system, an automated build toolkit designed
to allow the ways in which projects are built to be configured and managed through a set of build configuration
files. While the default behavior of Gradle is adequate for many basic project build requirements, the need to
configure the build process is inevitable with more complex projects. This chapter has provided an overview of
the Gradle build system and configuration files within the context of an Android Studio project.

775

Index

Index

Symbols
<application> 428

<fragment> 239

<fragment> element 239

<receiver> 462

<service> 428, 472, 479

 Code Reformatting 73

.well-known folder 435, 458, 674

A
AbsoluteLayout 120

ACCESS_COARSE_LOCATION permission 496

ACCESS_FINE_LOCATION permission 496

acknowledgePurchase() method 713

ACTION_CREATE_DOCUMENT 588

ACTION_CREATE_INTENT 588

ACTION_DOWN 214

ACTION_MOVE 214

ACTION_OPEN_DOCUMENT intent 580

ACTION_POINTER_DOWN 214

ACTION_POINTER_UP 214

ACTION_UP 214

ACTION_VIEW 453

Active / Running state 94

Activity 81, 97

adding views in Java code 195

class 97

creation 14

Entire Lifetime 101

Foreground Lifetime 101

lifecycle methods 100

lifecycles 91

returning data from 432

state change example 105

state changes 97

states 94

Visible Lifetime 101

ActivityCompat class 501

Activity Lifecycle 93

Activity Manager 80

ActivityResultLauncher 433

Activity Stack 93

Actual screen pixels 186

adb

command-line tool 57

connection testing 63

device pairing 61

enabling on Android devices 57

Linux configuration 60

list devices 57

macOS configuration 58

overview 57

restart server 58

testing connection 63

WiFi debugging 61

Windows configuration 59

Wireless debugging 61

Wireless pairing 61

addCategory() method 461

addMarker() method 637

addView() method 190

ADD_VOICEMAIL permission 496

android

exported 429

gestureColor 233

layout_behavior property 411

onClick 241

process 429, 479

uncertainGestureColor 233

Android

Activity 81

architecture 77

events 207

intents 82

776

Index

onClick Resource 207

runtime 78

SDK Packages 6

android.app 78

Android Architecture Components 257

android.content 78

android.content.Intent 431

android.database 78

Android Debug Bridge. See ADB

Android Design Support Library 367

Android Development

System Requirements 3

Android Devices

designing for different 119

android.graphics 78

android.hardware 78

android.intent.action 467

android.intent.action.BOOT_COMPLETED 430

android.intent.action.MAIN 453

android.intent.category.LAUNCHER 453

Android Libraries 78

android.media 79

Android Monitor tool window 32

Android Native Development Kit 79

android.net 79

android.opengl 79

android.os 79

android.permission.RECORD_AUDIO 615

android.print 79

Android Project

create new 13

android.provider 79

Android SDK Location

identifying 9

Android SDK Manager 8, 10

Android SDK Packages

version requirements 8

Android SDK Tools

command-line access 9

Linux 11

macOS 11

Windows 7 10

Windows 8 10

Android Software Stack 77

Android Storage Access Framework 580

Android Studio

changing theme 54

downloading 3

Editor Window 48

installation 4

Linux installation 5

macOS installation 4

Main Window 48

Menu Bar 48

Navigation Bar 48

Project tool window 49

setup wizard 5

Status Bar 49

Toolbar 48

Tool window bars 50

tool windows 49

updating 12

Welcome Screen 47

Windows installation 4

android.text 79

android.util 79

android.view 79

android.view.View 122

android.view.ViewGroup 119, 122

Android Virtual Device. See AVD

overview 27

Android Virtual Device Manager 27

android.webkit 79

android.widget 79

AndroidX libraries 768

API Key 627

APK analyzer 706

APK file 700

split 730

APK File

analyzing 706

APK Signing 768

APK Wizard dialog 698

App Architecture

777

Index
modern 257

AppBar

anatomy of 409

appbar_scrolling_view_behavior 411

App Bundles 695

creating 700

overview 695

revisions 705

uploading 702

AppCompatActivity class 98

App Inspector 51

Application

stopping 32

Application Context 83

Application Framework 79

Application Manifest 83

Application Resources 83

App Link

Adding Intent Filter 682

Assistant 677

Digital Asset Links file 674, 435

Intent Filter Handling 682

Intent Filters 673

Intent Handling 674

Testing 686

tutorial 677

URL Mapping 679

App Link Assistant 677

App Links 673

auto verification 435

autoVerify 435

manually enabling 437

overview 673

Apply Changes 203

Apply Changes and Restart Activity 203

Apply Code Changes 203

fallback settings 205

options 203

Run App 203

tutorial 205

applyToActivitiesIfAvailable() method 763

Architecture Components 257

ART 78

assetlinks.json , 674, 435

Attribute Keyframes 334

Audio

supported formats 613

Audio Playback 613

Audio Recording 613

Autoconnect Mode 152

Automatic Link Verification 435, 457

autoVerify 435, 682

AVD

cold boot 42

command-line creation 27

creation 27

device frame 35

Display mode 44

launch in tool window 35

overview 27

quickboot 42

Resizable 44

running an application 30

Snapshots 41

standalone 33

starting 29

Startup size and orientation 30

B
Background Process 92

Barriers 146

adding 164

constrained views 146

Base APK file 730

Baseline Alignment 145

beginTransaction() method 240

BillingClient 714

acknowledgePurchase() method 713

consumeAsync() method 713

getPurchaseState() method 713

initialization 710, 720

launchBillingFlow() method 712

queryProductDetailsAsync() method 712

queryPurchasesAsync() method 714

778

Index

startConnection() method 711

BillingResult 727

getDebugMessage() 727

Binding Expressions 281

one-way 281

two-way 282

BIND_JOB_SERVICE permission 429

bindService() method 427, 469, 474

Biometric Authentication 687

callbacks 691

overview 687

tutorial 687

Biometric Prompt 692

BitmapFactory 581

black activity 14

Blank template 123

Blueprint view 151

BODY_SENSORS permission 496

Bookmarks 51

Bound Service 427, 469

adding to a project 470

Implementing the Binder 470

Interaction options 469

BoundService class 471

Broadcast Intent 461

example 464

overview 82, 461

sending 464

Sticky 463

Broadcast Receiver 461

adding to manifest file 466

creation 465

overview 82, 462

BroadcastReceiver class 462

BroadcastReceiver superclass 465

BufferedReader object 591

Build tool window 51

Build Variants 51, 768

tool window 51

Bundle class 114

Bundled Notifications 515

C
Calendar permissions 496

CALL_PHONE permission 496

CAMERA permission 496

Camera permissions 496

CameraUpdateFactory class

methods 638

CancellationSignal 692

Canvas class 668

CardView

example 391

layout file 389

responding to selection of 397

CardView class 389

CATEGORY_OPENABLE 580

C/C++ Libraries 79

Chain bias 172

chain head 144

chains 144

Chains

creation of 169

Chain style

changing 171

chain styles 144

CharSequence 115

CheckBox 119

checkSelfPermission() method 500

Circle class 623

Code completion 68

Code Editor

basics 65

Code completion 68

Code Generation 70

Code Reformatting 73

Document Tabs 65

Editing area 66

Gutter Area 66

Live Templates 74

Splitting 67

Statement Completion 69

Status Bar 67

Code Generation 70

779

Index
code samples

download 1

cold boot 42

CollapsingToolbarLayout

example 413

introduction 412

parallax mode 412

pin mode 412

setting scrim color 415

setting title 415

with image 412

Color class 669

COLOR_MODE_COLOR 644, 664

COLOR_MODE_MONOCHROME 644, 664

com.android.application 733

com.android.dynamic-feature 733

Common Gestures 221

detection 221

Component tree 17

Configuration APK file 730

Constraint Bias 143

adjusting 156

ConstraintLayout

advantages of 149

Availability 150

Barriers 146

Baseline Alignment 145

chain bias 172

chain head 144

chains 144

chain styles 144

Constraint Bias 143

Constraints 141

conversion to 168

convert to MotionLayout 341

deleting constraints 156

guidelines 162

Guidelines 146

manual constraint manipulation 153

Margins 142, 157

Opposing Constraints 142, 158

overview of 141

Packed chain 145, 172

ratios 149, 173

Spread chain 144

Spread inside 171

Spread inside chain 144

tutorial 177

using in Android Studio 151

Weighted chain 144, 172

Widget Dimensions 145, 160

Widget Group Alignment 167

ConstraintLayout chains

creation of 169

in layout editor 169

ConstraintLayout Chain style

changing 171

Constraints

deleting 156

ConstraintSet

addToHorizontalChain() method 192

addToVerticalChain() method 192

alignment constraints 191

apply to layout 190

applyTo() method 190

centerHorizontally() method 191

centerVertically() method 191

chains 191

clear() method 192

clone() method 191

connect() method 190

connect to parent 190

constraint bias 191

copying constraints 191

create 190

create connection 190

createHorizontalChain() method 191

createVerticalChain() method 191

guidelines 192

removeFromHorizontalChain() method 192

removeFromVerticalChain() method 192

removing constraints 192

rotation 193

scaling 192

780

Index

setGuidelineBegin() method 192

setGuidelineEnd() method 192

setGuidelinePercent() method 192

setHorizonalBias() method 191

setRotationX() method 193

setRotationY() method 193

setScaleX() method 192

setScaleY() method 192

setTransformPivot() method 193

setTransformPivotX() method 193

setTransformPivotY() method 193

setVerticalBias() method 191

sizing constraints 191

tutorial 195

view IDs 197

ConstraintSet class 189, 190

ConstraintSet.PARENT_ID 190

Constraint Sets 190

ConstraintSets

configuring 330

consumeAsync() method 713

ConsumeParams 725

ConsumeResponseListener 713

Contacts permissions 496

container view 119

Content Provider 80

overview 83

Context class 83

CoordinatorLayout 120, 409, 411

createPrintDocumentAdapter() method 659

Custom Attribute 331

Custom Document Printing 647, 659

Custom Gesture

recognition 227

Custom Print Adapter

implementation 661

Custom Print Adapters 659

Custom Theme

building 757

Cycle Editor 359

Cycle Keyframe 339

Cycle Keyframes

overview 355

D
dangerous permissions 495

list of 496

Dark Theme 32

enable on device 32

Data Access Object (DAO) 546

Data Access Objects (DAO) 550

Database Inspector 553, 576

live updates 577

SQL query 577

Database Rows 540

Database Schema 539

Database Tables 539

Data binding

binding expressions 281

Data Binding 260

binding classes 280

enabling 286

event and listener binding 282

key components 277

overview 277

tutorial 285

with LiveData 260

DDMS 32

Debugging

enabling on device 57

debug.keystore file 435, 457

DefaultLifecycleObserver 300, 303

deltaRelative 335

Density-independent pixels 185

Density Independent Pixels

converting to pixels 200

Device Definition

custom 137

Device File Explorer 51

device frame 35

Device Manager 51

Device Mirroring 63

enabling 63

device pairing 61

781

Index
Digital Asset Links file 435, 674, 435

Direct Reply Input 526

Direct Reply Notification 519

document provider 579

dp 185

Dynamic Colors

applyToActivitiesIfAvailable() method 763

enabling 763

enabling in Android 763

Dynamic Delivery 732

Dynamic Feature APK 730

Dynamic Feature Module

architecture 729

overview 729

removal 753

tutorial 739

Dynamic Feature Modules

deferred installation 735

handling of large 737

Dynamic Feature Support

adding to project 739

Dynamic State 99

saving 113

E
Empty Process 93

Empty template 123

Emulator 51

battery 40

cellular configuration 40

configuring fingerprints 42

directional pad 40

extended control options 39

Extended controls 39

fingerprint 40

location configuration 40

phone settings 40

Resizable 44

resize 39

rotate 38

Screen Record 41

Snapshots 41

starting 29

take screenshot 38

toolbar 37

toolbar options 37

tool window mode 43

Virtual Sensors 41

zoom 38

enablePendingPurchases() method 713

enabling ADB support 57

ettings.gradle file 768

Event Handling 207

example 208

Event Listener 209

Event Listeners 208

Event Log 51

Events

consuming 211

explicit

intent 82

explicit intent 431

Explicit Intent 431

Extended Control

options 39

F
Favorites

tool window 51

Files

switching between 66

findPointerIndex() method 214

findViewById() 85

Fingerprint

emulation 42

Fingerprint authentication

device configuration 688

permission 688

steps to implement 687

Fingerprint Authentication

overview 687

tutorial 687

FLAG_INCLUDE_STOPPED_PACKAGES 461

flexible space area 409

782

Index

floating action button 14, 124, 367

changing appearance of 371

margins 368

overview of 367

removing 125

sizes 368

Foldable Devices 102

multi-resume 102

Foldable Emulator 532

Foldables 531

Foreground Process 92

Forward-geocoding 630

Fragment

creation 237

event handling 241

XML file 237, 238

FragmentActivity class 98

Fragment Communication 242

Fragments 237

adding in code 240

duplicating 378

example 245

overview 237

FragmentStateAdapter class 381

FrameLayout 120

G
Geocoder class 629

Geocoder object 631

Geocoding 629

Gesture Builder Application 227

building and running 228

Gesture Detector class 221

GestureDetectorCompat 224

instance creation 224

GestureDetectorCompat class 221

GestureDetector.OnDoubleTapListener 221, 222

GestureDetector.OnGestureListener 222

GestureLibrary 227

GestureLibrary class 227

GestureOverlayView 227

configuring color 233

configuring multiple strokes 233

GestureOverlayView class 227

GesturePerformedListener 227

Gestures

interception of 233

Gestures File

creation 228

extract from SD card 229

loading into application 230

GET_ACCOUNTS permission 496

getAction() method 467

getDebugMessage() 727

getFromLocation() method 631

getId() method 190

getIntent() method 432

getPointerCount() method 214

getPointerId() method 214

getPurchaseState() method 713

getService() method 474

GNU/Linux 78

Google Cloud

billing account 624

Console 624

new project 625

Google Cloud Print 642

Google Drive 580

printing to 642

GoogleMap 623

map types 634

GoogleMap.MAP_TYPE_HYBRID 634

GoogleMap.MAP_TYPE_NONE 634

GoogleMap.MAP_TYPE_NORMAL 634

GoogleMap.MAP_TYPE_SATELLITE 634

GoogleMap.MAP_TYPE_TERRAIN 634

Google Maps Android API 623

Controlling the Map Camera 637

displaying controls 635

gesture handling 635

Map Markers 637

overview 623

Google Maps SDK 623

API Key 627

783

Index
Credentials 627

enabling 626

Maps SDK for Android 627

Google Play Billing Library 709

Google Play Console 718

Creating an in-app product 718

License Testers 719

Google Play Developer Console 696

Go to Line:Column 67

Gradle

APK signing settings 772

Build Variants 768

command line tasks 773

dependencies 767

Manifest Entries 768

overview 767

sensible defaults 767

tool window 51

Gradle Build File

top level 769

Gradle Build Files

module level 770

gradle.properties file 768

GridLayout 120

GridLayoutManager 387

H
Handler class 478

HP Print Services Plugin 641

HTML printing 645

HTML Printing

example 649

I
IBinder 427, 471

IBinder object 469, 477, 479

Image Printing 644

implicit

intent 82

implicit intent 431

Implicit Intent 433

Implicit Intents

example 449

in 185

INAPP 714

In-App Products 709

In-App Purchasing 717

acknowledgePurchase() method 713

BillingClient 710

BillingResult 727

consumeAsync() method 713

ConsumeParams 725

ConsumeResponseListener 713

Consuming purchases 724

enablePendingPurchases() method 713

getPurchaseState() method 713

Google Play Billing Library 709

launchBillingFlow() method 712

Libraries 717

newBuilder() method 710

onBillingServiceDisconnected() callback 722

onBillingServiceDisconnected() method 711

onBillingSetupFinished() listener 721

onProductDetailsResponse() callback 722

Overview 709

ProductDetail 712

ProductDetails 723

products 709

ProductType 714

ProductType.INAPP 714

ProductType.SUBS 714

Purchase Flow 723

PurchaseResponseListener 714

PurchasesUpdatedListener 713

PurchaseUpdatedListener 723

purchase updates 723

queryProductDetailsAsync() 722

queryProductDetailsAsync() method 712

queryPurchasesAsync() 725

queryPurchasesAsync() method 714

runOnUiThread() 723

startConnection() method 711

subscriptions 709

tutorial 717

784

Index

In-Memory Database 553

Instant Dynamic Feature Module 730

Intent 82

explicit 82

implicit 82

Intent Availability

checking for 438

Intent.CATEGORY_OPENABLE 588

intent filters 431

Intent Filters 434

App Link 673

intent resolution 434

Intents 431

ActivityResultLauncher 433

overview 431

registerForActivityResult() 446

Intent Service 427

IntentService class 427, 430

Intent URL 452

J
Java Native Interface 79

Jetpack 257

overview 257

JobIntentService 427

BIND_JOB_SERVICE permission 429

onHandleWork() method 427

K
KeyAttribute 334

Keyboard Shortcuts 52

KeyCycle 339, 355

Cycle Editor 359

tutorial 355

Keyframe 347

Keyframes 334

KeyFrameSet 364

KeyPosition 335

deltaRelative 335

parentRelative 335

pathRelative 336

Keystore File

creation 698

KeyTimeCycle 339, 355

keytool 435

KeyTrigger 338

Killed state 94

L
launchBillingFlow() method 712

layout_collapseMode

parallax 414

pin 414

layout_constraintDimentionRatio 174

layout_constraintHorizontal_bias 172

layout_constraintVertical_bias 172

layout editor

ConstraintLayout chains 169

Layout Editor 16, 177

Autoconnect Mode 152

code mode 130

Component Tree 128

design mode 127

device screen 128

example project 177

Inference Mode 153

palette 128

properties panel 128

Sample Data 136

Setting Properties 131

toolbar 128

user interface design 177

view conversion 135

Layout Editor Tool

changing orientation 16

overview 127

Layout Inspector 52

Layout Managers 119

LayoutResultCallback object 665

Layouts 119

layout_scrollFlags

enterAlwaysCollapsed mode 411

enterAlways mode 411

exitUntilCollapsed mode 411

785

Index
scroll mode 411

Layout Validation 138

libc 79

License Testers 719

Lifecycle

awareness 299

components 260

owners 299

states and events 301

tutorial 303

Lifecycle-Aware Components 299

Lifecycle Methods 100

Lifecycle Observer 303

creating a 303

Lifecycle Owner

creating a 305

Lifecycles

modern 260

LinearLayout 120

LinearLayoutManager 387

LinearLayoutManager layout 396

Linux Kernel 78

list devices 57

LiveData 258, 271

adding to ViewModel 271

observer 273

tutorial 271

Live Templates 74

Local Bound Service 469

example 469

Location Manager 80

Location permission 496

Logcat

tool window 52

LogCat

enabling 109

M
MANAGE_EXTERNAL_STORAGE 497

adb enabling 497

testing 497

Manifest File

permissions 453

Maps 623

MapView 623

adding to a layout 631

Marker class 623

Master/Detail Flow

creation 418

two pane mode 417

match_parent properties 185

Material design 367

Material Design 2 755

Material Design 2 Theming 755

Material Design 3 755

Material Theme Builder 757

Material You 755

MediaController

adding to VideoView instance 597

MediaController class 594

methods 594

MediaPlayer class 613

methods 613

MediaRecorder class 613

methods 614

recording audio 614

Memory Indicator 67

Messenger object 479

Microphone

checking for availability 616

Microphone permissions 496

mm 185

MotionEvent 213, 214, 235

getActionMasked() 214

MotionLayout 329

arc motion 334

Attribute Keyframes 334

ConstraintSets 330

Custom Attribute 350

Custom Attributes 331

Cycle Editor 359

Cycle Keyframes 339

Editor 341

KeyAttribute 334

786

Index

KeyCycle 355

Keyframes 334

KeyFrameSet 364

KeyPosition 335

KeyTimeCycle 355

KeyTrigger 338

OnClick 333, 346

OnSwipe 333

overview 329

Position Keyframes 335

previewing animation 345

starting animation 332

Trigger Keyframe 338

Tutorial 341

MotionScene

ConstraintSets 330

Custom Attributes 331

file 330

overview 329

transition 330

moveCamera() method 638

multiple devices

testing app on 31

Multiple Touches

handling 214

multi-resume 102

Multi-Touch

example 214

Multi-touch Event Handling 213

Multi-Window

attributes 535

Multi-Window Mode

detecting 536

entering 533

launching activity into 537

Multi-Window Notifications 536

multi-window support 102

Multi-Window Support

enabling 534

My Location Layer 624

N

Navigation 309

adding destinations 318

overview 309

pass data with safeargs 325

passing arguments 314

safeargs 314

stack 309

tutorial 315

Navigation Action

triggering 313

Navigation Architecture Component 309

Navigation Component

tutorial 315

Navigation Controller

accessing 313

Navigation Graph 312, 316

adding actions 321

creating a 316

Navigation Host 310

declaring 317

newBuilder() method 710

normal permissions 495

Notification

adding actions 514

direct reply 519

Direct Reply Input 526

issuing a basic 510

launch activity from a 512

PendingIntent 522

Reply Action 524

updating direct reply 527

Notifications 503

bundled 515

overview 503

Notifications Manager 80

O
Observer

implementing a LiveData 273

onAttach() method 242

onBillingServiceDisconnected() callback 722

onBillingServiceDisconnected() method 711

787

Index
onBillingSetupFinished() listener 721

onBind() method 428, 469, 477

onBindViewHolder() method 395

OnClick 333

onClickListener 208, 209, 212

onClick() method 207

onCreateContextMenuListener 208

onCreate() method 92, 100, 428

onCreateView() method 100

on-demand modules 729

onDestroy() method 100, 428

onDoubleTap() method 221

onDown() method 221

onFling() method 221

onFocusChangeListener 208

OnFragmentInteractionListener

implementation 323

onGesturePerformed() method 227

onHandleWork() method 427, 428

onKeyListener 208

onLayoutFailed() method 665

onLayoutFinished() method 665

onLongClickListener 208, 211

onLongClick() method 211

onLongPress() method 221

onMapReady() method 633

onPageFinished() callback 650

onPause() method 100

onProductDetailsResponse() callback 722

onReceive() method 92, 462, 463, 465

onRequestPermissionsResult() method 499, 620, 508, 520

onRestart() method 100

onRestoreInstanceState() method 101

onResume() method 92, 100

onSaveInstanceState() method 101

onScaleBegin() method 233

onScaleEnd() method 233

onScale() method 233

onScroll() method 221

OnSeekBarChangeListener 252

onServiceConnected() method 469, 473, 480

onServiceDisconnected() method 469, 473, 480

onShowPress() method 221

onSingleTapUp() method 221

onStartCommand() method 428

onStart() method 100

onStop() method 100

onTouchEvent() method 221, 233

onTouchListener 208, 213

onTouch() method 213

onViewCreated() method 100

onViewStatusRestored() method 100

openFileDescriptor() method 580

OpenJDK 3

P
Package Explorer 15

Package Manager 80

PackageManager class 616

PackageManager.FEATURE_MICROPHONE 616

PackageManager.PERMISSION_DENIED 497

PackageManager.PERMISSION_GRANTED 497

Package Name 14

Packed chain 145, 172

PageRange 666, 667

Paint class 669

parentRelative 335

parent view 121

pathRelative 336

Paused state 94

PdfDocument 647

PdfDocument.Page 659, 666

PendingIntent class 522

Permission

checking for 497

permissions

dangerous 495

normal 495

Persistent State 99

Phone permissions 496

picker 579

Pinch Gesture

detection 233

example 234

788

Index

Pinch Gesture Recognition 227

Play Core Library 735, 739

Polygon class 623

Polyline class 623

Position Keyframes 335

POST_NOTIFICATIONS permission 496, 520

PrintAttributes 664

PrintDocumentAdapter 647, 659

PrintDocumentInfo 664

Printing

color 644

monochrome 644

Printing framework

architecture 641

Printing Framework 641

Print Job

starting 670

Print Manager 641

PrintManager service 651

Problems

tool window 52

PROCESS_OUTGOING_CALLS permission 496

Process States 91

ProductDetail 712

ProductDetails 723

ProductType 714

Profiler

tool window 52

ProgressBar 119

proguard-rules.pro file 772

ProGuard Support 768

Project

tool window 52

Project Name 14

Project tool window 15, 52

pt 185

PurchaseResponseListener 714

PurchasesUpdatedListener 713

PurchaseUpdatedListener 723

putExtra() method 431, 461

px 186

Q
queryProductDetailsAsync() 722

queryProductDetailsAsync() method 712

queryPurchaseHistoryAsync() method 714

queryPurchasesAsync() 725

queryPurchasesAsync() method 714

quickboot snapshot 42

Quick Documentation 72

R
RadioButton 119

ratios 173

READ_CALENDAR permission 496

READ_CALL_LOG permission 496

READ_CONTACTS permission 496

READ_EXTERNAL_STORAGE permission 497

READ_PHONE_STATE permission 496

READ_SMS permission 496

RECEIVE_MMS permission 496

RECEIVE_SMS permission 496

RECEIVE_WAP_PUSH permission 496

Recent Files Navigation 53

RECORD_AUDIO permission 496

Recording Audio

permission 615

RecyclerView 387

adding to layout file 388

example 391

GridLayoutManager 387

initializing 396

LinearLayoutManager 387

StaggeredGridLayoutManager 387

RecyclerView Adapter

creation of 394

RecyclerView.Adapter 388, 394

getItemCount() method 388

onBindViewHolder() method 388

onCreateViewHolder() method 388

RecyclerView.ViewHolder

getAdapterPosition() method 398

registerForActivityResult() method 433, 446

registerReceiver() method 463

789

Index
RelativeLayout 120

release mode 695

releasePersistableUriPermission() method 583

Release Preparation 695

Remote Bound Service 477

client communication 477

implementation 478

manifest file declaration 479

RemoteInput.Builder() method 522

RemoteInput Object 522

Remote Service

launching and binding 480

sending a message 481

Repository

tutorial 563

Repository Modules 260

requestPermissions() method 499

Resizable Emulator 44

Resource

string creation 19

Resource File 21

Resource Management 91

Resource Manager 52, 80

result receiver 463

Reverse-geocoding 630

Reverse Geocoding 629

Room

Data Access Object (DAO) 546

entities 546, 547

In-Memory Database 553

Repository 546

Room Database 546

tutorial 563

Room Database Persistence 545

Room Persistence Library 543, 545

root element 119

root view 121

Run

tool window 52

Running Devices

tool window 63

runOnUiThread() 723

Runtime Permission Requests 495

S
safeargs 314, 325

Sample Data 136, 401

tutorial 401

Saved State 259, 293

library dependencies 295

SavedStateHandle 294, 295

contains() method 295

keys() method 295

remove() method 295

Saved State module 293

SavedStateViewModelFactory 294

ScaleGestureDetector class 233

Scale-independent 185

SDK Packages 6

Secure Sockets Layer (SSL) 79

SeekBar 245

sendBroadcast() method 461, 463

sendOrderedBroadcast() method 461, 463

SEND_SMS permission 496

sendStickyBroadcast() method 461

Sensor permissions 496

Service

anatomy 428

launch at system start 430

manifest file entry 428

overview 82

run in separate process 429

ServiceConnection class 480

Service Process 92

Service Restart Options 428

setAudioEncoder() method 614

setAudioSource() method 614

setBackgroundColor() 190

setCompassEnabled() method 635

setContentView() method 189, 195

setId() method 190

setMyLocationButtonEnabled() method 635

setOnClickListener() method 207, 209

setOnDoubleTapListener() method 221, 224

790

Index

setOutputFile() method 614

setOutputFormat() method 614

setResult() method 433

setRotateGesturesEnabled() method 636

setScrollGesturesEnabled() method 636

setText() method 116

setTiltGesturesEnabled() method 636

setTransition() 339

setVideoSource() method 614

setZoomControlsEnabled() method 635, 636

SHA-256 certificate fingerprint 435

shouldOverrideUrlLoading() method 650

shouldShowRequestPermissionRationale() method 501

SimpleOnScaleGestureListener 233

SimpleOnScaleGestureListener class 235

SMS permissions 496

Snackbar 367, 368, 369

overview of 368

Snapshots

emulator 41

sp 185

Space class 120

split APK files 730

SplitCompatApplication 734

SplitInstallManager 735

Spread chain 144

Spread inside 171

Spread inside chain 144

SQL 540

SQLite 539

AVD command-line use 541

Columns and Data Types 539

overview 540

Primary keys 540

StaggeredGridLayoutManager 387

startActivity() method 431

startConnection() method 711

startForeground() method 92

START_NOT_STICKY 428

START_REDELIVER_INTENT 428

START_STICKY 428

State

restoring 116

State Change

handling 95

Statement Completion 69

status bar 409

Status Bar Widgets 67

Memory Indicator 67

Sticky Broadcast Intents 463

Stopped state 94

Storage Access Framework 579

ACTION_CREATE_DOCUMENT 580

ACTION_OPEN_DOCUMENT 580

deleting a file 583

example 585

file creation 588

file filtering 580

file reading 581

file writing 582

intents 580

MIME Types 581

Persistent Access 583

picker 579

Storage permissions 497

StringBuilder object 591

strings.xml file 23

Structure

tool window 52

Structured Query Language 540

Structure tool window 52

SUBS 714

subscriptions 709

SupportMapFragment class 623

Switcher 53

System Broadcasts 467

system requirements 3

T
tab bar 409

TabLayout 375

adding to layout 379

app

tabGravity property 384

791

Index
tabMode property 384

example 376

fixed mode 383

getItemCount() method 375

overview 375

scrollable mode 384

TableLayout 120, 555

TableRow 555

Telephony Manager 80

Templates

blank vs. empty 123

Terminal

tool window 52

Theme

building a custom 757

Theming 755

Material Theme Builder 757

tutorial 759

Time Cycle Keyframes 339

TODO

tool window 52

toolbar 409

ToolbarListener 242

tools

layout 239

Tool window bars 50

Tool windows 49

Touch Actions 214

Touch Event Listener

implementation 215

Touch Events

intercepting 213

Touch handling 213

U
UiSettings class 623

unbindService() method 427

unregisterReceiver() method 463

URL Mapping 679

USB connection issues

resolving 60

USE_BIOMETRIC 688

user interface state 99

USE_SIP permission 496

V
Video Playback 593

VideoView class 593

methods 593

supported formats 593

view bindings 85

enabling 86

using 86

View class

setting properties 196

view conversion 135

ViewGroup 119

View Groups 119

View Hierarchy 121

ViewHolder class 388

sample implementation 395

ViewModel

adding LiveData 271

data access 268

fragment association 266

overview 258

saved state 293

Saved State 259, 293

tutorial 263

ViewModelProvider 266

ViewModel Saved State 293

ViewPager 375, 380

adapter 380

adding to layout 379

example 376

Views 119

Java creation 189

View System 80

Virtual Device Configuration dialog 28

Virtual Sensors 41

Visible Process 92

W
WebViewClient 645, 650

792

Index

WebView view 451

Weighted chain 144, 172

Welcome screen 47

Widget Dimensions 145

Widget Group Alignment 167

Widgets palette 178

WiFi debugging 61

Wireless debugging 61

Wireless pairing 61

wrap_content properties 187

WRITE_CALENDAR permission 496

WRITE_CALL_LOG permission 496

WRITE_CONTACTS permission 496

WRITE_EXTERNAL_STORAGE permission 497

X
XML Layout File

manual creation 185

vs. Java Code 189

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Installing the Android SDK Command-line Tools
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Modifying the Example Application
	3.6 Modifying the User Interface
	3.7 Reviewing the Layout and Resource Files
	3.8 Adding Interaction
	3.9 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Enabling the Device Frame
	4.9 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Creating a Resizable Emulator
	5.10 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Main Window
	6.3 The Tool Windows
	6.4 Android Studio Keyboard Shortcuts
	6.5 Switcher and Recent Files Navigation
	6.6 Changing the Android Studio Theme
	6.7 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Device Mirroring
	7.7 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android Application
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Overview of Android View Binding
	11.1 Find View by Id
	11.2 View Binding
	11.3 Converting the AndroidSample project
	11.4 Enabling View Binding
	11.5 Using View Binding
	11.6 Choosing an Option
	11.7 View Binding in the Book Examples
	11.8 Migrating a Project to View Binding
	11.9 Summary

	12. Understanding Android Application and Activity Lifecycles
	12.1 Android Applications and Resource Management
	12.2 Android Process States
	12.2.1 Foreground Process
	12.2.2 Visible Process
	12.2.3 Service Process
	12.2.4 Background Process
	12.2.5 Empty Process

	12.3 Inter-Process Dependencies
	12.4 The Activity Lifecycle
	12.5 The Activity Stack
	12.6 Activity States
	12.7 Configuration Changes
	12.8 Handling State Change
	12.9 Summary

	13. Handling Android Activity State Changes
	13.1 New vs. Old Lifecycle Techniques
	13.2 The Activity and Fragment Classes
	13.3 Dynamic State vs. Persistent State
	13.4 The Android Lifecycle Methods
	13.5 Lifetimes
	13.6 Foldable Devices and Multi-Resume
	13.7 Disabling Configuration Change Restarts
	13.8 Lifecycle Method Limitations
	13.9 Summary

	14. Android Activity State Changes by Example
	14.1 Creating the State Change Example Project
	14.2 Designing the User Interface
	14.3 Overriding the Activity Lifecycle Methods
	14.4 Filtering the Logcat Panel
	14.5 Running the Application
	14.6 Experimenting with the Activity
	14.7 Summary

	15. Saving and Restoring the State of an Android Activity
	15.1 Saving Dynamic State
	15.2 Default Saving of User Interface State
	15.3 The Bundle Class
	15.4 Saving the State
	15.5 Restoring the State
	15.6 Testing the Application
	15.7 Summary

	16. Understanding Android Views, View Groups and Layouts
	16.1 Designing for Different Android Devices
	16.2 Views and View Groups
	16.3 Android Layout Managers
	16.4 The View Hierarchy
	16.5 Creating User Interfaces
	16.6 Summary

	17. A Guide to the Android Studio Layout Editor Tool
	17.1 Basic vs. Empty Views Activity Templates
	17.2 The Android Studio Layout Editor
	17.3 Design Mode
	17.4 The Palette
	17.5 Design Mode and Layout Views
	17.6 Night Mode
	17.7 Code Mode
	17.8 Split Mode
	17.9 Setting Attributes
	17.10 Transforms
	17.11 Tools Visibility Toggles
	17.12 Converting Views
	17.13 Displaying Sample Data
	17.14 Creating a Custom Device Definition
	17.15 Changing the Current Device
	17.16 Layout Validation
	17.17 Summary

	18. A Guide to the Android ConstraintLayout
	18.1 How ConstraintLayout Works
	18.1.1 Constraints
	18.1.2 Margins
	18.1.3 Opposing Constraints
	18.1.4 Constraint Bias
	18.1.5 Chains
	18.1.6 Chain Styles

	18.2 Baseline Alignment
	18.3 Configuring Widget Dimensions
	18.4 Guideline Helper
	18.5 Group Helper
	18.6 Barrier Helper
	18.7 Flow Helper
	18.8 Ratios
	18.9 ConstraintLayout Advantages
	18.10 ConstraintLayout Availability
	18.11 Summary

	19. A Guide to Using ConstraintLayout in Android Studio
	19.1 Design and Layout Views
	19.2 Autoconnect Mode
	19.3 Inference Mode
	19.4 Manipulating Constraints Manually
	19.5 Adding Constraints in the Inspector
	19.6 Viewing Constraints in the Attributes Window
	19.7 Deleting Constraints
	19.8 Adjusting Constraint Bias
	19.9 Understanding ConstraintLayout Margins
	19.10 The Importance of Opposing Constraints and Bias
	19.11 Configuring Widget Dimensions
	19.12 Design Time Tools Positioning
	19.13 Adding Guidelines
	19.14 Adding Barriers
	19.15 Adding a Group
	19.16 Working with the Flow Helper
	19.17 Widget Group Alignment and Distribution
	19.18 Converting other Layouts to ConstraintLayout
	19.19 Summary

	20. Working with ConstraintLayout Chains and Ratios in Android Studio
	20.1 Creating a Chain
	20.2 Changing the Chain Style
	20.3 Spread Inside Chain Style
	20.4 Packed Chain Style
	20.5 Packed Chain Style with Bias
	20.6 Weighted Chain
	20.7 Working with Ratios
	20.8 Summary

	21. An Android Studio Layout Editor ConstraintLayout Tutorial
	21.1 An Android Studio Layout Editor Tool Example
	21.2 Preparing the Layout Editor Environment
	21.3 Adding the Widgets to the User Interface
	21.4 Adding the Constraints
	21.5 Testing the Layout
	21.6 Using the Layout Inspector
	21.7 Summary

	22. Manual XML Layout Design in Android Studio
	22.1 Manually Creating an XML Layout
	22.2 Manual XML vs. Visual Layout Design
	22.3 Summary

	23. Managing Constraints using Constraint Sets
	23.1 Java Code vs. XML Layout Files
	23.2 Creating Views
	23.3 View Attributes
	23.4 Constraint Sets
	23.4.1 Establishing Connections
	23.4.2 Applying Constraints to a Layout
	23.4.3 Parent Constraint Connections
	23.4.4 Sizing Constraints
	23.4.5 Constraint Bias
	23.4.6 Alignment Constraints
	23.4.7 Copying and Applying Constraint Sets
	23.4.8 ConstraintLayout Chains
	23.4.9 Guidelines
	23.4.10 Removing Constraints
	23.4.11 Scaling
	23.4.12 Rotation

	23.5 Summary

	24. An Android ConstraintSet Tutorial
	24.1 Creating the Example Project in Android Studio
	24.2 Adding Views to an Activity
	24.3 Setting View Attributes
	24.4 Creating View IDs
	24.5 Configuring the Constraint Set
	24.6 Adding the EditText View
	24.7 Converting Density Independent Pixels (dp) to Pixels (px)
	24.8 Summary

	25. A Guide to using Apply Changes in Android Studio
	25.1 Introducing Apply Changes
	25.2 Understanding Apply Changes Options
	25.3 Using Apply Changes
	25.4 Configuring Apply Changes Fallback Settings
	25.5 An Apply Changes Tutorial
	25.6 Using Apply Code Changes
	25.7 Using Apply Changes and Restart Activity
	25.8 Using Run App
	25.9 Summary

	26. An Overview and Example of Android Event Handling
	26.1 Understanding Android Events
	26.2 Using the android:onClick Resource
	26.3 Event Listeners and Callback Methods
	26.4 An Event Handling Example
	26.5 Designing the User Interface
	26.6 The Event Listener and Callback Method
	26.7 Consuming Events
	26.8 Summary

	27. Android Touch and Multi-touch Event Handling
	27.1 Intercepting Touch Events
	27.2 The MotionEvent Object
	27.3 Understanding Touch Actions
	27.4 Handling Multiple Touches
	27.5 An Example Multi-Touch Application
	27.6 Designing the Activity User Interface
	27.7 Implementing the Touch Event Listener
	27.8 Running the Example Application
	27.9 Summary

	28. Detecting Common Gestures Using the Android Gesture Detector Class
	28.1 Implementing Common Gesture Detection
	28.2 Creating an Example Gesture Detection Project
	28.3 Implementing the Listener Class
	28.4 Creating the GestureDetectorCompat Instance
	28.5 Implementing the onTouchEvent() Method
	28.6 Testing the Application
	28.7 Summary

	29. Implementing Custom Gesture and Pinch Recognition on Android
	29.1 The Android Gesture Builder Application
	29.2 The GestureOverlayView Class
	29.3 Detecting Gestures
	29.4 Identifying Specific Gestures
	29.5 Installing and Running the Gesture Builder Application
	29.6 Creating a Gestures File
	29.7 Creating the Example Project
	29.8 Extracting the Gestures File from the SD Card
	29.9 Adding the Gestures File to the Project
	29.10 Designing the User Interface
	29.11 Loading the Gestures File
	29.12 Registering the Event Listener
	29.13 Implementing the onGesturePerformed Method
	29.14 Testing the Application
	29.15 Configuring the GestureOverlayView
	29.16 Intercepting Gestures
	29.17 Detecting Pinch Gestures
	29.18 A Pinch Gesture Example Project
	29.19 Summary

	30. An Introduction to Android Fragments
	30.1 What is a Fragment?
	30.2 Creating a Fragment
	30.3 Adding a Fragment to an Activity using the Layout XML File
	30.4 Adding and Managing Fragments in Code
	30.5 Handling Fragment Events
	30.6 Implementing Fragment Communication
	30.7 Summary

	31. Using Fragments in Android Studio - An Example
	31.1 About the Example Fragment Application
	31.2 Creating the Example Project
	31.3 Creating the First Fragment Layout
	31.4 Migrating a Fragment to View Binding
	31.5 Adding the Second Fragment
	31.6 Adding the Fragments to the Activity
	31.7 Making the Toolbar Fragment Talk to the Activity
	31.8 Making the Activity Talk to the Text Fragment
	31.9 Testing the Application
	31.10 Summary

	32. Modern Android App Architecture with Jetpack
	32.1 What is Android Jetpack?
	32.2 The “Old” Architecture
	32.3 Modern Android Architecture
	32.4 The ViewModel Component
	32.5 The LiveData Component
	32.6 ViewModel Saved State
	32.7 LiveData and Data Binding
	32.8 Android Lifecycles
	32.9 Repository Modules
	32.10 Summary

	33. An Android ViewModel Tutorial
	33.1 About the Project
	33.2 Creating the ViewModel Example Project
	33.3 Removing Unwanted Project Elements
	33.4 Designing the Fragment Layout
	33.5 Implementing the View Model
	33.6 Associating the Fragment with the View Model
	33.7 Modifying the Fragment
	33.8 Accessing the ViewModel Data
	33.9 Testing the Project
	33.10 Summary

	34. An Android Jetpack LiveData Tutorial
	34.1 LiveData - A Recap
	34.2 Adding LiveData to the ViewModel
	34.3 Implementing the Observer
	34.4 Summary

	35. An Overview of Android Jetpack Data Binding
	35.1 An Overview of Data Binding
	35.2 The Key Components of Data Binding
	35.2.1 The Project Build Configuration
	35.2.2 The Data Binding Layout File
	35.2.3 The Layout File Data Element
	35.2.4 The Binding Classes
	35.2.5 Data Binding Variable Configuration
	35.2.6 Binding Expressions (One-Way)
	35.2.7 Binding Expressions (Two-Way)
	35.2.8 Event and Listener Bindings

	35.3 Summary

	36. An Android Jetpack Data Binding Tutorial
	36.1 Removing the Redundant Code
	36.2 Enabling Data Binding
	36.3 Adding the Layout Element
	36.4 Adding the Data Element to Layout File
	36.5 Working with the Binding Class
	36.6 Assigning the ViewModel Instance to the Data Binding Variable
	36.7 Adding Binding Expressions
	36.8 Adding the Conversion Method
	36.9 Adding a Listener Binding
	36.10 Testing the App
	36.11 Summary

	37. An Android ViewModel Saved State Tutorial
	37.1 Understanding ViewModel State Saving
	37.2 Implementing ViewModel State Saving
	37.3 Saving and Restoring State
	37.4 Adding Saved State Support to the ViewModelDemo Project
	37.5 Summary

	38. Working with Android Lifecycle-Aware Components
	38.1 Lifecycle Awareness
	38.2 Lifecycle Owners
	38.3 Lifecycle Observers
	38.4 Lifecycle States and Events
	38.5 Summary

	39. An Android Jetpack Lifecycle Awareness Tutorial
	39.1 Creating the Example Lifecycle Project
	39.2 Creating a Lifecycle Observer
	39.3 Adding the Observer
	39.4 Testing the Observer
	39.5 Creating a Lifecycle Owner
	39.6 Testing the Custom Lifecycle Owner
	39.7 Summary

	40. An Overview of the Navigation Architecture Component
	40.1 Understanding Navigation
	40.2 Declaring a Navigation Host
	40.3 The Navigation Graph
	40.4 Accessing the Navigation Controller
	40.5 Triggering a Navigation Action
	40.6 Passing Arguments
	40.7 Summary

	41. An Android Jetpack Navigation Component Tutorial
	41.1 Creating the NavigationDemo Project
	41.2 Adding Navigation to the Build Configuration
	41.3 Creating the Navigation Graph Resource File
	41.4 Declaring a Navigation Host
	41.5 Adding Navigation Destinations
	41.6 Designing the Destination Fragment Layouts
	41.7 Adding an Action to the Navigation Graph
	41.8 Implement the OnFragmentInteractionListener
	41.9 Adding View Binding Support to the Destination Fragments
	41.10 Triggering the Action
	41.11 Passing Data Using Safeargs
	41.12 Summary

	42. An Introduction to MotionLayout
	42.1 An Overview of MotionLayout
	42.2 MotionLayout
	42.3 MotionScene
	42.4 Configuring ConstraintSets
	42.5 Custom Attributes
	42.6 Triggering an Animation
	42.7 Arc Motion
	42.8 Keyframes
	42.8.1 Attribute Keyframes
	42.8.2 Position Keyframes

	42.9 Time Linearity
	42.10 KeyTrigger
	42.11 Cycle and Time Cycle Keyframes
	42.12 Starting an Animation from Code
	42.13 Summary

	43. An Android MotionLayout Editor Tutorial
	43.1 Creating the MotionLayoutDemo Project
	43.2 ConstraintLayout to MotionLayout Conversion
	43.3 Configuring Start and End Constraints
	43.4 Previewing the MotionLayout Animation
	43.5 Adding an OnClick Gesture
	43.6 Adding an Attribute Keyframe to the Transition
	43.7 Adding a CustomAttribute to a Transition
	43.8 Adding Position Keyframes
	43.9 Summary

	44. A MotionLayout KeyCycle Tutorial
	44.1 An Overview of Cycle Keyframes
	44.2 Using the Cycle Editor
	44.3 Creating the KeyCycleDemo Project
	44.4 Configuring the Start and End Constraints
	44.5 Creating the Cycles
	44.6 Previewing the Animation
	44.7 Adding the KeyFrameSet to the MotionScene
	44.8 Summary

	45. Working with the Floating Action Button and Snackbar
	45.1 The Material Design
	45.2 The Design Library
	45.3 The Floating Action Button (FAB)
	45.4 The Snackbar
	45.5 Creating the Example Project
	45.6 Reviewing the Project
	45.7 Removing Navigation Features
	45.8 Changing the Floating Action Button
	45.9 Adding an Action to the Snackbar
	45.10 Summary

	46. Creating a Tabbed Interface using the TabLayout Component
	46.1 An Introduction to the ViewPager2
	46.2 An Overview of the TabLayout Component
	46.3 Creating the TabLayoutDemo Project
	46.4 Creating the First Fragment
	46.5 Duplicating the Fragments
	46.6 Adding the TabLayout and ViewPager2
	46.7 Performing the Initialization Tasks
	46.8 Testing the Application
	46.9 Customizing the TabLayout
	46.10 Summary

	47. Working with the RecyclerView and CardView Widgets
	47.1 An Overview of the RecyclerView
	47.2 An Overview of the CardView
	47.3 Summary

	48. An Android RecyclerView and CardView Tutorial
	48.1 Creating the CardDemo Project
	48.2 Modifying the Basic Views Activity Project
	48.3 Designing the CardView Layout
	48.4 Adding the RecyclerView
	48.5 Adding the Image Files
	48.6 Creating the RecyclerView Adapter
	48.7 Initializing the RecyclerView Component
	48.8 Testing the Application
	48.9 Responding to Card Selections
	48.10 Summary

	49. A Layout Editor Sample Data Tutorial
	49.1 Adding Sample Data to a Project
	49.2 Using Custom Sample Data
	49.3 Summary

	50. Working with the AppBar and Collapsing Toolbar Layouts
	50.1 The Anatomy of an AppBar
	50.2 The Example Project
	50.3 Coordinating the RecyclerView and Toolbar
	50.4 Introducing the Collapsing Toolbar Layout
	50.5 Changing the Title and Scrim Color
	50.6 Summary

	51. An Android Studio Primary/Detail Flow Tutorial
	51.1 The Primary/Detail Flow
	51.2 Creating a Primary/Detail Flow Activity
	51.3 Adding the Primary/Detail Flow Activity
	51.4 Modifying the Primary/Detail Flow Template
	51.5 Changing the Content Model
	51.6 Changing the Detail Pane
	51.7 Modifying the ItemDetailFragment Class
	51.8 Modifying the ItemListFragment Class
	51.9 Adding Manifest Permissions
	51.10 Running the Application
	51.11 Summary

	52. An Overview of Android Services
	52.1 Intent Service
	52.2 Bound Service
	52.3 The Anatomy of a Service
	52.4 Controlling Destroyed Service Restart Options
	52.5 Declaring a Service in the Manifest File
	52.6 Starting a Service Running on System Startup
	52.7 Summary

	53. An Overview of Android Intents
	53.1 An Overview of Intents
	53.2 Explicit Intents
	53.3 Returning Data from an Activity
	53.4 Implicit Intents
	53.5 Using Intent Filters
	53.6 Automatic Link Verification
	53.7 Manually Enabling Links
	53.8 Checking Intent Availability
	53.9 Summary

	54. Android Explicit Intents – A Worked Example
	54.1 Creating the Explicit Intent Example Application
	54.2 Designing the User Interface Layout for MainActivity
	54.3 Creating the Second Activity Class
	54.4 Designing the User Interface Layout for SecondActivity
	54.5 Reviewing the Application Manifest File
	54.6 Creating the Intent
	54.7 Extracting Intent Data
	54.8 Launching SecondActivity as a Sub-Activity
	54.9 Returning Data from a Sub-Activity
	54.10 Testing the Application
	54.11 Summary

	55. Android Implicit Intents – A Worked Example
	55.1 Creating the Android Studio Implicit Intent Example Project
	55.2 Designing the User Interface
	55.3 Creating the Implicit Intent
	55.4 Adding a Second Matching Activity
	55.5 Adding the Web View to the UI
	55.6 Obtaining the Intent URL
	55.7 Modifying the MyWebView Project Manifest File
	55.8 Installing the MyWebView Package on a Device
	55.9 Testing the Application
	55.10 Manually Enabling the Link
	55.11 Automatic Link Verification
	55.12 Summary

	56. Android Broadcast Intents and Broadcast Receivers
	56.1 An Overview of Broadcast Intents
	56.2 An Overview of Broadcast Receivers
	56.3 Obtaining Results from a Broadcast
	56.4 Sticky Broadcast Intents
	56.5 The Broadcast Intent Example
	56.6 Creating the Example Application
	56.7 Creating and Sending the Broadcast Intent
	56.8 Creating the Broadcast Receiver
	56.9 Registering the Broadcast Receiver
	56.10 Testing the Broadcast Example
	56.11 Listening for System Broadcasts
	56.12 Summary

	57. Android Local Bound Services – A Worked Example
	57.1 Understanding Bound Services
	57.2 Bound Service Interaction Options
	57.3 A Local Bound Service Example
	57.4 Adding a Bound Service to the Project
	57.5 Implementing the Binder
	57.6 Binding the Client to the Service
	57.7 Completing the Example
	57.8 Testing the Application
	57.9 Summary

	58. Android Remote Bound Services – A Worked Example
	58.1 Client to Remote Service Communication
	58.2 Creating the Example Application
	58.3 Designing the User Interface
	58.4 Implementing the Remote Bound Service
	58.5 Configuring a Remote Service in the Manifest File
	58.6 Launching and Binding to the Remote Service
	58.7 Sending a Message to the Remote Service
	58.8 Summary

	59. A Basic Overview of Java Threads, Handlers and Executors
	59.1 The Application Main Thread
	59.2 Thread Handlers
	59.3 A Threading Example
	59.4 Building the App
	59.5 Creating a New Thread
	59.6 Implementing a Thread Handler
	59.7 Passing a Message to the Handler
	59.8 Java Executor Concurrency
	59.9 Working with Runnable Tasks
	59.10 Shutting down an Executor Service
	59.11 Working with Callable Tasks and Futures
	59.12 Handling a Future Result
	59.13 Scheduling Tasks
	59.14 Summary

	60. Making Runtime Permission Requests in Android
	60.1 Understanding Normal and Dangerous Permissions
	60.2 Creating the Permissions Example Project
	60.3 Checking for a Permission
	60.4 Requesting Permission at Runtime
	60.5 Providing a Rationale for the Permission Request
	60.6 Testing the Permissions App
	60.7 Summary

	61. An Android Notifications Tutorial
	61.1 An Overview of Notifications
	61.2 Creating the NotifyDemo Project
	61.3 Designing the User Interface
	61.4 Creating the Second Activity
	61.5 Creating a Notification Channel
	61.6 Requesting Notification Permission
	61.7 Creating and Issuing a Notification
	61.8 Launching an Activity from a Notification
	61.9 Adding Actions to a Notification
	61.10 Bundled Notifications
	61.11 Summary

	62. An Android Direct Reply Notification Tutorial
	62.1 Creating the DirectReply Project
	62.2 Designing the User Interface
	62.3 Requesting Notification Permission
	62.4 Creating the Notification Channel
	62.5 Building the RemoteInput Object
	62.6 Creating the PendingIntent
	62.7 Creating the Reply Action
	62.8 Receiving Direct Reply Input
	62.9 Updating the Notification
	62.10 Summary

	63. Foldable Devices and Multi-Window Support
	63.1 Foldables and Multi-Window Support
	63.2 Using a Foldable Emulator
	63.3 Entering Multi-Window Mode
	63.4 Enabling and using Freeform Support
	63.5 Checking for Freeform Support
	63.6 Enabling Multi-Window Support in an App
	63.7 Specifying Multi-Window Attributes
	63.8 Detecting Multi-Window Mode in an Activity
	63.9 Receiving Multi-Window Notifications
	63.10 Launching an Activity in Multi-Window Mode
	63.11 Configuring Freeform Activity Size and Position
	63.12 Summary

	64. An Overview of Android SQLite Databases
	64.1 Understanding Database Tables
	64.2 Introducing Database Schema
	64.3 Columns and Data Types
	64.4 Database Rows
	64.5 Introducing Primary Keys
	64.6 What is SQLite?
	64.7 Structured Query Language (SQL)
	64.8 Trying SQLite on an Android Virtual Device (AVD)
	64.9 The Android Room Persistence Library
	64.10 Summary

	65. The Android Room Persistence Library
	65.1 Revisiting Modern App Architecture
	65.2 Key Elements of Room Database Persistence
	65.2.1 Repository
	65.2.2 Room Database
	65.2.3 Data Access Object (DAO)
	65.2.4 Entities
	65.2.5 SQLite Database

	65.3 Understanding Entities
	65.4 Data Access Objects
	65.5 The Room Database
	65.6 The Repository
	65.7 In-Memory Databases
	65.8 Database Inspector
	65.9 Summary

	66. An Android TableLayout and TableRow Tutorial
	66.1 The TableLayout and TableRow Layout Views
	66.2 Creating the Room Database Project
	66.3 Converting to a LinearLayout
	66.4 Adding the TableLayout to the User Interface
	66.5 Configuring the TableRows
	66.6 Adding the Button Bar to the Layout
	66.7 Adding the RecyclerView
	66.8 Adjusting the Layout Margins
	66.9 Summary

	67. An Android Room Database and Repository Tutorial
	67.1 About the RoomDemo Project
	67.2 Modifying the Build Configuration
	67.3 Building the Entity
	67.4 Creating the Data Access Object
	67.5 Adding the Room Database
	67.6 Adding the Repository
	67.7 Adding the ViewModel
	67.8 Creating the Product Item Layout
	67.9 Adding the RecyclerView Adapter
	67.10 Preparing the Main Activity
	67.11 Adding the Button Listeners
	67.12 Adding LiveData Observers
	67.13 Initializing the RecyclerView
	67.14 Testing the RoomDemo App
	67.15 Using the Database Inspector
	67.16 Summary

	68. Accessing Cloud Storage using the Android Storage Access Framework
	68.1 The Storage Access Framework
	68.2 Working with the Storage Access Framework
	68.3 Filtering Picker File Listings
	68.4 Handling Intent Results
	68.5 Reading the Content of a File
	68.6 Writing Content to a File
	68.7 Deleting a File
	68.8 Gaining Persistent Access to a File
	68.9 Summary

	69. An Android Storage Access Framework Example
	69.1 About the Storage Access Framework Example
	69.2 Creating the Storage Access Framework Example
	69.3 Designing the User Interface
	69.4 Adding the Activity Launchers
	69.5 Creating a New Storage File
	69.6 Saving to a Storage File
	69.7 Opening and Reading a Storage File
	69.8 Testing the Storage Access Application
	69.9 Summary

	70. Video Playback on Android using the VideoView and MediaController Classes
	70.1 Introducing the Android VideoView Class
	70.2 Introducing the Android MediaController Class
	70.3 Creating the Video Playback Example
	70.4 Designing the VideoPlayer Layout
	70.5 Downloading the Video File
	70.6 Configuring the VideoView
	70.7 Adding the MediaController to the Video View
	70.8 Setting up the onPreparedListener
	70.9 Summary

	71. Android Picture-in-Picture Mode
	71.1 Picture-in-Picture Features
	71.2 Enabling Picture-in-Picture Mode
	71.3 Configuring Picture-in-Picture Parameters
	71.4 Entering Picture-in-Picture Mode
	71.5 Detecting Picture-in-Picture Mode Changes
	71.6 Adding Picture-in-Picture Actions
	71.7 Summary

	72. An Android Picture-in-Picture Tutorial
	72.1 Adding Picture-in-Picture Support to the Manifest
	72.2 Adding a Picture-in-Picture Button
	72.3 Entering Picture-in-Picture Mode
	72.4 Detecting Picture-in-Picture Mode Changes
	72.5 Adding a Broadcast Receiver
	72.6 Adding the PiP Action
	72.7 Testing the Picture-in-Picture Action
	72.8 Summary

	73. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	73.1 Playing Audio
	73.2 Recording Audio and Video using the MediaRecorder Class
	73.3 About the Example Project
	73.4 Creating the AudioApp Project
	73.5 Designing the User Interface
	73.6 Checking for Microphone Availability
	73.7 Initializing the Activity
	73.8 Implementing the recordAudio() Method
	73.9 Implementing the stopAudio() Method
	73.10 Implementing the playAudio() method
	73.11 Configuring and Requesting Permissions
	73.12 Testing the Application
	73.13 Summary

	74. Working with the Google Maps Android API in Android Studio
	74.1 The Elements of the Google Maps Android API
	74.2 Creating the Google Maps Project
	74.3 Creating a Google Cloud Billing Account
	74.4 Creating a New Google Cloud Project
	74.5 Enabling the Google Maps SDK
	74.6 Generating a Google Maps API Key
	74.7 Adding the API Key to the Android Studio Project
	74.8 Testing the Application
	74.9 Understanding Geocoding and Reverse Geocoding
	74.10 Adding a Map to an Application
	74.11 Requesting Current Location Permission
	74.12 Displaying the User’s Current Location
	74.13 Changing the Map Type
	74.14 Displaying Map Controls to the User
	74.15 Handling Map Gesture Interaction
	74.15.1 Map Zooming Gestures
	74.15.2 Map Scrolling/Panning Gestures
	74.15.3 Map Tilt Gestures
	74.15.4 Map Rotation Gestures

	74.16 Creating Map Markers
	74.17 Controlling the Map Camera
	74.18 Summary

	75. Printing with the Android Printing Framework
	75.1 The Android Printing Architecture
	75.2 The Print Service Plugins
	75.3 Google Cloud Print
	75.4 Printing to Google Drive
	75.5 Save as PDF
	75.6 Printing from Android Devices
	75.7 Options for Building Print Support into Android Apps
	75.7.1 Image Printing
	75.7.2 Creating and Printing HTML Content
	75.7.3 Printing a Web Page
	75.7.4 Printing a Custom Document

	75.8 Summary

	76. An Android HTML and Web Content Printing Example
	76.1 Creating the HTML Printing Example Application
	76.2 Printing Dynamic HTML Content
	76.3 Creating the Web Page Printing Example
	76.4 Removing the Floating Action Button
	76.5 Removing Navigation Features
	76.6 Designing the User Interface Layout
	76.7 Accessing the WebView from the Main Activity
	76.8 Loading the Web Page into the WebView
	76.9 Adding the Print Menu Option
	76.10 Summary

	77. A Guide to Android Custom Document Printing
	77.1 An Overview of Android Custom Document Printing
	77.1.1 Custom Print Adapters

	77.2 Preparing the Custom Document Printing Project
	77.3 Creating the Custom Print Adapter
	77.4 Implementing the onLayout() Callback Method
	77.5 Implementing the onWrite() Callback Method
	77.6 Checking a Page is in Range
	77.7 Drawing the Content on the Page Canvas
	77.8 Starting the Print Job
	77.9 Testing the Application
	77.10 Summary

	78. An Introduction to Android App Links
	78.1 An Overview of Android App Links
	78.2 App Link Intent Filters
	78.3 Handling App Link Intents
	78.4 Associating the App with a Website
	78.5 Summary

	79. An Android Studio App Links Tutorial
	79.1 About the Example App
	79.2 The Database Schema
	79.3 Loading and Running the Project
	79.4 Adding the URL Mapping
	79.5 Adding the Intent Filter
	79.6 Adding Intent Handling Code
	79.7 Testing the App
	79.8 Creating the Digital Asset Links File
	79.9 Testing the App Link
	79.10 Summary

	80. An Android Biometric Authentication Tutorial
	80.1 An Overview of Biometric Authentication
	80.2 Creating the Biometric Authentication Project
	80.3 Configuring Device Fingerprint Authentication
	80.4 Adding the Biometric Permission to the Manifest File
	80.5 Designing the User Interface
	80.6 Adding a Toast Convenience Method
	80.7 Checking the Security Settings
	80.8 Configuring the Authentication Callbacks
	80.9 Adding the CancellationSignal
	80.10 Starting the Biometric Prompt
	80.11 Testing the Project
	80.12 Summary

	81. Creating, Testing and Uploading an Android App Bundle
	81.1 The Release Preparation Process
	81.2 Android App Bundles
	81.3 Register for a Google Play Developer Console Account
	81.4 Configuring the App in the Console
	81.5 Enabling Google Play App Signing
	81.6 Creating a Keystore File
	81.7 Creating the Android App Bundle
	81.8 Generating Test APK Files
	81.9 Uploading the App Bundle to the Google Play Developer Console
	81.10 Exploring the App Bundle
	81.11 Managing Testers
	81.12 Rolling the App Out for Testing
	81.13 Uploading New App Bundle Revisions
	81.14 Analyzing the App Bundle File
	81.15 Summary

	82. An Overview of Android In-App Billing
	82.1 Preparing a Project for In-App Purchasing
	82.2 Creating In-App Products and Subscriptions
	82.3 Billing Client Initialization
	82.4 Connecting to the Google Play Billing Library
	82.5 Querying Available Products
	82.6 Starting the Purchase Process
	82.7 Completing the Purchase
	82.8 Querying Previous Purchases
	82.9 Summary

	83. An Android In-App Purchasing Tutorial
	83.1 About the In-App Purchasing Example Project
	83.2 Creating the InAppPurchase Project
	83.3 Adding Libraries to the Project
	83.4 Designing the User Interface
	83.5 Adding the App to the Google Play Store
	83.6 Creating an In-App Product
	83.7 Enabling License Testers
	83.8 Initializing the Billing Client
	83.9 Querying the Product
	83.10 Launching the Purchase Flow
	83.11 Handling Purchase Updates
	83.12 Consuming the Product
	83.13 Restoring a Previous Purchase
	83.14 Testing the App
	83.15 Troubleshooting
	83.16 Summary

	84. An Overview of Android Dynamic Feature Modules
	84.1 An Overview of Dynamic Feature Modules
	84.2 Dynamic Feature Module Architecture
	84.3 Creating a Dynamic Feature Module
	84.4 Converting an Existing Module for Dynamic Delivery
	84.5 Working with Dynamic Feature Modules
	84.6 Handling Large Dynamic Feature Modules
	84.7 Summary

	85. An Android Studio Dynamic Feature Tutorial
	85.1 Creating the DynamicFeature Project
	85.2 Adding Dynamic Feature Support to the Project
	85.3 Designing the Base Activity User Interface
	85.4 Adding the Dynamic Feature Module
	85.5 Reviewing the Dynamic Feature Module
	85.6 Adding the Dynamic Feature Activity
	85.7 Implementing the launchIntent() Method
	85.8 Uploading the App Bundle for Testing
	85.9 Implementing the installFeature() Method
	85.10 Adding the Update Listener
	85.11 Using Deferred Installation
	85.12 Removing a Dynamic Module
	85.13 Summary

	86. Working with Material Design 3 Theming
	86.1 Material Design 2 vs Material Design 3
	86.2 Understanding Material Design Theming
	86.3 Material Design 3 Theming
	86.4 Building a Custom Theme
	86.5 Summary

	87. A Material Design 3 Theming and Dynamic Color Tutorial
	87.1 Creating the ThemeDemo Project
	87.2 Designing the User Interface
	87.3 Building a New Theme
	87.4 Adding the Theme to the Project
	87.5 Enabling Dynamic Color Support
	87.6 Previewing Dynamic Colors
	87.7 Summary

	88. An Overview of Gradle in Android Studio
	88.1 An Overview of Gradle
	88.2 Gradle and Android Studio
	88.2.1 Sensible Defaults
	88.2.2 Dependencies
	88.2.3 Build Variants
	88.2.4 Manifest Entries
	88.2.5 APK Signing
	88.2.6 ProGuard Support

	88.3 The Property and Settings Gradle Build File
	88.4 The Top-level Gradle Build File
	88.5 Module Level Gradle Build Files
	88.6 Configuring Signing Settings in the Build File
	88.7 Running Gradle Tasks from the Command-line
	88.8 Summary

	Index
	1951442717.01._SCLZZZZZZZ_SX500_.jpg

